

Building Websites with
PHP-Nuke

Douglas Paterson

 BIRMINGHAM - MUMBAI

Building Websites with PHP-Nuke

Copyright © 2005 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, Packt Publishing, nor its dealers
or distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2005

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-904811-05-1
www.packtpub.com

Cover Design by www.visionwt.com

Dinosaur Portal topic images created by James Turner, of www.beaverandsteve.com

Credits

Author
Douglas Paterson

Reviewers
Stoyan Stefanov
Bill Wong

Technical Editor
Nikhil Bangera

Editorial Manager
Dipali Chittar

Indexer
Ashutosh Pande

Proofreader
Chris Smith

Production Coordinator
Manjiri Nadkarni

Cover Designer
Helen Wood

About the Author

Douglas Paterson is a full time development editor and part-time author for Packt Publishing.
He is a doctor of Mathematics and has over five years experience working on programming books
across a range of subjects.

He lives in Birmingham, England with his girlfriend, and his unusually hairy dog Zak. He can be
reached at doug@packtpub.com.

Table of Contents

Preface 1
Chapter 1: An Introduction to PHP-Nuke 5

What PHP-Nuke Can Do for You 5
The Visitor Experience 6
The Management Experience 6

What Exactly is PHP-Nuke? 7
Modular Structure 7
Themed Interface 7
Multi-Lingual Interface 8

PHP-Nuke as an Open-Source Content Management System 8
Open Source 8
Content Management System 9

Getting Help in the PHP-Nuke Community 9
The Dinosaur Portal 10
Summary 11

Chapter 2: Installing PHP-Nuke 13
Downloading PHP-Nuke 13

Extracting PHP-Nuke 14
Downloading the Patches 14

Applying the Patches 15
Preparing the PHP-Nuke Database 16

Creating the Database 17
Creating a Database User 17
Populating the Database 18

Configuring PHP-Nuke 21
Putting PHP-Nuke Files into the Web Server Root 22
Testing the Installation 22

Database Connection Problem 23
No Data in the Database 24
Still Having Problems? 24

Summary 24

Table of Contents

Chapter 3: Your First Page 25
Your New Homepage 25
Blocks 27
Modules 28

A Fistful of Default Modules 29
Creating the Super User 30
Becoming the Administrator 31

A New Welcome 33
Editing Text in PHP-Nuke 34

HTML Rules 34
Forbidden Tags 35
Adding Links 35
Adding Images 36
HTML Editor in PHP-Nuke 7.7 36

Restricting User Access 38
Summary 40

Chapter 4: Managing the Site 41
Your Site, Your Database 41
Visiting the Administration Area 42
Site Preferences 44

Turning off the Graphical Icons 48
The Cookie Crumbles 48
Backing Up the Site Database 48
Managing Blocks 50

Types of Blocks 52
Block Positioning 53
Block Visibility 53

The Blocks Administration Area 53
Adding Blocks 57

Options for All Blocks 58
Adding Other People's News with RSS/RDF Blocks 60
Adding a File Block 63

Managing Modules 65
Editing Module Properties 68
Adding New Modules 70

Summary 72

ii

Table of Contents

Chapter 5: Managing Users 73
Ingredients of a User 74
Setting Up a New User 74

Subscribing a User 75
Graphical Code for User Registration 80
Seeing Who's Who 82

The Your Account Module 83
Editing the User Profile 84
Your Account Configuration 86

Talking to the World with Public Messages 86
It's My Block and I'll Cry if I Want to... 87

Private Messages 88
User Journal 89

Your Journal Entries 90
Adding a Journal Entry 90
Peeking into the Journals of Others 92

Rewarding the User 93
Points on Offer 93

Restricting Module Access to User Groups 95
Managing Other Administrators 97

Authors versus the Super User 97
Creating an Author 98

Summary 99
Chapter 6: Story Management with PHP-Nuke 101

The Story Story 102
The Story Publication Process 102
Finding and Interacting with Stories 103

Organizing Stories 103
Topics 103
Categories 104
Planning the Dinosaur Portal Topics and Categories 104

Topic Management 105
Deleting a Topic 108

Adding Stories 108
Category Management 111

The Visitor View of a Story 112
Related Links, Scoring, and Friends 114

 iii

Table of Contents

Everyone Has an Opinion... Comments 117
Seeing Your Comments 120
Controlling Comment Posting 120

Allowing Comments 120
Restricting Comment Posting to Registered Visitors 121
Administrator Removal of Comments 122
Filth Filter 122
Karma and Comment Moderation 123

Comments in Moderation 127
Customizing the User View of Comments 130

Story Management 134
Editing Stories 135
Deleting Stories 135
User-Submitted Stories 136

Setting Up the Mail Notification 136
Visitor Story Submission 137
Approving Stories 137

Finding Stories 139
From the Homepage 139
From the Topics module 140
From the Search module 140
From the Story Archive 140
From the Categories Menu Block 141

Special Administrator 142
Points and Prizes 143
Sharing Your News 143
Polls and the Surveys Module 144

Attaching a Poll to a Story 144
The Surveys Module 146
Survey Management 147

Summary 148
Chapter 7: Content Management Modules 149

Content 149
The Content Block 155
Managing Categories 155
Special Administrator 155
Restricting Access 156
Points and Prizes 156

iv

Table of Contents

FAQ 156
Managing FAQs 158

Editing a FAQ 159
The FAQ Block 159
Special Administrator 159
Restricting Access 159
Points and Prizes 159

Encyclopedia 159
Managing the Encyclopedia 161
Viewing the Encyclopedia 162
The Encyclopedia Block 164
Special Administrator 164
Restricting Access 164
Points and Prizes 164

Web Links and Downloads 164
Interacting with Web Links 169
Checking the Web Link 170

Modifying Web Link Details 170
Reporting Broken Links 171

Submitting Web Links 172
Managing Web Links 172

Modifying Web Links 173
Managing User-Submitted Web Links 175
Managing User-Submitted Modification Requests 176
Managing User-Submitted Broken Link Notifications 176
Validating Links 177
Changing Category Structure 178

Web Links Block 181
Special Administrator 181
Restricting Access 181
Points and Prizes 182

Reviews 182
Submitting Reviews 183
Interacting with Reviews 186
Managing Reviews 186

Customizing the Reviews Welcome Page 186
The Reviews Block 187
Special Administrator 187

 v

Table of Contents

Restricting Access 187
Points and Prizes 187

Module Feature Comparison 187
Summary 188

Chapter 8: Managing the Discussion Forums 189
Forum Structure 189
The Forums Administration Area 190

Forum Configuration 192
Creating a Category 193
Creating a Forum 193

The Visitor Experience 195
Posting a Topic 196

Forum Permissions 198
Creating Groups 198
Setting Forum Permissions 200
Setting Group Permissions 201
Joining Groups 202

Approving the Membership Application 203
Moderating the Forum 204

Setting a Forum Moderator 204
Summary 206

Chapter 9: Customizing Layout with Themes 207
What Does a Theme Control? 208

Appearance 208
Page Layout 208

Theme Management 208
Theme File Structure 209
Installing a New Theme 209
Removing an Existing Theme 210

From an Existing Theme to a New Theme 210
Starting Off 211

Replacing Traces of the Old Theme 211
Templates and PHP Files 212

PHP Files 212
Templates 212

Changing the Page Header 214

vi

Table of Contents

Working with the Stylesheet 220
Changing Blocks 227
Changing Story Layout 234

Creating a Rounded Box 235
Changing the Layout of the Story Extended View 241

Changing the Footer 243
Adding a Favicon 243

Including Custom Files 244
Page Output from Start to Finish 245
Summary 246

Chapter 10: Programming PHP-Nuke 247
What Happens When a Page is Requested? 247

Where Does PHP-Nuke Get Information From? 248
Requesting a Page 248

Creating a Block 249
Data Access in PHP-Nuke 254
Module File and Folder Structure 256
Creating a User Submissions Module 257

Module Development Steps 257
Creating the Module Folder 258
Creating the Database Tables 258
The Visitor Code—the index.php File 259

Overall Structure of the Module index.php File 259
Inviting the User to Submit an Item 262
Displaying the Form for User Input 266
Preparing to Add the Encyclopedia Entry 268
Storing the Submission 270

The User Submission Administration Area 272
Creating the Modules Administration Menu Entry 273
Selecting the Correct Administration Area 274

Creating the Administration Code 275
Displaying the List of Submitted Items 278
Editing and Approving the Submitted Item 281
Displaying the Submitted Item 282
Accepting the Submitted Item 284
Removing a Submitted Item 285
Deleting a Submitted Item 286

 vii

Table of Contents

Extending the Module 286
Extending at the Front End 286
Extending at the Administration End 286

Summary 287
Appendix A: Installing XAMPP 289
Index 297

viii

Preface

PHP-Nuke is a free tool to manage the content of dynamic websites, and allows you to create a
dynamic, interactive website with minimum effort and programming knowledge.

As one of the most popular applications on the Internet, PHP-Nuke has grown into a complex,
powerful tool with an extraordinary range of features, and a loyal community of supporters. Users
can edit and manage their site through a web-based interface, without the need for any knowledge
of web programming. PHP-Nuke is ideal for running a community-driven website, where visitors
create accounts, contribute material, and interact with the site.

This book is packed with practical steps for you to learn how to build your own website with
PHP-Nuke. From the basics of installing and configuring PHP-Nuke, you will learn how to
manage your site, add content to it, and then customize its look.

What This Book Covers
The book begins with an overview of PHP-Nuke; what it is, and what it can do to help you build
your own community-driven website. We shall learn all the features and functionality provided by
PHP-Nuke by developing an example site, the Dinosaur Portal, as we progress through this book.

In Chapter 2, you will learn how to install and configure PHP-Nuke, apply patches, and also create
the database. At the end of this chapter you will have a fully operational PHP-Nuke site, ready to go!

In Chapter 3 you will begin to explore the many features of PHP-Nuke, create the super user (an
all-powerful administrator of the site), and make your first modifications to the site. You will also
learn about the ways in which PHP-Nuke restricts access to the site.

Chapter 4 introduces you to the administration area of PHP-Nuke, which allows you to manage
your site from the comfort of your web browser. You'll see how to configure your site, back up the
database, and manage blocks and modules.

Your site is created for visitors and Chapter 5 shows you how to manage them. You will learn
how to create users, explore the Your Account module, which is the user's private 'space', and set
up other administrators to perform limited administrative tasks on the site.

Chapter 6 is where we really start adding content to the site. In this chapter, we have a thorough
walkthrough of story management, from both the visitor and administrator viewpoint. A story is
PHP-Nuke's most versatile type of content, and we explore how to add, edit, and manage stories,
and the features that allow visitors to interact with the stories.

Chapter 7 covers some of the other standard modules for adding content in PHP-Nuke. The
Content, FAQ, Encyclopedia, Web Links, Downloads, and Reviews modules are all covered in
this chapter, from both the visitor and administrator viewpoint. Each of these modules handles a
different type of content, and you will see the functionality they offer for visitors to interact with
the content, and also how each module organizes its content.

Preface

 2

PHP-Nuke has a fully featured discussion board module, the Forums module. In Chapter 8, you will
take a tour of setting up a new forum, assigning moderators, and setting permissions to these forums.

Before Chapter 9, you've been working with the standard-looking PHP-Nuke site. In Chapter 9, it's
time to unleash your creativity and create a new look for the site. This is done through customizing a
PHP-Nuke theme. In this chapter, we race through a range of customizations, from changing the site
logo, to adding and styling a navigation bar, creating new blocks, and changing the format of stories
on the homepage, among others. This chapter features a lot of coding in HTML and CSS, in addition
to some changes to PHP files, and there are clear instructions to help you through.

Chapter 10 shows you how to program PHP-Nuke to create new blocks and modules. You will see
how PHP-Nuke handles page requests, data access, and language files. You will also see how code
is organized in a module for both the visitor end and the administrator end.

Appendix A has a walkthrough of installing the XAMPP package, which provides a working
installation of PHP, MySQL, and Apache, ready configured for you to test your PHP-Nuke site on.

What You Need To Use This Book
You will need access to an installation of PHP-Nuke. PHP-Nuke can be freely downloaded from
www.php-nuke.org, and there are more details of how to do this in Chapter 2. PHP-Nuke requires a
working installation of PHP, MySQL, and the Apache web server to run. In Appendix A, you will
find instructions on how to download the XAMPP package, which has all of these ready configured.

Basic knowledge of HTML will help if you intend to explore customizing your own theme, and a
basic knowledge of PHP will help if you want to get the most from Chapter 10.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "… the database access
variables, $prefix and $db, and it needs the module name, $module_name."

A block of code will be set as follows:
if ($numrows)
{
 $row = $db->sql_fetchrow($result);
 $dino_title = $row['title'];
 $image = $row['image'];
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items will be made bold:

if ($numrows)
{
 $row = $db->sql_fetchrow($result);
 $dino_title = $row['title'];
 $image = $row['image'];
}

http://www.php-nuke.org/

Preface

New terms and important words are introduced in a bold-type font. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "clicking the Next
button moves you to the next screen".

Tips, suggestions, or important notes appear in a box like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about this book, what
you liked or may have disliked. Reader feedback is important for us to develop titles that you
really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com, making sure to
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com. If there is a
topic that you have expertise in and you are interested in either writing or contributing to a book,
see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get
the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes do happen. If
you find a mistake in one of our books—maybe a mistake in text or code—we would be grateful if
you would report this to us. By doing this you can save other readers from frustration, and help to
improve subsequent versions of this book. If you find any errata, report them by visiting
http://www.packtpub.com/support, selecting your book, clicking on the Submit Errata link, and
entering the details of your errata. Once your errata have been verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with some aspect of
the book, and we will do our best to address it.

 3

1
An Introduction to PHP-Nuke

PHP-Nuke is a free tool to manage the content of dynamic websites. To be more specific,
PHP-Nuke is an open-source content management system. In fact, you could say it is 'the' open-
source content management system. Since it is vastly popular, a number of other similar systems
have sprung from it, and even similar systems based around very different technologies that owe
nothing to it in terms of code have added 'Nuke' to their name as homage.

Although the first paragraph conveys something of the history and grandeur of PHP-Nuke, it
doesn't answer the basic question of what it can actually do for you.

PHP-Nuke allows you to create a dynamic, community-driven website with minimum effort and
programming knowledge. To get the most out of PHP-Nuke, a knowledge of web development
will prove to be useful, but even then, PHP-Nuke is written in the PHP scripting language (as can
be deduced from the name), which is probably the most popular and straightforward language for
creating websites and web applications.

The first PHP-Nuke release in June 2000 was created by a developer named Francisco Burzi to
power his site, Linux Preview. Since then, PHP-Nuke has evolved under his guidance to the
system it is today.

PHP-Nuke is truly one of the Internet's legendary applications. In this chapter, we will take our
first look at PHP-Nuke, understand what it can do, find out where to go for further resources, and
briefly discuss the site we will create in this book.

What PHP-Nuke Can Do for You
PHP-Nuke is ideal for creating community-driven websites.

The 'community' part of 'community-driven' means that the site is geared towards a particular
group of people with similar interests. Maybe this community is concerned with wine making,
flowers, programming, zombie films, or even dinosaurs. Maybe the community is actually a group
of customers of a particular product. Of course, we are talking about an online community here.

Whatever the community is into, the site can be structured to hold information relevant to the
members; maybe it will be news stories about a forthcoming zombie film, links to other zombie
sites, reviews, or synopses of other zombie films.

An Introduction to PHP-Nuke

 6

The 'driven' part of 'community-driven' suggests that the information available on this site can be
extended or enhanced by the members of the community. Members of the community may be able
to shape what is on the site by posting comments, contributing or rating stories, and participating
in discussions. After all, communities are made up of people, and people have views and opinions,
and often like to express them!

This is exactly what PHP-Nuke enables. More than being just a website, a PHP-Nuke site provides
a rich and interactive environment for its visitors.

The best bit is, you don't have to be an expert programmer to achieve all this. With only
rudimentary knowledge of HTML, you can engineer a unique-looking PHP-Nuke website.

The Visitor Experience
The standard installation of PHP-Nuke provides many features for its visitors. Some of them are:

• Searchable news articles, organized into topics
• Ability of visitors to create an account on the site, and log in to their own personal area
• Ability of visitors to rate articles, and create discussions about them
• Straw polls and surveys
• Ability of visitors to submit their own stories to be published on the site
• An encyclopedia, in other words, a collection of entries organized alphabetically
• A catalog of web links or downloadable files
• Discussion forums
• Ability of visitors to select their own look for the site from a list of different 'themes'
• RSS syndication of your articles to share your content with other sites

This is not a complete list either. And these are only some of the features that come with the
standard installation. PHP-Nuke is a modular system; it can be customized and extended, and
there is a huge range of third-party customizations and extensions to be found on the Internet. Any
of these can add to the range of features your site provides.

The Management Experience
As a potential 'manager' of a PHP-Nuke site, as you read through the list of features above you
may think they sound rather attractive, but you might also wonder how you will handle all of that.

PHP-Nuke provides a web-based management interface. You, as the manager of the site, visit the
site and log in with a special super user, or site administrator, account. After this, from the comfort
of your web browser, you run the show:

• You can add new information, and edit, delete, or move existing pieces of information.
• You can approve articles submitted by the user to be shown on the site.
• You can decide the features of the site.
• You can control what is displayed on the pages.
• You can control who is able to see what.

Chapter 1

With the possibility of adding so much to the site, you might think it will be difficult to keep track
of everything, and make sure that everything is linked. This is also done for you by PHP-Nuke,
and it creates navigation menus for the visitor, and displays lists of articles and other information,
automatically setting up the links for visitors to move from one place to another.

Of course, PHP-Nuke cannot do everything you imagine, and it has its limitations. For example,
PHP-Nuke is very good for adding text content to the site. However, it is not so good (in the
default setup) for adding images and other resources to the site; it supports them once they are
available, but the management interface does not really help with adding them. To add images and
other resources such as Flash movies or banners, you will need to access the web server directly
using an FTP client.

However, the power and flexibility PHP-Nuke offers you to manage a complex website would be
difficult to achieve without many, many hours of careful programming.

What Exactly is PHP-Nuke?
PHP-Nuke is a collection of PHP scripts that run on a web server, connect to a database, and
display the retrieved data in a systematic way. In other words, PHP-Nuke is a data-driven PHP
web application.

PHP-Nuke can be downloaded for free, and then installed to your local machine for testing and
development. The files and the database can be uploaded to a web hosting service, so that your site
will be available to anyone on the Internet. There are even web hosting services that offer
PHP-Nuke installation at the click of a button.

Modular Structure
PHP-Nuke is built around a 'core' set of functions, which perform mundane tasks such as selecting
what part of the application the user should be shown, checking who the user is, and what they can
do on the site. The thing that makes PHP-Nuke exciting to the world is the set of modules that comes
with it. These modules provide the real functionality of the site, and include ones for news and article
management, downloads, and forums, among others. The modules can be switched on and off with
ease, and other modules can be added to the system.

There is no shortage of third-party modules on the Internet, and you can find a PHP-Nuke module
for almost any imaginable purpose.

Themed Interface
The look of a PHP-Nuke site is controlled by a theme. This is a collection of images, colors, and
other resources, and instructions that determine the layout of the page. A new theme can be
selected, and your site will be transformed immediately. Visitors with a user account on the site
are able to select their own personal theme.

 7

An Introduction to PHP-Nuke

 8

Multi-Lingual Interface
PHP-Nuke comes with many language files. These contain translations of standard elements on
the site interface. The availability of these translations reflects the international nature of the
PHP-Nuke community.

PHP-Nuke as an Open-Source Content Management
System
We used the expression 'open-source content management system' earlier in the chapter to
describe PHP-Nuke. Let's take a closer a look at this term.

Open Source
PHP-Nuke is free, and it is also open source. After downloading PHP-Nuke, all the source code of
the application is there in front of you. This means, if you are so inclined, you can dig around to
see how it works, or check why something is not working as it should. PHP-Nuke is not a perfect
application (what is?), and there will always be parts that do not work as they should. Since there
are many people using PHP-Nuke on the Internet, the problem is usually spotted and the solution
is posted on one of the PHP-Nuke forums.

Another advantage of having the source of the application (the code) available to you is that you
can modify (hack!) it, or extend it in whichever way you choose.

PHP-Nuke is released under a license, the GNU General Public License (GPL). The GPL
bestows much freedom in the way that you can work with PHP-Nuke, and it also brings along
some restrictions. The ins and outs of the GPL are pretty complex, and we aren't even going to
attempt an in-depth discussion of the consequences of this. For more information about the GPL
visit http://en.wikipedia.org/wiki/GPL.

The GPL should always be respected. The GPL is one of the cornerstones of the Free Software
movement, which was set up to promote rights to use, modify, and redistribute computer
programs. The GPL offers you almost complete freedom in your use of the software, and means,
basically, that PHP-Nuke will not be going away. Even if some future version of it were to
become completely commercial, the existing code could be taken and modified to create a new
version, also released with a GPL license. This process, known as forking, accounts for a number
of the PHP-based content management systems that can be found on the Web today. A number of
other established systems, such as XOOPS and PostNuke, began life as 'forks' of PHP-Nuke, and
have evolved in their own particular direction.

There are a couple of restrictions with PHP-Nuke, involving copyright messages. For example, the
copyright message displayed at the foot of each page should not be removed from your page:

PHP-Nuke Copyright © 2004 by Francisco Burzi. This is free software, and you may
redistribute it under the GPL. PHP-Nuke comes with absolutely no warranty, for details, see
the license.

Chapter 1

If you wish to remove this message (and others like it), you should visit http://php-nuke.org to
find out about the commercial license. You should not find these requirements restricting your use
of PHP-Nuke.

Content Management System
We have spoken a lot about adding and editing 'information' on a website. A broader term for
information here would be 'content'. To summarize our earlier discussions of PHP-Nuke, it allows
you to manage the content of your site. In other words, it's a content management system.

According to Wikipedia, a Content Management System (CMS) is a 'system used to organize
and facilitate collaborative creation of documents and other content' (http://en.wikipedia.org/
wiki/Content_management_system).

Well, it is difficult to define content management system and avoid the words 'a system for
managing content'!

You can think of a content management system as playing three roles:

• Capturing content
• Maintaining and Organizing content
• Serving content

Capturing the content is usually done by users entering data in forms in a web browser. This
content is then stored in a database for later retrieval. Serving the content allows the right data to
be selected, sorted, and ordered, and then displayed to the visitor in a coherent and consistent way.

PHP-Nuke achieves all of these. Visitors or the site administrator can input content from a range
of places on the site. This content can be maintained and organized from the web-based
administration interface by the site administrator. When a visitor requests a page from the site,
PHP-Nuke will determine which content should be displayed and how it should be ordered. It then
handles the output of the content, along with the rest of the page.

Getting Help in the PHP-Nuke Community
PHP-Nuke has a substantial user base. There is a large group of people who run PHP-Nuke sites,
develop extensions to PHP-Nuke, and create visual customizations, among other activities. All this
leads to a vibrant community that pushes the product forward, helps to address the problems faced
by people working with PHP-Nuke, and offers support and encouragement to users.

There are a number of sites dedicated to PHP-Nuke that contain a range of PHP-Nuke resources,
such as add-ons, bug fixes and patches, tutorials, and so on. You will also find the option of paid
support for PHP-Nuke, and since PHP-Nuke is such a popular and widespread application, it will
not be difficult to find a PHP developer who has experience of working with PHP-Nuke.

 9

An Introduction to PHP-Nuke

 10

Each of these sites is well worth a visit to see what they offer:

• http://phpnuke.org: This is the home of PHP-Nuke, run by Francisco Burzi, the
creator and maintainer of PHP-Nuke. From here, you can download the latest version
of PHP-Nuke. This is also a good place to find news of the latest offerings from the
PHP-Nuke community, including new sites running on PHP-Nuke.

• http://www.nukecops.com: There is a particularly large forum here, with many
posts on problems encountered by PHP-Nuke users. If you find yourself with a
problem, then the Nukecops.com forums are a good bet to find a solution.

• http://www.nukeresources.com: This is the home of the PHP-Nuke patches that
we will use when installing PHP-Nuke. There is also an extensive list of downloads
here, as well as a number of tutorials.

• http://www.karakas-online.de/EN-Book/: This is the PHP-Nuke HOWTO. This
is a massive collection of tips and tricks for working with PHP-Nuke, solving
common problems, and useful hacks. This document is also found on a number of
other PHP-Nuke websites as the PHP-Nuke HOWTO.

• http://thethemes.cc/: This is a site with dozens of PHP-Nuke themes aimed at
gaming sites.

• http://ravenphpscripts.com/: NukeSentinel, a security add-on for PHP-Nuke,
can be found here.

Many of the PHP-Nuke sites will have links to other recommended PHP-Nuke sites. In addition to
providing valuable resources and information, all these sites will give you a good idea of what it is
possible to accomplish on a PHP-Nuke site.

