
1

Welcome to

Python and Selenium WebDriver

Part I: Python

Part II: Selenium WebDriver

Introduction To The CourseIntroduction To The CourseIntroduction To The CourseIntroduction To The Course

What you will gain:

� Python knowledge and then Selenium WebDriver

� Enough Python skills to write automated web tests

� You will be able to read any Python code

� Build a test framework while learning

2

Introduction To The Course Introduction To The Course Introduction To The Course Introduction To The Course –––– Cont.Cont.Cont.Cont.

Who is this course for:

� Anyone looking to learn web automation using Python and

WebDriver

� Manual testers looking to advance their career into Automation

� Software Testing job seekers who look to increase their chances

� Any one with a website that like to write tests for his/her

website

� …

Introduction To The Course Introduction To The Course Introduction To The Course Introduction To The Course –––– Cont.Cont.Cont.Cont.

Why take the course

� Say “Built a Framework” on your resume

� Be able to apply for Automation jobs

� Dramatically Increase your chances of getting manual QA job

� Move from manual to automation tester

� If you already know selenium with java or other language

quickly learn it in python

3

Introduction To The Course Introduction To The Course Introduction To The Course Introduction To The Course –––– Cont.Cont.Cont.Cont.

What you need to know before starting

Navigating within your computer/system

Installing and running programs

Very basic HTML

Part I: PYTHON

4

Introduction To PythonIntroduction To PythonIntroduction To PythonIntroduction To Python

� General purpose high level language

� Both Scripting language and Programming language

� Easy to read and user friendly

� Interpreted language as opposed to complied
language

� Runs in most OS (Mac 10x, Windows, Unix, …)

� Object Oriented Programming (OOP)

Introduction To Python Introduction To Python Introduction To Python Introduction To Python –––– Cont.Cont.Cont.Cont.

� Free

� Fast to develop

� Portable (no change to code needed)

� Wide variety of libraries

� One of the most popular languages

� Example applications:
� YouTube, Instagram, Dropbox, Spotify(desktop)

5

Tools and InstallationTools and InstallationTools and InstallationTools and Installation

Tools and InstallationTools and InstallationTools and InstallationTools and Installation

Python 2.7

Windows: will need to install

Go to www.ptyon.org and install

Mac: comes preinstalled

To verify, on the command line do $ which python

If no result then you don’t have python need to install

If “usr/bin/” or similar is the result then you have it

Unix: depends what distribution

6

Tools and InstallationTools and InstallationTools and InstallationTools and Installation

Pip

Install pip

Use pip to install iphyton

Use pip to install selenium

Tools and Installation Tools and Installation Tools and Installation Tools and Installation –––– Cont.Cont.Cont.Cont.

Editor or IDE

PyCharm

Sublime

Eclipse

Notepad++

7

VariablesVariablesVariablesVariables

VariablesVariablesVariablesVariables

Variables store data

Help use save values throughout the program

Using variable enable us to change one place

and apply to entire program

Data type of variable does not need to be declared

Variable can store any data type

8

Variables – Cont.

Variable value can change

Use the assignment operator (=)

Ex: variable assignment

>>> x = 20

>>> _my_var = ‘this is the value’

Everywhere in the program x represents the integer 20

Variables – Cont.

Variable names have few rules

� Must start with letters (upper or lower case)

� Or must start with underscore (_)

� Other than first character, the rest can be letters, numbers,
or underscore

�Pep-8 is guideline (https://www.python.org/dev/peps/pep-0008/)

� Can not use reserved words for variable name:

� Ex: print, len, for, if, rand,….

9

Reserved Words

>>> import keyword
>>> keyword.kwlist

Variables – Cont.

Variables – cont.

Variables do not go inside quotes

If variables are inside quotes, it’s a string not a variable

Ex:

>>> car = ‘BMW’

>>> print car

>>>BMW

>>> print ‘car’

>>>car

10

Can re-assign variables

Ex:

>>> lunch = ‘burgers’

>>> print lunch

>>> burgers

>>> lunch = ‘pasta’

>>> print lunch

>>> pasta

Variables – Cont.

Multiple assignment

Can assign single value to multiple variables

Ex:

>>> my_var1 = my_var2 = my_var3 = 500

Can assign multiple variable to multiple values in one line

Ex:

>>> car1, car2, car3 = ‘Honda’, ‘Toyota’, ‘BMW’

Variables –Cont.

11

Data TypesData TypesData TypesData Types

Python has many datatypes

Also referred as Built-in types

� Few examples:

• Numeric types (integers, floats…)

• Sequence types (strings, lists, tuple,….)

• Mapping type (dictionaries)

• Booleans (True, False)

• And more ….

