

Docker	Deep	Dive
	

Nigel	Poulton

	

This	book	is	for	sale	at	http://leanpub.com/dockerdeepdive

This	version	was	published	on	2017-10-02

*			*			*			*			*

This	is	a	Leanpub	book.	Leanpub	empowers	authors	and	publishers	with	the
Lean	Publishing	process.	Lean	Publishing	is	the	act	of	publishing	an	in-
progress	ebook	using	lightweight	tools	and	many	iterations	to	get	reader
feedback,	pivot	until	you	have	the	right	book	and	build	traction	once	you	do.

*			*			*			*			*

©	2016	-	2017	Nigel	Poulton

http://leanpub.com/dockerdeepdive
http://leanpub.com
http://leanpub.com/manifesto

Huge	thanks	to	my	wife	and	kids	for	putting	up	with	a	geek	in	the	house	who
genuinely	thinks	he’s	a	bunch	of	software	running	inside	of	a	container	on	top

of	midrange	biological	hardware.	It	can’t	be	easy	living	with	me!

Massive	thanks	as	well	to	everyone	who	watches	my	Pluralsight	videos.	I	love
connecting	with	you	and	really	appreciate	all	the	feedback	I’ve	gotten	over
the	years.	This	was	one	of	the	major	reasons	I	decided	to	write	this	book!	I
hope	it’ll	be	an	amazing	tool	to	help	you	drive	your	careers	even	further

forward.

Table	of	Contents

	
0:	About	the	book
What	about	a	print	(paperback)	version
Why	should	I	read	this	book	or	care	about	Docker?
Isn’t	Docker	just	for	developers?
Should	I	buy	the	book	if	I’ve	already	watched	your	video	training	courses?
How	the	book	is	organized

Versions	of	the	book

Part	1:	The	big	picture	stuff
1:	Containers	from	30,000	feet
The	bad	old	days
Hello	VMware!
VMwarts
Hello	Containers!
Linux	containers
Hello	Docker!
Windows	containers
Windows	containers	vs	Linux	containers
What	about	Mac	containers?
Chapter	Summary

2:	Docker
Docker	-	The	TLDR
Docker,	Inc.
The	Docker	runtime	and	orchestration	engine
The	Docker	open-source	project	(Moby)
The	container	ecosystem
The	Open	Container	Initiative	(OCI)
Chapter	summary

3:	Installing	Docker
Docker	for	Windows	(DfW)
Docker	for	Mac	(DfM)
Installing	Docker	on	Linux
Installing	Docker	on	Windows	Server	2016
Chapter	Summary

4:	The	big	picture
The	Ops	Perspective
The	Dev	Perspective
Chapter	Summary

Part	2:	The	technical	stuff
5:	The	Docker	Engine
Docker	Engine	-	The	TLDR
Docker	Engine	-	The	Deep	Dive

Chapter	summary
6:	Images
Docker	images	-	The	TLDR
Docker	images	-	The	deep	dive
Images	-	The	commands
Chapter	summary

7:	Containers
Docker	containers	-	The	TLDR
Docker	containers	-	The	deep	dive
Containers	-	The	commands
Chapter	summary

8:	Containerizing	an	App
Containerizing	an	App	-	The	TLDR
Containerizing	an	App	-	The	deep	dive
Containerizing	an	app	-	The	commands
Chapter	summary

9:	Swarm	Mode
Swarm	mode	-	The	TLDR
Swarm	mode	-	The	deep	dive
Swarm	mode	-	The	commands
Chapter	summary

10:	Docker	overlay	networking
Docker	overlay	networking	-	The	TLDR
Docker	overlay	networking	-	The	deep	dive
Docker	overlay	networking	-	The	commands
Chapter	Summary

11:	Security	in	Docker
Security	in	Docker	-	The	TLDR
Security	in	Docker	-	The	deep	dive
Chapter	Summary

12:	What	next
Feedback

0:	About	the	book

This	is	a	book	about	Docker.	No	prior	knowledge	required!

If	you’re	interested	in	Docker	and	want	to	know	how	it	works	and	how	to	do
things	properly	this	book	is	dedicated	to	you!

If	you	just	want	to	use	Docker	and	you	don’t	care	about	how	it	all	works,	this
book	is	not	for	you.	Bye.

What	about	a	print	(paperback)	version
No	offense	Leanpub	and	Amazon	Kindle,	but	as	good	as	modern	e-books	are,
I’m	still	a	fan	of	ink	and	paper!	So….	this	book	is	available	as	a	high-quality,
full-color,	paperback	edition	via	Amazon	-	and	it’s	the	business!	None	of	this
black-and-white	nonsense.

On	the	topic	of	Amazon…	I’d	appreciate	it	if	you’d	give	the	book	some	stars
and	a	quick	review.	Cheers!

Why	should	I	read	this	book	or	care	about	Docker?
Docker	is	here	and	there’s	no	point	hiding.	Developers	are	all	over	it,	and	IT
Ops	need	to	be	on	their	game!	We	damn	well	better	know	how	to	build	and
support	production-quality	Dockerized	apps	in	our	business-critical
production	environments.	This	book	will	help	you.

Isn’t	Docker	just	for	developers?
If	you	think	Docker	is	just	for	developers	then	prepare	to	have	your	world
flipped	on	its	head!

All	the	Dockerized	apps	that	developers	are	churning	out	need	somewhere	to
run	and	someone	to	manage	them.	If	you	think	developers	are	going	to	do
that,	you’re	dreaming.	Ops	will	need	to	build	and	run	high	performance	and
highly	available	Docker	infrastructures.	If	you’ve	got	an	Ops	focus	and
you’re	not	skilled-up	on	Docker,	you’re	in	for	a	world	of	pain.	But	don’t
stress,	this	book	will	skill	you	up!

Should	I	buy	the	book	if	I’ve	already	watched	your	video
training	courses?
If	you	like	my	video	courses	you’ll	probably	like	the	book.	If	you	don’t	like
my	video	courses	you	probably	won’t	like	the	book.

How	the	book	is	organized
I’ve	divided	the	book	into	two	sections:

The	big	picture	stuff
The	technical	stuff

The	big	picture	stuff	covers	things	like	-	Who	is	Docker,	Inc.	What	is	the
Docker	(Moby)	project.	What	is	the	OCI.	Why	do	we	even	have	containers…
Not	the	coolest	part	of	the	book,	but	the	kind	of	stuff	that	you	need	to	know	if
you	want	a	good	rounded	knowledge	of	Docker	and	containers.	It’s	only	a
short	section	and	you	should	probably	read	it.

https://app.pluralsight.com/library/search?q=nigel+poulton

The	technical	stuff	is	what	the	book	is	all	about!	This	is	where	you’ll	find
everything	you	need	to	start	working	with	Docker.	It	gets	into	the	detail	of
images,	containers	and	the	increasingly	important	topic	of	orchestration.
You’ll	get	the	theory	so	that	you	know	how	it	all	fits	together,	and	you’ll	get
commands	and	examples	to	show	you	how	it	all	works	in	practice.

Every	chapter	in	the	technical	stuff	section	is	divided	into	three	parts:

The	TLDR
The	deep	dive
The	commands

The	TLDR	will	give	you	two	or	three	paragraphs	that	you	can	use	to	explain
the	topic	at	the	coffee	machine.

The	deep	dive	is	where	we	explain	how	everything	works	and	go	through	the
examples.

The	Commands	lists	out	all	the	relevant	commands	in	an	easy	to	read	list	with
brief	reminders	of	what	each	one	does.

I	think	you’ll	love	that	format.

Versions	of	the	book

Docker	is	developing	at	a	warp	speed!	As	a	result,	the	value	of	a	book	like
this	is	inversely	proportional	to	how	old	it	is!	Put	another	way,	the	older	this
book	is,	the	less	valuable	it	is.	So	I	keep	it	up-to-date!

If	this	seems	strange…	welcome	to	the	new	normal!	We	no-longer	live	in	a
world	where	a	5-year	old	book	is	valuable	(believe	me,	it	hurts	for	me	to	say
that).

Don’t	worry	though,	your	investment	in	this	book	is	safe!

If	you	buy	the	paperback	copy,	you	get	the	Kindle	version	for	dirt-cheap!	The
Kindle	and	Leanpub	versions	are	always	kept	up-to-date.	That’s	the	best	we
can	currently	do!

Below	is	a	list	of	versions:

Version	4.	This	is	version	4	of	the	book,	published	on	3rd	October	2017.
This	version	added	a	new	chapter	titled	“Containerizing	an	app”.	It	also
added	content	about	multi-architecture	images	and	crypto	ID’s	to	the
Images	chapter,	and	some	additional	content	to	The	Big	Picture	chapter.
Version	3.	Added	The	Docker	Engine	chapter.
Version	2.	Added	Security	in	Docker	chapter.

PART	1:	THE	BIG	PICTURE	STUFF

1:	Containers	from	30,000	feet

Containers	are	definitely	a	thing.

In	this	chapter	we’ll	get	into	things	like;	why	do	we	have	containers,	what	do
they	do	for	us,	and	where	can	we	use	them.

The	bad	old	days
Applications	run	businesses.	If	applications	break,	businesses	suffer	and
sometimes	go	away.	These	statements	get	truer	every	day!

Most	applications	run	on	servers.	And	in	the	past,	we	could	only	run	one
application	per	server.	The	open-systems	world	of	Windows	and	Linux	just
didn’t	have	the	technologies	to	safely	and	securely	run	multiple	applications
on	the	same	server.

So,	the	story	usually	went	something	like	this…	Every	time	the	business
needed	a	new	application,	IT	would	go	out	and	buy	a	new	server.	And	most	of
the	time	nobody	knew	the	performance	requirements	of	the	new	application!
This	meant	IT	had	to	make	guesses	when	choosing	the	model	and	size	of
servers	to	buy.

As	a	result,	IT	did	the	only	thing	it	could	do	-	it	bought	big	fast	servers	with
lots	of	resiliency.	After	all,	the	last	thing	anyone	wanted	-	including	the
business	-	was	under-powered	servers.	Under-powered	servers	might	be
unable	to	execute	transactions,	which	might	result	in	lost	customers	and	lost
revenue.	So,	IT	usually	bought	bigger	servers	than	were	actually	needed.	This
resulted	in	huge	numbers	of	servers	operating	as	low	as	5-10%	of	their
potential	capacity.	A	tragic	waste	of	company	capital	and	resources!

Hello	VMware!
Amid	all	of	this,	VMware,	Inc.	gave	the	world	a	gift	-	the	virtual	machine
(VM).	And	almost	overnight	the	world	changed	into	a	much	better	place!	We
finally	had	a	technology	that	would	let	us	safely	and	securely	run	multiple
business	applications	on	a	single	server.

This	was	a	game	changer!	IT	no	longer	needed	to	procure	a	brand	new
oversized	server	every	time	the	business	asked	for	a	new	application.	More
often	than	not	they	could	run	new	apps	on	existing	servers	that	were	sitting
around	with	spare	capacity.

All	of	a	sudden,	we	could	squeeze	massive	amounts	of	value	out	of	existing
corporate	assets,	such	as	servers,	resulting	in	a	lot	more	bang	for	the
company’s	buck.

VMwarts
But…	and	there’s	always	a	but!	As	great	as	VMs	are,	they’re	not	perfect!

The	fact	that	every	VM	requires	its	own	dedicated	OS	is	a	major	flaw.	Every
OS	consumes	CPU,	RAM	and	storage	that	could	otherwise	be	used	to	power
more	applications.	Every	OS	needs	patching	and	monitoring.	And	in	some
cases,	every	OS	requires	a	license.	All	of	this	is	a	waste	of	op-ex	and	cap-ex.

The	VM	model	has	other	challenges	too.	VMs	are	slow	to	boot	and	portability
isn’t	great	-	migrating	and	moving	VM	workloads	between	hypervisors	and
cloud	platforms	is	harder	than	it	needs	to	be.

Hello	Containers!
For	a	long	time,	the	big	web-scale	players	like	Google	have	been	using
container	technologies	to	address	these	shortcomings	of	the	VM	model.

In	the	container	model	the	container	is	roughly	analogous	to	the	VM.	The
major	difference	through,	is	that	every	container	does	not	require	a	full-blown
OS.	In	fact,	all	containers	on	a	single	host	share	a	single	OS.	This	frees	up
huge	amounts	of	system	resources	such	as	CPU,	RAM,	and	storage.	It	also
reduces	potential	licensing	costs	and	reduces	the	overhead	of	OS	patching	and
other	maintenance.	This	results	in	savings	on	the	cap-ex	and	op-ex	fronts.

Containers	are	also	fast	to	start	and	ultra-portable.	Moving	container
workloads	from	your	laptop,	to	the	cloud,	and	then	to	VMs	or	bare	metal	in
your	data	center	is	a	breeze.

Linux	containers
Modern	containers	started	in	the	Linux	world	and	are	the	product	of	an
immense	amount	of	work	from	a	wide	variety	of	people	over	a	long	period	of
time.	Just	as	one	example,	Google	Inc.	has	contributed	many	container-related
technologies	to	the	Linux	kernel.	Without	these,	and	other	contributions,	we
wouldn’t	have	modern	containers	today.

Some	of	the	major	technologies	that	enabled	the	massive	growth	of	containers
in	recent	years	include	kernel	namespaces,	control	groups,	and	of	course
Docker.	To	re-emphasize	what	was	said	earlier	-	the	modern	container
ecosystem	is	deeply	indebted	to	the	many	individuals	and	organizations	that
laid	the	strong	foundations	that	we	currently	build	on!

Despite	all	of	this,	containers	remained	complex	and	outside	of	the	reach	of
most	organizations.	It	wasn’t	until	Docker	came	along	that	containers	were
effectively	democratized	and	accessible	to	the	masses.

*	There	are	many	operating	system	virtualization	technologies	similar	to
containers	that	pre-date	Docker	and	modern	containers.	Some	even	date
back	to	System/360	on	the	Mainframe.	BSD	Jails	and	Solaris	Zones	are
some	other	well-known	examples	of	Unix-type	container	technologies.
However,	in	this	section	we	are	restricting	our	conversation	and
comments	to	modern	containers	that	have	been	made	popular	by	Docker.

Hello	Docker!
We’ll	talk	about	Docker	in	a	bit	more	detail	in	the	next	chapter.	But	for	now,
it’s	enough	to	say	that	Docker	was	the	magic	that	made	Linux	containers
usable	for	mere	mortals.	Put	another	way,	Docker,	Inc.	made	containers
simple!

Windows	containers
Over	the	past	few	years,	Microsoft	Corp.	has	worked	extremely	hard	to	bring
Docker	and	container	technologies	to	the	Windows	platform.

At	the	time	of	writing,	Windows	containers	are	available	on	the	Windows	10
and	Windows	Server	2016	platforms.	In	achieving	this,	Microsoft	has	worked
closely	with	Docker,	Inc.

The	core	Windows	technologies	required	to	implement	containers	are
collectively	referred	to	as	Windows	Containers.	The	user-space	tooling	to
work	with	these	Windows	Containers	is	Docker.	This	makes	the	Docker
experience	on	Windows	almost	exactly	the	same	as	Docker	on	Linux.	This
way	developers	and	sysadmins	familiar	with	the	Docker	toolset	from	the
Linux	platform	will	feel	at	home	using	Windows	containers.

This	revision	of	the	book	includes	Linux	and	Windows	examples	for
almost	every	example	cited.

Windows	containers	vs	Linux	containers
It’s	vital	to	understand	that	a	running	container	uses	the	kernel	of	the	host
machine	it	is	running	on.	This	means	that	a	container	designed	to	run	on	a
host	with	a	Windows	kernel	will	not	run	on	a	Linux	host.	This	means	that	you
can	think	of	it	like	this	at	a	high	level	-	Windows	containers	require	a

Windows	Host,	and	Linux	containers	require	a	Linux	host.	However,	it’s	not
that	simple…

At	the	time	of	writing	this	revision	of	the	book,	it	is	possible	to	run	Linux
containers	on	Windows	machines.	For	example,	Docker	for	Windows	(a
product	offering	from	Docker,	Inc.	designed	for	Windows	10)	can	switch
modes	between	Windows	containers	and	Linux	containers.	This	is	an	area	that
is	developing	fast	and	you	should	consult	the	Docker	documentation	for	the
latest.

What	about	Mac	containers?
There	is	currently	no	such	thing	as	Mac	containers.

However,	you	can	run	Linux	containers	on	your	Mac	using	the	Docker	for
Mac	product.	This	works	by	seamlessly	running	your	containers	inside	of	a
lightweight	Linux	VM	running	on	your	Mac.	It’s	extremely	popular	with
developers	who	can	easily	develop	and	test	their	Linux	containers	on	their
Mac.

Chapter	Summary
We	used	to	live	in	a	world	where	every	time	the	business	wanted	a	new
application	we	had	to	buy	a	brand-new	server	for	it.	Then	VMware	came
along	and	enabled	IT	departments	to	drive	more	value	out	of	new	and	existing
company	IT	assets.	But	as	good	as	VMware	and	the	VM	model	is,	it’s	not
perfect.	Following	the	success	of	VMware	and	hypervisors	came	a	newer
more	efficient	and	lightweight	virtualization	technology	called	containers.	But
containers	were	initially	hard	to	implement	and	were	only	found	in	the	data
centers	of	web	giants	that	had	Linux	kernel	engineers	on	staff.	Then	along
came	Docker	Inc.	and	suddenly	container	virtualization	technologies	were
available	to	the	masses.

Speaking	of	Docker…	let’s	go	find	who,	what,	and	why	Docker	is!

2:	Docker

No	book	or	conversation	about	containers	is	complete	without	talking	about
Docker.	But	when	somebody	says	“Docker”	they	can	be	referring	to	any	of	at
least	three	things:

1.	 Docker,	Inc.	the	company
2.	 Docker	the	container	runtime	and	orchestration	technology
3.	 Docker	the	open	source	project	(this	is	now	called	Moby)

If	you’re	going	to	make	it	in	the	container	world,	you’ll	need	to	know	a	bit
about	all	three.

Docker	-	The	TLDR
Docker	is	software	that	runs	on	Linux	and	Windows.	It	creates,	manages	and
orchestrates	containers.	The	software	is	developed	in	the	open	as	part	of	the
Moby	open-source	project	on	GitHub.	Docker,	Inc.	is	a	company	based	out	of
San	Francisco	and	is	the	overall	maintainer	of	the	open-source	project.
Docker,	Inc.	also	has	offers	commercial	versions	of	Docker	with	support
contracts	etc.

Ok	that’s	the	quick	version.	Now	we’ll	explore	each	in	a	bit	more	detail.	We’ll
also	talk	a	bit	about	the	container	ecosystem,	and	we’ll	mention	the	Open
Container	Initiative	(OCI).

Docker,	Inc.
Docker,	Inc.	is	the	San	Francisco	based	technology	startup	founded	by
French-born	American	developer	and	entrepreneur	Solomon	Hykes.

Figure	2.1	Docker,	Inc.	logo.

Interestingly,	Docker,	Inc.	started	its	life	as	a	platform	as	a	service	(PaaS)
provider	called	dotCloud.	Behind	the	scenes,	the	dotCloud	platform	leveraged
Linux	containers.	To	help	them	create	and	manage	these	containers	they	built
an	internal	tool	that	they	nick-named	“Docker”.	And	that’s	how	Docker	was
born!

In	2013	the	dotCloud	PaaS	business	was	struggling	and	the	company	needed
a	new	lease	of	life.	To	help	with	this	they	hired	Ben	Golub	as	new	CEO,
rebranded	the	company	as	“Docker,	Inc.”,	got	rid	of	the	dotCloud	PaaS
platform,	and	started	a	new	journey	with	a	mission	to	bring	Docker	and
containers	to	the	world.

Today	Docker,	Inc.	is	widely	recognized	as	an	innovative	technology
company	with	a	market	valuation	said	to	be	in	the	region	of	$1BN.	At	the
time	of	writing,	it	has	raised	over	$180M	via	7	rounds	of	funding	from	some
of	the	biggest	names	in	Silicon	Valley	venture	capital.	Almost	all	of	this
funding	was	raised	after	the	company	pivoted	to	become	Docker,	Inc.

Since	becoming	Docker,	Inc.	they’ve	made	several	small	acquisitions,	for
undisclosed	fees,	to	help	grow	their	portfolio	of	products	and	services.

At	the	time	of	writing,	Docker,	Inc.	has	somewhere	in	the	region	of	200-300
employees	and	holds	an	annual	conference	called	Dockercon.	The	goal	of
Dockercon	is	to	bring	together	the	growing	container	ecosystem	and	drive	the
adoption	of	Docker	and	container	technologies.

Throughout	this	book	we’ll	use	the	term	“Docker,	Inc.”	when	referring	to
Docker	the	company.	All	other	uses	of	the	term	“Docker”	will	refer	to	the
technology	or	the	open-source	project.

Note:	The	word	“Docker”	comes	from	a	British	colloquialism	meaning
dock	worker	-	somebody	who	loads	and	unloads	ships.

The	Docker	runtime	and	orchestration	engine
When	most	technologists	talk	about	Docker,	they’re	referring	to	the	Docker
Engine.

The	Docker	Engine	is	the	infrastructure	plumbing	software	that	runs	and
orchestrates	containers.	If	you’re	a	VMware	admin,	you	can	think	of	it	as
being	similar	to	ESXi.	In	the	same	way	that	ESXi	is	the	core	hypervisor
technology	that	runs	virtual	machines,	the	Docker	Engine	is	the	core
container	runtime	that	runs	containers.

All	other	Docker,	Inc.	and	3rd	party	products	plug	into	the	Docker	Engine	and
build	around	it.	Figure	2.2	shows	the	Docker	Engine	at	the	center.	All	of	the
other	products	in	the	diagram	build	on	top	of	the	Engine	and	leverage	its	core
capabilities.

Figure	2.2

The	Docker	Engine	can	be	downloaded	from	the	Docker	website	or	built	from
source	from	GitHub.	It’s	available	on	Linux	and	Windows,	with	open-source

and	commercially	supported	offerings.

At	the	time	of	writing	there	two	main	editions:

Enterprise	Edition	(EE)
Community	Edition	(CE)

The	Enterprise	Edition	and	the	Community	Edition	both	have	a	stable	release
channel	with	quarterly	releases.	Each	Community	Edition	will	be	supported
for	4	months	and	each	Enterprise	Edition	will	be	supported	for	12	months.

The	Community	Edition	has	an	additional	monthly	release	via	an	edge
channel.

Starting	from	Q1	2017	Docker	version	numbers	follow	the	YY.MM-xx
versioning	scheme	similar	to	Ubuntu	and	other	projects.	For	example,	the	first
release	of	the	Community	Edition	in	June	2017	will	be	17.06.0-ce.

Note:	Prior	to	Q1	2017,	Docker	version	numbers	followed	the
major.minor	versioning	scheme.	The	last	version	prior	to	the	new
version	scheme	as	Docker	1.13.x.

The	Docker	open-source	project	(Moby)
The	term	“Docker”	is	also	used	to	refer	to	the	open-source	Docker	project.
This	is	the	set	of	tools	that	get	combined	into	things	like	the	Docker	daemon
and	client	you	can	download	and	install	from	docker.com.	However,	the
project	was	officially	renamed	as	the	Moby	project	at	DockerCon	2017	in
Austin,	Tx.	As	part	of	this	rename	the	GitHub	repo	was	moved	from
docker/docker	to	moby/moby	and	the	project	got	its	own	logo.

Figure	2.3

The	goal	of	the	Moby	project	is	to	break	Docker	down	into	more	modular
components,	and	to	do	this	in	the	open.	It’s	hosted	on	GitHub	and	you	can	see
a	list	of	the	current	sub-projects	and	tools	included	in	the	Moby	repository	at
https://github.com/moby.	The	core	Docker	Engine	project	is	currently	located
at	https://github.com/moby/moby	but	parts	are	being	broken	out	and
modularized	all	the	time.

As	an	open-source	project,	the	source	code	is	publicly	available	and	you	are
free	to	download	it,	contribute	to	it,	tweak	it,	and	use	it,	as	long	as	you	adhere
to	the	terms	of	the	Apache	License	2.0.

If	you	take	the	time	to	look	at	the	project’s	commit	history	you’ll	see	the
who’s-who	of	infrastructure	technology	including;	RedHat,	Microsoft,	IBM,
Cisco,	and	HPE.	You’ll	also	see	the	names	of	individuals	not	associated	with
large	corporations.

Most	of	the	project	and	its	tools	are	written	in	Golang	-	the	relatively	new
system-level	programming	language	from	Google	also	known	as	Go.	If	you
code	in	Go	you’re	in	a	great	position	to	contribute	to	the	project!

A	nice	side	effect	of	Moby/Docker	being	an	open-source	project	is	the	fact
that	so	much	of	it	is	developed	and	designed	in	the	open.	This	does	away	with
a	lot	of	the	old	ways	where	code	was	proprietary	and	locked	behind	closed
doors.	It	also	means	that	release	cycles	are	published	and	worked	on	in	the
open.	No	more	uncertain	release	cycles	that	are	kept	a	secret	and	then	pre-
announced	months-in-advance	to	ridiculous	pomp	and	ceremony.	The
Moby/Docker	project	doesn’t	work	like	that.	Most	things	are	done	in	the	open
for	all	to	see	and	all	to	contribute	to.

The	Moby	project,	and	the	wider	Docker	movement	is	huge	and	gaining
momentum.	It	has	thousands	of	GitHub	pull	requests,	tens	of	thousands	of
Dockerized	projects,	not	to	mention	the	billions	of	image	pulls	from	Docker
Hub.	The	project	literally	is	taking	the	industry	by	storm!

Be	under	no	illusions,	Docker	is	being	used!

The	container	ecosystem
One	of	the	core	philosophies	at	Docker,	Inc.	is	often	referred	to	as	Batteries
included	but	removable.

This	is	a	way	of	saying	you	can	swap	out	a	lot	of	the	native	Docker	stuff	and
replace	it	with	stuff	from	3rd	parties.	A	good	example	of	this	is	the
networking	stack.	The	core	Docker	product	ships	with	built-in	networking.
But	the	networking	stack	is	pluggable	meaning	you	can	rip	out	the	native
Docker	networking	and	replace	it	with	something	else	from	a	3rd	party.
Plenty	of	people	do	that.

In	the	early	days	it	was	common	for	3rd	party	plugins	to	be	better	than	the
native	offerings	that	shipped	with	Docker.	However,	this	presented	some
business	model	challenges	for	Docker,	Inc.	After	all,	Docker,	Inc.	has	to	turn
a	profit	at	some	point	to	be	a	viable	long-term	business.	As	a	result,	the

https://github.com/docker/docker/blob/master/LICENSE

batteries	that	are	included	are	getting	better	and	better.	This	is	causing	tension
and	raising	levels	competition	within	the	ecosystem.
To	cut	a	long	story	short,	the	native	Docker	batteries	are	still	removable,
there’s	just	less	and	less	reason	to	need	to	remove	them.

Despite	this,	the	container	ecosystem	is	flourishing	with	a	healthy	balance	of
co-operation	and	competition.	You’ll	often	hear	people	use	terms	like	co-
opetition	(a	balance	of	co-operation	and	competition)	and	frenemy	(a	mix	of	a
friend	and	an	enemy)	when	talking	about	the	container	ecosystem.	This	is
great!	Healthy	competition	is	the	mother	of	innovation!

The	Open	Container	Initiative	(OCI)
No	discussion	of	Docker	and	the	container	ecosystem	is	complete	without
mentioning	the	Open	Containers	Initiative	-	OCI.

Figure	2.4

The	OCI	is	a	relatively	new	governance	council	responsible	for	standardizing
the	most	fundamental	components	of	container	infrastructure	such	as	image
format	and	container	runtime	(don’t	worry	if	these	terms	are	new	to	you,
we’ll	cover	them	in	the	book).

It’s	also	true	that	no	discussion	of	the	OCI	is	complete	without	mentioning	a
bit	of	history.	And	as	with	all	accounts	of	history,	the	version	you	get	depends
on	who’s	doing	the	talking.	So,	this	is	the	version	of	history	according	to
Nigel	:-D

From	day	one,	use	of	Docker	has	grown	like	crazy.	More	and	more	people
used	it	in	more	and	more	ways	for	more	and	more	things.	So,	it	was	inevitable
that	somebody	was	going	to	get	frustrated.	This	is	normal	and	healthy.

The	TLDR	of	this	history	according	to	Nigel	is	that	a	company	called	CoreOS
didn’t	like	the	way	Docker	did	certain	things.	So	they	did	something	about	it!
They	created	a	new	open	standard	called	appc	that	defined	things	like	image
format	and	container	runtime.	They	also	created	an	implementation	of	the
spec	called	rkt	(pronounced	“rocket”).

This	put	the	container	ecosystem	in	an	awkward	position	with	two	competing
standards.

https://www.opencontainers.org
https://coreos.com
https://github.com/appc/spec/

Getting	back	to	the	story	though,	this	threatened	to	fracture	the	ecosystem	and
present	users	and	customers	with	a	dilemma.	While	competition	is	usually	a
good	thing,	competing	standards	is	usually	not.	They	cause	confusion	and
slowdown	user	adoption.	Not	good	for	anybody.

With	this	in	mind,	everybody	did	their	best	to	act	like	adults	and	came
together	to	form	the	OCI	-	a	lightweight	agile	council	to	govern	container
standards.

At	the	time	of	writing,	the	OCI	has	published	two	specifications	(standards)	-

The	image-spec
The	runtime-spec

An	analogy	that’s	often	used	when	referring	to	these	two	standards	is	rail
tracks.	These	two	standards	are	like	agreeing	on	standard	sizes	and	properties
of	rail	tracks.	Leaving	everyone	else	free	to	build	better	trains,	better
carriages,	better	signalling	systems,	better	stations…	all	safe	in	the	knowledge
that	they’ll	work	on	the	standardized	tracks.	Nobody	wants	two	competing
standards	for	rail	track	sizes!

It’s	fair	to	say	that	the	two	OCI	specifications	have	had	a	major	impact	on	the
architecture	and	design	of	the	core	Docker	product.	As	of	Docker	1.11,	the
Docker	Engine	architecture	conforms	to	the	OCI	runtime	spec.

So	far,	the	OCI	has	achieved	good	things	and	gone	some	way	to	bringing	the
ecosystem	together.	However,	standards	always	slow	innovation!	Especially
with	new	technologies	that	are	developing	at	close	to	warp	speed.	This	has
resulted	in	some	raging	arguments	passionate	discussions	in	the	container
community.	In	the	opinion	of	your	author,	this	is	a	good	thing!	The	container
industry	is	changing	the	world	and	it’s	normal	for	the	people	at	the	vanguard
to	be	passionate	and	opinionated.	Expect	more	passionate	discussions	about
standards	and	innovation!

The	OCI	is	organized	under	the	auspices	of	the	Linux	Foundation	and	both
Docker,	Inc.	and	CoreOS,	Inc.	are	major	contributors.

https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec

Chapter	summary
In	this	chapter	we	learned	a	bit	about	Docker,	Inc.	They’re	a	startup	tech
company	out	of	San	Francisco	with	an	ambition	to	change	the	way	we	do
software.	They	were	arguably	the	first-movers	and	instigators	of	the	container
revolution.	But	a	huge	ecosystem	of	partners	and	competitors	now	exists.

The	Docker	project	is	open-source	and	lives	in	the	moby/moby	repo	on
GitHub.

The	Open	Container	Initiative	(OCI)	has	been	instrumental	in	standardizing
the	container	runtime	format	and	container	image	format.

3:	Installing	Docker

There	are	loads	of	ways	and	places	to	install	Docker.	There’s	Windows,
there’s	Mac,	and	there’s	obviously	Linux.	But	there’s	also	in	the	cloud,	on
premises,	on	your	laptop.	Not	to	mention	manual	installs,	scripted	installs,
wizard-based	installs.	There	literally	are	loads	of	ways	and	places	to	install
Docker!

But	don’t	let	that	scare	you!	They’re	all	easy.

In	this	chapter	we’ll	cover	some	of	the	most	important	installs:

Desktop	installs
Docker	for	Windows
Docker	for	Mac

Server	installs
Linux
Windows	Server	2016

Docker	for	Windows	(DfW)
The	first	thing	to	note	is	that	Docker	for	Windows	is	a	packaged	product	from
Docker,	Inc.	This	means	it’s	got	a	slick	installer	that	spins	up	a	single-engine
Docker	environment	on	a	64-bit	Windows	10	desktop	or	laptop.

The	second	thing	to	note	is	that	it	is	a	Community	Edition	(CE)	app.	This
means	it	is	not	intended	for	production	workloads.

The	third	thing	of	note	is	that	it	might	suffer	some	feature-lag.	This	is	because
Docker,	Inc.	are	taking	a	stability	first,	features	second	approach	with	the
product.

All	three	points	add	up	to	a	quick	and	easy	installation,	but	one	that	is	not
intended	for	production	workloads.

Enough	waffle.	Let’s	see	how	to	install	Docker	for	Windows.

First	up,	pre-requisites.	Docker	for	Windows	requires:

Windows	10	Pro	|	Enterprise	|	Education	(1511	November	update,	Build
10586	or	later)
Must	be	64-bit
The	Hyper-V	and	Containers	features	must	be	enabled	in	Windows
Hardware	virtualization	support	must	be	enabled	in	your	system’s	BIOS

The	following	will	assume	that	hardware	virtualization	support	is	already
enabled	in	your	system’s	BIOS.	If	it	is	not,	you	should	carefully	follow	the
procedure	for	your	particular	machine.

The	first	thing	to	do	in	Windows	10	is	make	sure	the	Hyper-V	and
Containers	features	are	installed	and	enabled.

1.	 Right-click	the	Windows	Start	button	and	choose	Apps	and	Features.
2.	 Click	the	Programs	and	Features	link.
3.	 Click	Turn	Windows	features	on	or	off.
4.	 Check	the	Hyper-V	and	Containers	checkboxes	and	click	OK.

This	will	install	and	enable	the	Hyper-V	and	Containers	features.	Your	system
may	require	a	restart.

Figure	3.1

The	Containers	feature	is	only	available	if	you	are	running	the	summer	2016
Windows	10	Anniversary	Update	(build	14393)	or	later.

Once	you’ve	installed	the	Hyper-V	and	Containers	features	and	restarted	your
machine,	it’s	time	to	install	Docker	for	Windows.

1.	 Head	over	to	www.docker.com	and	click	Get	Docker	from	the	top	of	the
page.	This	will	open	a	dropdown	menu.

2.	 Choose	Windows	from	under	the	Desktop	section.
3.	 Click	Download	from	Docker	Store.
4.	 Click	one	of	the	Get	Docker	download	links.

There	are	various	stable	and	edge	versions	available.	The	edge	version
contains	newer	features	but	may	not	be	as	stable.

An	installer	package	called	InstallDocker.msi	will	be	downloaded	to	your
default	downloads	directory.

1.	 Locate	and	launch	the	InstallDocker.msi	package	that	you	just
downloaded.

Step	through	the	installation	wizard	and	provide	local	administrator
credentials	to	complete	the	installation.	Docker	will	automatically	start	as	a
system	service	and	a	Moby	Dock	whale	icon	will	appear	in	the	Windows
notifications	tray.

Congratulations!	You	have	installed	Docker	for	Windows.

Now	that	Docker	for	Windows	is	installed	you	can	open	a	command	prompt
or	PowerShell	window	and	run	some	Docker	commands.	Try	the	following
commands:

			C:\>	docker	version

			Client:

					Version:						17.05.0-ce

					API	version:		1.29

					Go	version:			go1.7.5

					Git	commit:			89658be

					Built:								Thu	May		4	21:43:09	2017

					OS/Arch:						windows/amd64

			Server:

					Version:						17.05.0-ce

					API	version:		1.29	(minimum	version	1.12)

					Go	version:			go1.7.5

					Git	commit:			89658be

					Built:								Thu	May		4	21:43:09	2017

					OS/Arch:						linux/amd64

					Experimental:	false

Notice	that	the	OS/Arch:	for	the	Server	component	is	showing	as
linux/amd64	in	the	output	above.	This	is	because	the	default	installation
currently	installs	the	Docker	daemon	inside	of	a	lightweight	Linux	Hyper-V
VM.	In	this	default	scenario	you	will	only	be	able	to	run	Linux	containers	on
your	Docker	for	Windows	install.

If	you	want	to	run	native	Windows	containers	you	can	right	click	the	Docker
whale	icon	in	the	Windows	notifications	tray	and	select	the	option	to	Switch
to	Windows	containers....	You	can	achieve	the	same	thing	form	the
command	line	with	the	following	command	(located	in	the	\Program
Files\Docker\Docker	directory):
C:\Program	Files\Docker\Docker>dockercli	-SwitchDaemon

You	will	get	the	following	alert	if	you	have	not	enabled	the	Windows
Containers	feature.

Figure	3.2

If	you	already	have	the	Windows	Containers	feature	enabled	it	will	only	take
a	few	seconds	to	make	the	switch.	Once	the	switch	has	been	made	the	output
to	the	docker	version	command	will	look	like	this.
C:\>	docker	version

Client:

		Version:						17.05.0-ce

		API	version:		1.29

		Go	version:			go1.7.5

		Git	commit:			89658be

		Built:								Thu	May		4	21:43:09	2017

		OS/Arch:						windows/amd64

Server:

		Version:						17.05.0-ce

		API	version:		1.29	(minimum	version	1.12)

		Go	version:			go1.7.5

		Git	commit:			89658be

		Built:								Thu	May		4	21:43:09	2017

		OS/Arch:						windows/amd64

		Experimental:	true

Notice	that	the	Server	version	is	now	showing	as	windows/amd64.	This	means
the	daemon	is	now	running	natively	on	the	Windows	kernel	and	will	therefore
only	run	Windows	containers.

Also	note	that	the	system	above	is	now	running	the	experimental	version	of
Docker	(Experimental:	true).	As	previously	mentioned,	Docker	for
Windows	has	a	stable	and	an	edge	channel.	The	example	above	is	from	a
Windows	10	machine	running	the	edge	channel.	The	Windows	containers
feature	of	the	edge	channel	is	currently	an	experimental	feature.

