
ptg7799847

ptg7799847

Adobe® Dreamweaver® CS5 with PHP

Training from the Source

David Powers

ptg7799847

Adobe® Dreamweaver® CS5 with PHP: Training from the Source
David Powers

 Adobe Press books are published by:
Peachpit
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
800/283-9444

For the latest on Adobe Press books, go to www.adobepress.com
To report errors, please send a note to errata@peachpit.com
Peachpit is a division of Pearson Education.
Copyright © 2011 David Powers

Acquisitions Editor: Victor Gavenda
Project Editor: Rebecca Freed
Development Editor and Copyeditor: Anne Marie Walker
Production Editor: Becky Winter
Technical Editor: Tom Muck
Compositor: Danielle Foster
Indexer: Rebecca Plunkett
Cover Design: Charlene Charles-Will

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For infor-
mation on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any person or entity
with respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained
in this book or by the computer software and hardware products described in it.

Trademarks
Adobe, the Adobe logo, and Dreamweaver are registered trademarks of Adobe Systems in the United States and/or
other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Peachpit was aware of the trademark claim, the designations
appear as requested by the owner of the trademark. All other product names and services identified throughout the
book are used in an editorial fashion only and for the benefit of such companies with no intention of infringement
of the trademark. No such use, or the use of any trade name, is intended to convey endorsement or other affiliation
with this book.

ISBN-13: 978-0-321-71984-3
ISBN-10: 0-321-71984-0
9 8 7 6 5 4 3 2 1
Printed and bound in the United States of America

www.adobepress.com

ptg7799847

Bio

David Powers has been writing about Dreamweaver, PHP, CSS, and web development since
2003. This is his twelfth book on the subject. David started developing websites in 1994,
shortly after assuming the role of Editor, BBC Japanese TV. He needed a way of advertis-
ing the fledgling channel in Japan but had no budget. So, he begged the IT department for a
corner of server space and singlehandedly developed an 80-page bilingual website, which he
regularly maintained for the next five years.

After a career spanning three decades in radio and TV news, David left the BBC in 1999 to
work independently. He’s an Adobe Community Professional and Adobe Certified Instructor
for Dreamweaver. You’ll often find him giving help and advice in the Dreamweaver forums
and Adobe Developer Center—to which he has contributed many popular tutorials and train-
ing videos. He greatly enjoys traveling and taking photos—all the photos used in this book
were taken by him.

David has also translated a number of musical plays from Japanese into English, and he likes
nothing better than sushi with a glass or two of cold sake.

ptg7799847

Acknowledgments

For several years I’ve bent the ears of the long-suffering Dreamweaver engineering team
to improve support for PHP. Wow! They certainly came up trumps. My thanks to Devin
Fernandez, Scott Fegette, Don Booth, Randy Edmunds, Chris Bank, Virgil Palanciuc, Jon
Michael Varese, and the many others who have helped me dig deeper into Dreamweaver over
the past few versions to understand the program’s strengths and weaknesses (yes, there are
some—and I’m sure the team is already working on eliminating them).

I’m particularly grateful to Scott, one of the Dreamweaver product managers, whose idea it
was to get me to write this book. I hope it’s not too far removed from what he was hoping for.
Scott passed my name to Victor Gavenda, the Executive Editor at Adobe Press, while attend-
ing Adobe MAX at Los Angeles in 2009. For those of you who don’t know, MAX is an annual
geekfest that’s a mixture of presentations by leading web professionals, sneak peeks into
Adobe’s future technology, and wild parties (Scott plays a mean guitar).

Victor welcomed me into the Adobe Press/Peachpit family with grace and courtesy. My
thanks go to him and to the two editors who worked directly with me on the book, Rebecca
Freed and Anne Marie Walker. Thanks also to the production team for going the extra mile to
make the code easier to read.

Finally, I mustn’t forget Tom Muck, a true Dreamweaver and PHP expert who checked the text
and code for technical accuracy. This is the third book we’ve worked on together. Tom always
manages to keep me on the straight and narrow, spotting important details I’ve missed and sug-
gesting ways to improve the text. Any mistakes that remain are my responsibility alone.

ptg7799847

Contents

Introduction . viii

LESSON 1 Why PHP and Why Dreamweaver CS5? . 3

A Rich Mix of PHP Features. 4
What Is PHP? What Does It Do? . 5
A Tour of the Main PHP Features in Dreamweaver CS5 9

LESSON 2 Getting Ready to Develop with PHP . . 27

Setting Up a Local Testing Environment .28
Checking Your PHP Installation .30
Using Virtual Hosts . .40
Setting Up a PHP Site in Dreamweaver CS5 .47

LESSON 3 A Quick Crash Course in PHP. . 60

How PHP Makes Pages Dynamic .61
Taming the Unknown with Variables .63
Grouping Related Values in Arrays .70
Using Conditions to Make Decisions. .74
Using Functions to Perform Tasks .79
Using Objects and Resources .88
Using Operators for Calculations and Joining Strings91
Automating Repetitive Tasks .96
Including External Files . 101
Understanding Error Messages . 108

LESSON 4 Restyling a WordPress Site . 111

Understanding the Structure of a CMS . 112
Installing WordPress . 113
Creating a WordPress Theme . 119

ptg7799847

vi Contents

LESSON 5 Designing and Building Your Own Database 141

Working with MySQL . 142
Creating a Database and Tables. . 155
Creating MySQL User Accounts . 161
Importing Existing Data. . 165

LESSON 6 Generating PHP Automatically with Server Behaviors. 170

What Server Behaviors Do . 171
Connecting to the Database. . 171
Inserting Records into a Table . 177
Creating a Login System . 183
Displaying, Updating, and Deleting Records 192
Evaluating the Server Behaviors . 207

LESSON 7 Validating Input on the Server . 212

Introducing the Zend Framework . 213
Improving the Registration Form. . 218
Authenticating User Credentials with Zend_Auth 247

LESSON 8 Zending Email . 258

How PHP Handles Email . 259
Stopping Spam with a CAPTCHA . 263
Processing User Feedback . 266
Processing Other Form Elements . 277
Resetting Forgotten Passwords . 286
Unsubscribing Registered Users . 299

LESSON 9 Uploading Images and Other Files. 304

Understanding How PHP Uploads Files . 305
Creating an Upload Form. . 306
Using Zend_File for Uploads. . 308
Sending Email Attachments . 334

LESSON 10 Inserting Data into Multiple Tables . 344

Assessing the Task . 345
Creating the Database Structure . 346
Building the CMS . 349

ptg7799847

viiTraining from the Source

LESSON 11 Updating and Deleting Files in Related Tables 378

Selecting Records with SQL . 379
Completing the CMS . 383

LESSON 12 Using Ajax to Refresh Content . 418

Enhancing Pages with Ajax . 419
Introducing Adobe Widget Browser . 420
Configuring a Widget . 424
Creating a Master/Detail Set . 437
Refreshing a Page Without Reloading . 448
Creating Clean URLs . 457

LESSON 13 Deploying Your Site Online . 461

Transferring a Database. . 462
Preparing Your PHP Files . 465
Setting Up Your Remote Server in Dreamweaver. 470

Index . 476

ptg7799847

Introduction

My first encounter with PHP came about 10 years ago. By that time, I already had plenty of
experience developing websites. I had started out writing HTML in a text editor before settling
on Dreamweaver as my favorite authoring tool. A new project involved publishing more than
30 articles a day. It was a subscription service, so the site needed to be password-protected and
searchable. An ordinary website wouldn’t do. That’s when PHP came to the rescue.

PHP makes communication with a database a breeze, so content can be stored in the database,
making it searchable. Instead of creating a new page for every article, pages are populated
dynamically with the requested items. You can also password-protect the administrative or
members-only area of a site. PHP does a lot more: It can send email, upload files, and attach files
to emails—all of which you’ll learn how to do in this book. PHP is also the driving force behind
the three most popular content management systems: Drupal, Joomla!, and WordPress.

So, where does Dreamweaver come into the picture? Dreamweaver has supported PHP to some
degree since 2002, mainly through server behaviors, which automatically generate PHP code
for some basic tasks. But the level of support has taken a quantum leap forward in Dreamweaver
CS5. The server behaviors are still there (see Lesson 6), but they take a back seat.

The big changes lie in code hinting, embedded PHP documentation (including examples),
autocompletion of variables, automatic discovery of dynamically related files, and—per-
haps best of all—the ability to view and navigate through PHP pages without leaving the
Document window. As a result, it’s now possible to style WordPress, Joomla!, and Drupal in
Dreamweaver CS5 without the need to generate static pages. These changes are described in
detail in Lesson 1, but in a nutshell they should appeal to designers and developers alike.

PHP’s popularity springs from being easy to learn. You can achieve practical results very
quickly. Of course, like any skill, becoming an expert takes time and practice. The new PHP
features in Dreamweaver CS5 not only help the learning process, but you’ll find them even
more useful as you gain experience. Dreamweaver is my preferred choice for designing the look
of a website and organizing files, but I was beginning to use dedicated PHP authoring tools for
the dynamic aspects of development. Dreamweaver CS5 has changed all that. I now have the
best of both worlds in the same program.

ptg7799847

ixTraining from the Source

Who This Book Is for
This is a “beyond the basics” book, so you should already have a solid understanding of how
a website is built. You should also have a good understanding of HTML, because PHP code
needs to be embedded in the underlying structure of a page to display the dynamic output. It’s
not necessary to know every tag and attribute, but if you don’t know the difference between a

 and an tag, you’ll be lost. All the example files and exercises are styled with CSS, but
design is not the focus of this book. You don’t need to understand CSS to work through the
lessons, but your web development skills would certainly be the better for it. You’ll also find it
makes it easier to follow Lesson 4, where you create a new WordPress theme.

You don’t need prior knowledge of PHP. This book doesn’t teach PHP in a formal manner,
but Lesson 3 provides a crash course in how to write PHP, and Lesson 5 teaches the basics of
database design using MySQL, the most popular open source database.

If you already know some PHP, all the better. This book moves at a fairly rapid pace.
Lessons 7–12 make extensive use of the Zend Framework, a powerful library of PHP
components that take a lot of hard work out of creating dynamic sites. Lesson 12 also uses
the jQuery JavaScript framework. Again, you don’t need prior knowledge of jQuery or
JavaScript, but it will certainly help.

How to Use This Book
Time is precious, so you probably want to jump straight to the solution for your current
problem. If you have considerable PHP experience, that approach might work. However,
the majority of readers should start with Lesson 1 and work through each one in sequence
because each lesson builds on the previous one. If you skip ahead, you’re likely to miss a vital
explanation and will need to backtrack anyway.

The “Approximate Time” at the beginning of each lesson is simply an estimate of the time it
will take to work through the exercises. Don’t regard it as a challenge, and don’t feel downcast
if you take much longer. Each lesson is packed with information. Take time to absorb it, and
break the lesson into smaller chunks to match your own pace.

Most lessons contain reference sections followed by hands-on exercises. Each step explains
not only what to do, but also why you’re doing it. The idea is to help you think about how you
could apply the same techniques to your own projects. This isn’t a point-and-click book, but
instead is one that aims to stimulate your problem-solving abilities. The more you think, the
more you’re likely to get out of it.

ptg7799847

x Introduction

Accompanying files
The accompanying CD contains all the files necessary to complete the exercises in this book.
The only exceptions are the PHP/MySQL development environments described in Lesson 2
and the LightBox Gallery Widget in Lesson 12. PHP and MySQL are updated frequently, so it
makes more sense to get the most recent versions from the source. In the case of the LightBox
Gallery Widget, one object of the exercise is to show you how to install the Adobe Widget
Browser and download widgets from the Adobe Exchange.

Lesson 2 describes how to set up the Dreamweaver site to work through the exercises in this
book. The files for each lesson are in folders named lesson01, lesson02, and so on. There
are no files for Lesson 13. For each lesson that contains exercises, there are normally three
subfolders: completed, start, and workfiles. The workfiles folder is deliberately left empty; it’s
where you should create and save the files for the lesson’s exercises. If you follow this structure,
the exercise files will use the common style sheets that are stored in the styles folder.

To save time, many exercises have partially completed pages, which you should copy from the
start folder to the workfiles folder for that lesson. The completed folder contains copies of the
exercise files shown at various stages of completion.

In Lessons 10 and 11, you should create a folder called cms in the site root. The cms_complete
folder contains a full working copy of the completed project.

NOTE: The files were created on a Windows computer but are fully compatible with Mac OS X.

However, the path in library.php needs to be adjusted to match the location of the Zend

Framework files. See Lesson 7 for details.

Windows/Mac differences
The few Dreamweaver CS5 and PHP differences between Windows and Mac OS X have been
pointed out at relevant places in the book.

Keyboard shortcuts are given in the order Windows/Mac, but in the rare cases where there is
no Mac equivalent, this has been pointed out. On some Mac keyboards, the Opt(ion) key is
labeled Alt. On a UK Mac keyboard, use Alt+3 to type the hash symbol (#).

Using a multi-button mouse with a Mac is now so common that the instructions refer only to
right-click. If you prefer a single-button mouse, use Ctrl-click.

ptg7799847

xiTraining from the Source

Code portability
One of the pleasures of working with PHP is that it’s platform-neutral. All the PHP code in this
book works equally well on Windows, Mac OS X, and Linux. However, it’s important to realize
that different versions of PHP and MySQL have different functionality. Also, server administra-
tors have the ability to turn off certain features. To use this book, your web server must be run-
ning PHP 5.2 and MySQL 4.1 or later. The code will not work with earlier versions.

Getting help
When you encounter a problem, the first person to look to for help is you. Did you skip a step
or mistype the name of a variable or function? One of the quickest ways of finding an error
is to use Dreamweaver’s File Compare feature (choose Help > Using Dreamweaver CS5 >
Creating and Managing Files > Comparing files for differences) to compare your file with the
version in the completed folder.

File Compare requires a third-party file comparison utility. If you don’t have one installed,
WinMerge (http://winmerge.org) for Windows and TextWrangler (www.barebones.com/
products/textwrangler/) for Mac OS X are both free.

If you can’t solve the problem on your own and a quick search on the Internet doesn’t pro-
duce the answer, post a question in the Adobe forums. The best one for PHP questions is
the Dreamweaver Application Development forum at http://forums.adobe.com/community/
dreamweaver/dreamweaver_development. I’m frequently there providing help, so you might
even get an answer from me.

I also post updates and tutorials on my website at http://foundationphp.com/, and you can
follow me on Twitter @foundationphp.

Every care has been taken to eliminate errors, but if you think you have found one, please
email errata@peachpit.com with the details.

Layout conventions
The following text conventions are used throughout this book:

Boldface text. Words in bold text indicate input that you should type in a field or the
name of a file you should create.

www.barebones.com/products/textwrangler/
www.barebones.com/products/textwrangler/
http://winmerge.org
http://forums.adobe.com/community/dreamweaver/dreamweaver_development
http://forums.adobe.com/community/dreamweaver/dreamweaver_development
http://foundationphp.com/

ptg7799847

xii Introduction

Boldface code. Code that is added or changes is displayed in boldface.

Long code. Sometimes, code won’t fit on a single line on the printed page. Where this
happens, an arrow indicates the continuation of a broken line like this:

Italics. Text in italics is for emphasis or to introduce important concepts.

Let the Journey Begin
Above all, enjoy the experience that lies ahead. Even if you find working with code uncom-
fortable to begin with, PHP is not hard. Welcome to the ever-growing PHP community.

ptg7799847

This page intentionally left blank

ptg7799847

LE
SS

O
N

 1 What You Will Learn
In this lesson, you will:

See how PHP builds web pages dynamically and communicates with a database

Explore the greatly improved PHP features in Dreamweaver CS5

See how to change Dreamweaver’s default settings

See how Live View can display pages from a PHP content management system,
such as WordPress

Understand how to access and filter dynamically related pages

Approximate Time
This lesson should take approximately 1 hour to complete.

Lesson Files
Media Files:

None

Starting Files:

None

Completed Files:

lesson01/time.php

ptg7799847

3

LESSON 

Why PHP and Why
Dreamweaver CS5?

“If you had one extra day in your week to learn a new technology, what would you choose?”

That’s one of the questions the Adobe Dreamweaver product team asked users before start-

ing work on Dreamweaver CS5. An overwhelming majority answered, “PHP or a PHP frame-

work.” It’s a message the team took on board, which resulted in a version of Dreamweaver that

turns it into a powerful development environment for PHP without losing any of its visual

development features. Dreamweaver CS5 is a program that gives programmers and designers

plenty to smile about. For designers, probably the most welcome change is the ability to see a

WordPress, Drupal, or Joomla! site in Live View.

Dreamweaver CS5 can now display WordPress and other popular CMSs directly in Live View.

ptg7799847

4 LESSON : Why PHP and Why Dreamweaver CS5?

A Rich Mix of PHP Features
For programmers, many new features can be put at the top of the list: vastly improved PHP
code hinting, automatic detection of dynamically related files, autocompletion of variables,
and so on. But the feature that will appeal to beginners and experienced programmers alike
is automatic syntax checking. Dreamweaver CS5 constantly monitors your PHP code and
highlights any line in which there is a mistake.

One thing that hasn’t changed—and this will come as a disappointment to some existing users—
is the range or functionality of PHP server behaviors. A server behavior is a Dreamweaver tool
that automatically generates PHP code for such things as inserting, updating, and deleting
records in a database. Many people like server behaviors because everything is done through
dialog boxes without the need to touch a line of code. Server behaviors are great for rapid proto-
typing or taking your first steps with PHP, but they take you only so far. You soon discover that
you need to customize them to do anything beyond the most basic tasks—and you can’t do that
unless you understand the code. This book covers the main server behaviors, but also takes you
further to make full use of the new PHP features in Dreamweaver CS5. However, that doesn’t
mean you’ll end up typing endless amounts of PHP code.

Dreamweaver CS5 allows you to take advantage of a much wider range of resources coded by
some of the most experienced people in the business. You’ll learn how to work with one of the
most popular PHP-driven content management systems (CMS), WordPress. You’ll also learn
how to upload files, send emails with attachments, and interact with a database using a selec-
tion of components from the Zend Framework. The framework is designed in such a way that
you can cherry pick, making it easy to add sophisticated functionality to a website without
needing to become an expert programmer beforehand.

You don’t need previous PHP experience to use this book—although you’ll be able to progress
more rapidly or jump to lessons that interest you if you do. Everything is explained along the
way, along with details of where to get more information. The only prerequisite is that you be
familiar with building websites using HTML and CSS. Preferably, you should also be familiar
with the Dreamweaver user interface.

NOTE: I use HTML to refer to both HTML (Hypertext Markup Language) and XHTML (Extensible

Hypertext Markup Language). All the HTML code in this book conforms to XHTML 1.0

Transitional, the default setting in Dreamweaver CS5.

Before embarking on the journey ahead, let’s take a quick look at PHP and what it’s for, and
then take a brief tour of the features in Dreamweaver CS5 that make it such a good develop-
ment environment for PHP-driven websites.

ptg7799847

5What Is PHP? What Does It Do?

What Is PHP? What Does It Do?
PHP is a server-side technology that builds web pages dynamically. Let’s say you have a prod-
uct catalog. Instead of updating your web pages each time a product is added or removed,
you can store the details in a database and use PHP to query the database and build the page
automatically. Nor do you need to create a separate page for each product. Just build one page,
and PHP fills in the details. Other uses of PHP include creating login systems, uploading files,
and sending emails. Just about every online store, news website, blog, or social networking site
uses PHP or a similar server-side technology.

Depending on how it’s being used, PHP code can be embedded in a web page or stored in
external files. However, unlike CSS or JavaScript, PHP code always remains on the web server.
Visitors to your website never see it. All they see is the output. For example, lesson01/time.
php contains the following code:

The PHP code is embedded in a couple of HTML paragraphs between and tags. Even
if you don’t understand how it works, you can probably guess that this code has something to
do with dates and time zones. In fact, it displays the current time in London and Los Angeles. It
doesn’t matter where you are or when you load the page, as long as the server clock is set correctly,
you will always get the correct time in those two cities. If you right-click to view the source code in
a browser, you see only the HTML output. All the processing is done on the web server.

ptg7799847

6 LESSON : Why PHP and Why Dreamweaver CS5?

NOTE: You won’t be able to view this file on your computer until you have created a PHP

testing environment, which you’ll learn how to do in Lesson 2. Readers with eagle eyes will have

noticed that the screen shot shows only a seven-hour difference, whereas there’s normally an

eight-hour difference between London and Los Angeles. The screen shot was taken in mid-

March after the United States had switched to daylight saving time, but the UK had not. The

PHP code is smart enough to adjust automatically for daylight saving time.

In this example, the PHP code does all the work itself. But in many cases, PHP acts as an
intermediary to a database. The following diagram outlines the basic process.

Internet

Page request Database query

Query resultHTML output

Web server/
PHP engine

Database
server

This is what happens when a browser requests a web page that uses PHP:

The web server sends the page to the PHP engine—which resides on the server—
for processing.

If the PHP script doesn’t need to communicate with the database, the PHP engine
generates the HTML output, and the web server sends it back to the browser.

If the script needs to interact with the database—getting the results of a search, or insert-
ing or updating data—the PHP engine communicates with the database server. When the
results come back, the PHP engine puts everything together, and the web server sends the
resulting web page back to the browser.

A lot goes on, but most requests take only a few microseconds, and then the web page is on its
way to the browser with no perceptible delay from the user’s point of view.

PHP’s role ends as soon as the output has been sent to the browser. The time shown by time.php
is fixed; it won’t update automatically a minute later. For that to happen, you need to refresh
the page or create a JavaScript function to change the time within the user’s browser. If you
want PHP to do something in response to user action on a web page, it involves another
round trip to the server. In the past, this meant reloading the page. However, as you’ll see later
in this book, you can refresh the page seamlessly by sending the request in the background
and updating the content with Ajax.

ptg7799847

7What Is PHP? What Does It Do?

What Is Ajax?

Normally, requests to a web server and the response are handled at the same time.
Waiting for the page to reload is disruptive. As a workaround, you can use JavaScript
to send requests directly to the server and update the content only when the result
comes back. Multiple requests can be sent, updating the page as required. In technical
terms, the process is asynchronous. In other words, the user doesn’t have to wait for the
response from the server to continue using the page. The update happens seamlessly
when the response is received from the server.

Originally, the data was sent back formatted as XML (Extensible Markup Language),
a tag-based language similar to HTML. That’s where the name Ajax comes from,
Asynchronous JavaScript and XML. However, data can be sent back in many formats,
even plain text, so XML is not always part of the process.

Why choose PHP?
PHP isn’t the only server-side technology available. In fact, Dreamweaver has varying degrees
of support for seven. Most have similar capabilities, and choosing which is the most suitable
for your circumstances isn’t always easy. However, PHP has the following advantages:

PHP runs on Windows, Mac OS X, and Linux. With only a few minor exceptions, code
written on one operating system works on any of the others.

It’s open source and free.

It’s widely available.

It’s relatively easy to learn.

There’s a large community of active users, so help is rarely far away.

It’s simple enough to incorporate into a small website, yet powerful enough to drive some
of the busiest websites, including Facebook, Wikipedia, and Yahoo!

In a survey of media executives by the Society of Digital Agencies (SoDA), nearly 50 per-
cent said they regarded PHP as an important tool for their company in 2010. The figure
for ASP.NET was 32 percent. Fewer than 10 percent said they regarded Ruby on Rails as
important for their company.

In the same survey, more than 50 percent said they would be hiring people with PHP
skills in 2010. The only web-related skills in greater demand were Flash and ActionScript.

ptg7799847

8 LESSON : Why PHP and Why Dreamweaver CS5?

So are there any disadvantages in choosing PHP?

Comparing server-side technologies is difficult, but the main disadvantage of PHP is, para-
doxically, that it’s easy to learn. Many people copy scripts from online tutorials without under-
standing the code, often leaving gaping security holes in their websites. PHP is as secure as
any other server-side technology, and security-related bugs are usually dealt with very quickly.
But just like the electricity in your house, it’s safe only insofar as it’s used and maintained
correctly. Fortunately, it’s not difficult to write secure code, and there is emphasis on security
throughout this book.

What Does PHP Stand For?

If you really must know, PHP stands for PHP: Hypertext Preprocessor. Why such a
convoluted mouthful? When PHP’s original creator, Rasmus Lerdorf, released the first
version in 1995, he called it Personal Home Page Tools (PHP Tools). It was a user-
friendly set of tools to password protect pages, create forms, and process form data. A
couple of years later, Andi Gutmans and Zeev Suraski—who later founded Zend, the
PHP company—decided to cooperate with Rasmus, and turned PHP into a much more
powerful language. The “personal home page” image no longer fit, but it was decided
to keep the initials PHP. And that’s how the rather clunky name came about. Although
Zend is a commercial enterprise, PHP remains open source and free.

Many PHP developers offer an alternative explanation: PHP = Pretty Happy Programmers.

Which database should I choose?
More often than not, PHP is used in conjunction with MySQL, the most popular open-source
database, which is fast, powerful, and well suited for use in websites. It’s the database that
runs WordPress, Drupal, and Joomla! and is also used by high-traffic websites like Flickr,
Facebook, and YouTube.

MySQL is currently owned by Oracle Corporation, one of the leading database software com-
panies, but the Community Edition of MySQL is free. The functionality of the Community
Edition is identical to the for-purchase Enterprise version. The only difference is that no sup-
port is offered with the free version. But that’s rarely a problem because of the active commu-
nity willing to offer help online.

ptg7799847

9A Tour of the Main PHP Features in Dreamweaver CS5

Like PHP, MySQL works on all the main operating systems, so you can develop on one system and
later transfer your database to another. Also, most hosting companies offer PHP in combination
with MySQL. For all these reasons, the combination of PHP and MySQL is used in this book.

PHP and MySQL have become so closely connected that many people think you can’t have
one without the other. Unlike love and marriage in Frank Sinatra’s 1950s hit, you can have
PHP without MySQL. PHP works with all the main database systems, including Microsoft
SQL Server, Oracle, and PostgreSQL. You can easily adapt much of the code in later lessons to
work with the database of your choice.

NOTE: Dreamweaver’s built-in PHP server behaviors (covered in Lesson 6) are tied exclusively

to MySQL. Lessons 7–12 use the Zend Framework, which supports many databases in addi-

tion to MySQL, including Microsoft SQL Server, SQLite, and PostgreSQL.

A Tour of the Main PHP Features in Dreamweaver CS5
Let’s take a closer look at why Dreamweaver CS5 has become such a good development
environment for beginners and more experienced PHP developers. If you’re completely new
to PHP, it might be best for you to skim the rest of this lesson to get a flavor of what’s in store.
Come back later to read each section in more detail when you’re more familiar with PHP to
learn about particular features.

PHP features also in previous versions
For the benefit of newcomers to Dreamweaver, I’ll describe briefly the basic features inher-
ited from previous versions before moving on to the advanced PHP features that are new to
Dreamweaver CS5. In addition, I’ll explain how to set various options, so existing users will
benefit from some of the information here as well.

Features discussed include:

Line numbering

Syntax coloring

Balancing braces

Code collapse

Split Code view

Applying and removing comment tags

Live Code

ptg7799847

10 LESSON : Why PHP and Why Dreamweaver CS5?

Line numbering
When working with PHP scripts, it’s essential to be able to find a specific line, because
PHP error messages always refer to the line where a problem was identified. By default,
Dreamweaver displays line numbers in a column on the left of Code view.

If line numbers are not visible or if you want to turn them off, click the Line Numbers
icon in the Coding toolbar. Alternatively, choose View > Code View Options > Line
Numbers to toggle them on and off.

 TIP: The Coding toolbar is displayed by default on the left of Code view and the Code

Inspector. If you can’t see the Coding toolbar in Code view, choose View > Toolbars > Coding to

turn it back on. The Coding toolbar cannot be turned off in the Code Inspector.

Line numbers refer to new lines created by pressing Enter/Return. By default, Dreamweaver
soft wraps long lines in Code view. If you don’t want Dreamweaver to wrap lines of code like
this, you can toggle the option on and off by clicking the Word Wrap icon in the Coding
toolbar. Alternatively, choose View > Code View Options > Word Wrap.

NOTE: Previous versions of Dreamweaver had an option to insert a newline character automati-

cally after a specified number of characters (hard wrapping). This option no longer exists in

Dreamweaver CS5.

Syntax coloring
Dreamweaver automatically colors different elements of PHP code to make them easier to
identify. PHP tags and strings (text in quotation marks) are colored red, reserved keywords
are green, functions are dark blue, and variables are a lighter blue. If part of your script is the
wrong color, it’s an almost certain sign that there’s an error in your code; the most common
cause is a missing or mismatched quotation mark.

Setting Dreamweaver Preferences

Many default options can be changed in the Preferences panel, which you can access
from the Edit menu on Windows and the Dreamweaver menu in the Mac version.
You can also open the Preferences panel by pressing Ctrl+U/Cmd+U.

Mac users should note that the conventional Mac shortcut, Cmd+comma (,) is assigned
to a different command (Go to Line).

ptg7799847

11A Tour of the Main PHP Features in Dreamweaver CS5

NOTE: Dreamweaver syntax coloring doesn’t support PHP heredoc and nowdoc syntax. This

book doesn’t use heredoc or nowdoc syntax. For more details, see http://docs.php.net/manual/

en/language.types.string.php.

If you want to change the default colors used by Dreamweaver, select the Code Coloring
category in the Preferences panel. Select PHP in the Document Type field, and click the Edit
Coloring Scheme button to open the following dialog box.

Don’t be confused that the first item in the “Styles for” list is for a different server-side tech-
nology (ColdFusion Script Tag). Just click in the Preview pane at the bottom of the dialog box,
and Dreamweaver automatically highlights the appropriate PHP value in the “Styles for” list.

Select the type of element you want to change in the “Styles for” list or the Preview pane.

Click the color box next to “Text color” to select a new color.

Use bold, italic, or underlined text, or any combination of them to change text.

“Background color” applies a background color only to the selected type of element.

To change the background color of Code view, click OK to close the Edit Coloring
Scheme for PHP dialog box, and then click the color box next to “Default background” in
the Code Coloring category in the Preferences panel.

Syntax coloring is turned on by default. It can be toggled on and off by choosing View > Code
View Options > Syntax Coloring.

Dreamweaver CS5 supports PHP syntax coloring and code hints in files that use the following
filename extensions: .php, .php3, .php4, .php5, and .phtml. It also recognizes Smarty templates

http://docs.php.net/manual/en/language.types.string.php
http://docs.php.net/manual/en/language.types.string.php

ptg7799847

12 LESSON : Why PHP and Why Dreamweaver CS5?

(files) but treats them the same way as HTML files. Unless you have a specific reason for
choosing a different filename extension, you should always use .php. However, if you need to
use a filename extension that’s not on the list, you can get Dreamweaver to recognize it by fol-
lowing the instructions found at http://go.adobe.com/kb/ts_tn_16410_en-us.

Balancing braces
Curly braces must always be in matching pairs, but there might be dozens or hundreds of
lines of code between the opening and closing braces. Unlike some other editing programs,
Dreamweaver does not automatically insert a closing brace when you type an opening brace,
but Balance Braces is an indispensible visual guide.

With the insertion point anywhere between two braces, click the Balance Braces icon in the
Coding toolbar to highlight the code enclosed by the braces.

Alternatively, choose Edit > Balance Braces, or press Ctrl+’/Cmd+’ (single quotation mark).

Code collapse
When working on a long script, it’s useful to be able to hide one or more sections of the code
so you can see code that might be far from the section you’re currently working on. To col-
lapse a section of code, select it, and click the minus box at the top or bottom of the selection.
In the Mac version, the minus boxes are replaced by a down triangle at the top and an up
triangle at the bottom. Click either triangle to collapse the selected code.

The collapsed section of code displays just a few characters from the first line in a dark gray
box. Hover your pointer over the gray box, and Dreamweaver displays the first ten lines as a
tooltip to remind you what the collapsed section contains.

http://go.adobe.com/kb/ts_tn_16410_en-us

ptg7799847

13A Tour of the Main PHP Features in Dreamweaver CS5

Dreamweaver remembers which sections of code have been collapsed, even when you close a
file. When you reopen it, the collapsed sections remain closed.

To expand a collapsed section, click the plus box (or right-facing triangle on a Mac) next to the
gray box. If the plus box or triangle isn’t visible, click the gray box to bring it back into focus.

You can also expand all sections of collapsed code in a single operation by clicking the Expand
All icon in the Coding toolbar. Alternatively, press Ctrl+Alt+E/Opt+Cmd+E.

 TIP: The disadvantage of Expand All is that only the final section of code remains selected.

If you want to collapse your code again, use your mouse to expand and collapse individual

sections.

Split Code view
Another useful way to view different parts of the same script is to use Split Code view. This
opens the current document in Code view with the Document window split vertically or hori-
zontally. Both sides of the Document window scroll independently, allowing you to access com-
pletely different sections of the same page. To access Split Code view, choose View > Split Code.

NOTE: You cannot drag and drop from one side of Split Code view to the other. Use copy or cut

and paste.

Applying and removing comment tags
Comments are useful not only for documenting your scripts, but also to disable a section of
code while troubleshooting.

When you click the Apply Comment icon , you are presented with the following choice of
five styles of comments.

The only options of value in a PHP script are and .

The final option, , is of limited use because you cannot nest PHP tags
inside a PHP code block. Its only purpose is to comment out a section of HTML inside a PHP
page and prevent the affected section from being sent to the browser. By contrast, an HTML
comment remains visible in the browser’s source code view.

ptg7799847

14 LESSON : Why PHP and Why Dreamweaver CS5?

To apply a multiline comment, select the code you want to comment out, click the Apply
Comment icon, and choose Apply /* */ Comment from the menu.

To apply a single-line comment, put the insertion point where you want the comment to
begin, click the Apply Comment icon, and choose Apply // Comment.

By default, code that has been commented out is displayed in orange, making it easy to distin-
guish it from code that should be processed by the PHP engine.

The Remove Comment icon should really be called Remove Comment Tags. It removes
the comment characters, but leaves everything else intact. It works like this:

To remove the tags from a multiline comment, select the entire comment, including the
 at the beginning and the at the end. If you select less, nothing happens.

To remove the tags from several multiline comments in a single operation, select at least
from the first to the last , and click the Remove Comment icon.

Single-line comments embedded in multiline comments are not affected when the multi-
line tags are removed.

To remove a single-line comment tag, set the insertion point anywhere inside the com-
ment, and click Remove Comment.

Single-line comment tags are removed only when nothing else (except whitespace) precedes
them on the same line. For example, the two forward slashes will be removed from the follow-
ing line, even if there are spaces before the comment tag:

However, they will not be removed from the following line, because the comment doesn’t
affect the whole line:

Live Code
As long as you have a testing server defined for your site (defining a site and a testing server
is covered in Lesson 2), clicking the Live Code button in the Document toolbar displays the
HTML output of dynamic code, including PHP and JavaScript, in Code view.

ptg7799847

15A Tour of the Main PHP Features in Dreamweaver CS5

Document toolbar

This is the same as using View Source in a browser without launching your page in the
browser. Everything is done inside the Dreamweaver Document window.

If you can’t see the Document toolbar, choose View > Toolbars > Document. You can also
choose View > Live Code.

New and improved PHP features in Dreamweaver CS5
The features listed so far are all useful—essential, indeed—but would not be enough on their
own to recommend using Dreamweaver CS5 as a serious PHP development environment. It’s
the following improvements that really make a difference:

Expanded code hinting for PHP core functions, classes, and constants

Code hints for custom functions and classes

Site-specific code hints

Automatic recognition of classes and objects

Autocompletion of defined variables

Real-time syntax checking

Dynamically related files

Live View navigation

CSS inspection

Code hinting for PHP core functions, classes, and constants
Dreamweaver CS5 code hints now cover all core elements of PHP 5.2, namely:

Approximately 1,900 core functions

ptg7799847

16 LESSON : Why PHP and Why Dreamweaver CS5?

About 170 classes and interfaces, including 800 related methods and more than 200 class
properties

Nearly 2,000 constants

If you’re wondering why PHP 5.3 isn’t supported, it’s because of the engineering time
required to integrate the documentation into Dreamweaver. Yes, that’s right—documentation.
Dreamweaver automatically displays the relevant help page from the PHP manual for a built-
in function or class.

Most help pages include a description of the function or class with details of the arguments
it takes, the values it returns, and the minimum version of PHP required. In addition, there
are frequently code examples. And if that’s not enough, clicking the link at the top left of the
documentation takes you to the equivalent page in the PHP online manual, which contains
the most up-to-date information, as well as comments and tips added by other users.

The way in which code hints are selected has also been improved in three important ways:

Code hints are not case sensitive. You can type in lowercase, and Dreamweaver automati-
cally converts the selected value to uppercase for constants and superglobals.

Underscores are automatically inserted. When you type $p, Dreamweaver automatically
suggests as one of the options.

You don’t need to start at the beginning. Dreamweaver constantly searches for substrings
within code hints. For example, typing sep automatically selects all functions and con-
stants that contain that sequence of letters, including the constants
and .

With a little experimentation, you can create your own shortcuts for code that you use
regularly. All you need to do is discover the sequence of characters that rapidly brings up the

ptg7799847

17A Tour of the Main PHP Features in Dreamweaver CS5

one you want. For example, typing gesi takes you instantly to . Dreamweaver
recognizes the “ge” of “image” and the “si” of “size” as a unique sequence.

To activate code hints, press Ctrl+spacebar in a PHP code block. Even if you forget to do so
before you start typing, press the same key combination without first pressing the spacebar,
and Dreamweaver uses the preceding sequence of characters to select available choices.

 TIP: Mac users should note that the key combination to activate code hints is the same on

both operating systems. Use Control+spacebar, not Cmd+spacebar.

As soon as Dreamweaver narrows down the available candidates, you can use your up and
down arrow keys or your mouse to select the one you want. Press Enter/Return or double-
click to insert the function or constant into your script.

Code hints for custom functions and classes
Dreamweaver CS5 doesn’t stop at built-in functions. It’s now capable of code introspection.
This is just a fancy way of saying that Dreamweaver automatically inspects any custom func-
tions or classes and builds code hints from them. Hints are available for functions and classes
that are either declared in the same page or directly included in the page using one of the PHP

 or constructs. The following screenshot shows an example of custom code
hints in action.

In this example, the file date_functions.inc.php contains a custom function called .
Because it’s included in the current page through , Dreamweaver automatically
includes it in code hints that are displayed when you type the letters md. The list of code hints
also indicates where the function is defined, making it clear that it’s a custom function.

When you select a custom function from the list of code hints, Dreamweaver displays the
names of any arguments it expects.

ptg7799847

18 LESSON : Why PHP and Why Dreamweaver CS5?

 TIP: Dreamweaver doesn’t generate documentation for custom functions and classes. When

designing your own functions and classes, it’s a good idea to make them self-documenting by

choosing meaningful names for functions, methods, and any arguments they take.

Site-specific code hints
If you’re serious about working with PHP, you’ll probably want to use a framework. A
framework is a library of predefined functions and/or classes that perform common tasks.
The advantage of a framework is that the code has usually been developed and tested by very
experienced people. Instead of reinventing the wheel, you can build sophisticated applications
by writing very little code. All the complicated code is in the framework files.

The framework that I chose to use in later lessons is the Zend Framework (ZF). The “mini-
mal” version of ZF 1.10 contains more than 2,700 files in nearly 500 folders. Fortunately,
ZF has an autoloader that accesses only those files that are needed for a particular purpose.
Unfortunately, the ZF naming convention leads to class names, such as

, that are a nightmare to type—and remember. This is where site-specific code
hints come to the rescue.

Site-specific code hints are designed to generate code hints for third-party frameworks,
including the three most popular content management systems, WordPress, Drupal, and
Joomla! The code hints are generated through code introspection in the same way as for
custom functions and classes. The difference is that you don’t need to include the external
files directly in the page you’re working on. Once you have set up site-specific code hints,
Dreamweaver scans the necessary files automatically and generates the code hints on the fly.
Hints are available even if the definition file isn’t directly linked to your page.

You’ll learn how to set up site-specific code hints for WordPress, Drupal, or Joomla! in
Lesson 4. The setup for other frameworks, including ZF, is covered in Lesson 7.

Automatic recognition of classes and objects
Most of the time, there’s no need to press Ctrl+spacebar to get code hints for classes and
objects. As soon as you enter a space after the keyword , Dreamweaver presents you with
code hints for all the classes it recognizes.

ptg7799847

19A Tour of the Main PHP Features in Dreamweaver CS5

Typing after an object automatically brings up code hints for all public methods and prop-
erties associated with the object’s class.

Similarly, typing the scope resolution operator—a double colon ()—after a class name dis-
plays all static methods and properties associated with that class.

Controlling PHP code hints
Being provided with so many code hints is great, but what if you don’t want or need them all?
Dreamweaver CS5 gives you the option to disable some—or even all—of them.

To control which code hints are enabled, select the Code Hints category in the Preferences
panel. Turn off those that you don’t need by deselecting the appropriate checkbox in the
Menus section. Table 1.1 lists the PHP modules covered by each option.

ptg7799847

20 LESSON : Why PHP and Why Dreamweaver CS5?

Table 1.1 PHP Modules Covered by Code Hints

Option Modules covered

Core functionality Core functions, keywords, and superglobals, plus the following
modules that are normally enabled in a standard configuration
of PHP: Ctype, cURL, Date/Time, Filter, GD (images), JSON,
Multibyte strings, MySQL, MySQL Improved, PDO (PHP Data
Objects), PCRE (regular expressions), Reflection, Sessions, SPL
(Standard PHP Library), SQLite, Tokenizer

Encryption and Compression Bzip2, Hash, Mcrypt, Mhash, OpenSSL, Zip, Zlib

Other Databases IBM DB2, LDAP, MS Sql, oci8 (Oracle Call Interface), ODBC,
PostgreSQL

DOM & XML hints DOM, SimpleXML, SOAP, WDDX, XML Parser, XML Reader, XML
Writer, XML-RPC, XSL

Miscellaneous functions and classes BC Math, Calendar, EXIF, GetText, GMP, IMAP, MemCache,
Mimetype, Shared Memory, Sockets, Tidy

If you’re not sure which to choose, deselect all except “Core functionality” and, possibly,
“DOM & XML hints.” The other options are mainly for specialist use. On the other hand,
unless you find having them all turned on affects you adversely, just leave them all selected.
The code hints are there to help you. The large number of code hints doesn’t appear to slow
down Dreamweaver, but this might vary depending on your computer’s specifications and
other programs running at the same time.

Autocompletion of defined variables
PHP variables begin with a dollar sign, so as soon as you type $, Dreamweaver CS5 pops up
a list of predefined variables. In previous versions, this behavior was limited to PHP super-
globals, such as and . In Dreamweaver CS5, you get your own variables, too.
Continue typing, and the list of code hints narrows down the candidates. This is a major time-
saver. Not only that but PHP variables are case sensitive, which helps to avoid problems with
using, for example, in one place and in another.

Experienced developers will be delighted to know that autocompletion is aware of variable
scope. This is the principle that variables declared inside a function are not visible outside
that function, nor are variables declared outside a function affected by what happens inside a
function unless their values are explicitly passed to and returned by the function. In practice,
this means that if you declare a variable called outside a function, will not be
included in the autocompletion candidates while you are working inside a function. Similarly,
if you declare a variable called inside a function, it will be among the candidates only
within the scope of the function.

ptg7799847

21A Tour of the Main PHP Features in Dreamweaver CS5

It should be noted, however, that there are some limitations with code hints for variables.
Dreamweaver doesn’t provide code hints for array keys. For example, let’s say you have the
following array:

Dreamweaver will provide a code hint for , but after that, you’re on your own. You
need to type or followed by the closing square bracket manually.

Real-time syntax checking
When you begin typing a PHP script in Dreamweaver CS5, you’ll immediately notice that
the program gives you a syntax error. Even typing the first couple of characters of an opening
PHP tag triggers an error message in the Info Bar at the top of the Document window and
puts a red marker over the line number.

The red error markers remain visible even if you turn off line numbering. At first, this might
seem like an overly aggressive attitude toward error checking, but if the marker doesn’t disap-
pear when you get to the end of a statement, you know immediately that an error needs to be
corrected. Errors are much easier to identify and correct as you go. No more round trips to
the testing server to discover that a semicolon is missing or a mismatched quote exists some-
where deep in your script.

The Syntax Error Alerts in Info Bar icon in the Coding toolbar toggles the display of
error messages on or off. Alternatively, choose View > Code View Options > Syntax Error
Alerts in Info Bar.

The only way to turn off the red markers next to lines with errors is in the Preferences panel—
but you’ll also lose other useful functionality. Select the Code Hints category, and deselect the
“Object methods and variables” checkbox in the Menus section. This disables Dreamweaver’s
PHP and JavaScript knowledge engines, but as the name suggests, it also turns off code hints
for objects and variables. In my view, it’s a poor trade-off.

Although this real-time syntax checking is smart enough to spot something wrong with your
script, it won’t tell you what the problem is. That’s up to you. But knowing where to look for
the problem makes troubleshooting a whole lot easier.

 TIP: When you’re working on a long script, the syntax checker might not clear the error

markers immediately. Press Ctrl+./Cmd+. (period) to refresh syntax checking. You might also

need to do this when switching to Code view if the page was originally opened in Design view.

ptg7799847

22 LESSON : Why PHP and Why Dreamweaver CS5?

Dynamically related files
When you open a PHP file in Dreamweaver CS5, a narrow strip (the Info Bar) appears at the
top of the Document window. If you haven’t yet defined a testing server, the Info Bar provides
a link that opens the Site Setup dialog box (defining a site and testing server is covered in the
next lesson). Otherwise, it informs you that the page might have dynamically related files that
can only be discovered by the server.

By default, Dreamweaver displays only directly linked files in the Related Files toolbar. To
display dynamically related files, click the Discover link in the Info Bar. The first time you do
this, you will see a warning that Dreamweaver will execute any scripts included in the page.
This is just Adobe being ultracautious. All it means is that Dreamweaver will parse the PHP in
the same way as if you loaded the page into a web browser. Unless you want to see this warn-
ing every time you use dynamically related files, select the checkbox to not show the warning
again, and click OK.

Dreamweaver connects to your testing server (which needs to be running) and compiles a list
of dynamically related files. This might take a few seconds, depending on the complexity of
the page and your site. The dynamically related files are added to the Related Files toolbar in
the order they are discovered. If there are too many to fit, click the double chevron at the right
end to display a list of all the files.

Filtering dynamically related files: A basic WordPress site uses no fewer than 65 dynamically
related files, so you need to filter them to maintain your sanity. To do so, click the funnel-
shaped icon at the right end of the Related Files toolbar, as shown here.

You can toggle on and off the display of .css, .php, and .xml files. However, a WordPress site
has so many .php files, you need to narrow down the list to the ones you want, as follows:

ptg7799847

23A Tour of the Main PHP Features in Dreamweaver CS5

 Click the funnel-shaped icon at the right end of the Related Files toolbar, and choose
Custom Filter to open the Custom Filter dialog box.

 Type a list of files or filename extensions separated by semicolons into the text field. There
should be no space around the semicolons.

Using the Custom Filter disables the other filter options, so you need to include all the
files you want to work with. For example, the basic structure of a WordPress site consists
of index.php, header.php, sidebar.php, footer.php, and any style sheets.

Use this as your custom filter:

You can also use an asterisk as a wildcard character. For example, selects all files that
begin with wp.

 TIP: Unfortunately, there’s no way to save a custom filter setting. You need to type it in each

time. If you find yourself using the same filter regularly, save it in a text file to copy and paste

into the Custom Filter dialog box.

Setting Preferences for Related Files

By default, Dreamweaver searches for dynamically related files only if you tell it to do so.
If you want it to search for them automatically—or to disable the feature altogether—
you can do so in the Preferences panel.

1. Open Preferences by clicking the Preferences link in the Info Bar (it appears
only in pages for which dynamically related files have not yet been discov-
ered). Alternatively, choose Preferences on the Edit menu in Windows or the
Dreamweaver menu on a Mac, and then select the General category from the list
on the left.

2. The Enable Related Files checkbox controls all related files. If you deselect this
option, it disables the feature completely and removes the Related Files toolbar
from the top of the Document window.

3. Choose one of the three options in the Discover Dynamically-Related Files menu:
Automatically, Manually (default), or Disabled. If you want to disable dynamically
related files but keep directly related files, set the menu to Disabled but leave the
Enable Related Files checkbox selected.

ptg7799847

24 LESSON : Why PHP and Why Dreamweaver CS5?

Live View navigation
Live View is a browser within the Dreamweaver Document window. It uses the WebKit
browser engine, which also drives Safari and Google Chrome. Although you can’t edit a page
in Live View, you can use Split view and related files to edit the underlying code and styles,
and see the effect instantly in the Document window.

When it was introduced in Dreamweaver CS4, Live View made it a lot easier to see how
dynamic effects, such as rollovers, flyout menus, and CSS, would work. The big drawback was
that you could see only the current page. Links didn’t work, nor did any of the popular CMSs,
such as WordPress, Drupal, or Joomla!, that rely on dynamically related files.

All that has changed in Dreamweaver CS5. Live View now works like an ordinary browser—
well, almost. The only difference is that you need to hold down Ctrl/Cmd to follow a link.
There is an option on the Live View Options menu to follow links continuously, but this
applies only to the current page. You need to select it again for each new page.

 TIP: The Live View Options menu can also be accessed from the View menu. If you can’t see

the Browser Navigation Bar, choose View > Toolbars > Browser Navigation, or View > Live View

Options > Show Browser Navigation Bar.

What makes Live View so powerful in Dreamweaver CS5 is that it follows links wherever they
go, even if they lead to a live site on the Internet (assuming that you’re connected). Code view
also shows the source code for related files on external sites, although they are read-only.

In addition, you can log into password-protected pages. The following screen shot shows
the Dashboard of a WordPress site, which can be accessed only by submitting a username
and password.

Browser Navigation Bar Live View Options menu

ptg7799847

25What You Have Learned

The icons on the Browser Navigation Bar work like an ordinary browser with Back and
Forward arrows, Refresh, and Home—which takes you back to the page you originally loaded
into the Document window. The Address text field remembers the URLs of pages you have
loaded during the current session (but not those you have navigated to). This enables switch-
ing to another page without leaving Live View by simply clicking the down arrow at the right
end of the Address field and selecting the URL. You can also type the URL of a remote site in
the Address field to inspect it in Live View.

Live inspection of CSS layout
Yet another important new feature in Live View is CSS Inspect mode. Click the Inspect but-
ton on the Browser Navigation Bar, and mouse over the page. Dreamweaver highlights each
page element as you pass over it, showing elements in blue, padding in violet, and margins
in yellow.

Click the element in Live View to freeze the display. CSS Inspect mode combined with the
CSS Styles panel or a style sheet selected from the Related Files toolbar provides a powerful
way to inspect and edit CSS, particularly in a PHP site.

What You Have Learned
In this lesson, you have:

Seen how PHP builds web pages dynamically and communicates with a database
(pages 5–8)

Explored Dreamweaver’s tools that aid PHP development (pages 9–15)

Examined the improved support for PHP code hints in Dreamweaver CS5 (pages 15–20)

Seen the benefits of variable autocompletion and real-time syntax checking (pages 20–21)

Learned how to access and filter dynamically related pages (pages 22–23)

Seen how to navigate to other pages, including password-protected pages, in Live View
(pages 24–25)

ptg7799847

LE
SS

O
N

 2 What You Will Learn
In this lesson, you will:

Install a complete local testing environment, including a web server, PHP,
MySQL, and phpMyAdmin

Test the installation and make any necessary configuration changes

See how to create virtual hosts

Define a PHP site in Dreamweaver CS5

See how to edit and back up your site definitions

Approximate Time
The time taken to complete this lesson will vary considerably depending on your
setup and the choices you make. Allow yourself at least 2 hours.

Lesson Files
Media Files:

styles/examples.css

Starting Files:

None

Completed Files:

lesson02/site_check.php

lesson02/test.php

ptg7799847

27

LESSON 

Getting Ready to
Develop with PHP

PHP code needs to be processed by a web server. You can upload your pages to your remote

server to test them, but this is tedious and exposes all your mistakes in public. The solution is to cre-

ate a dedicated testing environment on your local computer that consists of four elements:

This is not as difficult as it sounds. All the necessary software is free.

MAMP installs everything you need to develop with PHP on Mac OS X.
Similar packages are available for Windows.

ptg7799847

28 LESSON : Getting Ready to Develop with PHP

Setting Up a Local Testing Environment
PHP’s roots lie in Linux, and it’s designed in a modular fashion. This allows server adminis-
trators to decide which features to enable, rather like choosing optional extras when you buy
a new car. The extra features normally need to be compiled into PHP at the time it’s built.
Compiling PHP from source requires specialist knowledge. Fortunately, all that has been
taken care of for you by several all-in-one packages that install not only PHP with a rich range
of features, but also a web server, MySQL, and phpMyAdmin.

Don’t be confused by the need for a web server. It doesn’t mean setting up a separate com-
puter. A web server is simply a piece of software that sits on a computer waiting for requests
for web pages and sends them back to a browser. MySQL is also a database server. Again,
it’s just a piece of software that responds to requests that query or alter the data stored in
the database. For a local testing environment, everything can be installed on your existing
computer. The servers normally run in the background, and consume very few resources.
However, you can also start and stop the servers manually if needed.

No particular hardware specifications are required. If your computer can run Dreamweaver
CS5, it’s more than adequate. The basic installation on Windows occupies about 250 MB. On
Mac OS X, you need roughly twice that amount of disk space. However, you also need space
to store your files and databases. If you allocate 1 GB, that should be fine.

In 99 percent of cases, installation is quick and trouble free. When things go wrong, it’s usu-
ally because you have previously tried and failed to install one or more of the components
manually. The other common cause of problems is a software conflict. A web server listens
for requests on port 80, and it can’t run if another program on your computer is already using
that port. If you can’t identify the other program, it’s a simple matter to switch the web server
to a different port for testing purposes.

After you have installed the software, it’s important to check that it’s working correctly and
that you have the right settings for a development environment. Finally, you need to define a
site in Dreamweaver and tell it where to find the testing server. The site setup process has been
simplified in Dreamweaver CS5.

Because the installation procedures might change during the lifetime of this book, it’s best
to follow the online instructions, because they will be updated to reflect any changes. The
options for Windows and Mac OS X are different, so I’ll deal with them separately.

NOTE: If you have a PHP testing environment that supports a minimum of PHP 5.2 and MySQL 5.0,

you’re already good to go. Just check that your configuration settings match the recommendations

in Table 2.1. If your versions are older, follow the instructions in Lesson 13 to export your existing

data from MySQL, and make sure everything is completely uninstalled before reinstalling.

ptg7799847

29Setting Up a Local Testing Environment

Options available for Windows
Windows users have the choice of several all-in-one packages or of integrating PHP into IIS.

Using an all-in-one package
The most popular all-in-one packages are

XAMPP. www.apachefriends.org/en/xampp-windows.html

WampServer. www.wampserver.com/en/

Easyphp. www.easyphp.org

All use the Apache web server, which powers more than half of the active domains on the
Internet. They also include PHP, MySQL, and phpMyAdmin. Some offer extra features, but
they are not required for this book.

You can find my detailed installation instructions for installing XAMPP online in the Adobe
Developer Connection at www.adobe.com/devnet/dreamweaver/articles/setup_php_02.html.

Integrating PHP with IIS
If you are already running IIS to develop with Active Server Pages (ASP) or ASP.NET, PHP
can also be easily integrated into IIS using the Microsoft Web Platform Installer (WPI). This
avoids a conflict with Apache trying to run on the same port as IIS. Details of how to obtain
and use the WPI can be found online in the Adobe Developer Connection at www.adobe.
com/devnet/dreamweaver/articles/setup_asp_02.html. If ASP or the .NET framework is
already installed, just follow the instructions for using the WPI to install PHP.

If you use IIS, you will also need to install MySQL and phpMyAdmin. Follow the instructions
at www.adobe.com/devnet/dreamweaver/articles/setup_php_03.html.

Options available for Mac OS X
Both Apache and PHP are preinstalled on Mac OS X. However, I do not recommend using
them. Neither is enabled by default, and the version of PHP is missing some important fea-
tures. You also need to install and configure MySQL and phpMyAdmin separately.

It’s far simpler to install MAMP, which you can download from www.mamp.info/en/index.
html. After downloading, just drag the MAMP icon from the disk image to your Applications
folder. You’ll find instructions on installing and configuring MAMP in the Adobe Developer
Connection at www.adobe.com/devnet/dreamweaver/articles/setup_php_04.html.

www.apachefriends.org/en/xampp-windows.html
www.wampserver.com/en/
www.easyphp.org
www.adobe.com/devnet/dreamweaver/articles/setup_php_02.html
www.adobe.com/devnet/dreamweaver/articles/setup_asp_02.html
www.adobe.com/devnet/dreamweaver/articles/setup_asp_02.html
www.adobe.com/devnet/dreamweaver/articles/setup_php_03.html
www.adobe.com/devnet/dreamweaver/articles/setup_php_04.html
www.mamp.info/en/index.html
www.mamp.info/en/index.html

ptg7799847

30 LESSON : Getting Ready to Develop with PHP

Checking Your PHP Installation
When you’re working with a PHP testing environment, there are two simple, yet important
concepts that you need to understand:

The web server’s document root

The URL for your testing environment

Both are directly related to each other. The document root (often called the server root) is
the physical location where your web files are stored. The URL is the address you enter in a
browser to test or view your pages. Remember that the PHP code needs to be processed, so
you can’t just open a file directly in the browser. It must always be accessed through a URL.

Locating the web server’s document root
The location of the document root depends on which method you chose to install PHP.
The default location for the most commonly used setups is as follows:

XAMPP. C:\xampp\htdocs

WampServer. C:\wamp\www

EasyPHP. C:\EasyPHP\www

IIS. C:\inetpub\wwwroot

MAMP. Macintosh HD:Applications:MAMP:htdocs

If you installed Apache independently on Windows or use the preinstalled version on a Mac,
the default location for the server root follows:

Windows 32-bit. C:\Program Files\Apache Software Foundation\Apache2.2\htdocs

Windows 64-bit. C:\Program Files (x86)\Apache Software Foundation\Apache2.2\htdocs

Mac OS X. Macintosh HD:Library:WebServer:Documents

Assuming that you installed your testing environment on the same computer as you’re work-
ing on, the URL for the document root is http://localhost.

NOTE: If you’re using MAMP and decide not to use the default Apache and MySQL ports,

you need to use http://localhost:8888.

http://localhost
http://localhost:8888

ptg7799847

31Checking Your PHP Installation

Testing PHP
If you installed PHP using an all-in-one package, you’ve probably already verified that PHP is
working by clicking the phpinfo link in the setup screen. This displays a long page of details
about your PHP configuration. If you see a page similar to the following screen shot, skip
ahead to “Understanding the PHP configuration page.”

 TIP: The information displayed by the configuration page is generated dynamically by a

function called , so it’s perfectly normal if your page doesn’t look exactly the same

as shown here.

If you didn’t use an all-in-one installation package, create a test page like this:

 In Dreamweaver, choose File > New. This opens the New Document dialog box.

 Select Blank Page, set Page Type to PHP, and set Layout to <none>. Click Create.

 In the blank page that opens, switch to Code view, and delete everything in the page.
You should be left with a completely blank file.

 Type the following code into the file:

If you typed the code correctly, the Info Bar should report “No syntax errors.”

ptg7799847

32 LESSON : Getting Ready to Develop with PHP

 Save the page as test.php in your server’s document root. For example, if you’re using IIS,
the page should be saved in C:\inetpub\wwwroot.

 Open a browser, enter http://localhost/test.php in the address bar, and load the page.
You should see a page similar to the one shown at the beginning of this section.

If the page fails to load, check the following:

Make sure there are no errors in your code. Copy lesson02/test.php to your server root,
and use that instead.

Make sure the web server is running.

Save an HTML page in the server root, and test it using the localhost URL. If the browser
displays the HTML page but not test.php, the problem lies with how PHP has been installed.

Try a different browser. Your browser’s security settings might be set too high to permit
dynamic scripts to run locally.

Turn off any firewall or security software temporarily. If that does the trick, adjust your
firewall settings to allow local communication on port 80.

CAUTION! Ensure that you allow access to port 80 only from the same computer or your

local network. Permitting unrestricted access to port 80 is a security risk.

If all else fails, seek help in an online forum, giving details of your setup and any error
messages that appear onscreen.

Understanding the PHP configuration page
When you first start working with PHP, the details displayed by are nothing short
of information overload. However, it’s the first place you should check if your PHP scripts
don’t work as expected.

One of the most important pieces of information—Loaded Configuration File—is close to the top.
This tells you where to find php.ini, the file that must be edited if any settings need to be changed.

 TIP: If you have previously installed PHP manually, it’s possible that an old version of php.ini is

being loaded. Always check Loaded Configuration File before editing php.ini. Otherwise, you

could be making changes to a file that is being ignored by the web server.

http://localhost/test.php

ptg7799847

33Checking Your PHP Installation

The information displayed by is split into sections. Most relate to the different
extensions that have been loaded or compiled into PHP. The most important section is PHP
Core (in some versions, it’s just Core). It contains nearly 100 settings. Most of the defaults are
fine, but you need to check a handful of settings against the recommendations in Table 2.1.

Table 2.1 Recommended Testing Server Settings for PHP Core

Directive Local Value

On

Off

On

32767 (PHP 5.3) or 6143 (PHP 5.2)

On

Off

Off, but see “Deciding to use or not to use ‘magic quotes’”

Off

Off

Off

Off

See “Setting a temporary upload directory”

The purpose of and is to control how PHP handles
files accessed on another server. It’s often very useful to access a remote file, for example, to
extract the contents of a news feed or get details from an online weather service. That’s why

 is turned on by default (the f in stands for file). After opening the file,
you are expected to process the content—including any security checks—before incorporating
it into your own pages. However, including a remote file directly into a page or script without
first checking it is potentially very dangerous, so is turned off by default—
and should stay off. Security online is of paramount importance, so take a minute or so to
read the sidebar “Security Should Be Your Top Priority.”

Make a note of any settings that are different from those recommended in Table 2.1. Before
explaining how to change them, I’ll describe the purpose of some of them to help you decide
which setting to use.

ptg7799847

34 LESSON : Getting Ready to Develop with PHP

Security Should Be Your Top Priority

In the early days of PHP, the emphasis was on making things easy, which was why PHP
became so popular. Unfortunately, making things easy for the developer also made it
too easy for malicious attackers to exploit security loopholes. In recent years, PHP has
tightened up security considerably—without sacrificing too much of the emphasis on
the ease of development.

You might see recommendations in old books or online tutorials to turn on
 because it makes it easier to handle user input from forms.

Under no circumstances should you do so. This was one of the biggest security loop-
holes in PHP. The setting was turned off by default in 2002, but many hosting com-
panies turned it back on because it broke so many scripts. Fortunately, this trend has
reversed, and will be removed from the next major version of PHP.
So, even if you turn on this directive locally, your scripts will probably break online.

In the interests of security, you need to eliminate all errors from your scripts. That’s
why should be turned on and set to the highest level
in your local testing environment. PHP 5.3 introduced new categories of errors, which
is why the value differs from PHP 5.2. I recommend turning off to avoid
clogging up your disk with a large log file. It’s much easier to deal with errors if they’re
displayed onscreen.

On a live website, displaying error messages gives attackers potentially useful informa-
tion, so should be turned off. Nowadays, most hosting companies do
this, but some don’t, which is why local testing is so important. If is
turned off, a mistake in your script frequently presents you with a blank screen, leaving
you to scratch your head wondering what the problem is. If your hosting company gives
you control of php.ini, the settings on your live website should be ,
and .

If security is so important, why turn off ? Like , it was an
early attempt to make things simple. It was well intentioned but didn’t work as well as
intended. It will be removed from the next major version of PHP.

ptg7799847

35Checking Your PHP Installation

Deciding to use or not to use “magic quotes”
The directive controls another misguided early attempt to make things easy
for beginners. When this directive is turned on, PHP automatically inserts a backslash in front
of single or double quotation marks submitted through a URL or online form. The idea of
adding the backslashes was to prevent problems when inserting text into a database.

It was eventually realized that this caused more problems than the one it was intended to
solve. As a result, is turned off by default in a new installation of PHP,
and the directive is scheduled for removal. However, many scripts have been written on the
assumption that PHP will insert backslashes in front of quotation marks, so a lot of hosting
companies turn the setting back on. Consider the following scenarios:

If is off on your remote server, make sure it’s off locally as well.

If is enabled on your remote server, and your hosting company allows
you to change your own settings, turn it off on both servers.

If your hosting company lets you control settings with an file, turn off
 locally, and add the following line to in the site root

of your remote server:

If is enabled on your remote server, and you have no way of turning
it off, set the local value to “on.”

Setting a temporary upload directory
When uploading files, PHP stores them in a temporary directory (folder) before you move
them to their final destination. The all-in-one packages automatically create the necessary
folder. However, you should check the value displayed for , and make sure that
a folder actually exists at the location indicated. If no folder exists, create one, and make sure
it is writable by the web server.

NOTE: If you’re using IIS, right-click the folder, and choose Properties. Select the Security tab,

and click Edit. Add the IUSR account to the “Group or user names” section. In IIS7, the account is

called IIS_IUSRS. Give the account the following permissions: Read & execute, Read, and Write.

It doesn’t matter where the folder is. As the name suggests, it is used only for temporary storage.
As soon as the file has been moved to its ultimate location, PHP deletes the temporary file.

ptg7799847

36 LESSON : Getting Ready to Develop with PHP

Checking other configuration settings
To work with this book, make sure the following sections are listed in the PHP configuration page:

date. This controls date and time functions, automatically adjusting for time zones and
daylight saving time.

filter. Filter functions are used for validating email addresses and other user input. They
were added in PHP 5.2.

gd. This enables PHP to generate and modify images and fonts.

mysql. PHP 5 offers several ways of supporting MySQL. This is the original one, which is
used by Dreamweaver’s PHP server behaviors.

mysqli. This is a more recent way of connecting to MySQL. The “i” stands for improved.
It requires a minimum of PHP 5.0 and MySQL 4.1.

PDO. PHP Data Objects offer a software-neutral way of connecting to a database.
Unlike mysql and mysqli, which are tied to MySQL, PDO can be used with a wide
range of databases.

pdo_mysql. This is the MySQL driver for PDO.

session. Sessions maintain information connected to a user, for example, in a login
system or shopping cart.

In the “date” section, make sure “Default timezone” is appropriate for your location.
If it’s wrong, you need to replace it with one of the values listed at http://docs.php.net/
manual/en/timezones.php.

Also, check the value of in the “sessions” section. It needs to point to a
folder that exists and is writable. If it has no value or points to a nonexistent folder, you need
to change the setting. The location of the folder is not important. It will be used by PHP to
store temporary files similar to cookies.

You should now have a list of configuration settings that need changing. If there’s nothing on
the list, you’re good to go, but it’s still useful to know how to change your PHP configuration,
which the next section explains.

Changing configuration settings
Most configuration changes can be made simply by editing php.ini. Each time the web server
starts, it reads this file. So, all you need to do is restart your web server after editing php.ini,
and your changes should take effect immediately. Editing php.ini is easy. It’s written in plain

http://docs.php.net/manual/en/timezones.php
http://docs.php.net/manual/en/timezones.php

ptg7799847

37Checking Your PHP Installation

text, so you can edit it with any text editor, such as Notepad or TextEdit. However, it’s impor-
tant to save the file as plain text and preserve the filename and extension.

Editing php.ini

In Windows 7 or Vista, if your version of php.ini is in a subfolder of Program
Files, you will not be able to save any changes to the file if you open it directly in
Notepad. In the Windows Start menu, right-click Notepad, and choose “Run as admin-
istrator.” In Notepad, choose File > Open, and set File Types to All (*.*) to navigate to
php.ini and open it.

TextEdit in Mac OS X has a nasty habit of saving files in Rich Text Format (files) or
adds a filename extension if you’re not careful. It’s better to use a dedicated script
editor, such as BBEdit. If you don’t have a dedicated script editor, you can download
TextWrangler, a free, cut-down version of BBEdit, from www.barebones.com/products/
TextWrangler/.

Newcomers to PHP often take fright the first time they open php.ini. It’s an extremely long
document: Depending on which version of PHP you have installed, it might be more than
1,800 lines. The reason it’s so long is not only because it covers numerous settings, but also
because it contains detailed explanations of what the settings are for.

The best way to deal with php.ini is to make a list of the settings you want to change, and then
use the Find option in your script editor to move quickly to the appropriate section of the file.
Everything should go smoothly as long as you remember the following:

Make a copy of php.ini as a backup in case anything goes wrong.

Lines that begin with a semicolon () are comments. They are ignored by PHP.

The lines you need to edit do not begin with a semicolon.

A few directives are disabled by default. In these cases, you need to delete the semicolon
at the beginning of a line to enable the directive.

The comments in php.ini show several example settings. Before deleting the semicolon
at the beginning of a line, always make sure there isn’t another line farther down that
contains the actual directive. If the same directive is repeated in php.ini, the lower one
takes precedence.

www.barebones.com/products/TextWrangler/
www.barebones.com/products/TextWrangler/

ptg7799847

38 LESSON : Getting Ready to Develop with PHP

For those directives that use On or Off, all you need to do is to change the value to the recom-
mended one. For example, if is turned off, locate the following line:

Change it to this:

Setting the level of error reporting
PHP gives you a high degree of control over the types of errors it reports. Older versions of
PHP used to turn off the reporting of “notices,” which are warnings about noncritical errors
that don’t prevent your script from working. It’s now recognized that this was a bad idea,
because failure to fix such errors can leave you exposed to security risks. You should set error
reporting to the highest level, and make sure you eliminate all errors before deploying a PHP
script on a live website.

The error reporting section of php.ini contains a lot of examples. Locate the line that begins
like this:

If you are running PHP 5.3 or later, use the following setting:

If you are running PHP 5.2, use this:

CAUTION! PHP is case sensitive. and must be all uppercase. The character

between and in the setting for PHP 5.3 and later is a vertical pipe (). On most

keyboards, you type it by holding down the Shift key and pressing backslash ().

Enabling other PHP extensions
The section “Checking other configuration settings” lists several PHP extensions needed for
working with this book. All of them should be enabled by default if you used one of the all-in-
one installation packages or used the Microsoft WPI to integrate PHP into IIS.

NOTE: PHP extensions are optional features written in the C programming language that

normally need to be compiled into PHP. They are not related to Dreamweaver extensions.

ptg7799847

39Checking Your PHP Installation

If you used a different installation or want to use other PHP features later, it’s useful to know
how to enable extra extensions. Unfortunately, this works on Windows only. On a Mac, extra
extensions need to be compiled from source, a subject that is beyond the scope of this book.

Let’s say, for example, that you want to work with the PostgreSQL database. If it’s not already
enabled, locate the Dynamic Extensions section in php.ini, and then find the following lines:

Remove the semicolon from the beginning of each of those lines to enable them. You must
also check that the appropriate files are in your PHP extensions folder. The location of
the folder is listed as the value of in the Core or PHP Core section of the PHP
configuration page.

If you don’t have the right files, you can extract them from the Zip version of the PHP
Windows binaries at http://windows.php.net/download/.

Activating configuration changes
After you have edited and saved php.ini, restart your local web server (Apache or IIS). Reload
the PHP configuration page to check that it reflects your changes.

If your web server refuses to start, check the error log:

In XAMPP, it’s located at C:\xampp\apache\logs\error.log.

In WampServer, click the WampServer icon, and access the Apache log from the menu.

In Easyphp, right-click the icon in the task tray, and choose Log Files from the menu.

If you installed Apache independently in Windows, the log is located at C:\Program
Files\Apache Software Foundation\Apache2.2\logs\error.log. For 64-bit Windows,
replace Program Files with Program Files (x86).

In MAMP, the log is located at Macintosh HD:Applications:MAMP:logs:apache
_error_log.

If you are using the preinstalled version of Apache on a Mac, choose Applications >
Utilities > Console. Any error message should be displayed at the bottom of
Console Messages.

For help with IIS errors, see http://msdn.microsoft.com/en-us/library/ms524984.aspx.

http://windows.php.net/download/
http://msdn.microsoft.com/en-us/library/ms524984.aspx

ptg7799847

40 LESSON : Getting Ready to Develop with PHP

Using Virtual Hosts
After you have installed your local PHP testing environment and confirmed that it’s working,
you’re ready to start developing dynamic websites with PHP. However, the default setup for a
web server allows you to create only one website. Since most people usually develop or main-
tain more than one site, there are two ways you can handle this:

Create each new site in a subfolder of the server’s document root. This is the simplest
approach because it involves no further setup. However, it prevents you from using links
relative to the site root. See the sidebar “Using Links Relative to the Site Root” for an
explanation of the implications of this.

Create a virtual host for each site. This is how hosting companies manage shared host-
ing. It takes a little extra time to set up but has the advantage of providing a unique local
domain for each site.

Using Links Relative to the Site Root

Internal links in a website can be created in two ways:

Relative to the document. You can recognize this type of link in Code view by
the fact that the attribute contains only the name of the file if it’s in the same
folder. If the file is in a folder at a different level, the path to the file often begins
with , which indicates that the path begins one level up from the current folder.

Relative to the site root. This type of link always begins with a forward slash,
which represents the root folder, and is followed by the full path to the file.

By default, Dreamweaver creates links relative to the document, and it generates the
correct link format. You can change this default either for an entire site or on an indi-
vidual basis for each link.

In most cases, it doesn’t matter which type of link you use. The exception is when you
break your pages into modules and use PHP includes (SSI), for example, if you put your
navigation menu into a separate file and include it in every page. Because the menu is
likely to be included by files at different levels of the site hierarchy, links must be relative
to the site root.

If you develop your site in a subfolder of the server’s document root, you can’t test your
menu locally. This problem doesn’t exist if you create a virtual host for each site.

ptg7799847

41Using Virtual Hosts

Although creating a virtual host for each site does have advantages, it’s not absolutely essen-
tial. I use both approaches in my local testing environment.

The following sections describe how to create virtual hosts. If you don’t want to bother with
virtual hosts at this stage, skip ahead to “Setting Up a PHP Site in Dreamweaver CS5.”

NOTE: IIS on Windows XP supports only virtual directories, which are treated as subfolders

of the server root. If you are running Windows XP, you must use Apache if you want to create

virtual hosts.

Creating virtual hosts
Creating virtual hosts consists of two stages:

Editing your computer’s hosts file

Registering the virtual hosts in the web server

The hosts file tells your computer to look for certain domain names on your local system.
When choosing names for virtual hosts in your testing environment, it’s essential to avoid
using the name of a real domain. Otherwise, your browser will always show the local version
of the site rather than the live one on the Internet.

The naming convention that I use removes the top-level domain name. My main website is
foundationphp.com. So, the domain name for local testing is just foundationphp. The advantage
of using this technique is that you can easily edit the URL in the address bar of your browser,
adding or removing the .com to switch between the live site and the local testing version.

The following sections describe the process of creating a virtual host on Windows and
Mac OS X.

CAUTION! Editing the various files needed to set up virtual hosts is very easy, but it’s important

to pay attention to spelling. The Apache directives are case sensitive and use hybrid words,

such as . Incorrect spelling or spaces will prevent Apache from running. Pay careful

attention to detail, and don’t rush. Once you have learned how to do this, it should take only a

few minutes to add new virtual hosts to your local testing environment.

ptg7799847

42 LESSON : Getting Ready to Develop with PHP

Setting up virtual hosts on Windows
The hosts file is located in the Windows system files, so you need administrator privileges to
edit it. These instructions apply to both Apache and IIS7:

 From the Windows Start menu, choose All Programs > Accessories, and right-click
Notepad. Choose “Run as administrator.”