Will use most of the above types in Automation

Data Types

12

Integers (int) are numeric datatype

Integers are numbers without decimal

Can be negative, positive, or zero

Ex: 1 - 23 100 -45

Can convert strings to integers if compatible

int(z) �Converts ‘z’ into an integer (type casting)
Ex:

>>> int(‘5’)

>>> 5

INTEGERS

Operations on integers

– Addition (+)

– Subtraction (-)

–Multiplication (*)

–Quotient (division) (/)

– Floored quotient (//)

–Modulus (%)

– abs(x)

– float(x)

– pow(x,y)

Integers – Cont.

13

Operator Precedence

5 * 2 + 4 � is it 14 or 40

High school math tell us multiplication has precedence over
addition and …..

So 5*2 gets evaluated first then 4 is added.

“Please Excuse My Dear Aunt Sally” easy way to remember
precedence.

Parenthesis, Exponents, Multiplication, Division, Addition,
Subtraction

Use parenthesis to avoid confusion and having to remember

Integers – Cont.

Floats (floating point numbers)

Numbers with decimal points

Ex:

1.0 , 3.4 , -10.5 , 0.6

5 and 5.0 are different to python (5 is an int and 5.0 is
a float)

Operation on floating numbers will result in floating
numbers

FLOAT

14

There are operations that can be applied to floats

Ex:
>>> round(4.3)

>>>4.0

>>>round(4.6)

>>>5.0

Some methods are in math module and need to be
imported
>>> math.floor(4.8) >>> math.ceil(4.8)

>>> 4.0 >>> 5.0

Floats – Cont.

Strings are sequence of one character data

This sentence is a string

‘5’ is a string

In python string is represented within quotes

Single quotes and double quotes do not matter

Keep the sequence of quotes correct(be consistent)

If double quotes used outside use single inside

– “The teacher said ‘HW is due’ tomorrow” �

– “The teacher said “HW is due” tomorrow” �

STRINGS

15

Slicing: is taking substring of a sting

Index number: is the location of a character in a string
(position)

Indexing is one of the concepts you will use most as an
automation engineer
>>> my_string = ‘SELENIUM WEBDRIVER’

Indexing starts count from 0 if counting left to right

Or start from -1 if counting right to left

index 0 of my_string is ‘S’ and index 1 is ‘E’

Index -1 of my_string is ‘R’ and index -2 is ‘E’

String - Cont.

The syntax for slicing is variable_name[start index : finish
index]
It does not include the last index
Ex: >>> my_string = “SELENIUM WEBDRIVER”

>>> my_string[0] >>> my_string[0:]
>>> ‘S’ >>> ‘SELENIUM WEBDRIVER’
>>> my_string[7] >>> my_string[9:12]
>>> ‘M’ >>> ‘WEB’

Strings – Cont.

16

String Methods: are operations that manipulate strings

There are several strings methods

Ex:

https://docs.python.org/2/library/stdtypes.html

Stings – Cont.

>>> abc=“ Hello World ”
>>> abc.upper()
>>> “ HELLO WORLD ”

>>> abc.lower()
>>> “ hello world ”

>>>abc.strip()
>>> “Hello World”

>>> abc.split()
>>> [‘Hello’, ‘World’]

>>> abc.count(‘l’)
>>> 3

>>> abc.swapcase()
>>> “ hELLO wORLD “

>>> len(str)
>>> 11

String Formatting:
– You will use string formatting frequently in automation
– Specially in reporting and displaying error messages
– Place holders in strings are %s, %d, %f
– %s � string
– %d �integers
– %f �float

Ex:
>>> ap = ‘Oakland’
>>> my_string = “I am flying to %s airport” % ap
>>> print(my_string)
>>> I am flying to Oakland airport

Strings – Cont.

17

Python 3.x has different string formatting

The % way will go away eventually

Ex:
>>> my_var = ‘first { } and second { }’ .format(44, ‘abc’)

>>> print my_var

>>> first 44 and second abc

>>> my_var = ‘first {1} and second {0}’ .format(44, ‘abc’)

>>> print my_var

>>> first abc and second 44

Strings – Cont.

Lists are a mutable (changeable) sequenced data type

Called “Arrays” in most languages

List allow us to pack lots of information in one variable

List start and finish in square brackets

Each element separated by comma

Ex. [‘I am a string’, 5, ‘QA’, 7.9, ‘5.7’]

Lists can contain several data types

LISTS

18

Indexing apply for lists as well

The index number refer to the element at the indexed
position

Again index start from 0 going left to right and from -1
going right to left

Ex:

>>> my_list = [‘orange’, ‘2lb’, ‘$5.5’, 10]

The item in index 0 is the string ‘orange’

The item in index -1 is the integer 10

Lists – Cont.