The Dinosaur Portal
We're going to create an example site, the Dinosaur Portal, as we move through the book. The
Dinosaur Portal does not have an extensive list of requirements; we simply want to create a site
with features such as a structure for adding dinosaur-related stories and a place for entering
information about various dinosaurs. We also want to make sure that the site looks very
distinctive, and is fun.

The Dinosaur Portal is based around the premise that 'just because you haven't seen a dinosaur, it
doesn't mean they've all died out'. It will be a place where people can explore a range of rather
fantastical theories about dinosaurs and their interactions with other life forms.

A web portal is a site that is a gateway to other resources on the Internet (or possibly an intranet).
The features of PHP-Nuke are ideal for creating web portals, and the Dinosaur Portal will be a
gateway to a whole host of eclectic, dinosaur-based resources.

Chapter 1

Summary
This first chapter has introduced PHP-Nuke. PHP-Nuke is an open-source content management
system; you can also think of it as a free tool for managing the content of websites.

We looked at what PHP-Nuke offers in terms of a visitor experience, and also what this will mean
for the person who is in charge of maintaining the site. PHP-Nuke has functionality to make site
maintenance easy, and the site can be run from a web-based interface. We found out about the
PHP-Nuke community, and where to go for help or further PHP-Nuke resources.

The chapter concluded with a quick description of the Dinosaur Portal—the site we are going to
create in this book. We are ready to begin on this journey, so the next step is to actually get
PHP-Nuke up and running.

 11

2
Installing PHP-Nuke

In this chapter we will cover how to install PHP-Nuke on a local machine running an
Apache/MySQL/PHP (AMP) environment. We will not cover the installation of AMP here; you
can find a walkthrough of installing the XAMPP package in Appendix A. This package includes
PHP, MySQL, Apache, and much more, and is a quick way to get yourself a working AMP
development environment.

The steps to install and configure PHP-Nuke are simple:

1. Download and extract the PHP-Nuke files.
2. Download and apply ChatServ's patches.
3. Create the database for PHP-Nuke.
4. Create a database user, and fill the database with data.
5. Make some simple changes to the PHP-Nuke configuration file.
6. Copy the PHP-Nuke files to the document root of the web server.
7. Test it out!

Let's get started.

Downloading PHP-Nuke
The latest version of PHP-Nuke can be downloaded at phpnuke.org downloads page:

http://www.phpnuke.org/modules.php?name=Downloads&d_op=viewdownload&cid=1

You can also obtain older versions of PHP-Nuke, including version 1.0, from SourceForge:
http://sourceforge.net/project/showfiles.php?group_id=7511&package_id=7622

SourceForge is the world's largest home of open-source projects. Many projects use SourceForge's
facilities to host and maintain their projects. You can find almost anything you want on
SourceForge—whether it is in a usable state or has been updated recently is another matter.

Installing PHP-Nuke

 14

Extracting PHP-Nuke
Once you have downloaded PHP-Nuke, you should extract the contents of the PHP-Nuke ZIP
archive to the root of your c:\ drive. You will have to create a folder called PHP-Nuke-7.8 in the
root of your c:\ drive. (If you extract the files elsewhere, create the folder PHP-Nuke-7.8 and
copy the contents of the main unzipped folder to this new folder).

If you don't have a tool for extracting the files, you can download an evaluation edition
(or buy a full edition) of WinZip from www.winzip.com.

There are also free, powerful, extracting tools such as ZipGenius (http://www.zipgenius.
it/index_eng.htm) and 7-Zip (http://sourceforge.net/projects/sevenzip/)
among others.

In the PHP-Nuke-7.8 folder, you will find three subfolders called html, sql, and upgrades. The
upgrades folder contains scripts that handle upgrading the database between different versions,
the sql folder contains the definition of the PHP-Nuke database that we will be working with, and
the html folder contains the guts of your PHP-Nuke installation.

The html folder contains all the PHP scripts, HTML files, images, CSS stylesheets, and so on that
drive PHP-Nuke. Within the html folder are further subfolders; some of these include:

• modules: Contains the modules that make up your PHP-Nuke site. Modules are the
essence of PHP-Nuke's operation; we look at them from Chapter 3 onwards.

• blocks: Contains PHP-Nuke's blocks. Blocks are 'mini-functionality' units and
usually provide snippet views of modules. We will look at blocks in Chapter 4.

• language: Contains PHP-Nuke language files. These allow the language of
PHP-Nuke's interface to be changed.

• images: Contains images used in the display of the PHP-Nuke site.
• themes: Contains the themes for PHP-Nuke. The use of themes allows you to

completely change the look of a PHP-Nuke site with a click of a button.
• includes, db: Contain code to support the running of PHP-Nuke. The db folder, for

example, contains database access code.
• admin: Contains code to power the administration area of your site.

Downloading the Patches
No software is without its flaws, and PHP-Nuke is no exception. After a release, the large user
community invariably finds problems and potential security holes. Furthermore, PHP-Nuke also
contains features such as its forum, which is in fact the phpBB application specially modified to
work with PHP-Nuke. phpBB itself is updated on a regular basis to correct critical security
vulnerabilities or to fix other problems, and consequently the corresponding part of PHP-Nuke
also needs to be updated. Rather than releasing a new version of PHP-Nuke for these situations,
patches for its various parts are released.

http://www.winzip.com/
http://www.zipgenius.it/index_eng.htm
http://www.zipgenius.it/index_eng.htm
http://sourceforge.net/projects/sevenzip/

Chapter 2

ChatServ's patches from www.nukeresources.com are mostly concerned with variable validation,
in other words, making sure that the variables used in the application are of the right type for
storing in the database. This has been an area of weakness with many earlier versions of
PHP-Nuke. The patches are often incorporated into subsequent versions of PHP-Nuke so that each
new version becomes more robust.

Note that you don't have to apply the patches, and PHP-Nuke will still work without them. However,
by applying them you will have taken a good step towards improving the security of your site.

If you navigate to http://www.nukeresources.com, there is a handy menu on the front page to
access the patches:

To obtain the patch corresponding to your version, click the link and you will be taken to the
relevant file (of course, www.nukeresources is a PHP-Nuke powered site!). Click on the Nuke 7.8
link to go to the Downloads page of www.nukeresources.com. On this page, clicking the
Download this file Now! link will download the patches for PHP-Nuke 7.8. The name of this file
will be of the form 78patched.tar.gz. This is a GZIP compressed file that contains all the
patches that we are about to apply. The GZIP file can be extracted with WinZip, or any of the
other utilities we discussed earlier.

The patches are simply modified versions of the original PHP-Nuke files. The original files have
been modified to address various security issues that may have been identified since the initial
release, or maybe since the last version of the patch.

Applying the Patches
To apply the patches, first we need to extract the 78patched.tar.gz file. We will extract the files
into a folder called patches that we will create in the PHP-Nuke-7.8 folder.

After extracting the files, copy the contents of the patches folder to your html folder. Do not copy
the patches folder, copy its contents. The patches folder contains files that replace the files in the
default installation, and you get a Confirm File Replace window. Select Yes for all the files, and
when the copying is complete, your installation is ready to go.

We have performed this patching immediately after installing PHP-Nuke, but we could have done
this at any time. Doing it at this point is more sensible as it means that we are working on the most
secure version of PHP-Nuke. Also, the patch process we have described here overwrites existing

 15

http://www.nukeresources.com/
http://www.nukeresources/

Installing PHP-Nuke

PHP-Nuke installation files. If you have modified these files, then the changes will be lost on
applying the patch. Thus applying the patches later without disturbing any of your changes
becomes more demanding.

There is one further thing to watch for after applying the patches. You may find that the patched
files have had their permissions set to read-only, and that you are unable to modify the files. To
modify the files (and we do have to modify at least the config.php file in this chapter) you will
need to remove this setting. You can do this on Windows by right-clicking on the file, selecting
Properties from the menu, unchecking the Read-only setting, and clicking the OK button:

We've done almost all the work with the files that we need to; now we turn our attention to
creating and populating PHP-Nuke's database.

Preparing the PHP-Nuke Database
We'll be using the phpMyAdmin tool to do our database work. phpMyAdmin is part of the
XAMPP installation (detailed in Appendix A), or can be downloaded from www.phpmyadmin.net,
if you don't already have it. phpMyAdmin provides a powerful web interface for working with
your MySQL databases.

First of all, open your browser and navigate to http://localhost/phpmyadmin/, or whatever the
location of your phpMyAdmin installation is:

 16

Chapter 2

Creating the Database
We need to create an empty database for PHP-Nuke to hold all the data about our site. To do this,
we simply enter a name for our database into the Create new database textbox:

We will call our database nuke. Enter this, and click the Create button. The name you give doesn't
particularly matter, as long as it is not the name of some already existing database. If you try to
use the same name as an already existing database, phpMyAdmin will inform you of this, and no
action will be taken. The exact name isn't particularly important at this point because there is
another configuration step coming up, which requires us to tell PHP-Nuke the name of the
database we've created for it.

After clicking Create, the screen will reload and you will be notified of the successful creation of
your database:

Creating a Database User
Before we start populating the database, we will create a database user that can access only the
PHP-Nuke database. This user is not a human, but will be used by PHP-Nuke to connect to the
database while it performs its data-handling activities. The advantage of creating a database user is
that it adds an extra level of security to our installation. PHP-Nuke will be able to work with data
only in this database of the MySQL server, and no other. Also, PHP-Nuke will be restricted in the
operations it can perform on the tables in the database.

 17

Installing PHP-Nuke

We will need to create a username for this boxed-in user to access the nuke database. Let's call our
user nuker and go with the password nukepassword. However, in order to add an extra level of
security we will introduce some digits into nukepassword, and some other slight twists, to
strengthen it, and so use the word No0kPassv0rd as our database user password.

To create the database user, click the SQL tab, and enter the following into the Run SQL
query/queries on database textbox:

GRANT ALL PRIVILEGES ON nuke.* TO nuker@localhost
 IDENTIFIED BY 'No0kPassv0rd'
 WITH GRANT OPTION

Your screen should look like this:

Click the Go button, and the database user will be created:

Populating the Database
Now we are ready to fill our database with data for PHP-Nuke. This doesn't mean we start typing the
data in ourselves; the data comes with the PHP-Nuke installation. This data is found in a file called
nuke.sql in the sql folder of the PHP-Nuke installation. This file contains a number of SQL
statements that define the tables within the database and also fill them with 'raw' data for the site.

However, before we fill the database with the tables from this file, we need to make a modification
to this file.

By default, the name of each database table in PHP-Nuke begins with nuke_. For example, there is
a table with the name nuke_stories that holds information about stories, and a table called
nuke_topics that holds information about story topics. These are just two of the tables; there are

 18

Chapter 2

more than 90 in the standard installation. The word nuke_ is a 'table prefix', and is used to ensure
that there are no clashes between the names of PHP-Nuke's tables and tables from another
application in the same database, since the rest of the table name is descriptive of the data stored in
the table, and other applications may have similarly named tables.

What this does mean is that unless this table prefix is changed, the table names in your PHP-Nuke
database will be known to anyone attempting to hack your site. Many of the typical attacks used to
damage PHP-Nuke are based around the fact that the names of the tables in the database powering
a PHP-Nuke site are known. By changing the table prefix to something less obvious, you have
taken another step to making your site more secure.

Before we fill our PHP-Nuke database, we will change the table prefix from nuke_ to dinop_ (for
the Dinosaur Portal). This requires us to make a change to the nuke.sql file first, and then a
configuration change later.

Open the nuke.sql file in a text editor (such as Wordpad), and use the find and replace feature (Edit |
Replace in Wordpad) to replace all occurrences of nuke_ with our chosen prefix dinop_. Make sure
that you include a space before nuke_, and for the replacement prefix, include a space before its
name. The image below shows the Replace dialog in Wordpad for changing the prefix to dinop_:

Clicking the Replace All button will make all the changes within the file, and then we can save this
new file as dinop.sql in the sql folder, and we will have a new set of tables with a different prefix.

Now the prefix has been changed, we can return to phpMyAdmin and continue with populating
the database. To get the data into the database, click the SQL tab, as shown in the figure overleaf:

 19

Installing PHP-Nuke

Click the Browse button, navigate to the sql subfolder in the PHP-Nuke-7.8 folder, and
double-click on the dinop.sql file. Click the Go button, the screen will reload, and in the
left-hand panel of the browser you will see the tables in your fully populated database:

Our database is now ready. There are still two more steps before we are ready to run PHP-Nuke.

 20

Chapter 2

Configuring PHP-Nuke
We need to tell PHP-Nuke where to get its data from, and how to get that data. This requires us to
provide the name of the database and the database user we just created. We add this information
into the config.php file located in the html folder of your PHP-Nuke installation.

To do this, open the config.php file in your favorite text editor (Notepad or Wordpad will do fine).

Scroll down to find these five consecutive lines:
$dbuname = "root ";
$dbpass = "";
$dbname = "nuke";
$prefix = "nuke";
$user_prefix = "nuke";

These five lines are PHP variable definitions that determine the username and password of the
database user account that will access the database, and the name of the database that we will be
accessing, and the table name prefix. PHP-Nuke uses these to connect to its database, so they had
better be correct.

The first thing we will do is change the database username and database password to those of the
database user we created earlier. Edit the lines as follows:

$dbuname = "nuker";
$dbpass = "No0kPassv0rd";

Next, we should set the database name by changing the variable assigned to $dbname to the name
of the database we just created. We have named our database the same as the one specified here,
nuke. If we had chosen a different name for the database, we would have had to set the value of
the $dbname variable to that name.

The $prefix variable holds the value of the table name prefix, which by default, is set to nuke. We
discussed the table name prefix earlier, and how all the table names in the standard setup are
prefixed with nuke_. (The _ character does not need to be included in the $prefix variable).
Whenever there is any attempt to access a table from within the PHP-Nuke code, the $prefix
variable is used. We set the value of the $prefix variable to our changed prefix, dinop:

$prefix = "dinop";

The fifth variable, $user_prefix, is also a table prefix. There is a pair of tables in the PHP-Nuke
database, nuke_users and nuke_users_temp (with the default prefix) that hold information about
each user and users waiting to be registered on the site respectively. Whenever these tables are
queried in the code of PHP-Nuke, the $user_prefix variable is used to get their table prefix rather
than the $prefix variable. This means that these tables could have a different table prefix from the
rest of the tables in the PHP-Nuke database. A consequence of this is that you could have several
PHP-Nuke sites stored in the same database, each with different table prefixes, but the user prefix
could be the same. This would mean that a user could have a single user account valid across all
these sites. This is a more advanced use of PHP-Nuke that we won't have the space to go into any
greater detail.

For now, we set the $user_prefix variable to be the same as the $prefix variable:
 $user_prefix = "dinop";

 21

Installing PHP-Nuke

 22

For completeness, we will make a change to another configuration variable, the site key. This is a
long string used in the random generation of the graphical security code that prevents automated
registration or login attempts to your site. The site key can just be a random string of text,
provided you don't add any quotes. The default value is this:

$sitekey = "S·kQSd5%W@Y62-dm29-.-39.3a8sUf+W9";

Let's change its value with some random pressing of the keyboard to:
$sitekey = "78w f7sys f89s fsd sj hjsg sdfw3p;";

We've told PHP-Nuke the name of the database to use, the prefix of the name of the tables, and
also the name and credentials of the database user to access the database with. Our configuration is
done, so let's save the file config.php and we are ready to move on.

Putting PHP-Nuke Files into the Web Server Root
In this book, we are going to access the homepage of our local PHP-Nuke site with this URL:

http://localhost/nuke/

In order to do this, we will create a folder called nuke in our web server root (\xampp\htdocs\ if
you are using XAMPP), and copy the contents of the \PHP-Nuke-7.8\html\ folder into this folder.
Do not copy the html folder itself, but the contents of the folder.

We will refer to the nuke folder in the web server root as the 'root of our PHP-Nuke installation'.

Testing the Installation
Finally, we are ready to go.

Open up your web browser and navigate to http://localhost/nuke/. You should see the
following screen:

http://localhost/nuke/

Chapter 2

If this is what you see in your browser, then you are ready to go, and you can move on to the next
chapter. If you see something different from this image in your browser, we may have to perform
some troubleshooting. Here we'll look at some of the more common problems that users encounter
with their PHP-Nuke installations.

Database Connection Problem
If you see this in your browser:

 23

Installing PHP-Nuke

 24

then there might be a problem with your database server or, more likely, your connection
information. If the MySQL server is running (navigate to http://localhost/phpMyAdmin/ to see
if phpMyAdmin is working), then it's likely that you specified the wrong database name, wrong
username, or possibly the wrong password in the config.php file, so go back and check them.

No Data in the Database
You might get a blank screen or receive error messages like these in the browser window:

Warning: main(language/lang-.php): failed to open stream: No such
file or directory in \xampp\htdocs\nuke\mainfile.php on
line 183
...

Fatal error: Call to undefined function: themeheader() in
\xampp\htdocs\nuke\header.php on line 47

This probably means that your database is actually empty. Ensure you have added the data as we
did earlier. Another possibility is that you have incorrectly specified the table prefix in the file
config.php file. That line should look like this:

$prefix = "nuke";

Still Having Problems?
If PHP-Nuke is still not working, and you have followed the steps in this chapter, then there is
something wrong elsewhere, but it is likely that you will find the answer by scouring the forums at
http://www.nukecops.com/forum2.html. This is the Installation for Newbies forum on nukecops.
This contains many questions (and solutions) from new users attempting to get their site running.

Summary
In this chapter, we have walked through the typical steps to install PHP-Nuke on a local machine
running an AMP environment.

After obtaining and installing the PHP-Nuke application from the PHP-Nuke main site,
phpnuke.org, we also installed ChatServ's patches so as to minimize possible security issues.

The next thing we did was to create the database for PHP-Nuke and populate it using
phpMyAdmin—a web-based tool for working with MySQL databases. As you will see in later
chapters, almost everything about your site is stored in this database.

Finally, we moved the folder containing PHP-Nuke's code into the document root of our web
server. We also looked at some troubleshooting issues to check that everything is working OK.
With everything working fine, we can start exploring PHP-Nuke!

http://localhost/phpMyAdmin/
http://www.nukecops.com/forum2.html

3
Your First Page

In the previous chapter you learned how to install PHP-Nuke. In this chapter you'll familiarize
yourself with a visitor's-eye view of the PHP-Nuke world and make your first modifications to
the site.

We're going to look at our new homepage and from there move on to look at some of the main
concepts of PHP-Nuke: blocks, modules, themes, and site security. Along the way, we're going to
create the super user, a user with absolute power over our site; we will edit our first piece of
content in PHP-Nuke, and begin the construction of the Dinosaur Portal.

Your New Homepage
Navigate to your site's homepage in your browser. For our newly installed PHP-Nuke site, this
will be http://localhost/nuke/. You should be presented with the following screen, which we
saw at the end of the last chapter:

Your First Page

Considering that we've not really done anything, this is impressive. I'm sure you won't be able to
resist clicking on some of these links and seeing what PHP-Nuke has in store for us. Currently, the
system is 'empty', so it has a rather cold and eerie feeling about it. Rest assured that it will start to
warm up over the next few chapters as we add content to the site.

By the way, if you are impressed with the features you're seeing right now, let me tell you
that there are others that haven't yet been activated. Also, there are many other add-ons
that we can find from various PHP-Nuke resource sites across the Internet.

Let's now talk about some of the PHP-Nuke bits that we see on the front page.

First of all, there's the look of the page. There is the banner at the top, a site logo, and a horizontal
navigation bar:

 26

Chapter 3

The page 'body' begins below the navigation bar. You can see a three-column layout with a big
chunk of information in the middle column. The page layout of a PHP-Nuke site need not always
look this; the arrangement of the elements, the choice of color, text styles, and images is controlled
by the theme. A different theme can be selected for the site, and immediately, the look and feel of
your site is changed.

Blocks
The elements that you see in the left- and right-hand columns are known as blocks:

Blocks in PHP-Nuke are little nuggets of information positioned at the sides or sometimes at the
bottom of a page. They often provide 'navigation', linking to other parts of the site, and provide a
report or summary of the content that is available either on your site or, possibly, on another site.
Typically, many blocks are displayed on a single page.

 27

Your First Page

An important block is the Modules block in the left-hand column:

This block shows a list of the active modules on your site, and is the standard navigational element
of a typical PHP-Nuke site. Each entry in the above list is a link to a module on your site, and by
clicking on the links the visitor is able to move between the modules.

Modules
PHP-Nuke is a modular system. Each module is like a mini website in itself, performing different
tasks and working with different types of content. The PHP-Nuke 'core' provides a central
mechanism for handling these modules, so that they work together sharing data and user
information, and ensuring a consistent look and operation throughout your site.

In short, the modules define your site.

The good thing with PHP-Nuke is that you can add and remove modules as needed, selecting the
best range of features to suit your site and its visitors. We will discuss the standard PHP-Nuke
modules over the next few chapters.

When viewing a page on a PHP-Nuke site, the module currently in play can be known by looking
at the URL of that page. For example, if you are looking at the Downloads module, the URL will
be something like this:

http://localhost/nuke/modules.php?name=Downloads

The part of the URL after the ? character is the query string. The query string contains variables
that are separated by the & character. In the above URL, the query string contains a single variable,

 28

Chapter 3

name, which has the value Downloads. PHP-Nuke switches between modules according to the
value specified in the name variable. The other query string variables determine what else is to be
displayed on that page, such as the required news story for example. (Handling these query string
variables appropriately has traditionally been a security weakness in PHP-Nuke, but that is true for
many other web applications).

The output of the module being currently viewed is displayed in the middle column of the
web page.

A Fistful of Default Modules
Let's have a quick overview of what some of the standard modules offer:

• Home: Shows the homepage of the site. There isn't actually a Home module but
some particular module is associated with the homepage. The homepage actually has
the URL index.php, rather than modules.php?name=XXXX.

• Downloads and Web Links: Allow you to create and maintain categorized lists of
downloadable resources or links to other sites. Possibly you have already seen the
Downloads module in action when you downloaded PHP-Nuke itself from a
PHP-Nuke powered site. This is another 'interactive' module—visitors can submit
their own downloadable resources or links here.

• Recommend Us: Allows the visitor on your site to send a message to their friends
suggesting that they come and visit your site.

• Search: Allows the visitor to search the contents of your site.
• Statistics: Provides site statistics like the number of visits to your site, the different

browsers used by visitors, and the most-viewed stories on your site.
• Stories Archive: Contains an archive of past stories that have appeared on the site,

arranged by month of publication.
• Submit News: Allows visitors to submit a news story to the site through a form, after

which the story goes straight onto the site provided it is acceptable. The story is then
said to be published.

• Surveys: Displays the results of polls that have appeared on the site. Polls can be
attached to stories and other pieces of content.

• Topics: Provides a different view of the stories, this time arranged by their topic.
• Your Account: Allows visitors to your site to register and create their own accounts. All

visitors that register at your site can have their own area, which is accessed through this
module. They can customize their own area, including their own Journal.

That's not even all of the modules, but it's enough to give you an idea of the breadth of the
functionality that PHP-Nuke offers and the kind of experience that your visitors can look forward to.

Coming back to the homepage, have a look at the message in the middle that says:

For security reasons the best idea is to create the Super User right NOW by
 clicking HERE

 29

http://localhost/nuke/admin.php

Your First Page

It's not everyday that we're invited to create a super user, so I think we should get on with that,
especially as the word NOW is in upper case; that always suggests a sense of urgency.

Clicking on the word HERE in that message will take you to the page http://localhost/nuke/
admin.php; and we can begin creating our super user.

Creating the Super User
PHP-Nuke enables visitors to your site to create their own user account, and add and maintain
their own personal details. The user account is required to identify them for posting news stories,
making comments, or contributing to discussions in the forums, among other activities. By
registering on the site and creating a user account, the visitors are given greater freedom on the
site. However, their freedom has limits.

We are about to create a special type of user, the super user. This is a registered user of the site
who has almost total freedom on the site and absolute power over it. The super user can access,
add, remove, and modify any part of the site, and can configure and control anything on the site.
Given the nature of this power, there comes the obvious responsibility of ensuring that the identity
of this user is kept a secret.

Anyone obtaining these account details will be able to do almost anything to your site, and that could
be worse than it sounds, so you must ensure that these details do not fall into the wrong hands.

The super user is a site administrator, in fact, the site administrator. We will use the term
administrator and super user interchangeably. It is also possible to create other, less powerful, site
administrators who can manage various parts of the site, such as approving bits of content
submitted by visitors.

We shall now create the super user account. As with any user account on PHP-Nuke, it will
consist of a username ('nickname', as it is also known in PHP-Nuke) and a password.

On the page http://localhost/nuke/admin.php, you will be presented with a form asking you
to choose a super user Nickname, the HomePage of that user, a contact Email address and a
Password. The password should only contain alphanumeric characters (letters and numbers). This
is how the form looks:

 30

Chapter 3

The super user account is not the only type of user account that can be created with PHP-Nuke.
Visitors to your site can register and create their own user accounts, which make them Registered
Users of your site. When creating the super user there is an option to create a registered user with
the same details, although obviously that user doesn't have the extended power of the super user.
This does mean that when you log in with this administrator account, you will enjoy all the
personalization benefits of the standard user account.