 Choose File > Open, and navigate to C:\Windows\System32\drivers\etc.

 Choose the option to display All Files (*.*), select “hosts,” and click Open.

 The hosts file contains a brief description of its purpose and some examples. Lines that
begin with a hash or number sign () are treated as comments.

List the IP address and name of each virtual host on a separate line at the bottom of the
file. The loopback IP address for your local computer is .

The first entry should be for localhost. So, if you want to create a virtual host called
“phpcs5” for this book, the list at the bottom of the file should look like this:

 Check if your version of hosts contains the following entry:

This line can prevent virtual hosts from working correctly. Comment out the line by
preceding it with a hash like this:

 Save and close the hosts file.

Registering virtual hosts in Apache on Windows
Before registering a virtual host in Apache, you need to decide where you want to store your
virtual host files. I normally create a folder called “vhosts” at the top level of my drive and
create each virtual host in a subfolder. The following instructions assume that your virtual
host is called phpcs5:

 Create the folder for your virtual host at C:\vhosts\phpcs5.

 Open the main Apache configuration file httpd.conf in Notepad.

In XAMPP, it’s located at C:\xampp\apache\conf\httpd.conf.

ptg7799847

43Using Virtual Hosts

 Scroll to the bottom of the file to locate the following directive:

Lines that begin with a hash sign () are commented out. If there’s a hash sign at the
beginning of the line, delete the hash sign to enable the directive.

 Save httpd.conf and close the file.

 Open httpd-vhosts.conf in Notepad.

In XAMPP, it’s located at C:\xampp\apache\conf\extra\httpd-vhosts.conf.

 This file contains examples of how to define virtual hosts. If the examples are not com-
mented out, delete them or add a hash sign at the beginning of each line to disable them.

 Add the following code at the bottom of the file:

This sets the correct permissions for the folder that contains the sites you want to treat as
virtual hosts. If you chose a location other than C:\vhosts as the top-level folder, change
the value in the first line. Notice that the pathname uses forward slashes rather than the
Windows convention of backslashes. Surround the pathname in quotation marks if it
contains spaces.

 Locate the following directive:

Enable the directive by removing any hash signs at the beginning of the line.

 Because virtual hosts replace the existing setup, you need to create a virtual host for local-
host. Add the following code at the bottom of the file:

The value of should point to your existing server root. Change the value
as appropriate.

ptg7799847

44 LESSON : Getting Ready to Develop with PHP

 Do the same for your virtual host, using the appropriate values for and
. To set up phpcs5 as a virtual host at C:\vhosts\phpcs5, use the following:

 Save httpd-vhosts.conf, and restart Apache. You should still have access to http://localhost.
Any files that you store in C:\vhosts\phpcs5 will be accessible through http://phpcs5.

Registering virtual hosts in IIS7
Creating a new website in the Internet Information Services (IIS) Manager is the equivalent of
creating a virtual host.

 From the Windows Start menu, choose Control Panel > Administrative Tools > Internet
Information Services (IIS) Manager.

 Expand the tree menu in the Connections panel on the left, if necessary, and select Sites.

 Right-click and choose Add Web Site to open the Add Web Site dialog box.

 Type a name for the site in the “Site name” text field.

 Click the button next to the “Physical path” text field to choose the folder where the files
for the virtual host will be stored.

ptg7799847

45Using Virtual Hosts

 Type the name of the virtual host in the “Host name” text field.

 Click OK. Your virtual host is ready for use.

Creating virtual hosts on Mac OS X
The simplest way to create virtual hosts on Mac OS X is to use MAMP PRO, the commercial
version of MAMP, which automates the process. You can also do it manually.

Using MAMP PRO
Everything is done through the MAMP PRO console.

 Click the Hosts button at the top left of the console, and then click the plus (+) button at
the bottom left.

 Type a name for the virtual host in the Server Name text field.

 Click the Choose button under the “Disk location” text field, and navigate to the location
where you want to store the virtual host files, creating a new folder, if necessary.

 Click the Apply button.

 Click OK when prompted to restart the servers.

ptg7799847

46 LESSON : Getting Ready to Develop with PHP

Adding virtual hosts manually
If you don’t want to purchase the commercial version of MAMP, you can edit the hosts file
and the Apache configuration file manually. The hosts file is a hidden file, but you can edit it
easily in BBEdit or TextWrangler (see the sidebar “Editing php.ini” earlier in this lesson).

 TIP: The preinstalled version of Apache in Mac OS X uses a different setup. If you’re using the

preinstalled version, follow the instructions at http://foundationphp.com/tutorials/vhosts_

leopard.php. They were written for Mac OS X 10.5 but also apply to 10.6.

 In BBEdit or TextWrangler, choose File > Open Hidden.

 In the Open dialog box, set Enable to Everything or All Files. If there’s an option to show
hidden files, make sure it’s selected.

 Select Macintosh HD:private:etc:hosts, and click Open to open the hosts file.

 The IP address and name of each virtual host needs to be listed on a new line at the
bottom of the file.

Type (this is the loopback IP address that refers to your local computer)
followed by one or more spaces and the name of the virtual host:

As soon as you start typing, you will see a warning that the document is owned by “root.”
Click Unlock to confirm that you want to edit the file.

 Save and close the hosts file. Because it’s a system file, you will be asked to enter your Mac
administrator’s password to confirm the changes.

 The next file you need to edit is the Apache configuration file httpd.conf. It’s not hidden,
so just choose File > Open, and select .

 Scroll to the bottom of the file and locate the following line:

Delete the hash sign at the beginning of the line.

 Because virtual hosts replace the existing setup, you need to create one for localhost and one
for each virtual host that you want to add. Add the following code at the bottom of the file:

http://foundationphp.com/tutorials/vhosts_leopard.php
http://foundationphp.com/tutorials/vhosts_leopard.php

ptg7799847

47Setting Up a PHP Site in Dreamweaver CS5

For each virtual host, the value of is the location of the folder that contains
the site, and is the name of the virtual host. The preceding example assumes
you are calling the virtual host “phpcs5,” and that the files are in a folder called “phpcs5”
in your personal Sites folder (replace with the name of your Mac home folder).
If any of the folder names contain spaces, wrap the path in quotation marks.

 Save and close httpd.conf. When you restart Apache, you should still have access to
http://localhost. Any files that you store in the phpcs5 folder will be accessible through
http://phpcs5.

Setting Up a PHP Site in Dreamweaver CS5
Dreamweaver works on the basis of creating an exact copy of your website on your local
computer. So, before you can do anything else, you need to tell the program a few basic details
about the site. This process has been simplified in Dreamweaver CS5. All you need to do to get
going is to give the site a name and tell Dreamweaver where you want to store the files on your
local computer. Everything else can wait until you need it. However, for a PHP site, it’s a good
idea to define the testing server at the same time.

In theory, you can locate your PHP files anywhere on your computer, and Dreamweaver will
copy them to the testing server whenever you use Live View or Preview in Browser. However,
this results in two identical copies of every file; instead, it makes more sense to store your
project files in the testing server’s document root. You also need to tell Dreamweaver the URL
of the testing server.

Both pieces of information depend on whether you chose to create a virtual host for the exer-
cises in this book.

Using a virtual host
If you decided to create a virtual host, store your files in the folder you chose as the server root
for the phpcs5 virtual host.

The URL will be http://phpcs5/.

ptg7799847

48 LESSON : Getting Ready to Develop with PHP

Using a subfolder of the server root
If you decided not to create a virtual host, the local site folder and testing server folder will be
a subfolder of your server root:

In XAMPP. C:\xampp\htdocs\phpcs5

In WampServer. C:\wamp\www\phpcs5

In Easyphp. C:\EasyPHP\www\phpcs5

In an independent Apache installation on Windows. C:\Program Files\Apache Software
Foundation\Apache2.2\htdocs\phpcs5—add (x86) after Program Files for 64-bit Windows

In IIS. C:\inetpub\wwwroot\phpcs5

In MAMP. Macintosh HD:Applications:MAMP:htdocs:phpcs5

In the preinstalled Apache on Mac OS X. Macintosh HD:Library:WebServer:
Documents:phpcs5

The URL will be http://localhost/phpcs5/.

Creating the site definition
Use the following instructions to set up your PHP site for this book:

 In Dreamweaver CS5, choose Site > New Site to open the Site Setup dialog box.

http://localhost/phpcs5/

ptg7799847

49Setting Up a PHP Site in Dreamweaver CS5

If you’ve used a previous version of Dreamweaver, you’ll notice that the Basic and
Advanced tabs (buttons on a Mac) have been eliminated.

 In the Site Name text field, type a name for the site, for example, PHP CS5. This name
is used internally by Dreamweaver to identify the site in the Files panel, so it should be
descriptive and can contain spaces.

 Click the “Browse for folder” icon next to the Local Site Folder text field, and select the
folder where you will store the files for your site.

At this stage, you could just click OK, but it’s best to set up the testing server at the
same time.

 Click Servers in the list on the left of the Site Setup dialog box to display the panel where
you define the server(s) that you want the site to connect to.

NOTE: Although the instructions at the top of the panel refer to the server that will host your

pages on the web, this is also where you define the settings for a local testing server.

ptg7799847

50 LESSON : Getting Ready to Develop with PHP

 Click the plus (+) button at the bottom left of the panel to open another panel where you
define the settings for the testing server.

 In the Server Name text field, type a descriptive name for the server, such as Testing
Server.

 Click the “Connect using” menu to view the options. For a local testing server,
choose Local/Network to reduce the remaining text fields to just two: Server Folder
and Web URL.

 In the Server Folder text field, select the same folder as you used for Local Site Folder
in step 3.

 In the Web URL field, enter the URL for your local testing server. Make sure it ends with
a trailing slash.

The following screen shot shows the settings for a virtual host called “phpcs5” located in
C:\vhosts\phpcs5.

Use the appropriate values for whichever type of setup you’re using.

ptg7799847

51Setting Up a PHP Site in Dreamweaver CS5

 Click the Advanced button at the top of the dialog box to reveal separate sections for a
remote server and a testing server.

 Click the Server Model menu in the Testing Server section at the bottom of the dialog
box, and choose PHP MySQL.

Click Save.

 The testing server should now be listed in the Servers panel. Make sure the Remote
checkbox is deselected and the Testing checkbox is selected.

Now that a server has been defined and is selected, the other buttons at the bottom of the
panel become active. As the screen shot on the next page shows, the buttons allow you to
add a new server and delete, edit, or copy the selected server.

ptg7799847

52 LESSON : Getting Ready to Develop with PHP

Add server

Delete Edit

Copy

 Click Save to close the Site Setup dialog box.

Setting up multiple servers
If you’ve used a previous version of Dreamweaver, you’ll have noticed that a major difference
in CS5 is that there are no longer separate panels for defining your remote and testing servers.
The Servers panel in the Site Setup dialog box lets you add as many servers as you like. This
is mainly for the benefit of developers working in a team environment, where the individual
developer might need access to more than one testing server—for example, one for initial tests
and experiments, and another shared with the rest of the team for testing the entire website
before it goes live.

The role of the server is determined by two items:

The settings in the Advanced view of the server definition

The checkbox selected in the Servers panel

ptg7799847

53Setting Up a PHP Site in Dreamweaver CS5

The main difference between selecting the Remote or Testing checkbox is that Dreamweaver
normally transfers files automatically to a testing server but expects you to initiate the upload to
a remote server. Setting up and communicating with a remote server is covered in Lesson 13.

NOTE: Although you can define multiple remote and testing servers, you can use only one of

each at any given time. You cannot, for example, select the Remote checkbox for two servers

and expect Dreamweaver CS5 to upload to both of them. The current version of Dreamweaver

can access only one server at a time.

Testing your testing server
The final stage in preparing your local testing environment is making sure that the testing
server works:

 Copy the sample files for this book into the folder you designated as the Local Site Root.

 In the Dreamweaver Files panel, expand the lesson02 folder, and double-click site_check.php
to open it in the Document window.

 Click the Live View button. If everything is working OK, you should see a short message
followed by the current time.

ptg7799847

54 LESSON : Getting Ready to Develop with PHP

Don’t worry if there’s a slight delay. It usually takes Dreamweaver a few seconds to connect
to the testing server the first time you use Live View after launching the program. On subse-
quent occasions, Live View normally displays the output of the testing server immediately.

 Click the Live View button again to turn it off.

If everything worked, you’re all set to start developing with PHP in Dreamweaver CS5.

If you got a blank screen or error message, check the troubleshooting hints in the
next section.

Troubleshooting the testing server
If the test page failed to display correctly in Live View, try the following:

Check that your local web server is running.

Press F12/Opt+F12 to preview the page in a browser. If the page works in a browser but
not in Live View, turn off any security software and try Live View again. It’s possible that
the security software is blocking access between the web server and Dreamweaver.

Check the settings for Server Folder and Web URL in the Site Setup dialog box (see the
next section, “Editing a site definition”). This is the most common mistake with setting
up a testing server.

Both fields must point to the same folder: Server Folder is the physical path; Web URL is
the address a browser uses to get to the same folder.

Editing a site definition
If you have made a mistake or need to change any details of your site definition, you can open
the Site Setup dialog box easily by choosing Site > Manage Sites. In the dialog box that opens,
select the name of the site you want to modify, and click the Edit button.

To edit the definition of a remote or testing server, select Servers from the list on the left
of the Site Setup dialog box. Then select the server you want to edit, and click the Edit
icon (it looks like a pencil).

Select Version Control from the list on the left to set up a Subversion repository. Using
Subversion is not covered in this book.

Click the right-facing triangle next to Advanced Settings to reveal the other categories.
The only section of interest to most people is Local Info.

ptg7799847

55Setting Up a PHP Site in Dreamweaver CS5

Use the “Default Images folder” text field to define the default location for the site’s
images. Dreamweaver automatically copies images to this folder whenever you select an
image outside the site root.

Use the “Links relative to” radio buttons to set the default type of links for your site (see
the “Using Links Relative to the Site Root” sidebar earlier in this lesson).

CAUTION! If you select the option to use links relative to the site root, Dreamweaver uses a

nonstandard function () for PHP includes. This works only on Apache and can cause

problems with some server behaviors. If you plan to make extensive use of Dreamweaver server

behaviors, it’s more advisable to use the default setting of links relative to the document and

override this setting for individual links that need to be relative to the site root.

By default, the “Case-sensitive links checking” checkbox is deselected. Since most PHP
sites are hosted on Linux servers, which are case sensitive, it would seem like a good idea to
enable this option. However, it’s not as useful as it sounds, because it checks the letter case of
internal links only when you run the Check Links Sitewide command from the Site menu.

Enable Cache is selected by default. As the description beneath the checkbox explains,
this speeds up certain features within Dreamweaver. The only reason for deselecting this
option is if you have a site with a very large number of files. Once your site gets beyond a
certain limit—the actual size depends on the amount of memory available on your com-
puter—the cache has the opposite effect of slowing down Dreamweaver’s responsiveness.

ptg7799847

56 LESSON : Getting Ready to Develop with PHP

Click the Help button for details about the other options in the Site Setup dialog box.

When you have finished editing the site definition, click Save. Then click Done to close the
Manage Sites dialog box.

Backing up and restoring site definitions
Computers and software occasionally fail, sometimes catastrophically. If you have more than
a handful of sites, it’s a major headache to set them up again in Dreamweaver after a crash
unless you have taken the precaution of backing up your site definitions. Dreamweaver makes
it easy to export the details of your sites to files, which you should store in a safe location.
If you suffer a crash—or simply want to move the definitions to another computer—you can
restore the site definitions from the files.

Here’s how you do it:

 Choose Site > Manage Sites to open the Manage Sites dialog box.

 Shift-click or Ctrl/Cmd-click to select the sites for which you want to back up the definitions.

 Click the Export button.

If any of your site definitions contain login information, Dreamweaver asks if you
want to export the usernames and passwords. Your choice applies to all site definitions
being exported.

 Select a location to store the backup files. Just accept the name suggested by
Dreamweaver, and click Save.

Dreamweaver creates a separate file for each site definition. This is an XML file that con-
tains the details stored in the Site Setup dialog box.

If you ever need to restore your site definitions or move them to a different computer,
choose Site > Manage Sites, click the Import button, and select the files of the sites you
want to restore.

CAUTION! The Manage Sites dialog box handles only the site settings, such as server details

and the location of files. It does not create a backup of the files within a site. You need to

do that separately. Similarly, selecting a site and clicking the Remove button removes only

the site definition. It does not delete the site files from your computer. Back up your site

definitions regularly. On Windows, they’re stored in the Windows Registry, so restoring

them is impossible without a backup. On Mac OS X, you can recover them from a copy of

Macintosh HD:<username>:Library:Application Support:Adobe:Common:11:Sites:Site Prefs.

ptg7799847

57What You Have Learned

What You Have Learned
In this lesson, you have:

Installed and tested a local PHP development environment consisting of a web server,
PHP, MySQL, and phpMyAdmin (pages 28–32)

Checked and changed the configuration settings, if necessary (pages 32–39)

Learned the difference between links relative to the document and links relative to the
site root (page 40)

Seen how to create virtual hosts (pages 40–47)

Defined and tested a PHP site in Dreamweaver CS5 (pages 47–54)

Seen how to edit, back up, and restore site definitions (pages 54–56)

Where you go from here depends on your experience and interests. The next lesson provides
an introduction to the most important features of PHP for the benefit of readers who are new
to the subject or those who need a refresher. If you’re familiar with PHP, you can jump ahead
to Lesson 4 to experiment with WordPress.

ptg7799847

LE
SS

O
N

 3 What You Will Learn
In this lesson, you will:

See how to embed PHP code in a page and store values in variables and arrays

Discover how PHP gathers information from an online form

Explore the use of conditional statements to make decisions

Learn about functions, objects, and resources

See how PHP handles arithmetical calculations

Explore the use of loops for repetitive tasks

Include external files into a web page

Decode the mysteries of PHP error messages

Approximate Time
The time required for this lesson depends on your previous experience. Don’t
attempt to memorize everything on a first read through; instead, refer back to this
lesson when you need to refresh your understanding of PHP.

Lesson Files
Media Files:

images/birds_of_a_feather.jpg
styles/examples.css
styles/include_examples.css

Starting Files:

lesson03/start/includes_start.php
lesson03/test_includes/year_01.inc.php

Completed Files:

lesson03/completed/function_01.php
lesson03/completed/function_02.php
lesson03/completed/function_03.php

ptg7799847

59

lesson03/completed/function_04.php
lesson03/completed/function_05.php
lesson03/completed/function_06.php
lesson03/completed/function_07.php
lesson03/completed/get_01.php
lesson03/completed/get_02.php
lesson03/completed/includes_01.php
lesson03/completed/includes_02.php
lesson03/completed/includes_03.php
lesson03/completed/includes_04.php
lesson03/completed/includes_05.php
lesson03/completed/includes_06.php
lesson03/completed/includes_07.php
lesson03/completed/includes_08.php
lesson03/completed/loops_01.php
lesson03/completed/loops_02.php
lesson03/completed/loops_03.php
lesson03/completed/loops_04.php
lesson03/completed/loops_05.php
lesson03/completed/loops_06.php
lesson03/completed/loops_07.php
lesson03/completed/post_01.php
lesson03/completed/post_02.php
lesson03/completed/post_03.php
lesson03/completed/post_04.php
lesson03/completed/quotes_01.php
lesson03/completed/quotes_02.php
lesson03/completed/quotes_03.php
lesson03/completed/quotes_04.php
lesson03/completed/quotes_05.php
lesson03/completed/strings_01.php
lesson03/completed/strings_02.php
lesson03/completed/strings_03.php
lesson03/completed/time.php
lesson03/test_includes/header_01.html
lesson03/test_includes/header_02.html
lesson03/test_includes/year_02.inc.php
lesson03/test_includes/year_03.inc.php

ptg7799847

60

LESSON 

A Quick Crash Course
in PHP

PHP makes a website dynamic through the ability to organize and manipulate information
drawn from various sources, such as an online form, database, or even another website.

This lesson is aimed principally at readers who have no PHP experience, but it should also be
a useful refresher if your knowledge is a little rusty or uncertain. It provides you with the basic
knowledge that you need to start working with PHP. Skim each section, and work through the
various exercises to get a basic feel for how different features work. Then move on to the rest
of the book. Come back to this lesson when you need reminders of the language details.

PHP captures and processes the input of online forms.

ptg7799847

61How PHP Makes Pages Dynamic

How PHP Makes Pages Dynamic
PHP uses a number of techniques common to most programming languages:

Variables store information that isn’t fixed or known in advance.

Arrays store multiple values, usually of related information.

Conditional statements make decisions, based on such things as the size of a number,
the date, or whether something is true.

Functions perform tasks, such as transforming and sorting information, or querying
a database.

Operators add, subtract, multiply, divide, and so on.

Loops perform repetitive actions.

Embedding PHP code in a page
The web server needs to recognize PHP code so that it can process it and send the output to
the browser. In addition to giving your pages a filename extension, you signal the start
of any PHP code within a page by using the opening PHP tag, which looks like this:

CAUTION! There must be no space between any of the characters in the opening tag.

You also have the option of using short opening tags, which consist of the first two characters
. Not all servers support short opening tags. To ensure that your scripts will work every-

where, stick to the full version .

You signal the end of a PHP code block with a closing tag, which looks like this:

You can have as many PHP code blocks as you like within a page, but you cannot nest them
inside each other. In other words, this will work:

ptg7799847

62 LESSON :

However, the following won’t work:

NOTE: To save space, most code examples in this book omit the opening and closing PHP tags

except where they are needed to show the transition from HTML to PHP and back.

Using comments in PHP scripts
The examples in the preceding section contain lines beginning with two forward slashes. This
is one of the ways of creating a comment in PHP. Comments are ignored by the PHP engine.
They’re simply for your benefit.

It’s easy to forget what code is for, so it’s a good idea to add brief comments to your scripts.
There are three ways to do so in PHP:

Everything following two forward slashes is ignored until the end of the line.

Everything following a hash or number sign () is ignored until the end of the line.

Everything between and is treated as a comment. This type of comment can stretch
across multiple lines.

For example:

You can also create multiline comments by beginning each line with two forward slashes or
the number sign.

In addition to reminding you—and others—what the code is intended to do, comments can be
used to disable parts of a script. This is often necessary during testing or debugging problems.

ptg7799847

63Taming the Unknown with Variables

Ending statements with a semicolon
PHP scripts are usually a series of statements or commands. Every statement must end with a
semicolon like this (don’t worry about the meaning of the code at the moment):

Forgetting the semicolon is one of the most common beginner’s mistakes.

The semicolon is important, because—unlike JavaScript and ActionScript—PHP allows you
to spread statements over multiple lines. As a general rule, PHP ignores whitespace within
scripts, which means you can spread out and indent code for greater readability.

Taming the Unknown with Variables
What makes programming languages so powerful is their ability to handle unknown values.
Whenever I visit Amazon.com, it always greets me with “Hello, David Powers” at the top of
every page. The way it personalizes my visits is by using variables. A variable is a placeholder
for a value you don’t know in advance. The name of the variable remains constant, but its
value can change.

We use variables all the time in everyday life:

What’s your name?

What day is it?

What’s the balance of my bank account?

Variables are easy to recognize in PHP because they always begin with a dollar sign ().
You can name a variable almost anything you like, as long as it follows these rules:

It must begin with a dollar sign.

The first character after the dollar sign cannot be a number. It must be a letter or the
underscore character (). Acceptable letters include accented characters used in Western
European languages (see the sidebar “Using Accented Characters in Variable and
Function Names”).

Subsequent characters can also include the numbers 0–9.

Spaces, hyphens, and other punctuation are not permitted.

 is a special variable reserved for use with PHP objects. You cannot assign your own
value to it.

ptg7799847

64 LESSON :

Using Accented Characters in Variable and Function Names

PHP 5 allows the use of characters between ASCII 0x7F and ASCII 0xFF in variable
and function names. This range of characters includes symbols such as ©, £, and ¢, as
well as the inverted question mark and exclamation point used in Spanish. Although
it’s perfectly valid to use these characters in naming variables and functions, the main
purpose of permitting this range of characters is to allow the use of accented characters
commonly used in Western European languages. So, for example, a Spanish developer
could use as a variable to hold tomorrow’s date.

So, you could create PHP variables to represent the previous examples from everyday life
like this:

When naming variables, it’s a good idea to use a meaningful name because it makes your code
easier to read and understand, particularly when you come back to it six months later. Don’t
be tempted to use short, cryptic variables. The code hinting in Dreamweaver CS5 saves you
the extra typing anyway.

If you need to combine multiple words in a variable name, either use an underscore to separate
them, or use “camel” case (starting subsequent words with an uppercase letter). For example:

CAUTION! PHP variables are case sensitive. and are treated as

completely different values.

Assigning a value to a variable
You assign a value to a variable with the equals sign (). The variable goes on the left of the
equals sign, and the value goes on the right. But what sort of values can a variable have?

PHP is known as a weakly typed language. No, that doesn’t mean it gets sand kicked in its face. In
fact, it’s one of the reasons that PHP is easy to learn. In many programming languages, you must
specify what type of data a variable will be used for, and you can’t change your mind later. With
PHP, it doesn’t matter. A variable can store any of the eight data types listed in Table 3.1.

ptg7799847

65Taming the Unknown with Variables

Table 3.1 PHP Data Types

Type Description

Boolean True or false

Float A floating point number (the PHP documentation also refers to this data type as a double)

Integer A whole number

String Text

Array An ordered collection of (usually related) values

Object A sophisticated data type that can store and manipulate values

Resource A reference to an external resource, such as a database result or file

A variable with no value

Being weakly typed makes it easy to handle form input. HTML forms pass all input values as
text, but PHP is smart enough to recognize when a value from a form should be used as an
integer or floating point number without you needing to change the data type explicitly.

When you assign any of the first three data types in Table 3.1 to a variable, the value is not
enclosed in quotation marks. For example:

 and are case-insensitive keywords, so the following are also correct:

 TIP: With case-insensitive keywords, you can even mix uppercase and lowercase. So,

and are also technically correct. However, it’s best to choose one style, and stick to it.

Consistency in writing code makes it easier to maintain and debug.

 is also a case-insensitive keyword. It’s relatively uncommon to assign the value
directly to a variable, but if you want to destroy the value of a variable without destroying the
actual variable, you can do it like this:

Assigning values to the other data types requires more detailed explanation.

ptg7799847

66 LESSON :

Assigning text to a variable
PHP calls a block of text a string—a reference to the fact that text is usually composed of a
string of characters. Strings must be enclosed in quotation marks. You can use either single
or double quotation marks, but they must be in matching pairs. For example:

Because the entire string must be enclosed in quotation marks, you need to be careful when
a string in single quotation marks contains any apostrophes. The apostrophe in the following
example will cause an error:

PHP sees the apostrophe as matching the opening quotation mark. Everything else up to
the semicolon is seen as garbage and prevents the script from running.

One way to get around this is to precede the apostrophe with a backslash—or escape it—
like this:

However, this is ugly, and it becomes difficult to read if you have a long string with several
apostrophes or single quotation marks. A more elegant—and readable—solution is to use
double quotation marks around the whole string like this:

Equally, if you want to use double quotation marks inside a string, the best way is to surround
the entire string in single quotation marks like this:

Sometimes, though, you can’t avoid using a backslash to escape a quotation mark:

However, the previous example is more readable than this:

The issue with single and double quotation marks doesn’t end there. When used with ordinary
text, it doesn’t really matter which you use. But double quotation marks play a special role
with variables and escape characters.

ptg7799847

67Taming the Unknown with Variables

Using variables with quotation marks
Variables act as placeholders for values that you don’t know in advance. The following
examples use hard-coded variables in the same page. But imagine that the values have come
from an online form or database.

The files quotes_01.php, quotes_02.php, and quotes_03.php in the lesson03/completed folder
all contain the following variable definition:

The PHP command echo displays onscreen a string or the value of a variable that contains a
string. The first file, quotes_01.php, uses with and no quotation marks like this:

It outputs the value of , as shown in the following screen shot.

In quotes_02.php, is incorporated into a string that is enclosed in single quotation
marks like this:

PHP treats anything enclosed in single quotation marks as literal text. As a result, is not
treated as a variable but is displayed literally.

What happens, though, if you use double quotation marks? In quotes_03.php, is incor-
porated into the string like this:

ptg7799847

68 LESSON :

This time the value of the variable is displayed.

 TIP: The basic rule regarding the use of variables in strings is to use double quotation marks

when embedding variables in a string.

Using array variables with quotation marks
Unfortunately, there’s always an exception to a rule. Array variables, which are described
later in this lesson, frequently use quotation marks to identify the array element to which
they refer. In quotes_04.php and quotes_05.php, there’s an array called that contains
the name of the author and the title of this book. In quotes_04.php, the array variables are
enclosed in the string like this:

Although this fits the existing rules, it stops PHP in its tracks and produces an error that has
caused many programmers to bang their heads on the keyboard.

NOTE: PHP error messages and how to interpret them are covered in “Understanding Error

Messages” at the end of this lesson.

To embed array variables like this into a string, you need to wrap each variable in a pair of
curly braces like this (the code is in quotes_05.php):

This results in the variables being interpreted correctly.

ptg7799847

69Taming the Unknown with Variables

 TIP: If you’re wondering where the double quotation marks around the title come from,

they’re defined in the array variable.

Using escape characters in strings
An escape character is a character that you want to be treated differently. For example, you’ve
already seen how a backslash escapes an apostrophe or double quotation mark in a string. The
only time you need to use an escape character inside single quotation marks is for an apostro-
phe or single quotation mark. All other escape characters occur only between double quota-
tion marks. Those most commonly used are listed in Table 3.2.

Table 3.2 Escape Characters Used in Double-quoted Strings

Escape Sequence Meaning

Double quotation mark

Newline character

Carriage return

Tab

Backslash

Dollar sign

Opening curly brace

Closing curly brace

Opening square bracket

Closing square bracket

Since newline characters, carriage returns, and tabs are ignored when a browser renders a web
page, you might be wondering when you might use them. PHP can be used for many other
tasks, not just for web pages. As a simple example, is used frequently in PHP scripts
that send emails. You need a carriage return followed by a newline character between the
headers of an email message.

ptg7799847

70 LESSON :

Grouping Related Values in Arrays
An array is a special type of variable that can store multiple values. An array can contain any-
thing, but arrays are normally used to group related items.

Creating a basic array
You create an array with the constructor. List the values between the parentheses, and
separate them with commas. For example:

 TIP: American readers should note that the comma goes outside the quotation marks. The

comma separates the values. The quotation marks are an integral part of a string.

The variable refers collectively to Tom, Dick, and Harriet, but you also need a way
of referring to each value—or array element. Each element is identified by its position in the
array, which is known as the element’s key or index.

You identify an individual array element by putting its key in square brackets after the variable
name. In common with most programming languages, PHP counts the elements of an array
from 0. So, Tom is , Dick is , and Harriet is .

To add an element to an array, use an empty pair of square brackets like this:

Amanda is now .

These numbers change if you reorder the array. For example, if you sort alphabeti-
cally, Amanda becomes , and Tom becomes . Although this might
sound confusing, it’s no different from what happens when your reorder the elements in
an HTML ordered list. The only time you normally need to concern yourself with these num-
bers is when you’re looking for an element in a particular position in an array.

An array that uses numbers to keep track of array elements is sometimes called an indexed
array. Using numbers is sufficient in many cases. However, PHP also allows you to define
your own array keys.

ptg7799847

71Grouping Related Values in Arrays

Creating an associative array
An array with user-defined keys is known as an associative array. You specify the key for each
element as a string and assign its value using (an equals sign followed immediately by a
greater-than sign). For example, this is the array from the sample files for “Using vari-
ables with quotation marks”:

Each element of the array can be identified by putting the key in quotes between square brack-
ets after the variable name like this:

You can also add new values to the array by creating a new key like this:

In all these examples, the values stored in the arrays are strings, but an array can store any
type of legitimate value. You can mix different types of values in the same array, and even
create an array of arrays—a multidimensional array. For example, you could create an array
called in which each element is an associative array containing the author, title, and
publisher of a book. To identify the author of the second book, you use both keys like this:

.

Arrays play a big role in PHP. You use them a lot when handling the results of a database query.
PHP has a large number of functions to manipulate arrays, not only sorting them, but also
merging them and extracting values that occur in one array but not another. Also, as you’ll see
later in this lesson, PHP uses loops to perform repetitive tasks. If you want to perform the same
task on a large number of items, it’s very easy if they’re stored in an array. You just tell PHP to
loop through the array, and it performs the same task on each element automatically.

Some of the most useful arrays—the superglobal arrays—are built into PHP.

Getting useful information from superglobal arrays
The superglobal arrays are created automatically by PHP. The ones you’ll use most often are

 and . As their names suggest, and automatically capture values
sent by forms submitted using the and methods respectively. So, if you have a text
input field in a form called “phone,” its value can be retrieved from or

, depending on the method used to submit the form.

ptg7799847

72 LESSON :

The following quick exercise demonstrates how and work:

 In the Files panel, double-click post_01.php in lesson03/completed to open it in the
Document window. The page contains a form with two text input fields.

 Examine the form in Code view. The attributes of the two input fields are
 and respectively.

 Launch the page in a browser by pressing F12/Opt+F12.

 Type your name and family name in the relevant fields, and click Submit.

 The values you entered should be displayed in post_02.php, as shown in the screen shots
on the first page of this lesson.

If you examine the PHP code in post_02.php, you’ll see how the values were captured and
displayed using the superglobal array:

The files get_01.php and get_02.php work exactly the same way except that the form uses the
 method, and the values are captured and displayed using the superglobal array:

Also note that when you use the method, the form input data is transmitted as a series
of name/value pairs appended to the URL following a question mark. This is known as a
query string.

Form values sent
through a query string

ptg7799847

73Grouping Related Values in Arrays

Deciding Whether to Use GET or POST

The method exposes input data as a query string appended to the URL, so you
should never use it to submit sensitive data, such as passwords or credit card numbers.
Also, Internet Explorer limits to roughly 2,000 characters the amount of data that can
be transmitted through the method. The method, on the other hand, sends
the data in the background and can handle a much larger volume. In practice, the
default limit on a PHP server is 8 MB, with no individual piece of data exceeding 2 MB,
although both limits can be changed by the server administrator.

The advantage of is that you can bookmark a URL that has a query string appended to
it, making ideal for use in search forms. You can also add a query string to the URL in
an ordinary link. As you’ll see in later lessons, this can be very useful when working with
a database. However, in most other cases, you should use the method.

Table 3.3 lists all superglobal arrays and provides a description of what they’re used for. In
addition to and , the most useful are , , and . You’ll
work with each of these superglobals in later lessons.

Table 3.3 The PHP Superglobal Arrays

Array Use

Captures values passed through a query string at the end of a URL.

Captures input data submitted through the method.

Contains files uploaded to the server along with information, such as filename, MIME
type, and whether the upload was successful.

Gives access to cookies stored on the user’s computer.

Stores persistent variables for use with login systems, shopping carts, and so on. The
variables are similar to cookies except that the values are stored on the web server
instead of the user’s computer.

Gathers information from the web server about the current script, such as its filename
and location. Not all servers support the full range of values.

Gives access inside a function to a variable defined outside in the “global scope.” Its use
is generally frowned upon these days as bad practice and is not used in this book.

A shortcut that contains the content of , , and . Unless used with
care, it can lead to security problems so is best avoided.

Contains information about the server environment. The range of information depends
on the server.

ptg7799847

74 LESSON :

Using Conditions to Make Decisions
The exercise in the preceding section loaded post_02.php in the browser when you submit-
ted the form in post_01.php. Assuming you filled in both fields, it should have displayed your
name in the second page. On a website, though, it’s unwise to assume that visitors will always
do what you want. Some might forget to fill in all fields. Others might deliberately try to fill
your form with garbage or even try to hack into your system. You need to be prepared for
every situation and use conditional statements to decide what happens.

A conditional statement works on a yes/no or true/false basis. The basic structure is very simple:

The condition is an expression placed in parentheses after the keyword .

Decisions on what is true can be made in the following ways:

Is something bigger, smaller, or equal to something else?

Does a variable exist or have a value?

A variable that has been set explicitly to or .

A value that PHP treats implicitly as or .

If the condition equates to , the code inside the curly braces is executed. If the condition
equates to , the code inside the braces is ignored.

Of course, you often want something else to happen if the condition fails. To specify a default
action, you use the keyword followed by another set of curly braces like this:

You’re not limited to just two options. You can set a series of conditions, each of which is
evaluated in turn. To set an alternative conditional test, use followed by the condition
in parentheses like this:

ptg7799847

75Using Conditions to Make Decisions

NOTE: The keyword is normally written as one word, but you can also put a space

between and .

Using comparisons to make decisions
Conditions based on comparative values use the conditional operators listed in Table 3.4.
The last four should be familiar from regular math.

Table 3.4 Comparison Operators Used in PHP

Operator Meaning

True if both values are equal.

True if the values are not equal

True if both values are identical. To be identical, both values must be of the same data
type. For example, 2 and '2' are equal, but not identical (the first one is an integer;
the second one is a string).

True if the values are not identical.

True if the first value is greater than the second value.

True if the first value is greater than or equal to the second value.

True if the first value is less than the second value

True if the first value is less than or equal to the second value.

As a trivial example, the following conditional statement displays specific content to a named
individual and generic content to everyone else:

ptg7799847

76 LESSON :

Of course, there are a lot of Davids in this world, so you would need a more robust test in a
real application. The key point is to understand that when comparing values, you need to use
two equals signs, not one.

 TIP: Even experienced developers sometimes forget and use a single equals sign in a condi-

tional statement. This always equates to because the assignment of value succeeds. If you

find your conditional statements are producing unexpected results, there’s a strong likelihood

that you have used one equals sign instead of two.

Many decisions are based on numerical comparisons. A typical scenario in an e-commerce
application might look like this:

Testing for multiple conditions
You can also test for multiple conditions. For example, in the e-commerce application, you
might want to set a range of delivery charges. To test whether a value is within a specific
range, you need to check that it’s greater than the lower limit and less than the higher limit.
The logical operators in Table 3.5 allow you to combine tests as part of the same condition.

Table 3.5 Logical Operators in PHP

Operator Meaning

Equates to if both conditions are true. If the first condition is false, the second one
is never tested.

Equates to if either condition is true. If the first condition is true, the second one is
never tested.

Tests whether something is not true.

NOTE: You can use in place of , and in place of . However, to avoid potential

problems with rules that govern the order in which conditions are evaluated, it’s advisable to

stick with and .

ptg7799847

77Using Conditions to Make Decisions

So, to set a different delivery charge for a total between 50 and 100, you would alter the condi-
tional statement like this:

When setting a series of conditional statements, make sure they follow a logical order. PHP
evaluates each one in sequence. Once it reaches a statement or set of conditions that equates
to , it skips the rest. The order of your conditional statements can improve the efficiency
of a script. If possible, test first for the most likely option.

The following exercise demonstrates the use of a conditional statement to determine what is
displayed when a form is submitted:

 Load post_01.php into a browser, and then submit the form without entering anything
into either of the text fields. The second page displays, but the greeting looks rather odd.
Because the text fields are empty, there’s nothing after “You must be.”

 Click in the browser address bar, and press Enter/Return to load post_02.php without
resubmitting the form. This time, you’ll see the following ugly error messages.

These messages tell you that and don’t exist.

NOTE: If you don’t see any error messages, it means is turned off in your PHP

configuration, or that has been set to a lower level than the one recom-

mended in Table 2.1 in the preceding lesson.

ptg7799847

78 LESSON :

 Load post_03.php into a browser. The page contains the same form but submits the data
to a different page.

 Click the Submit button without entering anything in either of the text fields. Instead of
the ugly error messages, you should see a custom error message along with a link that
takes you back to the form.

 Click the link to return to post_03.php, and fill in both fields.

 Click the Submit button. This time you should be greeted by name as in the previous
exercise. The link back to the form is no longer displayed.

The PHP code that controls what is displayed in the page looks like this:

The first block of PHP code checks the condition using a function called that checks
whether a variable contains a value (functions are covered in the following section). The con-
ditional statement uses , so it equates to if either text field is left empty. To display the
error message and link only if both fields are empty, replace the with .

Using the logical Not operator
The logical Not operator is an exclamation point (), which you place directly in front of a
value or condition. It converts a value to and vice versa.

ptg7799847

79Using Functions to Perform Tasks

The preceding exercise used to test if
was empty. If you precede this expression with an exclamation point, it tests the opposite. The
following conditional statement tests whether is not empty—in other
words, it has a value:

So, if is not empty, the code inside the curly braces displays the value.
If is empty, the condition equates to , and nothing happens.

What PHP regards as false
PHP treats the following values as being false or implicitly false:

The keywords and (both case insensitive)

The number 0 (as an integer, floating point number, or the string)

An empty string (or with no space between the quotation marks)

An empty array (one with no elements)

A SimpleXML object created from empty tags

Everything else is considered true.

CAUTION! Unlike JavaScript, PHP treats –1 (minus one) as . It’s also important to note that

 and are keywords and should not be wrapped in quotation marks. Adding quota-

tion marks converts them into a nonempty string, which is treated as .

Using Functions to Perform Tasks
A function performs a predefined task. A typical PHP installation has more than 1,500 built-
in functions, putting a vast and powerful toolbox at your disposal. Some functions perform
relatively simple tasks, such as converting a string to uppercase. Others make light work of
complex operations, such as generating a thumbnail image. Most developers use only a small
proportion of these functions, but it’s useful to know they’re available when you need them.

Functions always end with a pair of parentheses. Sometimes the parentheses remain empty, as
in the case of the function that displays the details of your PHP configuration, .

ptg7799847

80 LESSON :

However, you frequently pass values to a function by inserting them between the parenthe-
ses. For example, the preceding exercise used to test whether
and contained any values by passing each variable separately to the
function like this:

This is known as passing an argument to the function.

The function takes just one argument. Other functions expect more arguments, some
of which might be optional. When a function requires more than one argument, they should
be separated by commas and must be in the order that the function expects. Remembering
which arguments to use and in which order can be difficult, even for experienced pro-
grammers. Fortunately, Dreamweaver’s code hints relieve you of the burden of trying to
memorize everything.

NOTE: When you pass a value to a function in a script, it’s referred to as an “argument.” However,

in the function definition, it’s called a “parameter.” The difference is so subtle that most devel-

opers use the two words interchangeably. Throughout this book, I normally use “argument.”

Some functions alter the value stored in the variable passed to them as an argument. For
example, the function changes the order of an array.

However, in most cases, you need to capture any changes made by a function, either by reas-
signing the result of the function to the same variable or by assigning it to a new one. This
allows you to preserve the original value if you need it for any reason.

The exercise files in lesson03/completed demonstrate how this works:

 Open function_01.php in the Document window.

 Switch to Code view. The page contains a mixture of HTML and PHP. The HTML is sim-
ply there to explain what’s going on. If you concentrate on the PHP, it looks like this:

The third line uses a function called . In spite of its outlandish name,
it makes sense once you realize that it converts a string to uppercase.

ptg7799847

81Using Functions to Perform Tasks

 Switch to Design view, and click the Live View button. You should see that the value
of has been converted to uppercase by , but the original value
remains unchanged.

This type of behavior can be very useful in a situation where you need to compare two
strings in a case-insensitive manner. If you convert both values temporarily to uppercase,
you can compare them without losing their original spelling.

 Open function_02.php and test it in Live View. This contains a similar mixture of HTML
and PHP. The PHP code looks like this:

In this case, the value of is assigned to a new variable, .
When and are displayed the first time, it should come as no surprise
that the is all uppercase, but remains unchanged. However, in the
fifth line, is reassigned to . So, when and are
redisplayed, they are both in uppercase.

ptg7799847

82 LESSON :

Reading the PHP documentation for a function
So, how do you know what arguments a function expects and whether you need to capture
the result in a variable? RTFM. Depending on whom you ask and what mood they’re in, this
stands for “read the fine manual,” “read the friendly manual,” or something not quite so polite.

The PHP manual is both fine and friendly. Dreamweaver CS5 makes it even more so by put-
ting most of it at your fingertips. By pressing Ctrl+spacebar in a PHP code block, you activate
code hints. As you start typing, Dreamweaver narrows down the candidates. By the time you
have typed strtou, you are presented with the code hint for and its page from
the PHP documentation.

Immediately beneath the name of the function are the versions that support it with a brief explana-
tion of what the function does. The function name at the top left is also a direct link to the same
page in the online documentation. The rest of the page is divided into the following sections:

Description. This not only describes the function in more detail, but also shows you the
function signature.

The function signature is a formal way of describing how to use a function, and learning
how to read it will make your life a lot easier. You read it in conjunction with the next two
sections in the documentation.

Return
data type

Parameter
data type

Function
name

Parameter

ptg7799847

83Using Functions to Perform Tasks

Parameters. This section describes the parameters (arguments) that the function expects,
if any (some functions don’t take arguments). In the function signature, each param-
eter is displayed in italics and prefixed with a dollar sign. Most parameters have names
that act as a clue. For example, expects a string, so the parameter is called

. Functions that search for something usually have parameters called
and .

In the case of , it’s obvious that the data type of should be a string,
but that’s not always the case. So, the name of each parameter is preceded by the data type
that it should be. The data type is always one of those listed in Table 3.1. The documenta-
tion abbreviates Boolean and integer as “bool” and “int” respectively. When more than
one data type is acceptable, it’s shown as “mixed.”

Some functions take optional arguments, which are shown in the signature in square
brackets. Optional arguments always come at the end of the signature.

If the function permanently changes the value of a variable passed to it—as in the
case of —the parameter name in the signature is prefixed by an ampersand like
this: .

Return Values. Functions normally return a value. In the case of , the
return value is an uppercase string. On the other hand, returns a Boolean telling
you whether the sort was successful. The return value is shown in the function signature
as a data type to the left of the function name. Some functions don’t return a value. In this
case, the return data type is shown as “void.”

Examples. This provides one or more concrete examples of how to use the function and
the type of output to expect. This is the really useful section of the documentation.

The online version of the documentation is organized according to categories. Two of the
most useful are string functions and array functions. To access the documentation quickly
from Dreamweaver, click the link at the top of the page that is displayed with the code hints
to go to the same page in the online documentation. Click the link for related functions in
the navigation menu on the left of the page to view a useful page with a one-line description
of each function.

ptg7799847

84 LESSON :

Visiting the PHP online manual like this is a good way to learn more about PHP.

Creating your own functions
With so many functions in core PHP, the idea of creating your own might sound odd. But
this is what makes languages like PHP so powerful. Building your own functions is a way of
combining existing functions to fit your needs. If you have a routine that needs to be repeated
several times, a custom function saves time and effort. It also helps reduce mistakes. Once
you have created and tested a function, you can use it repeatedly and be confident that it will
always work the same way—and if there’s an error, you need to correct it in only one place.

ptg7799847

85Using Functions to Perform Tasks

You define a function with the keyword, followed by the name of the function, and
a pair of parentheses. Any arguments go between the parentheses as a comma-separated list,
and the code that you want the function to execute goes between a pair of curly braces.

You can name a function anything you like, following the same rules as a variable. It should
contain only alphanumeric characters and the underscore, and shouldn’t begin with a number.
You also must avoid using the name of an existing function.

 TIP: If you choose a name that is already in use, PHP generates an error message telling you

that you cannot redeclare the function of that name.

You saw how converts a string to uppercase. Another function called
reverses the order of a string. Let’s say that for some mad reason you need to reverse text and
display it in uppercase. The PHP code in function_03.php passes a variable containing the
title of this book first to and then to like this:

This does the job as expected.

If you need to do this repeatedly, you can modularize your script as a function like this:

ptg7799847

86 LESSON :

Then all that’s necessary is to pass the value to as an argument like this:

NOTE: This example is for illustrative purposes only. Using in a function is generally

considered bad practice. You should normally return a value from a function as described next.

You can find the code in function_04.php. If you examine the page in Code view, you’ll see
that the function definition is at the bottom of the page, way after the function has already
been used. As long as the function definition is in the same page, it doesn’t matter where you
define it, so it’s often convenient to keep all function definitions together rather than mix
them in with the rest of the script.

This function automatically displays the converted string, so the original value is preserved.
However, to assign the result to a variable, you need to use the keyword like this:

The code in function_05.php reassigns the value of to the variable
like this:

As a result, now contains the value returned from , permanently changing
the string.

ptg7799847

87Using Functions to Perform Tasks

Understanding Variable Scope

Functions act rather like a black box. What happens inside the box is invisible to every-
thing outside. Normally, when you pass a variable as an argument to a function, only
the value is passed to the function. In the case of , the value is passed as an
argument to . Once the function completes its task, ceases to exist, and it is
created again only if the function is reused.

The scope of a variable—in other words, where it can be used—depends entirely on
where the variable is defined. A variable defined in a function or as one of its param-
eters is limited in scope to that function. It cannot be seen outside the function. Equally,
a function has no knowledge of or influence over variables outside. In the example in
function_06.php, there’s no cause for confusion, because the external and internal vari-
ables have different names.

However, what happens if both variables have the same name? In function_07.php,
 has been changed to , and it’s passed as an argument to . If

you test the page, you’ll see the value of that was declared outside the function
remains unchanged.

In a small script, it’s easy to keep track of variable names. But as your project grows, you
could easily end up reusing the same name for a variable that’s used inside a function.
By keeping the internal working of functions separate from everything else, variable
scope reduces the need to worry about names clashing.

ptg7799847

88 LESSON :

This change in the value of comes about only through capturing the return value.
Forgetting to capture the return value of a function is a common beginner’s mistake. The code
in function_06.php shows what happens when the return value of is not
assigned to a variable.

As soon as a function encounters the keyword, it processes the rest of the line and
returns the value. Any other code inside the function is ignored.

Using Objects and Resources
The name “object” comes from object-oriented programming (OOP), a practice common in most
modern programming languages. As projects get bigger, code becomes more complex. Mistakes
become not only more likely, but also more difficult to detect. OOP tackles this problem by
breaking down complex tasks into simple units—the idea being that small units of code are
easy to maintain. Once a unit has been tested, you know it will produce reliable results.

OOP also promotes the reuse of code, so you’re not constantly reinventing the wheel. The
code that defines an object’s features is called a class, which can be regarded as a blueprint for
making objects. Some classes are built into core PHP, but you can also create your own, or
use a third-party class library, such as the Zend Framework. What makes OOP attractive and
powerful is that most classes can be extended, and the new class inherits all the features of its
parent. As a result, objects are becoming an increasingly important part of PHP.

PHP is not an object-oriented language, but it does have strong support for OOP. Since
the release of PHP 5 in 2004, many classes have been built into the language, and the Zend
Framework that you will use later in this book is written entirely in OOP. At this stage, all you
really need to know about objects is what they are and how to use them.

In practical terms, an object is a variable capable of storing multiple values—called properties—
in the same way as an associative array. An object also has access to functions—called
methods—that are directly associated with it.

ptg7799847

89Using Objects and Resources

Creating an object
You create—or instantiate—an object in a similar way to assigning the return value of a func-
tion to a variable. The function that creates an object is known as a class constructor. Like a
function, the constructor may take a number of arguments. The difference is that the con-
structor is preceded by the keyword .

A copy of the example from Lesson 1, time.php, is in lesson03/completed. It uses two core
PHP classes, and . The code begins like this:

This creates a object called . As the class name suggests, the object repre-
sents the current date and time. Closely related to the class is another one called

. To create a object, you pass the constructor a string identifying
the time zone like this:

That creates a object for the part of the world where I live. To create another one
for the West coast of the United States, you can use this:

NOTE: The PHP documentation lists all the valid time zones at http://docs.php.net/manual/en/

timezones.php.

What’s great about these two classes is that they are fully aware of daylight saving time, and
they automatically adjust the time regardless of where your server is located. To set the time
zone for a object, you use the class’s method, and pass it a

 object as its argument. The operator (a hyphen followed by a greater-than
sign) gives you access to the methods and properties of an object.

So, you access the method like this:

The object is now set to UK time.

Another method of the class is . As its name suggests, it formats the date
and/or time. Unfortunately, it takes as an argument an arcane set of modifiers, which even
experienced users find impossible to remember (thank goodness the PHP documentation is
built into Dreamweaver CS5).

http://docs.php.net/manual/en/timezones.php
http://docs.php.net/manual/en/timezones.php

ptg7799847

90 LESSON :

You display the time using the 12-hour clock like this:

To change the time zone to the West coast of the United States, you can pass an object to the
 method like this:

Alternatively, you can create the object directly as the argument to the
 method like this:

You can see how the time zone is changed by testing time.php in Live View or a browser.

NOTE: The preceding screen shot, like the one in Lesson 1, was taken when the United States

had already switched to daylight saving time but the UK had not, which explains why the time

difference is seven hours rather than the normal eight.

The class doesn’t have properties, but you access an object’s properties in exactly the
same way with the operator:

Using resources
A resource is a reference to something outside PHP, for example, a database connection
or a file that you want to read or write to. In some cases, the result of a database query is
also a resource.

You create a resource by assigning the result of a function to a variable. Once created, the
resource is required as an argument to other functions that access the resource. For example,
the function opens a file for writing like this:

ptg7799847

91Using Operators for Calculations and Joining Strings

Assuming that the text you want to write to the file is contained in , you pass both
the resource and the text to the function as arguments:

Finally, close the file by passing the resource to the function like this:

You can’t do anything directly with a resource on its own. But it provides an essential link to
the file, database, or other resource that you’re dealing with.

Using Operators for Calculations and Joining Strings
PHP is often used for e-commerce and other applications, such as mortgage calculators. A lot
of the hard number crunching can be done with mathematical functions. There are nearly 50
of them in the core distribution of PHP, and you might have access to even more, depending
on your configuration (for details, see http://docs.php.net/manual/en/refs.math.php).

Basic calculations use the arithmetic operators listed in Table 3.6.

Table 3.6 PHP Arithmetic Operators

Operator Meaning Example Result

Addition

Subtraction (use the hyphen)

Multiplication

Division

Modulo division

Increment by 1 See text

Decrease by 1 See text

Modulo division finds the remainder of the division of one number by another. This can be
very useful for working out whether a number is odd or even, because dividing by 2 always
produces 1 or 0.

The operators that increase and decrease a value by 1 are used mainly in loops (see
“Automating Repetitive Tasks” later in this lesson). They work in different ways, depending on
where you put the two plus or minus signs.

http://docs.php.net/manual/en/refs.math.php

ptg7799847

92 LESSON :

When the operator comes after the variable, 1 is added or subtracted from the value after any
other calculation has been performed. For example:

In the first line, is assigned the value 1.

In the second line, is multiplied by 2, producing 2. After the calculation, is incremented
by 1. Consequently, in the third line, is 2 when it is multiplied by 2, producing 4. Again,
is incremented by 1 after the calculation, so if it’s used later in the script, its value will be 3.

The opposite happens if the operator is placed before the variable like this:

In this case, the value of is incremented by 1 before the calculation. So, in the second line,
 becomes 2 before being multiplied by 2, and in the third line, it’s 3 before being multiplied.

Calculations involving more than two values are performed using the normal rules of arith-
metical precedence. Multiplication and division are performed first, followed by addition and
subtraction. For example:

This results in being 20, not 60, because 2 is multiplied by 5 before being added to 10.
If you want the addition to be performed first, you need to enclose that part of the calculation
in parentheses like this:

This results in being 60.

NOTE: I have used numbers in most of these examples to make them easier to read. In a PHP

script, they would often be replaced by variables. Yes, all those years of algebra in school are

about to come flooding back!

It goes without saying that the arithmetic operators work with integers and floats. What might
come as a surprise is that they also work with strings.

ptg7799847

93Using Operators for Calculations and Joining Strings

Using strings in calculations
As mentioned earlier, PHP is a weakly typed language, so it doesn’t insist—like some other
languages—on you specifying the type of data a variable contains. So, if your script uses a
string in an arithmetical calculation, PHP obligingly converts it to a number, and you usually
get the result you expected.

This flexible approach makes a lot of sense, because online forms submit all data as text—
that is, even numbers submitted from a form are treated as strings. So, the following calcula-
tions work without problem:

Even though the values in these calculations are strings, the results are numbers: is an inte-
ger, and is a float. Within a PHP script, you don’t really need to worry about the data type,
but it might be important if you are transferring the PHP output to another application that
requires a particular data type.

 TIP: For details of how to convert from one data type to another, see http://docs.php.net/

manual/en/language.types.type-juggling.php.

If you have experience with JavaScript, the result of the following calculation might come as
a surprise:

In JavaScript, this produces 22, because the plus sign () is used not only for addition,
but also to join two strings together.

In PHP, the result is 4, because the plus sign is used only for addition.

You can see the different results in strings_01.php, where both results are calculated dynamically.

http://docs.php.net/manual/en/language.types.type-juggling.php
http://docs.php.net/manual/en/language.types.type-juggling.php

ptg7799847

94 LESSON :

I’ll explain in a moment how you join strings together in PHP, but there’s one more detail you
need to know about using strings in calculations. The file strings_02.php contains the follow-
ing calculation:

Again, PHP does its best to perform the calculation. If you test strings_02.php, you’ll see the
result is 4, and the function reveals that it’s treated as an integer.

If you’re familiar with JavaScript, what’s happening here is similar to using or
 to extract a number at the beginning of a string. Unlike JavaScript, PHP does

the conversion automatically.

However, the number must be at the beginning of the string. If anything else precedes the
number, PHP cannot extract it and silently converts the value to 0. And just in case you were
wondering, is also 0.

Joining strings
As you have just discovered, PHP does not use the plus sign to join strings. Instead, it uses a
period () or dot. Because of its size, it can be easy to miss in code, so it’s a good idea to put
a space on either side to make it easier to see. However, adding space around the period—or
concatenation operator, to use its correct name—doesn’t add any space to the resulting string.

NOTE: Concatenation, a term frequently used in computer contexts, means linking together in

a chain or series.

The code in strings_03.php looks like this:

ptg7799847

95Using Operators for Calculations and Joining Strings

Because the two strings are simply joined together, contains no space between my
first and family names.

If you want space between concatenated strings, you need to add it. One way is to insert a
space as a string like this:

The alternative—and more convenient—solution is to enclose the variables in a pair of double
quotation marks, and leave a space between them like this:

However, be careful when using array elements inside double quotation marks. As explained
earlier in this lesson, you need to wrap array variables in a pair of curly braces (see “Using
array variables with quotation marks”).

Reassigning a result to the same variable
Very often, you need to perform a calculation and assign the result to the original variable,
or you want to add more text at the end of a string. For example, if you want to double the
number stored in a variable, you can do it like this:

This is a perfectly correct way of doing it. However, because reassigning the result of a calcula-
tion to the same variable is such a frequent requirement, you can use a shortcut by combining
the two operators like this:

ptg7799847

96 LESSON :

This does exactly the same as the preceding code: it multiplies by 2 and assigns the
result back to .

Table 3.7 lists the combined operators and provides their meaning.

Table 3.7 Combined Assignment Operators

Operator Example Equivalent to

Automating Repetitive Tasks
Most of us hate doing tedious, repetitive work. Fortunately, computers don’t get bored—
with the exception, perhaps, of Marvin, the paranoid android. That’s a good thing, because
dynamic websites need to do a lot of recurring tasks, such as searching through arrays to find
the right element and displaying multiple results of a database search.

Loops are the answer to repetitive tasks. PHP uses four different loop structures:

They all repeat the same task until a particular condition is met. The reason for the different
structures lies in how you want to use the loop.

ptg7799847

97Automating Repetitive Tasks

Using a while loop
The loop is the simplest. It looks like this:

Any PHP code between the curly braces is repeated until the condition equates to .
The code in loops_01.php demonstrates a simple loop that displays the numbers 1–10
by using the increment operator like this:

CAUTION! The danger is forgetting to set a condition that will eventually be . This creates

an infinite loop. It’s all too easy to do. When writing this lesson, I forgot to increment inside

the loop, so never reached 10, bringing my browser to a grinding halt until I closed it. Don’t

try it unless you enjoy looking at a blank screen.

Using a do. . . while loop
In a loop, the condition comes at the end of the loop like this:

The effect is to ensure that the code inside the curly braces is executed at least once. The code
in loops_02.php looks like this:

Since is 1000, the condition inside the parentheses will never be . So, the loop displays
1000 and immediately comes to an end.

The Dreamweaver server behaviors use this type of loop to display results from a database
because Dreamweaver automatically retrieves the first row of the result ready for display.
The code that retrieves subsequent rows is used as the condition, halting the loop when there
are no more rows. If a loop were used instead, the first row wouldn’t be displayed.

ptg7799847

98 LESSON :

Using a for loop
The loop is slightly more complex, but it has the advantage of being almost impossible to
create an infinite loop, because you create a counter, condition, and counter increment at the
same time.

The code in loops_03.php displays the numbers 1–10 like this:

Inside the parentheses, three statements separated by semicolons control how the loop
operates:

The first statement is executed before the loop begins. In this case, it initializes a counter
variable.

The second statement sets the condition that determines how long the loop should con-
tinue running.

The final statement is executed at the end of each iteration of the loop. Here, it increases
the counter by one.

In this example, the counter is initialized at 1. But it’s more common to start at 0 because
arrays are counted from 0, so you can use the size of the array as the condition. Although the
counter is normally incremented by 1 in a loop, you can use a different increment, such
as , or go in reverse order by starting the counter at a high number and decreasing it
each time the loop runs. You can construct more complex loops, but this is the most typi-
cal implementation.

 TIP: All these examples use as the counter variable. There’s nothing magical about . It’s

a convention that dates back to the days when computer memory was very limited. If is

already in use, most developers use and for subsequent counters.

Using a foreach loop
This final loop structure is used only with arrays and objects. The way you use it is by assign-
ing each element to a temporary variable with the keyword .

ptg7799847

99Automating Repetitive Tasks

The code in loops_04.php shows how this works.

The temporary variable exists only inside the loop and represents the current element
each time the loop runs.

When dealing with associative arrays, the loop uses the operator to create separate
temporary variables for the array keys and values like this:

The following example is in loops_05.php.

CAUTION! Do not put a space between “for” and “each” in . It must be written as a

single word.

ptg7799847

100 LESSON :

Breaking out of a loop
Sometimes, you might want to end the loop when a condition is matched, for example,
when you find a particular value. To so do, you use the keyword .

The code in loops_06.php is an adaptation of the loop used earlier:

It displays only the numbers 1–4, because the loop is broken as soon as hits 5.

 TIP: If you’re wondering why it doesn’t display 5, remember that the value is increased by 1

after the current operation when the increment operator is placed after the variable. So, the

script displays 4 and then increments to 5. The keyword immediately stops the loop.

So, 5 is never displayed.

However, you might simply want to skip a particular iteration of the loop rather than stop it
altogether. In this case, the keyword to use is .

The code in loops_07.php looks like this:

This displays the numbers 1–4 and 6–10. When the script encounters , it stops what-
ever it was doing and goes back to the top of the loop. You need to use before any
code that you want to skip, so there’s no point putting it at the end of the loop. You also need
to ensure that any counter is incremented before using . If the counter wasn’t incre-
mented inside the conditional statement, would remain 5, sending it into an infinite loop.

ptg7799847

101Including External Files

Including External Files
The ability to include the contents of one file inside another is one of the biggest time-savers
in PHP. You can store HTML or PHP elements that are used on multiple pages in external
files, and any changes to an external file are automatically reflected in the pages that include
them. The contents of the files are merged on the server, so are often referred to as server-side
includes (SSI). However, in PHP, they’re usually called includes or include files.

You can use the following commands to include one file inside another:

Why do you need four ways to do the same thing?

When you use , the script tries to keep running even if the external file is missing.
But when you use , the script immediately stops if it can’t find the external script.
So, is used in the sense of “mandatory.”

The other two, and , include the external script only once. In large
projects, there’s a danger that several files will try to include the definition of a function or
class. Attempting to do this more than once triggers a fatal error, so these commands prevent
this from happening. When your include file contains a function or class definition, always
use or . For anything else, or is fine.

To include an external file, use one of these commands followed by a string containing the
relative path to the file. The string can optionally be enclosed in parentheses. So, both the
following are valid:

Includes are so useful that it’s important to understand how to use them correctly. The exer-
cises in the following sections show how to avoid common pitfalls.

Including HTML files
This exercise shows how—and how not—to include an external HTML file as a PHP include.
The external file contains a banner image, such as you might put at the top of every page in
a website.

ptg7799847

102 LESSON :

 Open lesson03/start/includes_start.php in the Document window. The page contains some
dummy text and has been given some basic styling with CSS. At the moment, it doesn’t
contain any PHP code, but by the end of these exercises, you will have included an HTML
header and some PHP code to update the copyright notice at the bottom of the page.

 Switch to Split view, and locate the following code (around lines 9–11):

 Insert a blank line between the tag and the opening tag, and type <?php
include followed by an opening parenthesis and quotation mark:

Don’t worry about any warnings about syntax errors. They will disappear once you have
finished the next steps.

 With your insertion point to the right of the quotation mark, right-click, and choose
Code Hint Tools > URL Browser. This brings up a small Browse icon.

 Click the Browse icon to open the Select File dialog box, and browse to lesson03/test_
includes/header_01.html.

 By default, Dreamweaver uses links relative to the document. If you are using the default
setting, select the file, and click OK (Choose on a Mac).

If your site uses links relative to the site root, set the “Relative to” menu in the Select File
dialog box to Document. Then click OK (Choose).

 Dreamweaver should have inserted the correct path to header_01.html next to the open-
ing quotation mark. Complete the include command by typing a closing quotation mark
and parenthesis followed by a semicolon and a closing PHP tag. The code in your page
should now look like this:

If necessary, compare your code with lesson03/completed/includes_01.php.

ptg7799847

103Including External Files

 Save the page, and click in Design view. A banner image has been included, but the page’s
background color has changed. There’s some stray text at the top and a closing
tag highlighted in yellow. Also, all the original text has disappeared, as shown in the fol-
lowing screen shot.

NOTE: If the banner image doesn’t appear, choose Edit > Preferences (Dreamweaver >

Preferences on a Mac), and click Invisible Elements in the Category list on the left side of the

panel. Make sure that the “Show contents of included file” checkbox is selected.

 Press F12/Opt+F12 to preview the page in a browser. In all probability, the page should
display perfectly with a banner image at the top and the dummy text where you would
expect it to be.

NOTE: Browsers are constantly evolving, so don’t worry if the page doesn’t display perfectly.

There’s an error in the way header_01.html has been included. Browsers tend to be forgiving of

even the worst mistakes, but future browsers might not be as generous.

ptg7799847

104 LESSON :

 Return to Dreamweaver, and click header_01.html in the Related Files toolbar to see
what’s causing the problem. As the following screen shot shows, the file that has been
included is a complete HTML document with its own declaration, ,

, and tags.

This is perhaps the most common mistake made with includes. An include file should
contain only the code that you want to add to the other file. Nothing more.

Many people remain unaware of this problem, because browsers usually display the page
correctly. In fact, older versions of Dreamweaver used to ignore it, but Design view now
helps you by signaling something is wrong.

Apart from making it impossible to see your page correctly in Dreamweaver’s Design
view, using a full HTML document as an include file usually prevents JavaScript from
working correctly. So, it’s important to ensure that your HTML includes don’t contain a
duplicate declaration and extra , , and tags.

 Change the path in the include command to point to header_02.html (this version is in
completed/includes_02.php):

 Save the page, and click in Design view to refresh its contents. The page should now look
similar to the way it did in a browser.

 Click header_02.html in the Related Files toolbar to examine its contents. You should see
that it contains only the HTML code for the header .

 Change the path in the include command to use a link relative to the site root like this
(this version is in completed/includes_03.php):

When you save the page and refresh Design view, it should look the same.

ptg7799847

105Including External Files

 Click the Live View button or preview the page in a browser. Instead of the banner image, you
should see a couple of ugly error messages telling you that there is “no such file or directory.”

Although Dreamweaver is capable of recognizing a path relative to the site root in Design
view, the PHP engine expects a path relative to the current document. There are other
ways to specify the path to an include file, but this is the most convenient.

 Change the path back to the way it was in step 11 (relative to the current document), so
it’s ready to be used in the next exercise.

Including PHP scripts
Although including HTML fragments in your pages is very useful, using includes for PHP
scripts avoids repeating the same code every time you want to use a function or class. This exer-
cise shows how to avoid common pitfalls with including PHP scripts. Continue working with
the file from the preceding exercise. Alternatively, use lesson03/completed/includes_03.php.

 In Split view, scroll to the copyright notice at the bottom. It looks like this:

The problem is that it’s out of date. Rather than manually updating the year, it’s a good
idea to do it with PHP.

 Simply use the following code, which is in lesson03/test_includes/year_01.inc.php:

This uses the PHP function to get the current year in a 4-digit format and tests
whether the result is greater than 2009. If it is, it displays an en dash followed by the cur-
rent year in a 2-digit format.

ptg7799847

106 LESSON :

NOTE: This is an example of the importance of case sensitivity in PHP scripts. The argument

passed to date() in the first line is an uppercase Y, which produces the year as four digits. In the

second line, it’s lowercase, which produces only the final two digits.

 Include year_01.inc.php immediately after “2009” in the copyright notice, using the same
technique as steps 3–7 in the preceding exercise.

Your code should now look like this (it’s also in includes_04.php):

 Save the page, and click in Design view to refresh it.

If necessary, scroll down in Design view to see the copyright notice. The code has been
included all right, but it’s raw PHP code!

 Click year_01.inc.php in the Related Files toolbar to examine the include file. It contains
the code listed in step 2, but it’s not enclosed in PHP tags.

Of course, it’s a deliberate mistake. But the include command is surrounded by PHP tags,
so it’s not unreasonable to assume that the include file will also be treated as PHP. As you
can see, that doesn’t happen. The PHP engine automatically switches to HTML mode
when it encounters an include command, and it doesn’t return to PHP until it encounters
an opening PHP tag or it returns to the original page.

 Add PHP tags around the code in year_01.inc.php like this:

This code is also in test_includes/year_02.inc.php, which is included in completed/
includes_05.php.

 Save the include file, and refresh Design view. The PHP code is now replaced by a gold
shield that indicates there’s a PHP script at that point.

NOTE: If you can’t see the gold shield, choose Edit > Preferences (Dreamweaver > Preferences

on a Mac), select the Invisible Elements category, and check that the Scripts checkbox is

selected. Also, choose View > Visual Aids, and make sure Invisible Elements is selected.

ptg7799847

107Including External Files

 Click Live View. The gold shield should be replaced by an en dash and the last two digits
of the current year.

 Turn off Live View, and open completed/includes_06.php in the Document window. For
the last few steps of this exercise, I suggest you just look at the code rather than typing it
out yourself.

At the bottom of the page, I have converted the code that displays the current year into a
function like this:

 Test the page in Live View. It should display the current year as before.

 Open completed/includes_07.php. This is the same as the previous page, but the function
definition has been put in an include file:

 Test the page in Live View. PHP throws a fatal error, reporting that is an
undefined function.

The function has been defined, but it’s in an external file. When a function is defined in
the same page, it doesn’t matter where you put it. But when the definition is in an external
file, it must be included before the function is used.

ptg7799847

108 LESSON :

 Test completed/includes_08.php. The definition of is included above the
 declaration. This time everything should work perfectly.

NOTE: In a static web page, nothing should come before the declaration, because

it switches browsers into quirks mode, preventing CSS styles from being rendered correctly.

However, there is no problem putting a PHP code block above the declaration—

as long as it doesn’t send any output to the browser. Although the function uses

, nothing is sent to the browser until the function is used in the copyright notice.

Understanding Error Messages
In the early stages of working with PHP, you will become depressingly familiar with error
messages. Understanding what the messages mean will speed up your learning process and
make life a little less stressful.

PHP error messages consist of three parts:

The type of error

What went wrong

Where it went wrong

Straightforward though that sounds, PHP error messages can be rather cryptic. The type of
error and where it occurred are often the most useful.

The main types of errors are

Parse error. This is a mistake in your code—usually a missing semicolon, a missing curly
brace at the end of a loop or conditional statement, or mismatched quotation marks.
Nothing will be displayed onscreen (apart from the error message) until you sort it out.

Fatal error. This is usually caused by attempting to use a function or class that hasn’t
been defined. Everything up to that point is displayed, but the script stops dead when it
reaches a fatal error.

Warning. This is a serious error but not enough to prevent PHP from trying to display
the page. One of the most common causes is a missing include file.

Deprecated. This is a friendly warning from PHP that the code you are using will not
work in the next major release of PHP. It might work now, but you had better start think-
ing about replacing it.

Notice. This usually warns you that you’re accessing a variable that hasn’t been defined. It
won’t stop your application from working, but could be an important signal alerting you
to a potential security risk.

ptg7799847

109What You Have Learned

Parse error messages are generally the most difficult to understand because they report some-
thing “unexpected” on a particular line. Most beginners search frantically for the problem on
that line—usually in vain. When PHP tells you something was unexpected, it means some-
thing is missing before that point. Imagine you’re driving on a road and the safety barrier is
missing. You drive over the edge and end up in a ditch. That’s unexpected, but the error isn’t
in the ditch. It’s in the missing safety barrier.

So, when you get a parse error message, start at the line it reports, and work backward, look-
ing for missing semicolons, braces, and quotation marks. If the error is reported on the last
line of the page, it means that a closing brace is missing from a loop or conditional statement.
Fortunately, the syntax error checking in Dreamweaver CS5 should help you spot such errors
before you even test a page.

What You Have Learned
In this lesson, you have:

Seen how to embed PHP code in a page (pages 61-63)

Seen how to store values in variables (pages 63-66)

Examined the difference between single and double quotation marks (pages 67-69)

Explored the use of arrays to store multiple values (pages 70-73)

Sent data to another page from an online form (pages 71-72)

Discovered how conditions are used to make decisions (pages 74–79)

Explored functions and objects (pages 79-91)

Seen how PHP performs calculations and joins strings (pages 91-96)

Discovered how loops perform repetitive tasks (pages 96-100)

Included external HTML and PHP files in a web page (pages 101-108)

Probed the mysteries of PHP error messages (pages 108-109)

There’s a lot to absorb in this lesson, but hopefully it has fired up your enthusiasm (not damp-
ened it) to get started with PHP. If you come from a design background, dealing with raw code
can seem intimidating at first. I find that a good approach to PHP is to break down what you
want to do into a series of small tasks, and then build a skeleton of comments outlining the logic.
Then you can start fleshing it out with code. Make sure that each section works as expected, and
before you know it, you’ll have created a dynamic web page that does what you want.

ptg7799847

LE
SS

O
N

 4 What You Will Learn
In this lesson, you will:

Examine the basic structure of Drupal, Joomla!, and WordPress

Install WordPress 3.0 in your local testing environment

Create a child theme based on the default WordPress Twenty Ten theme

Use Live View, the CSS Styles panel, and Code Navigator to style WordPress

Enable site-specific code hints for WordPress

Edit a WordPress template

Approximate Time
This lesson takes approximately 2 hours 30 minutes to complete.

Lesson Files
Media Files:

lesson04/start/images/birds_bg_gradient.jpg
lesson04/start/images/cormorants.jpg
lesson04/start/images/cormorants-thumbnail.jpg
lesson04/start/images/screenshot.png
lesson04/start/images/seagulls.jpg
lesson04/start/images/seagulls-thumbnail.jpg

Starting Files:

lesson04/start/auth_keys.txt
lesson04/start/wordpress-3.0.zip

Completed Files:

lesson04/completed/functions.php
lesson04/completed/header.php
lesson04/completed/style.css

ptg7799847

111

LESSON 

Restyling a WordPress
Site

-

a unique look. That job is now considerably easier thanks to several new features in Dreamweaver

Instead of constantly reloading the site in a browser to see the effect of your changes, you can

now redesign your CMS entirely in the Document window. In this lesson, you’ll adapt the default

theme for a WordPress 3.0 site. The same basic principles apply to styling Drupal and Joomla!

