

FileMaker
�

Web
Publishing

A Complete Guide to Using
the API for PHP

Allyson Olm, Stephen Knight,
and Michael Petrov

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Olm, Allyson.

FileMaker Web publishing : a complete guide to using the API for PHP / by Allyson Olm,

Stephen Knight, and Michael Petrov.

p. cm.

Includes index.

ISBN-13: 978-1-59822-041-4

ISBN-10: 1-59822-041-1

1. FileMaker (Computer file). 2. Web publishing. 3. PHP (Computer program language).

I. Knight, Stephen, 1968- II. Petrov, Michael. III. Title.

TK5105.888.O465 2007

005.75'65--dc22 2007026436

© 2008, Wordware Publishing, Inc.

All Rights Reserved

1100 Summit Avenue, Suite 102
Plano, Texas 75074

No part of this book may be reproduced in any form or by any means
without permission in writing from Wordware Publishing, Inc.

Printed in the United States of America

ISBN-13: 978-1-59822-041-4
ISBN-10: 1-59822-041-1
10 9 8 7 6 5 4 3 2 1
0707

FileMaker is a registered trademark of FileMaker, Inc. in the U.S. and other countries.
All of the logos in Appendix B are used with the permission of their respective owners. Other brand names and

product names mentioned in this book are trademarks or service marks of their respective companies. Any omission
or misuse (of any kind) of service marks or trademarks should not be regarded as intent to infringe on the property of
others. The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a
means to distinguish their products.

This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of this book
and any disks or programs that may accompany it, including but not limited to implied warranties for the book’s
quality, performance, merchantability, or fitness for any particular purpose. Neither Wordware Publishing, Inc. nor its
dealers or distributors shall be liable to the purchaser or any other person or entity with respect to any liability, loss, or
damage caused or alleged to have been caused directly or indirectly by this book.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing,
Inc., at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

Contents

Acknowledgments . xi
Introduction . xiii

Chapter 1 Introduction to Web Publishing with FileMaker 1

Why PHP and FileMaker? . 2
What’s So Great about PHP? . 2
Requirements . 3

Macintosh . 3
Windows . 4

Interface Differences . 5
Summary . 6

Chapter 2 Setting Up Your Web Server 7

What You Need to Write and Test Your PHP Pages 8
Local or Remote Testing. 8
Choosing a PHP Script Editor. 9

Dreamweaver . 9
TextWrangler . 10
Nvu . 11

Setting Up IIS on Windows . 12
Setting Up Apache on Mac . 15
PHP Installation Options . 16
Testing Your PHP Installation . 19
Summary . 21

Chapter 3 Setting Up FileMaker Server 23

Single Computer Installation of FileMaker Server 9 24
Multiple Computer Installation of FileMaker Server 9 28

The Worker Computer . 28
The Master Computer . 31

Deployment Assistant . 34
Manually Installing the FileMaker API for PHP 40
Testing Your Installation . 41
Summary . 44

Chapter 4 Configuring FileMaker Server Admin Console 45

FileMaker Server Admin Console 46
Summary . 49

iii

Chapter 5 Preparing Your FileMaker Database for the Web 51

Creating the Blog Database . 52
Creating the Tables . 53
Creating the Fields for Each Table 55

The Posts Table . 55
The Commenters Table . 57
The Comments Table . 58
The Categories Table . 59
The Relationships . 59

Adding Value Lists to the Database 65
Layout Mode . 69
Portals . 73
Setting Up the FileMaker Accounts 78
Summary . 80

Chapter 6 HTML Basics . 81

HTML Review . 81
What Do I Need to Get Started? . 82
Website Folder Setup . 82

Exercise 1 — Adding a Title . 83
Exercise 2 — Working with Headers 84
Exercise 3 — Text Manipulation 86
Exercise 4 — Adding Emphasis 90
Exercise 5 — Formatted Lists 92
Exercise 6 — Images . 95
Exercise 7 — Sending Emails with a Link 100
Exercise 8 — Anchors Aweigh! 102
Exercise 9 — Tables . 104

Manipulating Cell Data . 109
Creating Clickable Links in a Table 112
Adding Images to Tables . 113
Working with <rowspan> and <colspan> 114
Nested Tables . 118
Changing Text and Background Colors of Cells 119

I Never Meta Refresh I Didn’t Like 122
Sending Emails from the Web . 123
Summary . 125

Chapter 7 CSS Basics . 127

Cascading Style Sheets . 127
Fonts . 133

Font Size . 135
Font Weight . 135
Font Style . 136

Contents

iv

Margins . 137
Top and Bottom Margins. 139

Alignment . 141
Text Decoration . 143
Commenting Your Code. 145
Backgrounds . 146
Background Images . 147

Fixed Background Images . 148
Repeating Background Images 149

Repeat-x . 150
Repeat-y . 151

Background Position . 152
Vertical Alignment . 153

Combining Vertical and Horizontal Alignment 154
Background Property . 155
Multiple Style Sheets . 156
Summary . 159

Chapter 8 PHP Basics . 161

PHP Scripts . 161
Displaying Text . 162
Variables . 163
Hip Hip Array . 163

Creating a Simple Array . 164
Creating an Array with Keys 166
Creating an Array by Specifying Each Index 167
Replacing an Element in the Array 168
Adding an Element to the End of the Array 169
Removing an Element from the End of the Array 171
Removing an Element from the Beginning of the Array 172
Adding an Element to the Beginning of the Array 173
Sorting an Array Ascending Alphabetically 174
Sorting an Array Descending Alphabetically 175
Separating and Printing the Array Elements as a Text String . 176

PHP Functions. 177
Conditions . 178
Includes . 180
Comments . 183
Quotes . 184
Special Characters. 186
Summary . 188

Contents

v

Chapter 9 Links and Forms . 189

What Type of Navigation Should You Use? 189
GET and POST . 190
Links . 190

Relative Links . 191
Absolute Links . 192
Sending Data in a Link . 192

Forms . 192
Types of Form Elements. 194

Text . 195
Hidden . 197
Radio Buttons . 197
Check Boxes. 199
Select Lists . 199
Text Areas . 200

The Response Page . 203
Viewing the Passed Data . 205

Summary . 206

Chapter 10 Validation. 207

Validating the Existence of a Form Value 208
Validating Empty Form Values . 212
Validating Numbers . 214
Validating String Length . 215
Validating Email Format . 216
Summary . 218

Chapter 11 What Is the API for PHP? 219

What Is an API? . 219
A Little Bit of History. 221
Anatomy of the FileMaker API for PHP 222
Summary . 224

Chapter 12 Creating the Blog and Performing a Simple Query 225

What Is a Blog? . 225
Include File Structure of the Blog 226

The Header and Footer Files 227
Cascading Style Sheets . 229
The About Blob Section . 231
Preparing the Connection Include Folder 232
Creating a Connection Include File 232

Constructing the Blog Index Page 234
Adding a Find All Command to List Posts 235
Displaying a Simple Result Set . 238
Summary . 241

Contents

vi

Chapter 13 Creating New Records and Sorting 243

Record Creation Process . 243
New Record Command . 244
Building the Input Form . 245
Processing Form Data Correctly 246
Understanding the POST and GET Functions 248
Creating the New Record . 250
Sorting with the FileMaker API 252
Adding Sorting to the Home Page 253
Summary . 255

Chapter 14 Database Searches and Limits 257

Beyond the Find All . 257
There Is Also a Find Any Command 258
Anatomy of a Find . 261

About Find Parameters and Logical Operators. 262
Important Field Name Limitations 263

Creating a Blog Search Form . 263
Creating the Results Page . 266
Adding Limits to the Search Results 268

Using Skip Record Parameters 268
Integrating Limits and Skip to Achieve Paging 268

Exact Searches and Other Modifiers. 273
Adding a View Blog Post Link . 274
Viewing a Single Blog Post Record. 275
Summary . 277

Chapter 15 Editing and Deleting Records 279

Overview of the Record Object. 279
Linking to a Single Editable Record 280
Building Editable Forms . 283
Building the Edit Post Script . 285
Deleting Records . 289
Summary . 291

Chapter 16 Working with Data Portals 293

Reviewing Related Records and Portals 294
Related Record Portal Web Requirements. 294
Notable Limitations . 295
Portal Workflow within PHP . 296
Accessing a Related Set of Data 297
Adding a New Related Record . 301
Isolating a Related Record . 306
Creating a Related Record Edit Link. 306
Isolating the Linked Related Record 308

Contents

vii

Editing a Related Record . 313
Deleting a Related Record . 315
Summary . 317

Chapter 17 FileMaker Value Lists . 319

What Are FileMaker Value Lists? 319
Why Use FileMaker Value Lists on the Web? 320
Requirements for Value Lists. 321
HTML Drop-downs, Radio Buttons, and Check Boxes 321
Retrieving a Value List from the Database 326

Building a Dynamic Value List Drop-down 327
Building a Dynamic Value List Radio Button Set 330
Building a Dynamic Value List Check Box Set 332

Adding Empty Default Values . 333
Creating a Value List Driven Form. 335

Processing Form Results for Drop-downs and Radio Buttons . 340
Processing Form Results for Check Boxes. 342

Taking It to the Next Level — Selecting Values with PHP 344
Creating the Commenter Find Request and Basic Form 345
Selecting Drop-down Values. 348
Selecting Radio Button Values 350
Selecting Checked Check Boxes 351

Implementing the Edit Command 353
Limitations of FileMaker Value Lists on the Web 355
Summary . 356

Chapter 18 PHP Sessions . 357

What Are Sessions? . 357
Why Use Sessions? . 358
Using Sessions . 359
Session Example — Remembering Form Data 360
Testing the Session Form Flow 363
Summary . 364

Chapter 19 Creating Login Authentication Schemes 365

Authentication Methods . 366
Table-based Authentication . 366
Account-based Authentication. 367

Table-based Authentication — Building the Login Form 368
Table-based Authentication — Building a Protected Page 372
Account-based Authentication — Implementation 373
Detailed Overview of accountLogin Function 376
Other Authentication Methods — Active Directory 378
Troubleshooting Authentication Schemes 379
Summary . 380

Contents

viii

Chapter 20 File Uploads with PHP and FileMaker 381

How Do File Uploads Work? . 381
Preparing a Form for a File Upload. 382
Accessing the File Upload with PHP. 385
Debugging File Uploads — Error Codes Explained. 387
Connecting Uploaded Files to FileMaker Data 388
Important Limitations. 389
Summary . 389

Chapter 21 Sending Emails with PHP. 391

Anatomy of an Email . 391
Requirements for Sending Email from PHP. 392
Basic Email from PHP . 394

Adding a Proper From Address 395
CC and BCC Address Headers 395
Reply-To Address Headers . 396

Sending HTML Emails . 397
Custom Character Encodings . 398
Email Security and Post Data. 399
Building a Feedback Form . 401
Adding an “Email a Post” Option to the Blog 404
Summary . 409

Chapter 22 Debugging Connectivity Issues. 411

Common Connectivity Issues . 411
Printing Debugging Information 412

Checking the Database Authentication Credentials 414
Investigating Specific Error Codes. 415
Local Firewalls . 416
Routers and ISPs . 416
Secure Connections . 417
DNS Issues and Dynamic IPs. 417
When in Doubt, Search the Web 418
Summary . 418

Chapter 23 Wildcards . 419

What Wildcards Are Available? . 419
Entering Literal Wildcard Characters 420
Replacing Wildcards through a Regular Expression 420
Usage Examples . 421
Summary . 422

Chapter 24 Going Beyond the Basics 423

Only the Beginning . 423
Things to Know before Continuing 424

Contents

ix

Experiment and Learn . 426
The Sky Is the Limit . 427

Appendix A FileMaker Error Codes 429

Appendix B Additional Resources . 439

Index . 447

Contents

x

Acknowledgments

Many thanks to the FileMaker community. Without you, this book

would have never been written. We are extremely thankful for your

support and kindness. We feel blessed that we have the opportunity to

share with you something we feel so passionate about, and we look

forward to hearing of your successes.

We would also like to thank Tim McEvoy of Wordware Publishing.

Tim provided insight as to the inner workings of the publishing indus-

try, as well as constant support throughout the entire process. Tim’s

enthusiasm for this book was contagious, and helped us all to enjoy the

process.

Beth Kohler, Senior Editor of Wordware Publishing, is amazing.

Beth is exceptionally organized and detailed and has led us through the

editing process with amazing ease. She is exceptionally talented at

asking questions that truly give life and meaning to the typed word.

Thank you, Beth, for your professionalism and your sage advice!

We would also like to thank FileMaker, Inc., for developing such an

amazing work of art. FileMaker continues to produce amazing software

and provide numerous opportunities for developers and everyday

users to grow. FileMaker truly puts its customers first. We would like

to thank Kevin Mallon, Senior Public Relations Manager, for answering

any questions that we had about FileMaker and Delfina Daves, Senior

Manager FileMaker Developer Relations, for her constant support and

knowledge of all things FileMaker.

xi

This page intentionally left blank.

Introduction

FileMaker and PHP — the Dynamic Duo

If you think FileMaker is a powerful database development program

that enables individuals of all levels of expertise to develop relational

database systems, you would be correct. If you were to add that it can

power robust PHP web-based solutions, you would be correct again.

FileMaker is not the new kid on the block when it comes to manip-

ulating and sharing data. FileMaker has an extremely successful

history in the database market that has spanned more than 20 years.

FileMaker began exploring web technologies starting with CDML and

proprietary tag-based language and then progressed to XML and now

to PHP.

The combination of PHP and FileMaker makes perfect sense.

FileMaker is well-known for its ease of use, reporting, and business

logic, and PHP is known for its power, speed, and rapid deployment

capabilities. And now, with the new FileMaker API for PHP, you can

quickly and easily deploy your FileMaker solutions to the web.

What Do I Need to Know to Get Started?

This book assumes that you have some basic knowledge of HTML and

FileMaker. If not, it certainly is not the end of your glorious dream of

becoming a professional FileMaker web developer.

There are chapters included in this book that cover basic HTML,

CSS, and PHP to help you get started. If you want more in-depth

coverage of any of these topics, we encourage you to purchase a begin-

ners guide to HTML or visit one of the sites listed in Appendix B.

Chapter 5 goes into quite a bit of detail as to how to set up your

FileMaker database and recreate the blog sample database we include

with this book.

xiii

Do I Need to Know FileMaker?

You do not need to know FileMaker, but it will certainly help.

Wordware Publishing has a wonderful selection of FileMaker books

available on its web site at http://www.wordware.com.

Do I Need to Know PHP?

A basic knowledge is certainly preferred, but definitely not necessary.

This book does a great job of covering PHP basics in Chapter 8. That

is not to say that intermediate and advanced users will not find this

book to be a valuable resource. This book covers a new class of PHP

written especially for FileMaker, and includes materials from basic to

advanced topics.

What Do I Need to Use This Book?

This is an interactive book, meaning that we hope you will work

through the exercises as you traverse the pages. What is required to

do this? A web editor (several of which are listed in Appendix B),

FileMaker Pro 8 or 9, and FileMaker Server Advanced or FileMaker

Server 9. If you do not have Server 9 or Server Advanced, you can

host your database at any of the FileMaker hosting companies listed in

Appendix B and connect remotely.

The exercises are meant to teach you how to apply PHP to

real-world applications. We encourage you to work step by step

through the exercises, as each chapter builds on previous chapters.

Sample Files and Videos

Sample files for this book are available as downloads at both the

Wordware web site (www.wordware.com/files/fmphpapi) and the

FMWebschool web site (www.fmwebschool.com/wordware). Sample

files are in folders that correspond to the chapter’s title.

Introduction

xiv

Screen capture movies of some of the chapters are available as

well. These can be played on your browser, or downloaded and played

on your computer.

Last Thoughts

Thank you for buying this book. In your hands lies the opportunity to

become a virtual virtuoso of FileMaker web publishing. If you have not

yet purchased this book, why are you waiting?

There are numerous benefits to learning custom web publishing

with FileMaker and PHP. PHP is used world wide, and once you learn

to use PHP with FileMaker, you can quickly begin applying it to other

technologies as well. Learning PHP quickly adds to your ability to gain

more clientele, and gives you the ability to expand the services you

offer your current customers.

Learning FileMaker and PHP simply opens the door for many new

possibilities and opportunities. So why are you waiting? Let’s begin

the exciting journey of web publishing!

Introduction

xv

This page intentionally left blank.

Chapter 1

Introduction to Web
Publishing with
FileMaker

Few people will dispute that a presence on the web is quickly becom-

ing one of the many requirements of running a successful business.

With the increased accessibility of Internet technologies, communica-

tion between co-workers or between a business and its clients is now

much more efficient than it was even 10 years ago. Companies are now

looking at ways to enhance their users’ experiences instead of simply

filling a need. They are looking for an edge over their competition.

FileMaker has for years provided extremely flexible software that

allows the creation of customized database solutions for a limitless

variety of industries. As the need for a greater and more innovative

presence on the web has grown, so has the search for the best solution

for bringing FileMaker database content to the web in the most flexible

and professional manner possible. With the marriage of FileMaker and

PHP, that goal is closer now than ever before.

1

Why PHP and FileMaker?

Many companies are discovering that static web sites do not give them

the ability to meet the changing needs of their customers. Combining

FileMaker with PHP enables you to provide dynamic content for your

web site.

PHP (PHP: Hypertext Preprocessor) is one of the most widely

used and supported scripting languages available for web design. PHP

support is available at most web hosting providers and is easy to install

for those wishing to host their own web site. PHP is an open-source

programming language that is supported by a vast and thriving online

community of programmers through forums and email discussion

groups. This supportive community provides a limitless resource for

both novice and experienced programmers alike.

FileMaker Pro has won multiple Editor’s Choice awards and com-

bines a user-friendly interface with a wealth of developer tools to meet

the needs of both entry-level users and professional developers. For

many users the next logical step is to provide web access to their

existing FileMaker Pro database. The FileMaker API for PHP allows

that to be accomplished seamlessly by combining PHP and FileMaker

technologies.

What’s So Great about PHP?

PHP is a server-side scripting language. This means that the scripts

are processed on the web server, not by the user’s browser. This

avoids the compatibility issues common to client-side scripting lan-

guages such as JavaScript. Scripts that query FileMaker Server are

handled by the web server, and the returned data is sent to the client’s

browser as HTML. The details of the web server-to-FileMaker Server

connection are within the PHP scripts and are not accessible to the cli-

ent even when viewing the source.

2 Chapter 1 / Introduction to Web Publishing with FileMaker

PHP is cross platform, making it easy for you to move your site from

one operating system to another. PHP is also one of the fastest script-

ing languages available, and provides thousands of built-in functions

that allow you to communicate with other database systems such as

MySQL. PHP also plays well with others in that it works well with

common technologies such as HTML, CSS, JavaScript, and Ajax.

Requirements

Web publishing with the FileMaker API for PHP requires a web server,

PHP, and FileMaker Server. The specifics of the requirements vary by

operating system. FileMaker’s API for PHP installation includes PHP

5.1.x. You may choose during the installation process to either install

the packaged PHP or use your own version. You may want to use your

own version if you already have PHP installed or if you will be using

your web server for additional sites that do not use FileMaker.

Macintosh
� Apache or Personal Web Sharing (preinstalled Apache application)

� PHP version 4.3.x or greater

� Operating systems:

� Mac OS X 10.4.x Workstation

� Mac OS X 10.4.x Server

� Mac OS X 10.5.x Workstation

Chapter 1 / Introduction to Web Publishing with FileMaker 3

Ch
a

p
te

r
1

Figure 1-1: User’s browser-to-FileMaker Server process

� Mac OS X 10.5.x Server

� Hardware:

� Power Mac G4 or G5 computer, 1 GHz

� 512 MB of installed RAM (1 GB or more recommended)

� Hard disk with at least 1 GB of available disk space

� CD or DVD drive

Windows
� IIS (Internet Information Services)

� PHP version 4.3.x or greater

� Operating systems:

� Windows 2000 Server

� Windows XP Professional

� Windows 2003 Server

� Windows Vista Server (Admin Console and web development

tools only)

� Hardware:

� Intel-compatible PC with a Pentium 4 or Xeon processor,

2 GHz

� 512 MB of installed RAM (1 GB or more recommended)

� Hard disk with at least 1 GB of available disk space

� CD or DVD drive

4 Chapter 1 / Introduction to Web Publishing with FileMaker

Interface Differences

Beginning with FileMaker Server 9, the interfaces appear very similar

and function the same in both Mac and Windows. This allows for easy

management of systems on both platforms without having to learn two

different methods.

Custom Web Publishing with PHP and XSLT are built into FileMaker

Server 9. Because of this, FileMaker Server 9 Advanced is not

required for PHP/FileMaker solutions.

Chapter 1 / Introduction to Web Publishing with FileMaker 5

Ch
a

p
te

r
1

Figure 1-2: FileMaker Server Admin Console overview screen

Summary

Now that you have learned a bit about the potential of web publishing

and what is involved in this exciting process, let’s jump into it and get

your system ready to take your application to the next level. We will

start with setting up a web server, the heart of your dynamic pages.

6 Chapter 1 / Introduction to Web Publishing with FileMaker

Chapter 2

Setting Up Your
Web Server

Web servers are responsible for taking in requests from web browsers

and serving back both dynamic content such as PHP pages and static

content such as images and movies. There are many different web

servers on the market that work on many different operating systems,

be it Windows, Mac OS, or Linux. Since the web server is vital to your

success with web publishing, time and care should be taken to set it up

properly for your operating system.

Deciding on a web server to use on your FileMaker Server

machine couldn’t be simpler. This is because FileMaker Server

requires a specific web server for each operating system. If you are

using a Windows operating system, you will need to install IIS. If you

are using a Macintosh operating system, you will need to use Apache.

Apache comes preinstalled on Mac OS X as Personal Web Sharing.

7

What You Need to Write and Test Your
PHP Pages

Choosing a good PHP script editor can make your life much easier.

There are many options available, including several free web editors.

You can even use a plain text editor, although this should really only be

an option if you are an experienced developer as text editors do not

provide a graphical interface to immediately view the results of your

work. In addition, some web editors color-code their code, which

makes it easier to find and repair errors in your page.

If you choose to use one of your operating system’s built-in text

editors, make sure that the pages are saved with the required .php

extension. Most operating systems hide common extensions by

default. If the extensions are hidden, it may appear that you are saving

your page as index.php when in fact you are saving as index.php.txt.

When you attempt to access the index.php page in your browser, the

page will not be found. Documents with an extension other than .php

will not be processed by PHP and your scripts will fail.

Local or Remote Testing

Deciding whether to test locally or remotely may be determined by

whether or not you have a copy of FileMaker Server. If you do not own

a copy of FileMaker Server, you can use a FileMaker hosting company

and access your database files remotely. Make sure that any hosting

you use for your web files supports PHP. If you use a FileMaker host-

ing company, you may want to check before you begin to find out if it

allows testing and development on the live server. If you own a copy of

FileMaker Server and will be hosting the files yourself, the location of

the FileMaker Server machine will determine whether you will be

testing locally or remotely. See Appendix B for a list of FileMaker

hosting companies.

8 Chapter 2 / Setting Up Your Web Server

Choosing a PHP Script Editor

Selecting a good script editor for your PHP pages will make building,

testing, and editing your site much easier. Most web editors have

evaluation versions of their software, so try them out before you pur-

chase. You may find that a simple, free script editor is your best choice.

Others may like the features available in a more expensive option.

Dreamweaver

Adobe Dreamweaver allows you to view your PHP pages in both

design and code views. PHP scripts and other HTML elements are

color-coded to help you spot errors quickly. More information, includ-

ing a trial download, is available at http://www.adobe.com.

Chapter 2 / Setting Up Your Web Server 9

Ch
a

p
te

r
2

Figure 2-1: Dreamweaver

TextWrangler

TextWrangler from Bare Bones Software also has color-coded scripts;

however, its lack of a design view can make it more difficult to use.

TextWrangler can be found at http://www.barebones.com.

10 Chapter 2 / Setting Up Your Web Server

Figure 2-2: TextWrangler

Nvu

Nvu, available at http://www.nvu.com/, is an open-source web editor

with both design and code view editing.

Whichever editor you choose, take some time to familiarize yourself

with the available features as they may greatly decrease your actual

development time.

Chapter 2 / Setting Up Your Web Server 11

Ch
a

p
te

r
2

Figure 2-3: Nvu

Setting Up IIS on Windows

IIS can be installed on Windows using an option under Add or Remove

Programs and your Windows installation CD.

1. To install IIS, go to Start > Control Panel > Add or Remove

Programs.

2. Next, select Add/Remove Windows Components.

12 Chapter 2 / Setting Up Your Web Server

Figure 2-4: Add/Remove Windows Components option

3. Check Internet Information Services (IIS) and then click

Next. This will walk you through the installation process. You may

be asked to provide your Windows installation CD so that the nec-

essary files can be copied.

4. Once IIS is installed, click Finish and close the Add or Remove

Programs panel.

5. IIS can be started and stopped within the Services panel. To access

this panel, go to Start > Control Panel > Administrative

Tools. Select Services.

IIS Admin will be available in the list of services.

Chapter 2 / Setting Up Your Web Server 13

Ch
a

p
te

r
2

Figure 2-5: Installing IIS

Selecting IIS Admin from the Services list will allow you to stop,

start, or restart the service. Right-clicking the name of the service

provides access to all available options for the service.

14 Chapter 2 / Setting Up Your Web Server

Figure 2-6: Choosing IIS Admin

Figure 2-7: Options for IIS Admin from Services

Setting Up Apache on Mac

Apache comes preinstalled on Mac OS X.

1. To turn on Apache, go to System Preferences > Sharing.

2. Check Personal Web Sharing and click Start. This will enable

Apache on your system.

Chapter 2 / Setting Up Your Web Server 15

Ch
a

p
te

r
2

Figure 2-8: Personal Web Sharing in Sharing

PHP Installation Options

There are several ways to install PHP on your web server. There are

installers available for both Mac and Windows that facilitate installation

as well as provide access to optional extensions.

Windows users can download the latest installer from

http://www.php.net/downloads.php.

1. Select the PHP 5.2.3 installer link. The version changes periodi-

cally, but the link should be similar to the second link in Figure

2-9.

2. Select a download location. The preferred download link for your

location will usually be highlighted. Note that the available links

may not exactly match what is shown in Figure 2-10.

3. Once you have downloaded the PHP installer, double-click the

installer, select the web server that you are using, and click Next.

16 Chapter 2 / Setting Up Your Web Server

Figure 2-9: Windows PHP installation options

Figure 2-10: PHP download locations

Additional extensions can be installed by expanding the Exten-

sions menu item.

Chapter 2 / Setting Up Your Web Server 17

Ch
a

p
te

r
2

Figure 2-11: Web Server selection

Figure 2-12: Installation options

4. Select an extension and then choose Will be installed on local

hard drive. To complete all of the exercises in this book you will

need to install the Curl and GD library items.

Mac users can download a copy of Marc Liyanage’s PHP Apache mod-

ule at http://www.entropy.ch/software/macosx/php/. Again, the version

changes periodically and may not exactly match Figure 2-14.

18 Chapter 2 / Setting Up Your Web Server

Figure 2-13: Extension installation options

Figure 2-14: PHP installation downloads for Mac

Testing Your PHP Installation

Once you have installed and set up your web server and PHP, you

should test that PHP is installed correctly on your server. A simple

way to do this is to create a PHP page that contains a single PHP func-

tion. This function is phpinfo() and it returns the details of your PHP

installation.

1. Create a new document using your script or web editor and name

it phpinfo.php. Make sure that it has the .php extension.

2. Type the following at the top of the page:

<?php

phpinfo();

?>

3. Save the page to the root level of your web server. The default

locations for the root level of your web server are as follows:

� Windows — C:\Inetpub\wwwroot\

� Mac — HardDrive/Library/Web Server/Documents/

Chapter 2 / Setting Up Your Web Server 19

Ch
a

p
te

r
2

Figure 2-15: phpinfo() script

4. Open this page in your browser using your local address, which is

usually http://127.0.0.1 or http://localhost. The address to the

phpinfo page would be either http://127.0.0.1/phpinfo.php or

http://localhost/phpinfo.php. Your results should look similar to

Figure 2-16.

20 Chapter 2 / Setting Up Your Web Server

Figure 2-16: PHP installation details

Summary

Now that your web server is up and running and PHP has been

installed, you are ready to prepare your FileMaker database server for

web publishing. With the web server configured, you can run a variety

of PHP web-based software on your site such as forums, ticket support

systems, and contact form scripts. Once the database server is config-

ured, you will be ready to bring the power of FileMaker and web

accessibility of PHP together and revolutionize your FileMaker

solutions.

Chapter 2 / Setting Up Your Web Server 21

Ch
a

p
te

r
2

This page intentionally left blank.

Chapter 3

Setting Up
FileMaker Server

Previous versions of FileMaker required FileMaker Server Advanced

in order to publish custom web sites. With the release of FileMaker 9,

publishing FileMaker-driven PHP web sites requires only that your

database is hosted with FileMaker Server 9. If you will be using

Instant Web Publishing, ODBC, or JDBC, you will need to obtain a

license key for FileMaker Server 9 Advanced.

Before installing FileMaker Server 9, make sure the following con-

ditions are met:

� A previous version of FileMaker Server is not installed on the

computer.

� IIS or Apache/Personal Web Sharing is installed and running on

your computer.

� If you are installing FileMaker Server on multiple computers,

make sure they are accessible via your network.

� Java Virtual Machine is installed on your computer.

� You have administrative privileges on the installation computer.

23

Single Computer Installation of
FileMaker Server 9

Begin the installation process by inserting your FileMaker Server 9

CD into your CD drive.

1. Double-click the FileMaker Server 9 installation icon.

2. Windows users will be presented with a Welcome window, as

shown in Figure 3-1. Click Next to continue with the installation.

Mac users will not see this screen.

3. Windows users should select I accept the terms in the license

agreement and click Next to continue with the installation. Mac

users should click Continue and wait for a prompt to accept or

decline the license.

24 Chapter 3 / Setting Up FileMaker Server

Figure 3-1: FileMaker Server 9 Windows welcome screen

4. Select Single Machine for the installation type and then click

Next. Mac users can also use this window to uninstall FileMaker

Server. Windows users can uninstall the software by using Add or

Remove Programs in the Control Panel.

Chapter 3 / Setting Up FileMaker Server 25

Ch
a

p
te

r
3

Figure 3-2: License Agreement screen

Figure 3-3: Installation Type screen

5. Enter your user name, organization name (this is optional), and

license key. Windows users should click Next. Mac users should

click Install to complete the installation.

6. Windows users are now ready to complete installation. Click

Install to install the application files.

26 Chapter 3 / Setting Up FileMaker Server

Figure 3-4: Customer Information screen

7. Once the files are successfully installed, you will have the option

to start the Deployment Assistant. Windows users can choose to

start the Deployment Assistant and click Finish. The Deployment

Assistant will open automatically for Mac users.

Chapter 3 / Setting Up FileMaker Server 27

Ch
a

p
te

r
3

Figure 3-5: Starting the installation process in Windows

Figure 3-6: Installation completed

Multiple Computer Installation of
FileMaker Server 9

FileMaker Server 9 can be installed on multiple computers. The com-

puter that will be hosting the database files is considered the master

computer. The computers that have the Web Publishing Engine and

the web server are the worker computers. If you are going to use a

multiple computer configuration, it is recommended that you install

the application on the worker computers first. By doing this, they will

be available when you configure the master computer.

The Worker Computer

Begin the installation process for the worker computer by inserting

your FileMaker Server 9 CD into your CD drive.

1. Double-click the FileMaker Server 9 installation icon.

2. Windows users will be presented with a Welcome window, as

shown in Figure 3-7. Click Next to continue with the installation.

Mac users will not see this screen.

28 Chapter 3 / Setting Up FileMaker Server

Figure 3-7: FileMaker Server 9 Windows welcome screen

3. Windows users should select I accept the terms in the license

agreement and click Next to continue with the installation. Mac

users should click Continue and wait for a prompt to accept or

decline the license.

4. Select Multiple Machines for the installation type and then click

Next. Mac users can also use this window to uninstall FileMaker

Server. Windows users can uninstall the software by using Add or

Remove Programs in the Control Panel.

Chapter 3 / Setting Up FileMaker Server 29

Ch
a

p
te

r
3

Figure 3-8: License Agreement screen

5. Configure the computer as a worker computer by choosing

Worker and then clicking Next and Install.

30 Chapter 3 / Setting Up FileMaker Server

Figure 3-9: Installation Type screen

Figure 3-10: Master/Worker selection screen

The Master Computer

Begin the installation process for the master computer by inserting

your FileMaker Server 9 CD into your CD drive.

1. Double-click the FileMaker Server 9 installation icon.

2. Windows users will be presented with a Welcome window. Click

Install to continue with the installation. Mac users will not see

this screen.

3. Configure the computer as a master computer by choosing Mas-

ter and then click Next.

Chapter 3 / Setting Up FileMaker Server 31

Ch
a

p
te

r
3

Figure 3-11: Starting the installation process

4. Enter your user name, organization name (this is optional), and

license key. Windows users should click Next. Mac users should

click Install to complete the installation.

32 Chapter 3 / Setting Up FileMaker Server

Figure 3-12: Master/Worker selection screen

Figure 3-13: Customer Information screen

5. Select the deployment type depending on the number of machines

on which you want to install the components, and then click Next.

You may have up to three computers: one each for the Web Server,

Web Publishing Engine, and Database Server.

6. Select the web server to be used and click Next.

Chapter 3 / Setting Up FileMaker Server 33

Ch
a

p
te

r
3

Figure 3-14: Deployment type selection screen

Figure 3-15: Selecting the web server

Once the application is configured, the deployment summary will

reflect a different computer for the Web Publishing Engine and the

Database Server.

Deployment Assistant

The Deployment Assistant will help you set up and connect FileMaker

Server 9 on your computer. Once you have completed the installation

process, the Deployment Assistant will start.

FileMaker Server 9 uses Java Web Start to allow administration of

FileMaker Server through your web browser. This provides an inter-

face with a common appearance on both Mac and Windows operating

systems. Java Web Start was created by Sun Microsystems to allow

Java application software to be started from a web browser.

34 Chapter 3 / Setting Up FileMaker Server

Figure 3-16: Deployment details showing installation on two computers

1. Create a user name and password for the Admin Console account

and click Next.

Chapter 3 / Setting Up FileMaker Server 35

Ch
a

p
te

r
3

Figure 3-17: Starting the FileMaker Server 9 Admin Console

Figure 3-18: Selecting a user name and password in the Admin Console

2. Enter a name and description for your server, enter the adminis-

trator’s contact information, and click Next. This information can

be used to contact the appropriate person in case of an issue or

question regarding the server or database.

3. Decide whether or not you want to enable ODBC/JDBC. This

option will not be available if you are using FileMaker Server 9

instead of FileMaker Server 9 Advanced. This is not required to

use PHP with FileMaker. After you have made your choice, click

Next.

36 Chapter 3 / Setting Up FileMaker Server

Figure 3-19: Naming the FileMaker Server

4. Decide whether or not you want to enable Web Publishing.

Make sure your web server is enabled prior to turning on Web

Publishing. Since you will be developing PHP pages that commu-

nicate with FileMaker, you will need to select Yes, enable Web

Publishing, then click Next.

Chapter 3 / Setting Up FileMaker Server 37

Ch
a

p
te

r
3

Figure 3-20: Enabling ODBC/JDBC

Figure 3-21: Enabling Web Publishing

5. Decide which web publishing technologies you want to enable. We

will be using PHP with FileMaker Web Publishing in this book, so

select PHP. The other technologies are optional. At this point, you

can choose to install the PHP package that is included with

FileMaker Server 9, or if you already have PHP installed you can

select No and keep your existing installation. If you do not install

the PHP 5.1.2 that comes with FileMaker Server 9, you will need

to manually install the FileMaker API for PHP. After you have

made your choices, click Next.

6. Select the web server that you will be using with FileMaker

Server 9. You will be presented with a list of available servers to

make this an easy choice. Once you have chosen your server, click

Next.

38 Chapter 3 / Setting Up FileMaker Server

Figure 3-22: Selecting available Web Publishing technologies

7. After you have completed all of the deployment tasks, you will be

presented with the deployment summary. This summary will

recap the options you selected. You can use the Back button to

make any necessary changes. When you are satisfied with the

choices you have made, click Finish.

Chapter 3 / Setting Up FileMaker Server 39

Ch
a

p
te

r
3

Figure 3-23: Selecting the Web Server

Figure 3-24: Deployment Assistant Deployment Summary screen

Once you have clicked Finish, the Deployment Assistant will set up

and configure your server.

Manually Installing the FileMaker API
for PHP

If you chose to use your own installation of PHP instead of the PHP

version provided with FileMaker Server 9, you will need to manually

install the FileMaker API for PHP prior to testing the FileMaker

Server 9 installation.

Follow these steps for a Windows installation:

1. Locate the FileMaker API for PHP files. They can be found at:

C:\Program Files\FileMaker\FileMaker Server\Web Publishing\

FM_API_for_PHP_Standalone.zip.

2. Decompress the file and then copy the FileMaker.php file and the

FileMaker folder to C:\Program Files\FileMaker\FileMaker

Server\Web Publishing\web-server-support\test\fmi-test\.

40 Chapter 3 / Setting Up FileMaker Server

Figure 3-25: Deploying FileMaker Server 9

Follow these steps for a Mac installation:

1. Locate the FileMaker API for PHP files. They can be found at:

HardDrive/Library/FileMaker Server/Web Publishing/

FM_API_for_PHP_Standalone.zip.

2. Copy the FileMaker.php file and the FileMaker folder to

HardDrive/Library/FileMaker Server/Web Publishing/web-server-

support/test/fmi-test/.

Testing Your Installation

The first time you access the Admin Console, you will be presented

with options to register FileMaker Server or open a technology tests

page.

The Technology Tests page allows you to test your access to the avail-

able technology options. If you need to come back to the Technology

Tests page, it can be accessed from the toolbar of the Admin Console.

FileMaker Server 9 installs a database named FMServer_Sample.fp7,

which has all of the available extended privileges enabled so that you

can test that each of your installation choices is functioning correctly.

Chapter 3 / Setting Up FileMaker Server 41

Ch
a

p
te

r
3

Figure 3-26: Registration and technology tests page links

In this book, we will be working with a FileMaker database as well

as the API for PHP, so it is recommended that you test FileMaker Pro

and PHP Custom Web Publishing. Testing FileMaker Pro will launch

the FileMaker Pro application and open the test database that is

included with FileMaker Server 9. You must have FileMaker Pro

installed prior to launching this test.

42 Chapter 3 / Setting Up FileMaker Server

Figure 3-27: FileMaker Server 9 Technology Tests page

A successful test of FileMaker Pro will open the database to the “Wel-

come To FileMaker Server” layout.

Testing PHP Custom Web Publishing will open a sample PHP page in

your browser. This will display a list of records from the FMServer_

Sample.fp7 database to confirm the proper configuration of FileMaker

Server and PHP.

Chapter 3 / Setting Up FileMaker Server 43

Ch
a

p
te

r
3

Figure 3-28: FileMaker Server 9 test database

Summary

With FileMaker Server 9 ready to serve databases, it’s time to config-

ure the server for PHP access. You can already enjoy the advantages of

having FileMaker Server by opening your databases remotely from

multiple workstations using FileMaker Pro clients and collaborating on

database development with your colleagues. FileMaker Server even

allows you to use the database for data manipulation and at the same

time edit its data structure and layouts — a great way to do testing and

development simultaneously.

44 Chapter 3 / Setting Up FileMaker Server

Figure 3-29: FileMaker Server 9 PHP Custom Web Publishing Test page

Chapter 4

Configuring
FileMaker Server
Admin Console

Now that you have installed FileMaker Server and tested PHP Custom

Web Publishing, you can make changes to your server’s configuration

by accessing the Admin Console. The FileMaker Server Admin Con-

sole enables you to add additional settings that were not part of the

initial setup when installing FileMaker Server 9.

To open the Admin Console, click on the Start Admin Console

icon. The Admin Console will open as displayed in Figure 4-2.

45

Figure 4-1: FileMaker Server 9 Admin Console start page

FileMaker Server Admin Console

The FileMaker Server Admin Console is organized into several sec-

tions. In this book, we will only discuss the areas that are applicable to

web publishing with PHP. The left-hand navigation panel displays a list

of settings that can be further configured. As you click on each topic in

the navigation panel, more details are displayed in the main area.

Two areas that are relevant for web publishing with PHP are Data-

bases and Web Publishing.

Choosing the Databases selection in the navigation panel displays a list

of all the databases hosted by FileMaker Server 9 as well as their priv-

ilege sets and the number of clients that are connected. The Actions

drop-down menu enables you to perform a series of commands such as

Send Message to all or Close All.

46 Chapter 4 / Configuring FileMaker Server Admin Console

Figure 4-2: FileMaker Server 9 administration overview screen

This screen is great as a quick overview of the connected data-

bases so you can ensure that PHP is enabled for the database you are

using.

Choosing Web Publishing in the navigation panel and selecting the

General Settings tab displays a list of settings that allow you to enable

logging and set the maximum number of simultaneous web publishing

sessions. Logging can be valuable for tracking usage and errors.

Chapter 4 / Configuring FileMaker Server Admin Console 47

Ch
a

p
te

r
4Figure 4-3: FileMaker Server database administration screen

The PHP tab contains four sections for configuration:

� PHP Publishing enables PHP web applications to access data

using the FileMaker API for PHP.

� Record Data Pre-Validations is FileMaker’s own set of validation

rules. We will actually leave this box unchecked, as we will be dis-

cussing validation in detail using Java Script and PHP in Chapter

10.

� Default Character Encoding specifies the encoding to be used. You

can leave this set to UTF-8.

� Error Messages enables you to set the language that will be used

when displaying error messages in PHP.

Once these settings are configured, it is unlikely that you will need to

change them.

48 Chapter 4 / Configuring FileMaker Server Admin Console

Figure 4-4: Web Publishing Engine General Settings tab

Summary

Now that FileMaker Server is properly configured, you are ready to

create and launch the database you will use for your PHP projects. In

the next chapter, you will learn how to create and set up a basic data-

base to be accessed by the FileMaker API for PHP.

Chapter 4 / Configuring FileMaker Server Admin Console 49

Ch
a

p
te

r
4

Figure 4-5: Web Publishing Engine PHP tab

This page intentionally left blank.

Chapter 5

Preparing Your
FileMaker Database
for the Web

Blogs are a great way to communicate with many people at once.

Businesses use them to discuss ongoing projects internally and to

communicate with the public. Blogs can also be used to advertise your

products and services, or just provide a vehicle to talk about your

interests.

The project for this book is an exciting FileMaker-driven blog site.

In this chapter you build the blog database. We have included a com-

plete database with the user files for this book at www.wordware.com/

files/fmphpapi and www.fmwebschool.com/wordware. We encourage

you to work through this chapter to get a better understanding of how

to build and optimize a simple database for the web.

51

Creating the Blog Database

Follow these steps to create the database:

1. Create a folder named Blog on your desktop and open FileMaker.

If this is the first time you are creating a database with FileMaker,

you will be presented with the FileMaker Quick Start window.

2. Select the Create empty database radio button, as shown in Fig-

ure 5-2, and then click the OK button.

3. You will be asked to create a name for the file and to save it. Name

the FileMaker file Blog.fp7.

52 Chapter 5 / Preparing Your FileMaker Database for the Web

Figure 5-1: The blog database

Creating the Tables

You will next need to create four tables to support the blog web site.

Follow these steps:

1. Create a new table by

selecting File > Man-

age > Database, and

then select the Tables

tab from the Manage

Database window.

Chapter 5 / Preparing Your FileMaker Database for the Web 53

Ch
a

p
te

r
5

Figure 5-2: FileMaker Quick Start window

Figure 5-3: Opening the Manage
Database window

For our blog project you will need to create the following tables:

Posts, Commenters, Comments, and Categories. Since you named

the FileMaker file Blog, the first table will automatically be named

Blog.

2. Change the first table name to Posts and then click the Change

button as shown in Figure 5-4.

3. Create new tables named Commenters, Comments, and Cate-

gories. Simply type the name of the table in the Table Name text

box and then click the Create button. Continue until you have cre-

ated all four tables.

Once you have created the four tables, your Define Database win-

dow’s Tables tab should look like Figure 5-5.

54 Chapter 5 / Preparing Your FileMaker Database for the Web

Figure 5-4: Changing a table name from Blog to Posts

Creating the Fields for Each Table

Once the individual tables are created, it is time to create the fields for

each table.

The Posts Table

1. Select the Fields tab from the Manage Database window.

Chapter 5 / Preparing Your FileMaker Database for the Web 55

Ch
a

p
te

r
5

Figure 5-5: Table names and the number of fields in each table

Figure 5-6: The Fields tab

Let’s begin with the Posts table. The Posts table has these fields:

2. To create the timestamp field, enter timestamp in the Field Name

box and choose Timestamp from the Type drop-down box as

shown in Figure 5-8. Select Create to create the field.

3. Select the Options button so you can set up the timestamp with

the appropriate options.

4. In the Options for Field window, select the Creation check box in

the Auto-Enter tab and choose Timestamp (Date and Time)

from the drop-down. Then select the OK button to save your

changes.

5. To create the postId field, simply create the field and click

Options. Then select the Auto-Enter tab and the Serial number

56 Chapter 5 / Preparing Your FileMaker Database for the Web

Figure 5-7: Fields for the Posts table

Figure 5-8: Selecting a field type

Figure 5-9: Setting timestamp options

check box. Make sure the Generate on creation radio button is

selected.

6. For the blog example, we set PID00001 as the next value of

postId, and set the increment by value to 1.

7. Create the title and body fields as simple text fields.

The Commenters Table

Next, you will need to create the fields for the Commenters table. The

Commenters table contains the following fields:

1. The commenterId field will need to be set up as Indexed, Auto-

enter Serial. You do this by creating commenterId as a text field

and then clicking the Options button. Once again, select Serial

number and select the Generate on creation radio button.

Enter UID00001 as the next value and set increment by to 1.

Chapter 5 / Preparing Your FileMaker Database for the Web 57

Ch
a

p
te

r
5

Figure 5-10: Adding a serial number

Figure 5-11: Fields for the Commenters table

2. Create each of the remaining fields as text fields.

The Comments Table

Next, you will need to create the fields for the Comments table. The

Comments table contains the following fields:

1. The commentId field will be a text field with an Auto-enter Serial

value incremented by 1. In our example file, we are using

CID00001 as the initial value.

58 Chapter 5 / Preparing Your FileMaker Database for the Web

Figure 5-12: Adding a serial number with an incremental
value of 1

Figure 5-13: Fields for the Comments table

Figure 5-14: Setting options for the commentId field

2. Create the timestamp field as an indexed timestamp.

3. Create three fields named comment, commenterId, and postId as

text fields.

The Categories Table

Finally, you will need to create the fields for the Categories table. The

Categories table contains the following fields, both of which are

Indexed.

1. Create both the postId and category fields as text fields.

The Relationships

Once the four tables have been created with their fields, you will need

to define relationships. To create the relationships between the tables,

simply click on the Relationships tab in the Manage Database

window.

Chapter 5 / Preparing Your FileMaker Database for the Web 59

Ch
a

p
te

r
5

Figure 5-15: Setting options for the timestamp field

Figure 5-16: Fields for the Categories table

1. To visually facilitate adding relationships, arrange the four tables

as shown in Figure 5-18.

2. Select postId from the Posts table and drag your mouse to postId

in the Comments table. This will create a link between the two

tables.

60 Chapter 5 / Preparing Your FileMaker Database for the Web

Figure 5-17: The Relationships tab

Figure 5-18: Creating a relationship between the Posts and
Comments tables

3. Once you have created the connection between the two tables,

edit the relationship by double-clicking on the square in the center

of the link.

The Edit Relationship window will appear. Make sure the correct

fields are selected and check the following two boxes under

Comments:

� Allow creation of records in this table via this relationship

� Delete related records in this table when a record is deleted in

the other table

4. Click OK when you are finished.

5. Next, select postId from the Posts table and drag your mouse to

postId in the Categories table. This will create a link between the

two tables.