Slicing a list also apply the same way as slicing string

Ex:

>>>my_list = [‘car’, ‘house’, ‘boat’, ‘plane’]

>>>x = my_list[1:]

>>>print x

>>>[‘house’, ‘boat’, ‘plane’]

>>>y = my_list[1:3]

>>>print y

>>>[‘house, ‘boat’]

Lists – Cont.

19

Methods:
Just like string methods there are also several methods for lists

Ex:

List - Continued

>>> pc = [‘Dell’, ‘HP’, ‘Toshiba’]
>>> len(pc)
>>> 3
>>> pc.append(‘Apple’)
>>> print pc
>>> [‘Dell’, ‘HP’, ‘Toshiba’, ‘Apple’]

>>>x = pc.pop()
>>>print pc
>>>[‘Dell’, ‘HP’, ‘Toshiba’]
>>>print x
>>>’Apple’
>>> pc.remove(“HP”)
>>>print pc

Not sequenced

Open and close with braces { }

Key:Value pair

Key and value separated by colon {key:value}

Each key value pair separated by comma

{key:value, key:value, key:value}

DICTIONARIES

20

Ex:

>>> NFL = {“Oakland” : “Raiders” , “San Francisco” : “49ers”, “Denver” : “Broncos”}

>>> presidents_age = {“Obama”: 47, “W. Bush”: 54, “Clinton”: 46}

Any data type can be a value

Fast for python

Since they are not sequenced, indexing is not available

Dictionaries – Cont.

>>> meal = {“breakfast” : “eggs”, “lunch“ : “salad”}

To add an item in a dict

>>> dict_name[key] = value

Ex: add “dinner” to the meal dictionary

>>> meal[“dinner”] = “steak”

>>> print meal

>>> {“breakast”:”eggs”, ”lunch”:”salad”, “dinner”:”steak”}

Dictionaries – Cont.

21

Just like strings and lists, dictionaries have methods

Ex:

>>> cars = {“BMW”: “645i”, “Toyota”: “Camry”, “Audi”: “R8”}

>>> cars.values()

>>> [“645i”, “Camry”, “R8”] * Note the result is a list

>>> cars.keys()

>>> [“BMW”, “Toyota”, “Audi”]

>>> cars.has_key(“Audi”)

>>> True

Dictionaries – Cont.

Tuples are immutable data types (can not change)

Can store different types of data just like lists do

Difference from list is they can not change and they

start and end with prentices

Accessing data from tuple is same as from list.

Indexing start from 0

Ex: tuple1[0] � gives first element in the tuple

TUPLES

22

Examples:

>>> tuple_a = (1, 2, 3, 4)

>>> tuple_b = (1, ‘x’, ‘z’, 5, 66, ‘sample’)

>>> tuple_c = (‘xy’,) # a tuple with one element, note the

comma

>>> tuple_d = () # and empty tuple

TUPLES – Cont

There are built-in functions for tuples also

>>> len(tuple_a) � gives the number of elements in tuple_a

>>> tuple(list) � converts a list into a tuple

>>> max(tuple_a) � gives the maximum value in tuple_a

>>> cmp(tuple_a, tuple_b) � compares the two tuples

TUPLES – Cont.

23

Control FlowControl FlowControl FlowControl Flow

Boolean – Another built-in data type in python
Booleans are : True, False
Boolean logic (Boolean Operation)
– AND, OR, NOT

AND – requires both values to be True for result to be True
OR – requires one of the values to be True for the result to
be true
NOT – negates the value that follows it
• Ex:

not True � False
not False � True

Control Flow – Boolean Operations

24

Boolean – Cont.

X Y operation Result

True True X and Y True

True False X and Y False

True False X or Y True

False False X and Y False

False True X or Y True

True False X and not Y True

Operators

o <= less than or equal to

o >= greater than or equal to

o == equal to

o != not equal to

o and

o or

o not

Control Flow - Comparisons

25

Control Flow – “if – else” statements

Made decisions based on it a condition is true or false

If some condition is true do this but if its not, then do this
instead

Code block for each ‘if’ and ‘else’ is indented (4 spaces
typically)

Each statement must end with “:”

Syntax:
>>> if <something is true>:

<then do this>

else:

<do something else>

if-else statements – Cont.