The redesigned WordPress site.

ptg7799847

112

Understanding the Structure of a CMS
Before embarking on restyling a WordPress site, it’s worth spending a few moments exam-
ining how a CMS like WordPress, Drupal, or Joomla! is structured. A bare-bones Drupal
installation consists of more than 460 files in 58 folders; WordPress has nearly 800 files in
79 folders; and Joomla! weighs in at a whopping 3,913 files in 711 folders. Unlike a website
built with HTML, these files don’t contain any of the site’s content. In fact, the only page that
most users ever see is index.php.

With the exception of images and other media files, all the content is stored in a database.
The job of the army of files is to insert, update, and delete content in the database, and to
serve visitors to the site with the information they want to see. If you open index.php in any
of the CMSs, you see just a handful of PHP commands. There’s nothing recognizable as a web
page. Each part of the final web page is generated separately. Different scripts handle the page
header, menus, main content, and footer.

This mass of files can be intimidating, even if you have a good understanding of PHP. As a
result, many designers opt for using third-party themes (or templates, as Joomla! calls them)
to improve the look of their CMS. There are plenty of good themes and templates available,
and the default Twenty Ten theme in WordPress 3.0 is very attractive. But with the help of
Dreamweaver CS5, it’s not difficult to do your own customization—providing you have a
strong grasp of CSS.

With a CMS, it’s important to apply security fixes as soon as they’re released, so you need to
install your custom files in a place where they won’t be overwritten. The location depends on
the CMS you’re using:

Drupal. Create two subfolders called modules and themes in sites/all. The themes folder
is where you install third-party themes or create your own.

Joomla! Create a subfolder in the templates folder.

WordPress. Create a subfolder in wp-content/themes.

Although the instructions in this lesson concentrate on creating a WordPress theme, the same
principles of editing the CSS apply to Drupal and Joomla!

 TIP: There’s a tutorial by David Karlins on modifying Drupal themes with Dreamweaver CS5 at

www.peachpit.com/articles/article.aspx?p=1590589.

LESSON : Restyling a WordPress Site

www.peachpit.com/articles/article.aspx?p=1590589

ptg7799847

113

Installing WordPress
The following instructions assume you have created a PHP local testing environment as
described in Lesson 2, and that your web server and MySQL are running.

Setting up a MySQL database and user account
Before you can install WordPress, you need to create a MySQL database and user account.
Both subjects are covered in greater detail in Lesson 5, but the following steps guide you
through the process of setting up a WordPress database.

 Load phpMyAdmin in your browser, and log in as the root user if necessary.

 In the “MySQL localhost” section in the center of the screen type wordpress in the
“Create new database” text field. Leave all other settings at their default, and click Create.

You should see a message that the database has been created. You don’t need to create any
tables. WordPress does it for you.

 Click the Home icon at the top left of the phpMyAdmin screen to return to the previ-
ous page. Then click the Privileges tab at the top of the screen.

CAUTION! Don’t be tempted to click the Privileges tab on the previous screen. You must return

to the phpMyAdmin welcome page to access the correct screen.

 Click the “Add a new User” link halfway down the screen.

 In the “Add a new User” section, type wpuser in the “User name” field.

 Select Local from the Host menu to insert localhost in the Host field.

 Type P3@chp!T in the Password field, and again in the Re-type field.

Installing WordPress

ptg7799847

114

 Scroll to the bottom of the page, and click Go.

phpMyAdmin reports that it has created the user and displays a page where you can edit
the user’s privileges. The first section, “Global privileges,” gives the user the same privi-
leges on all databases, which is insecure.

 Scroll down to “Database-specific privileges” and select wordpress from the menu
labeled “Add privileges on the following database.”

This loads a new screen where you define the database-specific privileges.

 You need to select all checkboxes except the three in the Administration box. The quick-
est way is to click “Check all,” and then deselect the three Administration checkboxes.

 Click the Go button in the “Database-specific privileges” section.

CAUTION! There are two Go buttons on this page. Make sure you click the top one.

You should see a message saying you have updated the privileges for ‘wpuser’@’localhost’.
You’re now ready to install WordPress.

LESSON : Restyling a WordPress Site

ptg7799847

115

Adding WordPress to the phpcs5 site
Installing WordPress involves unzipping the files into the folder where you want to locate the
CMS. This can be the site root or a subfolder. For this lesson, use a subfolder of the phpcs5 site
you set up in Lesson 2. After extracting the files, you need to edit a configuration file filling in
the details of the MySQL database. The rest of the installation process is automated.

 Use lesson04/start/wordpress-3.0.zip or download the most recent version of WordPress
from http://wordpress.org/.

 Extract the files to the phpcs5 site root. This should create a folder called wordpress
inside the phpcs5 site. The folder contains about 25 files and three subfolders: wp-admin,
wp-content, and wp-includes.

 Click the Refresh icon in the Dreamweaver Files panel to see the newly added folders
and files.

 Double-click wp-config-sample.php in the wordpress folder to open it in the Document
window, and switch to Code view.

Installing WordPress

http://wordpress.org/

ptg7799847

116

The first part of the script (around lines 18–34) defines the MySQL settings for the CMS.
Replace the placeholder text in the first three lines with the name of the database, the user
name, and password that you created in the previous section like this:

 Scroll down to around line 45 to the following section of code:

This defines a series of measures designed to make it extremely difficult, if not impossible,
for anyone to reuse cookies if the security of your site is breached. When creating your own
WordPress site, you can use your own imagination to create unique character sequences, or
you can use the automatic key generator at https://api.wordpress.org/secret-key/1.1/salt/.

For this lesson, use the values in lesson04/start/auth_keys.txt to replace the eight lines
shown here.

NOTE: In the event that the security of a live WordPress site is breached, you should replace

these eight values and update the file on your remote server immediately.

 Save wp-config-sample.php as wp-config.php, and close both files.

 Launch your browser, and open wordpress/wp-admin/install.php in your phpcs5 site.
The URL depends on how you set up your testing environment:

Virtual host. http://phpcs5/wordpress/wp-admin/install.php

Localhost. http://localhost/phpcs5/wordpress/wp-admin/install.php

LESSON : Restyling a WordPress Site

https://api.wordpress.org/secret-key/1.1/salt/
http://localhost/phpcs5/wordpress/wp-admin/install.php
http://phpcs5/wordpress/wp-admin/install.php

ptg7799847

117

NOTE: If you are using the MAMP default ports on a Mac, add :8888 after phpcs5 for a virtual

host, or after localhost.

 The install page asks for some basic information to set up the site. Type Birds of a
Feather in the Site Title field.

 Leave username at the default admin.

 Type C0rm0R@nT in both Password fields.

 For a live site, you should use a real email address in Your E-mail, because it’s used to
send alerts about posts waiting for approval. It’s also used if you forget your password.
A dummy address is fine for testing.

 Deselect the checkbox that allows your site to appear in search engines like Google and
Technorati. You won’t be deploying this exercise on the Internet.

 Click Install WordPress. In a few moments, you’ll see a screen telling you that WordPress
has been installed and inviting you to log in as admin.

 Click Log In to open the login screen. Type admin in the Username field and C0rm0R@nT
in the Password field. It’s also a good idea to select the Remember Me checkbox to avoid the
need to type these details every time.

 Click Log In to enter the WordPress Dashboard, the administration center for a
WordPress site.

Installing WordPress

ptg7799847

118

 Click the name of the site (Birds of a Feather) next to the WordPress logo at the top of the
page to view the front page.

Why Can’t I See the Multiscreen Button?

The screen shot on the next page shows a Multiscreen button in the Document tool-
bar, which isn’t part of a default installation of Dreamweaver CS5. It comes from the
HTML5 Pack that was released in May 2010, a month after Dreamweaver CS5 became
available for purchase. Although the Multiscreen button isn’t used in this book, the
HTML5 Pack upgrades the version of the WebKit browser engine used in Live View to
support CSS3 properties that are used later in this lesson.

If you don’t see the Multiscreen button, check the status of the HTML5 Pack at
http://labs.adobe.com/technologies/html5pack/. It’s possible that during the lifetime
of this book the pack’s functionality will be added to Dreamweaver through the Adobe
Updater. Download and install the HTML5 Pack using whichever method is available.

LESSON : Restyling a WordPress Site

http://labs.adobe.com/technologies/html5pack/

ptg7799847

119

 In Dreamweaver, double-click index.php in the wordpress folder to open it in the
Document window. In Code view, there are just two lines of PHP code, together with a
dozen or so lines of comments.

Switch to Design view, and click the Live View button. After a few moments, you should
see the Birds of a Feather site in the Dreamweaver Document window. There are several
files called index.php in a WordPress site. If you don’t see the front page of the Birds of a
Feather site in Live View, make sure you opened index.php in the top wordpress folder.

The default Twenty Ten theme in WordPress 3.0 has been designed to look good straight out
of the box. But with the help of Dreamweaver CS5’s new features, you’ll learn how to develop
your own theme to style WordPress.

Creating a WordPress Theme
Developing a WordPress theme from scratch requires considerable knowledge of CSS, HTML,
PHP, and the WordPress application programming interface (API). The good news is that you
can stand on the shoulders of others to adapt an existing theme as a child theme.

Child themes work on a similar principle to CSS. The child theme automatically inherits all
the features of the existing theme, but you can decide which elements to override. The advan-
tage is that the original files remain intact, so you can revert to the default if you change your
mind or make a mistake. Also, if the parent theme is updated, you can replace all its files with-
out worrying about losing your customizations because they’re all stored in the child theme.

Creating a WordPress Theme

ptg7799847

120

Most themes can be adapted as child themes. Before doing so, check the license. Some com-
mercial themes have restrictions on how they can be used. The Twenty Ten theme used in the
following exercises is released under the GNU General Public License (www.gnu.org/licenses/
gpl.html), which means you are free to modify and redistribute it.

Preparing the files for a child theme
Themes consist of at least one style sheet and a number of WordPress templates. A WordPress
template doesn’t control a complete page. It’s more like a Dreamweaver Library item in that it
represents a fragment of a page. Each template is named after the part of the page it controls.
For example, the Twenty Ten theme has templates called comments.php, footer.php, header.
php, sidebar.php, and so on. If you open any of these files, you’ll see a mixture of HTML and
PHP. If you don’t have any PHP experience, the code probably looks incomprehensible, but
much of it is based on conditional statements. You’ll gain plenty of experience with condi-
tional statements in later lessons, so the code should be a lot easier to decipher by the time
you have completed this book.

However, you don’t really need to worry about the PHP code in the templates. A child theme
requires only one file—a style sheet, which must be called style.css and reside in the child
theme’s top level folder. The child theme automatically uses the parent theme’s templates
and custom functions. In other words, at its simplest level, creating a child theme is just the
WordPress way of attaching your own style sheet to an existing theme. But if you’re feeling
more ambitious, you can create your own templates and functions. When the active theme is
a child theme, WordPress always looks first in the child theme’s folder. If it finds the appropri-
ate template or function there, it uses it. Otherwise, it uses the version in the parent theme’s
folder. For example, if you create your own version of header.php, WordPress uses it. But
if you don’t have your own version of footer.php, WordPress uses the one from the parent
theme. This gives you the opportunity to experiment. You can copy a template file from the
parent theme, and make some changes. If you like the result, you’re on the way to developing
your own theme. If it doesn’t work, just delete the template file from your child theme’s folder,
and revert to the parent template.

Developing WordPress themes is a vast subject, so the exercises in this lesson only scratch
the surface, but they demonstrate how quickly you can begin to style a WordPress site in
Dreamweaver CS5.

 In the Dreamweaver Files panel, expand the wordpress and wp-content folders, select the
themes folder, right-click, and choose New Folder. Name the new folder birds_phpcs5.
The new folder should be inside the themes folder at the same level as twentyten.

LESSON : Restyling a WordPress Site

www.gnu.org/licenses/gpl.html
www.gnu.org/licenses/gpl.html

ptg7799847

121

 Expand the twentyten folder, and double-click style.css to open it in the Document window.

 The first eight lines of style.css look like this:

This tells WordPress what the theme is called, plus some basic information about the theme.

 Choose File > Save As or press Ctrl+Shift+S/Shift+Cmd+S. In the Save As dialog box,
navigate to the birds_phpcs5 folder, and save the file with the same name (style.css).
When asked if you want to update links, click No.

 Close the original style.css, and make sure you’re working in the version in the
birds_phpcs5 folder. The file path should be visible in the Browser Navigation toolbar.

Alternatively, click the Open Documents icon at the top of the Coding toolbar to
reveal the file path.

 The Theme Name comment must contain a unique name, which cannot consist only
of numbers (that’s why it’s “Twenty Ten,” not “2010”). When creating a child theme,
you need to specify the parent theme as the child theme’s template. Without these two
changes, WordPress won’t recognize your child theme. Changes to the remaining com-
ments are optional. Amend the comments at the top of style.css like this:

Creating a WordPress Theme

ptg7799847

122

The parent is identified by followed by a colon and its folder name.

 Save style.css and close it.

 This is sufficient for WordPress to identify the new theme, but it’s a good idea to add an
image to distinguish it from others in your Dashboard. The image should be about 300
pixels wide and must be called screenshot.png. Copy screenshot.png from lesson04/start/
images to the birds_phpcs5 folder. The child theme folder should now contain two files.

You’ll add more files later, but that’s sufficient for now.

 TIP: If you create a mockup of your final design in a graphics program, such as Fireworks or

Photoshop, you can create screenshot.png by scaling the mockup and exporting it as a

file. If it can’t find screenshot.png, WordPress displays a text description of the theme.

Activating the child theme
The child theme needs to be activated before you can style it in Dreamweaver.

 In your browser, log into the WordPress Dashboard. Depending on how you set up your
testing environment, the URL should be one of the following:

Virtual host. http://phpcs5/wordpress/wp-admin/

Localhost. http://localhost/phpcs5/wordpress/wp-admin/

LESSON : Restyling a WordPress Site

http://phpcs5/wordpress/wp-admin/
http://localhost/phpcs5/wordpress/wp-admin/

ptg7799847

123

 Expand the Appearance section in the column on the left of the Dashboard, and
select Themes. The new Birds of a Feather theme should be displayed in the Available
Themes section.

 Click the Activate link for the Birds of a Feather theme. After a few seconds, Birds of a
Feather is displayed as the Current Theme and Twenty Ten moves down to the Available
Themes section.

 Click the Widgets link in the Appearance menu to open the widget settings screen.
The child theme inherits the default settings of the Twenty Ten theme. You can study
all the options later. For now, remove the Recent Comments and Meta widgets from
the Primary Widget Area by dragging them from the sidebar on the right back to the
Available Widgets area.

 Drag the Categories widget to move it just below the Search widget. The Primary Widget
Area should now look like this:

Creating a WordPress Theme

ptg7799847

124

 Click the Background link in the Appearance menu. This allows you to set a background
image and color for the site. However, it does this by generating a block in the
head of the page. It’s better to use style.css to handle this, so leave this screen unchanged.

 Click the Header link in the Appearance menu. This is one of the cleverest parts of the
new Twenty Ten theme. It offers a choice of eight header images for your site. You can
also upload your own images. The problem is that if your image isn’t exactly the same size
as used by Twenty Ten (940 × 198 pixels), you’re prompted to crop it. WordPress doesn’t
crop your original, but instead makes a copy. If your image’s height is less than 198 pixels,
it’s stretched. The result is often unsatisfactory.

The height and width of the header images are controlled by a custom function in the
Twenty Ten theme. To change the default values, you need to override that function.
Leave your browser open at the current page, and return to Dreamweaver.

 Custom functions for WordPress themes are stored in a file called functions.php. If you
attempt to redefine an existing function, PHP throws a fatal error, but WordPress over-
comes this problem with a simple conditional statement. All the functions in the parent
theme’s functions.php file are wrapped in a conditional statement that checks whether a
function of the same name has already been defined. If it hasn’t, the parent theme defines
the function. Otherwise, it uses the one defined by the child theme.

Choose File > New. Set Page Type to PHP, set Layout to <none>, and click Create. Switch
to Code view, and delete all the HTML code inserted by Dreamweaver. You should have a
completely blank page.

 Add an opening PHP tag at the top of the new page, and save it as functions.php in the
birds_phpcs5 folder.

 Double-click functions.php in the twentyten folder to open it in the Document window.
The file contains extensive comments that help you understand what the functions are for
and how to override them.

 Scroll down to around line 47 to locate the following code:

This defines the width of the main content in the Twenty Ten theme. As you
can see, the conditional statement sets the value to 640 (pixels) only if
hasn’t already been defined. So, to change the width to a different value, you need to add

 to functions.php in the child theme. Otherwise, this value is used.

LESSON : Restyling a WordPress Site

ptg7799847

125

 The header image for Birds of a Feather is 20 pixels wider than the Twenty Ten images,
so you can expand the content by the same amount.

Switch to the empty functions.php file you created for the child theme, and add the
following code after the opening PHP tag:

 Switch back to the Twenty Ten version of functions.php, and scroll down to locate the
following line of code (around line 53):

This conditional statement checks whether a function called has
already been defined. If it hasn’t, it creates the function, which—as the name suggests—
defines the default settings for the Twenty Ten theme.

NOTE: This conditional statement ends with a colon rather than an opening curly brace.

This is an alternative syntax for control structures. See http://docs.php.net/manual/en/

control-structures.alternative-syntax.php.

 To create your own default settings for the child theme, you need to copy the function
definition to the version of functions.php in birds_phpcs5. The function definition begins
like this (around line 75):

The final section of the function definition looks like this (around lines 171–178):

Select the entire function description, and copy it to your clipboard.

Creating a WordPress Theme

http://docs.php.net/manual/en/control-structures.alternative-syntax.php
http://docs.php.net/manual/en/control-structures.alternative-syntax.php

ptg7799847

126

 Paste the function definition into functions.php in the birds_phpcs5 folder. If you copied
and pasted the code correctly, Dreamweaver should display “No syntax errors” in the Info
Bar at the top of the Document window.

 Scroll down to locate this code (around line 35):

This defines the default header image for the Twenty Ten theme (the tree-lined path).
To display a different image, change the filename like this:

You’ll add this and other images to the relevant folder shortly.

 The next section of code defines the width and height of the header image. Change the
width from 940 to 960 and the height from 198 to 150 like this:

 About 20 lines farther down is a long section of code that begins like this:

This passes a multidimensional array to , a function new
to WordPress 3.0, which defines the choice of header images offered by the theme. The
default Twenty Ten images are all 940 pixels wide and 198 pixels high, so they won’t fit
the child theme.

The media files for this lesson contain two header images called cormorants.jpg and
seagulls.jpg, together with two smaller versions called cormorants-thumbnail.jpg and
seagulls-thumbnail.jpg. Change all instances of berries in the multidimensional array to
cormorants, and cherryblossom(s) to seagulls. There are only two header images, so you
need to delete the other six subarrays. When you have finished, the final section of func-
tions.php should look like this:

LESSON : Restyling a WordPress Site

ptg7799847

127

 Save functions.php and copy cormorants.jpg, cormorants-thumbnail.jpg, seagulls.jpg,
and seagulls-thumbnail.jpg from lesson04/start/images to twentyten/images/headers.
The images must go in the parent theme’s folder because that’s where

 expects to find them.

 Return to the Header page in the WordPress administrative area. Click the Background
link in the Appearances menu, and then click Header to reflect the changes you have
made. The Custom Header section should now display the two Birds of a Feather header
images, and the text in the Upload Image section should show the new default dimen-
sions of 960 × 150 pixels.

If necessary, compare your code with lesson04/completed/functions.php.

Creating a WordPress Theme

ptg7799847

128

Styling the child theme
All that remains now is to adjust the styles to give the theme its own look. Most of the remain-
ing tasks are done in Live View and the CSS Styles panel.

 Close functions.php if it’s still open, and create a new folder called images in the
birds_phpcs5 folder. Copy birds_bg_gradient.jpg from lesson04/start/images to
the new folder. You’ll use this later as a background image to the new theme.

 Double-click index.php in the main wordpress folder to open it in the Document win-
dow. Switch to Design view if necessary, and click Live View. The Birds of a Feather site
should display with the new default header and the edited sidebar.

 The header image is now wider than the menu bar. To fix that, click the Inspect button
in the Document toolbar. As you move your pointer over Live View, you’ll see different
sections of the page highlighted. The content of an element is light blue or aqua, padding
is mauve, and margins are yellow.

Notice that as you move from element to element, the currently highlighted element
is also selected in the Tag selector at the bottom of the Document window. When your
pointer is over the black menu bar below the header image, you should see
highlighted in the Tag selector. Click the menu bar to select it.

LESSON : Restyling a WordPress Site

ptg7799847

129

 Selecting an element turns off the Inspect button, allowing you to move your pointer
without highlighting other elements. Open the CSS Styles panel by clicking its tab or by
choosing Window > CSS Styles. On Windows, you can also use the keyboard shortcut
Shift+F11 (there is no Mac shortcut).

Make sure the Current button is selected at the top of the CSS Styles panel and that the
Rules pane is visible in the middle section. If the middle section is titled About, click the
Cascade icon as indicated in the following screen shot. You might need to close other panels
and drag the panes inside the CSS Styles panel to see the rules and properties listed.

Click to display the cascade of rules for the selected tag

The Rules pane displays all the style rules that affect the current selection. Sometimes you
need to examine several rules before finding the right one, but on this occasion, it should be
the one selected by Dreamweaver. It’s the rule shown in the preceding screen shot.

Select in the Rules pane. This reveals that the property is set to . Click
the value to edit it, and change the number to 960. The px unit is controlled by a separate
menu, so you don’t need to change it.

Creating a WordPress Theme

ptg7799847

130

As soon as you press Enter/Return to confirm the edit, the menu bar in Live View
expands to match the width of the header image.

 Although the header image and menu bar are now the same length, there’s a gap of about
20 pixels of white space on the left of both elements. Finding the cause of the gap is a
process of elimination, but if you look farther down the page, you’ll see there’s a similar
gap on both sides of the horizontal line above the footer.

Click the Inspect button again, position the pointer over the footer so that the full width
below the horizontal line is highlighted, and click to select it.

 In the Rules pane of the CSS Styles panel, is selected. Examining the Properties
pane reveals nothing to help eliminate the gap on the left and right, so start moving up the
cascade of rules in the Rules pane. The next property begins with and
has a property of . Change the number to 960 as you did in step 4.

As soon as you press Enter/Return, the white background expands to create the same gap
on both sides of the header image, menu bar, and the horizontal line above the footer.
This is progress, but the final design calls for the gap to be eliminated.

 Click in the Tag selector at the bottom of the Document window
to reveal its properties in the CSS Styles panel. You’ll see that the property is
set to . This adds 20 pixels of padding to both sides of the wrapper .

Remove the padding by selecting it in the Properties pane of the CSS Styles panel and
clicking the trash can icon at the bottom right of the panel.

The left and right sides of the heading image, menu bar, and horizontal line above the
footer are now flush with the white background of the wrapper.

 There’s a large gap between the white background and the top of the page. It’s caused by
the property, which is set to . Select in the Properties pane for

 and click the trash can icon to delete it.

The entire contents of the page move up to eliminate the gap, leaving the white back-
ground flush with the top of the Document window.

 With still selected in the Rules pane of the CSS Styles panel, change the
 property from (white) to #FAF2EF (light pink).

LESSON : Restyling a WordPress Site

ptg7799847

131

 TIP: Hexadecimal values for colors are case insensitive. The Twenty Ten style sheet uses a

mixture of uppercase and lowercase, indicating that it’s almost certainly the work of more than

one person. Color values can also be shortened to three characters if each even character is the

same as the preceding odd one. Thus, can be shortened to , but cannot

be shortened.

 The next step is to change the background of the whole page. Begin by selecting
 in the Tag selector. The Rules pane selects the

style rule, which covers too many elements, so start moving up the list of rules. The next
one, , defines the property, which is the one you need to change.

The shorthand CSS property is difficult to define directly in the Properties
pane of the CSS Styles panel, so select the property and click the Edit Rule icon at the
bottom right of the panel to open the CSS Rule Definition dialog box.

 The CSS Rule Definition dialog box should automatically select the Background category.

Change the value of Background-color from to #E1DFE0.

Click the Browse button next to the Background-image text box, navigate to the
birds_phpcs5/images folder, and select birds_bg_gradient.jpg.

Set the Background-repeat menu to repeat-x.

When you click OK, the page background should change from light oatmeal to a vertical
gradient that fades from light purple to a light gray.

 Now comes a little bit of CSS magic—swapping the sidebar from right to left. The default
style rule for the sidebar floats it to the right in a margin created by the main content. You
can move the sidebar to the other side of the page by floating it left and giving it a large
enough negative left margin to sit on the opposite side of the main content. But first, you
need to adjust the margins of the main content.

Click the Inspect button and select the main content on the left of the page. The style
rule that controls its margins is applied to the container , so click
in the Tag selector at the bottom of the Document window. The Properties pane of the
CSS Styles panel reveals that its property is set to . In other words,

Creating a WordPress Theme

ptg7799847

132

a space of 240 pixels has been created on the right for the sidebar. You need to move the
space to the opposite side. Change the margin property to 0 0 0 240px. This moves the
main content to the right of the page, but pushes the sidebar below it.

 TIP: The Twenty Ten style sheet’s use of a negative right margin on the container is

rather unconventional. It’s needed because the property of the is set to .

Using a negative value reduces the width and makes room for the sidebar. If you need to brush

up on your knowledge of CSS, take a look at my book, Getting StartED with CSS (friends of

ED, 2009, ISBN: 978-1-4302-2543-0).

 Click the Inspect button again, and move your pointer until the whole of the sidebar is
highlighted. Then select it. This selects in the Tag selector. The rule that you
want to edit is the next one up the page hierarchy. Click
in the Tag selector.

The Properties pane of the CSS Styles panel displays no styles, so move up the cascade
in the Rules pane. The next one— —displays the rules that you
need to change.

 Change the value of from right to left. The sidebar jumps to the left of the page but
still below the main content.

 Click Add Property, type margin-left, and set the value to -1180px. (That’s minus
1180 pixels.) The sidebar is after the main content in the underlying HTML markup, but
a combination of the left float and the large negative margin allows it to leapfrog over the
main content and move into the correct position in the margin on the left.

 Let’s add a touch of CSS3 coolness to the main content. Click the Inspect button,
move the pointer over the main content until it’s highlighted, and click to select it.
The Tag selector shows you have selected

. Whew! That’s a complex CSS selector. Fortunately,
the Rules pane selects the lowest part of the cascade, the style rule for the class,
which currently sets only the property.

LESSON : Restyling a WordPress Site

ptg7799847

133

Although you could add the next set of CSS properties through the CSS Styles panel, it’s
a lot easier to work directly in the style sheet. The problem is that the style sheet contains
more than 1,000 lines. A quick way to locate the correct rule is to use the Code Navigator.

Hold down the Alt key on Windows or Cmd+Opt on a Mac, and click anywhere in the
“Welcome to WordPress” default post to invoke the Code Navigator, a context-sensitive
tool for investigating styles that affect the area you clicked. Many rules affect this area,
but you should find listed near the bottom of the panel, as shown in the follow-
ing screen shot.

Click the link in the Code Navigator to open the style sheet in Split view. Using
this technique positions the insertion point directly inside the style rule.

 Amend the style rule like this:

Creating a WordPress Theme

ptg7799847

134

The properties beginning with and are browser-specific implementations of
the CSS3 and properties. Putting the properties in this order
ensures that the effects will be maintained when the official properties are implemented
by browsers.

If you refresh Live View by pressing F5 or clicking anywhere in Live View, you’ll see
the post now has a white background with rounded corners. In the Mac version of
Dreamweaver, you’ll also see a drop shadow as shown in the following screen shot.

NOTE: The Windows version of Live View fails to render the drop shadow correctly. However,

if you view the finished WordPress site in a recent version of Safari, Google Chrome, or Firefox,

the drop shadow is rendered correctly on both Windows and Mac OS X. Internet Explorer 8 and

earlier ignores the CSS3 properties and just displays a rectangular white background.

 Save style.css.

Hopefully, by now you’ve got the picture. You use the Inspect button or Code Navigator in
Live View to identify elements on the page and inspect the style rules that govern their dis-
play. The Tag selector at the bottom of the Document window shows you where the element
resides in the document hierarchy. Most CSS properties are inherited, so you often need to
go back up the hierarchy to find the element where a specific rule has been applied. The CSS
Styles panel in Current mode also allows you to work back up the cascade of rules affecting
the selected element.

Styling a web page requires patience and skill. If you have a good command of CSS, you’ll
find working in Live View with these tools make styling WordPress, Joomla!, or Drupal
very similar to working with a static HTML page. This lesson has concentrated on styling
the front page of a WordPress site, but Live View is navigable in Dreamweaver CS5. Just
hold down Ctrl/Cmd while clicking a link, and you can inspect and style all pages and views
within a CMS.

To round out this lesson, let’s take a look at a WordPress template and make a slight change so
that the text heading can be hidden from visual browsers. When editing CMS templates it’s a
good idea to set up site-specific code hints.

LESSON : Restyling a WordPress Site

ptg7799847

135

Enabling site-specific code hints for WordPress, Drupal, and Joomla!
WordPress, Drupal, and Joomla! use many custom functions to generate the content for each page.
For example, WordPress provides the function (http://codex.wordpress.org/Template_
Tags/bloginfo) to display information about your site. Dreamweaver uses code introspection to
generate hints for your chosen CMS, speeding up editing page templates or functions.

The following instructions show how to enable site-specific code hints for WordPress in the
phpcs5 site. The procedure is identical for Drupal and Joomla!

 Make sure that the phpcs5 site is selected in the Files panel, and that the active document
is from the same site or that all documents are closed.

 Choose Site > Site-Specific Code Hints. As long as you haven’t previously set up site-
specific code hints for the same site, the Site-Specific Code Hints dialog box automatically
recognizes not only which CMS is installed, but also the correct folder.

 All that’s necessary is to check that the Sub-root text field points to the folder that con-
tains the top level of the CMS. If it doesn’t, click the folder icon next to the Sub-root text
field, and select the correct folder.

 After checking the Sub-root text field, just click OK. That’s all there is to it.

 Dreamweaver inserts a file called dw_php_codehinting.config into the site root and
automatically cloaks it to prevent it from being uploaded to your remote server when
you use site synchronization to update your files. This file is used only in your local
development environment.

Creating a WordPress Theme

http://codex.wordpress.org/Template_Tags/bloginfo
http://codex.wordpress.org/Template_Tags/bloginfo

ptg7799847

136

Editing a WordPress page template
The first time you dive into a WordPress template can be a baffling experience, but the Twenty
Ten theme is well commented. If you understand the HTML structure of the template you’re
working with, it’s not too difficult to work out where to add custom features, such as a static
paragraph, or remove elements that you don’t want. As long as you make the changes to a
template in a child theme, you can always delete the template and use the parent theme’s
default version if you make a mistake.

 Open index.php in the top-level wordpress folder and click Live View to display the front
page of the Birds of a Feather site.

 Click Live Code to display in Split view the underlying HTML output generated by
WordPress. Adjust Split view so you can see the code and “Just another WordPress site”
at the top right of the page (you might need to scroll horizontally in Live View).

 Click between the words “Just” and “another” in Live View. Depending on the size of your
monitor, this should scroll Code view so that the equivalent HTML output is in the center
with the insertion point between the two words, as shown on line 24 in the following
screen shot:

You can’t edit the output in Live Code, because it’s dynamically generated by WordPress,
but inspecting the output here gives you a good idea of what to look for when you open
the WordPress template.

The text you clicked is in a that has the ID . You can also see on
line 19 that the main heading has the ID , and that the text is wrapped in a
link that returns to the front page of the WordPress section of the site.

The final point to notice is that the attribute of the header image on line 26 is empty.
The HTML specification requires all images to have alternative text (in the attribute),
but it’s recommended to use an empty string when the image is purely decorative. This
redesign incorporates text into the image, so the same text should be inserted into the
attribute in case the image is not displayed for any reason.

LESSON : Restyling a WordPress Site

ptg7799847

137

 In the Files panel, double-click twentyten/header.php to open it in the Document win-
dow. Save the file as header.php in the birds_phpcs5 folder, and click No when asked if
you want to update the links. Close the original version of header.php. You want to edit
the copy in the child theme.

 Scroll down to locate the following (it should be around line 54):

This uses the WordPress function to display the site description (“Just another
WordPress site”).

 Delete the entire line, and save header.php.

 Switch back to index.php, and press F5 or click the Refresh icon in the Document tool-
bar (not the Files panel) to update Live View. After a few moments, the text disappears from
the top right of the page, and the corresponding code is removed from Live Code.

 Switch back to header.php, and examine the code immediately above the line that you
removed in step 6. It looks like this:

This code checks whether the current page is the site root or the front page of the
WordPress section. If it is one of these, creates a pair of tags.
Otherwise, it creates a . It then creates a link to the front page of the WordPress site,
which is wrapped around the site name.

 The site name is already in the header image, so you don’t want it displayed twice.
However, you should leave it in the underlying code for search engines and screen read-
ers for the blind. Edit the code like this to remove the link and tags:

 Save header.php, and refresh Live View in index.php. The text heading is still there,
but it’s no longer a link.

Creating a WordPress Theme

ptg7799847

138

 Click the Inspect button, select the Birds of a Feather text in Live View, and open the CSS
Styles panel in Current mode. In the Rules pane, should be automatically
selected. You know this is the style rule you want to change, because it’s the ID selector
for the element you just edited in header.php.

 Select each of the properties in turn and click the trash can icon at the bottom right of the
CSS Styles panel to delete them. Then click Add Property to add the property,
and set it to .

Click Add Property again to add the property, and set it to (minus 1000).
The heading disappears from visual browsers but remains accessible to search engines
and screen readers.

 There’s still a large gap at the top of the page, so click the Inspect button again, and select
the area above the header image.

The rule is selected in the CSS Styles panel. Delete the property to
remove the gap.

 Click the header image in Live View to select the style rule, and delete the
 property to remove the thick black border at the top of the page.

Save style.css to preserve the changes.

 Return to header.php, and locate the following code, which inserts the header image
(around line 63):

You could hard code the value of the attribute, but that would mean changing the
template if you decide to use the same theme for different sites. It makes more sense to
use the WordPress API.

LESSON : Restyling a WordPress Site

ptg7799847

139

Position the insertion point between the quotation marks of the attribute, type an
opening PHP tag followed by a space, and then press Ctrl+spacebar to bring up code
hints. Type bl. Dreamweaver should select .

Press Enter/Return to autocomplete the function name. Dreamweaver automatically
inserts the opening parenthesis. Complete the code by typing ‘name’ followed by a clos-
ing parenthesis, semicolon, and closing PHP tag. The attribute should look like this:

 Save header.php, and refresh Live View in index.php. When Live Code reloads, you
should see “Birds of a Feather” in the attribute.

You can check your code against style.css and header.php in lesson04/completed.

What You Have Learned
In this lesson, you have:

Examined the basic structure of Drupal, Joomla!, and WordPress (page 112)

Installed WordPress 3.0 in your local testing environment (pages 113–119)

Created a child theme based on the default WordPress Twenty Ten theme
(pages 119–127)

Used Live View, the CSS Styles panel, and Code Navigator to style WordPress
(pages 128–134)

Enabled site-specific code hints for WordPress (page 135)

Edited a WordPress template (pages 136–139)

What You Have Learned

ptg7799847

LE
SS

O
N

 5 What You Will Learn
In this lesson, you will:

See how a database stores information

Understand the principles behind efficient database structure

Explore the different data types stored in MySQL

Define the database table for a user registration system

Understand the effect of collation on how database records are sorted

Pick the appropriate database engine

Create MySQL user accounts and assign privileges

Import existing data from an external file

Approximate Time
This lesson takes approximately 2 hours to complete.

Lesson Files
Media Files:

None

Starting Files:

None

Completed Files:

lesson05/states.sql

ptg7799847

141

LESSON 

Designing and Building
Your Own Database

Having a content management system like WordPress build a database for you automatically

is brilliant, but you’re forced to use the structure your chosen CMS dictates. Often, the best

What’s not quite so easy is designing the database. Seemingly simple decisions can cause

major headaches that are difficult to undo once the database has more than a few records.

This lesson helps you avoid such mistakes and shows you how to build a database table for a

phpMyAdmin provides a convenient web-based interface to MySQL.

ptg7799847

142 LESSON : Designing and Building Your Own Database

Working with MySQL
For many people, their first encounter with MySQL comes as something of a shock. It doesn’t
have a glossy user interface (UI). Because of its open source background, it’s a command
line program. Direct access to MySQL is through a Windows Command Prompt window or
Terminal in Mac OS X. To make life easier, most people access MySQL through a third-party UI.

Choosing a UI for MySQL
You have a choice of UIs for MySQL, including:

phpMyAdmin (http://phpmyadmin.net/)

MySQL Workbench (http://dev.mysql.com/downloads/workbench)

Navicat (http://navicat.com/)

SQLyog (http://www.webyog.com/en/)

If you were to make your choice on looks alone, phpMyAdmin would almost certainly come
last. It doesn’t have the polished look of the others, but it’s a solid workhorse maintained by
dedicated volunteers who update it regularly. It might not look pretty, but it does everything
you need for this book. It has several other advantages, namely:

It’s free.

It’s automatically installed by all-in-one packages like XAMPP and MAMP.

It’s a web-based application, so it works identically on all platforms.

Most web hosts provide phpMyAdmin as the standard MySQL interface.

For these reasons, I have chosen to use it for the exercises in this book. Once you feel more
comfortable working with MySQL, you might want to try one of the other UIs to see if the
other features appeal to you.

MySQL Workbench and Navicat are available for Windows and Mac OS X, but SQLyog is
Windows only. The following screen shot shows the Windows version of Navicat.

All three are available in free and commercial versions, although the commercial version of
MySQL Workbench is unusual in that it’s sold on an annual subscription.

http://phpmyadmin.net/
http://dev.mysql.com/downloads/workbench
http://navicat.com/
http://www.webyog.com/en/

ptg7799847

143

How a database stores information
Databases store information in rows and columns in a similar way to a spreadsheet. The prob-
lem with a spreadsheet is that all the data needs to be stored in a single table like this:

This often leads to the same information being recorded several times, which is not only
repetitive, but can also lead to inconsistency. Each record in this spreadsheet lists the name of
a state. But California has been entered in three different ways, and Utah appears fully spelled
out and abbreviated as UT. These inconsistencies make searching more difficult.

ptg7799847

144 LESSON : Designing and Building Your Own Database

What distinguishes data storage in MySQL from a spreadsheet is that MySQL is a relational
database. You avoid inconsistency in a relational database by storing repetitive data in a separate
table and building a relationship between the two tables. The following diagram shows the same
data stored in two MySQL tables called and .

This is how the data is organized:

Each record in the table is identified by a unique number stored in the
column.

The names of the states have been moved to a separate table that stores each state’s United
States Postal Service (USPS) abbreviation as as well as the state’s name spelled
out in full.

The relationship between the two tables is created by storing in both tables.

At first glance, this might seem a cumbersome way of organizing the data, but the immedi-
ate gain is that it avoids the danger of someone entering “Missisipi” or “Massachusets” in
the table by mistake. Misspellings and inconsistent data are a major cause of database
item search failures.

Separating the states into a table of their own has the added advantage of making it easier to
store other details related to the state, such as time zone and the state tax rate. If you store the
tax rate in the table, you need to track down every entry to update it. By putting the
state details in a separate table, you make the change in just one place.

The relationship between tables is managed using primary and foreign keys.

ptg7799847

145

Managing relations with primary and foreign keys
Each record in a database table should have a unique identifier called a primary key. Usually,
this is a number automatically assigned by the database when the record is inserted. The
number is incremented by 1 for each new record. The table uses this type of primary
key and stores it in the column. However, you can use any combination of letters
and numbers as the primary key, as long as each one is unique. USPS state abbreviations are
unique, so they act as the primary key in the table.

You link the records by using the primary key from one table as a reference in the other table.
When a primary key is used like this, it’s known in the other table as a foreign key. Although a
primary key can be used only once in its own table, it can be used many times as a foreign key.

The role of can be summarized as follows:

The column is the primary key in the table. Each value is unique.

In the table, is a foreign key. Some values, such as CA and UT, are
repeated several times.

This type of relationship—where a primary key from one table refers to multiple items in
another table—is known as a one-to-many relationship. It can be represented diagrammatically
like this:

The key symbol next to in the table and in the table indi-
cates they are the primary keys of their respective tables. The 1 indicates that each
in the table is unique. The infinity symbol (∞) indicates that can be repeated
many times in the table.

NOTE: There’s no standard for representing database relationships. However, you might come

across another set of symbols known as Crow’s Foot notation, which is explained in the sidebar

“Using Crow’s Foot Notation to Represent Relationships.”

ptg7799847

146 LESSON : Designing and Building Your Own Database

Using Crow’s Foot Notation to Represent Relationships

There’s a bewildering variety of ways to represent database relationships diagrammati-
cally. You don’t need to learn them, but it’s useful to be able to recognize them if you
encounter them elsewhere. The following diagram shows the relationship between the

 and tables using Crow’s Foot notation. The name comes from the three-
pronged link to the table.

place_id
state_id
name
link_name
photo
description

places states

state_id
state_name

(1,1)

(0,N)

In a one-to-many relationship, the “one” side is represented by a vertical line through
the link. The “many” side is represented by the three-pronged crow’s foot. The relation-
ship is further refined by a second vertical line on the “one” side and an empty circle on
the “many” side. These indicate that a record must exist on the “one” side before it can
be used as a foreign key on the “many” side.

It’s quite common in a one-to-many relationship for there to be records on the “one”
side that don’t have corresponding records on the “many” side. For example, the
table lists all 50 states plus the District of Columbia, but the table has records
for only a handful of states. As more records get added to the table, the number
of times a is used on the “many” side will change, but on the “one” side, the

 will always be associated with only one record. This aspect of the relationship
is reflected in the numbers in parentheses next to each table.

The (1,1) next to the table means that in the table must refer to
at least one—and only one—record in the table. The (0,N) next to the
table means that in the table can refer to an unlimited number of
records in the table—or to none at all. Sometimes, the Crow’s Foot symbols are
used on their own, as are the numbers in parentheses.

ptg7799847

147

Although one-to-many relationships are very common in database design, the task facing a
database designer isn’t always that simple. Here’s a spreadsheet with details of several books.

Each book has only one publisher, so it’s easy to split the publishers’ details into a separate
table. But what about the authors? Some authors have written more than one book, and some
books have more than one author. This is known as a many-to-many relationship.

The normal way to handle a many-to-many relationship is with an intermediate table that
cross-references the primary keys in the other tables. The following diagram shows the same
information distributed across four tables.

NOTE: The normal convention is to put the primary and foreign key columns at the beginning

of each table. The order has been changed in the preceding diagram to make the continuity of

the relationships easier to follow.

Details of the authors, book titles, and publishers have been stored in separate tables called
, , and . Each table has its own primary key: , , and

 respectively.

To find who wrote which book, a cross-reference table called lists and
 in pairs as foreign keys. So, 1 is associated with both 1 and

6. Each pair in the cross-reference table is unique, so it acts as a combined primary key.

The one-to-many relationship between the and tables is the same as in the
earlier example. The column is the primary key of the table and is stored as
a foreign key in the table.

ptg7799847

148 LESSON : Designing and Building Your Own Database

The following diagram shows how the cross-reference table converts the many-to-many
relationship into separate one-to-many relationships.

In addition, you can also have a one-to-one relationship, but this is relatively uncommon.
Normally, data that goes logically together is stored in the same table. However, you might
want to store data in a separate table for security reasons. For example, in a human resources
database, an employee’s salary details might be kept in a separate table that only payroll staff
is permitted to access.

TIP: If you have no previous experience working with databases, take some time to make

sure you understand the principle of one-to-many and many-to-many relationships. They are

indispensible to successful database design. At this stage, don’t worry about how primary and

foreign keys are generated. Part of the process is automatic. The rest is handled by using simple

database queries.

Deciding how to organize your data
As you’ve already seen, relational databases don’t store everything in one massive table.
So, one of your first tasks is to decide on your table structure. There’s no single “right” way
to do it. Each database is different, but the following guidelines should help:

Make a list of all the information you want to store in the database.

Sort information into logical groups, and use them as the basis for tables. The ideal table
should represent a single subject.

If values are repetitive, consider moving them to a separate table.

Use table columns to store only one piece of information for each record.

Give each record a unique identifier (primary key).

Cross-reference by storing the primary key as a foreign key in related tables.

Simplify many-to-many relationships with a cross-reference table.

ptg7799847

149

One of the main objectives in database design is to avoid repetition or redundancy. But if
you’re building a database that contains numerous addresses, what should you do about cities,
districts, and street names? If you’re not careful, you might end up with a highly fragmented
structure that becomes a nightmare to maintain. It might make sense to store street names in
a table devoted to a city or district rather than having separate tables for each one.

Perhaps the biggest mistake made by inexperienced database designers is putting more than
one piece of information in a field. A field is the intersection of a column and a row, where a
specific value, such as a primary key or the name of a state, is stored. Personal names should
normally be separated into at least two fields: a person’s family name and given names. If you
want to store people’s titles (Mr., Ms., Dr., and so on), they should go in a separate column.
It’s also common to have a column for suffixes (as in John Doe Jr. or John Doe III). You might
even consider creating a separate column for middle names or initials.

TIP: If in doubt, create a separate column for fields that store more than one piece of informa-

tion. When displaying the results of a database search, it’s easy to join fields together. Any item

that will be used as a search term or for sorting results should go in a field of its own.

The table shown earlier in “How a database stores information” has a column
that could cause problems, because you might want to associate more than one photo with
each record. A better solution might be to delete the column and store details of all
photos in a separate table with a cross-reference table to match photos to various places.

Databases are capable of performing calculations, so there’s no need to store the results of a
calculation. For example, you don’t need a column to store the tax-inclusive price of goods.
The database can do the calculation for you. In fact, it’s more efficient, because there’s no need
to recalculate all the values if the tax rate changes, and it avoids the risk of data corruption if
you forget to recalculate when one of the values changes.

Naming databases, tables, and columns
You insert, update, delete, and search records in a database using Structured Query Language
(SQL), which is based on natural language, so it’s a good idea to use names that are meaning-
ful when deciding on your table structure. Here are some useful naming practices:

Use plural nouns, such as places, products, or members, for table names.

Use singular nouns for column names.

Do not use hyphens or spaces in names. Use an underscore to create hybrid names,
such as .

ptg7799847

150 LESSON : Designing and Building Your Own Database

Use lowercase only. The Windows version of MySQL converts all names to lowercase,
which can cause problems when transferring data to a Linux server.

Do not use any of the reserved words listed at http://dev.mysql.com/doc/refman/5.1/en/
reserved-words.html.

TIP: Some hosting companies insert hyphens in database names, even though they’re invalid.

Dreamweaver’s server behaviors and phpMyAdmin automatically compensate for this by

surrounding database, column, and table names with backticks (). When writing your own

SQL, you’ll need to add the backticks. On some keyboards, the backtick is above the Tab key.

On others, it’s to the left of Z.

How Do You Pronounce SQL and MySQL?

Computing abounds with so many abbreviations and acronyms, it sometimes feels as
though you’re drowning in alphabet soup. There are two schools of thought about how
to pronounce SQL. Some people spell it out as “Ess-Que-Ell,” but most call it “sequel.”

As a result, many people refer to MySQL as “my-sequel,” but they’re wrong. The official
pronunciation is “My-Ess-Que-Ell.” The “My” in MySQL is named after the daughter of
Monty Widenius, one of the original creators of the database. So, now you know.

Deciding which data types to use
After you’ve decided on your table structure, you face one final hurdle—deciding which data
type to use for each column. MySQL has no fewer than 36 to choose from!

Don’t despair. This range of choices is mainly of interest to administrators of enterprise-level
databases. In most cases, just a few data types are sufficient.

The basic data types fall into four categories:

Numerical

Strings

Dates

Geospatial data

Geospatial data is a highly specialized data type beyond the scope of this book. Let’s take a
look at the most frequently used data types for the other categories.

http://dev.mysql.com/doc/refman/5.1/en/reserved-words.html
http://dev.mysql.com/doc/refman/5.1/en/reserved-words.html

ptg7799847

151

Storing numbers
Table 5.1 lists the three main data types used for storing numbers. If a column’s data type is
declared as , negative numbers are not permitted.

Table 5.1 The Most Frequently Used Number Data Types in MySQL

Data Type Description

Stores integers.

Stores floating-point numbers.

Stores fixed-point numbers.

The difference between and lies in precision. is considered an approxi-
mate value, whereas is a fixed-point number, not subject to rounding errors.
Consequently, is particularly suited for use in storing currency values. When specify-
ing as the data type, you need to set the maximum number of digits before and after
the decimal point. If you fail to do so, it is treated as an integer.

CAUTION! Prior to MySQL 5.0.3, was stored as a string, which meant it couldn’t be used

for calculations. If you are using an older version of MySQL, store currency values as cents, pence,

or the smallest currency unit, and divide by 100 or the appropriate number to convert the value.

Storing strings
Strings normally refer to text, but in database terms, a string can also be a binary object, such
as an image. Table 5.2 lists the main string data types supported by MySQL.

Most text should be stored as , , or .

With and , you need to specify how wide you want the column to be. Text that
exceeds the column width is truncated. The main difference between the two is that a
column always occupies the space required for the full width, whereas a column
uses only the amount necessary to store what’s inserted. This means that a column ends
up occupying unnecessary disk space if there’s a lot of variation in the length of values being
stored. However, columns tend to be faster.

ptg7799847

152 LESSON : Designing and Building Your Own Database

Table 5.2 The Most Frequently Used String Data Types in MySQL

Data Type Description

Stores text in a fixed-width column. Maximum width: 255 characters. Trailing spaces are
deleted. Accepts a default value.

Stores text in a variable-width column. In theory, the maximum width of the column is
65,535 characters. Trailing spaces are preserved. Accepts a default value.

In versions older than MySQL 5.0.3, the maximum width is 255 characters, and trailing
spaces are deleted.

Stores a maximum of 65,535 characters. Trailing spaces are preserved. Does not accept a
default value.

Stores binary objects up to a maximum of 64 KB. (stands for “binary large object.”)

Stores a single choice from a predefined list. Suitable for yes/no, male/female, and
similar data, where only one choice is permitted.

Stores zero or more values from a predefined list, up to a maximum of 64.

Since both and can store the same amount of characters in MySQL 5.0.3 or later,
you might wonder if there’s any advantage to one over the other. The advantage of
is that it forces you to set a maximum width for the column, so you can limit the amount of
material being stored. Here are some rules for using each data type:

Use when you know all values will be the same length or there will be very little
variation in length (e.g., phone numbers).

Use for relatively short text that varies in length (e.g., product names, book
titles, etc.).

Use for longer text, such as articles and product descriptions. The maximum length
(65,535 characters) is nearly 40 percent longer than this lesson.

Although is technically a string data type, I don’t recommend its use. See the sidebar
“Can I Store Images in a Database?” for an explanation.

That leaves the and data types. Although they are described as string data types, their
values are actually stored as numbers, which makes them very fast and efficient (databases
handle numbers more quickly than text). In both cases, you must define the list of accept-
able values before using them. Although you can alter the table definition to add new values,
attempting to enter a value that hasn’t been preregistered results in the value being rejected.

ptg7799847

153

Can I Store Images in a Database?

The short answer is “yes—but don’t do it.” There are several problems with storing
images (or any other binary objects) in a database:

searched and sorted. You can’t search images. You can only search information
that’s been stored about them.

type separately and use a proxy script to display the image in a web page. If you
fail to do so, you get a string of random characters instead of a picture.

Rather than storing images in a database, it is usually more efficient to store them in
your web server’s file system, and store only text details of each image in the database.

However, if you have a particular reason for storing images in a database, see my article
on how to do so in the Dreamweaver Cookbook website at http://cookbooks.adobe.
com/post_Upload_images_to_a_MySQL_database__PHP_-16609.html.

Instructions for creating the proxy script to display images stored in a database are at
http://cookbooks.adobe.com/post_Display_an_image_stored_in_a_database__
PHP_-16637.html.

The data type is the database equivalent of a radio button in an online form. It’s ideal
for storing the results of multiple-choice questions where a single response must be selected.
When defining the table, you list the acceptable values as a comma-separated list of strings.
Because one value must be selected, you should also include an option to indicate nothing was
selected. Technically speaking, you can store up to 65,535 options in an column. In prac-
tice, storing more than a handful is likely to become unmanageable in most situations.

If is the equivalent of the radio button, the data type can be compared to a check-
box group. Again, selections can be made only from a predefined list, which is limited to a
maximum of 64 items. Some developers argue that the data type contravenes an impor-
tant principle of database design, namely that you should not store more than one piece of
information in a field. However, the way that MySQL stores columns is very similar to
storing a foreign key.

http://cookbooks.adobe.com/post_Upload_images_to_a_MySQL_database__PHP_-16609.html
http://cookbooks.adobe.com/post_Upload_images_to_a_MySQL_database__PHP_-16609.html
http://cookbooks.adobe.com/post_Display_an_image_stored_in_a_database__PHP_-16637.html
http://cookbooks.adobe.com/post_Display_an_image_stored_in_a_database__PHP_-16637.html

ptg7799847

154 LESSON : Designing and Building Your Own Database

The data type is useful for storing details of predefined options that are relatively stable.
If the options are likely to change, it’s better to store the values in a separate table and use a
cross-reference table.

Storing dates and time
MySQL supports five data types for storing dates and time, all of which are listed in Table 5.3.

Table 5.3 Date and Time Data Types in MySQL

Data Type Description

Stores dates in format. All dates in the range from year 1000 to 9999
are accepted.

Stores hours, minutes, and seconds separated by colons. Valid range is
 to .

Stores a combined date and time value in the format .
Accepts the same range as .

Stores a combined date and time value in the same format as but is
limited to the range from 1970 to January 2038.

When used with a 4-digit format, stores a year in the range 1901–2155. In a 2-year
format, the range is 1970–2069.

The first thing to note about dates in MySQL is that they are stored in one format only:
the year first, followed by the month number, and then the day of the month. This is the
format recommended by the SQL specification and the International Organization for
Standardization (ISO).

TIP: Resistance is futile. Don’t even think about trying to store dates in any other format. Some

people try to get around this by storing dates in a column, thereby defeating most of

the benefits of using a database, such as correct date sorting and date calculations. As long as

you store your dates in format, you can use the MySQL function to

display them in just about every way imaginable.

As you can see in Table 5.3, the range for is not limited to the 24-hour clock, so its main
purpose is to store durations rather than the current time.

A column simply stores a combined date and time. If you don’t specify the time,
it defaults to .

ptg7799847

155Creating a Database and Tables

A column stores a combined date and time in the same format as , but
it has automatic initialization and update properties. By default, a field is auto-
matically set to the current date and time when you insert a new record, as long as you omit
the field from the statement or set its value to . The field is also automatically
updated to the current timestamp whenever any other field in the record is changed. Only one

 column in a table can have these automatic initialization and update properties. By
default, it’s the first column in the table, but you can change this.

CAUTION! MySQL timestamps record the date and time in a human-readable format unlike PHP,

which stores timestamps as the number of seconds elapsed since January 1, 1970 (also known

as the Unix Epoch). You cannot mix the two timestamps without converting one to the same

format as the other.

Unless you need to store the year without any other part of the date, the data type is of
limited interest. It’s very easy to extract the year from a , , or field.

Creating a Database and Tables
After all that theory, it’s time to achieve something practical. In this part of the lesson, I’ll show
you how to create a database and define a table to store the details for a user registration system.

Defining the database
For the exercises in this book, create a database called in your local testing environ-
ment. Even if you want to test these exercises on your remote server later, it doesn’t matter if
the database name is different. You can easily transfer tables and their associated data from
one database to another.

 Launch phpMyAdmin in your browser, and log in as the root user if necessary. You
should see the phpMyAdmin welcome page, as shown in the screen shot on the first page
of this lesson.

 In the section labeled “MySQL localhost” in the center of the page, type phpcs5 in the
“Create new database” text field. Leave all the other settings at their default values, and
click Create.

ptg7799847

156 LESSON : Designing and Building Your Own Database

 You should see a message telling you that the database has been created.

The screen also invites you to create a new table in the database. You’ll do that in a
moment, but first it’s necessary to explain the meaning of collation.

Understanding how collation affects the sort order
The menu next to the “Create new database” field allows you to choose the default collation
for the database. Collation is a technical term used in database design to specify the order in
which results are sorted.

Collation is important if you work with languages other than English. If you work exclusively
in English, you can ignore it entirely—well, almost. When phpMyAdmin displays the struc-
ture of a database or table, you’ll notice that the Collation column is set to .
Why the Swedish setting? MySQL was originally developed in Sweden, so its default collation
is Swedish, which also happens to use exactly the same sort order as English.

However, in some languages, the traditional sort order is different from alphabetical order.
For example, in Spanish, LL is treated as a separate character that comes after the letter L.
The following screen shots show the difference.

Traditional Spanish Alphabetical order

In the Traditional Spanish sort order, llamar comes after loco. But when sorted in alpha-
betical order, llamar comes first. The screen shot on the left was taken with collation
set to . The one on the right was taken with collation set to the default

.

Collation can be set for the whole database, at table level, or for individual columns. If set at
the database level or table level, that setting becomes the default for the whole database or
table, but you can override the default for individual tables or columns.

ptg7799847

157Creating a Database and Tables

The available options for collation depend on how MySQL has been set up, but the naming
convention is easy to understand. Each name is composed of the following three elements
separated by underscores:

Encoding

Language

Case sensitivity: for binary, for case insensitive, and for case sensitive

NOTE: Collation does not affect the encoding of data stored in MySQL. It is concerned solely

with sort order.

Defining the users table
The table for a user registration system needs to have at least five columns as follows:

You might want to add other columns later, for example, to store the user’s email address, but
this will do for now.

 If you left phpMyAdmin open on the page that confirmed the creation of the data-
base, skip to the next step.

If you need to relaunch phpMyAdmin, select from the list of databases in the left
column of the welcome page. This will open the Structure tab for the database and display
the text fields for creating a new table.

 In the section labeled “Create new table on database phpcs5,” type users in the Name text
field, and 5 in “Number of fields.” Then click Go.

 A huge matrix opens where you define the database table. There’s a line for defining each
table column.

ptg7799847

158 LESSON : Designing and Building Your Own Database

This is perhaps the least user-friendly part of phpMyAdmin. The matrix is so large you
will have difficulty seeing all of it onscreen without scrolling horizontally. In spite of this
problem, it’s quite easy to fill in.

TIP: When you create a table with only three columns, phpMyAdmin presents this matrix in a

vertical layout, which makes it easier to see all options.

 In the first row, type user_id in the Field text field.

 Set the Type menu to . The first two fields should look like this:

 A primary key cannot be a negative number, so set the value of Attributes to .

 The will be the primary key, so select from the Index menu.

 You want the primary key to be automatically incremented, so select the A_I checkbox.

The values set in steps 6–8 should look like this:

 The remaining columns are less complicated. Use the values shown in the following
screen shot:

ptg7799847

159Creating a Database and Tables

You don’t know how long the values of , , or will be.
So, the data type needs to be . With this data type, you need to specify the width
of the column in the Length/Values text field. It’s a good idea to be generous in the size
allocated. Otherwise, you run the risk that values will be truncated in the database.

Why use the fixed-width string data type for and set its width at 40? Surely
no one will have a password that long!

Passwords should not be stored in plain text, so the value will be encrypted as a 40-digit
hexadecimal number.

 Beneath the matrix in the center of the screen is a menu labeled Storage Engine. Make
sure it’s set to MyISAM (this is the default in XAMPP and MAMP).

For more details, see the sidebar “Choosing the Right Storage Engine.”

 Leave the remaining fields blank or at their default values, and click the Save button at the
bottom right of the screen.

CAUTION! Make sure that you click the Save button. The Go button adds an extra column to the

matrix. If you click the Go button by mistake, type a dummy name in the Field text field, and set

the Type menu to . Then click Save. This adds a column with the dummy name, which you

can delete after saving the table definition.

 After you have saved the table definition, phpMyAdmin presents you with a screen show-
ing the settings for your new table. Check the values against the following screen shot.

ptg7799847

160 LESSON : Designing and Building Your Own Database

Choosing the Right Storage Engine

Choosing a storage engine in MySQL determines how your data is stored and retrieved.
MySQL supports several storage engines, but the most widely used are MyISAM and
InnoDB. MyISAM has been the default since MySQL 3.23, but it was announced in
April 2010 that a new version of InnoDB would become the default from MySQL 5.5.

MySQL 5.5 was still in beta at the time this book was being prepared for publication.
Moreover, many hosting companies don’t offer support for InnoDB. Consequently, all the
exercises in this book use MyISAM tables. Fortunately, choosing a storage engine isn’t an
irreversible decision. You can change a table’s storage engine by selecting the Operations
tab in phpMyAdmin and then selecting the new engine in the “Table options” section.

The main difference between the storage engines lies in InnoDB’s added support for
transactions and foreign key constraints.

A transaction is a series of database commands that must be executed as a group. If
any part of the series fails, the transaction automatically undoes any changes. This is
important in financial databases where money might be deducted from one account
for transfer into another. If, for any reason, the money cannot be added to the second
account, the whole transaction fails, and the money is restored to the original account.

A foreign key constraint keeps track of relationships between tables and prevents a
record from being deleted if its primary key is still in use as a foreign key elsewhere.

If you installed the Windows Essentials version of MySQL and chose the Multi-
functional Database option, your setup will default to InnoDB. You can change the
default to MyISAM by editing C:\Program Files\MySQL\MySQL Server 5.x\my.ini in
Notepad (launch Notepad by right-clicking it in the Start menu and selecting “Run as
administrator”). Locate the following line:

Change it to this:

Either restart your computer or restart the MySQL service by choosing Start > Control
Panel > Administrative Tools > Services. Select MySQL in the Services panel, and
click Restart.

ptg7799847

161

Note that is underlined, which indicates that it has been set as the table’s primary
key. This is confirmed by the Indexes section at the bottom.

You should also check that the Attributes field for is set to , and that
Extra is set to .

By default, phpMyAdmin sets Null to No, which means that a value must be entered in each
field when adding a record to the table. This is exactly what you want for a user registration
table. To make a column optional, select the Null checkbox in the definition matrix.

Collation for the text columns is set to . As explained in the previous
section, this is the default for English. You don’t need to change it unless you’re working
with a language that uses a special sorting order.

 If any values are incorrect, you can edit the settings for individual columns by clicking the
Edit icon in the appropriate row. This opens a similar screen to the matrix with the
values for the selected column ready for you to edit.

If you need to delete a column—for example, if you created a dummy column after click-
ing Go by mistake—click the Delete icon in the appropriate row.

To edit or delete more than one column at the same time, select the checkbox next to
each column name, and click the appropriate icon at the bottom of the structure table.

You’ll start to populate this table with data in the next lesson. Before you do so, you should
create dedicated user accounts for MySQL.

Creating MySQL User Accounts
When you connect to MySQL through phpMyAdmin in a local testing environment, you
are logged in as the root superuser. The root user account has complete control over every-
thing, including creating databases as well as deleting them. MySQL has no equivalent for the
Windows Recycle Bin or Trash on a Mac. When something is deleted, it’s gone forever.

The Web is a dangerous place, so you should never let a web page connect to MySQL as root.
If you do, you run the risk of a malicious user finding a gap in your security and using it to
destroy all your data. So, it’s essential to create at least one user account with limited privileges.

For the exercises in this book, you should create two user accounts: one that can only retrieve
information from the database and another with read/write privileges.

TIP: When developing a database application for deployment on your live website, create one

or more user accounts with the same username(s) and password(s) as assigned by your hosting

company or server administrator. This will make it easy to test locally and deploy rapidly on

your remote server.

ptg7799847

162 LESSON : Designing and Building Your Own Database

Creating a user account with read/write privileges
The following instructions walk you through how to create a user account with the privileges
to insert, update, and delete records, as well as to select them:

 If necessary, launch phpMyAdmin in your browser, and log in as root.

If phpMyAdmin is already open, click the Home icon at the top left of the screen to
return to the welcome page.

CAUTION! To create a new user account, you must start on the phpMyAdmin welcome page.

If you start from another page, you will be presented with different options.

 Click the Privileges tab at the top of the page.

The “User overview” screen opens, which controls all user accounts.

If you have a new installation of MAMP on Mac OS X, continue with step 3. Otherwise,
skip to step 4.

 By default, MAMP allows anonymous access to MySQL. This is insecure, so you should
remove the two anonymous accounts by selecting the checkboxes next to Any in the User
column and then clicking Go.

CAUTION! Do not select “root.” If you delete the root account, you will need to uninstall MAMP

and start all over again.

 The “User overview” screen should list the root superuser account, plus any other users
already registered. (XAMPP creates a user called “pma” to support advanced features of
phpMyAdmin beyond the scope of this book.)

Click the “Add a new User” link halfway down the page to open a new screen where you
define the user.

ptg7799847

163

 In the Login Information section, type cs5write in the “User name” text field.

 In the menu next to Host, select Local to insert “localhost” in the text field.

 Type Bow!e#CS5 in the Password and Re-type text fields.

For a database that will be deployed on a live website, you should choose a different pass-
word. “Bow!e#CS5” is only for the example files in this book. A strong password should
contain a mixture of uppercase and lowercase letters, numbers, and special characters.

CAUTION! Avoid using $ in a password, because PHP assumes that it’s the beginning of a vari-

able name when enclosed in double quotation marks.

The Login Information section should now look like this:

 The remaining options on this page give the user privileges on all databases, which is
potentially insecure. Leave the remaining options as they are, scroll down to the bottom
of the page, and click Go.

You should see confirmation that you have added a new user.

 Scroll down to the “Database-specific privileges” section, and select from the menu.

This loads the page where you specify the privileges for the user on the
database.

 In the “Database-specific privileges” section, select the checkboxes for SELECT, INSERT,
UPDATE, and DELETE. The meanings of these privileges are self-explanatory, but php-
MyAdmin displays a tooltip as you hover over each one.

ptg7799847

164 LESSON : Designing and Building Your Own Database

 Click the Go button in the “Database-specific privileges” section to save the changes.

CAUTION! Often, several options are listed on a page in phpMyAdmin, each with their own Go

button. Make sure you click the correct one.

This redisplays the same page with confirmation that you have updated the privileges for
.

If you made any mistakes, you can correct them here, and then click Go to update the
user account.

 If everything is OK, click the Privileges tab at the top of the page.

This brings you back to the “User overview” page, where the user should now
be listed.

If you ever need to edit a user account’s privileges, return to this page, and click the Edit
Privileges icon next to the appropriate user account.

ptg7799847

165Importing Existing Data

Creating a view-only user account
Good security practice dictates that database users should have the fewest possible privileges to
do what they need. Most web pages need only the ability to display records. So, using an account
with read/write privileges for such pages opens a potential security gap. Close that gap by creat-
ing a second user account that has only the SELECT privilege on the database.

Repeat steps 4–12 in the previous section to create a user account called cs5read with the
password 5T@rmaN. In step 10, select only the SELECT checkbox.

TIP: Some hosting companies allow only one user account on a MySQL database. In such

circumstances, you are forced to use an account with read/write privileges for all your web

pages. This means you must pay extra attention to security issues. Being alert to security is

always a good thing, but a better alternative might be to move to a hosting plan that gives

you greater control over setting MySQL user account privileges.

Importing Existing Data
Importing existing data into a MySQL database is very easy. The most common way is to use
a file. This is a text file that contains all the SQL instructions to build the database struc-
ture and then populate it with data.

Of course, someone needs to build the file initially. You’ll learn how to do so in Lesson 13.

Importing data from a .sql file
The following instructions show you how to import the list of USPS abbreviations and states
from the example at the beginning of the lesson. You’ll use the table you create here in lessons
later in this book:

 In the Dreamweaver Files panel, double-click lesson05/states.sql. It should open auto-
matically in the Document window.

If Dreamweaver fails to recognize the file type, right-click the file name, and select
Open With > Dreamweaver.

You should see on the first line that the file is described as a SQL Dump. A dump is a text
file that contains all the SQL commands to build and populate one or more database tables.

Lines that begin with a double-dash are treated as comments, as are sections of text
enclosed between and .

ptg7799847

166 LESSON : Designing and Building Your Own Database

 Scroll down to line 25, where you’ll see a comment about the table structure for the
table. This is followed on line 28 by a SQL command that deletes the table if it already exists
(is the SQL command for deleting an entire column, table, or database). Lines 29–33
build the table and define its structure. Even without any knowledge of SQL, you should be
able to follow what the commands are for. SQL is closely based on human language.

The SQL commands on lines 39–90 insert the values into the table.

TIP: Don’t worry that you’ll need to code this type of file by hand. MySQL has a utility program

called that’s invoked by phpMyAdmin and does everything for you. Even with

thousands of records, it takes only a few seconds to generate a file.

 Now that you have seen what a file contains, you need to switch to phpMyAdmin
and import the data.

In phpMyAdmin, make sure that you have selected the database from the list on
the left. Then click the Import tab at the top of the page.

 In the page that opens, click the Browse button in the “File to import” section, and use
your operating system’s dialog box to locate and select lesson05/states.sql. It doesn’t
matter if the file is still open in Dreamweaver.

ptg7799847

167What You Have Learned

 Click Go. After a few seconds, you should see confirmation that the import was successful.
The table should also be listed together with the table on the left of the page.

 Click the link on the left of the page to reveal the first 30 records in the newly
imported table.

That’s all there is to importing data from a file. If the file contains more than one table,
they will be imported in a single operation.

TIP: If the import fails, it’s likely to be caused by your server failing to understand some of the

commented lines in the file. Try removing all lines that begin with a double-dash, as well

as all commands wrapped between and .

What You Have Learned
In this lesson, you have:

Taken a quick look at the most popular UIs for MySQL (pages 142–143)

Seen how a relational database stores information (pages 143–144)

Examined how primary and foreign keys build one-to-many, many-to-many, and
one-to-one relationships between tables (pages 145–149)

Studied best practices for naming databases, tables, and columns (pages 149–150)

Explored the most important data types used in MySQL (pages 150–155)

Created a database (pages 155–156)

Seen the effect of collation on how records are sorted (pages 156–157)

Defined a table for a user registration system (pages 157–161)

Learned the difference between the MyISAM and InnoDB storage engines (page 160)

Created MySQL user accounts and assigned privileges (pages 161–165)

Imported existing data with a file (pages 165–167)

ptg7799847

LE
SS

O
N

 6 What You Will Learn
In this lesson, you will:

Create connection files for your MySQL user accounts

Use an online form to insert records in a database table

Build a login system and password-protect pages

Encrypt passwords

Display the results of a database query

Use a repeat region to display multiple results

Update and delete database records

Hide part of the page and display a message when there are no results

Approximate Time
This lesson takes approximately 2 hours and 30 minutes to complete.

Lesson Files
Media Files:

styles/users.css

Starting Files:

lesson06/start/add_user.php
lesson06/start/delete_user.php
lesson06/start/login.php
lesson06/start/members_only.php
lesson06/start/restricted.php
lesson06/start/update_user.php
lesson06/start/user_list.php
lesson06/start/users.sql

ptg7799847

169

Completed Files:

lesson06/completed/add_user.php
lesson06/completed/add_user_encrypt.php
lesson06/completed/delete_user.php
lesson06/completed/login.php
lesson06/completed/login_encrypt.php
lesson06/completed/members_only.php
lesson06/completed/members_only_encrypt.php
lesson06/completed/restricted.php
lesson06/completed/update_user.php
lesson06/completed/update_user01.php
lesson06/completed/user_list.php
lesson06/completed/user_list01.php
lesson06/completed/user_list02.php
lesson06/completed/user_list03.php
lesson06/completed/user_list_showif.php
lesson06/completed/Connections/cs5write.php
lesson06/completed/Connections/cs5read.php

ptg7799847

LESSON 

Generating PHP
Automatically with
Server Behaviors

A database without data is like a pub with no beer. Even with no PHP experience, Dreamweaver’s

built-in server behaviors can help you rectify the situation in next to no time. The server behaviors

By the end of this lesson, you will have used all the main server behaviors to create a simple user

registration and login system. You’ll also learn how to display, update, and delete existing records.

Almost all the work will be done through dialog boxes, with only a minimal need to write code.

Dreamweaver server behaviors make it easy to insert records from a custom form.

170

ptg7799847

171Connecting to the Database

What Server Behaviors Do
When Dreamweaver was first released in the late 1990s, the browser war between Netscape
and Internet Explorer was at its height. A minefield of incompatibilities stood in the way of
the average web designer trying to add dynamic features to a web page with JavaScript. So,
Dreamweaver cut through the complexity by creating off-the-shelf scripts to solve common
problems. A separate program called Dreamweaver UltraDev offered similar ready-made
solutions for server-side functionality, which were merged into the core program in 2002
with the release of Dreamweaver MX. Everything is done through dialog boxes. Dreamweaver
takes care of the rest.

This is a great boon for anyone who wants to create a database-driven site in a hurry, but you
should be aware of the limitations of server behaviors. They provide only basic functionality.
Apart from security improvements, they have remained essentially unchanged since they were
first introduced. Adobe regards them more as a learning tool than as a production-level feature.

If you have no experience working with a database-driven site, this lesson will give you some
useful insights to prepare you for later lessons. However, the rest of this book takes advantage
of the enhanced PHP support in Dreamweaver CS5 to work with the Zend Framework, which
offers a much wider range of features than server behaviors.

Connecting to the Database
Before you can use the server behaviors, you need to connect to the database with one of the
MySQL user accounts you created in the previous lesson.

Each time a web page interacts with the database, MySQL verifies its credentials by checking
the account’s username and password. Rather than adding this information in every page,
Dreamweaver creates a PHP file with the connection details, which server behaviors auto-
matically include in the web page.

Creating a MySQL connection file
You need to create separate connection files for both user accounts: and .
The process for both is identical:

 In Dreamweaver, make sure you’re in the PHP CS5 site that you’re using for the exercises
in this book, and open a PHP page in the Document window. Any page will do, even a
blank PHP that hasn’t been saved.

ptg7799847

172 LESSON : Generating PHP Automatically with Server Behaviors

 Open the Databases panel by clicking its tab or by choosing Window > Databases
(Ctrl+Shift+F10/Shift+Cmd+F10).

If your site and testing server were set up as described in Lesson 2, you should see a list of
four steps with check marks next to the first three.

TIP: If the check mark is missing from any of the steps, click the link in the first unchecked

step. This opens the appropriate dialog box for you to set up the missing details. If your testing

server wasn’t running when you launched Dreamweaver, step 3 might be unchecked. Click the

“testing server” link. This opens the Site Setup dialog box. Click Save to close it. This usually

corrects the problem.

 Click the plus (+) button at the top left of the Databases panel to open a menu with only
one option: MySQL Connection.

 Click MySQL Connection to open the MySQL Connection dialog box. The options in the
dialog box are fairly self-explanatory:

“Connection name” not only identifies the connection, but is also used to create a PHP
variable and the name of the connection file, so it should not contain any spaces or
special characters, nor should it begin with a number.

“MySQL server” is the location of the database server. For a local testing environment,
enter localhost. If you are using MAMP with the default MAMP ports, enter
localhost:8889 instead.

“User name” and “Password” are the name and password of the MySQL user account.
The password used in the example files for is Bow!e#CS5.

ptg7799847

173Connecting to the Database

“Database” is the name of the database you want to connect to.

 After filling in all the fields, click Test.

 If everything is OK, you should see confirmation that connection was made successfully.
Click OK to dismiss the confirmation alert, and then click OK in the MySQL Connection
dialog box to create the connection file.