We will create the nickname and password for the super user account now.

Do not use nicknames like admin, super user, or root for the super user; these would be
the first guess of any miscreant attempting to break into your system. Also, make your
password difficult to guess; make it long with a mixture of digits and letters, both upper
and lowercase (definitely do not use the word password as your password!). Making the
password secure is another vital step toward the overall security of your site.

In the page, we will enter dinoportmeister for the nickname, and use the password
Pa2112cktXog. You can enter your own nickname and password here if you like, but make sure
you remember them!

Your email address needs to go into the Email field, this is another required field. The HomePage
field does not have to correspond to the address of this site; this is for informational purposes only.

The option to create a normal user with the same data will do just that, it will create a user with the
same username and password as the administrator account. However, the two accounts are
distinct, and changing the password for either account will not affect the other.

Click Submit and the super user is created.

Becoming the Administrator
After you have created the details for the super user, you still have to log yourself in with these
details. On the admin.php page, you will find a form for entering the administrator username and
password. Hopefully you haven't forgotten them already!

After entering the details here, click the Login button and you will pass over to the other side: the
administration area of the site.

 31

Your First Page

The admin.php page is where you need to log in to access the administration area. Whenever you
want to log in as an administrator to perform some site maintenance, you do so from this page.
Logging in from any other place on the site will log you 'normally' into the site, as if you were a
standard visitor to the site, even if the administrator username and password is accepted.

If you think about it, this suggests that unless it has been specially customized, any PHP-Nuke site
has an administrator login page at admin.php. This means that anyone intent on accessing the
administrator area of that site does not have to look far to find the administrator login (of course,
getting the right username and password combination is another matter). To counter this, from
PHP-Nuke 7.6 onwards, if you want to rename the admin.php file, you can do so by storing the
new name of the file in the $admin_file variable in the config.php file. This relocates your
administrator login page.

Once you have entered the administration username and password, you will get your first taste of
the administration area:

 32

Chapter 3

That might be more than you were expecting. We are presented with two towering graphical
menus; the Administration Menu and the Modules Administration menu, the main navigation tools
for the site administrator. (In versions of PHP-Nuke earlier than 7.5, these menus were one—the
Administration Menu).

We'll dig into more detail about these menus in the next few chapters. This is the place where you
will spend most of your PHP-Nuke life, so you will need to get comfortable with it.

Before we go any further, click the Home link in the Modules block to return to the homepage of
your site.

A New Welcome
When you return to the homepage, you will notice that some extra text has appeared at the bottom
of the welcome message:

This text is evidence of the super user's extra powers. If you click on the Edit link, you can begin
changing the site. The presence of the Edit link is an example of 'in-position' editing, whereby as
you browse the site you can quickly edit or delete the content you see. This link is not available to
normal users of the site and is a pretty neat feature of PHP-Nuke.

When you click the Edit link, you will be taken back to the administration area.

The place we're after, the Edit Message box, is actually tucked away underneath the Modules
Administration menu, so you'll need to scroll down in your browser to find the Messages
Administration panel.

 33

Your First Page

This is the 'raw data' that made up the welcome message we saw on the homepage. This piece of
content is an example of a PHP-Nuke message. This is just one of the many types of content that
PHP-Nuke handles, and we'll see more over the next few chapters.

Editing Text in PHP-Nuke
The large textbox containing the Content text is our first experience of editing content in
PHP-Nuke. Before we go any further, it's worth taking a moment to understand what you can and
cannot do when editing textbox content in PHP-Nuke.

HTML Rules
Firstly, all the text you enter will be displayed as HTML on the site, so multiple spaces will be
displayed as a single space, and breaking lines by simply pressing Enter, as if you were using a
word processor, won't work. (The text will be stored in the format you enter it in but isn't
displayed as you intend it to be.)

To introduce line breaks, use the
 HTML tag. More elegant is to enclose paragraphs in <p> and
</p> tags, which inserts line breaks between paragraphs. You can enclose text with and
tags to produce bold text, <i> and </i> tags to produce italics, and and to underline text.

 34

Chapter 3

Forbidden Tags
For anyone other than an administrator of the site, there are some HTML tags that cannot be used
when submitting content to PHP-Nuke through a form. For example, you cannot use the <script>
tag to include any JavaScript in your text; PHP-Nuke will reject this. Also, you can't define the
style of any elements with the style attribute, thus something like:

<p style="font-size:1000px">Big Text</p>

will be rejected. Using any of the forbidden tags will produce the following error message:

PHP-Nuke rejects these kinds of tags to avoid cross-site scripting (intriguingly acronymed XSS to
avoid clashing with the CSS of Cascading Style Sheets) attacks, a traditional security vulnerability of
many web applications. These restrictions are intended not only for security reasons but also to
prevent people from creating disturbing-looking content through creative use of the style attribute.

These constraints aren't specific to the editing we're doing now—these rules apply wherever
content is entered by a user and posted back to PHP-Nuke. Since these restrictions prevent people
going overboard with the use of excessive styles, we get consistent looking pages.

The ability for administrators to use these otherwise-forbidden tags is new to PHP-Nuke 7.8.

Adding Links
You can add links to textbox content just as you would with HTML, through the <a> tag. You do
not need to prefix links to pages on your own site with your site's domain name. In other words, if
your site is at www.thedinosaurportal.com, you do not need to use a link like this to link to
another page on your site:

You can simply use relative links:

There is a good reason to not hardcode your domain name into such links. If you move your site to
a different domain name, such as when moving from a local version of the site to a web hosting
environment, your links will still work.

Note that PHP-Nuke doesn't check any links that you add to textbox content—if the link is broken
(that is, there is no longer a page at that URL), PHP-Nuke will not alert you about it.

Don't forget the closing tag for links!

 35

Your First Page

Adding Images
You can add images through the tag as you normally would in HTML. However, PHP-Nuke
does not usually offer you the facility to upload any accompanying images. If you want to display an
image on your site in some piece of content, you must upload it yourself at some other time.

HTML Editor in PHP-Nuke 7.7
From PHP-Nuke 7.7, a WYSIWYG (What You See Is What You Get) HTML editor has been
introduced, which replaces the large multi-line textboxes everywhere:

This allows the users to see their text as HTML as they type it, and provides a more familiar
editing environment to work in, with buttons for adding bold, italics, and so on. The HTML editor
is quite restrictive of the types of HTML that can be used in entries, and does not allow editing of
the source HTML.

In PHP-Nuke 7.8, you can turn off this HTML editor by adding the highlighted line in the
config.php file located in the root of our PHP-Nuke installation (we've added it underneath the
definition of the site key we created in the last chapter):

$sitekey = "78w f7sys f89s fsd sj hjsg sdfw3p;";
define('NO_EDITOR', 1);

The highlighted line defines a PHP constant called NO_EDITOR, and gives it the value 1. This
indicates to PHP-Nuke that the HTML editor should not be used. If you change the value 1 to 0,
then you will restore the HTML editor.

Throughout this book, we have used this line to turn off the HTML editor, and our screenshots
will show the standard textboxes, as found in all the PHP-Nuke versions before 7.7.

Time For Action—Changing the Welcome Message
1. Change the Title field of the message from Welcome to PHP-Nuke! to Welcome to

the Dinosaur Portal.
2. Click in the Content field, press Ctrl+A to select all the text in that box and then

press Delete. Now, in the empty box, enter the following:

 36

Chapter 3

The Dinosaur Portal is a site dedicated to dinosaur-related information.
Its founding principle is that...

<i>Just because you haven't seen a dinosaur, it doesn't mean they've all
died out....</i>

3. Click the Save Changes button.
4. When the page reloads, scroll down the screen to see your message listed:

5. Now click on the Home link at the top of the Modules block to go back to our
homepage. The new welcome message is displayed in the middle of the page:

We have edited our first piece of PHP-Nuke content: an existing message. A message is a simple
type of PHP-Nuke content that is displayed (usually) at the top of the homepage, under the site
banner. In this case we were editing the first message, which has special importance.

The first steps were simply entering some text into the Title and Content fields, thus populating the
message with some content and replacing the existing content.

 37

Your First Page

After that, we clicked the Save Changes button to persist our new content to PHP-Nuke's
database. We also saw the list of current messages stored in PHP-Nuke. After entering a piece of
content to be stored, PHP-Nuke will usually present you with a list of the stored content, often
with links or buttons to operate on that content. For example, in the list of messages shown in the
screenshot before last, you can see Edit and Delete links in the Functions column. There were a
number of other options at the bottom of the Edit Message panel that we did not touch. Let's
discuss them now.

Messages can be set to expire after a certain length of time, and the Expiration field can be used to
set this time period. If we want our message to remain present indefinitely, we can set this value to
Unlimited. (You may think Unlimited is a confusing value for the expiry date and that a value like
Never is more suitable, as it is in keeping with the other values that you find in the dropdown. If
so, you've had a PHP-Nuke moment).

We left the Active option set to Yes so that our message is available. Selecting No would make it
disappear from the homepage, but the message itself wouldn't be deleted.

The Change start date to today? field resets the expiration 'counter'. This means that if the
message is to expire, the expiry period will be calculated from the moment you save this changed
version of the message, rather than being calculated from the moment the message was originally
created. If a message had been previously deactivated, and you were reactivating it, the start date
would automatically be set to 'today'.

The final option, Who can View This? brings us to another very important concept of PHP-Nuke sites.

Restricting User Access
Security in your PHP-Nuke site controls 'who can do what' in a particular place. There are two
fundamental problems of security here:

• Authentication: The problem of deciding if the user is who they claim to be
• Authorization: The problem of what that user is able to do when browsing the website

PHP-Nuke solves the authentication problem with user accounts. It authenticate users (when
necessary) by asking for a username and password combination.

 38

Chapter 3

PHP-Nuke solves the authorization problem by classifying the status of the visitor into one of
the following:

• Registered Users: Visitors with a user account who have logged in with a valid
username and password.

• Administrators: Users who are logged in with an administrator account (in other
words a username and password that are valid on the admin.php page).

• Anonymous Users: People who have not logged into the site. Until a visitor registers
and logs in, he or she has no identity and is hence anonymous.

• Subscribed Users: This is a special type of Registered User who has been given a special
type of access, a subscription, which is valid for a certain period of time. Subscriptions
are usually offered to fee-paying customers, and these users can benefit not only from
exclusive access to certain parts of the site, but are also not shown adverts.

Anybody browsing the site falls into one of these categories. There is another category, which
covers anybody visiting the site at all: All Visitors. Any visitor having either a user account or an
administrator account, who might or might not be logged in, falls into the All Visitors category.

There are many opportunities within PHP-Nuke to restrict access or contributions. These
restrictions or 'permissions', if you like, rather than being assigned on an individual user basis are
assigned to one of the above categories of users. In this way, access to parts of your site can be
restricted and these restrictions can be easily managed.

Restricting access so that only visitors from a particular category can view certain content is
commonplace in PHP-Nuke.

Returning to our welcome message, we were presented with these options:

• All Visitors
• Anonymous Users Only
• Registered Users Only
• Administrators Only
• Subscribed Users

We wanted everyone to see our message, regardless of who they were, so we left All Visitors
selected. We will see these options again in other areas of the site when we need to restrict access
to some operation of the site.

 39

Your First Page

 40

Summary
This has been a short chapter, since we had only one task to accomplish—changing the welcome
message on the homepage. This was our first attempt at modifying the content of the PHP-Nuke
site, but in doing so we were introduced to many things that we will see again in the next few
chapters, and which you will be using frequently as you work on your own PHP-Nuke sites.

Before we began editing the message, we created the super user account. The super user account
has ultimate control over a PHP-Nuke site, and it is particularly important that this account
information is kept secure.

In the role of the super user, we edited the welcome message from the homepage through a link
that had appeared exclusively for that user. We had our first look at the administration area, and
entered content into PHP-Nuke.

Finally, we discussed how PHP-Nuke classifies visitors to the site, and how permissions to parts
of the site or pieces of content can be managed through this classification.

4
Managing the Site

In this chapter, we will begin to acquaint ourselves with PHP-Nuke's administration area, which
allows you to manage your site from the comfort of your web browser. We'll look first at the
website configuration settings. These options control many global properties of the site.

Then we will look at block and module administration. The tools available here let you change the
functionality of your site with ease, and customize the site's features to your liking.

Your Site, Your Database
The database that we created when we installed PHP-Nuke in Chapter 2 is PHP-Nuke's
storage repository.

That may sound like a rather trivial remark; we know PHP-Nuke is a database-driven web content
management system. However, it is worth understanding the nature of what PHP-Nuke stores.
PHP-Nuke stores not only information about registered users of the site, and such things as your
news stories, features about you, your company, or your club, your photos and other images, but
also stores all the information about your site and the content it holds.

In its database, PHP-Nuke stores such things as the name of your site, the site URL, the site logo,
how many stories are displayed on the front page, whether users can comment anonymously on
stories, the footer text displayed at the bottom of the page, how many people have read the stories,
the voting information about stories, and also what layout and choice of colors are used to display
the site. There are many, many more things PHP-Nuke squirrels away into its database, but the
point in general is that your site is determined by the contents of its database.

This may sound rather overwhelming, particularly if you are new to databases—but this is
precisely where the real power of PHP-Nuke lies. You don't have to be a MySQL master or know
anything about the finer points of database theory; in fact, you generally won't be touching the
database yourself. PHP-Nuke has a powerful web-based administration tool that lets you control
and maintain your site. Through it you are effectively managing the database but this is happening
behind the scenes and it is not something that you need to overly concern yourself with.

Managing the Site

Visiting the Administration Area
With PHP-Nuke's awesome administration tool, you manage your site through your browser,
controlling almost every aspect of its behavior, as well as adding and maintaining the content that
is displayed. This doesn't mean that anyone can mess with your site; access to the administration
area is restricted. You, the super user, as head of administrators have supreme power and can even
appoint other people to act as limited administrators, with specific abilities to moderate and
approve content for certain parts of the site.

PHP-Nuke's administration area can sometimes feel too comprehensive and often be
overwhelming, occasionally counterintuitive in its behavior. This is the jungle we will beat our
way through in the next few chapters, and in fact, it's where you will spend most of your
PHP-Nuke life (the administration area, not these chapters!).

The first thing to do is to log in to the administrator account. Enter the following URL into
your browser:

http://localhost/nuke/admin.php

If you are not already logged in, you will be prompted for the administrator username and
password created in the previous chapter. Enter these and click the Login button to proceed.

Once you log in, you will be in the administration area and are confronted with two monstrous
administration menus in the center of the screen:

 42

Chapter 4

This is the central hub of the administration interface. Each of the icons you see on screen is a link
to specific parts of the administration area, responsible for the control and management of
particular features. If you scroll down the page, you will find some panels with information about
the current home module, how many users are online, and some details of recently published
stories, although at the moment, there is not much to see in any of these displays since we have no
content or users!

The top menu of the administration interface, the Administration Menu, has icons for general
'system' management functions. These control the 'core' operations of PHP-Nuke, such as:

• Block and module management
• Database backup and optimization
• Banner management, users and user groups, and newsletters
• Site configuration
• Logging out of the administrator account

The lower menu, Modules Administration, has icons that take you through to the administration
areas of individual modules. There is also another logout link.

Note that if you are using a version of PHP-Nuke earlier than 7.5, there is only one large
menu, the Administration Menu, and this contains all the above icons mixed in together.

The two-menu split emphasizes the division of labor for managing a PHP-Nuke.

• The top menu has tasks for maintaining and configuring the site.
• The bottom menu has tasks for maintaining and configuring individual modules.

First experiences of the administration menu are often perplexing—you click on one of the images
and the page reloads, but nothing seems to have happened. The menus are still there in the middle
of your page, grinning at you. (Particularly the rather gruesome looking IP Ban icon; you may
begin to believe its eyes follow you around the room.)

What you're actually after is displayed below the menus. By default, the administration menus are
always displayed at the top of the page in the administration area; the action you're trying to do is
contained in the panels underneath, and you will generally have to scroll down to get at what you
want. Possibly, if your screen resolution is sufficiently high and your browser window sufficiently
sized, then you won't get this problem, but for most of us, we will find ourselves wondering if
anything has happened.

The advantage of these ever-present menus is that if you suddenly find yourself needing to switch
to another task, you simply scroll back up to the top of the page and click on the desired icon.

If you want to return to the administration homepage at any point, you can either enter the URL
of the administration homepage (http://localhost/nuke/admin.php) or if you glance to the
left-hand side of your page, you will see the Administration block.

 43

Managing the Site

The top link in this block, Administration, returns you to the administration homepage. This block
is ever present if you are logged in as the administrator. Administrator movements are not
necessarily restricted to the 'back end' (the administration interface) of the site. You can also visit
the 'front end' of the site and view the site as your visitors see it. However, for the administrator,
extra, context-sensitive links appear on various items that provide you with a fast track to the
administration area, and let you control that item. We'll see more of these links as we look in detail
at the default modules over the next few chapters.

Also, there are special blocks that are only visible to the administrator, the Administration block
being one of them.

You can replace the graphical administration menus by a more manageable text menu, but for
now we will be working in the more familiar graphical environment, at least until we know our
way round.

Site Preferences
Our first job will be to change some global settings of our site; we do so by clicking on the
Preferences option:

When you do this, the page will reload and the Administration Menu will reappear, and then you
should scroll down to the Web Site Configuration menu. This is a long list of options; the top part
is shown in the following figure:

 44

Chapter 4

At the foot of the list is a Save Changes button (not seen in the screenshot as it is too far below).
This button has to be clicked for any changes to persist.

The list of Web Site Configuration options is divided into a number of panels, grouping together
options for particular tasks:

• General Site Info
• Multilingual Options
• Banners Options
• Footer Messages
• Backend Configuration
• Mail New Stories to Admin
• Comments Moderation
• Comments Option
• Graphics Options
• Miscellaneous Options
• Users Options
• Censure Options

We won't look at all of these panels now; instead we will look at them as we need them. For
example, when covering story management in Chapter 6, we'll explore the Comments
Moderation, Comments Option, Censure Options, Backend Configuration, and the Mail New
Stories to Admin panels.

 45

Managing the Site

We shall now look at some of the options in General Site Info; these control some basic options for
our site.

First up is the Site Name option. This is the name of your site, and is usually displayed in the
title-bar at the top of the browser. It also used in any text referring to your site, such as email
messages automatically sent out by the site (for example, the confirmation message sent to a user
who has created an account on your site).

Let's stamp the identity of this site, by changing the Site Name value to the Dinosaur Portal:

Now scroll to the bottom of the list of preferences where you see the Save Changes button. Click
this to update your site. After the page reloads, you should see that the title bar in your browser
has changed from PHP-Nuke Powered Site to our new site name—the Dinosaur Portal.

When the page reloads, you are still on the Web Site Configuration menu page. This is good in
case you need to make any further changes, or if you got something wrong with the last change
you made. There are some parts of the PHP-Nuke administration interface where clicking a Save
or Ok button does not keep you in the same part of the administration interface but returns you to
the administration homepage. This kind of thing can make you lose your bearings early on.

Although we only made one change before clicking the Save Changes button, you can, of
course, make as many changes to the preferences as you like before clicking the button.

The Site URL is important too. This field holds the URL of your site homepage (without the
index.php bit). If you specify the wrong Site URL or, more likely, forget to change it from
http://phpnuke.org, then the consequences are not drastic; visitors will not suddenly find
themselves transported to another site when they click a link on your site. However, the Site URL
is used in emails sent to newly registered users with a link to confirm their registration. With the
wrong Site URL here, people will go to the wrong site to register (and fail!). We will remind you
of this when we discuss emails sent out by the system.

Let's change the Site URL before we forget. Since our site is at http://localhost/nuke, enter
that into the Site URL field, and then scroll down and click the Save Changes button.

The Site Slogan, Site Start Date, and Administrator Email are straightforward to change. The
Administrator Email account is the email account that will be used to send out user registration
confirmations. The Site Slogan value is used in the META DESCRIPTION tag in the page header of
your page:

<META NAME="DESCRIPTION" CONTENT="Your slogan here">

This tag is used by some search engines to create the description of your page in its listing. (That
is when you are visited by search engines, which is still a long way off!)

By default, the value of the META DESCRIPTION tag is fixed for all pages in PHP-Nuke, and takes
the value of your Site Slogan field.

 46

Chapter 4

The Site Logo specifies an image used by some modules to 'stamp' their pages. This value does not
control any site logo image that may appear in the site banner at the top of your page.

Another interesting option is the Default Theme for your site. This gives you a drop-down box with
a list of the currently installed themes. Select NukeNews from the list, scroll down, and click Save
Changes. When the page reloads, it looks rather different:

Not bad for two clicks of a mouse. We just changed the site's default theme and immediately the
new theme has been applied, and we now have a very different looking site. It still 'works' the
same, but it looks very different. One of the most obvious changes is the icons in the
Administration Menu. There are some standard images in PHP-Nuke that can be overridden by
images from the theme. The icons in the Administration Menu are one set of images that can be
overridden like this.

Every visitor sees the theme that is specified as the default theme. Registered users have the option
to choose their own theme, to personalize the site to their liking.

Now let's select the DeepBlue theme from the list of themes and click the Save Changes button.
In the next few chapters we're going to see a lot of screenshots from the PHP-Nuke administration
interface and the front end, and they're all going to be taken with the DeepBlue theme. If you're
not using this theme as you follow along, things could look different. The DeepBlue theme is the
default theme.

 47

Managing the Site

Turning off the Graphical Icons
For future reference, if you get sick of the Administration Menu icons (perhaps the terrifying IP
Ban icon is finally getting to you), the Graphics Options panel is where you can turn off the
graphical administration menu:

We will leave it set to Yes for now as we explore the administration interface. When you feel
more confident, you can return here and set it to No to replace the graphical menu by a text menu.

The Cookie Crumbles
That's enough of the Web Site Configuration menu for now. Don't worry; we will come back to it
over the next few chapters. Your next task is to close your browser.

Now open a new browser window, and navigate to your site's homepage (http://localhost/
nuke/). You will notice that you are still logged in as the administrator—you can see the
Administration block in the left-hand side column.

You may find this rather strange—you didn't enter a username or a password or go through the
admin.php page, so how did it know? The answer is a cookie. PHP-Nuke issues cookies to
visitors, which contain a number of user preferences, including their login details. This means that
when the visitor returns to the site they are identified, and dealt with accordingly. This explains
why you are logged back in as an administrator without having taken any action.

An annoying side-effect is that if you wanted to view the site as a visitor and administrator at the
same time, you would have to log out and log in again before viewing. Should you find yourself
doing this often, an obvious solution is to use two different types of browsers—say Mozilla
Firefox and Internet Explorer (cookies are distinct on the two applications)—so one can be your
administration browser and the other can be your visitor browser.

Backing Up the Site Database
It's not an exciting activity, but backing up your database is essential for the continuous running of
your site. Almost everything about your PHP-Nuke site is stored in the database, and if there's
some problem with the database, it will surely translate into a big problem on your site. Also,
creating a backup of the database is not only to prevent a catastrophe; if you plan to develop your
site locally (as we are doing) before uploading to your web host, then you will want a backup of
the local database with you. This copy can be directly uploaded to the web host database server so
that your site is ready to go without having to go through the entire configuration setup again.

You can create a backup of the database from within PHP-Nuke's administration area. Doing this
creates a copy of the database in the same format as the nuke.sql file that you used to construct
the original PHP-Nuke database. This file should then be stored safely, ready to be used in case of
a database emergency.

 48

Chapter 4

Creating a database backup is a one-click process. You simply click the Backup DB icon in the
Administration Menu:

After a moment, a Save dialog box will open in your browser. The database backup is a text file
having the default filename of Save.

You can give the file a name in the format <databasename>_backup_<date>.sql, and then open it
in a text editor to check what it contains.

Once you have the backup of the database, restoring the database is similar to the process of
creating the original PHP-Nuke database that we saw in Chapter 2. The only difference is the
choice of file to upload, and the fact that you will have to remove the existing data in the database
before 'applying' the backup.

You can easily remove all the data, in fact the entire database, from phpMyAdmin. Simply open it
up in your browser, and select your PHP-Nuke database from the drop-down list on the left-hand
side of databases. Once it is selected, and all the tables are displayed, click the Drop tab on the
right-hand side:

An alert message will appear:

The use of uppercase for DESTROY signals that you are about to perform a drastic operation.
Clicking OK will remove the database from your database server, but this is not a problem since
you did make a backup copy of it.

To recreate the database, simply retrace the steps outlined in Chapter 2 to create the database (you
will have to define the database user and role again), and then to create the tables and fill them
with the data from the backup, click the SQL tab, click the Browse button, and navigate to your

 49

Managing the Site

database backup file. Selecting this and clicking Go will restore your database. Removing the
database will, of course, mean your PHP-Nuke site is temporarily broken, and any visitors will see
one of the data access error screens that we saw in Chapter 2.