Chapter 5 / Preparing Your FileMaker Database for the Web 61

Ch
a

p
te

r
5

Figure 5-19: Editing the relationship between the Posts and Comments tables

6. Edit the relationship by double-clicking on the square in the center

of the link. Check the following two boxes under Categories:

� Allow creation of records in this table via this relationship

� Delete related records in this table when a record is deleted in

the other table

62 Chapter 5 / Preparing Your FileMaker Database for the Web

Figure 5-20: Creating a
relationship between the
Posts and Categories
tables

Figure 5-21: Editing the relationship between the Posts and Categories tables

7. Click OK when you are finished.

8. Next, select commenterId from the Comments table and drag

your mouse to commenterId in the Commenters table. This will

create a link between the two tables.

9. Edit the relationship by double-clicking on the square in the center

of the link. Check the following two boxes under Comments:

� Allow creation of records in this table via this relationship

� Delete related records in this table when a record is deleted in

the other table

Chapter 5 / Preparing Your FileMaker Database for the Web 63

Ch
a

p
te

r
5

Figure 5-22: Creating a relationship between the
Comments and Commenters tables

10. Click OK when you are finished.

That’s it. The tables, fields, and relationships are ready. Now it’s time

to set up the FileMaker accounts to prepare the database for access by

the API for PHP.

64 Chapter 5 / Preparing Your FileMaker Database for the Web

Figure 5-23: Editing the relationship between the Comments and Commenters
tables

Adding Value Lists to the Database

Now you need to add a series of value lists to the database. You will be

creating the following four value lists:

� Categories

� Countries

� OperatingSystems

� Sex

1. To create a value list, select File > Manage > Value Lists.

Chapter 5 / Preparing Your FileMaker Database for the Web 65

Ch
a

p
te

r
5

Figure 5-24: Accessing the Manage Value Lists window

The Manage Value Lists window will open.

2. Click the New button to create a new value list.

3. Once New has been selected, the Edit Value List window will

appear. This window enables you to name your value list, display

values from a defined field, use a value list from another file, or

create your own custom values by typing them into the space pro-

vided and separating each value with a carriage return.

66 Chapter 5 / Preparing Your FileMaker Database for the Web

Figure 5-25: Creating a value list by clicking New

Figure 5-26: Specifying the type of value list to display

4. Name the first value list Categories and select Use values from

field. Once this option is selected, the Specify Fields for Value List

“Categories” window will open. Choose the table and field that

contain the values you want to use. For our blog database, you will

need to choose the Categories table and the category field. The

Include all values radio button should be selected by default. Click

OK.

Congratulations. You have created your first value list.

5. Setting up the next three value lists is very simple. From the Man-

age Value Lists window, press New. Once the Edit Value List

window opens, type the next value list name, Countries.

This time you will select the Use custom values radio button.

This selection enables you to type values directly into the text

field. For this example, simply type in a few countries, and then

click the OK button.

Chapter 5 / Preparing Your FileMaker Database for the Web 67

Ch
a

p
te

r
5

Figure 5-27: Selecting the table and field values to display

6. From the Manage Value Lists window, click New. Once the Edit

Value List window opens, type the next value list name,

OperatingSystems. Select the Use custom values radio button

and type Mac OS, Windows, Linux, each separated by a carriage

return. Click OK once you are finished. We have one value list

left.

7. From the Manage Value Lists window, click New. Once the Edit

Value List window opens, type the next value list name, Sex.

Select the Use custom values radio button and type Male and

Female, each separated by a carriage return. Click OK once you

are finished.

That’s it! Now you will add the functionality of the value list to the

proper fields. To make changes to the fields, we will need to be in

Layout mode.

68 Chapter 5 / Preparing Your FileMaker Database for the Web

Figure 5-28: Entering custom values for the Countries value list

Layout Mode

You should have four layouts. To see the list of layouts, simply select

the drop-down list under the word Layout on the status bar. In order to

make changes to the layout, you will need to enter Layout mode.

To edit your layouts, select View > Layout Mode from the main

menu, or select Ctrl+L on Windows or Cmd+L on the Mac.

You will need to edit several of the layouts to display the correct data.

To begin, select the Commenters layout and enter Layout mode. The

Commenters layout should have 11 fields.

Move your cursor over the country field and right-click if you are

on Windows or Ctrl+Click if you are using Macintosh. A list of menu

options will appear. Select Field/Control > Setup from the menu.

� Note: There is also a keyboard

shortcut that you can use to open the

Field/Control Setup window —

Crtl+Alt+F on Windows and

Cmd+Opt+F on the Macintosh.

The Field/Control Setup window

will open. Follow these steps to

properly activate the value list

with the country field.

Chapter 5 / Preparing Your FileMaker Database for the Web 69

Ch
a

p
te

r
5

Figure 5-29: Viewing the layouts

Figure 5-30: Accessing the Field/Control Setup
window

1. Make sure the Display data from drop-down shows Current Table

[“Commenters”] and country is selected from the list of fields

displayed.

2. Set Display as to Drop-down List.

3. Set Display values from to Countries.

4. Check the Include arrow to show and hide list box.

5. Select Auto-complete using value list and then click OK.

The Countries value list has now been added to the country field.

To quickly test the Country field to make sure the value list has been

applied, return to Browse mode, and then click on the field. The Coun-

try field should look like Figure 5-32.

Next, move your cursor over the Sex field and right-click if you are on

Windows or Ctrl+click if you are using Macintosh. Select Field/

70 Chapter 5 / Preparing Your FileMaker Database for the Web

Figure 5-31: The Field/Control Setup editing window for the country field

Figure 5-32: Displaying the Countries value list

Control > Setup from the menu. When the Field/Control Setup win-

dow opens, make the following changes:

1. Make sure the Display data from drop-down shows Current Table

[“Commenters”] and sex is selected from the list of fields

displayed.

2. Set Display as to Radio Button Set.

3. Set Display values from to Sex and click OK.

The Sex field should now show the values Male and Female with a

radio button beside each value. You will notice that you can only select

one value at a time.

By now you should be comfortable setting up a value list for a

specified field. We have one more value list left for this layout. Move

your cursor over the operatingSystem field and open the Field/Control

Setup window.

1. Make sure the Display data from drop-down shows Current Table

[“Commenters”] and operatingSystem is selected from the list

of fields displayed.

2. Set Display as to Checkbox Set.

Chapter 5 / Preparing Your FileMaker Database for the Web 71

Ch
a

p
te

r
5

Figure 5-33: Field/Control Setup editing window for the sex field

3. Set Display values from to OperatingSystems and click OK.

The Operating System field should now show the values Mac OS, Win-

dows, and Linux with a check box beside each value. You will notice

with check boxes you can select multiple values.

When completed, the fields should look similar to Figure 5-33.

Congratulations. You have just set up three different types of value

lists on the Commenters layout.

The next layout you will work with is Posts. Posts requires both

portals and value lists.

72 Chapter 5 / Preparing Your FileMaker Database for the Web

Figure 5-34: Field/Control Setup editing window for the operatingSystem field

Figure 5-35: Value lists applied to the Country, Sex, and Operating System fields

Portals

Portals enable us to view related data from other tables. The Posts lay-

out will require you to create two portals, one to the Categories table

and one to the Comments table.

Navigate to the Posts layout and enter Layout mode. The Portal

tool is located on the status bar as shown in Figure 5-36.

Select the Portal tool by clicking on it with your mouse. Then, using

your mouse and holding down the mouse button, drag and draw a

square on any unpopulated area of your layout. Don’t worry if you

make the portal too big the first time; you can easily resize it.

Once you have drawn the portal, the Portal Setup window will

open.

Follow these steps to set up your portal correctly:

1. Select Categories from the Show related records from selection.

2. Check Allow deletion of portal records.

Chapter 5 / Preparing Your FileMaker Database for the Web 73

Ch
a

p
te

r
5

Figure 5-36: Portal
tool in the status bar

Figure 5-37: Portal Setup window for the Categories table

3. Check Show vertical scroll bar.

4. Check Reset scroll bar when exiting record.

5. Under Format, choose 1 for Initial row and 10 as the value for

Number of rows.

6. Choose Alternate background fill and select a light color to use

as your background.

7. Click OK. The Add Fields to Portal window will appear.

This new window enables you to add the fields you want to display in

the portal. Proceed through the following steps:

1. Select Categories from the Available fields drop-down list.

2. Double-click on ::category; you will see Categories::category in

the section titled Included fields.

3. Click OK.

Your portal will now display the category field from the Categories

table. We have one more item to add to this portal before it is com-

plete. We need to apply a value list to the category field.

Double-click the category field inside the portal. In the Field/Con-

trol Setup window that opens, make the following selections:

1. Be sure the Display data from drop-down shows Categories and

::category is selected from the list of fields displayed.

2. Choose Drop-down List from the Display as section.

74 Chapter 5 / Preparing Your FileMaker Database for the Web

Figure 5-38: Add Fields to Portal window

3. Choose Categories from the Display values from section.

4. Check Auto-complete using value list.

5. Click OK.

Now that this is complete, the value list will display values from the

Categories layout and the category field.

Next, you will need to set up a portal with multiple fields. This

portal will need to be 350 to 375 pixels wide.

Select the Portal tool by clicking on it with your mouse. Then,

using your mouse and holding down the mouse button, drag and draw a

square on any unpopulated area of your layout. When you are finished

drawing the portal outline, the Portal Setup window will open.

Chapter 5 / Preparing Your FileMaker Database for the Web 75

Ch
a

p
te

r
5

Figure 5-39: Editing the category field to display as a value list

Figure 5-40: Portal Setup window for the Comments table

Perform the following steps to set up your portal correctly:

1. Select Comments from the Show related records from drop-down

list.

2. Check Sort portal records and click on the Specify Sort button

to open the Sort Records window. Double-click on timestamp in

the left window, and make sure Ascending order is selected.

Click OK.

3. Back in the Portal Setup window, check Allow deletion of portal

records.

4. Check Show vertical scroll bar.

5. Check Reset scroll bar when exiting record.

6. Under Format, choose 1 for Initial row and 5 as the value for Num-

ber of rows.

7. Choose Alternate background fill and select a light color to use

as your background.

8. Click OK. The Add Fields to Portal window will appear.

76 Chapter 5 / Preparing Your FileMaker Database for the Web

Figure 5-41: Sorting records in ascending order

Proceed through the following steps to add fields to your portal:

1. Select Comments from the drop-down list.

2. Double-click on the ::comment and ::timestamp fields to add

them to the Included fields section.

3. Next, select Commenters from the Available fields drop-down

list. A new set of fields will be displayed.

4. Double-click ::username to add it to the other fields already pres-

ent in the Included fields section.

5. Click OK to add the three fields to the portal that you created.

Chapter 5 / Preparing Your FileMaker Database for the Web 77

Ch
a

p
te

r
5

Figure 5-42: Adding fields to the Comments portal

Figure 5-43: Adding fields to the Comments portal from the Commenters table

Your new portal should look similar to Figure 5-44. The titles above

each of the fields in the portal are simply text fields.

Now that you have finished setting up your database, you will need to

set up your FileMaker accounts that enable you to publish your data-

base to the web.

Setting Up the FileMaker Accounts

Setting up FileMaker accounts and privileges is extremely important.

FileMaker allows you to protect your database from unauthorized

access as well as to define the privileges visitors have when they

access your web site.

In order to use Custom Web Publishing with your blogging data-

base, you will need to follow these steps:

1. Open the Manage Accounts

& Privileges window by

selecting File > Manage >

Accounts & Privileges.

78 Chapter 5 / Preparing Your FileMaker Database for the Web

Figure 5-44: Portal displaying the comment, username, and
timestamp fields

Figure 5-45: Opening the Manage Accounts &
Privileges window

2. Selet the Extended Privileges tab and click the New button.

3. In the Edit Extended Privilege window, define a new extended

privilege set named fmphp to allow Custom Web Publishing with

PHP.

4. Assign the extended privilege set to the proper privilege set (Data

Entry Only).

Chapter 5 / Preparing Your FileMaker Database for the Web 79

Ch
a

p
te

r
5

Figure 5-46: The Manage Accounts & Privileges window

Figure 5-47: Defining extended privileges

5. Click OK. You will now have a new extended privilege set named

fmphp.

Summary

Congratulations! This concludes setting up the blog database. In this

chapter, you have learned how to create tables, fields, value lists, and

portals. In the next few chapters, you will learn the basics of HTML,

CSS, and PHP, which will prepare you for building a FileMaker-driven

PHP web site.

80 Chapter 5 / Preparing Your FileMaker Database for the Web

Figure 5-48: The fmphp privilege set defined

Chapter 6

HTML Basics

Working with FileMaker and web publishing requires a basic working

knowledge of HTML. If you have never worked with web publishing,

this is a great primer to give you the basics that you need onto which

you can build a strong foundation. If you already have a strong back-

ground in HTML, you can skip this chapter and move forward to the

CSS primer in Chapter 7.

HTML Review

HTML is a markup language that is interpreted by web browsers and

enables you to display text and images in a uniform matter. Without

HTML, your text and images would display haphazardly on your web

page without any structure or consistency. HTML allows us to apply

special tags to our web page content that enable you to change the way

text and images are displayed and aligned on your page.

81

What Do I Need to Get Started?

HTML is truly nothing more than text on a page, saved with an .html

extension. Of course, there are rules and proper tags that must be

used, but to actually create HTML, you need nothing more than just a

text editor. I use Notepad, the default text editor for Windows, for all of

the examples in this book. Macintosh users can use TextEdit.

� Note: Macintosh users — TextEdit can be used on the Macintosh to

write your .html or .htm pages. However, there are a few steps you

need to follow in order to make your pages work correctly. A help

file for setup is available at http://www.fmwebschool.com/resources/

textedit.pdf.

If you are already working with a web editor such as Dreamweaver or

BBedit, then by all means, use those as you work through this chapter.

Both Dreamweaver and BBedit offer trial versions of their software.

� Note: Generally you should not use programs such as Microsoft

Word as a web editor. Word processing programs tend to add invisi-

ble characters and strange formatting to your code. This can cause

your web page to not render properly when deployed to the web. It

is best to stick with a simple program such as Notepad or TextEdit or

a professional web-editing program.

Website Folder Setup

Before we delve into the exciting world of writing HTML, we will

need to create a home for our HTML pages and images. It’s best to

have a structured way of storing your HTML files and image files so

they are easily accessible.

To begin, create a folder on your desktop, and name the folder

website. Not very creative, but we will leave that for later. Open the

website folder, and create a new folder inside that folder named

82 Chapter 6 / HTML Basics

images. You will be saving all of the HTML pages that you create in

the website folder, and all of the images in, you guessed it, the images

folder. Now, open your text editor or web editor and let’s begin creat-

ing your first HTML page.

Exercise 1 — Adding a Title

1. Open your editor, and begin by typing the following code:

<html>

<title>I am on my way to becoming a web guru</title>

</html>

2. Once you have typed this code, save this page to your website

folder as first.html. By selecting Save As you can easily name

your page with an .html extension. When you change the name of

the file, you may receive the error shown in Figure 6-1. The warn-

ing simply lets you know that changing the extension from .txt to

.html may make the file unusable. This does not apply to us in this

example, so continue your saving process, and select Yes to

change your file.

Once you change the file extension, your .txt file should look like

an .html file. Your .html file will also look different depending on

your default browser. In Figure 6-2, you can see that first.html is

displayed as an Internet Explorer page. If you are using Firefox,

the page would display as a Firefox page.

Chapter 6 / HTML Basics 83

Ch
a

p
te

r
6

Figure 6-1: Warning about changing a file’s extension

3. Now that first.html has been created, double-click that file to open

it in your default web browser.

� Note: You can also right-click the HTML page, select Open With,

and choose the Internet browser that you wish to use. On a

Macintosh, Ctrl+click on the HTML page and choose the Internet

browser of your choice.

Once first.html opens in your browser, you will notice that there is not

any text on the web page. Don’t panic; that is the expected result. If

you look at the top of your browser window, you will see the text that

you typed between the <title> and </title> tags displayed in the

menu bar.

Exercise 2 — Working with Headers

Sometimes you will want to bring attention to certain sections of your

web page. Headers are a perfect way to accomplish this. There are six

commonly used header sizes. Header 1 is the largest and header 6 is

the smallest. In this exercise, we’ll experiment with adding headers to

our web page.

84 Chapter 6 / HTML Basics

Figure 6-2: first.html
converted to a web page

Figure 6-3: Displaying text between <title> </title> tags

� Note: By now you have noticed that if you double-click on first.html

it opens as a web page. So, how can you edit the page? You can

simply open the document by right-clicking in Windows or

Ctrl+clicking on the Macintosh and open the document with your

text editor. You can also open the HTML page, choose View Source,

make your changes to the document, and save it to your folder.

1. Open first.html and select View Source.

2. On the next row under the <title> tags, add the following tags:

<h1> and </h1>.

3. Place your cursor between <h1> and </h1> and type This row

of text is formatted as a header 1 tag.

4. Press Return, and on the next row, add <h3> and </h3> tags.

5. Place your cursor between the two tags, and type This row of

text is formatted as a header 3 tag.

6. Save your page, and then open it in your browser. If you do not see

the text, double-check your code and refresh your browser page.

Your code should look like this:

<html>

<title>I am on my way to becoming a web guru</title>

<h1>This row of text is formatted as a header 1 tag</h1>

<h3>This row of text is formatted as a header 3 tag</h3>

</html>

Your web page should look like this:

Chapter 6 / HTML Basics 85

Ch
a

p
te

r
6

Figure 6-4: Header 1 and header 3 tags displayed

Take the time to experiment with the different header sizes. You can

easily change the size of any header by simply changing the numerical

value of the tag. Headers are a great way of getting your visitors’

attention.

Exercise 3 — Text Manipulation

Sometimes, plain text just isn’t good enough, and it has to be manipu-

lated somehow. That means learning more HTML tags!

Let’s begin with the <body> and </body> tags. The <body> tag

is used to identify the beginning of the main portion of your web page.

Basically the <body> tags envelop the content of the web page. You

will place all of your images, links, text, and forms between the

<body> and </body> tags. The <body> tags are generally found

under the heading tags.

Let’s edit the code that we are currently working on.

1. Add the following tags in the next row underneath the <h3> and

</h3> tags: <body> </body>.

2. Place your cursor between the <body> and </body> tags and

type HTML is so easy.

3. Press Return and type one more line: I will be teaching others

HTML soon.

4. Save your code. It should now look like Figure 6.5.

86 Chapter 6 / HTML Basics

Figure 6-5: Using the <body> tags

5. Next, open the page in the browser. You will notice that the two

lines you just typed are smashed together on the same line. To fix

this, you can use either a
 or a <p> tag at the end of each

sentence.

The
 tag is different from the other tags we have worked

with, as it does not require a closing tag. Use the
 tag to

enter blank lines. The <p> tag defines a paragraph.

Insert the
 tag after “HTML is so easy.” The code now looks

like this:

<body>

HTML is so easy

I will be teaching others HTML soon

</body>

6. Save first.html, and open it in your browser. The two sentences

should no longer be jammed together.

Chapter 6 / HTML Basics 87

Ch
a

p
te

r
6

Figure 6-6: The two sentences are on the same line and require more formatting.

Figure 6-7: Formatting text with the
 tag

If you want to add a paragraph return between the two sentences,

you would simply add a <p> at the beginning of the sentence and

a </p> at the end of the sentence. The code with a paragraph tag

would look like this:

<body>

HTML is so easy

<p>I will be teaching others HTML soon </p>

</body>

Once you have more text on your page, you can separate the text

by using the header tags <h1> through <h6> or the horizontal

rule. The horizontal rule simply places a horizontal bar across your

page. To insert a horizontal bar, you would use the <hr> tag.

If you wanted to place a horizontal bar between these two lines

of text:

HTML is so easy

I will be teaching others HTML soon

you would add the <hr> tag after the first line of text. The <hr>

tag is similar to the
 tag, as it also has no end tag.

HTML is so easy

<hr>

I will be teaching others HTML soon

88 Chapter 6 / HTML Basics

Figure 6-8: Formatting text with the <p> tag

7. Add the <hr> tag to your first.html page, save it, and then view it

in the browser. The code for first.html is displayed below. The

screenshot of the browser is in Figure 6-10.

Notice that the horizontal line is displayed between the two sentences.

Take a few minutes now and work with the tags that you have learned.

I’ll wait.

Chapter 6 / HTML Basics 89

Ch
a

p
te

r
6

Figure 6-9: Adding a horizontal line with the <hr> tag

Figure 6-10: Formatting text with the <hr> tag

Exercise 4 — Adding Emphasis

Before you begin working with new HTML tags, let’s simplify the

first.html page.

1. First, you will need to remove the lines with the <h1>, <h3>,

<hr>, and
 tags so your code looks like this:

<html>

<title>I am on my way to becoming a web guru</title>

<body>

HTML is so easy

<p>I will be teaching others HTML soon<p>

</body>

</html>

2. Save your page once you have made the changes.

The and tags are used to add emphasis to a certain

word or sentence. In the next chapter, “CSS Basics,” you will see

that we are able to apply much richer effects using style sheets.

3. Let’s add the tags to the two sentences between the

<body> tags so your code looks like this:

<body>

HTML is so easy

<p>I will be teaching others HTML

soon</p>

</body>

4. Save your page once you have added the tags and then

view the page in your browser.

90 Chapter 6 / HTML Basics

5. Another powerful phrase element is the tag. Replace

the tags in the second sentence with the tags.

The tag will bold your text. Save your page and view

the changes in your browser.

Chapter 6 / HTML Basics 91

Ch
a

p
te

r
6

Figure 6-11: The first sentence and “HTML” in the second
sentence are affected.

Figure 6-12: The tag applied to the word “HTML”

Exercise 5 — Formatted Lists

Creating lists with HTML is very simple. Lists help you present your

page in an organized manner. To create a list on the web, you use the

 tag in conjunction with and tags. The tag

defines the start of a list item, the tag indicates an unordered

list, and the tag indicates an ordered list.

1. Open your text editor, create a new document, and name this doc-

ument ulist.html. Make sure you save this page in the website

folder.

2. The code in Figure 6-14 uses and tags. Add the code

to your ulist.html page.

3. Once you have finished adding the code, save your page, and view

it in the browser. Your page should look like Figure 6-14.

If your web page does not look like the example, check your

HTML code for errors. One of the most common errors is forget-

ting to include the </> closing tag.

92 Chapter 6 / HTML Basics

Figure 6-13: Creating an unordered list with the tag

4. Now that you are an expert with unordered lists, let’s try ordered

lists. Simply change the tags to tags. You do not need

to change the tags.

Apples

Oranges

Jello

5. Save your changes, and then view ulist.html in your browser. You

will see that the bullet list is now replaced with a numbered list.

6. Since you are doing so well, let’s create a numbered list with sub-

categories. To keep things simple, create a new page named

numbers.html and save it in your website folder.

Chapter 6 / HTML Basics 93

Ch
a

p
te

r
6

Figure 6-14: Unordered list displayed in browser

Figure 6-15: Ordered list displayed in browser

7. Open numbers.html, and add the following code:

8. Once you have completed typing the code, save your page and

open it in your browser. Your page should look like Figure 6-17.

Now that you have mastered the fine art of adding lists to your web

pages, take a few minutes to practice before moving on to the next

exercise.

94 Chapter 6 / HTML Basics

Figure 6-16: Numbered list with subcategories

Figure 6-17: Numbered list with subcategories
displayed in browser

Exercise 6 — Images

What would a web page be without some kind of visual enhancement?

When used intelligently, images can add an air of professionalism to

your web site. Images can be used as wonderful navigation tools or to

display a visual representation of the products and services that you

offer.

A good rule of thumb when working with images is to use JPEGs

for photographs and to use GIF and PNG formatting for graphic art

involving flat areas of color, lines, and text.

The images used for this chapter are in the Chapter 6 folder of the

companion files. Copy the following images into the images folder,

located in your website folder. You will need these images to complete

the exercises in the rest of this chapter.

� Coffee.jpg

� Envelope.gif

� Bullet.jpg

The first image we will work with is the coffee image. This image is

202 pixels wide by 132 pixels high, which is written in HTML code as:

<img src="images/Coffee.jpg" width="202" height="132"

alt="I love to drink coffee">

Let’s break down this line of HTML into smaller, bite-sized pieces.

� The src attribute names the file, and the “images” text tells the

browser that the file is in the images folder.

� The width and height attributes provide the dimensions of the

image.

Chapter 6 / HTML Basics 95

Ch
a

p
te

r
6

� The “alt” text is used by search engines, as well as people that

cannot see your page. When you mouse over an image, the <alt>

tag will display a string of text describing the image. If an individ-

ual is blind, their browser can use special software to read this text

to them. The script above will display “I love to drink coffee" when

you mouse over the Coffee.jpg image.

1. Let’s go ahead and create a page named coffee.html. Add the

code shown below:

<html>

<title>Coffee is Great</title>

<body>

<img src="images/Coffee.jpg" width="202" height="132"

alt="I love to drink coffee">

</body>

</html>

2. Once you are finished, save this page in your website folder and

then open it in your web browser. You should now have the Cof-

fee.jpg image on the web page, and if you slowly mouse over the

image, you should see the text “I love to drink coffee.”

� Note: If you are using Firefox, the text will not show on mouse over

as in other browsers. Firefox uses the <alt> tag as an alternative to

the image if it doesn’t load. That is, if the image file gets moved or is

named incorrectly, the <alt> tag will display the text in the image’s

place.

96 Chapter 6 / HTML Basics

Figure 6-18: Image with the “alt” text displaying

What if you can’t see the image? There are several reasons why

this could be happening. First, check to make sure that the Cof-

fee.jpg image is actually in the images folder inside your website

folder. Also, check your code and make sure there are no

misspellings.

3. Now that you have the image displaying on your web page,

wouldn’t it be neat if you could have it link to another page? You

can accomplish this amazing feat using the <a> tag. The <a> tag

defines an anchor. Anchors can be used to create a link to another

document or to create a bookmark inside the document. You will

learn how to apply both of these techniques in this chapter.

To create a link to another document, you use the href attribute. A

typical link looks like this:

Stephen Knight's page

The page that is being called by the <a href> is mywebpage.html.

The text that will appear on the page, usually underlined in blue, is

“Stephen Knight’s page.” Go ahead and add this code to your web

page. Remember to add either a paragraph return (<p>) or a line

break (
) after the line beginning with , or all of

the text and images on your web page will be clumped together.

Once you have added the new code, save the page and view it in

your web browser.

Chapter 6 / HTML Basics 97

Ch
a

p
te

r
6

Figure 6-19: Code used to link to another web page

4. You can easily link to another web site by adding the full address

between the <a> tags:

FMWebschool

Website

You can also make the image into a hyperlink by using an <a

href> tag and including a URL. Replace this line of code on your

web page:

FMWebschool

Website

with this code:

 <img

src="images/Coffee.jpg" alt="I love to drink coffee">

5. Save the page, and then view it in your browser.

6. When you view the image on your web page, you will notice that a

blue border surrounds it. The blue border lets visitors to your site

know that the image is a clickable link. If you’d like, you can

remove the blue border.

98 Chapter 6 / HTML Basics

Figure 6-20: Blue link
displayed under the
image

Figure 6-21: Image as
a link

To remove the blue border, simply add border="0" to your code:

 <img

src="images/Coffee.jpg" alt="I love to drink coffee"

border="0">

After adding the new code, save your page and view it in your web

browser. The blue outline will be gone.

7. You have added links to text and to images, but you can also make

a button a link using the form commands. To do this, place the out-

lined code shown in Figure 6-22 below the <a href> code you

typed earlier. Be sure to add the <p> and </p> tags so the lines

are not on top of each other. Here is how the code should look.

Once you have finished typing the code, save the page and view it

with your web browser.

Forms will be discussed more thoroughly later in this chapter and in

Chapter 9.

Chapter 6 / HTML Basics 99

Ch
a

p
te

r
6

Figure 6-22: Code to make a button a link

Figure 6-23: Clicking the button will open up
http://www.fmwebschool.com in your
browser window.

Exercise 7 — Sending Emails with a Link

You can also add an email link on your web site that will enable visitors

to email you using their default email client.

1. Create a new page, and name it mail.html. Type the following

code onto the new page and save it in your website folder:

<html>

<title>Emailing is Delightful</title>

<body>

Stephen

Knight

</body>

</html>

2. Once you have saved the page, open it with your web browser.

When you click the Stephen Knight link, your default email client

will open, ready to send an email to stephen@fmwebschool.com.

100 Chapter 6 / HTML Basics

Figure 6-24: Opening the default email client by clicking on a link

3. You can also use an image as an email link. Make sure Envelope.gif

is in your images folder. Then change the <a href> line of code

that you just typed to:

<img

border="0" src="images/Envelope.gif">

4. Save this new code and then open the page with your web

browser. You should now have an envelope image that opens your

default email client when clicked.

� Note: When you mouse over the envelope image, you will see the

“mailto” address at the bottom of the web page. In Figure 6-25, it

says “mailto:stephen@fmwebschool.com.”

� Note: When sending an email from your browser, your default

email application will execute. Depending on your email client, your

browser may display messages such as “another program is

attempting to send an email.” There are ways to configure your

email application so it will not display this message. See the “Send-

ing Emails from the Web” section later in this chapter.

Chapter 6 / HTML Basics 101

Ch
a

p
te

r
6

Figure 6-25: Click the envelope to send an email.

Exercise 8 — Anchors Aweigh!

Anchors are used to connect text and images to a specific location on a

page. For example, imagine a web site with dozens of paragraphs, each

discussing a different animal. At the top of the page is an index of the

animals. When you click on any of the animals in the index, you are

automatically taken to the paragraph discussing that animal. This is

done using anchors.

1. Create a new web page named anchors.htm, and save it in your

website folder. You are about to do a lot of typing, so you may want

to stretch your fingers.

2. Type the code shown in Figure 6-26, and save your page.

So far, you have added an <h1> tag as the main descriptive title of

the page. The next few lines of code are the ones that contain the

anchors.

Usually a link looks like this:

<h2>Ferocious Lions</h2>

But since the link is going to an anchor and not a page, you would

use the “#” sign followed by the anchor name instead, like this:

<h2>Ferocious Lions</h2>

102 Chapter 6 / HTML Basics

Figure 6-26: Header 2 links with anchors added

To add the anchor, you simply add to the loca-

tion in your document that you want the link to jump to. “name” is

the name of your anchor. When you click on the link <h2>Ferocious Lions</h2>, you will be taken to

the paragraph on Ferocious Lions. Let’s see how this works by

adding the rest of the code to the page.

3. Type the following paragraph between the <body> tags:

<p>Lions can be ferocious if they

so desire. I personally have never met a lion outside of a

zoo, and I hope that I never have to meet one in the wild,

considering I live in a very quiet neighborhood, and this

would be most unusual. I’m not sure how you should react if

you see a lion in your neighborhood. Do you stop, drop, and

roll? You certainly cannot outrun a lion...and they can climb

trees, right?</p>

4. Once you have typed the above code, duplicate it four more times,

and add it to the page. You can simply copy and paste each time.

When you are finished, you should have five paragraphs. Save your

page, as you still have a little more editing to perform.

5. You will notice that each paragraph begins with <p>Lions can be ferocious if they so

desire. That is fine for the first paragraph, but we need to make

changes to the other paragraphs so the anchors work correctly.

� Change the beginning of the second paragraph to read <p>

Tigers can be ferocious

� Change the beginning of the third paragraph to read <p>Cheetahs can be ferocious

� Change the beginning of the fourth paragraph to read <p>

Lynxes can be ferocious

� Change the beginning of the fifth paragraph to read <p>Sebastian can be ferocious

Chapter 6 / HTML Basics 103

Ch
a

p
te

r
6

6. Save the page once you have completed copying and pasting and

making changes to the first line in the four paragraphs. Once you

save your page, open it in your web browser and minimize it so

that it is about half or one-third the size at which you would nor-

mally view the web page.

When you click on one of the links at the top of the page, the page

will scroll to the paragraph that is connected to that anchor. For

instance, if you were to click on “Savage Sebastian,” the page will

jump down to the paragraph with the anchor set to <a name=

"Sebastian">. You can see how this would be very useful if you had

a page with numerous paragraphs. There is an example of the

anchors.htm page in the Chapter 6 folder.

You can also link an anchor to an image. The code is very

simple:

<a/>

Take some time to review using anchors with both text and images.

Exercise 9 — Tables

You may have noticed that the pages we are creating are not very

structured. Yes, we are using
 and <p> tags to separate sen-

tences, but we really don’t have a lot of control as to where the content

will display on the page. This is where tables enter the picture. Tables

provide a simple way to organize the content of your pages by enabling

us to add alignment, background colors, borders, cell padding, cell

spacing, and more.

Tables are made up of horizontal rows and vertical columns. Each

row and each column has a table cell.

Tables consist of one or more rows of table cells. The <table> tag

defines a table.

1. Create a new page named table.html and save it in your website

folder.

Let’s create a couple of very simple tables.

104 Chapter 6 / HTML Basics

2. To create a one-column table with a border of 1, copy this code and

then save your page:

<html>

<body>

<table border="1">

<tr>

<td>one column</td>

</tr>

</table>

</body>

</html>

Open table.html with your web browser. You will see a one-column

table with a border of 1.

Figure 6-27: One-column table with a border of 1

3. To create a table with one row and three columns, you can simply

add two more lines of code under “<td>one column</td>.”

<html>

<body>

<table border="1">

<tr>

<td>three column</td>

<td>three column</td>

<td>three column</td>

</tr>

</table>

</body>

</html>

Figure 6-28: Three-column table with a border of 1

Chapter 6 / HTML Basics 105

Ch
a

p
te

r
6

4. Now that you’ve created a single row with multiple columns,

you’re probably wondering how to create two rows. You can do this

by simply duplicating the section between the <tr> and <td>

tags, as shown in Figure 6-29.

Figure 6-30: Second table row added

5. Now that you have the hang of creating simple table rows, let’s add

a few more table elements. Open your table.html page, and delete

everything between the <body> tags. Your page should look like

this now:

<html>

<body>

</body>

</html>

106 Chapter 6 / HTML Basics

Figure 6-29: Adding a second table row

6. Make sure you save your page once you have finished editing.

Then copy the code in Figure 6-31. I will explain each line once

you are finished.

The first line of code begins with the <table> command. This lets the

browser know that you are about to create a table. In this example, the

table has a set width of 200 pixels. You can adjust the size of the table

by changing the numerical value. The border is set to 1, and you can

also adjust the border size by changing the numerical value. If you do

not want to display a border, set the border equal to 0.

<table width="200" border="1">

The next line of code adds a bold table title or caption above the table.

This is not required, but it is an easy way to let your visitors quickly

ascertain the contents of the table.

<caption>Employees</caption>

Adding tags around the word “Employees” makes that word

appear as bold text.

Chapter 6 / HTML Basics 107

Ch
a

p
te

r
6

Figure 6-31: Code for multi-row table with table headers

The <tr> tag is used when you want a new table row to begin. The

<tr> tag also has a closing tag (</tr>) Make sure you add this to the

end of your table row.

<tr>

</tr>

The <th> tag stands for table header. Generally the table header is

used for the first row of text in a table. The table header is like the title

of a column. The <th> tag will bold the text in that table cell. Table

headers also have a closing tag (</th>).

<tr>

<th>Name</th>

<th>Title</th>

</tr>

The <td> tag denotes table data. This tag needs to go in front of

every piece of information you want to appear in a table cell.

<tr>

<td>fill me with info</td>

<td>fill me with info</td>

</tr>

This is the completed table opened in my web browser.

108 Chapter 6 / HTML Basics

Figure 6-32: The completed table

Manipulating Cell Data

If you look at the table that you just created, you will notice that all of

the information displayed between the <td> and </td> cells is left

aligned. The table also uses a fixed pixel width. In this section, you will

learn how to manipulate table data and table structure.

� Note: It can be terribly confusing to use table width and percent-

ages. Think of your web page as having a width of 100%. When you

create a table at 60%, this means it is 60% of the width of the page.

1. Let’s continue working with tables. Create a new web page, name

it table2.html, and save it in the website folder. In this example,

we will write code that will enable you to align text in a table using

the align attribute as shown in Figure 6-34. Here, we use left, cen-

ter and right alignment.

Chapter 6 / HTML Basics 109

Ch
a

p
te

r
6

Figure 6-33: Table widths using percentages

Figure 6-34: Aligning text left, center, and right

2. Type the following code into table.html.

In the code above, you created a table with three rows. Each row

has text that enables you to set alignment:

<td align="left">

<td align="center">

<td align="right">

3. You can also add cell padding to the cell to give the text more

space, so it isn’t nestled up against the wall of the cell. Cell pad-

ding is the interior padding of the cell; it adds space between the

cell content and its border.

To add cell padding with a value of 10, use this line of code:

<table width="200" border="1" cellpadding="10">

Let’s look at an example of setting cell padding to 1, 5, and 10.

110 Chapter 6 / HTML Basics

Figure 6-35: HTML code for aligning text in a table

Figure 6-36: Cell padding with increments of 1, 5, and 10

4. Cell spacing separates the distance between table cells. To add cell

spacing, you use cellspacing="", placing a numerical value

between the quotes.

<table width="200" border="1" cellspacing="5">

5. The width attribute allows you to define the width of the table

using either percentages or pixels. The percentage represents the

amount of space between the page margins.

Figure 6-38 shows a table width set at 60%. The code to set the

width of the table to a percentage is: <table width="60%">

Chapter 6 / HTML Basics 111

Ch
a

p
te

r
6

Figure 6-37: Cell spacing with increments of 1, 5, and 10

Figure 6-38: Table set to a width of 60%

Creating Clickable Links in a Table

Creating clickable links in a table cell is extremely easy.

1. Create a new page, name it table3.html, and save it in your

website folder.

2. Next, type the following code to create the table and links.

This code includes links to a web site, as well as an email link. Fig-

ure 6-40 shows how the table should look when viewed in your

browser. As you can see, it is very simple to add a series of links

to your tables.

112 Chapter 6 / HTML Basics

Figure 6-39: HTML code for adding clickable links to a table

Figure 6-40: Links added to a table

Adding Images to Tables

In this section, you will learn how to add images to tables. Here, we

will use the Bullet.jpg image shown in Figure 6-41.

1. Create a new document named table4.html and save it in your

website folder.

2. Add the following code to insert the image into the table:

<html>

<body>

<table width="200" border="1">

<tr>

<td align="center"></td>

</tr>

</table>

</body>

</html>

Notice that by simply adding you

are able to add an image to any table cell. You will also notice that

images follow the same alignment rules as text. You can align

images using <td align=" "> and simply add the words left, cen-

ter, or right between the quotes.

Chapter 6 / HTML Basics 113

Ch
a

p
te

r
6

Figure 6-41: Image inserted into a table cell

Figure 6-42: Images
aligned left, center,
and right in a table

� Note: When working with tables, you need to put a

<td> </td> tag in the code if you have an empty cell. What

is ? This is the code used to represent a non-breaking space.

It is essentially a standard space, with the primary difference being

that a browser should not break or wrap a line of text at the point

where “ ” is. (Most professional web editors such as

Dreamweaver automatically insert this code for you.)

Figure 6-43 shows two tables. The first table is missing the “ ”,

while the second table has the “ ”. You will notice that the last

cell in that table did not collapse as it did in the other table.

The code to insert “ ” is:

<tr>

<td>I have content</td>

<td> </td>

</tr>

Working with <rowspan> and <colspan>

In this example, you will be working with the <colspan> and

<rowspan> tags.

The <colspan> tag enables you to create a cell that spans multi-

ple columns.

As you can see, the top row spans four columns.

114 Chapter 6 / HTML Basics

Figure 6-43: First table without “ ” and second table with “ ”

Figure 6-44: <colspan> across four columns

1. Let’s create a new HTML document. Name it span.html and save

it in the website folder.

2. Copy the code below into span.html, save the page, and then view

it with your browser.

The <colspan="4"> line of code tells the cell to span four columns. If

I had specified <td colspan="3">, it would have only spanned three

columns.

<td colspan="4">Column Span Example</td>

Now let’s look at the <rowspan> tag in action. The <rowspan> tag

enables you to span a single cell across many rows. In the following

example, the cell spans three rows.

Chapter 6 / HTML Basics 115

Ch
a

p
te

r
6

Figure 6-45: <colspan> set to “4”

Figure 6-46: <rowspan> across three cells

Let’s take a look at the code used to generate this table.

Now that you have learned how to use numerous table elements, let’s

use them to create a complex table. Figure 6-48 shows what the table

will look like when completed. Figure 6-49 displays the code used to

create this table. Try to recreate the table without looking at the code.

116 Chapter 6 / HTML Basics

Figure 6-47: <rowspan> set to "3"

Figure 6-48: Table using multiple elements

Thus far, you have mostly worked with tables as a whole. We have

described table dimensions as multiple rows and columns, and you

have adjusted the width of the table numerically and by percentages.

In the next few exercises, you will work with table cells.

Many times you will find that when you create a table, the table

cells will collapse onto themselves as shown in Figure 6-50 unless

they are given an absolute width.

Chapter 6 / HTML Basics 117

Ch
a

p
te

r
6

Figure 6-49: Code used to create complex table

Figure 6-50: Table with cells collapsed

You can easily set the width of the individual cells so that they will

accommodate the text and display it properly. Notice that the table in

Figure 6-51 looks much better.

You can easily apply table width by using width="" and placing a num-

ber or percentage between the quotes.

Nested Tables

Many times you will need to put a table inside another table. This is

not difficult to do.

1. Create a new HTML page, name it table5.html, and save it in

your website folder.

2. Next, add the HTML code shown in Figure 6-53 to table5.html.

118 Chapter 6 / HTML Basics

Figure 6-51: Table with set width applied to individual cells

Figure 6-52: Table code with cell width set to 200

Here is what a table inside a table looks like when opened in the

browser:

The first table has a width of 600 and contains two columns. The first

cell is set to 200. Since the table is set to 600, this means the next cell

defaults to 400. The second table, with a width of 350, is placed inside

the second cell of the first table.

Changing Text and Background Colors of Cells

You can easily change the color of text and table cells. The code that

you use to change the font color is , where

the “#” sign is followed by a series of six letters and numbers. Colors

are defined on the web using a series of six digits that represent a

combination of red, green, and blue. The series can be all numbers, all

letters, or a combination of both.

For example, <FFFFFF> is the color white, and <A52A2A> is

the color brown. There are numerous color charts on the web that dis-

play all of the web-safe colors that are cross-platform compatible. One

such site is www.w3schools.com/html/html_colors.asp. FMWebschool

Chapter 6 / HTML Basics 119

Ch
a

p
te

r
6

Figure 6-53: Table inside a table

Figure 6-54: Browser view of a table inside another table

also has a FileMaker color converter for finding matching colors when

working with the web at www.fmwebschool.com/fmcolorpro.php.

To create background colors for each cell, you use the bgcolor

command. If you would like to change the background color of a partic-

ular cell, simply add bgcolor="#color goes here". To change the font

color, you simply add the code .

Let’s break apart the code to see how this works.

1. Create a new HTML page, name the page colors.html, and save it

in your website folder.

2. Add the <html> and <body> tags to the top of the page.

3. Next we will create a table with three cells. Each cell will be a dif-

ferent color, and the text in each cell will also be a different color.

Begin by creating a table with the following code:

<table width="300" border="1" cellpadding="10"

cellspacing="2">

You are creating a table with a width of 300 pixels.

4. Next we will add the first cell:

<tr>

<td bgcolor="#3366CC"><div align="center"><font

color="FFFFFF">White Text</div></td>

In the above lines of code, we set the background color to blue

using the hex code that is equal to blue. Starting with <div

align="center">, we are setting the alignment of this cell to

"center" to center the contents of this cell. The next section of

code beginning with sets the font

color to white.

120 Chapter 6 / HTML Basics

Figure 6-55: Table with different background colors and font colors

5. Add this line of code:

<td bgcolor="#FFCC66"><div align="center"><font

color="3366CC">Blue Text</div></td>

The line <td bgcolor="#FFCC66"> adds a background color of

orange, and adds blue text.

6. Now, add this line of code:

<td bgcolor="#CCFF99"><div align="center"><font

color="FF9900">Orange Text</div></td>

The line <td bgcolor="#CCFF99"> adds a background color of

green, and adds orange text.

7. Now add your closing tags.

</tr>

</table>

</body>

</html>

8. Save your page, and then view it in the browser. You should now

have a table with multiple colored cells and different colored fonts.

Figure 6-56 shows the completed code.

Chapter 6 / HTML Basics 121

Ch
a

p
te

r
6

Figure 6-56: Completed code for colors.html

I Never Meta Refresh I Didn’t Like

Have you ever gone to a web site, and all of a sudden you were taken

to another web site? This is known as redirection, or a meta refresh. A

meta refresh allows you to refresh and reload the current page you are

on or enable you to automatically move to another web page after a

period of time.

To have your web page refresh every 5 seconds, you would use

this code:

<meta http-equiv="refresh" content="5">

You can also perform a meta refresh that takes you to another web

page. This is commonly done if the web site has moved or if the page

you are visiting is outdated. The code below performs a meta refresh

after 2 seconds and sends you to another web page:

<meta http-equiv="refresh" content="2;

URL=http://www.newpage.com">

This code tells the browser to refresh the page after 2 seconds and

that the new URL should be http://www.newpage.com. You can add any

URL link here.

If you wanted the new web page to load instantly, you would sim-

ply change the refresh time to "0".

This is a simple example with some additional text notifying your

visitors that they will be redirected to another page in 5 seconds.

1. Create a new HTML page, name it meta.html, and save it in your

website folder.

2. Type the code shown in Figure 6-57 into meta.html and save the

page when you have finished.

122 Chapter 6 / HTML Basics

3. Open meta.html in your browser and wait 5 seconds.

Adding meta refresh to your own pages is very simple. Practice chang-

ing the time of the refresh, as well as sending the page to other web

sites.

Sending Emails from the Web

Earlier in the chapter we discussed sending emails using your web

browser and default email client. Internet Explorer displays the mes-

sage shown in Figure 6-58, warning you that you are about to send

your email address to a recipient and that the information you are

sending is not encrypted. For the sake of this exercise, click OK.

Chapter 6 / HTML Basics 123

Ch
a

p
te

r
6

Figure 6-57: Code to refresh a page after 5 seconds and redirect the user to
http://www.fmwebschool.com

Figure 6-58: Internet Explorer alert informing you that your
email address and content will be sent unencrypted

If you are using Outlook Express as your email client, you will be

informed that a program is attempting to send the following email

message on your behalf.

You can turn this feature off in Outlook Express by doing the following:

1. Select Tools > Options.

2. Select the Security tab.

3. Deselect the check box that says Warn me when other applica-

tions try to send mail as me.

4. Click Apply and then OK.

Now, when you send emails, the Outlook Express warning will no lon-

ger appear. This will also allow you to send emails automatically from

FileMaker without having this warning appear.

The above technique works for Outlook Express but not for Out-

look. If you have Outlook, there is a free software program that you

can run in the background that will solve the alert box problem. The

program, named Express ClickYes, is available for download at

http://www.contextmagic.com.

124 Chapter 6 / HTML Basics

Figure 6-59: Outlook Express warning

Summary

Congratulations on completing this chapter on HTML basics. This

chapter was not meant to be a total immersion into HTML but a brief

overview of the language and techniques you will need to know to

work with PHP. There are several great resources available online and

hundreds of books written on HTML that can provide further study

and insight into the HTML language. The next chapter will teach you

about the power of cascading style sheets (CSS) in managing the

design elements of your entire web site.

Chapter 6 / HTML Basics 125

Ch
a

p
te

r
6

This page intentionally left blank.

Chapter 7

CSS Basics

Cascading Style Sheets

CSS stands for cascading style sheets. CSS works in conjunction with

HTML by adding features that are not available with HTML, giving

you the ability to control fonts, margins, size, boldness, colors, etc.

CSS allows you to make global changes to a web site by editing one

line of code.

