
A Beginner’s Guide to Virtual Environments
in Python

If you’ve upgraded to Bookworm and use Python in your projects, you can’t
have missed this change: they do everything to make you switch to virtual
environments. What is this all about, and do you really need to worry about it?
Let me explain.

Virtual environments in Python are isolated spaces for projects, each with
its own dependencies and Python versions. They provide a clean, conflict-
free coding environment that is critical for complex projects.

If you’ve just upgraded Raspberry Pi OS or Debian and are wondering why PIP
doesn’t work anymore or want to learn more about this concept, you’ve come
to the right place, I’ll explain everything in this article.

Understanding the Shift to Virtual
Environments
Before trying to brute force your way and find the right command to bypass
your current problem, I think it’s a good idea to take a step back to really
understand what has changed, and how it impacts your Python projects.

What are virtual environments in Python?
After creating virtual machines to keep the main system safe, then Docker
containers to ensure compatibility, now we have to wonder about Python
virtual environments. Yes, it’s the same idea. A special room for each Python
project, keeping them separate, living on their own to avoid global problems.

In more technical terms, a virtual environment in Python is a self-contained
directory that contains a Python installation for a specific version of Python,
plus a number of additional packages. This setup allows you to:

 Use different Python versions: If you have different projects that
require different Python versions, it’s no longer a problem.

 Have more freedom with dependencies: Each environment can have a
different set of libraries installed with different versions. This prevents
conflicts between projects requirements.

 Avoid system issues: as you can have each project running a different
version and isolated libraries, you will no longer break an old project
while working on a new one.

It’s also better for developers and teamwork because it allows you to copy,
share, or recreate environments under similar conditions for testing or
deployment purposes. Yes, same kind of benefits as with Docker.

Comparison with tradition Python setup
In traditional Python setups, libraries and dependencies are installed
globally, shared across all projects. Virtual environments, by contrast, are
created specifically for each project, containing isolated and independent
sets of libraries and dependencies.

It’s a bit like comparing a Jenga tower with Lego constructions.

In a traditional setup, as you continue to write new projects, the structures
become increasingly unstable. A Python upgrade or a library that conflicts with
everything else can easily crash all your projects.

In contrast, when you use virtual environments, your different projects are built
from different sets of bricks, independent of each other. This creates a stable
and controlled development environment, reducing the risk of a total
meltdown.

Do I really need to use them?
Switching to virtual environments can seem overwhelming if you’re used
to the old way of installing Python libraries. But in the end, it’s better for
you. This method minimizes the risk of conflicts and dependency issues,
and provides a cleaner way to manage Python projects.

Now, I understand that if you’re getting started in Python, and just want to
write 5 lines of code to make a LED blink, this might feel a bit overkill. In this
case, you have a few options:

 Using system packages: it’s still possible to install Python libraries via
the system package manager, so they become available on the entire
system (virtual environments or not). For example, if you install the
“requests” module with:
sudo apt install python3-requests

It’ll be available in all your projects. By the way, the Raspberry Pi OS is
still loaded with tons of packages like that by default, nothing has
changed (so you probably already have most of them installed).

 Forcing system-wide installation: If you try to install a PIP package
outside a virtual environment, you’ll get an error message: “externally-
managed-environment”. The system is asking you to try the previous
option or create a virtual environment.
But it’s still possible to bypass that, by adding an extra parameter:
sudo pip install <library> --break-system-packages

This option is explicit, so I hope you know what you’re doing if you try it.

 Creating a virtual environment: for a small-scale Python project, you
can still try using a virtual environment. It’s a few more commands to
remember, but it’s not that complicated. Read the next part to
understand how it works.

How to use virtual environments in Python
projects
How does this work in practice? Well, it’s not that complicated. You simply
create a separate folder with everything in it, and tell the system that you’re
using it when you work on your Python project. Let’s get to it.

Prerequisites
If you use a recent version of Raspberry Pi OS, you should be ready to get
started, everything is installed by default. But on a minimal system, especially
on other distributions, I recommend checking that Python is installed, and the
package ‘python3-venv’ in particular.