If you get an error message, consult the “Troubleshooting a MySQL connection” section.

 Open the Files panel. You should see that Dreamweaver has created a new folder
called Connections and inside is a PHP file with the same name as the connection you
just created.

If you use Dreamweaver server behaviors on a live website, you need to upload the
Connections folder to your remote server. Otherwise, your server behaviors won’t work.
Details of how to upload the necessary files are in Lesson 13.

 Repeat the preceding steps to create another connection file for the user account.
The password for in the example files is 5T@rmaN.

CAUTION! For a live website, the location of the Connections folder is unimportant, as long as

links to it are updated in files that use server behaviors. However, while you are developing a

site in Dreamweaver, the Connections folder must remain in the site root for the server behavior

dialog boxes to work. To avoid conflicts with your connection files, the Connections folder for

the completed files for this lesson has been moved inside lesson06/completed.

ptg7799847

174 LESSON : Generating PHP Automatically with Server Behaviors

Troubleshooting a MySQL connection
If you set up the testing server correctly in Lesson 2, everything should work. However, errors
do happen. This checklist should help solve most problems:

Check that your web server and MySQL are both running. If they are, turn off any secu-
rity software temporarily, and try again.

If that solves the problem, adjust your security software to allow local communication on
port 80 for the web server and port 3306 for MySQL.

Sometimes you will see an alert like this:

If your web server is running, read the URL in the second item very carefully.
Dreamweaver uses a hidden folder called _mmServerScripts to communicate with
MySQL. You normally can’t see the folder in the Dreamweaver Files panel, but you can
check for its existence using Explorer in Windows or Finder on a Mac. If the folder
is in your site root, check the value of Web URL in your testing server definition (see
“Creating the site definition” in Lesson 2). If you look closely at the preceding screen shot,
you’ll see that the URL uses “phpc5” instead of “phpcs5.”

MySQL error 2003 means that the MySQL server is not running or cannot be reached
(probably because of a firewall restriction).

The following error message is very common:

ptg7799847

175Connecting to the Database

The error message tells you the name of the user, the MySQL server, and whether a
password was used. Check all of them. Is the username right? Is the server correct? Is the
password right? Passwords are case sensitive, so check that your CAPS LOCK key isn’t
turned on by mistake.

If you are using MAMP, determine if you reset the Apache and MySQL ports or if you are
using the MAMP defaults. If you are using the MAMP defaults, change “MySQL server”
to localhost:8889.

Occasionally, fails to work on some systems. Try 127.0.0.1 instead (or
127.0.0.1:8889 if you’re using the MAMP ports).

Inspecting the database in Dreamweaver
Once you have created the connection files successfully, the connections are listed in the
Databases panel. If you expand one of them by clicking the tiny plus icon next to the connec-
tion name (it’s a triangle in the Mac version), and then expand Tables, you can see the defini-
tion of each table and its columns.

Dreamweaver lists the columns in alphabetical order, not in the order that they appear in
the database. The primary key of each table is indicated by a small key icon to the left of the
column name.

NOTE: Although the Databases panel displays “Stored procedures” and Views, they are not

supported by the PHP server behaviors.

Editing connection files
To edit a connection file, double-click the connection name in the Databases panel to reopen
the MySQL Connection dialog box.

ptg7799847

176 LESSON : Generating PHP Automatically with Server Behaviors

You can also edit a connection file by right-clicking its name in the Databases panel and
choosing Edit Connection. The context menu also has options for testing and deleting
a connection.

Using a dialog box to create the connection file is very convenient, but it’s also a good idea to
know what Dreamweaver is doing on your behalf. Let’s take a quick look at the contents of a
connection file:

 Double-click cs5read.php in the Connections folder of the Files panel to open the file in
the Document window.

 Switch to Code view to examine the file. Apart from the PHP opening and closing tags,
and some comments, it contains the following code:

The first four lines assign to variables the MySQL server address, the name of the data-
base, and the username and password of the MySQL user account.

The final command creates the database connection, using the func-
tion, and stores it as a resource in . It also has some error handling code.

TIP: On shared hosting, sometimes causes problems. If your hosting

company instructs you to use , open your connection files and change

 to in the final command. Save the file(s) and upload it to

your remote server.

 Don’t freak because your MySQL username and password are stored in plain text. To
see what happens if anyone attempts to access this file, press F12/Opt+F12 to load it into
a browser.

All you should see is a blank page.

 Right-click, and select the option to view the page source. Again, it should be
completely blank.

All PHP code remains on the web server. The connection file doesn’t create any output
that’s sent to the browser, so your credentials are safe.

ptg7799847

177Inserting Records into a Table

NOTE: The only way anyone can access MySQL credentials stored this way is by hacking into a

site’s file system. Nevertheless, many developers prefer the added security of putting connec-

tion details outside the web server’s document root. Dreamweaver server behaviors don’t offer

an easy way of doing this.

Inserting Records into a Table
Dreamweaver offers two ways of inserting records into a database table. One is with the
Record Insertion Form Wizard, which does everything, including building the insertion form.
The other is with the Insert Record server behavior, which uses a form that you build.

The wizard needs a new magic wand or book of spells. It does the job, but the form is ugly
and you’ll need to scrap everything and start again if you need to modify the form. It’s more
efficient to use the Insert Record server behavior with a form of your own. To save you time,
I’ve already built one for you to practice with.

Using the Insert Record server behavior
The easiest way to use Dreamweaver’s server behaviors for inserting and updating records
is to give the input fields in your form the same names as the columns in the database table.
However, some developers advocate using different names, because this makes it difficult for
an attacker to guess the structure of your database. To show how to use the Insert Record
server behavior both ways, the form for the following exercise has one text input field that
uses a different name from its corresponding column.

NOTE: For the remaining exercises in this lesson, you need to have created the table in

the database, as described in Lesson 5. If you need to rebuild the table, you can

import the table structure from lesson06/start/users.sql with phpMyAdmin.

ptg7799847

178 LESSON : Generating PHP Automatically with Server Behaviors

 In the Files panel, double-click lesson06/start/add_user.php and lesson06/start/login.php
to open them in the Document window.

 Choose File > Save As (Ctrl+Shift+S/Shift+Cmd+S) and save the files as add_user.php
and login.php in lesson06/workfiles.

This opens a copy of each file in the new folder. Close the originals so you have clean cop-
ies if you make a mistake and need to start again.

 Open Code or Split view to look at the underlying HTML. It contains a form with five
text input fields. Three of them use the same name as columns in the table:

, , and . The attribute of the text input field for
“Family name” has been changed to .

The is required by the attribute in the tag to identify the correct form
element. Another reason for this duplication is that an must be unique within a page.
However, radio button and checkbox groups use the same for multiple elements.
Dreamweaver appends an incremental number to the of each element in radio button
and checkbox groups that share a common .

 Open the Server Behaviors panel by clicking its tab, or choose Window > Server
Behaviors (Ctrl+F9/Cmd+F9).

You should see a checklist of four items, with the first three checked off.

ptg7799847

179Inserting Records into a Table

Why Does Dreamweaver Use Both “name” and “id”?

Dreamweaver inserts both and attributes in form elements. On the surface, this
seems like unnecessary duplication. The attribute has been deprecated on most
HTML elements in favor of the attribute. In other words, modern web standards
specify that you should always use instead of . So why use both?

When a form is submitted, it’s the attribute, not , that’s used to identify the user
input. If you leave out the attribute, the form ceases to work.

 Click the plus (+) button at the top left of the Server Behaviors panel, and then choose
Insert Record from the menu that appears to open the Insert Record dialog box.

NOTE: You can also insert server behaviors by choosing Insert > Data Objects or use the Data

category of the Insert panel/bar. To avoid repetition, these instructions refer only to the menu

in the Server Behaviors panel.

 There is only one form, , in the page, so Dreamweaver selects it automatically in the
“Submit values from” menu.

 To insert records into the database, you need the connection.

Select in the Connection menu.

 Dreamweaver might take a few moments to connect to MySQL and load details of the
tables. When it’s ready, it selects the first one in alphabetical order in “Insert table.”

There are two tables in the database: and . Select .

The Insert Record dialog box should now look like this:

ptg7799847

180 LESSON : Generating PHP Automatically with Server Behaviors

 Look closely at the Columns section. The first item reports that is “an Unused
Primary Key.” Although this might look wrong, it’s not. When you defined the table
in the previous lesson, you set the column to use . This automati-
cally assigns the next available number as the record’s primary key, so there’s no need to
insert a value manually.

Most of the remaining entries match the of each form element to the corresponding
column in the table. Dreamweaver automatically recognizes the columns as being string
data types, so the values will be submitted as text; that is, they will be wrapped in quota-
tion marks.

There’s one exception: The column doesn’t have a matching in the form,
so it’s listed as getting no value. You need to fix that.

 Select in the Columns section. Click the Value menu below the Columns
section, and select .

Dreamweaver should automatically detect that is a string data type, so it sets
“Submit as” to Text. That’s all you need to do if you decide to use different names in your
form and database tables.

 To complete the Insert Record dialog box, you need to tell the server behavior which page
to display after a record has been inserted.

Often, you want to display the insert form again. In such cases, just leave the “After
inserting, go to” field blank.

However, in this case you want to send the user directly to the login page. Type login.
php into the “After inserting, go to” field. Alternatively, click the Browse button and select
lesson06/workfiles/login.php.

ptg7799847

181Inserting Records into a Table

 Check that the values in the Insert Record dialog box match those in the following screen
shot, and click OK.

NOTE: The Value and “Submit as” menus display the values related to whatever is selected in

the Columns section.

 The Server Behaviors panel now lists the Insert Record server behavior with details of the
form name, MySQL connection, and table.

In Design view, the form is highlighted in aqua, indicating it’s now dynamic.

TIP: The highlighting can be distracting when you want to concentrate on the design of the

page. Toggle the highlighting on and off by choosing View > Visual Aids > Invisible Elements.

 Save the page, and switch to Code view. Dreamweaver has added more than 50 lines of
PHP code above the declaration. It has also added some PHP code in the
attribute of the opening tag, as well as a hidden field at the bottom of the form.

Even if you don’t understand the code, it’s important to realize that all three parts are
essential to this server behavior. Once you add a server behavior to a page, you need to be
careful what you edit. Otherwise, you are likely to end up with PHP code that no longer
works or behaves erratically.

A working copy of the page is in lesson06/completed/add_user.php.

ptg7799847

182 LESSON : Generating PHP Automatically with Server Behaviors

Removing a Server Behavior Cleanly

A common mistake with server behaviors is deleting page elements in Design view
without regard to the underlying code. If you make a mistake or decide you don’t want
a server behavior, do not attempt to remove it by editing Design view. Select the server
behavior’s listing in the Server Behaviors panel, and click the minus button at the top
left of the panel. This removes the server behavior and all related code cleanly.

Edits made to server behaviors in Code view usually result in the server behavior being
removed from the Server Behaviors panel, because Dreamweaver no longer recognizes
it. The fact that a server behavior is not listed in the Server Behaviors panel is no guar-
antee that you haven’t left behind code that could cause unpredictable results.

Testing the registration form
It’s time to put everything to the test. In previous versions of Dreamweaver, you needed to
launch the form in a browser to insert a record into a database, but now you can do it right
inside the Document window:

 With add_user.php open in Design view, click the Live View button, and enter some text
in each field.

 In Live View, you need to hold down a modifier key for links and form buttons to work.
Hold down the Ctrl/Cmd key, and click the Sign me up! button.

ptg7799847

183Creating a Login System

NOTE: There is nothing to check that the values entered in the password and confirmation

fields are the same. You could use the Spry password widgets, but the check also needs to be

made on the server. Lesson 7 deals with server-side validation.

 If everything works OK, you should see the login page in Live View. If the login page
doesn’t load, see the sidebar “Why the Next Page Doesn’t Always Load” on the next page.

 Click the Live View button to toggle it off. You should be returned to add_user.php.

 Open phpMyAdmin, and select the table in the database from the list on
the left of the page. You should see that the values you entered in the form have now been
inserted in the database.

Note that the password is stored in plain text. Using a password text input field in a form
only disguises the values that are entered. It does not encrypt the text. You’ll fix that later.

Now that you have a username and password in the table, you can create a login system
and password-protect pages.

Creating a Login System
There are four User Authentication server behaviors in Dreamweaver:

Log In User

Restrict Access To Page

Log Out User

Check New Username

ptg7799847

184 LESSON : Generating PHP Automatically with Server Behaviors

Why the Next Page Doesn’t Always Load

If you have followed the instructions, the login page should have displayed correctly
after the record was inserted into the database. However, it sometimes fails to do so
because Dreamweaver uses the PHP function to redirect the user to the next
page. This sends an HTTP header telling the browser to load a different page.

HTTP headers must be sent before any output to the browser, and if your testing server
displays error messages (as recommended in Lesson 2), you should see a warning about

“headers already sent.” What confuses many people is that output to the browser can
include any whitespace—such as spaces, tabs, or blank lines—outside the PHP tags, not
only in the main script, but also in any include files, before the function is called.
HTML comments and the Unicode byte order mark are also considered to be output.

If a server behavior fails to load the next page, check the following:

only legitimate, it’s the recommended practice.

 is used.

 or aren’t used before .

sure that the Include Unicode Signature (BOM) checkbox is not selected.

the function to include the MySQL connection file. The first line of the
page should look similar to this:

 with and use a document-relative path to the
connection file like this:

ptg7799847

185Creating a Login System

The first three are very useful, the last one is less so. The Check New Username server behav-
ior prevents the insertion of duplicate usernames into the database, but it expects you to send
the user to a different page if the username is already in use. Although you can get it to reload
the registration page, it deletes all the values in the fields, forcing the user to type in every-
thing again. Lesson 7 develops a more robust and user-friendly user registration system.

Applying the Log In User server behavior
The Log In User server behavior creates all the code to check the username and password. If it
finds a match in the database, the user is redirected to a success page. If there’s no match, the
user is redirected elsewhere. You can designate a failure page, but it usually makes more sense
to display the login form again. Follow these steps to apply Log In User:

 Open lesson06/start/members_only.php in the Document window, and save a copy in
lesson06/workfiles. Close the original file.

 If lesson06/workfiles/login.php is closed, open it. You should now have your workfiles
versions of login.php and members_only.php open.

 With login.php as the active file in the Document window, click the plus button in the
Server Behaviors panel, and choose User Authentication > Log In User to open the fol-
lowing dialog box.

ptg7799847

186 LESSON : Generating PHP Automatically with Server Behaviors

Dreamweaver normally fills in the first three items correctly. On a page that has more
than one form, you might need to select the correct form in the “Get input from form”
menu. Also, check that the correct values have been selected for “Username field” and
“Password field.”

 A login form makes no changes to the database, so you should connect through the user
account that has view-only privileges. In “Validate using connection,” select .

Dreamweaver connects to MySQL and populates the Table menu with the names of the
database tables.

 Select the table, and set “Username column” to and “Password column”
to . The center section should look like this:

The next section is where you specify where the user should be redirected on success
or failure.

 Set the “If login succeeds, go to” field to members_only.php, and “If login fails, go to” to
login.php. This will redisplay the login form if the username and password don’t match a
record in the database.

 The “Go to previous URL (if it exists)” checkbox dictates what happens if a user has
tried to visit a password-protected page without first logging in. The Restrict Access To
Page server behavior remembers which page the user wanted to see. If this checkbox is
selected, the user is sent to that page rather than to the default success page.

To see how this works, select “Go to previous URL (if it exists).”

 The final section of the Log In User dialog box offers the choice of restricting access based
on username and password only, or on username, password, and access level. If you
choose the latter, you need to specify the database column that contains an access level,
such as administrator or member.

The table created in the previous lesson doesn’t have a column to store such details,
so leave the setting at the default “Username and password.”

 Click OK to insert the server behavior, and save login.php.

ptg7799847

187Creating a Login System

 It’s a good idea to test the server behavior before password-protecting any pages.
Although you can do it in Live View, Dreamweaver has difficulty redirecting back to
the login form if the username and password are invalid.

Press F12/Opt+F12 to launch login.php in a browser. Enter a nonexistent username and
password, and click the Sign in button. The form should reload and clear both input
fields. Ideally, an error message should be displayed, but the server behavior doesn’t do
that for you.

 Enter the username and password that you stored in the database, and click Sign in. You
should be taken to the members-only page.

A working copy of login.php is in lesson06/completed/login.php.

Password-protecting pages
The Dreamweaver Restrict Access To Page server behavior needs to be applied individually to
each page that you want to protect. It cannot be applied simultaneously to multiple files or to
an entire folder. Here’s how to apply this server behavior:

 Make a copy of lesson06/start/restricted.php in the lesson06/workfiles folder, and open it
in the Document window.

 In the Server Behaviors panel, click the plus button, and choose User Authentication >
Restrict Access To Page. The following dialog box opens.

The default is to restrict access based on username and password only. If you want to
restrict on the basis of access level as well, you need to click the Define button to specify
the value(s) stored in the specified column of the database table, for example, administra-
tor or member. After defining the values, you need to select them in the “Select level(s)”
text area.

The table doesn’t have a column for access levels, so there’s nothing to define or
select. Use the default “Username and password.”

ptg7799847

188 LESSON : Generating PHP Automatically with Server Behaviors

 When someone attempts to access a restricted page, you want to send them to the login
form, so enter login.php in the “If access denied, go to” field.

 Click OK to insert the server behavior, and save the page.

 Repeat steps 2–4 with members_only.php.

 Select the second paragraph in members_only.php, and create a link to restricted.php.
Save the page.

 Launch login.php in a browser, and log in with the username and password you stored in
the table. You should be taken to members_only.php.

 Click the link to restricted.php. The server knows you are logged in, so it gives you access.

How the Server Knows You’re Logged In

The Web is a stateless environment. Although you can navigate through the pages of
a website, the server treats each request independently. Information can be passed
from one page to another, but then it’s wiped from the server’s memory. To keep track
of a user, the server can send a small piece of code called a cookie that’s stored in the
browser. However, cookies can hold only a limited amount of information, and storing
them in the browser makes them vulnerable.

In common with other programming languages, PHP uses sessions to keep track of
information related to a user. When a session is initiated, the server sends a cookie
containing a random string to the user’s browser. This allows the server to recognize
the user with each new request. All the information about the user is stored as session
variables on the web server. By storing the information on the server, it’s more secure.
Also, a much larger amount of information can be handled.

After someone logs in successfully, the Log In User server behavior stores the username
in a variable called . The Restrict Access to Page server
behavior uses this to determine whether a user can view a protected page. For PHP ses-
sions to work, cookies must be enabled in the user’s browser.

Logging out users
In theory, a PHP session should expire after 24 minutes or when the browser is closed, which-
ever is sooner. Closing the browser is effective, but the 24-minute time limit is less reliable.
Although you can’t guarantee that visitors will log out, the Log Out User server behavior
makes it easy to add a log out link to a page by following these steps:

ptg7799847

189Creating a Login System

 If necessary, open workfiles/members_only.php in Design view.

 Place the insertion point at the end of the second paragraph, and press Enter/Return to
insert a new paragraph.

 Click the plus button in the Server Behaviors panel, and choose User Authentication >
Log Out User. The following dialog box opens.

The radio buttons let you choose to log out when a link is clicked or when the page loads.
You then specify where the user should be redirected.

 Leave the radio button options set to the default to create a new link, and select login.php
as the destination for “When done, go to.”

 Click OK to insert the server behavior and the log out link.

 Save the page, and press F12/Opt+F12 to load the page in a browser. The server should
still recognize you as being logged in.

If you are sent to the login form instead, log in to access members_only.php.

 Click the “Log out” link.

You should be taken to the login form.

 Edit the browser address bar to try to access members_only.php again. You should be
taken straight back to the login form.

ptg7799847

190 LESSON : Generating PHP Automatically with Server Behaviors

NOTE: Attempting to use the browser back button should also result in the login form being

displayed. However, some older browsers display the previous page again. This doesn’t repre-

sent a security risk, because following any link to another protected page results in being sent

back to the login form, requiring the user to log in again.

 Without logging in, try to access restricted.php. You should be sent back to the login form.

 Log in again. This time when you click the Sign in button, you should be taken directly to
restricted.php instead of the default success page.

This is the result of selecting “Go to previous URL (if it exists)” in the Log In User
dialog box.

Working copies of members_only.php and restricted.php are in the lesson06/completed
folder.

Encrypting passwords
Storing passwords in plain text in a database is considered insecure. If anyone manages to
compromise the database, everyone’s password is exposed. The Log In User server behavior
doesn’t support encryption, but all it needs is a couple of quick edits to the code:

 Open add_user.php in Code view. The first few lines of code look like this:

The code on line 1 includes the MySQL connection file, and the server behavior code
begins on line 2. Just in case you want the ability to change the server behavior’s settings
later, it’s a good idea to add your own PHP code where it won’t affect Dreamweaver’s abil-
ity to recognize the server behavior.

ptg7799847

191Creating a Login System

 Position the insertion point at the end of line 2, after the second opening PHP tag, and
press Enter/Return to insert a new line.

 Beginning on the line you just inserted, add the following code:

Many server behaviors, such as Insert Record, use a self-processing form. Instead of
submitting the form to another page, the server behavior reloads the same page and uses
a PHP conditional statement to execute code only if the form has been submitted. When
the insert form is first loaded into the browser, the conditional statement fails, so the code
that inserts a record into the database is ignored. When the form is submitted, the condi-
tional statement equates to , and the insert operation continues.

The code you just inserted works in a similar way. It uses the PHP function to
determine whether exists. If it does, the value is passed to to
encrypt it, and the result is reassigned to .

As explained in Lesson 3, the array is created automatically by PHP, but
 exists only if a form with an input element called has

been submitted using the method. So, doesn’t exist when the
page first loads, so this section of the code is ignored. But when the form is submitted,

 is encrypted using the function, which converts the value to
a 40-digit hexadecimal string.

 Select the code you just inserted, and copy it to your clipboard.

 Open login.php, and paste the code into the same location as you did in add_user.php,
immediately above the server behavior code. The first six lines of the page should now
look like this:

 Save add_user.php and login.php, and launch add_user.php in a browser.

 Create a new user with a different username and password, and click the Sign me up! button.

ptg7799847

192 LESSON : Generating PHP Automatically with Server Behaviors

 When the login form appears, log in using the new username and password. It should
work the same as before you made the changes in add_user.php and login.php.

 Click the “Log out” link, and try to log back in using the first username and password.
This time, it should fail, because the password wasn’t encrypted when it was stored.

 Open phpMyAdmin, and browse to the table. You should see that the password for
your second user is stored in encrypted form.

Working copies of the amended files are in lesson06/completed/add_user_encrypt.php
and lesson06/completed/login_encrypt.php. The code has also been amended so that the
pages redirect to each other and to members_only_encrypt.php.

Displaying, Updating, and Deleting Records
To update or delete a record from a database, you first need to find it. The Dreamweaver
server behavior that finds records in a database is called Recordset. It creates a query
to find all matching records and stores the database result as a resource that can be used to
display the information held in each row and column of the results. You can then use the
primary key of each result to identify the record you want to update or delete.

Selecting records with the Recordset server behavior
The following instructions show how to retrieve a complete list of records in the table,
using the Recordset dialog box in Simple mode:

 Make a copy of lesson06/start/user_list.php in your workfiles folder, and open it in
Design view. The page contains an HTML heading and a skeleton table with two rows
and four columns like this:

ptg7799847

193Displaying, Updating, and Deleting Records

 In the Server Behaviors panel, click the plus button, and choose Recordset to open the
Recordset dialog box.

NOTE: If the Recordset dialog box has different options from those shown here, click the Simple

button on the right. It’s in the same place as the Advanced button in the preceding screen shot.

 Dreamweaver automatically fills the Name field with Recordset1. This value is used to
create several PHP variables, so it’s better to replace it with something more meaningful.
Because it will be used as a variable, it should contain no spaces or special characters, and
must not begin with a number.

Replace Recordset1 in the Name field with getUsers.

 The Recordset server behavior doesn’t alter records, so select in the
Connection menu.

 When Dreamweaver has populated the Table menu, select . You should now see
a list of the table columns in the Columns section. By default, the All radio button is
selected, so the column names are grayed out.

 Click the Selected radio button to activate the Columns section, and Shift-click to select
all the columns except .

 You want to retrieve all records in the table, so leave Filter at the default value of None.

 To sort the results by family name, select from the Sort menu. This auto-
matically sets the menu to the right to Ascending. If you select Descending, the results
are returned in reverse order.

ptg7799847

194 LESSON : Generating PHP Automatically with Server Behaviors

The settings in the Recordset dialog box should now look like this:

 Click the Test button. This should display the results of the SQL query that Dreamweaver
is building for you in the background. As long as you have some records in the table, you
should see something similar to this:

If you get an error message, check the settings in the Recordset dialog box.

 Click OK to close the Test SQL Statement panel, and then click OK in the Recordset
dialog box.

 Save user_list.php. If you test the page in Live View or a browser, you’ll see no difference.
The Recordset server behavior gets the results from the database, but that’s all. It’s up to
you to decide how to use them.

Leave user_list.php open and ready for the next section, where you’ll display the first
record in the second row of the table.

Using the Bindings panel to display database results
The code created by the Recordset server behavior extracts the first row of results from the
database query so they’re ready for display. All that’s necessary is to drag them from the
Bindings panel into your page:

 With user_list.php still open from the previous section, open the Bindings panel by
clicking its tab, or by choosing Window > Bindings (Ctrl+F10/Cmd+F10).

ptg7799847

195Displaying, Updating, and Deleting Records

 You should see the recordset listed there. If necessary, click the plus icon or
triangle next to the recordset name to reveal the names of the columns you selected from
the table.

 Select in the Bindings panel, and drag it into the first cell of the second row of
the table in Design view. This inserts a dynamic text object into the table like this:

The dynamic text object identifies the recordset and column name, making it easy to
recognize.

TIP: If you have difficulty dragging and dropping, position the insertion point in Design view

where you want the dynamic text object to go. Then select the column name in the Bindings

panel, and click the Insert button at the bottom right of the panel.

 Click to the right of the dynamic text object, and press the spacebar once to insert a space
next to it.

 Drag from the Bindings panel and drop it next to the dynamic
text object. Alternatively, just select in the Bindings panel, and click the
Insert button.

 Use either method to insert a dynamic text object for in the second cell. The
page should now look like this:

ptg7799847

196 LESSON : Generating PHP Automatically with Server Behaviors

Don’t worry that the and dynamic text objects are stacked on top
of each other. Dynamic text objects are placeholders that give no indication of how they
will look when the page is displayed in Live View or a browser. In this case, each dynamic
text object represents a single word, but in a blog or product catalog, a dynamic text
object could represent several paragraphs.

 Save the page, and click Live View. You should see the first result from the database query
displayed in place of the dynamic text objects.

 Turn off Live View, and leave user_list.php open and ready for the next section, where
you’ll amend the page to display all results from the database.

If you want to check your code so far, compare it with lesson06/completed/user_list01.php.

Using the Repeat Region server behavior to display multiple results
The Repeat Region server behavior creates a loop (see Lesson 3) to loop
through multiple results from a database query. The server behavior gives you the option to
display all results or limit them to a maximum number:

 Click anywhere in the second table row, and then click in the Tag selector at the bot-
tom of the Document window to select the whole row.

TIP: Using the Tag selector is the most accurate way of selecting HTML elements. If you drag

across the table cells, you might not select the tags in the underlying code. Failure to

select the complete row results in the page falling apart when you apply the Repeat Region

server behavior.

ptg7799847

197Displaying, Updating, and Deleting Records

 Click the plus button in the Server Behaviors panel, and choose Repeat Region to open
the following dialog box.

There’s only one set of database results on the page, so Dreamweaver selects the correct
value for Recordset.

The radio buttons let you choose to display a specific number of records. The default is
10, but you can edit this. Alternatively, you can display all records.

 There are only a couple of records in the table at the moment, so leave the settings
at their default values, and click OK.

 In Design view, you should see a gray border around the second table row with a tab at
the top left indicating that it’s a repeat region.

 Save the page, and click Live View. You should see both records displayed.

If you weren’t careful, your table might end up looking like this:

That’s what happens if you don’t select the whole table row correctly before applying a
Repeat Region server behavior.

You can compare your code with lesson06/completed/user_list02.php.

ptg7799847

198 LESSON : Generating PHP Automatically with Server Behaviors

Creating links to select specific records
To update or delete records, you need to filter the results to select the record you want.
As explained in Lesson 5, each record in a database should have a primary key as its unique
identifier. You use the primary key to select a specific record:

 Copy lesson06/start/update_user.php and lesson06/start/delete_user.php to the
workfiles folder.

 Continue working with user_list.php from the preceding exercise. In Design view, select
the text EDIT in the second table row. This will become a link to update_user.php.

 Click the Browse for Folder icon in the Property inspector, and select update_user.php in
the Select File dialog box. Do not click OK yet, because you need to add a query string at
the end of the URL.

 Click the Parameters button next to the URL field to open the Parameters dialog box.

 Type user_id in the Name field on the left of the dialog box

 Click the Value field next to the value you have just entered. This reveals a lightning bolt
icon on the right of the Value field (it’s circled in the following screen shot). Click this
icon to open the Dynamic Data dialog box.

CAUTION! This is the point where many people go wrong. The lightning bolt icon appears next

to each field when selected. It’s vital that you click the one to the right of the Value field, not the

Name field.

ptg7799847

199Displaying, Updating, and Deleting Records

 Expand the recordset, if necessary, and select .

 Click OK to close the Dynamic Data dialog box. Then click OK in the Parameters and
Select File dialog boxes to close them.

 Open Code view to check the link that has been created. It should look like this (it’s
around line 76):

The query string and associated PHP code has been highlighted. This adds a question
mark followed by after the filename. The PHP code that follows inserts the

 of the current record.

If your code doesn’t look like this, delete the link and repeat steps 2–8 to get it right.
If this part is wrong, nothing else will work.

 Back in Design view, select the text DELETE in the fourth cell of the second row, and cre-
ate a link to delete_user.php, adding a query string in the same way as for EDIT. The code
for the link should end up looking like this:

ptg7799847

200 LESSON : Generating PHP Automatically with Server Behaviors

 Save user_list.php, and test it by clicking the Live Code button. This launches Live View
and simultaneously opens Split view to reveal the output of the PHP code. You should see
something similar to this:

The query strings display followed by the primary key of each record. This value
will be used to identify which record to update or delete.

 Click Live View to switch off both Live Code and Live View.

You can compare your code with lesson06/complete/user_list03.php.

Loading a record into the update form
Updating a record involves the following stages:

 Retrieve the record and use it to populate the input fields of the update form.

 Make any changes in the update form.

 Submit the form to update the database.

This means you need to start the task with the Recordset server behavior. This time, you use a
filter to get the record you want. The value passed through the query string that you created in
the preceding section acts as the filter.

 Open update_user.php in the Document window, click the plus button in the Server
Behaviors panel, and choose Recordset.

 Use the following settings in the Recordset dialog box.

ptg7799847

201Displaying, Updating, and Deleting Records

The Recordset server behavior only needs privileges, but you’ll add the Update
Record server behavior later, so use the connection.

The function used earlier in the lesson to encrypt the password performs one-way
encryption. In other words, there’s no way to decrypt the password, so there’s no point in
displaying it in the update form.

The sent through the query string is used to select the correct record, so the
Filter settings tell the SQL query to match the column with the URL Parameter

.

Only one record will be selected, so Sort is set to None.

 Click OK to close the Recordset dialog box. You now need to populate the form fields
with the results of the recordset.

 Select the “First name” text field in Design view. Open the Bindings panel, and select
 in the recordset. Make sure that “Bind to” at the bottom of the

Bindings panel is set to (this should happen automatically), and click Bind.

This inserts a dynamic text object for in the text input field.

TIP: If you’re good at dragging and dropping, you can drag the value from the Bindings

panel and drop it on the text input field in Design view. Dreamweaver automatically binds the

dynamic text object to the attribute of the tag.

 Repeat step 4 with the “Family name” and Username text fields, selecting
and in the Bindings panel respectively. You should now have dynamic text
objects in the first three text fields.

 Save update_user.php, and switch to user_list.php.

ptg7799847

202 LESSON : Generating PHP Automatically with Server Behaviors

 Launch Live View. Hold down the Ctrl/Cmd key, and click one of the EDIT links. You
should see the update form with the first three fields populated from the database.

Notice that the Address field in the Browser Navigation Bar displays the query string with
the at the end of the URL.

 Turn off Live View. If everything is OK so far, you’re ready to apply the Update Record
server behavior in the next section.

You can compare your code with lesson06/completed/update_user01.php.

Using the Update Record server behavior
Using the Update Record server behavior is very similar to the Insert Record server behavior.
However, you’ll need to do some hand coding to handle the password. If nothing is entered
in the Password text field, you need to use the existing value. Otherwise, you encrypt the new
one and use that.

 You need to store the value of the primary key in the form so that the Update Record
server behavior knows which record to update.

With update_user.php open in Design view, position the insertion point anywhere inside
the form, and choose Insert > Form > Hidden field.

 In the Property inspector, change the name of the hidden field to . Then click the
lightning bolt icon next to Value to open the Dynamic Data dialog box.

ptg7799847

203Displaying, Updating, and Deleting Records

 Select from the recordset in the Dynamic Data dialog box, and click OK.
This is the same procedure you used before when creating the query string for the EDIT
and DELETE links.

 Click the plus button in the Server Behaviors panel, and choose Update Record to open
the Update Record dialog box.

You need to use the connection, and select the table. As with the Insert
Record server behavior, you need to set the column to get its value from

.

The important difference is that the Update Record server behavior picks up the primary
key from the hidden form field. Select in the Columns section, and check that it
selects the record using .

Set “After updating, go to” to user_list.php.

Check that the values match the following screen shot, and click OK.

It’s a good idea to save the page at this point in case you make a mistake in the following steps.

 Switch to Code view, and cut the following lines of code to your clipboard. Use the line
numbers in the screen shot only as a guide. The code might be in a slightly different loca-
tion in your page.

ptg7799847

204 LESSON : Generating PHP Automatically with Server Behaviors

This is the code created by the Recordset server behavior. It needs to come before the
Update Record server behavior code, because you need the value of the column
in case it is to be reinserted in the database.

 Scroll up to the following location, and paste the code on the blank line between the
closing curly brace and the line beginning .

Paste code here

 Insert a blank line after the code you just pasted, and add the following:

This conditional statement starts by checking if has been set. If it
has, it means the update form has been submitted. If the field was left empty, the value
already stored in the database is reassigned to . But if the field isn’t
empty,

 is encrypted before being reassigned to the same variable. This
ensures that the correct value is passed to the Update Record server behavior code.

 Save update_user.php, and test it by launching user_list.php.

Click the EDIT link for the user you created before encrypting passwords, and update the
user’s password.

 If you check in phpMyAdmin, you’ll see that the password has now been encrypted.
Test the username and password in login.php, and you should be able to log into
members_only.php.

A working update form is in lesson06/completed/update_user.php.

Using the Delete Record server behavior
By default, the Delete Record server behavior assumes you just want to delete the selected
record without asking for confirmation. This seems a foolhardy approach, because there’s
no way to recover a record once it has been deleted. Fortunately, it’s quite easy to modify the
default behavior using these steps:

ptg7799847

205Displaying, Updating, and Deleting Records

 With delete_user.php open, click the plus button in the Server Behaviors panel, and
choose Recordset. Create a recordset using the same settings as in step 2 of “Loading a
record into the update form.”

 Use the Bindings panel to add dynamic text objects next to Name and Username. This
will identify the record about to be deleted.

 Click inside the red outline of the form, and insert a hidden field.

NOTE: In Windows, Dreamweaver’s visual aids display a form with a dotted outline in Design

view, as shown in the preceding screen shot. The Mac version uses a solid outline.

Name the field , and set its value to from the recordset in the
same way as you did for the update form.

 Click the plus button in the Server Behaviors panel, and choose Delete Record. Use the
following settings in the Delete Record dialog box.

By default, “Primary key value” is set to URL Parameter. This deletes the record as soon as
the page loads. You must change this to Form Variable.

 Click OK to apply the Delete Record server behavior.

 All that remains is to wire up the Cancel button.

In Code view, insert a new line before this code (it should be on line 3):

ptg7799847

206 LESSON : Generating PHP Automatically with Server Behaviors

 In the space you just created, add the following code:

The attribute of the Cancel button has been set to . The function
checks the array to see if it contains . This will be the case only if the
Cancel button has been clicked. If it has, the function redirects the page to
user_list.php, and ensures that no further part of the script is executed.

CAUTION! This redirect must come before the Delete Record server behavior. Otherwise, the

record will still be deleted.

 Test the page in a browser or Live View by launching user_list.php and clicking one of the
DELETE links (hold down Ctrl/Cmd if using Live View). You should see the details of
the record in delete_user.php.

 Click the Cancel button. When you’re redirected to user_list.php, the record is still listed.

 Click the DELETE link again, and click Confirm this time. When you’re redirected to
user_list.php, the record is no longer listed. If you check in phpMyAdmin, you’ll see that
it’s no longer in the database.

You can compare your code with lesson06/completed/delete_user.php.

Using the Show Region server behavior
At the moment, you should have one record left in the table. But what happens if you
delete the last record? Try it. You end up with an empty table.

This looks odd. It would be much better if you could display a message that no records were
found. The Show Region server behavior can fix that for you.

 With user_list.php open in Design view, click to the right of the table, press Enter/Return
to insert a new paragraph, and type No records found.

ptg7799847

207Evaluating the Server Behaviors

 Select the whole paragraph by clicking in the Tag selector at the bottom of the
Document window.

 With the paragraph still selected, click the plus button in the Server Behaviors panel,
and choose Show Region > Show If Recordset Is Empty.

 This launches a dialog box that asks you to select the recordset. There’s only one on this
page, so just click OK. This surrounds the paragraph with a gray border and a Show If
tab at the top left.

 Click anywhere inside the table, and click in the Tag selector to select the
whole table.

 With the table selected, click the plus button in the Server Behaviors panel, and choose
Show Region > Show If Recordset Is Not Empty.

 Again, you’re asked to select the recordset. There’s only one, so just click OK. The table is
surrounded by a gray border with a Show If tab.

 Test the page. If there are no records in the table, you should see this:

 If you add another record to the users table, the “No records found” message will be
hidden, and the new user listed.

You can compare your code with lesson06/completed/user_list_showif.php.

Evaluating the Server Behaviors
If you have no previous PHP experience and working with a database, the server behaviors are
extremely impressive. They enable you to put together a database-driven site with a minimum
of effort. This lesson has covered the main server behaviors. The only important one that has
been omitted is the Recordset Navigation Bar, which inserts eight separate server behaviors in
a single operation. It allows you to spread a long series of database results over multiple pages
and navigate back and forth through them.

NOTE: The Recordset Navigation Bar is not listed on the Server Behaviors panel menu. To insert

one, choose Insert > Data Objects > Recordset Paging > Recordset Navigation Bar. The dialog

box has only two options: the recordset you want to use and a choice of text or images for the

navigation links. After inserting the navigation bar, you need to style it with CSS.

ptg7799847

208 LESSON : Generating PHP Automatically with Server Behaviors

Using the server behaviors and the techniques taught in this lesson, you can achieve a great
deal. For example, the EDIT and DELETE links use the same technique as you would use for a
product list. By incorporating the product’s primary key in a link, you can load a page to display
the product’s details. Instead of loading the details into an update form, you can load them into a
normal page and use dynamic text objects to display them. In fact, delete_user.php does exactly
that. To display images, store the filename in the database, and bind a dynamic text object to the

 attribute of an tag.

Impressive though they are, server behaviors have considerable drawbacks that become
apparent the more you use them. Here are some of the main problems:

There’s only one validation server behavior, Check New Username, and it’s not very
user friendly.

The User Authentication server behaviors don’t support password encryption.

Every time a page is loaded, a connection is made to the database, even if it’s not needed.

Recordsets are often created when they’re not needed.

The code is in the same page as the HTML, making it difficult for a designer and pro-
grammer to work simultaneously on different aspects of a site.

A lot of identical code is embedded in each page. It would be more efficient to put it in
external files.

Much of the code is inflexible. As soon as you want to do anything different, you need
to customize the code or write your own.

The server behaviors are tied to MySQL. They cannot be adapted for use with any
other database.

Perhaps the biggest problem with the server behaviors is that they raise unrealistic expecta-
tions. Being able to create a basic database-driven site without touching any of the underlying
code leads beginners to expect server behaviors to do everything. They then start trying to
work out how to do something and hit a brick wall. This has led to demands for improved
server behaviors that perform more sophisticated operations, such as server-side validation,
file uploading, and sending emails. In fact, a suite of advanced server behaviors, the Adobe
Dreamweaver Developer Toolbox (ADDT), was available until its withdrawal from sale in
April 2009. ADDT had many passionate fans, but the code it produced was inflexible and dif-
ficult to edit.

The difficulty with server behaviors is that they need to anticipate which options the user will
want. The wider the range of options the more complex the code needs to be. To keep the

ptg7799847

209What You Have Learned

code manageable, server behaviors offer only basic functionality. Judging from the decision to
discontinue ADDT and not add new server behaviors to Dreamweaver CS5, the role of server
behaviors is likely to decline. They’re great for doing a quick mockup of a database-driven
website or for a very simple site. For anything else, you need something more robust. The
remaining lessons will use the Zend Framework to show you how to build more sophisticated
solutions without needing to write masses of code.

TIP: If you want to learn more about customizing Dreamweaver’s PHP server behaviors, there’s

in-depth coverage in my book, The Essential Guide to Dreamweaver CS4 with CSS, Ajax, and PHP

(friends of ED, 2008, ISBN: 978-1-4302-1610-0). Although it’s written for the previous version of

Dreamweaver, the server behaviors work identically in Dreamweaver CS5.

What You Have Learned
In this lesson, you have:

Created MySQL connection files (pages 171–177)

Used the Insert Record server behavior to insert records in the table
(pages 177–183)

Created a login system with the Log In User server behavior (pages 183–187)

Protected pages with the Restrict Access To Page server behavior (pages 187–188)

Created a link to log out from the protected part of a site (pages 188–190)

Encrypted passwords (pages 190–192)

Selected records with the Recordset server behavior (pages 192–194)

Used the Bindings panel to display the results of a recordset (pages 194–196)

Displayed multiple results in a repeat region (pages 196–197)

Created links to select specific records (pages 198–200)

Updated and deleted records (pages 200–206)

Hidden part of the page and been shown a message when a recordset is empty
(pages 206–207)

ptg7799847

LE
SS

O
N

 7 What You Will Learn
In this lesson, you will:

Install the Zend Framework and set up site-specific code hints

Alter a database table to add a unique index and extra columns

Validate user input on the server with Zend_Validate

Preserve user input and display error messages when input fails validation

Create reusable code with Dreamweaver’s Server Behavior Builder

Check for duplicate usernames

Insert user input into a database with Zend_Db

Create a login system with Zend_Auth

Approximate Time
This lesson takes approximately 3 hours to complete.

Lesson Files
Media Files:

styles/users.css
styles/users_wider.css

Starting Files:

lesson07/start/add_user.php
lesson07/start/login.php
lesson07/start/members_only.php

ptg7799847

211

Completed Files:

lesson07/completed/add_user.php
lesson07/completed/add_user01.php
lesson07/completed/add_user02.php
lesson07/completed/add_user03.php
lesson07/completed/login.php
lesson07/completed/members_only.php
lesson07/completed/scripts/library.php
lesson07/completed/scripts/library_magic_quotes.php
lesson07/completed/scripts/restrict_access.php
lesson07/completed/scripts/user_authentication.php
lesson07/completed/scripts/user_authentication01.php
lesson07/completed/scripts/user_registration.php
lesson07/completed/scripts/user_registration01.php
lesson07/completed/scripts/user_registration02.php
lesson07/completed/scripts/user_registration03.php

ptg7799847

LESSON 

Validating Input on
the Server

Using JavaScript for validation is not enough on its own, because it takes only a few seconds to

turn off JavaScript in a browser, rendering your validation script useless. Before inserting user

input into a database, you must validate it on the server with a server-side language, such as PHP.

you’ll create a robust user registration system that validates input on the server. This involves

writing your own PHP code rather than relying on Dreamweaver to generate it for you. Any

You’ll also use Dreamweaver’s Server Behavior Builder to speed up the insertion of frequently

used PHP code.

The registration form alerts the user to errors before inserting details into the database.

212

ptg7799847

213

Introducing the Zend Framework
The Zend Framework (ZF) is a huge open source library of PHP scripts. The “minimal” ver-
sion of ZF 1.10 consists of more than 2,700 files in nearly 500 folders, and is more than 22 MB
in size. Of course, size isn’t everything. In fact, you might wonder why you need so many files
to do a few basic tasks, such as inserting and updating records in a database, uploading files,
and sending emails.

Frameworks provide a wide range of options, many of which you might never use. For example,
ZF has 14 components that access different e-commerce services on Amazon.com. Most devel-
opers never use them, but they’re indispensible if you have an Amazon affiliate account. Instead
of writing a script of mind-numbing complexity, you can query the Amazon database with just a
few lines of code.

Most tutorials assume you want to use ZF to build a web application using the Model-View-
Controller (MVC) design pattern, which divides data handling (the model), output (the view),
and conditional logic (the controller) among separate scripts. Unless you have considerable
PHP experience, the MVC design pattern can be confusing, so this book takes a different
approach, offering a gentler introduction to ZF.

ZF is a loosely coupled framework, which means each part is designed to work with minimal
dependency on other parts. You can use just a few components without needing to learn the
whole framework. But should you decide later to adopt MVC, your knowledge of key ZF com-
ponents will speed up the transition.

Here are the main components you’ll be using in the remaining lessons:

 to check user credentials

 to communicate with a database

 to upload files

 to load ZF classes automatically

 to send emails and attachments

 to page through a long series of database results

 to prevent spam input

 to validate user input

The exercises continue using MySQL, but makes the code more flexible. Changing
just one or two lines allows you to switch to Microsoft SQL Server, PostgreSQL, or another
database system.

ptg7799847

214 LESSON : Validating Input on the Server

ZF has a number of other factors in its favor:

Its principal sponsor is Zend Technologies, the company founded and run by PHP core
contributors.

Leading software companies, including Adobe, Google, and Microsoft, have contributed
components or significant features. Adobe contributed , which acts as a gateway
between PHP and the Flash Player, using the binary Action Message Format (AMF).

ZF was designed from the outset to use PHP 5 objects. Many frameworks were originally
designed for compatibility with PHP 4, which is less efficient.

The next major version of ZF is being designed to enhance interoperability with other
frameworks, such as Symfony.

 TIP: ZF is an object-oriented framework. If you’re not familiar with PHP objects, now is a good

time to review “Using Objects and Resources” in Lesson 3.

Installing the Zend Framework
The CD accompanying this book contains ZendFramework-1.10.6-minimal.zip. Alternatively,
download the most recent version from http://framework.zend.com/download/latest. Choose
the Minimal version of ZF, which contains all the files you need. Some download links require
you to establish a Zend account. Like ZF, this is free and does not entail any obligations.

To install ZF, simply unzip the file to a suitable location on your hard disk. It’s more efficient
to locate it outside the site root, so it’s accessible to all sites in Dreamweaver. Create a
folder called php_library at the top level of your C drive on Windows or in your home folder
on a Mac, and unzip ZF there.

Two folders, bin and library, are inside the main folder. The framework is in a subfolder of
library called Zend. Each component has a corresponding file in the Zend folder plus a
folder of its own.

There’s no need to open the files, but if you do, you’ll see that each file is extensively com-
mented, which partly explains why the framework is so big. As you gain more experience,
you’ll discover a lot of useful information in these comments. Sometimes they help explain
features that are not fully documented.

http://framework.zend.com/download/latest

ptg7799847

215

TIP: The ZF documentation at http://framework.zend.com/manual/en/ is extensive and

contains many examples. Unfortunately, much of it is written on the assumption that you

are using the MVC design pattern. It also expects you to have a solid understanding of PHP.

However, considerable efforts have been made to improve it.

Setting up site-specific code hints for ZF
In Lesson 4, you learned how to create site-specific code hints for WordPress, Drupal, and
Joomla! Dreamweaver automatically recognizes the structure of these CMSs. With other
frameworks, including ZF, you need to tell Dreamweaver where to find the files and which
ones you want to scan to generate code hints. You don’t need the WordPress code hints again
in this book, so the following instructions show how to set up a separate structure for ZF
hints. This replaces the existing version of dw_php_codehinting.config in the phpcs5 site, but
you can easily switch between different sets of code hints by selecting them in the Structure
menu of the Site-Specific Code Hints dialog box.

TIP: You can also follow these steps in the final section of my Adobe TV video about PHP

code hints at http://tv.adobe.com/watch/learn-dreamweaver-cs5/using-php-code-hinting-in-

dreamweaver-cs5.

 In the Dreamweaver Files panel, select the PHP CS5 site.

 Make sure the active file in the Document window is from the current site, or close all files.

http://framework.zend.com/manual/en/
http://tv.adobe.com/watch/learn-dreamweaver-cs5/using-php-code-hinting-indreamweaver-cs5
http://tv.adobe.com/watch/learn-dreamweaver-cs5/using-php-code-hinting-indreamweaver-cs5

ptg7799847

216 LESSON : Validating Input on the Server

 Choose Site > Site-Specific Code Hints.

 Make sure the Structure menu is set to <New from Blank>.

 Click the “Select sub-root folder” icon next to the Sub-root text box, and navigate to
the library folder one level above the Zend folder.

NOTE: The sub-root folder must be at least one level higher than any files or folders that

you want to scan.

 Click Select. Because the folder is outside the site root, Dreamweaver displays the
following alert.

Just click OK.

 Click the plus (+) button above the File(s) area to open the Add File/Folder dialog box.

 Click the “Select folder” icon next to the File/Folder text box, and select the Zend folder.

ptg7799847

217

 The Recursive checkbox tells Dreamweaver whether to scan all subfolders. If you select
the checkbox for the Zend folder, code hints are enabled for the entire framework.
Because ZF contains so many files and folders, scanning all of them is not a good idea,
so leave the checkbox deselected.

 To make the scanning process more efficient, click the plus button above the Extensions area,
and type .php in the highlighted section. This tells Dreamweaver to scan only files.

 Click Add, and repeat steps 7–10 to add the following folders, all of which are subfolders
of Zend: Auth, Captcha, Db, File, Loader, Mail, Paginator, and Validate. When setting up
each folder, select the Recursive checkbox and add to the Extensions list.

You also need to add the Service folder and one of its subfolders, ReCaptcha. The
Service folder contains many subfolders, so select the Recursive checkbox only for
the ReCaptcha subfolder.

ptg7799847

218 LESSON : Validating Input on the Server

If you forget to select the Recursive checkbox or add the filename extension, you can
change the options using the checkbox and button at the bottom of the Site-Specific Code
Hints dialog box.

 Save the configuration by clicking the Save Structure icon at the top right of the dialog
box .

 Type Zend in the Name text box (you can use any name except Custom, Drupal, Joomla,
or WordPress), and click Save.

 Click OK to close the Site-Specific Code Hints dialog box. This inserts a file called
dw_php_codehinting.config in the site root. Dreamweaver uses this to scan the ZF
folders and create code hints for the selected components.

TIP: The folders are scanned in reverse alphabetical order each time you launch Dreamweaver.

This process shouldn’t slow down the program, but if you select the whole framework, it can

take several minutes before all code hints are ready for use.

Improving the Registration Form
The registration form created in Lesson 6 has serious flaws. There’s no control over the values
entered in each input field. If you submit the form without filling in any of the fields, MySQL
stops you, but the server behavior code leaves you with this unhelpful message and no way to
get back to the form.

This is MySQL’s way of saying that is a required field, but you need a better way of
conveying that message to the user.

What’s more, a series of blank spaces is accepted as valid input, so you could end up with a
completely blank record. There’s also the problem of duplicate usernames, not to mention
setting a minimum length for the password. The registration form needs to check all the user
input before attempting to insert it into the database and to redisplay the form with error
messages if validation fails, as shown in the following diagram.

ptg7799847

219Improving the Registration Form

Page loads

Form
submitted?

Display
form

Validate
input

Errors?
Show errors

and redisplay
user input

Insert data
in table

Redirect to
login page

NO YES

NO YES

Additionally, there’s the question of forgotten passwords. In Lesson 8, you’ll learn how to send
users an email to reset their password, so you need to add extra columns to the table—
one to store email addresses and the other for a security token.

There’s a lot to fix. Let’s start by updating the table.

Adding a unique index to the users table
A unique index prevents duplicate values from being inserted in a database column. Adding
an index to a column is quick and easy in phpMyAdmin.

 Open phpMyAdmin, and select the table in the database.

 If you have any records with duplicate usernames, click the Delete icon next to the
record you want to delete. Leave at least one record in the table, because you need it for
testing later.

 Click the Structure tab at the top left of the screen to display the definition of the table.

 Click the Unique icon in the Action section of the row. When the page
reloads, you should see confirmation that an index has been added to username. The SQL
command used to create the index is displayed immediately below. Check that it says

.

ptg7799847

220 LESSON : Validating Input on the Server

 If you clicked the wrong icon and created a different type of index or a unique index on
the wrong column, click the Details link at the bottom of the page to reveal the Indexes
section, and delete the index you have just created; then repeat step 4 to add a unique
index on .

Leave phpMyAdmin open with the Structure tab selected to continue with the instruc-
tions in the next section.

Adding extra columns to the users table
It takes only a couple of minutes to add a column to a database table in phpMyAdmin.
Changing the structure of a database is simple, but it should normally be done only in the
development stage. Once you start filling the database with records, you risk losing data or
having incomplete records.

 With the Structure tab of the table selected in phpMyAdmin, locate “Add field(s)”
toward the bottom of the screen. Type 2 in the text field, leave the “At End of Table” radio
button selected, and click Go.

NOTE: The other radio buttons let you specify where the new column(s) are to be inserted. If

you select the After radio button, phpMyAdmin inserts the new column(s) in the middle of the

table after the column chosen from the list.

This presents you with a matrix where you define the two new columns. Because there are
only two, the options are listed vertically, which makes them easier to see.

 For the column, type email in Field, set Type to , and Length/Values
to 100.

The token will be a randomly generated, fixed-length string. For the other column, type
token in Field, set Type to , and Length/Values to 32. Also select the Null checkbox
to make this column optional.

ptg7799847

221Improving the Registration Form

 Click Save. The revised table structure should look like this:

CAUTION! If you click Go instead of Save, phpMyAdmin adds the options for another column.

Give the column a dummy name, and select as Type. After you click Save, delete the

unwanted column by clicking the Delete icon in the table structure.

There is no need to update the existing record(s) in the table. They can be deleted after
you have tested the script later in this lesson.

Loading ZF class files
Before you can use ZF classes and objects, you need to include the definition files into each
page. With such a large framework, it would be cumbersome to include each file individually,
so ZF provides an autoloader. This loads only those class definitions that are needed for the
current script. For it to work, you need to add the library folder to your , where
PHP looks for include files.

ptg7799847

222 LESSON : Validating Input on the Server

 Create a new PHP file, and save it as library.php in lesson07/workfiles/scripts.

 Switch to Code view, and delete all the HTML code. You should have a completely
blank file.

 Add an opening PHP tag at the top of the file. Do not create a matching closing PHP tag.

 On the next line, assign the absolute path to the library folder to .

The value depends on your operating system and where you saved ZF.

On Windows, it should look similar to this:

You can use either forward slashes or backslashes in the path, but it’s more common
to use forward slashes.

On Mac OS X, it should look something like this:

Note that the path begins with a forward slash. Replace with your own
Mac username.

NOTE: This path needs to be changed when you upload the site to your remote server, but it’s

in only one file, so it’s not a major problem.

 The value of is specified in php.ini, but you don’t always have access to
php.ini on shared hosting, so you can use the function to change
it on the fly. Add the following code on the next line:

Rather than overwriting the existing value of , you need to add to
it. The existing value is retrieved by . Each path needs to be separated
by a semicolon on Windows or a colon on Mac/Linux. To make the code portable between
different operating systems, the constant inserts the appropriate separator
automatically. Everything is joined with the concatenation operator (a period or dot).

TIP: Press Ctrl+spacebar to invoke code hints to speed up the creation of this line of code and

ensure its accuracy.

 To use the autoloader, you need to include the class file for like this:

ptg7799847

223Improving the Registration Form

This is the only ZF file that you need to load explicitly. You don’t need to use a fully quali-
fied path to the Zend folder, because the code in the previous step added its parent folder,
library, to the PHP .

 Now invoke the autoloader like this:

Technically speaking, you don’t need to assign the result to a variable, but it’s useful to do
so to check that everything is working correctly.

 To test your script so far, add the following:

 Save library.php, and click Live View to test the page. If everything is OK, you should see
OK onscreen. If you see “We have a problem,” read the error message(s). The most likely
cause is a mistake in the path to the library folder. Also, check the spelling of all the func-
tions and make sure is all uppercase.

 Once everything is working, remove the conditional statement that you added in step 8.
You can also remove the variable from step 7. The code in your page should look
like this (the value of depends on your setup):

Do not add a closing PHP tag. See the sidebar, “Omitting the Closing PHP Tag,” for
an explanation.

Connecting to the database with Zend_Db
In ZF, all communication with a database is done through a object. This is similar
to setting up a MySQL connection for Dreamweaver’s server behaviors, but it has two signifi-
cant advantages:

A object doesn’t connect to the database until it’s needed. This puts less strain on
the database than a Dreamweaver MySQL connection, which always connects, even if the
script doesn’t need it.

ptg7799847

224 LESSON : Validating Input on the Server

Omitting the Closing PHP Tag

When a script ends with PHP code, the closing PHP tag is optional. In fact, the ZF
coding standard actually forbids its use in pages that contain only PHP code. Leaving
out the closing PHP tag prevents problems with the “headers already sent” error
(see the sidebar “Why the Next Page Doesn’t Always Load” in Lesson 6) and prevents a
lot of hair tearing.

Dreamweaver CS5 supports the omission of the closing PHP tag. However, as you’ll see
in Lesson 8, leaving out the closing tag of an include file sometimes switches Design
view into CSS quirks mode. If this hinders you, add a closing tag, but make sure it’s not
followed by any whitespace or newline characters.

The closing tag should always be used if HTML follows the PHP script in the same page.
It’s OK if the HTML is in a parent page. The PHP engine automatically switches back to
HTML mode at the end of an include file.

 has several adapter subclasses that connect to different database systems.
To connect to a different database, just create a object using the appropriate
subclass. Normally, this involves a single line of code unless your SQL uses database-
specific functions.

Since most pages require a database connection, it makes sense to instantiate the
object in the same file that loads the ZF classes.

 To connect to a database, you need to supply the location of the database server, the
username and password of the account you want to use, and the name of the data-
base. You pass these details as an associative array (see “Creating an associative array”
in Lesson 3) to the constructor, using the array keys , ,

, and .

Create an array for the user account at the bottom of library.php like this:

ptg7799847

225Improving the Registration Form

TIP: It’s not essential to indent an associative array and line up the operators like this, but it

makes your code easier to read and debug.

 Create another array for the account directly below.

 Your choice of adapter depends on the database you want to use and the PHP
configuration of your remote server. If your remote server supports pdo_mysql, use this:

If your remote server supports only mysqli, use this:

TIP: You don’t need to type out the whole class name. As explained in Lesson 1, Dreamweaver’s

code hints ignore underscores and recognize substrings within names. Typing pdomy takes you

directly to . Just press Enter/Return as soon as it’s highlighted.

Also, be careful when passing as the argument to the constructor. Because it’s an array,

Dreamweaver automatically adds an opening square bracket, which you need to remove.

 Create another object for the account, using the appropriate adapter:

Or

 Because a object doesn’t connect to the database until it’s needed, it’s a good idea
to make a test connection to ensure your code is OK. Add these conditional statements at
the end of library.php:

When you type the after the object, code hints should show you the methods it can
use. The method has a self-explanatory name. If each connection is OK,

ptg7799847

226 LESSON : Validating Input on the Server

the conditional statements display confirmation. If there’s a problem, you’ll see a fatal
error similar to this:

Don’t panic. The important information is in the second line, which says access was denied
for and that a password was used. This normally means the password was wrong.

Another possible cause is choosing the wrong adapter class. It’s easy to mix up
 with . The former is for

Microsoft SQL Server. If you make this mistake, the error message is likely to tell
you that the driver is not installed. If it is installed, you might be trying to
connect to the wrong database server.

Check your code, paying particular attention to spelling and case sensitivity.

 After verifying that your connections are working, delete the code you added in step 5.
It’s not needed any more.

Leave library.php open to continue working with it in the next section.

NOTE: For details of the adapter classes for other databases, see http://framework.

zend.com/manual/en/zend.db.adapter.html.

Handling exceptions with try and catch
ZF is an object-oriented framework. If an error occurs in any part of the script, it throws an
exception. Unlike an ordinary PHP error, which displays the error message at the point in the
script where it occurs, an exception can be handled in a different part of the script. If you look
closely at the first line of the fearsome error message in the preceding screen shot, you’ll see it
refers to an “uncaught exception.” When you throw something, it needs to be caught.

To prevent this sort of unsightly error message, you should always wrap object-oriented code
in and blocks like this:

http://framework.zend.com/manual/en/zend.db.adapter.html
http://framework.zend.com/manual/en/zend.db.adapter.html

ptg7799847

227Improving the Registration Form

The main script goes between the curly braces of the block, where PHP tries to run the
code. If all is well, the code is executed normally, and the block is ignored. If an excep-
tion is thrown, the script inside the block is abandoned, and the block runs instead.

Objects can define many different types of exceptions, so you can have different blocks
to handle each type separately. The in the parentheses after indicates it’s
a generic block to handle all exceptions. The exception is assigned to the variable
so you can access any messages it contains. At the moment, the block just uses
and the method to display the error message. When the script is ready to be
deployed in a real site, you replace the code in the block with a more elegant way of
handling the problem, such as displaying an error page.

You need to wrap most of the code in library.php in a block, and add a block at the
bottom of the page.

 Position the insertion point at the end of the following line, and press Enter/Return to
insert a blank line:

 On the new line, type try, followed by an opening curly brace.

 Select all the code on the following line to the bottom of the page, and click the Indent
Code icon in the Coding toolbar to indent the code in the block.

 Add a new line at the bottom of the page, and insert the closing brace of the block,
together with a block like this:

 Save library.php. You can compare your code with lesson07/completed/library.php.

Using Zend_Validate to check user input
The standard way of validating user input on the server is to create a series of conditional
statements to test if a value meets certain criteria. For example, if you want to check whether
a password contains between 8 and 15 characters, you can use the PHP function ,
which returns the length of a string, like this:

ptg7799847

228 LESSON : Validating Input on the Server

This works, but it doesn’t check what characters are used in the password. Pressing the space-
bar eight times passes this test. So, you need to add other conditional statements to make sure
all criteria are met.

 works in a similar way but provides a set of commonly used validators. Each
subclass has an easily recognizable name that makes your validation script much easier to
read, and you don’t need to become an expert in PHP functions to ensure that user input
matches your requirements. Table 7.1 lists the most commonly used subclasses. Each one is
prefixed by , so becomes .

For example, to check that a string is 8–15 characters, use
like this:

This instantiates a object, setting its minimum and maximum
values to 8 and 15 respectively, and assigns it to .

To check whether contains between 8 and 15 characters, pass it as an
argument to the method like this:

If contains 8–15 characters, this returns . Otherwise, it returns
.

Normally, if a validation test fails, you want to generate an error message. Do this by using a
conditional statement with the logical Not operator (see “Using the logical Not operator” in
Lesson 3) like this:

Adding the logical Not operator looks for a value that is not valid, so the error message is
assigned to only if is not 8–15 characters.

This validation test is fine as far as it goes, but it has the same problem as the earlier example:
It checks only the number of characters. Pressing the spacebar 8–15 times still passes valida-
tion. You need to combine validators. One way is to use a series of conditional statements, but
ZF offers another solution—chaining validators.

ptg7799847

229Improving the Registration Form

Table 7.1 Commonly Used Validation Classes

Class Description

Checks that the value contains only alphabetic and number characters. Whitespace
characters are permitted if is passed as an argument to the constructor.

Same as except numbers are not permitted.

Accepts a value between minimum and maximum limits. Constructor requires
two arguments, which can be numbers or strings, to set the limits. By setting
an optional third argument to , the value cannot be equal to either the
maximum or minimum.

Checks whether a value falls within the ranges of possible credit card numbers for
most leading credit card issuers. Does not check whether the number is genuine.

Checks not only that a date is in the format, but also that it’s a
valid date. For example, fails because it’s not a real date, although
it’s in the right format.

Accepts only digits. The decimal point and thousands separator are rejected.

Validates an email address. Has the option to check whether the hostname
actually accepts email, but this slows down performance. On Windows, this
option requires PHP 5.3 or later.

Accepts a floating point number. The maximum value is platform-dependent.

Checks that a value is greater than a minimum. Constructor takes a single
argument to set the minimum value.

Checks that a value is identical to the value passed as an argument to
the constructor.

Accepts an integer.

Checks that a value is less than a maximum. Constructor takes a single argument
to set the maximum value.

Checks that a value is not empty. Various options can be set to configure
what is regarded as an empty value, offering greater flexibility than the PHP

function.

Checks that a value conforms to the pattern for a postal or zip code. The pattern
is determined by passing a locale string to the constructor, for example,
for the United States or for the UK.

Validates against a regular expression passed as an argument to the constructor.

Checks the length of a string. The constructor accepts one, two, or three
arguments. The first sets the minimum length, the second optionally sets the
maximum length, and the third optionally specifies the encoding. Alternatively,
these values can be presented as an associative array using the keys ,

, and .

ptg7799847

230 LESSON : Validating Input on the Server

Chaining validators to set multiple criteria
To test for more than one criterion, create a generic object, and use its

 method to add each new test. You can instantiate each validator separately,
and then pass it as an argument to like this:

However, it’s simpler to instantiate each validator directly as the argument to
like this:

You can even chain the methods one after the other like this:

Notice that there is no semicolon at the end of the second line, and the second operator isn’t
prefixed by the object. Indenting it like this makes the code easier to read, but you could
place it immediately after the closing parenthesis at the end of the first method.

NOTE: Chaining methods like this will be familiar to readers with jQuery experience.

Unfortunately, Dreamweaver CS5’s code hints don’t support chaining methods, so the code in

this book always uses separate statements to apply methods to ZF objects.

All three sets of code perform the same task: tests for a string 8–15 characters long that
contains only letters and numbers, with no spaces.

Armed with this knowledge, you can validate the input of the registration form.

Building the validation script (1)
The user registration form from Lesson 6 has been modified to add a text input field for the
email address and some hints for the user. The style sheet has also been changed to make
room for error messages.

 Copy add_user.php from lesson07/start to lesson07/workfiles.

ptg7799847

231Improving the Registration Form

 It’s more efficient to use an external file for the validation code so you can reuse the
code for other projects. Choose File > New, and create a new PHP page. Save it as
user_registration.php in lesson07/workfiles/scripts.

 In the file you just created, switch to Code view, delete the HTML code inserted by
Dreamweaver, and add an opening PHP tag at the top of the page. This page will contain
only PHP, so it shouldn’t have a closing PHP tag.

 After the opening PHP tag, initialize an array to store error messages:

 When the form is first loaded, there’s nothing to process, so the array is empty. An
empty array is treated as (see “What PHP regards as false” in Lesson 3), so you can
use this to ensure that the validation script is run only when the form is submitted. Add a
conditional statement like this:

 The validation script needs access to the ZF files. Include library.php by adding it between
the curly braces of the conditional statement:

 Add and blocks inside the conditional statement created in the previous step:

 The first input field you need to validate is . Personal names are alphabetic,
so seems like a good choice. Add the following code inside the
block:

By passing as an argument, this permits spaces.

ptg7799847

232 LESSON : Validating Input on the Server

 Before going any further, it’s a good idea to test the script so far. Save user_registration.
php, and switch to add_user.php.

Include user_registration.php by inserting space above the declaration and
adding the following code:

 To display error messages next to each input field, you need to add a pair of tags
with a PHP conditional statement in between.

Locate the following line in Code view:

TIP: It’s a good idea to work in Vertical Split view (choose View > Split Vertically and click Split

in the Document toolbar). Select the input field in Design view to highlight the tag in

Code view.

 Add the following code after the tag:

The conditional statement begins by checking . If the form has been submitted,
it equates to , so the next test is applied. The function checks the exis-
tence of a variable. is created only if the validation test fails, so

 is displayed if the form has been submitted and the
field failed validation.

The tags remain empty if there isn’t an error, so it might seem more logical to
include them inside the conditional statement. They have been left outside to act as a
hook for a custom server behavior that you’ll create later in this lesson to insert error
messages for the other fields.

 Save add_user.php, and click Live View or press F12/Opt+F12 to test it. Start by leaving
the “First name” field blank. Submit the form, and remember to hold down the Ctrl/Cmd

ptg7799847

233Improving the Registration Form

key if you’re in Live View. If all your code is OK, you should see an error message next to
the “First name” field.

 Now try typing your own name and resubmitting the form. The error message disappears.

 Type some numbers and resubmit. The error message reappears.

 Click inside the field, and press the spacebar several times before resubmitting the form.
The error message disappears. You still have the problem of an empty field.

Unfortunately, the validation class doesn’t have an option to handle this. Also,
personal names sometimes include a hyphen or apostrophe. The best solution is to use a
regular expression—a pattern for matching text.

 Turn off Live View, if necessary, and switch back to user_registration.php. Change the
validator from to like this:

This regular expression—or regex, for short—makes sure the value begins with at least
one letter and is followed by at least one more letter, hyphen, apostrophe, or space.

This is fine for English. If you need to accept accented letters or names written in a differ-
ent script, such as Japanese or Chinese, use the following:

This line performs the same task, but also accepts Unicode letter characters.

TIP: Regular expressions are used widely for matching text in PHP and other program-

ming languages. Learn how to build your own regexes by following my tutorial series

in the Adobe Developer Connection at www.adobe.com/devnet/dreamweaver/articles/

regular_expressions_pt1.html.

 Save user_registration.php, and test the “First name” field again. It now accepts names
with spaces, hyphens, and apostrophes but rejects numbers and values that don’t begin
with a letter.

The second regex accepts names like Françoise, Дмитрий, and .

You can compare your code with lesson07/completed/add_user01.php and lesson07/
completed/scripts/user_registration01.php.

www.adobe.com/devnet/dreamweaver/articles/regular_expressions_pt1.html
www.adobe.com/devnet/dreamweaver/articles/regular_expressions_pt1.html

ptg7799847

234 LESSON : Validating Input on the Server

Building the validation script (2)
The rest of the script follows a similar pattern: You need a validator for each input field and
need to add a message to the array if the value fails the test. Sometimes a validator
can be reused, but if it’s no longer appropriate, you can overwrite it by assigning a new one
to the same variable.

 The input field can use the same validator as , so add the following
code immediately after the test in user_registration.php:

 The next input field to validate is . A username should consist of letters and
numbers only, and should be 6–15 characters long. This requires two tests, so you need
to create a object, and chain the validators. You don’t need the existing
validator, so you can overwrite it.

Add the following code immediately after the code you entered in the previous step (and
still inside the block):

This starts by creating a generic object ready for chaining. Next, a
 validator—with a minimum of 6 characters and a maximum of 15—is cre-

ated and assigned to .

In the third line, the method chains to .

Then the validator is chained to it. By not passing an argument to , no
whitespaces are allowed.

Why use different ways of chaining the validators? Surely the validator
could have been passed directly as an argument to in the same way as

right? It could, but the password field needs to be a minimum of 8 characters.

ptg7799847

235Improving the Registration Form

Assigning the validator to its own variable lets you change the minimum
value ready for reuse.

 On the line immediately after the code you just inserted, type $length->. As soon as
you type the operator, Dreamweaver code hints display the methods available to a

 validator. Type s. The code hints display a number of methods that begin
with “set.”

 Use your arrow keys to scroll down to and press Enter/Return or double-
click. Set the value to 8, and type a closing parenthesis and semicolon. The finished line
should look like this:

This resets the minimum number of characters required by the validator
to 8. The maximum remains unchanged at 15.

TIP: Many ZF classes have methods that begin with “get” and “set” to find out or change the

values of an object’s properties.

 Now that you have changed the minimum required by the validator, you
can create the validation test for the input field. It’s almost exactly the same as
for . Add this immediately after the line you just entered:

This allows any combination of letters and numbers. For a more robust password, use the
 validator. There’s a regex for a strong password that requires a mixture of upper-

case and lowercase characters and numbers at http://imar.spaanjaars.com/QuickDocId.
aspx?quickdoc=297. In the comments on the same page, there’s an even stronger one that
requires at least one special character.

http://imar.spaanjaars.com/QuickDocId.aspx?quickdoc=297
http://imar.spaanjaars.com/QuickDocId.aspx?quickdoc=297

ptg7799847

236 LESSON : Validating Input on the Server

 To check that both password values are identical, use the validator. This code
goes immediately after the code in the preceding step:

You want to check that is identical to ,
so is passed as the argument to the validator.

CAUTION! The error message contains an apostrophe, so the string needs to be enclosed in

double quotation marks.

 The final test is for the email. Add this after code in the previous step:

 Save user_registration.php. You’ll come back to it later to add the code that inserts
the user’s details in the database. If you want to check your code so far, compare it with
lesson07/completed/scripts/user_registration02.php.

Preserving input when validation fails
Ever submitted an online form only to be told there’s an error, and all your input has been
wiped out? Not much fun is it? Good validation and form design preserves the user’s input
if there’s an error. It’s quite simple to do. The input is stored in the or array,
depending on the method used to submit the form (most of the time, it’s). All that’s nec-
essary is to assign the appropriate element of the or array to the attribute
of the input field.

 In add_user.php, locate the first tag in Code view. It looks like this:

 The tag doesn’t have a attribute, so you need to add one, and use PHP to
assign its content like this:

ptg7799847

237Improving the Registration Form

The PHP code block inside the quotation marks of the attribute is controlled by
a conditional statement that checks the and arrays. The array is
empty unless a form has been submitted, so the code inside the curly braces is ignored
when the page first loads.

The array is declared at the top of user_registration.php, so it always exists, but
elements get added to it only if the validation script finds any problems with the user
input. Consequently, will equate to only if the form has been submitted and
at least one error has been found.

If both tests equate to , the code passes to a function called
 and uses to display the result. You could use on its own, but

displaying raw user input in a web page is a security risk. The function
sanitizes the input by converting characters that have a special meaning in HTML into
HTML entities. For example, the angle brackets in are converted to and

, which prevent an unauthorized script from running in your web page.

Often, takes just one argument—the string you want to convert. The
second and third arguments have been added because uses Latin1 (iso-
8859-1) as its default encoding. is a constant that specifies preserving single
quotation marks and converting only double ones. The third argument specifies UTF-8
(Unicode) as the encoding. This preserves accented or nonalphabetic characters.

 Save add_user.php, type anything in the “First name” field, and submit the form. The vali-
dation script detects errors in the other fields, so and are no longer empty
arrays. The value you entered is redisplayed.

You can compare your code with lesson07/completed/add_user02.php.

Dealing with unwanted backslashes
In add_user.php, test the “First name” field with a name that contains an apostrophe, such as
O’Toole. If magic quotes (see Lesson 2) are turned on, the apostrophe is preceded by a back-
slash like this when it’s redisplayed:

ptg7799847

238 LESSON : Validating Input on the Server

If you see a backslash in front of the apostrophe, add the following code after the block
at the bottom of scripts/library.php (you can copy and paste it from lesson07/completed/
scripts/library_magic_quotes.php):

When you test the page again, the backslash should have been removed.