Note that you can zip up the database backup and upload the ZIP file to phpMyAdmin rather than the
plain text file. phpMyAdmin will automatically extract the text file and process it. However, it is
possible that when you are attempting this on a web hosting provider, the server may not be able to
work with the ZIP file in this way; it should become obvious that this is a problem, since you will get
a page full of error messages, and you will have to upload the file in the standard text format.

Be careful about the size of the file you upload when working with a hosting provider; it is also
likely that there will be some restriction on the size of file that you can upload to the server—
typically 2MB.

You should get in the habit of backing up the database once your site is up and running. How
often you back up will depend on how busy your site is, and how often new content is added or
changes are made, but a daily backup is wise for any active site.

There is also an Optimize DB (Database) option in the PHP-Nuke Administration Menu:

As the name suggests, clicking this icon will have PHP-Nuke go through all the tables in the
database in an attempt to 'optimize' them. In fact, PHP-Nuke issues a MySQL OPTIMIZE TABLE
statement against every table in the database, and reports any space saved in the database by doing
this. You can read more about exactly what the OPTIMIZE TABLE statement does, and when you
may want to use it, in the MySQL manual at:

http://dev.mysql.com/doc/mysql/en/optimize-table.html

Managing Blocks
Blocks are a key part of the layout of a PHP-Nuke website, and you have a great deal of ability to
customize the way in which they are displayed. We've already seen the Modules block; this is the
main navigational control in PHP-Nuke. Here are some of the other blocks shown on the default
homepage to a visitor:

 50

Chapter 4

Languages: This block is placed on the left of the page. This block
allows you to choose the PHP-Nuke interface language.

Survey: This block is placed on the right-hand side of the page. This
allows visitors to take part in straw polls on some pressing matter of
the day. The default poll is the question we're all asking at this point
in the book.

If you are logged in as an administrator, you will also see blocks such as the Administration block
that we saw earlier, and the Waiting Content block in the left-hand column.

This block shows a summary of any pending user-submitted content that needs to be moderated and
approved before publishing. We'll find out more about this 'workflow' in the next few chapters.

You will notice that all the blocks on the page look the same as this, and the overall columnar
layout is a hallmark of most PHP-Nuke sites.

 51

Managing the Site

You will also notice that each block consists of two parts—one part is the title (Languages or
Survey for example), and the other part, the body of the block, is the content. A block does not
concern itself with how it is displayed; this is taken care of by the PHP-Nuke theme. The pictures
below show the Languages block when it is rendered in two different themes; 3D-Fantasy and
Karate in these cases:

Although the blocks look different, you can see that the title-content split persists.

Types of Blocks
A block's job is to produce its content. This content may come from one of three places, and the
origin of the content determines the type of block:

• HTML stored in the database
• Dynamic content created by PHP files
• RSS feeds from other sites

Let's talk about the third option for a moment. RSS is a standard format for sharing web content or
summaries of web content, together with data about the content such as a link to the full version of
the content. Typically, the content changes often, such as news stories, latest postings to a personal
weblog, or assorted new additions to a site. RSS stands for Really Simple Syndication; you can read
more about its definitions (the specification) and its history at http://blogs.law.harvard.edu/
tech/rss. The site http://www.whatisrss.com/ has more information about RSS. You can also
refer to RSS and Atom by Heinz Wittenbrink from Packt Publishing (ISBN 1-904811-57-4).

The information is delivered via an RSS feed, and using such a mechanism allows a site to make
its content available to others without having to notify them when new material is published. In
other words, the receiver of the feed can have up-to-date information about the content available
on the feeding site.

The process of making these headlines available is known as 'syndicating content', and is
becoming an ever more popular way of distributing information without actually doing anything;
anyone interested will consume the news feed.

PHP-Nuke's RSS blocks allow you to include RSS feeds on your site, so that you can suck up the
headlines of stories from relevant sites and display them on your own site, creating a network of
content for visitors to your site.

PHP-Nuke also provides facilities for syndicating news stories on your PHP-Nuke site via RSS;
we'll look at that in Chapter 6.

 52

http://blogs.law.harvard.edu/tech/rss
http://blogs.law.harvard.edu/tech/rss
http://www.whatisrss.com/

Chapter 4

Block Positioning
To determine where a block is displayed on the page, the block is given a position (left, right, or
center), and a number called its weight. Blocks with a lower weight are displayed first; we'll see
that changing the weight of a block moves it up and down the page.

Block Visibility
Blocks have a property that determines who is able to see the block. The administration blocks, for
example, are only visible to the administrator and not to any other user. A block that contains the
details of a logged-in visitor should only be displayed to that visitor—for an unregistered visitor
this block would be meaningless. Also, it is often wise to not show advertising blocks to paying
subscribers of your site.

The Blocks Administration Area
To set about our work with blocks, click on the Blocks icon in the Administration Menu:

This brings up the Blocks Administration area. From here you can control all the blocks on your
site. You can change the position of a block, the order in which it appears, its visibility to users, or
even activate or deactivate the block.

The top part of the Blocks menu is show here:

If the icons themselves aren't clear enough, hovering your mouse cursor over the graphic will
display a tooltip explaining the function of that graphic.

Let's have a run-through of the columns in the table of blocks.

We have already seen the Title and the Position attributes of the block; the Weight column
determines a logical ordering of the blocks within their 'column'. The order in which the blocks
appear can be adjusted with the up and down arrows in the Weight column. In this way, you can
reorder the blocks as you please, moving them up and down your page.

 53

Managing the Site

The Type column specifies the type of block: FILE, HTML, RSS/RDF, or SYSTEM. We discussed
the first three types of block earlier; SYSTEM blocks are added by PHP-Nuke itself.

If the block Status is shown as , then the block is active and is displayed on the site. If this icon
 is shown in the Status column, then the block is inactive. If the block is inactive, the next block

(namely the block with the next lowest weight) will be displayed in its place—there is no gap left
where an inactive block should be. Thus blocks can be removed from the page without leaving
unsightly holes in the layout.

The Visible to column determines which group of visitors can see the block; the groups are, as we
know, All Visitors, Registered Users Only, Administrators Only, or Anonymous Users Only.

The last column, Functions, is where the fun starts. Each block has four icons in the Functions column:

From left to right these icons allow you to:

• Edit the details of the block
• Activate or deactivate the block (depending on whether it is currently active)
• Delete the block
• Preview or 'show' the block

The preview icon is only enabled when the block is currently deactivated; clicking this icon gives
you a view of what the block will look like when activated on your site. When the icon is not
enabled, it will be grayed out.

If you forget which icon is which, then hover your mouse cursor over it, and the action of the icon
will be displayed—Edit, Activate (or Deactivate), Delete, or Show.

We've talked about how we can reorder and reorganize the blocks, so let's actually have a go at it.
Our first task will be to swap the order in which the Who's Online and Languages blocks appear
on the page. The inactive Search module in sandwiched between them, but that isn't going to
concern us at the moment.

Let's see how we can change the position of the Languages block:

1. Click on the up arrow in the Weight column of the Languages block in the block
table. As your mouse cursor hovers over the arrow, you should see the helpful Block
UP text popup, to let you know what clicking that image will do:

 54

Chapter 4

2. When the page reloads, the Languages and Search block have swapped weights in
the blocks table, as seen in the picture below. Since the Search block is inactive, it is
not displayed, so at this point you cannot see any change to the look of your page.

3. Click on the up arrow for Languages, and when the page reloads, our work is done.

If you glance to the left-hand side of your page, you will see that the Languages and Who's Online
blocks have switched positions. The picture below shows a 'before and after' shot of these two
blocks on the page (the before shot is on the left):

That's moving blocks up. You go through a similar process for moving blocks down.

Occasionally, things don't quite go to plan when moving blocks down, and you may find that you
have two blocks with the same weight. To resolve this problem, there is a way to 'rebalance' the
weights. At the bottom of the blocks table you will find a Fix Block's Weight Conflicts link.
Clicking this link, as the name suggests, corrects the list of block weights, ensuring that each block
has a distinct weight.

 55

Managing the Site

Time For Action—Changing Block Position
Now we've made the Languages block move up the page, let's move it to the other side of the page.

1. To see the properties of a block, we click its Edit icon in the Functions column. Click the
Edit icon of the Languages block now. You should see the Edit Block panel appear:

2. Select Right from the Position drop-down box:

3. Click the Save Block button at the bottom of the panel.
4. When the page reloads, the Languages block has moved way down the list of blocks

in the table, and also it has vanished from the left-hand column of the page. You will
now find the Languages block along with other blocks whose Position is Right:

5. Now open a new browser window and go to your site's homepage. The Languages
block is now on the right-hand side column, at the top of that column at the moment
in fact. (The blocks above it in the list are either inactive or are displayed to
registered visitors only.)

 56

Chapter 4

The process to change the block position was straightforward. This combined with the ability to
reorder the blocks on the page means that you have great control over where blocks go on your
page. In addition to Left and Right, there are two other positions for blocks:

• Center Up: In this position the block appears before the main module output.
• Center Down: In this position the block appears after the main module output.

Blocks in these last two positions are only shown on the site homepage. On the homepage of your
site, blocks will be displayed in any of the four positions. In general, when you are looking at any
of the modules, only the left-hand block column is displayed (Downloads, Feedback, and Web
Links are exceptions to this).

An interesting thing to note about the repositioning of a block is the new weight it is given.

• When you change the position of a block, its weight remains the same.
• Any blocks of your target position whose weight is equal to or more than your

block's weight will have their weight increased by one; they will all shuffle down to
make room for your block.

• Any block in the same position as your block's original position whose weight is
more than your block's weight will have their weight's decreased by one; they will all
shuffle upwards to fill in the gap left by the moving block.

• If the weight of your block is higher than the maximum weight of any block in the
target position, then your block will be given a new weight that is one more than that
highest weight, so that again there is a nice sequence of consecutive weight values.

In short, when you change the position of blocks, PHP-Nuke will make some adjustments to all
the other weights to retain sequences of consecutive weight values, which keeps things tidy.

Adding Blocks
The interface for adding new blocks to PHP-Nuke is the Add a New Block panel, found underneath
the list of blocks in the Blocks Administration area.

 57

Managing the Site

There are lots of options on this panel; some of the options apply to all types of block, and some
only to certain types of block. This can be rather confusing to start with and is something that can
make block management tricky for the beginner.

There is also no option to specify what kind of block you are creating (HTML, RSS/RDF,
FILE); this is because the type of block you create is determined for you by PHP-Nuke
based on what you put into the fields of the Add a New Block panel.

Options for All Blocks
Here are the options that apply to all blocks, followed by a description of their purpose:

Option Description

Title This is the title of the block; this appears in the list of blocks in the Blocks Administration
menu, and usually identifies the block on the page when it is displayed. You have to
choose the value for Title. A block cannot be created without a title. It is possible to create
two different blocks with the same title.

 58

Chapter 4

Option Description

Position Here you select from Left, Right, Center Up, or Center Down. This determines where
the block appears on the page when displayed.

Activate? Determines whether the block should be activated now. Once activated, a block can be
deactivated from its Functions column. The default setting for this option is Yes—the
block will be activated once it is created.

Expiration Allows a time period—specified as a number of days—after which the block will be
deactivated. The default value is 0, and this means the block will remain indefinitely.
Note that if you set an expiration date, you cannot modify this value by editing the
block properties.

After
Expiration

Determines what action should be taken after the block expires, if an expiration time period
has been set. This can be one of two values; Deactivate or Delete. Deactivate means
the block will be deactivated and no longer visible once it expires; this option can be set on
any type of a block. The Delete value is only applicable to HTML or RSS/RDF blocks, and
will actually remove their details from the database.

Who can
View This?

Determines the type of visitor that can view this block. The value is chosen from the
categories we saw at the end of the previous chapter; Anonymous Users Only,
Registered Users Only, Administrators Only, or All Visitors.

The default value is All Visitors. Thus any freshly created block is visible to any visitor to
the site.

Visible to
Subscribers?

Determines if the block can be seen by subscribers. If it is set to No, then subscribers will
not be able to see the block, regardless of the Who can View This? setting. This is
commonly used to hide advertisement blocks from subscribers who will have already paid
a fee for their subscription.
The default value is Yes.

We will cover the options that apply to specific types of blocks as we come across them.

Time For Action—Adding a Static Block
Our first attempt at creating a block will be a simple HTML block; for this we simply use a lump
of HTML. This will be stored in PHP-Nuke's database, and then retrieved and displayed when this
block is output on the page. The HTML block cannot take advantage of any 'server-side' PHP
processing, so the output is always fixed. The block will always look the same, whenever you look
at it, whoever you are. The block is truly 'static'.

First of all, let's make sure we're in the Blocks Administration area; click on the Blocks icon in the
Administration Menu just to make sure, and scroll down to the Add a New Block panel.

Our block will be a 'Dinosaur of the Day' block, displaying an image of today's dinosaur, and its
name. We're going to position the block on the left-hand side of the page, and make it available to
every visitor, and it shall remain on the site indefinitely.

1. Enter Dinosaur of the Day into the Title field.

2. Ignore the next two fields (RSS/RDF file URL and Filename); these have nothing to
do with our HTML block.

 59

Managing the Site

3. Enter the following text into the Content field:
Today's dinosaur is

<center>Tyrannosaurus Rex</center>

<center><img src="images/dinosaurs/dotd.gif"
 alt="Tyrannosaurus Rex"></center>

4. Leave the Position field set to Left, and leave Activate? set to Yes.
5. Leave all the other fields as they are—the block is to remain indefinitely so we leave

Expiration set to 0. Hence the After Expiration field is redundant and Refresh Time
does not apply to this type of block. The block is to be visible to everyone, so leave
All Visitors selected in Who can View This?

6. Click the Create Block button.

When the page reloads, you will see your new block added to the list of blocks:

And if you glance over the left of your page, you will see the block displayed:

Immediately, you can see the kind of limitations static HTML blocks have—if we want a different
dinosaur displayed on a different day, we would have to edit the block text itself. We could change
the image, but still the name of the dinosaur remains.

Be careful when creating HTML blocks—if you enter anything into the RSS/RDF file
URL field, whatever you type into the Content field will be ignored, and you will not
create an HTML block but an RSS/RDF block. There is a warning about this at the foot
of the Content field, so pay attention!

Adding Other People's News with RSS/RDF Blocks
OK, we've added our static HTML to the site. The next thing we'll do is genuinely impressive—we will
add a news feed from an external site to our page. This is accomplished with the RSS/RDF block.

As we mentioned earlier, RSS feeds are a method for syndicating content. (Note that RDF is
essentially a variation of RSS.) The data from an RSS feed is just a text file, in XML format,
although that is something that doesn't concern us for now.

 60

Chapter 4

XML stands for Extensible Markup Language, a general-purpose markup language for
carrying data between different sources and platforms. You can read more about XML at
http://www.w3schools.com/xml/default.asp.

The first thing we'll need is a good news source. We'll grab the information about the latest
adventures of the cartoon pair, Beaver and his dinosaur pal Steve from www.beaverandsteve.com.
This news feed is found at:

http://www.beaverandsteve.com/rss.xml

Let's get back to the Blocks Administration area by clicking on the Blocks icon in the Administration
Menu, and scroll down to the Add a New Block panel.

There are two ways we can store the URL of a target news feed in PHP-Nuke; we can either enter
the URL directly into the RSS/RDF file URL field in this panel, or else we can create a new
headline site. A headline site is just a named site with a URL for its news feed.

The advantage of creating a new headline site is that the URL is stored independent of the block; if
you delete the block, then you can easily create a new block with the same news feed, without
having to type (or maybe find!) the URL of the news feed again. Using a headline site also gives
you the block title for free, as we will see now.

Time For Action—Creating a New Headline Site
1. From the Add a New Block panel, click on the Setup link on the right-hand side of

the panel:

2. The Headlines Administration panel is displayed. This is a list of the currently defined
headline sites; there are some twenty or so sites already defined, some of which are
related to PHP-Nuke (PHP-Nuke, NukeCops, and NukeResources for example)
while others are about general open-source news or just general news. The top of this
list is shown here:

 61

http://www.beaverandsteve.com/
http://www.beaverandsteve.com/rss.xml

Managing the Site

3. If you scroll to the bottom of this list, you will see the Add Headline panel. This is
where we define our headline site. Enter BeaverAndSteve into the Site Name, and
into the RSS/RDF file URL field enter our news feed URL:

4. Click the Add button, and when the page reloads, you will see our new news feed
added to the bottom of the list of headlines:

You can use the Edit or Delete links to amend the details of the news feed link. Clicking on the
link itself will open the news feed in a new browser window. This is useful for checking if you've
actually got the URL correct—if you specify an incorrect URL for an RSS/RDF block, then your
page output can be severely disrupted, so it's wise to check that you're actually pointing at the
news feed.

Curiously, there is no link to the Headlines Administration panel in the Administration Menu by
default. You will have to come through the Blocks Administration area by clicking the Setup link,
or bookmark the Headlines Administration page in your browser.

Time For Action—Adding the RSS/RDF Block
Now our headline site has been defined, let's get back to creating the RSS/RDF block. Since we
are currently in the Headlines Administration area you will have to click on the Blocks icon in the
Administration Menu to get back to the Blocks menu, and then scroll down to our Add a New Block
panel and follow these steps:

1. There is a drop-down box to the right of the RSS/RDF file URL field currently holding the
value Custom. This contains a list of all our defined headlines. From this box, select
BeaverAndSteve.com (it's right at the bottom!):

2. Let's leave the block on the Left, and set Activate? to Yes, and leave Refresh Time set
to 1 Hour. We will also set this block to be viewable by All Visitors.

3. Click the Create Block button.
4. When the page reloads, you will see your newly created block in the list of blocks.

Note that the block is of type RSS/RDF, and the Title has automatically been
assigned from the name that we gave to the headline site:

 62

Chapter 4

Glance to the left of your page, and you will see the block in action. This is what the block
displayed at the time of writing—when you see the block's output, the news will be different:

If you hover the mouse cursor over any of these links, you will see that these are links to the
actual news stories on www.beaverandsteve.com, and clicking one will open that story in a new
window. There is a read more... link at the foot of an RSS/RDF block that takes you to the
homepage of the source site. We did not add any information about the URL for this homepage
ourselves—this information is contained within the news feed itself, and was read and
processed by PHP-Nuke for us.

Note that PHP-Nuke does not suck in the news feed from the source site every time the block is
displayed. The operations of acquiring and processing the RSS feed every time the block was
displayed would adversely affect the performance of the web server running PHP-Nuke, and so
PHP-Nuke caches the feed in its database to use subsequently.

However, the Refresh Time setting of the block determines when PHP-Nuke should obtain a new
version of the feed to keep it 'fresh'. When PHP-Nuke needs to display the RSS feed in the block,
it will check the time it last stored the feed. If the time elapsed exceeds the Refresh Time value,
PHP-Nuke will get a new version of the feed, and cache that. The Refresh Time setting doesn't
have any effect on the other types of blocks.

Adding a File Block
A file block is a PHP script that is stored in the blocks folder of the PHP-Nuke installation. At
this point, we're not going to create a new block of this type; we'll see that in Chapter 10. There
are a number of file blocks already in the blocks folder, provided by PHP-Nuke. We will
choose one of those.

Time For Action—Adding the Total Hits Block
The Total Hits block simply displays the number of times the site has been accessed. PHP-Nuke
maintains a counter that is updated whenever any page is requested from the site. This is the
number that is displayed by the Total Hits block.

From the Administration Menu, click on the Blocks icon to get back to the blocks menu, and then
scroll down to our Add a New Block panel.

 63

Managing the Site

1. Select Total Hits from the Filename drop-down list:

2. Let's leave the block on the Left, and set Activate? to Yes. We will also set this block
to be viewable by All Visitors.

3. Click the Create Block button.
4. When the page reloads, you will see your newly created block in the list of blocks.

Note it is of type FILE, and the Title has been provided from the filename:

5. A glance over to the left of your page, and you will see the Total Hits block is in place:

What Just Happened?
We just added a file block, and it was very simple. PHP-Nuke helps by providing a list of the
available file blocks in the Filename drop-down list, and all you have to do is to select the
filename from the list.

The names in the list correspond to PHP files in the blocks folder, and PHP-Nuke checks this list
of files every time you come to the Blocks Administration area, and the drop-down list is
populated. To show up in this list, the name of the file in the blocks folder must be of the form
block-NAME.php, where NAME is the name of the block that shows up in the drop-down list. The
block does not take its title from this part of the filename, you still have to add that yourself in the
panel. If you have a quick look in the blocks folder in your PHP-Nuke installation, you will see
that all the files are named like this.

 64

Chapter 4

Installing a new file block is simply a case of copying the required PHP file into the blocks folder.
There are some example blocks in the code download for this book, and you can experiment with
them. If you have placed a file into the blocks folder but it is not showing in the Filename
drop-down list, then the file is likely to have its name in the wrong format for PHP-Nuke to pick up.

Managing Modules
Modules are like limbs to the body of your PHP-Nuke site; they kind of stick out and do stuff for
you. However, PHP-Nuke allows your system to have an almost indefinite number of limbs, er,
modules, and also allows you to add or remove them with ease. In this section, that's exactly what
we're going to look at.

First of all, return to the Administration Menu and click on the Modules icon:

This brings you to the Modules Administration area. This area is for administration of all modules,
not the properties of individual modules. Individual modules such as Downloads, FAQ, and so on
have their own sections in the administration area.

Visiting the Module Administration area like this also 'refreshes' PHP-Nuke's module list. If you
have installed any new modules, then PHP-Nuke will detect them and add them to its list.

In the Module Administration area you will see some helpful text, describing some general
instructions for module administration, and below that is a table from which you can actually
control your modules:

 65

Managing the Site

This table is similar to the one we saw for managing blocks in the Blocks Administration area. Each
module has a Title and Custom Title; the Title actually refers to a folder in your PHP-Nuke
installation, and to avoid spaces in the filenames, underscores are used, and the Custom Title
provides a friendlier name for the module with the use of spaces instead of underscores.

The Status column has an icon, similar to the blocks table, indicating whether the module is Active
or Inactive. Active modules are visible on the site, and can be accessed by visitors. Inactive
modules are generally not visible to the visitor, but can be accessed by the administrator. If you
glance to the left-hand column of your page, at the bottom of the Modules block you will see a list
of the inactive modules:

As an administrator, you can still visit and test these modules, either by clicking on these links or
directly entering a URL. This list of inactive modules is only visible to the administrator, and
should a sneaky visitor manage to find their way to an inactive module, they will be confronted
with the following statement, and they are unable to use the module any further:

Making a module inactive does not 'remove' it from the site as you can see—it's still there, just
sleeping. You can remove modules completely from the site, but this requires you to physically
delete some files from your PHP-Nuke installation.

As with blocks, access to modules can be restricted to groups of users, as shown in the Visible to
column. The group can be chosen from All Visitors, Registered Users Only, Administrators Only,
and Subscribed Users.

Unlike the access restriction for blocks, whereby if a visitor is not permitted to see the block, the
block itself will not be displayed, attempts to access a restricted module will display a message
like this:

 66

Chapter 4

Module access can be restricted to registered users of your site, but you can also restrict access
even further through the use of user groups. When users contribute to your site by posting a news
story, commenting on a story, or recommending the site to a friend, they can earn points for
themselves, as reward. When they have collected enough points, they become members of a
particular user group.

Being a member of this group may be prestigious enough for some people, but it also means that you
can allow these 'worthy' people access to parts of your site that are forbidden to those who haven't yet
earned the privilege. The user group (and it can be only one group) that has exclusive access to a
module is indicated by its Group column in the modules table. By default, this is set to None,
meaning that no group has exclusive access. We'll look at creating user groups in the next chapter.

The Functions column has icons similar to the blocks table, and plays the same role as the
Functions column in the blocks table. From here we can manage the properties of an individual
module, in the same way that we edited the properties of blocks. Modules can be activated or
deactivated, edited, or set as the default module—the 'home' module. You will notice that one of
the modules (currently News) is highlighted in the table, and its Status has an Active (In Home)
icon. This is the current default module, and is the module displayed when a visitor comes to the
home page index.php. Thus this module will be the first thing that a new visitor sees. Clicking the
Put in Home icon from the Functions column of a module will allow you to set that module as
the default module.

If you attempt to set an inactive module as the home module, PHP-Nuke will kindly
activate it for you. Note that the module will remain active should you then choose
another module as your home module.

Time For Action—Activating Modules
Before we go any further, let's take a moment to activate some modules. We'll want to look at
some of these modules in the next few chapters, the Content, Encyclopedia, FAQ, Forums,
Members_List, and Reviews modules, so we may as well activate them now. We'll only go through
activating the Content module; the other modules can be similarly activated.