If you examine the typical HTML page, you will notice numerous

font tags throughout the page. Imagine that your page has 30 of these

font tags set for Verdana, and your boss says, “Verdana is a nice font,

but Helvetica looks more fun. I want you to change all of the pages to

Helvetica.” What if your site has 15 pages? Now you have 450 font

tags to change. This is great if you love mind-numbing repetitive

work! There is, of course, an easier way, which is why I am introducing

you to CSS. Just one simple line of code will make the necessary

changes you need for all of your web pages. Sound good?

There are two different styles of CSS: external and internal. Inter-

nal simply means that the style sheet is contained within the HTML

document. Your CSS code will go between the <style></style> tags,

which reside between the <head></head> tags.

An external style sheet is a set of style rules saved as a .css file. A

reference to the file’s location is placed between the <head> tags of

your HTML document. This CSS file can be linked to a single page, or

can control the look and feel of your entire web site. You will also find

that using external style sheets saves tremendous amounts of file

127

space and allows your pages to load faster. In this book, we will be

focusing on external style sheets.

Below is an example of a link to an external style sheet:

<html>

<head>

<link href="stylesheet.css" rel="stylesheet"

type="text/css">

</head>

Let’s delve right into our first CSS page. You will be using the same

website folder you created in Chapter 6. Open the companion folder

for this chapter, and copy the images folder into the website folder.

The path should look like this:

website/images

The images folder contains all of the images we will be using through-

out this chapter.

1. To begin with CSS, you first need to create a CSS document, name

it stylesheet.css, and save it in your website folder. It is very

important that you save the file using .css, as this extension tells

the browser that it is reading CSS code.

2. Open this document with your text editor, and enter the following

lines of code:

h2 {

font-family: Arial, Helvetica, sans-serif;

font-size: 18px;

color: #000066;

}

Be sure to save stylesheet.css.

3. Next, create an HTML page named cascading.html and save that

document in your website folder as well. Type the code shown in

Figure 7-1 into cascading.html, save the page, and view it in your

browser.

128 Chapter 7 / CSS Basics

The code <link href="stylesheet.css" rel="stylesheet"

type="text/css"> tells the browser that you will be using an

external style sheet.

The CSS code in step 1 is set to change the text surrounded by

the <h2> tags to blue. Recall from the previous chapter that there

are several different header tags. When you apply header tags to

text, they change the size of the text.

Also, in the code above, we only have one <h2> tag. If I had

added more <h2> tags, the CSS code would automatically turn all

of the text surrounded by the <h2> tags blue.

Chapter 7 / CSS Basics 129

Ch
a

p
te

r
7

Figure 7-1: Calling an external style sheet that affects the <h1>, <h2>, and <h3> tags

Figure 7-2: cascading.html viewed in the browser

Let’s discuss constructing a style rule using our example from

above.

Each style rule consists of two main parts: the selector and the

declaration. The selector specifies what component of the HTML

document is to be styled. In the above example, we see that it is

h2 that is to be styled. The next part, the declaration, goes

between a set of curly braces { }. The style rule declaration con-

sists of two parts: the property and the value.

You can include multiple properties and values for a single

selector, but be sure to separate them with a semicolon.

A property is the characteristic that you want to change, like

“color” in the above example. A value is what you want the prop-

erty to be. In this example, we used a value of “blue.”

� Note: In the above example, we used the color blue. If you wish to

specify an exact color, you may want to use hexadecimal coding. In

that case, the above example would read: h2 {color:0000F0}

If you wanted to include multiple declarations, the style rule

would look like this:

h2 {color:blue; background:black}

Notice a colon separates the property and value, and a semicolon

separates each declaration.

Just as you can claim multiple declarations, you can have multi-

ple selectors affected by a declaration as well. For example, the

following code will make both h1 and h2 blue:

h1, h2 {color:blue}

130 Chapter 7 / CSS Basics

Figure 7-3: Description of a style rule

Your style rule can become a bit confusing if it has multiple decla-

rations. You can add a space between the property and the value

after the colon as shown below.

h2 {color: blue; background: gray}

4. Let’s build a simple page with multiple declarations. Open your

style sheet, and edit the code to look like Figure 7-4.

� Note: When typing font-size, you cannot have a space between the

number value and the “px” or “pt” value. Your values must look like

18px or 18pt.

5. Go ahead and save your style sheet. Now open up cascad-

ing.html in your browser. Your results should match Figure 7-5,

where the first line has an orange background with green text, and

the second line has a gray background with blue text.

Chapter 7 / CSS Basics 131

Ch
a

p
te

r
7

Figure 7-4: Working with multiple declarations in stylesheet.css

Figure 7-5: stylesheet.css opened in browser with orange and gray backgrounds

Before we move on, let’s take a closer look at the style sheet so we

can see what’s going on.

We have learned that the value that appears before the curly

braces ({) is called the selector. The selector specifies what compo-

nent of the HTML document is to be styled.

h2 {

The next line begins with the property "font-family" with a value of

Arial, Helvetica, sans-serif. Why are so many fonts listed? The fonts

are listed from the most desired font to, well, the least desired font.

Not everyone’s computer will have all of the fonts that you desire to

use, so you must give those computers an option of using another font.

font-family: Arial, Helvetica, sans-serif;

The next line of code shows the font-size property with a value of

18px. You can change the pixel value to just about any size you

want…well, within reason. This determines how large the font will

appear on the web page.

font-size: 18px;

The color property has a value of blue. You could have also used the

hexadecimal value for blue, or for any color.

color: blue;

The background property has a value of gray. You could have also used

the hexadecimal value for gray, or for any color.

background: gray;

Don’t forget to add your closing tag!

}

132 Chapter 7 / CSS Basics

The h1 declaration below is pretty much the same as the h2 declara-

tion, except for the different colors used.

h1 {

font-family: Arial, Helvetica, sans-serif;

font-size: 18px;

color: green;

background: orange;

}

Fonts

Let’s style both h2 and p text. We will use two separate font families.

The list of fonts starts with the most desired font family and ends with

a generic option. In this example, I have added Tahoma, Arial, and

sans-serif to the h2 declaration, and I have added Times New Roman

and serif to the p declaration.

1. To make these changes, we will need to first open stylesheet.css.

Edit the code in your style sheet so it looks like the code displayed

in Figure 7-6.

Chapter 7 / CSS Basics 133

Ch
a

p
te

r
7

Figure 7-6: Editing stylesheet.css to add fonts

Once you have made the changes to your code, create a new style

rule that looks like this:

p {

font-family: Times New Roman, serif;

font-size: 12px;

color: black;

}

Once you have added these changes to your style sheet, save your

style sheet.

2. Next, open cascading.html with your text editor. Highlight all of

the code between the <body></body> tags and delete it. Also

delete the <h1> line of code in the head section of the page. Then

type the code below between the <body> tags and save your

changes:

<h1>"h1" defaults to Arial</h1>

<h2> "h2" Will default to Tahoma, Arial, sans-serif</h2>

<p>"p" Will default to Times New Roman, serif</p>

<h3>"h3" will not be affected</h3>

3. Open cascading.html in your web browser. Your results should

reflect those shown below.

Pretty easy, eh?

134 Chapter 7 / CSS Basics

Figure 7-7: Font changes applied to <h1>, <h2>, and <p> tags

Font Size

You can designate font sizes by using either “px” for pixel or “pt” for

point size. The decision is entirely up to you as to which one you

decide to use. Just remember that you cannot have any space between

the numerical value and the “pt” or “px.” Your values must look like

24pt, with no space, rather than 24 pt.

Font Weight

Font weight refers to the actual lines that make up the individual font.

The font weight system uses a numerical value from 100 to 900, with

100 being the lightest and 900 being the heaviest.

Check out the example below. I’ve added a font weight of 100 to

the <h2> tag and a font weight of 900 to the <p> tag.

Now let’s change the font weight order and apply 900 to the h2 decla-

ration and 100 to the p declaration.

That’s a big difference!

You can make changes to the font weight by simply adding this line

of code:

font-weight: 900;

Chapter 7 / CSS Basics 135

Ch
a

p
te

r
7

Figure 7-8: <h2> with a font weight of 100 and <p> with a font weight of
900

Figure 7-9: <h2> with a font weight of 900 and <p> with a font weight of
100

Here is what the code looks like inside the h2 declaration:

h2 {

font-family: Tahoma, Arial, sans-serif;

font-size: 18px;

font-weight: 900;

color: black;

}

Open up your style sheet, and add font-weight: 900; to your code.

Save your page and open cascading.html in your browser. Take some

time to play with font weight by using different numerical values.

Font Style

The next category we should cover is font styles. There are three dif-

ferent kinds of font styles: normal, italicized, and emboldened. Normal

is the default value. To add a font style, you can simply add this line of

code to your declaration.

font-style: italic;

I have added the font-style property to the h1 code below:

h1 {

font-family: Arial, Helvetica, sans-serif;

font-size: 18px;

font-weight: normal;

color: black;

font-style: italic;

}

Go ahead and add this line of code to your style sheet as well. Save

stylesheet.css and then open cascading.html in your browser. You

will notice that the text with the <h1> tag is now in italics.

� Note: I like to add a semicolon after the last value just in case I

want to add another property. This way I won’t forget to add the

semicolon.

136 Chapter 7 / CSS Basics

Margins

Cascading style sheets give you the ability to determine all four mar-

gins on a page: top, bottom, left, and right. You do have limited abilities

with HTML as far as margins are concerned. You can use the

<blockquote> tag to affect the left margin (basically giving you more

indentation). But using <blockquote> in your HTML pages does not

even come close to providing you with the capabilities cascading style

sheets offer.

Let’s see how we can apply <blockquote> to our CSS code.

1. Let’s go ahead and create a new HTML page. Name the page mar-

gins.html and save it in the website folder.

You do not need to create another style sheet, as one external

style sheet can control an entire web site. Simply remember to

include your link to the external style sheet in the <head> sec-

tion of your web page: <link href="stylesheet.css" rel=

"stylesheet" type="text/css">.

2. Open margins.html with your text editor, and enter the following

code:

3. Save this page into the website folder.

Chapter 7 / CSS Basics 137

Ch
a

p
te

r
7

Figure 7-10: margins.html source code

4. Next, you will need to make some additions to your style sheet.

Open stylesheet.css with your text editor, and find the declara-

tion that starts with "p {". Then add this line of code:

"margin-left: 5%;margin-right: 5%;". The code should look like

this:

p {

font-family: Times New Roman, sans-serif;

font-size: 12px;

color: black;

margin-left: 5%;margin-right: 5%;

}

5. Next, create a declaration called blockquote, and add it to your

style sheet.

blockquote {

font-size: 14px;

color: black;

margin-left: 25%;margin-right:25%

}

6. Save your document.

Let’s go ahead and view the results in your browser. Then, we will

break down the code.

138 Chapter 7 / CSS Basics

Figure 7-11: margins.html with different margin dimensions
applied

In the above example, we have set the p element equal to 5% and we

have set blockquote equal to 25%. The percentage values are applied

to both left and right margins.

Top and Bottom Margins

� Note: For this example I am going to use "em" instead of a per-

centage. The reason is this: Different fonts have different heights. If

you were to use different fonts on your page, or if a visitor to your

site does not have a particular font on their computer, things could

get really ugly. "em" equals the line height of a particular font and is

therefore more exact.

Let’s add some padding to the block of text in the center of our web

page.

1. Open stylesheet.css, and edit the blockquote code so it looks like

this:

blockquote {

font-size: 14px;

color: black;

margin-left: 25%;margin-right:25%;

margin-top: 5em;

margin-bottom: 5em;

}

2. Go ahead and save your changes. Now, open margins.html in

your web browser.

Chapter 7 / CSS Basics 139

Ch
a

p
te

r
7

Notice the difference in the amount of space above and below the

blockquote text?

You can use one line of code to set the top and bottom, and left and

right margins in one fell swoop. The important thing to remember

when doing this is that the top and bottom margins are set first, and

that the left and right margins are set next. If we wanted to code the

above example in one line, it would look like this:

margin: 5em 25%;

The whole blockquote declaration would then look like this:

blockquote {

font-size: 14px;

color: black;

margin: 5em 25%;

}

� Note: There is no comma between the two values; simply separate

them with a space.

140 Chapter 7 / CSS Basics

Figure 7-12: margins.html edited using em for precise settings

What if I wanted to apply different values to each margin? You can eas-

ily do this by using what we have learned above:

blockquote {

font-size: 14px;

color: black;

margin: 5em 25% 15em 20%;

}

In this example, the top margin is set to 5, the right margin is set to

25%, the bottom margin is set to 15, and the left margin is set to 20%.

The pattern goes in a clockwise circle around the block of text.

Alignment

The alignment property used with CSS allows you to change the text

values of a page. You can set this to left, right, center, and justify. The

text-align property is very similar to the <align> element used in

HTML, but it is much more powerful. Let me demonstrate.

1. Create a new HTML page, name it alignment.html, and save it in

the website folder. Add the code shown in Figure 7-13, and save

the page.

Chapter 7 / CSS Basics 141

Ch
a

p
te

r
7

Figure 7-13: Code for alignment.html

2. Next, open up stylesheet.css. We will need to make a few

changes to the code. Find the h2 block of code, and make changes

so it looks like the code below:

h2 {

font-family: Tahoma, Arial, sans-serif;

font-size: 18px;

font-weight: 900;

color: black;

text-align: center;

}

3. Make sure you have saved your changes to both stylesheet.css

and alignment.html. Open alignment.html in your browser. You

will notice that both lines of text that begin with h2 are centered

on the page.

I know this is not tremendously amazing, since you learned how to do

this with HTML. The difference is this. Let’s say that I want to also

center the h3 headers. With HTML, I would have to add the align

value to the h3 headers. With CSS, I can simply add h3 right into my

style rule. Also, since we are using external style sheets, we can apply

this style sheet to every page in our web site with one line of code.

Our one style sheet would change our entire web site for us instantly.

142 Chapter 7 / CSS Basics

Figure 7-14: Browser view of alignment.html

h2,h3 {

font-family: Tahoma, Arial, sans-serif;

font-size: 18px;

font-weight: 900;

color: black;

text-align: center;

}

Now any time h3 is present in my HTML code, the text will be cen-

tered. Go ahead and try it out. Your web page should look like Figure

7-15.

Text Decoration

Text decoration enables us to add different elements to our page by

applying none, underline, overline, and line-through to our text. The

none value is usually set as the default and generally isn’t required.

Links, of course, are an exception. We’ll discuss this later in this

section.

1. Open stylesheet.css. You will need to make some simple coding

changes to demonstrate text decoration. Edit the code so it is the

same as that shown in Figure 7-16. I have only listed the declara-

tions that will need to be changed.

Chapter 7 / CSS Basics 143

Ch
a

p
te

r
7

Figure 7-15: Alignment added to multiple headers

2. Save your changes, and then open alignment.html. Change align-

ment.html to look like the code in Figure 7-17.

144 Chapter 7 / CSS Basics

Figure 7-16: Editing stylesheet.css to use text decoration

Figure 7-17: alignment.html source code

3. Save alignment.html and then view the page in your browser.

Earlier I implied that "none" was kind of a boring default value that is

just there when needed. This is not altogether true. One of the most

important roles "none" can play is to remove underlines that are auto-

matically added to text on our pages. A great example is a link to

another web site. You can use the following code line to get rid of

those pesky underlines.

text-decoration: none;

Commenting Your Code

Our style sheet has become pretty busy. We’ve made quite a few

changes, and it now contains numerous declarations. You can organize

your style sheet by adding comments to the code. This is common

practice, especially if someone else may be working on the web site

with you. Comments quickly give you and the other coder a quick

understanding of the code. Comments in style sheets are indicated by

/* and */, as in:

/* add comment here */

Chapter 7 / CSS Basics 145

Ch
a

p
te

r
7

Figure 7-18: Alignment.html displayed in the browser

Figure 7-19 shows how comments look in your style sheet.

Code surrounded by /* and */ is not processed. You can actually com-

ment out entire style rules just by adding /* in front of the first line of

code and */ after the last line of code to be skipped.

Backgrounds

You can change the background color of your page by adding style to

the body element. The code is:

body {background-color: any color goes here;}

1. Open stylesheet.css with your text editor, and create a new style

rule by entering the following:

body {

background-color: gray;

}

146 Chapter 7 / CSS Basics

Figure 7-19: Examples of commenting code

2. Save this change, and then open alignment.html. Your page

should look like Figure 7-20.

Remember, there is a plethora of colors to choose from. Instead of

entering a color name, such as gray, red, blue, etc., it’s more accurate

to use the hexadecimal code for the color value instead.

Background Images

The colored background is great, but what if you want to add an image

to the background instead? It’s actually quite easy. Inside your images

folder for this chapter, you should have an image titled background.jpg.

If not, please make sure you add it to your images folder; you will need

it for this exercise.

1. Open stylesheet.css with your text editor. Navigate to:

body {

background-color: gray;

}

2. Let’s make a couple of changes to the code. First, change the back-

ground-color to #FFFFFF. Next, add this line of code under the

background-color line: background-image: url(images/back-

ground.jpg);. The last line of code will add background.jpg as the

background of your web page.

Chapter 7 / CSS Basics 147

Ch
a

p
te

r
7

Figure 7-20: Gray background applied to alignment.html

body {

background-color: #FFFFFF;

background-image: url(images/background.jpg);

}

Notice that the last line of code has an addition that we have not

used in any of the previous examples. We use “url” to specify the

path to the image and the name of the image. The image resides in

the images folder, so we must include that before the name of the

image.

3. Go ahead and save the changes to stylesheet.css, then open align-

ment.html in your web browser. It should now resemble Figure

7-21.

� Note: Before we go into a lot of detail about images, let me add

that the body element should include a default font-family as well. I

have not included it in the next several exercises as we are working

with images, but you should add it to your code when building web

pages.

Fixed Background Images

If you have an HTML document that is longer than a single page, and

it requires scrolling to get to the bottom of the page, you can create a

page where the image stays put, and the text moves over the image.

148 Chapter 7 / CSS Basics

Figure 7-21: Using a background image

To create this effect, simply add background-attachment: fixed

to your style rule as shown below:

body {

background-color: white;

background-image: url(images/background.jpg);

background-attachment: fixed;

}

Note that #FFFFFF and white are equivalent.

Repeating Background Images

1. Let’s go ahead and create a new html page named

cssexample.html. We will be doing a lot of image manipulation in

this section and it will help to start with a clean page.

2. Go ahead and add this code to cssexample.html, and then save

your page.

<html>

<head>

<title>CSS Example</title>

<link href="stylesheet.css" rel="stylesheet"

type="text/css">

</head>

<body>

</body>

</html>

A problem you may come across when you use a background image is

that your image tiles across the page. Images tile across the page in a

left-to-right, top-to-bottom pattern. This can be quite annoying if you

want a single fixed image as the background of your page. Figure 7-22

demonstrates tiling with a background image that is 250 x 250 pixels.

Chapter 7 / CSS Basics 149

Ch
a

p
te

r
7

We can stop this from happening by adding background-repeat:

no-repeat; to the style rule:

body {

background-color: white;

background-image: url(images/tile2.jpg);

background-repeat: no-repeat;

}

Most of the time, you will use the above code with larger images.

Repeat-x

Another background value is “repeat-x,” which displays the back-

ground image in a single horizontal line across the page. I have

included an image titled repeat_x.jpg in the companion files. Please

make sure this image is in your images folder.

1. Open stylesheet.css and add the following changes to your style

sheet. You will need to change the image name from back-

ground.jpg to repeat_x.jpg, and you will need to add

background-repeat: repeat-x; to your code.

150 Chapter 7 / CSS Basics

Figure 7-22: Example of image tiling

body {

background-color: white;

background-image: url(images/repeat_x.jpg);

background-repeat: repeat-x;

}

2. Once the changes have been made, save your style sheet and open

cssexample.html in your browser. The repeat_x.jpg image will

tile horizontally across the page as shown in Figure 7-23.

Repeat-y

This example is very similar to the previous one except that repeat-y

tiles the image in a vertical column. In this example I am using an

image titled repeat_y.jpg, and the last line of code now reads back-

ground-repeat: repeat-y;.

1. Open stylesheet.css with your text editor, and make the neces-

sary changes.

body {

background-color: white;

background-image: url(images/repeat_y.jpg);

background-repeat: repeat-y;

}

Chapter 7 / CSS Basics 151

Ch
a

p
te

r
7

Figure 7-23: background-repeat: repeat-x demonstrated

2. Save this page and open cssexample.html in your web browser.

Your display should look like Figure 7-24.

Background Position

You also have control over the background position. The background

position defaults to the left, but you can use “right” and “center” as

well. If you wanted the background position to display on the right side

of your page, you would add the line background-position: right; to

your style sheet, as shown below.

body {

background-color: white;

background-image: url(images/repeat_y.jpg);

background-repeat: repeat-y;

background-position: right;

}

Figures 7-25 and 7-26 show background-position right and center. Try

changing the background position in your style sheet. Save the

changes, and open cssexample.html in your browser. Your changes

should reflect the examples displayed below.

152 Chapter 7 / CSS Basics

Figure 7-24: background-repeat: repeat-y demonstrated

Vertical Alignment

Vertical alignment enables you to set image values as “top,” “bottom,”

and “center.” The code below sets the background position to bottom

and uses the image v_bottom.jpg. If you want the background to tile

across the bottom of the page, your code would look like this:

body {

background-color: white;

background-image: url(images/v_bottom.jpg);

background-repeat: repeat-x;

background-position: bottom;}

In your style sheet, try the bottom, center, and top positions. Make

sure you save your style sheet every time you change your code.

Open cssexample.html in your browser to view the results.

Chapter 7 / CSS Basics 153

Ch
a

p
te

r
7

Figure 7-25: background-position: right Figure 7-26: background-position: center

Figure 7-28:
background-position:
center

Figure 7-27:
background-position:
bottom

Combining Vertical and Horizontal Alignment

It is actually extremely easy to combine vertical and horizontal align-

ment. The following example uses an image named Coffee.jpg and the

instruction background-position: bottom right to place the image in

the lower-right corner of the page.

body {

background-color: white;

background-image: url(images/Coffee.jpg);

background-repeat: no-repeat;

background-position: bottom right;

}

Go ahead and make the above changes to your style sheet. Then open

cssexample.html in your browser. The coffee image should appear in

the lower-right corner of your page.

Notice that a space separates the two values “bottom” and “right.”

You do not need to add a comma, as the simple space between the two

values will suffice.

154 Chapter 7 / CSS Basics

Figure 7-29:
background-position:
top

Figure 7-30:
background-position:
bottom right

When using both vertical and horizontal values, the vertical value will

always come first. Remember, vertical values are top, bottom, and cen-

ter, and horizontal values are left, center, and right.

Background Property

This code will create multiple rows of coffee cups along the right side

of the page.

body {

background-color: white;

background-image: url(images/Coffee.jpg);

background-repeat: repeat-y;

background-position: right;

}

You can use the background property to set all of the above values in

one declaration. Here is the code:

body {background: white url(images/Coffee.jpg) repeat-y

right;}

If you want to create a column rather than a row, you will need to use

repeat-x. Be sure to practice with images of different sizes.

There are some great programs such as Adobe Photoshop and

Adobe Fireworks that enable you to create some great images for the

web.

Below is a simple square with a line and gradient added using

Adobe Fireworks. The image name is bar.jpg.

Chapter 7 / CSS Basics 155

Ch
a

p
te

r
7

Figure 7-31: Gradient created
with Adobe Fireworks

By adding the following simple line of code, I can tile this image down

the right side of my web page to look like one continuous bar:

body {background: white url(images/bar.jpg) repeat-y

right;}

Multiple Style Sheets

Why would you need multiple style sheets? A good example is if you

have a web site with an order form. You would probably want your

order form to look different from an informational page. Don’t worry;

adding an additional style sheet is extremely easy.

1. Make three simple HTML pages. Name the pages page1.html,

page2.html, and page3.html. Copy the code below into each

page and save each page into the website folder once you are

finished.

156 Chapter 7 / CSS Basics

Figure 7-32: Image
made to look like one
continuous bar

Figure 7-33: Code for page1.html, page2.html, and page3.html

2. Next, create a new style sheet, and name it multi.css. Add the fol-

lowing code to multi.css and save the page.

h2 {

font-family: Tahoma, Arial, sans-serif;

font-size: 12pt;

font-weight: 700;

color: green;

}

3. Now, link this style sheet to the three html pages you just created

by typing this line of code between the header tags in each page:

<link rel="stylesheet" href="multi.css" type="text/css">

4. Make sure you save all of your html pages. Then open each page

in your browser to make sure that multi.css is linked properly. The

text on the pages should be centered and green.

5. Create another style sheet, and name it multi2.css. Copy the h2

style rule below and save your page:

h2 {color: gray;}

6. Copy the code below, and add it to page1.html under the first

style rule. Do not add it to any of the other pages.

<link rel="stylesheet" href="multi2.css" type="text/css">

Chapter 7 / CSS Basics 157

Ch
a

p
te

r
7

Figure 7-34:
page1.htm viewed in
the browser

7. Save page1.html after you have added the new line of code. The

source code for page1.html should now look like this:

You will notice that we now have two external links to different

style sheets on this page. The only difference between the two

lines of code is the name of the style sheet.

8. Let’s go ahead and open page1.html in your browser. Notice that

h2 is now gray and not green. This is because the second style

sheet, multi2.css, has overridden the color property of multi.css.

9. Click on the links that connect to page2.html and page3.html. You

will see that their text is still green and that they are unaffected.

There is no effect on the pages not linked to the multi2.css style

sheet.

158 Chapter 7 / CSS Basics

Figure 7-35: Source code for page1.html

Figure 7-36:
Connecting to multiple
style sheets

If you had changed the order of the style sheet links, the original style

sheet would overrule the gray coloring.

Cascading works top to bottom. The first style sheet is loaded, and

then the second one overrides and inherits from the first. You could

actually have more than two style sheets; just remember that the last

style sheet will override the previous style sheet.

Summary

This concludes your look into the basics of CSS. I hope that by reading

this chapter and working through the examples you can see the power

of cascading style sheets. A great online resource for gaining more

knowledge on CSS can be found at http://www.w3schools.com/css/. In

the next chapter you will learn about the basics of PHP, which will pre-

pare you for publishing your FileMaker data to the web.

Chapter 7 / CSS Basics 159

Ch
a

p
te

r
7

Figure 7-37: page2.html; the text has
not changed

Figure 7-38: page3.html; the text has
not changed

This page intentionally left blank.

Chapter 8

PHP Basics

PHP is a server-side scripting language that is processed before the

page is sent to the client’s browser. Any page whose extension is reg-

istered as containing PHP scripts is sent through the PHP engine first.

By default, this extension is usually .php. Other extensions may be

added to the web server’s MIME types to also be processed for PHP

scripts.

PHP Scripts

When the PHP engine scans a page for PHP scripts, it is looking for

the opening PHP tag, which is:

<?php

The PHP engine continues to process the script until it reaches either

an error in the code or the closing PHP tag, which is:

?>

Make sure that all of your PHP code is within PHP script tags, or the

code will be interpreted as text. Failing to have a closing PHP script

tag will result in an error.

161

Displaying Text

Data, including text and numerical data, can be displayed on the page

using echo or print, as follows.

<?php

echo 'It is such a beautiful Spring day today.';

?>

and

<?php

print 'It is such a beautiful Spring day today.';

?>

Save one of these examples with a .php extension and load it in your

browser. The result should be a simple text display for either example,

as shown in Figure 8-1.

Notice that the echo and print lines end with a semicolon. The semico-

lon is to PHP what a period is to a sentence. It defines the single

statement. When you are writing PHP scripts, conclude each line with

a semicolon.

162 Chapter 8 / PHP Basics

Figure 8-1: Printing text to the page

Variables

Variables are useful for storing several types of data including num-

bers, characters, strings, Booleans, arrays, and objects. A variable is

denoted by a preceding dollar sign ($). Variable names can be made up

of letters, numbers, and underscores, but can only begin with a letter

or underscore. They are case sensitive, so a variable named

$myVariable is different from one named $myvariable. Variable names

cannot contain spaces.

Values are assigned to a variable with the equal sign (=).

$textMessage = 'This is a text string.';

$numberValue = 3;

$calcValue = 1 + 3;

$newValue = $currentValue + 1;

Hip Hip Array

Often you will need to store more than just a simple string or numeri-

cal value. Arrays allow you to store multiple values with an index or a

key. An index is a numerical label starting from zero and continuing in

order. A key is a unique text label given to each value. Data is also

returned from FileMaker databases as arrays, and so it is helpful to

know how to create and manipulate array data. Let’s look at several

ways to create and modify arrays.

Chapter 8 / PHP Basics 163

Ch
a

p
te

r
8

Creating a Simple Array

The first array we will work with is a simple array with a series of text

values using the array() function.

1. Create a PHP script and a variable to hold the array.

<?php

$birds

?>

2. Set the variable equal to the array() function.

$birds = array();

3. Add elements to the array in the parentheses and separate each

with a comma. Text values will need to be enclosed in single

quotes.

4. Arrays must be printed to the page using the print_r() function.

Below the array, add print_r() and include the variable name

within the parentheses. Follow the array with two line breaks.

164 Chapter 8 / PHP Basics

Figure 8-2: A simple array

Figure 8-3: Printing a simple array with print_r()

5. Save the page and preview the results in your browser. You will

see the array that was created and the index for each element.

Each element in the array can be accessed by its index number.

The indexes start at zero. A specific element can be accessed

using the name of the array variable followed by the index in

square brackets, like this: $arrayname[1].

6. After the line breaks, echo the array element for Blue Jay.

You should get the following result:

Chapter 8 / PHP Basics 165

Ch
a

p
te

r
8

Figure 8-4: Browser view of a simple array

Figure 8-5: Code view of printing a specific array element

Figure 8-6: Printing an array element in the browser

7. Save the page and preview in your browser. Other elements in the

array can be printed by changing the index.

Creating an Array with Keys

Arrays can also be created with a specific key in place of the index.

This can be done using the association symbol (=>).

1. Create a PHP script and a variable to hold the array.

<?php

$mammals

?>

2. Set the variable equal to the array() function.

$mammals = array();

3. Add elements to the array in the parentheses in the following

format:

'key' => 'value'

Be sure to separate each key/value pair with a comma.

4. Print the array using print_r() and then add two line breaks.

166 Chapter 8 / PHP Basics

Figure 8-7: Creating an array with custom keys

Figure 8-8: Printing the array using print_r()

5. After the line breaks, echo the array element for grizzly bear using

this format: $arrayname['key'].

6. Save the page and preview the results in your browser.

Creating an Array by Specifying Each Index

Arrays can also be created by specifying the index of the element in

the array as part of the initial variable, like this: $variable_name[0] =

'the value';.

1. Create an array similar to the one in Figure 8-11 by specifying

each element and the element’s position in the array. Then print

the array with print_r().

Chapter 8 / PHP Basics 167

Ch
a

p
te

r
8

Figure 8-9: Printing an array element using the associated key

Figure 8-10: Printing the full array and a single element by key in the browser

2. Save the page and preview the results in your browser.

Replacing an Element in the Array

Specific elements in the array can be changed by setting a new value

equal to the location of the element to be replaced

1. Define an array similar to the following with several values, and

print the array.

168 Chapter 8 / PHP Basics

Figure 8-11: Creating an array by specifying the position of each element in
the array

Figure 8-12: Browser view of individually created array elements

Figure 8-13: Creating a simple array

2. Change the element in the fourth position to a new value using

this format: $variable[3] = 'new value';. Then print the new array.

3. Save the page and preview the results in your browser.

Adding an Element to the End of the Array

An element can be added to the end of an array using the array_push()

function.

1. Define an array with several values and print the array.

2. Then use the array_push() function to add an element to the end

of the array and print the new array.

Chapter 8 / PHP Basics 169

Ch
a

p
te

r
8

Figure 8-14: Changing a specific element in the array

Figure 8-15: Browser view of changing an array

3. Save the page and preview the results in your browser.

Another way to add an element to the end of an array is to use the

variable name followed by an opening and closing square bracket, like

this: $variable[] = 'new value';.

170 Chapter 8 / PHP Basics

Figure 8-16: Adding an element to the end of an array using array_push()

Figure 8-17: Browser view of adding an element to the end of an array

Figure 8-18: Adding an element to the end of an array using $variable[]

Removing an Element from the End of the

Array

An element can be removed from the end of an array using the

array_pop() function.

1. Define an array with several values and print the array.

2. Then use the array_pop() function to remove an element from the

end of the array and print the new array.

3. Save the page and preview the results in your browser.

Chapter 8 / PHP Basics 171

Ch
a

p
te

r
8

Figure 8-19: Removing an element from the end of the array using array_pop()

Figure 8-20: Browser view of removing an element from the end of the array

Removing an Element from the Beginning of

the Array

An element can be removed from the beginning of an array using the

array_shift() function.

1. Create a simple array and print the array to the page using

print_r().

2. Use the array_shift() function to remove the first element of the

array.

3. Print the new array using print_r().

4. Save the page and preview the results in your browser.

172 Chapter 8 / PHP Basics

Figure 8-21: Removing an element from the beginning of the array using array_shift()

Figure 8-22: Browser view of removing an element from the beginning of the array

Adding an Element to the Beginning of the

Array

An element can be added to the beginning of an array using the

array_unshift() function.

1. Create a simple array and print the array to the page using

print_r().

2. Use the array_unshift() function to add an element to the begin-

ning of the array.

3. Print the new array using print_r().

4. Save the page and preview the results in your browser.

Chapter 8 / PHP Basics 173

Ch
a

p
te

r
8

Figure 8-23: Adding an element to the beginning of the array using array_unshift()

Figure 8-24: Browser view of adding an element to the beginning of the array

Sorting an Array Ascending Alphabetically

Arrays can be sorted in ascending order using the sort() function.

1. Create a simple array.

2. Use the sort() function to sort the records, adding the array vari-

able between the parentheses.

3. Print the array using print_r().

4. Save the page and preview the results in your browser.

174 Chapter 8 / PHP Basics

Figure 8-25: Sorting an array ascending alphabetically

Figure 8-26: Browser view of sorting an array in ascending order

Sorting an Array Descending Alphabetically

Arrays can be sorted in descending order using the rsort() function.

1. Create a simple array.

2. Use the rsort() function to sort the records, adding the array vari-

able between the parentheses.

3. Print the array using print_r().

4. Save the page and preview the results in your browser.

Chapter 8 / PHP Basics 175

Ch
a

p
te

r
8

Figure 8-27: Sorting an array descending alphabetically

Figure 8-28: Browser view of sorting an array in descending order

Separating and Printing the Array Elements as

a Text String

Array elements can be separated and joined into a string with the

implode() function. The implode() function replaces the comma in the

array with whatever value you enter as the first parameter. The format

is:

implode(' divide value ' , $arrayvariable)

1. Create a simple array.

2. Set a new variable equal to implode().

3. Separate each array value with ' and ' and enter the array variable

as the second parameter.

4. Print the new variable using echo.

5. Save the page and preview the results in your browser.

176 Chapter 8 / PHP Basics

Figure 8-29: Using implode() to separate an array

Figure 8-30: Browser view of the new text string

PHP Functions

Functions are frequently used in PHP to facilitate development. A

function is simply a section of PHP code that can be used by referring

to the function name and any associated parameters. There are over

1,500 functions built into PHP, and you can easily add your own or use

any of the thousands of functions available online.

Let’s take a look at how to create a few simple functions of your

own:

1. First, use the word function to define a new function.

2. Next, give the function a name following the same rules as naming

a variable; for example: function myFunction().

3. Then use curly braces to enclose the code for your function.

function myFunction() {

echo 'This is my first function and it was a huge success. My

parental units are so proud.';

}

4. Calling the function will cause the code contained within the func-

tion to be evaluated.

myFunction();

The completed script would look like this.

Chapter 8 / PHP Basics 177

Ch
a

p
te

r
8

Figure 8-31: Completed code of a basic function

5. Save this page with a .php extension and load it in your browser

using the address of your web server; for example:

http://127.0.0.1/myfunction.php.

Parameters can also be sent to a function to be evaluated. If you want

to send a color to a function from the main script, enter the value in

the parentheses following the function name. When the function is

defined, specify a variable name for the parameter passed. The vari-

able can then be used in the function.

Conditions

When working with PHP, you will often need to determine whether or

not a condition is true before proceeding. This enables you to deter-

mine in which direction the script should continue based on

information already available. For instance, you may want users to log

in to the same page and then direct them to appropriate pages or

records within the site based on their predefined access level.

The if statement in this case will be formatted as:

if(the situation you wish to evaluate) {

what to do if the situation is true

}

178 Chapter 8 / PHP Basics

Figure 8-32: Sending a parameter to a function

Figure 8-33: Results of sending a parameter to a
function

When evaluating a condition, you can use a comparison operator. The

available comparison operators are:

== equal

!= not equal

=== identical

> greater than

>= greater than or equal to

< less than

<= less than or equal to

For example:

<?php

$today = 'Monday';

if($today == 'Monday')

{

echo 'Today is the first day of a great week!';

}

?>

In some cases, you need to not only test for a condition to be met but

also give an alternative. This can be done by using else in addition to

if.

if(the situation you wish to evaluate) {

what to do if the situation is true

}else{

what to do if the situation is false

}

Chapter 8 / PHP Basics 179

Ch
a

p
te

r
8

Includes

PHP has an easy way to add repeating code and common scripts to

your web pages. This can be useful in many different situations such as

including common navigation elements or often used PHP scripts.

When working with PHP and FileMaker, you will be using this func-

tionality to include the files necessary to use the FileMaker API for

PHP.

There are a few functions available for including external files.

These are include(), include_once(), require(), and require_once(). The

include() and require() functions work the same unless the file you are

trying to include does not exist. If the file is missing and you are using

include(), an error warning will be returned, but the remainder of the

page will attempt to load. If the file is missing and you are using

require(), it will return a fatal error and the rest of the page will not

attempt to load.

You may want to consider using require() for files that are essen-

tial to the rest of the page and using include() for files that are

relatively independent and won’t harm the page if they do not load.

The remaining two functions, require_once() and include_once(), per-

form exactly like the shorter versions except that they will only load

the page once. The shorter versions can be loaded multiple times.

This should also be considered when deciding which version to use.

This is a great way to include common navigation or logos in your

web pages. If you need to update your web site, you will only have to

make the change once, and any pages where you have the file included

will be automatically updated.

Let’s take a look at how to include a simple text string in a page.

1. Create a new document and name it text_string.php.

180 Chapter 8 / PHP Basics

2. Type a text message into the page. Make sure that the page only

includes the text string and no other HTML tags.

3. Save the page.

4. Create a new document and name it includes.php. This page will

include the basic HTML tags.

5. Between the <body> tags, enter a string of text followed by a line

break (
).

Chapter 8 / PHP Basics 181

Ch
a

p
te

r
8

Figure 8-34: text_string.php with a simple sentence

Figure 8-35: Basic HTML tags

6. Add a PHP script and include the text_string.php page using

include_once().

7. Save the page and load it in your browser.

182 Chapter 8 / PHP Basics

Figure 8-36: Including a separate file using include_once()

Figure 8-37: Browser view showing both static text and the included file

Comments

While you are developing and making changes to your web pages, it is

useful to leave comments in your code for yourself or anyone else who

may be editing your scripts in the future. Commenting your code is

easy to do, but you need to remember that the comments must be

added within the PHP script tags or they will display as text on your

page and in your source code.

A single line comment can be added by using either two forward

slashes (//) or a pound symbol (#) before the line.

//This is a single line comment

#This is also a single line comment

A multiple-line comment can be added by using a forward slash fol-

lowed by an asterisk (/*) at the beginning of the comment and an

asterisk followed by a forward slash at the end of the comment (*/).

/* This is

a multi

line comment

*/

Comment tags are also helpful for temporarily disabling PHP code

while developing and testing.

Chapter 8 / PHP Basics 183

Ch
a

p
te

r
8

Figure 8-38: Commenting out PHP code

Quotes

Whether you use single or double quotes depends on the type of infor-

mation you want to display. Single quotes output the contents as literal

text. Double quotes interpret variables for their contained value

instead of as literal text.

Let’s take a look at how single and double quotes behave.

1. Create a new document and name it quotes.php.

2. At the top of the page before the HTML tags, add a PHP script and

set a variable $name equal to Sally Smith.

3. Within the <body> tags, create a new PHP script.

4. Use echo to display the following sentence with single quotes:

'$name will be teaching the course.'

5. Use echo to add a line break with '
'.

184 Chapter 8 / PHP Basics

Figure 8-39: Setting a variable above the HTML tags

6. Use echo to display the same sentence with double quotes:

"$name will be teaching the course."

7. Save the page and load it in your browser.

Notice the differences in the way that the single and double quotes dis-

play the sentence. The second sentence using the double quotes will

replace the $name variable with the value “Sally Smith.”

Chapter 8 / PHP Basics 185

Ch
a

p
te

r
8

Figure 8-40: Completed quotes.php

Figure 8-41: Browser view of quotes.php

Special Characters

There may be special characters that you want to use that could be

misinterpreted by PHP. Individual characters can be skipped by using a

character escape (\) before the character to be skipped. Suppose we

want to echo a sentence that contains a quoted statement and also con-

tains a variable to be replaced, such as:

$name said "This class will begin promptly at 9 AM".

We would need to escape the two quotes. The echo would look like

this;

echo "$name said \"This class will begin promptly at 9 AM\"."

186 Chapter 8 / PHP Basics

Figure 8-42: Escaping special characters

When viewed in your browser, this will display the value of the $name

variable and the desired quotes.

If you do not escape the extra quotes, the code will produce an error.

This is because when the PHP engine reaches the second quote, it

expects the text string to end and some other character to either

append the string or end the line.

Chapter 8 / PHP Basics 187

Ch
a

p
te

r
8

Figure 8-43: Browser view of escaping special characters

Figure 8-44: Error produced if extra quotes are not escaped

Summary

Now that you know the basics of using PHP, you are ready to start

integrating PHP with commonly used links and forms. This will allow

you to provide comprehensive navigation and a seamless user

experience.

188 Chapter 8 / PHP Basics

Chapter 9

Links and Forms

Long gone are the days of single-page web sites. Because many web

sites span numerous pages, users need easy and intuitive ways to nav-

igate through a site as well as within a page. Database-driven web sites

also need a way to pass existing and user-entered data through the

site. Two of the most common ways to deliver this functionality are

with links and forms.

What Type of Navigation Should You
Use?

Determining the type of navigation to use will often depend on what

kind of data you need to send to the link or form destination. Links

allow data to be sent in a key/value pair format that does not include

user input. Forms allow you to send static data as well as user-entered

data in the form of text and value lists.

189

GET and POST

You can use either GET or POST as the method of your forms. In a

GET request, the key/value pairs are sent in the URL, meaning that

the pairs will display in the user’s address bar. In a POST request, the

key/value pairs are sent in the header instead of the URL.

The GET method is limited to a maximum key/value pair charac-

ter length of 2,048 characters. The GET method does have its

advantages, though. If you want your users to be able to bookmark a

page and save search results, you must use GET.

Links

Links used in their simplest form contain a single page name without

any additional data. The page can be listed as a relative link or an abso-

lute link. Regardless of the type of link you will be using, the format is

the same.

A link is formed using an <a href> tag. The “a” stands for anchor

and “href” stands for hypertext reference. Use the following format to

create a link:

The Text for the Link

The name of the destination is placed between the quotes following

“href=.” The text or image item that will be active as the link is

placed between the opening and closing <a href> tags.

There are two types of links, relative and absolute. Which one you

use depends on the location of the destination page in relation to the

current page.

190 Chapter 9 / Links and Forms

Relative Links

A relative link is used when the destination is located within the same

site. The relative link gives instructions for accessing the destination

from the location of the current page.

If the destination page is in the same directory as the current

page, then the link only needs to include the destination page name.

No additional directory or http address is needed.

� Page in same directory:

About Us

If the destination page is in an additional directory, then the link needs

to also include the directory name along with the destination page

name.

� Page one directory down:

Current page is at: http://www.yourwebsite.com/index.php

Destination page is at: http://www.yourwebsite.com/common/

about.php

Then the link to about.php from index.php would be:

About Us

If the destination page is in an additional directory back, then you will

need to add “../” for each directory that you need to go back before the

destination page name.

� Page one directory back:

Current page is at: http://www.yourwebsite.com/common/

about.php

Destination page is at: http://www.yourwebsite.com/index.php

The link would be: About Us

Chapter 9 / Links and Forms 191

Ch
a

p
te

r
9

Absolute Links

An absolute link can be used from any page or site. It is the complete

web address of the destination, like this:

About

Us

Sending Data in a Link

Data can be sent as part of a link in the form of key/value pairs. These

pairs are formatted as “key=value.” Data sent as part of a link are sent

with the GET method:

color=blue

Multiple values can be sent by separating the pairs with an ampersand:

color=blue&number=17

These key/value pairs are appended to the destination with a question

mark (?):

 Link

Text

Forms

Forms are widely used in HTML and PHP pages. A form can be used

for user input or to pass hidden data. A form simply passes information

to the response page. The response page processes any sent data.

All forms begin and end with opening and closing <form> tags.

All form elements need to be within the <form> tags or they will not

be included when the form is submitted. Neglecting to include a clos-

ing <form> tag will cause the form to fail. If you were to click the

Submit button on a form without a closing <form> tag, nothing would

happen.

192 Chapter 9 / Links and Forms

The opening <form> tag looks like this:

<form action="form_response.php" method="POST">

The form action is the name of the destination page, and the method

can be either post or get. Note that the form action is case sensitive,

and the form method is case insensitive.

The closing <form> tag is:

</form>

The method for a form can be either post or get.

Form tag with POST method:

<form action=" form_response.php" method="post">

</form>

Form tag with GET method:

<form action=" form_response.php" method="get">

</form>

Each form also needs a “submit” input line in order to send the form.

The submit line creates a clickable button that can either be the

browser’s default image or a custom image you provide.

A “submit” line using the browser’s default button:

<input type="submit" name="submit" value="Submit this

form">

A “submit” line using a custom image for the Submit button:

<input type="image" name="submit"

src="images/submit.gif">

Chapter 9 / Links and Forms 193

Ch
a

p
te

r
9

Types of Form Elements

There are several types of form elements to choose from when sub-

mitting data with a form. All of the form elements including input lines

and select lists need to be within the <form> tags.

The available form elements include:

� Text

� Hidden

� Radio button

� Check box

� Select list

� Text areas

Let’s create a form and examine the different form elements that are

available.

1. Open a new document and place the <form> tags between the

<body> tags. It is always a good idea, and many web editors will

automatically do this, to create the closing tag as soon as you cre-

ate the opening <form> tag. This prevents the common mistake

of forgetting to close the form.

194 Chapter 9 / Links and Forms

Figure 9-1: The <form> tags in an HTML page

2. Add a submit link to the bottom of the form that uses an image as

the button.

3. Save the document as form.php.

Text

An editable text box can be displayed in the browser by using a "text"

input type. There are two other parameters in the <input> tag, name

and value. name is the label given to the value, and value is the data

that is in the text box. The value can contain predefined data or it can

be blank. If the starting value is blank, you can omit the value

parameter.

4. Add two input lines to allow users to enter their first and last

names. Be sure to add these between the <form> tags. They can

be placed in any order, either before or after the Submit button.

<input type="text" name="first_name" value="">

<input type="text" name="last_name" value="">

The name given to the input line will not display in the browser, so

make sure that you give your user an adequate description of the

data to be entered.

Chapter 9 / Links and Forms 195

Ch
a

p
te

r
9Figure 9-2: Adding the Submit button

5. Label each input line so that the users know what they are to

enter. Add a line break (
) after each text box so that they

align one on top of the other instead of in a straight line across the

page.

6. Save the page and preview the results in your browser.

If your form does not display cleanly in the browser or if part of the

source code displays, double-check your code for misplaced tags.

196 Chapter 9 / Links and Forms

Figure 9-3: Two text boxes with labels and line breaks

Figure 9-4: Browser view of two text boxes and an image Submit button

Hidden

Sometimes you will want to send through information that is not user

entered and is not displayed, such as the type of user or the source of

the original page. This hidden information can be sent as

type="hidden".

7. Create a hidden value for user_type with a value of "Commenter":

<input type="hidden" name="user_type"

value="Commenter">

8. Save the document and preview the results in your browser.

Notice that the hidden line does not display in the browser. The value

is visible to the user only if the page source is viewed.