NOTE: This script comes from the PHP manual at http://docs.php.net/manual/en/security.

magicquotes.disabling.php and is the least efficient way of dealing with magic quotes. You

need to add the script to library.php only if there is a backslash in front of the apostrophe and

you cannot use any other method of disabling magic quotes (see “Deciding to use or not to use

‘magic quotes’” in Lesson 2).

Creating your own server behaviors
Now you need to fix the redisplay of user input and error messages for the remaining input
fields. Doing it all by hand is tedious. But take a look at what’s happened in add_user.php.
In Design view, Dreamweaver has added what looks like a dynamic text object in the “First
name” input field. The Server Behaviors panel also lists a Dynamic Attribute.

Does this mean Dreamweaver has a server behavior that you can you use here? No, but it does
have the Server Behavior Builder, which lets you create your own.

http://docs.php.net/manual/en/security.magicquotes.disabling.php
http://docs.php.net/manual/en/security.magicquotes.disabling.php

ptg7799847

239Improving the Registration Form

 With add_user.php open in the Document window, open the Server Behaviors panel by
clicking its tab or choosing Window > Server Behaviors (Ctrl+F9/Cmd+F9). Click the
plus button at the top left of the panel, and choose New Server Behavior.

 In the New Server Behavior dialog box, make sure “Document type” is set to PHP
MySQL, and type Redisplay on Error in the Name field. Leave the checkbox deselected,
and click OK.

NOTE: Selecting the “Copy existing server behavior” checkbox lets you choose a server

behavior on which to base a new one. However, you can do this only with server behaviors you

have created yourself. You cannot use one of Dreamweaver’s built-in server behaviors.

This opens a large dialog box where you define the new server behavior.

 Click the plus button labeled “Code blocks to insert” to open the Create a New Code
Block dialog box. Accept the name suggested by Dreamweaver, and click OK. This lists
the code block in the top pane and inserts some placeholder text in the “Code block”
section.

 Replace the placeholder text with the PHP code that you added to the tag’s
attribute in step 2 of “Preserving input when validation fails.” Here it is again:

 If you leave the code like this, the server behavior would always use
. To make it editable, you need to replace with a parameter.

ptg7799847

240 LESSON : Validating Input on the Server

Delete but not the surrounding quotation marks. Make sure your insertion
point is between the quotation marks of , and click the Insert Parameter in
Code Block button.

 In the “Parameter name” field, type Field Name, and click OK. The code in the “Code
block” section should now look like this:

The surrounding the parameter name tell Dreamweaver to replace the value when you
use the server behavior.

 You now need to tell the server behavior where to insert the code when you use it. You
want to use it in the attribute of an tag.

Set “Insert code” to Relative to a Specific Tag. An option called Tag appears.

 Select “input” from the Tag menu.

 Set “Relative position” to “As the Value of an Attribute.” This opens up yet another option
labeled Attribute.

 Select “value” from the Attribute menu. The settings in the Server Behavior Builder dialog
box should now look like this:

ptg7799847

241Improving the Registration Form

 Click Next at the top right of the dialog box to open the dialog box that defines the
options that will appear in the new server behavior’s dialog box.

 The values suggested by Dreamweaver are fine. Just click OK to complete the creation of
the Redisplay on Error server behavior.

 Create another custom server behavior to display the error messages. The process is the
same, so the following instructions provide only the main points.

Click the plus button in the Server Behaviors panel, and choose New Server Behavior.
Call it Display Error Message.

 Create a new code block, and accept the default name. Replace the placeholder text with
the following code:

This is the same as the code used to display the error message next to the “First name”
field except both instances of have been replaced by the parameter .

 The error message is displayed inside a tag, so use the following settings at the
bottom of the panel:

 Click Next, accept the default settings in the next dialog box, and click OK.

ptg7799847

242 LESSON : Validating Input on the Server

Finishing the registration form
The custom server behaviors make it easy to preserve user input and display error messages.
As long as you use an array called to store error messages, they can be used in any
page, not just this one.

TIP: You could make the server behaviors more flexible by using a parameter for the

array. However, consistency in coding is a virtue, and using a fixed variable keeps the code simple.

 With add_user.php open in Design view, select the “Family name” field in the
registration form.

 Click the plus button in the Server Behaviors panel, and choose “Redisplay on Error”
to open the dialog box for your new server behavior.

 Type surname in the Field Name field. The correct value should already be selected for
“input tag.”

 Click OK. Dreamweaver inserts a dynamic text object in the field. It also lists “Redisplay
on Error” in the Server Behaviors panel. Dreamweaver should also recognize the code in
the “First name” field and list that as a “Redisplay on Error” server behavior.

NOTE: Don’t worry if the hand-coded version isn’t recognized as a “Redisplay on Error” server

behavior. Differences in spacing and new lines could affect Dreamweaver’s ability to recognize

it as the same.

 Repeat steps 1–4 with the Username and “Email address” fields, typing username and
email respectively in Field Name.

 You can’t apply the server behavior to the password fields. There’s no point in doing so
anyway, because password fields don’t display user input.

 Save add_user.php, and test the new server behavior by typing values in all fields except
the password fields and submitting the form. The lack of passwords causes validation to
fail and redisplays the values you entered.

ptg7799847

243Improving the Registration Form

NOTE: If your page doesn’t work as expected, compare your code with add_user03.php in

lesson07/completed. The most likely problem is a mistake in the “Code block” section of the

Server Behavior Builder or in the parameter. You can edit a custom server behavior by clicking the

plus button in the Server Behaviors panel and choosing Edit Server Behavior. To rebuild a server

behavior from scratch, select its name in the Edit Server Behavior dialog box, and click Remove.

 The error messages are displayed in tags. In Design view, position the insertion
point immediately to the right of the “Family name” input field, right-click, and choose
Insert HTML.

This displays a small window for you to add an HTML tag. Type sp to highlight , and
press Enter/Return to insert an empty pair of tags.

 Open Split view to make sure the insertion point is between the opening and closing
 tags. If it isn’t, move it there by clicking between them.

 Click the plus button in the Server Behaviors panel, and choose Display Error Message to
open the dialog box for the other new server behavior.

 Type surname in Field. The value of “span tag” should be “span [1].” The span doesn’t
have an attribute, so Dreamweaver uses an array to identify it, counting from zero. So,
this is the second in the page.

 Repeat steps 8–11 for the remaining input fields. As long as the insertion point is between
the opening and closing tags, the Display Error Message dialog box selects the
correct value for “span tag.” The value you type in Field should match the attribute of
each input field, namely: username, password, conf_password, and email.

ptg7799847

244 LESSON : Validating Input on the Server

 Save add_user.php, and test the page by typing a few letters in the “Confirm password”
field only. When you submit the form, confirm that error messages are displayed next to
each field.

This completes add_user.php. Compare your code with lesson07/completed/add_user.
php if the page doesn’t work as expected.

Using a variable in a SELECT query
The final part of the form input that needs to be validated before you can register the user in
the database is the username. At the beginning of this lesson, you added a unique index to the

 column, so the database rejects any attempt to insert the same value more than once.
To avoid this, you need to check the database and display an error message if the username
already exists.

 offers several different ways of querying a database. In this case, the simplest way is
to write your own SQL query. All you’re interested in is whether the username exists in the
database, so selecting is sufficient. To find the for the username “hitchhiker,”
the basic SQL query looks like this:

SQL is designed to emulate human language, so the meaning should be obvious. By conven-
tion, the SQL commands are written in uppercase. The names of columns and tables are not
enclosed in quotation marks, but string values are. So, this selects the values in the
column from the table, where the value in the column equals “hitchhiker.”

For this validation script, you want to match the value that comes from ,
but you have no idea what this contains. It could be an attempt to hack into your database.

ptg7799847

245Improving the Registration Form

So, you need to sanitize the value that’s inserted into the SQL. One way of doing this with
 is to use the method, which takes two arguments:

The first argument is the SQL statement with a question mark used as a placeholder for
the variable containing the user input.

The second argument is the variable you want to use.

This sanitizes the value and wraps it in the necessary quotation marks.

To execute a query, you pass the SQL query to the method, which returns
an array containing all the results.

Checking for duplicate usernames
Now that you know the basics of querying the database, you can fix the validation script so
that it checks for a duplicate username.

 The section in user_registration.php that validates the length and characters in the user-
name ends with the following conditional statement (it should be around lines 19–21):

If the username fails this validation test, there’s no need to check the database; if the user-
name passes, you need to make sure it’s not a duplicate. This is an either/or situation, so it
calls for an block to be added to the original conditional statement like this:

All the code in the following steps goes inside the block.

 Use the method to build the SQL statement with a question mark place-
holder, and pass the variable to it as the second argument:

 is one of the objects you created in library.php earlier in this lesson to
connect to the database.

ptg7799847

246 LESSON : Validating Input on the Server

 Execute the query by passing to , and capture the result like this:

 The method returns an array of results. PHP treats an array that contains any
elements as . If a match is found, the username is a duplicate, so you can create an
error message like this:

If no match is found, is empty, which PHP treats as , so the code inside the
braces is ignored.

 Save user_registration.php, and test add_user.php by entering a username that already
exists in the database. If your database table is empty, you can add a record by selecting
the table in phpMyAdmin and clicking the Insert tab at the top of the page. When
you submit the form with a duplicate username, you’ll see the error message.

You can compare your code with lesson07/completed/scripts/user_registration03.php.

Inserting the user details with Zend_Db
Inserting a record in a database with is very easy. You don’t need any SQL. Just create
an associative array using the column names as the keys, and pass the table name and array as
arguments to the method.

You can now finish the user registration process:

 If the user input passes all the validation tests, the array is empty. You can use
this to control whether to insert the data in the table. Add this conditional state-
ment at the end of the validation sequence, just above the block:

PHP implicitly treats an empty array as . The logical Not operator (an exclamation
point) reverses a Boolean value, so this effectively means “if there are no errors.” If the
array is empty, the condition equates to , and the details will be inserted into the database.

All the remaining code goes inside this conditional statement.

ptg7799847

247

 Create an associative array of the column names and values. You don’t need an array ele-
ment for , because MySQL automatically inserts the next available number for the
primary key. The array should look like this:

 automatically sanitizes the values before inserting them into the database. The
password is the only value that receives special treatment. It’s passed to the func-
tion for encryption.

 To insert the data, you need to use the object with read/write privileges. Add this
line after the array you have just created:

The first argument to the method is a string containing the name of the table
you want to use, and the second argument is the data array.

 That’s all there is to inserting the data. After the data is inserted, redirect the user to the
login page with the function like this:

NOTE: Strictly speaking, you should use a full URL when redirecting a page, but all current

browsers accept a relative URL. Using this shortcut is acceptable for local testing, but you

should replace this with a fully qualified URL when deploying your pages on a live site. See

http://docs.php.net/manual/en/function.header.php.

 Save user_registration.php, and copy lesson07/start/login.php to your lesson07/workfiles
folder.

 Test add_user.php to enter a new user in the database. If there are no errors, you will be taken to
login.php. You can compare your code with lesson07/completed/scripts/user_registration.php.

Authenticating User Credentials with Zend_Auth
The end result of the improved registration form that you just created is the same as
Dreamweaver’s built-in Insert Record server behavior—it inserts user details in the data-
base. Dreamweaver’s User Authentication server behaviors can still be used to control access to
pages. However, ZF makes it easy to create scripts to authenticate user credentials. Using exter-
nal files for the scripts that control access and log out users simplifies their inclusion in any page.

http://docs.php.net/manual/en/function.header.php

ptg7799847

248 LESSON : Validating Input on the Server

Controlling user access with Zend_Auth
The class creates a singleton object, which means that only one instance can exist at
a time. In practical terms, the only difference is that you use instead of the
keyword like this:

 is capable of using a variety of authentication methods. When the user credentials are
stored in a database, authentication is done by an adapter called ,
which takes the following five arguments:

A object that connects to the database

The name of the table that contains the user credentials

The name of the column that contains the username

The name of the password column

The encryption, if any, to be applied to the password

The fifth argument uses a question mark as a placeholder for the password. The table
uses encryption, so you create an adapter like this:

When a user logs in, pass the username and password to the adapter like this:

To check whether the user’s credentials are valid, pass the adapter to the object’s
 method:

Finally, if the login succeeds, store the user’s details like this:

The array passed as an argument to the method is a list of the database
fields you want to store. Dreamweaver’s built-in Log In User server behavior stores only the

ptg7799847

249

username and access level, if any. gives you access to as much information about
the user as you want—provided, of course, it’s stored in the database.

NOTE: The and methods store the user’s details as a

 object, which is essentially just another way of storing session variables.

You restrict access to pages by using the method, which returns if the user
has logged in.

To access details of a logged-in user, use the method like this:

The details can then be accessed as properties of , for example:

To log out a visitor, use the method.

Creating the login script
The Log In User server behavior that you used in Lesson 6 sends the user to another page on
failure or displays the login form again without explanation. This time you’ll display an error
message so the user knows what’s happened.

 Create a new PHP page, and save it as user_authentication.php in lesson07/work-
files/scripts. The page will contain only PHP code, so delete the HTML inserted by
Dreamweaver, and add an opening PHP tag.

 To control the error message, create a Boolean variable:

If the login fails, this will be reset to and display the message.

 The login script should run only if the form is submitted. Add a conditional statement to
include library.php if the array equates to :

ptg7799847

250 LESSON : Validating Input on the Server

 The script uses objects, so add and blocks inside the conditional statement, and
get an instance of in the block.

TIP: A quick way to select the code hint for Zend_Auth is to press Ctrl+spacebar, and type dau.

This selects immediately. Press Enter/Return to insert it, and then type two colons to

bring up a code hint for .

The rest of the script goes inside the block.

 Create a object. A quick way to select its code hint is by typ-
ing hada after the keyword. This takes five arguments, but Dreamweaver helps you by
highlighting the current argument in bold.

The code for this line should look like this:

 Set the identity and credential values for the adapter. They come from the and
 values in the array:

 Pass the adapter to the method of the object, and save the
result in a variable:

 Use the method to determine whether the user’s credentials are correct. If they
are, store the details, and use to redirect the user to members_only.php. If the
login attempt fails, reset to . The code looks like this:

ptg7799847

251

CAUTION! Relative links in include files are treated as relative to the page that includes them, not

to the location of the include file. Although this script is in the scripts folder, it will be included in

login.php, which is in the same folder as members_only.php. So, the relative link that redirects the

user on success needs to be relative to login.php, not to user_authentication.php.

Testing the login script
To use the login script, include it above the declaration of the login page, and add a
conditional statement to show an error message if the login fails.

 Copy login.php and members_only.php from lesson07/start to lesson07/workfiles.

 Include user_authentication.php in login.php by adding the following above the
declaration:

 In Design view, insert a new paragraph after the Members Only heading, and type Login
failed. Check username and password.

With the insertion point anywhere in the paragraph, choose from the Class
menu in the Property inspector. This turns the text bold red.

 Switch to Code view, and wrap the paragraph you just created in a conditional statement
like this:

The script in user_authentication.php sets to and changes it to only
if a login attempt fails, so this prevents the error message from being shown unless the
user’s credentials are rejected.

TIP: Some developers feel obliged to convert HTML in conditional statements to strings and

use to display it. It’s not necessary, and makes the code harder to write.

ptg7799847

252 LESSON : Validating Input on the Server

 Save login.php, and test it in Live View or a browser. When the page first loads, the error
message is not displayed. Try to log in using an invalid username or password. The error
message is displayed.

 Click “Sign in” without typing anything in either field. You get the following mes-
sage: “A value for the identity was not provided prior to authentication with
Zend_Auth_Adapter_DbTable.”

This comes from the block. Failing to enter anything in the Username field has
caused to throw an exception. This is more elegant than the lengthy error
message you get without and , but it’s not something you want to show visitors
to your site.

 Switch back to user_authentication.php, and add another conditional statement inside
the existing one near the top of the script:

This uses to test if or contains a value.
If either is empty, is reset to . The authentication script is now inside an
block that is executed only if and both have
values.

 A red marker on the last line of the script reminds you that you need to add a closing
curly brace to match the opening one of the block. Technically speaking, the missing
brace goes between the last two braces at the bottom of the script, but you can put it on
the final line, and the red marker goes away.

 Save user_authentication.php, and test the login form again without filling in the fields.
This time you get your custom error message in red.

 Test the login form with a registered username and password. When you click “Sign in,”
you are taken to members_only.php.

You can compare your code with lesson07/completed/login.php and lesson07/completed/
scripts/user_authentication01.php.

ptg7799847

253

Password-protecting pages
Building the login script was the complex part. To restrict access to a page, you use the

 method, which returns or . If the user is logged in, you retrieve his
or her details with . Otherwise, you redirect the user to the login page.

 Create a PHP page, and save it as restrict_access.php in lesson07/workfiles/scripts.
Delete the HTML inserted by Dreamweaver.

 The script is so short; here it is in its entirety:

This includes library.php and creates an instance of . The conditional state-
ment checks whether the user is logged in. If it succeeds, the user’s details are stored in

. Otherwise, the page is redirected to login.php, and ensures that the script
comes to an immediate halt, preventing the protected page from being displayed.

 To password-protect members_only.php, just include this script above the
declaration like this:

Assuming you’re already logged in, you need to log out before you can test this. For that,
you need a logout button and script, which is coming up next.

Creating a logout system
 makes logging out easy with the method. You can add the neces-

sary code to user_authentication.php, and use a link to login.php to log out the user. A query
string at the end of the link triggers the logout.

ptg7799847

254 LESSON : Validating Input on the Server

 Create a new paragraph in members_only.php, and type Log Out.

 Select the text, and link to login.php. Add ?logout to the end of the link. You can do this
in the Link field of the Property inspector or in Code view. Save members_only.php.

 Switch to user_authentication.php, and add the following code at the bottom of the page:

Values passed through a query string are in the array. This uses to see if
 exists. If it does, the ZF files are included, an instance of is

created, and the method performs the logout. That’s all there is to it. The
session variables storing the user’s details are deleted automatically.

NOTE: If you’re wondering why the script doesn’t use the earlier instance of , it’s

created only when the login form is submitted. You could shorten the code slightly by including

the ZF files and creating the instance outside the conditional statements. However,

neither is needed when the login form first loads, so this is more efficient, albeit at the expense

of a few extra lines of code.

 Save user_authentication.php, and load members_only.php in a browser or Live View. If
the page displays, click the “Log out” link. You will be taken to the login form.

 Log in, and click the “Log out” link again.

 Now try to access members_only.php directly. You will be denied access and taken to the
login form.

Displaying a logged-in user’s details
The code in restrict_access.php calls the method and stores the user’s user-
name, first name, and family name as properties of . This makes it possible to greet
a user by name after logging in.

 In Code view, amend the beginning of the first paragraph in members_only.php like this:

ptg7799847

255What You Have Learned

The column names are treated as properties of , allowing you to access the
information they contain about the user with the operator.

 Save members_only.php, and log back in to be greeted by name.

What You Have Learned
In this lesson, you have:

Installed the Zend Framework (pages 214–215)

Set up ZF site-specific code hints (pages 215–218)

Altered a database table to add a unique index and extra columns (pages 219–220)

Created a library file to load ZF classes and connect to the database (pages 221–227)

Validated user input on the server with Zend_Validate (pages 227–236)

Redisplayed user input when errors are detected in server-side validation
(pages 236–237)

Removed unwanted backslashes inserted by “magic quotes” (pages 237–238)

Used Dreamweaver’s Server Behavior Builder (pages 238–241)

Displayed error messages when input fails validation (pages 242–244)

Used a variable in a SELECT query to check for duplicate usernames (pages 244–246)

Inserted user input into a database with Zend_Db (pages 246–247)

Created a login system with Zend_Auth (pages 247–252)

Password-protected pages with Zend_Auth (page 253)

Created a logout system (pages 253–254)

Displayed a logged-in user’s details (pages 254–255)

ptg7799847

LE
SS

O
N

 8 What You Will Learn
In this lesson, you will:

Compare the features of and

Set up a default transport for

Create a new server behavior based on an existing one

Incorporate a reCAPTCHA widget in a form to prevent spam

Send the contents of a feedback form to your mail inbox

Examine how the array treats different form elements

Build an email-based system to reset user passwords or unsubscribe

Approximate Time
This lesson will take approximately 2 hours and 30 minutes to complete.

Lesson Files
Media Files:

styles/users.css
styles/users_wider.css

Starting Files:

lesson08/start/comments.php
lesson08/start/forgotten.php
lesson08/start/inquiry.php
lesson08/start/reset.php
lesson08/start/scripts/library.php
lesson08/start/scripts/process_comments.php
lesson08/start/scripts/request_reset.php
lesson08/start/scripts/reset_password.php

ptg7799847

257

Completed Files:

lesson08/completed/comments.php
lesson08/completed/confirm_unsub.php
lesson08/completed/forgotten.php
lesson08/completed/inquiry.php
lesson08/completed/mail_test.php
lesson08/completed/reset.php
lesson08/completed/unsubscribe.php
lesson08/completed/scripts/library.php
lesson08/completed/scripts/mail_connector.php
lesson08/completed/scripts/process_comments.php
lesson08/completed/scripts/request_reset.php
lesson08/completed/scripts/request_reset_unsub.php
lesson08/completed/scripts/reset_password.php
lesson08/completed/scripts/reset_password_unsub.php

ptg7799847

LESSON 

Zending Email

Sending the contents of a feedback form by email is one of the most practical uses of PHP,

-

tion techniques you learned in the previous lesson should protect you from most problems,

including a malicious exploit known as email header injection.

In this lesson, you’ll use

to prevent robots from attempting to submit. You’ll also improve the user registration system

from Lesson 7 by using email to allow users to change a forgotten password or unsubscribe.

The Zend Framework makes it easy to process
feedback forms and prevent spam.

258

ptg7799847

259

How PHP Handles Email
PHP doesn’t have the capability to transmit email. It acts as an intermediary, handing the con-
tent of the message and email headers to the web server’s mail transport agent (MTA). PHP’s
role ends as soon as the MTA accepts the mail, so you have no way of tracking it. If the mail fails
to arrive, the problem could lie anywhere along the route, so it’s important to ensure that infor-
mation passed to the MTA—such as the destination and return email addresses—is accurate.

Using the core mail() function
The basic method of sending email with PHP is to use the function, which takes the
following arguments, all of which must be strings:

Address(es) of the recipient(s). Email addresses can be in either of the following formats:

If you want to send the same email simultaneously to several addresses, they should be in
a comma-separated string like this:

CAUTION! On Windows servers, avoid formatting the recipient’s address as

, because it might not be correctly processed when passed to the MTA.

It’s safer to use the email address on its own.

Subject. This is the subject line that appears in the recipient’s inbox.

Message body. This must be a single string.

Additional email headers. Headers can be used to specify the return address, the
addresses of other recipients (Cc and Bcc), encoding, and so on. Each header must be
separated by a carriage return and newline character. This argument is optional.

CAUTION! On Windows servers, blind copies (Bcc) are treated as normal recipients, so all other

recipients can see the address.

Additional parameters. Although this argument is optional, many hosting companies
now require its use as an anti-spam measure. It normally consists of your email address
prefixed by , for example: .

How PHP Handles Email

ptg7799847

260

The following code shows a simple example of using :

The message in this example is hard-coded, but it would normally come from user input when
a feedback form is submitted.

This code is in lesson08/completed/mail_test.php. If you want to try it, replace the dummy
email addresses with genuine ones. Upload the file to your remote server, and load it in a
browser. If all goes well, you should see “Mail sent” and the test mail should arrive soon after-
wards in your inbox.

If your hosting company requires the fifth argument to mail, add your email address preceded
by like this:

CAUTION! This script is unlikely to work in a local testing environment unless you have a mail

server installed and configured. In the past, it was common to edit php.ini to point the SMTP

directive at your Internet service provider’s (ISP) mail server. However, most ISPs now reject

mail unless you log in with a username and password. The function doesn’t support

authentication.

The function offers limited functionality. By default, it sends email in plain text and
cannot handle attachments. Also, opens a connection to the MTA each time, making it
inefficient to send large amounts of email in a loop.

Perhaps the most serious problem comes from incorrect use. A popular technique is to use
the additional headers argument to insert the user’s email address in a header. This is
very convenient, because it means you can click the “Reply to” button in your email program
to respond to the person who sent the message. But if you allow unfiltered user input in this
argument, it exposes you to email header injection, whereby an attacker injects spurious head-
ers into the email, effectively turning your website into a spam relay.

LESSON :

ptg7799847

261

Using Zend_Mail
The component offers a convenient wrapper around the function, adding
extra functionality and security. It can also send multiple emails in a single connection, mak-
ing it more efficient.

Setting the default transport for Zend_Mail
By default, hands the message and headers to the web server’s MTA. If you don’t
need to supply the fifth argument to , all you need to do is to create a object,
and use it directly.

If you need to supply the fifth argument to , you need to create a
 object first, and pass your return address preceded by as an argument to the

constructor. Then you set the object as the default transport for like this:

 also offers you the option to connect to any other mail server using simple mail
transfer protocol (SMTP). To do so, you need to create an instance of

, which expects two arguments: the host name of the SMTP server and an array contain-
ing your authentication details.

 supports three types of authentication: login, plain, and
CRAM-MD5, all of which expect a and value in the configuration
array. Again, after creating the object, you set it as the default transport like this:

CAUTION! Although CRAM-MD5 is hyphenated, the hyphen must be omitted in the configura-

tion array. The authentication type is case insensitive, so use for servers

that employ this method.

Preparing the email for sending
To prepare the email for sending, you must first create an instance of the class
like this:

How PHP Handles Email

ptg7799847

262

By default, emails use Latin1 encoding (iso-8859-1), which is fine for unaccented English but
is unsuitable for most other languages. To specify a different encoding, such as UTF-8, pass
the name of the encoding as a string to the constructor like this:

You then build the message and add the necessary headers using methods.
Table 8.1 lists the most useful methods.

Table 8.1 The Most Useful Zend_Mail Methods

Method Description

Adds a recipient as a blind copy without revealing the recipient’s name and
email address to others. Does not work on Windows servers. Takes 1 or 2
arguments: the email address, and optionally the recipient’s name.

To add multiple recipients, pass an array of email addresses as the argument.
You can also use an associative array with the recipients’ names as the array
keys and the email addresses as the values.

Adds a recipient to whom the email is copied, exposing the name and email
address to other recipients. Takes the same arguments as .

Used for adding an email header for which a dedicated method doesn’t exist.
Requires two arguments: the header name and its value. A Boolean value
(or) can be passed as an optional third argument to specify
whether the header can have multiple values.

Adds a recipient to whom the email is addressed. Takes the same arguments
as .

Adds an attachment. Takes up to five arguments. Only the first one, the
file to be attached, is required. The optional arguments set the MIME type,
disposition, encoding, and filename (in that order). By default, attachments
are treated as binary objects () and transmitted
in encoding. Attachments are covered in Lesson 9.

Sends the email using the default mail transport. To use a different transport,
pass a or
object as an argument.

Creates the HTML body of an email. Pass the HTML to the method as a single string.

Creates the plain text body of an email. Expects the message as a single string.

Sets the header. Expects an email address, and optionally the sender’s name.

Sets the header. Expects an email address, and optionally the
sender’s name.

Sets the email subject.

LESSON :

ptg7799847

263

The process of composing and sending an email with the methods listed in Table 8.1 is very sim-
ilar to . This is how you would rewrite the example in “Using the core mail() function”:

You can also chain the methods like this:

Unfortunately, Dreamweaver CS5 code hints don’t support chaining methods, so this book
uses the more verbose style.

Stopping Spam with a CAPTCHA
If you don’t want your inbox inundated with spam, it’s a good idea to employ a technique to pre-
vent automated programs—or web bots—from submitting your online forms. Several methods
are available, but one that has become widely accepted is a CAPTCHA (Completely Automated
Public Turing Test To Tell Computers and Humans Apart). Most CAPTCHAs present the user
with a random string of characters that must be typed correctly into a text field.

Choosing a CAPTCHA
The component offers three main alternatives:

The class produces a FIGlet text (see www.figlet.org), which dis-
plays characters as ASCII art, as shown in the following screen shot:

Stopping Spam with a CAPTCHA

www.figlet.org

ptg7799847

264

The class relies on the PHP GD extension to generate a image
using TrueType or Freetype fonts like this:

The class uses the reCAPTCHA online service (http://recaptcha.net/)
to generate images of two words that cannot be read correctly by optical character recog-
nition (OCR) software and displays them in a stylized box like this:

 is the easiest to use, but the ASCII art is ugly and unlikely to fit in with
the design of many websites. produces a more elegant result, but the
characters are hard to read not only for spam bots, but also for humans, defeating the whole
purpose of a CAPTCHA.

The same problem sometimes affects the images produced by the reCAPTCHA online service,
but they have the advantage—for native speakers of English, at least—of using real words
that users are more likely to be able to guess correctly. Other advantages of reCAPTCHA are
that the interface automatically provides options for the user to refresh the images if they’re
difficult to read or to get an audio challenge instead. Also, using reCAPTCHA helps digitize
books, newspapers, and old-time radio shows. The challenge always contains two words, one
of which cannot be deciphered by software. The other word is already known. If the user pro-
vides the correct answer for the known word, there’s a high likelihood that the other one will
be correct. If several people provide the same answer, the digitization software can be taught
to recognize it. Since the service is free, it’s the solution chosen for this lesson.

LESSON :

http://recaptcha.net/

ptg7799847

265

Setting up to use reCAPTCHA
To use reCAPTCHA, you need a pair of software keys—one public and one private. It’s quick
and easy to obtain the keys:

 Go to http://recaptcha.net/whyrecaptcha.html, and click the Sign up Now! button.

 Create a username and password, and follow the instructions to set up an account.
The only information you need to provide is an email address and the domain name
of the site where you plan to use reCAPTCHA.

 To test reCAPTCHA on your local computer, select the option to enable the key on all
domains (global key), and click Create Key.

 The public and private keys are random strings of characters. Copy them to a text file,
and save the file outside your site root. If you forget the keys, you can always log back into
the reCAPTCHA site to retrieve them.

Using Zend_Service_ReCaptcha
 relies on another class, , which does all

the hard work for you. The code required to display and verify a reCAPTCHA challenge is
remarkably simple.

To display a challenge, instantiate a object with the public and
private keys, and then use the object’s method to display it:

The challenge and response are automatically submitted in the array as
 and .

To check whether the user answered the challenge correctly, pass these values to the object’s
 method, and store the result. You can then use the result’s method to test

the response like this:

Stopping Spam with a CAPTCHA

http://recaptcha.net/whyrecaptcha.html

ptg7799847

266

Processing User Feedback
In this section, you’ll use to process a simple feedback form that contains two text
input fields and a text area, as well as a reCAPTCHA. The validation and error message tech-
niques are the same as in the previous lesson, so the instructions concentrate mainly on the
new features.

Creating a mail connector script
To test email from a local testing environment, you need to instantiate a

 object to connect to your ISP. Because this is likely to be used in multiple
pages, the script should be in an external file. No connection is made to the mail server until
a message is actually sent, so you could put the code in library.php. However, the following
instructions use a separate file:

 Create a new PHP file, and save it as mail_connector.php in lesson08/workfiles/scripts.
The file will contain only PHP code, so remove the default HTML code inserted by
Dreamweaver.

 At the top of the file, insert an opening PHP tag, and assign the SMTP address of your
ISP account to a variable like this:

Use the same address as for outgoing email in your regular email program.

 Create an array with your email login details like this:

Use the values for your own email account. In most cases, the value of should be
, but use or as appropriate.

If your email account uses a secure connection, add or
to the array, depending on the protocol used by your ISP. If your ISP uses a nonstandard
port, add a element to the array.

 Create an instance of and set it as the default transport
like this:

 Save mail_connector.php.

LESSON :

ptg7799847

267

Basing a new server behavior on an existing one
The start files for this exercise include a form script that already contains most of the error
checking code. The Redisplay on Error and Display Error Message server behaviors that you
created in Lesson 7 have been applied to the Name and Email text input fields. The Display
Error Message server behavior has also been applied to the Comments text area, but the
content of a text area goes between the opening and closing tags, so you need to
create a new server behavior to deal with text areas. The PHP code is almost identical to the
Redisplay on Error server behavior, so you can base the new one on it like this:

 Open lesson08/start/comments.php, and save a copy in lesson08/workfiles. Close the
original, and leave the copy open in the Document window.

 Click the plus button in the Server Behaviors panel, and choose New Server Behavior.
Type Redisplay Text Area in the Name field, and select the “Copy existing server behav-
ior” checkbox. Choose Redisplay on Error from the list of server behaviors you created in
the previous lesson.

 Click OK to open the dialog box where you define the server behavior. Because you’re
basing the new server behavior on an existing one, all fields are already filled in. You just
need to make a few changes.

 Edit the PHP code in the “Code block” section to remove all new lines, and change
 to Text Area like this:

CAUTION! The code is spread over two lines here because of the limitations of the printed page,

but it’s necessary to put all the code on a single line. Otherwise, Dreamweaver cannot distin-

guish it from the existing server behavior. Changing the parameter is not enough on its own.

 Select “textarea” from the Tag menu at the bottom left of the dialog box.

Processing User Feedback

ptg7799847

268

 Set “Relative position” to “After the Opening Tag.” The Attribute menu disappears when
you do this. The settings should now look like this:

 Click Next. You should see the following alert:

The HTML file creates the dialog box for the server behavior. You need to overwrite it so
the new server behavior has its own dialog box.

Click Yes, and skip to step 9.

Continue with step 8 if you see this warning instead:

LESSON :

ptg7799847

269

 Removing the new lines from the PHP in step 4 should be sufficient to distinguish this
server behavior from the original. However, Dreamweaver might still have difficulty,
depending on how the original server behavior code was formatted. To get around this,
change the PHP code in the “Code block” section like this:

Replacing with is just another way of testing that the form
has been submitted. It’s more verbose but achieves the same effect and should enable
Dreamweaver to distinguish the different server behaviors.

Go back to step 7 before continuing with the next step.

 Dreamweaver displays its suggested options for the server behavior dialog box. They’re
fine, so just click OK.

 Select the Comments text area in Design view in comments.php, click the plus button in
the Server Behaviors panel, and choose Redisplay Text Area. Type comments in the Text
Area field, and click OK to insert the PHP code in the text area.

 Open Split view to check the code that has been inserted. It should be highlighted if
the text area is still selected in Design view. Dreamweaver normally moves the closing

 tag onto a new line, as shown on line 36 in the following screen shot.

 The new line creates unwanted space at the beginning of the text area, so you need to edit
Code view to remove it and close the gap between the closing PHP and tags
like this:

 Save comments.php, and leave it open for the next section.

Processing User Feedback

ptg7799847

270

Incorporating reCAPTCHA into the validation script
To save time and space, the validation script for the text fields and text area is in the start files for
this lesson. It uses in the same way as in Lesson 7. The only difference is that the
conditional statement that checks whether the form has been submitted is inside the block.
This is because you need to instantiate a object every time the page loads.

This is how you add a reCAPTCHA widget to the validation script and form:

 Copy library.php and process_comments.php from lesson08/start/scripts to lesson08/
workfiles/scripts. Close the originals, and work with the copies.

 Switch to comments.php, and include process_comments.php by adding the following
code above the declaration:

NOTE: Unlike previous external scripts, process_comments.php has a closing PHP tag. This

is because the and blocks are not wrapped in a conditional statement. Without a

closing tag, Dreamweaver treats the PHP code as text above the declaration, causing

problems with Design view.

 Save comments.php to add process_comments.php to the Related Files toolbar. Click
process_comments.php in the Related Files toolbar to access it for editing in Split view.

TIP: Editing related files in Split view allows you to keep the web page visible in Design view,

speeding up testing in Live View. If you prefer to edit files in separate tabs, Dreamweaver keeps

both versions in sync. What you see as a related file in Split view is exactly the same as the file

in its separate tab, so there’s no danger of getting the two mixed up. Choose the workflow that

suits you best.

 A object is responsible for displaying the reCAPTCHA widget
and checking the answer, so it needs to be instantiated before the conditional statement
that runs only if the form has been submitted. Add the highlighted code at the beginning
of the block, using your own public and private keys.

The code that displays the widget will be added to comments.php later.

LESSON :

ptg7799847

271

 Checking the answer belongs with the validation script. Create a new line after the
“validate the user input” comment, and insert the code there:

The original challenge and the user’s input are transmitted through the array.
The method checks that both values are the same.

 Save process_comments.php, and switch to the source code of comments.php.

 generates all the HTML and CSS for the reCAPTCHA widget,
so you need to insert the code inside the form without any formatting. The form elements
in comments.php are in paragraphs, so the code to display the reCAPTCHA widget needs
to go between the paragraphs containing the Comments text area and the submit button,
as shown on line 44 in the following screen shot:

Even though is defined in a different page, Dreamweaver generates code hints
for it because process_comments.php is a related file.

 Save comments.php, make sure you’re connected to the Internet, and click Live View. You
should see a reCAPTCHA challenge added to the feedback form, as shown in the screen
shot on page 258 (the first page of this lesson).

 Click Live Code, and examine the huge amount of HTML and JavaScript that has been
added to the page. The object adds its own CSS as a
block in the of the page.

The reCAPTCHA widget is around line 144 in a with the ID
. Use this ID in your CSS to make adjustments to the margins around the . The

styles in users_wider.css give the widget the same margins as paragraphs inside the form
like this:

Processing User Feedback

ptg7799847

272

 Leave all the fields blank, and test the page in Live View by holding down Ctrl/Cmd and
clicking Send Comments (the modifier key is needed for links and forms to work in Live
View). At the top of the Document window, you’ll see a message that reads “Missing
response field” but no error messages next to the input fields.

This is because has thrown an exception. When this happens,
the block is abandoned, and only the block is executed. “Missing response
field” is the message generated by the exception.

 To prevent an exception from being thrown when the reCAPTCHA challenge is left
blank, you need to modify the code in process_comments.php like this:

This uses to check the reCAPTCHA field. If it hasn’t been filled in, a message
is added to the array. The code that verifies the response is wrapped in an
block and is executed only if the field is not empty.

 Save process_comments.php, and test the form again leaving the fields blank. The
script no longer throws an exception, so the error messages are displayed next to each
form field.

 To display the message, amend the code that displays the
reCAPTCHA widget like this:

Technically speaking, the is redundant. It has been added here so that the error
message is styled the same way as the others. The string is wrapped in double quotation
marks to display the value of , which needs to be wrapped in curly
braces because it’s an array element (see “Using array variables with quotation marks”
in Lesson 3).

LESSON :

ptg7799847

273

Sending the feedback by email
The email should be sent only if there are no errors in validation. So the script that builds the
message and sends the email goes in the conditional statement at the end of the validation
script. You build the message by concatenating the user input into a single string, together
with labels to indicate which fields it comes from. For HTML email, the string needs to con-
tain the HTML tags as well.

 In process_comments.php, locate the following conditional statement (it should be
around lines 30–32):

All the mail processing code goes between the curly braces of this conditional block.

 Include the mail connector script, and create a object like this:

Passing UTF-8 to the constructor ensures that accented or nonalphabetic char-
acters will be rendered correctly.

 Use the methods described earlier in “Using Zend_Mail” and Table 8.1 to set
the recipient’s address, the header, and subject. Use your own email addresses in the

 and methods:

CAUTION! If possible, use different email addresses for and . Both should be

genuine email addresses. For use the email address connected with the username

and password in your mail connector script. Using a different email address could result in the

email being rejected when the mail server attempts to forward it. has no knowl-

edge of what happens after handing the message to the server, so you won’t have any way of

knowing its fate.

 Because the user’s email address has been validated, you can safely use it to set the
 header like this:

Processing User Feedback

ptg7799847

274

 Since the user’s name and email have been included in header, you could just
send the value of as the body text. However, that doesn’t demon-
strate how to build a longer email message. Create the body for a plain text version like
this:

Again, this uses strings enclosed in double quotation marks so that the values of the vari-
ables are incorporated. The email specification requires each line to end with a carriage
return and newline character. The at the end of the first two lines use escape
sequences to insert the appropriate characters (see Table 3.2 in Lesson 3).

CAUTION! The second and third lines in the preceding code block use the combined concat-

enation operator (a period followed by an equals sign) to add more text to the variable. If you

omit the period, each new line overwrites the previous one.

 For such a simple feedback form, you probably wouldn’t want to send it as HTML email,
but you build the message body in exactly the same way, adding the HTML tags to the
string like this:

This creates the HTML for the email. The second line uses the
method to retrieve the email’s subject line to go inside the tags.

The user input is embedded in two paragraphs. In the first one, the user’s email is turned
into a link for the name. In the second one, the value of is passed to
the PHP function, which converts newline characters into HTML tags.
You can’t use a function inside a string, so the string is built in three parts and joined
together by the concatenation operator.

CAUTION! If you omit the closing PHP tag from process_comments.php, Dreamweaver

interprets the HTML tags in this string as part of the page markup, preventing Design view

from displaying the form.

LESSON :

ptg7799847

275

 After building the message body, add the plain text and HTML versions to the email like this:

Adding the character set as the second argument is optional, but it’s a good idea to ensure
that the input is handled correctly.

TIP: Not everyone likes HTML mail, and some people set their email program to reject it. When

using , you should always use to create a plain text version, even

if you want most recipients to see the HTML version. If you send both HTML and plain text,

recipients will see the message in their preferred format.

 You’re now ready to send the email. The method returns a Boolean value indi-
cating whether it succeeded. You can capture this value to preserve the user’s input and
redisplay it in the form if the mail can’t be sent. Add the following code to the mail pro-
cessing script:

Normally, form fields are cleared when a form is submitted. You want this to happen if
the email is sent successfully, but setting to results in the Redisplay on Error
server behavior code preserving the input. This gives the user the option to retry later
without needing to fill in every field again.

 Save process_comments.php, and switch to the source code in comments.php. Add the
following mixture of PHP and HTML to display the results of submitting the form:

The first conditional statement uses to check whether exists. The vari-
able is created only when the email is sent, which in turn can happen only if there are no
errors. So, if exists, and is , the mail must have been sent success-
fully. If, on the other hand, exists, but is , it means an attempt was
made to send the email, but it failed.

Processing User Feedback

ptg7799847

276

 Finally, the moment of truth. Save comments.php and load it into a browser. Fill in all the
fields, and click Send Comments. If all your code is correct, you should receive an email
in your inbox after a short while. As the following screen shot shows, setting the charac-
ter set of the email to UTF-8 supports languages other than unaccented English.

You can compare your code with lesson08/completed/comments.php and lesson08/
completed/scripts/process_comments.php.

What happens if the email doesn’t arrive?
Troubleshooting email problems is notoriously difficult. Emails normally travel around the
Internet in seconds. Sometimes, they take several hours or never arrive at all. This can happen
for a variety of reasons:

Incorrect settings on the mail server

Rejection by a mail server

Network problems

System failure

Overaggressive spam filtering

If the problem lies with your mail connector script, the processing script should throw
an exception. Analyze the message. The most likely cause is that you have used the wrong
authentication type or that your login details are incorrect.

If submitting the form doesn’t result in an exception being thrown, try using different
email addresses.

If email still doesn’t arrive, amend your mail connector script to use
, as described in “Setting the default transport for Zend_Mail,” and upload all the

files to your remote server. It should work when you test it from there.

LESSON :

ptg7799847

277

Processing Other Form Elements
The simple feedback form in comments.php uses only text input fields and a text area. Other
form elements need to be handled slightly differently. The form in lesson08/start/inquiry.php
contains all types of input elements. In addition to the text input fields and text area, it con-
tains a checkbox group, a radio button group, a single-choice menu, and a multiple-
choice list.

Examining the $_POST array
As you saw in previous lessons, the values of form elements are passed through the
or array depending on which method was used to submit the form. In the absence of
a form being submitted or a query string being appended to the URL, the and
arrays exist but contain no elements. Because PHP treats an empty array as , you can
use to test whether a form has been submitted by the method. When you
submit a form, elements are created in the array for the submit button and each text
field or text area. Even if nothing is entered in the fields, the array elements exist, so the

 array—as opposed to individual elements—is no longer empty; therefore, PHP implicitly
treats it as .

Checkboxes, radio button groups, and multiple-choice lists behave differently.
The following exercise illustrates what happens when you include them in a form:

Processing Other Form Elements

ptg7799847

278

 Copy lesson08/start/inquiry.php to lesson08/workfiles, and switch to Code view.

 Add the following code between the closing and tags:

This checks if the form has been submitted. If it has, displays the contents of
the array. The tags make the output easier to read.

 Save the page, click Live View, and submit the form leaving all the fields blank. The con-
tents of the array are displayed like this:

Only two elements have values: and , the single-choice menu and
submit button respectively. The two text input fields and the text area are included in the
array but don’t have any values.

The checkboxes, radio buttons, and multiple-choice list weren’t selected in the
form, so they aren’t even registered in the array.

 It’s unusual for a radio button group not to have a default value. Switch off Live View, and
select the No radio button in Design view. In the Property inspector, set “Initial state” to
Checked. This inserts in the first radio button’s tag.

 Save the page, and test it again by submitting the form without changing any of the fields.
This time, is added to the array.

 With Live View still active, select all the checkboxes, and Shift-click to select all values in
the “Special interests” list. Resubmit the form. This is the result:

LESSON :

ptg7799847

279

All the checkboxes and values in the multiple-choice list were selected, but only
the last ones are included in the array.

The problem is that PHP treats the attributes of form elements as strings. If more
than one element has the same , only the last one is selected. Fortunately, the solution
is simple: get PHP to treat multiple-choice form elements as an array by adding an empty
pair of square brackets at the end of their attributes (see “Creating a basic array” in
Lesson 3).

 In Code view, add a pair of square brackets at the end of the attribute in each of
the checkboxes and in the multiple-choice list. The first checkbox should look
like this:

You need to do this in all three checkboxes. The multiple-choice list has only
one attribute. Its opening tag should look like this:

CAUTION! Do not add square brackets at the end of the attribute for single-choice

menus. The square brackets are required only for form elements that permit multiple choices.

 Save inquiry.php, and test the form again, selecting all the checkboxes and values in the
multiple-choice list. This time, all the values are included in the array.

 and are now subarrays, so you need to
treat them differently from other elements of the array.

Processing Other Form Elements

ptg7799847

280

To summarize:

When no default value is set for a radio button group, it is omitted from the form’s data if
the user fails to select a value.

A single-choice menu is always included in the form’s data.

Multiple-choice lists and checkboxes are excluded from the form’s data if the
user fails to select a value.

To get all the values from multiple-choice lists and checkbox groups, append an
empty pair of square brackets to their attributes.

When using a single checkbox or checkboxes with unique attributes, do not append
square brackets. They are needed only when multiple checkboxes share the same .

The attribute of each element must be unique within the page, even when multiple
elements share the same . Dreamweaver normally handles this automatically by
appending an incremental number to the attribute, but you should always verify this
yourself. Duplicate attributes in the same page cause serious problems with JavaScript.

Rather than give step-by-step instructions for completing inquiry.php, the following sections
describe the basics of dealing with each type of form element. They also give instructions for
creating six custom server behaviors to speed up the redisplay of user input when a form is
submitted with errors.

Handling checkboxes
The attribute of a checkbox tag is optional. If omitted, the default value for
a selected checkbox is “on.” Using this default makes sense only for single checkboxes,
for example one that asks for agreement to terms and conditions. When using a checkbox
group that shares the same attribute, you need to assign a unique attribute to
each one, as in inquiry.php.

When validating checkboxes, always verify the relevant element is in the array. The
square brackets are not part of the attribute. They simply tell PHP to treat the group as an
array. Check for not . So, to ensure that
at least one checkbox is selected:

The values of a checkbox group with a common are treated as a subarray, even if only one
checkbox is selected. To convert the array to a string, use the PHP function, which takes

LESSON :

ptg7799847

281

two arguments: the character(s) you want to use as a separator and the array. Add the following
code to turn into a comma-separated string prefixed with a label:

To format the subarray in a more sophisticated manner, use a loop (see “Using a
foreach loop” in Lesson 3) inside the block.

The following instructions describe how to create a custom server behavior to reselect check-
boxes when a form is submitted with errors:

 Choose New Server Behavior from the Server Behaviors panel menu.

 Name the server behavior Redisplay Checkbox.

 Create a code block, and enter the following code in the “Code block” section:

The parameters and represent the attribute of the check-
box group and the selected value respectively.

The statement checks four conditions: the form has been submitted, there are errors,
the checkbox group is in the array (using), and the selected value is in the
subarray (using).

If all conditions are met, is inserted.

TIP: If you’re not familiar with the functions, use Dreamweaver’s code hints to display the

documentation, and study the examples given there.

 The attribute needs to be added inside the checkbox tag, so use
the following options at the bottom of the dialog box where you define the server behavior:

 Click Next, and accept the default suggestions for the new dialog box.

Processing Other Form Elements

ptg7799847

282

To use the Redisplay Checkbox server behavior, select the checkbox in Design view, and
choose Redisplay Checkbox from the Server Behaviors panel menu.

Type the name of the checkbox group in the Group Name field and the value in the Value
field. As long as the correct checkbox is selected in Design view, the “input/checkbox tag”
menu will be set to the correct value.

CAUTION! The Value field must use exactly the same spelling as the checkbox’s attribute,

including any mixture of uppercase and lowercase characters.

Handling radio button groups
Radio button groups permit only one choice. It’s generally a good idea to set a default value
to ensure the data is always included in the array. If you don’t set a default, you need to
use in the same way as for checkboxes to verify whether a value has been selected.

To redisplay radio button group values when a form is submitted with errors, you need to
build two server behaviors: one for the default setting and another for all other buttons in the
same group. It’s easier to build the second one first, and then base the server behavior for the
default value on it. The following instructions explain how:

 Choose New Server Behavior from the Server Behaviors panel menu, and name the
server behavior Redisplay Radio Button.

 Create a code block with the following code:

The parameters @@Radio Group@@ and @@Value@@ represent the attribute of
the radio button group and the selected value respectively. The statement tests three
conditions: the form has been submitted, errors exist, and the value in the array
represents the selected value. Because only one value can ever be selected in a radio
button group, it’s always a string.

LESSON :

ptg7799847

283

 Use the following settings for the options at the bottom of the dialog box:

CAUTION! Do not select as the value for Tag, because this inserts the same code

in all radio buttons that belong to the same group. You need to insert different code in the

default radio button’s tag.

 Click Next, and accept the default suggestions for the new dialog box.

 Choose New Server Behavior from the Server Behaviors panel menu to create the server
behavior for the default radio button.

 In the New Server Behavior dialog box, type Set Default Radio Button in the Name field.
Select the “Copy existing server behavior” checkbox, and choose Redisplay Radio Button
from the “Behavior to copy” list. Click OK.

 Edit the code block like this:

The statement now handles three possible scenarios:

The array is empty—in other words, the form hasn’t yet been submitted. The
radio button is set as the group’s default.

The form has been submitted and there are no errors, so the radio button needs to be
reset as the default.

The form has been submitted with errors, and this was the selected value.

The conditions for each scenario are separated by the logical operator, but multiple
conditions are wrapped in parentheses to ensure they are evaluated together.

CAUTION! Don’t forget the extra closing parenthesis after .

 Leave the options at the bottom of the dialog box unchanged, and click Next.

 Click Yes to overwrite the existing HTML file, and accept the default suggestions for the
server behavior’s dialog box.

Processing Other Form Elements

ptg7799847

284

To apply the new server behaviors, select the radio button in Design view, click the plus but-
ton in the Server Behaviors panel, and choose Set Default Radio Button for the default button
or Redisplay Radio Button for other buttons. The options in the dialog box are the same as
for checkboxes.

NOTE: When using the Set Default Radio Button server behavior, make sure “Initial state” in the

Property inspector is set to Unchecked for all radio buttons. The server behavior takes care of

adding the necessary code when the page is viewed in a browser or Live View.

Handling single-choice <select> menus
A single-choice menu always transmits a value when a form is submitted. The
attribute is not required in the tags, but if it’s omitted, the text between the open-
ing and closing tags is automatically used instead. It’s common practice for the first
option to be something like “Select One.” If you want to make a selection required, set the
value of the first tag to 0 like this:

In your validation script do this:

To redisplay the selected value when a form is submitted with errors, you need to create two
server behaviors in the same way as for a radio button group: one to set the default value
and the other for the remaining tags. Call them Set Default Option and Redisplay
Select Option. Again, it’s simpler to base the default one on the server behavior for the
remaining tags. You should be familiar with creating new server behaviors by now, so I’ll just
provide the basic settings.

The code block for Redisplay Select Option looks like this:

Use the following settings for the options at the bottom of the dialog box:

LESSON :

ptg7799847

285

The suggested options for the server behavior’s dialog box are fine.

Amend the code block for Set Default Option like this:

The conditional logic here is identical to the Set Default Radio Button server behavior. All
other options remain the same. Click Yes when asked if you want to overwrite the HTML file.

Unfortunately, you can’t select tags in Design view to apply either server behavior.
Even if you select a specific tag in Code view, Dreamweaver lists all tags on the page
as an indexed array, as shown here:

This makes no distinction between the single-choice menu and the multiple-choice
list, so you need to be careful when applying these server behaviors. As with radio buttons,
leave “Initially selected” in the Property inspector deselected, and use the server behaviors to
set the default value.

TIP: It helps if you keep Code view or Split view open, so you can check that the code is being

inserted into the correct tag. If you still find it too confusing, save the PHP code in the

Snippets panel (choose Window > Snippets), and edit the parameters manually. On Windows,

you can also press Shift+F9 to open the Snippets panel. There is no keyboard shortcut in the

Mac version because of a conflict with Exposé.

Handling multiple-choice <select>lists
Multiple-choice lists are similar to checkbox groups in that they are excluded from
the array if nothing is selected, and their values are submitted as a subarray when
at least one item is selected. You verify and handle their values in exactly the same way as a
checkbox group.

Processing Other Form Elements

ptg7799847

286

To redisplay selected values when a form is submitted with errors, create a new server behavior
called Redisplay Multi-Options. Use the following code block:

Because multiple-choice lists work in the same way as checkbox groups, this code
uses the same conditional logic as Redisplay Checkbox. The only difference is that it inserts

 instead of .

Use the same options in the Server Behavior Builder dialog box as for the single-choice
 menu server behaviors.

Resetting Forgotten Passwords
A common problem with user registration systems is that people tend to forget their pass-
words. When you encrypt a password with the function, as in Lessons 6 and 7, it’s a
one-way operation—there’s no way to decrypt it. So you need a way for users to reset their
passwords. Just putting an update form online isn’t sufficient. You need to ensure the right
person is changing the password. A simple, yet effective method is to generate a security
token, store it in the database, and email it to the user.

This project brings together many of the techniques you have learned: validation, interaction
with a database, and email. To save time, the start files contain the basic structure so that you
can concentrate on the new features.

Updating records with Zend_Db
Updating records with doesn’t involve writing SQL. The method of a

 object with read/write permissions—for this book, —does it all
for you. The method takes three arguments:

The table name

An associative array of the column names and update values

An expression that identifies the record(s) to be updated

LESSON :

ptg7799847

287

The associative array uses the column names as the array keys. For example, the following array
updates the and columns, setting them to the value in and

 respectively:

If you have SQL experience, the third argument is the equivalent of the clause, but you
don’t need to use the keyword . For example, to update the record in the table for

 2, the three arguments passed to look like this:

It’s safe to include known values directly in the third argument, but if the values come from
user input, you need to use to protect your database from SQL injection. For
example, to insert an email address from user input into the third argument, you need to
prepare it like this:

Alternatively, use the following syntax adapted from array notation:

Normally, the key of an array element should be a number or a string that contains only alpha-
numeric characters. However, permits this unconventional syntax as a handy shortcut.

Because the third argument accepts an array, you can apply multiple criteria to identify the
record being updated, like this:

This updates the record in the table where the column matches
and the column matches .

NOTE: Using a multiple-value array as the third argument to the method is the

equivalent of using the operator in a SQL clause. To use the operator to specify

alternative criteria, you need to build the third argument as a string.

If the third argument to the method is omitted, all records in the table are updated
in the same way.

Resetting Forgotten Passwords

ptg7799847

288

Using SQL functions with Zend_Db
As a security measure, converts values in data arrays to strings and escapes special
characters. Consequently, you can’t include a SQL function—such as for the cur-
rent date—directly in a data array. Instead, you need to wrap SQL functions in a
object like this:

To use a SQL function in the third argument to the method, do this:

Building the reset request script
Before tackling the code for the reset request script, let’s take a look at the decision chain it
needs to employ. The following illustration outlines the process.

User submits
reset request

Check email
in

database

Registered?
Display

error
message

Generate
and store

token in DB

Send email
to user

Tell user to
expect email
instructions

NO YES

LESSON :

ptg7799847

289

The reset request form has a single input field for the user’s email address. The processing
script needs to check if the email address is registered in the database. If it isn’t, an error mes-
sage is displayed and no further processing is necessary.

If the email address exists in the database, the processing script retrieves the user’s details and gen-
erates a security token, a 32-character string that should be impossible to guess. The user’s record
in the database is updated by storing the token. At the same time, an email is sent to the user with a
link to the password reset page. The user’s primary key and the security token are appended to the
link as a query string and will be used to verify the user’s identity. Sending the link directly to the
user’s registered email address should ensure only the user can reset the password.

This part of the project finishes by displaying a message onscreen telling the user to expect an
email with details of how to reset the password.

There’s a lot going on, but it requires fewer than 40 lines of PHP code:

 Copy request_reset.php from lesson08/start/scripts to lesson08/workfiles/scripts. The file
already contains the following code:

Only one error message is needed, so is simply set to . If the email address
fails validation or isn’t registered, it will be reset to .

The other Boolean value, , determines whether to show the request form or a
message telling the user to expect email instructions. It’s initially set to and is used
later in the script to store the result of the database query. If no record can be found in the
database, it remains . Otherwise, it holds an array of the user’s details, which PHP
implicitly treats as .

 Before searching for the email in the database, you need to validate the user’s input. Add
the following code inside the block:

Resetting Forgotten Passwords

ptg7799847

290

 If the email address passes validation, you can use it to query the database. Add the
following code to build the SQL query and execute it:

This is a query, so the read-only account uses the method that you
learned about in Lesson 7 to incorporate user input into the SQL. The query selects four
columns from the table by listing their names as a comma-separated list after the

 keyword.

In Lesson 7, you used to execute the query, but this time is used
instead. See the sidebar “Choosing Between fetchAll() and fetchRow()” for an explana-
tion of the difference.

Choosing Between fetchAll() and fetchRow()

The main difference between the and methods is that
retrieves every matching row from the database, whereas gets just the
first one. In Lesson 7, all you were interested in was whether there was a match in the
database, so it didn’t matter which method you used. However, it does matter when you
want to access the values.

The method retrieves only one row and stores the results as a simple associa-
tive array, using the column names as array keys like this: .

When you use , the results are always stored as a multidimensional array
with a subarray for each row—even if there’s only one row. You normally access the
results of with a loop like this:

Inside the loop, you access each field by its column name like this: .

If you don’t use a loop, you need to specify the subarray number (counting from 0) like
this: .

LESSON :

ptg7799847

291

 If the email isn’t in the database, the method returns . So, if there’s
no result, you need to set to . Otherwise, you can carry on with the reset
request. Add the highlighted code inside the conditional statement you created in the
previous step:

 If the email exists in the database, you need to create a security token and update the
user’s record to store it in the database. Insert the following code inside the block:

The first line of new code uses a typical PHP shortcut by passing functions as arguments
to other functions. The function generates a unique ID based on the current
time. It takes two optional arguments designed to randomize the value. The first of these
is , which generates a random number. Finally, is wrapped in ,
an encryption function that produces a 32-character hexadecimal string. Don’t worry
if you find the details confusing. Just accept that the value assigned to should be
impossible for anyone to guess.

The second line creates an associative array that assigns to the name of the data-
base column where it’s to be stored.

The third line uses the database object with read/write privileges to update the
user’s record. The third argument uses the primary key from the database result
to identify the record to be updated. Because is an array element,
you need to wrap it in curly braces to incorporate it into the double-quoted string. The
value contained in is the record’s primary key, which is an automati-
cally incremented integer, so it’s safe to use directly in the third argument. Also, because
it’s a number, the value doesn’t need to be in quotation marks.

Resetting Forgotten Passwords

ptg7799847

292

 Now, you need to send an email to the user with a link to the password reset page. Add the fol-
lowing script inside the block, using your own email address in the method:

Creating and sending an email was covered in detail earlier in this lesson, so this code
should be easy to understand.

The values from the database result are used to set the recipient’s address by passing
the email address as the first argument to and enclosing the and

 values in a double-quoted string as the second argument. This personalizes
the address with the recipient’s real name—or at least the one registered in the system.

The variable contains the URL of the password reset page with a query string that con-
tains the user’s primary key and the security token. The variable is then incorporated in
the $message string and passed to . This sends a plain text message only.

 Save request_reset.php, and copy forgotten.php from lesson08/start to lesson08/workfiles.
The code in forgotten.php contains two conditional statements that control the HTML
displayed onscreen.

Use above the declaration to include scripts/request_reset.php,
and load forgotten.php into a browser. You should see the reset request form.

LESSON :

ptg7799847

293

 Test the page by typing a false email address into the text field and clicking Submit. You
should see an error message displayed below the form.

 Type your own email address in the field, and submit the form. Assuming that your
address is registered in the database, the form should disappear, and you are presented
with the following message:

The different messages are controlled by the conditional statements in forgotten.php. An
 statement uses the value of to determine whether to show the form

or the message in the preceding screen shot. The error message is controlled by the value
of .

 If the gods of cyberspace are smiling on you, you should receive an email similar to this:

You’re ready to move on to the script that resets the password. You can compare your
code with lesson08/completed/scripts/request_reset.php.

If you see the success message in step 9 but don’t receive an email, the most likely causes are
network problems or the email being rejected by the mail server. Using a dummy address in
the method is a common cause of rejection, because the email is perceived as spam.

Resetting Forgotten Passwords

ptg7799847

294

Building the password reset script
The script that resets a user’s password needs to perform a couple of checks before updating
the record in the database. First, it needs to verify the and security token. If they don’t
match, there’s no point in going any further. If they’re OK, the next task is to validate the new
password, using the same technique as in Lesson 7. If the password is acceptable, the script
can finally update the user’s record. The following illustration outlines the decision chain.

User clicks
email link

Check token
and email in

database

Token OK?

Length OK?

Display
error

message

Display
password
reset form

Validate
password

Update
user’s record
in database

Display
reset

confirmation

Redisplay
reset form
with error

NO

NO

YES

YES

Again, there’s a lot going on, but the final script is just 45 lines.

LESSON :

ptg7799847

295

 Copy lesson08/start/reset.php to lesson08/workfiles, and examine the code in Split view.
In Design view, you can see there are three blocks of HTML: confirmation that the pass-
word has been reset, an error message, and a form with two password fields. The Display
Error Message server behavior has been applied to tags next to the password
fields. As in forgotten.php, a series of conditional statements controls what is displayed.

 Copy lesson08/start/scripts/reset_password.php to lesson08/workfiles/scripts. This con-
tains the following basic code:

The script needs to keep track of the user’s identity to update the correct record in the
database. You could store the details in hidden form fields, but it’s more secure to use
session variables, which remain on the server. So, the script initiates a session with

 and creates a session variable called , which is
set to . , , and control what is displayed in
reset.php.

The script needs to access the database each time the page loads, so library.php is
included right away.

 Switch back to reset.php and include scripts/reset_password.php using
above the declaration.

 Locate the opening tag (around line 21). It currently looks like this:

The attribute tells the browser the address of the script that processes the data when
the form is submitted. If there’s no address, the form is assumed to be self-processing—
in other words, it submits the data to the same page. This form is self-processing but with a
subtle difference.

The user accesses this page from the email link, which appends a query string to the URL.
If you leave the form’s attribute blank, the query string remains in the URL when
the form is submitted, creating a problem for the processing script. The query string must
be removed.

Resetting Forgotten Passwords

ptg7799847

296

PHP conveniently stores the base URL without the query string in a superglobal variable
called . Use to insert the page’s URL in the attribute
like this:

When the form is submitted, the query string will be stripped from the URL.

TIP: If you ever need the query string, it’s contained in another superglobal variable called,

as you might expect, .

 Save reset.php, and switch to reset_password.php, where the rest of the code needs to go.

 When the user clicks the email link, you need to check that the values in the query string
match a record in the database. Create a conditional statement to check if the array
contains and . If it does, use them to build a query. Add the following
code in the block:

Variables from the array are insecure, so they need to be sanitized before they can be
inserted into a SQL query. In previous files, you used the method to insert user
input in a SQL query. Unfortunately, this can’t be used with multiple values. Instead, use the

 method to sanitize and , and assign them to variables.

The sanitized variables can then be incorporated into the SQL query in a double-quoted
string. Although the column uses a string data type, there is no need to wrap

 in quotation marks. The method takes care of that for you.

The query is passed to and the result stored as .

 If the user’s ID and security token match a record in the table, you need to reset
to and to store the ID and token in session variables. It’s

also recommended to regenerate the session with after a user’s
status has changed, such as being correctly identified. Add this conditional statement
immediately after the line that fetches the database result:

LESSON :

ptg7799847

297

 Save reset_password.php, and load reset.php into a browser. Because you accessed the
page directly, is , so this is displayed:

 Now, use the link in the email you received. This time you are shown the password
reset form.

 The rest of the code in reset_password.php goes in a conditional statement that executes
the code only if the form has been submitted. The conditional statement needs to be
inside the block immediately above the block:

The attribute of the submit button is , so this ensures the code is run only if the
 data comes from the password reset form.

Resetting Forgotten Passwords

ptg7799847

298

 Before updating the user’s record, you need to validate the password. Add this code inside
the conditional statement you created in the previous step:

This code was explained in “Building the validation script (2)” in Lesson 7.

 The final section of code goes after the “update the password” comment in the condi-
tional statement at the end of the code in the previous step:

This prepares the data array for the method, encrypting the new password
with and setting the column to . To ensure that the correct record is
updated, both and are matched against their
respective columns in the table.

The result of the update operation is stored in . If it fails, is . If it
succeeds, the method returns the number of records affected. Since one record
has been updated, PHP treats this as . is used to control the display of the
success message in reset.php.

Regardless of the result, all session variables related with the script are unset.

LESSON :

ptg7799847

299

 Save reset_password.php, and test the form in reset.php. If your password fails valida-
tion, error messages are displayed, but the reset form remains onscreen. If your password
meets the validation criteria, you should see the following message onscreen:

Of course, in a real application, you should link to the login page, use to redirect
the user, or include the login form on the current page.

You can compare your code with lesson08/completed/scripts/reset_password.php.

Unsubscribing Registered Users
As well as providing a way for users to reset their passwords, you also need to give them the
opportunity to unsubscribe. Fortunately, this doesn’t mean writing a huge amount of code. Most
of it is already covered by the password reset scripts. All you need to do is to generate a slightly
different email message that directs the user to a page that requests confirmation. The confirma-
tion page should also give the user the opportunity to cancel the request to unsubscribe.

The different email message is generated by amending request_reset.php like this (the code is
in lesson08/completed/scripts/request_reset_unsub.php):

Unsubscribing Registered Users

ptg7799847

300

This checks for the existence of , which is the name of the submit button in
lesson08/completed/unsubscribe.php, and it generates a different subject line and body text.
Otherwise, the code is identical to request_reset.php.

The page that asks for confirmation of the request to unsubscribe has two submit buttons:
 and . The code that handles these buttons can be found in lesson08/completed/

scripts/reset_password_unsub.php, which simply adds two extra conditional statements to
reset_password.php:

The first conditional statement is executed if the button is clicked. It uses the
 object’s method, which takes two arguments: the table name and

an argument that identifies which record(s) to delete. You identify the target record(s) in the
same way as for the method.

The second conditional statement runs if the button is clicked. It uses the
method to set the value of the column to .

The unsubscribe request and confirmation pages are unsubscribe.php and confirm_unsub.php
in lesson08/completed.

LESSON :

ptg7799847

301

What You Have Learned
In this lesson, you have:

Compared the features of and (pages 259–263)

Set up a default transport for (page 266)

Edited the Redisplay on Error server behavior to create a new one for text areas
(pages 267–269)

Incorporated a reCAPTCHA widget in a feedback form (pages 270–272)

Sent the contents of the feedback form to your mail inbox (pages 273–276)

Examined how the array treats different form elements (pages 277–280)

Created six new server behaviors to redisplay user input in checkboxes, radio button
groups, and elements (pages 280–286)

Learned how to update records with (pages 286–287)

Learned how to use SQL functions with (page 288)

Built an email-based system for users to reset their passwords or unsubscribe
(pages 288–300)

What You Have Learned

ptg7799847

LE
SS

O
N

 9 What You Will Learn
In this lesson, you will:

Build a basic form for uploading files

Create a local folder to test scripts for file uploads

Use to copy files to a specified location

Check the type and size of files before transferring them

Remove spaces from filenames

Give users the option to overwrite or rename files that have the same name

Attach files to an email

Approximate Time
This lesson takes approximately 2 hours and 30 minutes to complete.

Lesson Files
Media Files:

images/bryce1.jpg
images/bryce2.jpg
images/lasvegas1.jpg
images/lasvegas2.jpg
styles/users_wider.css

Starting Files:

lesson09/start/send_attachments.php
lesson09/start/upload_test_multi.php
lesson09/start/scripts/library.php
lesson09/start/scripts/mail_connector.php
lesson09/start/scripts/process_attachments.php

ptg7799847

303

Completed Files:

lesson09/completed/send_attachments.php
lesson09/completed/upload_test.php
lesson09/completed/upload_test_01.php
lesson09/completed/upload_test_02.php
lesson09/completed/upload_test_03.php
lesson09/completed/upload_test_multi.php
lesson09/completed/scripts/get_attachments.php
lesson09/completed/scripts/library.php
lesson09/completed/scripts/process_attachments.php
lesson09/completed/scripts/process_upload_01.php
lesson09/completed/scripts/process_upload_02.php
lesson09/completed/scripts/process_upload_03.php
lesson09/completed/scripts/process_upload_04.php
lesson09/completed/scripts/process_upload_05.php
lesson09/completed/scripts/process_upload_06.php
lesson09/completed/scripts/process_upload_07.php

ptg7799847

LESSON 

Uploading Images and
Other Files

In addition to communicating with a database and sending email, another important use of

 makes it easy to validate and upload files.

304

ptg7799847

305

Understanding How PHP Uploads Files
Uploading files to a web server can refer to two different processes. The first is carried out by
the web developer logging into the server using FTP (file transfer protocol) to upload the web
pages and other assets that make up the site. The other process involves users uploading files,
such as photos for a blog, from an online form. Although PHP can handle FTP, this lesson
concentrates exclusively on uploading files from a form in a web page.

This type of file upload uses the method, which doesn’t require authentication. As a
result, you must implement your own security measures. Although the upload process uses
the method, the files are handled by a separate superglobal array called .

The array is actually a multidimensional array. The key for the top-level array is the
 attribute of the form field. If you have a form field called , the uploaded file

and all its details are stored in a subarray called , which contains the
following elements:

. The file’s original name

. The file’s declared MIME type

. A temporary name assigned to the file until it’s
moved to its final destination

. The file’s size in bytes

. A code indicating whether the upload succeeded or
the reason for failure

When the file is uploaded from the form, PHP moves it to a temporary location before trans-
ferring it to its final destination. The user has no direct control over where the file is ultimately
stored. Everything needs to be handled by your script, which must rename and store the file
immediately. Otherwise, the temporary file is destroyed, leaving you with nothing.

There’s no point in saving an incomplete file, or if it has an unacceptable MIME type, or is too
big. A file of the same name overwrites the existing one without warning, so your script needs
to check if there’s already a file of the same name at the target destination. It’s also important
to make sure that an attacker isn’t trying to trick the script to work on a file to which it should
have no access, such as the web server’s password file.

To remain secure, you need to do quite a lot of checking. For this reason, you won’t work
directly with the array, but you’ll use the component, which works in tan-
dem with subclasses to perform the necessary checks.

Understanding How PHP Uploads Files

ptg7799847

306

Creating an Upload Form
An online form needs a separate file field for each file that will be uploaded. You also need
to add to the opening tag. Dreamweaver adds this
automatically when you insert a file field in a form.

Create a simple file upload form for the exercises in this lesson:

 In Dreamweaver, create a new PHP file, and save it as upload_test.php in
lesson09/workfiles.

 Insert a form by choosing Insert > Form > Form or by clicking the Form icon in the
Forms category of the Insert panel/bar.

 Press Enter/Return to create two paragraphs inside the form.

 Press the up arrow once to move the insertion point back into the first paragraph inside
the form.

 Insert a hidden form field by choosing Insert > Form > Hidden field or by clicking the
Hidden Field icon in the Forms category of the Insert panel/bar.

 With the hidden field still selected, type MAX_FILE_SIZE in the text field on the left of
the Property inspector, and type 51200 in the Value field.

This sets the attribute of the hidden field to . The in the Value
field is the maximum size expressed in bytes (1024 bytes = 1 KB), so this sets the maximum
to 50 KB. It’s possible to bypass the limit set by a hidden field, so you need to validate the
size on the server as well. But setting the limit here improves the user experience for most
people. If the selected file exceeds the specified size, PHP won’t even attempt to upload it.

CAUTION! must be in uppercase. It’s also essential for the hidden field to come

before the file field in the form for it to work.

 Insert a file field by choosing Insert > Form > File Field or by clicking the File Field
icon in the Forms category of the Insert panel/bar. This opens the Insert Tag
Accessibility Attributes dialog box.

LESSON : Uploading Images and Other Files

ptg7799847

307

 Type upload_file in the ID field and File to upload: in the Label field. Leave the other
options at their default values, and click OK to insert the file field in the form.

 Move the insertion point into the second paragraph inside the form, and choose Insert >
Form > Button or click the Button icon in the Forms category of the Insert panel/bar.

 In the Input Tag Accessibility Attributes dialog box, type upload in the ID field. Leave all
other options at their default values, and click OK. This inserts a submit button into the form.

 With the submit button still selected, change the Value field in the Property inspector to
Upload File. The form should look like this in Design view:

The shield to the left of the “File to upload:” label indicates the location of the hidden
form field.

TIP: If you don’t see a shield indicating a hidden form field in Design view, choose Edit >

Preferences (Windows) or Dreamweaver > Preferences (Mac), and select the Invisible Elements

category. Make sure the “Hidden form fields” checkbox is selected. Also choose View > Visual

Aids, and make sure there’s a check mark next to Invisible Elements.

 Save the page, and press F12/Opt+F12 to preview the form in a browser. How the form is
rendered depends on your default browser.

Creating an Upload Form

ptg7799847

308

If you’re using Firefox or Internet Explorer, the form looks like this:

In a WebKit-based browser, such as Safari or Google Chrome, however, the form looks
quite different.

 Click Browse or Choose File depending on which browser you’re using. Navigate on your
local file system to a file—it doesn’t matter which one.

In Firefox or Internet Explorer, the full file path is displayed and remains editable in the
input field.

In a WebKit-based browser, only the name of the file is displayed, and it cannot be edited,
as shown in the following screen shot.

NOTE: These differences don’t affect the way files are uploaded, but they need to be taken into

account when designing your forms.

You can check your code against lesson09/completed/upload_test_01.php.

Using Zend_File for Uploads
To upload files using the method, you need to create an instance of the

 class. The cumbersome name is due to plans to support other transfer protocols,
such as FTP and WebDAV (Web-based Distributed Authoring and Versioning), in the future.

Creating a local folder for testing uploads
The most convenient way to learn how to use is by testing locally. As far as PHP is
concerned, it’s simply transferring the file from one location to another. Create a folder called
upload_test on your local computer. It doesn’t matter where it is, but a good location would
be at the top level of your C drive on Windows or in your Mac home folder.