1. Ensure that you are in the Module Administration area, by clicking the Modules icon in the
Administration Menu.

 67

Managing the Site

2. Scroll down the list of modules to find the Content module. It is currently marked as
inactive in the list:

3. Click the Activate icon in the Functions column of the Content module. When the page
reloads, you will see that the Content module is now marked as Active in the list:

4. The Content module is now showing in the Modules block:

That's all there is to activating an already installed module. Deactivating is similar; you simply click
the deactivate icon in the Functions column. This icon is only shown when the module is active.

Editing Module Properties
The Top 10 module has a potentially confusing name. It isn't the list of top 10 singles or DVDs; it
shows lists of the top 10 pieces of content on the site. Once you know what it shows, the title
makes sense, but until then, it doesn't really. This kind of title won't help new visitors feel
particularly comfortable navigating around your site. Let's start by getting that name changed to
something that is more descriptive of its function.

In the Modules Administration table, find the module with the Title of Top, and click on the Edit
icon in its Function column. You'll be presented with a list of options like this (remember to scroll
down from the admin menu!):

 68

Chapter 4

Here we can see that we can edit the Custom Module Name (its Custom Title in the modules table),
which category of visitors is able to see the module, and also, if the module is to be Visible in the
Modules block?.

Invisible Modules
If you were to set a module to be not visible in the Modules block, then it still remains active and
usable. However, there is no link to the module in your main navigational device, the Modules
block. You will have to direct visitors to the module by some other means. Modules like this are
listed in the administrator's version of the Modules block, just above the list of inactive modules:

These modules are called Invisible Modules. A rather colorful title, but it simply means that there is
no explicit link to them in the list of active modules in the Modules block. Remember that an
invisible module may still be accessible, and no extra security is placed upon the module. You
might want to use this if you wanted a select group of people to preview a module before you
unleashed it on the world, for example, and send them the URL to visit it directly. However, the
'no one will ever guess the name of that page' school of security is not a particularly advisable way
of thinking.

Time For Action—Editing the Top 10
Now let's edit the properties of the Top 10 module. At the moment, you should still be on the
Modules Edit page. If you're not, make your way there by clicking on the Modules icon in the
Administration Menu, and in the table of modules, click the Edit icon in the Functions column of
the module with the Title of Top 10.

 69

Managing the Site

1. Change the Custom Module Name to Top 10 Bits of Content

2. Select All Visitors for Who Can View this?.
3. Leave Visible in Modules Block? set to Yes.
4. Click the Save Changes button.

After you click the button, the page will reload, and you will be back at the Modules
Administration page. You will see the properties of the former Top 10 module have now changed
in the modules table:

And if you glance to the left of your screen to the Modules block, you will see the Top 10 entry
has been replaced by our new title:

That makes it so much clearer. Now everyone should understand exactly what that link is
pointing to.

Adding New Modules
The standard installation of PHP-Nuke probably isn't going to do everything you want. Although
that isn't part of its appeal, the fact that you can write your own modules and add them to your
system is. That doesn't just mean you, but anybody with some PHP know-how. Besides, there is a
vast library of PHP-Nuke modules available on the Internet.

Take due caution when downloading third-party modules, especially executable files, as
they might not be thoroughly tested and it is possible that they contain spyware or viruses.

Generally, adding and installing third-party modules involves more work than we will do here,
because there will often be database tables to be created, and files to be copied into different folders.

Time For Action—Installing a Simple Module
1. From the code download for this book, find the folder called MyModule in the

Ch04 folder.

2. Copy the MyModule folder into the modules folder of your PHP-Nuke installation.
3. Open your browser (make sure you are logged in as the super user) and click the

Modules link in the Administration Menu.
4. Scroll down the list of modules to find the MyModule entry:

 70

Chapter 4

5. Click the Activate icon in the Functions column.
6. When the page reloads, MyModule will have appeared in the Modules block, and

clicking its link will take you to the MyModule front page.

What Just Happened?
We just added a new module. The first stage was simple, copying the module files into the
modules folder. A module is a set of files contained in a folder that goes in the modules folder,
with PHP-Nuke picking up the name of the module from the name of the folder. For our module,
it picks up the name MyModule.

Once the folder has been placed in the modules folder, the list of modules is refreshed by visiting the
Modules Administration area. The list of modules is refreshed by PHP-Nuke going through all the
folders in the Modules folder to see if there are new folders added, and if so, adds them to the list of
installed modules. By default, these newly found modules are not activated. After we clicked the
Activate icon and the page reloaded, a glance over to the Modules block showed that the MyModule
module has been registered as an inactive module:

This module now also appears in the list of modules in the Module Administration table, and from
here, you can activate it or edit its properties like any other module.

Note that removing a module also works in the same way. To remove a module, simply remove its
folder from the modules folder. When PHP-Nuke refreshes its list of modules, that module will
removed from the database.

In general, installing third-party modules involves more steps than we have seen here, particularly
depending on the version of PHP-Nuke the module was originally written for. Usually, you will
have to create some database tables for the module, since a module of any complexity will involve
storing and retrieving data. (Our module has very little complexity!)

With third-party modules, there will often be instructions along with the module in the form of a
README file or INSTALL.txt that provide specific guidelines on where to put various files, and the
steps you must take to get the module up and running.

 71

Managing the Site

 72

Summary
In this chapter we have had a lengthy tour of the PHP-Nuke administration interface, and
accomplished some of the basic tasks of site management.

We looked first at the Web Site Configuration menu in the site Preferences. From here we set a
number of global properties of the site, such as its name, its URL, and its description. It is
important to set these early on when creating a new site, particularly since the URL of the site
appears in emails generated by the system. There were a number of panels in the Web Site
Configuration menu; we will encounter more of them as we move through the book.

Next we looked at creating a backup of the database. This is a very important task and should be
performed regularly, since the PHP-Nuke database is your site. If something were to happen to it,
you would lose all your site content, users, configuration settings, and so on, so taking regular
backups will be important as soon as your site has any amount of traffic.

Block and module management were the next stops. We saw how to position and order blocks on the
page, and how to set up the different types of blocks: static blocks of HTML stored in the database,
RSS feeds from other sites, and PHP script blocks. The RSS block is particularly interesting, because
it allows us to display details of content on other sites from the pages of our site.

Modules perform the main functionality of our site. We saw the Modules Administration area, from
where we are able to activate or deactivate modules, or change some of their properties, such as
which groups of users are able to access them.

Now it's time to move on to those whom your site is really for—the visitors.

5
Managing Users

So far your site feels rather lonely. Sure we've added some new blocks, and moved some around,
activated and deactivated modules until we are blue in the face, but there is something missing
(apart from content, I know—that comes in the next chapter!). What's missing is your site's users.

PHP-Nuke is about web communities, and communities need members. PHP-Nuke enables
visitors to your site to create and maintain their own user account, and add their personal details.
This is usually required for them to post their own new stories, make comments, or contribute to
discussions in the forums. Those annoying little tasks like managing lost passwords are also taken
care of for you by PHP-Nuke.

User accounts can be created in two ways:

• By the super user (that's you)
• By the user registering on your site

The second method involves a confirmation email sent to the user's email account. This email
contains a link for them to click and confirm their registration to activate their account (this needs
to be done within 24 hours or the registration expires).

Once a visitor is registered on your site, the gates to enjoy the full glory of your site will be thrown
wide open. Visitors, or users as you could now call them, will be able to contribute to discussions
on forums, add comment on posted stories, even add their own new stories, as well as access parts
of the site that are off-limits to the 'riff-raff' unregistered visitor.

In this chapter, we will walk through the creation of new users, both by the super user and also by
registering as a new user from the standard visitor interface on the site. We will also look at the
basics of subscribing users to the site.

Once we have some users in place, we will look through the Your Account module, which provides
a personal area for each user within the site, and allows them to personalize the site.

We will also look at the system of points awarded to users for interacting with the site, and the
benefits this brings them through user groups.

The final part of the chapter covers setting up other administrator accounts for managing
individual modules rather than the entire site.

Managing Users

Ingredients of a User
Every user requires a certain amount of information to uniquely identify them in PHP-Nuke. There
are the usual three things required of every user in PHP-Nuke:

• A nickname: This is an alias or username if you like. This identifies who the user is,
and is their online identity in PHP-Nuke.

• A password: This is required to verify that the user is who they claim to be.
• A valid email address: This is where the confirmation email is to be sent.

Once the user account is created for a user, the user is of course able to modify their details, and
also view the details of other users.

Information such as the URL of the user's own website, messenger ID (MSN, AIM, and others),
their location, and interests are also part of the user 'profile', but are not compulsory.

By default, the real email address of any user is never made public, for both security and to
prevent harvesting by spammers. Users can specify a 'fake email' address, possibly in
spam-obfuscated form (for example, address_at_mydomain.com) which will be displayed to other
users, although this is not required. A user's privacy is always protected.

Setting Up a New User
User management starts by clicking the icon in the

 74

Users Modules Administration menu:

Clicking this icon brings you to the User's Administration panel. This panel consists of two
mini-panels, and , whose use is given away by their titles. Edit User Add a New User

We'll start by setting up a new user. Our user will imaginatively be called testuser.

Time For Action—Setting Up a New User Manually
1. If you're not at the User's Administration panel, click the icon in the Users Modules

Administration menu.
2. In the panel, enter into the Add a New User testuser Nickname field.
3. Enter Test into the field. User Name
4. Enter your own email address into the Email field.

Chapter 5

5. Scroll down to the Password field. Enter as the password. testuser
6. Click the Add User button. When the page reloads, you will be taken straight back to

the administration homepage.

What Just Happened?
We created a new user. For this simple user, we only specified the required fields Nickname,
Email, and Password, and provided a single piece of personal information, Name. Failing to
specify the required fields will mean that the user is not set up, and you will be prompted to go
back and add the missing fields.

No email notification is sent to the user when the user is set up in this way, and no confirmation of
the registration is required. As soon as you click Add User, provided all the required fields have
been entered, the user is ready to go.

Editing the details of a user is equally easy, but you do have to know their nickname to edit the
details. Simply enter this into the Nickname field of the panel, select Edit User Modify from the
drop-down box and click Ok! If you have taken a sudden dislike to a particular user, enter their
nickname into the Nickname field and select from the drop-down box, click Delete Ok! and they
are gone forever (the account, not the person).

Subscribing a User
Once a user has been created, you have the option to subscribe this user. We mentioned the idea of
Subscribed Users in earlier chapters; it's a mechanism for restricting module access to specific
groups of people, such as fee-paying customers. There is only one group of Subscribed Users in
PHP-Nuke at present, so once a user has a subscription, they are able to access any module
restricted to only. Subscribed Users

The option to subscribe a user is not available when you create the user manually, as we did above.
To find the option, you have to edit the user's details. This is done by entering their username into the
Edit User panel, selecting Modify from the drop-down box, and clicking the Ok! button.

 75

Managing Users

The subscription options are near the bottom of the user details, underneath the newsletter option.
The Subscribe User option does not refer to 'subscribing to' the newsletter; you sign up the user or
remove them from your newsletter mailing list with the option. The Newsletter Subscribe User
option makes the user into one of the site's elite, a . Subscribed User

If you subscribe the user, then you must specify the Subscription Period. This is the length of time
that the user remains subscribed, and ranges from 1 year to 10 years, in yearly increments. If you
leave the

 76

Subscription Period at then the user will not be subscribed. None

Once a user has been subscribed, you can change their subscription details from the same panel:

You can unsubscribe the user, or extend their subscription period. To shorten the subscription
period, you would have to unsubscribe the user, subscribe them again, and then set the new period.

Subscribed users are reminded of the passing of time and the impending expiry of their
subscriptions when they visit the Your Account module—we'll further explore this module later in
the chapter:

Time For Action—Registering as a User
This time we'll register to create a user account as a normal visitor would. We'll call the user
account userdude. If you do not have your mail server set up, then you will just have to follow the
text and screenshots for now. The confirmation email sent by PHP-Nuke is a key part of the
registration process, and includes a special link for the visitor to click to activate their account.
Don't worry though, when your site is live on your web hosting account, you will undoubtedly be
able to access a mail server.

Chapter 5

1. If you are still logged in as the super user, logout by clicking the Logout icon in either of
the administration menus, or click the link in the block. Logout Administration

2. If you are still logged in as testuser, logout by clicking on the Your Account link in
the modules block, then click the link in the navigation bar that appears: Logout/Exit

Alternatively, you can enter the logout URL directly:
http://localhost/nuke/modules.php?name=Your_Account&op=logout

3. You will be redirected to the site homepage. Now click the link in the Your Account
 block: Modules

4. Click the New User Registration link. This brings you to the New User Registration
panel. The top part of that panel is shown here:

 77

Managing Users

5. Enter the

 78

Nickname of userdude.
6. Enter your own email address into the Email field.
7. We are going to use userdude for the password as well as the nickname. If you think

of another password at this point, enter it instead. Then put the password into the
Re-type password field as well.

8. Click the New User button. You will come to the final step of the registration process:

9. Click the Finish button.
10. Open up your email client, and log in to check your mail. You should find a mail

with the subject New User Account Activation waiting for you. It will be from the
email address you specified in the Administrator Email field in the Site Configuration
Menu. The body of that email will look something like this:
Welcome to the Dinosaur Portal

You or someone else has used your email account
(myaddress@packtpub.com) to register an account at the Dinosaur
Portal

To finish the registration process you should visit the following
link in the next 24 hours to activate your user account,
otherwise the information will be automatically deleted by the
system and you should apply again:
http://thedinosaurportal.com/modules.php?name=Your_Account&op=activate&use
rname=userdude&check_num=64ad845758d7f8f572b12800f60842ba

Following is the member information:

-Nickname: userdude
-Password: userdude

11. Click the link in the email, or copy the link and paste it into your browser, and you will
be taken to the New User Activation page where you will see a message of the form:
userdude: Your account has been activated. Please login from
this link using your assigned Nickname and Password.

http://www.lostsimplex.org/html/modules.php?name=Your_Account

Chapter 5

12. Clicking this link takes you back to the User Registration/Login page of the Your
Account module, and you can use your nickname and password to login.

What Just Happened?
You just created a new user account. The page for logging in is the homepage of the Your Account
module. We'll talk more about this module in a minute; as you could guess, it handles everything
to do with 'your' user account.

If the visitor is not logged in, they are presented with the login panel when they visit the Your
Account module page. From here they can enter their nickname and password to log in, or click
the New User Registration link to register a new user account, as we did.

For visitors that have forgotten their password, clicking the Lost your Password? link will take
them to a screen where they can enter their nickname, and an email will be sent to their registered
email address containing a confirmation code, a random-looking 10 digit string; with this code
they can have their password changed. A new, random password is generated and emailed to them.
PHP-Nuke never stores raw passwords in its database, so it can never reveal any password. With
the new password, the user can log in and change their password to something easier to remember.

The registration process for the user is straightforward; they only require a nickname, a valid email
address, and a password. There are certain rules, however, that are followed by PHP-Nuke:

• Only one occurrence of an email address is allowed on the system; if someone uses
an email address that belongs to another user account that address will be rejected,
and the user will have to choose another.

• Only one occurrence of a particular nickname is allowed as well; the system will
check the uniqueness of the nickname before creating the account.

After the visitor clicks Finish on the final step, the user account is created. Following that, the
confirmation email is sent to the email address. If the email address specified is invalid, or not the
visitor's email address, then that visitor will have to create their account with a new email address. If
the user doesn't mind being embarrassed, they can contact the site administrator, or wait 24 hours for
the account to be deleted from the list of 'waiting to be activated' accounts, and then try again.

You will notice that the link to activate the account contains the URL of your PHP-Nuke site:
http://thedinosaurportal.com/modules.php?name=Your_Account&op=activate&usernam
e=userdude&check_num=64ad845758d7f8f572b12800f60842ba

It is very important that you have configured your option correctly in the Site URL Web
Site Configuration menu (we saw this in Chapter 4). If you haven't done that, then the
activation link will point to the wrong site!

The check_num part of the URL is what identifies the unregistered visitor to the system. When the
visitor registers their details, PHP-Nuke stores them in the database along with the check_num
value. When the visitor visits the above link, PHP-Nuke will check the value of check_num against
the values stored in the database, and if it finds a match, it will move that visitor's details to the

 79

Managing Users

proper users table in the database, and remove them from the table of visitors waiting to confirm
their registration.

That's all there is to creating user accounts. It is possible to turn off the registration, so that only
the administrator can create accounts. If you feel the need for this, you can read more about it in
the PHP-Nuke HOWTO:

http://www.karakas-online.de/EN-Book/disable-registration.html

That section of the PHP-Nuke HOWTO also has a number of other user account hacks that you
can make use of.

Graphical Code for User Registration
PHP-Nuke enables you to add a security code to the login or registration pages on the site. The
security code is a small graphic with some digits, and is shown under the password fields, along
with a textbox for the visitor to type in the digits from the graphic.

The point of this device is to prevent automated registrations; without typing the correct digits into
the Type Security Code field, the submission will not be accepted. The digits displayed in the
image are not part of the page HTML, and the only way for the digits to be read is to actually see
them when they are displayed on a monitor.

Use of the security code is controlled by a setting in the file config.php in the root of your
PHP-Nuke installation. (This was the file in which we made some database settings in Chapter 2.)
The setting to change is the value of the $gfx_chk variable. By default, it looks like this in the file,
which means that the security code is not used:

$gfx_chk = 0;

The config.php file itself has a description of the values for this variable as seen in the table:

Value Effect on the Security Code

Security code is never used. 0

Security code only appears on the administrators login page (). 1 admin.php

Security code only appears on the normal user login page. 2

Security code only appears for new user registrations. 3

Security code appears for user login and new user registrations. 4

 80

Chapter 5

Value Effect on the Security Code

Security code appears for administrator and user logins. 5

Security code appears for administrator and new user registrations. 6

Security code appears at every login opportunity, and also on new user registration page. 7

Thus to have the security code appear only at the administrator login, you would set $gfx_chk to 1
and then save the file: config.php

$gfx_chk = 1;

For the graphical code to function properly, the GD extension will need to work properly with
PHP on the web server. The GD extension takes care of drawing the graphics, and if this isn't
functioning for whatever reason (possibly it's not installed), then the graphic will not be displayed
properly, and it will be impossible to determine the security code. In that case, you will have to
change the setting in config.php to remove the graphical code.

If you are running your site on a web hosting account and the graphical security code is not being
displayed when it should, then you should contact your host's technical support to find out if there
is a problem with the GD extension. You can tell if the GD extension is installed by using the
phpinfo() PHP function. Open a text editor and enter the following code:

<?php
phpinfo();
?>

Save this file as phpinfo.php in the web server root (\xampp\htdocs\). When you navigate to
that page in your browser, a number of PHP settings are displayed, including the status of the
GD extension:

 81

Managing Users

If you do not see a table like the one above on the page, or if it does not say enabled next to GD
Support, then contact your host's technical support. The XAMPP package we install in Appendix
A has GD installed and working.

Seeing Who's Who
Log in to your site as the super user and activate the Members List module (deactivated by default).
After activation there will be an additional option available in the Modules block called the Members
List module, which provides anyone able to view this module with a list of the registered users:

Clicking on the username will bring up a view of that user's profile:

 82

Chapter 5

This is only a view of the user profile, and it is not an editable form. You will notice the word
Forum in the above screenshot. The user profile displayed here is actually the user profile from the

module (and note also that the Forums Forums module needs to be activated for this screen to be
seen). You will also notice that the name of the site is wrong—it says MySite.com, which is not the
value we set for our site name. This is because the Forums module has its own set of configuration
settings. We will see how to set these in Chapter 8. Also note that the Members List module takes
information from the module configuration settings. Forums

The Forums module is a complete application—phpBB, one of the best pieces of free, open-source
forum software around—integrated into PHP-Nuke. One aspect of the integration is the shared
user account—the user account you create for the PHP-Nuke site also functions as a user account
on the forums. As a user, it is possible to work with your details in two places in PHP-Nuke—
from the module and also from within the module. Your Account Forums

Although there are two views of information, and two places to edit your details, there is still only
one user account. At the moment, the Your Account module offers more user details than are found
in the module, such as newsletter subscription information. Forums

The integration between the PHP-Nuke user account and the user account for the Forums module
has gradually become tighter over the versions of PHP-Nuke, and they are likely to 'converge'
further in future versions of PHP-Nuke.

Once a user account is created, and the user has logged in, a whole new world opens up to them.

The Your Account Module
The Your Account module is a visitor's space. The visitor is guided round their space by a
graphical navigation bar as seen below:

Before we look at each of these links, let's mention what else is on the front page of the Your
Account module:

 83

Managing Users

 84

• My Headlines: The user can view a list of headlines from an RSS news feed of
another site. The user can select from one of the headline sites that we saw in the
previous chapter, or enter the URL of the site directly.

• Broadcast Public Message: The user can enter the text of a public message to be
shown to all current visitors of the site. We'll look at this in a moment.

These two features are not always displayed; their display is controlled by options in the Web Site
Configuration menu that we'll see in a moment. However, the user is always able to see their Last
10 Comments posted and their Last 10 News Submissions on this page.

Returning to our discussion of the links in the navigation bar of the Your Account module, we've
already seen what the link does; it logs the visitor out. Logout/Exit

The Themes link takes the visitor to a page from where they can choose one from the list of
themes installed on the site.

We'll look at the Comments link in detail in the next chapter; it leads to options for viewing and
posting comments on stories.

Note that when you are logged in as the super user, the Your Account module displays another
panel called Administration Functions. This panel allows you to modify certain details of that user.
We will talk about these in the next chapter and meet them in their natural context.

Editing the User Profile
The Your Info link takes the user to their user profile. We saw some of the options here when we
looked at creating the user manually. These options are generally for personal details (name, email,
and so on), newsletter subscription, private message options, and forum configuration, among others.
The options themselves are straightforward. A number of options in the user profile correspond to
forum profile options, and don't particularly affect the user outside of the Forums module.

Chapter 5

After making any changes to a user profile, the Save Changes button needs to be clicked to save
these changes. Note that the Save Changes button is not the button at the very bottom of the user
details page—the button is above the : Save Changes Avatar Control Panel

The button at the bottom of the form is marked , and is only active when the options in the Submit
Avatar Control Panel are enabled.

The Avatar Control Panel seen at the bottom of the user profile contains an interesting option. An
avatar is a small graphic, representing you as an online character. You can choose a graphic from
the already existing library by clicking on the Show Gallery button next to the Select Avatar from
gallery option:

Clicking this button brings up a selection of little images for the user to choose from. Simply click
on the required image and this will be assigned to the user profile:

Clicking the Back to Profile link will return you to the Your Info page.

The library of images you just saw can be found in the modules\Forums\images\avatars\
gallery\ folder of your PHP-Nuke installation. If you want you can add in more images here, but
make sure your image is a GIF file, and that it isn't more than 80 pixels wide or 80 pixels high.

 85

Managing Users

Your Account Configuration
The

 86

Your Home link provides some options for configuring further: Your Account

From this panel, the number of news stories displayed on the homepage of the site can be
controlled. Remember, this setting only applies to you—and only when you are logged in.

Talking to the World with Public Messages
You can activate or deactivate public messages from Your Home too. Public messages are
displayed to every visitor to the site They appear near the top of the page on the homepage of the
site and remain there for 10 minutes, or until another public message appears:

Public messages can be entered from the front page of the module page: Your Account

Simply type in the text of your message and click the Send button, and your public message is
broadcast to all and sundry.

Chapter 5

You can imagine having a message that is displayed to every single user on the front page of your
site may be a bit too much. Fortunately, users cannot 'spam' the public message feature by
constantly submitting public messages—once they have submitted a message they must wait for
that message to expire before another is accepted from them.

Also, any user can turn off the public messages by setting to No the Activate Broadcast Public
Messages? option in the Your Account module. This turns off the display of public messages to
everyone. However, any user can turn them back on again by setting this option back to ! Yes

The administrator can override all of this from the menu. The Web Site Configuration Activate
Broadcast Messages option in the Users Options panel allows public messages to be turned off for
everyone, with nobody other than the administrator able to turn them back on. The image below
shows this panel in the Web Site Configuration menu:

This setting, unlike the one in Your Home above, will prevent public messages from being entered
and not just from being broadcasted. The Activate Broadcast Public Messages? option in Your
Home is also not made available to users, since public messages have been banned anyway.

In the panel of the Users Options Web Site Configuration menu, the Activate Headlines Reader?
option controls the display of the panel on the front page of the My Headlines Your Account
module. Setting this to No means that no user can see or select other site headlines to be displayed
in the module. The Your Account Let users change News number in Home option is simple; if set
to No a fixed number of stories will be displayed to all users.

It's My Block and I'll Cry if I Want to...
The final option in the Your Home area, Activate Personal Menu, allows the user to enter some
HTML that will be displayed as a block on the homepage of the site. This block can be used for
easy access to handy links. By checking the box and entering some text your block will be created.
We have inserted links to two articles here:

 87

Managing Users

When Save Changes is clicked, and you return to the homepage of your site, your block can be
seen (by default it is on the right-hand side of the page):

Remember that this block is seen only by you, the current user. In this way, every user can have a
personal block.