Radio Buttons

Another input type that is available is the radio button. Radio buttons

allow users to select a single value from a group. All items with the

same name value are considered part of the group.

9. Add three radio buttons for the group “name='user_level'.” Use

the values Beginner, Intermediate, and Advanced.

Chapter 9 / Links and Forms 197

Ch
a

p
te

r
9

Figure 9-5: Adding a hidden value

10. Add labels to each of the radio buttons so that users know what

they are selecting. Include line breaks after each line so that the

radio buttons line up nicely on the page.

11. Save the page and preview the results in your browser.

The radio buttons should be lined up under the User Level label.

198 Chapter 9 / Links and Forms

Figure 9-6: Adding radio buttons

Figure 9-7: Browser view of radio buttons in the form

Check Boxes

If you have a list of choices where the user may need to select more

than one option, then check boxes are probably the best solution. Just

like radio buttons, check boxes with the same name value belong to

the same group; however, unlike radio buttons, multiple values may be

selected. The multiple values submitted will need to be collected into

an array. To add the selected values to an array, append the name with

an opening and closing square bracket, like this:

<input type="checkbox" name="operating_system[]"

value="Windows">

12. Add three check boxes, one each for Windows, Mac OS, and

Linux. Label each so that users know what they are selecting, and

follow each line with a line break.

13. Save the page and preview the results in your browser.

The check boxes should be lined up under the question “What operat-

ing system do you use?”.

Select Lists

Another type of form element is the select list. Select lists are made

up of two different HTML tags, the <select> tags and the <option>

tags. The <select> tag specifies the name for the values just as in the

input lines.

<select name="country">

</select>

Chapter 9 / Links and Forms 199

Ch
a

p
te

r
9

Figure 9-8: Adding check boxes to the form

The <option> tag specifies the values available in the list just as the

value element did for both radio buttons and check boxes. The

<option> tags are placed between the <select> tags. The value that

actually displays is listed between the opening and closing <option>

tags.

<option value="submit value">Display Value</option>

14. Add a select list to your form for entering a country. Include a few

sample countries to test.

15. Save the page and preview the results in your browser.

Text Areas

If you need to allow your user to enter more than just a simple word or

phrase, then you will want to use a textarea. It is formatted like this:

<textarea name="comment" rows="4"></textarea>

16. Add a textarea to your form for users to enter comments.

200 Chapter 9 / Links and Forms

Figure 9-9: Adding a select list to the form

Figure 9-10: Adding a text area to the form

After adding all of the different form elements, your page should

look similar to Figure 9-11.

Chapter 9 / Links and Forms 201

Ch
a

p
te

r
9

Figure 9-11: Completed form with all elements

17. Save the page and view the results in your browser.

Now that the form is complete, it is time to build the response page

and actually interact with the passed values.

202 Chapter 9 / Links and Forms

Figure 9-12: Browser
view of completed
form with all elements

The Response Page

The response page handles all of the processing of any passed values.

It is possible to have a single page that acts as both the submission and

response page, but for now let’s keep things simple.

1. Create a new page and name it form_response.php. Type a sim-

ple text message within the <body> tags. This will allow you to

test your form before you start adding a PHP script.

2. Save the file and open form.php in your browser (for example,

http://127.0.0.1/form.php).

3. Enter the requested information into the form and select the Sub-

mit Form button. You should see the text message that you typed

into form_response.php.

Chapter 9 / Links and Forms 203

Ch
a

p
te

r
9

Figure 9-14: Browser view of response page with text message

Figure 9-13: Response page with text message

If the text message appears correctly, you are ready to create a

PHP script on the response page.

4. At the top of form_response.php, create a PHP script.

Each form value will be in a $_POST variable. The values can be

accessed by the $_POST variable followed by the name value in

square brackets and single quotes.

$_POST['name_first']

If the form uses the GET method or if the values are sent in a link,

you would use $_GET instead of $_POST.

$_GET['name_first']

Alternatively, you can use $_REQUEST for both POST and GET

values.

$_REQUEST['name_first']

5. Create a variable for each of the form values, as shown in Figure

9-15.

204 Chapter 9 / Links and Forms

Figure 9-15: Saving
the posted values as
variables

Viewing the Passed Data

To allow you to see that the information is actually being passed and

available on form_response.php, let’s print the new variables under the

text message in the body of the page.

6. Add a PHP script to the body of the page under the text message.

7. Use echo to print each of the variables except $operating_system.

8. Add a line break after each variable to separate the values.

9. The $operating_system variable contains an array, so use print_r()

to print the array.

print_r($operating_system);

10. Save your changes and open form.php in your browser. Enter the

requested information and select Submit Form.

Chapter 9 / Links and Forms 205

Ch
a

p
te

r
9

Figure 9-16: Script to print the variables

The response page should display the values submitted in the

form.

Summary

Links and forms are the key to a seamless database-driven web site.

Armed with the knowledge of how to create, submit, and access link

and form passed values, you are ready to begin working with database

interaction. In the next chapter we will look at ways to validate form

data to ensure that the user is following the correct paths and submit-

ting valid data.

206 Chapter 9 / Links and Forms

Figure 9-17: Printing the variables

Chapter 10

Validation

When web sites contain forms that allow users to enter their own data,

there is always the risk that improper data will be entered. Whether

this improper data is accidental or intentional, steps should be taken to

ensure that the data entered is what is expected. One of the most com-

mon issues is that the user has not entered any data at all. Other

potential problems are users entering letters where numbers should

be or entering invalid email addresses. Let’s take a look at a few exam-

ples using the form.php and form_response.php pages from Chapter 9.

1. Open form.php in your web editor. We will need to add a few

more input lines to adequately test validation scenarios.

2. At the bottom of the form before the submit line, add the following

lines. This will allow us to test numerical and expected character

lengths.

Age: <input type="text" name="age" value="">

Postal Code: <input type="text" name="postal_code"

value="">

3. Save the page.

Before we test for specific conditions, it is important to test that the

form variables actually exist.

207

Validating the Existence of a Form
Value

The first validation to perform is the actual existence of an expected

form variable. If you assume a nonexistent form variable exists and

attempt to access it, you will often be presented with an undefined

index error, as shown in Figure 10-1.

A simple way to check for the existence of a form variable is to use the

function isset(). This function checks to see if a variable exists. Alter-

natively, you can use !isset() to determine if the variable does not

exist. In this case, if the variable is missing you would redirect the

user and discontinue processing the current page using die().

1. Open form_response.php.

208 Chapter 10 / Validation

Figure 10-1: Undefined index error

2. Create an if() statement at the top of the first PHP script above the

variable declarations.

Chapter 10 / Validation 209

Ch
a

p
te

r
1
0

Figure 10-2: The starting form_response.php page

Figure 10-3: Creating an if() statement at the top of the page

3. Next use the !isset() function to check for one of the form

variables.

If the form variable does not exist, you will need to decide what

action to take. For this example, let’s set a $message variable

equal to an error message. Then we will load the original form

page and quit the script.

4. Between the curly braces of the if() statement, set a variable

$message equal to an error message.

5. Load the original form page using include_once().

6. Quit the script and current page with die();.

This will load the form.php page with a text message in the $mes-

sage variable if the anticipated form variable is absent. Next, we

need to make a couple of additions to the form.php page to display

the message.

7. Open the form.php page you created in Chapter 9.

210 Chapter 10 / Validation

Figure 10-4: Using !isset() to check for the existence of a form variable

Figure 10-5: Instructions if the form value does not exist

8. Create a PHP script at the top of the page. We will use this script

to determine if a $message variable already exists or if we need to

create one.

Next, we need to display the $message variable in an appropriate

place on the page. Since the message gives instructions to fill out

the form, the $message variable should be placed above the form.

9. Print the $message variable to the page above the form.

This solution will display the appropriate message when the user

views the form. This will also prevent a user from going straight to the

form response page and skipping the form entry page.

Now let’s look at ways to validate that the form variables are not

sent through with empty values.

Chapter 10 / Validation 211

Ch
a

p
te

r
1
0

Figure 10-6: Instructions if the form value does not exist

Figure 10-7: Printing the $message variable above the form

Validating Empty Form Values

Once you are sure that the form has actually been submitted by con-

firming that at least one form variable does exist, the next step is to

check that any required values were completed by the user. For most

form elements, you can use the empty() function to make sure that the

variable is not empty. Let’s start with the name_first value.

1. Create an if() statement after the first if() statement using empty()

to check for a value in $_POST['name_first'].

2. Assign an appropriate message to the $message variable.

3. Load the form.php page to allow the user to try again.

4. Exit the page with die().

212 Chapter 10 / Validation

Figure 10-8: Checking for an empty $_POST['name_first'] variable

Figure 10-9: Instructions if the form variable is empty

This will check for a single empty value, but what if you want to

check more than one form value? You can easily combine multiple

conditions to check within the same if() statement using “and” or

“or.” In this example, we would want to reject the form if any of

the required fields were empty.

5. Add an additional empty() function to the same if() statement to

check for an empty value for $_POST['name_last'].

6. Add two more checks for $_POST['user_level'] and

$_POST['country'].

The last user input value is for operating system. This value is

treated slightly differently since it contains an array instead of a

Chapter 10 / Validation 213

Ch
a

p
te

r
1
0

Figure 10-10: Checking for two empty $_POST[''] variables

Figure 10-11: Checking for multiple empty $_POST[''] variables

single value. If no value is selected in the check boxes, then the

POST variable is not even created. Because of this we need to

check for the existence of the variable instead of whether or not it

is empty. This can be done using the !isset() function.

7. Add a fifth condition to the if() statement to check if $_POST['op-

erating_system'] is not set.

With these checks the entire form is validated for at least some value.

Validating Numbers

Form variables can be validated for numerical characters only by using

the is_numeric() function. Let’s validate the age field for a valid

numerical value.

1. After the empty validations, create a new if() statement. Use the

not symbol (!) combined with the is_numeric() function to test if

the age is not a number.

2. As with the empty checks, set a message for the $message vari-

able between the curly braces of the if() statement.

214 Chapter 10 / Validation

Figure 10-12: Checking that the $_POST['operating_system'] variable exists

3. Include the original form page and then quit the page with die().

This will return the message “Age must be a number” if any character

other than a number is entered by the user.

Validating String Length

Another popular validation is to check the character length of a string.

In some instances you may want to check that a string is a minimum or

maximum character length or both. This can be done by using the

strlen() function.

1. After the empty validations, create a new if() statement. Use the

strlen() function to test if postal_code is at least five characters

long.

2. Set a message for the $message variable between the curly braces

of the if() statement.

3. Include the original form page and then quit the page with die().

Chapter 10 / Validation 215

Ch
a

p
te

r
1
0

Figure 10-13: Checking that $_POST['age'] is a number

Figure 10-14: Checking the character length of a string

This will return the message “The Postal Code you entered is too

short to be valid.” if the string contains fewer than five characters.

You may want to also check that a string is between two char-

acter lengths. In this case you would need to specify both limits.

4. Extend the if() statement by adding OR and then an additional

strlen(). Set the second condition to check if the

$_POST['postal_code'] variable character length is longer than 10

characters.

This will return the message “The Postal Code you entered is too

short or too long to be valid.” if the string contains fewer than five

characters or more than 10 characters.

Validating Email Format

Since email addresses are commonly used in web forms, it can be

helpful to validate that at least the format is correct. This will not con-

firm that the entered email address is a valid address, but it will check

for a valid format and allow the user to make changes if it was entered

by mistake.

The standard email format can be evaluated using the ereg() func-

tion. This function compares a given pattern to a string pattern. In this

case, we will construct a comparison pattern and compare that with

the $_POST['email'] variable.

216 Chapter 10 / Validation

Figure 10-15: Checking that character length of a string is between two values

1. Create a new if() statement using the not symbol (!) combined

with the ereg() function.

The ereg() function has two parameters. The first parameter is the

pattern you are looking for and the second parameter is the string

that you are checking.

ereg(test pattern , string)

The test pattern for checking the format of an email address is:

^([a-zA-Z0-9])+([\.a-zA-Z0-9_-])*@([a-zA-Z0-9_-])+

(\.[a-zA-Z0-9_-]+)*\.([a-zA-Z]{2,6})$

The string that you will be checking is $_POST['email'].

2. Enter the email test pattern as the first parameter and the

$_POST['email'] variable as the string to be checked.

3. Set a message for the $message variable between the curly braces

of the if() statement.

4. Include the original form page and then quit the page with die().

This will return the message “The Email Address you entered is not

valid.” if the email address does not match the given format.

Chapter 10 / Validation 217

Ch
a

p
te

r
1
0

Figure 10-16: Validating the format of an email address

Summary

Form validation is a great tool to help ensure consistent data is sent to

the database. Using validation will prevent unanticipated and acciden-

tal errors from occurring during the user’s experience. This will also

save you many headaches trying to track down errors in submitted

information. Data validation is one case where an ounce of prevention

is definitely worth a pound of cure.

In the next chapter you will learn all about the FileMaker API for

PHP and prepare to begin interacting with your FileMaker data on the

web with PHP.

218 Chapter 10 / Validation

Chapter 11

What Is the API for
PHP?

Now that you are familiar with PHP and have had a chance to play

around with this web publishing technology, it is time to introduce the

long-awaited star of this book. It is a library of code that has changed

the way people think of web publishing with the FileMaker database —

none other than the FileMaker API for PHP.

What Is an API?

This cryptic name usually invokes in seasoned programmers a torrent

of mixed feelings and memories that include lengthy manuals and frus-

tration with strange functions. The term “API” stands for “application

programming interface,” which means a layer of code that allows two

applications to exchange information in a standard and predictable

manner. In this case, the two applications are FileMaker Server and

PHP, where PHP is the application using the API to communicate with

FileMaker Server.

219

The application programming interface is structured to provide a set of

methods and properties to the programming language that will remain

constant throughout the lifetime of the product. That means that if the

application changes its own internal structure to provide new features,

optimizations, or any other big architectural changes, the programming

interface should generally remain the same and be compatible with a

whole range of product versions. This provides a tremendous advan-

tage to the programmer, since the code written for one version of the

application will be able to communicate with newer versions of that

application without any modification to the source code. The power of

using an API when writing applications can be easily seen within any

Windows application. For example, an application that was written in

the age of Windows 95 can in most cases run without any modifications

or patches on Windows 2000, Windows XP, and even Windows Vista. In

each version of Windows, the internal code to create objects such as

application windows and menus has changed and evolved, while still

allowing old applications to use the set of services originally provided

by Windows 95. However, as new features are introduced, some newer

applications decide to take advantage of those features, making them

only forward compatible from the version of the API that they used —

such as many new applications that can only be used on something

newer than Windows XP.

The FileMaker API is no different in its philosophy to retain future

compatibility of code written for its API now. Therefore, it is very

likely that the applications you write for FileMaker 9 with PHP will be

220 Chapter 11 / What Is the API for PHP?

Figure 11-1: PHP API layer between FileMaker Server and PHP

compatible with future releases of FileMaker software. While newer

features of FileMaker that will come along will not be implemented by

your software without an update, the old set of functions provided by

the FileMaker API today will still behave the same years from now.

This also means that you will be able to use the knowledge derived

from this book for years to come as long as FileMaker, Inc., keeps

releasing the FileMaker API for PHP for its future products.

A Little Bit of History

Before the FileMaker API for PHP was developed by FileMaker, Inc.,

there were a number of solutions used to perform web publishing with

FileMaker and PHP. Originally, FileMaker used CDML as one option to

publish data on the web; however, this limited developers to using a

single language on the web. FileMaker also has an ODBC interface

that allows communication with a FileMaker database using the SQL

language and a special communication driver, but this limited

FileMaker to just data with no access to information about the layouts

within the database. Then FileMaker, Inc., introduced XML and XSLT

web publishing, a complicated method to access and format informa-

tion. With the XML interface, many programming environments could

now access FileMaker data, and PHP was no different. Using the XML

interface, a PHP class was introduced under the name FX.php, which

allowed easy access to FileMaker data from PHP. As FileMaker fea-

tures have evolved, FX.php was not developed further to support

newer features and currently lacks the capability for direct editing of

portal records — a feature vital in many applications that requires

numerous workarounds to implement with PHP. With such an uncer-

tain and varied world of web publishing, FileMaker, Inc., decided to

step in and develop a standardized method of accessing FileMaker data

from PHP, and the FileMaker API for PHP was born.

Chapter 11 / What Is the API for PHP? 221

Ch
a

p
te

r
1
1

Anatomy of the FileMaker API for PHP

The FileMaker API provides a relatively small number of functions

with which to interact with a FileMaker database, greatly simplifying

the number of functions that you have to remember when working

with it. Generally, the interaction with the FileMaker API can be bro-

ken down into the following five steps:

� Create an instance of a FileMaker object with your database

settings.

� Ask the FileMaker object for a new command object.

� Modify the command object with properties such as field values.

� Execute the command object to perform the action on the

database.

� Process the results from the command object.

This section will briefly review each one of those steps, and the

remainder of this book will focus on the details of each step and how to

implement it to achieve the desired result. This section provides an

overview of the workflow that will be used throughout your PHP appli-

cations, hence it is very abstract and does not include any specific code

or examples. As you read it, try to visualize each step of the process

and see how it fits into the overall interaction with the database. With

no further ado, let’s look at the first step: creating an instance of a

FileMaker object.

Creating an instance of the FileMaker object involves including the

correct FileMaker libraries into your PHP script and then using the

PHP new operator to create a FileMaker object. When creating an

object, you supply the host name or IP address of your FileMaker

Server, the database name, and the credentials for the connection.

Once this action has been performed, the next step is to select a com-

mand to perform on the FileMaker database.

Interaction with your FileMaker database is performed through a

series of command objects. The command objects include find, edit,

add, and delete. Creating one of those command objects involves using

222 Chapter 11 / What Is the API for PHP?

your previously created FileMaker object by calling a function on it in

the form of newTypeCommand, where Type is a type of command such

as newFindCommand or newEditCommand. When calling one of these

functions, you normally supply the FileMaker layout name on which

the operation will be performed. If operating on an existing record, the

record ID is also supplied at this stage. Once you have one of the com-

mand objects, it is time to set some properties to it before using it with

the database.

Setting parameters to the command object is done through a

series of functions that will be thoroughly explained in this book. At

this stage you would be setting find criterions for a find object, or field

values for new or edited records. You can also limit the number of

records returned as well as assign the number of records to skip; this

is essential functionality for systems that have multiple pages of data

to page through. Once the command has been personalized for your

query and has all the needed information, it is time to execute your

command.

Executing a FileMaker command is the step at which interaction

with the database actually happens. Up to that point, changes and oper-

ations on the command object are only temporarily recorded as PHP

variables. Executing the command involves calling the execute

method on it and storing the result in a variable. This result should

then be checked for errors, such as failed data validations or missing

fields on your layout. If the result contains a set of records such as a

new record or a found set of data, you would proceed to the next step

of extracting the data into your PHP application.

A successfully executed command will typically return either a

single record object or a set of records, allowing PHP to process the

results. The API provides very easy functions to loop through the set

of records, and then access each record in the set. Once a record is

accessed, it is possible to extract field values from it, acquire informa-

tion about fields such as value lists, and access related portal records.

While this process might seem long and complicated, it only takes

a couple of PHP lines to implement and immediately access your data-

base. Once the technical details of those steps are introduced as we

Chapter 11 / What Is the API for PHP? 223

Ch
a

p
te

r
1
1

build the blog application, using this process to perform all the actions

within your database will become second nature.

Summary

Now that you know a little bit more about the way the FileMaker API

for PHP fits into web publishing, you are ready to start exploring the

exciting world of FileMaker publishing on the web. First, we’ll cover

the basics, which include connecting to a FileMaker database, finding a

few simple records, manipulating data, and finishing with a complete

system that manipulates all aspects of a FileMaker database from

within a web browser. This is the time to leave the powerful FileMaker

back-end interfaces and reports behind, and dive into the exciting

world of user-centered web publishing.

224 Chapter 11 / What Is the API for PHP?

Chapter 12

Creating the Blog
and Performing a
Simple Query

At this stage, your PHP servers should be set up and hopefully you are

familiar with the basic PHP concepts and structures. This is the chap-

ter where we set up the environment for the central project of this

book that will encompass the many features that the FileMaker API

offers when connected to your database.

What Is a Blog?

Throughout this book FileMaker concepts will be demonstrated as

they apply to web publishing. The main project that you will develop is

a blogging system that will allow you to post updates for your business

or personal life, or simply learn FileMaker web publishing. A blog is a

web application that allows its writer to keep an online journal for

other users to read and comment on. You can use such a journal as a

private publication for close family and friends, updating them on your

latest road trip or camping trip. You could also use a blog as a business

publication that discusses your new products and technologies, and

generally keeps your customers updated about your latest offers. A

blog could also be used for general public rants and industry

225

commentary; once combined with some ads, it can present a nice extra

source of revenue.

A blog generally consists of four sections. The first section your

visitor sees is the front page that lists the latest blog posts. Each blog

post links to the next section of the site, which is a single blog post

page that lists a post and allows a visitor to leave a comment or ques-

tion for that specific post. The third section is a blog search and

archive, which allows the user to search through your entire history of

blogging and find relevant information on a subject. The last section is

the administrative side of your blog that allows you to make posts from

anywhere in the world where a web browser and an Internet connec-

tion are available.

Include File Structure of the Blog

In order to efficiently develop a web application, its structure should

be developed in advance and be flexible enough to accommodate new

pages easily. A very nice way to achieve a flexible site is to develop a

template for your application that includes a constant header and footer

section with some links, and then a variable body section for the actual

information. The big advantage of include files is their independence

from other PHP code, allowing you to easily edit them at any time and

have the changes instantly propagate throughout the whole application

that uses them.

The blog project will include both a header and a footer for its lay-

out, as well as a few extra include files that will appear only on certain

parts of the site. It is also a good idea to use a separate style sheet to

actually style your objects and text without adding lots of additional

style code into your HTML structure. To style the blog with a style

sheet, we will be using a cascading style sheet (CSS) file that defines

the graphical appearance of many elements and has some nice default

settings. The CSS file will be provided as is and can be edited by hand

with the knowledge you gained in Chapter 7, “CSS Basics.” Don’t hes-

itate to experiment with the design once your blog has been set up.

226 Chapter 12 / Creating the Blog and Performing a Simple Query

When using our supplied sample files, the blog should be very similar

in appearance to Figure 12-1.

The Header and Footer Files

Each web application that you build will have a similar structure in its

header and footer. HTML headers generally contain meta information

about the page such as its character encoding, language setting, page

titles, and any JavaScript or CSS include files. The footer generally

contains copyright information, links to the contact or about page, and

other embellishments that go on the bottom of the page. The blog pro-

ject is no different; its header includes a CSS style sheet and the footer

has some elements to make the bottom of the page look nice and

rounded.

1. First, we should create the header page. Let’s start a new PHP

page and name it blogHeader.php. This page should have the

source code shown in Figure 12-2.

Chapter 12 / Creating the Blog and Performing a Simple Query 227

Ch
a

p
te

r
1
2

Figure 12-1: Sample page from the Blog FileMaker PHP application

2. Once you have the header created, let’s create another PHP page

named blogFooter.php. The page should have the source code

shown in Figure 12-3.

3. Once both of those pages are created, save and close the files.

They will be used shortly as include files when we build the blog pages

throughout the book. Remember that you can edit those pages at any

time to give your own blog an exciting custom look and feel.

228 Chapter 12 / Creating the Blog and Performing a Simple Query

Figure 12-2: Source code of blogHeader.php

Figure 12-3: Source code of blogFooter.php

Cascading Style Sheets

Since the beginning of the web, presenting information that is not plain

text has been a challenge with many different solutions. Cascading

style sheets (CSS) offer the ability to style fonts, tables, and images by

referencing elements on an HTML page using the class and id proper-

ties of that element. This allows pinpointed modifications to the way a

page would look in a browser using a simple external file. The CSS for

this project is used to style the tables and attach background images to

the layout, allowing you as the PHP programmer to focus on the logic

and the HTML tags.

This separation allows you to leave the site design to a designer,

or even yourself when you are wearing the designer hat and not focus-

ing on PHP. From our experience, PHP applications that are built with

heavy CSS integration are much more easily modified in the future,

and thus it is much cheaper to maintain the image and direction of the

client changes. We strongly recommend picking up a book about CSS

and graphical design on the web even if you only have the slightest

interest in graphical design. The knowledge will make your future

PHP work agile and flexible for years to come!

The CSS for the blog is quite lengthy due to the extra effort that

went into reducing the HTML code at the expense of adding more

graphical definitions into the CSS. For more information about cascad-

ing style sheets, see Chapter 7.

1. Create a new CSS file and name it webstyle.css.

2. Include the source code from Figures 12-4 and 12-5 into the new

page.

This style sheet should be placed alongside your other PHP files and

not in a subfolder; otherwise, the image references within it will not

properly work without extra modifications.

Chapter 12 / Creating the Blog and Performing a Simple Query 229

Ch
a

p
te

r
1
2

230 Chapter 12 / Creating the Blog and Performing a Simple Query

Figure 12-4: Source code of webstyle.css, part 1

Figure 12-5: Source code of webstyle.css, part 2

The About Blob Section

Most blogs have a small about section on the right side of the home

page, as shown in Figure 12-6. This section should be used to describe

what your blog is about, and potentially include your company logo or a

photo. This section should also be an easily editable include file that

you can include in multiple locations within your application.

1. To create this include file, create a new PHP file named

blogAbout.php and fill it with the code from Figure 12-7.

Chapter 12 / Creating the Blog and Performing a Simple Query 231

Ch
a

p
te

r
1
2

The About Blob Section

Most blogs have a small about section on the right side of the home

page, as shown in Figure 12-6. This section should be used to describe

what your blog is about, and potentially include your company logo or a

photo. This section should also be an easily editable include file that

you can include in multiple locations within your application.

1. To create this include file, create a new PHP file named

blogAbout.php and fill it with the code from Figure 12-7.

Chapter 12 / Creating the Blog and Performing a Simple Query 231

Ch
a

p
te

r
1
2

Figure 12-6: Location of the about blob within your blog

Figure 12-7: Source code for blogAbout.php include file

2. Save and close the file.

This file will be included from your blog home page as well as the blog

about page that will be created at a later time.

Preparing the Connection Include Folder

When working with this project, we will be developing a few functions

as well as some common PHP files that will be used throughout the

entire site. Apart from the HTML layout includes you created earlier,

code-based PHP includes should be placed into a directory separate

from the rest of your files.

1. Create a folder with the name include within your blog project

directory. Be sure to use this exact case and spelling; otherwise,

further examples will be inconsistent with your setup.

Now that the folder has been created, it is best to create a local

copy of the FileMaker API for PHP. Please refer to “Manually

Installing the FileMaker API for PHP” in Chapter 3 for instruc-

tions on finding the API.

2. Place all the extracted FileMaker API for PHP files within a

FileMaker folder in this newly created include folder.

Once you are done, the following file path should point to a valid file:

include/FileMaker/FileMaker.php.

Creating a Connection Include File

When working with a project, it is a very good idea to have a single file

that initializes your connection to FileMaker Server. This file would

set the host name or IP address of your FileMaker server, the database

name you are connecting to, as well as the credentials to use with the

connection. This file will also be used to include the FileMaker API

files, which will give you access to the actual API functions. Once this

is properly set up, all further pages will have access to this connection

with one simple line.

232 Chapter 12 / Creating the Blog and Performing a Simple Query

1. Create a new PHP file in your include folder, naming it

db.inc.php, and enter the code from Figure 12-8 into it, making

sure you remove any other HTML or PHP code from your new

PHP file.

This file includes the FileMaker.php file that initializes the API.

Then four variables are defined:

$DB_HOST = 'the database IP or http address';

$DB_NAME = 'Database Name';

$DB_USER = 'web accessible FileMaker user account';

$DB_PASS = 'web accessible FileMaker password';

These variables might have to be customized by you, especially

the database host and the database name parameters, which can

vary if you are using a hosting company for your database files.

2. Save and close the file.

With the db.inc.php include prepared, you can now include it in any of

your pages with this simple line:

<?php require('include/db.inc.php'); ?>

Chapter 12 / Creating the Blog and Performing a Simple Query 233

Ch
a

p
te

r
1
2

Figure 12-8: Source code for db.inc.php

Constructing the Blog Index Page

With all the include files completed, the first page of the application

can now be constructed. Traditionally, the first page of the application

is the index page, which is named index.php. This page will serve as

the home page for your entire PHP application.

1. Create a new page, naming it index.php and be sure to clear any

code from it before continuing. This page will include the

FileMaker connection file, the standard header, the standard footer,

and the about blob on the side.

2. Start by adding the following two lines to the beginning of the file:

<?php require('include/db.inc.php'); ?>

<?php include('blogHeader.php'); ?>

The first line includes the database connection and the second line

includes the blog header file. Next, we will create a small HTML

table cell using the td element with a width setting of 500 pixels.

The width setting is used in this case to limit the area of the blog

to a portion of the page and allow space for the about blob.

3. Add the following to the end of your file in order to add the table

cell:

<td width="500" valign="top">

<p class="blog_info"></p>

</td>

With those lines added, the only remaining thing that we need to

do to prepare a page within the application is to add the blog about

blob and the standard footer.

4. Append the following two lines to the end of your current block of

code:

<?php include('blogAbout.php'); ?>

<?php include('blogFooter.php'); ?>

234 Chapter 12 / Creating the Blog and Performing a Simple Query

With those simple seven lines, you have just created an entire PHP

page with a header, footer, and some space for dynamic FileMaker data.

The full code listing for this page can be seen in Figure 12-9.

Adding a Find All Command to List
Posts

Now that the page is ready to accept PHP logic and dynamic data, let’s

jump straight into using the API for a simple query. The easiest com-

mand to use with the FileMaker API is the find all command that

simply retrieves all the records from a specific layout. Before the code

is actually written, let’s take a minute to look at the flow of a

FileMaker database command:

� The FileMaker command is initialized with a layout parameter.

� The FileMaker command is executed and returns a result.

� The result has to be checked for errors.

Initializing a FileMaker command requires using a FileMaker object, in

this case defined within db.inc.php, to call a new command function on

it with a layout name. The generic syntax for this operation is:

$command = $fm->newFindAllCommand($layout);

1. In the index.php page, move the closing PHP tag from the first line

down a few lines to make space for PHP code.

Chapter 12 / Creating the Blog and Performing a Simple Query 235

Ch
a

p
te

r
1
2

Figure 12-9: Source code for index.php with header and footer includes

Your first three lines should now contain the following code:

<?php require('include/db.inc.php');

?>

Since within the db.inc.php file we used the blogDB variable to

store the FileMaker object, we have to use the same variable to

initialize the command. We will use the Posts layout to list all the

blog post entries that are currently in the database. We will store

the command object inside the postsFind variable. It is good prac-

tice to have descriptive names for your commands; in this case, it

is clear that the postsFind variable is a find for some posts.

2. Add the following code to the second line of your file to initialize

this command:

$postsFind = $blogDB->newFindAllCommand('Posts');

This line completes the first part of our action plan for this page:

blogDB was used to initialize the connection with the Posts layout.

Since the find all command does not require any further setup, we

can move on to the second part of executing the command.

Executing a FileMaker API command involves calling the exe-

cute function on it and then assigning the result of it to a variable.

Remember that PHP assigns the result from the right side of the

equal sign to the left side of it. In this case, we will use the posts

variable to hold the results.

3. Assign the execution result of the postsFind command to the posts

variable using the following line:

$posts = $postsFind->execute();

This line should go right after the line that initialized the new

command. With these two FileMaker API lines in place, you have

just created a FileMaker search. Congratulate yourself on this

accomplishment and make sure that you understand the main

parts of the code up to this point.

236 Chapter 12 / Creating the Blog and Performing a Simple Query

The last part of the FileMaker command process is checking

the result of the command for errors. Errors within commands are

very easy to detect with the FileMaker API since the API returns

a special error object instead of a proper result set. To check if the

result variable that you have is an error object, the FileMaker::

isError function must be used within an if statement. If the object

is indeed an error object, then it will have a getMessage function,

which returns a well-formatted error message that is ready for

printing. Error handling typically takes three lines of code for the if

statement and the error printing. Notice that the error printing in

this case uses the die function, which stops execution of the PHP

script at the point right after printing out the message. This

behavior is desired in most cases since a failed FileMaker com-

mand will typically prevent the rest of the page from properly

working.

4. Add the following code for the error check after the execute

function:

if(FileMaker::isError($posts)) {

die('Database Error: '.$posts->getMessage());

}

With these few simple lines you have constructed a proper FileMaker

API command that is executed and checked for errors. By following

this code, you can use the result object — in this case the posts vari-

able — to output the FileMaker data that was returned from the

command. The code up to this point is displayed in Figure 12-10.

Chapter 12 / Creating the Blog and Performing a Simple Query 237

Ch
a

p
te

r
1
2

Figure 12-10: Source
code of index.php with
a FileMaker API
command

Displaying a Simple Result Set

The previous section only addressed how to run a FileMaker API com-

mand. The next logical step is to actually print out the result set

returned from that command. Since this result set contains a list of

posts with titles and body content text, we can print those very neatly

using a set of HTML header tags and paragraphs. Each entry will have

the following structure:

<h1>Post Title</h1>

<p>Post content</p>

1. Insert the above code as a placeholder after the <p

class="blog_info"></p> line.

Now that you have the placeholders in place, PHP code has to be

added to print that structure as many times as we have records in

the found record set.

Printing repetitive HTML blocks of code is a task for PHP

loops. The most appropriate loop in this case is the foreach loop

that goes through each value in an array of values and performs a

task with it. However, having only the posts result object does not

give us access to the array of actual records just yet. The

FileMaker API has a special function specifically for this purpose:

getRecords. The general syntax for getRecords is:

$recordArray = $fmResult->getRecords();

Since the fmResult in our case is the variable posts, we will adopt

the general syntax above to start a foreach loop before the two

placeholder lines that you have already inserted into the page. The

code below first retrieves the array of records from the posts

result and stores it in postsArray, then postsArray is used to start

a foreach loop that each time places an element from postsArray

into the post PHP variable:

<?php

$postsArray = $posts->getRecords();

238 Chapter 12 / Creating the Blog and Performing a Simple Query

foreach($postsArray as $post) {

?>

2. Add the above code between the placeholders in your page.

The code above starts the actual loop; however, each loop within

PHP must have an ending curly brace in order to confine the loop-

ing procedure to a specific part of the script. In this case, we want

the loop to end right after the two placeholder lines. Here, ending

the loop only requires a closing curly brace within proper PHP

opening and closing tags.

3. Add the following line to your code after the placeholders:

<?php } ?>

Before continuing further, verify that you have placed all the loop

start and end tags in the correct location around the post title and

post content placeholders by comparing your code to Figure 12-11.

The last step that has to be performed before you have a fully

functioning FileMaker-driven web page is to add the actual print-

ing of data within your FileMaker fields. Each record in the

Chapter 12 / Creating the Blog and Performing a Simple Query 239

Ch
a

p
te

r
1
2

Figure 12-11: Source code with a record array loop

postsArray that is accessible through the post variable in the

foreach loop has a function getField, which allows you to retrieve

the value of a specific field on your layout. We will be using two

instances of getField to print the post title and the post content

into the HTML code. The generic syntax for getField resembles

other API functions very closely:

$fieldContents = $record->getField(‘fieldName’);

In our case, we are printing into the header and the paragraph

tags, and the record object is stored in the post variable.

4. Insert the following code in place of the placeholder code:

<h1><?php echo $post->getField('title'); ?></h1>

<p><?php echo $post->getField('body'); ?></p>

Notice that here we are not assigning the result to a variable or using

equal signs since echo takes the result of the command to the right of

it and prints its results to the user’s browser. The final source code for

the index.php page can be seen within Figure 12-12, and the output in

your browser should closely resemble Figure 12-1.

240 Chapter 12 / Creating the Blog and Performing a Simple Query

Figure 12-12: Final source code of index.php

Summary

This chapter contained a lot of condensed information within it, both

about include files as well as basic FileMaker queries. Our hope is that

you will review any unclear parts in this chapter and keep going back

to it as a basic template for future blog application pages or even when

setting up your own FileMaker PHP applications. When finished with

all the examples in this chapter, make sure that you understand thor-

oughly how the include files work as well as the purpose of each line

that performs the FileMaker find all command on this page. If you feel

even more adventurous, do not be afraid to try printing more fields

from the post record to see what you can do with the getField function.

Chapter 12 / Creating the Blog and Performing a Simple Query 241

Ch
a

p
te

r
1
2

This page intentionally left blank.

Chapter 13

Creating New
Records and Sorting

Now that you have a taste of how FileMaker web publishing works, it

is time to continue discovering the many other ways to interact with

FileMaker from the web. Here, we will discuss creating new records,

which will allow you for the first time to have a two-way interaction

with the FileMaker database. At the end of this chapter, sorting is also

covered in order to help you properly display the records that you

create.

Record Creation Process

Creating records within FileMaker using the FileMaker API is a very

similar process to the find all command that was covered in the previ-

ous chapter. A new step is introduced into the process that involves

setting the actual field values within the record before submitting it for

execution. Since HTML forms send data first into the PHP script and

not directly into the API, this step is necessary to map the form prop-

erly into the new record. Before the code is actually written, let’s take

a minute to look at the flow of an add record FileMaker database

command:

� The FileMaker command is initialized with a layout parameter.

� Multiple field parameters are added to the command.

243

� The FileMaker command is executed and returns a result.

� The result has to be checked for errors.

Once the new record is created, it can be manipulated by PHP and data

can be retrieved from it. For example, you can retrieve a confirmation

number from the new record that was auto-generated using a

FileMaker serial number. You can also use this new record object to

add portal rows to the newly created record, an operation that will be

covered in Chapter 16.

New Record Command

The new record command is initialized just like most of the other com-

mands, but includes a parameter for the layout name that the operation

will be performed on. However, before executing the command a num-

ber of fields have to be set; this is done with the setField command,

which has the following general syntax:

$fmCommand->setField('fieldName',$value);

The setField command does not return any values and has just two

parameters — one for the field name as it appears on your FileMaker

layout and the second one for a constant value or a variable to place

into that field.

244 Chapter 13 / Creating New Records and Sorting

Building the Input Form

Now that you are familiar with how a new record is created, it is time

to apply that knowledge to something useful. We shall continue build-

ing our blog PHP application by adding a new blog entry section to the

blog administration that will create the new record for your post in the

database.

Generally, most new record commands are initialized from forms

that take in user-supplied data to be placed into a record, and this case

is no different. We will start by creating a quick input form that takes

in a post title and the contents of the post. Using the usual include files

we will create another standard blog page for the form.

1. Create a new page and name it newEntry.php.

2. Include the source code in it from Figure 13-1.

Notice that this page is just a simple form that will actually submit its

post data to newEntryResponse.php, which we will create later on in

this chapter.

Chapter 13 / Creating New Records and Sorting 245

Ch
a

p
te

r
1
3

Figure 13-1: Source code for the newEntry.php input form

Processing Form Data Correctly

You learned in Chapter 9 that post and get form data can be accessed

using the $_POST and $_GET variables in the response scripts. How-

ever, this form data access method does not properly transmit the data

for a few specific characters. Instead, in most PHP configurations,

characters such as a double or single quote have slashes added in front

of them. For example, the value from an input box that had “It’s a PHP

script” in it would become “It\’s a PHP script” — recording that extra

slash in your database.

This automated manipulation occurs to prevent some security

problems with PHP being used with SQL databases, and has no appli-

cation in FileMaker web publishing except as a distraction for the

programmer. In order to get the real value of the variable, you have to

use a function that will remove those extra slashes: stripslashes. The

functionality of adding slashes automatically is called “Magic Quotes”

and is usually enabled on a web server. However, some PHP installa-

tions do not add the slashes, and therefore an extra function has to be

used in an if statement to check if stripslashes is truly required. That

function is get_magic_quotes_gpc, which returns a value of true when

slashes are being added. Since this has very little relevance to a

FileMaker programmer, you are probably starting to wonder how much

it will really take to get data out of a form in your applications. Well, all

is not lost — there is a very efficient method to retrieve those values

consistently and without dozens of if statements. We will write a few

functions to automate this process.

In order to automate the slash character detection, two functions

will be defined: POST and GET. Since it is a function, parentheses

have to be used for the parameter instead of the square array brackets

you would use to retrieve a value from $_POST or $_GET. To contrast

the two methods, these lines of code would perform the same function

with the exception of the first not stripping the slashes:

echo $_POST['variable'];

echo POST('variable');

246 Chapter 13 / Creating New Records and Sorting

In order to use these two new functions easily throughout the entire

site, they should be automatically available to most scripts, and the

best way to do that is to place them into an include file. Let’s create a

new include file for cases like these where you have a function that is

extremely helpful and you want to use it throughout your whole

project.

1. Create a blank PHP file in your include directory, naming it

commonFunctions.inc.php.

2. Add the source code for this function as shown in Figure 13-2.

This code will be thoroughly explained in the next several

sections.

3. Save and close the file.

Chapter 13 / Creating New Records and Sorting 247

Ch
a

p
te

r
1
3

Figure 13-2: Source code for commonFunctions.inc.php

Now that your include file is ready, it is time to integrate it into all

your database-driven pages. The easiest way to do this is to

include it as part of a connection db.inc.php file.

4. Add the following line after the “FileMaker.php” include line in

db.inc.php:

require_once('commonFunctions.inc.php');

Now whenever we include db.inc.php, we are also including our library

of common functions. You can add more functions to the library at a

later date to perform tasks that you would like to use on your pages.

Understanding the POST and GET
Functions

The POST and GET functions above include a few unusual PHP func-

tions that allow them to effectively return a clean post or get value.

Below is the code listing for the POST function (which is practically

identical to the GET function), with explanations below each bit of

code:

function POST($var=null) {

This defines a new function with an optional first parameter. If the first

parameter is not supplied, then its value will be null.

if($var === null) {

If the first parameter was not supplied, the code will go into this block,

returning an entire array with all the variables in the $_POST array

having their slashes stripped.

$ret = array();

foreach($_POST as $key=>$value) {

$ret[$key] = POST($key);

}

248 Chapter 13 / Creating New Records and Sorting

return $ret;

}

The six lines above loop through the whole $_POST array and call the

POST function with the variable name from the loop. When a function

in PHP calls itself, it performs a recursive call, which is very useful

functionality to have in very specific cases such as this one. Once it

calls the POST function for each key in the $_POST array, the function

finishes and returns the $ret array.

if(!isset($_POST[$var])) return false;

The above line allows a graceful exit from the function if the POST

variable simply does not exist. Attempting to access this variable with

the standard method would produce a warning that the variable is not

defined, but using isset allows us to return the value of false for unde-

fined variables without producing any warnings.

if(get_magic_quotes_gpc()) {

return stripslashes($_POST[$var]);

}else{

return $_POST[$var];

}

}

The last six lines of the function actually check whether the Magic

Quotes functionality is enabled in PHP. If so, it returns a post value

stripped of any potential extra slashes; if it is disabled, then a regular

non-stripped value is returned.

That is all there is to the POST function, which is nothing more

than a few if statements and a loop. It is good practice to write similar

functions whenever you have a repetitive task that seems to be using

the same statements and error checking routines. Remember that

once you write a function for one project, it can just be copied and

pasted into another — saving you valuable development time and

increasing your profits.

Chapter 13 / Creating New Records and Sorting 249

Ch
a

p
te

r
1
3

Creating the New Record

The new record has to be created on the page that the new record

form submits to. You will recall that the form action attribute was set

to newEntryResponse.php.

1. Create a new blank PHP page with the name

newEntryResponse.php.

Just like any future pages within the blog application, this one will

start with the standard include files.

2. Add the standard include files to the new page.

<?php require_once('include/db.inc.php'); ?>

<?php include('blogHeader.php'); ?>

<td valign="top">

</td>

<?php include('blogFooter.php'); ?>

The next step is to initialize a FileMaker API add record com-

mand, which is identical to the find all command except the name

of the function is newAddCommand instead of newFindAllCom-

mand. The add record command will be placed in a newPostCmd

variable, which is named to reflect that it is both a post and a

command.

3. Place the following PHP code to initialize the new command after

including db.inc.php:

$newPostCmd = $blogDB->newAddCommand('Posts');

Once the newPostCmd variable contains the correct FileMaker

API command, it is time to go to the second step of adding values

into the FileMaker fields on the FileMaker Posts layout. As noted

earlier in this chapter, fields are added using the setField function

on the command object. In this case we are adding two fields.

250 Chapter 13 / Creating New Records and Sorting

4. Place the following code below the initialization of the FileMaker

add record command:

$newPostCmd->setField('title',POST('title'));

$newPostCmd->setField('body',POST('content'));

Notice how the POST function was used to bring the title and con-

tent post form variables straight into the setField function. Now

the command object has those two fields filled in and ready to be

submitted with the new record.

The third step in the process of creating a new record is to

actually execute the command. Just like the find, we simply call

the execute function on the command variable and collect the

result into the newPost PHP variable:

$newPost = $newPostCmd->execute();

The last step is to check for and exit the script on any errors using

an if statement, which should also be familiar from the find all com-

mand. The if statement must go after the execute and have

newPost as the variable being checked.

5. Add the following three lines of code to check for any errors.

if(FileMaker::isError($newPost)) {

die('Database Error: '.$newPost->getMessage());

}

Since this is a simple blog post form, we can now present a nice

success message to the author of the blog within the HTML code

of the page and offer a link back to the home page. This code

should be placed into the table cell between the blog header and

footer and can be formatted as you desire.

6. Enter the following simple three lines of code:

<h1>Success</h1>

<p>Your post was made successfully. Please go back to the

home page to see it.</p>

Chapter 13 / Creating New Records and Sorting 251

Ch
a

p
te

r
1
3

Once you are done inserting all the code, test your page by adding a

few new records to your database. If something is not working cor-

rectly, verify the code you have with Figure 13-3.

Sorting with the FileMaker API

The ability to sort information in your FileMaker result set is an

essential feature of many queries. The FileMaker API includes three

ways to perform sorting: ascending sort, descending sort, and custom

sort based on a value list. The sorting parameters have to be added to

the FileMaker command after it is created but before it is executed.

The general form of the sorting parameter addition is:

$fmCommand->addSortRule('fieldName', $precedence,

$order);

The first parameter of the addSortRule function is the name of the

FileMaker field to sort by. The second parameter has to be a sequential

number from 1 to 9, starting with 1 and going up to a maximum of nine

parameters — this will determine the order in which the sort rules are

252 Chapter 13 / Creating New Records and Sorting

Figure 13-3: Source code for the newEntryResponse.php form

applied to the result set. The third parameter is the order of the sort; it

can take either one of the two special constant PHP values of

FILEMAKER_SORT_ASCEND or FILEMAKER_SORT_DESCEND.

These have to be used without any quotes or other characters around

them. The other option is to supply a string value that identifies a

value list on the layout that will be used as the basis for the sort.

Once the sort rules have been added, it is possible to clear all of

them using the clearSortRules function on the FileMaker API com-

mand. This function does not have any arguments and will clear all the

previously added sort rules.

Adding Sorting to the Home Page

Now that you have a few blog posts within your blog database, you

might notice that they appear in chronological order on your home

page. Blogs are usually shown in reverse chronological order to allow

the latest items to be displayed at the very top. In order to have the

same functionality on the web with FileMaker, sorting parameters

have to be used before executing a command to specify what field to

use for sorting. Let’s modify the previously created index.php page to

list records in reverse chronological order and see your newest posts

at the top of the home page.

To add a sorting parameter we have to isolate the point where the

FileMaker command object has been created but execute is not yet

called on it. If you have a copy of index.php from Chapter 12, then this

point is between the following pair of lines:

$postsFind = $blogDB->newFindAllCommand('Posts');

$posts = $postsFind->execute();

The sorting parameter that we add will sort the data based on the post

timestamp field, which is auto entered during field creation. The field

name in this case is timestamp. Since this is the only sort rule, it will

have a precedence of 1.