You	can	check	which	channel	you	are	running	with	the	dockercli	-Version
command.	The	dockercli	command	is	located	in	C:\Program
Files\Docker\Docker.
C:\>	dockercli	-Version

Docker	for	Windows

Version:	17.05.0-ce-win11	(12053)

Channel:	edge

Sha1:	ffbc5f5871f44611dfb2bbf49e8312332531c112

OS	Name:	Windows	10	Pro

Windows	Edition:	Professional

Windows	Build	Number:	15063

As	shown	below,	other	regular	Docker	commands	work	as	normal.
			C:\>docker	info

			Containers:	1

					Running:	0

					Paused:	0

					Stopped:	1

			Images:	1

			Server	Version:	17.05.0-ce

			Storage	Driver:	windowsfilter

					Windows:

			Logging	Driver:	json-file

			Plugins:

					Volume:	local

					Network:	l2bridge	l2tunnel	nat	null	overlay	transparent

			<SNIP>

			Experimental:	true

			Insecure	Registries:

				127.0.0.0/8

			Live	Restore	Enabled:	false

Docker	for	Windows	includes	the	Docker	Engine	(client	and	daemon),
Docker	Compose,	Docker	Machine,	and	the	Docker	Notary	command	line.

Use	the	following	commands	to	verify	that	each	was	successfully	installed
and	which	versions	of	each	you	have:
C:\>	docker	--version

Docker	version	1.12.1,	build	23cf638,	experimental

C:\>	docker-compose	--version

docker-compose	version	1.13.0,	build	1719ceb8

C:\>	docker-machine	--version

docker-machine	version	0.11.0,	build	5b27455

C:\>	notary	version

notary

	Version:				0.4.3

	Git	commit:	9211198

Docker	for	Mac	(DfM)
Docker	for	Mac	is	also	a	packaged	product	from	Docker,	Inc.	So	relax,	you
don’t	need	to	be	a	kernel	engineer,	and	we’re	not	about	to	walk	through	a
complex	hack	for	getting	Docker	onto	your	Mac.	We’ll	walk	you	through	the
process	of	installing	Docker	for	Mac	on	your	Mac	desktop	or	laptop,	and	it’s
ridiculously	easy.

So	what	is	Docker	for	Mac?

First	up,	Docker	for	Mac	is	a	packaged	product	from	Docker,	Inc.	that	is
based	on	the	Community	Edition	of	Docker.	This	means	it’s	an	easy	way	to
install	a	single-engine	version	of	Docker	on	you	Mac.	It	also	means	that	it’s
not	intended	for	production	use.	If	you’ve	heard	of	boot2docker	then	Docker
for	Mac	is	what	you	always	wished	boot2docker	was	-	it’s	smooth,	simple	and
stable.

It’s	also	worth	noting	that	Docker	for	Mac	will	not	give	you	the	Docker
Engine	running	natively	on	the	Mac	OS	Darwin	kernel.	Behind	the	scenes	it
runs	the	Docker	daemon	inside	of	a	lightweight	Linux	VM.	It	then	seamlessly
exposes	the	daemon	and	API	to	your	Mac	environment.	But	it	does	it	all	in	a
way	that	the	mystery	and	magic	that	pulls	it	all	together	is	hidden	away
behind	the	scenes.	All	you	need	to	know	is	that	you	can	open	a	terminal	on
your	Mac	and	use	the	regular	Docker	commands	to	hit	the	Docker	API.

Although	this	seamlessly	works	on	your	Mac,	it’s	obviously	Docker	on	Linux
under	the	hood,	so	it’s	only	going	work	with	Linux-based	Docker	containers.
This	is	good	though,	as	this	is	where	most	of	the	container	action	is.

Figure	3.3	shows	a	high-level	representation	of	the	Docker	for	Mac
architecture.

Figure	3.3

Note:	For	the	curious	reader,	Docker	for	Mac	leverages	HyperKit	to
implement	an	extremely	lightweight	hypervisor.	HyperKit	is	based	on
the	xhive	hypervisor.	Docker	for	Mac	also	leverages	features	from
DataKit	and	runs	a	highly	tuned	Linux	distro	called	Moby	that	is	based
off	of	Alpine	Linux.

Let’s	get	Docker	for	Mac	installed.

1.	 Point	your	browser	to	www.docker.com	and	click	Get	Docker	from	the
top	of	the	page.	This	will	open	a	dropdown	menu.

2.	 Choose	Mac	from	under	the	Desktop	section.
3.	 Click	Download	from	Docker	Store.
4.	 Click	one	of	the	Get	Docker	download	links.

There	are	various	stable	and	edge	versions	available.	The	edge	version
contains	newer	features	but	may	not	be	stable.

A	Docker.dmg	installation	package	will	be	downloaded.

1.	 Launch	the	Docker.dmg	file	that	you	downloaded	in	the	previous	step.
You	will	be	asked	to	drag	and	drop	the	Moby	Dock	whale	image	into	the
Applications	folder.

2.	 Open	your	Applications	folder	(it	may	open	automatically)	and	double-
click	the	Docker	application	icon	to	Start	it.	You	may	be	asked	to
confirm	the	action	because	the	application	was	downloaded	from	the
internet.

3.	 Enter	your	password	so	that	the	installer	can	create	components,	such	as
networking,	that	require	elevated	privileges.

4.	 The	Docker	daemon	will	now	start.

An	animated	whale	icon	will	appear	in	the	status	bar	at	the	top	of	your
screen	while	the	daemon	starts.	Once	Docker	has	successfully	started	the
whale	will	stop	being	animated.	You	can	click	the	whale	icon	and

https://github.com/docker/hyperkit
https://github.com/mist64/xhyve
https://github.com/docker/datakit
https://alpinelinux.org/%20and%20https://github.com/alpinelinux

perform	basic	actions	such	as	restarting	the	daemon,	checking	for
updates,	and	opening	the	UI.

Now	that	Docker	for	Mac	is	installed	you	can	open	a	terminal	window	and
run	some	regular	Docker	commands.	Try	the	commands	listed	below.
$	docker	version

Client:

	Version:						17.05.0-ce

	API	version:		1.29

	Go	version:			go1.7.5

	Git	commit:			89658be

	Built:								Thu	May	4	21:43:09	2017

	OS/Arch:						darwin/amd64

Server:

	Version:						17.05.0-ce

	API	version:		1.29	(minimum	version	1.12)

	Go	version:			go1.7.5

	Git	commit:			89658be

	Built:								Thu	May	4	21:43:09	2017

	OS/Arch:						linux/amd64

	Experimental:	true

Notice	in	the	output	above	that	the	OS/Arch:	for	the	Server	component	is
showing	as	linux/amd64.	This	is	because	the	server	portion	of	the	Docker
Engine	(a.k.a.	the	“daemon”)	is	running	inside	of	the	Linux	VM	we
mentioned	earlier.	The	Client	component	is	a	native	Mac	application	and	runs
directly	on	the	Mac	OS	Darwin	kernel	(OS/Arch:	darwin/amd64).

Also	note	that	the	system	is	running	the	experimental	version	(Experimental:
true)	of	Docker.	This	is	because	the	system	is	running	the	edge	version	which
comes	with	experimental	features	turned	on.

Run	some	more	Docker	commands.
$	docker	info

Containers:	0

	Running:	0

	Paused:	0

	Stopped:	0

Images:	0

Server	Version:	17.05.0-ce

<Snip>

Registry:	https://index.docker.io/v1/

Experimental:	true

Insecure	Registries:

	127.0.0.0/8

Live	Restore	Enabled:	false

Docker	for	Mac	installs	the	Docker	Engine	(client	and	daemon),	Docker
Compose,	and	Docker	machine	and	the	Notary	command	line.	The	following
three	commands	show	you	how	to	verify	that	all	of	these	components
installed	successfully	and	find	out	which	versions	you	have.
$		docker	--version

Docker	version	17.05.0-ce,	build	89658be

$		docker-compose	--version

docker-compose	version	1.13.0,	build	1719ceb

$		docker-machine	--version

docker-machine	version	0.11.0,	build	5b27455

$	notary	version

notary

		Version:				0.4.3

		Git	commit:	9211198

Installing	Docker	on	Linux
Installing	Docker	on	Linux	is	the	most	common	installation	type	and	it’s
surprisingly	easy.	The	most	common	difficulty	is	the	slight	variations	between
Linux	distros	such	as	Ubuntu	vs	CentOS.	The	example	we’ll	use	in	this
section	is	based	on	Ubuntu	Linux,	but	should	work	on	upstream	and
downstream	forks.	It	should	also	work	on	CentOS	and	its	upstream	and
downstream	forks.	It	makes	absolutely	no	difference	if	your	Linux	machine	is
a	physical	server	in	your	own	data	center,	on	the	other	side	of	the	planet	in	a
public	cloud,	or	a	VM	on	your	laptop.	The	only	requirements	are	that	the
machine	be	running	Linux	and	has	access	to	https://get.docker.com.

The	first	thing	you	need	to	decide	before	you	install	Docker	on	Linux	is
which	edition	to	install.	There	are	currently	two	editions:

Community	Edition	(CE)
Enterprise	Edition	(EE)

Docker	CE	is	free	and	is	the	version	we	will	be	demonstrating	here.	Docker
EE	is	the	same	as	CE	but	comes	with	commercial	support	and	access	to	other
Docker	products	such	as	Docker	Trusted	Registry	and	Universal	Control
Plane.

In	the	examples	below	we’ll	use	the	wget	command	to	call	a	shell	script	that
installs	Docker	CE.	For	information	on	other	ways	to	install	Docker	on	Linux
go	to	https://www.docker.com	and	click	on	Get	Docker.

Note:	You	should	ensure	that	your	system	is	up-to-date	with	the	latest
packages	and	security	patches	before	continuing.

1.	 Open	a	new	shell	on	your	Linux	machine.
2.	 Use	wget	to	retrieve	and	run	the	Docker	install	script	from

https://get.docker.com	and	pipe	it	through	your	shell.

			$	wget	-qO-	https://get.docker.com/	|	sh

			modprobe:	FATAL:	Module	aufs	not	found	/lib/modules/4.4.0-36-generic

			+	sh	-c	'sleep	3;	yum	-y	-q	install	docker-engine'

			<Snip>

			If	you	would	like	to	use	Docker	as	a	non-root	user,	you	should

				now	consider	adding	your	user	to	the	"docker"	group	with

				something	like:

			sudo	usermod	-aG	docker	your-user

			Remember	that	you	will	have	to	log	out	and	back	in...

1.	 It	is	best	practice	to	only	use	non-root	users	when	working	with	Docker.
To	do	this	you	need	to	add	your	non-root	users	to	the	local	docker	Unix
group	on	your	Linux	machine.	The	commands	below	show	how	to	add
the	npoulton	user	to	the	docker	group	and	verify	that	the	operation
succeeded.	You	will	need	to	use	a	valid	user	account	on	your	own
system.
$	sudo	usermod	-aG	docker	npoulton

$

$	cat	/etc/group	|	grep	docker

docker:x:999:npoulton

If	you	are	already	logged	in	as	the	user	that	you	just	added	to	the	docker
group,	you	will	need	to	log	out	and	log	back	in	for	the	group
membership	to	take	effect.

Congratulations!	Docker	is	now	installed	on	your	Linux	machine.	Run	the
following	commands	to	verify	your	installation.
$	docker	--version

Docker	version	17.05.0-ce,	build	89658be

$

$	docker	info

Containers:	0

	Running:	0

	Paused:	0

	Stopped:	0

Images:	0

<Snip>

Kernel	Version:	4.4.0-1013-aws

Operating	System:	Ubuntu	16.04.2	LTS

OSType:	linux

Architecture:	x86_64

CPUs:	1

Total	Memory:	990.7MiB

Name:	ip-172-31-45-57

ID:	L3GX:LLFI:YABL:WVUS:DHLL:2ZQU:44E3:V6BB:LWUY:WIGX:Z6RJ:JBVL

Docker	Root	Dir:	/var/lib/docker

Debug	Mode	(client):	false

Debug	Mode	(server):	false

Registry:	https://index.docker.io/v1/

Experimental:	false

Insecure	Registries:

	127.0.0.0/8

Live	Restore	Enabled:	false

If	the	process	described	above	doesn’t	work	for	your	Linux	distro,	you	can	go
to	the	Docker	Docs	website	and	click	on	the	link	relating	to	your	distro.	This
will	take	you	to	the	official	Docker	installation	instructions	which	are	usually
kept	up	to	date.	Be	warned	though,	the	instructions	on	the	Docker	website
tend	use	the	package	manager	and	require	a	lot	more	steps	than	the	procedure
we	used	above.	In	fact,	if	you	open	a	web	browser	to	https://get.docker.com
you	will	see	that	it’s	a	shell	script	that	does	all	of	the	hard	work	of	installation
for	you.

Warning:	If	you	install	Docker	from	a	source	other	than	the	official
Docker	repositories	you	may	end	up	with	a	forked	version	of	Docker.
This	is	because	some	vendors	and	distros	choose	to	fork	the	Docker
project	and	develop	their	own	slightly	customized	versions.	You	need	to
be	aware	of	things	like	this	if	you	are	installing	from	custom	repositories
as	you	could	unwittingly	end	up	in	a	situation	where	you	are	running	a
fork	that	has	diverged	from	the	official	Docker	project.	This	isn’t	a
problem	if	this	is	what	you	intend	to	do.	If	it	is	not	what	you	intend,	it
can	lead	to	situations	where	modifications	and	fixes	your	vendor	makes
do	not	make	it	back	upstream	in	to	the	official	Docker	project.	In	these
situations,	you	will	not	be	able	to	get	commercial	support	for	your
installation	from	Docker,	Inc.	or	its	authorized	service	partners.

Installing	Docker	on	Windows	Server	2016
In	this	section	we’ll	look	at	one	of	the	ways	to	install	Docker	on	Windows
Server	2016.	We’ll	complete	the	following	high-level	steps:

1.	 Install	the	Windows	Containers	feature
2.	 Install	Docker
3.	 Verify	the	installation

Before	proceeding	you	should	ensure	that	your	system	is	up-to-date	with	the
latest	package	versions	and	security	updates.	You	can	do	this	quickly	with	the
sconfig	command	and	choosing	option	6	to	install	updates.	This	may	require
a	system	restart.

We’ll	be	demonstrating	an	installation	on	a	version	of	Windows	Server	2016
that	does	not	already	have	the	Containers	feature	or	an	older	version	of
Docker	already	installed.

Ensure	that	the	Containers	feature	is	installed	and	enabled.

https://docs.docker.com/engine/installation/

1.	 Right-click	the	Windows	Start	button	and	select	Programs	and
Features.	This	will	open	the	Server	Manager	app.

2.	 Select	the	Dashboard	and	click	Add	Roles	and	Features.
3.	 Click	through	the	wizard	until	you	get	to	the	Features	page.
4.	 Make	sure	that	the	Containers	feature	is	checked	and	complete	the

wizard.	This	may	require	a	system	restart.

Now	that	the	Windows	Containers	feature	is	installed	you	can	install	Docker.
We’ll	use	PowerShell	to	do	this.

1.	 Open	a	new	PowerShell	Administrator	terminal.
2.	 Use	the	following	command	to	install	the	Docker-Microsoft	package

management	provider.
>	Install-Module	-Name	DockerMsftProvider	-Repository	PSGallery	-Force

Accept	the	NuGet	provider	install	if	prompted.

3.	 Install	Docker.
	>	Install-Package	-Name	docker	-ProviderName	DockerMsftProvider

Select	A	to	confirm	package	installation	and	suppress	any	further
prompts.

Once	the	installation	is	complete	you	will	get	a	summary	as	shown
below.
Name						Version							Source											Summary

----						-------							------											-------

Docker				17.03.1-ee				DockerDefault				Contains	Docker	EE...

4.	 Restart	your	system

Docker	is	now	installed	and	you	can	start	deploying	containers.	The	following
two	commands	are	good	ways	to	verify	that	the	installation	succeeded.
>	docker	version

Client:

	Version:						17.03.1-ee-3

	API	version:		1.27

	Go	version:			go1.7.5

	Git	commit:			3fcee33

	Built:								Thu	Mar	30	19:31:22	2017

	OS/Arch:						windows/amd64

Server:

	Version:						17.03.1-ee-3

	API	version:		1.27	(minimum	version	1.24)

	Go	version:			go1.7.5

	Git	commit:			3fcee33

	Built:								Thu	Mar	30	19:31:22	2017

	OS/Arch:						windows/amd64

	Experimental:	false

>	docker	info

Containers:	0

	Running:	0

	Paused:	0

	Stopped:	0

Images:	0

Server	Version:	17.03.1-ee-3

Storage	Driver:	windowsfilter

	Windows:

Logging	Driver:	json-file

Plugins:

	Volume:	local

	Network:	l2bridge	l2tunnel	nat	null	overlay	transparent

<SNIP>

Insecure	Registries:

	127.0.0.0/8

Live	Restore	Enabled:	false

Docker	is	now	installed	and	you	are	ready	to	start	using	Windows	containers.

Chapter	Summary
In	this	chapter	you	saw	how	to	install	Docker	on	Windows	10,	Mac	OS	X,
Linux,	and	Windows	Server	2016.	Now	that	you	know	how	to	install	Docker
you	are	ready	to	start	working	with	images	and	containers.

4:	The	big	picture

The	idea	of	this	chapter	is	to	give	you	a	quick	big	picture	of	what	Docker	is
all	about	before	we	dive	in	deeper	in	later	chapters.

We’ll	break	this	chapter	into	two:

The	Ops	perspective
The	Dev	perspective

The	Ops	Perspective	section	will	download	an	image,	start	a	new	container,
log	in	to	the	new	container,	run	a	command	inside	of	it,	and	then	destroy	it.

The	Dev	Perspective	section	will	pull	some	app-code	from	GitHub,	inspect	a
Dockerfile,	containerize	the	app,	run	it	as	a	container.

These	two	sections	will	give	you	a	good	idea	of	what	Docker	is	all	about	and
how	some	of	the	major	components	fit	together.	It	is	recommended	that	you
read	both	sections	to	get	the	dev	and	the	ops	perspectives!

Don’t	worry	if	some	of	the	stuff	we	do	here	is	totally	new	to	you.	We’re	not
trying	to	make	you	an	expert	by	the	end	of	this	chapter.	This	is	all	about
giving	you	a	feel	of	things	-	setting	you	up	so	that	when	we	get	into	the	details
in	later	chapters,	you	have	an	idea	of	how	the	pieces	fit	together.

All	you	need	to	follow	along	with	the	exercises	in	this	chapter	is	a	single
Docker	host	with	an	internet	connection.	Your	Docker	Host	can	be	Linux	or
Windows,	and	it	doesn’t	matter	if	it’s	a	VM	on	your	laptop,	an	instance	in	the
public	cloud,	or	a	bare	metal	server	in	your	data	center.	All	it	needs,	is	to	be
running	Docker	with	a	connection	to	the	internet.	We’ll	be	showing	examples
using	Linux	and	Windows!

The	Ops	Perspective
When	you	install	Docker,	you	get	two	major	components:

the	Docker	client
the	Docker	daemon	(sometimes	called	“server”	or	“engine”)

The	daemon	implements	the	Docker	Remote	API.

In	a	default	Linux	installation,	the	client	talks	to	the	daemon	via	a	local
IPC/Unix	socket	at	/var/run/docker.sock.	On	Windows	this	happens	via	a
named	pipe	at	npipe:////./pipe/docker_engine.	You	can	test	that	the	client
and	daemon	are	running	and	can	talk	to	each	other	with	the	docker	version
command.
$	docker	version

Client:

	Version:						17.05.0-ce

	API	version:		1.29

	Go	version:			go1.7.5

	Git	commit:			89658be

	Built:								Thu	May		4	22:10:54	2017

	OS/Arch:						linux/amd64

Server:

	Version:						17.05.0-ce

	API	version:		1.29	(minimum	version	1.12)

	Go	version:			go1.7.5

	Git	commit:			89658be

	Built:								Thu	May		4	22:10:54	2017

	OS/Arch:						linux/amd64

	Experimental:	false

If	you	get	a	response	back	from	the	Client	and	Server	components	you
should	be	good	to	go.	If	you	are	using	Linux	and	get	an	error	response	from
the	Server	component,	try	the	command	again	with	sudo	in	front	of	it:	sudo
docker	version.	If	it	works	with	sudo	you	will	need	to	add	your	user	account
to	the	local	docker	group,	or	prefix	the	remainder	of	the	commands	in	this
chapter	with	sudo.

Images
A	good	way	to	think	of	a	Docker	image	is	as	an	object	that	contains	an	OS
filesystem	and	an	application.	If	you	work	in	operations,	it’s	like	a	virtual
machine	template.	A	virtual	machine	template	is	essentially	a	stopped	virtual
machine.	In	the	Docker	world,	an	image	is	effectively	a	stopped	container.	If
you’re	a	developer,	you	can	think	of	an	image	as	a	class.

Run	the	docker	image	ls	command	on	your	Docker	host.

https://docs.docker.com/engine/reference/api/docker_remote_api/

$	docker	image	ls

REPOSITORY				TAG								IMAGE	ID							CREATED							SIZE

If	you	are	working	from	a	freshly	installed	Docker	host	it	will	have	no	images
and	will	look	like	the	output	above.

Getting	images	onto	your	Docker	host	is	called	“pulling”.	If	you	are	following
along	with	Linux,	pull	the	ubuntu:latest.	If	you	are	following	along	on
Windows,	pull	the	microsoft/powershell:nanoserver	image.
$	docker	image	pull	ubuntu:latest

latest:	Pulling	from	library/ubuntu

b6f892c0043b:	Pull	complete

55010f332b04:	Pull	complete

2955fb827c94:	Pull	complete

3deef3fcbd30:	Pull	complete

cf9722e506aa:	Pull	complete

Digest:	sha256:382452f82a8b....463c62a9848133ecb1aa8

Status:	Downloaded	newer	image	for	ubuntu:latest

Run	the	docker	image	ls	command	again	to	see	the	image	you	just	pulled.
$	docker	images

REPOSITORY						TAG						IMAGE	ID								CREATED									SIZE

ubuntu										latest			bd3d4369aebc				11	days	ago					126.6	MB

We’ll	get	into	the	details	of	where	the	image	is	stored	and	what’s	inside	of	it
in	later	chapters.	For	now,	it’s	enough	to	understand	that	an	image	contains
enough	of	an	operating	system	(OS),	as	well	as	all	the	code	and	dependencies
to	run	whatever	application	it’s	designed	for.	The	ubuntu	image	that	we’ve
pulled	has	a	stripped-down	version	of	the	Ubuntu	Linux	filesystem	including
a	few	of	the	common	Ubuntu	utilities.	The	microsoft/powershell	image
pulled	in	the	Windows	example	contains	a	Windows	Nano	Server	OS	with
PowerShell.

If	you	pull	an	application	container	such	as	nginx	or	microsoft/iis,	you	will
get	an	image	that	contains	some	OS	as	well	as	the	code	to	run	either	nginx	or
IIS.

It’s	also	worth	noting	that	each	image	gets	its	own	unique	ID.	When	working
with	the	images	you	can	refer	to	them	using	either	IDs	or	names.

Containers
Now	that	we	have	an	image	pulled	locally	on	our	Docker	host,	we	can	use	the
docker	container	run	command	to	launch	a	container	from	it.

For	Linux:
$	docker	container	run	-it	ubuntu:latest	/bin/bash

root@6dc20d508db0:/#

For	Windows:
>	docker	container	run	-it	microsoft/powershell:nanoserver	PowerShell.exe

Windows	PowerShell

Copyright	(C)	2016	Microsoft	Corporation.	All	rights	reserved.

PS	C:\>

Look	closely	at	the	output	from	the	commands	above.	You	should	notice	that
the	shell	prompt	has	changed	in	each	instance.	This	is	because	your	shell	is
now	attached	to	the	shell	of	the	new	container	-	you	are	literally	inside	of	the
new	container!

Let’s	examine	that	docker	container	run	command.	docker	container
run	tells	the	Docker	daemon	to	start	a	new	container.	The	-it	flags	tell	the
daemon	to	make	the	container	interactive	and	to	attach	our	current	terminal	to
the	shell	of	the	container	(we’ll	get	more	specific	about	this	in	the	chapter	on
containers).	Next,	the	command	tells	Docker	that	we	want	the	container	to	be
based	on	the	ubuntu:latest	image	(or	the	microsoft/powershell:nanoserver
image	if	you’re	following	along	with	Windows).	Finally,	we	tell	Docker
which	process	we	want	to	run	inside	of	the	container.	For	the	Linux	example
we’re	running	a	Bash	shell,	for	the	Windows	container	were	running
PowerShell.

Run	a	ps	command	from	inside	of	the	container	to	list	all	running	processes.

Linux	example:
root@6dc20d508db0:/#	ps	-elf

F	S	UID				PID		PPID			NI	ADDR	SZ	WCHAN		STIME	TTY		TIME	CMD

4	S	root					1					0				0	-		4560	wait			13:38	?				00:00:00	/bin/bash

0	R	root					9					1				0	-		8606	-						13:38	?				00:00:00	ps	-elf

Windows	example:
PS	C:\>	ps

Handles		NPM(K)				PM(K)						WS(K)					CPU(s)					Id		SI	ProcessName

-------		------				-----						-----					------					--		--	-----------

						0							5						964							1292							0.00			4716			4	CExecSvc

						0							5						592								956							0.00			4524			4	csrss

						0							0								0										4																	0			0	Idle

						0						18					3984							8624							0.13				700			4	lsass

						0						52				26624						19400							1.64			2100			4	powershell

						0						38				28324						49616							1.69			4464			4	powershell

						0							8					1488							3032							0.06			2488			4	services

						0							2						288								504							0.00			4508			0	smss

						0							8					1600							3004							0.03				908			4	svchost

						0						12					1492							3504							0.06			4572			4	svchost

						0						15				20284						23428							5.64			4628			4	svchost

						0						15					3704							7536							0.09			4688			4	svchost

						0						28					5708							6588							0.45			4712			4	svchost

						0						10					2028							4736							0.03			4840			4	svchost

						0						11					5364							4824							0.08			4928			4	svchost

						0							0						128								136						37.02						4			0	System

						0							7						920							1832							0.02			3752			4	wininit

						0							8					5472						11124							0.77			5568			4	WmiPrvSE

Inside	the	Linux	container	there	are	only	two	processes	running:

PID	1.	This	is	the	/bin/bash	process	that	we	told	the	container	to	run
with	the	docker	container	run	command.
PID	9.	This	is	the	ps	-elf	command/process	that	we	ran	to	list	the
running	processes.

The	presence	of	the	ps	-elf	process	in	the	Linux	output	above	could	be	a	bit
misleading	as	it	is	a	short-lived	process	that	dies	as	soon	as	the	ps	command
exits.	This	means	that	the	only	long-running	process	inside	of	the	container	is
the	/bin/bash	process.

The	Windows	container	has	a	lot	more	internal	processes	running.	This	is	an
artefact	of	the	way	the	Windows	Operating	System	works.	Although	the
Windows	container	has	a	lot	more	processes	than	the	Linux	container,	it	is
still	a	lot	less	than	a	regular	Windows	Server.

Press	Ctrl-PQ	to	exit	the	container	without	terminating	it.	This	will	land	you
back	in	the	shell	of	your	Docker	host.	You	can	verify	this	by	looking	at	your
shell	prompt.

Now	that	you	are	back	at	the	shell	prompt	of	your	Docker	host,	run	the	ps
command	again.

Linux	example:
$	ps	-elf

F	S	UID								PID		PPID				NI	ADDR	SZ	WCHAN		TIME	CMD

4	S	root									1					0					0	-		9407	-						00:00:03	/sbin/init

1	S	root									2					0					0	-					0	-						00:00:00	[kthreadd]

1	S	root									3					2					0	-					0	-						00:00:00	[ksoftirqd/0]

1	S	root									5					2			-20	-					0	-						00:00:00	[kworker/0:0H]

1	S	root									7					2					0	-					0	-						00:00:00	[rcu_sched]

<Snip>

0	R	ubuntu			22783	22475					0	-		9021	-						00:00:00	ps	-elf

Windows	example:
>	ps

Handles		NPM(K)				PM(K)						WS(K)					CPU(s)					Id		SI	ProcessName

-------		------				-----						-----					------					--		--	-----------

				220						11					7396							7872							0.33			1732			0	amazon-ssm-agen

					84							5						908							2096							0.00			2428			3	CExecSvc

					87							5						936							1336							0.00			4716			4	CExecSvc

				203						13					3600						13132							2.53			3192			2	conhost

				210						13					3768						22948							0.08			5260			2	conhost

				257						11					1808								992							0.64				524			0	csrss

				116							8					1348								580							0.08				592			1	csrss

					85							5						532							1136							0.23			2440			3	csrss

				242						11					1848								952							0.42			2708			2	csrss

					95							5						592								980							0.00			4524			4	csrss

				137							9					7784							6776							0.05			5080			2	docker

				401						17				22744						14016						28.59			1748			0	dockerd

				307						18				13344							1628							0.17				936			1	dwm

				<SNIP>

			1888							0						128								136						37.17						4			0	System

				272						15					3372							2452							0.23			3340			2	TabTip

					72							7					1184										8							0.00			3400			2	TabTip32

				244						16					2676							3148							0.06			1880			2	taskhostw

				142							7					6172							6680							0.78			4952			3	WmiPrvSE

				148							8					5620						11028							0.77			5568			4	WmiPrvSE

Notice	how	many	more	processes	are	running	on	your	Docker	host	compared
to	the	containers	we	ran.

In	a	previous	step	you	pressed	Ctrl-PQ	to	exit	from	the	container.	Doing	this
from	inside	of	a	container	will	exit	you	from	the	container	without	killing	it.
You	can	see	all	running	containers	on	your	system	using	the	docker
container	ls	command.
$	docker	container	ls

CONTAINER	ID			IMAGE										COMMAND							CREATED		STATUS				NAMES

e2b69eeb55cb			ubuntu:latest		"/bin/bash"			7	mins			Up	7	min		vigilant_borg

The	output	above	shows	a	single	running	container.	This	is	the	container	that
you	created	earlier.	The	presence	of	your	container	in	this	output	proves	that
it’s	still	running.	You	can	also	see	that	it	was	created	7	minutes	ago	and	has
been	running	for	7	minutes.

Attaching	to	running	containers
You	can	attach	your	shell	to	running	containers	with	the	docker	container
exec	command.	As	the	container	from	the	previous	steps	is	still	running,	let’s
connect	back	to	it.

Linux	example:

This	example	references	a	container	called	“vigilant_borg”.	The	name	of	your
container	will	be	different,	so	remember	to	substitute	“vigilant_borg”	with	the
name	or	ID	of	the	container	running	on	your	Docker	host.
$	docker	container	exec	-it	vigilant_borg	bash

root@e2b69eeb55cb:/#

Windows	example:

This	example	references	a	container	called	“pensive_hamilton”.	The	name	of
your	container	will	be	different,	so	remember	to	substitute
“pensive_hamilton”	with	the	name	or	ID	of	the	container	running	on	your
Docker	host.
>	docker	container	exec	-it	pensive_hamilton	PowerShell.exe

Windows	PowerShell

Copyright	(C)	2016	Microsoft	Corporation.	All	rights	reserved.

PS	C:\>

Notice	that	your	shell	prompt	has	changed	again.	You	are	back	inside	the
container.

The	format	of	the	docker	container	exec	command	is:	docker	container
exec	-options	<container-name	or	container-id>	<command>.	In	our
example	we	used	the	-it	options	to	attach	our	shell	to	the	container’s	shell.
We	referenced	the	container	by	name	and	told	it	to	run	the	bash	shell
(PowerShell	in	the	Windows	example).	We	could	easily	have	referenced	the
container	by	its	ID.

Exit	the	container	again	by	pressing	Ctrl-PQ.

Your	shell	prompt	should	be	back	to	your	Docker	host.

Run	the	docker	container	ls	command	again	to	verify	that	your	container
is	still	running.
$	docker	container	ls

CONTAINER	ID			IMAGE										COMMAND							CREATED		STATUS				NAMES

e2b69eeb55cb			ubuntu:latest		"/bin/bash"			9	mins			Up	9	min		vigilant_borg

Stop	the	container	and	kill	it	using	the	docker	container	stop	and	docker
container	rm	commands.	Remember	to	substitute	the	names/IDs	of	your
own	containers.
$	docker	container	stop	vigilant_borg

vigilant_borg

$

$	docker	container	rm	vigilant_borg

vigilant_borg

Verify	that	the	container	was	successfully	deleted	by	running	another	docker
container	ls	command.
$	docker	container	ls

CONTAINER	ID				IMAGE				COMMAND				CREATED				STATUS				PORTS				NAMES

The	Dev	Perspective
Containers	are	all	about	the	apps!

In	this	section	we’ll	clone	an	app	from	a	Git	repo,	inspect	its	Dockerfile,
containerize	it,	and	run	it	as	a	container.

The	Linux	app	can	be	located	from:	https://github.com/nigelpoulton/psweb.git

The	Windows	app	can	be	located	from:
https://github.com/nigelpoulton/dotnet-docker-samples.git

The	rest	of	this	section	will	walk	you	through	the	Linux	example.	However,
both	examples	are	containerizing	simple	web	apps	so	the	process	is	the	same.
Where	there	are	differences	in	the	Windows	example	we	will	highlight	them
to	help	you	follow	along.

Run	all	of	the	following	commands	from	a	terminal	on	your	Docker	host.

Clone	the	repo	locally.	This	will	pull	the	application	code	to	your	local
Docker	host	ready	for	you	to	containerize	it.

Be	sure	to	substitute	the	repo	below	with	the	Windows	repo	if	you	are
following	along	with	the	Windows	example.
$	git	clone	https://github.com/nigelpoulton/psweb.git

Cloning	into	'psweb'...

remote:	Counting	objects:	15,	done.

remote:	Compressing	objects:	100%	(11/11),	done.

remote:	Total	15	(delta	2),	reused	15	(delta	2),	pack-reused	0

Unpacking	objects:	100%	(15/15),	done.

Checking	connectivity...	done.

Change	directory	into	the	cloned	repo’s	directory	and	list	the	contents	of	the
directory.
$	cd	psweb

$	ls	-l

total	28

-rw-rw-r--	1	ubuntu	ubuntu		341	Sep	29	12:15	app.js

-rw-rw-r--	1	ubuntu	ubuntu		216	Sep	29	12:15	circle.yml

-rw-rw-r--	1	ubuntu	ubuntu		338	Sep	29	12:15	Dockerfile

-rw-rw-r--	1	ubuntu	ubuntu		421	Sep	29	12:15	package.json

-rw-rw-r--	1	ubuntu	ubuntu		370	Sep	29	12:15	README.md

drwxrwxr-x	2	ubuntu	ubuntu	4096	Sep	29	12:15	test

drwxrwxr-x	2	ubuntu	ubuntu	4096	Sep	29	12:15	views

For	the	Windows	example	you	should	cd	into	the	dotnet-docker-
samples\aspnetapp	directory.

The	Linux	example	is	a	simple	nodejs	web	app.	The	Windows	example	is	a
simple	ASP.NET	Core	web	app.

Both	Git	repos	contain	a	file	called	Dockerfile.	A	Dockerfile	is	a	plain-text
document	describing	how	to	build	a	Docker	image.

List	the	contents	of	the	Dockerfile.
$	cat	Dockerfile

FROM	alpine

LABEL	maintainer="nigelpoulton@hotmail.com"

RUN	apk	add	--update	nodejs	nodejs-npm

COPY	.	/src

WORKDIR	/src

RUN		npm	install

EXPOSE	8080

ENTRYPOINT	["node",	"./app.js"]

The	contents	of	the	Dockerfile	in	the	Windows	example	are	different.
However,	this	is	not	important	at	this	stage.	We’ll	cover	Dockerfiles	in	more
detail	later	in	the	book.	For	now,	it’s	enough	to	understand	that	each	line
represents	an	instruction	that	is	used	to	build	an	image.

At	this	point	we	have	pulled	some	application	code	from	a	remote	Git	repo.
We	also	have	a	Dockerfile	containing	instructions	that	describe	how	to	create
a	new	Docker	image	with	the	application	inside.

Use	the	docker	image	build	command	to	create	a	new	image	using	the
instructions	contained	in	the	Dockerfile.	This	example	creates	a	new	Docker
image	called	test:latest.

Be	sure	to	perform	this	command	from	within	the	directory	containing	the
app	code	and	Dockerfile.
$	docker	image	build	-t	test:latest	.

Sending	build	context	to	Docker	daemon		74.75kB

Step	1/8	:	FROM	alpine

latest:	Pulling	from	library/alpine

88286f41530e:	Pull	complete

Digest:	sha256:f006ecbb824...0c103f4820a417d

Status:	Downloaded	newer	image	for	alpine:latest

	--->	76da55c8019d

<Snip>

Successfully	built	f154cb3ddbd4

Successfully	tagged	test:latest

Note:	It	may	take	a	long	time	for	the	build	to	finish	in	the	Windows
example.	This	is	because	of	the	size	and	complexity	of	the	layers	being
pulled.

Check	to	make	sure	that	the	new	test:latest	image	exists	on	your	host.
$	docker	image	ls

REPO					TAG						IMAGE	ID								CREATED									SIZE

test					latest			f154cb3ddbd4				1	minute	ago				55.6MB

...

You	now	have	a	newly	built	image	with	the	app	inside.

Run	a	container	from	the	image	and	test	the	app.

Linux	example:
$	docker	container	run	-d	\

		--name	web1	\

		-p	8080:8080	\

		test:latest

Open	a	web	browser	and	navigate	to	the	DNS	name	or	IP	address	of	the	host
that	you	are	running	the	container	from	and	point	it	to	port	8080.	You	will	see
the	following	web	page.

Figure	4.1

Windows	example:
>	docker	container	run	-d	\

		--name	web1	\

		-p	8000:80	\

		test:latest

Open	a	web	browser	and	navigate	to	the	DNS	name	or	IP	address	of	the	host
that	you	are	running	the	container	from	and	point	it	to	port	8080.	You	will	see
the	following	web	page.

Figure	4.2

Well	done.	You’ve	taken	an	application	and	containerized	it	(built	a	Docker
image	from	it).

Chapter	Summary
In	this	chapter	you	performed	the	following	operations-related	tasks;
downloaded	a	Docker	image,	launched	a	container	from	the	image,	executed	a
command	inside	of	the	container	(ps),	and	then	stopped	and	deleted	the
container.	You	also	containerized	a	simple	application	by	pulling	some	source
code	from	GitHub	and	building	it	into	an	image	using	instructions	in	a
Dockerfile.