LESSON : Uploading Images and Other Files

ptg7799847

309

NOTE: The upload_test folder is different from the folder described in “Setting a temporary

upload directory” in Lesson 2. Files are automatically deleted from the temporary upload direc-

tory after they have been moved to their ultimate destination.

The web server needs permission to write to the upload_test folder. What action you have to
take—if any—depends on your setup:

Apache on Windows. You don’t need to do anything.

IIS on Windows. Right-click the folder, and choose Properties.

Select the Security tab, and click Edit.

Add the IUSR account (IIS_IUSRS in IIS7) to the “Group or user names” section. Give
the account the following permissions: Read & execute, Read, and Write.

Mac OS X. Select the folder in Finder, and choose File > Get Info or press Cmd+I.

Expand the Sharing & Permissions section, click the padlock icon at the bottom right of
the Get Info panel to unlock the settings, and enter your Mac administrator password
when prompted.

Change the Privilege for “everyone” from “Read only” to Read & Write, as shown in the
following screen shot, and click the padlock icon again to save the settings.

Creating a basic upload script
To test that you have configured PHP and the upload_test folder correctly, create the follow-
ing bare minimum script, which sets the upload destination and transfers the file:

 Create a new PHP file, and save it as process_upload.php in lesson09/workfiles/scripts.
Strip out the default HTML code, and add an opening PHP tag.

ptg7799847

310

 Add a conditional statement that checks for the existence of to ensure
that the script runs only if the Upload File button has been clicked. Inside the conditional
statement, include library.php with , and create a and a block.
The code should look like this:

 Inside the block, create a variable to store the full path of the upload_test folder.

If you used the suggested locations, the code should look like this:

Windows

Mac OS X

Replace with your Mac username. Note that the path begins with a forward slash.

The reason for storing the path in a variable at the top of the script is to avoid the danger
of errors when reusing the value later. If you decide to move the location of the upload
folder, you make the change in this one place rather than needing to search through your
whole script to find each instance.

 Create an instance of the class, and use the object’s
 method to specify the location of the upload folder:

 Use the method to upload the file:

 Save process_upload.php, and switch to the page that contains the upload form,
upload_test.php.

 Use to include process_upload.php above the declaration in
upload_test.php.

LESSON : Uploading Images and Other Files

ptg7799847

311

 Save upload_test.php, and click Live View or launch the page in a browser.

 Use the Browse or Choose File button to navigate to a file on your local computer. Make
sure you choose a file that’s less than 50 KB, such as one of the files in the images folder
for this book. If you choose a larger file, the upload won’t work, and you won’t see any
error message.

 Remember to hold down Ctrl/Cmd if you’re in Live View, and click Upload File. The
filename should disappear from the form or form field.

 Use Explorer (Windows) or Finder (Mac) to examine the contents of the upload_test
folder. If your code and configuration were correct, you should see the file you selected
listed there.

You can check your code against process_upload_01.php in lesson09/completed/scripts.

What if the file isn’t transferred?
The following checklist should help troubleshoot problems if the file you selected hasn’t been
copied to the upload_test folder:

Check your PHP configuration by running , as described in Lesson 2. Make
sure in the PHP Core or Core section is set to On.

Farther down in the same section, check the value of . Make sure it refers
to a folder that exists, and that it is writable by the web server (use the same settings as in
“Creating a local folder for testing uploads”).

If either setting needs to be changed, refer to “Changing configuration settings” in Lesson 2.

ptg7799847

312

If the permissions on the upload_test folder are incorrect, the script throws an exception
and displays “The given destination is not writeable.”

If you misspelled the path to the upload_test folder, the script displays “The given desti-
nation is no directory or does not exist.”

Double-check the size of the file you selected. If it’s greater than 50 KB, PHP doesn’t even
attempt to upload the file.

Check the value of the hidden field in the form. Did you accidentally set it
to a lower value?

If you tested the form in Live View, did you remember to hold down the modifier key
when clicking Upload File? Try testing the page in a browser.

Validating uploaded files
The basic script in process_upload.php is all you need to upload a file with , but it’s
very rudimentary and—above all—insecure. Although prevents oversized files
from being uploaded, it can be circumvented. It’s vital for your server-side script to check that
the file isn’t too big or of an unacceptable type.

You validate file uploads with a set of special subclasses of . Table 9.1 lists the
main ones, all of which are prefixed by . So, for example, becomes

.

To use one or more of these validators, you apply the method to the uploader
object. The method takes the following arguments:

Validator. This can be either an instance of a validation class or the short name of the
validation class as a string, for example .

Break on failure. A Boolean value specifying whether to break the validation chain on
failure. If set to , all tests are carried out, allowing you to report all reasons for fail-
ure. If set to , no further tests are carried out.

Options. Classes indicated in Table 9.1 with an asterisk accept multiple values either as
a comma-separated string or as an array. For example, the options for
can be presented as or as . This argument is optional for

 and .

File(s). This argument optionally specifies which file(s) the test should be applied to. Use
an array of the file field attributes to specify multiple files. If this argument is omit-
ted, all uploaded files are normally tested. However, no further tests are carried out after
the first file that fails validation.

LESSON : Uploading Images and Other Files

ptg7799847

313

Table 9.1 Useful File Validation Classes

Class Description

Checks the number of files uploaded. If initialized with a string or an integer,
the value is used as the maximum acceptable. Also accepts an array with the
keys and .

 * Excludes files that have specified filename extensions. List the extensions
without a leading period (for example, , not). By default,
filename extensions are treated as case insensitive. Checks only the extension
used, not the file’s MIME type.

 * Excludes files of specified MIME types. You can specify whole groups by using
just the first part of the MIME type. For example, excludes all images.

 * Checks whether the file exists in specified folder(s).

 * Does the opposite of by specifying acceptable filename
extension(s).

Checks the aggregate size of all files uploaded in the same operation, not the
size of individual files. If initialized with a string or an integer, the value is used
as the maximum acceptable. Also accepts an array with the keys , ,
and . Values can be specified as strings using and , or as
integers representing the number of bytes.

If the files fail validation, the size is displayed as a string using or . To
display the size in bytes, set to . Values are converted using
1024 as the base value.

Checks the dimensions of images. Accepts an array with the keys
, , , and , all of which are

optional (but you must specify at least one). The array keys are case sensitive.
Values should be integers.

 * Checks whether files use a compressed archive type, such as . If no
filename extension(s) or MIME type(s) are specified, any type of compressed
archive is accepted.

 * Checks whether files are images. Setting filename extension(s) or MIME type(s)
limits the acceptable types.

 * Does the opposite of by specifying acceptable types.

 * Checks that the file doesn’t exist in specified folder(s).

Similar to except that it is used for single files.

Checks the number of words in uploaded text files. If initialized with a string or
an integer, the value is used as the maximum acceptable. Also accepts an array
with the keys and . The limits apply individually to each file.

ptg7799847

314

You don’t normally need to do anything to verify whether the file(s) passed validation; the
 method automatically does it for you. However, you can test individual files by

passing the filename to the method.

The method returns an array of error messages. You can also access an array of
error codes using the method.

CAUTION! Although the and validation classes correctly identify valid

file types and reject invalid ones, they generate blank error messages (correct as of ZF 1.10.4).

Displaying validation messages for a single file
Let’s put some of the theory from the preceding section into practice by improving the
code. Continue working with the files from the previous exercise. Alternatively, copy
upload_test_01.php and process_upload_01.php from the lesson09/completed and
lesson09/completed/scripts folders and save them in your workfiles folder for this lesson.
When saving the files, strip the _01 from the end of the filenames. Also, adjust the path
to the upload_test folder if necessary.

 With upload_test.php the active document, click Live View or launch the page in
a browser.

 Click the Browse or Choose File button, and select a file on your local computer that’s
bigger than 50 KB, the maximum set by .

 Click Upload File, remembering to hold down Ctrl/Cmd if you’re in Live View. The
filename disappears from the form, but there’s no indication of what happened.

If you check the upload_test folder, the file isn’t there. PHP didn’t even attempt to transfer
the file, because it exceeded the maximum size. This isn’t very user friendly, so you need
to give the user some feedback.

 Exit Live View, if necessary, and switch to process_upload.php. Amend the code that
executes the transfer like this:

This assigns the return value of to . If the file transfer
fails, will be , causing the code in the conditional statement to be executed
and storing any error messages in .

Even if there’s only one message, returns an array. So, you need to loop
through the array to display the results to the user.

LESSON : Uploading Images and Other Files

ptg7799847

315

 Switch to upload_test.php, and add the following code above the form:

The conditional statement checks whether has been set. If it has, is used
to insert an opening tag, and a loop (see “Using a foreach loop” in Lesson 3)
assigns each message in the array to and displays it between a pair of tags.
After the loop ends, the closing tag is inserted, displaying the error messages as an
unordered (bulleted) list.

 Save both pages, and test the upload form again with a file that exceeds 50 KB. This time
you should see an error message at the top of the form.

Unfortunately, the error message isn’t as clear as it might be. Still, it’s a start.

 Choose a file that’s smaller than 50 KB, and click Upload File. If you check the upload_test
folder, it should have been transferred, but the form gives you no feedback. You need to
create a message that can be displayed when the transfer succeeds.

 Amend the conditional statement that checks the success of the transfer like this:

The method is designed to work with both single and multiple file
uploads. It takes two arguments, both of which are optional.

ptg7799847

316

The first argument is a reference to the file. If omitted or set to , the method
returns the name of a single file as a string, or the names of multiple files as an array.

The second argument determines whether to include the full path. By default, it’s set to
. Setting it to returns only the filename.

Both arguments are optional, but you can’t set the second argument without the first
one. The first line in the block gets the filename without the path and assigns it to

. There’s only one file being uploaded, so the value of is a string.

The second line in the block embeds in a doubled-quoted string and
assigns it to . The empty square brackets make it an array element. You need
to make it an array so that the loop you created in step 5 can handle it correctly.

 Save process_upload.php, and test the form again, choosing a file that’s less than 50 KB.
This time, the form should report the name of the file and that it has been transferred
successfully.

 To improve the upload script, add some validation. The first test you should add is to
make sure the file doesn’t exceed the maximum file size, just in case someone tries
to evade the setting in the upload form.

Because the upload form handles only one file upload, it doesn’t make any difference
whether you use the or the validation class. However, it’s a good idea to
get into the habit of using the right one: controls the aggregate size of all files
uploaded in a single operation, whereas deals only with the size of an individual file.
So, in this case, it’s that you need.

To limit the maximum size of the uploaded file to 50 KB, add the highlighted code just
before calling the method:

The default ZF style is to use (with a lowercase k) and leave no space between the
number and unit. However, the third argument is a case-insensitive unit and accepts a
space between the number and unit.

LESSON : Uploading Images and Other Files

ptg7799847

317

 One of the most common uses of file uploads is for images. Ideally, you should be able to
use the validation class to verify that the upload is indeed an image. However, at
the time of this writing, it generates a blank error message when you attempt to upload an
invalid file. The solution is to use the validation class instead.

Add another validator like this:

Using on its own as the third argument accepts any type of image.

 Save process_upload.php, and test the form again. If you select an image that’s smaller
than 50 KB, you’ll see a message informing you that the upload was successful. However,
if you select a different type of file, you get an error message like this:

For a technically savvy user, this is fine, although it might be confusing for other users.
See “Customizing error messages” later in this lesson.

 Add another validation test to check the minimum height and width of the image like this:

The minimum height and width values are specified by passing an array as the third argu-
ment, using the case-sensitive keys and . Both values have been
set deliberately high to trigger an error.

 Save process_upload.php, and test the upload form again. If you select any of the files in
the images folder for this book, you should see error messages similar to this:

ptg7799847

318

 As a final series of tests, change the minimum height and width values to 50 and 100
respectively, and add a validator to ensure the uploaded file doesn’t overwrite an existing
one with the same name. Change the code like this:

The third argument of the validator is the path to the upload folder.

 Save process_upload.php, and test the upload form again to upload an image. As long as
it matches all the criteria, you’ll see a success message.

If, on the other hand, the file has already been uploaded, you’ll see an error message like this:

Again, the message is probably OK for a technically savvy user but might confuse others.
A better solution is to give the file a unique name and inform the user of the new name.
You’ll learn how to do this shortly.

You can compare your code with upload_test_02.php in lesson09/completed and pro-
cess_upload_02.php in lesson09/completed/scripts.

Removing spaces from filenames
Windows and Mac OS X permit spaces in filenames. While spaces make filenames more user
friendly, they cause problems on Linux servers, so it’s a wise precaution to filter the names
of uploaded files and to replace spaces with underscores. Even if your site is hosted on a
Windows server, it’s still a good idea to remove spaces, particularly if the uploaded files will be
used in a website. Spaces are not permitted in URLs and need to be replaced by %20, which
looks ugly and unprofessional.

The following exercise improves process_upload.php by removing spaces from the name of
an uploaded file. Continue working with the files from the previous exercise, or use a copy of
lesson09/completed/process_upload_02.php as your starting point.

 Locate the following section of code in process_upload.php (it should be around lines
12–18):

LESSON : Uploading Images and Other Files

ptg7799847

319

This is the code that handles the actual upload and prepares the message(s) informing the
user of the result.

 To remove spaces from the filename, you need to access it before the transfer takes place.
Cut the line of code highlighted in the preceding step, and paste it above the first valida-
tor like this:

 You can remove the spaces from a string using , which takes up to four
arguments, of which the first three are required:

The character(s) you want to replace

The replacement character(s)

The string you want to alter

A variable to store the number of replacements

Although the most logical place to add the code to replace spaces in the filename with
underscores would appear to be on the next line, you’ll be making further changes to the
script. So, put it just before the call to the method:

The fourth argument, , stores the number of replacements. If no replacements
are made, is 0, which PHP implicitly treats as . Anything else is treated as

. You’ll use this value later to inform the user if the filename has been changed.

 The amended filename is now stored in . To rename the file being uploaded,
use the method like this:

ptg7799847

320

The method takes at least two arguments: the name of the filter (in this
case) and an array of options. The key assigns the new name. If it’s a
filename, the uploaded file is stored with the new name. If it’s a folder or directory name,
the uploaded file is stored with its original name in the indicated folder. In this case,

 is a filename, so the uploaded file will be stored in the upload_test folder, but with
any spaces replaced by underscores.

TIP: If your upload form is in a password-protected part of your site, you can use

to change the directory where the uploaded files are stored depending on the identity of the

person who has logged in. Store the location of the user’s directory with the login details and

use it as the value of .

 Alert the user to any name change by amending the block that generates the
messages like this:

Instead of assigning the success message to , it’s stored in a new variable,
. If any spaces have been replaced, equates to , and the combined

concatenation operator appends the file’s new name. Then the complete message is reas-
signed to .

 Save process_upload.php, and use Explorer (Windows) or Finder (Mac OS X) to delete all
the files in the upload_test folder.

 In the Dreamweaver Files panel, rename lasvegas1.jpg in the images folder to las vegas1.jpg,
inserting a space in the filename.

 Test upload_test.php in Live View or in a browser by selecting the file you have just
renamed and clicking Upload File. You should see confirmation that the file has been
uploaded and renamed.

LESSON : Uploading Images and Other Files

ptg7799847

321

 Select the same file and click Upload File. You get the same result.

What’s happening here? The file has overwritten the version you transferred in the previ-
ous step. Because the file hasn’t changed, it doesn’t matter. But it would matter if the file
were different.

So, why doesn’t the validation class prevent the transfer? It’s because the file in
the upload_test folder is called las_vegas1.jpg, not las vegas.jpg. You know it’s the same
file, but PHP doesn’t know the file’s name has been changed. You need to prevent files
from being overwritten.

Before improving the renaming system, check that the script still works correctly with
files that don’t have spaces in their names.

 Click Browse or Choose File and select an image that doesn’t have any spaces in its name,
for example, lasvegas2.jpg in the images folder. You should see confirmation of the trans-
fer, but there’s no mention of renaming, because is 0 and treated as .

 Try uploading the same file. This time, the validation class prevents the trans-
fer. However, a solution that works only part of the time is no use. You’ll fix that in the
next section.

You can compare your code with process_upload_03.php in lesson09/completed/scripts.

Renaming files with duplicate names
Once the upload has been initiated, there’s no way to allow the user to decide what to do if the
file has the same name as an existing one. Unless you move the uploaded file into your web
server’s file system, PHP discards it.

A simple solution is to rename the file automatically, appending a number between the name
and the filename extension. You can do this by loading the names of existing files into an
array with the function and then looping through the array until you find the first
available number. You build the new filename by using string manipulation functions to break
apart the existing name and then joining the parts together again with the concatenation
operator. Don’t worry if it sounds like voodoo magic. The process should become clearer as
you work through the following steps.

ptg7799847

322

Continue working with the files from the preceding section. Alternatively, use a copy of
lesson09/completed/scripts/process_upload_03.php as your starting point.

 As you have seen, the validation class no longer works satisfactorily after the
changes made in the preceding section. So, delete the following line of code (it should be
around line 12):

 Although the method automatically tests whether a file is valid, it makes more
sense to use the method to test the file yourself before going to the trouble of check-
ing for a duplicate name. If the file doesn’t pass validation, it’s going to be rejected anyway.

Create a conditional statement to test the file’s validity, and wrap the processing script in
the block like this:

If the file fails validation, the error messages are stored in , and the rest of the
script is ignored.

 The code to rename duplicate files will insert a number between the name and the
filename extension, but what if the filename extension is missing? The valida-
tion class doesn’t rely on the filename extension. It actually checks the MIME type. To
make sure the name ends with a recognizable filename extension—such as , , or

—you need to do a further check with the validation class. Add the fol-
lowing code immediately after the line that removes spaces from the filename:

LESSON : Uploading Images and Other Files

ptg7799847

323

The third argument passed to is a comma-separated list of acceptable
filename extensions. To control what happens later, a Boolean variable, , is
set to . If the file passes validation, is reset to . Otherwise, the
clause tries to establish the MIME type and add the appropriate filename extension.

The method returns the official media type format, such as image/jpeg.
To convert this format to a filename extension, the array lists each exten-
sion as the key and the media type as the value. The media type stored in and the

 array are then passed as arguments to , which searches an
array and returns the key of the first matching value. So, if is image/jpeg, it returns
jpg.

If the MIME type is not in the array, is , and an error message is
assigned to . Otherwise, a period and are appended to . For
example, if a file called lasvegas1 is uploaded without a filename extension, and its MIME
type is image/jpeg, the filename changes to lasvegas1.jpg, and and
are reset to .

CAUTION! The period between and is treated as a literal character because

it’s inside a double-quoted string. If you omit the quotation marks, the period is treated as the

concatenation operator, producing lasvegas1jpg instead of lasvegas1.jpg.

Although the missing filename extension will be added when the file is renamed, the
 method automatically runs the validation tests again. So, a file without an

extension will still fail at that stage. Calling the method prevents the
tests from being rerun.

ptg7799847

324

 The file should be uploaded only if it has a recognized filename extension. Wrap the
remaining code in a conditional statement like this:

 Now that you have a filename with no spaces and a valid filename extension, you can
check for a duplicate filename and build a new one, if necessary. The code goes at the
top of the conditional statement you have just created. It’s relatively short, so rather than
building it line by line, add it all at once. The code has been commented to help you
understand how it works.

LESSON : Uploading Images and Other Files

ptg7799847

325

The function examines a folder and returns an array of the names of all files
and folders it contains. So, the first highlighted line stores an array of the contents of the
upload_test folder in .

The conditional statement uses to find out whether a file of the same name
as the uploaded file () is present in the array of existing files. If the file doesn’t
already exist, the rest of the highlighted script is ignored and the file is transferred with-
out any further change to its name.

If, on the other hand, a file of the same name already exists, the code inside the block is
executed. It begins by using to find the position of the last dot or period in the
name of the uploaded file.

CAUTION! Notice the double “r” in the middle of , which finds the position of the last

instance of a character in a string. It’s easy to confuse with , which finds the first instance

of a character. The way to remember the difference is that the second “r” stands for “reverse.”

The position of the period is then used with to split the filename into two sec-
tions: and . So, if the value of is las_vegas1.jpg, is
“las_vegas” and is “.jpg”.

The loop (see “Using a do. . . while loop” in Lesson 3) increments the
counter and builds a new name like this:

This simply joins the filename back together with an underscore and a number. So, the first
time the loop runs, becomes las_vegas1_1.jpg. The condition of the loop
uses again to see if the new name exists in the upload folder. If it does, the loop
keeps running. As soon as there’s no match, the loop stops, and is set to .

 Save process_upload.php, and test the upload form again, selecting an image that has
already been uploaded. This time you are informed the file was uploaded and renamed.

If you try it again, you’ll see the number appended to the base name increases by one.
Also, try it by deleting the filename extension before uploading. The script renames the
file and adds the correct extension.

ptg7799847

326

 Check the contents of the upload_test folder in Explorer or Finder. You should see that
the files have been transferred and renamed correctly.

You can compare your code with process_upload_04.php in lesson09/completed/scripts.

Adding an option to overwrite files
What if you don’t want to give files a new name but just want to overwrite them? It’s just a
question of wrapping the rewrite section of the script in a conditional statement and adding
an option in the upload form to indicate which action to take.

Continue working with the same files. Alternatively, use a copy of process_upload_04.php as
your starting point.

 In upload_test.php, click to the right of the Browse button in Design view, and press
Enter/Return to insert a new paragraph.

 In the new paragraph, type Overwrite existing file?, and press Enter/Return to insert
another paragraph.

 With the insertion point in the empty paragraph, choose Insert > Form > Radio Group to
open the Radio Group dialog box.

LESSON : Uploading Images and Other Files

ptg7799847

327

 Type overwrite in the Name field, and create two radio buttons for Yes and No, setting
the values to y and n respectively. Leave the “Lay out using” radio button at the default
“Line breaks (
 tags),” and click OK.

 In Design view, select the No radio button, and set “Initial state” in the Property inspector
to Checked.

 Save upload_test.php, and switch to process_upload.php.

 Add the following conditional statement just before the block:

This assumes the default option is not to overwrite existing files and sets to
. However, if the Yes radio button has been selected, the value of

is “y” and is set to .

ptg7799847

328

CAUTION! Don’t forget to use two equals signs when comparing values for equality. Also note

that string comparisons are case sensitive. If you used an uppercase Y in the Radio Button

dialog box, it needs to be uppercase here, too.

 To prevent the script from assigning a new name to the file, you need to wrap a condi-
tional statement around the whole block of code that you inserted in step 5 of the previ-
ous section like this:

This section of code will now run only if is not .

NOTE: Files that don’t have a filename extension are always renamed, because they are never

stored in the upload folder without the extension.

 Save process_upload.php, and delete all the files in the upload_test folder.

 Select an image to upload, and leave the radio buttons at the default No. Click Upload
File. You should see confirmation of the transfer.

 Select the same image, but change the radio button to Yes, and click Upload File. Again,
you should see confirmation of the transfer but not that the file has been renamed. The
existing file has been overwritten.

LESSON : Uploading Images and Other Files

ptg7799847

329

 Select the same image for a third time, leave the radio button at the default No, and click
Upload File. This time you get confirmation of the transfer and that the file has been renamed.

 Check the contents of upload_test folder. There should be two copies of the same file,
one with the original name and the other with a number appended to the base name.

You can compare your code with upload_test_03.php in lesson09/completed as well as
process_upload_05.php in lesson09/completed/scripts.

Handling multiple file uploads
The great thing about using is that it automatically handles multiple files. All that’s
needed to adapt the processing script is to get a reference to each file and pass it as an argu-
ment to each method. Getting the reference to each file is as simple as this:

CAUTION! Even if you don’t need to access information about individual files, you must use the

 structure in the loop. Using

results in the upload failing.

Your upload form needs a file field for each file to be uploaded. This presents the problem of
what to do about fields that are left blank. deals with that by allowing you to set an
option to ignore blank fields and by checking whether a file has been uploaded.

To ignore blank fields, you use the method like this:

NOTE: There are no other options available, but you still need to use an array as the argument.

This allows other options to be added in the future, or if you’re a PHP OOP whiz kid, you could

extend the class to add your own.

To check whether a file has actually been uploaded, you pass a reference to the file to the
 method.

The following instructions show you how to adapt process_upload.php to handle multiple file
uploads. Continue working with the same script as in the preceding section. Alternatively, use
a copy of process_upload_05 in lesson09/completed/scripts as your starting point.

 Copy upload_test_multi.php from lesson09/completed to your workfiles folder. The page
has two extra file fields.

ptg7799847

330

 Include process_upload.php with above the declaration.

 Use the method to allow file fields to be left blank.

 To process the uploaded files individually, you need to get their details. Do this by calling
the method on the line after the one you just inserted.

This stores the details of all the files as a multidimensional array in .

NOTE: When no argument is passed to the method, it retrieves details from

every file field in the form, even if the field has been left blank. So, your script needs to check for

empty fields.

 The rest of the script in the block needs to be wrapped in a loop that
processes each file individually. Add this code on the next line:

Each time the loop runs, the current file can be accessed as .

 Scroll down to the end of the block, and add a matching closing curly brace. To keep
your code correctly indented, select the code inside the new loop, and click the
Indent Code icon in the Coding toolbar twice. The double indent is needed because
you’ll add a conditional statement inside the loop.

 The code now inside the loop processes each file, but there’s no point running it
if there’s no file to process. Add the following line immediately inside the loop:

This ensures that the remaining code is executed only if the current instance of is
actually an uploaded file.

 Scroll down to the end of the loop, and add another closing curly brace for the
conditional statement you just added. If you indented your code, the location should be
easy to spot, but if you’re unsure, it’s the one highlighted here:

LESSON : Uploading Images and Other Files

ptg7799847

331

 The first line of code inside the new conditional statement looks like this:

As it stands, this gets the names of all uploaded files. Replace with the reference to
the current file like this:

 Four lines farther down, the first call is made to the method, which also needs
a reference to the current file. Pass as an argument to it like this:

Make the same change in the call to six lines farther down after the
validation class is added.

 Similarly, you need to specify the current file as an argument to :

 The same change applies to near the bottom of the script:

 The method on the line above takes a slightly different reference
to the file. Use the temporary name assigned to it by PHP, which can be accessed from the

 subarray created by the loop. Change the code like this:

 The final change is to the code that gets the error messages. Change it like this:

Because the loop handles each file separately, needs to become
an array. Otherwise, it would be overwritten each time the loop runs. However, the

 method outputs an array. To avoid the need to process a multidimensional
array, the output of is converted to a string by . Each message
generated by begins with an uppercase letter, so the first argument to

 adds a period and a space to separate each message.

ptg7799847

332

This change needs to be made in two places: in the conditional statement that immediately
follows the call to and in the first conditional statement that uses the
method (see step 10).

 Save process_upload.php, upload_test_multi.php, and test the multiple file upload form.
It works exactly the same as before except you can now upload one, two, or three files
simultaneously.

The fact that it can handle a single file means this script works equally well with the origi-
nal upload form with just one file field.

You can compare your code with process_upload_06.php in lesson09/completed/scripts.

Customizing error messages
The file upload script is basically complete. All you need to do to adapt it to your own website
is to change the destination of the upload folder and use your own selection of validation
classes. The only fly in the ointment is the slightly odd phrasing of some error messages
generated by the method. The problem has been partially solved by adding the
code to rename files and choosing whether to overwrite existing ones. However, choosing a
file of the wrong MIME type still produces a message about a “false” type.

How much effort you want to put into customizing error messages depends on your coding
skills and the target audience for your upload form. A simple—but rather crude—way of avoid-
ing using the default error messages is to generate your own message if the file fails validation:

The problem is this doesn’t give any indication of what’s wrong with the file.

A better approach is to use the method to find out what the error is, and then
substitute your own message in those cases where you feel customization is necessary. The

 method returns an array of error codes.

The code returned for an incorrect MIME type is . So, to display a customized
error message when the wrong type of file is uploaded, amend the same section of code like this:

LESSON : Uploading Images and Other Files

ptg7799847

333

If the file fails validation, the method retrieves the error codes, and a conditional
statement uses to check if is in the array. If it is, a customized
message is added to reporting that the file is not an image. If is
not in the array, it’s a different problem, so the standard messages are used instead.

Selecting a nonimage for upload now presents a more user-friendly message.

Table 9.2 lists common error codes that can be used to create custom messages.

Table 9.2 Common File Validation Error Codes

Code Meaning

Filename extension is not on permitted list.

File is of an excluded MIME type.

MIME type cannot be detected.

File cannot be read.

Filename extension is not on permitted list.

File is not compressed.

MIME type cannot be detected.

File cannot be read.

File is of an excluded MIME type.

File of the same name exists.

File exceeds limit set by MAX_FILE_SIZE.

Illegal upload.

Number of words exceeds permitted limit.

Number of words is lower than minimum required.

The code is in process_upload_07.php in lesson09/completed/scripts. The script has been
extensively commented to help you understand how it works.

ptg7799847

334

Sending Email Attachments
Now that you know how to upload files, it’s easy to add attachments to an email sent from an
online form. To send an attachment with an email, you upload the file to the web server. Then
you use the PHP function to get the contents of the file, and pass it to
the method. Unless you want to make changes to the default
encoding (base64) and disposition (inline), that’s all there is to it!

A potential problem with attachments—apart from malware—is that uploaded files are dis-
carded if you don’t store them in your web server’s file system. It’s annoying for users to need to
upload their files again if there’s an error with the form when submitted. On the other hand, you
don’t want to fill your file system with files that have already been sent as attachments.

The solution chosen here is to store the files temporarily by prefixing the filename(s) with a
value stored in a session variable. This allows you to retrieve the correct file(s) when the form
is resubmitted. When the mail is sent, you can delete the files, keeping your temporary upload
directory clean.

To conclude this lesson, you’ll adapt the file upload script from this lesson and merge it with
the feedback form from Lesson 8 to allow users to send attachments from your website.

Adapting the file upload script
When uploading files to be sent as attachments, you can simplify the script. For example, you
don’t need to worry about overwriting existing files, because the attachments will be stored
temporarily with a unique prefix and will be deleted from the file system after being sent.

 Create a new PHP page and save it as get_attachments.php in lesson09/workfiles/scripts.

 Delete the default HTML code, and add an opening PHP tag.

 The script uses session variables, so begin by adding , followed by the
definition of some basic settings:

Defining the basic settings here makes it easier to edit them if you need to change them.
As before, is the upload folder; sets the maximum size for each
attachment; and is a comma-separated list of the filename extensions that
will be rejected by the validation class.

LESSON : Uploading Images and Other Files

ptg7799847

335

 You don’t want the upload script to run if the attachments are already stored in the file
system. So, it should be wrapped in a conditional statement that checks for the existence
of a session variable. If the variable doesn’t exist, you know that this is the first time the
form has been submitted. Add the following code:

If doesn’t exist, it’s created by building a string based on the current
time. The function returns a timestamp that represents the current date and time
as the number of seconds elapsed since 00:00:00 UTC on January 1, 1970. So, it creates a
string similar to att1273166609- that will be prefixed to each filename.

NOTE: Expressing the current date and time as the number of seconds elapsed over the past 40

years or so might seem bizarre. Although timestamps look incomprehensible to humans, PHP

functions use them to perform date calculations quickly and easily, avoiding all the complexities

of different length months and leap years. January 1, 1970 is known as the Unix epoch, and this

way of expressing the date and time is normally referred to as a Unix timestamp.

 is also initialized as an empty array.

 Inside the conditional statement you just created, instantiate a file transfer object and set
the upload destination and validation classes:

This is basically the same as in the main upload script. Instead of using the
validation class, it uses .

 The remaining code also goes inside the conditional statement and looks like this (high-
lighted lines are explained after this code listing):

(code continues on next page)

Sending Email Attachments

ptg7799847

336

This follows a similar pattern to the file upload script you built earlier, although it’s shorter
and simpler. If the file fails validation, a message is created using and .

Inside the main block, spaces are removed from the filename and the prefix is added,
resulting in a name that looks like att1273166609-bryce1.jpg. The amended name is
stored in , but the original name remains unchanged in .

The filter uses , which stores the file with a name like
att1273166609-bryce1.jpg. On the other hand, uses

 to preserve the original filename(s) for the email.

You can compare your code with get_attachments.php in lesson09/completed/scripts.

Adapting the mail processing script
Make the following changes to the mail processing script from Lesson 8:

 Make a copy of lesson09/start/scripts/process_attachments.php, and save it in your
workfiles/scripts folder for this lesson. Alternatively, you can work with process_
comments.php from the previous lesson.

 In process_attachments.php, use to include get_attachments.php. The
code should go between the last validator and the conditional statement that checks there
are no errors (around line 30).

This ensures the attachments will be stored, even if the form has errors.

LESSON : Uploading Images and Other Files

ptg7799847

337

 The code that attaches the uploaded files goes just before the email is sent (around
line 48). The complete block of code looks like this:

The code is wrapped in a conditional statement that checks whether
 exists, and if it does, that it’s not empty. This ensures that the code

is executed only if there are attachments to send.

Inside the conditional statement, a loop processes the filenames stored in
, assigning each one to the temporary variable .

Each time the loop runs, contains the original name of the current file.
However, to get the contents of the file from the upload folder, you need to use the full
path, including the prefix that was used to store the file. This is done by the following line:

 is the upload folder. This is followed by a forward slash.
is the time-based prefix, and is the original filename. So, this produces some-
thing like this:

The full path of the file is passed to , a core PHP function that does
what it says—it gets the contents of a file and is safe to use for both text and binary files.

The contents of the file are stored in , which is then passed to the
object’s method. The method takes up to five arguments, but only
the first one—the attachment contents—is required. The other four arguments set the
attached file’s MIME type, disposition, encoding, and filename. If left out, uses
the defaults, which are fine in most cases. However, using the default filename results
in the recipient getting a file with a name like att1273166609-bryce1.jpg instead of the
original filename.

Sending Email Attachments

ptg7799847

338

An advantage of the object-oriented approach taken by ZF is that you can set proper-
ties independently of the constructor method. Instead of passing all five arguments to

, the attachment is assigned to a variable, , and its
property is set like this:

Since contains the original filename of the current file, the recipient receives
the attachment with a name like bryce1.jpg.

The final line in the loop uses another core PHP function, , to delete the
file from the upload folder.

After the loop has attached all the files to the mail object, the two session variables are
unset to enable the user to reuse the online form.

You can compare your code with process_attachments.php in lesson09/completed/scripts.

Adapting the feedback form
All that remains to do is to adapt the feedback form, which needs to display the file fields for
the attachments when the page first loads but hides them and displays a message about the
attachments if the form is submitted with errors.

 Copy send_attachments.php from lesson09/start to your workfiles folder. This is the
same as comments.php from Lesson 8, with the addition of three file fields between the
Comments text area and the reCAPTCHA widget.

 In Design view, click to the right of the PHP shield that indicates the location of the
Display Error Message server behavior next to the Comments text area. Open Split view
to make sure the insertion point is between the closing and tags. With the
focus still in Design view, press Enter/Return to insert a new paragraph.

 In the new paragraph, type Attachments do not need to be uploaded again. Your page
should look like this:

LESSON : Uploading Images and Other Files

ptg7799847

339

 If the form has been submitted with errors, you need to show this paragraph together with
any messages generated by get_attachments.php. To avoid confusion, it’s also a good idea to
hide the file fields. Wrap the paragraph and file fields in conditional statements like this:

 exists only if the form has been submitted with errors. So, the
paragraph you added in steps 2 and 3 is displayed together with messages generated
by get_attachments.php. If the form hasn’t been submitted with errors, the block
displays the file fields.

 To test the form, include process_attachments.php with above the
 declaration in send_attachments.php, and check the following:

Make sure and in process_attachments.php use your
reCAPTCHA keys.

Make sure process_attachments.php includes the version of mail_connector.php that
contains your email connection details.

 Select some files, but leave at least one of the text fields blank, and submit the form. You
should see the form redisplayed with error messages. But the text is preserved in fields
that weren’t blank, and there’s a list of the attached files in place of the file fields.

Sending Email Attachments

ptg7799847

340

 Fill in the missing fields, and click Send Comments again. This time the form reappears
reporting the message has been sent, clearing the text fields, and redisplaying the file fields.

If mail_connector.php has the correct authorization and address details, you should
receive an email with the files attached.

You can compare your code with send_attachments.php in lesson09/completed.

Like most projects in this book, the form for sending attachments with an email is designed to
teach you how the various tools provided by Dreamweaver CS5 and PHP fit together. It’s more
a proof of concept than a fully polished application. It could be improved by adding a button
that allows the user to cancel sending the message if the attachments are rejected as being too
big or of the wrong type. You could also explore the use of Ajax to upload or remove attach-
ments before the form is submitted. This is one of the joys—and challenges—of developing
websites with PHP: The possibilities are limited only by your imagination and skill.

LESSON : Uploading Images and Other Files

ptg7799847

341

What You Have Learned
In this lesson, you have:

Built a basic form for uploading files (pages 306–308)

Created a local folder to test upload scripts (pages 308–309)

Used to copy files to a specified location (pages 309–311)

Validated files before transferring them to their final location (pages 312–318)

Automatically replaced spaces in filenames with underscores (pages 318–321)

Created the option to overwrite or rename files that have the same name (pages 321–333)

Created and sent email attachments (pages 334–340)

What You Have Learned

ptg7799847LE
SS

O
N

 1
0 What You Will Learn

In this lesson, you will:

Plan the content management system for a travel website

Define the structure for tables related through foreign keys

Build a server behavior to populate a menu from a SQL query

Use a menu to insert a foreign key into a database table

Simultaneously upload images and insert related data into a database

Approximate Time
This lesson takes approximately 3 hours to complete.

Lesson Files
Media Files:

images/bryce1.jpg
images/bryce2.jpg
images/grandcanyon1.jpg
images/grandcanyon2.jpg
images/joshuatree1.jpg
images/joshuatree2.jpg
images/lasvegas1.jpg
images/lasvegas2.jpg
images/longbeach1.jpg
images/longbeach2.jpg
images/losangeles1.jpg
images/losangeles2.jpg
images/newportbeach1.jpg
images/newportbeach2.jpg
images/sanfrancisco1.jpg
images/sanfrancisco2.jpg
images/sanjose1.jpg

ptg7799847

343

images/sanjose2.jpg
images/zion1.jpg
images/zion2.jpg
styles/admin.css

Starting Files:

lesson10/start/insert_photos.php
lesson10/start/insert_places.php
lesson10/start/menu.php
lesson10/start/scripts/cms_structure.sql
lesson10/start/scripts/db_insert_photos.php
lesson10/start/scripts/library.php
lesson10/start/scripts/process_upload_06.php

Completed Files:

lesson10/completed/insert_photos_01.php
lesson10/completed/insert_photos_02.php
lesson10/completed/insert_place_01.php
lesson10/completed/insert_place_02.php
lesson10/completed/menu.php
lesson10/completed/scripts/db_definitions_01.php
lesson10/completed/scripts/db_definitions_02.php
lesson10/completed/scripts/db_definitions_03.php
lesson10/completed/scripts/db_insert_photos_01.php
lesson10/completed/scripts/db_insert_photos_02.php
lesson10/completed/scripts/db_insert_place_01.php
lesson10/completed/scripts/db_insert_place_02.php
lesson10/completed/scripts/db_insert_place_03.php
lesson10/completed/scripts/library.php
lesson10/completed/scripts/upload_images.php

ptg7799847

LESSON 

Inserting Data into
Multiple Tables

text and image details for a travel website in four related tables in the database. This

inserting, updating, and deleting data.

The content management system uploads images and related data.

344

ptg7799847

345

Assessing the Task
To manage the content for a website, you need to be able to upload images to the site’s file sys-
tem and to store all related information in the database. After the information has been stored,
you need to be able to update or delete it. Storing all the data in a single table is impractical.

As you learned in Lesson 5, you avoid inconsistency by moving repetitive information into a
separate table. The two tables are linked by storing the primary key from one table as a foreign
key in the other table. Lesson 5 showed a first attempt at designing the CMS with just tables
called and .

The problem with this structure is that the column means you can associate only
one image with each place. Some people try to overcome this sort of limitation by creating
multiple columns: , , and so on. But this results in forever needing to add new
columns, a recipe for disaster.

The solution is to put the photos in a separate table and to use a cross-reference table to
associate the primary key of each photo with the primary key of the place to which it belongs.
The final structure looks like this:

The relationship between the and tables remains the same as in the first attempt.
Photos are in a dedicated table linked to the table through a cross-reference table
called , which stores the primary key of each place together with the primary key
of each photo associated with it. This structure allows you to associate as many photos as you

Assessing the Task

ptg7799847

346

like with a single place. Not only that, but you can also associate the same photos with other
places. For example, you might want to associate a photo of Grauman’s Chinese Theater with
entries in the table for both Hollywood and Los Angeles. Another advantage is that
you can store a caption with each photo.

Although and are stored as foreign keys in the cross-reference table, each
pair must be unique. So, the and columns are declared as a joint primary
key in . Generating the values to insert in is done programmatically
by querying the database. The page that inserts a new place also uploads associated images,
but updating records in the and tables is handled separately. There’s also a page
to upload images independently and associate them with an existing place.

There’s a lot of work ahead. Don’t try to rush. Most of the techniques used in this lesson were
covered earlier in this book. Now’s the time to bring them all together. You’ll learn some use-
ful new skills, too, such as automatically paging through a set of database results.

Creating the Database Structure
The CMS uses four tables— , , , and —as shown in the preced-
ing diagram. You imported the table in Lesson 5. If necessary, return to that lesson
before continuing with these instructions.

 Launch phpMyAdmin, and select the database.

 In the “Create new table on database phpcs5” section, type places in the Name field and
set “Number of fields” to 7. Click Go to open the definition matrix.

 Use the settings in Table 10.1 to define the columns for the table, and click Save.

Table 10.1 Settings for the places Table

Field Type Length/Values Default Attributes Index A_I

— — Selected

2 — — — —

60 — — —

— — — — —

60 — — —

— — —

— — — — —

LESSON : Inserting Data into Multiple Tables

ptg7799847

347

 Check that the structure of the table looks like this:

The column is intended to store a user-friendly link for web servers that
support URL rewriting. The column automatically records the date and time a
record is first created and subsequently updated. You’ll learn more about rewriting URLs
and handling dates in Lesson 12.

 If necessary, click the Details link below the table structure to reveal the Indexes section,
which should look like this:

In addition to the primary key, and have unique indexes to prevent dupli-
cate entries.

 Click the database link on the left of the screen to access the “Create new table on
database phpcs5” section again. Type photos in the Name field and set “Number of fields”
to 3. Click Go to open the definition matrix.

 Use the settings in Table 10.2 to define the table, and click Save.

Table 10.2 Settings for the photos Table

Field Type Length/Values Default Attributes Index AUTO_INCREMENT

— — Selected

30 — — — —

150 — — — —

Creating the Database Structure

ptg7799847

348

 Check that the table structure looks like this:

The only index on this table is , which is the primary key.

 Click the database link on the left of the screen to access the “Create new table on
database phpcs5” section again. Type place2photo in the Name field and set “Number of
fields” to 2. Click Go to open the definition matrix.

 Name the fields and . The remaining settings are the same for
both columns:

Type.

Attributes.

Index.

Do not select the AUTO_INCREMENT checkbox for either column. The values will be
inserted by a SQL query.

 Click Save, and check that the table structure looks like this:

The Indexes section should look like this:

By using a joint primary key, you ensure that each pair of values is unique. This keeps
your cross-reference table efficient by preventing duplicate links.

If you have any difficulty setting up the tables, you can use cms_structure.sql in lesson10/start/
scripts to import the structure (see “Importing data from a .sql file” in Lesson 5). The file
doesn’t contain any data, but it deletes existing tables of the same name and creates the correct
structure for the , , and tables.

LESSON : Inserting Data into Multiple Tables

ptg7799847

349

Building the CMS
Because there’s a lot of PHP coding involved, the HTML elements of the administration pages
have been created for you. Many of the scripts use common routines, such as validating input
and querying the database. To avoid repetition, these routines have been turned into functions
stored in a single file.

Preparing the administration pages
When complete, the administration section will consist of nine pages: a menu, and two pages
each for inserting, listing, updating, and deleting records. In this lesson, you’ll concentrate
on the pages that insert the records and upload the images. The rest of the CMS will come
together in Lesson 11.

 Because this project spans two lessons, create a folder called cms in the phpcs5 site root.
Copy the following files from lesson10/start to the new folder: insert_photos.php,
insert_place.php, and menu.php.

If Dreamweaver prompts you to update the links, click Don’t Update. The relative links in
each file relate to the same folder, and the style sheet link should recognize admin.css in
the styles folder.

 Create a folder called scripts inside the cms folder, and copy your version of library.php
to the scripts folder.

 Open your copy of insert_photos.php in Design view. It contains a link to menu.php and a
form. The PHP shield between the link and the form is a loop that displays error messages.
The form contains a file field, a text input field, a menu, and a submit button.

Building the CMS

ptg7799847

350

 Open Code view or Split view to examine the code. The attributes of the and
 elements all end with the number 1. To make the CMS more flexible, you’ll create

a PHP loop that repeats these three elements. The number of repeats is used several times
in other scripts, so it makes sense to define it in a script that centralizes common features.

 Create a new PHP file, and save it as db_definitions.php in the cms/scripts folder.

 Replace the default HTML with the following PHP code, and save the file.

 Copy db_insert_photos.php from lesson10/start/scripts to cms/scripts. It contains the
skeleton code that should be familiar from previous lessons:

 Include db_definitions.php using inside the block:

 Save db_insert_photos.php, and make four copies of it in the cms/scripts folder,
saving them as db_delete_place.php, db_insert_place.php, db_update_photo.php,
and db_update_place.php. All five scripts use definitions that will be created in
db_definitions.php.

 Close all files except db_definitions.php and insert_photos.php.

 Select the tab for insert_photos.php, and include scripts/db_insert_photos.php above the
 declaration using . This indirectly includes db_definitions.php in

the page, allowing you to use to control a loop to repeat the form fields.

 In Design view, select the text input field for Caption 1, and apply the Redisplay on Error
server behavior that you created in Lesson 7. Type caption1 in the Field Name field.

LESSON : Inserting Data into Multiple Tables

ptg7799847

351

 Switch to Code view, and create a loop surrounding the file field, text input field, and
 menu like this:

CAUTION! Each form element is wrapped in tags. Make sure you include the first opening

tag and the last closing one inside the loop. The submit button should remain outside the loop.

 Save the page and test it in Live View or a browser. You should now have three sets of input
fields. The problem is that they all refer to Photo 1.

 The reason for using a loop is to utilize the counter , which is initialized at 1 instead
of 0, so that the photos are numbered 1, 2, 3 onscreen. Incidentally, that’s why the second
argument in the for loop uses . If you use , the loop
runs only twice.

Rather than typing all the code by hand, choose Edit > Find and Replace or press Ctrl+F/
Cmd+F to open the Find and Replace dialog box.

 Use the following settings:

Find in: Current Document

Search: Source Code

Find:

Replace:

Use regular expression:

Building the CMS

ptg7799847

352

This searches the source code for 1 followed immediately by a double quotation mark and
replaces it with , changing the number to the value of followed by
a double quotation mark. Adding the quotation mark makes it easier to find the relevant
instances of 1.

 Click Find Next twice. The first two instances are in the form’s opening tag. You don’t want
to change them.

The next time you click Find Next, Dreamweaver highlights in the following line:

Click Replace. Dreamweaver changes the code to this:

After changing the code, Dreamweaver jumps to the next instance. Click Replace again,
and continue doing so until Dreamweaver reaches the end of the form. The Find and
Replace dialog box should report that 11 items were found, and that 9 were replaced.

 Before closing the Find and Replace dialog box, select the PHP code (without the
double quotation mark) in the Replace field, and press Ctrl+C/Cmd+C to copy it to
your clipboard.

 In Code view, replace the number 1 in the three tags by pressing Ctrl+V/Cmd+V
to paste the code. The first tag should look like this:

 One instance still needs to be fixed. It’s in the code created by the Redisplay on Error
server behavior. Locate the following code (around line 40):

LESSON : Inserting Data into Multiple Tables

ptg7799847

353

The reason the Find and Replace dialog box didn’t find it is because the server behavior
uses single quotation marks. Also, this line of code is already inside a PHP block, so
you can’t paste the code you used in all the other instances. Replace the single quotation
marks in with double ones, and embed like this:

By using double quotation marks and wrapping in curly braces, this produces
, , and so on.

 Save insert_photos.php and test it in Live View or a browser. You should now have three
sets of input fields for photos.

 Click Live Code in Dreamweaver or check your browser’s source code. The , ,
and attributes should all end in the correct numbers.

The menu doesn’t work yet, but you’ll come back to that later. You can compare
your code with lesson10/completed/insert_photos_01.php.

 Close insert_photos.php, and open insert_place.php. You need to create a loop for the
photo input fields in the same way as you have just done.

Start by including scripts/db_insert_place.php using above the
declaration.

Building the CMS

ptg7799847

354

 Only two fields are related to photos in this page: the file field and a text input field for
the caption. Wrap them in a loop like this:

 Repeat steps 14–19 to replace the number 1 with the variable . Because there are only
two fields related to photos, the Find and Replace dialog box reports finding 8 items, 6 of
which should have been replaced.

 Save insert_place.php, and test it in Live View or a browser. You should see three sets
of photo-related fields. You can compare your code with lesson10/completed/insert_
place_01.php.

Inserting state_id as a foreign key
When inserting a new record in the table, you need to store the as a foreign
key. This is done by querying the table to retrieve all records and passing the result to a

 loop to populate a menu in insert_place.php. The primary key in the
table () becomes the of each tag, and the actual name () is
displayed in the menu. So, when the form is submitted, the correct can be inserted
in the table as a foreign key. Populating a menu dynamically like this is a
frequently used technique, so it’s worth creating a custom server behavior.

This is how it’s done:

 Add the following function definition to db_definitions.php:

This defines a function that takes a single argument, which should be a object.
You need to pass the object to the function because variables and objects declared outside
a function are outside its scope (see “Understanding Variable Scope” in Lesson 3).

LESSON : Inserting Data into Multiple Tables

ptg7799847

355

The function creates a query to retrieve all data from the table ordered by
, passes it to , and returns the result.

 Save db_definitions.php, and switch to db_insert_place.php. Open it by selecting insert_
place.php and clicking db_insert_place.php in the Related Files toolbar. Alternatively,
open db_insert_place.php in a separate tab.

 Insert a new line inside the block under the line that includes db_definitions.php, and
type $states = followed by a space.

 Press Ctrl+spacebar to bring up code hints, and type geta. Dreamweaver should present
you with a code hint for , the function you created in step 1.

Press Enter/Return for Dreamweaver to autocomplete the function name and opening
parenthesis. Even though the function is defined in a different page, Dreamweaver recog-
nizes it and creates code hints because the pages are linked. Type $db after the opening
parenthesis, and select from the list of code hints. Type a closing parenthesis and
semicolon. The completed line should look like this:

The function returns the result from the SQL query, which is now stored
as a multidimensional array in .

 Click Source Code in the Related Files toolbar to switch to the HTML code in insert_place.
php, or select the page’s tab if you’re working in separate tabs. Locate the menu
(around lines 40–41), and insert the following PHP between the opening and closing tags:

Building the CMS

ptg7799847

356

The loop iterates through the array, assigning it to the temporary vari-
able . Each time the loop runs, contains a record from the SQL query in which
the column names are used as the array keys. So, contains the current
value of , and contains from the same row.

 is inserted into the attribute, and is dis-
played between the opening and closing tags. If the array equates to

, the conditional statement compares with . If
they are equal, is inserted in the opening tag.

In plain English, this means all the records retrieved from the table are used to
populate the menu. If there are errors when the form is submitted, the menu
automatically selects the value chosen by the user.

 Put it to the test by saving all related files and clicking Live View. You should see Alabama
listed in the menu.

Click the menu open, and you should see all 50 states plus the District of Columbia listed.
A lot easier than typing them all out by hand!

TIP: If it didn’t work, compare your code with lesson10/completed/insert_place_02.php, which

contains just one minor change that will be made in the next step.

 Exit Live View, and locate the following line in the PHP code you inserted in step 5
(around line 44):

Replace the single quotation marks in with double quotation marks
like this:

This makes no difference to the way the code works, but makes it more adaptable when
you convert the entire code block into a server behavior. Using double quotation marks
means you can easily embed in the value through the server behavior’s dialog box
without needing to dive into Code view later.

LESSON : Inserting Data into Multiple Tables

ptg7799847

357

 Save insert_place.php, and copy the amended PHP block to your clipboard.

 Click the plus button in the Server Behaviors panel, and choose New Server Behavior.
Name the new server behavior Zend Select Menu, and click OK.

 Click the plus button next to “Code blocks to insert,” and accept the name suggested by
Dreamweaver.

 Replace the placeholder text in the “Code block” text area by pasting the PHP code from
your clipboard.

 Convert the following variables to server behavior parameters:

:

:

:

:

The amended code should look like this:

The parameters will be used as labels in the server behavior’s dialog box and allow you to
build a dynamic menu quickly and easily.

 Use the following options at the bottom of the panel:

Insert code: Relative to a Specific Tag

Tag: select

Relative position: Before the Closing Tag

Selecting Before the Closing Tag allows you to add a static tag inside the
 menu before the loop.

 Click Next. Dreamweaver offers its suggestions for the new server behavior’s dialog box.
They’re fine, but select Menu Name, and use the up arrow button at the top right to move
it above “select tag.” Then click OK.

Building the CMS

ptg7799847

358

You’ll use this server behavior later when completing insert_photos.php.

Inserting details in the places table
The form in insert_place.php is designed to insert the details of a new place and up to three
related photos and captions. From the user’s viewpoint, the process should appear to be a
single, seamless operation. In reality, there are many stages. This is what the script needs to do:

 When the form is submitted, validate the text fields. If there are any errors, stop processing
and redisplay the form with error messages and the text preserved in the input fields.

 Check the database to see if the name is already registered. If it is, stop processing and
redisplay the form.

 Upload the images. If any image fails validation, abandon the upload process and redis-
play the form.

 If the text and images all validate, insert the data into the table.

 If the data is inserted successfully and no images have been detected, redisplay the form
with a message indicating that the place has been inserted in the database.

 If images have been detected, query the database to get the new place’s primary key.

 Loop through the images. Each time the loop runs, the following events take place:

Insert the filename and caption into the table.

Query the database to get the photo’s primary key.

Insert both primary keys as a pair in the table.

 Report the successful upload of the images and insertion of the new place.

This process involves more than 130 lines of code. Most of it is code that you have already
used in previous lessons, so you can save some time by editing an existing script, as well as
copying and pasting. However, if you need a break, now is a good time to take one. The good
news is that the other scripts reuse a large part of this code and are considerably shorter.

LESSON : Inserting Data into Multiple Tables

ptg7799847

359

If you’re ready, let’s begin.

 The first task of the script is to validate the text fields. Because the forms that insert
the photos and update existing records also need to validate them, it makes sense to
create custom functions that can be reused. Add the following function definition
to db_definitions.php:

You should recognize the code inside the function from Lesson 7. It was used to validate
the first and family names in the user registration system. It accepts alphabetic charac-
ters, spaces, hyphens, and apostrophes. If you need to accept a wider range of charac-
ters, including accented characters and other writing scripts—such as Arabic, Chinese,
Cyrillic, Hindi, and Japanese—change the first line inside the function to this:

The code inside the function is very straightforward. However, the function works in a very
different way from most functions. Normally, when you pass an argument to a function, it’s
passed by value. Whatever happens inside the function has no effect on the variable outside
unless the value is returned by the function and reassigned to the original variable.

However, doesn’t return a value. Instead, it uses a technique known
as passing by reference, which does change the original value.

Look closely at the two arguments in the parentheses—the function signature. The first
argument, , represents the value in the text input field. The second argument,

, represents the array that stores error messages. What’s different is that
it’s preceded by an ampersand like this: . This results in a permanent change to
the value(s) stored in the variable passed as an argument to the function.

This means that if the variable fails validation, a element will be added to the
 array passed as the second argument to the function.

NOTE: Although the function definition uses the same name as the array in the rest of the

script, it’s the ampersand in front of the argument that makes the difference. It would work the

same if you passed an array called to the function.

Building the CMS

ptg7799847

360

 The other text fields that you need to validate are the description and photo captions.
Add the following function definitions to db_definitions.php:

Like , these two functions pass the argument by reference. So,
they result in elements being added to the original array if the value passed to the
validator is rejected. Unlike the previous function, they don’t instantiate a
object. Instead, they expect a validator () to be passed to them as an argument.

The function also expects an argument called . The function will
be used inside a loop, so it’s necessary to keep count of how many times the loop has run.

 is used inside double quotation marks to insert the correct photo number in the
 array.

 The validator for the description and captions checks the length of the string. To avoid
the need to change the minimum and maximum values in multiple places, add the fol-
lowing definitions at the top of db_definitions.php:

These set the minimum length of a caption to zero and the maximum to 150 characters.
The minimum for a description is set to 10 characters. Setting the maximum to
means there’s no upper limit.

 After validating the text fields, the script needs to check if the place name already exists
in the database. Again, this uses a technique from Lesson 7. You need to run a
query to see if there is a match for the name. Add the following function definition to
db_definitions.php:

LESSON : Inserting Data into Multiple Tables

ptg7799847

361

The function signature has three arguments: is a object capable of running
 queries; is the name you want to check; and is the array of error

messages—again it’s passed by reference.

The code in the body of the function creates a SQL query to select the primary key of a
record that has the same name as and then executes the query. If a match is found,

 equates to , adding a message to the array. If no match is found, the
name is not a duplicate.

 With those definitions in place, you can now start building the processing script. Save
db_definitions.php, and switch to db_insert_place.php.

Add a conditional statement to ensure that the code runs only when the submit button
has been clicked. The attribute of the button is , so the code looks like this:

 Inside the conditional statement, call the first of the functions you just defined by pressing
Ctrl+spacebar and typing va. Code hints display the three validation functions. Select

 and double-click or press Enter/Return. Code hints also remind
you of the arguments required. The first one is the name submitted from the form,

, and the second one is the array. The new line of code should
look like this:

CAUTION! When you use a function that passes an argument by reference, do not prefix the

argument with an ampersand. The ampersand is used only in the function definition.

 Create an instance of the validation class, and set the minimum and maxi-
mum values for the description using the variables defined in step 3 (they should appear
in code hints after you type a dollar sign):

Building the CMS

ptg7799847

362

 Pass the description submitted from the form, together with the validator and the
 array to . Don’t forget that pressing Ctrl+spacebar will

bring it up in code hints for autocompletion.

 The captions use different minimum and maximum lengths, so you need to change them
using the and methods like this:

 The form contains multiple caption fields, so you need to use a loop to check each one. The
 variable controls the number of photo and caption fields, so you can use it

to limit the number of times the loop runs. Add the following code to your script:

The counter is initialized at 1. It’s embedded in a double-quoted string in the
variable’s key, so the loop validates , , and so on.

 is also passed as an argument to add the correct number to any error messages. The
third and fourth arguments are the validator and the array.

 The next stage is to check whether the place is already listed in the database. This involves
querying the database, but there’s little point in doing so if the validation tests have failed.
Wrap the call to in a conditional statement like this:

 Save db_insert_place.php, and test insert_place.php in Live View or a browser. Start by
submitting a blank form, remembering to hold down Ctrl/Cmd when clicking Insert
Place in Live View. You should see the following error messages at the top of the page:

LESSON : Inserting Data into Multiple Tables

ptg7799847

363

 Type in a place name and photo caption, and select a state, but leave the Description text
area blank. When you submit the form again, the values should be preserved in the fields
you filled in.

You can compare your code with db_definitions_01.php and db_insert_place_01.php in
lesson10/completed/scripts.

Validating and uploading the photos
Validating and uploading the photos is the longest part of the processing script. The excellent
news is that you have already built most of it in Lesson 9. Instead of completely reinventing
the wheel, you can adapt the multiple file upload script to work with this project. The ability
to upload images is also required by the form that inserts new photos, so the upload script
needs to be in a separate page.

 Copy process_upload_06.php from lesson10/start/scripts to the cms/scripts folder, and
rename it upload_images.php.

 You don’t need the and blocks, because this page will be included in the
block of the other processing scripts. Delete the code shown on lines 2–8 and 80–83 of
the following screen shot.

Building the CMS

ptg7799847

364

 Select the remaining code after the opening PHP tag, and click the Outdent Code
icon in the Coding toolbar to correct the indenting.

 The first line of code now defines the variable. Delete it. The definition
should be with the others in db_definitions.php.

 Before adding the definition, create a new folder called image_upload inside the cms
folder. Mac users should make the folder writable by everyone, as described in “Creating
a local folder for testing uploads” in Lesson 9.

 At the top of db_definitions.php, add a definition for using the full path to
the image_upload folder. The path depends on your setup, but the value used in the files
on the accompanying CD looks like this:

 As it stands, the upload script simply moves images from one location to another. However,
the CMS not only uploads images, but also stores details about them in the database. To
make sure the right data is associated with each image, you need to keep track of each
image’s caption. The form in insert_photos.php has a menu that allows you to
associate a new image with a place, so you need to keep track of that information, too.

LESSON : Inserting Data into Multiple Tables

ptg7799847

365

The existing script handles each image separately in a loop. So, the way to keep
track of associated data is to capture their values in variables at the start of the
loop and use them to build an array at the end of the loop. Add the following code to
capture the values:

In the original upload script, the loop used the temporary variable to
identify the file. also lets you refer to specific files by the attribute in
the upload form. The loops in insert_place.php and insert_photos.php use a counter to
name the file fields , , and so on. This loop does the same by initializing

 as 1 and using it to ensure is associated with and
. To make the code easier to read, these values are assigned to ,

, and respectively. The second time the loop runs, these variables
store the values of , and .

 exists only when the form in insert_photos.php is sub-
mitted, so the conditional statement sets the value of to if it hasn’t been
submitted by the form.

 Several lines farther down, after the validators have been added to the object,
the script validates the file and gets the error messages if it fails. The code looks like this:

Change it to this:

Building the CMS

ptg7799847

366

This creates a generic message instead of getting the messages generated by
. Note also that the error message is added to the array,

not . The array is used at various stages throughout this script to halt
processing when a problem arises. You don’t want to insert information in the database
if the uploaded file doesn’t meet the validation requirements. The filename is used as the
array key to identify the problem image.

 Around line 36, you need to make a similar change to an error message. Locate this code:

Change it like this:

The variables and refer to the same file: is the internal
name used by the upload script after stripping out any spaces. To identify the correct file
internally, needs to be used as the array key, but the error message preserves
the original filename.

 Six lines farther down is the section that renames duplicate files. It looks like this:

LESSON : Inserting Data into Multiple Tables

ptg7799847

367

Remove the conditional statement by deleting the clause and the closing curly brace at
the bottom of this section of code. Files will be automatically renamed, because the CMS
allows the user to view and delete images. Renaming prevents files from being overwritten
accidentally. The removal of duplicates is up to the user.

To keep your code tidy, select the code that was in the conditional statement, and click
the Outdent Code icon in the Coding toolbar once.

 The final changes are made to the section of code that handles the messages relayed to the
user depending on the success or failure of the upload. The existing script looks like this:

Change it like this:

If the upload fails, the error messages are added to the array instead of the
 array. To prevent the details of a problem file from being inserted into the

database, it’s identified by using as the array key.

The other change is that if the upload succeeds, the file’s name, caption, and associated
 are added as an array to a new array called . Each element of the top-

level array contains the details of a single image. For example, the first array element
contains the following subarray: , , and

.

Building the CMS

ptg7799847

368

 Save upload_images.php, and include it in db_insert_place.php after the conditional
statement for . The include command should similarly be
wrapped in a conditional statement like this:

You can compare your code with upload_images.php, db_definitions_02.php, and
db_insert_place_02.php in lesson10/completed/scripts.

Inserting the place and photo data
Once the data has been validated and the photos uploaded successfully, you’re ready to insert
the data into the , , and tables. A SQL query cannot deal
with multiple tables, so you need to handle each table separately. You also need to query the
database to obtain the primary key for each place and photo so that you can insert them as
foreign keys in the table. This is done with the method,
although you must remember to use it immediately after inserting a record.

The rest of the script is relatively short and easy to understand.

 In db_insert_place.php, add another conditional statement to make sure there were no
errors when the photos were uploaded:

All remaining code goes inside this conditional statement.

 Create an array of values to be inserted in the table:

The values for the , , and columns come directly from the form.
The column takes its value from the field in the form after it has been

LESSON : Inserting Data into Multiple Tables

ptg7799847

369

passed to the function. The first argument passed to the function is a pair
of quotation marks with a space between them; the second argument is also a pair of
quotation marks but without a space. This closes up any spaces—San Francisco becomes
SanFrancisco. Spaces should never be used in a URL.

The column doesn’t need a value, because it’s automatically initialized to the
current timestamp. However, the timestamp needs to be set explicitly in the
column by using the MySQL function, which inserts the current date and time.
As explained in “Using SQL functions with Zend_Db” in Lesson 8, functions need to be
wrapped in a object.

 Insert the data with the method like this:

 If any photos have been uploaded, you need to get the primary key of the new record and
insert the details in the and tables. However, if nothing has been
uploaded, there’s nothing more to do apart from display a message reporting the result.

The result of the method is captured in . If the array created
by upload_images.php contains any values, you know images have been uploaded. Use
both values to determine whether to retrieve the new record’s primary key. Add the fol-
lowing code on the next line:

This gets the primary key from the table and stores it in .

 You can now loop through the array to insert the filename and caption for each
image in the table. Immediately after inserting the data, capture the primary key
using the method, and insert the primary keys from the and

 tables in . The loop that does all that looks like this:

Building the CMS

ptg7799847

370

There’s no need to check for errors in the image uploads, because the conditional statement
you added in step 1 prevents the script from getting this far if there are any problems.

 All that remains is to do is to prepare the messages to report what has happened. The next
section of code needs to go after the conditional statement that handles the images. It
looks like this:

 Save db_insert_place.php, and test insert_place.php by typing values in the “Place name”
and Description fields, and selecting a state. Browse to the images folder to select a cou-
ple of images and add captions. Then click Insert Place. If all your code and the database
structure are correct, you should see a series of success messages at the top of the form.

 Check the image_upload folder in the Files panel. Copies of the photos you selected
should have been added to the folder. Also check in phpMyAdmin. The , ,
and tables should have the first set of data.

LESSON : Inserting Data into Multiple Tables

ptg7799847

371

If it didn’t work, compare all your files carefully with insert_place_02.php in lesson10/
completed and with db_definitions_02.php, db_insert_place_03.php, and upload_images.
php in lesson10/completed/scripts. Also check your database structure, and load it from
lesson10/start/scripts/cms_structure.sql. This is a complex script, so there are many
places where you might have made a mistake.

Before moving on to the next section, add two or three more places to the database. The
images folder contains photos of ten locations in Arizona, California, Nevada, and Utah,
but you don’t need to confine yourself to them. Not every place needs to be accompanied by
a photo, and captions are optional. The CMS is designed to allow you to add photos and edit
their details later.

Inserting photos separately
All the hard work for this administration page has already been done. The script in
upload_images.php validates the images and uploads them. The main task is to create
the script that inserts the image details into the database.

 Open insert_photos.php. The menu needs to be populated with a list of the
places already registered in the database. This will be used in the same way as the State

 menu in insert_place.php, storing the primary key of each place so it can be
inserted as a foreign key in the table.

 Create the following function in db_definitions.php to select the and col-
umns for each record in the table:

This is similar to the function you created earlier. It takes as its single argu-
ment a object with read permission and returns the database result as an array.

 Save db_definitions.php, and switch to db_insert_photos.php. Inside the block,
call the function you just created and assign the result to like this:

Save db_insert_photos.php after making this edit, and switch to insert_photos.php.

Building the CMS

ptg7799847

372

 You can now use to populate the menu. Select the menu in Design view,
click the plus button in the Server Behaviors panel, and choose Zend Select Menu. Use
the following settings in the dialog box:

The menu is inside a loop, so the value in the “select tag” menu includes a PHP
tag and the counter. However, the value in Menu Name should be simply place_id{$i},
because it will be used as the key of a variable.

 Click OK to close the Zend Select Menu dialog box, and examine the code that has just
been inserted (the values entered in the dialog box are highlighted):

 Save the page, and click Live View to test it. Click open each of the menus in turn.
They should display a list of the place names registered in the table.

LESSON : Inserting Data into Multiple Tables

ptg7799847

373

If it doesn’t work, compare your code with insert_photos_02.php, scripts/db_
definitions_03.php and scripts/db_insert_photos_01.php in lesson10/completed.

 The form for inserting photos is now complete. Next, you need to build the script that
processes the form when the submit button is clicked.

The attribute of the submit button is , so the processing script needs to go
inside a conditional statement in db_insert_photos.php. Add the conditional statement
after the code you added in step 3:

 Inside the conditional statement, add a validator to check the length of the captions and
loop through them. Then include upload_photos.php if there are no errors. The code
looks like this:

This is the same as in db_insert_place.php, so it needs no further explanation.

 If photos have been uploaded, the final section of code loops through the array
created by upload_photos.php to insert the details in the and tables.
Add the following code immediately after the code in the previous step:

Building the CMS

ptg7799847

374

The code in upload_images.php stores the filename, caption, and primary key of the
related place in the array. The loop that you just inserted deals with each
image in turn.

It first makes sure the image was uploaded successfully by checking the array
with . If the filename hasn’t been used as an array key, you know the
image is OK, and the code inside the conditional statement inserts the values into the

 and columns of the table, and uses to capture
the primary key of the new record as .

Another conditional statement then checks the associated with the current
image. If the menu in the form is left at the default “Select place,” the value is
0, so the condition fails, and no data is added to the table. However, if a
place has been selected, its primary key () is inserted into with the
photo’s primary key ().

 Save db_insert_photos.php, and test the form in insert_photos.php. If you select a photo
that has already been uploaded, you should see a report that it has been renamed.

Check the files in cms/image_upload to verify that the original file and the renamed file
are both there.

If you have any problems, compare your code with db_insert_photos_02.php in
lesson10/completed/scripts.

Reviewing the project so far
This project has been a lot of work, and the CMS is still not complete. In the next lesson, you’ll
create the pages to list all places and photos, as well as to update and delete individual records.
You might be wondering if this could have been created more easily using the dialog boxes of
Dreamweaver’s built-in server behaviors. The answer is no. It would involve extensive editing
of the automatically generated code, resulting in considerably longer scripts. Dreamweaver
does not have the built-in capability to upload files or to insert data into multiple tables.

LESSON : Inserting Data into Multiple Tables

ptg7799847

375

Building a custom CMS requires a lot of planning, but it has the advantage that it does exactly
what you want. Even if you eventually decide to adapt an existing CMS, such as Drupal,
Joomla!, or WordPress, the experience gained by building a custom management system like
this will give you a greater understanding of the underlying principles. In turn, that will make
it easier to adapt an existing system to your own needs.

What You Have Learned
In this lesson, you have:

Planned the CMS for a travel website (pages 345–346)

Defined the structure for tables related through foreign keys (pages 346–348)

Created forms and scripts to upload images and simultaneously insert related data into
a database (pages 349–374)

Built a server behavior to populate a menu from a SQL query (pages 355–358)

Used a menu to insert a foreign key into a database table (pages 371–374)

What You Have Learned

ptg7799847

LE
SS

O
N

 1
1 What You Will Learn

In this lesson, you will:

Study the basic syntax of queries

Learn how to join tables with and

Use to display database results over several pages

Create a server behavior for

Update and delete data stored in multiple tables

Approximate Time
This lesson takes approximately 3 hours to complete.

Lesson Files
Media Files:

Same as Lesson 10

Starting Files:

lesson11/start/delete_photo.php
lesson11/start/delete_place.php
lesson11/start/list_photos.php
lesson11/start/list_places.php
lesson11/start/update_photo.php
lesson11/start/update_place.php

Completed Files:

lesson11/completed/delete_photo.php
lesson11/completed/delete_place.php
lesson11/completed/list_photos.php
lesson11/completed/list_places_01.php
lesson11/completed/list_places_02.php
lesson11/completed/update_photo.php
lesson11/completed/update_place_01.php

ptg7799847

377

lesson11/completed/update_place_02.php
lesson11/completed/scripts/db_definitions_04.php
lesson11/completed/scripts/db_definitions_05.php
lesson11/completed/scripts/db_definitions_06.php
lesson11/completed/scripts/db_definitions_07.php
lesson11/completed/scripts/db_delete_place_01.php
lesson11/completed/scripts/db_delete_place_02.php
lesson11/completed/scripts/db_update_photo_01.php
lesson11/completed/scripts/db_update_photo_02.php
lesson11/completed/scripts/db_update_place_01.php
lesson11/completed/scripts/db_update_place_02.php
lesson11/completed/scripts/library.php

ptg7799847

LESSON 

Updating and Deleting
Files in Related Tables

In this lesson, you’ll complete the multiple-table CMS from Lesson 10. To update records, you

need to select the data stored in related tables and display it in a form ready for editing. When

the form is submitted, the data must be validated again before the database can be updated.

lesson. You’ll also use to display database results over several pages.

The photo management page draws data from the file system and three separate tables.

378

ptg7799847

379

Selecting Records with SQL
Now that you have records stored in multiple tables, it’s necessary to take a more detailed look
at how to select records. The basic syntax of a query looks like this:

SQL keywords are case insensitive, but the normal convention is to type them in uppercase to
make them easier to identify. Splitting the query over several lines is also only a convention,
but it enhances readability and maintenance.

The and clauses are optional. In fact, there are several other options that have
been omitted here for the sake of simplicity.

Selecting all records in a table
To retrieve all records in the table, the query looks like this:

This selects every record in every column of the table. Unless you really need every
column, it’s better to specify the columns you want by listing them separated by commas.
For example,

This selects the named columns from all records in the table.

Specifying search criteria with WHERE
Adding a clause narrows down the results, usually by specifying a value to match or a
comparison. For example,

This retrieves the , , and fields for the record that has San Francisco
as the value in the column.

NOTE: Unlike PHP, SQL uses a single equals sign to test for equality.

ptg7799847

380

You can specify multiple conditions in a clause by separating the conditions with the
keywords and . For example,

This retrieves San Francisco and all records created since January 1, 2010. If you use ,
it finds San Francisco only if the record was created on that date or later.

Specifying the sort order
By default, a query returns the results in the same order as they are stored in the
database. Initially, this is the same order as the data was inserted but is likely to change as
records are updated or deleted. To specify the order of results, add an clause, listing
the column(s) that determine the order. You can specify a column, even if it’s not included in
the part of the query. For several columns to affect the order, add them as a comma-
separated list in order of precedence like this:

This retrieves the three named columns with the results sorted chronologically by their date
of creation. Any records that were created at the same time are sorted alphabetically by the

 column.

NOTE: In this example, the column has no effect, because the column stores both

date and time. In Lesson 12 you’ll see how to extract date parts from a or column.

By default, the sort order is ascending—in other words, alphabetical, smallest to largest, or
oldest to most recent. To sort in reverse (descending) order, add the keyword after the
column name like this:

This sorts the results with the newest record first.

You can use without specifying a clause. However, if you include a clause,
it must come before like this:

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

381

If you put the clause after , the database rejects the query.

Joining tables
When data is stored in separate tables, you retrieve related data by joining the tables on the
fly. You list the names of the columns after the keyword and perform the join(s) in the

 clause. Where columns share a common name, you must prefix the column name with
the table name separated by a period. For example, you distinguish between the
columns as and .

The most common type of join is an . Used on its own, it produces what’s known as
a Cartesian join—every possible combination of rows from both tables. This is rarely practi-
cal, so you normally qualify the join by adding a condition, such as matching the foreign key
of one table to the primary key of the other table using an clause. This is how you join the

 and tables to get the state name associated with each place:

The result looks like this:

The values stored in are the USPS abbreviations for the states, but using
 to match allows you to retrieve the value of for each

record in the table.