Chapter 13 / Creating New Records and Sorting 253

Ch
a

p
te

r
1
3

1. Enter the following line between the two lines above:

$postsFind->addSortRule('timestamp', 1, FILEMAKER_

SORT_DESCEND);

The new version of your index.php script should resemble Figure

13-4, and the output in the browser should have the newest posts

first just like in Figure 13-5.

254 Chapter 13 / Creating New Records and Sorting

Figure 13-4: Source code for sorting home page

Figure 13-5: Browser output of sorted home page

Summary

Finding and creating records is only the tip of the iceberg when it

comes to interacting with FileMaker from the web. With the knowl-

edge you have gained so far, you can already build powerful listing

pages of your database information and add simple records. Soon you

will be able to edit records and portals, and use value lists all over the

site. Take the time to understand the underlying lessons in the previ-

ous two chapters and the next few chapters, since they will serve as

the foundation for the powerful PHP applications that you will be build-

ing for your clients, your office, or yourself!

Chapter 13 / Creating New Records and Sorting 255

Ch
a

p
te

r
1
3

This page intentionally left blank.

Chapter 14

Database Searches
and Limits

Finding all the records and creating a few new records might not seem

like very advanced database functionality within a web site, although it

is a very significant achievement in displaying FileMaker data directly

to any end user with a browser. Here we will explore the actual

detailed finds that power all database-driven systems, allowing you to

finally have search forms and create links that point to specific records.

Beyond the Find All

Learning the techniques of using the FileMaker API with the find all

command allowed you to see the structure of a FileMaker command

without any additional parameters. In this chapter you will use the

knowledge from Chapter 13 that includes the setField function along

with the structure of a FileMaker command to construct powerful cus-

tomized queries. This is where interacting with FileMaker from the

web becomes exciting and truly dynamic.

257

There Is Also a Find Any Command

Apart from the usual commands, FileMaker also provides a command

that has very limited applications within production systems — the

find any command. This command does exactly what its name sug-

gests — finds any random record from the layout specified. While this

command is usually not used within most applications, it does have a

few interesting uses to the developer during the development process.

One useful application of the find any command is using it in a

page that will display search results. Consider the case of building a

PHP application with a search page that receives a query from a

lengthy form. Let’s say, however, you would like to build the results

page first and then focus on the forms within your site. In this case,

find any provides a good way to get a variety of records that would

mimic finding a single record using the search form. Temporarily using

find any instead of a regular find in this case shortens your develop-

ment time and allows you to work with real data immediately. In this

case, find any also provides a good variety of data since every time a

page is refreshed a different record is displayed.

Within production systems, find any can be used to introduce a

random element to a certain location. Some examples of this might be

a random page function or a rotating set of advertisements served

from a database randomly. The blog application you are building could

certainly use the find any command to have a random post functional-

ity that would allow a visitor to your blog to find an interesting random

post with a single click of a button. Before implementing this random

post functionality, however, let’s quickly review how the find any com-

mand is called. The find any command is initialized with the

newFindAnyCommand that is derived from a FileMaker object and can

be immediately executed to receive a result set. To implement this

functionality, it is best to create a new page, appropriately named

randomPost.php, that will just display a random blog post.

258 Chapter 14 / Database Searches and Limits

1. The first thing to do to create the random blog post page is to cre-

ate a quick skeleton page using the blog template. This page

should have a basic header and footer as well as the connection

include file. Create a new PHP page, name it randomPost.php,

and insert the code in Figure 14-1 into it.

2. Now that you have a blog page ready to go, it is time to initialize

the find any command and execute it. Since the find any command

returns a result set, the command and result variables will have

the prefixes Cmd and Result. Once the command is executed, the

standard error-handling code is used to trap for any errors. Insert

the code in Figure 14-2 into the top of your PHP script.

Chapter 14 / Database Searches and Limits 259

Ch
a

p
te

r
1
4

Figure 14-1: Starting randomPost.php source code

Figure 14-2: Adding the command execution and error handling

3. Now that you have a valid result set returned within the

randomPostResult variable, it is time to isolate a single record and

print its contents to the page. Isolating a single record from a

result set like this one still requires calling the getRecords func-

tion on the result variable, which will return an array of records.

However, once the array of records is accessible, we can just

access the record using the 0 array element. The following code

would extract the records from the result set and place a record

into a single variable. Do not insert this into your page since it is

just to illustrate the 0 array element notation:

$records = $result->getRecords();

$record = $records[0];

Within our example, we will be using the first 0 array element

notation twice within the echo statements without actually ever

placing it into a separate record variable. To complete your random

post PHP page, insert the code from Figure 14-3 into your page.

4. To test this functionality, point your browser to the project folder

and access randomPost.php. Try refreshing it multiple times; you

should be able to see random records being accessed and printed,

as shown in Figure 14-4. Remember that while find any might not

260 Chapter 14 / Database Searches and Limits

Figure 14-3: Completed randomPost.php script

be applicable to most applications, it can add a spice of randomness

and dynamic flow to your application when used sparingly.

Anatomy of a Find

The single find request is one of the core concepts within any database

system, and FileMaker is no different. Performing a find command

using the FileMaker API involves initializing it with

newFindCommand, which as with other commands will expect a layout

parameter for your query. Following the command initialization, there

are a few different parameters available, such as sorting (which you

already know about), database search parameters, and even record

range limits. Database search parameters are the core of the advanced

search queries since they allow you to isolate blocks of information

from within your database. Record ranges, on the other hand, allow

you to efficiently traverse large blocks of information using multiple

pages of results instead of just a single large result page. We will be

taking a look at the search parameters first, followed by record ranges.

Chapter 14 / Database Searches and Limits 261

Ch
a

p
te

r
1
4

Figure 14-4: Random blog post printed in a browser

About Find Parameters and Logical Operators

Parameters within find commands are added after the command is ini-

tialized and before it is executed. Just like adding fields to new records,

find parameters have to be added on a field-by-field basis. The function

to add find parameters is addFindCriterion, which has the general

syntax of:

$findCmd->addFindCriterion('fieldName',$value);

You can add as many find criteria as you would like; however, only one

can be specified per field. Attempting to supply the same field name

multiple times will result only in the last submitted value affecting the

find.

FileMaker offers both OR and AND finds. The OR find will per-

form logical OR matching, which will return a record if one of the find

criteria that you supplied matches the search criteria, while the AND

search will only return a specific record in the record set if all the find

criteria match within a specific record. The AND query, which is the

default FileMaker query, allows exact specific searches. However, we

will be using the OR logical search when searching the blog since we

want to allow the user to search in both the title and the post body.

Overwriting the default AND logical operator is done using the

setLogicalOperator function on your command object, which has a sin-

gle parameter of either FILEMAKER_FIND_AND or

FILEMAKER_FIND_OR. The general syntax is:

$findCmd->setLogicalOperator($operator);

Once we review a few important naming limitations, we will use the

addFindCriterion function to add a search box to your blog.

262 Chapter 14 / Database Searches and Limits

Important Field Name Limitations

Before continuing further with learning about the FileMaker API find

commands and all the other wonderful functions that the FileMaker

API offers to you, it is important to review some limitations of the

FileMaker Web Publishing Engine. The FileMaker Web Publishing

Engine allows much flexibility in how you name your fields within the

layout with one simple exception: Using the period (.) within your field

names will render them unusable for FileMaker API commands. The

technical reasoning behind this limitation is that the period character is

used to specify exact record references; this is never used directly by

the user but comes into play when working with portal rows.

Rendering the fields unusable for the specific query only applies to

the actual reference to the field in a command. For example, you can-

not use such a field name when using setField or addFindCriterion —

however, the field is accessible and printable from within the result

set. Therefore, if you only need to display a field with a period in its

name, then it will be safe to leave it as is. Note, however, that any

operations on such a field will produce either the “102 Field is Miss-

ing” error or the “401 No Records match the Request” error.

Creating a Blog Search Form

Creating a search form within your blog is just a matter of creating an

HTML form that will send data to a search results page. In this case

we will name the search results page blogSearch.php, which will

expect two variables — a keyword to search and the number of records

to skip in the found set. By default, the skipping value will be 0, but as

we continue through the chapter the search results page will have pag-

ing functionality that will modify this value on every page.

Chapter 14 / Database Searches and Limits 263

Ch
a

p
te

r
1
4

1. Adding a search form to the blog should be done using an include

file since you will want to have the search box appear within multi-

ple pages on your blog. Therefore, let’s create a new PHP page to

store the form HTML as an include file. Create a blank PHP page

now, placing it next to your other blog files and naming it

blogSearchForm.php.

2. Next we will add the actual form to this fresh include file. In this

case the form will not be a post form but will use the get form

method; this will place the search parameters into the URL of the

results page, which is essential for bookmarking search result

pages. You should always use the get method in pages that search

data, and the post method on pages that actually modify data. This

simple get search form should now be inserted into your

blogSearchForm.php file by adding the code in Figure 14-5.

3. The last step in this process is to include this search form as part

of an existing blog page. index.php is a perfect candidate to have

this search form. Open up your copy of index.php now and add the

following line after the blog_info empty paragraph bit:

<?php include('blogSearchForm.php'); ?>

The final source code of index.php at this stage should match Fig-

ure 14-6. The browser output of our simple search form is

displayed in Figure 14-7.

264 Chapter 14 / Database Searches and Limits

Figure 14-5: Search form include file source code

Chapter 14 / Database Searches and Limits 265

Ch
a

p
te

r
1
4

Figure 14-7: Search form as it appears in a browser

Figure 14-6: Source code of index.php with the search form

Creating the Results Page

Now that everything else is ready, it is finally time to create the search

results page and add a powerful search query to it.

1. First, let’s create the search results page. Recall that in the search

form we referenced blogSearch.php, which appropriately will

become the search results page. Create a new blog PHP page and

save it as blogSearch.php. Since this page will be almost identical

to the home page, it makes sense to start with the source code of

index.php as the basis of this page. Copy and paste your index.php

source code into blogSearch.php now.

2. The next step is to modify the command from a find all to a simple

find, leaving the sorting parameter in place; after all, the search

results should also be sorted in reverse chronological order. Next

we will use addFindCriterion for the first time to set both the title

and the body fields with the supplied keyword get variable from

the user. The modified find with both criteria will resemble Figure

14-8.

266 Chapter 14 / Database Searches and Limits

Figure 14-8: Find command with two find criteria

3. Now that the find parameters have been added to the search, we

have to make this search an OR search. This is done by adding the

following simple line somewhere between the command initializa-

tion and the command execution:

$postsFind->setLogicalOperator(FILEMAKER_FIND_OR);

Figure 14-9 displays the final source code for the top of this modi-

fied index.php page, which is now ready to receive a search query

from a search form.

4. Since we started out with a page that already lists a number of

records from the database, the slight modifications to the com-

mand above were the only modifications needed for this page. Try

this page out now by going to your home page and searching for

text within one of your blog posts.

Chapter 14 / Database Searches and Limits 267

Ch
a

p
te

r
1
4

Figure 14-9: Completed PHP script for blogSearch.php

Adding Limits to the Search Results

Now that you have used parameters within your search results, it is

time to look at further find command modifiers.

Using Skip Record Parameters

Skipping records within a find or a find all command has to be specified

using the setRange function before the command is executed. The

setRange function accepts two parameters. The first one is the num-

ber of records to skip and the second one is the number of records to

return. The function has the following general syntax:

$command->setRange($skip, $max);

The skip parameter should be a number starting from 0 and specifying

the number of records to skip. For example, using 5 here will place the

sixth record in a found set as the starting record of the result set. The

second parameter is an optional parameter for the number of pages to

return. It should be set to a low number such as 10 or 20 in order to

keep your queries fast and efficient. Please note that the number of

records to return is counted from the skip value; therefore, specifying

a skip of 5 and the maximum number of records as 10 would return

records 6 through 16.

Integrating Limits and Skip to Achieve Paging

Using skipping to limit records is vital in PHP database applications for

both speed optimization purposes and user interface purposes. First of

all, returning smaller result sets will always result in a speed improve-

ment within your application. This improvement is even more

noticeable if the resultant layout has fields that are unstored calcula-

tions, which greatly slow down FileMaker API commands. The second

reason to limit records is a bit more obvious. Doing so allows you to

present the user with a manageable list of records and convenient Pre-

vious and Next links to browse a larger result set. We will be adding

268 Chapter 14 / Database Searches and Limits

those links on our search results page in order to browse through the

found set.

1. The first step in implementing a paging system within your appli-

cation is to specify the actual limit in the find command. Recall that

when we were building the search form, we included a hidden vari-

able named skip with a value of 0. This allows us to always have a

skip value set even on the first result page. Since now we have

this variable within our get form data, we can always access the

skip value using GET('skip'). Combining this with the setRange

function produces the following line:

$postsFind->setRange(GET('skip'), 3);

As you can see, the maximum value here was set to 3, showing

only three records on each result page. You should add the line

above right after the setLogicalOperator function to complete the

modifications required to the top of blogSearch.php. All the other

code will be building the actual Previous and Next links. Figure

14-10 shows the relevant section of blogSearch.php that your code

should closely resemble.

2. Now that we have the skip limit in place and ready to accept

requests with a variety of skip get variables, it is time to build the

Previous and Next links that will actually provide the user with the

properly shifting skip values. The links should go right below the

Chapter 14 / Database Searches and Limits 269

Ch
a

p
te

r
1
4

Figure 14-10: Skip limit added to blogSearch.php

blogSearchForm.php include, so find that point in your code and

start a new PHP code block in that location. First, you have to cal-

culate the appropriate previous and next skip values. Since three

records are displayed on each page, the previous skip value will be

three less than the current one, and the next skip value will be

three more than the current one.

The skip value calculation is performed with a few very simple

PHP calculations. If you have trouble understanding the code from

this section, please review Chapter 8 for an overview of the PHP

comparison operators. We define the prev and next PHP variables

that will hold the two values, placing the result of the subtraction

and the addition into them:

$prev = GET('skip') – 3;

$next = GET('skip') + 3;

However, on the first page, skip is set to 0; therefore, prev would

contain the value 3, which is not a valid point within our result set.

A small if statement must be used to bring any negative prev val-

ues back to 0:

if($prev < 0) $prev = 0;

This new block of PHP code should be identical to what is shown

in Figure 14-11.

270 Chapter 14 / Database Searches and Limits

Figure 14-11: Calculating the previous and next skip values

3. Next we have to print the actual links to the page for the user to

use. Since the search has a keyword within it as well as the skip

value, both of those have to be part of the link as get parameters.

Get parameters are variable key/value pairs that appear in a URL

after the page name and a question mark, in the following format:

pageName.php?var1=value1&var2=value2

In this case, the links will be in the following format:

blogSearch.php?keyword=searchKeyword&skip=integer

Printing a link in the following format from within PHP is very

simple and takes only three lines per link. This code should be

placed below the calculation of the prev and next PHP variables,

and will start with printing the opening link <a> tag:

echo '<a href="blogSearch.php?keyword=';

Next, the actual keyword value is printed from the current get

form data. Notice the use of the urlencode function. This function

makes any user-supplied values safe to use within links such as

quote characters or spaces that are converted to “%20” with this

function:

echo urlencode(GET('keyword'));

Then we just print the second get variable for the skip value, fol-

lowed by the actual link text and a closing <a> tag:

echo '&skip=' . $prev . '">Previous Page';

4. With that code in place, we also add an extra echo to print some

separator characters between the two links and then repeat the

three lines above with the next skip value instead. The final result

for both links and the separator should closely resemble Figure

14-12.

Chapter 14 / Database Searches and Limits 271

Ch
a

p
te

r
1
4

5. The last improvement that we will make to these Previous and

Next links will be hiding them when there are no more previous or

next records. To check if a previous record is possible, we simply

check if the current skip value is 0. When it is not 0, the Previous

link should be printed. This check is accomplished with the follow-

ing if statement:

if(GET('skip') != 0) {

As for the Next link, it should not be printed if the next variable

value will be more than the number of records within this found

set. To find the number of records within the current found set, the

FileMaker API provides the getFoundSetCount function. It has to

be called on the result variable that was returned from the execute

function of the command object. The if statement to compare the

next value and the total number of records in the found set is:

if($next < $posts->getFoundSetCount()) {

Both of these if statements should wrap the echo statements for

their respective link printing blocks of code. The final source code

for this result page should closely resemble Figure 14-13.

272 Chapter 14 / Database Searches and Limits

Figure 14-12: Source code for printing Previous and Next links

Exact Searches and Other Modifiers

While knowing how to perform regular searches for FileMaker data is

a very valuable skill to have, at times it is necessary to perform much

more exact searches for data. For example, if you wanted to look up a

specific confirmation number or a primary key from within your

FileMaker table, you would want an exact match to be made only if a

record were found. This functionality can be very easily achieved on

the web using the same operators you would use in FileMaker Pro

desktop client software to achieve an exact match, in this case using

the “==” prefix before the search term. There are also other prefixes

that you can use before a find such as “>,” “<,” or even the “..”

between two parameters for searching ranges of data.

Using prefixes from within PHP with a search query requires the

use of PHP string concatenation operators such as “==”to combine a

variable with a constant value. For example, adding a find criterion that

Chapter 14 / Database Searches and Limits 273

Ch
a

p
te

r
1
4

Figure 14-13: Source code for search result page navigation links

takes an id variable from the get form data and adding the “==” prefix

to it would have the general syntax of:

$command->addFindCriterion('fieldName','==' . GET('id'));

This exact method will be used to create a blog post detail page by

adding a Read More link to each blog post on the home page.

Adding a View Blog Post Link

Now that you have a home page with the latest blog posts as well as a

searchable archive of your blog content, it is time to expand the func-

tionality of the actual blog post. Currently you are listing the blog posts

on the home page as a list; however, we will be adding functions such

as commenting for specific blog posts as well as categories that the

blog post belongs to. Therefore we need a way to isolate a specific blog

post with a link and display only that post with some extra features in

its own page. This page will have the name viewPost.php and will be

created in the next section. Here, we will create the link to

viewPost.php.

1. Open your current copy of index.php and find the location where

the output of each post title and post body is being made. The link

will be placed between those two lines; for now we will place a

quick placeholder link in there:

Read More

2. Now using the placeholder link, we will add an id get variable to it

and echo the postId primary key from our Posts layout into the get

variable. The full code for this link is:

<a href="viewPost.php?id=<?php echo

$post->getField('postId'); ?>">Read More

274 Chapter 14 / Database Searches and Limits

The final source code for this link on your index.php page should

resemble Figure 14-14.

Viewing a Single Blog Post Record

With a link pointing to viewPost.php in place, it is time to actually con-

struct the view single post page. This page will be using the passed id

variable in the URL to retrieve the specific post record with a match-

ing postId FileMaker field.

1. Create a new blog skeleton page and save the file as

viewPost.php. Enter the source code shown in Figure 14-15.

Chapter 14 / Database Searches and Limits 275

Ch
a

p
te

r
1
4

Figure 14-14: Single blog post link on index.php

Figure 14-15: Initial code for the viewPost.php page

2. Next, we add the find command initialization, placing the command

into the findPostCmd PHP variable. Right after the command is

initialized, we use the addFindCriterion function to add the search

parameter for the postId FileMaker field. Be sure to note that the

syntax discussed above is used to prefix the value from the get id

variable with “==” for a more exact database search. Right after

adding the find criterion, we can execute the command and place

the result in a result variable. Add the following code to your page:

$findPostCmd = $blogDB->newFindCommand('Posts');

$findPostCmd->addFindCriterion('postId', '==' . GET('id'));

$findPostResult = $findPostCmd->execute();

3. The standard error checking is then performed to make sure the

search was successful. In this case, the search if statement should

be:

if(FileMaker::isError($findPostResult)) {

die('Database Error: '.$findPostResult->getMessage());

}

4. Now that we know the result variable does not contain an error

object, it is time to retrieve the actual record. Remember that this

is a two-step operation of first using getRecords to retrieve all the

records and then retrieving the first and only record from the set

using the 0 array element. This is done with the following PHP

lines that place the single record into the post variable:

$posts = $findPostResult->getRecords();

$post = $posts[0];

5. Once all of this code has been added to your page above the

blogHeader.php include, it is time to print the actual blog contents.

This is very similar to any of the other pages we have printed;

simply call the getField function on the record that is stored in the

post PHP variable. The code to print these lines is:

<h1><?php echo $post->getField('title'); ?></h1>

<p><?php echo $post->getField('body'); ?></p>

276 Chapter 14 / Database Searches and Limits

6. Now that all of the code is in place, make sure it is in the correct

locations by comparing your source code to Figure 14-16, and then

test this functionality in a browser by navigating into a single

record.

Summary

This chapter has introduced plenty of new concepts about the different

FileMaker find commands. The instructions in this chapter will serve

as the basis for future chapters that discuss manipulating record sets

or specific parts of records; after all, you must be able to find a record

before you can edit or delete it. However, now that you do know how

to find records, it is time to learn how to work with them.

Chapter 14 / Database Searches and Limits 277

Ch
a

p
te

r
1
4

Figure 14-16: Full source code for viewing a single post

This page intentionally left blank.

Chapter 15

Editing and Deleting
Records

Editing and deleting records is the next logical step in working with

FileMaker data. Editing or deleting records generally involves a

two-step process of finding the record first and then performing

actions on it.

Overview of the Record Object

The FileMaker API allows you to access data within the database using

a variety of find methods that all return a set of records to the PHP

application. As you already know, the returned record set allows access

to the records within it using the getRecords function, which returns

an array of records. This array of records is a special FileMaker API

object that allows you to perform a variety of functions on it. One such

function that you are already familiar with is the getField command,

which allows you to retrieve the value of a specific field within that

record.

The record object contains functions to modify the field values

within it, setting them to new values ready to be saved back into the

FileMaker database. The record object also has a function to delete

itself or retrieve related portal records that are associated with it. This

chapter will explore the modification, saving, and deleting of records

using the FileMaker record object.

279

Linking to a Single Editable Record

Before a record can be edited, we need a way to effectively find it and

prepare it for modification. This step is usually accomplished by having

an Edit Record link that links a specific edit page with the record pri-

mary key value, with the link itself appearing on a page that lists the

records. Within the blog application, it is best to create a special list of

blog posts with links to edit pages. This page will be password pro-

tected later when we get to Chapter 19, but for now simply naming it

editPosts.php should be enough to keep it private. This page is based

on a simplified version of the index.php page and simply prints a list of

links to an editPost.php page. Let’s create this page now.

1. The first step in creating a page with links is to set up a quick skel-

eton page with our blog template. Create a new PHP page, naming

it editPosts.php. This page should have the standard starting

code of the blog as it appears in Figure 15-1.

2. Next, add some header text to the page, as well as a dummy link to

the editPost.php page that we will be linking to for each post in our

blog. Simply add the following code within the <td> tag:

<h1>Edit Posts - Select a Post</h1>

Post Title

280 Chapter 15 / Editing and Deleting Records

Figure 15-1: Starting source code for editPosts.php

3. With the code above in place, it is time to add a find all command

that will find all the posts within the blog. The find all should be

sorted in reverse chronological order as usual and include the

standard error checking code. The code to add is shown in Figure

15-2.

4. The last step of building the list of links is to actually loop through

the record set and print links to the page with the get id variable

containing the postId of the post in question. The code here has a

very similar structure to the other pages that list blog posts with

the exception that in this case we are printing two FileMaker

fields on the same line — postId is printed into the link’s href

attribute and the post title is printed as the link text. The com-

pleted code should match Figure 15-3, and the output of this page

in a browser should resemble Figure 15-4.

Chapter 15 / Editing and Deleting Records 281

Ch
a

p
te

r
1
5

Figure 15-2: Source code for find all command and placeholder links

282 Chapter 15 / Editing and Deleting Records

Figure 15-3: Source code for editPosts.php

Figure 15-4: Browser output of editPosts.php

Building Editable Forms

Before you can modify a record and save changes, you have to be able

to display this record to the user for modification. To display the record

to the user, regular form inputs are used with their starting values set

dynamically to the current value of the field within the record. Once

the form is submitted, the record is found again and isolated for edit-

ing. At this stage, the submitted values are placed into the updated

FileMaker fields and the entire record is saved back to the database.

Whenever you are faced with building an editable form, it is best to

perform the following steps:

� Build the HTML form, including PHP echo statements where

input element values should be.

� Build the record retrieval code that isolates the specific record in

question.

� Test the form to make sure that all values are filled in properly.

� Add post data detection to the form, saving changes to the record

whenever data is submitted to it.

The first step usually takes some time with your favorite HTML editor

in order to get the look and feel that you desire for your form. The

PHP echo statements should be added with an appropriate variable

name and a getField function for this form. This requires a bit of fore-

thought, but you can generally do this step before writing the record

retrieval code itself. For example, an input with a PHP code with a

post variable that would hold the record object would be:

<input name="title" type="text" value="<?php echo

$post->getField('title'); ?>">

It is also very important to include a record identifier into the form’s

action attribute since the page that will be processing this form must

know which record you are browsing. For example, in the case of the

Chapter 15 / Editing and Deleting Records 283

Ch
a

p
te

r
1
5

editPost.php page that we will create shortly, the action attribute will

be the same page with the postId passed in as part of the URL:

<form method="post" action="editPost.php?id=<?php

echo $post->getField('postId'); ?>">

Next you would add the FileMaker API find command to the top of this

page to isolate the actual FileMaker record and place it into the post

object, which is then used throughout the form to fill it in. This is a

good time to test your form since it can be filled in with real database

data. Once you have tested the form and made sure that all the values

are being properly filled in, it is time to add code that will accept a sub-

mitted form and use the record object to edit the record. Editing a

record with a FileMaker API record object involves calling a number of

setField functions for each field that you are modifying and then calling

the commit command that will use the supplied data to update the

record. Note that now the record object contains the new data and will

print it accordingly in the rest of your script.

Editable forms usually use the same edit and response page, which

means that the form’s action attribute would be pointing at the current

form’s edit page. This method allows you to build the form once and

just use a little bit of conditional logic to update the record if a form has

been submitted. The updated record object will then reflect the newly

submitted values when printing the filled-in form. At this stage, a vari-

able is added to hold a message such as “Your changes have been

saved.” This variable is conditionally displayed to users so they know

that even though it is still the same page, the record has actually been

saved. With all this theory out of the way, let’s try applying this to the

editing of a single post; within a few minutes you should have a form

that both displays and saves FileMaker data!

284 Chapter 15 / Editing and Deleting Records

Building the Edit Post Script

As outlined in the previous section, building a filled-in form starts with

building the HTML and then adding the relevant PHP code to retrieve

the data that will be filled in on the form.

1. The first step in building this form is to create the PHP page.

Since this page has links to it already on editPosts.php, it should

be named editPost.php. Note that the form’s action attribute

should be pointing to this same page with the same ID value. Cre-

ate this page now, using the source code in Figure 15-5 to create

the actual filled-in form.

2. Now that this form is built, it is time to access the FileMaker data-

base and place a record into the post variable. Since we are passing

in postId through the link, it will be contained in the id get form

variable and will be set as an exact search within the find. Once

the find is executed and checked for any errors, we isolate its

result into the post variable, which is then used within the form to

Chapter 15 / Editing and Deleting Records 285

Ch
a

p
te

r
1
5

Figure 15-5: Basic HTML form with minimal PHP

fill in the values. The source code for this find, error checking, and

record isolation is found in Figure 15-6.

3. Since this form is pointing to the same script in its action attribute,

if statements have to be used in order to distinguish whether this

is a display of a filled-in form or a display with a save action. Note

that the filled-in form submits a hidden variable called action with

the text of editEntry; this will be used in the if statement as the

trigger for the save, since it will only appear as a post variable

when the form has been saved. Let’s add that if statement right

now on the line right after assigning the FileMaker record object

to the post variable:

if(POST('action') == 'editEntry') {

}

4. With the if statement in place we are ready to add code that will

modify the record in the if block. The code that we are using will

first perform a number of setField commands, which you might

remember from creating a new record, on the record object to

update the fields. Following the setField calls, the commit function

will be called; it will return either a value of true or a FileMaker

error object. The following three lines should be added to the if

statement above:

286 Chapter 15 / Editing and Deleting Records

Figure 15-6: FileMaker API find for a single post

$post->setField('title', POST('title'));

$post->setField('body',POST('content'));

$result = $post->commit();

5. Now that this code is in place, the result variable will contain the

result of this operation. It is very important to conduct error

checking at this point and report any problems back to the users;

otherwise, they will be under the impression that everything has

worked perfectly and their modifications are saved. Before per-

forming error checking, however, we should set up a system that

allows us to easily show an error message to the user using a PHP

variable. The first thing to do to set this up is to define the variable

as blank for cases when there are no messages. This line should

be placed before the if statement above to do just that:

$message = '';

With this message variable in place, we should then place a condi-

tional if statement into the printable part of your HTML code to

display it to the user. The following line to print an error message

should be placed right before the opening tag of your HTML form:

<?php if($message != '') echo '<p><span

style="color:red;">'.$message.'</p>'; ?>

The if statement makes sure that nothing is printed there when

the message remains empty.

6. Now that the message collection and printing functionality is in

place, the last step in the form editing process is to add error

checking code and set the message variable to either a success

message or the error description. Find the if statement that edits

the record and captures the result into a variable, and add the fol-

lowing code, staying within the if statement:

if(FileMaker::isError($result)) {

$message = 'Error saving your record: '.$result->

getMessage();

}else{

Chapter 15 / Editing and Deleting Records 287

Ch
a

p
te

r
1
5

$message = 'Thank you, the changes have been saved';

}

7. Now that all the code is in place, it should be very similar to Figure

15-7. Take a minute to verify the location of both the if statement

and the message printing code.

This is a good time to try running this form and editing a record. The

first time you access the form, a filled form should be displayed. When

that form is submitted, you should receive a success message within

your form with the option of further editing this record. Figure 15-8

displays a record that was just edited and a success message.

288 Chapter 15 / Editing and Deleting Records

Figure 15-7: Final source code for editPost.php

Deleting Records

Deleting records using the FileMaker API is even simpler than editing

them. All it requires is a single function and a redirect to a success

page. We will now add a Delete button to the edit post page to allow

you to remove an unwanted blog post. Deleting a record requires you

to have the record object in a variable and then call the delete function

on that record.

1. The delete functionality will be implemented as another form that

will have a Delete Record button and will send a deleteEntry

action variable. This form should once again submit to its own

page; in this case, editPost.php with the id get variable as part of

the action form attribute. This form should have a Submit button

with the text that the user will see and press, as well as a hidden

field for an action post variable that will be used to send the actual

Chapter 15 / Editing and Deleting Records 289

Ch
a

p
te

r
1
5

Figure 15-8: Browser output of an edited record

action to PHP. Add this code now after the other form block at the

bottom of your page to create this form:

<form method="post" action="editPost.php?id=<?php

echo $post->getField('postId'); ?>">

<input type="hidden" name="action"

value="deleteEntry">

<input type="submit" name="button" value="Delete

Record">

</form>

2. Now that the form is in place, it is time to add another if statement

to the top of your page that will perform an action when the action

post variable contains deleteEntry. Place this if statement block

after the if statement block that checks for editEntry:

if(POST('action') == 'deleteEntry') {

}

3. Within this if statement, the record can now be deleted and its

result checked with the usual error checking code. If the delete

was unsuccessful, then the filled form is shown once again with

the appropriate error message; however, if the record was deleted

successfully, then there is no filled form to show and a redirect

should be made. The following code implements this delete and

redirects the user back to the list of posts for editing. This should

be placed within the if statement you created above:

$result = $post->delete();

if(FileMaker::isError($result)) {

$message = 'Error deleting your record: '.$result->

getMessage();

}else{

header('Location: editPosts.php');

}

290 Chapter 15 / Editing and Deleting Records

Both of the if statements for editing and deleting can be verified with

Figure 15-9.

Summary

This chapter completes the overview of the basic functionality offered

by a database system. With the knowledge you’ve gained by this point,

you should be able to construct a full database application that

searches, creates, edits, and deletes records. FileMaker, however,

offers a few other interesting capabilities to developers. The two most

significant capabilities that are unique to FileMaker and the FileMaker

PHP API are portals for accessing related records and value lists for

storing lists of data within the database. The rest of this book will

focus on those functions as well as other more advanced PHP-specific

chapters.

Chapter 15 / Editing and Deleting Records 291

Ch
a

p
te

r
1
5

Figure 15-9: Source code for editing and deleting records

This page intentionally left blank.

Chapter 16

Working with Data
Portals

Data portals provide FileMaker with extremely rapid relational data-

base capabilities. They are an essential feature of FileMaker and have

been a major selling point of the product for years. Portals are tables

within a FileMaker layout containing a list of related records, com-

monly from a one-to-many relationship, that can be created, edited,

and deleted without any additional scripting for connecting the foreign

keys of the two records together. The FileMaker API for the first time

allows portal records to be created, edited, and deleted; previously

only reading and creating records was supported. This chapter begins

with an overview of the structure that the FileMaker API uses to

power portals on the web and provides a practical example of adding,

deleting, and editing portal records when working with categories for a

blog post.

293

Reviewing Related Records and
Portals

Using portals in FileMaker Pro clients requires first creating a portal

object on the FileMaker layout that includes the name of the related

table from which the records should be populated as well as some

editable fields on each row of the portal object for that record. These

editable fields within the record object allow transparent editing of

related records through a FileMaker relationship that is specified in

the relationship graph. Be sure to review the next section for the

proper setup of your portals for the web.

Related Record Portal Web
Requirements

Just like any other FileMaker fields on the web, portals must be on the

requested layout in order to be accessible from the web. Furthermore,

portals must also have the fields that you intend to read or edit set as

the actual field object. Using merge fields or text within the portal

object, or any other merge fields for that matter, will make them invisi-

ble on the web. The web user also must have the permissions to

access the related records and the layout that you are using. If you

ever have trouble using a specific portal, try to log in to your database

using a FileMaker Pro desktop client with the web user account and

see if the portal is working properly.

Using global fields within your portal relationships can introduce

unpredictable and hard to debug behavior with the Web Publishing

Engine. Generally, global fields cannot be saved in between FileMaker

API calls and have to be set to their proper value with each call. Thus,

using global fields within relationship definitions can produce lists of

294 Chapter 16 / Working with Data Portals

records that are highly different from the lists you would expect with a

relationship that works perfectly within the FileMaker Pro desktop cli-

ent software.

Notable Limitations

Portals have a few limitations that are notable on the web for their

effect on system performance. Portals that are used on standard

FileMaker layouts will often display data five to 10 records at a time,

allowing a list with potentially thousands of related records to be easily

scrolled through and manipulated. This list is fetched by FileMaker

Pro client software on demand as the scrolling and navigation through

it is initiated. On the web, however, the story becomes a bit different:

Once a record is fetched, all the related records for that record will be

returned, with a significant performance penalty in both data transfer

and result set XML parsing that is performed within the FileMaker

API.

Consequently, paging of related records is not natively supported

but can be implemented within PHP using a combination of get vari-

ables and loops that start in the middle of the related set result array.

However, this method of paging is inefficient since on each page data

from all the related record pages has to be loaded into PHP before pag-

ing is implemented. In these cases, it is best to use a separate find

command with the appropriate foreign key inside the page that

searches in a layout containing the related records themselves, allow-

ing you to page through that result set properly.

Chapter 16 / Working with Data Portals 295

Ch
a

p
te

r
1
6

Portal Workflow within PHP

Despite all these warnings, limitations, and prerequisites, portals allow

very powerful record editing schemes that would take hours to imple-

ment as manual relationships between FileMaker tables. Now that you

know the prerequisites and assumptions about portals, it is time to

review how we would access portal records from within PHP. The por-

tal workflow can be broken down into a number of logical steps that are

taken to isolate a specific portal row and manipulate it.

1. First of all, the parent record that contains the portal rows you

want to edit has to be found using a FileMaker API find command

and isolated into a record variable. Once this record is found,

related records can be added to it, read from it, and then edited or

deleted.

2. With the parent FileMaker API record object isolated, you can now

add a portal row by calling the newRelatedRecord command on it

with the first parameter being the name of the related table occur-

rence that the portal is using. This function returns a record object

that is ready to have its fields filled in with values and then com-

mitted into the database. The general syntax for this operation is:

$relatedRecord = $record->newRelatedRecord

('relatedSetName');

$relatedRecord->setField('relatedSetName::fieldName');

$relatedRecord->commit();

3. All portal operations other than creating new related records

require you to access the portal related record collection first and

retrieve specific portal records. This is accomplished using the

getRelatedSet function on the record object with the first parame-

ter being the name of the related table occurrence that the portal

is using. This function returns an array of FileMaker record

objects, each representing a row within the portal.

296 Chapter 16 / Working with Data Portals

4. The array of record objects can now be used as an array of records

to print them out to the user, or edit or delete records.

5. When the related set is modified, such as deleting or adding

records, it is a good idea to reload the result page or refresh the

parent record object by fetching it again from the database.

Generally, once you have a clear understanding of each step in the pro-

cess above, working with related records becomes quite easy and

natural. The hardest part of the process is isolating specific records

from within an array of related records, which just involves a quick

loop and comparison of record IDs.

Accessing a Related Set of Data

Before creating, editing, or deleting related records, it is best to create

a script that can list those records. Implementing this example as part

of the blog is very simple. We will be using it to add a system that can

add, remove, and edit categories for a single post. Categories within a

blog allow your posts to be organized better within your database, and

some advanced blogging systems allow browsing through the posts

using the tags. Using tags as related records is a perfect example of

their power since you can have multiple tags per blog post and want to

be able to manipulate them effortlessly. We will start this example by

editing the editPost.php page from the previous chapter since it

already finds a record for us and we can jump straight into related

records.

Make sure before continuing that you have a few records with

some categories listed in them. If you are unsure about which records

have related portal records, open the FileMaker database now and add

some categories to a few records. Then it is best to go to editPosts.php

and select the record that has the categories; with that record open

you will be able to follow the example below and occasionally refresh it

to see real progress.

Chapter 16 / Working with Data Portals 297

Ch
a

p
te

r
1
6

1. Let’s start learning about related records by opening up a previous

copy of editPost.php, which you created in Chapter 15, or by copy-

ing it from the sample files package under Chapter 15. Once the

file is open, we will begin by adding an empty list to the end of it

that will house the dynamic list of related records associated with

this record. We will create a second-level header for this area of

the page and then use the unsorted list tag and the list item

 tags to list the actual categories. Add the code in Figure 16-1

to editPost.php, making sure to place it between the </form> and

</td> tags.

2. The next step is to retrieve the list of records from the current

post. This operation will be done before printing the list items

but after the starting tag. The first step is using the

getRelatedSet function to retrieve an array of categories, so add

the following line into a new PHP code block between the

and the tags:

$categories = $post->getRelatedSet('Categories');

Once this line is executed, it will return an array of records. If

there are no related records, however, a FileMaker API error will

be returned. At this stage it is safe to assume that an error means

298 Chapter 16 / Working with Data Portals

Figure 16-1: Source code for skeleton category list

no records were found. The best way to compensate for that with

PHP is to set the variable back to an empty array. This error

checking should be placed right after assigning the related set to

the categories variable, and should have the following code:

if(FileMaker::isError($categories)) {

$categories = array();

}

3. Next, we create a loop around the area that will be repeated for

each related record. This is as simple as adding a foreach before

the tag and then a closing <?php } ?> line after the

tag:

foreach($categories as $category) {

?>

Post Category

<?php } ?>

Once all this code is combined and placed in the correct location, it

should closely resemble Figure 16-2. Notice that if you try loading

the page now it will print the correct number of categories, but for

each line in the list only “Post Category” will be displayed. Adding

the dynamic getField action is our next step.

Chapter 16 / Working with Data Portals 299

Ch
a

p
te

r
1
6

Figure 16-2: Code to retrieve a list of related records

4. Once the loop is in place, it is time to print real category names

into this list. Working with related record objects is identical to

working with regular record objects. (This is one of the advantages

of the FileMaker PHP API — its attempt to maintain consistency

throughout all its functions.) However, there is a slight difference

in naming conventions here that you might have seen within your

FileMaker layout already: The field name in a related record

includes both the related set name and the field name. This means

that in our example the name of the related category field will be

“Categories::category,” which is identical to the way it appears on

your FileMaker layout. Add this to the PHP page with the follow-

ing line, which should replace the previous block tag:

<?php echo

$category->getField('Categories::category'); ?>

5. At this stage the page is now ready to display related records. Ver-

ify your code with Figure 16-3 now to make sure everything

appears in the correct order and then test a page out in your

browser; the output should closely resemble Figure 16-4.

300 Chapter 16 / Working with Data Portals

Figure 16-3: Final source code of printing a related set

Adding a New Related Record

The next logical step after listing some related records is adding a new

one to the list. This is the easiest related record action to perform

after displaying the records themselves. In this example, a new cate-

gory will be added using an empty input box under the list of

categories. Once the new record is added, the page will be refreshed to

reflect the changed record.

1. In this example we are continuing to develop the editPost.php

page, which now lists all the categories associated with a blog

post. The next step is to add the input form for a new category.

Just like the other input forms on this page, its action will be point-

ing to editPost.php with the postId variable of the current blog

post. The form will also have a hidden action variable that will con-

tain addCategory, easily allowing us to detect this action with an if

statement and perform the related record addition. This form

Chapter 16 / Working with Data Portals 301

Ch
a

p
te

r
1
6

Figure 16-4: Browser output of some related records

should start before the opening tag in your list of categories,

right after the Post Categories header. Insert the following two

lines at that location now:

<form method="post" action="editPost.php?id=<?php

echo $post->getField('postId'); ?>">

<input type="hidden" name="action"

value="addCategory">

Next we will add the actual form inputs. It is a good idea to make

these form inputs part of the list to make it clear that this will add

a new item. This input li block should be added after the closing

foreach loop PHP block of <?php } ?> but before the closing

 tag:

<input type="text" name="category"> <input

type="submit" name="button" value="Add">

At last we add the closing <form> tag right after the tag

and before the </td> tag. The completed code for this section is

reflected in Figure 16-5.

Trying to use this page in a browser would now display the input

box and the Add button as part of your list, as shown in Figure

16-6.

302 Chapter 16 / Working with Data Portals

Figure 16-5: HTML form to add a new category

2. The next step is to create the actual code that detects the

addCategory action and executes the appropriate FileMaker API

function to add the portal record. Start by finding the if statement

block that checks if the post action variable is deleteEntry, and

place your cursor after this block. Now it’s time to add the if state-

ment for the addCategory value of the post action variable:

if(POST('action') == 'addCategory') {

}

3. With the if statement in place, the rest of the code will be going

into the if statement block. We start by calling the FileMaker API

function that creates the new related record, newRelatedRecord.

This function takes the name of the related table as its first

parameter:

$category = $post->newRelatedRecord('Categories');

Chapter 16 / Working with Data Portals 303

Ch
a

p
te

r
1
6

Figure 16-6: Browser view of the input box as part of the list

4. Next we should be doing some error checking to make sure that

the category variable contains an actual record and not a

FileMaker API error object. The following if statement will accom-

plish this. Remember that this still goes within the previous if

statement since if statements can be nested within each other and

are often structured that way:

if(FileMaker::isError($category)) {

$message = 'Error adding category: '.$result->

getMessage();

}else{

}

5. Now that the error checking for the category variable is in place, it

is time to work within the else block of that if statement to add the

actual field modification code. In this case, the else statement will

contain all the code that should be executed when the category has

been successfully created. The code to execute on the new related

record object is the setField operation, followed by the commit

operation, which saves data into the new related record. An impor-

tant note here is that just like with getField, the related field name

has to have both the related table name and the field name; in our

case, Categories::category. The following two lines perform the

setField and commit. Place them within the else block of the if

statement:

$category->setField('Categories::category',POST

('category'));

$result = $category->commit();

6. The last thing to do is check if the result is an error. If it is not,

then we will refresh this page to reflect the modifications to the

record. This error checking code is similar to all the other blocks:

if(FileMaker::isError($result)) {

$message = 'Error saving category: '.$result->

getMessage();

304 Chapter 16 / Working with Data Portals

}else{

header('Location: editPost.php?id='.GET('id'));

}

7. The code for this operation is now complete and ready for testing.

Open up your web browser and point it to editPosts.php, selecting

a post with some categories within it. Then add a new category

and watch it appear under the categories list. If you were to check

FileMaker Pro now, you would see that the new data is reflected

within the portal.

Creating related records is a very big step in making your database

applications dynamic and truly relational. Once you have mastered this

record creation skill — along with the rest of the editing and deleting

topics in this chapter — you will be able to create complex forms and

multiline systems such as shopping carts, and perform much more

advanced data manipulation.

Chapter 16 / Working with Data Portals 305

Ch
a

p
te

r
1
6Figure 16-7: Completed source code to add a related record

Isolating a Related Record

Before a record can be edited or deleted, it has to be found and placed

into a PHP variable. You already know this from the previous chapter,

as it applies to records found using a FileMaker API find command.

Related records within the FileMaker API are no different; they cer-

tainly have to be found first and then edited or deleted. However, there

is no easy mechanism to find a specific related record with a parent

record; you have to find the parent record using the standard

FileMaker API methods and then isolate the specific related record

using its record ID. This is accomplished by looping through the

related records array, just as you do to print the related records, and

using an if statement combined with the FileMaker API getRecordId

function to isolate the specific record object. Here, we will be creating

a link to a separate page that edits categories as they are linked from

the editPost.php page.

Creating a Related Record Edit Link

Creating a related record link is a simple process with two very impor-

tant requirements. The first requirement is that just like any other

record link, it has to refer somehow to the parent record just like the id

get variable in the URL of the editPost.php page. The second require-

ment is that along with the parent ID, the link also has to identify the

actual related record. The FileMaker API record getRecordId function

is very convenient to use for this identifier. For the Edit Category link,

we will first build the link URL in a variable and then print it as part of

the HTML list that lists the categories.

306 Chapter 16 / Working with Data Portals

1. The first step is to isolate the correct location to build the link

URL within the editPost.php script. The best location for this step

is right after the beginning of the categories loop, since each time

the loop starts we want to generate a fresh link URL for that spe-

cific category. Therefore, place the following two lines within the

PHP block right after the beginning of the foreach loop. Note how

the postId of the current post now goes into the postId get variable

and the record ID goes into the id get variable:

$link = 'editCategory.php?postId='.$post->getField

('postId');

$link.= '&id='.$category->getRecordId();

2. Next we have to print the actual linking HTML code; in this case,

it’s a simple <a> tag. The link will be in the following format,

where categoryText is the name of the current category:

categoryText [Edit Category]

In order to create such a link, move the closing tag that is

part of the getField line two lines below. Then add the following

line before the closing tag on the empty line that you have

just created:

[<a href="<?php echo $link; ?>">Edit Category]

3. The editPost.php page is now complete. It links to a page that will

find and isolate the related record and present it to the user for

editing. The completed code for this page is reflected in Figure

16-8, and the browser output of the Edit Category links can be

seen in Figure 16-9.

Chapter 16 / Working with Data Portals 307

Ch
a

p
te

r
1
6

Figure 16-8: Source code of a related record link

The related linking process is now almost complete. With the link in

place, the only remaining thing to do is create the editCategory.php

page that will show the current value within the category and allow it

to be saved.

Isolating the Linked Related Record

The link we just created points to editCategory.php, a page that up to

this point does not exist but is assumed to be supplying the category

editing services to the user. In this section we will build this page to

both edit the related record and be able to delete it.

1. Create a new blank PHP page, naming it editCategory.php. This

page will have the usual blog template skeleton code, as well as

the if statement from the previous editPost.php page for any mes-

sages that we might want to display to the user. Be sure to enter

the source code shown in Figure 16-10 before continuing further.

308 Chapter 16 / Working with Data Portals

Figure 16-9: Browser output of related record links

2. Next we add the code to find the parent record. This code block is

almost identical to the beginning of editPost.php with a slight mod-

ification. Since this time the link uses the get variable postId to

pass in the postId, we will have to adjust it accordingly. This block

of code, combined with the appropriate error checking, is shown in

Figure 16-11.