This	big	picture	view	should	help	you	with	the	up-coming	chapters	where	we
will	dig	deeper	into	images	and	containers.

PART	2:	THE	TECHNICAL	STUFF

5:	The	Docker	Engine

In	this	chapter,	we’ll	take	a	quick	look	under	the	hood	of	the	Docker	Engine.

You	can	use	Docker	without	understanding	any	of	the	things	we’ll	cover	in
this	chapter.	So,	feel	free	to	skip	it.	However,	to	be	a	real	master	of	anything,
you	need	to	understand	what’s	going	on	under	the	hood.

This	will	be	a	theory-based	chapter	with	no	hands-on	exercises.

As	this	chapter	is	part	of	the	Technical	section	of	the	book,	we’re	going	to
employ	the	three-tiered	approach	where	we	split	the	chapter	into	three
sections:

The	TLDR:	Two	or	three	quick	paragraphs	that	you	can	read	while
standing	in	line	for	a	coffee
The	deep	dive:	The	really	long	bit	where	we	get	into	the	detail
The	commands:	A	quick	recap	of	the	commands	we	learned

Let’s	go	learn	about	the	Docker	Engine!

Docker	Engine	-	The	TLDR
The	Docker	engine	is	the	core	software	that	runs	and	manages	containers.	We
often	refer	to	it	simply	as	Docker,	or	the	Docker	platform.	If	you	know	a	thing
or	two	about	VMware,	it	might	be	useful	to	think	of	it	as	being	like	ESXi	in
the	VMware	world.

The	Docker	engine	is	modular	in	design	with	many	swappable	components.
Where	possible,	these	are	based	on	open-standards	outlined	by	the	Open
Container	Initiative	(OCI).

In	many	ways,	the	Docker	Engine	is	like	a	car	engine	-	both	are	modular	and
created	by	connecting	many	small	specialized	parts:	-	A	car	engine	is	made
from	many	specialized	parts	that	work	together	to	make	a	car	drive	-	intake
manifolds,	throttle	body,	cylinders,	spark	plugs,	exhaust	manifolds	etc.	-	The
Docker	Engine	is	made	from	many	specialized	tools	that	work	together	to
create	and	run	containers	-	images,	APIs,	execution	driver,	runtime,	shims	etc.

At	the	time	of	writing,	the	major	components	that	make	up	the	Docker	engine
are:	the	Docker	client,	the	Docker	daemon,	containerd,	and	runc.	Together,
these	create	and	run	containers.

Figure	5.1	shows	a	high-level	view.

Figure	5.1

Docker	Engine	-	The	Deep	Dive
When	Docker	was	first	released,	the	Docker	engine	had	two	major
components:

The	Docker	daemon	(hereafter	referred	to	as	just	“the	daemon”)
LXC

The	Docker	daemon	was	a	monolithic	binary.	It	contains	all	of	the	code	for
the	Docker	client,	the	Docker	API,	the	container	runtime,	image	builds,	and
much	more.

The	LXC	component	provided	the	daemon	with	access	to	the	fundamental
building-blocks	of	containers	such	as	kernel	namespaces	and	control	groups
(cgroups).

The	interaction	between	the	daemon,	LXC	and	the	OS	is	shown	in	Figure	5.2.

Figure	5.2

Getting	rid	of	LXC
The	reliance	on	LXC	was	an	issue	from	the	start.

First	up,	LXC	is	Linux-specific.	This	was	a	problem	for	a	project	that	had
aspirations	of	being	multi-platform.

Second	up,	being	reliant	on	an	external	tool	for	something	so	core	to	the
project	was	a	huge	risk	that	could	hinder	development.

As	a	result,	Docker.	Inc.	developed	their	own	tool	called	libcontainer	as	a
replacement	for	LXC.	The	goal	of	libcontainer	was	to	be	a	platform-agnostic
tool	that	provided	Docker	with	access	to	the	fundamental	container	building-
blocks	that	exist	inside	the	OS.

Libcontainer	replaced	LXC	as	the	default	execution	driver	in	Docker	0.9.

Getting	rid	of	the	monolithic	Docker	daemon
Over	time,	the	monolithic	nature	of	the	Docker	daemon	became	more	and
more	problematic:

1.	 It’s	hard	to	innovate	on.
2.	 It	got	slower.
3.	 It	wasn’t	what	the	ecosystem	(or	Docker,	Inc.)	wanted.

Docker,	Inc.	was	aware	of	these	challenges,	and	began	a	huge	effort	to	break
apart	the	monolithic	daemon	and	modularize	it.	The	aim	of	this	work	is	to
break	out	as	much	of	the	functionality	as	possible	from	the	daemon,	and	re-
implement	it	in	smaller	specialized	tools.	These	specialized	tools	can	be
swapped	out,	as	well	as	easily	used	by	third	parties	to	build	other	tools.	This
plan	follows	the	tried-and-tested	Unix	philosophy	of	building	small
specialized	tools	that	can	be	pieced	together	into	larger	tools.

This	work	of	breaking	apart	and	re-factoring	the	Docker	engine	is	an	ongoing
process.	However,	it	has	already	seen	all	of	the	container	execution	and
container	runtime	code	entirely	removed	from	the	daemon	and	refactored
into	small,	specialized	tools.

Figure	5.3	shows	a	high-level	view	of	the	Docker	engine	architecture	with
brief	descriptions.

Figure	5.3

The	influence	of	the	Open	Container	Initiative	(OCI)
While	Docker,	Inc.	was	breaking	the	daemon	apart	and	refactoring	code,	the
OCI	was	in	the	process	of	defining	two	container-related	standards:

https://www.opencontainers.org/

1.	 Image	spec
2.	 Container	runtime	spec

Both	specifications	were	released	as	version	1.0	in	July	2017.

Docker,	Inc.	was	heavily	involved	in	creating	these	specifications	and
contributed	a	lot	of	code	to	them.

As	of	Docker	1.11	(early	2016),	the	Docker	engine	implements	the	OCI
specifications	as	closely	as	possible.	For	example,	the	Docker	daemon	no
longer	contains	any	container	runtime	code	-	all	container	runtime	code	is
implemented	in	a	separate	OCI-compliant	layer.	By	default,	Docker	uses	a
tool	called	runc	for	this.	runc	is	the	reference	implementation	of	the	OCI
container-runtime-spec,	and	a	goal	of	the	runc	project	keep	runc	in	lockstep
with	the	OCI	spec.

As	well	as	this,	the	containerd	component	of	the	Docker	Engine	makes	sure
Docker	images	are	presented	to	runc	as	valid	OCI	bundles.

Note:	The	Docker	engine	implemented	portions	of	the	OCI	specs	before
the	specs	were	officially	released	as	version	1.0.

runc
As	previously	mentioned,	runc	is	the	reference	implementation	of	the	OCI
container-runtime-spec.	Docker,	Inc.	was	heavily	involved	in	defining	the
spec	and	developing	runc.

runc	is	small.	It’s	effectively	a	lightweight	CLI	that	wraps	around
libcontainer.	It	has	a	single	purpose	in	life	-	to	create	containers.	And	it’s
damn	good	at	it.	And	fast!

We	often	refer	to	runc	as	a	container	runtime.

You	can	see	runc	release	information	at:

https://github.com/opencontainers/runc/releases

containerd
In	order	to	use	runc,	the	Docker	engine	needed	something	to	act	as	a	bridge
between	the	daemon	and	runc.	This	is	where	containerd	comes	into	the
picture.

containerd	implements	the	execution	logic	that	was	pulled	out	of	the	Docker
daemon.	This	logic	was	obviously	refactored	and	tuned	when	it	was	re-

https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec/blob/master/RELEASES.md

written	as	containerd.

It’s	helpful	to	think	of	containerd	as	a	container	supervisor	-	the	component
that	is	responsible	for	container	lifecycle	operations	such	as;	starting	and
stopping	containers,	pausing	and	un-pausing	them,	and	destroying	them.

Like	runc,	containerd	is	small,	lightweight,	and	designed	for	a	single	task	in
life	-	containerd	is	only	interested	container	lifecycle	operations.

containerd	was	developed	by	Docker,	Inc.	and	donated	to	the	Cloud	Native
Computing	Foundation	(CNCF).

You	can	see	containerd	release	information	at:

https://github.com/containerd/containerd/releases

Starting	a	new	container	(example)
Now	that	we	have	a	view	of	the	big	picture,	and	some	of	the	history,	let’s
walk	through	the	process	of	creating	a	new	container.

The	most	common	way	of	starting	containers	is	using	the	Docker	CLI.	The
following	docker	container	run	command	will	start	a	simple	new	container
based	on	the	alpine:latest	image.
$	docker	container	run	--name	ctr1	-it	alpine:latest	sh

When	you	type	commands	like	this	into	the	Docker	CLI,	the	Docker	client
converts	them	into	the	appropriate	API	payload	and	POSTs	them	to	the
correct	API	endpoint.

The	API	is	implemented	in	the	daemon.	It	is	the	same	rich,	versioned,	REST
API	that	has	become	a	hallmark	of	Docker	and	is	accepted	in	the	industry	as
the	de	facto	container	API.

Once	the	daemon	receives	the	command	to	create	a	new	container,	it	makes	a
call	to	containerd.	Remember	that	the	daemon	no-longer	contains	any	code	to
create	containers!

The	daemon	communicates	with	containerd	via	a	CRUD-style	API	over
gRPC.

Despite	its	name,	containerd	cannot	actually	create	containers.	It	uses	runc	to
do	that.	It	converts	the	required	Docker	image	into	an	OCI	bundle	and	tells
runc	to	use	this	to	create	a	new	container.

runc	interfaces	with	the	OS	kernel	to	pull	together	all	of	the	constructs
necessary	to	create	a	container	(in	Linux	these	include	namespaces	and

https://grpc.io/

cgroups).	The	container	process	is	started	as	a	child-process	of	runc,	and	as
soon	as	it	is	started	runc	will	exit.

Voila!	The	container	is	now	started.

Figure	5.4	summarises	the	process

Figure	5.4

One	huge	benefit	of	this	model
Having	all	of	the	logic	and	code	to	start	and	manage	containers	removed	from
the	daemon	means	that	the	entire	container	runtime	is	decoupled	from	the
Docker	daemon.	We	sometimes	call	this	“daemonless	containers”,	and	it
makes	it	possible	to	perform	maintenance	and	upgrades	on	the	Docker
daemon	without	impacting	running	containers!

In	the	old	model,	where	all	of	container	runtime	logic	was	implemented	in	the
daemon,	starting	and	stopping	the	daemon	would	kill	all	running	containers
on	the	host.	This	was	a	huge	problem	in	production	environments	-	especially
when	you	consider	how	frequently	new	versions	of	Docker	are	released!
Every	daemon	upgrade	would	kill	all	containers	on	that	host	-	not	good!

Fortunately,	this	is	no	longer	a	problem.

What’s	this	shim	all	about?
Some	of	the	diagrams	in	the	chapter	have	shown	a	shim	component.

The	shim	is	integral	to	the	implementation	of	daemonless	containers	(the
thing	we	just	mentioned	about	decoupling	running	containers	from	the
daemon	for	things	like	upgrading	the	daemon	without	killing	containers).

We	mentioned	earlier	that	containerd	uses	runc	to	create	new	containers.	In
fact,	it	forks	a	new	instance	of	runc	for	every	container	it	creates.	However,
once	each	container	is	created,	its	parent	runc	process	exits.	This	means	we
can	run	hundreds	of	containers	without	having	to	run	hundreds	of	runc
instances.

Once	a	container’s	parent	runc	process	exits,	the	associated	containerd-shim
process	becomes	the	container’s	parent	process.	Some	of	the	responsibilities
the	shim	performs	as	a	container’s	parent	include:

Keeping	any	STDIN	and	STDOUT	streams	open	so	that	when	the
daemon	is	restarted,	the	container	doesn’t	terminate	due	to	pipes	being
closed	etc.
Reports	the	container’s	exit	status	back	to	the	daemon.

How	it’s	implemented	on	Linux
On	a	Linux	system,	the	components	we’ve	discussed	are	implemented	as
separate	binaries	as	follows:	-	dockerd	(the	Docker	daemon)	-	docker-
containerd	(containerd)	-	docker-containerd-shim	(shim)	-	docker-runc
(runc)

You	can	see	all	of	these	on	a	Linux	system	by	running	a	ps	command	on	the
Docker	host.	Obviously,	some	of	them	will	only	be	present	when	the	system
has	running	containers.

So	what’s	the	point	of	the	daemon
With	all	of	the	execution	and	runtime	code	stripped	out	of	the	daemon	you
might	be	asking	the	question:	“what	is	left	in	the	daemon?”.

Obviously,	the	answer	to	this	question	will	change	over	time	as	more	and
more	functionality	is	stripped	out	and	modularized.	However,	at	the	time	of
writing,	some	of	the	major	functionality	that	still	exists	in	the	daemon
includes;	image	management,	image	builds,	the	REST	API,	authentication,
security,	core	networking,	and	orchestration.

Chapter	summary
The	Docker	engine	is	modular	in	design	and	based	heavily	on	open-standards
from	the	OCI.

The	Docker	daemon	implements	the	Docker	API	which	is	currently	a	rich,
versioned,	HTTP	API	that	has	developed	alongside	the	rest	of	the	Docker
project.	This	Docker	API	is	accepted	as	the	industry-standard	container	API.

Container	execution	is	handled	by	containerd.	containerd	was	written	by
Docker,	Inc.	and	contributed	to	the	CNCF.	You	can	think	of	it	as	a	container
supervisor	that	handles	container	lifecycle	operations.	It	is	small	and
lightweight	and	can	be	used	by	other	projects	and	third-party	tools.

containerd	needs	to	talk	to	an	OCI-compliant	container	runtime	to	actually
create	containers.	By	default,	Docker	uses	runc	as	its	default	container
runtime.	runc	is	the	de	facto	implementation	of	the	OCI	container-runtime-
spec	and	expects	to	start	containers	from	OCI-compliant	bundles.	containerd
talks	to	runc	and	ensures	Docker	images	are	presented	to	runc	as	OCI-
compliant	bundles.

runc	can	be	used	as	a	standalone	tool	to	create	containers.	It	can	also	be	used
by	other	projects	and	third-party	tools.

There	is	still	a	lot	of	functionality	implemented	within	the	Docker	daemon.
More	of	this	may	be	broken	out	over	time.	Functionality	currently	still	inside
of	the	Docker	daemon	include,	but	is	not	limited	to:	the	API,	image
management,	authentication,	security	features,	core	networking.

The	work	of	modularizing	the	Docker	engine	is	ongoing.

6:	Images

In	this	chapter	we’ll	dive	into	Docker	images.	The	aim	of	the	game	is	to	give
you	a	solid	understanding	of	what	Docker	images	are	and	how	to	perform
basic	operations.	In	a	later	chapter	we’ll	see	how	to	build	new	images	with
our	own	applications	inside	of	them	(containerizing	an	app).

We’ll	split	this	chapter	into	the	usual	three	parts:

The	TLDR
The	deep	dive
The	commands

Let’s	go	learn	about	images!

Docker	images	-	The	TLDR
If	you’re	a	former	VM	admin	you	can	think	of	Docker	images	as	being	like
VM	templates.	A	VM	template	is	like	a	stopped	VM	-	a	Docker	image	is	like
a	stopped	container.	If	you’re	a	developer	you	can	think	of	them	as	being
similar	to	classes.

You	start	by	pulling	images	from	an	image	registry.	The	most	popular	registry
is	Docker	Hub,	but	others	do	exist.	The	pull	operation	downloads	the	image	to
your	local	Docker	host	where	you	can	use	it	to	start	one	or	more	Docker
containers.

Images	are	made	up	of	multiple	layers	that	get	stacked	on	top	of	each	other
and	represented	as	a	single	object.	Inside	of	the	image	is	a	cut-down	operating
system	(OS)	and	all	of	the	files	and	dependencies	required	to	run	an
application.	Because	containers	are	intended	to	be	fast	and	lightweight,
images	tend	to	be	small.

Congrats!	You’ve	now	got	half	a	clue	what	a	Docker	image	is	:-D	Now	it’s
time	to	blow	your	mind!

https://hub.docker.com

Docker	images	-	The	deep	dive
We’ve	mentioned	a	couple	of	times	already	that	images	are	like	stopped
containers	(or	classes	if	you’re	a	developer).	In	fact,	you	can	stop	a	container
and	create	a	new	image	from	it.	With	this	in	mind,	images	are	considered
build-time	constructs	whereas	containers	are	run-time	constructs.

Figure	6.1

Images	and	containers
Figure	6.1	shows	high-level	view	of	the	relationship	between	images	and
containers.	We	use	the	docker	container	run	and	docker	service	create
commands	to	start	one	or	more	containers	from	a	single	image.	However,
once	you’ve	started	a	container	from	an	image,	the	two	constructs	become
dependent	on	each	other	and	you	cannot	delete	the	image	until	the	last
container	using	it	has	been	stopped	and	destroyed.	Attempting	to	delete	an
image	without	stopping	and	destroying	all	containers	using	it	will	result	in	the
following	error:
$	docker	image	rm	<image-name>

Error	response	from	daemon:	conflict:	unable	to	remove	repository	reference	\

"<image-name>"	(must	force)	-	container	<container-id>	is	using	its	referenc\

ed	image	<image-id>

Images	are	usually	small
The	whole	purpose	of	a	container	is	to	run	an	application	or	service.	This
means	that	the	image	a	container	is	created	from	must	contain	all	OS	and
application	files	required	to	run	the	app/service.	However,	containers	are	all
about	being	fast	and	lightweight.	This	means	that	the	images	they’re	built
from	are	usually	small	and	stripped	of	all	non-essential	parts.

For	example,	Docker	images	do	not	ship	with	6	different	shells	for	you	to
choose	from	-	they	usually	ship	with	a	single	minimalist	shell,	or	no	shell	at
all.	They	also	don’t	contain	a	kernel	-	all	containers	running	on	a	Docker	host
share	access	to	the	host’s	kernel.	For	these	reasons,	we	sometimes	say	images
contain	just	enough	operating	system	(usually	just	OS-related	files	and
filesystem	objects).

Note:	Hyper-V	containers	run	inside	of	a	dedicated	lightweight	VM	and
leverage	the	kernel	of	the	OS	running	inside	the	VM.

The	official	Alpine	Linux	Docker	image	is	about	4MB	in	size	and	is	an
extreme	example	of	how	small	Docker	images	can	be.	That’s	not	a	typo!	It
really	is	about	4	megabytes!	However,	a	more	typical	example	might	be
something	like	the	official	Ubuntu	Docker	image	which	is	currently	about
120MB.	These	are	clearly	stripped	of	most	non-essential	parts!

Windows-based	images	tend	to	be	bigger	than	Linux-based	images	because	of
the	way	that	the	Windows	OS	works.	For	example,	the	latest	Microsoft	.NET
image	(microsoft/dotnet:latest)	is	over	2GB	when	pulled	an
uncompressed.	The	Windows	Server	2016	Nano	Server	image	is	slightly	over
1GB	when	pulled	and	uncompressed.

Pulling	images
A	cleanly	installed	Docker	host	has	no	images	in	its	local	repository.

The	local	image	repository	on	a	Linux-based	Docker	host	is	usually	located	at
/var/lib/docker/<storage-driver>.	On	Windows-based	Docker	hosts	this
is	C:\	ProgramData\docker\windowsfilter.

You	can	check	if	your	Docker	host	has	any	images	in	its	local	repository	with
the	following	command.
$	docker	image	ls

REPOSITORY		TAG						IMAGE	ID							CREATED									SIZE

The	process	of	getting	images	onto	a	Docker	host	is	called	pulling.	So,	if	you
want	the	latest	Ubuntu	image	on	your	Docker	host,	you’d	have	to	pull	it.	Use
the	commands	below	to	pull	some	images	and	then	check	their	sizes.

If	you	are	following	along	on	Linux	and	haven’t	added	your	user	account
to	the	local	docker	Unix	group,	you	may	need	to	add	sudo	to	the
beginning	of	all	the	following	commands.

Linux	example:
$	docker	image	pull	ubuntu:latest

latest:	Pulling	from	library/ubuntu

b6f892c0043b:	Pull	complete

55010f332b04:	Pull	complete

2955fb827c94:	Pull	complete

3deef3fcbd30:	Pull	complete

cf9722e506aa:	Pull	complete

Digest:	sha256:38245....44463c62a9848133ecb1aa8

Status:	Downloaded	newer	image	for	ubuntu:latest

$

$	docker	image	pull	alpine:latest

latest:	Pulling	from	library/alpine

cfc728c1c558:	Pull	complete

Digest:	sha256:c0537...497c0a7726c88e2bb7584dc96

Status:	Downloaded	newer	image	for	alpine:latest

$

$	docker	image	ls

REPOSITORY			TAG					IMAGE	ID								CREATED							SIZE

ubuntu							latest		ebcd9d4fca80				3	days	ago				118MB

alpine							latest		02674b9cb179				8	days	ago				3.99MB

Windows	example:
>	docker	image	pull	microsoft/powershell:nanoserver

nanoserver:	Pulling	from	microsoft/powershell

bce2fbc256ea:	Pull	complete

58f68fa0ceda:	Pull	complete

04083aac0446:	Pull	complete

e42e2e34b3c8:	Pull	complete

0c10d79c24d4:	Pull	complete

715cb214dca4:	Pull	complete

a4837c9c9af3:	Pull	complete

2c79a32d92ed:	Pull	complete

11a9edd5694f:	Pull	complete

d223b37dbed9:	Pull	complete

aee0b4393afb:	Pull	complete

0288d4577536:	Pull	complete

8055826c4f25:	Pull	complete

Digest:	sha256:090fe875...fdd9a8779592ea50c9d4524842

Status:	Downloaded	newer	image	for	microsoft/powershell:nanoserver

>

>	docker	image	pull	microsoft/dotnet:latest

latest:	Pulling	from	microsoft/dotnet

bce2fbc256ea:	Already	exists

4a8c367fd46d:	Pull	complete

9f49060f1112:	Pull	complete

0334ad7e5880:	Pull	complete

ea8546db77c6:	Pull	complete

710880d5cbd5:	Pull	complete

d665d26d9a25:	Pull	complete

caa8d44fb0b1:	Pull	complete

cfd178ff221e:	Pull	complete

Digest:	sha256:530343cd483dc3e1...6f0378e24310bd67d2a

Status:	Downloaded	newer	image	for	microsoft/dotnet:latest

>

>	docker	image	ls

REPOSITORY												TAG									IMAGE	ID				CREATED					SIZE

microsoft/dotnet						latest						831..686d			7	hrs	ago			1.65	GB

microsoft/powershell		nanoserver		d06..5427			8	days	ago		1.21	GB

As	you	can	see,	the	images	you	just	pulled	are	now	present	in	your	Docker
host’s	local	repository.

Image	naming
As	part	of	each	command	we	had	to	specify	which	image	to	pull.	So	let’s	take
a	minute	to	look	at	image	naming.	To	do	that	we	need	a	bit	of	background	on

how	we	store	images.

Image	registries
Docker	images	are	stored	in	image	registries.	The	most	common	registry	is
Docker	Hub	(https://hub.docker.com).	Other	registries	exist,	including	3rd
party	registries	and	secure	on-premises	registries.	However,	the	Docker	client
is	opinionated	and	defaults	to	using	Docker	Hub.	We’ll	be	using	Docker	Hub
for	the	rest	of	the	book.

Image	registries	contain	multiple	image	repositories.	In	turn,	image
repositories	can	contain	multiple	images.	That	might	be	a	bit	confusing,	so
Figure	6.2	shows	a	picture	of	an	image	registry	containing	3	repositories,	and
each	repository	contains	one	or	more	images.

Figure	6.2

Official	and	unofficial	repositories

Docker	Hub	also	has	the	concept	of	official	repositories	and	unofficial
repositories.

As	the	name	suggests,	official	repositories	contain	images	that	have	been
vetted	by	Docker,	Inc.	This	means	they	should	contain	up-to-date,	high-
quality	code,	that	is	secure,	well-documented,	and	in-line	with	best	practices
(please	can	I	have	an	award	for	using	five	hyphens	in	a	single	sentence).

Unofficial	repositories	can	be	like	the	wild-west	-	you	should	not	expect	them
to	be	safe,	well-documented	or	built	according	to	best	practices.	That’s	not
saying	everything	in	unofficial	repositories	is	bad!	There’s	some	brilliant
stuff	in	unofficial	repositories.	You	just	need	to	be	very	careful	before	trusting
code	from	them.	To	be	honest,	you	should	always	be	careful	when	getting
software	from	the	internet	-	even	images	from	official	repositories!

Most	of	the	popular	operating	systems	and	applications	have	their	own
official	repositories	on	Docker	Hub.	They’re	easy	to	spot	because	they	live	at
the	top	level	of	the	Docker	Hub	namespace.	The	list	below	contains	a	few	of
the	official	repositories,	and	shows	their	URLs	that	exist	at	the	top-level	of
the	Docker	Hub	namespace:

nginx	-	https://hub.docker.com/_/nginx/
busybox	-	https://hub.docker.com/_/busybox/
redis	-	https://hub.docker.com/_/redis/
mongo	-	https://hub.docker.com/_/mongo/

On	the	other	hand,	my	own	personal	images	live	in	the	wild	west	of	unofficial
repositories	and	should	not	be	trusted!	Below	are	some	examples	of	images
in	my	repositories:

nigelpoulton/tu-demo

https://hub.docker.com/r/nigelpoulton/tu-demo/

nigelpoulton/pluralsight-docker-ci

https://hub.docker.com/r/nigelpoulton/pluralsight-docker-ci/

Not	only	are	images	in	my	repositories	not	vetted,	not	kept	up-to-date,	not
secure,	and	not	well	documented…	you	should	also	notice	that	they	don’t	live
at	the	top-level	of	the	Docker	Hub	namespace.	My	repositories	all	live	within
a	second-level	namespace	called	nigelpoulton.

You’ll	probably	notice	that	the	Microsoft	images	we’ve	used	do	not	exist	at
the	top-level	of	the	Docker	Hub	namespace.	At	the	time	of	writing,	they	exist
under	the	microsoft	second-level	namespace.

After	all	of	that,	we	can	finally	look	at	how	we	address	images	on	the	Docker
command	line.

Image	naming	and	tagging
Addressing	images	from	official	repositories	is	as	simple	as	giving	the
repository	name	and	tag	separated	by	a	colon	(:).	The	format	for	docker
image	pull	when	working	with	an	image	from	an	official	repository	is:
docker	image	pull	<repository>:<tag>

In	the	Linux	examples	from	earlier,	we	pulled	an	Alpine	and	an	Ubuntu
images	with	the	following	two	commands:

docker	image	pull	alpine:latest	and	docker	image	pull
ubuntu:latest

These	two	commands	pull	the	images	tagged	as	“latest”	from	the	“alpine”	and
“ubuntu”	repositories.

The	following	examples	show	how	to	pull	various	different	images	from
official	repositories:
$	docker	image	pull	mongo:3.3.11

//This	will	pull	the	image	tagged	as	`3.3.11`

//from	the	official	`mongo`	repository.

$	docker	image	pull	redis:latest

//This	will	pull	the	image	tagged	as	`latest`

//from	the	official	`redis`	repository.

$	docker	image	pull	alpine

//This	will	pull	the	image	tagged	as	`latest`

//from	the	official	`alpine`	repository.

A	couple	of	points	to	note	about	the	commands	above.

First,	if	you	do	not	specify	an	image	tag	after	the	repository	name,	Docker
will	assume	you	are	referring	to	the	image	tagged	as	latest.

Second,	the	latest	tag	doesn’t	have	any	magical	powers!	Just	because	an
image	is	tagged	as	latest	does	not	guarantee	it	is	the	most	recent	image	in	a
repository!	For	example,	the	most	recent	image	in	the	alpine	repository	is
usually	tagged	as	edge.	Moral	of	the	story	-	take	care	when	using	the	latest
tag!

Pulling	images	from	an	unofficial	repository	is	essentially	the	same	-	you	just
need	to	prepend	the	repository	name	with	a	Docker	Hub	username	or
organization	name.	The	example	below	shows	how	to	pull	the	v2	image	from
the	tu-demo	repository	owned	by	a	dodgy	person	whose	Docker	Hub	account
name	is	nigelpoulton.
$	docker	image	pull	nigelpoulton/tu-demo:v2

//This	will	pull	the	image	tagged	as	`v2`

//from	the	`tu-demo`	repository	within	the	namespace

//of	my	personal	Docker	Hub	account.

In	our	earlier	Windows	examples,	we	pulled	a	PowerShell	and	a	.NET	image
with	the	following	two	commands:
>	docker	image	pull	microsoft/powershell:nanoserver

>	docker	image	pull	microsoft/dotnet:latest

The	first	command	pulls	the	image	tagged	as	nanoserver	from	the
microsoft/powershell	repository.	The	second	command	pulls	the	image
tagged	as	latest	from	the	microsoft/dotnet	repository.

If	you	want	to	pull	images	from	3rd	party	registries	(not	Docker	Hub),	you
need	to	prepend	the	repository	name	with	the	DNS	name	of	the	registry.	For

example,	if	the	image	in	the	example	above	was	in	the	Google	Container
Registry	(GCR)	you’d	need	to	add	gcr.io	before	the	repository	name	as
follows	-	docker	pull	gcr.io/nigelpoulton/tu-demo:v2	(no	such
repository	and	image	exists).

You	may	need	to	have	an	account	on	3rd	party	registries	and	be	logged	into
them	before	you	can	pull	images	from	them.

Images	with	multiple	tags
One	final	word	about	image	tags…	A	single	image	can	have	as	many	tags	as
you	want.	This	is	because	tags	are	arbitrary	alpha-numeric	values	that	are
stored	as	metadata	alongside	the	image.	Let’s	look	at	an	example.

Pull	all	of	the	images	in	a	repository	by	adding	the	-a	flag	to	them	docker
image	pull	command.	Then	run	docker	image	ls	to	look	at	the	images
pulled.	If	you	are	following	along	with	Windows	you	can	pull	from	the
microsoft/nanoserver	repository	instead	of	nigelpoulton/tu-demo.

Note:	If	the	repository	you	are	pulling	form	contains	images	for	multiple
architectures	and	platforms,	such	as	Linux	and	Windows,	the	command
is	likely	to	fail.

$	docker	image	pull	-a	nigelpoulton/tu-demo

latest:	Pulling	from	nigelpoulton/tu-demo

237d5fcd25cf:	Pull	complete

a3ed95caeb02:	Pull	complete

<Snip>

Digest:	sha256:42e34e546cee61adb1...3a0c5b53f324a9e1c1aae451e9

v1:	Pulling	from	nigelpoulton/tu-demo

237d5fcd25cf:	Already	exists

a3ed95caeb02:	Already	exists

<Snip>

Digest:	sha256:9ccc0c67e5c5eaae4b...624c1d5c80f2c9623cbcc9b59a

v2:	Pulling	from	nigelpoulton/tu-demo

237d5fcd25cf:	Already	exists

a3ed95caeb02:	Already	exists

<Snip>

Digest:	sha256:d3c0d8c9d5719d31b7...9fef58a7e038cf0ef2ba5eb74c

Status:	Downloaded	newer	image	for	nigelpoulton/tu-demo

$

$	docker	image	ls

REPOSITORY												TAG							IMAGE	ID						CREATED						SIZE

nigelpoulton/tu-demo			v2							6ac2...ad		12	months	ago			211.6	MB

nigelpoulton/tu-demo			latest			9b91...29		12	months	ago			211.6	MB

nigelpoulton/tu-demo			v1							9b91...29		12	months	ago			211.6	MB

A	couple	of	things	about	what	just	happened	in	the	example	cited	above:

First.	The	command	pulled	three	images	from	the	repository:	latest,	v1,	and
v2.

Second.	Look	closely	at	the	IMAGE	ID	column	in	the	output	of	the	docker
image	ls	command.	You’ll	see	that	there	are	only	two	unique	image	IDs.
This	is	because	only	two	images	were	actually	downloaded.	This	in	turn,	is
because	two	of	the	tags	refer	to	the	same	image.	Put	another	way…	one	of	the
images	has	two	tags.	If	you	look	closely	you’ll	see	that	the	v1	and	latest	tags
have	the	same	IMAGE	ID.	This	means	they’re	two	tags	of	the	same	image.

This	is	also	a	perfect	example	of	the	warning	we	issued	earlier	about	the
latest	tag.	In	this	example,	the	latest	tag	refers	to	the	same	image	as	the	v1
tag.	This	means	it’s	pointing	to	the	older	of	the	two	images	-	not	the	newest!
latest	is	an	arbitrary	tag	and	is	not	guaranteed	to	point	to	the	newest	image
in	a	repository!

Images	and	layers
A	Docker	image	is	just	a	bunch	of	loosely-connected	read-only	layers.	This	is
shown	in	Figure	6.3.

Figure	6.3

Docker	takes	care	of	stacking	these	layers	and	representing	them	as	a	single
unified	object.

There	are	a	few	ways	to	see	and	inspect	the	layers	that	make	up	an	image,	and
we’ve	already	seen	one	of	them.	Let’s	take	a	second	look	at	the	output	of	the
docker	image	pull	ubuntu:latest	command	from	earlier:
$	docker	image	pull	ubuntu:latest

latest:	Pulling	from	library/ubuntu

952132ac251a:	Pull	complete

82659f8f1b76:	Pull	complete

c19118ca682d:	Pull	complete

8296858250fe:	Pull	complete

24e0251a0e2c:	Pull	complete

Digest:	sha256:f4691c96e6bbaa99d...28ae95a60369c506dd6e6f6ab

Status:	Downloaded	newer	image	for	ubuntu:latest

Each	line	in	the	output	above	that	ends	with	“Pull	complete”	represents	a
layer	in	the	image	that	was	pulled.	As	we	can	see,	this	image	has	5	layers.
Figure	6.4	below	shows	this	in	picture	form.

Figure	6.4

Another	way	to	see	the	layers	of	an	image	is	to	inspect	the	image	with	the
docker	image	inspect	command.	The	example	below	inspects	the	same
ubuntu:latest	image.
$	docker	image	inspect	ubuntu:latest

[

				{

								"Id":	"sha256:bd3d4369ae.......fa2645f5699037d7d8c6b415a10",

								"RepoTags":	[

												"ubuntu:latest"

								<Snip>

								"RootFS":	{

												"Type":	"layers",

												"Layers":	[

																"sha256:c8a75145fc...894129005e461a43875a094b93412",

																"sha256:c6f2b330b6...7214ed6aac305dd03f70b95cdc610",

																"sha256:055757a193...3a9565d78962c7f368d5ac5984998",

																"sha256:4837348061...12695f548406ea77feb5074e195e3",

																"sha256:0cad5e07ba...4bae4cfc66b376265e16c32a0aae9"

]

								}

				}

]

The	trimmed	output	shows	5	layers	again.	Only	this	time	they’re	shown	using
their	SHA256	hashes.	However,	both	commands	show	that	the	image	has	5
layers.

Note:	The	docker	history	command	shows	the	build	history	of	an
image	and	is	not	a	strict	list	of	layers	in	the	image.	For	example,	some
Dockerfile	instructions	used	to	build	an	image	do	not	result	in	layers
being	created.	These	include;	“MAINTAINER”,	“ENV”,	“EXPOSE”
and	“ENTRYPOINT”.	Instead	of	these	creating	new	layers,	they	add
metadata	to	the	image.

All	Docker	images	start	with	a	base	layer,	and	as	changes	are	made	and	new
content	is	added,	new	layers	are	added	on	top.

As	an	over-simplified	example,	you	might	create	a	new	image	based	off
Ubuntu	Linux	16.04.	This	would	be	your	image’s	first	layer.	If	you	later	add
the	Python	package,	this	would	be	added	as	a	second	layer	on	top	of	the	base
layer.	If	you	then	added	a	security	patch,	this	would	be	added	as	a	third	layer
at	the	top.	Your	image	would	now	have	three	layers	as	shown	in	Figure	6.5
(remember	this	is	an	over-simplified	example	for	demonstration	purposes).

Figure	6.5

It’s	important	to	understand	that	as	additional	layers	are	added,	the	image
becomes	the	combination	of	all	layers.	Take	a	simple	example	of	two	layers
as	shown	in	Figure	6.6.	Each	layer	has	3	files,	but	the	overall	image	has	6
files	as	it	is	the	combination	of	both	layers.

Figure	6.6

We’ve	shown	the	image	layers	in	Figure	6.6	in	a	slightly	different	way	to
previous	figures.	This	is	just	to	make	showing	files	easier.

In	the	slightly	more	complex	example	of	the	three-layered	image	in	Figure
6.7,	the	overall	image	only	presents	6	files	in	the	unified	view.	This	is	because
file	7	in	the	top	layer	is	an	updated	version	of	file	5	directly	below	(inline).	In
this	situation,	the	file	in	the	higher	layer	obscures	the	file	directly	below	it.
This	allows	updated	versions	of	files	to	be	added	as	new	layers	to	the	image.

Figure	6.7

Docker	employs	a	storage	driver	that	is	responsible	for	stacking	layers	and
presenting	them	as	a	single	unified	filesystem.	Examples	of	storage	drivers	on
Linux	include	AUFS,	overlay2,	devicemapper,	btrfs	and	zfs.	As	their	names
suggest,	each	one	is	based	on	a	Linux	filesystem	or	block-device	technology,
and	each	has	its	own	unique	performance	characteristics.	The	only	driver
supported	by	Docker	on	Windows	is	windowsfilter	and	implements	layering
and	CoW	on	top	of	NTFS.

Sharing	image	layers
Multiple	images	can,	and	do,	share	layers.	This	leads	to	efficiencies	in	space
and	performance.