An alternative syntax is to use instead of :

ptg7799847

382

Although a clause can be used to specify the condition for joining tables, it’s recom-
mended to use . Use to restrict which rows you want in the result set.

NOTE: MySQL also permits you to replace by a comma when using to specify

the condition. However, this syntax sometimes causes errors and is not recommended in

MySQL 5.0 or later.

When the same name is used in both tables, you can use this syntax:

Using a LEFT JOIN to find missing values
Let’s say that California has been accidentally deleted from the table. Using
on the same data produces this result:

 works only when there are matching rows in both tables. To find all places, even if
there isn’t a matching value in the table, use a . The syntax is the same:

Changing to produces the following result:

You might have some records in the database that don’t have any photos associated with them.
Using would omit places without photos. Using gets all places, even if
they don’t have photos.

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

383

In a , all records are found in the table on the left, even if there’s no match in the table
on the right. Left and right refer to the order in which the tables are listed in the query.
In this example, comes before the keywords , so it’s on the left. The table
comes after the keywords, so it’s on the right. As a result, the query retrieves all records from the

 table and uses as the value in the table where there’s no match.

Using the Zend_Db select() method
You have already used the , , and methods, so you would be right
to assume there’s also a method. Most of the time, it’s more convenient to create your
own query and pass it to or . One case where it makes sense
to use the method is with , which automatically paginates through
a set of database results. works in combination with the method to
retrieve the exact number of rows from the table for the current page, which is more efficient
than retrieving all records and discarding those that aren’t displayed.

The instructions in this lesson for pages that use show the basic use of the
 method. For full details of the many other options, see http://framework.zend.com/

manual/en/zend.db.select.html.

Completing the CMS
Before building the remaining pages of the CMS, add about four or five more records to
the table. The images folder contains photos of 10 locations in Arizona, California,
Nevada, and Utah. Captions are optional, as are photos, but the description should be at least
10 characters. Don’t worry about crafting perfect prose. All you need is dummy data to test
the update and delete scripts.

Using Zend_Paginator to page through database results
The component is the equivalent of Dreamweaver’s Recordset Navigation
Bar, which lets you page through a set of database results. It involves a little more work than
Dreamweaver’s built-in solution, but it’s more versatile, and you can convert it into a custom
server behavior.

You use the component by passing an array or a object to the static
method like this:

Completing the CMS

http://framework.zend.com/manual/en/zend.db.select.html
http://framework.zend.com/manual/en/zend.db.select.html

ptg7799847

384

To display the appropriate records, the component needs to know the current page. The naviga-
tion links pass the selected value through a query string. So, if you use as the variable in the
query string, you set the current page with the method like this:

If isn’t in the array, the paginator defaults to the first set of results.

By default, the component sets the number of items to display to 10. The number of naviga-
tion links also defaults to 10. To change either number, use the and

 methods. For example:

This displays five items per page and sets the maximum number of navigation links to six.

To display the items, use a loop. Let’s say your database result is in . Pass it to
 and use the paginator in the loop:

 does all the necessary calculations and displays the appropriate section of the
database result.

You build the navigation links by getting an array of pages in the current range with the
 method, which optionally takes as an argument a string specifying how the links

should be displayed. There are four options:

All. All pages are included.

Elastic. The range expands and contracts as the user moves through the links.

Jumping. The page numbers remain fixed until the user reaches the end of the current
range. Then the page numbers start at the beginning of the next range. For example, if
the range is set at 5, links for pages 1–5 are displayed until the user clicks Next on page 5,
triggering the display of links to pages 6–10.

Sliding. The current page number is always displayed at the center of the range with
numbers added or removed at each end, depending on which direction the user selects.
This is the default.

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

385

Links to specific pages are created by using the paginator’s properties, which are listed in
Table 11.1.

Table 11.1 Zend_Paginator Properties

Property Description

First page number (i.e., 1)

Last page number

Next page number

Current page number

Previous page number

Number within the whole series of the first item on the current page

Number within the whole series of the last item on the current page

Array of page numbers in the current range

 Number of first page in the current range

Number of last page in the current range

 Number of items on the current page

 Number of items on each page

Total number of pages

Total number of items

You’ll learn how to build the navigation links in the next section.

Creating a management page for the places table
Updating and deleting records first involves displaying them as a list and then creating links to
the update and delete pages. These instructions explain how to create a page to list all records
in the table. Although you have only a handful of records at the moment, you’ll add an
instance of to navigate through them.

 To make sure you have the appropriate pages to link to, copy the following files from
lesson11/start to the cms folder you created in Lesson 10:

delete_photo.php

delete_place.php

list_photos.php

Completing the CMS

ptg7799847

386

list_places.php

update_photo.php

update_place.php

If Dreamweaver prompts you to update the links, click Don’t Update.

 Open your copy of list_places.php. It contains a two-row table with EDIT and DELETE
in the last two cells of the second row. These will be used to create links to the edit and
delete scripts.

 The only external file you need for this page is scripts/library.php. Use to
include it above the declaration.

 To build the page, you need to select the place’s primary key, its name, and the state’s name
from the database. This involves joining the and tables like this:

Although you could use this SQL with and pass the resulting array to
, it’s a waste of resources to retrieve all records every time. For a small

number of records it might not matter, but as your database grows it becomes increas-
ingly inefficient. Instead, you need to use the method to build the same query.
Add the following code in the PHP block above the declaration:

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

387

You’ll add the closing brace of the block at the foot of the page in a moment. First, just
concentrate on the way the method builds the same query by chaining three
other methods:

The method takes two arguments: the name of the table and an array of column
names that you want from the table.

The method takes three arguments: the table you want to join, the name
of the column that acts as the join condition, and an array of columns you want from
the table.

The method takes one argument: an array of the columns that determine the
sort order.

This is more complex than the equivalent SQL, but it’s worth using here to avoid fetching
a full database result each time a page link is clicked.

 Scroll to the bottom of the page, and add a PHP block below the closing tag to
end the block and add a block:

 Scroll back to the top of the page, and add the code for the paginator inside the first
PHP block:

This passes to the static method and sets the paginator’s
basic settings. The number of items per page is deliberately low to show how the pagina-
tor works. As long as you have at least three records in the table, it will display the
results across multiple pages.

 Wrap the second table row in a loop, assigning to the temporary vari-
able , and use to display the values of the and columns in the
first two table cells like this:

Completing the CMS

ptg7799847

388

 TIP: When using to insert a brief snippet of code in HTML, use the echo icon in the

PHP category of the Insert panel/bar.

Although is an object that contains a database result, you can loop through it
with as if it were an ordinary array.

When adding this loop, use the same comments as shown here. They’re designed
to help Dreamweaver recognize the code when you later convert it into a server behavior.

 Save list_places.php, and click Live View to test your code so far. Depending on what’s in
your database, your page should look similar to this:

You can compare your code with list_places_01.php in lesson11/completed.

 Exit Live View, and select the EDIT text in the third cell. Create a link to update_place.
php. Select the DELETE text, and create a link to delete_place.php.

 You need to add a query string to each link. Click in Code view to position the insertion
point before the closing quotation mark of the attribute, and type ?place_id=. Then
use the echo icon to add $row[‘place_id’]. The EDIT link should look like this:

Do the same for the DELETE link.

 Add a paragraph between the closing and tags, and create the navigation
links for the paginator like this:

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

389

The first line of code inside the PHP block uses the method to get an array
of the pages needed to display the other database results and selects the Elastic scrolling
method. The array is stored as .

The next line checks whether has a property (see Table 11.1). If it does, a
link to the previous page is created. The link is built from , which
contains the URL of the current page, followed by a query string that uses the
property to insert the correct page number. For example, if the current page is the third
in the navigation sequence, it creates a link to page 2. If the current page is the first in the
sequence, no link is created.

The center section of links is created by a loop that uses the array stored in the
 property and assigns each element temporarily to . Inside the loop,

a link is created for each page in the range except the current one. The current page num-
ber is displayed as plain text.

The final section of the code checks the property and creates a text link to it if necessary.

CAUTION! When copying this code, pay careful attention to the mixture of single and double

quotation marks. Also, note that the strings include a space before each link except the first one.

 Save the page, and click Live View to test it. You should see a set of navigation links
below the table. The number of links depends on how many records you inserted in the

table.

Completing the CMS

ptg7799847

390

 Hold down Ctrl/Cmd and click the Next link. You should be taken to the second set of
results, and a Prev link should appear at the start of the row.

You can compare your code with list_places_02.php in lesson11/completed.

Converting the paginator into a server behavior
 involves code in different parts of the page, but that’s not a barrier to convert-

ing it to a server behavior. This is how you do it:

 Exit Live View, if necessary, and copy the PHP code from step 11 in the previous section
to a plain text editor. You need to paste two sections of code into the Server Behavior
Builder dialog box, so it’s more convenient to have the second section saved temporarily
outside Dreamweaver.

 Copy to your clipboard the code from step 6 in the previous section, click the plus button
in the Server Behaviors panel, and choose New Server Behavior.

 In the New Server Behavior dialog box, type Zend Paginator in the Name field,
and click OK.

 Click the plus button next to “Code blocks to insert,” and click OK to accept the
suggested name.

 Paste the code from step 6 of the previous section into the “Code block” text area, and
amend it to convert some of the original values to server behavior parameters. The edited
code should look like this:

 Leave the “Insert code” and “Relative position” menus at their default settings.

 Click the plus button next to “Code blocks to insert,” and click OK to accept the sug-
gested name.

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

391

 Replace the placeholder text in the “Code block” text area with the following:

 Set the “Insert code” menu to Relative to the Selection and the “Relative position” menu
to Before the Selection.

 Click the plus button to insert another code block.

 Replace the placeholder text in the “Code block” text area with a closing curly brace and
inline comment:

NOTE: The comments after the curly braces in steps 8 and 11 are essential to prevent

Dreamweaver from mistaking other loops as part of this server behavior. If you omit them,

Dreamweaver incorrectly lists Zend Paginator in the Server Behaviors panel on any page that

uses a closing curly brace on its own.

 Set the “Insert code” menu to Relative to the Selection and the “Relative position” menu to
After the Selection.

 Click the plus button to create a fourth code block, and paste the code from step 11 of the
previous section into the “Code block” text area. Edit the value in the method
to convert it into a server behavior parameter:

The rest of the code is fine as it is. Make sure the placeholder text has been deleted and
that the code block has opening and closing PHP tags.

 Use the following settings for the options at the bottom of the Server Behavior Builder
dialog box:

Insert code. Relative to a Specific Tag

Tag. p

Relative position. After the Opening Tag

 Click Next, and use the up and down arrows to reorder the parameters like this:

Completing the CMS

ptg7799847

392

 Click OK to save the new server behavior.

Creating a management page for the photos table
The page to list photos and links to the update and delete pages utilizes the new Zend
Paginator server behavior and is very similar to list_places.php.

 Open your copy of list_photos.php and include scripts/library.php above the
declaration with .

 This page needs to select all columns from the table and order the results by
the column. This makes using the method much simpler than in
list_places.php. Add the following code to the PHP block:

Not specifying any columns in the method retrieves all columns.

 Scroll to the bottom of the page, and add the closing brace of the block and the
block below the closing tag:

 In Design view, put the insertion point in the second table row, and click in the Tag
selector at the bottom of the Document window to select the whole row.

 Click the plus button in the Server Behaviors panel, and choose Zend Paginator. Use the
following settings in the Zend Paginator dialog box:

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

393

The page contains a paragraph that has an attribute of below the table. This
makes it easy to select the correct tag in the Zend Paginator dialog box. You could
also use the ID to create a special style rule for the paginator links.

 Click OK to close the Zend Paginator dialog box, and switch to Code view. You’ll see that
Dreamweaver has put the first block of code for the paginator right at the top of the page.
Move the original block of PHP code above the paginator code:

 In Design view, click in the first cell of the second table row, and choose Insert > Image to
open the Select Image Source dialog box. Navigate to the image_upload folder, and select
any image. Click OK (Choose on a Mac).

 In the Image Tag Accessibility Attributes dialog box, set the “Alternate text” menu to
<empty>, and click OK to insert the image in the table cell.

 With the image still selected in Design view, change the value in the W field in the
Property inspector to 200, and press Tab to switch the focus to the H field. Press Delete to
remove the value, and press Enter/Return to confirm.

This sets the attribute of the tag to 200 pixels and removes the attribute.

 Switch to Code view, and delete the filename in the tag. Replace it with a PHP block
that uses to display the value of the column from the database result:

Completing the CMS

ptg7799847

394

 Use a PHP block with to display the values of the filename and caption columns in
the next two table cells:

 At the moment, a photo can be related with only one place, but update_photos.php lets
you associate photos with multiple places. So, the next cell needs a query of its
own to retrieve all the places a photo is related to.

Scroll to the top of the page and include scripts/db_definitions.php using
inside the try block:

 Switch to db_definitions.php, and add the following function definition:

This function takes two arguments: a object with read permission and the pri-
mary key of a photo.

The query inside the function selects the column from the table using
an with the cross-reference table, matching records on .
This matches all photos to their related places. However, you want to show the related
places only for the current photo, so the clause limits the search to a single photo.

The loop creates an array of place names, which is returned by the function.

 Switch back to list_photos.php in Code view, and add the following code to the fourth
table cell in the second row:

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

395

This uses the function you just created and stores the result in , which is then
passed to . is an array, so joins the array parts (if any) with

, effectively displaying each place on a separate line.

 Select the EDIT and DELETE text in the last two cells, and create links to update_photo.
php and delete_photo.php respectively. Use the same technique as in steps 9 and 10
of “Creating a management page for the places table” to add a query string to each link,
using photo_id as the variable and setting its value to $row[‘photo_id’]. The EDIT link
should look like this:

 Save the page, and test it. You should see three photos per page, resized to 200-pixel width,
but remaining proportional because the attribute has been removed. Each photo is
accompanied by its filename, caption (if any), associated place(s), and links to the update
and delete scripts. There are also navigation links to display other photos in the series.

You can compare your code with lesson11/completed/list_photos.php and lesson11/
completed/scripts/db_definitions_04.php.

Completing the CMS

ptg7799847

396

Updating records in the places table
Now that you can list the places and photos stored in the database, you can create the scripts
to update and delete them.

The update form for the table contains fields to edit the , , ,
and columns. Unlike the insert form, it does not allow you to add new photos.
Instead, it displays details of related photos, and links directly to the update and delete pages
for each photo.

 In update_place.php, include scripts/db_update_place.php above the declaration
using . You should have created a copy of this file in the cms/scripts folder
in the previous lesson.

 When the EDIT link is clicked in list_places.php, the query string passes the primary key
of the record you want to update like this:

The primary key is used to retrieve the details of the correct record for updating. If the
query string is missing or contains the wrong variable, you should redirect the user to
list_places.php. The same applies to the delete page and to the update and delete pages for
photos; if the primary key is missing from the query string, you should redirect
the user to list_photos.php.

Rather than writing an almost identical script in all four pages, you can create a function
to extract the primary key and do the redirect if it’s missing. Add the following function
definition to db_definitions.php:

The function takes two arguments: the primary key that you want to extract
from the query string (or) and the page to which the user should be
redirected if there’s a problem.

When the update page is first loaded, the primary key should be in the query string.
So, the first conditional statement checks the array for or

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

397

. If it exists, tests that it represents a number. If it passes
both tests, the value is passed to to convert it to an integer, and the result is
returned by the function.

NOTE: Using both and ensures that only a whole number is passed to

the script. PHP has a function called that tests whether a value is an integer. However,

values passed through the and arrays are always strings. The function

tests not only the value, but also the data type, so it won’t work here.

If the first conditional statement fails, the clause performs the same tests on the
 array and returns the value as an integer. If that fails, the function

redirects the user, and brings the script to an end.

 Save db_definitions.php, and use the new function to assign the
primary key to a variable in db_update_place.php like this:

This passes the name of the primary key as the first argument and the redirect page as the
second argument.

 Save db_update_place.php, and try to load it into a browser. You should be redirected to
list_places.php.

 The update page needs to display the details of the record in the table that you
want to update. Create a function in db_definitions.php to execute a query and
return the result as an array. The code looks like this:

Completing the CMS

ptg7799847

398

The function takes two arguments: a object with read permission and the pri-
mary key of the record you want to fetch.

In the query, you need to qualify in the list of columns as
 to avoid a conflict with , because the same column name is used in

both tables. It’s safe to inject directly into the query without using ,
because the function that you created in step 3 ensures that it’s an integer. You
don’t need for the update form, but it will be used by the delete form.

Only a single record will be selected, so the final line uses , which returns an
associative array using the column names as the array keys.

 To display photos related with the place, you need a query that joins the table
with the cross-reference table, . Add this function to db_definitions.php:

  Save db_definitions.php, and switch to db_update_place.php. To populate the update page,
you need the details of the selected record, a complete list of all states (for the
menu), and the related photos. Add the following three lines inside the block:

This uses the two functions you just created, plus , which was created in
Lesson 10 for insert_place.php.

 After updating the record, you should send users back to the page from which they
started. Returning them to list_places.php puts them back at page 1, which is annoying
for someone who started from deep in the list.

The superglobal variable stores the URL of the referring page.
Unfortunately, it’s not supported by all servers, so you need to check for its existence and

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

399

set a default value as well. Add this code within the block immediately after the code
you just inserted:

NOTE: HTTP_REFERER is correct. Don’t add an extra R.

 Save db_update_place.php, and switch to update_place.php.

Set the attribute in the opening tag to use . As you
learned in Lesson 8, this strips from the URL the query string, which is not needed when
the form is submitted:

 Start adding the code to populate the form with the details of the record, which are stored
in the and arrays.

The text fields and text area in the form can be populated by using to display
, , and . However, if the

updates fail validation, you need to preserve any changes the user has made. Edit the
name text input field like this:

When the page first loads, the array is empty, so the conditional statement uses
the database result, . If the user makes a mistake when submitting the
form, equates to , and is displayed instead, preserving any
edits.

 Edit the attribute of the text input field in the same way, using
as the array key.

 There is no attribute in a tag, so add the same PHP block between the
opening and closing tags using as the array key.

Completing the CMS

ptg7799847

400

 It’s a good idea to check that your code is working so far. Save update_place.php, and load
list_places.php in Live View. Hold down Ctrl/Cmd and click one of the EDIT links. The

“Place name,” Description, and “Link name” fields should be populated with values from
the database.

If you encounter problems, compare your code with update_place_01.php, scripts/
db_update_place_01.php, and scripts/db_definitions_05.php in lesson11/completed.

 Exit Live View, and select the State menu in Design view. Click the plus button in
the Server Behaviors panel, and choose Zend Select Menu. Use the following settings in
the Zend Select Menu dialog box, and click OK:

Array Variable.

Value.

Display.

Menu Name.

select tag.

 The code inserted by the server behavior redisplays the selected value if a mistake is made
when the form is submitted, but it doesn’t select the value already stored in the database.
So, edit the code like this:

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

401

TIP: This change results in Dreamweaver removing Zend Select Menu from the list of server

behaviors applied to the page. You could adapt this code to create a new server behavior if

you want the ability to control it through a dialog box. You should have sufficient practice in

creating server behaviors by now to know how to do it.

 In Design view, click to the right of the submit button, and choose Insert > Form > Hidden
Field. In the Property inspector, change the name to returnto, and type <?php echo
$returnto; ?> in the Value field.

This stores the URL of the page to which the user should be redirected.

 Insert a second hidden field, set its name to place_id, and type <?php echo $place_id; ?>
in the Value field. This stores the primary key of the record to be updated.

 At the bottom of the page is a table that will display the photos related to this record. Details
of the photos were retrieved by and stored in . Wrap the
tags of the table row in a loop, assigning to as the temporary vari-
able. Check the finished code in step 21 if you’re unsure how the code should look.

 In Design view, position your insertion point in the first cell, and insert an image from the
image_upload folder. Use the same technique as in steps 7–10 of “Creating a management
page for the photos table” to turn this into a dynamic image using as
the variable.

 In the second cell, use to display .

 Convert the EDIT and DELETE text into links pointing to update_photo.php and delete_
photo.php respectively, and add a query string that assigns to the vari-
able . This is the same technique used in both list_places.php and list_photos.php.

Completing the CMS

ptg7799847

402

After you have finished steps 18–21, the table row should look like this:

 Save update_place.php, and test it again by clicking an EDIT link from list_places.php.
All fields should be populated by values drawn from the database, and all related photos
should be displayed at the bottom of the page with their captions and links to update_
photo.php and delete_photo.php, as shown in the following screen shot.

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

403

This completes the coding of the update form. If necessary, compare your code with
update_place_02.php in lesson11/completed.

 Displaying the existing record in the update form is only half the story. You now need to
add the code to validate and insert changes into the database. Switch to db_update_place.
php, and insert the following code between the calls to and :

This conditional statement precedes the code that populates the form because it will
eventually redirect the user to another page if the update is successful, so there’s no point
in querying the database unnecessarily to get the old information again.

Inside the conditional statement, the three text fields are validated. This code should be
familiar.

 Before updating the record, you need to check that changes to the and
fields don’t clash with existing values in the database. You already have a function called

 in db_definitions.php, but it won’t work for the update form—at least
not until you have amended it.

This is what the function definition looks like at the moment:

This function does the job perfectly when a record is first inserted into the table.
However, assuming the name isn’t changed, the query always finds a match during the
update process, because the name is already listed. The solution is to exclude the current

 from the search.

Completing the CMS

ptg7799847

404

Rather than creating a separate function, you can amend this one by adding a fourth
argument and making it optional by assigning a default value in the function signature.
Revise the function like this:

If the fourth argument is not supplied, is automatically set to . A
value is treated as , so the function works exactly the same as before. However, if
you pass a fourth argument to the function, takes the new value, and the con-
ditional statement inside the function uses the combined concatenation operator to add a
second condition to the clause. In SQL, the operator means “not equal to.”

 The function to check the field uses a similar statement, but the fourth
argument is not optional. Add this to db_definitions.php:

 Add calls to both functions in db_update_place.php like this:

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

405

 Add the code to update the record and redirect the page:

The update code is straightforward, so it needs little explanation. The field is not
updated, but MySQL updates the field automatically to the current date and time
as long as at least one of the other fields is changed. If you submit the form without mak-
ing any changes, the date and time in the field is not affected.

Finally, redirects the user to the URL stored in the hidden field.

 Save db_update_place.php, and test the update form by selecting an EDIT link from
list_places.php. Make some changes to the record, and click Update Place. You should
be taken back to your original page. Click the same EDIT link to verify that the changes
were registered in the database.

You can compare your code with db_definitions_06.php and db_update_place_02.php in
lesson11/completed/scripts.

Deleting records from the places table
Deleting records is considerably simpler than updating them. Once you have confirmed the
correct record has been selected, all that’s necessary is to delete it from the table. A complicat-
ing factor with this CMS is that photos are related to places, and you might not always want
to delete a photo when you delete a place. So, the delete form needs to make the deletion of
related photos optional. The following instructions show how this is done:

 Open your copy of delete_place.php, and use to include scripts/db_delete_
place.php above the declaration.

 In db_delete_place.php, add the following code:

(code continues on next page)

Completing the CMS

ptg7799847

406

This is very similar to the basic structure in db_update_place.php. The first line after
db_definitions.php is included uses to get the primary key from the or

 array and redirects the user to list_places.php if the primary key is missing.

The first conditional statement sets the logic for which code to execute depending on
whether the Delete Place or Cancel button was clicked. The remaining code gets the
details of the place and related photos, as well as the referring page’s URL.

 Save db_delete_place.php, and switch to delete_place.php. Set the form’s attribute
to <?php echo $_SERVER[‘PHP_SELF’]; ?>.

 Create two hidden fields in the form to store and (see steps 16 and 17
in the previous section).

 Display the names of the place and state next to the labels in the text:

Both values come from the array created by .

 The next section of the delete form needs to be displayed only if any related photos are
found by . Add the start of a conditional statement on the next line:

 Add the conditional statement’s closing brace after the closing tag.

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

407

 The table row at the bottom of the page should be wrapped in a loop and display each
related photo and caption, assigning its filename to the checkbox value. This doesn’t
involve any new techniques, so here is the code:

 Save delete_place.php, and test the code so far by clicking a DELETE link in list_places.php.
You should see the names of the place and state displayed, together with related photos.

Completing the CMS

ptg7799847

408

 Click Cancel to return to the same page of list_places.php as you started from. If neces-
sary, compare your code with delete_place.php and scripts/db_delete_place_01.php in
lesson11/completed.

 Now, add the script to delete the record and photos that have been selected:

When you delete a record from the table, you also need to remove all references
to its primary key from the cross-reference table, even if you decide not to
delete the photos. Failure to do so results in the cross-reference table trying to link to a
place that no longer exists. Of course, you could be left with photos that are no longer
related to records in the table, but the page that updates photos allows you to asso-
ciate a photo with more than one place. For example, Hollywood is in Los Angeles, so it
makes sense to associate photos of Hollywood with both places. You might also want to
use some generic photos associated with several places.

The form in delete_place.php has a checkbox for each photo. The attribute, ,
ends with an empty pair of square brackets, so it’s treated as an array. As explained
in Lesson 8, if no checkboxes are selected, the name isn’t included in the array.
However, if exists, the loop removes the record for each file from
the table and then uses to delete the file from the image_upload folder.

Finally, redirects the user to the original referring page.

 Save db_delete_place.php, and test the page’s functionality by selecting a DELETE link
from list_places.php. If necessary, compare your code with db_delete_place_02.php in
lesson11/completed/scripts.

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

409

Updating records in the photos table
The options for updating the table are relatively simple. Each record consists of a pri-
mary key, the filename, and a caption. The primary key is also stored in the table
to indicate which places (if any) the photo is associated with. There’s no point allowing a user
to change the filename. That should be done by deleting the record and uploading a different
photo. So, the only options that remain are changing the caption and the places with which a
photo is associated. To allow a photo to be associated with more than one place, the form uses
a multiple-choice list rather than a single-choice menu.

This is how the form handles the update process:

 Open update_photo.php, and include scripts/db_update_photo.php using
above the declaration.

The page is designed to display the selected photo. Below it, the update form contains a
text input field for the caption, a multiple-choice list, a submit button, and two
hidden fields: one for the primary key of the selected photo and the other to store the
name of the referring page.

The code to display the selected photo and for all fields, except the multiple-choice
 list, has been covered in previous sections and has already been added to the

page. The only part you need to edit is the list.

Completing the CMS

ptg7799847

410

 To populate the form with the details of the selected photo, you need to query the
table. Add the following function to db_definitions.php:

This is a simple query that gets the and fields for the selected
photo. It takes two arguments: a object with read permission and the primary
key of the selected photo.

 The list needs to display the names of all places associated with the selected photo.
The function in db_definitions.php retrieves an array of all places. To
match the places associated with the current photo, you also need to query the
cross-reference table. Add the following function definition to db_definitions.php:

This takes the same arguments as the previous function and returns an array of the pri-
mary keys of places related to the selected photo by searching for matches in .
The method returns a multidimensional array, so the loop reduces
the result to a simple array.

 Save db_definitions.php, and switch to db_update_photo.php. Add the following code to
gather the data for the update form:

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

411

This gets the primary key with the function. The details of the selected photo
are retrieved by , whereas and
retrieve the information needed for the multiple-choice list. As in the other
update and delete scripts, the URL of the referring page is stored as .

 Now, you can add the code for the multiple-choice list in update_photo.php.
It looks like this:

 contains an array of all records in the table. The loop traverses the
array using as a temporary variable. The first condition checks that no errors have
been detected, as is the case when the page first loads. It then uses to check
whether in the current record is in the array. If it is, it means the selected
photo is related to that place, and the current is selected in the list.

The condition performs a similar test if the array contains any elements,
this time checking whether exists, and if it does, that it contains

. It’s necessary to test for the existence of because it won’t be
included in the array if no places are selected in the list.

 Save all related files, and test the code so far by clicking an EDIT link in list_photos.php.
The selected photo should be displayed with its caption ready for editing and the related
place selected in the list.

Completing the CMS

ptg7799847

412

If necessary, compare your code with update_photo.php, scripts/db_update_photo_01.
php, and scripts/db_definitions_07.php in lesson11/completed.

 You can now complete the script in db_update_photo.php by adding the validation and
update code, which looks like this:

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

413

The validation class checks that the caption doesn’t exceed the maximum
length. If it’s OK, the caption is updated in the table.

Updating the table involves several steps. The table stores and
 as a joint primary key, so each pair must be unique. To avoid problems with try-

ing to insert a pair that already exists, all records that contain the selected photo’s primary
key are deleted from .

The conditional statement verifies the existence of , which contains an
array of the primary keys of related places. You need to test for its existence, because it
won’t be in the array if no places are selected. If it exists, the loop inserts
the primary key of each selected place paired with the primary key of the photo. Because
references to the photo were deleted earlier, the loop uses the method, not

.

Finally, the function redirects the user to the original referring page.

 Save db_update_photo.php, and try updating a photo to change its caption. Also, try
selecting multiple places to associate with the photo. It doesn’t matter if they aren’t really
related. You can edit any changes once you have verified that the script is working correctly.
All places linked to a photo are displayed in list_photos.php. As the following screen shot
shows, Grauman’s Chinese Theater has been associated with Hollywood and Los Angeles.

You can compare your code with db_update_photo_02.php in lesson11/completed/scripts.

Completing the CMS

ptg7799847

414

Deleting photos
The script for delete_photo.php assumes that you want to remove the photo from the file
system and remove its details from the and tables. Since the photo is
displayed next to the DELETE link, there’s no need to create a confirmation page. The script
is very short, and it contains nothing new, so the version of delete_photo.php that you copied
from lesson11/start contains the complete script, which looks like this:

The function gets the photo’s primary key, which is fed to . The
file is removed by , and the records are deleted from the and
tables. Finally, the user is redirected to the referring page.

If you test the DELETE link in list_photos.php, you’ll be returned to the same page,
but the photo will no longer be listed. The photo will also have been removed from the
image_upload folder.

There’s a full working version of the CMS in cms_complete in the sample files for this book.
For it to work, you need to adjust the paths in db_definitions.php and library.php in the
cms_complete/scripts folder to match your local setup.

LESSON : Updating and Deleting Files in Related Tables

ptg7799847

415

What You Have Learned
In this lesson, you have:

Studied the basic syntax of queries (pages 379–381)

Learned how to join tables with and (pages 381–383)

Used to display database results over several pages (pages 383–390)

Created a server behavior for (pages 390–392)

Updated and deleted data stored in multiple tables (pages 396–414)

What You Have Learned

ptg7799847

LE
SS

O
N

 1
2 What You Will Learn

In this lesson, you will:

Install the Adobe Widget Browser

Download and configure the LightBox Gallery Widget

Populate the gallery widget dynamically from the database

Create a master/detail set

Format a MySQL date

Use jQuery to send a request to the web server and refresh content without
reloading the page

Understand how to rewrite URLs to eliminate a query string

Approximate Time
This lesson takes approximately 3 hours to complete.

Lesson Files
Media Files:

Same as Lessons 10 & 11 plus
images/destinations.jpg
styles/destinations.css

Starting Files:

lesson12/start/details.php
lesson12/start/gallery.php
lesson12/start/scripts/db_definitions.php
lesson12/start/scripts/jquery-1.4.2.min.js
lesson12/start/scripts/library.php
lesson12/start/scripts/phpcs5-lesson12.sql

ptg7799847

417

Completed Files:

lesson12/completed/details.php
lesson12/completed/details_clean.php
lesson12/completed/gallery_01.php
lesson12/completed/gallery_02.php
lesson12/completed/gallery_03.php
lesson12/completed/gallery_04.php
lesson12/completed/gallery_clean.php
lesson12/completed/scripts/.htaccess
lesson12/completed/scripts/db_definitions_08.php
lesson12/completed/scripts/db_definitions_09.php
lesson12/completed/scripts/db_definitions_10.php
lesson12/completed/scripts/gallery_01.js
lesson12/completed/scripts/gallery_02.js
lesson12/completed/scripts/gallery_03.js
lesson12/completed/scripts/gallery_clean.js
lesson12/completed/scripts/jquery-1.4.2.min.js
lesson12/completed/scripts/library.php
lesson12/completed/scripts/load_gallery.php
lesson12/completed/scripts/load_gallery_clean.php
lesson12/completed/scripts/load_places.php
lesson12/completed/scripts/load_places_clean.php

ptg7799847

LESSON 

Using Ajax to Refresh
Content

Displaying content stored in a database simply involves querying the database and using

to embed the result in a web page. The principle is identical to the technique you used in the

previous lesson: a query string appended to the URL tells the script what information to dis-

play. Conditional statements control what happens if certain data doesn’t exist or if multiple

values need to be handled.

This lesson introduces JavaScript into the equation, allowing you to refresh the informa-

tion without reloading the whole page. But it’s important to ensure the page still works if

JavaScript is disabled.

The page uses Ajax to refresh the photo gallery and text, but it still works when JavaScript is turned off.

418

ptg7799847

419

Enhancing Pages with Ajax
Ajax isn’t a particularly new technology. Nor is it clearly defined. The term was coined by
Jesse James Garrett in 2005 for a technique that used JavaScript and XML to refresh content
without needing to reload the web page. Since then, Ajax has taken on the broader meaning of
exchanging data with the server to refresh part of a page without reloading it. XML frequently
plays no part in the exchange, and JavaScript’s role is sometimes replaced by VBScript. Some
people use Ajax in an even looser manner to describe using JavaScript to manipulate page
content. From a technical point of view, though, Ajax normally involves communication with
the web server.

In this lesson, you’ll use Ajax to display a photo gallery and refresh page content by sending
requests to the web server in the background. In the example that you’ll build, all the content
is replaced. This has been done deliberately to keep the code simple and allow you to con-
centrate on the Ajax techniques. However, replacing the entire content prevents users from
bookmarking the information they want. When you apply these techniques in a real website,
you should replace only part of a page. For example, you might create a panel that displays
details of forthcoming events and use Ajax to change the content according to the type of
events selected by the user.

It’s also important to remember that some people turn off JavaScript. Even if your pages don’t
look as good, they should still work with JavaScript turned off. Enhance the experience for the
majority without relying exclusively on Ajax to deliver your content.

Preparing for the exercises
To ensure that you have sufficient content in the database from the previous two lessons, the
files for this lesson contain a file to populate the tables. Use the following instructions to
get ready for the exercises in this lesson:

 The file deletes all existing content in the , , , and
tables in the database. If you’re happy to wipe the slate clean, continue with step 2.

On the other hand, if you have entered data you want to preserve, back it up by creating
a file using the instructions in “Using phpMyAdmin” in Lesson 13 before continuing
with the remaining instructions.

 Open phpMyAdmin, and log in as the root user, if necessary.

 Select the database, and click the Import tab at the top of the screen.

 Click Browse in the “File to import” section, select phpcs5-lesson12.sql in lesson12/start/
scripts, and click Go. phpMyAdmin should report that the import was successful.

Enhancing Pages with Ajax

ptg7799847

420

 Click the link in the list of tables on the left of the screen. There are 11 places
listed. Some have been edited to shorten their . You’ll also notice that places
aren’t sorted alphabetically or grouped by state.

NOTE: Don’t worry about the apparently garbled characters in the description column for Las

Vegas. This is an em dash that phpMyAdmin fails to handle correctly. It should display correctly

in the finished pages.

 Copy all 20 images from cms_complete/image_upload to the cms/image_upload folder.
It doesn’t matter if you have other images in the folder, just make sure that you have all
the images that are recorded in the updated database tables.

 Copy gallery.php and details.php from lesson12/start to lesson12/workfiles. If Dreamweaver
prompts you to update the links, click Don’t Update.

 Copy db_definitions.php from lesson12/start/scripts to the scripts folder in lesson12/work-
files. You also need a copy of your library.php file in the lesson12/workfiles/scripts folder.

Introducing Adobe Widget Browser
Many excellent JavaScript widgets are freely available on the Internet. However, a major stum-
bling block for many designers is customizing the widgets to fit in with their web pages. It
often requires a solid knowledge of both JavaScript and CSS. Adobe Widget Browser attempts
to overcome the problem by providing a visual interface changing the way selected widgets
look and behave.

Adobe Widget Browser isn’t installed by default, but it’s closely integrated with Dreamweaver
CS5. Once you have installed the Widget Browser, you can use it to preview widgets on the
Adobe Exchange. When you find one you like, you can download and customize it, saving
your changes for automatic insertion in a Dreamweaver site. The widgets are free. All you
need is an Adobe ID to log into the Adobe Exchange to download them.

LESSON : Using Ajax to Refresh Content

ptg7799847

421

The Widget Browser uses a specification laid down by the OpenAjax Alliance (www.openajax.org),
an organization of software companies, open-source initiatives, and individuals dedicated to
the adoption of open and interoperable Ajax technologies. Consequently, the widgets on the
Adobe Exchange are not limited to using the Spry framework, Adobe’s implementation of
Ajax. Many, including the one selected for this lesson, use jQuery (http://jquery.com/), the
most popular JavaScript library, which is designed to take a lot of the hard work out of devel-
oping cross-browser scripts.

Launching the Widget Browser
Although the Widget Browser is a separate application, the easiest way to access it is through
Dreamweaver.

 Make sure you are connected to the Internet, click the Extend Dreamweaver icon
in the Application Bar, and choose Widget Browser.

On a Mac, if you can’t see the Extend Dreamweaver icon, choose Window > Application
Bar. (The Application Bar can’t be hidden on Windows.)

 If the Widget Browser is already installed, it should launch. Skip ahead to the next
section, “Choosing widgets from the Adobe Exchange.”

If you see the following alert, continue with the remaining steps.

Introducing Adobe Widget Browser

www.openajax.org
http://jquery.com/

ptg7799847

422

 Click OK. This launches your default browser and takes you to the Widget Browser’s page
on the Adobe website.

 Click the link to download the Widget Browser. At this stage, you might be prompted to
log in with your Adobe ID. This is normally your email address.

If you don’t have an Adobe ID, click Create an Adobe Account. The registration process
should take only a couple of minutes.

On the download page, click Install Now if you have the Flash Player installed.
Otherwise, click the download link.

 When prompted to open or save the file, click Open.

 When asked to confirm if you want to install the application, click Install, and enter your
computer’s administrator password if necessary.

 You will be prompted to choose the installation location. Click Continue after making
your choice (or accepting the default).

 When the installation has completed, the Widget Browser should launch automatically.
Click Accept to accept the license agreement.

Choosing widgets from the Adobe Exchange
The Widget Browser lets you inspect widgets in action before deciding whether to download
them. In this section, you’ll log into the Adobe Exchange, and select a widget for use in
gallery.php.

 You need to be signed into the Adobe Exchange to preview and download widgets. Click
Sign In at the top right of the Widget Browser.

 Type in your Adobe ID and password. If you want to avoid signing in every time, select
the “Stay signed in” checkbox before clicking the Sign In button.

 The Widget Browser displays thumbnail images of the widgets, together with brief details,
including the author’s name and user ratings.

LESSON : Using Ajax to Refresh Content

ptg7799847

423

You can sort the thumbnails with the Sort By menu in the title bar. You can also narrow
down the display by typing in the Filter field.

 The widget you’ll use is the LightBox Gallery Widget by Andres Cayon. It’s at the bottom
left in the preceding screen shot, but you can find it quickly by typing Andres’s name in
the Filter field. Click the thumbnail to see details of the framework used, browser com-
patibility, and license.

 To inspect the widget more closely, click the Preview button at the top right. This opens
the widget in Live View, where you can test it by hovering your pointer over the gallery
thumbnails and clicking one of them.

Introducing Adobe Widget Browser

ptg7799847

424

The Preview screen also lets you inspect the code that the widget inserts into the web
page by clicking the Code tab. Many widgets also come with several presets. This one has
an orange color scheme and a vertical version in white.

 Click Add to My Widgets at the bottom right of the Widget Browser.

 When the widget finishes downloading, click Go to My Widgets.

If you click Close by mistake, you are returned to the widget’s description. Click Adobe
Exchange at the top left of the Widget Browser. From there, you can click My Widgets at
the top left.

My Widgets looks the same as the main screen except it contains only the widgets you
have downloaded.

 Leave the Widget Browser open to continue in the next section.

Configuring a Widget
A major advantage of the Widget Browser is that it provides a visual context for you to change
a widget’s default settings and save your own presets. The degree of configuration possible
within the Widget Browser depends on how the author has set it up, but Andres Cayon’s
LightBox Gallery Widget has many options.

LESSON : Using Ajax to Refresh Content

ptg7799847

425

Creating your own widget preset
The following instructions show how to change the color scheme and adjust the layout ready
for insertion into gallery.php.

 Open the Adobe Widget Browser, if necessary, select My Widgets, and click the LightBox
Gallery Widget thumbnail.

 Make sure the Preview button at the top right of the Widget Browser is selected, and
select “Vertical white” in the Developer Presets.

 Click Configure at the bottom left to display the available options.

The sliding panels on the left provide access to the widget’s editable features. Hover your
pointer over a setting to display a tooltip describing its purpose. Changes are reflected
immediately in the Live View tab on the right.

 Type Vertical phpcs5 in the Name field at the bottom right. Adding a description
is optional.

ptg7799847

426

 Click GALLERY to reveal the next options. Change Width from 120 to 240, and leave the
other settings unchanged. Live View displays the thumbnails in rows of two.

 Click THUMBNAILS to reveal the options for styling the thumbnails.

 Click the Background color box, and select white from the color palette.

 Click the Hover Background color box. When the pointer is over the thumbnails, they
will have a sky blue border. Type 79B4D9 into the text box at the top of the color palette,
and press Enter/Return to apply the value.

NOTE: The color palette in the Widget Browser doesn’t use a hash sign at the beginning of

the color value. At the time of this writing, moving the pointer over any of the color swatches

changes the color displayed next to the hexadecimal value. However, the correct color is

registered when you press Enter/Return.

 Change Bottom Border from 20 to 10, and set all Margin values to 0.

 Click IMAGE CONTAINER BOX to display the options for the full size image. Change
Opacity to 0.6, and select light gray (CCCCCC) for Background. These two settings con-
trol the color and transparency of the page when the full size image is displayed.

You can test the effect by clicking one of the thumbnails in the Live View tab. Resize the
Widget Browser, if necessary, to see the full effect.

 The ICONS section lets you choose your own images for a loading indicator (such as an
animated file), as well as next, previous, and close buttons. The defaults are fine.

 The INTERNATIONALIZATION section controls the text used to display the image
count (for example, “Image 3 of 10”). The defaults are fine for a website in English.
JavaScript is Unicode-compliant, so you can use accented characters or nonalphabetic
scripts for other languages.

 Save the changes by clicking Save Preset at the bottom right of the Widget Browser. This is
very important. If you forget to do so, your settings won’t be reflected in the widget when
you insert it in the page in Dreamweaver.

LESSON : Using Ajax to Refresh Content

ptg7799847

427

The Widget Browser returns you to the normal Preview screen with “Vertical phpcs5”
listed under MY PRESETS.

 Close the Widget Browser. You’ll be working in Dreamweaver for the rest of this lesson.

Inserting a widget in a page
The integration of the Widget Browser with Dreamweaver CS5 makes it very easy to insert a
preconfigured widget into a page. Here’s how you do it.

 Open your copy of gallery.php in the lesson12/workfiles folder, and click anywhere inside
the text that reads “Places to visit in.”

 In the Tag selector at the bottom of the Document window, click to select
the that contains the heading. Dreamweaver’s visual aids display the margins on
both sides as hatched areas. (Choose View > Visual Aids > CSS Layout Box Model if you
can’t see the hatched areas.)

The gallery widget is designed to fit in the 240-pixel margin on the left of the . To
position the insertion point correctly, press the left keyboard arrow once. Open Split view
to confirm that the insertion point is immediately to the left of the opening tag, as
shown at the beginning of line 12 in the following screen shot.

ptg7799847

428

 Choose Insert > Widget, and select LightBox Gallery Widget and the “Vertical phpcs5”
preset in the Widget dialog box.

 Click OK to insert the widget. It should be inserted in the margin to the left of the text.
While selected, it’s surrounded by a turquoise border with a tab at the top left indicating
the widget type and its ID. The thumbnails are represented by broken image icons.

NOTE: If you can’t see the widget’s turquoise border and tab, choose View > Visual Aids, and

click Invisible Elements.

 Save gallery.php. Dreamweaver displays Copy Dependent Files, which lists 17 files that
will be inserted into various folders when you click OK. The number of files and their
ultimate location depends on the widget you have chosen. See the sidebar “Keeping Track
of a Widget’s Files.”

If your phpcs5 site is in a virtual host, the broken image icons will be replaced by
thumbnail images as soon as you click OK. If you’re working in a subfolder of localhost,
there’s no change. However, it doesn’t matter, because you’re not going to use the default
images anyway.

 Look at the Dependent Files toolbar at the top of the Document window. In addition to
Source Code and destinations.css, four new files have been added: jquery.js, lightbox.js,
lightbox.css, and sample_lightbox_layout.css.

LESSON : Using Ajax to Refresh Content

ptg7799847

429

Keeping Track of a Widget’s Files

Most widgets insert a mixture of images, style sheets, and JavaScript files. Spry widgets
accessed through the Widget Browser keep all related files together in a folder called
Spry-UI-1.7. Other widgets follow their own conventions.

The LightBox Gallery Widget uses three separate folders in your site root: css, images,
and scripts. If the folders already exist, the widget’s files are mixed in with yours. It also
creates a subfolder called lightbox in the images folder. This is what the folders contain:

css. Two style sheets, lightbox.css and sample_lightbox_layout.css

images. Ten images with names beginning with lightboxdemo

images/lightbox. Five navigation images

scripts. Two JavaScript files, jquery.js and lightbox.js

Deleting a widget removes the code and links from the page but not the files that have
been added to your site, because they might be required by other pages. So, it’s impor-
tant to read the Copy Dependent Files alert to know where all the files will be stored. If
you’re not sure whether to use a widget, set up a separate test site in Dreamweaver to
avoid cluttering your file structure with unwanted files.

 Open gallery.php in Code view, and make sure that Source Code is selected in the Related
Files toolbar. In the of the page, you’ll see that the external JavaScript and CSS files
have been attached (around lines 7–10). Immediately following is a large block of embed-
ded CSS (around lines 11–65). The block begins with the following comment:

At the end of the block is a similar comment:

Instead of editing the external style sheets, the Widget Browser exploits the CSS cas-
cade by embedding all your changes in the of the page. The comments enable
Dreamweaver to identify the relevant code if you decide to delete the widget.

ptg7799847

430

 Immediately following the block is the following code:

Again, the purpose is to identify the widget and its related code.

 Inside the of the page, locate the section of code that begins like this (around
lines 78–86):

This is the HTML code that contains the thumbnails. It’s an unordered list restyled by the
widget’s CSS.

 Immediately after the gallery is a block (around lines 87–107) that initial-
izes the Ajax gallery. Again, it contains comments that identify the widget number and
its ID.

Even if you don’t understand the JavaScript code, it’s easy to see that it contains the paths
to the widget’s loading, previous, next, and close buttons. You should also be able to
recognize the values set for opacity () and background color () in the IMAGE
CONTAINER BOX section of the Widget Browser.

All the changes you made in the Widget Browser have been added to the page where the wid-
get is used but not to any of the external files.

If you mouse over the widget in Design view and select the turquoise tab at the top left of the
widget, you can remove the widget and its associated files from the page by pressing Delete.
For this exercise, you don’t want to delete the widget unless you inserted it in the wrong part
of the page.

Populating the gallery widget dynamically
The gallery widget uses hard-coded links to the full size images and thumbnails, but since the
details of the images are stored in a database, it makes more sense to query the database and
use a PHP loop to generate the links dynamically. By adding a menu, visitors can
select a state and control which images are displayed. The following steps explain how:

LESSON : Using Ajax to Refresh Content

ptg7799847

431

 Include db_definitions.php and library.php above the declaration in gallery.php
using , and open a block like this:

 Scroll down to the bottom of the page. Close the block and add a block after
the closing tag:

 In Design view, move your pointer over the gallery widget, and click the turquoise tab at
the top left to select it. You’ll insert a form and menu above the widget, so the
insertion point needs to be immediately before the widget’s opening tag.

Press the left keyboard arrow once. This is the same technique you used in step 2 of the
preceding section.

In Design view, the cursor looks as though it’s still inside the widget, but you can confirm
the insertion point’s location in Split view. Don’t move the focus into Code view, because
inserting form elements is easier in Design view.

 Choose Insert > Form > Form. The red outline of the form appears above the widget and
the heading in Design view.

 The menu will pass the selected state name through a query string, so the form
needs to use the method. With the form still selected, change the value of Method in
the Property inspector to GET.

 Make sure the insertion point is inside the form, and choose Insert > Form > Select
(List/Menu).

ptg7799847

432

In the Input Tag Accessibility Attributes dialog box, type state in the ID field and Select a
state: in the Label field. Click OK.

 Click to the right of the menu you just inserted and choose Insert > Form > Button.

In the Input Tag Accessibility Attributes dialog box, type selectState in the ID field, and
leave the Label field blank. Click OK.

 With the button still selected, change the Value field in the Property inspector from
Submit to Go. The form should look like this in Design view (don’t worry if the thumb-
nails still show broken image icons):

If you need to check your code so far, compare it with gallery_01.php in lesson12/completed.

 In Lesson 10, you created a function in db_definitions.php to populate a menu
with the names of all states. However, not all states have places and photos associated
with them in the database, so you need to create a different function to select only those
states that do.

Select db_definitions.php in the Related Files toolbar, and add the following function
definition:

The query uses an between the and tables. An
 selects only records that have matches in both tables, so this query excludes states

that don’t have photos or places associated with them. However, there are 11 records
in the table, so using on its own would produce duplicate results. The

 keyword ensures only one instance of each is retrieved.

The final line of the function uses , a method you’ve not encountered
before. It returns an indexed array of results from the first column in the query.
Since the query selects only the column, this makes it a lot simpler to loop
through the results.

LESSON : Using Ajax to Refresh Content

ptg7799847

433

 You also need a function to retrieve the image filenames, captions, and associated place
names to populate the gallery widget. Add the following code to db_definitions.php:

This function takes two arguments: the object with read permission and the state
name. Because the state name is passed through the query string, the SQL query needs
to use the method to sanitize the value (see “Using a variable in a SELECT
query” in Lesson 7).

The query joins all four tables in the CMS with , using the foreign keys to
identify related records.

 Save db_definitions.php, and click Source Code in the Related Files toolbar to return to
the code in gallery.php.

Add the following code in the block above the declaration:

The first line uses the function you created in step 9, and it assigns the result to ,
which will be used to populate the menu.

The conditional statement checks for the existence of and uses
 to make sure the value is in the array. This ensures that only a state

name with records in the database can be assigned to . If the condition fails,
California is assigned as the default value.

The final line passes to the function created in step 10, and it stores the result
in , which will be used to populate the gallery widget.

ptg7799847

434

 Amend the page’s by displaying the name of the selected state:

 Scroll down to around line 92 to locate the menu, and add the following code
to populate it:

Because uses , the value stored in is a simple
array of state names, so you can access each one by assigning it to the temporary vari-
able in a loop. If the current value of is the same as ,

 is inserted in the opening tag to display the value in
the menu.

 Save gallery.php, and click Live View to test the menu. It should automatically select
California. When you open the menu, just four states should be listed.

 Exit Live View, and return to the code in gallery.php. Locate the unordered list that
houses the gallery widget’s thumbnails (around lines 106–112).

Delete four of the elements. The unordered list should look like this:

 In Design view, select the remaining image (or broken image icon) in the gallery widget
so that its properties are displayed in the Property inspector.

LESSON : Using Ajax to Refresh Content

ptg7799847

435

 Use the Point to File tool or click the folder icon next to the Src field to select an
image in cms/image_upload.

Do the same with the Link field. It doesn’t matter which image you select, because the
image is a placeholder for changes you’ll make in step 19.

CAUTION! The LightBox Gallery Widget uses links relative to the site root. As a result,

Dreamweaver assumes the replacement links should be the same. This poses no problems if

you’re developing in a virtual host. If you’re using a subfolder of localhost, use the folder icon

in the Property inspector to open the Select Image Source dialog box, and set the “Relative to”

menu to Document.

 Change the value in the W field to 120, and delete the value in the H field. Press Enter/
Return after deleting the value to confirm the change. The selected image should spring
back to the correct proportions.

 To populate the gallery widget with the results from the database, you need to wrap the
 element in a loop, and replace the static image references with PHP vari-

ables. The place name and image caption also need to be added to the attribute, and
the caption is used again as the alternative text. When you have made all the changes, the
widget’s unordered list looks like this:

ptg7799847

436

The links in the and attributes in this listing have been made relative to the doc-
ument. The leading is not required if your phpcs5 site is in a virtual host—although
the widget still works if you include it.

 If your phpcs5 site is in a subfolder of localhost, you need to convert the links to the navi-
gation images to be relative to the document. They’re in the JavaScript block that follows
the widget’s HTML code. Locate the following code (around lines 117–121):

Make each path relative to the document by adding to the beginning in place of
the leading slash. The first one should look like this:

You don’t need to make these changes if your site is in a virtual host.

 Save gallery.php, and click Live View to test it. A series of thumbnail images of California
appears down the left side of the page. Click one of them to launch the lightbox, which dims
the page and displays the full size image in the center. Navigate through the images with the
Next and Prev buttons that appear when your pointer is over the right or left of the lightbox.

LESSON : Using Ajax to Refresh Content

ptg7799847

437

 Close the lightbox by clicking the CLOSE button, and then select a different state from
the menu. Hold down Ctrl/Cmd and click the Go button to load thumbnails
related to that state. You now have a dynamic lightbox gallery. Later, you’ll improve it so
that you can display images from different states without reloading the page. Before that,
you need to display the text that goes in the main part of the page.

You can compare your code with gallery_02.php in lesson12/completed and
db_definitions_08.php in lesson12/completed/scripts.

You’ve probably realized that the thumbnails in this exercise use the same files as the full size
image. Their size is simply constrained by setting the attribute in the tag to 120.
Generally speaking, this is a bad practice, because it means loading all the full size images
even if the visitor never views them. For a live website, you should create thumbnails of uni-
form dimensions and optimize them to reduce the file size as much as possible.

Creating a Master/Detail Set
A master/detail set is one of the most common design patterns in web development. The master
page presents a list of related items, often with a brief description of each one, and links to a
separate page that describes the item in detail. The technique used to create a master/detail set
is the same as for the update pages that you built in Lesson 11. The master page uses a loop to
display the results of a database search, and the link to the detail page uses a unique identifier—
normally the record’s primary key— that is passed through a query string. However, any unique
value associated with the record is fine.

Displaying the master list of places
As well as the gallery widget, gallery.php will display the names of places associated with the
selected state, together with the first sentence of the description and a link to the detail page.

Continue working in the same page as the previous exercise.

 Exit Live View, if necessary, and select db_definitions.php in the Related Files toolbar.
Add the following function definition:

Creating a Master/Detail Set

ptg7799847

438

This is very similar to the function created in the previous section.
It uses to prepare the value in for insertion into the query, and
it returns a multidimensional array of results.

 Save db_definitions.php, and select Source Code in the Related Files toolbar to return
to the code in gallery.php. Add the following code to the PHP block above the
declaration:

This passes the name of the selected state to the function you just created, and it stores
the result in .

 In Design view, click to the right of the headline that reads “Places to visit in,” and
press Enter/Return once to create a new paragraph.

The underlying HTML now looks like this:

 To display the master page list, use to display the name of the selected state in the
heading, and wrap the paragraph in a loop to display the place name in bold fol-
lowed by a colon and a space between the paragraph tags. The amended code looks like this:

 Save gallery.php, and click Live View to test it. The heading now reads “Places to visit in
California,” and it’s followed by a list of related place names. Select a different state, hold
down Ctrl/Cmd, and click Go to see the places related to that state.

Exit Live View when you have verified that the code is working.

LESSON : Using Ajax to Refresh Content

ptg7799847

439

 The descriptions are too long for the master page. A simple way to extract the first
sentence is to look for the first period followed by a space, and cut the text at that point.
Some sentences might end in a question mark, or the period might be followed by a quo-
tation mark, but this technique should extract a short section at the beginning of the text.

The PHP function finds the first instance of a character sequence and returns
its position in the string. You can combine this with to extract the first section
of text. The arguments passed to are the target string, the position of the first
character, and the length you want to extract. Amend the code between the paragraph
tags like this:

This code might be difficult to understand, so let’s break it into sections.

The first argument passed to is , which contains the
whole description stored in the database record.

The second argument is . PHP, in common with other computing languages, counts
from 0, so this indicates the beginning of the string.

The third argument is . This calculates the posi-
tion of the first period followed by a space, and adds 1 to the result. You could rewrite the
code like this:

However, you don’t need the value of again, so it’s more efficient to pass
an expression as the third argument. As long as the expression produces the correct data
type, PHP doesn’t object.

TIP: If you find this style too cryptic, there’s nothing wrong with using the more verbose style.

As you gain more PHP experience, you’ll discover many shortcuts like this.

 To complete the master page, you need to add a link to details.php, and add a query
string that contains the value of the column. The finished code inside the para-
graph tags looks like this:

Creating a Master/Detail Set

ptg7799847

440

 Save gallery.php, and test it in a browser. As you hover over the “Learn more” links, you
should see URLs similar to this:

The column in the table has a unique index, ensuring that there are no
duplicate values. Using a human-readable value like this is far more user friendly than a
query string that looks something like ?place_id=4.

You can compare your code with gallery_03.php in lesson12/completed and db_defini-
tions_09.php in lesson12/completed/scripts.

Creating the detail page
The detail page needs to query the database to retrieve the details of the selected place and
then display them. When building a static web page, you can insert images manually and
position them to the best aesthetic effect. That’s more difficult with dynamically generated
pages. One solution is to embed the image details directly in the text, which a CMS like
WordPress does. The following exercise uses a different approach. In every other paragraph,
the PHP detects whether an image is available. If there is, it inserts it and uses CSS to float it
in the opposite direction from the previous one, producing the following result.

LESSON : Using Ajax to Refresh Content

ptg7799847

441

The following exercise doesn’t involve a lot of code, but some of it might be hard to under-
stand if you’re relatively inexperienced with PHP. Don’t rush. Read the explanations carefully,
and all should become clear.

 Open lesson12/workfiles/details.php, and include db_definitions.php and library.php
above the declaration using . Also, create and blocks
in the same way you did with gallery.php (see steps 1 and 2 of “Populating the gallery
widget dynamically”).

 Select db_definitions.php in the Related Files toolbar, and add the following function
definition:

As in other functions that receive input from a query string, the query is built
using the method. The query selects the , , ,

, and fields from the record where the field matches the
value passed through the query string.

The field is wrapped in the MySQL function and assigned an alias
using the keyword like this:

An alias specifies how you want a column name to be represented in the result. In this
case, the original column name has been used, but you could use a different name,
such as . Without an alias, the field would be represented in the result as

.

The function takes two arguments: the column you want to format and
a string specifying how to format it. The format string uses specifiers that begin with a
percentage sign—those most commonly used are listed in Table 12.1. The string can
also include literal text. This listing includes a comma after , producing a date such as
June 12, 2010.

Creating a Master/Detail Set

ptg7799847

442

CAUTION! There must be no space between a MySQL function name and the opening paren-

thesis. Also, pay attention to the combination of single and double quotation marks. The format

string can be enclosed in either. Double quotes are used here to avoid conflict with the SQL

query, which is in single quotes.

Table 12.1 Commonly Used MySQL Date Format Specifiers

Period Specifier Description

Year %Y Four digits

%y Two digits

Month %M Full name (January, February, etc.)

%b Abbreviated (Jan, Feb, etc.)

%m Number with leading zero

%c Number, no leading zero

Day of month %d Number with leading zero

%e Number, no leading zero

%D With English suffix (1st, 2nd, 3rd, 4th)

Weekday name %W Full name

%a Abbreviated name (Mon, Tue, etc.)

 Save db_definitions.php, and select Source Code in the Related Files toolbar to access the
code in details.php. Add the following code in the block at the top of the page:

This checks whether a variable called has been passed through a query string. If it
has, the value is passed to the function you created in step 2, and the result is assigned to

. Otherwise, is set to .

LESSON : Using Ajax to Refresh Content

ptg7799847

443

 Display the place name in the tag:

The conditional statement is needed in case is .

 Scroll down to the maincontent (around line 21), and wrap the heading in a
conditional statement to display “No result found” if equates to . In the
clause, display the place’s name and state name in another heading like this:

 Save details.php, and click Live View to test it. You should see “No record found.” Exit
Live View, and switch to gallery.php.

Click Live View in gallery.php, and select one of the “Learn more” links, remembering to hold
down Ctrl/Cmd as you click. You should see the name and state of the place you selected.

Exit Live View, and return to details.php.

 The text in the description field has been broken up into paragraphs by pressing Enter/
Return twice in the insert form, but that doesn’t insert tags. Without them, the text
will be displayed as one continuous block, because HTML ignores newlines in the under-
lying code. A common solution is to pass text to the function, which converts
newline characters into HTML tags. But it doesn’t solve the problem of injecting
images into every other paragraph. You need to build the HTML structure dynamically.
The first task is to break up the text into an array of paragraphs.

Creating a Master/Detail Set

ptg7799847

444

In details.php, select db_definitions.php in the Related Files toolbar, and add the follow-
ing function definition:

This uses the function, which splits a string into an array of elements using
a regex (see “Building the validation script (1)” in Lesson 7 for an explanation of regexes).
The regex used here matches one or more newline characters and/or carriage returns.

 Save db_definitions.php, and select Source Code in the Related Files toolbar to return to
the code in details.php. Use the function you just created to convert the content of the
description field into paragraphs, and use a loop to build the HTML like this (the
new code goes inside the final PHP code block that previously contained only a closing
curly brace):

A loop allows you to initialize multiple values separated by commas. In addition to
setting the counter variable , this loop initializes using the function
to get the number of elements in the array. The loop traverses the array
using the counter to display , , and so on. The opening and closing

 tags are on separate lines in preparation for adding the logic that inserts the images.

 If you repeat the test in step 5 now, you’ll see the description displayed in paragraphs. Use
the Live Code button to see the tags inserted in the underlying HTML.

 To display the images, you need to create an array of photos that are associated with the
selected place. A function that does this was created in Lesson 11, so add the following
code to the PHP block at the top of details.php:

LESSON : Using Ajax to Refresh Content

ptg7799847

445

This ensures that contains a result from the database and then uses the place’s
primary key () to get the filenames and captions of related photos, which are
stored in .

 Inserting an image in every other paragraph involves checking whether an image is
associated with the place and keeping count of where you are in the loop. This requires
another counter. You also need to get the dimensions of the image. They haven’t been
stored in the database, but PHP provides the function to detect them.
Amend the code like this:

The first new line of code assigns the path to the image folder to to make it
easier to refer to the image file later.

A new counter called is initialized in the first argument of the loop to keep track
of the images. Unlike , is not automatically incremented each time the loop runs.
So, although they start with the same values, remains unchanged until it’s incremented
inside the loop in code that you’ll add later.

A conditional statement inside the loop checks whether exists. The first time,
this looks for . The mysterious looking second condition uses some elementary
math to determine whether is an odd or even number. The percentage sign is an arith-
metic operator that performs modulo division (see “Using Operators for Calculations and
Joining Strings” in Lesson 3). Modulo division by 2 always results in 1 or 0. Since PHP
treats 0 as and any other number as , you can use to alternate between

 and each time the loop runs. The first time it runs, is 0, so the result is 0,
but the condition is preceded by the logical Not operator, so it’s treated as . The next
time, the result is 1, which the logical Not operator converts to , and so on. As a
consequence, the code inside the conditional statement is executed only every other para-
graph and if the array contains an element with the index .

Creating a Master/Detail Set

ptg7799847

446

TIP: Understanding this sort of conditional logic can be a challenge, but once you do, it

dramatically increases the flexibility of your scripts.

The code inside the conditional statement concatenates the path to the images folder with
the filename of the current element of the array and assigns it to , resulting in
a value like this:

This value is then passed to , which returns an array of the image’s dimen-
sions that are stored in .

NOTE: In a virtual host, you can use a site-root-relative path most of the time. However,

 doesn’t understand site-root-relative path. If you use a site-root-relative path

to the images folder, use instead of

.

 The next section of code inserts the image, if one is available. It’s a mixture of HTML and
PHP that looks complicated at first glance, but it’s simply a tag wrapped around an

 tag and the image’s caption. All the attributes are generated dynamically by .

The tag has two attributes: and . The code that generates the value of
the attribute looks like this:

This uses modulo division again, but this time with the counter. It also uses the
conditional operator (also known as the ternary operator), a shorthand way of writing a
simple conditional statement. Instead of using the and keywords, it uses and
as operators. The condition precedes the question mark. If it equates to , the value to
the right of the question mark is used. If it’s , the value to the right of the colon is
used. You could rewrite the same line of code like this:

LESSON : Using Ajax to Refresh Content

ptg7799847

447

When the loop encounters the first image, is 0, so the condition equates to , and
 is set as the class. The next time, is used. If there’s a third image,
 is used again, and so on.

The inline style sets the width of the using the first element in the
array returned by . Setting a width forces long captions to wrap to the
same width as the image.

In the tag, the attribute is set to , which contains the full path to the
image, and the attribute uses the caption. inserts a string in the
tag with the correct and attributes.

Finally, is used to display the caption inside the . This is
the last reference to , so the increment operator () increases its value by 1 after it has
been used (see “Using Operators for Calculations and Joining Strings” in Lesson 3 if you
don’t understand why).

 The final touches are to add a paragraph to display when the page was last updated and
add a link back to the master page. The code looks like this:

The value of the formatted date is displayed using , and the link back to gallery.php
uses in both the query string and the link text.

Creating a Master/Detail Set

ptg7799847

448

 Save details.php, and test it by clicking various links in gallery.php. The detail page should
look like the screen shot at the beginning of this section. There’s only one image associ-
ated with Hollywood, but all other places have two. The PHP code handles the different
numbers without difficulty. If you switch to a different state in gallery.php, the link at the
bottom of details.php returns you to the same view of the master page.

You can compare your code with lesson12/completed/details.php and db_definitions_10.php
in lesson12/completed/scripts.

If you’re wondering how the captions are positioned under the images, it’s because of the
following style rule in destinations.css:

Instead of floating the image, the CSS floats the that’s wrapped around the image and
the caption. This style rule uses a descendant selector to display an image inside a floated ele-
ment as a block, forcing the caption onto a separate line. The inline style added in step 11 con-
strains the width of the span, ensuring that the caption doesn’t protrude beyond the image.

Refreshing a Page Without Reloading
As noted earlier, the LightBox gallery widget uses the jQuery framework. With a little help
from the jQuery utility function, you can send a request to a PHP script and refresh
the page when it receives the response. Teaching you to write jQuery is beyond the scope of
this book, but the next section gives you sufficient knowledge to follow the explanations in the
remaining exercises.

A short jQuery primer
To manipulate elements in a web page, you first need to select them. Unfortunately, the native
JavaScript ways of doing so are cumbersome, and the situation is complicated by Internet
Explorer’s nonstandard implementation of some features. jQuery simplifies access to elements
in a cross-browser way by using CSS selectors like this:

Don’t confuse the use of the dollar sign with PHP syntax. In PHP, identifies a variable,
but in jQuery, is a function that accepts a CSS selector as an argument and uses it to
select page elements.

LESSON : Using Ajax to Refresh Content

ptg7799847

449

NOTE: Technically speaking, is an alias (or shorthand) for the function, which

selects page elements. The only time you need to spell out in full is if you’re using

jQuery in combination with another JavaScript library, such as Prototype, that also has a

function.

The preceding example selects all tags inside an element with the ID . You
manipulate selected elements with jQuery methods or custom functions, such as .
Methods and functions are applied using dot notation like this:

If you need to access a set of elements more than once, it’s more efficient to assign them to a
variable using the keyword like this:

Variable scope in JavaScript—and therefore jQuery—is different from PHP. A variable
declared outside a function has global scope. There’s no need to pass it as an argument to a
function to access its value inside the function. But variables declared with the keyword
inside a function cannot be accessed elsewhere.

Most built-in jQuery methods have intuitive names, such as , , and .
One that’s useful for refreshing page content is , which replaces all the HTML code
inside the selected element(s). Most methods can be chained, allowing you to perform mul-
tiple operations. For example, the following line of code replaces the HTML in and
immediately hides it:

To send a request to the web server by the method, use the utility function, which
takes three arguments: the path to the script to execute, a JavaScript object containing values
to pass to the script, and a function to handle the response. A JavaScript object is enclosed in
curly braces and looks like this:

In this example, the object has two properties: and . The value of a property fol-
lows the colon, so the value of is , a variable that has been declared else-
where, and the value of is the string “Los Angeles.” Property/value pairs are separated
by commas.

Refreshing a Page Without Reloading

ptg7799847

450

jQuery makes considerable use of anonymous functions. In practice, this means you define
the response function between the parentheses of like this:

TIP: There are numerous jQuery tutorials online. A good place to start is http://docs.jquery.

com/Tutorials. Among the many books available, jQuery in Action, 2nd Edition by Bear Bibeault

and Yehuda Katz (Manning, 2010, ISBN: 9781935182320) has detailed coverage of using jQuery

to interact with a web server.

Adapting the LightBox gallery
To refresh the gallery without reloading the page, you need to add an event handler
to the menu to send the selected value to a PHP script that queries the database and
outputs the gallery’s HTML. When the event handler receives the response from the server, it
replaces the existing HTML with the output from the PHP script, refreshing the page. Here’s
how it’s done:

 Use your existing version of gallery.php. Alternatively, use gallery_03.php from lesson12/
completed as your starting point, but you must have done the earlier exercises, because
gallery_03.php relies on files that won’t exist otherwise.

Open gallery.php, and select jquery.js in the Related Files toolbar. Check the jQuery ver-
sion number at the top of the file. At the time of this writing, the version included in the
LightBox gallery widget is jQuery 1.2.3. You need to replace this with a more up-to-date
version.

 Copy jquery-1.4.2.min.js from lesson12/start/scripts to lesson12/workfiles/scripts.

 Select Source Code in the Related Files toolbar to return to the code in gallery.php, and
locate the following tag (around line 20):

Change the attribute to point to the new version of jQuery:

Save gallery.php, and select jquery-1.4.2.min.js in the Related Files toolbar to verify that the
file has been correctly linked to the page. Then select Source Code to return to gallery.php.

LESSON : Using Ajax to Refresh Content

http://docs.jquery.com/Tutorials
http://docs.jquery.com/Tutorials

ptg7799847

451

 Scroll down to the block that follows the gallery widget’s HTML. It begins like
this (around lines 113–114):

The block ends like this (around lines 132–133):

Select the entire block, including the opening and closing tags, and cut it to your
clipboard.

 Choose New > Blank Page, select JavaScript as Page Type, and click Create to open a new
JavaScript file. Paste the code from your clipboard into the new file, and then delete the
opening and closing tags and comments. You should be left with the following code (to
make the code easier to read on the printed page, the inline comments have been removed):

NOTE: The image paths have been converted to be relative to the document. This is not neces-

sary if your phpcs5 site is in a virtual host.

 The code highlighted in the preceding step is a JavaScript object that defines the settings
for the thumbnail links, which need to be reapplied when the gallery widget is refreshed.
Cut the highlighted code, assign it to a variable called , and pass the variable as
the argument to . The reorganized code looks like this:

Refreshing a Page Without Reloading

ptg7799847

452

The meaning of this code is exactly the same as before, but assigning the settings to the
 variable makes it easy to reuse them later.

 Save the JavaScript file as gallery.js in lesson12/workfiles/scripts.

 Switch to gallery.php, and insert a new line immediately above the closing tag.
With the insertion point in the new line, click the Script icon in the Insert panel/
bar or choose Insert > HTML > Script Objects > Script to open the Script dialog box.

Leave the Type menu at the default “text/javascript,” and click the folder icon next to the
Source field. Navigate to gallery.js, select it, and click OK to close the Script dialog box
and insert a link to the JavaScript file like this:

 Save gallery.php, and test the gallery widget to make sure it’s still working. If necessary,
compare your files with gallery_04.php in lesson12/completed and gallery_01.js in
lesson12/completed/scripts.

 In gallery.js, create a variable to identify the menu, which has the ID :

LESSON : Using Ajax to Refresh Content

ptg7799847

453

 The purpose of this script is to refresh the gallery without needing to reload the page,
so you need to hide the Go button, which has the ID , and create an
event handler for the menu. Add the following code after the line that initializes the wid-
get (around line 19):

The event handler gets the name of the selected state from the menu and fades
out the gallery thumbnails.

The jQuery utility function then submits a request to load_gallery.php in the
scripts folder (you’ll create this file in the next step).

The second argument to is a JavaScript object containing the name/value pairs
to be submitted. In this case, is the name of the variable, and is the
value from the menu. So, if Utah is selected, this is the equivalent of a query
string like this: ?state=Utah.

The final argument to is an anonymous function that takes as its argument
the response from the PHP script. When the response is received, the method
replaces the widget with the HTML output from the PHP script and immediately hides it
so that it can be faded in gently. Finally, the lightbox options are applied to the refreshed
widget. Save gallery.js.

NOTE: Although it’s more efficient to use a variable to refer to elements that are accessed more

than once, the function that handles the response from the server needs to use

explicitly, because the original links no longer exist.

Refreshing a Page Without Reloading

ptg7799847

454

 Create a new PHP page and save it as load_gallery.php in lesson12/workfiles/scripts.
Strip out the HTML code, and insert the following PHP code:

 In gallery.php, locate the loop that populates the gallery widget (it should be
around lines 108–110). Copy it to your clipboard, and paste it in load_gallery.php under
the “generate the new widget” comment. Remove the opening and closing PHP tags from
the code you just pasted. The finished code in load_gallery.php looks like this:

This script takes the value of passed to it by the method and uses it to generate
the elements for the gallery widget. This listing uses links relative to the document,
but if your phpcs5 site is in a virtual host, the at the beginning of the file paths is
not needed.

LESSON : Using Ajax to Refresh Content

ptg7799847

455

 To test this script in Live View, you need to pass a value to it using the method.
Choose View > Live View Options > HTTP Request Settings.

In the dialog box that opens, click the plus button next to “URL request,” and type state
in the Name field and California in the Value field. Set the Method menu to GET, and
click OK.

If your testing environment is in a virtual host and the image paths are relative to the site
root (in other words, they begin with a leading slash), you can test the page immediately.

If you’re using a subfolder of localhost, you need to add to the beginning of the image
paths so they begin . This is a temporary measure, because the script is
lower in the site hierarchy than gallery.php.

Save load_gallery.php, select Split or Design if you’re still in Code view, and click Live
View. You should see the thumbnail images related to California with a bullet point to the
left of each one. The bullet points are suppressed by CSS when the widget is displayed in
gallery.php.

Exit Live View. If you added the extra at the beginning of the image paths, delete it,
and save the script again. This is very important. The image paths need to be relative to
gallery.php, not to this script.

 Now test gallery.php in a browser. The Go button is hidden by jQuery, but when you
select a different state from the menu, the California thumbnails fade out and
those related to the selected state fade in—without reloading the page. Proof that the page
hasn’t been reloaded lies in the fact that the master details for California haven’t been
replaced by the selected state.

Refreshing a Page Without Reloading

ptg7799847

456

You can compare your code with gallery_02.js and load_gallery.php in lesson12/
completed/scripts.