3. Now we need to retrieve the related record array from the found

parent record. This retrieval is very similar to the foreach loop

used within the editPost.php page, except that this time nothing is

printed during the foreach loop. We will start this block right after

the post PHP variable is isolated using the $post = $posts[0];

statement, first defining a variable to hold our found category

record:

$foundCategory = false;

Chapter 16 / Working with Data Portals 309

Ch
a

p
te

r
1
6

Figure 16-10: Starting source code for editCategory.php

Figure 16-11: Standard find of parent record

Notice that foundCategory is set to false by default. This allows us

to detect whether the selected category was not found, since in

that case it will just remain false. Next, we retrieve the related set

and check it for errors, setting the categories array to an empty

array in case of an error:

$categories = $post->getRelatedSet('Categories');

if(FileMaker::isError($categories)) {

$categories = array();

}

Once we have the categories related set in an array, it is time to

loop through each category and check if it is the currently selected

record. Let’s create just the foreach loop itself at this time into

which we will insert further code:

foreach($categories as $category) {

}

That completes the step of retrieving the entire categories related

set. Verify your code with that shown in Figure 16-12.

4. Once the categories foreach loop has been set up to loop through

all records, it is time to add the if statement to it. This if statement

will compare the record ID of the current category and the id get

variable that was passed into the page. The record ID of the cur-

rent category is accessed by calling the getRecordId function on

the category variable, while the id get variable is accessed with

310 Chapter 16 / Working with Data Portals

Figure 16-12: Retrieval of the related record set

the standard GET function. The following is the if statement to

place into the foreach loop:

if($category->getRecordId() == GET('id')) {

$foundCategory = $category;

}

5. Once the if statement has been added to the foreach loop, we

should check that a category was actually found. This is very sim-

ple to do by comparing the value of foundCategory after the loop

and seeing if it’s still false or now set to something else. The code

to perform this error check is:

if($foundCategory == false) {

die('Category not found');

}

The completed block of code for both finding the related record

and checking if it was found during the loop is reflected in Figure

16-13.

6. Now that the related record is isolated within the foundCategory

variable, it can be printed back to the user. In this case, the related

record values will be used to fill in the form elements and then

edit the related record. The form should be created right after the

conditional printing of the message variable, and must include both

the postId and the related record ID as part of its action attribute.

The following code starts this form:

Chapter 16 / Working with Data Portals 311

Ch
a

p
te

r
1
6

Figure 16-13: Isolating a specific related record using a record ID

<form method="post" action="editCategory.php?postId=

<?php echo $post->getField('postId'); ?>&id=<?php echo

$foundCategory->getRecordId(); ?>">

</form>

7. Next, we need to add a hidden action variable to this form and the

appropriate text input area for the category. First, we add the fol-

lowing code into the form to create the editCategory action post

variable:

<input type="hidden" name="action"

value="saveCategory">

Then we place both a text input and a Submit button into the form.

The text input starting value is dynamically printed using the

getField function on the foundCategory variable:

<p>

<input type="text" name="category" value="<?php echo

$foundCategory->getField('Categories::category'); ?>">

<input type="submit" value="Save">

</p>

The completed source code for this form is reflected in Figure 16-14.

This is a good time to try loading this page in a browser by following a

link to any category from the editPost.php page. The form should be

filled in with the name of the category, and the browser should resem-

ble Figure 16-15.

312 Chapter 16 / Working with Data Portals

Figure 16-14: HTML form display a single related record

Now that the single related record is isolated and entered into a form,

it can be submitted back to the page for saving. This is a step that you

should always strive for first whenever you are building an application

that contains editable records: First get it all into a form that is filled in

with the correct data, and the rest of the process usually becomes

quite simple.

Editing a Related Record

Editing a related record is an operation that is extremely similar to

editing a regular record. We first trap the condition — in this case the

saveCategory action post variable — into an if statement. Then the

record variable, foundCategory in this case, is modified with the

updated fields. Finally, it is committed back into the database and

checked for errors.

1. Start by finding the location where the message variable is

defined. Right after this variable we will place the if statement that

detects whether the post action contains saveCategory:

if(POST('action') == 'saveCategory') {

}

Chapter 16 / Working with Data Portals 313

Ch
a

p
te

r
1
6

Figure 16-15: Browser output of editCategory.php with a filled form

2. Next we edit the foundCategory record object by using a setField

and a commit. The result is placed in the result variable for error

checking purposes:

$foundCategory->setField('Categories::category',

POST('category'));

$result = $foundCategory->commit();

3. The last step is to add error checking. In this case, if there is an

error the message variable is set and the error is printed back to

the user. However, if a save was successful, then there is no point

keeping the user on this page; therefore, the user is redirected

back to the editPost.php page for this specific post and a list of

related records that should have the new updated value.

if(FileMaker::isError($result)) {

$message = 'Error saving your record: '.$result->

getMessage();

}else{

header('Location: editPost.php?id='.$post->getField

('postId'));

}

This entire if statement block should be verified with Figure

16-16, which contains the complete source code for this related

record edit operation.

314 Chapter 16 / Working with Data Portals

Figure 16-16: Editing a related record

Deleting a Related Record

The last action that needs to be covered with portals is deleting the

related records. As you might already imagine, deleting a related

record involves trapping for the correct HTML form submit and exe-

cuting a delete instead of a commit on the related record variable.

1. In order to provide an option to the user to delete this related cate-

gory, we should create a new form just below the save category

form. The code in Figure 16-17 must be placed after the closing

<form> tag of the edit form and before the closing <td> tag of

the page.

2. Once this form is submitted, the action variable contains

deleteCategory, which can be easily trapped with an if statement

and the record deleted. Add the following if statement below the if

statement that checks for saveCategory:

if(POST('action') == 'deleteCategory') {

}

3. Within this if statement we do not have to modify the record object

and can immediately call the delete function on the foundCategory

FileMaker API related record object. The result should be placed

within a variable for error checking purposes:

$result = $foundCategory->delete();

Chapter 16 / Working with Data Portals 315

Ch
a

p
te

r
1
6

Figure 16-17: HTML delete category form

4. The last step is to add error checking, which just like the save will

redirect the user back to editing the blog post if the delete was

successful. The if statement to use for error checking is:

if(FileMaker::isError($result)) {

$message = 'Error deleting your record: '.$result->

getMessage();

}else{

header('Location: editPost.php?id='.$post->getField

('postId'));

}

5. Now that it is complete, verify that the last section of your code

matches Figure 16-18.

Now go back to the editPost.php page and add a new category to one of

your posts. Once this category is added, click the Edit link and try sav-

ing changes to the postId field. Once the changes are saved, edit it

again and choose Delete this time. The category should now be gone,

but the feeling of success should remain within you for some time.

316 Chapter 16 / Working with Data Portals

Figure 16-18: Source code for deleting a related record

Summary

You have now created a number of chained pages, starting with a list of

regular records that point to a single record, and then using that single

record as a base from which you manipulate a number of related

records. Using this structure you should now be able to create very

complex database relationships on the web. We hope that this chapter

demonstrated the power of the FileMaker API, specifically its consis-

tency in manipulating specific records, which allows you to focus on

the task of isolating the record and then being certain that the

FileMaker API will take care of the rest in a very uniform and predict-

able manner. This completes the discussion on database record access

methods. The rest of the book will focus on a few other features of the

FileMaker API as well as PHP topics that are relevant to a

database-driven web application.

Chapter 16 / Working with Data Portals 317

Ch
a

p
te

r
1
6

This page intentionally left blank.

Chapter 17

FileMaker Value
Lists

Now that you are familiar with searching, creating, and editing records

in a FileMaker database, it is time to use value lists, an excellent fea-

ture of FileMaker. Value lists are relatively unusual within relational

databases at this time, and thus this feature is not readily integrated

into PHP although it is easily usable with a bit of PHP and HTML.

What Are FileMaker Value Lists?

Value lists within a FileMaker database are used to populate a

drop-down menu, a radio button set, or a check box set with values.

Often the values are constant, such as a yes/no selection for a radio

button set, which allows FileMaker to construct nice input elements

for those values. At other times, those values are dynamic, such as all

the unique values already entered into this field or values from a

related table that contains a collection of values.

Value lists themselves are not actual data stored within database

records. Rather, they are treated as extended layout information from

the database that can be accessed on demand by an application. Thus,

we have to use a separate set of functions to retrieve the values within

a value list and display them on the web. This is not hard to do and can

easily produce the familiar behavior of value lists within FileMaker

layouts.

319

Why Use FileMaker Value Lists on the
Web?

Using FileMaker value lists on the web provides a number of very

important advantages to both the user and the programmer of the sys-

tem. From the database perspective, value lists can be easily replaced

with a table that contains a set of records and a single field; however,

such tables add complexity and extra maintenance to the database sys-

tem. On the web, the value lists can be used for the same elements as

within FileMaker layouts — drop-down lists, radio button sets, and

check box arrays. However, there are other possibilities that are useful

for some systems such as using value lists for lists of category links or

even sorted lists such as the top 10 commenters on the blog.

The users of your FileMaker system can easily manipulate value

lists from within a familiar FileMaker interface instead of having to

tweak PHP configuration files or add and delete records from a value

list table. This provides the advantage of manipulating the web system

from within FileMaker and eliminating potential points of failure and

tech support nightmares.

The programmer can benefit from value lists as well when work-

ing within PHP. The first advantage is eliminating an extra find all

command on a table and the code associated with that, as well as allow-

ing your user to change the way the web system works painlessly.

There is also a speed advantage that you receive from value lists; gen-

erally, fetching a value list with some sorted values that could contain

100 to 150 values is much faster than attempting a find on a table and

retrieving 150 records. This speed difference can be very significant,

especially for complex databases or if that list is used throughout the

entire site. This can be used to display a list of categories in your web

site menu bar that persists throughout all your pages or any other

frequently accessed list.

320 Chapter 17 / FileMaker Value Lists

Requirements for Value Lists

Before you can use value lists on the web, a few very important

requirements have to be met within the FileMaker database. The first

and most important thing is to make sure your value list is on the

FileMaker layout that you are going to be using with the form. Also,

you have to make sure that the value list itself is tied to the actual field

you will be using it with. That will allow you to change value list

names in the database while keeping the code on the web the same, as

long as the value list is still attached to the field.

HTML Drop-downs, Radio Buttons, and
Check Boxes

At this stage in the book you should already be very familiar with the

HTML form tags, as well as basic input and textarea elements. Those

elements are very simple to use for text entry and allow you to create

a very functional site; however, adding more advanced elements can

bring your form to a new level of professionalism and ease of use. We

will explore three types of input controls that will allow your user to

select values from a list, make an exclusive choice, and check multiple

choices.

Drop-downs give the user a choice from a long list of values such

as a country, state, or other lengthy list of preselected values. Creating

drop-down lists within HTML is relatively simple: You open a named

<select> tag, add an <option> tag for each value in the list, and close

the <select> tag. The <select> tag should be in the format of

“<select name="inputName">,” where the name specifies the vari-

able name that PHP will receive when the form is submitted. Within

the <select> tag you will have a number of <option> tags, which

have the format of “<option value="optionValue">Display

Value</option>.” While the <option> tag does allow a different

Chapter 17 / FileMaker Value Lists 321

Ch
a

p
te

r
1
7

option value to be sent while the user only selects the display value,

FileMaker value lists only have a single value; therefore, both the

option value and the display value will be set to the same value list

item.

Figure 17-1 shows the source code for a drop-down, and Figure

17-2 displays the code’s output.

322 Chapter 17 / FileMaker Value Lists

Figure 17-1: Sample HTML drop-down

Figure 17-2: Output of the sample HTML drop-down

Radio buttons give the user an exclusive choice with all the options

visible at once. That is, only one of the options can be selected at a

time just like the drop-down, but in this case all choices are always vis-

ible to the user. Radio buttons are best used for lists of 10 or fewer

values; otherwise, drop-downs might be a better option to hide all the

values until the drop-down is clicked. Radio buttons are very easy to

build with HTML; all you need is a regular <input> tag with its type

attribute set to radio. In order to group radio buttons into exclusive

groups, all of the <input type="radio"> tags must have the same

name attribute. When the form is submitted, only the currently

selected radio button value will be sent.

Figure 17-3 shows the source code for a radio button set, and Fig-

ure 17-4 displays the output.

Chapter 17 / FileMaker Value Lists 323

Ch
a

p
te

r
1
7

Figure 17-3: Sample HTML radio button set

Check boxes are slightly different from the other input controls that

HTML offers. Check boxes allow the user to select multiple values

from a list of choices, a single value, or no value at all. Check boxes are

used when you would expect the user to have more than one option

that they would want to select. Generally, you should not have more

than 10 to 20 check boxes in a single set; otherwise, the choices may

become overwhelming for the user. Constructing a set of check boxes

is very similar to building a radio button set with one very important

difference: The name for each check box element must have empty

square brackets after it and the type attribute must be set to “check

box.” Using the empty square brackets in the check box name allows

PHP to process the input as an array and store all the checked values

in an array variable that can be easily looped through and the values

added to a FileMaker database. Notice how Figure 17-5 includes the

empty square brackets in the name element of the <input> tag.

324 Chapter 17 / FileMaker Value Lists

Figure 17-4: Output of the sample HTML radio button set

Figure 17-6 displays the output of the source code.

Chapter 17 / FileMaker Value Lists 325

Ch
a

p
te

r
1
7

Figure 17-5: Sample HTML check box set

Figure 17-6: Output of the sample HTML check box set

Retrieving a Value List from the
Database

The FileMaker API for PHP makes it very easy for a PHP developer

to get a value list from a FileMaker layout. It is a two-step process that

first involves getting the layout object and then getting a value list

from a field on that layout. This is best demonstrated with a very small

example file that will fetch the Commenters layout from the blog data-

base and then fetch the value list for the operating system option.

We will start by getting the FileMaker layout object using the

getLayout($layoutName) function of the FileMaker PHP API:

<?php

require_once('../../include/db.inc.php');

$layout = $blogDB->getLayout('Commenters');

if(FileMaker::isError($layout)) die('Error fetching layout');

Once we have the $layout object in PHP and it is free of errors, we can

use it to fetch a value list associated with a field on the layout. To do

this, we will use the getField($fieldName) function of the layout object

and then the getValueList() function on the result. We can actually

combine both of those into a single line:

$operatingSystems = $layout->getField

('operatingSystem')->getValueList();

The technique used above is extremely useful for retrieving value lists

based on the field on the layout and not the value list name, since if the

value list on that field changes, the getValueList() function will

retrieve the new value list tied to that specific field.

Now we will just put all the bits above together into an example

that uses print_r to output the value list to the browser, as shown in

Figures 17-7 and 17-8. If you are having trouble understanding how to

retrieve value lists from the database, it might be a good idea to try

getting a value list from a different field name by modifying our sample

code. Once you feel comfortable with this method and syntax for value

326 Chapter 17 / FileMaker Value Lists

lists, then you are ready to start inserting those lists into actual HTML

forms.

We will start working with value lists in this chapter by first building

the three types of lists within simple sample pages, and then we will

bring it all together at the end of the chapter to create a commenter

profile form that will use all the types of value lists.

Building a Dynamic Value List Drop-down

Dynamic drop-down value lists are relatively easy to build with PHP.

First the <select> HTML tags are created; they will hold the printout

of the value list. Then a PHP foreach loop is added that will retrieve

the value list and print the values into the <select> tag.

We will start by creating the HTML <select> tags in an HTML

form. For drop-down elements, you just need to supply a field name

Chapter 17 / FileMaker Value Lists 327

Ch
a

p
te

r
1
7

Figure 17-7: PHP code to output a value list

Figure 17-8: Browser view of PHP code that outputs a value list

that will be submitted with the value of the selected list. Let’s create a

pair of <select> tags for the country field on the layout:

<select name="country">

</select>

Once the <select> tags have been added with space between them

for the <option> tags, we move on to the loop that will print those

<option> tags.

PHP includes many different types of loops for traversing arrays of

data, and in this case we will be using the foreach loop that simply

loops through all the values within an array. This array will be the

result of the getValueList() function on the country field on our layout.

Place your cursor between the opening and closing <select> tags and

add the following code for the loop:

<?php foreach($layout->getField('country')->

getValueList() as $country) {

$country = htmlspecialchars($country);

?>

<?php } ?>

Notice that right after the start of the loop we have added a function

that takes each country and passes it through the htmlspecialchars

function, which will make the FileMaker value safe for printing in a

browser. Without this function, values that have characters such as

quotes will interfere with the HTML and likely break your drop-down

or submit only partial values that come before the quote. Also, right

before the closing <select> tag, a closing curly brace was added in

order to complete the foreach loop.

328 Chapter 17 / FileMaker Value Lists

Next we will add the actual output for the <option> tag each time

the code loops through a value in our value list. Adding the <option>

tag in a loop is as simple as just printing it with a few PHP bits to echo

the value itself. The <option> tag should have the following code in

your loop:

<option value="<?php echo $country ?>"><?php echo

$country; ?></option>

The $country variable that contains the current value from the value

list is printed as both the value of the <option> tag as well as the dis-

play value of the <option> tag that comes right before the closing

<option> tag.

Let’s review the final output of this example in Figures 17-9 and

17-10. Please do not hesitate to try adding another drop-down list to

this page in order to practice your skill with this concept.

Chapter 17 / FileMaker Value Lists 329

Ch
a

p
te

r
1
7

Figure 17-9: PHP code that outputs a drop-down list from a value list

Once a drop-down list is built and is part of the form, it will be submit-

ted as a single variable to PHP. The variable will contain the value

attribute of the currently selected item in the list and can be processed

just like a standard text input box. While there is no special treatment

required for the drop-downs when the form is submitted, it is a slightly

more complex procedure when displaying the drop-down in an edit

form with a value preselected. This subject will be thoroughly covered

later in this chapter when we build the editable profile form for the

blog.

Building a Dynamic Value List Radio Button Set

Radio buttons are similar to drop-down lists, especially when used

within PHP. Since radio buttons are individual <input type="radio">

elements, printing a radio button set from a value list will just require

a loop that outputs multiple input elements. Make sure that the name

of the input element contains the field name that you want submitted

with your form.

330 Chapter 17 / FileMaker Value Lists

Figure 17-10: Browser output of the value list drop-down

Once a radio button set is built and is part of the form, it will be sub-

mitted as a single variable to PHP. The variable will contain the value

attribute of the currently selected radio button in the list and can be

processed just like a standard text input box. Just as with the drop-

down, selecting which radio buttons are selected when the form loads

will be covered later in this chapter when we build the editable profile

section of the blog.

Chapter 17 / FileMaker Value Lists 331

Ch
a

p
te

r
1
7

Figure 17-11: PHP code that outputs radio buttons from a value list

Figure 17-12: Browser output of the value list radio
buttons

Building a Dynamic Value List Check Box Set

Check box sets are extremely similar to radio button sets. Check

boxes are represented as individual <input type="check box"> ele-

ments, and therefore printing a check box set from a value list will just

require a loop that outputs multiple input elements. Make sure that the

name of the input element contains the field name that you want sub-

mitted with your form. Most importantly, be sure to assign a name to

the check box with empty square brackets at the end. For example, the

operatingSystem field should become “<input type="check box"

name="operatingSystem[]">” since multiple values will be submitted,

making PHP interpret the square brackets as a variable that will con-

tain multiple entries (also known as an array).

332 Chapter 17 / FileMaker Value Lists

Figure 17-13: PHP code that outputs check boxes from a value list

Figure 17-14: Browser
output of the value list
check boxes

Once a check box set is built and is part of the form, it will be submit-

ted as an array variable to PHP. Check boxes require a few special

functions in order to get the results back into a FileMaker database.

Generally, array variables from PHP cannot be directly submitted into

a FileMaker field. In the case of check boxes, the entire array has to be

converted into a string where every array element is separated by a

carriage return character. The array to string conversion will be cov-

ered in depth in the “Processing Form Results for Check Boxes”

section later in this chapter. Just as with the drop-down, selecting

which check boxes are checked when the form loads will also be cov-

ered later in the chapter.

Adding Empty Default Values

Most FileMaker users are familiar with the option of being able to

erase a drop-down selection even if an empty value is not part of the

usual value list. The easiest way to have this functionality on the web

is to hard-code the blank values into the form before printing the value

list. This process is required for drop-downs and radio buttons, while

check boxes can simply all be unchecked.

Adding a blank option to a drop-down menu involves adding an

<option> tag with an empty value attribute and an optional empty dis-

play value. The code for such an option would look like this:

<option value=""></option>

In order to combine such an option with dynamic options, we can sim-

ply modify the code from the previous example and add this option

before the foreach loop begins. Make sure that the option is inserted

before the loop begins; otherwise, you will have a blank option before

every value in the list. Notice in the example below that the empty

option appears right after the opening <select> tag:

<select name="country">

<option value=""></option>

<?php

Chapter 17 / FileMaker Value Lists 333

Ch
a

p
te

r
1
7

foreach($layout->getField('country')->getValueList() as

$country) {

$country = htmlspecialchars($country);

?>

<option value="<?php echo $country; ?>"><?php echo

$country; ?></option>

<?php

}

?>

</select>

Another alternative to the hard-coded empty drop-down item is to add

a blank value to your value list within the database. This blank value,

which can be added by inserting a new line for one of the lines, will

show up in the drop-down as an empty choice and can be added at the

top, bottom, or middle of the list.

Adding a blank radio button option is very similar to adding one for the

drop-down list. The value attribute of the radio button input has to be

set to an empty set of double quotes, and a label should be provided to

indicate that this option is a “no choice” option. The following line can

be used to make this easy for your users:

<input type="radio" name="fieldName" value="">

Undecided

334 Chapter 17 / FileMaker Value Lists

Figure 17-15: Empty value at the top of a FileMaker list

Notice the Undecided label; otherwise, it will look just like any other

radio button in the set and could confuse the user.

Creating a Value List Driven Form

Integrating value lists into an actual form is the next step in learning to

use value lists properly. The most logical place to start is expanding

the blog web application by adding a registration form for blog

commenters. This form will collect personal information by using all

three types of value list selections.

1. The first step is to create an empty form that has some of the stan-

dard non-value list fields on it. This form will be based on the

standard blog template and will include the standard text fields for

some of the information as well as the Submit button. Create a

blank PHP page now, naming it newCommenter.php. The start-

ing source code for this form should be copied from Figures 17-16

and 17-17. When you test this form in your browser, it should look

similar to Figure 17-18.

Chapter 17 / FileMaker Value Lists 335

Ch
a

p
te

r
1
7

Figure 17-16: Starting source code for newCommenter.php, part 1

2. At this stage we have left blank all the areas where the value lists

will be, since currently this page does not have the value lists

loaded from the database. We will change that now by accessing

the FileMaker database and retrieving the three value lists. Place

the cursor within your first PHP code block after including the

database file; this is where we retrieve all the value lists that will

336 Chapter 17 / FileMaker Value Lists

Figure 17-17: Starting source code for newCommenter.php, part 2

Figure 17-18: Initial commenter registration form viewed in a browser

be used on this page. First we retrieve the FileMaker API layout

object:

$layout = $blogDB->getLayout('Commenters');

if(FileMaker::isError($layout)) die('Error fetching layout');

3. Next, the value lists themselves have to be retrieved from the lay-

out object and placed into their own variables. The code to retrieve

a value list and place it into a variable is identical to the examples

earlier in this chapter, except in this case we are retrieving all

three of the lists at the beginning of the script. Add the following

code to your page to retrieve the value lists:

$countries = $layout->getField('country')->getValueList();

$sexes = $layout->getField('sex')->getValueList();

$operatingSystems = $layout->getField('operatingSystem')

->getValueList();

Figure 17-19 lists the completed source code for the top of this

page. Once that is synchronized with the code, we write the code

that actually prints these value lists as part of the form.

4. The first value list that was retrieved is the countries value list,

which should be printed as a simple drop-down. Based on the pre-

vious examples, we will be using the same code that depends on a

foreach loop to print each value and the htmlspecialchars function

to make the values safe for printing within HTML code. Figure

17-20 has the source code for this section, which should be placed

into the empty <td> tag within the Country row of the form:

Chapter 17 / FileMaker Value Lists 337

Ch
a

p
te

r
1
7

Figure 17-19: Value lists retrieved in the beginning of the script

5. Next, it is time to print the radio button input elements for the sex

selection. While this is certainly a trivial radio button due to the

constant nature of this value list, it is nonetheless a good example

of an “either/or” choice, where the selection is restricted to being

only one of the two values. The code for this value list is very sim-

ilar to the drop-down code, and simply prints a number of input

elements. The code for this section is in Figure 17-21 and should

be placed in the empty <td> tag within the Sex row of the form.

6. The last value list to add is the check boxes value list. For this list

we decided to use an operating system example since many devel-

opers use multiple operating systems, making it an appropriate

question to ask on a FileMaker blog. The source code for this sec-

tion, shown in Figure 17-22, is also similar to the other sections

338 Chapter 17 / FileMaker Value Lists

Figure 17-20: Source code for Country drop-down

Figure 17-21: Source code for the Sex radio button group

with the typical foreach loop and the htmlspecialchars encoding of

the value. The only minor difference between this and the other

value lists, which was discussed earlier in this chapter, is the use

of the empty square brackets in the name of the input element.

The empty square brackets allow the values to be submitted and

processed as a PHP array, which will be discussed in depth in the

next section.

This form is now complete and ready to accept user input. The text

fields and value lists submitted from this form will be processed with

newCommenterResponse.php, which will be built in the next section.

The final visual appearance of this form should resemble Figure 17-23.

Chapter 17 / FileMaker Value Lists 339

Ch
a

p
te

r
1
7

Figure 17-22: Source code for the Operating System check box set

Figure 17-23: Final rendering of the form in a web browser

Processing Form Results for Drop-downs and

Radio Buttons

Processing the form from the previous section is just a matter of creat-

ing an add record FileMaker API command that will take in all the

submitted fields and add them to the record. Radio buttons and drop-

down lists are accessed in the same way as regular text fields and text

areas. Check boxes, however, are processed differently and will be

covered in the next section.

1. The new record page at this time will simply create a new record

and then print an acknowledgment message to the user. Once the

edit commenter profile page is complete, this page will redirect

users to their profile page. Start this page right now by creating a

new PHP file named newCommenterResponse.php, with the

following source code:

<?php require_once('include/db.inc.php');

?>

Thank you for registering.

2. Next, we initialize the FileMaker API command that will create a

new record in the Commenters layout. This is done through the

regular newAddCommand function on the FileMaker API object

defined in our database include file. The code below should be

added starting on the second line after the inclusion of db.inc.php:

$newCommenterCmd =

$blogDB->newAddCommand('Commenters');

3. Then, we add all the fields through the repetitive use of the

setField command. Notice that the last field, operatingSystem, is

not added at this stage:

$newCommenterCmd->setField('nameFirst',POST

('nameFirst'));

$newCommenterCmd->setField('nameLast',POST

('nameLast'));

340 Chapter 17 / FileMaker Value Lists

$newCommenterCmd->setField('email',POST('email'));

$newCommenterCmd->setField('country',POST('country'));

$newCommenterCmd->setField('sex',POST('sex'));

$newCommenterCmd->setField('username',POST

('username'));

$newCommenterCmd->setField('password',POST

('password'));

4. The last step to this process is using the execute command on the

newCommenterCmd PHP object to execute the actual addition to

the database. Following the execute we add the standard error

checking code to make sure that the record was actually success-

fully created:

$newCommenter = $newCommenterCmd->execute();

if(FileMaker::isError($newCommenter)) {

die('Database Error: '.$newCommenter->getMessage());

}

As you have seen up to this point, the drop-down and radio button

value lists did not make any difference in the FileMaker API command

creation and execution stage. The final code for this segment can be

verified with Figure 17-24. Next we will address the usage of check

boxes. They are not hard to use but do require a bit of extra error

handling.

Chapter 17 / FileMaker Value Lists 341

Ch
a

p
te

r
1
7

Figure 17-24: Source code for adding a new commenter

Processing Form Results for Check Boxes

Check boxes behave quite differently within PHP when compared to

the rest of the form objects. The first difference is their name attrib-

ute, which should be in the form of “fieldName[]” instead of the usual

“fieldName.” This naming convention creates an array automatically

within PHP, allowing each individual check box choice to be looped

through. However, there is a catch with check boxes: When no value is

selected, the PHP variable is not initialized at all. This is because a

browser does not send any data at all about check boxes that were not

selected, which means that you cannot rely on the post variable always

being there when using check boxes. There are, however, a few very

simple methods to get past that hurdle.

The easiest way to handle check boxes is to use the following if

statement, which will make sure you have a usable variable — even if

it is an empty array when no check boxes were selected:

$fieldValues = array();

if(isset($_POST['fieldName'])) {

$fieldValues = $_POST['fieldName'];

}

As you can see, the value is retrieved only when fieldName is set; oth-

erwise, fieldValues remains a blank array.

The second hurdle with check boxes is that FileMaker expects

check box lists to be submitted as a list of values separated by carriage

return characters. This character is known within PHP as “\r” and

within FileMaker as “¶”; however, an array in PHP is an array. This

means that the array has to be converted into a carriage return delim-

ited string. Luckily there is a function within PHP that does just that.

This function is the implode function, which takes a string as its first

argument for the “glue” to use in order to put the array pieces

together, and the array itself as the second argument. The following

code would be needed to use it with a FileMaker check box set:

$fieldValues = implode("\r", $fieldValues);

342 Chapter 17 / FileMaker Value Lists

1. We will now combine all of the above into code that adds the

operatingSystem check box set to the FileMaker database. Let’s

start with the if statement that checks whether a check box was

submitted and retrieves the array. The following code should be

placed after the last setField statement but before the execute

statement:

$operatingSystem = array();

if(isset($_POST['operatingSystem'])) {

$operatingSystem = $_POST['operatingSystem'];

}

2. Next, we add the implode function to create the carriage return

delimited list:

$operatingSystem = implode("\r", $operatingSystem);

3. The last step in this process is to add a standard setField function

call to set the actual field value. In this case, the operatingSystem

PHP variable will already contain this list:

$newCommenterCmd->setField('operatingSystem',

$operatingSystem);

That is all there is to processing check boxes within PHP and the

FileMaker API. Figure 17-25 shows the final source code for the block

of code that was just created. Next, we will be creating the PHP page

that lets you edit a commenter profile, allowing you to learn how to

use FileMaker data when prefilling a form with value lists within it.

Chapter 17 / FileMaker Value Lists 343

Ch
a

p
te

r
1
7

Figure 17-25: Final source code
for newCommenterResponse.php

Taking It to the Next Level — Selecting
Values with PHP

The next step is to create a filled-in form that has value lists within it.

At this stage, we assume that you are familiar with filled-in forms,

since the code for the filled-in text values will be briefly explained and

then presented for copying. Once this page is created, we will move on

to creating the value lists that have values preselected based on the

current value within the record.

First we will quickly create an editCommenters.php page that

allows the administrator to quickly access a list of registered

commenters on the blog and edit their individual records. This page is

modeled after the editPosts.php page, which lists links to individual

edit pages. Create this page now by using the source code from Figure

17-26.

344 Chapter 17 / FileMaker Value Lists

Figure 17-26: Source code for editCommenters.php

Creating the Commenter Find Request and

Basic Form

Now that you have the editCommenters.php page ready to navigate to

the individual editCommenter.php pages, it is time to actually build

that page. We will start by adding the basic search query to it, which

will find the commenter record. Then we will build the form that fills

in the standard text values from the record. In the following sections,

we will build the value list driven filled-in form elements.

1. The first step is to create editCommenter.php. Start by creating

this PHP page and place the source code from newCommenter.php

into editCommenter.php. This provides a nice form that already

has the plain value lists within it as well as all the properly named

text fields.

2. Next we will create the FileMaker API find command to find the

record using the commenterId value passed into this form using

the id get variable. This code should be placed after the retrieval

of the three value lists at the beginning of the PHP page. The code

for this find command is:

$commenterFind = $blogDB->newFindCommand

('Commenters');

$commenterFind->addFindCriterion('commenterId',

'=='.GET('id'));

$commenters = $commenterFind->execute();

3. Then we add the standard error reporting to this request, by add-

ing the following code right after the execute statement:

if(FileMaker::isError($commenters)) {

die('Database Error: '.$commenters->getMessage());

}

Chapter 17 / FileMaker Value Lists 345

Ch
a

p
te

r
1
7

4. The last step within this find is isolating the single commenter

record, which is done through a combination of getRecords and

accessing the 0 array element:

$commenterRecords = $commenters->getRecords();

$commenter = $commenterRecords[0];

The completed block of code at the top of the page is shown in Fig-

ure 17-27.

5. Now that the commenter record is isolated in the commenter PHP

variable, we can edit the form to prefill those values into the stan-

dard text fields. However, before doing that we should modify the

form element to point to editCommenter.php instead of the previ-

ous newCommenterResponse.php. Remember that since we are

using the get id variable to identify the record that we want to edit,

this has to be kept within the HTML form action URL. Figure

17-28 shows this change to the form action attribute, as well as a

slight change to the <h1> page header tag.

346 Chapter 17 / FileMaker Value Lists

Figure 17-27: Find request for a single commenter

6. It is time to add the filled-in text elements. As you may recall, add-

ing values to elements is just a matter of using the value attribute

of the <input> HTML element, combined with a PHP echo state-

ment that echoes the field value for that specific field. Figures

17-29 and 17-30 display those additions to the HTML.

Chapter 17 / FileMaker Value Lists 347

Ch
a

p
te

r
1
7

Figure 17-28: The form element modified with the commenter ID

Figure 17-29: Prefilled values for the top portion of the HTML form

Figure 17-30: Prefilled values for the bottom portion of the HTML form

Now that the form has the PHP code to find the record and display the

text portions of the commenter record, it is ready for the additional

value list code to select those values properly when it loads. At this

time you might want to try loading this form by first accessing

editCommenters.php and then clicking one of the links. If you’ve done

everything right so far, you should see the text fields with the appro-

priate values from within the currently browsed record.

Selecting Drop-down Values

Drop-down values are one of the easier value list types to prefill when

editing a record. Drop-downs, more specifically HTML <select> ele-

ments, have a special property that allows one of the options to be

selected. This property is the selected attribute of the <option> tag,

which should be set if that option element is to be selected. That

means that a standard drop-down list option such as “<option value= "

testValue">test</option>” would become “<option value= "

testValue" selected>test</option>” if it should be selected when the

form loads.

The main task when working with drop-downs is isolating when

the “selected” string should be printed into the <option> element.

Within PHP, this functionality can be achieved through an if statement

and the default printing of a non-selected value. Follow the steps below

to construct this small PHP block and get a drop-down that has a

selected value only if it matches the stored value in the database.

1. First, find where the Countries drop-down is constructed using the

foreach statement. Then find the line that calls htmlspecialchars

on the current country PHP variable:

$country = htmlspecialchars($country);

2. Following that statement, create a new PHP string variable con-

taining a blank string. This string should be added before the

statement above since we want to compare the country variables

before they are encoded with htmlspecialchars. Add the following

code before the line above:

348 Chapter 17 / FileMaker Value Lists

$selected = "";

3. Next, we add an if statement that checks whether the current

country variable matches the country field from the commenter

record. The if statement compares the two values; if they match, it

sets the selected PHP variable to " selected". Notice that the value

" selected" has a leading space; this is done intentionally to prop-

erly print it within the <input> element. The following code

shows the if statement:

if($country == $commenter->getField('country')){

$selected = " selected";

}

4. Now that the selected PHP variable will either be blank or contain

the string " selected" with a leading space, we have to integrate

this variable into the <input> element. This is done by adding a

PHP echo statement into the printing of the <option> element:

<option value="<?php echo $country; ?>"<?php echo

$selected; ?>><?php echo $country; ?></option>

This is all there is to selecting drop-down values. If you test the page

now, the correct drop-down value should be selected. If you already

have the page loaded, you might want to restart your browser since

some browsers cache form values and will not display the updated

selected element with a simple refresh. Figure 17-31 shows the source

code for this. Double-check it if your drop-down does not seem to

properly select the correct value.

Chapter 17 / FileMaker Value Lists 349

Ch
a

p
te

r
1
7

Figure 17-31: Source code for a selected drop-down menu

Selecting Radio Button Values

Radio buttons are quite similar to drop-down lists when it comes to

selecting their values based on a FileMaker field value. Instead of the

selected attribute, radio buttons use the checked attribute with the

value of checked. Therefore, a checked radio button would have the

following code:

<input type="radio" checked="checked">

Follow the steps below to add this functionality to your commenter

profile page now.

1. To implement this within our profile page, we would use the same

selected variable with a different value set to it within the if state-

ment. Start by placing your cursor above the htmlspecialchars

statement of the Sex radio button group, then add the following

code:

$selected = "";

if($sex == $commenter->getField('sex')){

$selected = " checked=\"checked\"";

}

2. Notice that in the code above, the quote characters within the

string have back slashes before them; this is needed to include

actual quote characters as part of the selected PHP variable. The

last remaining thing to do here is to integrate the printing of

selected into the printing of the <input> HTML element. The

code to do this is:

<input type="radio" name="sex" value="<?php echo $sex;

?>"<?php echo $selected; ?>><?php echo $sex; ?>

With those few simple statements, you now have a radio button group

that has an item automatically selected based on the field value within

the database. Try this out by browsing to the page within your browser.

Figure 17-32 lists the source code for this section of the code; inspect

it carefully if the radio buttons do not work for you.

350 Chapter 17 / FileMaker Value Lists

Selecting Checked Check Boxes

Check box selection is slightly different from drop-downs and radio

buttons. The main difference is that check boxes can have multiple

selected values in the database. This means that as you are printing

each check box, you have to compare it against each value in the data-

base. PHP provides a few convenient functions to make it easy to

decide if a specific check box should receive the selected value.

1. Since you can have multiple values within the database, the easi-

est way to work with those values is by converting them into an

array. When values are retrieved from the database, they are sepa-

rated by new line characters, which are represented within PHP as

"\n". To convert this list of values into an array, we use the explode

PHP function. This function takes a string as its first parameter,

which it uses to break up a larger string into array chunks. The

larger string is the second parameter to this function. We will now

use it with our value from the database by adding the following

code right before the foreach statement that prints the operating

systems list:

$checkedValues = $commenter->getField

('operatingSystem');

$checkedValues = explode("\n", $checkedValues);

Chapter 17 / FileMaker Value Lists 351

Ch
a

p
te

r
1
7

Figure 17-32: Source code for a radio button group with a selected radio button

2. As you can see, the checkedValues PHP variable first contains the

new line delimited field contents, and then is broken apart into an

array. Next, we have to construct the if statement within the

foreach loop that checks whether the current operatingSystem

PHP variable is part of the checkedValues array; if it is, then that

check box should be selected within the form. To accomplish this

feat, we use the built-in PHP in_array function that takes a search

string as its first parameter and an array as its second parameter.

The function returns true if the search string matches any of the

array elements. Place the following code after the start of the

foreach loop and before the htmlspecialchars statement:

$selected = "";

if(in_array($operatingSystem, $checkedValues)){

$selected = " checked=\"checked\"";

}

3. The last step in this process is adding the printing of the selected

PHP variable into the check box <input> element. This is done

just like in the previous two examples with the following code:

<input type="check box" name="operatingSystem[]"

value="<?php echo $operatingSystem; ?>"<?php echo

$selected;?>>

With all the code in place, we have completed the form portion of this

exercise. The source code of the check boxes can be found in Figure

17-33, which can be referenced if your version is not properly working.

The next section of this chapter will implement the actual edit com-

mand to accept those values back into the database.

352 Chapter 17 / FileMaker Value Lists

Implementing the Edit Command

Now that the filled-in form is complete and properly working, it is time

to make it do something useful. In this case, we will just perform a

standard edit operation when the form is submitted.

1. Before jumping into editing the commenter FileMaker API record

object, we should prepare this form for both sending the correct

action and having the ability to display a message to the user.

Please refer to Figure 17-34 for the changes to make around your

opening <form> tag.

Chapter 17 / FileMaker Value Lists 353

Ch
a

p
te

r
1
7

Figure 17-33: Source code for a check box group with selected check boxes

Figure 17-34: PHP message printing and setting of the action form variable

2. Next, we will define the message variable and create the if state-

ment that will be executed when the editCommenter value is

within the action post variable. This code should be placed toward

the top of the page right after the commenter variable is assigned

the record object:

$message = '';

if(POST('action') == 'editCommenter') {

}

3. Then we add the setField functions that will be used on the

commenter record object before using the commit function on it.

Figure 17-35 displays this code along with the commit function

that assigns its result to the result PHP variable.

4. The last step is to add the error detection code to the if statement,

and you are done. The following code checks the edit operation for

errors and assigns the appropriate value to the message PHP

variable:

if(FileMaker::isError($result)) {

$message = 'Error saving your record: '.$result->

getMessage();

354 Chapter 17 / FileMaker Value Lists

Figure 17-35: Editing the commenter record object

}else{

$message = 'Thank You, the changes have been saved';

}

Please test out the whole process right now: You should have a fully

editable, value list powered PHP form. We hope that by using the

knowledge in this chapter you will be able to make your applications

dynamic and easily customizable from within the FileMaker database,

while using PHP to create forms that are easy to use.

Limitations of FileMaker Value Lists
on the Web

While value lists are extremely powerful on the web, there are a few

very important limitations to keep in mind so you can avoid common

pitfalls and hours of tedious debugging. The first very important pitfall

is the fact that value lists that are populated based on a related value

are not supported at this time within FileMaker web publishing. This

is due to the fact that when value lists are retrieved they are not tied

to any specific result set or records; therefore, the context in which to

evaluate that relationship is simply missing.

The second important limitation is the inability for value lists to

return display values. This means that if you are using one table for

the value list values and another for the actual list items, only the

actual value list values will be returned and the display values will be

missing. There is no easy way around this except to write code that

retrieves both the value list and the list of display values and then

combine them. This is rarely done and is outside the scope of this

book, but it is certainly possible using a combination of a value list

retrieval and a find.

Chapter 17 / FileMaker Value Lists 355

Ch
a

p
te

r
1
7

Summary

Possessing the knowledge of using value lists on the web allows you to

exploit one of the most powerful features of FileMaker. Using value

lists to construct dynamic forms allows you to build flexible web appli-

cations that can be controlled from within FileMaker. For example,

keeping all lists of big registration forms in the database allows you to

instantly make changes to the form without having to do any modifica-

tions on the web. Do not hesitate to use value lists when you think the

end user of the solution will often change the contents of a list or a

series of choices.

356 Chapter 17 / FileMaker Value Lists

Chapter 18

PHP Sessions

Sessions are an invaluable tool to any web programmer who builds an

application that is slightly more complicated than a search page. Com-

munication on the web is stateless: As each page is called by the

browser, the application starts fresh and does not keep the variables

from the previous page visited by the user. Cookies were initially

devised as a way to keep some variables persistent throughout the

site. Cookies are small bits of text with expiration dates placed by a

web site within your browser settings, and are accessible to the web

server and your browser at any time. However, cookies are easily

modifiable by the user and very limiting in the amount of data they can

store. Therefore, sessions were invented that still use cookies to iden-

tify themselves, but do so securely while keeping all the information

that needs to be shared between pages easily accessible to the running

script.

What Are Sessions?

Sessions are small temporary files on the server hard drive that are

identified by a cookie on the user’s computer. They are a set of vari-

ables stored on the server and retrieved as needed by your application.

A good analogy would be a trip to the bank: You provide the account

number (the cookie) and the banker looks up the account (opens a file

on disk) and sees information about you (variables), but you never get

to see what is on the banker’s screen.

357

Each time a page that uses sessions is accessed, the cookie from the

browser is sent to the server, and the session file is looked up and

opened by the PHP script. PHP makes this process very simple and

completely automated: Just call session_start(); and your session is

ready to use.

Why Use Sessions?

Sessions provide a safe way to store sensitive data temporarily while

the user browses your site. Usually you would store a user’s account

details, login credentials, and temporary data such as the contents of a

shopping cart. Since all the user has is a cookie with a number, your

application can safely manipulate the internal application state on mul-

tiple pages in the site.

358 Chapter 18 / PHP Sessions

Figure 18-1: Flow of session data between two PHP scripts

Using Sessions

To use sessions, first the session is initialized using the session_start()

command. This step creates a new session on the server hard drive or

opens an existing session and reads it into memory. If a new session

has been started, a cookie is sent back to the user with the session

identifier in order to access the same session when the user goes to

another page. A script that simply initializes or opens an existing ses-

sion would look like this:

<?php session_start(); ?>

Once a session has been initialized, data should be written into it for

storage. PHP makes this process very transparent. Simply read the

special $_SESSION array to retrieve session variables or set new

array keys inside of the $_SESSION array to store session variables.

Saving data into a session would look similar to the code below:

<?php $_SESSION['testVariable'] = 'This is a test'; ?>

Retrieving data is just as simple:

<?php $test = $_SESSION['testVariable']; ?>

The last thing that you need to know to work with sessions effectively

is how to erase data from them. You can selectively erase data using

the unset command on a specific session variable or destroy the entire

session with the session_destroy(); command. You would use a com-

plete session destroy for logouts, while the partial removal of variables

would be useful for clearing a single item from a shopping cart that is

stored in a session. Both of those actions would resemble the code

below:

<?php

unset($_SESSION['testVariable']); // Remove a single

variable

session_destroy(); // Destroy all session variables within the

$_SESSION array

?>

Chapter 18 / PHP Sessions 359

Ch
a

p
te

r
1
8

Now that you know a bit more about how sessions work, it’s time to

use them for something useful. We will create a very simple example

first with just a basic form, and tie it all together into a login system for

commenters on the blog in Chapter 19. The session data within this

login system will be used to store the user details of the logged-in

user.

Session Example — Remembering
Form Data

The simplest example to demonstrate the power of sessions would be

a form that takes in some data and repeatedly displays it, even when

coming back to the page at a later time. In this case we will just be

submitting a form with a single text field for a name and then using the

same PHP page to output the results.

1. Let’s start this example by creating a new PHP file named

sessionForm.php.

2. Next, we should make a quick HTML form, setting the form action

to the same sessionForm.php page. The form method should be

set to post, and the form elements should be just a text input box

and a Submit button. The final form should resemble this simple

code:

<form method="post" action="sessionForm.php">

Your Name:

<input name="name" type="text">

<input name="submitForm" type="submit">

</form>

3. Next, we will add a bit of informational code under the form, which

will allow us to view information about the session. In this area we

will first print the session ID, which is the number stored in the

cookie, and then a printout of the whole $_SESSION array. The

code to do this is relatively simple, with the <pre> tags used here

360 Chapter 18 / PHP Sessions

in order to give a well-formatted look to the output of the variable

printout. We are using the session_id function to get the session

ID; this is purely for informational purposes and generally does not

serve any purpose in a PHP application. Add the following code

below your HTML form:

<p>

Your current session ID is: <?php echo session_id();

?>

Your current $_SESSION contents are: <pre><?php

print_r($_SESSION); ?></pre>

</p>

4. The last thing to do is to create the code to start the session and

check whether the form was submitted. The form submission

check will allow us to capture new values into the session when-

ever the form has data entered into it. A conditional isset is used

to determine if a name variable was posted from the web form. All

of this should go at the very top of your page before any of the

form code. The code below starts the session, and then condition-

ally assigns the name to the session variable:

<?php

session_start();

if(isset($_POST['name'])) {

$_SESSION['name'] = $_POST['name'];

}

?>

Here is the entire source code listing for sessionForm.php:

<?php

session_start();

if(isset($_POST['name'])) {

$_SESSION['name'] = $_POST['name'];

}

?>

Chapter 18 / PHP Sessions 361

Ch
a

p
te

r
1
8

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=utf-8">

<title>Simple Session Example</title>

</head>

<body>

<form method="post" action="sessionForm.php">

Your Name:

<input name="name" type="text">

<input name="submitForm" type="submit">

</form>

<hr>

<p>

Your current session ID is: <?php echo session_id();

?>

Your current $_SESSION contents are: <pre><?php

print_r($_SESSION); ?></pre>

</p>

<hr>

Click Here to Refresh This

Page

</body>

</html>

362 Chapter 18 / PHP Sessions

Testing the Session Form Flow

To test and understand how sessions work in this example, we can

simply submit the data from sessionForm.php and immediately see the

data. Follow these steps:

1. Point your browser to sessionForm.php.

2. Enter your name into the form and submit it. The page will

refresh, and you should now see your name on the bottom of the

screen.