Let’s	take	a	second	look	at	the	docker	image	pull	command	with	the	-a	flag
that	we	ran	a	minute	or	two	ago	to	pull	all	tagged	images	in	the
nigelpoulton/tu-demo	repository.
$	docker	image	pull	-a	nigelpoulton/tu-demo

latest:	Pulling	from	nigelpoulton/tu-demo

237d5fcd25cf:	Pull	complete

a3ed95caeb02:	Pull	complete

<Snip>

Digest:	sha256:42e34e546cee61adb100...a0c5b53f324a9e1c1aae451e9

v1:	Pulling	from	nigelpoulton/tu-demo

237d5fcd25cf:	Already	exists

a3ed95caeb02:	Already	exists

<Snip>

Digest:	sha256:9ccc0c67e5c5eaae4beb...24c1d5c80f2c9623cbcc9b59a

v2:	Pulling	from	nigelpoulton/tu-demo

237d5fcd25cf:	Already	exists

a3ed95caeb02:	Already	exists

<Snip>

eab5aaac65de:	Pull	complete

Digest:	sha256:d3c0d8c9d5719d31b79c...fef58a7e038cf0ef2ba5eb74c

Status:	Downloaded	newer	image	for	nigelpoulton/tu-demo

$

$	docker	image	ls

REPOSITORY													TAG						IMAGE	ID							CREATED								SIZE

nigelpoulton/tu-demo			v2							6ac...ead			4	months	ago			211.6	MB

nigelpoulton/tu-demo			latest			9b9...e29			4	months	ago			211.6	MB

nigelpoulton/tu-demo			v1							9b9...e29			4	months	ago			211.6	MB

Notice	the	lines	ending	in	Already	exists.

These	lines	tell	us	that	Docker	is	smart	enough	recognize	when	it’s	being
asked	to	pull	an	image	layer	that	it	already	has	a	copy	of.	In	this	example,
Docker	pulled	the	image	tagged	as	latest	first.	Then,	when	it	went	to	pull
the	v1	and	v2	images	it	noticed	that	it	already	had	some	of	the	layers	that
make	up	those	images.	This	happens	because	the	three	images	in	this
repository	are	almost	identical,	and	therefore	share	many	layers.

As	mentioned	previously,	Docker	on	Linux	supports	many	different
filesystems	and	storage	drivers.	Each	is	free	to	implement	image	layering,
layer	sharing,	and	copy-on-write	behaviour	in	its	own	way.	However,	the
overall	result	and	user	experience	is	essentially	the	same.	Although	Windows
only	supports	a	single	storage	driver,	that	driver	provides	the	same	experience
as	Linux.

Pulling	images	by	digest
So	far,	we’ve	shown	you	how	to	pull	images	by	tag,	and	this	is	by	far	the
most	common	way.	But	it	has	a	problem	-	tags	are	mutable!	This	means	it’s
possible	to	accidentally	tag	an	image	with	an	incorrect	tag.	Sometimes	it’s
even	possible	to	tag	an	image	with	the	same	tag	as	an	existing,	but	different,
image.	This	can	cause	problems!

As	an	example,	imagine	that	you’ve	got	an	image	called	golftrack:1.5	and
it	has	a	known	bug.	You	pull	the	image,	apply	a	fix,	and	push	the	updated
image	back	to	its	repository	with	the	same	tag.

Take	a	second	to	understand	what	just	happened	there…	You	have	an	image
called	golftrack:1.5	that	has	a	bug.	That	image	is	being	used	in	your
production	environment.	You	pull	the	image	and	apply	a	fix.	Then	comes	the
mistake…	you	push	the	fixed	image	back	to	its	repository	with	the	same	tag
as	the	vulnerable	image!	How	are	you	going	to	know	which	of	your
production	systems	are	running	the	vulnerable	image	and	which	are	running
the	patched	image?	Both	images	have	the	same	tag!

This	is	where	image	digests	come	to	the	rescue.

Docker	1.10	introduced	a	new	content	addressable	storage	model.	As	part	of
this	new	model,	all	images	now	get	a	cryptographic	content	hash.	For	the
purposes	of	this	discussion,	we’ll	refer	to	this	hash	as	the	digest.	Because	the
digest	is	a	hash	of	the	contents	of	the	image,	it	is	not	possible	to	change	the

contents	of	the	image	without	the	digest	also	changing.	This	means	digests	are
immutable.	This	helps	avoid	the	problem	we	just	talked	about.

Every	time	you	pull	an	image,	the	docker	image	pull	command	will	include
the	image’s	digest	as	part	of	the	return	code.	You	can	also	view	the	digests	of
images	in	your	Docker	host’s	local	repository	by	adding	the	--digests	flag	to
the	docker	image	ls	command.	These	are	both	shown	in	the	following
example.
$	docker	image	pull	alpine

Using	default	tag:	latest

latest:	Pulling	from	library/alpine

e110a4a17941:	Pull	complete

Digest:	sha256:3dcdb92d7432d56604d...6d99b889d0626de158f73a

Status:	Downloaded	newer	image	for	alpine:latest

$

$	docker	image	ls	--digests	alpine

REPOSITORY		TAG					DIGEST														IMAGE	ID						CREATED							SIZE

alpine						latest		sha256:3dcd...f73a		4e38e38c8ce0		10	weeks	ago		4.8	MB

The	snipped	output	above	shows	the	digest	for	the	alpine	image	as	-
sha256:3dcdb92d7432d56604d...6d99b889d0626de158f73a

Now	that	we	know	the	digest	of	the	image,	we	can	use	it	when	pulling	the
image	again.	This	will	ensure	that	we	get	exactly	the	image	we	expect!

At	the	time	of	writing,	there	is	no	native	Docker	command	that	will	retrieve
the	digest	of	an	image	from	a	remote	registry	such	as	Docker	Hub.	This
means	the	only	way	to	determine	the	digest	of	an	image	is	to	pull	it	by	tag	and
then	make	a	note	of	its	digest.	This	will	no	doubt	change	in	the	future.

The	example	below	deletes	the	alpine:latest	image	from	your	Docker	host
and	then	shows	how	to	pull	it	again	using	its	digest	instead	of	its	tag.
$	docker	image	rm	alpine:latest

Untagged:	alpine:latest

Untagged:	alpine@sha256:c0537...7c0a7726c88e2bb7584dc96

Deleted:	sha256:02674b9cb179d...abff0c2bf5ceca5bad72cd9

Deleted:	sha256:e154057080f40...3823bab1be5b86926c6f860

$

$	docker	image	pull	alpine@sha256:c0537...7c0a7726c88e2bb7584dc96

sha256:c0537...7726c88e2bb7584dc96:	Pulling	from	library/alpine

cfc728c1c558:	Pull	complete

Digest:	sha256:c0537ff6a5218...7c0a7726c88e2bb7584dc96

Status:	Downloaded	newer	image	for	alpine@sha256:c0537...bb7584dc96

A	little	bit	more	about	image	hashes	(digests)
Since	Docker	version	1.10,	an	image	is	a	very	loose	collection	of	independent
layers.

The	image	itself	is	really	just	a	configuration	object	that	lists	the	layers	and	as
well	as	some	metadata.

The	layers	that	make	up	an	image	are	fully	independent	and	have	no	concept
of	being	part	of	a	collective	image.

Each	image	is	identified	by	a	crypto	ID	that	is	a	hash	of	the	config	object.
Each	layer	is	identified	by	a	crypto	ID	that	is	a	hash	of	the	content	it	contains.

This	means	that	changing	the	contents	of	the	image,	or	any	of	its	layers,	will
cause	the	associated	crypto	hashes	to	change.	As	a	result,	images	and	layers
are	immutable.

We	call	these	hashes	content	hashes.

So	far,	things	are	pretty	simple.	But	they’re	about	to	get	a	bit	more
complicated.

When	we	push	and	pull	images,	we	compress	their	layers	to	save	bandwidth
as	well	as	space	in	the	Registry’s	blob	store.

Cool,	but	compressing	a	layer	changes	its	content!	This	means	that	it’s
content	hash	will	no	longer	match	after	the	push	or	pull	operation!	This	is
obviously	a	problem.

For	example,	when	you	push	an	image	layer	to	Docker	Hub,	Docker	Hub	will
attempt	to	verify	that	the	image	arrived	without	being	tampered	with	en-route.
To	do	this,	is	runs	a	hash	against	the	layer	and	checks	to	see	if	it	matches	the
hash	that	was	sent	with	the	layer.	Because	the	layer	was	compressed
(changed)	the	hash	verification	will	fail.

To	get	around	this,	each	layer	also	gets	something	called	a	distribution	hash.
This	is	a	hash	of	the	compressed	version	of	the	layer.	When	a	layer	is	pushed
and	pulled	from	the	registry,	its	distribution	hash	is	included,	and	this	is	what
is	used	to	verify	that	the	layer	arrived	without	being	tampered	with.

This	content-addressable	storage	model	vastly	improves	security	by	giving	us
a	way	to	very	image	and	layer	data	after	push	and	pull	operations.	It	also
avoids	ID	collisions	that	could	occur	if	image	and	layer	IDs	were	randomly
generated.

Multi-architecture	images
Docker	now	includes	support	for	multi-platform	and	multi-architecture
images.	This	means	a	single	image	repository	and	tag	to	have	an	image	for
Linux	on	x64	and	Linux	on	PowerPC	etc.	Other	examples	exist.

To	enable	this,	the	Registry	API	supports	a	fat	manifest	as	well	as	an	image
manifest.	Fat	manifests	list	the	architectures	supported	by	a	particular	image,
whereas	image	manifests	list	the	layers	that	make	up	a	particular	image.

Let’s	look	at	a	quick	example.

Assume	you	are	running	Docker	on	Linux	x64.	When	you	pull	an	image	from
Docker	hub,	your	Docker	client	makes	the	relevant	API	requests	to	the
Docker	Registry	API	running	on	Docker	Hub.	If	a	fat	manifest	exists	for	that
image,	it	will	be	parsed	to	see	if	an	entry	exists	for	Linux	on	x64.	If	it	exists,
the	image	manifest	for	that	image	is	retrieved	and	parsed	for	the	actual	layers
that	make	up	the	image.	The	layers	are	identified	by	their	crypto	IDs	and	are
pulled	from	the	Registry’s	blob	store.

Deleting	Images
When	you	no	longer	need	an	image,	you	can	delete	it	from	your	Docker	host
with	the	docker	image	rm	command.	rm	is	short	for	remove.

Delete	the	images	pulled	in	the	previous	steps	with	the	docker	image	rm
command.	The	example	below	deletes	an	image	by	its	ID,	this	might	be
different	on	your	system.
$	docker	image	rm	02674b9cb179

Untagged:	alpine@sha256:c0537ff6a5218...c0a7726c88e2bb7584dc96

Deleted:	sha256:02674b9cb179d57...31ba0abff0c2bf5ceca5bad72cd9

Deleted:	sha256:e154057080f4063...2a0d13823bab1be5b86926c6f860

If	the	image	you	are	trying	to	delete	is	in	use	by	a	running	container	you	will
not	be	able	to	delete	it.	Stop	and	delete	any	containers	before	trying	the
remove	operation	again.

A	handy	shortcut	for	cleaning	up	a	system	and	deleting	all	images	on	a
Docker	host	is	to	run	the	docker	image	rm	command	and	pass	it	a	list	of	all
image	IDs	on	the	system	by	calling	docker	image	ls	with	the	-q	flag.	This	is
shown	below.

If	you	are	performing	the	following	command	on	a	Windows	system,	it	will
only	work	in	a	PowerShell	terminal.	It	will	not	work	on	a	CMD	prompt.
$	docker	image	rm	$(docker	image	ls	-q)	-f

To	understand	how	this	works,	download	a	couple	of	images	and	then	run
docker	image	ls	-q.
$	docker	image	pull	alpine

Using	default	tag:	latest

latest:	Pulling	from	library/alpine

e110a4a17941:	Pull	complete

Digest:	sha256:3dcdb92d7432d5...3626d99b889d0626de158f73a

Status:	Downloaded	newer	image	for	alpine:latest

$

$	docker	image	pull	ubuntu

Using	default	tag:	latest

latest:	Pulling	from	library/ubuntu

952132ac251a:	Pull	complete

82659f8f1b76:	Pull	complete

c19118ca682d:	Pull	complete

8296858250fe:	Pull	complete

24e0251a0e2c:	Pull	complete

Digest:	sha256:f4691c96e6bba...128ae95a60369c506dd6e6f6ab

Status:	Downloaded	newer	image	for	ubuntu:latest

$

$	docker	image	ls	-q

bd3d4369aebc

4e38e38c8ce0

See	how	docker	image	ls	-q	returns	a	list	containing	just	the	image	IDs	of
all	images	pulled	locally	on	the	system.	Passing	this	list	to	docker	image	rm
will	delete	all	images	on	the	system	as	shown	below.
$	docker	image	rm	$(docker	image	ls	-q)	-f

Untagged:	ubuntu:latest

Untagged:	ubuntu@sha256:f4691c9...2128ae95a60369c506dd6e6f6ab

Deleted:	sha256:bd3d4369aebc494...fa2645f5699037d7d8c6b415a10

Deleted:	sha256:cd10a3b73e247dd...c3a71fcf5b6c2bb28d4f2e5360b

Deleted:	sha256:4d4de39110cd250...28bfe816393d0f2e0dae82c363a

Deleted:	sha256:6a89826eba8d895...cb0d7dba1ef62409f037c6e608b

Deleted:	sha256:33efada9158c32d...195aa12859239d35e7fe9566056

Deleted:	sha256:c8a75145fcc4e1a...4129005e461a43875a094b93412

Untagged:	alpine:latest

Untagged:	alpine@sha256:3dcdb92...313626d99b889d0626de158f73a

Deleted:	sha256:4e38e38c8ce0b8d...6225e13b0bfe8cfa2321aec4bba

Deleted:	sha256:4fe15f8d0ae69e1...eeeeebb265cd2e328e15c6a869f

$

$	docker	image	ls

REPOSITORY					TAG				IMAGE	ID				CREATED					SIZE

Let’s	remind	ourselves	of	the	major	commands	we	use	to	work	with	Docker
images.

Images	-	The	commands

docker	image	pull	is	the	command	to	download	images.	We	pull
images	from	repositories	inside	of	remote	registries.	By	default,	images
will	be	pulled	from	repositories	on	Docker	Hub.	This	command	will	pull
the	image	tagged	as	latest	from	the	alpine	repository	on	Docker	Hub
docker	image	pull	alpine:latest.
docker	image	ls	lists	all	of	the	images	stored	in	your	Docker	host’s
local	cache.	To	see	the	SHA256	digests	of	images	add	the	--digests
flag.
docker	image	inspect	is	a	thing	of	beauty!	It	gives	you	all	of	the
glorious	details	of	image	-	layer	data	and	metadata.
docker	image	rm	is	the	command	to	delete	images.	This	command
shows	how	to	delete	the	apline:latest	image	-	docker	image	rm
alpine:latest.	You	cannot	delete	an	image	that	is	associated	with	a
container	in	the	running	(Up)	or	stopped	(Exited)	states.

Chapter	summary
In	this	chapter	we	learned	about	Docker	images.	We	learned	that	they	are	like
virtual	machine	templates	and	are	used	to	start	containers.	Under	the	hood
they	are	made	up	one	or	more	read-only	layers	that	when	stacked	together
make	up	the	overall	image.

We	used	the	docker	image	pull	command	to	pull	some	images	into	our
Docker	host’s	local	registry.

We	covered	image	naming,	official	and	unofficial	repos,	layering,	sharing,
and	crypto	IDs.

We	finished	off	by	looking	at	some	of	the	most	common	commands	used	to
work	with	images.

In	the	next	chapter	we’ll	take	a	similar	tour	of	containers	-	the	runtime	cousin
of	images.

7:	Containers

Now	that	we	know	a	bit	about	images,	it’s	time	to	get	into	containers.	As	this
is	a	book	about	Docker,	we’ll	be	talking	specifically	about	Docker	containers.
However,	the	Docker	project	has	been	hard	at	work	implementing	the	image
and	container	specs	published	by	the	Open	Containers	Initiative	(OCI)	at
https://www.opencontainers.org.	This	means	some	of	what	you	learn	here	will
apply	to	other	container	runtimes	that	are	OCI	compliant.

We’ll	split	this	chapter	into	the	usual	three	parts:

The	TLDR
The	deep	dive
The	commands

Let’s	go	and	learn	about	containers!

Docker	containers	-	The	TLDR
A	container	is	the	runtime	instance	of	an	image.	In	the	same	way	that	we	can
start	a	virtual	machine	(VM)	from	a	virtual	machine	template,	we	start	one	or
more	containers	from	a	single	image.	The	big	difference	between	a	VM	and	a
container	is	that	containers	are	faster	and	more	lightweight	-	instead	of
running	a	full-blown	OS	like	a	VM,	containers	share	the	OS/kernel	with	the
host	they’re	running	on.

Figure	7.1	shows	a	single	Docker	image	being	used	to	start	multiple	Docker
containers.

Figure	7.1

The	simplest	way	to	start	a	container	is	with	the	docker	container	run
command.	The	command	can	take	a	lot	of	arguments,	but	in	its	most	basic
form	you	tell	it	an	image	to	use	and	a	command	to	run:	docker	container
run	<image>	<command>.	This	next	command	will	start	an	Ubuntu	Linux
container	running	the	Bash	shell:	docker	container	run	-it	ubuntu
/bin/bash.	To	start	a	Windows	container	running	PowerShell	you	could	do
docker	container	run	-it	microsoft/powershell:nanoserver

PowerShell.exe.

The	-it	flags	used	in	the	commands	above	will	connect	your	current	terminal
window	to	the	container’s	shell.

Containers	run	until	the	program	they	are	executing	exits.	In	the	two
examples	above,	the	Linux	container	will	exit	when	the	Bash	shell	exits,	and
the	Windows	container	will	exit	when	the	PowerShell	process	terminates.

A	really	simple	way	to	demonstrate	this	is	to	start	a	new	container	and	tell	it
to	run	the	sleep	command	for	10	seconds.	The	container	will	start,	run	for	10
seconds	and	exit.	If	you	run	the	following	command	from	a	Linux	host	(or
Windows	host	running	in	Linux	containers	mode)	your	shell	will	attach	to	the
container’s	shell	for	10	seconds	and	then	exit:	docker	container	run
alpine:latest	sleep	10.	You	can	do	the	same	with	a	Windows	container

with	the	following	command	docker	container	run
microsoft/powershell:nanoserver	Start-Sleep	-s	10.

You	can	manually	stop	a	container	with	the	docker	container	stop
command,	and	then	restart	it	with	docker	container	start.	To	get	rid	of	a
container	forever	you	have	to	explicitly	delete	it	using	docker	container	rm.

That’s	the	elevator	pitch!	Now	let’s	get	into	the	detail…

Docker	containers	-	The	deep	dive
The	first	things	we’ll	cover	here	are	the	fundamental	differences	between	a
container	and	a	VM.	It’s	mainly	theory	at	this	stage,	but	it’s	important	stuff.
Along	the	way	We’ll	point	out	where	the	container	model	has	potential
advantages	over	the	VM	model.

Heads-up:	As	the	author	I’m	going	to	say	this	before	we	go	any	further.
A	lot	of	us	get	passionate	about	the	things	we	do	and	the	skills	we	have.	I
remember	big	Unix	people	resisting	the	rise	of	Linux.	You	might
remember	the	same.	You	might	also	remember	people	attempting	to
resist	VMware	and	the	VM	juggernaut.	In	both	cases	“resistance	was
futile”.	In	this	section	I’m	going	to	highlight	what	I	consider	some	of	the
advantages	the	container	model	has	over	the	VM	model.	But	I’m
guessing	a	lot	of	you	will	be	VM	experts	with	a	lot	invested	in	the	VM
ecosystem.	And	I’m	guessing	that	one	or	two	of	you	might	want	to	fight
me	over	some	of	the	things	I	say.	So	let	me	be	clear…	I’m	a	big	guy	and
I’d	beat	you	down	in	hand-to-hand	combat	:-D	Just	kidding.	But	I’m	not
trying	to	destroy	your	empire	or	call	your	baby	ugly!	I’m	trying	to	help.
The	whole	reason	for	me	writing	this	book	is	to	help	you	get	started	with
Docker	and	containers!

Anyway,	here	we	go.

Containers	vs	VMs
Containers	and	VMs	both	need	a	host	to	run	on.	This	can	be	anything	from
your	laptop,	a	bare	metal	server	in	your	data	center,	all	the	way	up	to	an
instance	the	public	cloud.	In	this	example	we’ll	assume	a	single	physical
server	that	we	need	to	run	4	business	applications	on.

In	the	VM	model,	the	physical	server	is	powered	on	and	the	hypervisor	boots
(we’re	skipping	the	BIOS	and	bootloader	code	etc.).	Once	the	hypervisor
boots	it	lays	claim	to	all	physical	resources	on	the	system	such	as	CPU,	RAM,
storage,	and	NICs.	The	hypervisor	then	carves	these	hardware	resources	into
virtual	versions	that	look	smell	and	feel	exactly	like	the	real	thing.	It	then
packages	them	into	a	software	construct	called	a	virtual	machine	(VM).	We
then	take	those	VMs	and	install	an	operating	system	and	application	on	each
one.	We	said	we	had	a	single	physical	server	and	needed	to	run	4	applications,
so	we’d	create	4	VMs,	install	4	operating	systems,	and	then	install	the	4
applications.	When	it’s	all	done	it	looks	a	bit	like	Figure	7.2.

Figure	7.2

Things	are	a	bit	different	in	the	container	model.

When	the	server	is	powered	on,	your	chosen	OS	boots.	In	the	Docker	world
this	can	be	Linux,	or	a	modern	version	of	Windows	that	has	support	for	the
container	primitives	in	its	kernel.	As	per	the	VM	model,	the	OS	claims	all
hardware	resources.	On	top	of	the	OS	we	install	a	container	engine	such	as
Docker.	The	container	engine	then	takes	OS	resources	such	as	the	process
tree,	the	filesystem,	and	the	network	stack,	and	carves	them	up	into	secure
isolated	constructs	called	containers.	Each	container	looks	smells	and	feels
just	like	a	real	OS.	Inside	of	each	container	we	can	run	an	application.	Like
before,	we’re	assuming	a	single	physical	server	with	4	applications.	Therefore
we’d	carve	out	4	containers	and	run	a	single	application	inside	of	each	as
shown	in	Figure	7.3.

Figure	7.3

At	a	high	level	we	can	say	that	hypervisors	perform	hardware	virtualization
-	they	carve	up	physical	hardware	resources	into	virtual	versions.	On	the	other
hand,	containers	perform	OS	virtualization	-	they	carve	up	OS	resources	into
virtual	versions.

The	VM	tax

Let’s	build	on	what	we	just	covered	and	drill	into	one	of	the	main	problems
with	the	hypervisor	model.

We	started	out	with	the	same	physical	server	and	requirement	to	run	4
business	applications.	In	both	models	we	installed	either	an	OS	or	a
hypervisor	(a	type	of	OS	that	is	highly	tuned	for	VMs).	So	far	the	models	are
almost	identical.	But	this	is	where	the	similarities	stop.

The	VM	model	then	carves	low-level	hardware	resources	into	VMs.	Each
VM	is	a	software	construct	containing	virtual	CPU,	virtual	RAM,	virtual	disk
etc.	As	such,	every	VM	needs	its	own	OS	to	claim,	initialize	and	manage	all
of	those	virtual	resources.	And	sadly,	every	OS	comes	with	its	own	set	of
baggage	and	overheads.	For	example,	every	OS	consumes	a	slice	of	CPU,	a
slice	of	RAM,	a	slice	of	storage	etc.	Most	need	their	own	licenses	as	well	as
people	and	infrastructure	to	patch	and	upgrade	them.	Each	OS	also	presents	a
sizable	attack	surface.	We	often	refer	to	all	of	this	as	the	OS	tax,	or	VM	tax	-
every	OS	you	install	consumes	resources!

The	container	model	has	a	single	kernel	running	in	the	host	OS.	It’s	possible
to	run	tens	or	hundreds	of	containers	on	a	single	host	with	every	container
sharing	that	single	OS/kernel.	That	means	a	single	OS	consuming	CPU,
RAM,	and	storage.	A	single	OS	that	needs	licensing.	A	single	OS	that	needs
upgrading	and	patching.	And	a	single	OS	kernel	presenting	an	attack	surface.
All	in	all,	a	single	OS	tax	bill!

That	might	not	seem	a	lot	in	our	example	of	a	single	server	needing	to	run	4
business	applications.	But	when	we’re	talking	about	hundreds	or	thousands	of
apps	(VM	or	containers)	this	can	be	game	changing.

Another	thing	to	consider	is	that	because	a	container	isn’t	a	full-blown	OS,	it
starts	much	faster	than	a	VM.	Remember,	there’s	no	kernel	inside	of	a
container	that	needs	locating,	decompressing,	and	initializing	-	not	to	mention
all	of	the	hardware	enumerating	and	initializing	associated	with	a	normal
kernel	bootstrap.	None	of	that	is	needed	when	starting	a	container!	The	single
shared	kernel	down	at	the	OS	level	is	already	started!	Net	result,	containers
can	start	in	less	than	a	second.	The	only	thing	that	has	an	impact	on	container
start	time	is	the	time	it	takes	to	start	the	application	it’s	running.

This	all	amounts	to	the	container	model	being	leaner	and	more	efficient	than
the	VM	model.	We	can	pack	more	applications	onto	less	resources,	start	them
faster,	and	pay	less	in	licensing	and	admin	costs,	as	well	as	present	less	of	an
attack	surface	to	the	dark	side.	What’s	not	to	like	about	that!

With	that	theory	out	of	the	way,	let’s	have	a	play	around	with	some
containers.

Running	containers
To	follow	along	with	these	examples	you’ll	need	a	working	Docker	host.	For
most	of	the	commands	it	won’t	make	a	difference	if	it’s	Linux	or	Windows.

Checking	the	Docker	daemon
The	first	thing	I	always	do	when	I	log	on	to	a	Docker	host	is	check	that
Docker	is	running.
$	docker	version

Client:

	Version:						17.05.0-ce

	API	version:		1.29

	Go	version:			go1.7.5

	Git	commit:			89658be

	Built:								Thu	May		4	22:10:54	2017

	OS/Arch:						linux/amd64

Server:

	Version:						17.05.0-ce

	API	version:		1.29	(minimum	version	1.12)

	Go	version:			go1.7.5

	Git	commit:			89658be

	Built:								Thu	May		4	22:10:54	2017

	OS/Arch:						linux/amd64

	Experimental:	false

As	long	as	you	get	a	response	back	in	the	Client	and	Server	sections	you
should	be	good	to	go.	If	you	get	an	error	code	in	the	Server	section	there’s	a
good	chance	that	the	docker	daemon	(server)	isn’t	running,	or	that	your	user
account	doesn’t	have	permission	to	access	it.

If	you’re	running	Linux	and	your	user	account	doesn’t	have	permission	to
access	the	daemon,	you	need	to	make	sure	it’s	a	member	of	the	local	docker
Unix	group.	If	it	isn’t,	you	can	add	it	with	usermod	-aG	docker	<user>	and
then	you’ll	have	to	logout	and	log	back	in	to	your	shell	for	the	changes	to	take
effect.

If	your	user	account	is	already	a	member	of	the	local	docker	group	then	the
problem	might	be	that	the	Docker	daemon	isn’t	running.	To	check	the	status
of	the	Docker	daemon	run	one	of	the	following	commands	depending	on	your
Docker	host’s	operating	system.
//Run	this	command	on	Linux	systems	not	using	Systemd

$	service	docker	status

docker	start/running,	process	29393

//Run	this	command	on	Linux	systems	that	are	using	Systemd

$	systemctl	is-active	docker

active

//Run	this	command	on	Windows	Server	2016	systems	from	a	PowerShell	window

>	Get-Service	docker

Status				Name						DisplayName

------				----						-----------

Running			Docker				docker

Assuming	the	Docker	daemon	is	running	you’re	fine	to	continue.

Starting	a	simple	container
The	simplest	way	to	start	a	container	is	with	the	docker	container	run
command.

The	command	below	starts	a	simple	container	that	will	run	a	containerized
version	of	Ubuntu	Linux.
$	docker	container	run	-it	ubuntu:latest	/bin/bash

Unable	to	find	image	'ubuntu:latest'	locally

latest:	Pulling	from	library/ubuntu

952132ac251a:	Pull	complete

82659f8f1b76:	Pull	complete

c19118ca682d:	Pull	complete

8296858250fe:	Pull	complete

24e0251a0e2c:	Pull	complete

Digest:	sha256:f4691c96e6bbaa99d9...e95a60369c506dd6e6f6ab

Status:	Downloaded	newer	image	for	ubuntu:latest

root@3027eb644874:/#

A	Windows	example	could	be
docker	container	run	-it	microsoft/powershell:nanoserver	PowerShell.exe

The	format	of	the	command	is	essentially	docker	container	run	-
<options>	<image>:<tag>	<command>.

Let’s	break	the	command	down	a	bit.

We	started	with	docker	container	run,	this	is	the	standard	command	to	start
a	new	container.	We	then	used	the	-it	flags	to	make	the	container	interactive
and	attach	it	to	our	terminal.	Next	we	told	it	to	use	the	ubuntu:latest	or
microsoft/powershell:nanoserver	image.	Finally	we	told	it	to	run	the	Bash
shell	in	the	Linux	example,	and	the	PowerShell.exe	program	in	the	Windows
example..

When	we	hit	Return,	the	Docker	client	made	the	appropriate	API	calls	to	the
Docker	daemon.	The	Docker	daemon	accepted	the	command	and	searched	the
Docker	host’s	local	cache	to	see	if	it	already	had	a	copy	of	the	requested
image.	In	this	example	it	didn’t,	so	it	went	to	Docker	Hub	to	see	if	it	could
find	it	there.	It	could,	so	it	pulled	it	locally	and	stored	it	in	its	cache.

Note:	In	a	standard	out-of-the-box	Linux	installation,	the	Docker
daemon	implements	the	Docker	Remote	API	on	a	local	IPC/Unix	socket
at	/var/run/docker.sock.	On	Windows	it	listens	on	a	named	pipe	at

npipe:////./pipe/docker_engine.	It’s	also	possible	to	configure	the
Docker	client	and	daemon	to	operate	over	the	network.	The	default	non-
TLS	network	port	for	Docker	is	2375,	the	default	TLS	port	is	2376.

Once	the	image	was	pulled,	the	daemon	created	the	container	and	executed
the	specified	command	inside	of	it.

If	you	look	closely	you’ll	see	that	your	shell	prompt	has	changed	and	you’re
now	inside	of	the	container.	In	the	example	above	the	shell	prompt	has
changed	to	root@3027eb644874:/#.	The	long	number	after	the	@	is	the	first
12	characters	of	the	container’s	unique	ID.

Try	executing	some	basic	commands	from	inside	of	the	container.	You	might
notice	that	some	commands	do	not	work.	This	is	because	the	images	we	used,
like	almost	all	container	images,	are	highly	optimized	for	containers.	This
means	they	don’t	have	all	of	the	normal	commands	and	packages	installed.
The	example	below	shows	a	couple	of	commands	-	one	succeeds	and	the
other	one	fails.
root@3027eb644874:/#	ls	-l

total	64

drwxr-xr-x			2	root	root	4096	Aug	19	00:50	bin

drwxr-xr-x			2	root	root	4096	Apr	12	20:14	boot

drwxr-xr-x			5	root	root		380	Sep	13	00:47	dev

drwxr-xr-x		45	root	root	4096	Sep	13	00:47	etc

drwxr-xr-x			2	root	root	4096	Apr	12	20:14	home

drwxr-xr-x			8	root	root	4096	Sep	13		2015	lib

drwxr-xr-x			2	root	root	4096	Aug	19	00:50	lib64

drwxr-xr-x			2	root	root	4096	Aug	19	00:50	media

drwxr-xr-x			2	root	root	4096	Aug	19	00:50	mnt

drwxr-xr-x			2	root	root	4096	Aug	19	00:50	opt

dr-xr-xr-x	129	root	root				0	Sep	13	00:47	proc

drwx------			2	root	root	4096	Aug	19	00:50	root

drwxr-xr-x			6	root	root	4096	Aug	26	18:50	run

drwxr-xr-x			2	root	root	4096	Aug	26	18:50	sbin

drwxr-xr-x			2	root	root	4096	Aug	19	00:50	srv

dr-xr-xr-x		13	root	root				0	Sep	13	00:47	sys

drwxrwxrwt			2	root	root	4096	Aug	19	00:50	tmp

drwxr-xr-x		11	root	root	4096	Aug	26	18:50	usr

drwxr-xr-x		13	root	root	4096	Aug	26	18:50	var

root@3027eb644874:/#

root@3027eb644874:/#

root@3027eb644874:/#	ping	www.docker.com

bash:	ping:	command	not	found

root@3027eb644874:/#

As	shown	in	the	output	above,	the	ping	utility	is	not	included	as	part	of	the
official	Ubuntu	image.

Container	processes
When	we	started	the	Ubuntu	container	in	the	previous	section	we	told	it	to	run
the	Bash	shell	(/bin/bash).	This	makes	the	Bash	shell	the	one	and	only

process	running	inside	of	the	container.	You	can	see	this	by	running	ps	-
elf	from	inside	the	container.
root@3027eb644874:/#	ps	-elf

F	S	UID			PID		PPID			NI	ADDR	SZ	WCHAN		STIME	TTY					TIME						CMD

4	S	root				1					0				0	-		4558	wait			00:47	?					00:00:00		/bin/bash

0	R	root			11					1				0	-		8604	-						00:52	?					00:00:00		ps	-elf

Although	it	might	look	like	there	are	two	processes	running	in	the	output
above,	there	aren’t.	The	first	process	in	the	list,	with	PID	1,	is	the	Bash	shell
we	told	the	container	to	run.	The	second	process	in	the	list	is	the	ps	-elf
command	we	ran	to	produce	the	list.	This	is	a	short-lived	process	that	has
already	exited	by	the	time	the	output	is	displayed	on	the	terminal.	Long	story
short,	this	container	is	running	a	single	process	-	/bin/bash.

Note:	Windows	containers	are	slightly	different	and	tend	to	run	quite	a
few	processes.

This	means	that	if	you	type	exit	to	exit	the	Bash	shell,	the	container	will	also
exit	(terminate).	The	reason	for	this	is	that	a	container	cannot	exist	without	a
running	process	-	killing	the	Bash	shell	would	kill	the	container’s	only
process,	resulting	in	the	container	also	being	killed.	This	is	also	true	of
Windows	containers	-	killing	the	main	process	in	the	container	will	also	kill
the	container.

Press	Ctrl-PQ	to	exit	the	container	without	terminating	it.	Doing	this	will
place	you	back	in	the	shell	of	your	Docker	host	and	leave	the	container
running	in	the	background.	You	can	use	the	docker	container	ls	command
to	view	the	list	of	running	containers	on	your	system.
$	docker	container	ls

CNTNR	ID		IMAGE										COMMAND				CREATED		STATUS				NAMES

302...74		ubuntu:latest		/bin/bash		6	mins			Up	6mins		sick_montalcini

It’s	important	to	understand	that	this	container	is	still	running	and	you	can	re-
attach	your	terminal	to	it	with	the	docker	container	exec	command.
$	docker	container	exec	-it	3027eb644874	bash

root@3027eb644874:/#

Note:	You	can	address	a	container	by	its	name	or	ID.	The	command	to
re-attach	to	the	Windows	Nano	Server	PowerShell	container	would	be
docker	container	exec	-it	<container-name-or-ID>

PowerShell.exe.

As	you	can	see,	the	shell	prompt	has	changed	back	to	the	container.	If	you	run
the	ps	command	again	you	will	now	see	two	Bash	or	PowerShell	processes.
This	is	because	the	docker	container	exec	command	created	a	new	Bash	or
PowerShell	process	and	attached	to	that.	This	means	that	typing	exit	from
this	shell	will	not	terminate	the	container	because	the	original	Bash	or
PowerShell	process	will	continue	running.	The	same	works	for	the	Windows
PowerShell	container.

Type	exit	to	leave	the	container	and	verify	it’s	still	running	with	a	docker
container	ps.	It	is	still	running.

If	you	are	following	along	with	the	examples	on	your	own	Docker	host	you
should	stop	and	delete	the	container	with	the	following	two	commands	(you
will	need	to	substitute	the	ID	of	your	container).
$	docker	container	stop	3027eb64487

3027eb64487

$	docker	container	rm	3027eb64487

3027eb64487

The	container(s)	started	in	the	previous	examples	will	no	longer	be	present	on
your	system.

Container	lifecycle
It’s	a	common	myth	that	containers	can’t	persist	data.	They	can!

A	big	part	of	the	reason	people	think	containers	aren’t	good	for	persistent
workloads,	or	persisting	data,	is	because	they’re	so	good	at	non-persistent
stuff.	But	being	good	at	one	thing	doesn’t	mean	you	can’t	do	other	things.	A
lot	of	VM	admins	out	there	will	remember	companies	like	Microsoft	and
Oracle	telling	you	that	you	couldn’t	run	their	applications	inside	of	VMs	-	or
at	least	they	wouldn’t	support	you	if	you	did.	I	wonder	if	we’re	seeing
something	similar	with	the	move	to	containerization	-	are	there	people	out
there	trying	to	protect	their	empires	of	persistent	workloads	from	what	they
perceive	as	the	threat	of	containers?

In	this	section	we’ll	look	at	the	lifecycle	of	a	container	-	from	birth,	through
work	and	vacations,	to	eventual	death.

We’ve	already	seen	how	to	start	containers	with	the	docker	container	run
command.	Let’s	start	another	one	so	we	can	walk	it	through	its	entire
lifecycle.	The	examples	below	will	be	from	a	Linux	Docker	host	running	an
Ubuntu	container.	However,	all	of	the	examples	will	work	with	the	Windows
PowerShell	container	we’ve	used	in	previous	examples	-	though	you’ll	have
to	substitute	Linux	commands	with	their	equivalent	Windows	commands.

$	docker	container	run	--name	percy	-it	ubuntu:latest	/bin/bash

root@9cb2d2fd1d65:/#

That’s	our	container	created,	and	we	named	it	“percy”	for	persistent	:-S

Now	let’s	put	it	to	work	by	writing	some	data	to	it.

From	within	the	shell	of	your	new	container,	follow	the	procedure	below	to
write	some	data	to	a	new	file	in	the	tmp	directory	and	verify	that	the	write
operation	succeeded.
root@9cb2d2fd1d65:/#	cd	tmp

root@9cb2d2fd1d65:/tmp#

root@9cb2d2fd1d65:/tmp#	ls	-l

total	0

root@9cb2d2fd1d65:/tmp#

root@9cb2d2fd1d65:/tmp#	echo	"DevOps	FTW"	>	newfile

root@9cb2d2fd1d65:/tmp#

root@9cb2d2fd1d65:/tmp#	ls	-l

total	4

-rw-r--r--	1	root	root	14	May	23	11:22	newfile

root@9cb2d2fd1d65:/tmp#

root@9cb2d2fd1d65:/tmp#	cat	newfile

DevOps	FTW

Press	Ctrl-PQ	to	exit	the	container	without	killing	it.