Private Messages
Visitors can send messages to each other through the Private Messages conduit. It's a kind of
site-specific email system, except that you can only send a message to one recipient at a time,
and you can't send attachments.

While going through the Your Info module, you would have seen some options for visitors to be
notified of any private messages sent to them; Notify on new Private Message by Email and Pop up
window on new Private Message. If the administrator has activated the Private_Messages module,
then the homepage of a user's Your Account displays a count of the private messages sent to them,
and allows them to send a new message:

Sending a private message from here can be confusing—there is no or Submit Send Message
button. To send a private message, you simply enter the nickname of the intended visitor into the

 box and press the EnterSend a Private Message to key to submit the page. Provided there is some
text in that box, PHP-Nuke will interpret that as a user nickname and move you to a screen for
entering your message.

If you have any private messages, the number of messages is displayed as a link in the You have ...
private messages(s) text. Clicking this link takes you to your private messages inbox:

 88

Chapter 5

From here you can manipulate private messages in much the same way as you work with emails in
any email client, although the Outbox and Sentbox deserve mention. Messages you have sent will
first appear in the Outbox. However, once the recipient reads the message, that message moves
into your Sentbox and you immediately know that your message has been read.

If the idea of private messages disturbs you as an administrator—after all, there is no option for a
user to not receive private messages—then your only option is to turn them off for everyone by
deactivating the module from the area. Private_Messages Module Administration

Note that the module is very different from the Private_Messages Messages functionality that we
saw at the end of Chapter 3, do not get them confused. The Private_Messages functionality is also
tied to the Forums module; that's why the screenshot above shows the wrong site name, as we
explained earlier for the module. Members Lists

User Journal
In PHP-Nuke, every registered user is able to keep a journal. This is supplied by the Journal
module and can also be accessed from within the Your Account module, which is why we are
discussing it here. Rather confusingly, clicking on the link in the Journal Modules menu brings
you to the page, but with the same navigation bar of the Journal Your Account module, so you feel
like you are in the module. Note that if the Your Account Journal is deactivated, it will not be
displayed in the navigation bar of the module. Your Account

In their journal a user can enter their thoughts and opinions, while other visitors can read these
thoughts, and add comments in response. The user journal is like a mini 'weblog' for each user.

 89

Managing Users

Clicking the link in the module brings up the main journal control panel: Journal Your Account

From here, you can view a list of other users' journals (Journal Directory), or the entries in your
own journal.

Your Journal Entries
Let's start with your journal. Clicking on the Your Journal link brings up three links:

When you have added some journal entries, a list of your journal entries is displayed under
this panel.

Adding a Journal Entry
Clicking the Add New Entry links brings you to a simple panel for adding your entry:

 90

Chapter 5

You set the Title for the entry, its main content goes in the Body field (with the usual restrictions
on the use of HTML), and a Graphic element. This element actually goes at the start of your
journal entry, to encapsulate, in some way, the mood of your entry.

You decide if the body of the entry can be read by other visitors with the Public drop-down box.
Note that if you set to Public No, other people will still be able to see the title of the entry, but will
not be able to read the entry itself.

Clicking the Add New Entry button records your entry in the journal.

Viewing your Journal Entries
You can view a list of your journal entries from the Your Journal page, and you will see your
twenty most recent journal entries. Clicking the List All Your Entries link will display all of your
entries, more or less ordered by the date of their entry.

The listing shows the date and time each journal entry was added along with its title, and some
buttons to edit or delete the post. Of course, only the owner of the journal entry is able to modify
or delete a journal entry, and not just any passing visitor. The Public column in the table indicates
if the content of the entry can be viewed by other visitors. Clicking on the Title of a journal entry
brings you to its content, and comments if there are any.

 91

Managing Users

From this view, you can edit or delete your entry, or add comments to the entry. The View More
link actually takes you back to the list of the journal entries by this user (that's you here), rather
than showing you more of the entry (there is no more). The User Profile link doesn't really do
much here, since you are clicking on a link to show information about yourself, and it simply
returns you to the Your Account homepage. When viewing the journal entries of others, this link
will take you to some information about that user, including their most recent posts. Also when
viewing the journal entries of another user, the Send a Message link can be used to send a private
message to that user.

As the owner of the journal entry, you are also able to delete any comments attached to your entry,
even if you are not the author of the comment. This is one way of keeping dissenting views about
your opinions in check!

Peeking into the Journals of Others
Clicking the Journal Directory link from the Journal homepage displays a list of other user's
journals. You will see the list of the twenty users who have most recently added an entry to their
journal, or you can click the List All Journals link to see every user who has a journal. Although
not a problem at this point, if you visit another PHP-Nuke site with many users and view all the
journals, this can be a very long list.

The rather gruesome sounding Search a Member link allows you to search for some text in other
posts. You can search for your text in the user's name, the title or body of the entry, or the
comments for each entry. A list of all journal entries matching your text is returned.

When viewing the list of users with journals, clicking either the name of the user or the icon in the
View Journal column brings up the list of that user's journals. Clicking the icon in the Member's
Profile column brings up some information about that user, which comes from the Your Account
module, and includes such things as a history of their recent stories and comments made, and their
online status.

As mentioned earlier, logged-in users are able to add comments to any public journal entry. The
form for entering comments is very simple, consisting of a single box and a button to submit the
comment. The comments for an entry are displayed in a line and it is not as rich in features as the

 92

Chapter 5

one for story comments as you will find out in the next chapter. Since you have to be a logged-in
user to post a comment to a journal entry, there is no anonymous posting and the username of the
poster is displayed along with the comment.

Rewarding the User
Users who interact with the site can be awarded points. With enough points accumulated, a user
becomes a member of a particular user group. You can restrict access to certain modules to
registered users only; but you can take this even further, and allow only members of a particular
user group access to the module. In this way, you can reward users who frequently participate in
your community with extra modules or content that only they can view.

Although user groups and subscribed users seem similar in the sense that you can restrict module
access exclusively for them, there are a number of key differences:

• Anyone can join a particular user group by participating in enough prize-winning
activities on the site. Users can only be subscribed through the action of the super user.

• Conversely, without going into PHP-Nuke's database, the super user cannot put a
particular user into a user group; this is something that the user has to earn.

Currently in PHP-Nuke we can restrict access only to an entire module; there is, in general, no
way to restrict individual pieces of content within a module to specific user groups.

Points on Offer
By default, the following activities in PHP-Nuke qualify for points:

• Views: Viewing any page on the site.
• News: Getting a story published (namely submitting a story that then actually

appears on the site, no points for just submitting a story!), posting a comment to a
story, rating a story, or sending a story to a friend.

• Polls: Voting in polls or sending them to a friend.
• Downloads: Downloading a file, rating a download, or posting a comment

about a download. There are also points available for similar activities in the Web
Links module.

• Forums: Making a new post or replying to an existing post.
 section. • Reviews: Posting a review in the Reviews

• Journal: Making a journal entry or commenting on someone else's entry.

There are also points for clicking on banners, broadcasting a public message, or recommending the
site to a friend.

The number of points scored for each activity can be set up from the User Group Administration
area. You are able to assign a different number of points to any of the activities, including, if you
want to be sneaky, a negative number of points! By default, all the activities have 0 points.

 93

Managing Users

The area is found by clicking on the icon in the User Group Administration User Groups
: Administration Menu

This area shows you the currently created user groups, lets you to create a new user group, and lets
you edit the number of points awarded for each activity.

Time For Action—Awarding Points for Viewing Pages
We will create a new user group, called PageViewers, to reward people for looking at the pages on
our site. We will award one point for each page viewed, and membership to the group requires at
least 20 points.

1. Make sure you are logged in as the super user If you are not in the User Group
Administration area, click the

 94

User Groups icon in the Administration Menu.
2. In the panel, enter the details of our group: Add New Users Group

3. Click the Create This Group button.
4. When the page reloads, you can see your newly created PageViewers group in the

list of user groups. The or Edit Delete links enable you to modify the details of the
group or remove it completely should you require.

Chapter 5

5. Scroll down the screen to the Points System panel, and continue to do so until you
see Page View in the left-hand column of the table. Enter the number 1 into the
third column:

6. Click the Update button at the end of that row in the table. If you click the Update
button of another row, your changes will not be saved!

7. Now view some pages; just click on a couple of the links in the Modules block, and
then click the Your Account link. The points you have accumulated by viewing the
pages can be seen in the middle of the page:

What Just Happened?
We just created a user group. The user group was called PageViewers, and we set a value of
twenty points for the user to qualify as a member.

The only activity that we assigned points to was Page View. Every time the user visits a page on
the PHP-Nuke site they will score one point; we only assigned one point to each page view. The
number of points the user has accumulated can be seen in the Your Account module page, but any
group to which they currently belong isn't displayed.

Restricting Module Access to User Groups
After you have created at least one user group, the option to restrict module access will appear in
the Module Administration area. To restrict module access to a specific user group (and it can only
be at most one user group) the module has to be first restricted to registered visitors only.

 95

Managing Users

Time For Action—Restricting the Statistics Module to Frequent Page
Viewers

1. Click on the icon in the

 96

Modules Modules Administration area.

 module in the list of modules, and click on the icon in its 2. Find the Statistics Edit
 column. Functions

3. Select Registered Users Only from the drop-down box. Who can View This?
 from the 4. Select PageViewers Users Group drop-down box:

5. Click the Save Changes button.
6. When the page reloads, make sure the Statistics module is active by clicking the

Activate link in the column if necessary. Functions

What Just Happened?
We restricted the Statistics module to members of the PageViewers group only. We had to
select Registered Users Only for who can view the module; after all, the members of the

 group are a subset of all the registered visitors. Finally, we made certain the PageViewers
Statistics module was activated.

However, when you click the Statistics module, it is possible that you will still be able to see it,
although you do have not enough points—the module should only be viewable to people with at
least 20 points. This problem arises because of a bug in the file modules.php. We first need to
correct this bug in the following manner:

1. Open the file modules.php in a text editor (WordPad will do fine.)

2. Find the following line (reformatted here for readability):
}else if ($view == 1 AND (is_user($user) OR is_group($user, $name))
OR is_admin($admin)) {

Chapter 5

And replace with the following:
}else if ($view == 1 AND (is_user($user) AND is_group($user, $name))
OR is_admin($admin)) {

Note that all we have done here is replace the first OR with an AND.

3. Save the file.

Now you will not be permitted to view the Statistics module. You will first have to visit some
other pages to rack up your page view score (up to more than 20), and only then will you be
allowed to view the module.

Managing Other Administrators
The super user account that you have been working with has complete control over the entire site.
As your site grows, it is possible that you may wish to get other people to help you out with some
administration of the site, such as moderating news stories, or monitoring downloads, but you
don't want them to have full super user power.

PHP-Nuke provides a secondary type of administrator account, with privileges for certain
modules. These accounts are the solution to the above problem. These other administrator
accounts are also known as authors in various parts of PHP-Nuke. Users of these accounts also
log in at the admin.php page as the super user does. The author accounts are not ordinary user
accounts that have been 'promoted'; they are a 'genuine' administration account.

Authors versus the Super User
Specialist administrators (authors) can be created with power over any of the default modules
(, , Content Downloads Encyclopedia, , , , FAQ News Reviews Surveys, , , and Topics Web Links Your
Account modules), and these privileges can extend to more than one module. In fact, any module
(default or third-party) that appears in the Modules Administration menu can have privileges set for
it. Whether that module makes use of the privileges or not is another matter.

The difference between author accounts (administrators) and the super user account is that the
authors only have access to module administration. They do not have access to core 'system'
functionality as we saw in Chapter 4. For example, you cannot create an author account that has
privileges for the module, and also privileges to configure News Blocks. The only way to achieve
this is to give that account full super user power; it is possible to assign the super user power to an
author account.

We saw that the Administration Area was divided into two menus of icons, the Administration
Menu and the Modules Administration Menu. An author account will only have the Modules
Administration Menu displayed to the author in the administration area. We will see this in a
moment after we create an example author account.

Consequently, without the core system abilities, an author account cannot create another author
account. This can only be done through an account with super user power.

 97

Managing Users

Creating an Author
To create a new author, click the

 98

Edit Admins icon in the : Administration Menu

This brings up the Author's Administration page, which includes a panel for editing the details of an
existing administrator account, including the super user account, or deleting a previously created
administrator account:

The super user account is called the here. God account

Underneath this panel you will see a form to account: Add a New Administrator

You need to provide a Name for the account—this is different from the Nickname of the account,
which is used to log the administrator in. Also required is an email address for this administrator,
and of course a password.

The Permissions field contains a list of modules with a checkbox for each. By checking these
boxes, you are able to endow this administrator with privileges for that module. By clicking the

 box, the account will have the same privileges as the super user account. However, Super User

Chapter 5

this account can be deleted, unlike the original 'God' super user account that we created when we
first set up the site.

Once the permissions are set up, and the account details entered, click Add Author to create this
administrator account. This account is now valid from the administrator login (admin.php). Note that
there is no additional 'normal' user account option available as was the case with the 'God' account.

If you use this form to change your super user account password, you will find yourself
logged out and you will have to log in again with the new password.

Once an administrator account is set up like this, when the administrator logs in they will be met
with a limited set of options in the administrator menu. The following screenshot shows an
administrator account with permissions for the , News Surveys / Polls, Topics, and modules: Users

If this administrator attempts to bypass this menu and enter the URL of some of the other
administrator pages directly, PHP-Nuke will still prevent access.

Summary
In this chapter we have seen how to add users to your site and how users are able to register
themselves on your site, and have explored the personal area for each user provided by the Your
Account module. Within the module each user is able to create their own Your Account Journal,
which can be used to record their opinions, and can be viewed and commented on by other visitors
to the site.

We also saw aspects of how to manage the users of your site, such as creating a subscription for a
particular user. Subscriptions are typically used to restrict module access only to fee-paying
customers. We also looked at user groups, and saw how PHP-Nuke can award points to users
when they participate in site activities. When a user collects enough points, they can become a
member of a user group, and possibly earn themselves access to restricted modules.

Finally, we looked at creating other administrator accounts that are less powerful than the super
user account. These administrators, or authors as they are known in PHP-Nuke, can have
permissions for specific modules, and allow you as the site administrator to put the management
of these modules into the hands of others.

 99

6
Story Management with

PHP-Nuke

So far our PHP-Nuke site is pretty empty. Sure, we've got to grips with the administration area,
moved blocks around the page, configured modules and site preferences, even added a new
message to the homepage. However, the middle bit of our site still seems pretty empty. It feels like
there is something missing... that's right, the content.

PHP-Nuke does not summon content from the darkest regions of the universe to appear on your
site by magic (I'm sorry to disappoint you there). In this chapter, we will begin the journey of
managing content with PHP-Nuke, or, in other words, getting stuff up on the site.

Here we're going to look at the fundamental type of PHP-Nuke content, the story. Stories in
PHP-Nuke are the most versatile type of content, and have probably the richest set of features of
all PHP-Nuke's content types. In fact, there are so many features it can make you dizzy. That is
what this chapter is for. No—not making you dizzy, but helping you avoid the dizziness by
guiding you through all the features of PHP-Nuke story management.

In this chapter, we will cover the following, paying attention to both the administrator and visitor
points of view when required:

• An overview of stories and the story publication process
• Organizing stories into topics and categories
• Adding and editing stories
• Understanding comment moderation
• Managing stories
• The different modules that let you access stories
• Creating polls and surveys
• Syndicating your news with the backend.php file

Story Management with PHP-Nuke

 102

The Story Story
In PHP-Nuke, a story is a general-purpose, piece of content. Maybe the story is an announcement,
a press release or news item, or a piece of commentary or opinion, or maybe a tutorial article. The
possibilities are almost endless!

With PHP-Nuke driving your site, the stories that appear on your site are not restricted to ones
written by you. Users of the site—either registered or unregistered visitors, or other
administrators—can write and submit stories to your site. The process of a story appearing on the
site is known as publishing the story.

Of course this does not mean that your site is a free-for-all—stories submitted by users and others
do not necessarily get published automatically—they are submitted for moderation by an
administrator, and once approved, appear on your site. In this way, the content on your site grows
itself through your community, but always (if you want) under your control. PHP-Nuke keeps
track of such things as the author of the story, the date when the story first appeared on the site,
and the number of times the story has been read, and also allows users to vote on the quality of the
story. An impressive feature of PHP-Nuke stories is that users can comment on a posted story to
build an open, topical discussion within your site.

You will see community-contributed stories when you visit any typical PHP-Nuke site; for
example, on phpnuke.org itself, PHP-Nuke users and developers submit stories describing their
latest PHP-Nuke add-on, or drawing attention to the latest theme that they've designed.

The 'story' engine in PHP-Nuke is provided by the News module. The total story functionality is
actually spread across a number of modules, including Submit News, Stories Archive, Search,
Topics, Your Account, and Surveys. We will explore all of these in this chapter.

The Story Publication Process
The path taken by a story from writing to publication depends upon who submits the story. The
super user or an administrator with permissions for the News module can post a story through the
administration area of the site. In this case, the publication process is simple, and the story appears
on the site immediately, or can be scheduled for publication on a particular date.

Since the super user and any other administrators with the appropriate privileges are trusted (they
have full power over stories, so they had better be trustworthy), there is no need to moderate or
approve the text in the story, and the story is ready to go.

Registered and unregistered visitors can post stories through the Submit News module. When a
story is submitted through this route, the publication process is lengthier.

1. The visitor enters the story through a form in the Submit News module.
2. The story administrator is notified that a new story has been submitted.
3. The story administrator checks over the story, editing, rejecting (deleting), or

approving it. The administrator is also able to add notes to the story.
4. If the story is rejected, that is the end of the process, and the story is not published.
5. If the story is approved, it is either published to the site immediately, or can be

scheduled for publication on a particular date.

Chapter 6

Once the story is published to the site, the administrator can edit it further if needed. For a visitor,
once they submit their story to the site they have no more control over the story.

Finding and Interacting with Stories
Stories on the site can be accessed in a number of ways, from a number of different places on the
site. A limited number of stories can appear on the homepage, with older stories gradually moving
down the list as newer stories are posted.

Stories can be retrieved by date from the Stories Archive module. The text in the story is also
searchable from the Search module, so that specific stories can be located easily. Stories are
organized into topics, and by browsing the list of topics from the Topics module stories can be
tracked down.

Stories are not the end of content, they are actually the beginning. Comments can be posted about
stories, and comments can be posted to these comments creating a discussion about the story. The
quality of submitted comments can be assessed by users of the site and rated accordingly.

The quality or value of the story itself can be voted on by users, links to related stories can be
created, and you can view a special printer-friendly version of the story for printing, or even send
the story to a friend.

So many features... did I mention that you can also attach a poll to the story so that readers can
participate in a survey related to the content of the story? So many features...

Organizing Stories
When you have even a reasonable number of stories on your PHP-Nuke site (and you will have—
that's why you're reading this book!), you will be in need of some organization for this content.

PHP-Nuke provides two ways of organizing story content:

• Topics: what it's about
• Categories: what type of story it is

Topics
Topics define what a story is about. By organizing your stories into topics, stories about similar
subjects will be grouped together for easy browsing and reading, and also to make it easier for
people to contribute their stories to the right place.

When you're reading through a number of dinosaur-related stories, the sudden appearance of a
story about cars would be rather off-putting (unless it was actually about fossil fuels or dinosaurs
eating/driving cars).

PHP-Nuke does indeed offer organization of stories into topics, and before we can think of adding
stories, we need to set up some topics for our stories.

A topic has an associated image that is displayed on the site whenever you view a story that belongs
to that topic, or whenever you are browsing the list of topics. The image overleaf shows a 'teaser' of a
story displayed on our site; the topic image is shown to the right-hand side of the story:

 103

Story Management with PHP-Nuke

The Read More… link will take the visitor to the remainder of the story.

Note that this arrangement of the story text and the topic image appearing to the right of
the story is just the default layout due to the basic theme. When we come to look at
creating our own themes, we will see how the topic image can be made to appear
elsewhere relative to the story text.

By default, there is a single topic called PHP-Nuke. This has its own image, which should only be
used for the PHP-Nuke topic.

Categories
As topics define what a story is about, categories define the 'type' of story. A category could be
something like a weblog entry, a security announcement, or a press release.

There is one category defined by default, Article. This category has the following properties:

• You cannot change this category's name or delete it.
• Any story of type Article automatically appears on the homepage.
• Users can only submit stories of type Article.

Compared to topics, categories do not have particularly extensive support in PHP-Nuke.

Planning the Dinosaur Portal Topics and Categories
Before we move on to looking at managing topics and categories, we'll quickly discuss the kind of
topics and categories that we would like for organizing our stories on the Dinosaur Portal. These
are not set in stone, and after we create them, we can edit or delete them, or even add new ones.

First of all, there will probably be stories about the Dinosaur Portal itself that will contain general
information about the site, such as new features that have been added to it, or warnings about
planned site downtime (or apologies about unplanned site downtime!).

 104

Chapter 6

We will also have stories about dinosaurs, fossils, and dinosaur hunting; these can be the other
topics on the site. What types of story will we have? In addition to the standard article, we can
have new theories, technologies, or discoveries, maybe even tutorials (for example, how to
identify fossils, or how to avoid being eaten when dinosaur hunting). There will also be stories
about Project Chimera, but we can't reveal what that is just yet.

Thus a story about a controversial new dinosaur extinction theory could be given the 'dinosaur'
topic, and the 'new theory' category.

This isn't an exhaustive list, but it is enough to give an idea of the topic-category split.

Topic Management
Before we do anything else, we'll create our topics. For each topic, we'll add the images first. After
we create our topics, we'll look at how to modify them, and the consequences of deleting topics.

Before we get started creating our topics, we will add the topic images. To do this, you will need
to copy all the files from the topics folder in the Ch06 folder of the code download to the
images/topics/ folder in the root of your PHP-Nuke installation.

You should have these files: thedinosaurportal.gif, dinosaurs.gif, fossils.gif, and
dinosaurhunting.gif, in addition to files called index.html, phpnuke.gif, and AllTopics.gif,
which were already present in the folder.

The images/topics folder is the place where PHP-Nuke will look for the topic icons. When
adding image files to the images/topics folder, ensure that only alphanumeric characters or the
underscore are used in your filename, or else PHP-Nuke will fail to pick up the filename when
displaying the list of topic images.

Note also that the total length of the filename and its extension must not exceed twenty
characters, or PHP-Nuke will truncate the name when it stores a record of the filename.
In this case, your topic image will not be displayed, because PHP-Nuke has not stored the
correct name of the file. Also, if your image has an extension of more than three
characters (such as jpeg) then it will be missed by PHP-Nuke.

The AllTopics.gif file in the images/topics folder does not correspond to a single topic, but is the
image used when displaying the lists of topics. This file can be replaced by an image of your own.

Time For Action—Creating New Topics
1. Log in to your site as the administrator.
2. From the Modules Administration menu, click on the Topics icon:

 105

Story Management with PHP-Nuke

3. You will come to the Topics Manager area. Scroll down to the Add a New Topic panel.
4. The first topic we create will be Dinosaur Hunting. Enter the text dinosaurhunting in

the Topic Name field, enter Dinosaur Hunting into the Topic Text field, and select the
file dinosaurhunting.gif from the Topic Image drop-down box:

5. Click the Add Topic button.
6. When the screen refreshes, the newly created topic will be displayed in the Current

Active Topics panel:

This process can be repeated for our other topics:

Topic Text Topic Name Topic Image

Fossils fossils fossils.gif

Dinosaurs dinosaurs dinosaurs.gif

What Just Happened?
The Topics Manager, reached through the Topics icon in the administration menu, is the area from
where we can add, edit, or delete topics.

 106

Chapter 6

The Topics Manager has two panels, one showing the Current Active Topics, and the other being
the Add a New Topic panel.

A topic requires three pieces of data:

• A topic name, which is a short piece of text with no spaces. This is mostly used
internally by PHP-Nuke. The topic name is usually the same as the topic text, but in
lower case and with no spaces.

• The topic text, which is the title of the topic.
• The topic image. The name of the topic image is selected from the list of files in

the images/topics folder. You can use the same image for more than one topic if
you choose.

Once you have saved a topic, clicking on its image in the Current Active Topics panel takes you to
the Edit Topic area, from where you can edit or delete your topic.

You may have noted that we haven't created the Dinosaur Portal topic. We'll do that now by editing
the existing default topic, since we would like this to be the default topic for the portal anyway.

Time For Action—Editing Topics
We will edit the default topic to get the Dinosaur Portal topic:

1. In the Topic Manager area, click on the PHP-Nuke topic icon in the list of Current
Active Topics.

2. When the page loads, enter the details as shown below:

 107

Story Management with PHP-Nuke

3. Click the Save Changes button to complete your editing.
4. When the page reloads, you will need to click the Topics icon again to return to the

Topic Manager area, since you will be returned to the page for editing the topic.

What Just Happened?
We just edited the properties of an already existing topic. To get at a topic's properties, you click
on its icon in the list of Current Active Topics in the Topic Manager area. The possible topic icons
are again picked from the images/topics folder and displayed in a drop-down list for you to
choose. Once you are done making changes to the topic, clicking the Save Changes button
updates the topic.