3. Now open a new window and access the page; notice that your

name is still on that page.

Since the data was stored in a session variable and not a form variable

like GET or POST, it will still be on that page even if you left it and

came back or simply opened another instance of it. This is the exact

behavior you would expect when signing into a site — being able to

navigate from page to page without being asked repeatedly for infor-

mation on each page.

Chapter 18 / PHP Sessions 363

Ch
a

p
te

r
1
8

Figure 18-2: Output of the sample sessionForm.php file after a form submission

Summary

With your knowledge of sessions, you can now construct many sys-

tems that store data between pages. Sessions are invaluable to

projects that involve user authentication, shopping carts, wish lists,

and multipage entry forms.

364 Chapter 18 / PHP Sessions

Chapter 19

Creating Login
Authentication
Schemes

Now that you have worked with the FileMaker API and have seen how

PHP interacts with databases, it is time to bring security and authenti-

cation into the picture. Authentication schemes have to go beyond the

regular hard-coded user name and password inside your connection

include file and request additional information from the user of the site

before accessing your FileMaker PHP application. Once the informa-

tion has been acquired from the user, it has to be tested for validity. If

it passes the test, then it is stored in a session variable and reused for

the rest of the browsing session as the credential for database

operations.

365

Authentication Methods

When working with FileMaker databases, there are two main methods

of authentication that are available for use with PHP. The first method

uses a FileMaker database table to store user names and passwords.

When a login is attempted, it is just a matter of finding the record suc-

cessfully in the user’s table to validate the supplied information. The

second method is a bit more complicated, and involves using a real

FileMaker account with the fmphp extended privilege enabled for it to

make the connection and perform actions on the database.

Both of those methods have their time and place, and selecting

which one to use usually depends on the number of users in the sys-

tem as well as the frequency of adding and modifying users.

Table-based Authentication

Using a FileMaker table for authentication is best suited for systems

that already have a list of users within a table or have a list that is

intended to be changed often from many different locations. For exam-

ple, an online registration form on your site that adds a user to the

system and then allows the user to log in would be best suited for the

table authentication model. The main advantage with this model is

being able to add, remove, or modify user information from the web

without requiring any outside intervention.

However, as with anything, table-based authentication has its dis-

advantages. The most serious disadvantage is the lack of native control

over data and the permissions the user would have. For example, lim-

iting write access to the data would require extra logic on the PHP

side of the application. However, developing a more complex authenti-

cation model using lists of permissions within the table for each user

can be a desirable outcome in a larger system that demands very flexi-

ble security controls.

366 Chapter 19 / Creating Login Authentication Schemes

Account-based Authentication

FileMaker accounts are the user names and passwords that are used to

log in to the database. Up to this point in the book we have had a

hard-coded user name and password within the connection file that

was used to access and modify data in the database. The permissions

specified within the FileMaker database for this hard-coded account as

well as the fmphp extended privilege are what allowed us to access the

database in the first place. With account-based authentication, there is

no default user name used within the system. That information is

requested from the user before the FileMaker object is created, allow-

ing only real FileMaker accounts with the fmphp extended privilege to

access the system.

Account-based authentication offers the advantage of enforcing

database restrictions seamlessly within the application. For example,

only specific ranges of records can be displayed to the user based on a

calculation specified in the FileMaker Accounts management screens

within your database; this provides enormous security advantages to

the web application. However, you cannot obtain information on the

web about the permissions that a specific user has. Therefore, if you

need to make distinctions between the areas a read-only user and a

read-write user can access, the table-based authentication method can

be used to store much more information about the user itself.

The disadvantages of account-based authentication include the

lack of ability to add or modify accounts from the web within the

FileMaker database. Modifying accounts requires opening a FileMaker

Pro client application as a user who has the rights to make the modifi-

cations and then using the built-in account management tools to add or

remove accounts. This system works well on intranet PHP applica-

tions with a small set of users who can be controlled from within the

office with little effort. The other advantage here is the ability of the

user to use a single user name and password both on the PHP applica-

tion side and when using a local copy of FileMaker Pro to access

certain database functions that are not natively available from within

your PHP system.

Chapter 19 / Creating Login Authentication Schemes 367

Ch
a

p
te

r
1
9

Table-based Authentication —
Building the Login Form

Table-based and account-based authentication schemes generally use

the same login HTML form. The form has a text field for the user

name, a password field for the user password, and a hidden field for the

action the form performs. We will be demonstrating the login form

using the blog template to allow a commenter from the blog system to

access the control menu with a list of links to the user profile or other

future features that a commenter would be able to use.

1. Integrating this form into the blog template is very straightfor-

ward; we just add a nice header and a <form> tag to submit the

form onto its own page. PHP logic will be added at the top of this

page to check whether the data was submitted. If so, attempt the

login; otherwise, an error can be returned. The completed form

should contain the code in Figure 19-1, and the appearance in the

browser should resemble Figure 19-2. This page should be named

commenterLogin.php:

368 Chapter 19 / Creating Login Authentication Schemes

Figure 19-1: Source code of commenter login form

2. Now that the form has been completed, it is time to add the login

procedure code and session initialization code in case of a success-

ful login. We will start by checking whether there is a post action

variable submitted and if it contains the keyword login; if so, the

Commenters table will be searched for the combination of the user

name and the password. Let’s start by detecting the login form

submission by adding this simple if statement as well as a blank

error variable after the inclusion of the database connection file:

<?php require_once('include/db.inc.php');

$error = '';

if(POST('action') == 'login') {

}

?>

3. Now whenever the form is submitted with a proper action vari-

able, it will go into the if block and perform the FileMaker search

actions. Next we add the actual search into that block. We will be

using a standard two-field search here. The following code should

be added right after the beginning of the if statement:

Chapter 19 / Creating Login Authentication Schemes 369

Ch
a

p
te

r
1
9

Figure 19-2: Browser output of commenter login form

$userFind = $blogDB->newFindCommand('Commenters');

$userFind->addFindCriterion('username','=='.POST

('username'));

$userFind->addFindCriterion('password','=='.POST

('password'));

$userResult = $userFind->execute();

4. The userResult variable should now be either an error or the user

record that is logged in. In order to check whether the login failed,

we use the standard FileMaker isError function and assign an

error message to the error variable if there is an error. However, if

the login is successful we will initialize the session, place the post

username and password variables into the session, and redirect

the user to the successful login page, which is commenter.php.

The following code, which accomplishes all that, should be placed

below the find execution line:

if(FileMaker::isError($userResult)) {

$error = 'Incorrect username or password';

}else{

if(!session_id()) session_start();

$_SESSION['login_user'] = POST('username');

$_SESSION['login_pass'] = POST('password');

header('Location: commenter.php');

exit();

}

5. The next step on this page is displaying the error message. Error

messages can be easily constructed using a tag with its

color style set to red. The following PHP code can be used on any

page that defines an error variable:

<?php if($error != '') echo '<span

style="color:red;">'.$error.''; ?>

Add the code above right before the <form> tag on the login

page. It will display output similar to Figure 19-3 if the login was

incorrect.

370 Chapter 19 / Creating Login Authentication Schemes

6. The last step for this page is to add a logout option for a logged-in

user. Logout is usually performed using a get link with a logout

action. In this case, the login will be defined as a link that points to

the login page with the get action set to logout. The link would

have the following URL:

commenterLogin.php?action=logout

Integrating this condition into our page is very simple: Just add the fol-

lowing new if statement after the if statement that checks for the post

action of login:

if(GET('action') == 'logout') {

if(!session_id()) session_start();

unset($_SESSION['login_user']);

unset($_SESSION['login_pass']);

$error = 'You have been logged out';

}

Notice that we once again start the session if it hasn’t been started and

then unset the login variables. It is also a good idea to set the error

message to let the user know that the logout action has been

successful.

Chapter 19 / Creating Login Authentication Schemes 371

Ch
a

p
te

r
1
9

Figure 19-3: Incorrect login browser output

Table-based Authentication —
Building a Protected Page

Now that the login page has been completed, we have to build a page

that will be protected from unauthorized access. This page will have to

check whether the session variables have been set for the logged-in

user as well as provide a way to log out and destroy those session vari-

ables. Since the login page redirects a successful login to

commenter.php, it is logical to have that as our first protected page.

1. Start by creating a simple commenter.php page with a link to the

commenter profile as well as the logout link. The commenter.php

commenter code should contain the minimal page listed in Figure

19-4. When viewed in a browser, it should look like Figure 19-5.

372 Chapter 19 / Creating Login Authentication Schemes

Figure 19-4: Source code for minimal commenter menu page

Figure 19-5: Browser output of commenter menu page

2. Now that we have the basic commenter menu page, it is time to

check if the user is logged in at the top of the page. If the user is

not logged in, then a redirect to commenterLogin.php is per-

formed. The code to perform this check should be placed after

including the database connection file but before the header of the

page since a redirect must happen before any HTML is sent to the

user. The final page source code should resemble Figure 19-6.

Once it is complete, try using the logout link by opening it in a

new window and then refreshing the previous window. You should

notice that you have been redirected to the login page since the

logout happened and erased the session information.

Account-based Authentication —
Implementation

Implementing account-based authentication involves a slightly more

complex procedure than table-based authentication. To simplify the

process for you, we have created a function that can be used for

account-based authentication on any protected pages. This procedure

has a few simple requirements:

� The login form action has to point to a protected page.

Chapter 19 / Creating Login Authentication Schemes 373

Ch
a

p
te

r
1
9

Figure 19-6: Protected commenter menu page with login page redirect

� Each protected page must call the accountLogin function.

� The logout link has to point to a protected page.

The function itself is in the form of:

accountLogin($fmConnection, $loginPage)

This function should be called on each protected page with both

parameters set to valid values. The first parameter is the actual con-

nection object from your connection file; in our case this is $blogDB.

The second parameter is the name of the login page; in our case it is

adminLogin.php.

The following accountLogin PHP function should be defined

within your include/FMWebschool.inc.php file. Either copy the source

code from Figure 19-7 or use the downloadable companion files to get

a copy of FMWebschool.inc.php that includes the accountLogin

function.

With the accountLogin PHP function defined, we should construct the

adminLogin.php page, as shown in Figure 19-8. Notice that the form

374 Chapter 19 / Creating Login Authentication Schemes

Figure 19-7: accountLogin PHP function

action attribute points to admin.php. The login page also takes its error

variable from the get error variable; this is because the accountLogin

function transmits its error messages using get variables within the

header redirect.

Now that the account login form is built, it is time to build the

admin.php page and implement the accountLogin function on it. The

admin.php page should include the connection file and then call

accountLogin with the connection variable and the login page name.

Notice that within the source code in Figure 19-9 the logout link points

to admin.php and not

adminLogin.php. This

is because the logout

code is within the

accountLogin func-

tion, which is called

from admin.php and

not adminLogin.php.

Chapter 19 / Creating Login Authentication Schemes 375

Ch
a

p
te

r
1
9

Figure 19-8: adminLogin.php page source code

Figure 19-9: Source code of a protected account login page

This is all it takes to perform an account-based login using the

accountLogin function. If you are interested in knowing how the

accountLogin function works, then see the next section for a thorough

explanation.

Detailed Overview of accountLogin
Function

In this section we will be working with the source code of the

accountLogin function to understand how it works to create an

account-based login procedure. This section is a full code listing for the

function with appropriate explanations inserted after relevant blocks of

code:

function accountLogin($fmConnection, $loginPage) {

if(session_id()) session_start();

The code above defines the function with two parameters and

initializes the session if it has not yet been initialized.

if(POST('action') == 'login') {

$fmConnection->setProperty('username',POST

('username'));

$fmConnection->setProperty('password',POST

('password'));

$layouts = $fmConnection->listLayouts();

If a login post action is present, the setProperty function of the

FileMaker object is used to set a user name and password to the

FileMaker object. Once that is set, the listLayouts function is used to

try to get a list of layouts using the current user name and password;

an incorrect user name and password at this stage would not allow a

successful listing of the layouts.

376 Chapter 19 / Creating Login Authentication Schemes

if(FileMaker::isError($layouts)) {

header('Location: '.$loginPage.'?error='.urlencode

('Authentication Failed'));

exit();

If a FileMaker error object is returned, then we assume that the

authentication credentials provided were incorrect. The loginPage

function parameter is then used to redirect the user with an error get

variable set to "Authentication Failed".

}else{

$_SESSION['account_user'] = POST('username');

$_SESSION['account_password'] = POST('password');

}

}

In the case of a successful listing of layouts, we assume that the user

name and password are correct and set them to the session variables

for later use within the function. The second curly brace is used to end

the if statement that detected the login post action.

if(GET('action') == 'logout') {

unset($_SESSION['account_user']);

unset($_SESSION['account_password']);

header('Location: '.$loginPage);

exit();

}

The if statement above detects whether a logout action was passed

using a get variable. If so, the session variables are unset and the user

is redirected to the loginPage function parameter. Optionally at this

stage you could add an error message to the redirect line to let the

user know that the logout has been performed.

if(!isset($_SESSION['account_user'])) {

header('Location: '.$loginPage);

exit();

}

Chapter 19 / Creating Login Authentication Schemes 377

Ch
a

p
te

r
1
9

$fmConnection->setProperty('username',$_SESSION

['account_user']);

$fmConnection->setProperty('password',$_SESSION

['account_password']);

}

The last part of this function checks whether a session variable is set

at all. If not, then it means no attempted login was performed and the

user should simply be redirected to the login page. However, if the

user is not redirected to the login page, then the end of the function is

reached where the setProperty functions are used to set the user

name and password of the FileMaker connection object for usage

throughout the rest of the PHP script. Any calls to the FileMaker con-

nection object once it exits the function will use the new user name

and password with all the appropriate permissions and restrictions as

they are defined within your FileMaker database.

Other Authentication Methods —
Active Directory

Active directory authentication is possible to achieve from within PHP

using the LDAP PHP extension. The LDAP extension allows access

from within PHP to servers running an active directory service, such

as a Microsoft Active Directory server. Using this extension you can

query the information within a directory service and use the results in

your PHP scripts. This system is not covered in this book since the

architecture of directories can vary greatly between organizations, and

would require a programmer within your organization who is familiar

with both PHP and the local directory service architecture. We recom-

mend using http://php.net/ldap as a starting point in your directory

services authentication implementations.

378 Chapter 19 / Creating Login Authentication Schemes

Troubleshooting Authentication
Schemes

Authentication schemes can be tricky to troubleshoot from within PHP,

especially the account-based methods. For table-based methods, an

incorrect login would usually produce error “401 Record Not Found,”

which is easy to catch and display to the user as an incorrect user

name or password. However, if an incorrect account is used, you could

either get error “802 Unable to Open File” or an HTTP authentication

failed error. Generally it is safe to assume that if an error object is

returned, the user name is to blame, unless the database has been

closed on the server or the address has changed.

We recommend having a page on your site that uses a hard-coded

user name and password with the same credentials to access the data-

base in cases when you are unsure if it is a real database problem or

just a failed user name authentication. This file could be as simple as:

<?php

require_once('FileMaker/FileMaker.php');

$DB = new

FileMaker('dbName','127.0.0.1','webuser','webpass');

print_r($DB->listLayouts());

?>

With the file above you would be able to have a user name and pass-

word that would always work, and if something were to happen to the

database itself, such as it being unavailable or the server being down,

using print_r would print a FileMaker_Error object that can be visually

inspected in your browser for clues regarding the malfunction. How-

ever, a successful test with the file above would produce a list of your

database layouts. In that case, the failing authentication can likely be

blamed on the user entering incorrect details or badly configured PHP

sessions that are documented below.

Chapter 19 / Creating Login Authentication Schemes 379

Ch
a

p
te

r
1
9

Another common problem with any authentication scheme is the

database login information not being carried through from page to

page. The general symptom is the login working for the first page but

any subsequent page forces the user back to the login page. Generally

this behavior is caused by incorrect configuration of the session stor-

age on the PHP server, which should leave some errors in the error

log or even print out a warning to the user about not being able to

access the session file. In this case, we recommend reinstalling PHP

and doing a few simple examples from Chapter 18 to make sure that

your sessions work correctly.

Another issue that can affect sessions is an incorrect system time

on your server. This would send cookies to the user with expiration

dates that have already passed, forcing the browser to discard the

cookies after the page has loaded. The incorrect system time issue

should not cause problems unless it is grossly off by days or even

months. Session creation can also fail if you use session_start after

some output has been sent to the browser, including any output from

previously included files. This would not allow PHP to set a cookie,

and the session information would certainly be lost at this stage.

Summary

Authentication schemes within PHP can greatly vary, both within

FileMaker systems and other PHP systems that you might write in the

future. Generally, authentication requires knowledge of forms and ses-

sions. Once you build one authentication system, all of them will seem

identical with the exception of the validation step that is specific for

each method.

380 Chapter 19 / Creating Login Authentication Schemes

Chapter 20

File Uploads with
PHP and FileMaker

Uploading files has long been a mysterious subject to many web devel-

opers. Some programming environments force the programmer to

write lengthy blocks of code to correctly parse file uploads, while oth-

ers make it cumbersome and unintuitive. PHP, however, allows very

easy handling of file uploads. Uploading files is the operation of select-

ing a file on your hard drive from within a web form.

How Do File Uploads Work?

The structure of the web dictates that file uploads be initiated by the

user through direct interaction with a form within a web browser. All

web browsers have a special form element that allows cross-platform

file selection capability, which allows a user to click a button and select

a file on his or her hard drive. Next, the user fills out the rest of the

web form, such as text fields that describe the files being uploaded,

and eventually clicks Submit. Once the form is submitted, the browser

starts sending a stream of data to the web server that contains the file.

The web server receives the file and writes it to a temporary location.

Once the file has been fully received by the server, your PHP script

that was the action of the form is called.

381

At this stage the control over the upload passes to your script, which

receives a variable with the information about the uploaded file. It now

becomes your responsibility to acknowledge the file upload, record

information about it in your database, and move it to a permanent loca-

tion. A file upload that has not been moved to a permanent location will

be erased from the server automatically once your script has finished.

Preparing a Form for a File Upload

Forms in HTML documents need to be specifically designed for file

uploads by making a few small modifications to their code. The form

first needs to have the correct encoding type set to allow PHP to see

the form as an uploaded file and not another text field. Next, the form

will need a special named input element to select a file; this is the ele-

ment that places the Browse… button in the browser. Take a look at

the sample file browse form input in Figure 20-2.

382 Chapter 20 / File Uploads with PHP and FileMaker

Figure 20-1: Uploading files from your hard drive to the PHP script

1. Setting the correct encoding for your form is a very simple pro-

cess. Start by finding your opening <form> tag, which should

resemble the following line:

<form action="fileUpload.php" method="post">

To make the form within this tag capable of uploading files along

with its other elements, we need to add the enctype attribute with

the value "multipart/form-data". The following line shows a form

that is ready for file uploads:

<form enctype="multipart/form-data"

action="fileUpload.php" method="post">

Once the form has been set up properly, we will be adding the

actual file selector element to this form.

2. We then need to create the actual form input element that will

allow the selection of a file. This element is an <input> tag with

its type set to "file". Please note that this element will not be mod-

ifiable or readable with most JavaScript implementations due to

the security considerations that must be taken when interacting

Chapter 20 / File Uploads with PHP and FileMaker 383

Ch
a

p
te

r
2
0

Figure 20-2: Browsing for a file on the hard drive

with files on the hard drive of the user; therefore, you must always

ask the user to select the file manually before attempting to inter-

act with the form using JavaScript. Simply add the following form

element within your <form> tag:

<input name="userFile" type="file">

In this case we will name the variable that the file should be placed

in userFile. It is extremely important to specify a proper name for

the input element in order to access the file with PHP once it has

been uploaded.

Following is the complete source code listing for uploading a

file:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=utf-8" />

<title>Uploading a File</title>

</head>

<body>

<p>Please select a file</p>

<form enctype="multipart/form-data" action=

"fileUpload.php" method="post">

<input name="userFile" type="file" />

<input type="submit" />

</form>

</body>

</html>

384 Chapter 20 / File Uploads with PHP and FileMaker

Accessing the File Upload with PHP

Once the file has been selected by the user and the form is submitted,

the server will start receiving the file. Once the file is received, your

PHP script is called, allowing you to take control of the uploaded file

and manipulate the data as you wish.

All uploaded files are registered within the $_FILES array when

your script starts. The array includes entries for all the element names

from the previous form that had a file selected for uploading. The array

contains a simple structure for each file input:

$_FILES array(

[userFile] => Array (

[name] => Original filename

[type] => MIME Type of the file

[tmp_name] => Full path to temporary uploaded file

[error] => Error code; will be 0 for successful upload

[size] => File size of the uploaded file in bytes

)

)

When handling uploads, there are two important things to check for

before processing the upload. The first is to make sure a file has been

selected, and the second is to check for any errors with the upload.

1. We will start the script with a line that checks that the userFile file

input is in the $_FILES array with a simple isset statement:

if(!isset($_FILES['userFile'])) die('No file was selected for

uploading');

2. Next we will check that the error code is 0, which signifies a suc-

cessful file upload:

if($_FILES['userFile']['error'] != 0) die('File upload error

'.$_FILES['userFile']['error']);

Chapter 20 / File Uploads with PHP and FileMaker 385

Ch
a

p
te

r
2
0

Once the file upload has been verified, we can move on to perma-

nently storing the uploaded data to the hard drive of the web

server.

3. Storing the file upload on the server permanently is quite simple:

Just select a destination and use the move_uploaded_file($source,

$destination) PHP function. The source file for this function

should always be the tmp_name attribute from the uploaded

$_FILES array, and the destination should be a location of your

choice. In this example, create a directory named uploads next to

the PHP files and use the following line to move the uploaded file

into it:

$file = $_FILES['userFile'];

move_uploaded_file($file['tmp_name'],

'uploads/'.$file['name']);

Once the file has been moved into the uploads directory, you can link

to it in the future using a simple link such as:

See the file

Following is the entire source code listing for accessing a file:

<?php

if(!isset($_FILES['userFile'])) die('No file was selected for

uploading');

if($_FILES['userFile']['error'] != 0) die('File upload error

'.$_FILES['userFile']['error']);

$file = $_FILES['userFile'];

move_uploaded_file($file['tmp_name'],

'uploads/'.$file['name']);

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

386 Chapter 20 / File Uploads with PHP and FileMaker

<meta http-equiv="Content-Type" content="text/html;

charset=iso-8859-1" />

<title>Uploading a File</title>

</head>

<body>

<p>Thank you for uploading your file, <a href=

"uploads/<?php echo $file['name']; ?>">See the

file</p>

</body>

</html>

Debugging File Uploads — Error Codes
Explained

Generally, once an upload form has been set up, the only error that you

will usually receive is “error 4” when the user chooses not to select a

file when submitting the form. However, there are many other situa-

tions that can initially affect the upload form, especially during the

setup process of the system and the initial testing. The following list of

PHP error codes is specific to the file upload process.

Error 0: This is a success value that indicates no error was

detected.

Error 1: The file that the user was trying to upload exceeded the

upload_max_filesize directive in php.ini. Either change the directive or

instruct the user to choose smaller files.

Error 2: When you attempt to limit the upload file size using the

MAX_FILE_SIZE hidden form variable, then this error code will be

used for a file that exceeded the specified variable.

Error 3: Due to network problems or other unexpected causes,

only part of the file was uploaded. Ask the user to try uploading the file

again.

Chapter 20 / File Uploads with PHP and FileMaker 387

Ch
a

p
te

r
2
0

Error 4: The user did not select a file when submitting the form.

This behavior should be handled properly in forms where the upload

portion of the form is optional.

Error 6: The selected temporary folder in which to store the

upload is missing. Check your php.ini settings and set a proper path.

This error was introduced in PHP 5.0.3.

Error 7: Writing the temporary file to disk has failed. Check

php.ini for the file upload save path and make sure it is writable by the

web user. When all else fails, just select a simple path such as

“C:/Temp/upload.” This error was first introduced in PHP 5.1.0.

Error 8: The extension of the file upload has been blocked. This

error was introduced in PHP 5.2.0.

Connecting Uploaded Files to
FileMaker Data

Once a file has been uploaded and stored on the server, you would nor-

mally want to record it into your database and associate it with a

record. Since we are storing the file on the server hard drive, the best

thing to do is to record a URL to the file or just the file name itself.

Recording just the file name itself into the database record allows you

to dynamically construct the URLs later and use them in a web viewer

window within your FileMaker solution or a dynamic PHP page.

To store the file name into your record, use a standard add record

command, which should look similar to:

$newFile = $filesDb->newAddCommand('Files');

$newFile->setField('fileName',$_FILES['userFile']['name']);

$newFile->execute();

The lines of code above should be part of a larger script that stores

more information about the file than just the name.

388 Chapter 20 / File Uploads with PHP and FileMaker

Important Limitations

Just like any system, PHP has its own limitations with file uploading.

PHP provides a perfect way to quickly upload files to your server as

long as they meet the following criteria:

� The file size needs to be less than 2MB.

� This is generally enough for photos and documents, but will

not suffice for music or video.

� This limit can be changed in php.ini by modifying

upload_max_filesize.

� The permanent destination of the file must be in a folder that is

writable by the web server user.

� File uploads cannot be stored in FileMaker container fields but can

be viewed through the web viewer.

Summary

With your knowledge of file uploads you can now manipulate much

more than just form data. Some of the possibilities include image

manipulation, spreadsheet imports, or simple attachments for your

database records.

Chapter 20 / File Uploads with PHP and FileMaker 389

Ch
a

p
te

r
2
0

This page intentionally left blank.

Chapter 21

Sending Emails with
PHP

Email has been at the core of Internet communication for the last 20

years. Despite innovations in instant messaging technologies and

other competitive forces, it remains the main method of sending notifi-

cations and confirmations online. This chapter explores the

technologies and techniques of using email from within PHP as well as

integrating and formatting FileMaker data into an email.

Anatomy of an Email

Most people have used email in the workplace, at home, and anywhere

in between, but likely have no idea of how email actually works. An

email is a long message delivered between two servers with a set of

informational headers and the message body itself. The header section

consists of individual header lines separated by new line characters.

Each header line serves a special purpose for either the web server or

your email client. For example, there are address headers such as to,

from, cc, and bcc. These headers allow the delivery of the message to

the proper inbox. The subject of the message has its own header line

as well, conveniently named subject.

391

The body section of the email contains the actual content of the mes-

sage. Usually this is just a plain text area with line breaks used for

ending lines and no special formatting allowed, although at times

HTML is used in the body for advanced formatting.

Requirements for Sending Email from
PHP

Sending email requires the proper setup of a mail server as well as

configuration within your php.ini file. If you are using a hosting com-

pany for your PHP hosting, it will have PHP already set up for the

local mail servers and you can safely skip this section. If you are set-

ting up a test server for emails at home or in a small office, you need

to be aware of a few limitations that exist with this scenario.

392 Chapter 21 / Sending Emails with PHP

Figure 21-1: Email body and headers of a typical message

In order to send emails, you will need the correct mail server soft-

ware, such as sendmail on the Mac or Microsoft Exchange on

Windows. However, we strongly discourage using mail servers in test-

ing environments due to both the complexity of the setup and the

security risks that they introduce. Generally, mail servers are hard to

configure, do not work well with firewalls and routers unless special

settings are activated, and are not easily trusted by other mail servers.

Security is another issue since many automated scans are constantly

performed by spammers to detect mail servers and exploit them for

sending spam, which could cause you to lose connectivity to the

Internet for an extended period of time. Lastly, many Internet service

providers, especially for small businesses and homes, block connec-

tions on the standard port 25 for any mail servers but their own,

limiting your ability to send email on behalf of your own domain name.

However, once you have a functioning SMTP-compatible mail

server setup, you will need to configure PHP to use that mail server

as its primary mail server. The following options can be found in

php.ini that are relevant to mail server setup:

� SMTP — The hostname of your SMTP server; default is localhost

� smtp_port — The port for your SMTP server; default is 25

� sendmail_from — The name and email to set for the from header

� sendmail_path — Path to sendmail or a sendmail-capable utility

Once a mail server has been set up and working, you should be able to

connect to it with both your email client, such as Outlook, and PHP to

send and receive email.

Chapter 21 / Sending Emails with PHP 393

Ch
a

p
te

r
2
1

Basic Email from PHP

Sending email from PHP requires the use of the mail PHP function and

some string manipulation to properly construct the email message.

Before continuing with this chapter, make sure that you are comfort-

able with string concatenation as well as special characters in double

quoted strings such as "\n" and "\r".

1. First let’s try creating and sending a very simple email message to

become familiar with the mail function. The mail function has the

following function prototype:

bool mail (string $to, string $subject, string $message [,

string $additional_headers [, string

$additional_parameters]])

This function is used by supplying a to email address for the first

parameter, a subject in the second parameter, and a message in the

third. The fourth parameter is used to add extra headers to the

message; we’ll use it to add extra headers for advanced functions.

Let’s create a small message right now and send it out with the

following two-line PHP script:

<?php

$result = mail('you@domain.com','Test Email','Email

body');

var_dump($result);

?>

2. In the script above, enter your own email address and then load

the page in a browser. If the output within your browser displays

“true,” then the email was sent successfully and should be arriv-

ing in your inbox within a few minutes. Most likely the from

address will have a strange or generic name such as “admin” or

your hosting account user name; we will learn in the following

section how to modify the from address to display a correct value

for you.

394 Chapter 21 / Sending Emails with PHP

Adding a Proper From Address

Since you can now send a simple email message from PHP, it is time to

properly format it with the correct return name and address. This is

accomplished with the from header, which has the following syntax:

From: "Display Name" <example@domain.com>

This from header is all we need to add to the code on our previous

page. We will do so by creating a new $header string that includes the

correct header, and then we supply that string as the fourth argument

to the mail function. Your code should resemble the following three

lines, with your own email addresses and names substituted in the cor-

rect locations:

<?php

$headers = 'From: "Your Name" <you@domain.com>';

$result = mail('you@domain.com', 'Test Email', 'Email

body', $headers);

var_dump($result);

?>

Once again, use your browser to access the page; in a few minutes an

email will be in your inbox with a proper return name set.

CC and BCC Address Headers

When sending an email to a single recipient is not enough, you will

often use carbon copies and blind carbon copies in your email client.

PHP is no different and can send you copies of emails with very little

effort. This functionality is often used to send a blind carbon copy of

confirmation emails on your site or supply multiple recipients within

your office support or feedback forms. Adding an extra carbon copy

header can be done by adding a new line after the from header and

then using the following syntax:

CC: "Name" <email@domain>, "Name2"

<email2@domain>

Chapter 21 / Sending Emails with PHP 395

Ch
a

p
te

r
2
1

We will now modify the email script from the previous section to have

a cc header as well as a proper from header. The new script should be

similar to the code below:

<?php

$headers = 'From: "Your Name" <you@domain.com>';

$headers.= 'CC: "Sally" <sally@domain.com>';

$result = mail('you@domain.com', 'Test Email', 'Email

body', $headers);

var_dump($result);

?>

With these few little bits of headers within emails, you can now send

varied email messages directly from your PHP script — no FileMaker

scripting or external plug-ins are needed! If anything is unclear at this

stage, do not hesitate to change a few variables within the above

scripts and watch your inbox as it receives automated emails.

Reply-To Address Headers

When an email is received, pressing the Reply button will usually

result in the response being sent to the address specified in the from

header of the email. However, at times it is desirable to have a reply

address that is different from the from address, such as when the email

is sent by a PHP application on behalf of another user. In this case, it

will be addressed from the setting in the PHP application that includes

the name of your site, but replying to the email allows the reply to be

sent directly to the user of your site. The reply-to header should have

the following syntax:

Reply-to: "Your Name" <you@domain.com>

Be sure to use the hyphen in the header name; otherwise, the mail

server will reject the header and cause unpredictable behavior on both

the server and your email client.

396 Chapter 21 / Sending Emails with PHP

Sending HTML Emails

Once you have mastered basic email formatting and email headers,

you might want to include links or other HTML code within your

emails. In order to use HTML inside PHP emails, you will need to add

an extra header and send HTML code within the body argument of the

mail function. The header to add in this case is a modified content-type

header that would set the content type from its default setting of

text/plain to text/html. This alerts email clients that the email body

should be shown in an HTML window instead of as just a plain text

area. This header has the following syntax:

Content-Type: text/html

In this example, we will create a simple email with a link within it that

should be rendered as HTML with a clickable link. We will add the

usual from header to the email and then add the content type. Then a

simple HTML body section is constructed and passed in as the third

argument to the mail function. The code for this example is:

<?php

$headers = 'From: "Your Name" <you@domain.com>';

$headers.= "\n".'Content-Type: text/html';

$html = 'Check out this <a href=

"http://fmwebschool.com">link!';

$result = mail('you@domain.com', 'Test Email', $html,

$headers);

var_dump($result);

?>

Chapter 21 / Sending Emails with PHP 397

Ch
a

p
te

r
2
1

With this knowledge of HTML emails, you can now construct simple

links, newsletters, or even complex pages that can be sent out based

on your FileMaker data.

Custom Character Encodings

When working with PHP, FileMaker, or just about any other system,

non-English characters often cause hours of agony for the developer.

Often you will have data that is encoded in UTF-8, UTF-16, or

ISO-8859-1. If you will be sending emails that include this data, it is

best to set the content-type header with the additional charset parame-

ter. This can be accomplished by selecting the correct content type,

usually either text/plain or text/html, and then using the following

syntax:

Content-Type: text/plain; charset="utf-8"

For other character sets, replace utf-8 with the appropriate encoding

name. It should show up properly in the recipient’s inbox without them

having to override the encoding type and guess which one was used

when the email was sent.

398 Chapter 21 / Sending Emails with PHP

Figure 21-2: HTML email from the example as seen in a mail client

Email Security and Post Data

Have you ever had junk mail in your inbox? What a strange question,

you might think — everyone has to deal with an overwhelming vol-

ume of junk mail at one point or another. Well, quite often junk mail is

sent using innocent sites that do not use caution with forms that send

out emails, turning those web sites into junk mail sending automatons.

Not only does it waste your bandwidth and slow down the web site for

all your users, but your ISP can disconnect your account at any time

without prior notice due to junk mail. These days it is a serious federal

offense, and junk mail issues have to be taken care of promptly to

avoid legal problems. The bright side, however, is that it is extremely

easy to protect your site from such takeover attempts with a few minor

precautions. We will first explore the techniques that are used to per-

form this exploit, followed by the introduction of a function that will

stop spammers dead in their tracks.

Scripts that send emails can be exploited to send junk mail by

injecting invalid data into the header portion of the message. For

example, you are collecting an email from the user and then placing

that value into the reply-to header to make replying to the user easy. A

valid email address in the post data from the user will work perfectly

and make it easy to reply to this email. However, consider what hap-

pens if the email address contains malicious data such as a reply-to

email followed by an end of header symbol and then a body section

with an advertisement for the latest pharmaceutical product on the

market. With a bit more crafting of the header, an end of body section

is also forced into the header, turning the section that was previously

the header into a full message, with the body portion that you enter

into the mail function being discarded before the message is sent. This

scenario is very real. If you have the proper protection in place, you

will occasionally get messages from your feedback form that contain

strange characters and weird data — evidence that an attempt was

made to compromise your form — but with your security in place, all

you have to do is smile at the futile attempt.

Chapter 21 / Sending Emails with PHP 399

Ch
a

p
te

r
2
1

Now that you know how malicious users will attempt to attack

your email forms, you can use simple PHP to defend yourself. Defeat-

ing this straightforward attack while allowing post data into your email

headers requires removing special characters from the post data

before adding them to the header. The special characters in this case

are the end line characters "\r" and "\n", which separate headers and

allow a header block to end. PHP allows this replacement to be easily

performed using the str_replace function, which can take an array of

search characters and replace them with an empty string:

<?php

str_replace(array("\r","\n"),"",$_POST['name']);

?>

When combined with an actual header, the resultant code would

resemble the following:

<?php

$headers.= "\nReply-To:

".str_replace(array("\r","\n"),"",$_POST['name']);

?>

Note that the two items in the array have double quotes around them.

You can use \n and \r as special characters only with the double quotes;

otherwise, the slash becomes a literal slash and the search string will

not detect those two special characters.

With this simple str_replace replacement, the post data is now

safe to use in the email header variables and would force any malicious

code into the single header line that you would be able to easily see if

such an email came into your inbox from the form. We strongly sug-

gest taking a few minutes to do this with all user-supplied data within

your forms. It will save hours of headaches down the road and allow

your business to function smoothly within the turbulent Internet

network.

400 Chapter 21 / Sending Emails with PHP

Building a Feedback Form

It is best to start learning about interactive PHP email scripts by creat-

ing a simple feedback form. Feedback forms allow you to take data

from the user and directly submit it as an email to a hard-coded recipi-

ent. These forms provide a good way to interact with the user while

keeping the database interaction out of the picture.

1. We will start creating a feedback form by building the actual form

itself. Let’s name this new PHP page feedbackForm.php. This

form will submit itself to feedbackFormResponse.php, which will

actually use PHP to process the submitted data and generate the

email to the hard-coded user. This form is a very simple form in a

table format. The HTML code for this form should resemble Fig-

ure 21-3 and will produce the HTML output of Figure 21-4.

Chapter 21 / Sending Emails with PHP 401

Ch
a

p
te

r
2
1

Figure 21-3: HTML code for feedback form

2. Once this form has been built, it is time to construct feedback-

FormResponse.php, which will contain the code to actually

construct a well-formatted message for your inbox. We will be

using the post data security knowledge from the previous section

in this form to make the headers functional yet secure, so please

review that section if the str_replace references are not clear to

you.

We will start this page by constructing the body of the message

first. This will use a quick introductory string and the post data

from the comments variable. The introductory string will be

“Feedback form submission:,” which will precede the actual sub-

mitted comment. The post data is then appended to the body

variable. Please enter the following code into your page at the

beginning of a blank PHP page:

<?php

$body = "Feedback form submission:\n";

$body.= $_POST['comments'];

?>

Notice that we have used “\n” within double quotes on the first

line. This will place a line break between the introductory sen-

tence and the comments supplied by the user.

402 Chapter 21 / Sending Emails with PHP

Figure 21-4: Browser output of feedback form

3. With the body variable completed, let’s move on to creating the

header for this message. This time the header will include the

from and the reply-to headers. The following code uses three lines

of code to make the reply-to header construction easier to read

and edit. The first line sets up the first half of the header with the

leading new line, and the second line removes any dangerous char-

acters and constructs a reply address with both a name and an

email address in it. The following three lines should be placed

right after constructing the body variable, within the <?php and

?> tags:

$headers = 'From: "Your Name" <you@domain.com>';

$headers.= "\nReply-To: ";

$headers.=

str_replace(array("\r","\n"),"",'"'.$_POST['name'].'"

<'.$_POST['email'].'>');

4. With the body and headers completed, only the subject line is left

and then we can send it using the mail function. The subject is also

taken from the user; therefore, it uses the replacement for special

characters as part of the variable assignment. The mail function is

used right after the subject, so both of those lines should be placed

after the headers variable construction:

$subject = 'Feedback Form: '.str_replace(array("\r","\n"), " ",

$_POST['subject']);

$result = mail('you@domain.com', $subject, $body,

$headers);

Now that the mail has been sent, you can place a message to the user

after the closing PHP tag indicating that it was sent successfully and

then suggest the next action on your site, such as a link to your catalog

or home page.

Chapter 21 / Sending Emails with PHP 403

Ch
a

p
te

r
2
1

Adding an “Email a Post” Option to
the Blog

Now that you understand how to email safely from PHP, it is time to

implement it into something useful within the blog project. The most

logical place to use emailing within the blog project is to add an option

to email a blog post to a friend, or even to your own email for future

reference. The overall process in this case resembles any other page

that works on a single record:

� The record is retrieved from the database.

� The record fields are used to construct PHP variables for the

email subject and body.

� The email is then sent out.

1. We will start by creating a link to the Email a post page and

retrieving the record on that page. First, let’s create the link to the

record on our viewPost.php page. This will require the addition of

the standard <a> tag with a link to emailPost.php. Add the follow-

ing code before the closing <td> tag within viewPost.php:

404 Chapter 21 / Sending Emails with PHP

Figure 21-5: Source code of feedbackFormResponse.php

<a href="emailPost.php?id=<?php echo $post->

getField('postId'); ?>">

Email Post to a Friend

2. Next, we will use the viewPost.php page as the beginning of the

email form page, since viewPost.php already has the functionality

to retrieve the single post record from the passed-in id get vari-

able. The source code to start emailPost.php can be copied from

Figure 21-6.

3. The form should then be added to this HTML page to allow users

to enter their own email address as well as the address of their

friend. At this stage, we will also add the conditional message vari-

able printing, which has been used with other forms. We will use

this variable to tell the user when the message was sent correctly.

The source code for this form is in Figure 21-7, and the output of

this page in a browser should resemble Figure 21-8.

Chapter 21 / Sending Emails with PHP 405

Ch
a

p
te

r
2
1

Figure 21-6: Initial source code of emailPost.php

4. Next we should define a blank error message, and then add the if

statement to detect when the form was submitted. Place your cur-

sor after the line that isolates the post record into the PHP post

variable. First, we will initialize the message variable using this

very simple PHP line:

$message = "";

406 Chapter 21 / Sending Emails with PHP

Figure 21-7: Source code of the email post form

Figure 21-8: Browser output of the email post form

Next we add the if statement that checks whether there is a post

to variable that contains some text; in that case, the email code

will be executed. The code to add is:

if(POST('to') != '') {

}

With that if statement in place, that part of the page should closely

resemble Figure 21-9.

5. The last step in this process is to add the email sending code to

the if statement. We will start this code by constructing the body,

subject, and header variables. First, we construct the body using

the from post variable as well as the body of the FileMaker post

record:

$body = POST('from')." has recommended this blog post:\n";

$body.= $post->getField('body');

Next, we create a header that will include the from information for

your blog:

$headers = 'From: "Your Name" <you@domain.com>';

The last variable is the subject variable, which integrates the title

FileMaker field as part of the email subject:

$subject = 'Blog Post: '.$post->getField('title');

Chapter 21 / Sending Emails with PHP 407

Ch
a

p
te

r
2
1

Figure 21-9: if statement that will send the email

Once that is done, we use the mail function along with the post to

variable to send the actual email. The result from the mail func-

tion, which is either true or false, is checked and the appropriate

message is displayed to the user:

$result = mail(POST('to'), $subject, $body, $headers);

if($result) {

$message = 'Your message has been sent';

}else{

$message = 'Failed sending email';

}

The complete source code for the if statement can be seen in Figure

21-10.

This completes the lesson of integrating the email function into your

application. You should review this section thoroughly if the concept of

constructing the email body and subject lines with FileMaker data

within them is not clear. This knowledge is vital to both constructing

emails and other future data manipulation that mixes text, post vari-

ables, and FileMaker records.

408 Chapter 21 / Sending Emails with PHP

Figure 21-10: The email if statement

Summary

Email can be a very powerful tool when used properly and in modera-

tion within your PHP projects. Please remember to always remove

new lines and other dangerous characters from user-submitted data

before sending emails, so as to keep the Internet a pleasant and spam-

free environment. When you feel that you have reached the limits of

your email capabilities or want to try more advanced topics such as

using attachments, take a look at Appendix B for the PEAR Mail and

MIME classes that will allow you to send complex multipart emails.

Chapter 21 / Sending Emails with PHP 409

Ch
a

p
te

r
2
1

This page intentionally left blank.

Chapter 22

Debugging
Connectivity Issues

In the real world, sites go down, databases change locations, and some-

thing always seem to go wrong. While we all hope that our projects

will be functioning smoothly for years into the future, it never hurts to

be prepared for your database going offline. There are many reasons

for a database connection to suddenly stop working and constantly

return the FileMaker_Error object instead of the FileMaker_

ResultSet; the most common ones are outlined first and should solve

95 percent of your connectivity issues. The bulk of this chapter

focuses on debugging the actual FileMaker_Error object and figuring

out the issue with it through inspection of internal variables.

Common Connectivity Issues

The following are some common causes for a database connection to

fail:

� Incorrect IP address or host name in your PHP connection

settings

� Incorrect user name or password set in PHP

� Try resetting the FileMaker account password and the pass-

word within the PHP connection settings file

411

� The user or their group does not have the fmphp extended privi-

lege enabled

� Database file that is closed on the server

� Firewall blocking outgoing connections to the Web Publishing

Engine

Printing Debugging Information

Before debugging can be efficient, you must be able to print the PHP

object that is causing issues. The easiest way to do that is by combin-

ing a print_r($var) operation with a pair of <pre> tags to output the

entire object in your browser. Below is a deliberately invalid FileMaker

API request that will output a FileMaker_Error object into the

browser.

<?php

require_once('../FMAPI/FileMaker.php');

$fm = new FileMaker('Blog','127.0.0.2','webuser','webpass');

$find = $fm->newFindAnyCommand('Posts');

$result = $find->execute();

echo '<pre>';

print_r($result);

echo '</pre>';

?>

The output in your browser should resemble Figure 22-1. We will be

using it throughout this chapter to analyze the different sections and

isolate your connection problems.

412 Chapter 22 / Debugging Connectivity Issues

Next we will deconstruct that bit of output and learn how to gain useful

information from it when your application misbehaves.

Chapter 22 / Debugging Connectivity Issues 413

Ch
a

p
te

r
2
2

Figure 22-1: Output of a FileMaker_Error object

Checking the Database Authentication

Credentials

Within the first few lines of the output you will see the connection set-

tings (Figure 22-2). The host name is listed first followed by a few

options, the database name, the user name, and finally the password.

You should carefully examine this information to see if the expected

values appear in this area since those are the settings that were used

to initiate the connection. If your connection file says otherwise,

recheck your PHP logic to see where this information was reset.

414 Chapter 22 / Debugging Connectivity Issues

Figure 22-2: Finding database credentials

Investigating Specific Error Codes

Once you have verified that your connection settings are correct, take

a look below to find entries for error codes and messages (Figure

22-3). Generally, this area will display the FileMaker error codes that

this query returned, and for some errors it will even include an actual

error message. When there is an error code but no error message,

take a look at Appendix A for a convenient list of error codes, their

messages, and even troubleshooting suggestions for some specific

codes.

Chapter 22 / Debugging Connectivity Issues 415

Ch
a

p
te

r
2
2

Figure 22-3: Finding error codes

Local Firewalls

Occasionally your connection settings will seem correct and every-

thing else will be set up perfectly, but your connection will still either

time-out after some loading time or be immediately dropped. This

could be a problem with a local firewall on the PHP web server not

allowing the outgoing HTTP request to go out to your FileMaker

Server; in that case, try disabling all of your local firewall software or

testing the PHP files on a different server.

Routers and ISPs

Occasionally routers can present their own set of connection problems,

especially when your HTTP ports are not correctly forwarded. Often

you will be testing with a local FileMaker Server and a local PHP

server, using your public IP address for the actual connection, and

everything seems to work properly. However, let’s say you want to

move your PHP files to a public web server while keeping the

FileMaker Server local, but suddenly the public IP will not work from a

remote server. In that case, you should suspect port forwarding prob-

lems or even your Internet service provider blocking specific ports,

which is a common occurrence on North American cable and DSL

small office and home grade connections. Try running your FileMaker

Web Publishing Engine and the local web server on a port other than

port 80. Ports above 8000 tend to work quite well.

416 Chapter 22 / Debugging Connectivity Issues

Secure Connections

Attempting to use a secure connection to your FileMaker Server Web

Publishing Engine can present many different problems. The PHP

cURL module does not generally handle secure connections well from

within Windows environments due to difficulties verifying SSL certifi-

cates. In addition to these problems, the web server you are using

must be configured to accept secure connections with a valid certifi-

cate; otherwise, the connection will never even reach the FileMaker

Server Web Publishing Engine step and be immediately dropped by

the web server.

DNS Issues and Dynamic IPs

Attempting to use a dynamic IP to host a FileMaker Server can be

unpredictable and risky. ISPs often change dynamic IPs randomly and

without notice, often after downtime or outages, at which point dou-

ble-checking your IP address is usually at the very bottom of your list

of tasks to perform. However, if you must use an IP address, it is

always a good idea to double-check with a third-party web site regard-

ing your real IP address at the time; we recommend

http://whatIsMyIP.com as a quick way to check your IP address.