Now	use	the	docker	container	stop	command	to	stop	the	container	and	put
in	on	vacation.
$	docker	container	stop	percy

percy

You	can	use	the	container’s	name	or	ID	with	the	docker	container	stop
command.	The	format	is	docker	container	stop	<container-id	or
container-name>.

Now	run	a	docker	container	ls	command	to	list	all	running	containers.
$	docker	container	ls

CONTAINER	ID			IMAGE			COMMAND			CREATED		STATUS		PORTS			NAMES

The	container	is	not	listed	in	the	output	above	because	you	put	it	in	the
stopped	state	with	the	docker	container	stop	command.	Run	the	same
command	again,	only	this	time	add	the	-a	flag	to	show	all	containers
including	those	that	are	stopped.
$	docker	container	ls	-a

CNTNR	ID		IMAGE										COMMAND				CREATED		STATUS						NAMES

9cb...65		ubuntu:latest		/bin/bash		4	mins			Exited	(0)		percy

Now	we	can	see	the	container	showing	as	Exited	(0).	Stopping	a	container
is	like	stopping	a	virtual	machine.	Although	it’s	not	currently	running,	its

entire	configuration	and	contents	still	exist	on	the	filesystem	of	the	Docker
host	and	it	can	be	restarted	at	any	time.
Let’s	use	the	docker	container	start	command	to	bring	it	back	from
vacation.
$	docker	container	start	percy

percy

$

$	docker	container	ls

CONTAINER	ID		IMAGE										COMMAND						CREATED		STATUS					NAMES

9cb2d2fd1d65		ubuntu:latest		"/bin/bash"		4	mins			Up	3	secs		percy

The	stopped	container	is	now	restarted.	Time	to	verify	that	the	file	we	created
earlier	still	exists.	Connect	to	the	restarted	container	with	the	docker
container	exec	command.
$	docker	container	exec	-it	percy	bash

root@9cb2d2fd1d65:/#

Your	shell	prompt	will	change	to	show	that	you	are	now	operating	within	the
namespace	of	the	container.

Verify	that	the	file	you	created	earlier	is	still	there	and	contains	the	data	you
wrote	to	it.
root@9cb2d2fd1d65:/#	cd	tmp

root@9cb2d2fd1d65:/#	ls	-l

-rw-r--r--	1	root	root	14	Sep	13	04:22	newfile

root@9cb2d2fd1d65:/#

root@9cb2d2fd1d65:/#	cat	newfile

sysadmins	FTW

As	if	by	magic,	the	file	you	created	is	still	there	and	the	data	it	contains	is
exactly	how	you	left	it!	This	proves	that	stopping	a	container	does	not	destroy
the	container	or	the	data	inside	of	it.

While	this	example	illustrates	the	persistent	nature	of	containers,	I	should
point	out	that	volumes	are	the	preferred	way	to	store	persistent	data	in
containers.	But	at	this	stage	of	our	journey	I	think	this	is	an	effective	example
of	the	persistent	nature	of	containers.

So	far	I	think	you’d	be	hard	pressed	to	draw	a	major	difference	in	the
behavior	of	a	container	vs	a	VM.

Now	let’s	kill	the	container	and	delete	it	from	our	system.

It	is	possible	to	delete	a	running	container	with	a	single	command	by	passing
the	-f	flag	to	docker	container	rm.	However,	it’s	considered	a	best	practice
to	take	the	two-step	approach	of	stopping	the	container	first	and	then	deleting
it.	This	gives	the	application/process	that	the	container	is	running	a	fighting
chance	of	stopping	cleanly.	More	on	this	in	a	second.

The	example	below	will	stop	the	percy	container,	delete	it,	and	verify	the
operation.	If	your	terminal	is	still	attached	to	the	percy	container	you	will
need	to	get	back	to	your	Docker	host’s	terminal	by	pressing	Ctrl-PQ.
$	docker	container	stop	percy

percy

$

$	docker	container	rm	percy

percy

$

$	docker	container	ls	-a

CONTAINER	ID				IMAGE						COMMAND				CREATED		STATUS					PORTS						NAMES

The	container	is	now	deleted	-	literally	wiped	off	the	face	of	the	planet.	If	it
was	a	good	container,	it	becomes	a	unikernel	in	the	afterlife.	If	it	was	a
naughty	container,	it	becomes	a	dumb	terminal	:-D

To	summarize	the	lifecycle	of	a	container…	You	can	stop,	start,	pause,	and
restart	a	container	as	many	times	as	you	want.	And	it’ll	all	happen	really	fast.
But	the	container	and	it’s	data	will	always	be	safe.	It’s	not	until	you	explicitly
kill	a	container	that	you	run	any	chance	of	losing	its	data.	And	even	then,	if
you’re	storing	container	data	in	a	volume,	that	data’s	going	to	persist	even
after	the	container	has	gone.

Let’s	quickly	mention	why	we	recommended	a	two-stage	approach	of
stopping	the	container	before	deleting	it.

Stopping	containers	gracefully
Most	containers	in	the	Linux	world	will	run	a	single	process.	In	the	Windows
world	they	run	a	few	processes,	but	the	following	rules	still	apply.

In	our	previous	example	the	container	was	running	the	/bin/bash	program.
When	you	kill	a	running	container	with	docker	container	rm	<container>
-f	the	container	will	be	killed	without	warning.	The	procedure	is	quite	violent
-	a	bit	like	sneaking	up	behind	the	container	it	and	shooting	it	in	the	back	of
the	head.	You’re	literally	giving	the	container,	and	the	process	it’s	running,	no
chance	to	straighten	its	affairs	before	being	killed.

However,	the	docker	container	stop	command	is	far	more	polite	(like
pointing	a	gun	to	the	containers	head	and	saying	“you’ve	got	10	seconds	to
say	any	final	words”).	It	gives	the	process	inside	of	the	container	a	heads-up
that	it’s	about	to	be	stopped,	giving	it	a	chance	to	get	things	in	order	before
the	end	comes.	Once	the	docker	stop	command	returns,	you	can	then	delete
the	container	with	docker	container	rm.

The	magic	behind	the	scenes	here	can	be	explained	with	Linux/POSIX
signals.	docker	container	stop	sends	a	SIGTERM	signal	to	the	process

with	PID	1	inside	of	the	container.	As	we	just	said,	this	gives	the	process	a
chance	to	clean	things	up	and	gracefully	shut	itself	down.	If	it	doesn’t	exit
within	10	seconds	it	will	receive	a	SIGKILL.	This	is	effectively	the	bullet	to
the	head.	But	hey,	it	got	10	seconds	to	sort	itself	out	first!

docker	container	rm	<container>	-f	doesn’t	bother	asking	nicely	with	a
SIGTERM,	it	just	goes	straight	to	the	SIGKILL.	Like	we	said	a	second	ago,
this	is	like	creeping	up	from	behind	and	smashing	it	over	the	head.	I’m	not	a
violent	person	by	the	way!

Web	server	example
So	far	we’ve	seen	how	to	start	a	simple	container	and	interact	with	it.	We’ve
also	seen	how	to	stop,	restart	and	destroy	containers.	Now	let’s	take	a	look	at
a	Linux	web	server	example.

In	this	example	we’ll	start	a	new	container	from	an	image	I	use	in	a	few	of	my
Pluralsight	video	courses.	The	image	runs	an	insanely	simple	web	server	on
port	8080.

Use	the	docker	container	stop	and	docker	container	rm	commands	to
clean	up	any	existing	containers	on	your	system.	Then	run	the	following
docker	container	run	command.
$	docker	container	run	-d	--name	webserver	-p	80:8080	\

		nigelpoulton/pluralsight-docker-ci

Unable	to	find	image	'nigelpoulton/pluralsight-docker-ci:latest'	locally

latest:	Pulling	from	nigelpoulton/pluralsight-docker-ci

a3ed95caeb02:	Pull	complete

3b231ed5aa2f:	Pull	complete

7e4f9cd54d46:	Pull	complete

929432235e51:	Pull	complete

6899ef41c594:	Pull	complete

0b38fccd0dab:	Pull	complete

Digest:	sha256:7a6b0125fe7893e70dc63b2...9b12a28e2c38bd8d3d

Status:	Downloaded	newer	image	for	nigelpoulton/plur...docker-ci:latest

6efa1838cd51b92a4817e0e7483d103bf72a7ba7ffb5855080128d85043fef21

Notice	that	your	shell	prompt	hasn’t	changed.	This	is	because	we	started	this
container	in	the	background	with	the	-d	flag.	Starting	a	container	in	the
background	does	not	attach	it	to	your	terminal.

This	example	threw	a	few	more	arguments	at	the	docker	container	run
command,	so	let’s	take	a	quick	look	at	them.

We	know	docker	container	run	starts	a	new	container.	But	this	time	we
give	it	the	-d	flag	instead	of	-it.	-d	tells	the	container	to	run	in	the
background	rather	than	attaching	to	your	terminal	in	the	foreground.	The	“d”
stands	for	daemon	mode,	and	-d	and	-it	are	mutually	exclusive.	This	means
you	can’t	use	both	on	the	same	container.

https://www.pluralsight.com/search?q=nigel%20poulton%20docker&categories=all

After	that,	we	name	the	container	and	then	give	it	-p	80:8080.	The	-p	flag
maps	ports	on	the	Docker	host	to	ports	inside	the	container.	This	time	we’re
mapping	port	80	on	the	Docker	host	to	port	8080	inside	the	container.	This
means	that	traffic	hitting	the	Docker	host	on	port	80	will	be	directed	to	port
8080	inside	of	the	container.	It	just	so	happens	that	the	image	we’re	using	for
this	container	defines	a	web	service	that	listens	on	port	8080.	This	means	our
container	will	come	up	running	a	web	server	listening	on	port	8080.

Finally	we	tell	it	which	image	to	use:	nigelpoulton/pluralsight-docker-
ci.	This	image	is	not	kept	up-to-date	and	will	contain	security	vulnerabilities!

Running	a	docker	container	ls	command	will	show	the	container	as
running	and	show	the	ports	that	are	mapped.	It’s	important	to	know	that	port
mappings	are	expressed	as	host-port:container-port.
$	docker	container	ls

CONTAINER	ID		COMMAND								STATUS							PORTS															NAMES

6efa1838cd51		/bin/sh	-c...		Up	2	mins		0.0.0.0:80->8080/tcp		webserver

Note:	We’ve	removed	some	of	the	columns	from	the	output	above	to
help	with	readability.

Now	that	the	container	is	running	and	ports	are	mapped,	we	can	connect	to
the	container	by	pointing	a	web	browser	at	the	IP	address	or	DNS	name	of	the
Docker	host	on	port	80.	Figure	7.4	shows	the	web	page	that	is	being	served
up	by	the	container.

Figure	7.4

The	same	docker	container	stop,	docker	container	pause,	docker
container	start,	and	docker	container	rm	commands	can	be	used	on	the
container.	Also,	the	same	rules	of	persistence	apply	-	stopping	or	pausing	the
container	does	not	destroy	the	container	or	any	data	stored	in	it.

Inspecting	containers
In	the	previous	example	you	might	have	noticed	that	we	didn’t	specify	a
program	for	the	container	when	we	issued	the	docker	container	run
command.	Yet	the	container	ran	a	simple	web	service.	How	did	this	happen?

When	building	a	Docker	image	it’s	possible	to	embed	a	default	command	or
program	you	want	containers	using	the	image	to	run.	If	we	run	a	docker
image	inspect	command	against	the	image	we	used	to	run	our	container,
we’ll	be	able	to	see	the	command/program	that	the	container	will	run	when	it
starts.
$	docker	image	inspect	nigelpoulton/pluralsight-docker-ci

[

				{

								"Id":	"sha256:07e574331ce3768f30305519...49214bf3020ee69bba1",

								"RepoTags":	[

												"nigelpoulton/pluralsight-docker-ci:latest"

												<Snip>

],

												"Cmd":	[

																"/bin/sh",

																"-c",

																"#(nop)	CMD	[\"/bin/sh\"	\"-c\"	\"cd	/src	\u0026\u0026	node	\

./app.js\"]"

],

<Snip>

We’ve	snipped	the	output	to	make	is	easier	to	find	the	information	we’re
interested	in.

The	entries	after	“Cmd”	show	the	command(s)	that	the	container	will	run
unless	you	override	the	with	a	different	command	as	part	of	docker
container	run.	If	you	remove	all	of	the	shell	escapes	in	the	example	above,
you	get	the	following	command	/bin/sh	-c	"cd	/src	&&	node	./app.js".
That’s	the	default	command	a	container	based	on	this	image	will	run.

It’s	common	to	build	images	with	default	commands	like	this	as	it	makes
starting	containers	easier.	It	also	forces	a	default	behavior	and	is	a	form	of	self
documentation	for	the	image	-	i.e.	we	can	inspect	the	image	and	know	what
it’s	intended	to	do.

That’s	us	done	for	the	examples	in	this	chapter.	Let’s	see	a	quick	way	to	tidy
our	system	up.

Tidying	up
Here	we’re	going	to	show	you	the	simplest	and	quickest	way	to	get	rid	of
every	running	container	on	your	Docker	host.	Be	warned	though,	the

procedure	will	forcible	destroy	all	containers	without	giving	them	a	chance	to
clean	up.	This	should	never	be	performed	on	production	systems	or
systems	running	important	containers.

Run	the	following	command	from	the	shell	of	your	Docker	host	to	delete	all
containers.
$	docker	container	rm	$(docker	container	ls	-aq)	-f

6efa1838cd51

In	this	example	we	only	had	a	single	container	running,	so	only	one	was
deleted	(6efa1838cd51).	However,	the	command	works	the	same	way	as	the
docker	image	rm	$(docker	image	ls	-q)	command	we	used	in	the
previous	chapter	to	delete	all	images	on	a	single	Docker	host.	We	already
know	the	docker	container	rm	command	deletes	containers.	Passing	it
$(docker	container	ls	-aq)	as	an	argument	effectively	passes	it	the	ID	of
every	container	on	the	system.	The	-f	flag	forces	the	operation	so	that
running	containers	will	also	be	destroyed.	Net	result…	all	containers,	running
or	stopped,	will	be	destroyed	and	removed	from	the	system.

The	above	command	will	work	in	a	PowerShell	terminal	on	a	Windows
Docker	host.

Containers	-	The	commands

docker	container	run	is	the	command	used	to	start	new	containers.	In
its	simplest	form	it	accepts	an	image	and	a	command	as	arguments.	The
image	is	used	to	create	the	container	and	the	command	is	the	process	or
application	you	want	the	container	to	run.	This	example	will	start	an
Ubuntu	container	in	the	foreground	and	running	the	Bash	shell:	docker
container	run	-it	ubuntu	/bin/bash.
Ctrl-PQ	will	detach	your	shell	from	the	terminal	of	a	container	and	leave
the	container	running	(UP)	in	the	background.
docker	container	ls	lists	all	containers	in	the	running	(UP)	state.	If
you	add	the	-a	flag	you	will	also	see	containers	in	the	stopped	(Exited)
state.
docker	container	exec	lets	you	run	a	new	process	inside	of	a	running
container.	It’s	useful	for	attaching	the	shell	of	your	Docker	host	to	a
terminal	inside	of	a	running	container.	This	command	will	start	a	new
Bash	shell	inside	of	a	running	container	and	connect	to	it:	docker
container	exec	-it	<container-name	or	container-id>	bash.	For
this	to	work,	the	image	used	to	create	your	container	must	contain	the
Bash	shell.
docker	container	stop	will	stop	a	running	container	and	put	it	in	the
(Exited	(0))	state.	It	does	this	by	issuing	a	SIGTERM	to	the	process	with
PID	1	inside	of	the	container.	If	the	process	has	not	cleaned	up	and
stopped	within	10	seconds,	a	SIGKILL	will	be	issued	to	forcibly	stop	the
container.	docker	container	stop	accepts	container	IDs	and	container
names	as	arguments.
docker	container	start	will	restart	a	stopped	(Exited)	container.	You
can	give	docker	container	start	the	name	or	ID	of	a	container.
docker	container	rm	will	delete	a	stopped	container.	You	can	specify
containers	by	name	or	ID.	It	is	recommended	that	you	stop	a	container
with	the	docker	container	stop	command	before	deleting	it	with
docker	rm.
docker	container	inspect	will	show	you	detailed	configuration	and
runtime	information	about	a	container.	It	accepts	container	names	and
container	IDs	as	its	main	argument.

Chapter	summary
In	this	chapter	we	compared	and	contrasted	the	container	and	VM	models.	We
looked	at	the	OS	tax	problem	of	the	VM	model	and	saw	how	the	container
model	can	bring	huge	efficiencies	in	much	the	same	way	as	the	VM	model
brought	huge	advantages	over	the	physical	model.

We	saw	how	to	use	the	docker	container	run	command	to	start	a	couple	of
simple	containers,	and	we	saw	the	difference	between	interactive	containers
in	the	foreground	versus	containers	running	in	the	background.

We	know	that	killing	the	process	with	PID	1	inside	of	a	container	will	kill	the
container.	And	we’ve	seen	how	to	start,	stop,	and	delete	containers.

We	finished	the	chapter	using	the	docker	container	inspect	command	to
view	detailed	configuration	metadata.

So	far	so	good!

In	the	next	chapter	we’ll	see	how	to	orchestrate	containerized	applications
across	multiple	Docker	hosts	with	some	game	changing	technologies
introduced	in	Docker	1.12.

8:	Containerizing	an	App

Docker	is	all	about	taking	applications	and	running	them	in	containers.

The	process	of	taking	an	application	and	configuring	it	to	run	as	a	container	is
called	“containerizing”.	Sometimes	we	call	it	“Dockerizing”.

In	this	chapter	we’ll	walk	through	the	process	of	containerizing	a	simple	web
application.

We’ll	split	this	chapter	into	the	usual	three	parts:

The	TLDR
The	deep	dive
The	commands

Let’s	go	containerize	an	app!

Containerizing	an	App	-	The	TLDR
Containers	are	all	about	apps!	In	particular,	they’re	about	making	apps	simple
to	build,	ship,	and	run.

The	process	of	containerizing	an	app	looks	like	this:

1.	 Start	with	your	application	code.
2.	 Create	a	Dockerfile	that	describes	your	app,	its	dependencies,	and	how	to

run	it.
3.	 Feed	this	Dockerfile	into	the	docker	image	build	command.
4.	 Sit	back	while	Docker	builds	your	application	into	a	Docker	image.

Once	your	app	is	containerized	(made	into	a	Docker	image),	you’re	ready	to
ship	it	and	run	it	as	a	container.

Figure	8.1	shows	the	process	of	building,	shipping,	and	running	an	app
(apologies	for	the	colours	on	the	diagram).

Figure	8.1

Containerizing	an	App	-	The	deep	dive
The	rest	of	this	chapter	will	walk	you	through	the	process	of	containerizing	a
simple	Linux-based	Node.js	web	app.	The	process	is	the	same	for	Windows,
and	future	editions	of	the	book	will	include	a	Windows	example.

We’ll	complete	the	following	high-level	steps:	-	Get	the	app	code	-	Inspect	the
Dockerfile	-	Containerize	the	app	-	Run	the	app	-	Test	the	app	-	Look	a	bit
closer	-	Move	to	production	with	Multi-stage	Builds

Getting	the	application	code
The	application	used	in	this	example	can	be	cloned	form	GitHub:

https://github.com/nigelpoulton/psweb.git

Clone	the	sample	app	from	GitHub.
$	git	clone	https://github.com/nigelpoulton/psweb.git

Cloning	into	'psweb'...

remote:	Counting	objects:	15,	done.

remote:	Compressing	objects:	100%	(11/11),	done.

remote:	Total	15	(delta	2),	reused	15	(delta	2),	pack-reused	0

Unpacking	objects:	100%	(15/15),	done.

Checking	connectivity...	done.

The	clone	operation	creates	a	new	directory	called	psweb.	Change	directory
into	psweb	and	list	its	contents.
$	cd	psweb

$

$	ls	-l

total	28

-rw-r--r--	1	root	root		341	Sep	29	16:26	app.js

-rw-r--r--	1	root	root		216	Sep	29	16:26	circle.yml

-rw-r--r--	1	root	root		338	Sep	29	16:26	Dockerfile

-rw-r--r--	1	root	root		421	Sep	29	16:26	package.json

-rw-r--r--	1	root	root		370	Sep	29	16:26	README.md

drwxr-xr-x	2	root	root	4096	Sep	29	16:26	test

drwxr-xr-x	2	root	root	4096	Sep	29	16:26	views

This	directory	contains	all	of	the	application	source	code,	as	well	as
subdirectories	for	views	and	unit	tests.	Feel	free	to	look	at	the	files	-	the	app	is
extremely	simple.	We	won’t	be	using	the	unit	tests	in	this	chapter.

Now	that	we	have	the	app	code,	let’s	look	at	its	Dockerfile.

Inspecting	the	Dockerfile
Notice	that	the	repo	has	a	file	called	Dockerfile.	This	is	the	file	that	describes
the	application	and	tells	Docker	how	to	build	an	image	from	it.

The	directory	that	contains	your	application	code	is	referred	to	as	the	build
context.	It’s	a	common	practice	to	keep	your	Dockerfile	in	the	root	directory
of	the	build	context.	It’s	also	important	that	Dockerfile	starts	with	a	capital
“D”	and	is	all	one	word.	“dockerfile”	and	“Docker	file”	are	not	valid.

Let’s	look	at	the	contents	of	the	Dockerfile.
$	cat	Dockerfile

FROM	alpine

LABEL	maintainer="nigelpoulton@hotmail.com"

RUN	apk	add	--update	nodejs	nodejs-npm

COPY	.	/src

WORKDIR	/src

RUN	npm	install

EXPOSE	8080

ENTRYPOINT	["node",	"./app.js"]

The	Dockerfile	has	two	main	purposes:

1.	 To	describe	the	application
2.	 To	tell	Docker	how	to	containerize	the	application	(create	an	image	with

the	app	inside)

Do	not	underestimate	the	impact	of	the	Dockerfile	from	a	documentation
perspective.	It	has	the	ability	to	bridge	the	gap	between	dev	and	ops!	It	also
has	the	power	to	speed	up	on-boarding	of	new	developers	etc.	This	is	because
the	file	accurately	describes	the	application	and	its	dependencies	in	an	easy-
to-read	format.

At	a	high-level,	the	example	Dockerfile	says:	Start	with	the	alpine	image,
add	“nigelpoulton@hotmail.com”	as	the	maintainer,	install	Node.js	and	NPM,
copy	in	the	application	code,	set	the	working	directory,	install	dependencies,
expose	a	network	port,	and	set	app.js	as	the	default	application	to	run.

Let’s	look	at	it	in	a	bit	more	detail.

All	Dockerfiles	start	with	the	FROM	instruction.	This	will	be	the	base	layer	of
the	image,	and	the	rest	of	the	app	will	be	added	on	top	as	additional	layers.
This	particular	application	is	a	Linux	app,	so	it	is	important	that	the	FROM
instruction	refers	to	a	Linux-based	image.	If	you	are	containerizing	a
Windows	application,	you	will	need	to	specify	the	appropriate	Windows	base
image	-	such	as	microsoft/aspnetcore-build.

At	this	point,	the	image	looks	like	Figure	8.2	.

Figure	8.2

Next,	the	Dockerfile	creates	a	LABEL	and	specifies
“nigelpoulton@hotmail.com”	as	the	maintainer	of	the	image.	Labels	are
simple	key-value	pairs	and	are	an	excellent	way	of	adding	custom	metadata	to
an	image.	It	is	considered	a	best	practice	to	list	a	maintainer	of	an	image	so
that	other	potential	users	have	a	point	of	contact	when	working	with	it.

Note:	I	will	not	be	maintaining	this	image.	I’m	including	the	label	to
show	you	how	to	use	labels	as	well	as	showing	you	a	best	practice.

The	RUN	apk	add	--update	nodejs	nodejs-npm	instruction	uses	the	Alpine
apk	package	manager	to	install	nodejs	and	nodejs-npm	into	the	image.	The
RUN	instruction	installs	these	packages	as	a	new	image	layer	on	top	of	the
alpine	base	image	created	by	the	FROM	alpine	instruction.	The	image	now
looks	like	Figure	8.3.

Figure	8.3

The	COPY	.	/src	instruction	copies	in	the	app	files	from	the	build	context.
The	RUN	instruction	copies	these	files	into	the	image	as	a	new	layer.	The
image	now	has	three	layers	as	shown	in	Figure	8.4.

Figure	8.4

Next,	the	Dockerfile	uses	the	WORKDIR	instruction	to	set	the	working	directory
for	the	rest	of	the	instructions	in	the	file.	This	directory	is	relative	to	the
image,	and	the	info	is	added	as	metadata	to	the	image	config	and	not	as	a	new
layer.

Then	the	RUN	npm	install	instruction	uses	npm	to	install	application
dependencies	listed	in	package.json.	It	runs	within	the	context	of	the
WORKDIR	set	in	the	previous	instruction,	and	installs	the	dependencies	as	a	new
layer	in	the	image.	The	image	now	has	four	layers	as	shown	in	Figure	8.5.

Figure	8.5

The	application	exposes	a	web	service	on	TCP	port	8080,	so	the	Dockerfile
documents	this	with	the	EXPOSE	8080	instruction.	This	is	added	as	image
metadata	and	not	an	image	layer.

Finally,	the	ENTRYPOINT	instruction	is	used	to	set	the	main	application	that	the
image	(container)	should	run.	This	is	also	added	as	metadata	and	not	an	image
layer.

Containerize	the	app/build	the	image
Now	that	we	have	the	application	code	and	the	Dockerfile,	let’s	build	the
image!

The	following	command	will	build	a	new	image	called	web:latest.	The
period	(.)	at	the	end	of	the	command	tells	Docker	to	use	the	shell’s	current
working	directory	as	the	build	context.

Be	sure	include	the	period	(.)	at	the	end	of	the	command,	and	be	sure	to	run
the	command	from	the	psweb	directory	that	contains	the	Dockerfile	and
application	code.
$	docker	image	build	-t	web:latest	.

Sending	build	context	to	Docker	daemon		74.75kB

Step	1/8	:	FROM	alpine

latest:	Pulling	from	library/alpine

88286f41530e:	Pull	complete

Digest:	sha256:f006ecbb8...d935c0c103f4820a417d

Status:	Downloaded	newer	image	for	alpine:latest

	--->	76da55c8019d

<Snip>

Step	8/8	:	ENTRYPOINT	node	./app.js

	--->	Running	in	c576be4427a7

	--->	e33cdd8266d0

Removing	intermediate	container	c576be4427a7

Successfully	built	e33cdd8266d0

Successfully	tagged	web:latest

Check	that	the	image	exists	in	your	Docker	host’s	local	repository.
$	docker	image	ls

REPO				TAG							IMAGE	ID										CREATED														SIZE

web					latest				e33cdd8266d0						About	a	minute	ago			55.6MB

Congratulations,	the	app	is	containerized!

You	can	use	the	docker	image	inspect	web:latest	command	to	verify	the
configuration	of	the	image.	It	will	list	all	of	the	settings	that	were	configured
from	the	Dockerfile.

Run	the	app
The	example	application	that	we’ve	containerized	is	a	simple	web	server	that
listens	on	TCP	port	8080.	You	can	verify	this	in	the	app.js	file.

The	following	command	will	start	a	new	container	called	c1	based	on	the
web:latest	image	we	just	created.	It	maps	port	80	on	the	Docker	host,	to	port
8080	inside	the	container.	This	means	that	you	will	be	able	to	point	a	web
browser	at	the	DNS	name	or	IP	address	of	the	Docker	host	and	access	the	app.

Note:	If	your	host	is	already	running	a	service	on	port	80,	you	can
specify	a	different	port	as	part	of	the	docker	container	run	command.
For	example,	to	map	the	app	to	port	5000	on	the	Docker	host,	use	the	-p
5000:8080	flag.

$	docker	container	run	-d	--name	c1	\

		-p	80:8080	\

		web:latest

The	-d	flag	runs	the	container	in	the	background,	and	the	-p	80:8080	flag
maps	port	80	on	the	host	to	port	8080	inside	the	running	container.

Check	that	the	container	is	running	and	verify	the	port	mapping.
$	docker	container	ls

ID							IMAGE							COMMAND											<Snip>		PORTS

82...88		web:latest		"node	./app.js"			...					0.0.0.0:80->8080/tcp

The	output	above	is	snipped	for	readability,	but	shows	that	the	app	container
is	running.	Note	that	port	80	is	mapped	on	all	host	interfaces	(0.0.0.0:80)	to
port	8080	in	the	container.

Test	connectivity
Open	a	web	browser	and	point	it	to	the	DNS	name	or	IP	address	of	the	host
that	the	container	is	running	on.	You	will	see	the	web	page	shown	in	Figure	.

Figure	8.6

If	the	test	does	not	work,	try	the	following:

1.	 Make	sure	that	the	container	is	up	and	running	with	the	docker
container	ls	command.	The	container	name	is	c1	and	you	should	see
the	port	mapping	as	0.0.0.0:80->8080/tcp.

2.	 Check	that	the	firewall	and	other	network	security	settings	are	not
blocking	traffic	to	port	80	on	the	Docker	host.

Congratulations,	the	application	is	containerized	and	running!

Looking	a	bit	closer
Now	that	the	application	is	containerized,	let’s	take	a	closer	look	at	how	some
of	the	machinery	works.

Comment	lines	in	a	Dockerfile	start	with	the	#	character.

All	non-comment	lines	are	Instructions.	Instructions	take	the	format
INSTRUCTION	argument.	Instruction	names	are	not	case	sensitive,	but	it	is
normal	practice	to	write	them	in	UPPERCASE.	This	makes	reading	the
Dockerfile	easier.

The	docker	image	build	command	parses	the	Dockerfile	one-line-at-a-time
starting	from	the	top.

Some	Instructions	create	new	layers,	whereas	others	just	add	metadata	to	the
image.

Examples	of	instructions	that	create	new	layers	are	FROM,	RUN,	and	COPY.
Examples	of	instructions	that	create	metadata	include	EXPSOE,	WORKDIR,	ENV,
and	ENTRYPOINT.	The	basic	premise	is	this	-	if	an	instruction	is	adding	content
such	as	files	and	programs	to	the	image,	it	will	create	a	new	layer.	If	it	is

adding	instructions	on	how	to	build	the	image	and	run	the	application,	it	will
create	metadata.
You	can	view	the	instructions	that	were	used	to	build	the	image	with	the
docker	image	history	command.
$	docker	image	history	web:latest

IMAGE					CREATED	BY																																						SIZE

e33..6d0		/bin/sh	-c	#(nop)		ENTRYPOINT	["node"	"./a...			0B

d38..20c		/bin/sh	-c	#(nop)		EXPOSE	8080/tcp														0B

e2a..0b6		/bin/sh	-c	npm	install																										18.7MB

a8e..50e		/bin/sh	-c	#(nop)	WORKDIR	/src																		0B

23b..b58		/bin/sh	-c	#(nop)	COPY	dir:03b6808e26dacac...			22kB

fda..b35		/bin/sh	-c	apk	add	--update	nodejs	nodejs-npm			32.9MB

8d3..501		/bin/sh	-c	#(nop)		LABEL	maintainer=nigelp...			0B

76d..19d		/bin/sh	-c	#(nop)		CMD	["/bin/sh"]														0B

<missing>	/bin/sh	-c	#(nop)	ADD	file:4583e12bf5caec4...			3.97MB

Two	things	from	the	output	above	are	worth	noting.

First,	each	line	in	the	output	corresponds	to	an	instruction	in	the	Dockerfile.
The	CREATED	BY	column	even	lists	the	exact	instruction	that	was	executed.

Second,	only	4	of	the	image	layers	displayed	in	the	output	contain	any	data
(the	ones	with	non-zero	values	in	the	SIZE	column).	These	correspond	to	the
FROM,	RUN,	and	COPY	instructions	in	the	Dockerfile.	Although	the	other
instructions	look	like	they	create	layers,	they	actually	create	metadata	instead
of	layers.	The	reason	that	the	docker	image	history	output	makes	it	looks
like	all	instructions	create	layers	is	an	artefact	of	the	way	Docker	builds	used
to	work.

Use	the	docker	image	inspect	command	to	confirm	that	only	4	layers	were
created.
$	docker	image	inspect	web:latest

<Snip>

},

"RootFS":	{

				"Type":	"layers",

				"Layers":	[

								"sha256:5bef08...00324f75e56f589aedb0",

								"sha256:03f8d2...f7061341ab09fab9d2d5",

								"sha256:7bb5e2...5718961a7a706c5d0085",

								"sha256:110b48...541f301505b0da017b34"

]

},

It	is	considered	a	good	practice	to	use	images	from	official	repositories	with
the	FROM	instruction.	This	is	because	they	tend	to	follow	best	practices	and	be
relatively	free	from	known	vulnerabilities.	It	is	also	a	good	idea	to	start	from
(FROM)	small	images	as	this	reduces	the	potential	attack	surface.

You	can	view	the	output	of	the	docker	image	build	command	to	see	the
general	process	for	building	an	image.	As	the	snippet	below	shows,	the	basic
process	is:	spin	up	a	temporary	container	>	run	the	Dockerfile
instruction	inside	of	that	container	>	save	the	results	as	a	new
image	layer	>	remove	the	temporary	container.
Step	3/8	:	RUN	apk	add	--update	nodejs	nodejs-npm

	--->	Running	in	6f3..06d				<----	run	inside	temp	container

fetch	...86_64/APKINDEX.tar.gz

fetch	...86_64/APKINDEX.tar.gz

(1/9)	Installing...

<Snip>

	--->	fdaa341c6b35				<----	create	layer

Removing	intermediate	container	<----	remove	temp	container

Step	4/8...

Moving	to	production	with	Multi-stage	Builds
When	it	comes	to	Docker	images,	big	is	bad!

Big	means	slow.	Big	means	hard	to	work	with.	And	big	means	a	large	attack
surface!

For	these	reasons,	Docker	images	should	be	small.	The	aim	of	the	game	is	to
only	ship	production	images	containing	the	stuff	needed	to	run	your	app	in
production.

The	problem	is…	keeping	images	small	was	hard	work.

For	example,	the	way	you	write	your	Dockerfiles	has	a	huge	impact	on	the
size	of	your	images.	A	common	example	is	that	every	RUN	instruction	adds	a
new	layer.	As	a	result,	it’s	usually	considered	a	best	practice	to	include
multiple	commands	as	part	of	a	single	RUN	instruction	-	all	glued	together
with	double-ampersands	(&&)	and	backslash	()	line-breaks.	While	this	isn’t
rocket	science,	it	requires	time	and	discipline.

Another	issue	is	that	we	don’t	clean	up	after	ourselves.	We’ll	RUN	a
command	against	an	image	that	pulls	some	build-time	tools,	and	we’ll	leave
all	those	tools	in	the	image	when	we	ship	it	to	production.	Not	ideal!

There	were	ways	around	this	-	most	notably	the	builder	pattern.	But	most	of
these	required	discipline	and	added	complexity.

The	builder	pattern	required	you	to	have	at	least	two	Dockerfiles	-	one	for
development	and	one	for	production.	You’d	write	your	Dockerfile.dev	to	start
from	a	large	base	image,	pull	in	any	additional	build	tools	required,	and	build
your	app.	You’d	then	build	an	image	from	the	Dockerfile.dev	and	create	a
container	from	it.	You’d	then	use	your	Dockerfile.prod	to	build	a	new	image
from	a	smaller	base	image,	and	copy	over	the	application	form	the	container

you	just	created	from	the	build	image.	And	everything	needed	to	be	glued
together	with	a	script.
This	approach	was	doable,	but	at	the	expense	of	complexity.

Multi-stage	builds	to	the	rescue!

Multi-stage	builds	are	all	about	optimizing	builds	without	adding	complexity.
And	they	deliver	on	the	promise!

Here’s	the	high-level…

With	multi-stage	builds,	we	have	a	single	Dockerfile	containing	multiple
FROM	instructions.	Each	FROM	instruction	is	a	new	build	stage	that	can
easily	COPY	artefacts	from	previous	stages.

Let’s	look	at	an	example!

This	example	app	is	available	at	https://github.com/nigelpoulton/atsea-
sample-shop-app.git	and	the	Dockerfile	is	in	the	app	directory.	It’s	a	Linux-
based	application	so	will	only	work	on	a	Linux	Docker	host.

The	repo	is	a	fork	of	dockersamples/atsea-sample-shop-app	and	I’ve
forked	it	in	case	the	upstream	repo	is	removed	or	deleted.

The	Dockerfile	is	shown	below:
FROM	node:latest	AS	storefront

WORKDIR	/usr/src/atsea/app/react-app

COPY	react-app	.

RUN	npm	install

RUN	npm	run	build

FROM	maven:latest	AS	appserver

WORKDIR	/usr/src/atsea

COPY	pom.xml	.

RUN	mvn	-B	-f	pom.xml	-s	/usr/share/maven/ref/settings-docker.xml	dependency\

:resolve

COPY	.	.

RUN	mvn	-B	-s	/usr/share/maven/ref/settings-docker.xml	package	-DskipTests

FROM	java:8-jdk-alpine	AS	production

RUN	adduser	-Dh	/home/gordon	gordon

WORKDIR	/static

COPY	--from=storefront	/usr/src/atsea/app/react-app/build/	.

WORKDIR	/app

COPY	--from=appserver	/usr/src/atsea/target/AtSea-0.0.1-SNAPSHOT.jar	.

ENTRYPOINT	["java",	"-jar",	"/app/AtSea-0.0.1-SNAPSHOT.jar"]

CMD	["--spring.profiles.active=postgres"]

The	first	thing	to	note	is	that	the	Dockerfile	has	three	FROM	instructions.	Each
of	these	constitutes	a	distinct	build	stage.	Internally	they’re	numbered	form
the	top	starting	at	0.	However,	we’ve	also	given	each	stage	a	friendly	name.