Checking multiple conditions use “elif”

Keep checking until ‘true’ is found or ‘else’ is reached

Syntax:
>>> if <something is true>:

<do this>

elif <something else is true>:
<do this>

elif <something else is true>:
<do this>

else:
<do this if none of the above is true>

26

Control Flow - Loops

Loops execute actions repeatedly

Two types of loops in python

• ‘for’ loop

• ‘while’ loop

FOR loop

‘for’ loop is counting loop

Need to use iterable object like a list

The block of code for the ‘for’ loop is indented

The ‘for’ statement must end with “:”

Syntax:

for <variable> in <iterable object>:
Do some action

– If the iterable object has X number of items the “Do some action” will
repeat X times.

27

for loop – Cont..

Ex.
>>> my_list = [‘houme’, ‘car’, ‘bike’, ‘boat’]

>>> for i in my_list:

print i

>>> house

>>> car

>>> bike

>>> boat

for loop – Cont.

Use range(a,b) for known number of iteration

range(start,end)

Range does not include the end

>>> range(1,5)

>>>[1,2,3,4]

Ex: To repeat something 9 times

>>> for j in range(1,10):

<do something>

28

While loop

execute code repeatedly until a condition is
met

risky to get infinite loop

the condition must change to False at some
point

“ctr + c” to stop infinite loop in most systems

python has its own timeout (do not rely on it)

While loop – Cont.

Syntax:

>>> while <some condition is true>:
<execute this code>

Ex:
>>> counter = 0
>>> while counter <= 4:

counter += 1
print ‘Currently counter is: %d’ % counter

>>> Currently counter is: 1
Currently counter is: 2
Currently counter is: 3
Currently counter is: 4
Currently counter is: 5

29

“break” and “continue”

“break” will exit the loop

“continue” will make the loop go to top and start the
next execution

What if your loop is supposed to execute 1000 times
but you found what you need on the second
execution?

Then ‘break’ out of the loop

“break” and “continue” – Cont.

Syntax:

>>> for i in my_list:
Do this

Do this

Do this

if <something is true>:

break

Do this

Do this

** while looping the list when the if statement is true then the last two
statements will not execute. The loop stop looping (it exits the loop).

30

“break” and “continue” – Cont.

Syntax:

>>> for i in my_list:
Do this

Do this

Do this

if <something is true>:

continue

Do this

Do this

** while looping the list when the if statement is true then the last two
statements will not execute. The loop will go to top and start the next

FunctionsFunctionsFunctionsFunctions

31

Functions

Functions are block of code packaged in one line

Functions help us avoid repeated code

Define a function (a task) once and use repeatedly

Function definition start with the word ‘def’

Syntax:
>>> def my_first_function(input parameters):

<some code here>

return <something>

The ‘return’ statement is optional if nothing to return

Also the input parameters are optional

Functions – Cont.

Ex:

>>> def my_adding_func(a,b):

total = a + b

return total

“Calling a function” means using the function

Ex:
>>> my_adding_func(5,10)

>>> total_value = my_adding_func(5,10)

>>> print total_value

>>> 15

32

Functions – Cont.

>>> my_adding_func(5,10)

5 and 10 are the arguments when calling the function

Arguments take place of the parameters throughout the
function

If function is defined with parameters it must have
arguments when called.

Number or parameters and arguments must match

Exception Handling

Exceptions are Errors

We will learn how to handle them

Several different types of exceptions

>>> dir(exceptions)

Ex:

� TypeError, IOError, DivisionByZeroError

� >>> Usually we can anticipate the errors and handle
them

33

Exception Handling – Cont.

‘try’ and ‘except’ (try and catch)

Syntax:

>>> try:
To do this actions and if

there is an exception then

except:
do this

If there is an exception in the try block then the except
block is executed

Program will not fail unless explicitly coded to fail

Exception Handling – Cont.

Catch specific exception

>>> try:

result = 5/x

except ZeroDivisionError:

print “Can not divide by 0 please try again!”

34

Exception Handling – Cont.

Catch multiple exceptions with one line

>>> try:

<some code here>

except <ErrorType1, ErrorType2, ErrorType3>:

print “Something wrong happened!”

Exception Handling – Cont.

Catch multiple exceptions with multiple lines
>>> try:

result = (x+y)/z

except (ZeroDivisionError, TypeError):

print “Something wrong happened!”

except Exception as e:

raise Exception (‘There is an error. The error is: %s’ % e)

35

Exception Handling – Cont.

‘finally’ and ‘else’
>>> try:

result = (x+y)/z

except:

raise Exception(“Something wrong happened!”)

finally:

print (‘Performing some cleanup’)

Exception Handling – Cont.

If we want it to fail we raise an exception

Can raise specific type of exception

Can raise exception with custom message.

Can raise exception at anytime.

Ex:
>>> if total_cost != expected_cost:

raise Exception(‘Test Fail!!! The total cost does not equal the expected.’)