When running a web server on a sub-domain that is pointed at

your dynamic IP, remember that changing the IP will usually take 2 to

12 hours to propagate throughout the Internet. A common misconcep-

tion is that if you can use it, then the web server that has a failed

connection can also use your new IP address. Most likely, the DNS

server of your web server will not be at the same synchronization

state as your local information, and to bring connectivity back online

you should overwrite the host name in the connection file with the

actual IP address. However, do not forget to change it back once the

DNS information has propagated through the system.

Chapter 22 / Debugging Connectivity Issues 417

Ch
a

p
te

r
2
2

When in Doubt, Search the Web

If you have a persistent error code that you cannot resolve, just use

your favorite search engine to search for the error code and a combina-

tion of keywords such as “filemaker,” “filemaker web publishing,” or

“filemaker xml.” You will be surprised at the number of errors that

have been documented and resolved over the years in FileMaker dis-

cussion groups all over the web.

Connectivity issues that are not related to FileMaker directly are

also often resolved with a few quick searches in your favorite search

engine. Remember a very simple rule: If you have a specific error

message or an error code, no matter how ambiguous it seems, just

type it into a search engine and add the name of your software, such as

the web server name or even “FileMaker.” The web has had years to

fill up with information, and it is there ready to be found. The old rule

also applies here: There are no stupid questions, especially since mak-

ing a few unlikely or unrelated queries can save you hundreds of

dollars in one-on-one consulting time to debug your problem, and don’t

forget the feeling of accomplishment that follows when you solve a dif-

ficult problem using your own resources!

Summary

We hope this chapter showed you that it is possible to dig a bit deeper

to resolve errors, and that with a few simple debugging outputs you

can discover the cause for most web publishing problems. The most

important thing to remember is not to give up on pages that cause

issues. Instead, try taking a deep breath and peeking under the hood.

The techniques from this chapter will be very valuable in your quest to

build web-enabled FileMaker applications, as well as to resolve any

unexpected errors you’ve encountered thus far.

418 Chapter 22 / Debugging Connectivity Issues

Chapter 23

Wildcards

Wildcards are very useful sequences of characters that can be used to

perform partial matching within database searches. FileMaker includes

a few very useful wildcards to match characters, numbers, and even

date ranges. However, wildcards present a huge security risk when

using user-entered data to find a record, and thus this chapter will

explain how to protect your scripts from wildcard-based attacks.

What Wildcards Are Available?

Figure 23-1 is a screenshot from the

FileMaker Pro find screen showing the

wildcards that are available to you through

both PHP and FileMaker Pro.

The most dangerous wildcards to security

are the “@” and “*” symbols, which allow

guessing within search strings to access

records that do not belong to the user. The @

symbol can also be problematic for email

searches in the database if it is not escaped

(used with a backslash), often returning “401

Record Not Found” errors.

419

Figure 23-1: Wildcards within
FileMaker Pro

Entering Literal Wildcard Characters

As you have seen above, there are a number of characters that have to

be treated with care when doing searches in order to get the results

that you expect. In order to treat the special characters as the actual

characters they represent, a method called escaping has been devised.

Escaping characters involves placing a backslash before the character

itself and a double backslash to enter a literal backslash. For example,

“sally@example.com” becomes “sally\@example.com.” It is really

that simple and will save you much grief trying to figure out why sim-

ple searches for email addresses do not work. This process can also be

automated using PHP when dealing with user-supplied data. This

involves a regular expression based replacement process that adds

slashes before dangerous characters. The section below goes into

some detail about the function and how it works.

Replacing Wildcards through a
Regular Expression

PHP includes many methods to search and replace text, from a simple

string replace to more complex pattern matching. The function we dis-

cuss here, escapeWildCards, uses regular expression matching, which

looks for a pattern and applies a transformation to it accordingly.

Regular expressions are special strings that allow very complex

pattern matching within a string. They also allow you to extract the

matched pattern and manipulate it. In our case, we are using a regular

expression to find all the special wildcard characters and then manipu-

late those found patterns by adding a backslash before them. The

regular expression to match wildcard characters is

“/([@*#?!=<>\.\/~"])/.” While it certainly looks intimidating, it is

nothing more than a match for a group of characters. We don’t go into

420 Chapter 23 / Wildcards

details of this regular expression here, but we do recommend learning

about the power of regular expressions and PHP.

The function then combines the preg_replace function with the

text passed in as a parameter to perform the search and replace

operation.

function escapeWildCards($text, $quoted = false) {

$escapeChars = '/([@*#?!=<>\.\/~"])/';

$text = preg_replace($escapeChars,'\\\${1}',$text);

if($quoted) {

return '"'.$text.'"';

}else{

return $text;

}

}

Once that is done, we have a string that is free of wildcards and is safe

to use within a FileMaker query. As a small bonus, the function also

allows you to optionally add quotes around the result if you are expect-

ing a multiword search within the field. By default, quoting is not

performed, but passing true to the second argument of the function

will return the string without wildcards and with quotes around it.

Usage Examples

The easiest way to use escapeWildCards is in combination with the

addFindCriterion command. The following code demonstrates an easy

way to call this function while adding the criterion. It also adds a dou-

ble equal sign in front of the search to make it even more exact:

<?php

$record_find->addFindCriterion('firstName',

'=='.escapeWildCards(POST('firstName')));

?>

Chapter 23 / Wildcards 421

Ch
a

p
te

r
2
3

Summary

With this knowledge of wildcards, you can safely create login schemes,

user name searches, and other exact record searches such as confir-

mation numbers. We suggest always escaping wildcards when

performing any kind of search in which the keywords are obtained

from the user, unless a wildcard option is explicitly desired. You can

add the function above to your library of common functions and have it

available only a few strokes away.

422 Chapter 23 / Wildcards

Chapter 24

Going Beyond the
Basics

You should congratulate yourself for reaching this point on your jour-

ney to learn PHP. We hope that you are now comfortable with web

publishing FileMaker data using PHP, as well as have a good idea of

how dynamic web sites are constructed. Even if you had trouble with

some concepts, with a bit of exploration and rereading some chapters

we are confident you will be able to proudly extend your FileMaker

applications onto the web.

Only the Beginning

Reaching this point on your journey to learn PHP has not been easy,

and you should be proud of all the progress you’ve made. However, the

material learned so far is only the beginning of the possibilities that

PHP offers to web developers. PHP is a constantly evolving open-

source project, which means new features are added all the time and

new technologies are quickly adopted to be accessible by PHP.

There are many very exciting topics that you can explore as you

continue learning PHP. For example, adding PHP-based web services

to your database application can open up your repository of data to a

wide range of devices. As for the next paradigm in web development,

AJAX applications will become a central part of the workplace. AJAX

offers seamless web interfaces with minimal page refreshes and

423

maximum speed and smoothness of navigation. FileMaker and PHP

can easily serve as a back end for such applications and should be a

very exciting vector to explore if the correct type of project comes

along.

The online world of web publishing is not the only place where

PHP can be combined with FileMaker for very powerful results. PHP

is currently being developed for easy integration into offline applica-

tions, allowing the easy PHP syntax to be combined with the power of

multi-window menu-driven desktop applications. While many critics

will tell you that PHP is best used on the web and will seem slow on a

desktop when compared to traditional environments such as C++ or

Java, the development cycle of PHP applications can be extremely

rapid with unique advantages for the programmer when trying to write

secure code. PHP can already be easily combined with an offline appli-

cation in the form of command line scripting, allowing your FileMaker

applications to use scripts that execute PHP to perform advanced data

manipulation on exported records and then importing the results back

into the database.

We sincerely hope that the possibilities above will get you excited

about continuing to learn PHP and integrating it into the next genera-

tion of FileMaker solutions that solve business problems many

magnitudes more complex than ever before. Just remember to experi-

ment, be persistent, and communicate your ideas to the world!

Things to Know before Continuing

PHP includes a vast amount of language constructs, functions, and

classes for writing efficient applications. However, there are a few core

concepts that we believe you should know well and be very comfort-

able with. Without these basic building blocks it will be hard to read

the official PHP documentation or understand PHP code written by

other developers.

424 Chapter 24 / Going Beyond the Basics

The first main concept that you should familiarize yourself with is

the language operators, including the short notation and logical com-

parisons. Please review Chapter 8, “PHP Basics,” if the following list

of operators is not clear to you (where n is a number, and s is a string):

� $x += n : Short form for $x = $x + n

� $x .= s : Short form for $x = $x . s

� $x == $y : Check if two variables are equal

� $x === $y : Check if two variables are equal and have the same

type (used often outside of FileMaker in general PHP scripts)

� $x && $y : Check if both $x and $y conditions are true

� $x || $y : Check if $x or $y condition is true

� $x[] = s : Add s to the end of the $x array

The operators in this list are widely used throughout the PHP commu-

nity and are vital to reading PHP code as well as writing efficient code.

Whenever you encounter an operator that you have not seen before

and cannot guess what it will do, the best reference for understanding

PHP operators is the official manual entry on them:

http://php.net/operators.

The second core concept within PHP is the notation used for func-

tions within the official manual. It might seem like strange syntax at

first, but it has some resemblance to the syntax used within the

FileMaker Calculation dialog when using functions.

array array_merge (array $array1 [, array $array2 [, array

$...]])

The line above states that an array is returned from the array_merge

function, which has to have the $array1 parameter and an unlimited

number of array parameters. The square bracket notation denotes an

optional argument to the function and may be used for more advanced

results from a function.

Chapter 24 / Going Beyond the Basics 425

Ch
a

p
te

r
2
4

The last concept that you should become familiar with is using

include files to separate sections from your site into logically distinct

chunks. Those chunks can be manipulated by setting variables before

including them such as a custom title variable before including the

HTML header file, or an array of results before including a file that

prints a result table. Extensively using include files will allow you to

dramatically reduce the amount of work and typing needed to create

and maintain projects, directly translating this skill into greater profits

and more development time.

Experiment and Learn

The most important thing to remember when learning a programming

language, especially for a unique medium such as the web, is that

experimentation is your most important tool. When something does

not seem to work, it is easy to make and correct mistakes, so just start

debugging and simplifying your problems until the correct solution

comes along. Most likely the experience of tracking down strange

problems will leave you with a great feeling of accomplishment and

confidence. When all else fails and you cannot track things down,

remember that you are building something for the World Wide Web,

the largest community in recorded history, filled with knowledgeable

experts in all fields. Just browse the PHP and FileMaker specific

resources listed in Appendix B to find starting points for resolving

problems and learning more about web publishing. If all that fails, just

use a search engine to find mailing lists and forums that will have help-

ful members who are glad to look and troubleshoot small bits of code

when asked nicely.

426 Chapter 24 / Going Beyond the Basics

The Sky Is the Limit

As you continue working with and building new PHP systems, you will

start seeing new possibilities to extend your FileMaker applications.

As the global World Wide Web network evolves in the years to come,

the Internet will become the common medium of communication and

you will be ready to transform your application to be accessible to

future devices with very little effort. Currently we are only seeing the

tip of the iceberg when using powerful online applications. More is

sure to come. Keep your mind open, and your reference sections

handy, then use the knowledge you have to envision and build the

global network of innovation!

Chapter 24 / Going Beyond the Basics 427

Ch
a

p
te

r
2
4

This page intentionally left blank.

Appendix A

FileMaker Error
Codes

This appendix lists the FileMaker error codes and their cause. Some

entries also include ways to resolve the error.

–1 = Unknown error

0 = No error

1 = User canceled action

2 = Memory error

3 = Command is unavailable (for example, wrong operating system,

wrong mode, etc.)

4 = Command is unknown

� Incorrect encoding settings within your PHP pages that

contain forms can cause this error due to special characters

breaking the request string.

5 = Command is invalid (for example, a Set Field script step does not

have a calculation specified)

6 = File is read only

7 = Running out of memory

8 = Empty result

9 = Insufficient privileges

10 = Requested data is missing

11 = Name is not valid

12 = Name already exists

13 = File or object is in use

429

14 = Out of range

15 = Can’t divide by zero

16 = Operation failed request retry (for example, a user query)

17 = Attempt to convert foreign character set to UTF-16 failed

18 = Client must provide account information to proceed

19 = String contains characters other than A-Z, a-z, 0-9 (ASCII)

100 = File is missing

101 = Record is missing

� Forgetting to set the record ID when doing an edit or a

delete query will cause this error.

� Setting a field name with a period (.) in its name when per-

forming a request will cause this error. Periods cannot be

used for field names with the Web Publishing Engine, but

displaying fields with periods will work if they are within a

returned result set.

� Setting a blank record ID will cause this error. Dou-

ble-check your PHP code to make sure the variable you are

using for the record ID has a value.

� The record ID parameter specified is not a valid record ID

for records shown in this layout. Sometimes this is caused

by a record ID from one layout being used in another layout

with the same data but a different table occurrence.

102 = Field is missing

� The field is not on the layout.

� All fields you want to search on, read data from, or input

data into must be on the layout used for this specific query.

Merge fields on the layout and other non-editable text are

not accessible through the Web Publishing Engine.

� If you are certain the field is on your layout but the query

still does not work, then double-check that the layout is the

only one with this name. If two layouts have the same

name, the one that was arbitrarily selected for the query

does not have the field that you need.

103 = Relationship is missing

430 Appendix A / FileMaker Error Codes

104 = Script is missing

105 = Layout is missing

� Other than the obvious check for spelling errors in your lay-

out name, make sure the user account that is used for this

query has the permissions to access this layout.

106 = Table is missing

107 = Index is missing

108 = Value list is missing

109 = Privilege set is missing

110 = Related tables are missing

111 = Field repetition is invalid

� Make sure that on your layout the maximum repetition

count includes the repetition that you were trying to set.

112 = Window is missing

113 = Function is missing

114 = File reference is missing

130 = Files are damaged or missing and must be reinstalled

131 = Language pack files are missing (such as template files)

200 = Record access is denied

201 = Field cannot be modified

� Calculation or summary fields often cause this problem. You

can only perform searches on them and not modify them

directly.

202 = Field access is denied

203 = No records in file to print or password doesn’t allow print access

204 = No access to field(s) in sort order

205 = User does not have access privileges to create new records;

import will overwrite existing data

206 = User does not have password change privileges or file is not

modifiable

207 = User does not have sufficient privileges to change database

schema or file is not modifiable

208 = Password does not contain enough characters

Appendix A / FileMaker Error Codes 431

209 = New password must be different from existing one

210 = User account is inactive

211 = Password has expired

212 = Invalid user account and/or password. Please try again.

213 = User account and/or password does not exist

214 = Too many login attempts

215 = Administrator privileges cannot be duplicated

216 = Guest account cannot be duplicated

217 = User does not have sufficient privileges to modify administrator

account

300 = The file is locked or in use

301 = Record is in use by another user

302 = FM5 & 6: Script definitions are in use by another user; FM7+:

Table is in use by another user

303 = FM5 & 6: Paper size is in use by another user; FM7+: Data-

base schema is in use by another user

304 = FM5 & 6: Password definitions are in use by another user;

FM7+: Layout is in use by another user

305 = Relationship or value list definitions are in use by another user

306 = Record modification ID does not match

400 = Find criteria are empty

401 = No records match the request

� If using record ID for the search, make sure it is a valid

record ID from the same table occurrence and preferably

from the same layout.

� Special characters and incorrect encoding settings can

cause this error.

� Special characters such as *, @, and ? have to be escaped if

you are trying to search for a literal value. For example, the

email address “sally@example.com” must be entered as

“sally\@example.com.” See Chapter 23 for information on

proper character escaping and a convenient function to use

whenever you want all characters to be escaped.

402 = Selected field is not a match field for a lookup

432 Appendix A / FileMaker Error Codes

403 = Exceeding maximum record limit for trial version of FileMaker

Pro

404 = Sort order is invalid

405 = Number of records specified exceeds number of records that

can be omitted

406 = Replace/Reserialize criteria is invalid

407 = One or both match fields are missing (invalid relationship)

408 = Specified field has inappropriate data type for this operation

409 = Import order is invalid

410 = Export order is invalid

411 = Cannot perform delete because related records cannot be

deleted

412 = Wrong version of FileMaker Pro used to recover file

413 = Specified field has inappropriate field type

414 = Layout cannot display the result

415 = One or more required related records are not available

500 = Date value does not meet validation entry options

501 = Time value does not meet validation entry options

502 = Number value does not meet validation entry options

503 = Value in field is not within the range specified in validation

entry options

504 = Value in field is not unique as required in validation entry

options

505 = Value in field is not an existing value in the database as required

in validation entry options

506 = Value in field is not listed on the value list specified in validation

entry option

507 = Value in field failed calculation test of validation entry option

508 = Invalid value entered in Find mode

509 = Field requires a valid value

� Field validations can work differently on the web than they

do in FileMaker Pro, so try relaxing some validation restric-

tions if you encounter this problem.

Appendix A / FileMaker Error Codes 433

510 = Related value is empty or unavailable

511 = Value in field exceeds maximum number of allowed characters

600 = Print error has occurred

601 = Combined header and footer exceed one page

602 = Body doesn’t fit on a page for current column setup

603 = Print connection lost

700 = File is of the wrong file type for import

701 = Data Access Manager can’t find database extension file

702 = Data Access Manager was unable to open the session

703 = Data Access Manager was unable to open the session; try later

704 = Data Access Manager failed when sending a query

705 = Data Access Manager failed when executing a query

706 = EPSF file has no preview image

707 = Graphic translator cannot be found

708 = Can’t import the file or need color computer to import file

709 = QuickTime movie import failed

710 = Unable to update QuickTime file reference because the data-

base is read only

711 = Import translator cannot be found

712 = XTND version is incompatible

713 = Couldn’t initialize the XTND system

714 = Password privileges do not allow the operation

715 = Specified Excel worksheet or named range is missing

716 = A SQL query using DELETE, INSERT, or UPDATE is not

allowed for ODBC import

717 = There is not enough XML/XSL information to proceed with the

current import or export

718 = Error in parsing XML file (from Xerces)

719 = Error in transforming XML using XSL (from Xalan)

720 = Error when exporting; intended format does not support repeat-

ing fields

721 = Unknown error occurred in the parser or the transformer

722 = Cannot import data into a file that has no fields

434 Appendix A / FileMaker Error Codes

723 = You do not have permission to add records or to modify records

in the target table

724 = You do not have permission to add records to the target table

725 = You do not have permission to modify records in the target table

726 = There are more records in the import file than in the target

table. Not all records were imported.

727 = There are more records in the target table than in the import

file. Not all records were updated.

729 = Errors occurred during import. Records could not be imported.

730 = Unsupported Excel version. (Convert file to Excel 7.0 (Excel

95) Excel 97, 2000, or XP format and try again)

731 = The file you are importing from contains no data

732 = This file cannot be inserted because it contains other files

733 = A table cannot be imported into itself

734 = This file type cannot be displayed as a picture

735 = This file type cannot be displayed as a picture. It will be

inserted and displayed as a file.

800 = Unable to create file on disk

801 = Unable to create temporary file on system disk

802 = Unable to open file

� This error is often caused by an incorrect user name and

password combination.

� The user name and password used do not have the required

fmphp extended privilege that is required for PHP access.

� The file you are trying to access is closed on the FileMaker

Server; make sure you can access it with FileMaker Pro

using Open Remote.

� FileMaker Server has not been properly installed for web

publishing with PHP.

803 = File is single user or host cannot be found

804 = File cannot be opened as read only in its current state

805 = File is damaged; use Recover command

806 = File cannot be opened with this version of FileMaker Pro

Appendix A / FileMaker Error Codes 435

807 = File is not a FileMaker Pro file or is severely damaged

808 = Cannot open file because access privileges are damaged

809 = Disk/volume is full

810 = Disk/volume is locked

811 = Temporary file cannot be opened as FileMaker Pro file

812 = Cannot open the file because it exceeds host capacity

813 = Record synchronization error on network

814 = File(s) cannot be opened because maximum number is open

815 = Couldn’t open lookup file

816 = Unable to convert file

817 = Unable to open file because it does not belong to this solution

818 = FileMaker Pro cannot network for some reason

819 = Cannot save a local copy of a remote file

820 = File is in the process of being closed

821 = Host forced a disconnect

822 = FMI files not found; reinstall missing files

823 = Cannot set file to single user; guests are connected

824 = File is damaged or is not a FileMaker file

900 = General spelling engine error

901 = Main spelling dictionary not installed

902 = Could not launch the Help system

903 = Command cannot be used in a shared file

904 = Command can only be used in a file hosted under FileMaker

Server

905 = No active field; selected command can only be used if there is

an active field

920 = Can’t initialize the spelling engine

921 = User dictionary cannot be loaded for editing

922 = User dictionary cannot be found

923 = User dictionary is read only

950 = Adding repeating related fields is not supported

951 = An unexpected error occurred

436 Appendix A / FileMaker Error Codes

952 = Email error message mail format not found

953 = Email error message mail value missing

954 = Unsupported XML grammar

955 = No database name

956 = Maximum number of database sessions exceeded

957 = Conflicting commands

958 = Parameter missing in query

971 = The user name is invalid

972 = The password is invalid

973 = The database is invalid

974 = Permission denied

975 = The field has restricted access

976 = Security is disabled

977 = Invalid client IP address (for the IP restriction feature)

978 = The number of allowed guests has been exceeded (for the

10-guest limit over a 12-hour period)

1200 = Generic calculation error

1201 = Too few parameters in the function

1202 = Too many parameters in the function

1203 = Unexpected end of calculation

1204 = Number text constant field name or '(' expected

1205 = Comment is not terminated with */

1206 = Text constant must end with a quotation mark

1207 = Unbalanced parenthesis

1208 = Operator missing function not found or '(' not expected

1209 = Name (such as field name or layout name) is missing

1210 = Plug-in function has already been registered

1211 = List usage is not allowed in this function

1212 = An operator (for example, + or *) is expected here

1213 = This variable has already been defined in the Let function

Appendix A / FileMaker Error Codes 437

1214 = AVERAGE COUNT EXTEND GETREPETITION MAX MIN

NPV STDEV SUM and GETSUMMARY: expression found where

a field alone is needed

1215 = This parameter is an invalid Get function parameter

1216 = Only Summary fields allowed as first argument in

GETSUMMARY

1217 = Break field is invalid

1218 = Cannot evaluate the number

1219 = A field cannot be used in its own formula

1220 = Field type must be normal or calculated

1221 = Data type must be number, date, time, or timestamp

1222 = Calculation cannot be stored

1223 = The function referred to does not exist

1400 = ODBC driver initialization failed; make sure the ODBC drivers

are properly installed.

1401 = Failed to allocate environment (ODBC)

1402 = Failed to free environment (ODBC)

1403 = Failed to disconnect (ODBC)

1404 = Failed to allocate connection (ODBC)

1405 = Failed to free connection (ODBC)

1406 = Failed check for SQL API (ODBC)

1407 = Failed to allocate statement (ODBC)

1408 = Extended error (ODBC)

438 Appendix A / FileMaker Error Codes

Appendix B

Additional Resources

The FileMaker community contains a wealth of resources available

through many channels. The following list of resources will help fur-

ther your skills not only as a web developer but also as a FileMaker

developer.

FileMaker Forums

FMWebschool web forum: http://www.fmwebschool.com/frm

The FMWebschool Forum is a moderated forum focusing on

FileMaker web technology and consulting.

FMForums: http://www.fmforums.com

FMForums is a wonderful FileMaker resource, containing dozens of

topics relating to FileMaker.

FileMaker Developer Tools

FMStudio: http://www.fmwebschool.com/fmstudio.php

FMStudio is a Dreamweaver extension that enables you to

work with live FileMaker data in Dreamweaver. FMStudio

includes a Site Builder that allows you to build multipage PHP web

sites by answering questions about your database. FMStudio works

with FileMaker 6 through 9 and with Dreamweaver MX, Dreamweaver

8, and Dreamweaver CS3.

439

JumpStart: http://www.fmwebschool.com/jumpstart.php

JumpStart is a rapid development tool that enables you to quickly build

FileMaker web sites. JumpStart automatically builds multipage

FileMaker-driven web sites in a matter of seconds.

FMColor Pro: http://www.fmwebschool.com/fmcolorpro.php

FMColor Pro provides a beautiful FileMaker interface that combines

hundreds of colors into beautiful matching color schemes. FMColor

Pro takes away the guessing game as to what colors match. Simply

select any color from the hundreds presented in the palette. Immedi-

ately, six matching colors will be displayed. FMColor Pro gives you the

RGB and hex value of each color and provides a graphic image of what

a database would look like using those same colors. Choose the View

in HTML setting, and a web page will launch showing the collection of

colors together.

FileMaker buttons and icons: http://www.fmwebschool.com/

buttons.html

FMWebschool provides professional buttons and icons for FileMaker

databases and web sites. Each set is hand drawn, and they offer a con-

sistent and uniform look that gives an air of professionalism to your

user interface.

FileMaker User Groups

FMPug: http://www.fmpug.com

FMPug consists of dozens of user groups

throughout the world that meet on a monthly

basis. Andy Gaunt, founder of the Pug, has done

an amazing job providing technical resources, discounts on third-party

products, and listings of FileMaker related activities. FMPug also

allows you to set up a web page on the Pug site with a virtual business

card and details about your business and services.

440 Appendix B / Additional Resources

Web Editors

Adobe Dreamweaver: http://www.adobe.com/products/dreamweaver

Dreamweaver is considered to be the most popular web editor on the

market. Dreamweaver works with both Macintosh and Windows and

now integrates with FileMaker Pro through FMStudio.

BBEdit: http://www.bbedit.com

BBEdit is the leading professional HTML and text editor for the

Macintosh.

Nvu: http://www.nvu.com

Nvu (which stands for “new view”) is a free, open-source web editor.

Nvu enables you to easily create web pages and manage a web site

with no technical expertise or knowledge of HTML.

Online Resources

Official PHP web site: http://www.php.net

Where do you get PHP? From the PHP web site. The official PHP web

site is full of tutorials, the official PHP manual, and helpful links to

other resources. The FAQ section is extremely helpful, and there are

numerous links to forums, email lists, and other PHP services.

W3 Schools: http://www.w3schools.com

The W3 Schools web site provides hundreds of free tutorials on all

aspects of web publishing. Learn by exploring their free sample files

and online quizzes. This site is a must for every web developer.

Apache: http://www.apache.org

The Apache site is full of useful information. The Apache server is the

most popular server on the Internet, and is available for download from

this site.

JavaScript: http://www.javascript.com

A great searchable archive of JavaScript code.

Appendix B / Additional Resources 441

HTML Goodies: http://www.htmlgoodies.com

HTML Goodies is a great site filled with HTML, CSS, and JavaScript

tutorials focusing on the beginner to intermediate level.

CSS: http://www.w3.org/Style/CSS

Cascading style sheet home page.

FMWebschool resources: http://www.fmwebschool.com/resources.php

FMWebschool provides numerous resources for the FileMaker devel-

oper, including free tutorials, whitepapers, and numerous developer

resources to facilitate FileMaker web publishing.

Useful PHP Classes

PHP PEAR Mail Class: http://pear.php.net/package/Mail

The PEAR Mail class allows the sending of emails using a variety of

technologies and security settings. Protocols such as SMTP are sup-

ported, allowing the usage of email sending functionality using a

third-party mail server.

PHP PEAR Mail_Mime Class: http://pear.php.net/package/Mail_Mime

The PEAR Mail_Mime class allows you to construct advanced email

messages using the standard MIME architecture. Features of this class

include mixing of text and HTML email parts, inline images, and even

file attachments.

FileMaker Hosting

Point In Space: http://www.pointinspace.com

Point In Space is a professional FileMaker web pub-

lishing hosting company owned and operated by John

May.

Long Term Solutions:

http://www.longtermsolutions.com

Long Term Solutions is a hosting and consulting company based in

Tennessee and owned and operated by Bob Patin.

442 Appendix B / Additional Resources

Adatasol: http://www.adatasol.com

Adatasol is a FileMaker hosting company owned and

operated by Dan Weiss, a FileMaker Partner.

dbdom: http://www.dbdom.com

dbdom.com is a FileMaker hosting company with

offices in California, New York, and the United Kingdom.

FileMaker News and Email Lists

FMPro.org: http://www.fmpro.org

FMPro.org is a fantastic source of FileMaker

information. Whether you are looking for

FileMaker news, plug-ins, publications, or training, you will find it all

at FMPro.org.

Database Pros: http://www.databasepros.com

Created by John Mark Osborne, Database Pros

continues to be one of the best sites for free

FileMaker tips, tricks, and techniques. Database Pros is constantly

updated and provides a wealth of information for developers of all lev-

els. John also offers expert FileMaker training services.

FMPexperts: http://www.ironclad.net.au/lists/FMPexperts/index.html

FMPexperts is a mailing list where individuals discuss advanced

FileMaker techniques. Beginners and novices are also encouraged to

join.

RealTech: http://www.fmpug.com

FMPug.com, the leading FileMaker-centric net-

working community, launched its newest benefit

specifically designed to help its members connect

with one another. RealTech enables members to upload screenshots

and files, ask questions, share ideas, communicate experiences, post

issues, or simply read through contributions from other members.

Moreover, because it’s a listserv, all the information is delivered

directly to the member’s inbox, where messages can be read through

Appendix B / Additional Resources 443

at leisure. As members of FMPug will firmly attest, RealTech is a fan-

tastic resource for everyone who utilizes the FileMaker application.

It’s a great avenue for users and developers to troubleshoot day-to-day

FileMaker issues and a way to seek out answers to even the most

frustrating questions.

FMPug promises RealTech will continue to cover topics, whether

large or small, to meet the needs of the growing community. If the

steady following is any indication, there is little doubt RealTech will

remain a hot commodity in the world of FileMaker.

Comp.Databases.FileMaker:

http://groups.google.com/group/comp.databases.filemaker/topics

Comp.Databases.FileMaker is a Google group for discussing

FileMaker that is open to those at all levels of expertise.

FileMaker Newsletters and Blogs

Confessions of a Webaholic: http://www.fmwebschool.com

Confessions of a Webaholic is a free monthly FileMaker

newsletter sent to over 5,000 FileMaker enthusiasts. The

newsletter contains FileMaker related articles as well as tutorials,

book reviews, and free sample files. You can sign up for the newsletter

at the FMWebschool home page.

FileMaker Consultant Blog: http://www.fmwebschool.com/

filemaker_consultant.htm

The FileMaker Consultant Blog was created to offer FileMaker devel-

opers resources to market their products and services. The blog

contains articles on marketing, search engine optimization, and cus-

tomer acquisition. All articles and resources are tailored to the

FileMaker developer.

444 Appendix B / Additional Resources

FileMaker Web Training Classes

FMWebschool offers FileMaker web-training classes for

PHP and FileMaker. To find out more about training and

class schedules, email Stephen Knight at stephen@

fmwebschool.com or check out our training page at

http://www.fmwebschool.com/phpclass.php.

FileMaker Web Consulting

FMWebschool offers professional FileMaker web develop-

ment services. Since 1999, FMWebschool has developed

and deployed over 350 FileMaker web sites and has trained

hundreds of individuals. If you would like to have FMWebschool help

with the development of your site, or you just have some questions

about FileMaker web publishing, please fill out our consulting form at

http://www.fmwebschool.com/services.php.

Web Publishing Books

Teach Yourself Visually HTML by Sherry Willard Kinkoph

(ISBN 978-0764579844)

This is a great book for complete beginners and individuals who

like to see how things are done without a lot of heavy code. This

book has several great lessons to help you become more familiar

with HTML.

PHP Solutions: Dynamic Web Design Made Easy (Solutions) by David

Powers (ISBN 1-59059-731-1)

An easy-to-read, easy-to-understand book that covers PHP basics

with an introduction on implementing MySQL.

Foundation PHP for Dreamweaver 8 by David Powers

(ISBN 1-59059-569-6)

This is a great tool for learning both Dreamweaver and the power

of PHP simultaneously. This book goes into detail about working

with PHP and CSS within Dreamweaver.

Appendix B / Additional Resources 445

CSS: The Definitive Guide by Eric Meyer (ISBN 978-0596527334)

This book is a great resource and should definitely be added to

your web publishing library. Eric Meyer does a tremendous job of

showing you how easy it is to integrate CSS into your own solu-

tions with powerful results!

Head First HTML with CSS & XHTML by Eric and Elisabeth Freeman

(ISBN 978-0596101978)

This is a great beginners book with detailed examples and expla-

nations. The book is extremely well written and a delight to read.

FileMaker Technical Network

FileMaker Technical Network: http://www.filemaker.com/technet

FileMaker Technical Network is a community of FileMaker enthusi-

asts that includes users, designers, and developers and provides

access to technical info. The program helps members improve their

technical expertise in order to build better solutions and solve techni-

cal challenges.

FileMaker Business Alliance

FileMaker Business Alliance: http://www.filemaker.com/fba

The FileMaker Business Alliance, for third-party independent develop-

ers, provides business opportunities through exclusive sales and

marketing support from FileMaker. The FBA provides a host of

resources including promotional benefits, sales resources, comarketing

opportunities, and product discounts to help you grow your business.

FileMaker TechInfo Database

FileMaker TechInfo database: http://www.filemaker.com/support/

techinfo.html

The FileMaker TechInfo database is an online support database with

thousands of articles. If you have a problem that you need to trouble-

shoot, chances are you will find the solution here.

446 Appendix B / Additional Resources

Index

A

About blob, creating for blog application,
231-232

absolute links, 192
account-based authentication, 367,

373-376
accountLogin function, 374, 376-378
accounts, setting up, 78
Active Directory authentication, 378
Add Fields to Portal window, 74, 77
addFindCriterion function, 262
addSortRule function, 252-253
Admin Console,

creating account, 35
opening, 45
using, 46-49

AJAX, 423-424
alignment, 153-155
anchors, 97, 102-104
AND find, 262
Apache, setting up on Macintosh, 15
API, 219-221

using for a query, 235-237
API for PHP, 221

using, 222-224
application programming interface, see API
arrays,

adding elements to, 169-170, 173
creating in PHP, 164-168
in PHP, 163
printing elements as text string, 176
removing elements from, 171-172
replacing elements in, 168-169
sorting in, 174-175
working with in PHP, 168-176

authentication, 365
account-based, 367, 373-376
table-based, 366, 368-373

authentication credentials, checking, 414
authentication schemes, 366, 378

troubleshooting, 379-380

B

background color, setting, 146-147
background images,

adding, 147-152
fixed, 148-149
repeating, 149-152

background position, 152-153
background properties, setting, 155-156
bcc header, 395-396
blog, 51, 225-226
blog application,

adding email option to, 404-408
adding PHP includes to, 232-233
adding record to, 250-252
adding sort functionality to, 253-254
adding value lists to, 335-339
creating About blob for, 231-232
creating editable form in, 285-289
creating feedback form for, 401-404
creating filled-in form for, 344-348
creating header and footer files for,

227-228
creating index page for, 234-235
creating input form for, 245
creating navigation links in, 268-273
creating results page for, 266-267
creating search form for, 263-265
creating style sheet for, 229-230
deleting records in, 289-291
displaying result set in, 238-240
finding records in, 258-261

447

include files for, 226-233
isolating linked related record in,

308-313
linking to record in, 280-282
linking to specific post in, 274-275
listing posts in, 235-237
returning random posts in, 258-261
structure of, 226-227
viewing single post in, 275-277

blog database,
adding value lists to, 65-68
creating, 52-53
creating fields for, 55-59
creating tables in, 53-55
defining relationships in, 59-64
editing layouts, in, 69-72
files, 51

C

cascading style sheets, see CSS and style
sheets

cc header, 395-396
cell padding, 110
cell spacing, 111
character encoding, 398
check box element, 199
check box set, creating, 332-333
check boxes, 324-325

displaying selected values for, 351-353
processing results of, 342-343

clearSortRules function, 253
comments,

adding to code, 145-146
using in PHP, 183

comparison operators in PHP, 179
conditions, using in PHP, 178-179
connectivity issues, 411-412, 416-417
content-type header, 397-398
cookies, 357
CSS, 127, 226

and HTML, 127
creating for blog application, 229-230

D

data,
portals, see portals
sending in a link, 192
sorting, 252-254
validation, 207

debugging information, printing, 412-413
default values, adding to value lists,

333-335
Define Database window, 54
Deployment Assistant, setting up, 34-40
DNS, and connectivity issues, 417
Dreamweaver editor, 9, 441
drop-down list, 321-322

creating, 327-330
displaying selected value for, 348-349
processing results of, 340-341

dynamic IPs, and connectivity issues, 417

E

Edit Relationship window, 61-64
Edit Value List window, 66
email, 391

adding option to blog application,
404-408

and HTML, 397-398
and PHP, 394
and security, 399-400
creating link to send, 100-101
elements, 391-392
headers, 395-396, 397
requirements for sending, 392-393
sending, 123-124
validating format, 216-217

empty cells, placing in tables, 114
empty function, 212
empty values, adding to value lists,

333-335
ereg function, 216
error codes, 429-438

for file upload debugging, 387-388
investigating, 415
resolving, 418

escapeWildCards function, 420-421
exact search, 273-274

Index

448

external style sheet, 127-128
linking to, 128-130

F

feedback form, creating, 401-404
Field/Control Setup window, 70-72, 74-75
fields,

creating, 55-59
naming, 263

file extensions, importance of using, 8
file upload,

accessing with PHP, 385-387
debugging, 387-388
limitations of, 389

FileMaker, 2
and PHP, 2
difference between Macintosh and Win-

dows interface, 5
hosting sites, 442-443
resources, 439-446
testing installation, 41-44
using value lists with, 321, 355

FileMaker API for PHP, 221
installing on Macintosh, 41
installing on Windows, 40
using, 222-224

FileMaker_Error object, 412-415
FileMaker Server,

installation requirements, 23
installing, 24-34
multiple computer installation, 28-34
single computer installation, 24-27

FileMaker Server Advanced, 23
files,

storing, 388
uploading, 381-382

find all command, 235
find any command, 258
find command, 261
find parameters, see search parameters
firewalls, and connectivity issues, 416
font size, 135
font style, 136
font weight, 135-136
fonts, using in style sheets, 133-136

footer file, creating for blog application,
227-228

form data,
processing, 246-248
using sessions to display, 360-362

form elements, 194
check box, 199
hidden, 197
radio button, 197-198
select list, 199-200
text area, 200
text box, 195-196

forms, 189, 192-193
creating, 194-202
creating editable, 283-284
creating for blog application, 344-348
editing, 353-355
preparing for upload, 382-384
processing, 340-343

from header, 395
functions, using in PHP, 177-178

G

GET method, 190, 248-249
getField function, 240
get_magic_quote_gpc function, 246
getRecords function, 238, 260
getRelatedSet function, 298
global fields, using with portals, 294-295

H

header file, creating for blog application,
227-228

hidden element, 197
HTML, 81

and CSS, 127
HTML input controls, 321-325

creating, 327-333
HTML project

adding blank line, 87
adding caption, 107
adding emphasis, 90-91
adding horizontal rule, 88-89
adding images, 95-96
adding images to tables, 113-114
and email, 397-398

Index

449

creating anchors, 102-104
creating clickable links, 112
creating headers, 84-86
creating lists, 92-94
creating tables, 104-108
creating title, 83-84
defining paragraph, 87
formatting cells, 114-121
formatting empty cells, 114
formatting table data, 109-111
linking image to a page, 97-99
making a button a link, 99
manipulating text, 86-89
nested tables, 118-119
reloading pages, 122-123
sending emails with link, 100-101
setting cell colors, 120-121
setting up folders, 82-83
setting text colors, 119-120

HTML tags
<a>, 103-104
<a href>, 97-99, 100-103, 190
<alt>, 96
<bgcolor>, 120-121
<blockquote>, 137
<body>, 86-89

, 87
<caption>, 107
<cellpadding>, 110
<cellspacing>, 111
<colspan>, 114-115
, 90-91
, 119-121
<form>, 99, 192-193
<h1>..<h6>, 84-86
<hr>, 88-89
, 95-99
, 92-93
<meta>, 122-123
, 93-94
<p>, 87-88
<rowspan>, 115-116
, 91
<table>, 104-107
<table width>, 110-111

<td>, 108
<td align>, 110
<th>, 108
<title>, 83
<tr>, 108
, 92-94

htmlspecialchars function, 348

I

IIS, setting up on Windows, 12-14
image formats, 95
images,

adding to table, 113
adding to web page, 95-99
background, 147-152
tiling, 149-150

implode function, 342-343
include files, 226

for blog application, 226-233
in PHP, 180-182

index, 163
index page, creating for blog application,

234-235
internal style sheet, 127
Internet Information Services, see IIS
is_numeric function, 214
ISP, and connectivity issues, 416
isset function, 208

J

Java Web Start, 34

K

key, 163

L

Layout mode, 69
layouts, editing, 69-72
links, 189, 190

absolute, 192
creating to a post in blog application,

274-275
relative, 191
sending data in, 192

login page, creating, 368-371
logout option, adding, 371

Index

450

M

Macintosh,
FileMaker interface, 5
installing FileMaker API for PHP on,

41
installing FileMaker Server on, 24-34
installing PHP on, 18
requirements for web publishing, 3-4
setting up Apache on, 15

mail servers, 393
Manage Accounts & Privileges window,

78-80
Manage Database window, 54
Manage Value Lists window, 66
margins, setting, 137-141
master computer, installing FileMaker

Server on, 31-34
meta refresh, 122
multiple style sheets, using, 156-159

N

names, restrictions on, 263
navigation links, creating in blog

application, 268-273
newRelatedRecord command, 296
Notepad text editor, 82
numerical value, validating, 214-215
Nvu editor, 11, 441

O

Options for Field window, 56-59
OR find, 262
Outlook Express, deactivating email

warning in, 124

P

PHP, 2, 161
advantages of, 2-3
and email, 394
and FileMaker, 2, 424
classes, 442
comparison operators in, 179
core concepts, 424-426
creating arrays in, 163-168
defining functions in, 177-178
displaying text in, 162

escaping characters in, 186-187
scripts, 161
using comments with, 183
using conditions in, 178-179
using portals with, 296-297
using quotes in, 184-185
using to access file upload, 385-387
variables in, 163
working with arrays in, 168-176

PHP includes, 180-182
adding to blog application, 232-233

PHP installation,
options, 16-18
testing, 19-20

Portal Setup window, using, 73-74
portals, 73, 293

creating, 73-78
limitations with, 295
sorting records in, 76
using global fields with, 294-295
using in PHP, 296-297

POST method, 190, 248-249
posts,

listing, 235-237
returning random, 258-261
sorting within blog application, 253-254
viewing in blog application, 275-277

privileges, setting up, 79-80
protected page, creating, 372-373

Q

quotes, using in PHP, 184-185

R

radio button element, 197-198
radio button set, creating, 330-331
radio buttons, 323-324

displaying selected value for, 350-351
processing results of, 340-341

record creation process, 243-244
record object, 279
record ranges, 261
records,

creating, 250-252
deleting, 289-291
finding, 258-261

Index

451

limiting, 268-274
linking to, 280-282
skipping, 268-273
sorting in portal, 76
viewing, 275-277

redirection, 122
related records,

accessing, 297-301
adding, 301-305
deleting, 315-316
editing, 313-314
isolating, 306, 308-313
linking, 306-308
using with portals, 294-295

relationships, defining, 59-64
relative links, 191
reply-to header, 396
required value, validating, 212-214
response page, 203

creating, 203-204
processing data from, 205-206

result set, displaying, 238-240
results page, creating in blog application,

266-267
routers, and connectivity issues, 416

S

script editor, 8
choosing, 9-11

search form, creating in blog application,
263-265

search parameters, 261-262
search results, modifying, 268-274
secure connections, 417
security

and email, 399-400
and wildcards, 419

select list element, 199-200
session_start command, 359
sessions, 357-358

reasons to use, 358
testing, 363
using, 359-362

setField command, 244
setRange function, 268

slashes, detecting, 246-248
Sort Records window, 76
special characters, using in PHP, 186-187
Specify Fields for Value List window, 67
str_replace function, 400
string value, validating, 215-216
stripslashes function, 246
strlen function, 215
style rule, 130-132
style sheet declarations,

background, 155-156
background-attachment, 148-149
background-color, 146-147
background-image, 147-148
background-position, 152-155
background-repeat, 149-152
blockquote, 138-141
font-family, 133-134
font-style, 136
font-weight, 135-136
margin-bottom, 139
margin-left, 138
margin-right, 138
margin-top, 139
text-align, 142-143
text-decoration, 143-145

style sheets,
adding background color, 146-147
adding background image, 147-152
adding text elements, 143-145
aligning text, 141-143
creating, 128-133
external, 127-128
internal, 127
linking to external, 128-130
setting background position, 152-153
setting background properties, 155-156
setting margins, 137-141
using fonts, 133-136
using multiple, 156-159

T

table-based authentication, 366, 368-373
tables,

adding fields to, 55-59

Index

452

creating, 53-55
defining relationships for, 59-64
formatting, 104-121

Technology Tests page, 41-42
testing, 8
text,

aligning, 141-143
displaying in PHP, 162

text area element, 200
text box element, 195-196
text decoration elements, 143-145
text editors, 8, 82
TextEdit text editor, 82
TextWrangler text editor, 10

V

validation,
data, 207
email format, 216-217
form value, 208-211
number, 214-215
required value, 212-214
string length, 215-216

value,
validating existence of, 208-211
validating numerical, 214-215
validating required, 212-214
validating string, 215-216

value lists, 65, 319
adding empty default values to,

333-335
creating, 65-68

integrating into blog application,
335-339

limitations for using with FileMaker,
355

requirements for using with FileMaker,
321

retrieving from database, 326-327
using on the web, 320

variables, using in PHP, 163

W

web editors, 8, 441
web page,

editing, 85
refreshing, 122-123

web publishing, requirements for, 3-4
web publishing resources, 445-446
web server, 7 see also Apache and IIS
wildcard characters, 419

and security issues, 419
entering literal, 420
replacing, 420-421

Windows,
FileMaker interface, 5
installing FileMaker API for PHP on,

40
installing FileMaker Server on, 24-34
installing PHP on, 16-18
requirements for web publishing, 4
setting up IIS on, 12-14

worker computer, installing FileMaker
Server on, 28-30

Index

453

This page intentionally left blank.

Visit us online at www.wordware.com for more information.

Use the following coupon code for online specials: fmp0411

Looking for more?
Check out Wordware’s market-leading

Applications Library featuring the following titles.

SQL for Microsoft Access
1-55622-092-8 • $39.95
6 x 9 • 360 pp.

Camtasia Studio 4: The
Definitive Guide
1-59822-037-3 • $39.95
6 x 9 • 600 pp.

Learn FileMaker Pro 9
1-59822-046-2 • $39.95
6 x 9 • 550 pp.

Advanced SQL Functions in
Oracle 10g
1-59822-021-7 • $36.95
6 x 9 • 416 pp.

Learn FileMaker Pro 8.5
1-59822-025-X • $36.95
6 x 9 • 560 pp.

Introduction to Game Pro-
gramming with C++
1-59822-032-2 • $44.95
6 x 9 • 392 pp.

Access 2003 Programming
by Example with VBA, XML,
and ASP
1-55622-223-8 • $39.95
6 x 9 • 704 pp.

Word 2003 Document Automa-
tion with VBA, XML, XSLT and
Smart Documents
1-55622-086-3 • $36.95
6 x 9 • 464 pp.

Excel 2003 VBA Programming
with XML and ASP
1-55622-225-4 • $36.95
6 x 9 • 968 pp.

Microsoft Excel Functions &
Formulas
1-59822-011-X • $29.95
6 x 9 • 416 pp.

FileMaker Pro Business
Applications
1-59822-014-4 • $49.95
6 x 9 • 648 pp.

Managing Virtual Teams:
Getting the Most From Wikis, Blogs,
and Other Collaborative Tools
1-59822-028-4 • $29.95
6 x 9 • 400 pp.

Essential LightWave v9
1-59822-024-1 • $49.95
6 x 9 • 992 pp.

LightWave v9 Texturing
1-59822-029-2 • $44.95
6 x 9 • 648 pp.

LightWave v9 Lighting
1-59822-039-X • $44.95
6 x 9 • 616 pp.