Stage	o	is	called	storefront	Stage	1	is	called	appserver	Stage	2	is	called
production

The	storefront	stage	pulls	the	node:latest	image	which	is	over	600MB	in
size.	It	sets	the	working	directory,	copies	in	some	app	code,	and	uses	two
RUN	instructions	to	perform	some	npm	magic.	This	adds	three	layers	and
considerable	size.	The	result	is	an	even	bigger	image	containing	lots	of	build
stuff	and	not	very	much	app	code.

The	appserver	stage	pulls	the	maven:latest	image	which	is	over	700MB	in
size.	It	adds	four	layers	of	content	via	two	COPY	instructions	and	two	RUN
instructions.	This	produces	another	very	large	image	with	lots	of	build	tools
and	very	little	actual	production	code.

The	production	stage	starts	by	pulling	the	java:8-jdk-alpine	image.	This
image	is	approximately	150MB	-	considerably	smaller	than	the	node	and
maven	images	used	by	the	previous	build	stages.	It	adds	a	user,	sets	the
working	directory	and	copies	in	some	app	code	from	the	image	produced	by
the	storefront	stage.	After	that,	it	sets	a	different	working	directory	and
copies	in	the	application	code	form	the	image	produced	by	the	appserver
stage.	Finally,	it	sets	the	main	application	for	the	image	to	run	when	it’s
started	as	a	container.

The	important	things	to	note	are	that	the	COPY	--from	instructions	only	copy
production-related	application	code	from	the	images	built	by	the	previous
stages.	They	do	not	copy	across	build	artefacts	that	are	not	needed	for
production.

It’s	also	important	to	note	that	we	only	need	a	single	Dockerfile,	and	no	extra
arguments	are	needed	for	the	docker	image	run	command!

Speaking	of	which…	let’s	build	it.

Clone	the	repo.
$	git	clone	https://github.com/nigelpoulton/atsea-sample-shop-app.git

Cloning	into	'atsea-sample-shop-app'...

remote:	Counting	objects:	632,	done.

remote:	Total	632	(delta	0),	reused	0	(delta	0),	pack-reused	632

Receiving	objects:	100%	(632/632),	7.23	MiB	|	1.88	MiB/s,	done.

Resolving	deltas:	100%	(195/195),	done.

Checking	connectivity...	done.

Change	directory	into	the	app	folder	of	the	cloned	repo	and	verify	that	the
Dockerfile	exists.
$	cd	atsea-sample-shop-app/app

$

$	ls	-l

total	24

-rw-r--r--	1	root	root		682	Oct		1	22:03	Dockerfile

-rw-r--r--	1	root	root	4365	Oct		1	22:03	pom.xml

drwxr-xr-x	4	root	root	4096	Oct		1	22:03	react-app

drwxr-xr-x	4	root	root	4096	Oct		1	22:03	src

Perform	the	build	(this	may	take	several	minutes	to	complete).
$	docker	image	build	-t	multi:stage	.

Sending	build	context	to	Docker	daemon		3.658MB

Step	1/19	:	FROM	node:latest	AS	storefront

latest:	Pulling	from	library/node

aa18ad1a0d33:	Pull	complete

15a33158a136:	Pull	complete

<Snip>

Step	19/19	:	CMD	--spring.profiles.active=postgres

	--->	Running	in	b4df9850f7ed

	--->	3dc0d5e6223e

Removing	intermediate	container	b4df9850f7ed

Successfully	built	3dc0d5e6223e

Successfully	tagged	multi:stage

Note:	The	multi:stage	tag	used	in	the	example	above	is	arbitrary.	You
can	tag	your	images	according	to	your	own	requirements	and	standards	-
there	is	no	requirement	to	tag	multi-stage	builds	the	way	we	did	in	this
example.

Run	a	docker	image	ls	to	see	the	list	of	images	pulled	and	created	by	the
build	operation.
$	docker	image	ls

REPO				TAG													IMAGE	ID								CREATED								SIZE

node				latest										9ea1c3e33a0b				4	days	ago					673MB

<none>		<none>										6598db3cefaf				3	mins	ago					816MB

maven			latest										cbf114925530				2	weeks	ago				750MB

<none>		<none>										d5b619b83d9e				1	min	ago						891MB

java				8-jdk-alpine				3fd9dd82815c				7	months	ago			145MB

multi			stage											3dc0d5e6223e				1	min	ago						210MB

The	top	line	in	the	output	above	shows	the	node:latest	image	pulled	by	the
storefront	stage.	The	image	below	is	the	image	produced	by	that	stage
(created	by	adding	the	code	and	running	the	npm	install	and	build	operations).
Both	are	very	large	images	with	lots	of	build	tools	included.

The	3rd	and	4th	lines	are	the	images	pulled	and	produced	by	the	appserver
stage.	These	are	both	large	and	contain	lots	of	builds	tools.

The	last	line	is	the	multi:stage	image	built	by	the	final	build	stage	in	the
Dockerfile	(stage2/production).	You	can	see	that	this	is	significantly	smaller
than	the	images	pulled	and	produced	by	the	previous	stages.	This	is	because
it’s	based	off	the	much	smaller	java:8-jdk-alpine	image	and	has	only	added
the	production-related	app	files	from	the	previous	stages.

The	net	result	is	a	small	production	image	created	by	a	single	Dockerfile,	a
normal	docker	image	build	command,	and	zero	additional	scripting!

Multi-stage	builds	were	new	with	Docker	17.05	and	are	an	excellent	feature
for	building	small	production-worthy	images.

Containerizing	an	app	-	The	commands

docker	image	build	is	the	command	that	reads	a	Dockerfile	and
containerizes	an	application.	The	-t	flag	tags	the	image,	the	-f	flag	lets
you	specify	the	name	and	location	of	the	Dockerfile.	With	the	-f	flag	it
is	possible	to	use	a	Dockerfile	with	an	arbitrary	name.	The	build	context
is	where	your	application	files	exist,	and	this	can	be	a	directory	on	your
local	Docker	host	or	a	remote	Git	repo.
The	FROM	Dockerfile	instruction	in	a	Dockerfile	specifies	the	base	image
for	the	new	image	you	will	build.	It	is	usually	the	first	instruction	in	a
Dockerfile.
The	RUN	Dockerfile	instruction	allows	you	to	run	commands	inside	the
image	which	create	new	layers.	Each	RUN	instruction	creates	a	single	new
layer.
The	COPY	Dockerfile	instruction	adds	files	into	the	image	as	a	new	layer.
It	is	common	to	use	the	COPY	instruction	to	copy	your	application	code
into	an	image.
The	EXPOSE	Dockerfile	instruction	documents	the	network	port	that	the
application	uses.
The	ENTRYPOINT	Dockerfile	instruction	sets	the	default	application	to	run
when	the	image	is	started	as	a	container.
Other	Dockerfile	instructions	include	LABEL,	ENV,	ONBUILD,
HEALTHCHECK,	CMD	and	more…

Chapter	summary
In	this	chapter	we	learned	how	to	containerize	(Dockerize)	an	application.

We	pulled	some	application	code	from	a	remote	Git	repo.	The	repo	included
the	application	code,	as	well	as	a	Dockerfile	containing	instructions	on	how	to
build	the	application	into	an	image.	We	learned	the	basics	of	the	how
Dockerfiles	work,	and	fed	one	into	a	docker	image	build	command	to
create	a	new	image.

Once	the	image	was	created,	we	started	a	container	form	it	and	tested	it
worked	with	a	web	browser.

After	that,	we	saw	how	multi-stage	builds	give	us	a	simple	way	to	build	and
ship	smaller	images	to	our	production	environments.

We	also	learned	that	the	Dockerfile	is	a	great	tool	for	documenting	an	app.	As
such,	it	can	speed-up	the	on-boarding	of	new	developers	and	bridge	the	divide
between	developers	and	operations	staff!

Although	the	examples	cited	was	a	Linux-based	example,	the	process	for
containerizing	Windows	apps	is	the	same:	Start	with	your	app	code,	create	a
Dockerfile	describing	the	app,	build	the	image	with	docker	image	build.
Job	done!

9:	Swarm	Mode

Now	that	we	know	how	to	install	Docker,	pull	images,	and	work	with
containers,	the	next	thing	we	need	is	a	way	to	work	with	it	all	at	scale.	That’s
where	orchestration	and	swarm	mode	comes	into	the	picture.

As	usual,	we’ll	take	a	three-stage	approach	with	a	high-level	explanation	at
the	top,	followed	by	a	longer	section	with	all	the	detail	and	some	examples,
and	we’ll	finish	things	up	with	a	list	of	the	main	commands	we	learned.

The	examples	and	outputs	in	this	chapter	will	be	from	a	Linux-based	Swarm.
However,	all	commands	and	features	also	work	with	Docker	on	Windows.

Note:	If	you	are	following	along	with	Windows	in	a	PowerShell	terminal
and	listing	command	options	over	multiple	lines,	you	will	need	to
indicate	continuation	on	the	next	line	with	backticks	(`).

We’ll	split	this	chapter	into	the	usual	three	parts:

The	TLDR
The	deep	dive
The	commands

Let’s	go	build	a	swarm!

Swarm	mode	-	The	TLDR
It’s	one	thing	to	follow	along	with	the	simple	examples	in	this	book,	but	it’s
an	entirely	different	thing	running	thousands	of	containers	on	tens	or
hundreds	of	Docker	hosts!	This	is	where	orchestration	comes	into	play!

At	a	high-level,	orchestration	is	all	about	automating	and	simplifying	the
management	of	containerized	applications	at	scale.	Things	like	automatically
rescheduling	containers	when	nodes	break,	scaling	things	up	when	demand
increases,	and	smoothly	pushing	updates	and	fixes	into	live	production
environments.

For	the	longest	time	orchestration	like	this	was	hard.	Tools	like	Docker
Swarm	and	Kubernetes	were	available,	but	they	were	complicated.	Then
along	came	Docker	1.12	and	the	new	native	swarm	mode,	and	overnight
things	changed.	All	this	orchestration	stuff	got	a	whole	lot	easier.

That’s	the	quick	explanation.	Now	let’s	get	into	the	detail.

Swarm	mode	-	The	deep	dive
First	up,	as	the	title	of	the	chapter	suggests,	we’re	going	to	be	focusing	on
swarm	mode	-	the	native	clustering	and	orchestration	technologies	that	first
shipped	as	part	Docker	1.12.	Other	orchestration	solutions	exist,	most	notably
Kubernetes,	but	we’re	not	covering	those	here.

Concepts	and	terminology
Swarm	mode	brought	a	load	of	changes	and	improvements	to	the	way	we
manage	containers	at	scale.	At	the	heart	of	those	changes	is	native	clustering
of	Docker	hosts	that’s	deeply	integrated	into	the	Docker	platform.	We’re	not
talking	about	something	like	Kubernetes	that’s	a	separate	tool	requiring	a
highly	skilled	specialist	to	configure	it	on	top	of	existing	Docker
infrastructures.	No!	The	clustering	we’re	talking	about	here	is	a	true	first-
class	citizen	in	the	Docker	technology	stack.	And	it’s	simple!

But	the	folks	at	Docker,	Inc.	don’t	really	like	using	the	term	cluster.	They’re
calling	a	cluster	of	orchestrated	Docker	hosts	a	swarm,	and	the	Docker	hosts
participating	in	a	swarm	are	said	to	operate	in	swarm	mode.	We’ll	try	to	be
consistent	and	use	these	terms	throughout	the	remainder	of	the	book.	We’ll
also	start	using	the	term	single-engine	mode	to	refer	to	Docker	hosts	that	are
not	running	in	swarm	mode.

Figure	9.1	shows	a	4-node	swarm	with	nodes	running	in	swarm	mode.	It	also
shows	two	nodes	not	in	the	swarm	operating	in	single-engine	mode.

Figure	9.1

Backward	compatibility
Introducing	swarm	mode	was	extremely	important	for	Docker,	Inc.	But	so	is
maintaining	backward	compatibility!	As	a	result,	swarm	mode	is	entirely

optional	(this	may	or	may	not	change	in	the	future).	A	standard	installation	of
Docker	will	default	to	running	in	single	engine	mode,	ensuring	100%
backward	compatibility	with	previous	versions	of	Docker.
This	is	great	news	if	you’re	a	user	or	developer	of	3rd	party	clustering	tools
etc.	As	long	as	you	keep	Docker	1.12	and	later	in	single-engine	mode,	all	of
your	existing	tools	and	apps	will	work	as	normal!	However,	as	soon	as	you
take	the	plunge	and	put	your	Docker	hosts	into	swarm	mode	you	risk	breaking
those	3rd	party	tools	and	apps.

In	short,	putting	a	Docker	Engine	into	swarm	mode	gives	you	all	of	the	latest
orchestration	goodness,	it	just	comes	at	the	price	of	some	backward
compatibility.

Swarm	mode	primer
Let’s	take	a	minute	or	two	to	explain	the	major	components	and	constructs	in
a	swarm.

A	swarm	consists	of	one	or	more	nodes.	These	can	be	physical	servers,	VMs,
or	cloud	instances.	The	only	requirement	is	that	all	nodes	in	a	swarm	can
communicate	with	each	other	over	reliable	networks.

Nodes	are	then	configured	as	managers	or	workers.	Managers	look	after	the
state	of	the	cluster	and	are	in	charge	of	dispatching	tasks	to	workers.	Workers
accept	tasks	from	managers	and	execute	them.

When	talking	about	tasks	in	the	context	of	a	swarm,	we	mean	containers.	So,
when	we	say	“managers	dispatch	tasks	to	workers”,	we’re	saying	they
dispatch	container	workloads.	You	might	also	hear	them	referred	to	as
replicas.	This	might	be	confusing	at	this	point,	so	try	and	remember	that	tasks
and	replicas	are	words	that	mean	containers.

The	next	thing	we	need	to	know	about	is	services.	At	the	highest	level,
services	are	the	way	to	run	tasks	on	a	Swarm.	To	run	a	task	(container)	on
Swarm	we	wrap	it	in	a	service	and	deploy	the	service.	Beneath	the	hood,
services	are	a	declarative	way	of	setting	the	desired	state	on	the	cluster.	For
example:

Set	the	number	of	tasks	(containers)	in	the	service
Set	the	image	the	containers	in	the	service	will	use
Set	the	procedure	for	updating	to	newer	versions	of	the	image

The	configuration	and	state	of	the	swarm	is	held	in	a	distributed	etcd	database
located	on	all	managers	in	the	swarm.	It’s	kept	extremely	up-to-date	and	is
hosted	in-memory	on	all	manager	nodes	to	make	it	fast.	But	the	best	thing

about	it	is	the	fact	that	it	requires	zero	configuration	-	it’s	installed	as	part	of
the	Swarm	and	just	takes	care	of	itself.
Something	else	that’s	game	changing	about	swarm	mode	is	its	approach	to
security.	TLS	is	so	tightly	integrated	that	it’s	not	possible	to	build	a	swarm
without	it.	In	today’s	security	conscious	world,	things	like	this	deserve	all	the
props	they	get!	Anyway,	swarm	mode	uses	TLS	to	encrypt	communications,
authenticate	nodes,	and	authorize	roles.	Automatic	key	rotation	is	also	thrown
in	as	the	icing	on	the	cake!	And	it	all	happens	so	smoothly	that	you	wouldn’t
even	know	it	was	there!

That’s	enough	of	a	primer.	Let’s	get	our	hands	dirty	with	some	examples.

Lab	setup
For	the	remainder	of	this	chapter	we’ll	build	the	lab	shown	in	Figure	9.2	with
6-nodes	configured	as	3	managers	and	3	workers.	In	the	examples	we’ll	use,
each	node	is	running	Linux	with	Docker	17.05	or	higher.	You	can	build	the
same	swarm	on	Windows,	the	only	difference	would	be	that	you’d	need	to
deploy	Windows	containers	to	it.	All	nodes	in	the	lab	can	communicate	over
the	network.

Figure	9.2

The	names	and	IP	addresses	are	not	important	and	can	be	different	in	your
lab.	If	you	are	following	along	with	the	examples,	just	remember	to	substitute
them	with	your	own.

Enabling	swarm	mode
Running	docker	swarm	init	on	a	Docker	host	in	single-engine	mode	will
switch	that	node	into	swarm	mode	and	create	a	new	swarm.	It	will	also	make
the	node	the	first	manager	of	the	Swarm.

Additional	nodes	can	then	be	joined	to	the	swarm	as	workers	and	managers
using	the	docker	swarm	join	command.	This	also	puts	those	nodes	into
swarm	mode	as	part	of	the	operation.

The	following	steps	will	put	mgr1	into	swarm	mode	and	initialize	a	new
swarm.	It	will	then	join	wrk1,	wrk2,	and	wrk3	as	worker	nodes	-
automatically	putting	them	into	swarm	mode.	Finally,	it	will	add	mgr2	and
mgr3	as	additional	managers	and	switch	them	into	swarm	mode.	At	the	end
of	the	procedure	all	6	nodes	will	be	part	of	the	same	swarm	and	will	all	be
operating	in	swarm	mode.

This	example	will	use	the	IP	addresses	and	DNS	names	of	the	nodes	shown	in
Figure	9.2.	Yours	may	be	different.

1.	 Log	on	to	mgr1	and	initialize	a	new	swarm	(don’t	forget	to	use	backticks
instead	of	backslashes	if	following	along	with	Windows	in	a	PowerShell
terminal).
$	docker	swarm	init	\

		--advertise-addr	10.0.0.1:2377	\

		--listen-addr	10.0.0.1:2377

Swarm	initialized:	current	node	(d21lyz...c79qzkx)	is	now	a	manager.

The	command	can	be	broken	down	as	follows:

docker	swarm	init	tells	Docker	to	initialize	a	new	Swarm	and
make	this	node	the	first	manager.	It	also	enables	swarm	mode	on	the
node.
--advertise-addr	is	the	IP	and	port	that	other	nodes	should	use	to
connect	to	this	manager.	The	flag	is	optional,	but	it	gives	you
control	over	which	IP	gets	used	on	nodes	with	multiple	IPs.	It	also
gives	you	the	chance	to	specify	an	IP	address	that	does	not	exist	on
the	node,	such	as	a	load	balancer	IP	address.
--listen-addr	lets	you	specify	which	IP	and	port	you	want	to
listen	on	for	swarm	traffic.	This	will	usually	match	the	--
advertise-addr,	but	is	useful	in	situations	where	you	want	to
restrict	swarm	to	a	particular	IP	on	a	system	with	multiple	IPs.	It’s
also	required	in	situations	where	the	--advertise-addr	refers	to	a
remote	IP	address	like	a	load	balancer.

I	recommend	you	be	specific	and	always	use	both	flags.	All	of	the
Windows	Swarm	work	I’ve	done	has	required	these	two	flags.

The	default	port	that	swarm	mode	operates	on	is	2377.	This	is	entirely
customizable,	but	Docker,	Inc.	are	looking	to	register	this	with	IANA	as
the	official	Docker	Swarm	port.

2.	 List	the	nodes	in	the	swarm
$	docker	node	ls

ID												HOSTNAME			STATUS		AVAILABILITY		MANAGER	STATUS

d21...qzkx	*		mgr1							Ready			Active								Leader

Notice	that	mgr1	is	currently	the	only	node	in	the	swarm	and	is	listed	as
the	Leader.	We’ll	come	back	to	this	in	a	second.

3.	 From	magr1	run	the	docker	swarm	join-token	command	to	extract	the
commands	and	tokens	required	to	add	new	workers	and	managers	to	the
swarm.
$	docker	swarm	join-token	worker

To	add	a	manager	to	this	swarm,	run	the	following	command:

			docker	swarm	join	\

			--token	SWMTKN-1-0uahebax...c87tu8dx2c	\

			10.0.0.1:2377

$	docker	swarm	join-token	manager

To	add	a	manager	to	this	swarm,	run	the	following	command:

			docker	swarm	join	\

			--token	SWMTKN-1-0uahebax...ue4hv6ps3p	\

			10.0.0.1:2377

Notice	that	the	commands	to	join	a	worker	and	a	manager	are	identical
apart	from	the	join	tokens	(SWMTKN...).	This	means	that	whether	a	node
joins	as	a	worker	or	a	manager	depends	entirely	on	which	token	you	use
when	joining	it.	You	should	also	protect	your	join	tokens	as	these	are	all
that	is	required	to	join	a	node	to	a	Swarm.

4.	 Log	on	to	wrk1	and	join	it	to	the	swarm	using	the	docker	swarm	join
command	with	the	token	used	for	joining	workers.
$	docker	swarm	join	\

				--token	SWMTKN-1-0uahebax...c87tu8dx2c	\

				10.0.0.1:2377	\

				--advertise-addr	10.0.0.4:2377	\

				--listen-addr	10.0.0.4:2377

This	node	joined	a	swarm	as	a	worker.

I’ve	manually	added	the	--advertise-addr,	and	--listen-addr	flags	as
I	consider	it	best	practice	to	be	as	specific	as	possible	when	it	comes	to
network	configuration.

5.	 Repeat	the	previous	step	on	wrk2	and	wrk3	to	join	them	to	the	swarm	as
workers.	Make	sure	you	use	wrk2	and	wrk3’s	own	IP	addresses	for	the	-
-advertise-addr	and	--listen-addr	flags.

6.	 Log	on	to	mgr2	and	join	it	to	the	swarm	as	a	manager	using	the	docker
swarm	join	command	with	the	token	used	for	joining	managers.
$	docker	swarm	join	\

				--token	SWMTKN-1-0uahebax...ue4hv6ps3p	\

				10.0.0.1:2377	\

				--advertise-addr	10.0.0.2:2377	\

				--listen-addr	10.0.0.1:2377

This	node	joined	a	swarm	as	a	manager.

7.	 Repeat	the	previous	step	on	mgr3	remembering	to	use	mgr3’s	IP	address
for	the	advertise-addr	and	--listen-addr	flags.

8.	 List	the	nodes	in	the	swarm	by	running	docker	node	ls	from	any	of	the
manager	nodes	in	the	swarm.
$	docker	node	ls

ID															HOSTNAME					STATUS		AVAILABILITY		MANAGER	STATUS

0g4rl...babl8	*		mgr2									Ready			Active								Reachable

2xlti...l0nyp				mgr3									Ready			Active								Reachable

8yv0b...wmr67				wrk1									Ready			Active

9mzwf...e4m4n				wrk3									Ready			Active

d21ly...9qzkx				mgr1									Ready			Active								Leader

e62gf...l5wt6				wrk2									Ready			Active

Congratulations!	You’ve	just	created	a	6-node	swarm	with	3	managers	and	3
workers.	As	part	of	the	process	you	put	the	Docker	Engine	on	each	node	into
swarm	mode.	As	a	bonus,	the	swarm	is	automatically	secured	with	TLS.

If	you	look	in	the	MANAGER	STATUS	column	in	the	previous	output	you’ll	see
that	the	three	manager	nodes	are	showing	as	either	“Reachable”	or	“Leader”.
We’ll	learn	more	about	leaders	shortly.	Nodes	with	nothing	in	the	MANAGER
STATUS	column	are	workers.	Also	note	the	asterisk	(*)	after	the	ID	on	the	line
showing	mgr2.	This	shows	us	which	node	we	ran	the	docker	node	ls
command	from.	In	this	instance	the	command	was	issued	from	mgr2.

Note:	It’s	a	pain	to	specify	the	--advertise-addr	and	--listen-addr
flags	every	time	you	join	a	node	to	the	swarm.	However,	it	can	be	even
more	of	a	pain	if	you	get	the	network	configuration	of	your	swarm
wrong.	Manually	adding	nodes	to	a	swarm	is	unlikely	to	be	a	daily	task
so	I	think	it’s	worth	the	extra	up-front	effort	to	use	the	flags.	It’s	your
choice	though.	In	lab	environments	or	nodes	with	only	a	single	IP	you
probably	don’t	need	to	use	the	flags.

Now	that	we	have	a	swarm	up	and	running,	let’s	take	a	look	at	manager	high
availability	(H/A).

Swarm	manager	high	availability	(H/A)
So	far,	we’ve	added	three	manager	nodes	to	a	swarm.	Why	did	we	add	three
and	how	do	they	work	together?	We’ll	answer	all	of	this,	plus	more	in	this
section.

Swarm	managers	have	native	support	for	high	availability	(H/A).	This	means
that	one	or	more	can	fail	and	the	survivors	will	keep	the	swarm	running.

Technically	speaking,	swarm	mode	implements	a	form	of	active-passive
multi-manager	H/A.	This	means	that	although	you	might	-	and	should	-	have
multiple	managers,	only	one	of	them	is	ever	considered	active.	We	call	this
active	manager	the	leader.	And	the	leader’s	the	only	one	that	will	ever	issue
live	commands	against	the	swarm	such	as	changing	the	configuration	of	the
swarm	or	issuing	tasks	to	workers.	If	a	non-active	manager	receives
commands	for	the	swarm	it’ll	proxy	them	across	to	the	leader.

This	process	is	shown	in	Figure	9.3	where	step	1	is	the	command	coming	in
to	a	manager	from	a	remote	Docker	client.	Step	2	is	the	non-leader	manager
proxying	the	command	to	the	leader.	Step	3	is	the	leader	pushing	that
command	to	the	relevant	node	in	the	swarm.

Figure	9.3

Swarm	uses	an	implementation	of	the	Raft	consensus	algorithm	to	power
manager	HA,	and	the	following	two	best	practices	apply:

1.	 Deploy	an	odd	number	of	managers.
2.	 Don’t	deploy	too	many	managers	(3	or	5	is	recommended)

Having	an	odd	number	of	managers	increases	the	chance	of	reaching	quorum
and	avoiding	a	split-brain.	For	example,	if	you	had	4	managers	and	the
network	partitioned,	you	could	be	left	with	two	managers	on	each	side	of	the
partition.	This	is	known	as	a	split	brain	-	each	side	knows	there	used	to	be	4
but	can	now	only	see	2.	Neither	side	has	any	way	of	knowing	if	the	two	it	can
no	longer	see	are	still	alive	and	which	side	holds	the	majority	share	(quorum).
However,	if	you	had	3	or	5	managers	and	the	same	network	partition
occurred,	it	would	be	impossible	to	have	the	same	number	of	managers	on
both	sides	of	the	split.	This	means	that	one	side	would	have	a	far	better
chance	of	knowing	if	it	had	more	or	less	than	the	other	side	and	achieving
quorum.

https://raft.github.io/

Figure	9.4

As	with	all	consensus	algorithms	-	more	participants	means	more	time
required	to	achieve	consensus.	It’s	like	deciding	where	to	eat	-	it’s	always
quicker	and	easier	for	3	people	to	decide	than	it	is	for	33!	With	this	in	mind,
it’s	a	best	practice	to	have	either	3	or	5	managers	for	HA.	7	might	work,	but
it’s	generally	accepted	that	3	or	5	is	optimal.	You	definitely	don’t	want	more
than	7	as	the	time	taken	to	achieve	consensus	will	be	longer.

A	final	word	of	caution	regarding	manager	HA.	While	it’s	obviously	a	good
practice	to	spread	your	managers	across	availability	zones	within	your
network,	you	need	to	make	sure	that	the	networks	connecting	them	are
reliable!	Network	partitions	can	be	a	royal	pain	in	the	backside!	This	means,
at	the	time	of	writing,	the	nirvana	of	hosting	your	active	production
applications	and	infrastructure	across	multiple	cloud	providers	such	as	AWS
and	Azure	is	a	bit	of	a	daydream.	Take	time	to	make	sure	your	managers	are
connected	via	high	speed	reliable	networks!

Now	that	we’ve	got	our	swarm	built	and	understand	the	concepts	of	leaders
and	manager	HA,	let’s	move	on	to	services.

Services
Like	we	said	in	the	Swarm	primer…	services	are	a	new	construct	introduced
with	Docker	1.12	that	only	exist	in	swarm	mode.

They	let	us	declare	the	desired	state	for	an	application	service	and	feed	that	to
Docker.	For	example,	assume	you’ve	got	an	app	that	has	a	web	front-end.	You
have	an	image	for	the	web	service,	and	testing	has	shown	that	you	will	need	5
instances	of	the	web	service	to	handle	normal	daily	traffic.	You	would
translate	this	requirement	into	a	service	declaring	the	image	the	containers
should	use,	and	that	the	service	should	always	have	5	running	tasks.

We’ll	see	some	of	the	other	things	that	can	be	declared	as	part	of	a	service	in	a
minute,	but	before	we	do	that,	let’s	see	how	to	create	what	we	just	described.

We	create	a	service	with	the	docker	service	create	command.

Note:	The	command	to	create	a	new	service	is	the	same	on	Windows.
However,	the	image	used	in	the	example	below	is	a	Linux	image	and
will	not	work	on	Windows.	You	can	substitute	the	image	for	a	Windows
web	server	image	and	the	command	will	work.	Remember,	if	you	are
typing	Windows	commands	form	a	PowerShell	terminal	you	will	need	to
use	the	backtick	(`)	character	to	indicate	continuation	on	the	next	line.

$	docker	service	create	--name	web-fe	\

			-p	8080:8080	\

			--replicas	5	\

			nigelpoulton/pluralsight-docker-ci

z7ovearqmruwk0u2vc5o7ql0p

Let’s	review	that	command	and	output.

We	used	docker	service	create	to	tell	Docker	we	are	declaring	a	new
service,	and	we	used	the	--name	flag	to	name	the	service	web-fe.	We	told
Docker	to	map	port	8080	on	every	node	in	the	swarm	to	8080	inside	of	each
container	(task)	in	the	service.	Next,	we	used	the	--replicas	flag	to	tell
Docker	that	there	should	always	be	5	tasks/containers	in	the	service.	Finally,
we	told	Docker	which	image	to	use	for	all	tasks	and	containers	-	it’s	important
to	understand	that	all	tasks	in	a	service	use	the	same	image	and	config!

After	we	hit	Return,	the	manager	acting	as	leader	instantiated	5	tasks	across
the	swarm	-	remember	that	managers	also	act	as	workers.	Each	worker	or
manager	then	pulled	the	image	and	started	a	container	from	it	running	on	port
8080.	The	swarm	leader	also	ensured	a	copy	of	the	service’s	desired	state	was
replicated	to	every	manager	in	the	swarm.

But	this	isn’t	the	end.	All	services	are	constantly	monitored	by	the	swarm	-
the	swarm	runs	a	reconciliation	loop	that	constantly	compares	the	actual	state
of	the	service	to	the	desired	state.	If	the	two	states	match,	the	world	is	a	happy
place	and	no	further	action	is	needed.	If	they	don’t	match,	the	swarm	takes
actions	so	that	they	do.	Put	another	way,	the	swarm	is	constantly	making	sure
that	actual	state	matches	desired	state.

As	an	example,	if	one	of	the	workers	hosting	one	of	the	5	web-fe	container
tasks	fails,	the	actual	state	for	the	web-fe	service	will	drop	from	5	running
tasks	to	4.	This	will	no	longer	match	the	desired	state	of	5,	so	Docker	will
start	a	new	web-fe	task	to	bring	actual	state	back	in	line	with	desired	state.

This	behavior	is	very	powerful	and	allows	the	service	to	self-heal	in	the	event
of	node	failures	and	the	likes.

Viewing	and	inspecting	services
You	can	use	the	docker	service	ls	command	to	see	a	list	of	all	services
running	on	a	swarm.
$	docker	service	ls

ID								NAME					MODE								REPLICAS			IMAGE															PORTS

z7o...uw		web-fe			replicated		5/5								nigel...ci:latest			*:8080->8080/t\

cp

The	output	above	shows	a	single	running	service	as	well	as	some	basic
information	about	state.	Among	other	things,	we	can	see	the	name	of	the
service	and	that	5	out	of	the	5	desired	tasks/replicas	are	in	the	running	state.	If
you	run	this	command	soon	after	deploying	the	service	it	might	not	show	all
tasks/replicas	as	running.	This	is	probably	because	of	the	time	it	takes	to	pull
the	image	on	each	node.

You	can	use	the	docker	service	ps	command	to	see	a	list	of	tasks	in	a
service	and	their	state.
$	docker	service	ps	web-fe

ID									NAME						IMAGE													NODE		DESIRED		CURRENT

817...f6z		web-fe.1		nigelpoulton/...		mgr2		Running		Running	2	mins

a1d...mzn		web-fe.2		nigelpoulton/...		wrk1		Running		Running	2	mins

cc0...ar0		web-fe.3		nigelpoulton/...		wrk2		Running		Running	2	mins

6f0...azu		web-fe.4		nigelpoulton/...		mgr3		Running		Running	2	mins

dyl...p3e		web-fe.5		nigelpoulton/...		mgr1		Running		Running	2	mins

The	format	of	the	command	is	docker	service	ps	<service-name	or
service-id>.	The	output	displays	each	task	(container)	on	its	own	line,
shows	which	node	in	the	swarm	it’s	executing	on,	and	shows	desired	state	and
actual	state.

For	detailed	information	about	a	service,	use	the	docker	service	inspect
command.
$	docker	service	inspect	--pretty	web-fe

ID:													z7ovearqmruwk0u2vc5o7ql0p

Name:											web-fe

Service	Mode:			Replicated

	Replicas:						5

Placement:

UpdateConfig:

	Parallelism:			1

	On	failure:				pause

	Monitoring	Period:	5s

	Max	failure	ratio:	0

	Update	order:						stop-first

RollbackConfig:

	Parallelism:			1

	On	failure:				pause

	Monitoring	Period:	5s

	Max	failure	ratio:	0

	Rollback	order:				stop-first

ContainerSpec:

	Image:			nigelpoulton/pluralsight-docker-ci:latest@sha256:7a6b01...d8d3d

Resources:

Endpoint	Mode:		vip

Ports:

	PublishedPort	=	8080

		Protocol	=	tcp

		TargetPort	=	8080

		PublishMode	=	ingress

The	example	above	uses	the	--pretty	flag	to	limit	the	output	to	the	most
interesting	items	printed	in	an	easy-to-read	format.	Leaving	off	the	--pretty
flag	will	give	a	more	verbose	output.

We’ll	come	back	to	some	of	these	outputs	later.

Let’s	go	and	see	how	to	scale	a	service.

Scaling	a	service
Another	powerful	feature	of	services	is	the	ability	to	easily	scale	them	up	and
down.

Let’s	assume	business	is	booming	and	we’re	seeing	double	the	amount	of
anticipated	traffic	hitting	the	web	front-end.	Fortunately,	scaling	the	web-fe
service	is	as	simple	as	running	the	docker	service	scale	command.
$	docker	service	scale	web-fe=10

web-fe	scaled	to	10

The	above	command	will	scale	the	number	of	tasks/replicas	from	5	to	10.	In
the	background	it’s	updating	the	service’s	desired	state	from	5	to	10.	Run
another	docker	service	ls	command	to	verify	the	operation	was	successful.
$	docker	service	ls

ID								NAME					MODE								REPLICAS			IMAGE															PORTS

z7o...uw		web-fe			replicated		10/10						nigel...ci:latest			*:8080->8080/t\

cp

Running	a	docker	service	ps	command	will	show	that	the	tasks	in	the
service	are	balanced	across	all	nodes	in	the	swarm	as	evenly	as	possible.
$	docker	service	ps	web-fe

ID									NAME						IMAGE													NODE		DESIRED		CURRENT

nwf...tpn		web-fe.1		nigelpoulton/...		mgr1		Running		Running	7	mins

yb0...e3e		web-fe.2		nigelpoulton/...		wrk3		Running		Running	7	mins

mos...gf6		web-fe.3		nigelpoulton/...		wrk2		Running		Running	7	mins

utn...6ak		web-fe.4		nigelpoulton/...		wrk3		Running		Running	7	mins

2ge...fyy		web-fe.5		nigelpoulton/...		mgr3		Running		Running	7	mins

64y...m49		web-fe.6		igelpoulton/...			wrk3		Running		Running	about	a	min

ild...51s		web-fe.7		nigelpoulton/...		mgr1		Running		Running	about	a	min

vah...rjf		web-fe.8		nigelpoulton/...		wrk2		Running		Running	about	a	mins

xe7...fvu		web-fe.9		nigelpoulton/...		mgr2		Running		Running	45	seconds	ago

l7k...jkv		web-fe.10	nigelpoulton/...		mgr2		Running		Running	46	seconds	ago

Behind	the	scenes,	swarm-mode	runs	a	scheduling	algorithm	that	defaults	to
trying	to	balance	tasks	as	evenly	as	possible	across	the	nodes	in	the	swarm.	At
the	time	of	writing,	this	amounts	to	running	an	equal	number	of	tasks	on	each
node	without	taking	into	consideration	things	like	CPU	load	etc.

Run	another	docker	service	scale	command	to	bring	the	number	back
down	from	10	to	5.
$	docker	service	scale	web-fe=5

web-fe	scaled	to	5

Now	that	we	know	how	to	scale	a	service,	let’s	see	how	we	remove	one.

Removing	a	service
Removing	a	service	is	simple	-	may	be	too	simple.

The	following	docker	service	rm	command	will	delete	the	service	we
deployed	earlier.
$	docker	service	rm	web-fe

web-fe

Confirm	the	service	is	gone	with	the	docker	service	ls	command.
$	docker	service	ls

ID						NAME				MODE			REPLICAS				IMAGE						PORTS

Be	careful	using	the	docker	service	rm	command	as	it	deletes	all	tasks	in	a
service	without	asking	for	confirmation.

Now	that	the	service	is	deleted	from	the	system,	let’s	go	and	look	at	how	to
push	rolling	updates	to	a	service.

Rolling	updates
Pushing	updates	to	deployed	applications	is	a	fact	of	life.	And	for	the	longest
time	it’s	been	really	painful.	I’ve	lost	more	than	enough	weekends	to	major
application	updates,	and	I’ve	no	intention	of	going	there	again	if	I	can	help	it.

Well…	thanks	to	Docker	services,	pushing	updates	to	well-designed	apps	just
got	a	whole	lot	easier!

To	see	this,	we’re	going	to	deploy	a	new	service.	But	before	we	do	that	we’re
going	to	create	a	new	overlay	network	for	the	service.	This	isn’t	necessary,
but	I	want	you	to	see	how	it	is	done	and	how	the	service	uses	it.
$	docker	network	create	-d	overlay	uber-net

43wfp6pzea470et4d57udn9ws

This	creates	a	new	overlay	network	called	“uber-net”	that	we’ll	be	able	to
leverage	with	the	service	we’re	about	to	create.	An	overlay	network
essentially	creates	a	new	layer	2	network	that	we	can	place	containers	on,	and
all	containers	on	it	will	be	able	to	communicate	with	each	other.	This	works
even	if	the	Docker	hosts	they’re	running	on	are	on	different	underlying
networks.	Basically,	the	overlay	network	creates	a	new	layer	2	container
network	on	top	of	potentially	multiple	different	underlying	networks.