You can check with:
sudo dpkg -l | grep venv

If this command returns something similar, it means the package is already
installed.
If it’s not the case, you can install everything with:
sudo apt update
sudo apt install python3-venv

Then, a good practice is to create a folder on your drive for each main project.
But if you are only doing basic scripts, and want to group them together, it’s
fine to create only one, for example:
mkdir /home/$USER/python

I’ll use this example, but if you have several folders for different projects, you’ll
need to repeat the following steps for each of them.

Creating a virtual environment
The syntax to create a virtual environment is simply:
python3 -m venv <name>

This will create a new subfolder at your current location.

For example:
cd ~/python
python3 -m venv rpitips

Activating and using the environment
Now, the virtual environment won’t be used unless you explicitly specified it.
That’s what it’s called activation, and it can be done by running the activate
script, like that:
source rpitips/bin/activate

Once done, your terminal prompt will have a prefix with the virtual
environment name:

Now, all the Python commands I run from there will be executed from this
environment.

Note: if you are in a different folder, you need to set the full path to the
activate script, for example:
source /home/pat/python/rpitips/bin/activate

Or
source ~/python/rpitips/bin/activate

Working in virtual environments
If you are used to Python using a traditional setup, you already did the most
complicated part. From there, it’s basically as if you were using a traditional
setup, without a virtual environment.

 You can create your Python files in this project folder, as usual.
nano myscript.py

 You can run PIP commands, that will only apply to this virtual
environment.
pip install <lib-name>

 And obviously, if you run a Python command from there, it will use this
environment.
python myscript.py

As an example, let’s say I want to use the library “emoji”, that allows you to
print emojis in your scripts.

 A basic script may look like that:
import emoji
print(emoji.emojize('Python is :thumbs_up:'))

 The library is not installed system-wide, but I can add it to my
environment with:
pip install emoji

 Then my script is working:
python3 emo.py

You just need to make sure you’re inside the environment to run this script. As
the library is only available in it, it won’t work if you close the session and run it
directly, even if you run it from the same folder:

That’s why it’s important to stay organized, and have a clear structure, either
with one folder per project, one folder for your small scripts, or simply by
installing libraries system-wide when they are available.

Deactivating and switching between environments
To exit a virtual environment, you’ll simply use this command:
deactivate

As you can see, the prefix disappears, and you’re no longer running commands
in this environment. You can switch to another on by running the
corresponding “activate” script if needed.

Virtual environments in practice
I’ve explained how you can create and use virtual environments for your
Python projects via the terminal, but it’s also possible to use them from your
favorite text editors.

Thonny
Thonny is a basic text editor, that is often used for Python projects, especially
on Raspberry Pi, as it’s preinstalled on Raspberry Pi OS.

The features are pretty limited, but you can still change the default interpreter
to use a virtual environment:

 Open Thonny as usual.
 Click on the Python interpreter in the bottom-right corner.

 You’ll get a list with the Python versions installed on your system, but
you can also add a binary from a virtual environment:

 With a recent version of Thonny, you can even create a new virtual

environment from there.

If you don’t know, Thonny has built-in features to handle additional libraries. If
you go to “Tools > Manage packages”, you can install PIP modules, that will be
installed automatically in the current environment:

It doesn’t work via “Manage plug-ins” (it tries to install them system-wide), but
it’s working from this window.

I have an entire tutorial about Thonny and its hidden features, make sure to
check it if you’re a bit lost there.

Geany
Geany is a bit more evolved, with more features, but so it can be a bit
overwhelming.

I didn’t find the perfect way to use virtual environments with it, but I think you
can go to “Build” > “Set build commands” to change the execute command,
and use the one in your virtual environment instead of the default:

If you have several environments, you can create Geany projects, and set a
different command for each of them.

If you want to learn more about Geany, you can read this article: How to Use
Geany on Raspberry Pi? (Full guide with pictures).

Visual Studio Code
With more advanced editor, like Visual Studio Code, it’s even easier. If you
open a folder, it will automatically detect the virtual environment inside it, and
use it by default.

Note: A Python extension is required to debug and run Python scripts (the
IntelliSense one for example).

You can also create a new virtual environment from an existing folder, directly
from the interface. Press “CTRL+SHIFT+P” to open the palette, and search for
“Create environment”:

VSCode will create it in the current folder and activate it automatically.

Once done, you can use the terminal window inside VSCode to install new PIP
packages (the activate command is done automatically):