Note that there is no cancel button, and if you decide to make no changes here, you can click the
Topics icon in the Modules Administration menu to return to the Topic Manager area, or use the
back button on your browser.

Deleting a Topic
It is possible to delete topics by clicking the Delete link next to the Save Changes button.
However, deleting a topic will delete all the stories that belong to that topic. Fortunately, there is a
confirmation screen before the topic is deleted:

Since the Delete link is positioned so close to Save Changes, it's probably good that there is this
screen. There is no turning back after you click Yes on this screen. Your topic is gone, and so are
all the stories, and any comments attached to those stories. Note that the image associated with the
topic is not deleted, and it still remains on the server, and can be used for another topic if wished.

Adding Stories
With the topic list set up as desired, we can now begin to add stories to our site. Our first story will
be about the launch of our new site.

 108

Chapter 6

Time For Action—Adding a New Story
1. From the administration menu, click the News icon (in versions of PHP-Nuke before

7.5, this icon is titled Add Story):

2. You are now in the Article/Stories Administration area. At the top of the Add New
Article panel, enter the following into the Title field:
the Dinosaur Portal is Alive!

3. Select the Dinosaur Portal from the Topics drop-down box.
4. Don't select any of the Associated Topics.
5. Leave Article selected in the Categories drop-down box.
6. Skip over the Publish in Home? and Activate Comments for this Story? fields, they

are already set to our required values.
7. Enter the following into the Story Text field.

Since the beginning of time, man and dinosaur have wrestled for supremacy
of the world we all inhabit. Finally, this site, the Dinosaur Portal,
chronicles and informs of this struggle.

8. Enter the following into the Extended Text field:
At the Dinosaur Portal, we believe that just because you haven't seen a
dinosaur, doesn't mean that they've all died out.

As such, this site has been specially created to address the needs of
those who think likewise, and provide specific content targetted for this
enthusiastic and unusual audience.

9. Leave the Do you want to program this story? field set to No.
10. Click the Ok! button next to the Preview Story drop-down box.
11. When the page reloads, a preview of the story is displayed:

 109

Story Management with PHP-Nuke

12. Scroll down to the bottom of the story details, and select Post Story from the
drop-down box next to the Ok! button:

13. Click the Ok! button, and your story is posted.

What Just Happened?
We just posted a story. First we went to the Add New Article panel in the Article/Story Administration
area. Here, we went via the News icon in the Modules Administration menu. There is an alternative
route; the NEW Story link in the Administration block takes you to this place as well:

We began by entering the story's title into the Title field, followed by selecting its topic from the
Topic drop-down box. It is possible to forget to assign a topic to the story; PHP-Nuke will not
warn you about this, although when you preview the story before posting, the absence of the topic
image should be a clue that something has gone wrong. You can assign a new topic to a story
when editing the story after it has been created.

You are able to choose a number of related topics for this story, and links to these topics are
displayed under the story, allowing people to browse these other topics for similar stories.

Next it's time to select a category from the Category drop-down box. At the moment we only have
one category, the default Article category. We'll look at managing categories in a moment.

The next field we encountered was Publish in Home?. Any story in the Article category is
published to the homepage (in other words, displayed on the homepage of the site) regardless of
this value. Stories from any other category can be set to appear on the homepage by selecting this
option, although Yes is the default value.

The next field is Activate Comments for this Story? We'll spend a lot of time talking about
comments in a moment. We left the value at its default, which is Yes.

We did a lot of typing next; we entered the Story Text and then the Extended Text. The Story Text
is a summary or introduction to the story, a teaser if you like, and the main part of the story goes
into the Extended Text. The Story Text is to introduce the story to the reader, and should only
really contain enough to get the reader interested in wanting to read the full story.

 110

Chapter 6

When visitors begin submitting stories to your site, and you, as the administrator, begin
the process of approving these stories for publication on your site, you may find yourself
having to split up the submission of the visitor into a more balanced Story Text and
Extended Story division.

Back to our current situation… the next thing we did was to select No for Do you want to program
this story? By doing this, the story appears on the site immediately after we have posted it. By
selecting Yes, and then entering a date through the various date options, you can schedule the
story to be published at the time you choose:

Selecting a date for the publication of the story without selecting Yes for the Do you want to
program this story? will not set a date for the story, and the story will be published immediately.
Once a story is programmed, its schedule is set and there is no feature to alter the schedule.

With all the story details in place, all that remains is to preview the story (selecting Preview Story
from the drop-down box next to Ok!) before posting it. If it looks OK, we can post the story by
selecting Post Story from the drop-down box. If we felt bold, we could select Post Story without
previewing the story first, and begin the publishing process.

Underneath the Add New Article panel is a panel for attaching a poll to the story. We will discuss
polls and surveys later in the chapter.

Category Management
We saw the Category drop-down box in the Add New Article panel; it has three icons next to it for
managing categories:

If you click any of these icons to go off and do a bit of category management, you will
lose any text you've entered into the story at that point, so do any category management
before you get too far into your story!

These icons are the only means of managing categories. If the category that you want for the story
does not exist when you create the story, you can always create the category after creating the
story and then change the story's details.

Adding a new category simply requires you to define a name for it. We'll add a few new categories
to the Dinosaur Portal; New Theory, Technology, and Tutorial.

 111

Story Management with PHP-Nuke

Note that after adding a category, there is no link to go back to the Add New Article panel, and if
you use the Back button to go back there, you will have to refresh the browser for the new
category to be displayed in the list of categories.

Editing a category allows you to change the name of the category. Note that another list of
categories is displayed, and you have to select the category from that list; you will not be editing
the category selected in the Category drop-down box of the Add New Article panel.

Deleting a category is more interesting. Clicking the Delete link next to the Category drop-down
box brings up another list of the categories, from which we choose the one we want to delete and
click a Delete button. If there are any stories in the category, we are presented with a warning
screen. If there are no stories in the category, the category is simply deleted. Deleting a category
will delete all the stories in that category, and so PHP-Nuke gives us a lifeline:

If you click No! Move My Stories, you are able to select a category into which all the stories of
your about-to-be deleted category will move. The stories are moved, and the category is deleted—
the option No is rather misleading here, since the end result is still the removal of a category.

If you have changed your mind and do not wish to delete the category, click the Back button in
your browser or click on one of the other icons in the Administration Menu to continue with your
administration, rather than selecting one of the two Delete Category options.

Deleting a category contrasts with deleting a topic; there we saw that deleting a topic removes all
the stories within that topic and there was no opportunity to move them as a group.

The Visitor View of a Story
Let's have a look at how the story will look to the visitor. Click the Home link in the Modules
block to return to the homepage of the site. There, in the middle of the page, you will see the story
you just entered.

 112

Chapter 6

This view shows the introduction to the story, the story text, along with some further details:

• Who posted the story to the site
• When was the story posted
• The number of times the story has been read
• The number of comments (if any) made on the story
• The remaining amount of text in the story (in bytes, which is more or less characters)
• A link to view the remainder of the story

The creator of the story is usually different from the person who posts (approves) the story to the
site. The person who publishes the story is almost always one of the site administrators. This
current view of the story can give a misleading impression, and have you believe that this story is
written by admin.

Click on the Read More... link, and we will see the story's Extended Text.

Note the extended text of the story is displayed along with the 'story text' of the story. To the right
of the story text, the visitor will see a few blocks. If the visitor is not currently logged in, they will
see four blocks. Otherwise, a visitor will see three blocks to the right of the extended story text.
The extra block for the visitor who isn't logged in is a Login block, inviting the visitor to login or
create an account if they don't have one. Apart from that, the other three blocks are the same if you
are logged in or not.

 113

Story Management with PHP-Nuke

These blocks guide the reader towards related content, allow the reader to rate the story, and allow
the reader to view the story in a form more suitable for printing or pass it on to a friend.

Related Links, Scoring, and Friends
The Related Links block shows a link to other stories from the same topic as the current story,
other stories from the author of the current story (in this case the author is admin), and the most
viewed story from the same topic:

There isn't much competition for the most viewed story at this point!

Underneath the Related Links block is the Article Rating block:

This block allows visitor to score or rate the story, from one star (very bad) to five stars (very
good). The result of the rating so far is displayed at the top of the panel—the average rating and
the total number of votes cast. The score of the article was shown, if you recall, on the summary
view of the story on the homepage.

Let's exercise our rights, and select five stars, and then click Cast my Vote! We will receive a
message thanking us for voting:

 114

Chapter 6

When the page reloads, the article tally has updated:

Let's abuse our right, and continue to vote. This time, select one star (boo), and click Cast my
Vote! Fortunately, PHP-Nuke has seen through our villainy:

PHP-Nuke is able to detect that you have already voted from a cookie it stores on your machine.
In fact, PHP-Nuke won't let somebody else from the same IP address vote in the poll again.

The block underneath the Article Rating block is the Options block:

For ordinary visitors, this block shows a link to a printer-friendly version of the page, and an
opportunity to email details of the page to a friend.

When logged in as the administrator, extra icons are displayed, allowing you to modify the story
being viewed. We'll look at this activity later in the chapter.

 115

Story Management with PHP-Nuke

The printer-friendly page displays a 'clean' version of only the story and its content:

The image stamped at the top of the printer-friendly page is the image specified as the Site Logo in
the site preferences. If you are particularly observant, you may have noticed that on the Site
Preferences page, the Site Logo had the following text next to its field:

must be in /images/ directory. Valid only for AvantGo module

That statement turns out to be not entirely true; the image displayed at the top of the printer-friendly
page (which is part of the News module) is also determined by the Site Logo field.

The other link in the Options block allows the visitor to send a link to the story to someone via
email. Here is the email received by my friend Count Dracula about our first story:

Hello Count Dracula:

Your Friend Testuser considered the following article interesting and wanted
to send it to you.

the Dinosaur Portal is Alive!
(Date: 2005-08-09 11:22:13)
Topic: the Dinosaur Portal

URL: http://thedinosaurportal.com/modules.php?name=News&file=article&sid=1

You can read interesting articles at theDinosaurPortal
http://thedinosaurportal.com

By clicking on the URL after URL:, my friend, Count Dracula, will be able to read the story in full.
And then probably email me asking why I thought it was interesting to him.

You will note that the full domain name of your site is included in the email; this is taken from the
Site URL property of the Web Site Configuration menu. If you haven't set this properly, then the
link will point to the wrong site! (It will be phpnuke.org if you haven't set the Site URL property.)

The subject of the email consists of the text Interesting Article at followed by your site name, which is
the Site Name property of the Web Site Configuration menu. You will want to make sure you have
set that property as well. For all of this, you must also have your site's mail server working.

 116

Chapter 6

Everyone Has an Opinion... Comments
Comments can be posted on stories, allowing readers to express their own carefully formulated
opinion of the story content. Comments can be posted directly to the story (top-level comments),
or they can be posted as replies to existing comments. In this way, 'threads' of discussion can be
created related to the story, or at least, related to the comment they are replying to. Comments are
'owned by the poster'. This means that no one can edit the comments, not even the super user.

Time For Action—Posting a Comment
1. Log out of the administrator account if you are still logged in.
2. We're going to work as the testuser user, so log in as the testuser with password

testuser.
3. Click the Home link in the Modules block to return to the homepage of the site.
4. The story that we entered in the Adding Articles section will be displayed in the

middle of the homepage. Click its comments link.
5. Underneath the extended story text you will see the comments bar. Click the Post

Comment button:

6. When the page reloads, the extended story text is displayed again, and underneath is
the panel for entering your comment:

7. Let's enter some text for the comment into the Comment field:
I am really excited by this prospect. It is the answer to so many of
my needs.

 117

Story Management with PHP-Nuke

8. Click the Preview button.
9. When the page reloads, you can indeed see a preview of your comment, with the

comment editing panel underneath:

10. We are satisfied with the look of our comment, so let's click the Ok! button at the
bottom of the comment editing panel to submit our comment.

11. When the page reloads, the story is displayed again, our newly posted comment is
shown underneath, and the comment count in the comments bar has been updated:

What Just Happened?
We just posted a comment to a story. The posting process itself was straightforward. To get a view
of the comments, we chose to click the comments? link, although the Read More... link on the
story text takes us to the same page.

Once we clicked Post Comment, it was simply a case of entering the text into the Comment field,
which forms the body of the content. A subject was already provided for us in the Subject field
(Re: followed by the title of the story), although we could have edited this field if we wanted. We
chose to preview the story before posting (which is always wise).

Clicking the Ok! button on the comment edit panel posted the story to the site, and we were
presented with the story along with the comment we just posted.

 118

Chapter 6

The comment panel is made up of two boxes (as seen in the last screenshot):

• The top box is the comments bar, and is used by the user to work with comments.
Through the comments bar, the user can customize their view of the comments,
search the current discussion, or post a comment (if this is allowed).

• The lower box is a posted comment. It shows the title of the comment, the comment's
score, the name of the user who posted the comment and at what time they posted it,
the text of the comment, a link to reply to the comment, and some further links about
the user.

Time For Action—Replying to a Comment
It may seem rather sad replying to our own comments, but that is what we are about to do. You
can pretend you are a different user if you like, or you could even create a new user account and
log in as that user to complete the masquerade.

Following on directly from the last task, you should have a view of the comment you just posted
(if not, click the comments (1) link of our story to return to the comments view). Click the Reply
to This link.

You will be taken to a page with the comment you are replying to, followed by the comment edit
panel for you to enter your response. Let's enter the text I second that! into the Comment field and
click the Ok! button.

When the page reloads, our new reply is shown:

What Just Happened?
We just replied to a comment. Like posting comments, the replying process is straightforward. The
subject of the comment is provided; this time it is the same subject as the comment you are replying
to, but you are able to edit from the comment editing screen as you enter the text of your comment.

 119

Story Management with PHP-Nuke

Seeing Your Comments
You can view a list of your ten most recent comments from the Your Account module. Click the
Your Account module link and scroll down the screen to see them:

Clicking on one of these links will take you to the story with that comment, and will even have
automatically moved you to the part of the page where the comment is displayed, so you do not
have to scroll through all the comments to find it. With these links, the comment display is
different from the view we saw earlier. All the comments are displayed in a long list with the full
text of the comment visible. This is different from the 'thread' view we saw earlier, where only the
comment subject was shown for replies. We'll see more about comment views later.

Controlling Comment Posting
However, the possibility of posting comments to stories does not mean anarchy on your site. There
are a number of actions you can take as the administrator to control the posting of comments.

• You can allow/disallow comments to be posted for an individual story.
• You can allow only registered users to post comments.
• You can remove comments.
• The comments of certain users can be checked.
• The comments can be 'moderated' by other visitors.

Allowing Comments
First of all, you have to allow comments to be posted for the story in question. This is controlled
by the Activate Comments for this Story? option when the story is created or edited:

By default, this option is set to Yes, so that comments can be posted for the story. If you wished to
disable comment posting for a particular story, you would set this option to No.

Disallowing Comments
To turn off comment posting for every story, there is an option in the Web Site Configuration menu
of the site preferences. The Miscelaneous Options panel in the Web Site Configuration menu has
the following option:

 120

Chapter 6

The default value of this option is Yes, so comments are activated for articles (the first type of
story). Any story that has the Activate Comments for this Story? option set to No will override this
value and not allow the posting of comments.

If the Activate Comments in Articles? option is set to No, then comments cannot be posted for any
article, regardless of the value of the Activate Comments for this Story? option set for that story.

In general, disabling comment posting does not disable the display of comments. If comments
have already been posted and you disable posting, then comments already posted will still be
displayed. The options we have just discussed handle comment posting, not display.

Restricting Comment Posting to Registered Visitors
The next safety feature is to stop anyone other than registered visitors from posting comments on a
story. This feature is controlled in the General Site Info panel (top bit) of the Web Site
Configuration menu:

Recall that an Anonymous user is an unregistered user. Setting this option to No means that only
registered visitors can post comments. Anonymous users will still be able to read the comments;
they simply will not be able to participate in the discussion unless they register on the site. By
default, this option is set to No.

Thus the default comment posting settings for a particular story are:

• Comments are enabled.
• Only registered visitors can post comments.

Therefore, without doing any extra configuration, any story posted to our site can be commented
on only by registered visitors.

By default, an anonymous comment post is said to have been posted by Anonymous. You can
change this from the Comments Option panel further down the Web Site Configuration menu:

Here you can restrict the size of a posted comment with the Comment Limit in Bytes (this is a
count of all the characters used in the comment, including any HTML tags). You can also change
the name of the anonymous poster from the Anonymous Default Name field. As ever, when
working with site preferences remember to save your changes with the Save Changes button at
the bottom of the Web Site Configuration menu.

 121

Story Management with PHP-Nuke

Administrator Removal of Comments
When you are logged in as the administrator, a Delete link appears on each comment:

By clicking this link and confirming, you can remove the comment. Since the comment discussion
is 'threaded', there could possibly be replies to that comment; in this case, all the replies to that
comment will also be deleted. Also, all the replies to those replies will be deleted as well, and so
on. This is the only way to remove comments from a particular story.

You may want to delete a comment if it is particularly offensive, or is just basically nonsense. This
brings us onto a rather delicate topic...

Filth Filter
Some people have a rather 'colorful' vocabulary, and may feel the need to emphasize their point
with bad language. I don't mean poor grammar, I mean BAD language. To prevent your site being
filled with rude words from visitor-submitted content, PHP-Nuke has a built-in filter for
obscenities, words that I'd rather not put on this page.

This filter is controlled from the panel called Censure Options of the Web Site Configuration menu
(it's right at the bottom, you will have to scroll all the way down):

PHP-Nuke has a list of words (stored in the file config.php, if you really must look) that it will
scan text for, depending on the value specified in the Censor Mode option. These options allow
you to decide how the bad words should be matched.

 122

Chapter 6

You can choose one of the following options (let's pretend love is a bad word for the sake of
argument here):

• No filtering: This option allows any kind of language in the comments. This turns the
'filth filter' off.

• Exact match: This option only matches exact occurrences of the bad words in your
text. It will match the word love in the text this is love I think, but will not match in I
think it is lovely.

• Match word at the beginning: This option will match occurrences of the bad words
when they are the start of words. It will match the word love in the text I think it is
lovely, but not in I am wearing a glove.

• Match anywhere in the text: This option will match bad words wherever they appear;
at the start of words, or the middle of words, it will hunt them down and match them.
With this setting, the word love will be matched in all the previous examples. This
setting is the default value.

Once a bad word is found, it is replaced with the text specified in the Replace Censored Words
with field.

Note that filtering happens before the text is stored in the database, but after any previewing. Thus
if a bad word is found in the text with filtering turned on, that word is immediately replaced by the
censor text, and the bad word is gone forever. If you change the settings of the filth filter later,
then the bad word will not reappear; only the censored text remains. And another thing—turning
on the filth filter will not 'retrospectively' filter text. If you have bad words in comments, they will
not be censored automatically. You have been warned!

The filter does not apply to administrator-submitted stories. As the administrator, you are in a very
trusted position, and you should always be careful what you write!

Karma and Comment Moderation
In an earlier screenshot of the comments, you may have caught sight of the poster's karma
displayed next to their IP address:

The karma of the comment poster has consequences for the fate of their comments. Users who are
marked with bad karma cannot post comments directly to the site. When they post a comment,
they will be greeted with the following screen:

 123

Story Management with PHP-Nuke

The super user will have to approve the comment of a user marked with bad karma before it goes
onto the site. If a user is marked with devil karma, then their comment is immediately rejected.
This method of censorship isn't simply to keep dissenting or controversial opinions off your site; it
is also to prevent people posting 'comment spam', which could be annoying adverts for other
products or sites, or simply obscene and irrelevant comments.

We have just seen how PHP-Nuke handles obscene comments, but karma can be used to control
situations where there seems to be a systematic abuse of your comment posting facility. After all,
posting a comment is the easiest way for anyone to get their information up on your site,
unopposed. Not everyone who registers with your site may be intending to use it as you imagine.
If your site becomes successful, with good traffic, then people may view posting comments to
stories on your site as an opportunity for free promotion, often for a product that is completely
unrelated to your site, and often for something that you rather not have promoted on your site, if
you take my drift....

If, as the super user, you find comments from a particular user that you do not feel belong on your
site, then you can click the User Info link in the comment, and you will be taken to that user's Your
Account module, and you will be able to see their current karma:

 124

Chapter 6

You can change the karma of that user by clicking on one of the images in the middle of the panel.
The default value, good karma, allows users to freely post comments to new stories. If you feel the
need to keep a user under observation, you can mark them with regular karma, but they can still
post freely. Should they continue to misbehave with their comments, you can upgrade them to
bad karma. This is when you have to approve their comments before they are accepted. If the
comments continue to be unacceptable to you, marking them with devil karma prevents them
from posting entirely.

Another alternative for dealing with systematic abuse of your system by a user is to disallow any
access to the system from their IP address by clicking the Ban This IP link. This takes you to the
Ban IP module. Banning IP addresses is a very drastic measure, especially since you may be
banning an entire group of innocent people who may share the same IP address as the villain you
are attempting to exclude. If people are accessing the Internet through a network or a proxy server
then that will determine their IP address. Also, the villain may reconnect to the Internet and be
assigned a new IP address by their ISP, in which case they will have avoided the ban.

 125

Story Management with PHP-Nuke

After a marked user posts their comment, the super user can approve or reject their comment by
first clicking the Moderation icon in the Administration Menu:

This will bring up the karma-moderation panel. This panel shows the number of comments that
are waiting for you to approve, and also the number of marked users, if any.

Clicking any of the Comments links will bring up a list of the comments waiting for you, a link to
view the comment, and a pair of buttons to approve or reject these comments. You can't edit a
comment, only approve or reject it. After approval, the comment will go onto the site as usual.
You will note that this karma-approval system also applies to comments from some other
modules, Surveys and Reviews.

You can click the All Marked Users link to bring up the list of users whose karma you have marked:

 126

Chapter 6

Clicking on the user name will take you to that user's Your Account module, from where you can
modify their karma or ban their IP address as we discussed earlier.

This has been moderation by the super user. Now we turn our attention to another form of
moderation; moderation by other users.

Comments in Moderation
We are now about to enter the arcane world of PHP-Nuke comment moderation by users.
Moderation isn't quite the right word; nobody can alter another person's comment (apart from the
administrator who can remove a comment entirely). First things first; we shall enable comment
moderation from the Administration Menu.

Time For Action—Enabling Comment Moderation
1. Log in in as the administrator.
2. Go to the Web Site Configuration menu by clicking on the Preferences icon in the

Administration Menu.
3. Scroll down the page until you see the Comments Moderation panel:

4. From the drop-down box, select Moderation by users.
5. Scroll further down the page, and click the Save Changes button.

What Just Happened?
Before we can use comment moderation, it needs to be enabled, and this is done through the
Comments Moderation panel in the Web Site Configuration menu.

There are three options:

The default option, No Moderation means comments cannot be moderated. Moderation by Users
allows registered visitors to moderate comments, and Moderation by Admin allows only
administrators to moderate comments.

By selecting Moderation By Users we have chosen to allow any registered visitor to moderate
the comments.

 127

Story Management with PHP-Nuke

 128

Users are able to 'rate' a comment with one of the following ratings:

1. As Is
2. Offtopic
3. Flamebait
4. Troll
5. Redundant
6. Insighful
7. Interesting
8. Informative
9. Funny
10. Overrated
11. Underrated

These ratings, rather than assigning a score to the comment, provide a description of the value of
the comment. Some are straightforward; it's clear what Insightful, or Interesting means. Some, such
as Flamebait or Troll are more steeped in the lore of discussion boards. Flamebait is a question or
comment that people should really be able to find the answer about somewhere else easily.
Marking a comment as Troll would indicate that you think it is making a provocative point just to
start a heated argument. The poster looks like they're more interested in arguing than stating or
learning sensible views.

Although the ratings do not directly assign a score, a comment does have a score and the type of
rating does alter the comment's score.

When a comment is first posted, it is awarded a score of one (anonymous posts, if allowed, are
awarded a score of zero).

When a user rates a comment, the score of the comment can change in one of the following ways:

• No change: The user has chosen the As Is rating.
• The score increases by one: The user has chosen a 'positive' rating. This is one of the

Insightful, Interesting, Informative, Funny, or Underrated ratings.
• The score decreases by one: The user has chosen a 'negative' rating. This is one of

the OffTopic, Flamebait, Troll, Redundant, or Overrated ratings.

In this way the score of the comment changes as users rate the comment. The score can take a
value from a minimum of –1 up to a maximum of 5. Note that the score of a comment has nothing
to do with the score of the story that it is posted to; the score of a story is determined by user
voting in the Article Rating block next to the story. We saw that earlier.

Now this is where the 'moderation' comes in. Every user has a 'comment score threshold', by
default set to zero. The option to change the score is present on the Comments Configuration
page (go there from the Comments link in Your Account or by clicking the Configure link in
the comments bar). Any comment with a score less than this threshold value is not displayed
to the user.