Figure	9.5	shows	two	underlay	networks	connected	by	a	layer	3	router.	There
is	then	a	single	overlay	network	across	both.	Docker	hosts	are	connected	to
the	two	underlay	networks	and	containers	are	connected	to	the	overlay.	All
containers	on	the	overlay	can	communicate	with	each	other	even	if	they	are
running	on	Docker	hosts	plumbed	into	different	underlay	networks.

Figure	9.5

Run	a	docker	network	ls	to	verify	that	the	network	created	properly	and	is
visible	on	the	Docker	host.
$	docker	network	ls

NETWORK	ID										NAME																DRIVER						SCOPE

490e2496e06b								bridge														bridge						local

a0559dd7bb08								docker_gwbridge					bridge						local

a856a8ad9930								host																host								local

1ailuc6rgcnr								ingress													overlay					swarm

be581cd6de9b								none																null								local

43wfp6pzea47								uber-net												overlay					swarm

The	uber-net	network	was	successfully	created	with	the	swarm	scope	and	is
currently	only	visible	on	manager	nodes	in	the	swarm.

Let’s	go	and	create	a	new	service.
$	docker	service	create	--name	uber-svc	\

			--network	uber-net	\

			-p	80:80	--replicas	12	\

			nigelpoulton/tu-demo:v1

dhbtgvqrg2q4sg07ttfuhg8nz

Let’s	see	what	we	just	declared	with	that	docker	service	create	command.

The	first	thing	we	did	was	name	the	service	and	then	use	the	--network	flag
to	tell	it	to	place	all	containers	on	the	new	uber-net	network.	We	then

exposed	port	80	across	the	entire	swarm	and	mapped	it	to	port	80	inside	of
each	of	the	12	replicas	or	tasks	we	asked	it	to	run.	Finally,	we	told	it	to	base
all	tasks	on	the	nigelpoulton/tu-demo:v1	image.

Run	a	docker	service	ls	and	a	docker	service	ps	command	to	verify	the
state	of	the	new	service.
$	docker	service	ls

ID												NAME						REPLICAS		IMAGE

dhbtgvqrg2q4		uber-svc		12/12					nigelpoulton/tu-demo:v1

$

$	docker	service	ps	uber-svc

ID								NAME										IMAGE																NODE		DESIRED			CURRENT	STATE

0v...7e5		uber-svc.1				nigelpoulton/...:v1		wrk3		Running			Running	1	min

bh...wa0		uber-svc.2				nigelpoulton/...:v1		wrk2		Running			Running	1	min

23...u97		uber-svc.3				nigelpoulton/...:v1		wrk2		Running			Running	1	min

82...5y1		uber-svc.4				nigelpoulton/...:v1		mgr2		Running			Running	1	min

c3...gny		uber-svc.5				nigelpoulton/...:v1		wrk3		Running			Running	1	min

e6...3u0		uber-svc.6				nigelpoulton/...:v1		wrk1		Running			Running	1	min

78...r7z		uber-svc.7				nigelpoulton/...:v1		wrk1		Running			Running	1	min

2m...kdz		uber-svc.8				nigelpoulton/...:v1		mgr3		Running			Running	1	min

b9...k7w		uber-svc.9				nigelpoulton/...:v1		mgr3		Running			Running	1	min

ag...v16		uber-svc.10			nigelpoulton/...:v1		mgr2		Running			Running	1	min

e6...dfk		uber-svc.11			nigelpoulton/...:v1		mgr1		Running			Running	1	min

e2...k1j		uber-svc.12			nigelpoulton/...:v1		mgr1		Running			Running	1	min

Passing	the	service	the	-p	80:80	flag	will	ensure	that	a	swarm-wide	mapping
is	created	that	maps	traffic	coming	in	to	any	node	in	the	swarm	on	port	80
through	to	port	80	inside	of	any	container	in	the	service.

Open	a	web	browser	and	point	it	to	the	IP	address	of	any	of	the	nodes	in	the
swarm	on	port	80	to	see	the	app	running	in	the	service.

Figure	9.6

As	you	can	see,	the	application	is	a	simple	voting	application	that	will	register
votes	for	either	“football”	or	“soccer”.	Feel	free	to	point	your	web	browser	to
other	nodes	in	the	swarm.	You	will	be	able	to	reach	the	web	server	from	any
node	in	the	swam	because	the	-p	80:80	flag	creates	a	mapping	on	every	host.

This	is	true	even	on	nodes	that	are	not	running	a	task	for	the	service	-	every
node	gets	a	mapping	and	can	therefore	redirect	your	request	to	a	node
that	runs	the	service.
Now	let’s	assume	that	this	particular	vote	has	come	to	an	end	and	your
company	is	now	running	a	new	poll.	A	new	image	has	been	created	for	the
new	poll	and	has	been	added	to	the	same	Docker	Hub	repository,	but	this	one
is	tagged	as	v2	instead	of	v1.

Let’s	also	assume	that	you’ve	been	tasked	with	pushing	the	updated	image	to
the	swarm	in	a	staged	manner	-	2	containers	at	a	time	with	a	20	second	delay
in	between	each	batch	of	2.	We	can	use	the	following	docker	service
update	command	to	accomplish	this.
$	docker	service	update	\

			--image	nigelpoulton/tu-demo:v2	\

			--update-parallelism	2	\

			--update-delay	20s	uber-svc

uber-svc

Let’s	review	the	command.	docker	service	update	lets	us	make	updates	to
running	services	by	updating	the	service’s	desired	state.	This	time	we	gave	it
a	new	image	tag	v2	instead	of	v1.	And	we	used	the	--update-parallelism
and	the	--upate-delay	flags	to	make	sure	that	the	new	image	was	pushed	to
2	tasks	at	a	time	with	a	20	second	cool-off	period	in	between	each	pair.
Finally,	we	told	Docker	to	make	these	changes	to	the	uber-svc	service.

If	we	run	a	docker	service	ps	against	the	service	we’ll	see	that	some	of	the
tasks	in	the	service	are	at	v2	while	some	are	at	v1.	If	we	give	the	operation
enough	time	to	complete	(4	minutes)	all	tasks	will	eventually	reach	the	new
desired	state	of	using	the	v2	image.
$	docker	service	ps	uber-svc

ID								NAME														IMAGE								NODE			DESIRED			CURRENT	STATE

7z...nys		uber-svc.1				nigel...v2			mgr2		Running			Running	13	secs

0v...7e5		_uber-svc.1		nigel...v1			wrk3		Shutdown		Shutdown	13	secs

bh...wa0		uber-svc.2				nigel...v1			wrk2		Running			Running	1	min

e3...gr2		uber-svc.3				nigel...v2			wrk2		Running			Running	13	secs

23...u97		_uber-svc.3		nigel...v1			wrk2		Shutdown		Shutdown	13	secs

82...5y1		uber-svc.4				nigel...v1			mgr2		Running			Running	1	min

c3...gny		uber-svc.5				nigel...v1			wrk3		Running			Running	1	min

e6...3u0		uber-svc.6				nigel...v1			wrk1		Running			Running	1	min

78...r7z		uber-svc.7				nigel...v1			wrk1		Running			Running	1	min

2m...kdz		uber-svc.8				nigel...v1			mgr3		Running			Running	1	min

b9...k7w		uber-svc.9				nigel...v1			mgr3		Running			Running	1	min

ag...v16		uber-svc.10			nigel...v1			mgr2		Running			Running	1	min

e6...dfk		uber-svc.11			nigel...v1			mgr1		Running			Running	1	min

e2...k1j		uber-svc.12			nigel...v1			mgr1		Running			Running	1	min

You	can	witness	the	update	happening	in	real-time	by	opening	a	web	browser
to	any	node	in	the	swarm	and	hitting	refresh	several	times.	Some	of	the
requests	will	be	serviced	by	containers	running	the	old	version	and	some	will

be	serviced	by	containers	running	the	new	version.	After	enough	time	all
requests	will	be	serviced	by	containers	running	the	updated	copy	of	the
service.

Congratulations.	You’ve	just	pushed	a	rolling	update	to	a	live	containerized
application.

If	you	run	a	docker	inspect	--pretty	command	against	the	service	you’ll
see	the	update	parallelism	and	update	delay	settings	you	just	used	are	now
part	of	the	service	definition.	This	means	future	updates	that	you	push	will
automatically	use	these	settings	unless	you	override	them	as	part	of	the
docker	service	update	command.
$	docker	service	inspect	--pretty	uber-svc

ID:													mub0dgtc8szm80ez5bs8wlt19

Name:											uber-svc

Service	Mode:			Replicated

	Replicas:						12

UpdateStatus:

	State:									updating

	Started:							About	a	minute

	Message:							update	in	progress

Placement:

UpdateConfig:

	Parallelism:			2

	Delay:									20s

	On	failure:				pause

	Monitoring	Period:	5s

	Max	failure	ratio:	0

	Update	order:						stop-first

RollbackConfig:

	Parallelism:			1

	On	failure:				pause

	Monitoring	Period:	5s

	Max	failure	ratio:	0

	Rollback	order:				stop-first

ContainerSpec:

	Image:				nigelpoulton/tu-demo:v2@sha256:d3c0d8c9...cf0ef2ba5eb74c

Resources:

Networks:	uber-net

Endpoint	Mode:		vip

Ports:

	PublishedPort	=	80

		Protocol	=	tcp

		TargetPort	=	80

		PublishMode	=	ingress

You	should	also	note	a	couple	of	things	about	the	service’s	network	config.
All	nodes	in	the	swarm	that	are	running	a	task	for	the	service	will	have	the
uber-net	overlay	network	that	we	created	earlier.	We	can	verify	this	by
running	docker	network	ls	on	any	node	running	a	task.

You	should	also	note	the	Networks	portion	of	the	docker	inspect	output
above.	This	shows	the	uber-net	network	as	well	as	the	swarm-wide	80:80
port	mapping.

The	future	of	services

Services	are	the	preferred	way	to	deploy	and	manager	Dockerized
applications.	We	should	expect	to	see	significant	development	around	them.

NEED	TO	UPDATE	THIS.	In	this	chapter	we’ve	shown	you	how	to	declare	a
service	using	the	docker	service	create	command	and	passing	it	a	lot	of
flags	and	options.	In	the	future	we	should	expect	to	be	able	to	pass	the
command	a	JSON	or	YAML	file	that	holds	the	entire	service	declaration.	This
will	allow	us	to	keep	a	repository	of	service	definition	files,	version	control
them,	and	easily	pass	them	to	Docker	to	instantiate	new	services.	Expect	this
very	soon.

In	the	more	distant	future	we	may	even	see	non-container	workloads	running
under	the	auspices	of	services.	We	said	earlier	in	the	chapter	that	service	tasks
=	containers.	However,	the	executor	component	of	the	swarm	architecture,
which	currently	executes	container	workloads,	is	pluggable.	This	means	you
might	be	able	to	swap	it	out	in	the	future	for	executors	that	can	run	things	like
unikernel	workloads.	However,	this	is	very	forward	thinking.

A	quick	word	on	the	maturity	of	swarm	mode
Swarm	mode	is	based	on	the	battle-hardened	and	production-tested	code	from
the	Docker	Swarm	project.	At	a	high-level,	all	of	the	good	stuff	from	Docker
Swarm	was	extracted	and	dumped	into	a	re-usable	toolkit	called	SwarmKit.
This	was	then	implemented	natively	into	the	Docker	platform,	and	swarm
mode	was	born.

But	the	point	to	note	is	that	although	swarm	mode	was	new	in	Docker	1.12,
it’s	not	like	the	project	recklessly	dropped	in	thousands	of	lines	of	brand	new
code	that	had	never	seen	the	light	of	day.	The	underlying	code	has	been
around	for	a	while	and	was	being	actively	deployed	in	production
environments.

That	all	said,	you	should	still	perform	your	normal	testing	before	deciding	to
run	your	business-critical	apps	on	it!

Clean-up
Let’s	clean-up	our	service.
$	docker	service	rm	uber-svc

uber-svc

Verify	the	uber-svc	is	no	longer	running	with	the	docker	service	ls
command.
$	docker	service	ls

ID		NAME		REPLICAS		IMAGE		COMMAND

Remove	the	uber-net	network	with	docker	network	rm	uber-net.

Swarm	mode	-	The	commands

docker	swarm	init	is	the	command	to	create	a	new	swarm.	The	node
that	you	run	the	command	on	becomes	the	first	manager	in	the	new
swarm	and	is	switched	to	run	in	swarm	mode.
docker	swarm	join-token	reveals	the	commands	and	tokens	required	to
join	workers	and	managers	to	existing	swarms.	To	expose	the	command
to	join	a	new	manager	use	the	docker	swarm	join-token	manager
command,	and	to	get	the	command	to	join	a	worker	use	the	docker
swarm	join-token	worker	command.
docker	node	ls	lists	all	nodes	in	the	swarm	and	lists	which	are
managers	and	which	is	the	leader.
docker	service	create	is	the	command	to	declaratively	create	a	new
service.
docker	service	ls	lists	running	services	in	the	swarm	and	gives	basic
info	on	the	state	of	the	service	and	any	tasks	it’s	running.
docker	service	ps	<service>	gives	more	detailed	information	about
individual	tasks	running	in	a	service.
docker	service	inspect	gives	very	detailed	information	on	a	service.
It	accepts	the	--pretty	flag	to	limit	the	information	returned	to	the	most
important	information.
docker	service	scale	lets	you	scale	the	number	of	tasks	in	a	service
up	and	down.
docker	service	update	lets	you	update	many	of	the	properties	of	a
running	service.
docker	service	rm	is	the	command	to	delete	a	service	from	the	swarm.
Use	it	with	caution	as	it	deletes	all	tasks	in	a	service	without	asking	for
confirmation.

Chapter	summary
In	this	chapter	we	learned	about	swarm	mode	and	how	to	build	a	swarm.

We	used	the	docker	swarm	init	command	to	create	a	new	swarm	and	make
the	node	we	ran	the	command	on	the	first	manager	of	that	swarm.	We	then
joined	managers	and	workers.	We	learned	that	managers	operate	in	an	HA
formation	and	the	recommended	number	of	managers	is	either	3	or	5.

We	learned	how	to	declare	services	and	run	them	on	a	swarm.	We	saw	how
network	ports	are	exposed	across	the	entire	swarm	allowing	us	to	hit	any	node
in	the	swarm	and	reach	the	service	endpoint	-	even	if	the	node	we	hit	wasn’t
running	a	task	for	the	service.

We	wrapped	the	chapter	up	by	scaling	a	service	up	then	down,	and	pushing	an
update	to	a	live	service	using	a	rolling	update.

10:	Docker	overlay	networking

Container	networking	is	increasingly	important.	Especially	in	production
environments.

In	this	chapter	we’ll	cover	the	fundamentals	of	native	Docker	overlay
networking	as	implemented	in	a	Docker	swarm	cluster.

At	the	time	of	writing	this	revision	of	the	book,	Docker	networking	on
Windows	has	come	a	long	way.	The	examples	we’ll	use	in	this	chapter	will	all
work	on	Windows	as	well	as	Linux.

We’ll	split	this	chapter	into	the	usual	three	parts:

The	TLDR
The	deep	dive
The	commands

Let’s	go	do	some	networking	magic!

Docker	overlay	networking	-	The	TLDR
In	the	real	world	it’s	vital	that	containers	can	communicate	with	each	other
reliably	and	securely,	even	when	they’re	on	different	hosts	on	different
networks.	This	is	where	overlay	networking	comes	in	to	play.	It	allows	you	to
create	a	flat	secure	layer	2	network	spanning	multiple	hosts	that	containers
can	connect	to.	Containers	on	this	network	can	then	communicate	directly.

Docker	offers	native	overlay	networking	that	is	simple	to	configure	and
secure	by	default.

Behind	the	scenes	Docker	networking	is	comprised	of	libnetwork	and
drivers.	Libnetwork	is	the	canonical	implementation	of	the	Container
Network	Model	(CNM)	and	drivers	are	pluggable	components	that	implement
different	networking	technologies	and	topologies.	Docker	offers	native
drivers	such	as	the	overlay	driver,	and	third	parties	also	offer	drivers.

Docker	overlay	networking	-	The	deep	dive
In	March	2015	Docker,	Inc.	acquired	container	networking	startup	Socket
Plane.	Two	of	the	reasons	behind	the	acquisition	were	to	bring	real
networking	to	Docker,	and	to	make	container	networking	so	simple	that	even
developers	could	do	it	:-P

They’re	making	great	progress	on	both	accounts.

But	hiding	behind	the	simple	networking	commands	are	a	lot	of	moving	parts.
The	kind	of	stuff	you	need	understand	before	doing	production	deployments
and	attempting	to	troubleshoot	issues!

The	rest	of	this	chapter	will	be	broken	into	two	parts:

Part	1:	we’ll	build	and	test	a	Docker	overlay	network	in	swarm	mode
Part	2:	We’ll	explain	the	theory	behind	how	it	works.

Build	and	test	a	Docker	overlay	network	in	swarm	mode
For	the	following	examples	we’ll	use	two	Docker	hosts	on	two	separate	Layer
2	networks	connected	by	a	router	as	shown	in	Figure	10.1.

Figure	10.1

You	can	follow	along	with	either	Linux	or	Windows	Docker	hosts.	Linux
should	have	a	4.4	Linux	kernel	(newer	is	always	better)	and	Windows	should
be	Windows	Server	2016	with	the	latest	hotfixes	installed.	The	examples	in
the	book	have	been	tested	using	Docker	17.05	on	Linux	and	17.03	on
Windows.

Build	a	swarm

The	first	thing	we’ll	do	is	configure	the	two	hosts	into	a	two-node	Swarm.
We’ll	run	the	docker	swarm	init	command	on	node1	to	make	it	a	manager,

and	then	we’ll	run	the	docker	swarm	join	command	on	node2	to	make	it	a
worker.

Warning:	If	you	are	following	along	in	your	own	lab	you’ll	need	to	swap
the	IP	addresses,	container	IDs,	tokens	etc.	with	the	correct	values	for
your	environment.

Run	the	following	command	on	node1.
$	docker	swarm	init	\

		--advertise-addr=172.31.1.5	\

		--listen-addr=172.31.1.5:2377

Swarm	initialized:	current	node	(1ex3...o3px)	is	now	a	manager.

To	add	a	worker	to	this	swarm,	run	the	following	command:
				docker	swarm	join	\

				--token	SWMTKN-1-0hz2ec...2vye	\

				172.31.1.5:2377

Run	the	next	command	on	node2.	For	this	command	to	work	on	Windows
Server	you	may	need	to	modify	your	firewall	rules	to	allow	ports	2377/tcp,
7946/tcp	and	7946/udp.
$	docker	swarm	join	\

		--token	SWMTKN-1-0hz2ec...2vye	\

		172.31.1.5:2377

This	node	joined	a	swarm	as	a	worker.

We	now	have	a	two-node	Swarm	where	node1	is	a	manager	and	node2	is	a
worker.

Create	a	new	overlay	network

Now	let’s	create	a	new	overlay	network	called	uber-net.

Run	the	following	command	from	node1	that	was	just	created	as	a	manager.
For	this	to	work	on	Windows	you	may	need	to	add	a	rule	for	port	4789/udp
on	your	Windows	Docker	hosts.
$	docker	network	create	-d	overlay	uber-net

c740ydi1lm89khn5kd52skrd9

That’s	it!	You’ve	just	created	a	brand-new	overlay	network	that	is	available	to
all	hosts	in	the	swarm	and	has	its	control	plane	encrypted	with	TLS!	If	you
want	to	encrypt	the	data	plane	you	can	just	add	the	-o	encrypted	flag	to	the
command.

You	can	list	all	networks	on	each	node	with	the	docker	network	ls
command.
$	docker	network	ls

NETWORK	ID						NAME														DRIVER					SCOPE

ddac4ff813b7				bridge												bridge					local

389a7e7e8607				docker_gwbridge			bridge					local

a09f7e6b2ac6				host														host							local

ehw16ycy980s				ingress											overlay				swarm

2b26c11d3469				none														null							local

c740ydi1lm89				uber-net										overlay				swarm

The	output	will	look	more	like	this	on	a	Windows	server:
NETWORK	ID						NAME													DRIVER						SCOPE

8iltzv6sbtgc				ingress										overlay					swarm

6545b2a61b6f				nat														nat									local

96d0d737c2ee				none													null								local

nil5ouh44qco				uber-net									overlay					swarm

The	network	we	created	is	at	the	bottom	of	the	list	called	uber-net.	The	other
networks	were	automatically	created	when	Docker	was	installed	and	when	we
created	the	swarm.	We’re	only	interested	in	the	uber-net	overlay	network.

If	you	run	the	docker	network	ls	command	on	node2	you’ll	notice	that	it
can’t	see	the	uber-net	network.	This	is	because	new	overlay	networks	are
only	made	available	to	worker	nodes	that	are	running	containers	attached	to
the	overlay.	This	reduces	the	scope	of	the	network	gossip	protocol	and	helps
with	scalability.

Attach	a	service	to	the	overlay	network

Let’s	create	a	new	Docker	service	and	attach	it	to	the	uber-net	overlay
network.	We’ll	create	the	service	with	two	replicas	(containers)	so	that	one
runs	on	node1	and	the	other	runs	on	node2.	This	will	automatically	extend
the	uber-net	overlay	to	node2

Run	the	following	commands	from	node1.

Linux	example:
$	docker	service	create	--name	test	\

			--network	uber-net	\

			--replicas	2	\

			ubuntu	sleep	infinity

Windows	example:
>	docker	service	create	--name	test	`

		--network	uber-net	`

		--replicas	2	`

		microsoft\powershell:nanoserver	Start-Sleep	3600

Note:	The	Windows	example	above	uses	the	backtick	character	to	split
parameters	over	multiple	lines	to	make	the	command	more	readable.

The	command	creates	a	new	service	called	test,	attaches	it	to	the	uber-net
overlay	network,	and	creates	two	containers	(replicas)	based	on	the	image
provided.	In	both	examples	we	issued	a	sleep	command	to	the	container	to
keep	them	running	and	stop	them	from	exiting.

Because	we’re	running	two	containers	(replicas)	and	the	Swarm	has	two
nodes,	one	container	will	run	on	each	node.

Verify	the	operation	with	a	docker	service	ps	command.
$	docker	service	ps	test

ID										NAME				IMAGE			NODE				DESIRED	STATE		CURRENT	STATE

77q...rkx			test.1		ubuntu		node1			Running								Running

97v...pa5			test.2		ubuntu		node2			Running								Running

When	Swarm	starts	a	container	on	an	overlay	network	it	automatically
extends	that	network	to	the	node	the	container	is	running	on.	This	means	that
the	uber-net	network	is	now	visible	on	node2.

Congratulations!	You’ve	created	a	new	overlay	network	spanning	two	nodes
on	separate	physical	underlay	networks,	and	you’ve	scheduled	two	containers
on	the	network.	How	simple	was	that!

Figure	10.2

Test	the	overlay	network
Now	let’s	test	the	overlay	network	with	the	ping	command.

To	do	this,	we	need	to	do	a	bit	of	digging	around	to	get	each	container’s	IP
address.

Run	a	docker	network	inspect	to	see	the	Subnet	assigned	to	the	overlay.

$	docker	network	inspect	uber-net

[

				{

								"Name":	"uber-net",

								"Id":	"c740ydi1lm89khn5kd52skrd9",

								"Scope":	"swarm",

								"Driver":	"overlay",

								"EnableIPv6":	false,

								"IPAM":	{

												"Driver":	"default",

												"Options":	null,

												"Config":	[

																{

																				"Subnet":	"10.0.0.0/24",

																				"Gateway":	"10.0.0.1"

																}

<Snip>

The	output	above	shows	that	uber-net’s	subnet	is	10.0.0.0/24.	Note	that	this
does	not	match	either	of	the	physical	underlay	networks	(172.31.1.0/24	and
192.168.1.0/24).

Run	the	following	two	commands	on	node1	and	node2	to	get	the	container
ID’s	and	their	IP	addresses.	Be	sure	to	use	the	CONTAINER	ID	from	your
own	lab	in	the	second	command.
$	docker	container	ls

CONTAINER	ID			IMAGE											COMMAND											CREATED						STATUS

396c8b142a85			ubuntu:latest			"sleep	infinity"		2	hours	ago		Up	2	hrs

$

$	docker	container	inspect	\

		--format='{{range	.NetworkSettings.Networks}}{{.IPAddress}}{{end}}'	396c8b\

142a85

10.0.0.3

Make	sure	you	run	these	commands	on	both	nodes	to	get	the	IP	addresses	of
both	containers.

Figure	10.3	shows	the	configuration	so	far.

Figure	10.3

As	we	can	see,	there	is	a	Layer	2	overlay	network	spanning	both	hosts,	and
each	container	has	an	IP	address	on	this	overlay	network.	This	means	that	the

container	on	node1	will	be	able	to	ping	the	container	on	node2	using	its
10.0.0.4	address	from	the	overlay	network.	This	works	despite	the	fact	that
both	nodes	are	on	separate	Layer	2	underlay	networks.	Let’s	prove	it.

Log	on	to	the	container	on	node1	and	ping	the	remote	container.

To	do	this	on	the	Linux	Ubuntu	container	you	will	need	to	install	the	ping
utility.	If	you’re	following	along	with	the	Windows	PowerShell	example	the
ping	utility	is	already	installed.

Remember	that	the	container	IDs	used	below	will	be	different	in	your
environment.

Linux	example:
$	docker	container	exec	-it	396c8b142a85	bash

root@396c8b142a85:/#

root@396c8b142a85:/#

root@396c8b142a85:/#	apt-get	update

<Snip>

root@396c8b142a85:/#

root@396c8b142a85:/#

root@396c8b142a85:/#	apt-get	install	iputils-ping

Reading	package	lists...	Done

Building	dependency	tree

Reading	state	information...	Done

<Snip>

Setting	up	iputils-ping	(3:20121221-5ubuntu2)	...

Processing	triggers	for	libc-bin	(2.23-0ubuntu3)	...

root@396c8b142a85:/#

root@396c8b142a85:/#

root@396c8b142a85:/#	ping	10.0.0.4

PING	10.0.0.4	(10.0.0.4)	56(84)	bytes	of	data.

64	bytes	from	10.0.0.4:	icmp_seq=1	ttl=64	time=1.06	ms

64	bytes	from	10.0.0.4:	icmp_seq=2	ttl=64	time=1.07	ms

64	bytes	from	10.0.0.4:	icmp_seq=3	ttl=64	time=1.03	ms

64	bytes	from	10.0.0.4:	icmp_seq=4	ttl=64	time=1.26	ms

^C

root@396c8b142a85:/#

Windows	example:
>	docker	container	exec	-it	1a4f29e5a4b6	PowerShell.exe

Windows	PowerShell

Copyright	(C)	2016	Microsoft	Corporation.	All	rights	reserved.

PS	C:\>

PS	C:\>	ping	10.0.0.4

Pinging	10.0.0.4	with	32	bytes	of	data:

Reply	from	10.0.0.4:	bytes=32	time=1ms	TTL=128

Reply	from	10.0.0.4:	bytes=32	time<1ms	TTL=128

Reply	from	10.0.0.4:	bytes=32	time=2ms	TTL=128

Reply	from	10.0.0.4:	bytes=32	time=2ms	TTL=12

PS	C:\>

As	shown	above,	the	container	on	node1	can	ping	the	container	on	node2
using	the	overlay	network.

You	can	also	trace	the	route	of	the	ping	command	from	within	the	container.
This	will	report	only	a	single	hop,	proving	that	the	containers	are
communicating	directly	over	the	overlay	network	-	blissfully	unaware	of	any
underlay	networks	that	are	being	traversed.

For	the	traceroute	to	work	on	the	Linux	example	you	will	need	to	install
the	traceroute	package.

Linux	example:
$	root@396c8b142a85:/#	traceroute	10.0.0.4

traceroute	to	10.0.0.4	(10.0.0.4),	30	hops	max,	60	byte	packets

	1		test-svc.2.97v...a5.uber-net	(10.0.0.4)		1.110ms		1.034ms		1.073ms

Windows	example:
PS	C:\>	tracert	10.0.0.3

Tracing	route	to	test.2.ttcpiv3p...7o4.uber-net	[10.0.0.4]

over	a	maximum	of	30	hops:

		1		<1	ms		<1	ms		<1	ms		test.2.ttcpiv3p...7o4.uber-net	[10.0.0.4]

Trace	complete.

So	far,	we’ve	created	an	overlay	network	with	a	single	command.	We	then
added	containers	to	the	overlay	network	on	two	hosts	on	two	different	Layer	2
networks.	Once	we	worked	out	the	container’s	IP	addresses,	we	proved	that
they	could	talk	directly	over	the	overlay	network.

The	theory	of	how	it	all	works
Now	that	we’ve	seen	how	to	build	and	use	a	container	overlay	network,	let’s
find	out	how	it’s	all	put	together	behind	the	scenes.

Note:	In	this	section	some	of	the	detail	will	be	specific	to	Linux.
However,	the	same	overall	principles	apply	to	Windows.

VXLAN	primer

First	and	foremost,	Docker	overlay	networking	uses	VXLAN	tunnels	to	create
virtual	Layer	2	overlay	networks.	So,	before	we	go	any	further,	let’s	do	a
quick	VXLAN	primer.

At	the	highest	level,	VXLANs	let	you	create	a	virtual	Layer	2	network	on	top
of	an	existing	Layer	3	infrastructure.	The	example	we	used	earlier	created	a
new	10.0.0.0/24	Layer	2	network	on	top	of	a	Layer	3	IP	network	comprising

two	Layer	2	networks	-	172.31.1.0/24	and	192.168.1.0/24.	This	is	shown	in
Figure	10.4	below.

Figure	10.4

The	beauty	of	VXLAN	is	that	it’s	an	encapsulation	technology	that	existing
routers	and	network	infrastructure	just	see	as	regular	IP/UDP	packets	and
handle	without	issue.

To	create	the	virtual	Layer	2	overlay	network	a	VXLAN	tunnel	is	created
through	the	underlying	Layer	3	IP	infrastructure.	You	might	hear	the	term
underlay	network	used	to	refer	to	the	underlying	Layer	3	infrastructure.

Each	end	of	the	VXLAN	tunnel	is	terminated	by	a	VXLAN	Tunnel	Endpoint
(VTEP).	It’s	this	VTEP	that	performs	the	encapsulation/de-encapsulation	and
other	magic	required	to	make	all	of	this	work.	See	Figure	10.5.

Figure	10.5

Walk	through	our	two-container	example

In	the	example	we	built	earlier,	we	had	two	hosts	connected	via	an	IP
network.	Each	host	ran	a	single	container,	and	we	created	a	single	VXLAN

overlay	network	for	the	containers	to	connect	to.

To	accomplish	this,	a	new	network	namespace	was	created	on	each	host.	A
network	namespace	is	like	a	container,	but	instead	of	running	an	application	it
runs	an	isolated	network	stack	-	one	that’s	sandboxed	from	the	network	stack
on	the	host	itself.

A	virtual	switch	(a.k.a.	virtual	bridge)	called	Br0	is	created	inside	the	network
namespace.	A	VTEP	is	also	created	with	one	end	plumbed	into	the	Br0	virtual
switch,	and	the	other	end	plumbed	into	the	host	network	stack.	The	end	in	the
host	network	stack	gets	an	IP	address	on	the	underlay	network	the	host	is
connected	to	and	is	bound	to	a	UDP	socket	on	port	4789.	The	two	VTEPs	on
each	host	create	the	overlay	via	a	VXLAN	tunnel	as	seen	in	Figure	10.6.

Figure	10.6

This	is	essentially	the	VXLAN	overlay	network	created	and	ready	for	use.

Each	container	then	gets	its	own	virtual	Ethernet	(veth)	adapter	that	is	also
plumbed	into	the	local	Br0	virtual	switch.	The	topology	now	looks	like
Figure	10.7,	and	it	should	be	getting	easier	to	see	how	the	two	containers	can
communicate	over	the	VXLAN	overlay	network	despite	their	hosts	being	on
two	separate	networks.

Figure	10.7

Communication	example

Now	that	we’ve	seen	the	main	plumbing	elements	let’s	see	how	the	two
containers	communicate.

For	this	example,	we’ll	call	the	container	on	node1	“C1”	and	the	container	on
node2	“C2”.	And	let’s	assume	C1	wants	to	ping	C2	like	we	did	in	the
practical	example	earlier	in	the	chapter.

Figure	10.8

Container	C1	creates	the	ping	requests	and	sets	the	destination	IP	address	to
be	the	10.0.0.4	address	of	C2.	It	sends	the	traffic	over	its	veth	interface
which	is	connected	to	the	Br0	virtual	switch.	The	virtual	switch	doesn’t	know
where	to	send	the	packet	as	it	doesn’t	have	an	entry	in	its	MAC	address	table
(ARP	table)	that	corresponds	to	the	destination	IP	address.	As	a	result,	it
floods	the	packet	to	all	ports.	The	VTEP	interface	connected	to	Br0	knows
how	to	forward	the	frame	so	responds	with	its	own	MAC	address.	This	is	a
proxy	ARP	reply	and	results	in	the	Br0	switch	learning	how	to	forward	the

packet	and	it	updates	its	ARP	table	mapping	10.0.0.4	to	the	MAC	address	of
the	VTEP.

Now	that	the	Br0	switch	has	learned	how	to	forward	traffic	to	C2	all	future
packets	for	C2	will	be	transmitted	directly	to	the	VTEP	interface.	The	VTEP
interface	knows	about	C2	because	all	newly	started	containers	have	their
network	details	propagated	to	other	nodes	in	the	swarm	using	the	network’s
built-in	gossip	protocol.

The	switch	then	sends	the	packet	to	the	VTEP	interface	which	encapsulates
the	frames	so	they	can	be	sent	over	the	underlay	transport	infrastructure.	At	a
fairly	high	level	this	encapsulation	includes	adding	a	VXLAN	header	to	the
Ethernet	frame.	The	VXLAN	header	contains	the	VXLAN	network	ID
(VNID)	which	is	used	to	map	frames	from	VLANs	to	VXLANs	and	vice
versa.	Each	VLAN	gets	mapped	to	VNID	so	that	on	the	receiving	end	the
packet	can	be	de-encapsulated	and	forwarded	on	to	the	correct	VLAN.	This
obviously	maintains	network	isolation.	The	encapsulation	also	wraps	the
frame	in	a	IP/UDP	packet	with	the	IP	address	of	the	VTEP	on	node2	in	the
destination	IP	field	and	the	UDP	port	4789	socket	information.	This
encapsulation	allows	the	data	to	be	sent	across	the	underlying	networks
without	the	underlying	networks	having	to	know	anything	about	VXLAN.

When	the	packet	arrives	at	node2,	the	kernel	sees	that	it’s	addressed	to	UDP
port	4789.	The	kernel	also	knows	that	it	has	a	VTEP	interface	bound	to	that
socket.	As	a	result,	it	sends	the	packet	to	the	VTEP	which	reads	the	VNID,
de-encapsulates	the	packet	and	sends	it	on	to	its	own	local	Br0	switch	on	the
VLAN	that	corresponds	the	VNID.	From	there	it	is	delivered	to	container	C2.

That’s	the	basics	of	how	VXLAN	technology	is	leveraged	by	native	Docker
overlay	networks.

We’re	only	scratching	the	surface	here,	but	it	should	be	enough	for	you	to	be
able	to	start	the	ball	rolling	with	any	potential	production	Docker
deployments.	It	should	also	give	you	the	knowledge	required	to	talk	to	your
networking	team	about	the	networking	aspects	of	your	Docker	infrastructure.

One	final	thing	to	mention	about	Docker	overlay	networks	is	that	Docker	also
supports	Layer	3	routing	within	the	same	overlay	network.	For	example,	you
can	create	an	overlay	network	with	two	subnets,	and	Docker	will	take	care	of
routing	between	them.	The	command	to	create	a	network	like	this	could	be
docker	network	create	--subnet=10.1.1.0/24	--subnet=11.1.1.0/24	-

d	overlay	prod-net.	This	would	result	in	two	virtual	switches	Br0	and	Br1
being	created	inside	the	network	namespace	and	routing	happens	by	default.

Docker	overlay	networking	-	The	commands

docker	network	create	is	the	command	that	we	use	to	create	a	new
container	network.	The	-d	flag	lets	you	specify	the	driver	to	use,	and	the
most	common	driver	is	the	overlay	driver.	However,	you	can	also
specify	so-called	remote	drivers	from	3rd	parties.	The	control	plane	is
encrypted	by	default.	To	encrypt	the	data	plane	just	add	the	-o
encrypted	flag.
docker	network	ls	lists	all	of	the	container	networks	visible	to	a
Docker	host.	Docker	hosts	running	in	swarm	mode	only	see	overlay
networks	if	they	are	hosting	containers	running	on	that	particular
network.	This	helps	reduce	the	amount	network-related	gossiping
between	nodes.
docker	network	inspect	shows	you	detailed	information	about	a
particular	container	network.	This	includes	scope,	driver,	IPv6,	subnet
configuration,	VXLAN	network	ID,	and	encryption	state.
docker	network	rm	deletes	a	network

Chapter	Summary
In	this	chapter	we	saw	the	simplicity	of	creating	new	Docker	overlay
networks	using	the	docker	network	create	command.	We	then	learned	how
they	are	created	behind	the	scenes	using	VXLAN	technology.	This	only
scratches	the	surface	of	what	you	can	do	with	native	Docker	overlay
networking.

11:	Security	in	Docker

Good	security	is	all	about	layers,	and	Docker	has	lots	of	layers.	It	supports	all
the	major	Linux	security	technologies,	as	well	as	having	a	lot	of	its	own	-	and
most	of	them	are	simple	and	easy	to	configure.

In	this	chapter,	we’ll	look	at	some	of	the	technologies	that	make	running
containers	on	Docker	very	secure.