Refreshing the list of places
Refreshing the images without the matching list of places looks odd. In theory, you could
refresh the gallery and the text with the same call to the web server, but text loads more
quickly than images, so two calls to the server are likely to result in a better user experience.
The code for the PHP script to refresh the list of places follows the same pattern as for the gal-
lery widget. Here it is in full (it’s in lesson12/completed/scripts/load_places.php):

This outputs the contents of the with the ID . The jQuery event han-
dler needs to fade out the existing content of the , display a message that it’s fetching
new content, and then refresh the page when the response is received from the server. The

LESSON : Using Ajax to Refresh Content

ptg7799847

457

amended function looks like this (the complete JavaScript file is in gallery_03.js in lesson12/
completed/scripts):

Notice that the second call to is nested inside the anonymous function that handles
the response to the first call to the server. This ensures that the gallery is refreshed only after
the list of places has been updated.

Amend gallery.js and copy load_places.php from lesson12/completed/scripts to the scripts
folder in lesson12/workfiles, and then reload gallery.php in your browser. Selecting a new
state from the menu now refreshes the whole page. As noted earlier, Ajax shouldn’t
be used to replace the entire content of a page. This is simply a demonstration of how to com-
bine jQuery and PHP to refresh multiple page elements.

Creating Clean URLs
Search engines and browsers are quite happy dealing with query strings, but many people
dislike them, because they look ugly and are hard to remember. One reason for using the

 and values in the query strings was to make the URLs more user
friendly. If your web server supports URL rewriting, you can go one step further, and use
those values in the URL without a query string. Not all web servers support URL rewriting,
so you need to check with your hosting company or server administrator for advice
and instructions.

Creating Clean URLs

ptg7799847

458

If your web server runs on Apache, a quick way to find out is to run and search for
. If it’s listed and your server allows you to create an .htaccess file, you should be

able to use clean URLs. The rules for using can be confusing, but it’s relatively
simple to replace a single value in a query string. For example, the following URL:

can be rewritten like this:

This is done by placing an .htaccess file with the following commands in the phpcs5 site root:

The two lines beginning with exclude file and directory names from the rewrit-
ing rules, which are defined in the lines beginning with .

The rewriting rules are constructed like this:

The pattern is a regex. The first matches places/ followed by anything. The second one matches
states/ followed by anything. The parentheses capture the value after the slash and use it
in place of . So, places/Hollywood actually looks for /lesson12/completed/details_clean.
php?place=Hollywood.

If you’re using a virtual host in Apache as your testing environment, copy .htaccess from
lesson12/completed/scripts to the phpcs5 site root, type http://phpcs5/states/ into your
browser address bar, and press Enter/Return. This loads a modified version of gallery.php
into the browser, which works in exactly the same way. Instead of query strings, the links use
places/ followed by a value or states/ followed by a value. (You might
need to amend the path to the Zend Framework library.php.)

You can study the code in the files that contain _clean at the end of the filename in lesson12/
completed and lesson12/completed/scripts. All links have been made relative to the site root,
so it won’t work if you’re using a subfolder of localhost for testing. This has been only a brief
introduction to rewriting URLs. Hopefully, it will encourage you to search online for more
detailed tutorials.

LESSON : Using Ajax to Refresh Content

http://phpcs5/states/

ptg7799847

459

What You Have Learned
In this lesson, you have:

Installed the Adobe Widget Browser (pages 420–422)

Downloaded and configured the LightBox Gallery Widget (pages 422–430)

Populated the gallery widget dynamically from the database (pages 430–437)

Created a master/detail set (pages 437–448)

Formatted a MySQL date (pages 441–442)

Used jQuery to send a request to the web server and refresh content without reloading
the page (pages 448–457)

Learned how to rewrite URLs to eliminate a query string (pages 457–458)

What You Have Learned

ptg7799847

LE
SS

O
N

 1
3 What You Will Learn

In this lesson, you will:

Learn how to create a file to transfer data to your remote database

Consider alternative methods of transferring data to your remote server

Remove error messages from scripts and write them to a log file

Adjust file paths, user accounts, and passwords

Check whether the Zend Framework needs to be uploaded

Create and set the permissions on a folder for file uploads

Define the FTP connection settings for a remote server

Explore the Files panel in expanded mode

Devise a strategy for transferring files outside the site root

Approximate Time
This lesson takes approximately 1 hour to complete.

Lesson Files
Media Files:

None

Starting Files:

None

Completed Files:

None

ptg7799847

461

LESSON 

Deploying Your Site
Online

In most respects, deploying a PHP website online is no different from a static site built entirely

in HTML. However, there are some differences. In this lesson, you’ll learn how to transfer a

database from your local environment to a remote server. There’s also a rundown of changes

you might need to make to ensure a smooth transition to the Internet.

Exporting data as a file in phpMyAdmin is a common way of transferring a database.

ptg7799847

462

Transferring a Database
MySQL doesn’t store data in a single file that you can upload to your website. How the data
is stored on disk depends on the engine you selected when creating each table, but the method
of storage is irrelevant. You don’t transfer the database files to your remote server. Instead, you
transfer only the data stored in them. There are several ways of doing so.

Using phpMyAdmin
If phpMyAdmin is installed on your remote server, you can create a file to upload the
data from your local computer.

 Open your local version of phpMyAdmin, select the database that you want to transfer,
and click the Export tab. This opens a screen with a large number of options, as shown in
the screen shot on the preceding page. Most of the default settings are fine.

 In the Export section at the top left, check that the tables you want to export are selected.
Ctrl-click/Cmd-click to deselect any tables you want to exclude.

 The radio button in the Export section determines the format. The default is SQL, which
is what you want.

 In the Options section, the “SQL compatibility mode” menu adjusts the syntax for com-
patibility with different servers:

MySQL 4.1, 5.0, and 5.1. Select NONE (default).

MySQL 4.0. Select MYSQL40.

MySQL 3.23. Select MYSQL323.

Microsoft SQL Server. Select MSSQL.

 The Structure checkbox is selected by default. Deselect this only if you have already
created the table structure on the remote server.

The only option that you might need to change in the Structure section is Add DROP
TABLE / VIEW / PROCEDURE / FUNCTION / EVENT, which is deselected by default.
Select this checkbox to replace any tables on your remote server that have the same name
as those you are exporting. This option is useful if you have redesigned the database
structure but want to use the same table names.

CAUTION! The DROP TABLE option irretrievably deletes all data on the remote server in

elements with identical names to those you’re exporting.

LESSON : Deploying Your Site Online

ptg7799847

463

 The Data checkbox must remain selected to transfer the data.

The Export Type menu in the Data section should normally be set to INSERT. This is
intended for populating new tables with data. There are two other options:

UPDATE. Existing data is updated with values from the file. Only existing
records are affected. New records are not inserted.

REPLACE. New records are inserted, and existing data is updated with values from
the file.

 The “Save as file” section sets various options for the file.

If you deselect the checkbox at the top left of the section, phpMyAdmin lets you preview
the contents of the file that it will generate. Click the browser’s back button to return to
the main screen.

“File name template” automatically names the file. The default value depends
on whether you clicked the Export tab from the page showing the structure of the data-
base or an individual table. __DB__ gives the file the same name as the database.
__TBL__ uses the table’s name. The template recognizes formatting charac-
ters (see www.php.net/strftime) and plain text, so you can add the date to the file name
like this:

This produces a file name like phpcs5-2010-06-09.sql. By default, phpMyAdmin remem-
bers your custom template for future use.

“Character set of the file” should normally be left at the default utf-8.

The file is output as plain text, but the Compression radio button offers the option
to compress it as a , , or file. This is useful if you have a large amount of
data. When importing, phpMyAdmin automatically recognizes the file type and decom-
presses it.

 When you have made your selections, check that “Save as file” is selected, click Go, and
save the file to your local computer.

Transferring a Database

www.php.net/strftime

ptg7799847

464

 Log into phpMyAdmin on your remote server. If you have more than one database, select
the one you want to use, and click the Import tab to upload the data from the file
you just created. There is no need to create the table structure on your remote server.
The file does it for you. The process is exactly the same as described in “Importing
Existing Data” in Lesson 5.

Using phpMyAdmin to create a file usually takes only a few seconds. It’s not only use-
ful for transferring your data to another server, it’s a vital way of backing up your database.
You should make a habit of exporting the data from your remote server on a regular basis,
so you can restore your database if it’s accidentally deleted or corrupted.

A serious limitation of using phpMyAdmin for transferring data to a remote server is that it
relies on uploading the data from the file by the method. By default, the maximum
size of a file that can be uploaded by PHP is 2 MB. This represents a lot of data, but an active
database can rapidly grow in size. Using compression is one solution. You can also transfer
single tables by creating separate files for each one, but this is cumbersome.

Using a commercial administration tool
If the 2 MB limitation poses a problem for you, or if you don’t have access to phpMyAdmin
on your remote server, you should consider using a commercial tool. Among the best
known administration tools for MySQL are Navicat for Windows, Mac OS X, and Linux
(www.navicat.com) and SQLyog for Windows only (www.webyog.com/en/). Both programs
offer an impressive range of features and are available in free and paid-for versions. An impor-
tant advantage of the paid-for versions is that they simplify the process of data transfer to a
remote server. They can also automate scheduled backups.

Most hosting companies disable remote connections to MySQL for security reasons. However,
the paid-for versions of Navicat and SQLyog allow you to connect to a remote MySQL
database using a technique known as tunneling, which connects to the web server and then
creates a local connection to MySQL.

The most efficient method of tunneling is through an SSH (Secure Shell) account. If your
remote server permits access through SSH, the program logs into the web server with the SSH
account and then makes a local connection to the database with your MySQL user account.
Once you have stored both sets of credentials in the program, connection is swift and secure.

If your remote server doesn’t permit SSH access, you can use HTTP tunneling instead. This
involves uploading to your website a PHP file, which the program uses to communicate
locally with MySQL. For extra security, the file can be located in a password protected direc-
tory. HTTP tunneling is much slower than SSH, but it’s useful when no alternative is available.

LESSON : Deploying Your Site Online

www.navicat.com
www.webyog.com/en/

ptg7799847

465

Navicat and SQLyog also support connection to MySQL through SSL (Secure Sockets Layer).
However, this requires SSL to be supported by the remote MySQL server. This is not always
the case.

Using your remote server’s control panel
If your website’s control panel has an option for backing up and restoring databases, try
exporting a file from phpMyAdmin and using the control panel’s restore option. In
cPanel, for example, the Backup Wizard in the Files section has an option to back up MySQL
databases. It creates a gzipped file for you to download to your local computer. The
restore option simply uploads the file in the same way as phpMyAdmin but without
the 2 MB size limitation.

Preparing Your PHP Files
The purpose of creating a local testing environment is to replicate your live website. In theory,
you just upload to your remote site, and everything should work. The following sections cover
what you need to check or change.

Removing error messages
When executing a database query, Dreamweaver’s built-in server behaviors include the fol-
lowing code, which displays error messages onscreen:

This stops the script in its tracks, and presents the user with the MySQL error message and
no way of getting back to other pages (apart from clicking the browser’s back button). It looks
very unprofessional.

The block used in Lessons 7–12 also displays error messages that you probably don’t
want your visitors to see, although it does have the advantage in many cases of displaying the
rest of the page.

Preparing Your PHP Files

ptg7799847

466

The error code in the Dreamweaver server behaviors and the block is intended for
development purposes and should never be used in a live website.

Before deploying pages containing built-in server behaviors on the Internet, you should
delete and implement a more user-friendly strategy. One solution is
to redirect the user to an error page by testing the value returned by like this:

This redirects the user to an error page. The name of the variable you need to test differs accord-
ing to the server behavior. For a recordset, it’s the recordset name prefixed by a dollar sign.

You can use the same code without the conditional statement to replace
 in a block:

Although this technique prevents the user from seeing the error message, you also need to be
alerted to the problem. A simple way to do so is to write the error message to a log file like this:

The first highlighted line uses the function to format the current date and time in a
human-readable format, such as Jun 9, 2010 15:05:12, and concatenates it with a double-dash
followed by the MySQL error message, a carriage return, and a newline character. For a
block, use instead of . This string is then written to a text
file called error.log by the function, which requires at least two arguments: the
message and an integer indicating how to handle it. The second argument must be one of
the following:

0. The error message is written to the default PHP log file.

1. The message is sent to the email address specified in the third argument. A fourth
argument can also specify additional email headers (see “Using the core mail() function”
in Lesson 8).

LESSON : Deploying Your Site Online

ptg7799847

467

3. The message is written to the file specified in the third argument. The file must be in a
folder that the web server can write to. Replace with a fully qualified path
to the file.

Of course, writing errors to a log file is meaningless if you don’t check it from time to time.
Using the option to send error messages by email is not the brilliant idea you might first think.
It sends an email every time the error is generated, which could result in a flood of emails if
an error is triggered repeatedly.

Adjusting file paths, user accounts, and passwords
Before uploading your files to the remote server, check that your scripts point to the correct
location for the Zend Framework (if you’re using it) and that you have the correct login details
for MySQL user accounts. Also, some hosting companies locate their database servers on a
different IP address, so you might need to change the host name for MySQL from localhost to
the correct value.

NOTE: In many cases, localhost is the correct host name for MySQL, but it’s becoming increas-

ingly common for databases to be hosted on a separate server. Check with your hosting

company for the name you should use.

Usually, these changes need to be made only in one or two files. In the case of Dreamweaver’s
built-in server behaviors, the changes should be made in the Connections folder. If you’re
using the Zend Framework, all the changes are made in library.php.

After you have uploaded the amended file(s), you need to restore the local values in your local
version(s) to be able to continue testing new or amended pages. When you have restored the
local values, right-click the files in the Files panel, and choose Cloaking > Cloak to prevent the
files from being uploaded again and overwriting your remote versions when you choose Site >
Synchronize Sitewide, and select the option to upload newer files to the remote server.

CAUTION! Cloaking has no effect when you select the option to upload dependent files.

PHP includes are considered to be dependent. If you find the files in your Connection folder

or library.php being overwritten, choose Edit > Preferences (Windows) or Dreamweaver >

Preferences (Mac), select Site, and then select the “Dependent files: Prompt on put/check in”

checkbox. The next time you’re prompted about dependent files, select “Don’t show me this

message again” and click No.

A useful technique that works on most servers is to wrap the local and remote values in a con-
ditional statement, and use to determine which to use. If your server

Preparing Your PHP Files

ptg7799847

468

supports , it contains the site’s domain name. For example, on my
website at http://foundationphp.com, it contains foundationphp.com. To set different values
for local and remote use, the conditional statement looks like this:

 TIP: When developing a site intended for deployment on the Internet, use the same

username(s) and password(s) in your local development environment as on the remote server.

Uploading the Zend Framework
There’s no denying it. The Zend Framework is huge. The minimal version is approxi-
mately 25 MB. Before uploading the framework, find out whether your remote server has it
already installed. Some hosting companies use Zend Server, which automatically includes
the framework.

If you need to install ZF yourself, make sure you choose the minimal version, which contains
all the class files but isn’t bloated by documentation, demonstrations, and test files. Since
you’re not using every available component, you might wonder if you can upload just those
components that you need. In theory, ZF’s loosely coupled architecture means that you can. In
practice, it’s not so easy and is definitely not recommended. Using not only requires
Mail.php in the main Zend folder and all the files and folders in the Mail folder, but also all
the files and folders for , which in turn requires .

You should treat ZF as a single entity and upload it to a folder outside your site root. Most
hosting companies provide a private folder outside the site root where you can store scripts
that don’t need to be viewed in a browser. If you don’t have a private folder, create a separate
library folder inside the site root.

 TIP: The next major version, Zend Framework 2.0, is being designed to make it easy to install

only those components that you want to use.

If you don’t have control over php.ini on your remote server, just change the value of
in scripts/library.php to point to the new library folder.

If you have control over php.ini on your remote server, add the ZF library folder to your
 directive. The format of the directive depends on the server’s operating system.

LESSON : Deploying Your Site Online

http://foundationphp.com

ptg7799847

469

On Linux, add a colon at the end of the existing value, followed by the fully qualified path to
the library folder like this:

On Windows, the fully qualified path to the library folder needs to be preceded by a semico-
lon like this:

After changing php.ini, remove the following lines from the beginning of scripts/library.php:

It goes without saying that the actual paths depend on your server.

Creating a folder for file uploads
Where you locate a folder for file uploads depends on who will have the right to upload files
and what the files will be used for. Unless only registered and trusted users will have the right
to upload files, it’s advisable to locate the folder outside the site root. Doing so gives you the
opportunity to examine the files before allowing them to be displayed or accessed by others.
If you give everyone the freedom to upload images for immediate display, don’t be surprised
when you get complaints about pornographic material on your site.

The web server needs permission to write to the upload folder. It also needs execute permis-
sion if you plan to use subfolders. How you set this up depends entirely on the operating
system and the security policies used on your remote server. Some server administrators set
up PHP so that it runs in your name. If that’s the case, you probably don’t need to change any
permissions. Other server administrators designate a special folder that you can write to, but
in many cases, it’s left up to you to set the correct permissions. The best way to find out is to
ask the hosting company or server administrator.

On Windows servers, permissions need to be changed by the server administrator. On
Linux servers, permissions are allocated to three groups: the owner of the file or folder, other
members of the owner’s group, and everyone else. Permissions are usually set by adding the
following values together:

Read. 4

Write. 2

Execute. 1

Preparing Your PHP Files

ptg7799847

470

The execute permission has a dual role. When applied to a file, it makes it executable, like
a program or a batch file. When applied to a directory (folder), it gives users permission to
see files and subfolders inside. The owner needs all three permissions for a folder—in other
words 7. Members of the group and everyone else are often given read and execute permis-
sions for folders—in other words 5. This set of permissions is expressed as 755. Permissions
for files normally exclude execute, so are set at 644.

If you need to set your own permissions for an upload folder on a Linux server, begin by set-
ting them at 755. If that doesn’t work, try 775. As a last resort, try the least secure setting 777.
Using 777 is far from ideal. If you have no alternative, make sure you check your site regularly
and employ strong security measures in all your scripts.

Setting Up Your Remote Server in Dreamweaver
Dreamweaver has a built-in FTP program to upload your files to the remote server.
Unfortunately, you can’t use it to access folders outside the site root—at least, not if your site
definition is based on the site root folder.

This is how you set up FTP access to your remote server in Dreamweaver CS5:

 Choose Site > Manage Sites, select the site you want to upload in the Manage Sites dialog
box, and click Edit to open the Site Setup dialog box.

 Select Servers from the list on the left of the Site Setup dialog box, and click the “Add new
Server” icon at the bottom of the main panel. This opens a panel where you enter the
details of your FTP connection.

 With the Basic button selected at the top of the panel, fill in the details:

Server Name. This is used internally by Dreamweaver to distinguish it from other
server definitions. Choose a name like Live Site to differentiate it from your local test-
ing server.

Connect using. If your remote site supports Secure FTP, select SFTP. Otherwise,
select FTP.

FTP Address. Get this from your hosting company or server administrator. It is
usually your domain name preceded by www. or ftp.

Port. Leave this at the default 22 for SFTP or 21 for FTP unless instructed otherwise
by your hosting company or server administrator.

LESSON : Deploying Your Site Online

www.orftp

ptg7799847

471

Username. Get this from your hosting company or server administrator.

Password. Use the password associated with your username. Dreamweaver automati-
cally selects the Save checkbox. Deselect it only if you want to be prompted for your
password each time you connect to the remote server.

After typing in your username and password, click the Test button to see if you can con-
nect to the server. If connection fails, make sure your login details are correct. If you still
cannot connect, try setting some of the options described later in this list.

Root Directory. This value depends on how your remote server account has been set
up. In some cases, you can leave this blank. In other cases, you need to enter the name
or path to the site root folder, which is often called public_html, www, or wwwroot.
Follow any instructions from your hosting company or server administrator.

Web URL. This should be the URL you enter in the browser address bar to access the
top level of your site. Unfortunately, Dreamweaver sometimes tries to guess the correct
value and gets it wrong. Check this carefully. Don’t just accept the default value.

 If your connection failed when clicking Test, click the right-facing triangle next to More
Options to reveal the following options:

Use Passive FTP. Select this if your security software or a firewall is preventing access
to the remote server.

Use IPV6 Transfer Mode. Select this only if your remote server uses the newer
IPv6 protocol.

Use Proxy. Select this and click the Preferences link to specify a proxy port or server.

Setting Up Your Remote Server in Dreamweaver

ptg7799847

472

Use FTP performance optimization. This is selected by default. Deselect it if you still
cannot connect after selecting Use Passive FTP.

Use alternative FTP move method. Select this if you experience problems when mov-
ing files on your remote server.

 If you still can’t connect, try FTP instead of SFTP. Also, try turning off your security soft-
ware temporarily. If turning off the firewall allows you to connect, you need to adjust the
settings in your security software.

 Assuming you’re able to connect, click the Advanced button at the top of the panel. The
Remote Server section has the following options:

Maintain synchronization information. This is selected by default. It creates hidden
_notes folders in each folder of the local version of your site. These are used to keep
track of when files were most recently updated so you can automatically synchronize
your remote and local files. Unfortunately, the twice yearly switch to and from daylight
saving time tends to render this information unreliable until you manually synchronize
the files.

NOTE: Even if you deselect “Maintain synchronization information,” Dreamweaver still creates

_notes folders to store information about other features, such as Design-Time Style Sheets and

Photoshop Smart Objects.

Automatically upload files to server on Save. This is rarely, if ever, a good idea. If you
make a mistake, it’s there for the whole world to see.

Enable file check-out. This feature is in Dreamweaver mainly for compatibility with
previous versions and is intended for developers working in teams. When this option is
enabled and a file is checked out from the remote server, no one else can update it until
it is checked back in by the same developer. Dreamweaver now supports integration
with Subversion version control, which is the preferred option. To learn more about
using Subversion, open Dreamweaver Help and choose Creating and Managing Files >
Checking in and checking out files > Use Subversion (SVN) to get and check in files.

 When you have made your selections, click Save. The new server is listed in the Site Setup
dialog box with the Remote checkbox selected.

LESSON : Deploying Your Site Online

ptg7799847

473

You can list as many servers as you like in the Site Setup dialog box, but only one Remote
and one Testing checkbox can be selected at the same time. Dreamweaver’s FTP program
is not capable of simultaneous communication with multiple servers.

 Click Save to exit the Site Setup dialog box, and then click Done to close the Manage Sites
dialog box.

Transferring files to and from your remote server
To upload files to your remote server, select the files in the Files panel, and click the Put icon
at the top of the panel.

To download files from your remote server, select Remote server from the menu at the top
right of the Files panel.

Dreamweaver connects to your remote server and displays the file structure. As a visual clue
that you’re no longer looking at your local files, the folder icons are displayed in yellow on
Windows and light blue on Mac OS X. Select the file(s) you want to download, and click the
Get icon at the top of the Files panel. You can also click the Get icon in Local view if the
selected file(s) exist on the remote server.

Setting Up Your Remote Server in Dreamweaver

ptg7799847

474

NOTE: Repository view displays folders in the same colors as Remote server. Repository view

is available only when you have created a connection to a Subversion repository in the Version

Control section of the Site Setup dialog box. Testing server displays folder icons in deep pink.

If you prefer to see your local and remote files at the same time, click the Expand icon at
the top of the Files panel. On Windows, this fills the program window with a screen display-
ing both views side by side. On Mac OS X, it converts the Files panel into a resizable floating
window that can be minimized to the Dock.

By default, local files are displayed on the right, but you can change this by choosing Edit >
Preferences (Windows) or Dreamweaver > Preferences (Mac), and selecting Site from the
Category list. Two menus give you the option to always show local or remote files on the
left or right.

When the Files panel is expanded, the display is controlled by a series of icons next to the site
name, as shown in the following screen shot.

Connect to remote host

Refresh

FTP log Remote server

Testing server

Repository view

When using the Files panel in expanded mode, it’s important to check that the correct icon
is selected. Otherwise, you might transfer files to and from your testing server rather than
the live website. Although the color of the folder icons provides an important visual clue, you
need to be careful if you have defined a Subversion repository, because the color is the same as
for a remote server.

To transfer files in expanded mode, either use the Put and Get icons or drag and drop selected
files and folders to their target destination.

CAUTION! When dragging and dropping, you must drop files and folders exactly where you

want them. Just dragging from one side of the Files panel to the other and dropping puts the

selected items in the site root. Only the Put and Get buttons automatically select the correct

destination.

To restore the Files panel to its normal size and position, click the Expand icon again.

LESSON : Deploying Your Site Online

ptg7799847

475

Transferring files outside the site root
Dreamweaver’s site management system is based on the site root. If you need to upload files to
locations outside the site root, you need to use a separate FTP program or create a second site
definition in Dreamweaver. The second site definition needs to be based on the same folder
hierarchy as your remote server with the public files nested inside.

Let’s say your website’s root folder is called public_html, and you have a folder called private
outside the site root like this:

Set up your public files in the public_html folder and designate that as the site root in the
Dreamweaver site setup. Then define a new site in Dreamweaver and designate the mysite
folder as the site root. Dreamweaver warns you that a site is already nested inside the site root
and that some functions, such as site synchronization, won’t work. Just ignore the warning
and create the site. Then create a definition for the remote server using mysite as the value for
Root Directory. You don’t need to enter a value in the Web URL field.

Do most of your work in the site based on public_html and use the outer site definition for
transferring files to the private folder. It’s not an ideal method of working, but it solves the
problem of uploading files outside the site root.

What You Have Learned
In this lesson, you have:

Learned how to create a file to transfer data to your remote database
(pages 462–464)

Considered alternative methods of transferring data to your remote server
(pages 464–465)

Amended scripts to write error messages to a log file (pages 465–467)

Reviewed necessary adjustments to file paths and user accounts (pages 467–468)

Created and set the permissions on a folder for file uploads (pages 469–470)

Defined the FTP connection settings for a remote server (pages 470–473)

Explored the Files panel in expanded mode (pages 473–474)

Considered ways of transferring files outside the site root (page 475)

What You Have Learned

ptg7799847

476

Index
Symbols
! operator, 76, 78–79
!= operator, 75
!== operator, 75
“ “(double quotation marks), 67–68
(hash sign), 62
% (percent) operator, 91
$ (dollar sign), 63

identifying PHP variables with, 448
using as variable, 20
using in passwords, 163

$() in jQuery, 448–449
& (ampersand), 361
&& operator, 76
- operator, 91
-> operator, 225
— operator, 91
’ (apostrophe)

enclosing string in double quotations when using,
236

unwanted backslash with, 237–238
’ ’(single quotation marks), 67
() (parentheses), 79–80
)) (extra closing parentheses), 283
/ operator, 91
* operator, 91
/* and */, 62
+ operator, 91
++ operator, 91
. (period), 323
: (colon), 125
; (semicolon)

comments beginning with, 37
ending PHP statements with, 63
removing to enable PHP extensions, 39

?> (closing tag), 61, 224
<? (opening tag), 61
< operator, 75
<= operator, 75
= operator, 379
=> operator, 225
== operator, 75, 328
=== operator, 75
> operator, 75
>= operator, 75
/ (backslash), 237–238
[] (square brackets), 225
[(opening square bracket), 225
| (vertical pipe), 38
|| operator, 76, 283

_ (underscore), 16, 63, 225
‘ (backticks), 150
∞ (infinity symbol), 145

A
activating child themes, 122–127
Active Server Pages (ASP), 29
Add Web Site dialog box, 44

 method, 312
Adobe Dreamweaver. See Dreamweaver
Adobe Dreamweaver Developer Toolbox (ADDT), 208
Adobe Widget Browser, 420–437

about, 420
choosing widgets from Adobe Exchange, 422–424
configuring widgets, 424–427
illustrated, 423, 424
installing and launching, 421–422

Ajax
about, 7
refreshing content with, 418, 419

aliases, column, 441
anonymous functions, 450, 453
Apache web servers

integrating PHP into, 29
location for document root on, 30
permissions for file uploading on, 309
registering virtual hosts in Windows OS, 42–44
verifying support for URL rewriting, 457–458
virtual host setup on, 41

arguments
finding function, 82–84
passing, 80, 359, 361

arithmetic operators, 91
arrays, 70–73. See also specific arrays

associative, 71, 287
basic, 70
defined, 61, 70

 305
names of functions and, 359
opening square bracket added to, 225
superglobal, 71–73
using with quotation marks, 68–69

associative arrays
defined, 71
updating records using, 287

attached files, 334–340
authentication

types of 261
unsupported by function, 260

ptg7799847

477Index

User Authentication server behaviors for, 183,
185–190

using component, 247–255
autoloading ZF class files, 221–223
automating tasks with loops, 96–100

B
backgrounds, 131
backing up

database with file, 464, 465
php.ini, 37
site definitions, 56

balancing braces in PHP, 12
banner images, 103
BBEdit, 40, 46
Bindings panel, 194–196, 201

 data type, 152, 153
breaking out of loops, 100
browsers

previewing upload form design for, 307–308
requesting web page using PHP, 6

building CMSs, 349–375
adding image details in table with script, 358–363
adding photos separately, 371–374
converting into server behavior,

390–392
creating management page for table,

385–390
deleting table records, 405–408
illustrated, 378
inserting data in tables, 368–371
managing and displaying resized images, 392–395
overview of updating and deleting records, 385

 table updates, 409–413
preparing administration pages for, 349–354
removing photos from CMSs, 414
selecting records with SQL, 379–383
updating records in table, 396–405
using as foreign key, 354–358
validating and uploading photos, 363–368

C
calculations

having databases do, 149
operators in, 91–92
reassigning results to same variables, 95–96
strings in, 93–94

CAPTCHA, 263–265
about, 263
choosing class for, 263–264
using reCAPTCHA, 264, 265

Cartesian joins, 381–382
case sensitivity

Apache directive, 41
deselecting for PHP links, 55

keywords and, 65
MySQL and, 150
PHP, 38
PHP scripts and, 106
variables and, 64

chaining methods, 230, 234–235
 data type, 151–152

characters in PHP variables, 63, 64
Check New Username server behavior, 185
checkboxes

handling by array, 280–282
using, 277, 279, 280

checking out files, 472
child themes

activating, 122–127
adjusting function definitions for, 125–126
defined, 119–120
placing images on Dashboard for, 122
preparing to style WordPress, 120–122
styling, 128–134

classes
class constructors, 89
code hinting for, 15–19
commonly used validation, 229
defined, 88
file validation, 313
loading class files for Zend Framework, 221–223
typing in name of, 225

 method, 253, 254
cloaking, 467
closing PHP tags, 61, 224
CMSs. See content management systems
code. See also code hinting

applying/removing comment tags in, 13–14
book’s conformity to XHTML standards, 4
checking insertion in Code or Split views, 285
collapsing PHP, 12–13
copying/pasting from as server

behavior, 390–392
enabling Live Code, 14–15
highlighting between braces, 12
programming techniques for PHP, 61
Split Code view for, 13
using in PHP, 387–389
using PHP code blocks, 61–62

code hinting, 15–20
core PHP elements supported, 15–16
custom function and class, 17–18
enabling site-specific WordPress, 135
establishing site-specific Zend Framework, 215–218
improvements to, 16
recognizing classes and objects, 18–19
selecting for component, 250
site-specific, 18
tips for, 16–17
turning on/off, 19–20
typing shortcuts recognized with, 225

ptg7799847

478 Index

Code Navigator, 133–134
Code view

checking code insertion, 285
removing server behaviors in, 182

collation and sorting, 156–157
color, hexadecimal values of, 131
columns

adding index to, 219–220
aliases for, 441
defining and saving multiple, 157–159
naming, 149–150
needed in table, 157

combined assignment operators, 96
comments

adding to child theme, 121–122
adding to scripts, 62
applying and removing tags for, 13–14

comparison operators, 75
compressing data for remote transfer, 463, 464
computer requirements for web server, 28
concatenation, 94
conditional operators, 446–447
conditional statements, 74–79

about, 74–75
checking for values with, 445–446
comparisons in, 75–76
defined, 61
ending with colon, 125
logical Not operator, 78–79
testing multiple conditions with, 76
testing radio button groups with 282, 283
values considered false, 79

configuring test environments. See also PHP testing
environments

activating configuration changes, 39
changing php.ini file, 36–39
checking all configuration settings, 36
setting temporary upload directory, 35
understanding configuration page, 32–33

connecting to database
about, 171
creating MySQL connection file, 171–173
denying access during, 226
editing connection files, 175–177
location of Connections folder, 173
troubleshooting connections, 174–175
using object, 223–226
viewing connections files in Dreamweaver, 175

Connections folder, 173
constants, 15–16
constructors for classes, 89
content management systems (CMSs). See also

WordPress
adding photos separately, 371–374
deleting records from tables, 405–408
developing database structure for, 346–348
editing WordPress page template, 136–139

enabling site-specific code hints for, 135
handling updates to table, 409–413
illustrated, 344
inserting data in tables, 368–371
inserting image details in table with script, 358–363
installing WordPress, 115–118
planning new website’s, 345–346
preparing administration pages for, 349–354
removing images from, 414
selecting records with SQL, 379–383
structure of, 112
styling and redesigning, 111
updating records in table, 396–405
using as foreign key, 354–358
validating and uploading photos, 363–368

cookies, 188
CRAM-MD5 authentication, 261
creating PHP sites, 47–54

adding subfolder to server root, 48
backing up and restoring site definitions, 56
creating site definition, 48–52
editing site definitions, 54–56
multiple server configuration, 52–53
testing your testing server, 53–54
using virtual host, 47

Crow’s Foot notation, 145–146
CSS Inspect mode, 25
CSS Rule Definition dialog box, 131
CSS Styles panel, 129
currency values in MySQL, 151

D
Dashboard (WordPress)

illustrated, 117
placing theme image on, 122

data. See also transferring data to remote database;
validating input

activating database’s dynamic, 172
collation and sort order, 156–157
compressing for transfer, 463, 464
documentation of data types, 82
inserting in CMS tables, 368–371
MySQL data types, 150–155
organizing, 143–144, 148–149
PHP data types, 65

database servers, 28
databases, 141–167

adding extra columns to, 220–221
backing up with file, 464, 465
collation and sort order in, 156–157
connecting with object, 223–226
data organization in, 143–144
defining, 155–156
designing, 141, 148–149
developing structure for, 346–348
displaying record results for, 194–196

ptg7799847

479Index

displaying results of multiple loops through
records, 196–197

importing existing data, 165–167
inserting user details in, 246–247
naming tables, columns, and, 149–150
organizing data in, 143–144, 148–149
paging through results with

383–385
PHP-friendly, 8–9
querying in ZF, 244–245
relational, 144, 345–346
See also, transferring data to remote database
setting up MySQL database used with WordPress,

113–114
steps for activating dynamic data, 172
storing images in, 153
transactions in, 160
updating records, 192, 200–204
validating data before inserting in, 212
viewing table definition files for, 175

Databases panel, 172
 data type, 154

date formatting in MySQL, 442–447
 function, 441

 data type, 154
 data type, 151

decision chains
password reset, 294
reset request, 288

Delete Record server behavior, 204–206
deleting

database records, 192, 204–206
images using links on CMS page, 395
records from table, 405–408
root user account in MAMP, 162

deploying sites online, 460–475
adjusting file paths, user accounts, and passwords,

467–468
creating folder for file uploads, 469–470
file transfers outside site root, 475
removing error messages from scripts, 465–467
setting up FTP access to remote server, 470–475
transferring data to remote database, 462–465
uploading Zend Framework to remote server,

468–469
deprecated errors, 108
Design view, 181, 182
designing databases, 141, 148–149
directives

case sensitivity of Apache, 41
configuring PHP Core, 33

 34, 77
 35
 34

directories
uploading files to temporary PHP, 35
virtual IIS, 41

Display Error Message dialog box, 243
 directive, 34

 container
defining width of, 124
negative right margin on theme, 132

document root, 30, 40
documentation

finding function arguments, 82–84
Zend Framework, 215

 loops, 97, 196
dragging/dropping files in Files panel, 474
Dreamweaver. See also creating PHP sites

code hinting, 15–20
collapsing code, 12–13
configuring dynamically related files, 22–23
defining and testing PHP site in, 47–54
highlighting code between balancing braces, 12
improved PHP features in, 4, 15–25
inspecting and styling pages in CMS from, 134
line numbering in, 10
Live View navigation in, 24–25
locating ZF site-specific code hints in, 215–218
Multiscreen button in HTML5 Pack, 118
PHP connection files used by, 171–173
PHP features in previous versions, 9–15
real-time syntax checking, 21
server behaviors in, 170–171, 207–209
setting preferences in, 10
setting up FTP access to remote server, 470–475
Split Code view, 13
syntax coloring, 10–12

Drupal. See also WordPress
enabling site-specific code hints for, 135
redesigning themes in, 111
structure of, 112

Dynamic Data dialog box, 198, 199

E
Easyphp

activating configuration changes for, 39
integrating PHP into IIS with, 29
locating document root for web server, 30
using subfolder of server root with, 48

 387–389
Edit Coloring Scheme for PHP dialog box, 11
editing

CMS page template, 136–139
connection files, 175–177
database-specific privileges, 163–164
Log In User server behavior to encrypt password,

190–192
PHP configuration to repair scripts, 32–33
php.ini in Windows and Mac OS systems, 37
site definitions, 54–56
WordPress page template, 136–139

ptg7799847

480 Index

elements
effect of highlighting, 128–139
selecting HTML elements using Tag selector, 196

 keyword, 75
email, 256–301

attachments for, 338–340
creating mail connector script, 266
incorporating reCAPTCHA in validation script,

270–272
 function in PHP, 259–260

mailing feedback, 273–276
modifying error message displays for, 267–269
preparing to send with 261–263
recipient’s address in Windows OS, 259
resetting forgotten passwords via, 286–299
sending attached files, 334–340
stopping spam with CAPTCHA, 263–265
troubleshooting, 276
unsubscribing users via, 299–300

 for, 261–263
email header injection, 258, 260
embedding PHP in page, 61–62
empty fields

checking for, 329, 330
preventing errors for, 272

encoding specification for 262
encrypting passwords with server behaviors, 190–192

 data type, 152–153
error messages

about, 108–109
customizing upload, 332–333
generating when validation fails, 228
information revealed in, 34
modifying existing server behaviors for email,

267–269
providing photo uploading, 367
removing from scripts, 465–467
scripting for ZF login, 249–251
storing in array, 242
turning off, 34, 77

errors. See also error messages
error markers for syntax checker, 21
failure to load next page, 184
handling in finished registration form, 242–244
preventing feedback form, 272
redisplaying checkboxes when form submitted

with, 281–282
reporting level for, 38
troubleshooting php.ini configuration, 39
uploading oversize files, 314–318
ZF exception handling with and

226–227
 array, 242

escape characters in strings, 69
Expand icon, 474
Extensible Hypertext Markup Language (XHTML), 4

Extensible Markup Language (XML), 4
external files with PHP, 101–108

using HTML, 101–105
using scripts, 105–108

F
FALSE keyword, 65, 79
false values in PHP, 79
fatal errors, 108
feedback forms

adapting for email attachments, 338–340
emailing, 273–276
preventing errors when fields empty, 272
preventing malicious use of, 258

 and methods, 290
fields

checking for empty, 329, 330
defined, 149
inserting hidden form, 306–307
preventing errors when data missing from, 272

FIGlet text, 263, 264
file extensions

building and validating renamed, 321, 324, 325
enabling other PHP, 38–39
renaming files without, 328

files. See also php.ini file; uploading files
adding WordPress media, 126–127
adjusting paths in deployed site scripts, 467–468
checking for username duplication, 245–246
configuring MySQL database, 115–116
displaying validation messages for uploaded,

314–318
dynamically related, 22–23
file validation classes, 313
locating custom CMS, 112
moving to and from remote server, 473–474
MySQL connection, 171–173
overwriting during upload, 305, 326–329
protecting with cloaking, 467
removing spaces from name, 318–321
renaming duplicate uploaded, 321–326, 366–367
sending as attachments, 334–340
setting maximum size of, 306, 312
setting upload destination for, 310
transferring outside site root, 475
using external, 101–108

Files panel, 473–474
 array, 305

 data type, 151
folders

creating for remote server uploads, 469–470
Repository view for, 474
selecting for ZF site-specific code hints, 215–218
setting destination for uploaded files, 310, 311
setting up Apache vhosts, 42

ptg7799847

481Index

structure of CMS, 112
testing uploads with local, 308–309
ZF, 214–215

 loops, 98
 loops

multiple file uploads with, 330–332
using, 98–99

foreign keys
constraints for, 160
defined, 145
inserting as, 354–358
linking tables using, 345
organizing table columns for, 147

forms. See also feedback forms; fields; records;
registration forms

checkboxes in, 277, 279, 280–282
directing user to login, 189–190
emailing feedback, 273–276
empty fields in, 272, 329, 330
hidden fields in, 306–307
inserting records using online, 177–182
loading records into update, 200–204
multiple-choice lists in, 279, 280,

285–286
 and attributes in, 178, 179

password reset, 297
radio buttons in, 277, 278, 280, 282–284
resetting forgotten passwords for, 286–299
sending by email, 258, 259–263
single-choice menus, 225, 284–285
testing registration, 182–183
testing submission of with 277
upload, 306–308

FTP access in Dreamweaver, 470–475
 keyword, 85

functions, 79–88
accented characters in names of, 64
anonymous, 450, 453
arguments and parameters of, 80
code hinting for, 15–18
creating resource, 90–91
custom, 84–87
defined, 61, 79
defining and naming, 85
function signature, 359, 361
jQuery, 449–450
location of custom WordPress theme, 124
methods and, 88
overriding in Twenty Ten theme, 124–126
passing arguments in, 80, 359, 361
reading PHP documentation for, 82–84
variable scope, 87, 449

G
Generate Behavior dialog box, 241
Get icon, 473

 method, 73
 superglobal array, 71–73

 method, 254
 method, 446

H
 method, 253

header
adjusting image with style sheet, 130
revising for Twenty Ten theme, 127
Twenty Ten theme link to, 124

 style rule, 132–133
hidden form fields, 306–307
hosting companies

checking host name for MySQL, 467
limiting MySQL user accounts, 165

HTML (Hypertext Markup Language)
code’s conformity to XHTML standards, 4
embedding PHP in, 5
sending email in, 274–275
using as external file, 101–105
using closing PHP tags following, 224

HTML5 Pack upgrade, 118
HTTP tunneling, 464

I
icons

Expand, 474
Get, 473
 attributes, 178, 179
 statements, 282, 283

IIS (Internet Information Services)
all-in-one packages integrating PHP into, 29
configuring virtual hosts, 42
creating temporary upload directory, 35
integrating PHP into, 29
permissions for uploading files in, 309
registering virtual hosts in, 44–45
virtual hosts unsupported on, 41

images. See also table; table
adding separately in CMS, 371–374
adding theme, 122
associating with multiple places, 394
deleting places without deleting, 405–408
displaying resized database, 392–395
inserting details in CMS table with script, 358–363
positioning captions below gallery, 448
refreshing without reloading page, 450–456
removing from CMSs, 414
saving uploaded, 368
scripts validating uploaded, adding theme, 317–318
storing in database or on server, 153
uploading and validating for CMSs, 363–368

importing existing data to MySQL, 165–167
infinity symbol, 145

ptg7799847

482 Index

about, 381, 382
 vs., 382–383

Insert Record server behavior, 177–183
Insert Tag Accessibility Attributes dialog box, 307
installations

Adobe Widget Browser, 421–422
MAMP, 28, 29
software for PHP testing environments, 28
testing PHP, 31–32
WordPress, 115–118
Zend Framework, 214–215

instantiating objects
about, 89–90

 object, 266
 data type, 151

Internet Information Services. See IIS
 method, 397

 function, 397
 397

J
JavaScript. See also jQuery

ensuring page function if disabled, 418, 419
using Ajax, 419
variable scope in, 449

joining
strings, 94–95
tables, 381–382

Joomla!. See also WordPress
enabling site-specific code hints for, 135
redesigning themes in, 111
structure of, 112

jQuery
combining with PHP to refresh pages, 450–457
functions and variable scope, 448–450
refreshing page content without reloading, 448–450

K
keys. See also foreign keys; primary keys

obtaining public and private reCAPTCHA, 265
primary and foreign, 145

L
 clause, 382–383

LightBox Gallery widget
displaying master list of places, 437–440
folders and files for, 429
inserting, 427–430
jQuery and, 448
populating gallery dynamically, 430–437
positioning captions below images, 448
refreshing images without reloading page, 450–456
script refreshing places, 456–457

lightning bolt icon, 198
line numbering, 10
links

creating internal website, 40
nonstandard functions for site root, 55
relative, 251

Linux servers
removing spaces from filenames for, 318–321
setting remote server permissions for file uploads,

469–470
Live Code, 14–15
Live View

editing CMS template in, 136–139
navigating in, 24–25
refreshing, 134
styling child theme from, 128
testing pages in, 107
troubleshooting file uploading in, 312

loading ZF class files, 221–223
Log In User server behavior

editing to encrypt passwords, 190–192
error message omitted with, 249
using, 185–187

Log Out User server behavior, 188–190
logical operators, 76
login systems

authenticating login, 261
controlling user access with 248–249
creating, 185–187
displaying user details of logged, 254–255
error message display in, 249–251
logging out with 253–254
testing scripts for, 251–252
tracking logged in users, 188
User Authentication server behaviors and, 183, 185

loops, 96–100
breaking out of, 100
defined, 61
displaying query data from multiple, 196–197

 97, 196
 98

 98–99
types of PHP, 96

 97

M
Mac OS systems

activating code hinting, 17
adding virtual hosts manually, 46–47
configuring WordPress files for MAMP default

ports, 117
editing php.ini in, 37
enabling other PHP extensions, 38–39
installing MAMP for, 28, 29
manually adding virtual hosts, 46–47

ptg7799847

483Index

permissions for uploading files in, 309
virtual hosts created in MAMP, 45

magic quotes
dealing with unwanted backslashes, 237–238

 directive controls, 35
 function

about, 259–260
authentication unsupported in, 260
using as wrapper for, 261–263

MAMP
configuring WordPress files for default ports, 117
deleting root user account in, 162
installing, 29
locating document root for web server, 30
virtual hosts created in, 45

Manage Places page, 385–390
Manage Sites dialog box, 56
many-to-many relationship, 146, 147, 148
master/detail sets, 437–441

about, 437
creating detail page, 440–448
date formatting in MySQL, 442
displaying master list of places, 437–440

 hidden value, 306, 312
methods. See also specific methods

jQuery, 449
object’s access to, 88

 262
Microsoft Web Platform Installer (WPI), 29
Microsoft Windows. See Windows OS systems
MIME type validation, 322–323
Model-View-Controller (MVC) design pattern, 213
MTA (mail transport agent), 259, 261
multiline comments, 14, 62
multiple-choice lists, 279, 280, 285–286
Multiscreen button (Dreamweaver), 118, 119
MVC (Model-View-Controller) design pattern, 213
MyISAM, 160
MySQL

about, 8–9
checking host name for, 467
choosing data types for, 150–155
choosing UI for, 142–143
collation and sort order in, 156–157
configuring WordPress database files, 115–116
connection file for, 171–173
creating WordPress database and user account,

113–114
date and time, 154
defining database in, 155–156
defining table for user registration,

157–159, 161
formatting date in, 442
hosting company limits on user accounts, 165
importing existing data to, 165–167
limitations in MySQL-based registration form,

218–219

naming tables, columns, and databases, 149–150
number data types, 151
pronunciation of, 150
read/write privileges for, 161–164
registration form user messages in, 218
selecting storage engine in, 160
string data types, 151–154
strong passwords for, 163
timestamps in PHP and, 155
troubleshooting connections, 174–175
user accounts for, 161–165
using with testing environments, 27
view-only user accounts for web connections,

161, 165
MySQL Connection dialog box, 172–173
MySQL Workbench, 142

N
 attributes, 178, 179

naming
child themes, 121
functions, 85

 file automatically, 463
tables, columns, and databases, 149–150
variables, 63–64

Navicat, 142, 143, 464–465
navigating

 table query results, 385–390
query results with 383–385
using Live View, 24–25

New Server Behavior dialog box, 239
notices, 108
NULL keyword, 65, 79
numbers

Dreamweaver line, 151
MySQL data types for, 151

O
object-oriented programming (OOP), 88
objects

about, 88
code hinting for, 18–19
instantiating, 89–90, 266
using as variable, 88

 223–226, 383
 266

 clause, 381–382
one-to-many relationship

converting from many-to-many relationship, 148
defined, 145, 147
illustrating, 145, 146

Open Ajax Alliance, 421
opening Code Navigator, 133–134
opening tags in PHP, 61

ptg7799847

484 Index

operators
arithmetic, 91
combined assignment, 96
comparison, 75, 79
defined, 61
logical, 76

 clauses
optional nature of, 379
specifying sort order with, 380–381

overwriting files during upload, 305, 326–329

P
parameters

defined, 80
description in documentation, 83
preventing spam, 259, 260

Parameters dialog box, 198
parse errors, 108, 109
passwords

adding encryption for Update Record server
behavior, 202–204

adjusting in deployed scripts, 467–468
checking user, 185–187
encrypting, 190–192
protecting web pages with, 187–188, 253
resetting forgotten, 286–299
strong MySQL, 163
uploading forms to site areas protected by, 320
validating strong, 235–236

paths
adjusting in deployed site scripts, 467–468
changing when autoloading ZF class files, 222

 difficulties with site-root-
relative path, 446

relative, 101
permissions

setting for remote server file uploads, 469–470
troubleshooting uploading, 312
uploading, 309

photos. See images
 table

designing, 345
displaying resized, 392–396
inserting data in, 368, 369–371
structuring, 346, 347–348
updating, 409–413

PHP (PHP: Hypertext Preprocessor)
about, 5–6, 8
applying/removing comment tags, 13–14
arithmetic operators for, 91–96
arrays, 70–73
autocompletion of defined variables, 20–21
automating repetitive tasks, 96–100
balancing braces, 12
benefits/disadvantages of, 7–8
code blocks above declarations, 108, 181

code collapse, 12–13
comments in scripts, 62
conditional statements, 74–79
directives configuring PHP Core, 33
embedding in page, 61–62
enabling Live Code, 14–15
ending statements with semicolons, 63
error messages in, 108–109
features in previous Dreamweaver versions, 9–15
finding arguments for functions, 82–84
functions, 79–88
improved features for, 4, 15–25
including external files with, 101–108
line numbering, 10

 function in, 259–260
objects and resources in, 88–91
opening and closing tags, 61
programming techniques in, 61
real-time syntax checking, 21
refreshing page elements with jQuery and, 450–457
regular expressions in, 233
removing error messages from deployed scripts,

465–467
scripts and case sensitivity, 106
security measures in, 34
sending email in, 258, 259–263
sessions in, 188
Split Code view for, 13
syntax coloring, 10–12
timestamps in, 155, 335
uploading files with, 305
using databases with, 8–9
values considered false in, 79
variables, 63–69
weakly typed language, 64–65
when browsers request web page using, 6

PHP testing environments
about, 27
activating configuration changes, 39
adding subfolder to server root for, 48
changing php.ini file, 36–39
checking configuration of, 36
creating site definition, 48–52
defining multiple servers, 52–53
enabling other PHP extensions, 38–39
installing software for, 28
level of error reporting, 38
locating web server’s document root, 30
managing site definitions, 54–56
requirements for, 28
sending feedback by email, 273–276
setting temporary upload directory, 35
setting up, 28–29
setting up PHP site in Dreamweaver, 47–54
testing, 31–32, 53–54
troubleshooting servers, 54
understanding configuration page, 32–33

ptg7799847

485Index

using 35
virtual hosts, 40–47
WordPress installation in, 115–118

 connections tested in, 266
php.ini file

activating configuration changes in, 39
backing up, 37
editing, 37
loading old versions of, 32
making changes to, 36–39
recommended settings for, 36

phpMyAdmin. See also MySQL; PHP
choosing as MySQL UI, 141, 142
creating user account from, 162
editing database-specific privileges, 163–164
saving table in, 221
setting up MySQL database from, 113–114
transferring data to remote server using, 462–464

 table
adding details in, 358–363
creating management page for, 385–390
deleting records from, 405–408
inserting data in, 368–369, 370–371
structuring, 346–347
updating records in, 396–405
using as foreign key, 354–358

 table
designing, 345–346
inserting data in, 368–371

plain authentication for 261
planning CMSs, 345–346

assessing task for, 345–346
developing database structure for, 346–348

 method, 73
 superglobal array, 71–73, 274

effect on form elements, 277–280
handling checkboxes, 280–282
multiple-choice lists, 285–286
radio button group handling, 282–284
single-choice menus, 284–285

Preferences panel
changing default options in, 10
configuring dynamically related files, 22–23

primary keys
defined, 145
inserting as foreign key, 354–358
linking tables using, 345
organizing table columns for, 147
planning, 347, 348
removing deleted record references to, 408
retrieving record details for updating, 396–397

privileges
editing database-specific, 163–164
MySQL read/write, 161–164
security hazards of root user accounts, 161

properties, 88
public files, 475

Q
queries. See also queries

displaying results from server behavior’s, 194–196
looping through multiple results of, 196–197
paging through results with

383–385
rewriting URLs without query string, 457–458
syntax of query, 379
using variable in 244–245

quotation marks
array variables with, 68–69
escape characters used in double-quoted strings, 69
magic quotes, 35, 237–238
replacing single with double, 356
variables with, 67–68

 method, 245

R
radio buttons

creating, 326–329
using in forms, 277, 278, 280, 282–284

Radio Group dialog box, 326–327
read/write privileges for MySQL, 161–164
reCAPTCHA

about, 264, 265
incorporating widget in validation script, 270–272

Record Insertion Form Wizard, 177
records

confirming deletion of, 204–206
deleting, 385, 405–408
displaying results of multiple loops through

database, 196–197
displaying selected, 194–196
inserting into table, 177–182
links to specific, 198–200
notifying if none in table, 206–207
organization of, 144
retrieving, 192–194
selecting with SQL, 379–383
updating, 200–204, 385, 396–405

Recordset dialog box, 193, 194, 200–202
Recordset Navigation Bar, 207
Recordset server behavior

displaying selected records, 194–196
loading record into update form, 200–202
selecting records, 192–194

Redisplay Checkbox server behavior, 282
Redisplay on Error dialog box, 242, 267
Redisplay Text Area dialog box, 269
refreshing page content

 event handler for images, 450–456
script refreshing places, 456–457
using Ajax, 418, 419
without reloading using jQuery, 448–450

 directive, 34

ptg7799847

486 Index

registering
virtual hosts in IIS, 44–45
Windows virtual hosts in Apache, 42–45

registration forms
building validation scripts for, 230–236
Check New Username server behavior for, 185
checking for duplicate usernames, 245–246
controlling user access with 248–249
creating custom behaviors for, 238–241
dealing with unwanted backslashes, 237–238
handling errors with finished, 242–244
inserting records in, 177–182
preserving input when validation fails, 236–237
resetting forgotten passwords, 286–299
testing, 182–183
validation and logic for, 218–219
Zend Framework improvements to, 218–223

regular expressions in PHP, 233
rejecting

invalid file types, 314
oversize files, 314–318

relational databases
about, 144
cross-referencing tables in, 345–346

relative links, 251
relative path, 101
remote servers

accessing control panel on, 465
creating folder for file uploads, 469–470
file transfers outside site root, 475
moving files to and from, 473–474
setting permissions for file uploads, 469–470
setting up FTP access in Dreamweaver for, 470–475
transferring data to, 462–465
using on, 35

removing
comment tags, 13–14
images from CMSs, 414
server behaviors, 182

renaming duplicate files, 321–326
Repeat Region server behavior, 196–197
Repository view, 474
resetting forgotten passwords, 286–299

building reset request script, 288–293
building script for, 294–299
updating records with 286–299

resources, 90–91
restoring site definitions, 56
Restrict Access To Page server behavior, 187–188
restyling WordPress site, 111–139

activating child theme, 122–127
adding media files, 126–127
developing themes and child themes, 119–120
editing page template, 136–139
enabling site-specific code hints, 135

file structure for, 112
installing WordPress in testing environment,

115–118
MySQL database and user account setup, 113–114
preparing file for, 120–122
styling and redesigning CMSs, 111

rewriting URLs without query string, 457–458
root user account

deleting in MAMP, 162
privileges and security hazards of, 161

rules
inspecting in Code Navigator, 134
revising, 132–133

Rules pane (CSS Styles panel), 129

S
saving

multiple columns, 157–159
table definition, 159
uploaded images, 368

 table in phpMyAdmin, 221
scripts. See also Zend Framework

adapting mail processing, 336–338
adjusting file paths, user accounts, and passwords,

467–468
arguments in, 80
building ZF validation, 230–236
comments in, 62
creating login, 249–251
developing uploading, 309–311
editing PHP configuration to repair, 32–33
eliminating errors in, 34
handling ZF exceptions with and

226–227
including external scripts in PHP, 105–108
incorporating reCAPTCHA widget in validation,

270–272
inserting image details in table with, 358–363
modifying uploading to sending attached files,

334–340
overwriting files during uploading, 305, 326–329
preventing renaming of files by, 328
providing error messages for login, 249–251
removing error messages from, 465–467
renaming files with duplicate names, 321–326,

366–367
reset request, 288–293
resetting passwords with, 294–299
validating file uploading, 312–318

security
hosting company limits on MySQL user accounts, 165
importance of, 34
replacing WordPress values and files for, 116
using view-only user accounts for web

connections, 161, 165

ptg7799847

487Index

 queries
creating with Recordset server behavior, 192
displaying photos on page with, 398
executing with or 290

 selections of images and places,
394–395

selecting all records with, 379
sorting returns in, 380–381
specifying search criteria with clause,

379–380
syntax of, 379
using variable in, 244–245

 menus
inserting photos separately via, 372–373
populating dynamically with server behavior,

354–358
single-choice, 225, 284–285

Server Behavior Builder
about, 212
creating server behaviors, 238–241
illustrated, 240

server behaviors, 170–209
about, 170–171
checkboxes redisplayed after form errors, 281–282
connecting to database before using, 171
converting into, 390–392
creating custom, 238–241
creating links to specific records, 198–200
defined, 4
Delete Record, 204–206
encrypting passwords with, 190–192
failing to load next page, 184
finding and selecting records, 192–194
inserting records into table, 177–182
inserting as foreign key, 354–358
Log In User, 185–187, 190–192, 249
Log Out User, 188–190
modifying error displays for email, 267–269
pros and cons of, 207–209
radio buttons redisplayed after errors, 282–284
removing, 182
Repeat Region, 196–197
replacing single quotation marks with double, 356
Restrict Access To Page, 187–188
Show Region, 206–207
testing registration form, 182–183
types of User Authentication, 183, 185
updating database records, 200–204

server root
adding subfolder to, 48
indicating URL port location in MAMP, 30

server-side technology. See also Apache web servers;
PHP testing environments; web servers

function of, 5–6
PHP’s advantage/disadvantage as, 7–8
validating input on servers, 212, 227–229

sessions
starting in upload script, 334–335
tracking variables in scripting, 295
using, 188

 data type, 152–154
Show Region server behavior, 206–207
sidebar placement, 131–132
single-choice menus, 225, 284–285
singleton objects, 248
site definitions

backing up and restoring, 56
creating, 48–52
editing, 54–56

site root
adding code hints for CMS in, 135
creating internal links to, 40
nonstandard functions for link to, 55
transferring deployed files outside, 475

Site Setup dialog box, 49–52
site-specific code hinting

about, 18
Drupal, Joomla, and WordPress, 135
Zend Framework, 215–218

Site-Specific Code Hints dialog box, 135
software for test environments, 27, 28
sorting

collation and, 156–157
 query returns, 380–381

spam
parameters preventing, 259, 260
stopping with CAPTCHA, 263–265

Split Code view
checking code insertion, 285
using, 13, 270

spreadsheets, relational databases vs., 143–144
Spry framework, 421
SQL, 379–383. See also MySQL; queries; queries

joining tables, 381–382
naming practices for, 149–150
pronunciation of, 150
selecting all records in table, 379
using functions with 288

 files
importing data from, 165–167
populating exercise tables with, 419
transferring data to remote database, 461, 462–464

SQLyog
choosing as MySQL UI, 142
transferring data to remote database using,

464–465
SSH (Secure Shell) account access, 464
statements

defined, 63
ending with semicolon, 63

ptg7799847

488 Index

strings
assigning to variable, 66
defined, 66
escape characters in, 69
joining, 94–95
using in calculations, 93–94

style sheets. See also restyling WordPress site; style.
css file

adjusting theme, 128–134
included in child theme, 120
inspecting rules in Code Navigator, 134
moving sidebar from right to left, 131–132
revising rules, 132–133

style.css file
about, 120
adding comments to, 121–122
code introducing, 121

superglobal arrays, 71–73
synchronizing site files, 472
syntax

PHP syntax coloring, 10–12
real-time checking of, 21

 query, 379

T
tables

adding photos separately to, 371–374
cross-referencing, 345
Crow’s Foot notation for, 145–146
data insertion in multiple, 342–375
defining 157–159, 161
deleting data with option, 462
foreign and primary keys for, 145, 147–148
inserting data in, 368–371
inserting records into, 177–182
joining, 381–382
many-to-many relationship for, 147
naming, 149–150
notifying if no records in, 206–207
one-to-many relationship for, 145, 146, 147
organizing primary and foreign key columns on, 147
planning structure for new CMS, 346–348
primary key used as foreign key in, 354–358
query selecting all records in, 379
relationship between, 144
retrieving list of records from, 192–194
viewing definition files for, 175

Tag selector, selecting HTML elements using, 196
tags

applying/removing comment, 13–14
omitting closing, 224
opening and closing PHP, 61

templates. See also themes
editing WordPress, 136–139
styling WordPress child themes, 128–134
Twenty Ten theme, 120

testing. See also PHP testing environments
email attachment script., 339–340
HTML replacement script, 455
multiple criteria with chained validators, 230
removing spaces from filenames, 320–321
submission of forms with 277

 login scripts, 251–252
 uploads, 308–309

 data type, 151–152
TextWrangler, 40, 46
themes. See also Twenty Ten theme

developing child, 119–120
files within, 120
placing images on Dashboard for, 122
styling child, 128–134

throwing exceptions. See errors
thumbnails for LightBox Gallery Widget, 437

 data type, 154
time zones, 89–90
timestamps

 data type, 154, 155
using PHP, 335

transactions, 160
transferring data to remote database

commercial tools for, 464–465
removing error messages from scripts, 465–467
using remote server’s control panel, 465
using file for, 461, 462–464

troubleshooting
errors during database connection, 226
missing email, 276
MySQL connections, 174–175
server behavior fails to load next page, 184
testing servers, 54
uploading, 311–312
web server installations, 32

TRUE keyword, 65
TRUE value, 75–76, 79

 and blocks, 226–227
turning on/off

code hinting, 19–20
 directive, 34, 77

highlighting in Design view, 181
 directive controls, 35

syntax coloring, 11
Twenty Ten theme

Header link in, 124
negative right margin on 132
overriding functions.php in, 124–126
style.css code for, 121
templates in, 120

U
unique index, 219–220
unsubscribing registered users, 299–300

 method, 286–287

ptg7799847

489Index

Update Photo Details page, 409–413
Update Place page, 396–405
Update Record server behavior, 202–204
updating

database records, 192, 200–204
images on CMS page, 395
overview of record, 385

 table, 409–413
 table, 396–405

records using associative arrays, 287
retrieving record details for primary key, 396–397
using 286–299

upgrades with HTML5 Pack, 118
uploading files, 302–341

adding Zend Framework to remote server, 468–469
configuring destination for, 310
creating basic script for, 309–311
customizing error messages for, 332–333
designing form for, 306–308
displaying validation messages while, 314–318
files with PHP, 305
handling multiple files, 329–332
maximum file size when, 306, 312
overwriting when, 305, 326–329
password-protection and, 320
photos for CMSs, 363–368
removing filename spaces during, 318–321
renaming duplicates while, 321–326, 366–367
sending attached files, 334–340
to temporary PHP directory, 35
testing scripts locally for, 308–309
troubleshooting, 311–312
using PHP, 305
validating while, 312–314, 363–368

 for, 308–333
URLs

removing spaces from, 318–321
rewriting without query string, 457–458
setting remote server, 471

user accounts
adjusting in deployed site scripts, 467–468
defining table for user registration,

157–159, 161
read/write privileges for, 161–164
WordPress, 113–114

User Authentication server behaviors
Check New Username, 185
Log In User, 185–187, 190–192, 249
Log Out User, 188–190
Restrict Access To Page, 187–188
types of, 183, 185
ZF authentication vs., 247

user registration. See registration forms
users. See also passwords; user accounts

authenticating with component,
247–255

checking usernames, 185–187, 245–246
displaying details of logged-in, 254–255
logging in, 185–187
logging out, 188–190
notifying if no records in tables, 206–207
resetting forgotten passwords, 286–299
storing username in variable, 188
tracking with cookies, 188
unsubscribing registered, 299–300
validating input on server, 212, 227–229

 table
adding extra columns to, 220–221
adding unique index to, 219–220
columns needed in, 157
defining, 157–159, 161
defining for user registration, 157–159, 161

UTF-8 encoding, 262

V
validating input, 212–255. See also

component
building validation scripts, 230–236
checkboxes, 280
email addresses, 273–274
file uploading, 312–314
file validation classes, 313
messages confirming upload file, 314–318
photos uploaded to CMSs, 363–368
preserving input when validation fails, 236–237
testing multiple criteria, 230, 234–235
using strong passwords, 235–236
validation error codes, 333

 for, 227–229
values

assigning to variables, 64–65
considered false, 79
selecting records marked with lighting bolt, 198

 data type, 151–152, 154
variable scope

autocompletion of, 20
jQuery, 449
PHP, 87

variables, 63–69
accented characters in names of, 64
array, 68–69, 70–73
assigning values to, 64–65
defined, 61, 63
escape characters in strings, 69
naming, 63–64
objects as, 88
placement of operators with, 92
reassigning results to same, 95–96
text assigned to, 66
tracking session, 295
using in query, 244–245
using with quotation marks, 67–68

ptg7799847

490 Index

Vertical Split view, 232
viewing table definition files, 175
virtual hosts, 40–47

configuring on Mac OS X, 45–47
creating, 40, 41

 difficulties with site-root-
relative path, 446

manually adding on Mac systems, 46–47
multiple websites vs., 40–41
setting up on Windows, 42–45
unsupported on IIS, 41
using, 47

W
WampServer

activating configuration changes for, 39
integrating PHP into IIS with, 29
locating document root for web server, 30
using subfolder of server root with, 48

warnings, 108
web pages

adding log out link to, 188–190
creating master/detail set, 437–441
effect of PHP code for browsers requesting, 6
ensuring function if JavaScript disabled, 418, 419
failure to load next, 184
hiding part of page when recordset empty, 206–207
inserting widget in, 427–430
password-protecting, 187–188, 253
refreshing without reloading, 448–450
using PHP with, 5–6

web servers. See also Apache web servers; PHP
testing environments; validating input

activating PHP configuration changes for, 39
creating multiple, 52–53
defined, 28
handling asynchronous requests and responses, 7
locating document root, 30
removing spaces from Linux filenames, 318–321
storing uploaded files on, 334
support for URL rewriting, 457–458
testing and remote, 52–53
tracking logged in users on, 188
understanding PHP configuration for test, 32–33
uploading files to, 304

websites. See also creating PHP sites; deploying sites
online; PHP testing environments

creating internal links in, 40
location of Connections folder for live, 173
site definitions for, 48–52, 54–56
site root, 40, 55, 135, 475
using virtual hosts vs. multiple, 40–41

 clause, 379–380, 381–382
 loops, 97

Widget dialog box, 428
widgets. See also Adobe Widget Browser; LightBox

Gallery widget
choosing from Adobe Exchange, 422–424
creating preset for, 425–427
dependent files for, 428, 429
finding, 420–421
inserting in page, 427–430
populating dynamically, 430–437
previewing, 423–424
revising in child themes, 123

Windows OS systems. See also IIS
avoiding formatting recipient’s address for, 259
Bcc recipient’s address visible in, 259
drop shadow rendering in Live View, 134
editing php.ini in, 37
enabling other PHP extensions, 38–39
integrating PHP into IIS, 29
permissions uploading files in IIS, 309
setting remote server permissions for file uploads,

469–470
using Apache for virtual hosts, 41
virtual host setup in, 42–45

WordPress
activating child theme, 122–127
adding media files to, 126–127
configuring for use with MySQL database, 113–114
Dashboard for, 117
developing themes and child themes, 119–120
editing page template for, 136–139
enabling site-specific code hints for, 135
installing in PHP testing environment, 115–118
preparing to style child themes, 120–122
replacing values and files when security breached,

116
structure of, 112
styling child themes, 128–134

WPI (Web Platform Installer), 29

X
XAMPP

activating configuration changes for, 39
integrating PHP into IIS with, 29
locating document root for web server, 30
registering Windows-based virtual hosts in

Apache, 42, 43
using subfolder of server root with, 48

XHTML (Extensible Hypertext Markup Language), 4
XML (Extensible Markup Language), 7

Y
 data type, 154, 155

ptg7799847

491Index

Z
Zend, 8
Zend Framework (ZF). See also specific ZF components

about, 4, 212, 213–214
adding extra columns to table, 220–221
adding unique index to table, 219–220
authenticating user credentials, 247–255
building validation scripts, 230–236
chaining validators to test multiple criteria, 230,

234–235
code hinting for 250
components of, 213
controlling user access with, 248–249
database connections using 223–226
documentation for, 215
handling exceptions with and blocks,

226–227
improving MySQL registration form in, 218–223
input validation in, 227–229
installing, 214–215
loading class files for, 221–223
logging out with 253–254
password-protecting pages, 253
preserving input when validation fails, 236–237
querying database in, 244–245
scripting error messages for login, 249–251
site-specific code hints for, 215–218
testing login scripts, 251–252
uploading to remote server, 468–469
User Authentication server behaviors vs.

authentication with, 247
using 261–263
validating strong passwords, 235–236

Zend Select Menu dialog box, 372
 component, 247–255

controlling user access with, 248–249
logging out with, 253–254
password-protecting pages with, 253
scripting for login error messages, 249–251
selecting code hinting for, 250
testing login scripts, 251–252
using User Authentication server behaviors vs., 247

 class, 263, 264
 class, 264

 class, 264, 265

 component
checking for duplicate usernames, 245–246
inserting user details in database, 246–247
updating records with, 286–299
using SQL functions with, 288

 object
connecting to database with, 223–226
using method for, 383

 component
about, 308
creating local folder for uploading test scripts,

308–309
handling multiple file uploads, 329–332
overwriting files during uploading, 305, 326–329
renaming duplicate files, 321–326
uploading files with, 305
validating uploaded files, 312–318

 component
creating attachments, 334–340
creating mail connector script, 266
encoding specification for, 262
obtaining public and private reCAPTCHA keys, 265
processing user feedback with, 266–276
sending feedback by email, 273–276
stopping spam with CAPTCHA, 263–265
troubleshooting missing email, 276
using reCAPTCHA in validation script, 270–272

 object, 266
 component

converting to server behavior, 390–392
creating management page for table,

385–390
dialog box for, 392
navigating with, 383–385
page for managing table, 392–396
properties of, 385

 class, 265, 270, 271
 component

building validation scripts, 230–236
chaining validators to test multiple criteria, 230,

234–235
input validation with, 227–229
preserving input when validation fails, 236–237
using variable in query, 244–245
validating strong passwords, 235–236

ptg7799847

ptg7799847

Legal Notice: Peachpit Press makes no warranty or representation, either express or implied, with respect to this software, its quality,
performance, merchantability, or fi tness for a particular purpose. In no event will Peachpit Press, its distributors, or dealers be liable for
direct, indirect, special, incidental or consequential damages arising out of the use or inability to use the software. The exclusion of implied
warranties is not permitted in some states. Therefore, the above exclusion may not apply to you. This warranty provides you with specifi c
legal rights. There may be other rights that you may have that vary from state to state.

The software and media fi les are copyrighted by the authors and Peachpit Press. You have the non-exclusive right to use these programs
and fi les. You may use them on one computer at a time. You may not distribute the URL to third parties or redistribute the fi les over a
network. You may transfer the fi les onto a single hard disk so long as you can prove ownership of this eBook.

You may not reverse engineer, decompile, or disassemble the software or media fi les. You may not modify or translate the software or
media, or distribute copies of the software or media without the written consent of Peachpit Press.

Thank you for purchasing this digital version of:

The print version of this title comes with a disc of
lesson fi les. As an eBook reader, you have access

to these fi les by following the steps below:

1. On your PC or Mac, open a web browser and go to this URL:

2. Download the ZIP fi le (or fi les) from the web site to your hard drive.

3. Unzip the fi les and follow the directions for use in the Read Me
included in the download.

Please note that many of our lesson materials can be very large,
especially image and video fi les. You will be able to see the size of any

fi le for download once you reach the URL listed above.

If you are unable to locate the fi les for this title by following the steps
above, please email ask@peachpit.com and supply the URL from step one.

Our customer service representatives will assist you as soon as possible.

WHERE ARE THE LESSON FILES?

Adobe Dreamweaver CS5 with PHP: Training from
the Source

www.peachpit.com/ebookfiles/0132117916

http://www.peachpit.com/ebookfiles/0132117916

	Contents
	Introduction
	LESSON 1 Why PHP and Why Dreamweaver CS5?
	A Rich Mix of PHP Features
	What Is PHP? What Does It Do?
	A Tour of the Main PHP Features in Dreamweaver CS5

	LESSON 2 Getting Ready to Develop with PHP
	Setting Up a Local Testing Environment
	Checking Your PHP Installation
	Using Virtual Hosts
	Setting Up a PHP Site in Dreamweaver CS5

	LESSON 3 A Quick Crash Course in PHP
	How PHP Makes Pages Dynamic
	Taming the Unknown with Variables
	Grouping Related Values in Arrays
	Using Conditions to Make Decisions
	Using Functions to Perform Tasks
	Using Objects and Resources
	Using Operators for Calculations and Joining Strings
	Automating Repetitive Tasks
	Including External Files
	Understanding Error Messages

	LESSON 4 Restyling a WordPress Site
	Understanding the Structure of a CMS
	Installing WordPress
	Creating a WordPress Theme

	LESSON 5 Designing and Building Your Own Database
	Working with MySQL
	Creating a Database and Tables
	Creating MySQL User Accounts
	Importing Existing Data

	LESSON 6 Generating PHP Automatically with Server Behaviors
	What Server Behaviors Do
	Connecting to the Database
	Inserting Records into a Table
	Creating a Login System
	Displaying, Updating, and Deleting Records
	Evaluating the Server Behaviors

	LESSON 7 Validating Input on the Server
	Introducing the Zend Framework
	Improving the Registration Form
	Authenticating User Credentials with Zend_Auth

	LESSON 8 Zending Email
	How PHP Handles Email
	Stopping Spam with a CAPTCHA
	Processing User Feedback
	Processing Other Form Elements
	Resetting Forgotten Passwords
	Unsubscribing Registered Users

	LESSON 9 Uploading Images and Other Files
	Understanding How PHP Uploads Files
	Creating an Upload Form
	Using Zend_File for Uploads
	Sending Email Attachments

	LESSON 10 Inserting Data into Multiple Tables
	Assessing the Task
	Creating the Database Structure
	Building the CMS

	LESSON 11 Updating and Deleting Files in Related Tables
	Selecting Records with SQL
	Completing the CMS

	LESSON 12 Using Ajax to Refresh Content
	Enhancing Pages with Ajax
	Introducing Adobe Widget Browser
	Configuring a Widget
	Creating a Master/Detail Set
	Refreshing a Page Without Reloading
	Creating Clean URLs

	LESSON 13 Deploying Your Site Online
	Transferring a Database
	Preparing Your PHP Files
	Setting Up Your Remote Server in Dreamweaver

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Where Are the Lesson Files?