When	we	get	to	the	deep	dive	part	of	the	chapter	we’ll	divide	things	up	into
two	categories:

Linux	security	technologies
Docker	platform	security	technologies

Note:	Large	parts	of	this	chapter	are	Linux	specific.	However,	the
Docker	platform	security	technologies	section	is	platform	agnostic	and
applies	equally	to	Linux	and	Windows.

Security	in	Docker	-	The	TLDR
Security	is	all	about	layers!	The	more	security	layers	you	have,	the	more
secure	you	are.	Well…	Docker	offers	a	lot	of	security	layers.	Figure	11.1
shows	some	of	the	security	technologies	that	we’ll	cover	in	the	chapter.

Figure	11.1

Docker	on	Linux	leverages	most	of	the	common	Linux	security	technologies.
These	include	namespaces,	control	groups	(cgroups),	capabilities,	mandatory
access	control	(MAC)	systems,	and	seccomp.	For	each	one,	Docker
implements	sensible	defaults	for	a	seamless	and	moderately	secure	out-of-the-
box	experience.	However,	it	also	allows	you	to	customize	each	one	to	your
own	specific	requirements.

The	Docker	platform	itself	offers	some	excellent	native	security	technologies.
And	one	of	the	best	things	about	these	is	that	they’re	amazingly	simple	to
use!

Docker	Swarm	Mode	is	secure	by	default.	You	get	all	of	the	following	with
zero	configuration	required;	cryptographic	node	IDs,	mutual	authentication,
automatic	CA	configuration,	automatic	certificate	rotation,	encrypted	cluster
store,	encrypted	networks,	and	more.

Docker	Content	Trust	(DCT)	lets	you	sign	your	images	and	verify	the
integrity	and	publisher	of	images	you	pull.

Docker	Security	Scanning	analyses	Docker	images,	detects	known
vulnerabilities,	and	provides	you	with	a	detailed	report.

Docker	secrets	makes	secrets	first-class	citizens	in	the	Docker	ecosystem.
They	get	stored	in	the	encrypted	cluster	store,	encrypted	in-flight	when
delivered	to	containers,	and	stored	in	in-memory	filesystems	when	in	use.

The	important	thing	to	know	is	that	Docker	works	with	the	major	Linux
security	technologies	as	well	as	providing	its	own	extensive	and	growing	set
of	security	technologies.	While	the	Linux	security	technologies	can	be	a	bit
complicated	to	configure,	the	Docker	platforms	security	technologies	are	very
simple.

Security	in	Docker	-	The	deep	dive
We	all	know	that	security	is	important.	We	also	know	that	security	can	be
complicated	and	boring!

When	Docker	decided	to	bake	security	into	its	platform,	it	decided	to	make	it
simple	and	easy.	They	knew	that	if	security	was	hard	to	configure	people
wouldn’t	use	it.	As	a	result,	most	of	the	security	technologies	offered	by	the
Docker	platform	are	simple	to	use.	They	also	ship	with	sensible	defaults	-	this
means	that	you	get	a	fairly	secure	platform	at	zero	effort.	Of	course,	the
defaults	are	not	perfect,	but	they’re	usually	enough	to	give	you	a	safe	start.	If
they	don’t	suit	your	needs	you	can	always	customize	them.

We’ll	organize	the	rest	of	this	chapter	as	follows:

Linux	security	technologies
Namespaces
Control	Groups
Capabilities
Mandatory	Access	Control
seccomp

Docker	platform	security	technologies
Swarm	Mode
Docker	Security	Scanning
Docker	Content	Trust
Docker	secrets

Linux	security	technologies
All	good	container	platforms	should	use	namespaces	and	cgroups	to	build
containers.	The	best	container	platforms	will	also	integrate	with	other	Linux
security	technologies	such	as	capabilities,	Mandatory	Access	Control	systems
like	SELinux	and	AppArmor,	and	seccomp.	As	expected,	Docker	integrates
with	them	all!

In	this	section	of	the	chapter	we’ll	take	a	brief	look	at	some	of	the	major
Linux	security	technologies	used	by	Docker.	We	won’t	go	into	detail	as	I	want
the	focus	of	the	chapter	to	be	on	the	Docker	platform	technologies.

Namespaces

Kernel	namespaces	are	at	the	very	heart	of	containers!	They	let	us	slice	up	an
operating	system	(OS)	so	that	it	looks	and	feels	like	multiple	isolated
operating	systems.	This	lets	us	do	really	cool	things	like	run	multiple	web

servers	on	the	same	OS	without	having	port	conflicts.	It	also	lets	us	run
multiple	apps	on	the	same	OS	without	them	fighting	over	shared	config	files
and	shared	libraries.

A	couple	of	quick	examples:

You	can	run	multiple	web	servers,	each	requiring	port	443,	on	a	single
OS.	To	do	this	you	just	run	each	web	server	app	inside	of	its	own
network	namespace.	This	works	because	each	network	namespace	gets
its	own	IP	address	and	full	range	of	ports.
You	can	run	multiple	applications,	each	requiring	their	own	particular
version	of	a	shared	library	or	configuration	file.	To	do	this	you	run	each
application	inside	of	its	own	mount	namespace.	This	works	because	each
mount	namespace	can	have	its	own	isolated	copy	of	any	directory	on	the
system	(e.g.	/etc,	/var,	/dev	etc.)

Figure	11.2	shows	a	high-level	example	of	two	web	server	applications
running	on	a	single	host	and	both	using	port	443.	Each	web	server	app	is
running	inside	of	its	own	network	namespace.

Figure	11.2

Docker	on	Linux	currently	utilizes	the	following	kernel	namespaces:

Process	ID	(pid)
Network	(net)
Filesystem/mount	(mnt)
Inter-process	Communication	(ipc)
User	(user)
UTS	(uts)

We’ll	briefly	explain	what	each	one	does	in	a	moment.	But	the	most	important
thing	to	understand	is	that	Docker	containers	are	an	organized	collection	of

namespaces.	Let	me	repeat	that…	A	Docker	container	is	an	organized
collection	of	namespaces.

For	example,	every	container	is	made	up	of	its	own	pid,	net,	mnt,	ipc,	uts,
and	potentially	user	namespace.	The	organized	collection	of	these
namespaces	is	what	we	call	a	container.	Figure	11.3	shows	a	single	Linux	host
running	two	containers.

Figure	11.3

Let’s	briefly	look	at	how	Docker	uses	each	namespace:

Process	ID	namespace:	Docker	uses	the	pid	namespace	to	provide
isolated	process	trees	for	each	container.	Every	container	gets	its	own
process	tree	meaning	that	every	container	can	have	its	own	PID	1.	PID
namespaces	also	mean	that	a	container	cannot	see	or	access	to	the
process	tree	of	other	containers	or	host	it’s	running	on.
Network	namespace:	Docker	uses	the	net	namespace	to	provide	each
container	its	own	isolated	network	stack.	This	stack	includes;	interfaces,
IP	addresses,	port	ranges,	and	routing	tables.	For	example,	every
container	gets	its	own	eth0	interface	with	its	own	unique	IP	and	range	of
ports.
Mount	namespace:	Every	container	gets	its	own	unique	isolated	root	/
filesystem.	This	means	that	every	container	can	have	its	own	/etc,	/var,
/dev	etc.	Processes	inside	of	a	container	cannot	access	the	mount
namespace	of	the	Linux	host	or	other	containers	-	they	can	only	see	and
access	their	own	isolated	mount	namespace.
Inter-process	Communication	namespace:	Docker	uses	the	ipc
namespace	for	shared	memory	access	within	a	container.	It	also	isolates
the	container	from	shared	memory	outside	of	the	container.
User	namespace:	Docker	lets	you	use	user	namespaces	to	map	users
inside	of	a	container	to	a	different	user	on	the	Linux	host.	A	common
example	would	be	mapping	the	root	user	of	a	container	to	a	non-root
user	on	the	Linux	host.	User	namespaces	are	quite	new	to	Docker	and
are	currently	optional.

UTS	namespace:	Docker	uses	the	uts	namespace	to	provide	each
container	with	its	own	hostname.

Remember…	a	container	is	an	organized	collection	of	namespaces!!!

Figure	11.4

Control	Groups

If	namespaces	are	about	isolation,	control	groups	(cgroups)	are	about	setting
limits.

Think	of	containers	as	similar	to	rooms	in	a	hotel.	Yes,	each	room	is	isolated,
but	each	room	also	shares	a	common	set	of	resources	-	things	like	water
supply,	electricity	supply,	shared	swimming	pool,	shared	gym,	shared
breakfast	bar	etc.	Cgroups	let	us	set	limits	on	containers	so	that	(sticking	with
the	hotel	analogy)	no	single	container	can	use	all	of	the	water	or	eat
everything	at	the	breakfast	bar.

In	the	real	world	(not	the	silly	hotel	analogy)	containers	are	isolated	from
each	other	but	all	share	a	common	set	of	OS	resources	-	things	like	CPU,
RAM	and	disk	I/O.	Cgroups	let	us	set	limits	on	each	of	these	so	that	a	single
container	cannot	use	all	of	the	CPU,	RAM,	or	storage	I/O	of	the	Linux	host.

Capabilities

It’s	a	bad	idea	to	run	containers	as	root	-	root	is	all-powerful	and	therefore
very	dangerous.	But	it’s	a	pain	in	the	backside	running	containers	as	non-root
-	non-root	is	so	powerless	it’s	practically	useless.	What	we	need	is	a
technology	that	lets	us	pick	and	choose	which	root	powers	our	containers
need	in	order	to	run.	Enter	capabilities!

Under	the	hood,	the	Linux	root	account	is	made	up	of	a	long	list	of
capabilities.	Some	of	these	include:

CAP_CHOWN	lets	you	change	file	ownership
CAP_NET_BIND_SERVICE	lets	you	bind	a	socket	to	low	numbered	network
ports
CAP_SETUID	lets	you	elevate	the	privilege	level	of	a	process

CAP_SYS_BOOT	lets	you	reboot	the	system.

The	list	goes	on.

Docker	works	with	capabilities	so	that	you	can	run	containers	as	root,	but
strip	out	the	root	capabilities	that	you	don’t	need.	For	example,	if	the	only
root	privilege	your	container	needs	is	the	ability	to	bind	to	low	numbered
network	ports,	you	should	start	a	container	and	drop	all	root	capabilities,	then
add	back	the	CAP_NET_BIND_SERVICE	capability.

Docker	also	imposes	restrictions	so	that	containers	cannot	re-add	the	removed
capabilities.

Mandatory	Access	Control	systems

Docker	works	with	major	Linux	MAC	technologies	such	as	AppArmor	and
SELinux.

Depending	on	your	Linux	distribution,	Docker	applies	a	default	AppArmor
profile	to	all	new	containers.	According	to	the	Docker	documentation,	this
default	profile	is	“moderately	protective	while	providing	wide	application
compatibility”.

Docker	also	lets	you	start	containers	without	a	policy	applied,	as	well	as
giving	you	the	ability	to	customize	policies	to	meet	your	specific
requirements.

seccomp

Docker	uses	seccomp,	in	filter	mode,	to	limit	the	syscalls	a	container	can
make	to	the	host’s	kernel.

As	per	the	Docker	security	philosophy,	all	new	containers	get	a	default
seccomp	profile	configured	with	sensible	defaults.	This	is	intended	to	provide
moderate	security	without	impacting	application	compatibility.

As	always,	you	can	customize	seccomp	profiles	and	you	can	pass	a	flag	to
Docker	so	that	containers	can	be	started	without	a	seccomp	profile.

Final	thoughts	on	the	Linux	security	technologies

Docker	supports	most	of	the	important	Linux	security	technologies	and	ships
with	sensible	defaults	that	add	security	but	aren’t	too	restrictive.

Figure	11.5

Some	of	these	technologies	can	be	complicated	to	customize	as	they	can
require	deep	knowledge	of	how	they	work	and	how	the	Linux	kernel	works.
Hopefully	they	will	get	simpler	to	configure	in	the	future,	but	for	now,	the
default	configurations	that	ship	with	Docker	are	a	good	place	to	start.

Docker	platform	security	technologies
In	this	section	of	the	chapter	we’ll	take	a	look	at	some	of	the	major	security
technologies	offered	by	the	Docker	platform.

Security	in	Swarm	Mode

Swarm	Mode	is	the	future	of	Docker.	It	lets	you	cluster	multiple	Docker	hosts
and	deploy	your	applications	in	a	declarative	way.	Every	Swarm	is	comprised
of	managers	and	workers	that	can	be	Linux	or	Windows.	Managers	make	up
the	control	plane	of	the	cluster	and	are	responsible	for	configuring	the	cluster
and	dispatching	work	to	it.	Workers	are	the	nodes	that	run	your	application
code	as	containers.

As	expected,	Swarm	Mode	includes	many	security	features	that	are	enabled
out-of-the-box	with	sensible	defaults.	These	include:

Cryptographic	node	IDs
Mutual	authentication	via	TLS
Secure	join	tokens
CA	configuration	with	automatic	certificate	rotation
Encrypted	cluster	store	(config	DB)
Encrypted	networks

Let’s	walk	through	the	process	of	building	a	secure	Swarm	and	configuring
some	of	the	security	aspects.

To	follow	along	you	will	need	at	least	three	Docker	hosts	running	Docker
1.13	or	later.	The	examples	cited	here	use	three	Docker	hosts	called	“mgr1”,
“mgr2”,	and	“wrk1”.	Each	one	is	running	Docker	17.06.0-ce	on	Ubuntu
16.04.	There	is	network	connectivity	between	all	three	hosts	and	all	three	can
ping	each	other	by	name.	The	setup	is	shown	in	Figure	11.6.

Figure	11.6

Configure	a	secure	Swarm

Run	the	following	command	from	the	node	you	want	to	be	the	first	manager
in	the	new	Swarm.	In	the	example,	we	will	run	it	form	“mgr1”.
$	docker	swarm	init

Swarm	initialized:	current	node	(7xam...662z)	is	now	a	manager.

To	add	a	worker	to	this	swarm,	run	the	following	command:

				docker	swarm	join	--token	\

					SWMTKN-1-1dmtwu...r17stb-ehp8g...hw738q	172.31.5.251:2377

To	add	a	manager	to	this	swarm,	run	'docker	swarm	join-token	manager'

and	follow	the	instructions.

That’s	it!	That	is	literally	all	you	need	to	do	to	configure	a	secure	Swarm!

You	now	have	a	single-node	secure	Swarm.	“mgr1”	is	configured	as	the	first
manager	of	the	Swarm	and	also	as	the	root	CA.	The	Swarm	has	been	given	a
cryptographic	ID	and	“mgr1”	has	issued	itself	with	a	client	certificate	that
identifies	it	as	a	manager	in	the	Swarm.	Certificate	rotation	has	been
configured	with	the	default	value	of	90	days	and	a	cluster	config	database	has
been	configured	and	encrypted.	A	set	of	secure	tokens	have	also	been	created
so	that	new	managers	and	new	workers	can	be	joined	to	the	Swarm.	And	all
of	this	with	a	single	command!

Figure	11.7	shows	how	the	lab	looks	now.

Figure	11.7

Now	let’s	join	“mgr2”	as	an	additional	manager.

Joining	new	managers	to	a	Swarm	is	a	two-step	process.	In	the	first	step
you’ll	extract	the	token	required	to	join	new	managers	to	the	Swarm.	In	the
second	step	you’ll	run	a	docker	swarm	join	command	on	“mgr2”.	As	long
as	you	include	the	manager	join	token	as	part	of	the	docker	swarm	join
command,	“mgr2”	will	join	the	Swarm	as	a	manager.

Run	the	following	command	from	“mgr1”	extract	the	manager	join	token.
$	docker	swarm	join-token	manager

To	add	a	manager	to	this	swarm,	run	the	following	command:

				docker	swarm	join	--token	\

				SWMTKN-1-1dmtwu...r17stb-2axi5...8p7glz	\

				172.31.5.251:2377

The	output	of	the	command	above	has	been	edited	so	that	it	doesn’t	wrap	over
multiple	lines.	The	output	gives	you	the	exact	command	you	need	to	run	on
nodes	that	you	wish	to	join	the	Swarm	as	managers.	The	join	token	and	IP
address	will	be	different	in	your	lab.

Copy	the	command	and	run	it	on	“mgr2”	as	shown	below:
$	docker	swarm	join	--token	SWMTKN-1-1dmtwu...r17stb-2axi5...8p7glz	\

>	172.31.5.251:2377

This	node	joined	a	swarm	as	a	manager.

“mgr2”	has	now	joined	the	Swarm	as	an	additional	manager.

The	format	of	the	join	command	is	docker	swarm	join	--token
<manager-join-token>	<ip-of-existing-manager>:<default-swarm-

port>.

You	can	verify	the	operation	by	running	a	docker	node	ls	command	on
either	of	the	two	managers.
$	docker	node	ls

ID																HOSTNAME			STATUS				AVAILABILITY				MANAGER	STATUS

7xamk...ge662z				mgr1							Ready					Active										Leader

i0ue4...zcjm7f	*		mgr2							Ready					Active										Reachable

The	output	above	shows	that	“mgr1”	and	“mgr2”	are	both	part	of	the	Swarm
and	are	both	Swarm	managers.	The	updated	configuration	is	shown	in	Figure
11.8.

Figure	11.8

Adding	a	Swarm	worker	is	a	similar	two-step	process.	Step	1	is	to	extract	the
join	token	for	new	workers,	and	step	2	is	to	run	a	docker	swarm	join
command	on	the	node	you	want	to	join	as	a	worker.

Run	the	following	command	on	either	of	the	managers	to	expose	the	worker
join	token.
$	docker	swarm	join-token	worker

To	add	a	worker	to	this	swarm,	run	the	following	command:

				docker	swarm	join	--token	\

				SWMTKN-1-1dmtw...17stb-ehp8g...w738q	\

				172.31.5.251:2377

The	output	of	the	command	above	has	been	edited	so	that	it	doesn’t	wrap	over
multiple	lines.	It	gives	you	the	exact	command	you	need	to	run	on	nodes	that
you	wish	to	join	the	Swarm	as	workers.	The	join	token	and	IP	address	will	be
different	in	your	lab.

Copy	the	command	and	run	it	on	“wrk1”	as	shown	below:
$	docker	swarm	join	--token	SWMTKN-1-1dmtw...17stb-ehp8g...w738q	\

>	172.31.5.251:2377

This	node	joined	a	swarm	as	a	worker.

Run	another	docker	node	ls	command	from	either	of	the	Swarm	managers.
$	docker	node	ls

ID																	HOSTNAME					STATUS					AVAILABILITY			MANAGER	STATUS

7xamk...ge662z	*			mgr1									Ready						Active									Leader

ailrd...ofzv1u					wrk1									Ready						Active

i0ue4...zcjm7f					mgr2									Ready						Active									Reachable

You	now	have	a	Swarm	with	two	managers	and	one	worker.	The	managers
are	configured	for	high	availability	(HA)	and	the	cluster	store	is	replicated	to
them	both.	This	updated	configuration	is	shown	in	Figure	11.9.

Figure	11.9

Looking	behind	the	scenes	at	Swarm	security

Now	that	we’ve	built	a	secure	Swarm	let’s	take	a	minute	to	look	behind	the
scenes	at	some	of	the	security	technologies	involved.
Swarm	join	tokens

The	only	thing	that	is	needed	to	join	managers	and	workers	to	an	existing
Swarm	is	the	relevant	join	token.	For	this	reason,	it	is	vital	that	you	keep	your
join-tokens	safe!	No	posting	them	on	public	GitHub	pages!

Every	Swarm	maintains	two	distinct	join	tokens:	-	One	for	joining	new
managers	-	One	for	joining	new	workers

It’s	worth	understanding	the	format	of	the	Swarm	join	token.	Every	join	token
is	comprised	of	4	distinct	fields	separated	by	dashes	(-):

PREFIX	-	VERSION	-	SWARM	ID	-	TOKEN

The	prefix	is	always	“SWMTKN”.	The	version	field	indicates	the	version	of
the	Swarm.	The	Swarm	ID	field	is	a	hash	of	the	Swarm’s	certificate.	The
token	portion	is	the	part	that	determines	if	the	token	can	be	used	to	join	the
node	as	a	manager	or	worker.

As	you	can	see	below,	the	manager	and	worker	join	tokens	for	a	given	Swarm
are	identical	except	for	the	final	TOKEN	field.

MANAGER:	SWMTKN-1-1dmtwusdc…r17stb-
2axi53zjbs45lqxykaw8p7glz
WORKER:	SWMTKN-1-1dmtwusdc…r17stb-
ehp8gltji64jbl45zl6hw738q

If	you	suspect	that	either	of	your	join	tokens	has	been	compromised	you	can
revoke	them	and	issue	new	ones	with	a	single	command.	The	following
example	revokes	the	existing	manager	join	token	and	issues	a	new	one.
$	docker	swarm	join-token	--rotate	manager

Successfully	rotated	manager	join	token.

To	add	a	manager	to	this	swarm,	run	the	following	command:

				docker	swarm	join	--token	\

					SWMTKN-1-1dmtwu...r17stb-1i7txlh6k3hb921z3yjtcjrc7	\

					172.31.5.251:2377

Notice	that	the	only	difference	between	the	old	and	new	join	tokens	is	the	last
field.	The	Swarm	ID	remains	the	same.

Join	tokens	are	stored	in	the	cluster	config	database	which	is	encrypted	by
default.
TLS	and	mutual	authentication

Every	manager	and	worker	that	joins	a	Swarm	is	issued	a	client	certificate.
This	certificate	is	used	for	mutual	authentication.	It	identifies	the	node,	which
Swarm	the	node	is	a	member	of,	and	role	the	node	performs	in	the	Swarm
(manager	or	worker).

On	a	Linux	host	you	can	inspect	a	node’s	client	certificate	with	the	following
command.
$	sudo	openssl	x509	\

		-in	/var/lib/docker/swarm/certificates/swarm-node.crt	\

		-text

		Certificate:

						Data:

										Version:	3	(0x2)

										Serial	Number:

														80:2c:a7:b1:28...a8:af:89:a1:2a:51:89

						Signature	Algorithm:	ecdsa-with-SHA256

										Issuer:	CN=swarm-ca

										Validity

														Not	Before:	Jul	19	07:56:00	2017	GMT

														Not	After	:	Oct	17	08:56:00	2017	GMT

										Subject:	O=mfbkgjm2tlametbnfqt2zid8x,	OU=swarm-manager,

										CN=7xamk8w3hz9q5kgr7xyge662z

										Subject	Public	Key	Info:

<SNIP>

The	Subject	data	in	the	output	above	uses	the	standard	O,	OU,	and	CN	fields	to
specify	the	Swarm	ID,	the	node’s	role,	and	the	node	ID.

The	organization	O	field	stores	the	Swarm	ID
The	organizational	unit	OU	field	stores	the	nodes	role	in	the	Swarm
The	canonical	name	CN	field	stores	the	nodes	crypto	ID.

This	is	shown	in	Figure	11.10.

Figure	11.10

We	can	also	see	the	certificate	rotation	period	in	the	Validity	section.

We	can	match	these	values	to	the	corresponding	values	shown	in	the	output	of
a	docker	system	info	command.
$	docker	system	info

<SNIP>

Swarm:	active

	NodeID:	7xamk8w3hz9q5kgr7xyge662z

	Is	Manager:	true

	ClusterID:	mfbkgjm2tlametbnfqt2zid8x

	...

	<SNIP>

	...

	CA	Configuration:

		Expiry	Duration:	3	months

		Force	Rotate:	0

	Root	Rotation	In	Progress:	false

	<SNIP>

Configuring	some	CA	settings

You	can	configure	the	certificate	rotation	period	for	the	Swarm	with	the
docker	swarm	update	command.	The	example	below	changes	the	certificate
rotation	period	to	30	days.
$	docker	swarm	update	--cert-expiry	720h

Swarm	updated.

Swarm	allows	nodes	to	renew	certificates	early	(slightly	before	they	expire)
so	that	not	all	nodes	in	the	Swarm	try	and	update	their	certificates	at	the	same

time.

You	can	configure	an	external	CA	when	creating	a	Swarm	by	passing	the	--
external-ca	flag	to	the	docker	swarm	init	command.

The	new	docker	swarm	ca	sub-command	can	be	used	to	manage	CA	related
configuration.	Run	the	command	with	the	--help	flag	to	see	a	list	of	things	it
can	do.
$	docker	swarm	ca	--help

Usage:		docker	swarm	ca	[OPTIONS]

Manage	root	CA

Options:

						--ca-cert	pem-file										Path	to	the	PEM-formatted	root	CA

						certificate	to	use	for	the	new	cluster

						--ca-key	pem-file											Path	to	the	PEM-formatted	root	CA

						key	to	use	for	the	new	cluster

						--cert-expiry	duration						Validity	period	for	node	certificates

						(ns|us|ms|s|m|h)	(default	2160h0m0s)

		-d,	--detach																				Exit	immediately	instead	of	waiting	for

						the	root	rotation	to	converge

						--external-ca	external-ca			Specifications	of	one	or	more	certificate

						signing	endpoints

						--help																						Print	usage

		-q,	--quiet																					Suppress	progress	output

						--rotate																				Rotate	the	swarm	CA	-	if	no	certificate

						or	key	are	provided,	new	ones	will	be	generated

The	cluster	store

The	cluster	store	is	the	brains	of	a	Swarm	and	is	the	place	where	cluster
config	and	state	are	stored.

The	store	is	currently	based	on	an	implementation	of	etcd	and	is
automatically	configured	to	replicate	itself	to	all	managers	in	the	Swarm.	It	is
also	encrypted	by	default.

The	cluster	store	is	becoming	a	critical	component	of	many	Docker	platform
technologies.	For	example,	Docker	networking	and	Docker	secrets	both
leverage	the	cluster	store.	This	is	one	of	the	reasons	that	Swarm	Mode	is	so
important	to	the	future	of	Docker	-	many	parts	of	the	Docker	platform	already
leverage	the	cluster	store	and	more	will	leverage	it	in	the	future.	The	moral	of
the	story…	if	you’re	not	running	in	Swarm	Mode	you’ll	be	limited	as	to	what
other	Docker	features	you	can	use.

The	day-to-day	maintenance	of	the	cluster	store	is	taken	care	of	automatically
by	Docker.	However,	in	production	environments	you	should	have	strong
backup	and	recovery	solutions	in	place	for	it.

That’s	enough	for	now	about	Swarm	Mode	security.

Detecting	vulnerabilities	with	Docker	Security	Scanning

The	ability	to	quickly	identify	code	vulnerabilities	is	vital.	Docker	Security
Scanning	makes	detecting	known	vulnerabilities	in	Docker	images	really
simple.

Note:	At	the	time	of	writing,	Docker	Security	Scanning	is	available	for
private	repositories	on	Docker	Hub.	It	is	also	available	as	part	of	the
Docker	Enterprise	Edition	on	premises	solution.	All	official	Docker
images	are	scanned	and	scan	reports	are	available	in	their	repos.

Docker	Security	Scanning	performs	binary-level	scans	of	Docker	images	and
checks	the	software	in	them	against	databases	of	known	vulnerabilities	(CVE
databases).	After	the	scan	is	performed	a	detailed	report	is	made	available.

Open	a	web	browser	to	https://hub.docker.com	and	search	for	the	Alpine
image.	Figure	11.11	shows	the	Tags	tab	of	the	Alpine	image	repo.

Figure	11.11

Because	the	Alpine	image	is	an	official	image	it	gets	scanned	and	scan	reports
are	available.	As	you	can	see,	the	images	tagged	as	edge,	latest,	and	3.6	are
free	from	known	vulnerabilities.	However,	the	alpine:3.5	image	has	known
vulnerabilities	(red).

If	you	drill	into	the	alpine:3.5	image	you	get	a	more	detailed	report	as
shown	in	Figure	11.12.

Figure	11.12

This	is	a	simple	and	easy	way	to	get	detailed	information	about	known
vulnerabilities	in	your	software.

Docker	Trusted	Registry	(DTR),	which	is	an	on-premises	Docker	registry
included	as	part	of	Docker	Enterprise	Edition,	provides	the	same	capabilities
and	gives	you	control	over	how	and	when	image	scans	are	performed.	For
example,	DTR	lets	you	decide	if	images	should	be	automatically	scanned	as
soon	as	they	are	pushed,	or	if	scans	should	only	be	triggered	manually.	It	also
allows	you	to	manually	upload	CVE	database	updates	-	this	is	ideal	for
situations	where	your	DTR	infrastructure	is	air-gapped	from	the	internet	and
cannot	automatically	sync	updates.

Signing	and	verifying	images	with	Docker	Content	Trust

Docker	Content	Trust	(DCT)	makes	it	simple	and	easy	to	verify	the	integrity
and	the	publisher	of	images	that	you	download.	This	is	especially	important
when	pulling	images	over	untrusted	networks	such	as	the	internet.

At	a	high	level,	DCT	allows	developers	to	sign	their	images	when	they	are
pushed	to	Docker	Hub	or	Docker	Trusted	Registry.	It	will	also	automatically
verify	images	when	they	are	pulled.	This	high-level	process	is	shown	in
Figure	11.13

Figure	11.13

DCT	can	also	provide	important	context.	This	includes	things	like;	whether	or
not	an	image	has	been	signed	for	use	in	a	production	environment,	or	whether
an	image	has	been	superseded	by	a	newer	version	and	is	therefore	stale.

At	the	time	of	writing,	the	context	offerings	of	DTC	are	in	their	infancy	and
quite	complex	to	configure.	As	and	when	it	matures	and	becomes	more	stable
it	will	be	included	in	an	update	to	the	book.

All	you	need	to	do	to	enable	DCT	on	a	Docker	host	is	export	and	environment
variable	called	DOCKER_CONTENT_TRUST	with	a	value	of	1.
$	export	DOCKER_CONTENT_TRUST=1

In	the	real	world	you	may	want	to	make	this	a	more	permanent	feature	of	your
system.

If	you	are	using	Docker	Universal	Control	Plane	(part	of	Docker	Enterprise
Edition)	you	need	to	set	the	Only	run	signed	images	checkbox	as	shown	in
Figure	11.14.	This	will	force	all	nodes	in	the	UCP	cluster	to	only	work	with
signed	images.

Figure	11.14

You	can	see	from	Figure	11.14	that	Universal	Control	Plane	takes	DCT	one
step	further	by	giving	the	option	to	list	security	principals	that	are	required	to
sign	an	image	before	it	can	be	used.	For	example,	you	might	have	a	corporate
policy	that	all	images	used	in	production	need	to	be	signed	by	the	secops
team.

Once	DCT	has	been	enabled	you	will	no	longer	be	able	to	pull	and	work	with
unsigned	images.	Figure	11.15	shows	the	errors	you	will	get	if	you	attempt	to
pull	an	unsigned	image	using	the	Docker	CLI	and	the	Universal	Control	Plane
web	UI	(both	examples	are	attempting	to	pull	an	image	tagged	as	“unsigned”)

Figure	11.15

Figure	11.16	shows	how	DCT	prevents	a	Docker	client	from	pulling	an	image
that	has	been	tampered	with.	Figure	11.17	shows	DCT	preventing	a	client
pulling	an	image	that	is	stale.

Figure	11.16	-	Pulling	an	image	that	has	been	tampered	with

Figure	11.17	-	Pulling	a	stale	image

Docker	Content	Trust	is	an	important	technology	for	helping	you	verify	the
images	you	are	pulling	from	Docker	registries.	It’s	simple	to	configure	in	its
basic	form,	but	more	advanced	features	such	as	context	are	currently	more
complex	to	configure.

Docker	secrets
Many	applications	need	secrets.	Things	like	passwords,	TLS	certificates,	SSH
keys	and	more.

Prior	to	Docker	1.13	there	was	no	standard	way	of	making	secrets	available	to
apps	in	a	secure	way.	It	was	common	for	developers	to	insert	secrets	into	apps
via	plain	text	environment	variables	(we’ve	all	done	it).	This	was	far	from
ideal.

Docker	1.13	introduced	Docker	Secrets,	effectively	making	secrets	first-class
citizens	in	the	Docker	ecosystem.	For	example,	there	is	a	whole	new	docker
secret	sub-command	dedicated	to	managing	secrets.	There’s	also	a	page	for
creating	and	managing	secrets	in	the	Docker	Universal	Control	Plane	UI.
Behind	the	scenes	secrets	are	encrypted	at	rest,	encrypted	in-flight,	mounted
in	in-memory	filesystems,	and	only	available	to	services/containers	that	have

been	explicitly	granted	access	to	them.	It’s	quite	a	comprehensive	end-to-end
solution.
Figure	11.18	shows	a	high-level	workflow:

Figure	11.18

The	following	steps	walk	through	the	high-level	workflow	shown	in	Figure
11.18.

1.	 The	secret	is	created	and	posted	to	the	Swarm
2.	 It	gets	stored	in	the	encrypted	cluster	store	(all	managers	have	access	to

the	cluster	store)
3.	 The	blue	service	is	created	and	the	secret	is	attached	to	it
4.	 The	secret	is	encrypted	in-flight	while	it	is	delivered	to	the	containers	in

the	blue	service
5.	 The	secret	is	mounted	into	the	containers	of	the	blue	service	as	an

unencrypted	file	at	/run/secrets/.	This	is	an	in-memory	tmpfs
filesystem	(this	step	is	different	on	Windows	Docker	hosts	as	they	do	not
have	the	notion	of	an	in-memory	filesystem	like	tmpfs)

6.	 Once	the	container	(service	task)	completes	the	in-memory	filesystem	is
torn	down.

7.	 The	red	containers/service	cannot	access	the	secret.

From	the	command	line	you	can	create	and	manage	secrets	with	the	docker
secret	sub-command,	and	you	can	attach	them	to	services	by	specifying	the
--secret	flag	to	the	docker	service	create	command.

Chapter	Summary
Docker	can	be	configured	to	be	extremely	secure.	It	supports	all	of	the	major
Linux	security	technologies	including;	kernel	namespaces,	cgroups,
capabilities,	MAC,	and	seccomp.	For	all	of	these	it	ships	with	sensible
defaults,	but	you	can	customize	them	and	even	disable	them.

Over	and	above	the	general	Linux	security	technologies,	the	Docker	platform
also	includes	an	extensive	set	of	its	own	security	technologies.	Swarm	Mode
is	built	on	TLS	and	is	insanely	simple	to	configure	and	customize.	Security
Scanning	performs	binary-level	inspections	of	Docker	images	and	provides
detailed	reports	of	known	vulnerabilities.	Docker	Content	Trust	lets	you	sign
and	verify	content,	and	secrets	are	now	first-class	citizens	in	Docker.

The	net	result	is	that	your	Docker	environment	can	be	configured	to	be	as
secure	or	insecure	as	you	desire	-	it	all	depends	on	how	you	configure	it.

12:	What	next

Hopefully	you’re	now	comfortable	talking	about	Docker	and	working	with	it.

Taking	your	journey	to	the	next	step	is	simple	in	today’s	world.	It’s	insanely
easy	to	spin	up	infrastructure	and	workloads	in	the	cloud	where	you	can	build
and	test	Docker	until	you’re	a	world	authority!

You	can	also	head	over	to	my	video	training	courses	at	Pluralsight.	If	you’re
not	a	member	of	Pluralsight	then	become	one!	Yes,	it	costs	money,	but	it’s
definitely	a	service	where	you	get	value	for	your	money!	And	if	you’re
unsure…	they	always	have	a	free	trial	period	where	you	can	get	access	to	my
courses	for	free	for	a	limited	period.

I’d	also	recommend	you	hit	events	like	Dockercon	and	your	local	Docker
meetups.

Feedback
A	massive	thanks	for	reading	my	book.	I	really	hope	it	was	useful	for	you!

Now	let	me	ask	a	favor…

It	takes	a	lot	of	effort	to	write	a	book!	My	hope	in	writing	this	book,	is	that	it
inspires	you	and	opens	new	opportunities.	If	you’ve	enjoyed	it,	show	it	some
love	with	a	few	stars	and	a	review	on	Amazon!

To	quote	William	Shakespeare	“They	do	not	love,	that	do	not	show	their
love.”	So,	if	you	love	the	book,	show	it	with	some	stars!”

Feel	free	to	hit	me	on	Twitter	as	well,	but	stars	and	cars	are	what	I	dream
about	at	night	;-)

http://app.pluralsight.com/author/nigel-poulton
https://www.dockercon.com
https://www.docker.com/community/meetup-groups
https://twitter.com/nigelpoulton

Thanks	again	for	reading	my	book	and	good	luck	driving	your	career
forward!!

	0: About the book
	What about a print (paperback) version
	Why should I read this book or care about Docker?
	Isn’t Docker just for developers?
	Should I buy the book if I’ve already watched your video training courses?
	How the book is organized

	Versions of the book
	Part 1: The big picture stuff
	1: Containers from 30,000 feet
	The bad old days
	Hello VMware!
	VMwarts
	Hello Containers!
	Linux containers
	Hello Docker!
	Windows containers
	Windows containers vs Linux containers
	What about Mac containers?
	Chapter Summary

	2: Docker
	Docker - The TLDR
	Docker, Inc.
	The Docker runtime and orchestration engine
	The Docker open-source project (Moby)
	The container ecosystem
	The Open Container Initiative (OCI)
	Chapter summary

	3: Installing Docker
	Docker for Windows (DfW)
	Docker for Mac (DfM)
	Installing Docker on Linux
	Installing Docker on Windows Server 2016
	Chapter Summary

	4: The big picture
	The Ops Perspective
	The Dev Perspective
	Chapter Summary

	Part 2: The technical stuff
	5: The Docker Engine
	Docker Engine - The TLDR
	Docker Engine - The Deep Dive
	Chapter summary

	6: Images
	Docker images - The TLDR
	Docker images - The deep dive
	Images - The commands
	Chapter summary

	7: Containers
	Docker containers - The TLDR
	Docker containers - The deep dive
	Containers - The commands
	Chapter summary

	8: Containerizing an App
	Containerizing an App - The TLDR
	Containerizing an App - The deep dive
	Containerizing an app - The commands
	Chapter summary

	9: Swarm Mode
	Swarm mode - The TLDR
	Swarm mode - The deep dive
	Swarm mode - The commands
	Chapter summary

	10: Docker overlay networking
	Docker overlay networking - The TLDR
	Docker overlay networking - The deep dive
	Docker overlay networking - The commands
	Chapter Summary

	11: Security in Docker
	Security in Docker - The TLDR
	Security in Docker - The deep dive
	Chapter Summary

	12: What next
	Feedback