Chapter 6

By adjusting their 'comment score threshold', the user can filter out comments that are not
worth reading.

Other users who have read and rated the comment have made the judgment for you of whether a
comment is worth reading.

That's the idea. Let's try it out.

Time For Action—Moderating Comments
1. Log out from the administrator account.
2. Click on the Home link in the Modules menu to return to your homepage.
3. In the Login block on the right-hand side of the page, log in as testuser (enter

testuser as the Nickname and testuser as the Password, then click the Login button).
4. Once you are logged in, click on the Home link in the Modules menu to return to the

site homepage.
5. Find our first story, and click the Read More... link
6. Scroll down the page to find our existing comment that we added earlier:

7. We really like this comment. Let's select Informative from the drop-down box.
8. Click the MODERATE! graphic. When the page reloads, you will see this:

 129

Story Management with PHP-Nuke

9. Actually, upon reading the comment again, I'm not that impressed. Select Offtopic
from the drop-down list.

10. Click the MODERATE button.
11. When the page reloads, the comment should now look as in the first image above.

What Just Happened?
We just moderated a comment, twice in fact.

After logging out from the administrator account, and then logging back in as testuser, we had a
look at the existing comment. We had seen this comment earlier (we added it!), but this time, the
rating drop-down box has appeared.

First of all, we selected a 'positive' rating from the drop-down box—Informative. Clicking the
MODERATE button got the moderation process underway, and when the page reloaded, the score
of the comment had increased by one (to two if you must know).

Next, we chose a 'negative' rating—Offtopic, clicked the MODERATE! button and the score of the
comment decreased by one.

Multiple Comment Moderation
It's worth noting that if there is more than one comment displayed on the page, then separate
drop-down boxes will appear for each comment.

In cases like this, you can moderate several comments at once by selecting their rating from the
relevant drop-down boxes. If you don't touch one of the comments, its rating will be submitted as
As Is, and the score won't change.

Customizing the User View of Comments
Each individual user is able to customize their view of the displayed comments. This is done by
clicking on the Configure link in the comments bar (shown enclosed in a box):

 130

Chapter 6

Clicking this link brings you to the Comments Configuration page of the Your Account module.

Another way to reach this page is to click the Comments link in the navigation bar of the Your
Account module (shown below enclosed by a box):

Note that if the option Activate Comments in Articles? in the site preferences is set to No
(so that comment posting is disabled for all articles), then the Comments link is not
displayed in the Your Account menu, and the comments bar is not displayed under any
stories. In this situation, no customization can be made by the user.

The Comment Configuration page has a number of options for customizing the display of comments:

Do Not Display Scores is the most straightforward option, selecting this and clicking Save
Changes causes the score of any comment to be not displayed. The scoring process still goes on,
but the scores are never seen.

 131

Story Management with PHP-Nuke

The Sort Order field allows you to order the list of comments by the date they were posted or by
the score for the comments. The comments used in the sorting are only the top-level comments. If
you have an old comment with a new reply, that is still viewed as an old comment from the sorting
point of view.

You truncate the displayed length of any comment by putting a new value for Max Comment Length
field. This does not prevent any comments being longer than that value; it simply abbreviates the
display. Here we've set the Max Comment Length to 32 and are viewing our first comment:

A Read the rest of this comment... link has appeared, and clicking that link brings you to the full
text of the comment:

Clicking the Root link takes you back to the list of all the top-level comments.

The Comment Configuration page allows you to choose from four ways of displaying comments.
These options are available in the Display Mode drop-down box:

• No Comments
• Nested
• Flat
• Thread

 132

Chapter 6

The default value is Thread. This displays all the top-level comments, and any replies are shown
indented, with only the title of the reply displayed. This is the view that we have been seeing on
comments so far.

Choosing the No Comments option means comments will not be displayed to you, and the Flat
option displays all the comments underneath each other, with no indentation, grouping a comment
and all its replies together.

The Nested view is similar to the Thread view, in that it displays all the comments, grouping
together a comment and its replies with indentation, but the text of any reply to a comment is
displayed rather than just the title of the reply:

The final comment customization option for users is the 'comment-threshold value' that we
mentioned earlier. You may recall that the point of this is to prevent any comments whose score is
less than the 'comment-threshold value' from being shown. There are seven values for the
'comment-threshold value' selected from the Threshold dropdown:

• -1: Uncut and Raw
• 0: Almost Everything
• 1: Filter Most Anonymous
• +2: Score +2
• +3: Score +3
• +4: Score +4
• +5: Score +5

The default value is 0: Almost Everything. This means that majority of the comments will be
displayed. The only comments that will not be displayed are those with score –1, which are
comments considered to be poor by other users (or maybe even by you).

 133

Story Management with PHP-Nuke

The value +1: Filter Most Anonymous value will filter out most of the anonymous postings made to
the site; remember that an anonymous posting is assigned a score of zero by default. For an
anonymous posting to be displayed with this setting means that it will have to have been
'moderated up' by other users.

The other values are quite straightforward; they will filter out any comments with value less than
the score mentioned in the value. Thus choosing +5: Score +5 will mean that only the best 'quality'
comments will be displayed to you.

Time For Action—Filtering out Comments
1. Make sure that you are logged in as the testuser user, and are on the Comments

Configuration page (go there from the Comments link in Your Account or by clicking
the Configure link in the comments bar).

2. Select +2: Score +2.
3. Click the Save Changes button.
4. When the page reloads, you will find yourself back in the Your Account module.

Click the Home link in the Modules block to return to the homepage of your site.
5. Find our first story, and click the comments link.
6. When the story is displayed, the comments bar will be displayed underneath, but no

comments can be seen! (that wouldn't make a very interesting screenshot).

What Just Happened?
We set the 'comment-threshold value' to a score of two in the Comment Configuration page. This
meant any comment with a score of less than two is not displayed to us, in this case testuser. Our
existing comment has a score of one (when we left it at the end of the last Time For Action moment
it had). Thus it is not displayed to us. Visitors are able to moderate comments with impunity.

Story Management
For the administrator, story management begins on the homepage of the administration area.
Scroll down the page and you will see the last 20 published stories:

The story titles are displayed, along with their story ID (in the left-hand column of the table), the
language they were entered in (All), the name of the topic (that short string with no spaces,
remember that?), and then icons to edit or delete any of these published stories.

 134

Chapter 6

When a story is posted to your site and stored in PHP-Nuke, the story is assigned a story ID. The
story ID is unique to each story, and is used to identify the story. For example, the URL of the
extended text view of the story uses the story ID:

http://localhost/nuke/modules.php?name=News&file=article&sid=N

where N is the story ID.

Editing Stories
There are three ways to begin the editing process. One way is from the front end of the site, the
other two are from the administration area:

1. From the extended text view of the story itself there is an Edit icon in the
Options block:

2. If the story is displayed in the Last 20 Articles table on the administration homepage,
it will have an Edit link.

3. By entering the story ID into the textbox under the list of Last 20 Articles, selecting
Edit from the dropdown, and clicking the Go! button.

Each of these brings you to the Edit Article page.

The Edit Article page has almost the same fields as the Add New Article page. However, it is missing
the ability to attach a poll to the story, and you cannot alter the schedule of a programmed story.

You can change the title of the story, the topic or category to which it belongs, and any related
topics, and of course edit the story and extended text. The Publish in Home? and Activate
Comments for this Story? fields are also there, on call to be changed if desired.

An additional field in the Edit Article page is the Notes field. This field allows the administrator to
add notes about the story, for example to express the fact that the views of the story are not those
of the site for a particularly contentious story.

Clicking the Save Changes button on the Edit Article page updates the story.

Deleting Stories
As with editing stories, there are the three same ways to delete a story.

 135

Story Management with PHP-Nuke

1. From the extended text view of the story itself there is the Delete icon in the
Options block:

2. If the story is displayed in the Last 20 Articles table on the administration homepage,
it will have a Delete link.

3. By entering the story ID into the textbox under the list of Last 20 Articles, selecting
Delete from the dropdown, and clicking the Go! button.

Each of these brings you to a screen asking you to confirm if you want to delete that story,
and giving you the opportunity to back down. Deleting a story means deleting the story and
all its comments.

User-Submitted Stories
So far we've been adding stories ourselves, as the site administrator. One of PHP-Nuke's coolest
features is the ability for site visitors to submit their own stories for administrator approval and
then, hopefully, publication to the site. In this section that's what we'll do.

Setting Up the Mail Notification
When a visitor submits a new story to your site it goes into a submissions queue, pending
moderator approval. PHP-Nuke will email a notification of this to an administrator, alerting them
to come and approve the story.

As we discussed in earlier chapters, using email in this way requires your site to have access to
outbound mail functionality. We won't discuss that here, but leave that until we have deployed the
live site. However, we will discuss the settings to form the notification email sent out.

The notification settings are set in the Web Site Configuration menu, in the Mail New Stories to
Admin panel:

 136

Chapter 6

Firstly, to get any email notifications at all, you need to select Yes in Notify new submissions by
email?. The default value is No.

The Email to send the message: field is the email account of the person who will receive
notification of the new submission. It is not the email account that sends the notification. In this
field you will enter the email address of the administrator who is going to be responsible for
approving the stories (that would be you!).

If you need to specify more than one person to receive notifications, enter all the email
addresses separated by semi-colons (;) into this field.

The Email subject: field holds the subject of the email notification. You can enter a short message
for the receiving administrator into the Email message: field.

The Email Account (From): field specifies the account name from which the notification mail will
be sent. You should not include the domain of the account in here; this is handled by the outbound
mail server. Note that the account you specify here does not actually have to exist, since it is not
actually 'sending' the mail, but only appears to be doing so to the sender.

Once you have set up these details, click the Save Changes button at the bottom of the Web Site
Configuration menu and you're ready to receive notifications.

Visitor Story Submission
Users submit stories from the Submit News module. Stories can be posted by unregistered visitors.
The Submit News module shows them a form similar to the Add New Article form, into which they
type the title of their submission, select a topic, and then enter the story text and the extended text.

Users cannot select a category for the story, nor can they activate comments, nor program the story.

At the bottom of the form is a Preview button; once they have clicked that to see their story
previewed, an Ok! button appears next to it for them to submit the story. Visitors cannot submit their
stories without previewing them first. Whether they read the preview is another matter!

Once the visitor clicks Ok! and their story is submitted, their work is done. They are thanked for
submitting their story, and told how many stories are waiting in the submission queue.

Approving Stories
Once the visitor has submitted their story, a notification is sent to the administrator. The email sent
is of this form:

Hey there...
You got a new story submission for your site.

==
TITLE OF THE STORY

This is the story text

This is the extended text.

testuser

 137

Story Management with PHP-Nuke

The message at the top of the email is from the Email Message field of the Mail New Stories to
Admin panel of the Web Site Configuration menu, and the subject of the email is from the Email
Subject field.

Underneath the top message is the story title, then the story text followed by the extended text,
with the author's name at the bottom. The message is sent as a plain text email rather than in
HTML form. Upon receipt of the email, the administrator will know that there is a new story
waiting for them, and they will head off to the administration area of the site to check it out.

If there is no mail sent, or the administrator does not receive the mail for some reason, this does
not alter the approval process. The administrator stills need to log into the administration area of
the site, and the Waiting Content block will advise them of any submissions:

Clicking the Submissions link brings you to the Stories Submission Administration page, which
lists the submitted stories that are still waiting approval:

From this table, you can view the user profile of the submitting author by clicking on the author's
name in the Author column. The user's karma is also displayed next to their username, so you can
easily identify pests. If you wanted to delete the story without reading it, clicking the Delete icon
allows you to do this. This removes the story entirely from the list of submissions.

The Delete link under the table clears the entire queue of submitted stories.

 138

Chapter 6

Clicking on the title of the story, or the Edit icon, brings you to a form similar to the one for
adding a new story. Here you can edit any part of the story, add some notes to the story, or even
change the topic or category if you desire. It is also possible to program this story or attach a poll.
None of these things can be done by the user.

There is also a link to email the submitter directly, or send a Private Message. Possibly you want
them to clarify something.

At the foot of the form is the familiar drop-down box to select previewing the story or posting it,
an Ok! button for publishing the story, and a Delete link, which will delete the story from the list
of waiting stories.

Once you click the Ok! button after selecting Post Story, the story will be posted to the site in the
usual way, and the story is removed from the list of submissions.

If you post the story (accept it), there is no notification to the author that their story has been
accepted. They will be able to see it on the site! If you delete the story (reject it), again there is no
notification to the author. This is only a two-stage process—submission and approval. There is no
real scope for sending comments about the story back to the author and having them resubmit,
without having them type in the whole story again.

With users submitting their own stories, the content on your site will hopefully grow quickly, and
users will have the satisfaction of contributing and participating in the community of your site.

Finding Stories
The visitor (and administrator) can access stories from a number of places on a PHP-Nuke site.
These places are:

• The site homepage
• The Topics module
• The Search module
• The Story Archive module
• The Categories Menu block

In this section, we will run through how these places gain you access to particular stories.

From the Homepage
On the homepage of your site, provided the News module is selected as the Home module, the
most recently published stories are listed. The number of stories displayed in this list is controlled
by the Stories Number in Home option of the Web Site Configuration options. By default, the value
is 10.

Clicking the Read More... link will take you to the extended text view of the story.

 139

Story Management with PHP-Nuke

From the Topics module
The Topics module displays the list of topics and their associated images, along with the titles of
the ten most recent stories posted on that topic.

Clicking on any of the story titles will take you to the standard, extended view of the story.

From the Search module
The Search module allows the visitor to search most of the content stored in PHP-Nuke (there
are some other modules whose content is searchable from this module; we'll see them in the
next chapter).

Of particular relevance to stories is that you can choose to refine your search like this:

• Search all topics or a single topic.
• Search stories in all categories or a single category.
• Search stories by all authors or a particular author. Note that here author means the

user who posted the story to the site (usually the administrator), not the original
author of the story.

• Search only stories posted within the last week, last two weeks, or up to three
months ago.

These options are chosen from the drop-down box in the Search module:

If any results are found, the titles of the stories and information like the author of the story is
displayed. Clicking on the title of a story will take you to the extended text view of the story.

From the Story Archive
The Story Archive module first displays a list of months for which stories were posted, and
clicking on any of the months will bring up all the stories posted that month:

 140

Chapter 6

From this table, you can click on the story title to view the extended text of the story, or jump
straight to the printer-friendly view of the page or send the story to a friend using the icons on the
right-hand side of the table.

From the Categories Menu Block
There is no built-in module for displaying the list of story categories. However, the Categories
Menu block is included with the PHP-Nuke installation, and this block gives you a display of all
the story categories that actually have stories assigned to them.

This block is already loaded into PHP-Nuke but is not activated. It is also set up as a right-hand
block by default.

Each of the category titles displayed in the block is a link to the page displaying the most recent
stories in that category. The page containing the most recent stories in a category has a URL of
this form:

http://localhost/nuke/modules.php?name=News&file=categories&op=newindex&catid=1

where catid is known as the category ID, with 0 being the Article category.

The category that you are currently viewing is indicated in the Categories Menu block in bold, and
is not a clickable link. This can be quite frustrating if you click on a story in that category, read it,
and then want to return to the list of stories in the category. You will have to use the Back button
in your browser since the link to the category in the Category Menu block is not a link at all.

 141

Story Management with PHP-Nuke

Special Administrator
For working with stories, a special administrator account can be created with privileges for only
the News module.

This administrator is created in the usual way from the Edit Admins link in the Administration
Menu. Here we are creating an administrator with News privileges:

When logging into the administration area with this account, the administration menu looks
desolate with only two icons displayed in the Modules Administration menu, and there is no sign of
the Administration Menu, since this administrator does not have the permissions to access the core
administration operations, only News operations:

We can still create, edit, and manage stories with this account, but we cannot do anything outside
the confines of the News module. We cannot for example, disable comment posting from the Web
Site Configuration menu with this account; we do not have those privileges.

There is also a Surveys privilege in the administrator account menu. If you have News privileges
but not Surveys privileges then you can fill in the details to attach a new poll to a story, but the
poll itself will not be created.

 142

Chapter 6

If you create a News administrator without access to the Topics module, then they cannot create or
edit topics. They can create manage categories, but not topics.

If you wish to use the email address of the News-only administrator to receive email notifications
of user-submitted stories, then the site super user must set this from the Web Site Configuration
menu. Just because an administrator has News privileges does not mean they will receive the
notification emails.

Points and Prizes
There are a lot of opportunities for visitors to interact with stories, and as such, there are many
opportunities for them to collect points:

• Submitting a story from the Submit News module that is actually published by
the administrator

• Posting comments
• Sending a story to a friend
• Rating a story
• Voting in a survey
• Commenting on a survey

The points for these activities are, as usual, determined from the User Groups area of the
administration area.

Sharing your News
In an earlier chapter, we saw the RSS/RDF block. This block was able to pull headlines from
another site via RSS and display them in the block. With PHP-Nuke it is possible to have your
stories 'exposed' in a similar way.

Browse to the http://localhost/nuke/backend.php file in your browser, and you should see
something like this in your browser window:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE rss PUBLIC "-//Netscape Communications//DTD RSS 0.91//EN"
 "http://my.netscape.com/publish/formats/rss-0.91.dtd">
<rss version="0.91">
 <channel>
 <title>the Dinosaur Portal</title>
 <link>http://localhost/nuke</link>
 <description>

Just because you haven't seen a dinosaur, doesn't mean
they've all died out!

 </description>
 <language>en-us</language>
 <item>
 <title>the Dinosaur Portal is Alive!</title>
 <link>http://localhost/nuke/modules.php?name=News&
 file=article&sid=1
 </link>
 </item>

 </channel>
</rss>

 143

Story Management with PHP-Nuke

That's clearly not a standard HTML webpage, and it's not supposed to be. It's a specially structured
file, an XML file in fact, with the story titles and a link to them. This is the format of the RSS
news feed, and can be consumed by RSS readers, such as your own RSS/RDF blocks that we saw
in previous chapters.

The description and language elements are set from the Backend Configuration panel in the Web
Site Configuration menu:

A maximum of ten stories can be included in the output of the backend.php file. Adding a cat
parameter to the URL, say http://localhost/nuke/backend.php?cat=1 will display the stories
in the category corresponding to the category ID specified by the cat parameter. We discussed the
category ID earlier in the From the Categories Menu Block section. There is nothing else that you
need to do to prepare your stories for RSS syndication.

Polls and the Surveys Module
As we mentioned earlier, when a story is created there is the option to associate a poll with the
story. This can only be done at the time of story creation; you cannot add a poll to the story later.
A poll attached to a story can be thought of as a survey related to the story's content.

Although you can't add a poll to a story after the story has been created, you can create a survey
independently of a story from the Surveys module. If you want your poll/survey to appear in the
Survey block (like the What do you think of this site? poll) then you must create it as a survey.

First we'll look at adding a poll to a story.

Attaching a Poll to a Story
As the administrator, you get the option to attach a poll to the story before you post a story to the
site. Underneath the Add New Article panel is the Attach a Poll to this article panel. To create a new
poll you simply enter the question into the Poll Title field, and then enter the options below:

 144

Chapter 6

There is no need to click any more buttons. When the story is posted, provided there is some text
in the Poll Title field, the new poll will be created and attached to the story.

The poll is displayed to the right of the extended view of the story:

Note that the Article Rating poll is still there as well, but pushed further down the page.

By selecting one of the options and clicking the Vote button, you can participate in this poll—the
same voting restrictions apply as seen earlier with the Article Rating poll. After your vote is
registered, the current results of the poll are shown. This is all happening in the Surveys module.

 145

Story Management with PHP-Nuke

Here you can see the total number of votes cast in the poll, and the percentage split of the votes.
This is also the view you will get by clicking the Results link in the poll block itself. It is also
possible to post comments for an individual poll. The comments are displayed underneath the poll
as they are with stories.

The image above actually shows the administrator view of the results, with the extra Add and Edit
links that are not visible to the standard visitor. As administrator, you can change the options of
the poll by clicking the Edit link. The Add link allows you to create a new survey.

Curiously, when creating a new poll from the Add link, you are actually able to attach a story to
the poll, for announcing the poll if you like. However, the poll will not be displayed alongside the
story in the way that a poll attached to a story is. If you want to include a link to the poll from the
story announcement, the link will be of the form

http://localhost/nuke/modules.php?name=Surveys&pollID=NNN

However, you won't know the pollID until the poll has been created, so you will have to edit the
story after creating the poll to correct the link.

The Surveys Module
Voting and seeing the result of polls takes place in the Surveys module. When you click on the
Surveys link in the Modules block and go to the homepage of the Surveys module, you are shown
the list of surveys and any surveys attached to articles.

 146

Chapter 6

The What do you think about this site? survey is added to the site by default. From here you can vote
in the survey by clicking on the title of the survey, or view the results from the Results link.
Administrators are able to edit the story options by clicking the Edit link (shown in the image above).

Survey Management
In addition to this front-end way of managing surveys through the various Edit and Add links,
there is also functionality in the Modules Administration area for managing surveys.

First of all, if you scroll down the screen on the administration menu page you will see the title of
the current poll (the most recently created poll that is not attached to an article) displayed:

You can use the links there to edit the options of that poll, or create a new one.

In the Modules Administration menu of the Administration Menu page is the Surveys icon:

Clicking on this icon brings you to the Polls/Surveys Administration area. In this area you can add
new polls and edit existing polls as we have seen already, but you can also delete polls.

Clicking the Delete Polls link in the Polls/Survey Administration area brings up a list of the current
polls. Selecting the poll to remove and clicking the Delete button removes the poll. There is no
confirmation screen, it goes straight away.

 147

Story Management with PHP-Nuke

 148

Summary
This chapter gave us an overview of stories and the story publication process. We saw the way
stories on our site are organized; stories are classified into topics and categories. We also added
our own stories and saw how to edit and manage them.

One of PHP-Nuke's great features with its handling of stories is the number of opportunities for
visitors to contribute. We saw how visitors can post their own stories, and the process the
administrator follows to approve these stories for publication on the site.

Comments are an important part of any community-driven site and we had an in-depth look at
these. We also saw how comments are moderated, both by the administrator and by the users of
the site.

7
Content Management Modules

In the last chapter, we had a really good look at story management, and in this chapter we'll look at
the other PHP-Nuke modules for handling content. We will see how each of them works, how you
add content with them, and what features they possess.

We will cover these modules:

• Content
• FAQ
• Encyclopedia
• Web Links and Downloads
• Reviews

For each module, we will explore both the visitor and administrator experience, and see how to
work with the types of content these modules handle.

Each of these modules handles a different type of content, as is hinted at by their name, and each
offers a different amount of functionality for visitors to interact with the content. We will see all of
this, and also see how each module organizes the content it manages.

Content
The Content module, as the name suggests, simply handles content. The Content module is handy
for adding general pieces of information to your site, which are not particularly time-sensitive or
intended to generate discussion.

The 'content' of the Content module is called a content page, and content pages may be organized
into categories. Note that these categories have nothing to do with the categories created for news
stories. In fact, several of the modules in this chapter will organize their content into 'categories', and
there will be no relation between the categories of one module and the categories of another module.

A content page consists of some main page text, a title, a subtitle, a header and footer, and
another field, called the signature. The display of a single content page may be split easily across
several web pages, with PHP-Nuke providing Next and Previous page links automatically. Content

Content Management Modules

pages are ideal for holding general pieces of HTML text that need to be organized into groups or
categories. Using the Content module to handle such information means that you do not have to
create a new module just to display things like site policy or privacy policy documents on your site.

Content pages are not searched by the Search module.

There are no comment features or ratings available for Content content, and only the administrator
may add pages; there is no place for user-submitted content here.

In versions of PHP-Nuke prior to 7.5, there was a module called Sections, which was almost
identical in functionality to Content, with the addition of an image for the categories. From
PHP-Nuke 7.5, the Sections module is no longer shipped with the standard installation of
PHP-Nuke, and we will not consider it any further.

Like the other modules, the Content module is not activated by default, but since we did activate this
module in Chapter 4, we are ready to go. If you didn't activate the Content module then, do so now.
Refer back to the Managing Modules section of Chapter 4 to refresh your memory if required.

Time For Action—Creating a Content Category
We are going to use the Content module to add site 'policy' documents, in this case a site
Privacy Policy.

1. Log in as administrator.
2. To access the Content administration area, click on the Content link in the

Administration block, or click on the Content icon in the Modules menu:

3. In the Add a New Category panel, enter the text Site Documents into the Title field.
4. Enter the following text into the Description field:

Here you will find a collection of documents about the site.

5. Click the Add button.
6. When the page reloads, there isn't much evidence that your category has been

entered, but if you scroll down the screen to the Edit Category panel, you will find
the category in the Category drop-down box:

 150

Chapter 7

What Just Happened?
We just added a content category. They are added from the Content Manager area of the
administration area. The disconcerting thing is that it's difficult to tell if your category has been
added successfully; there is no list of the content categories displayed in the Content Manager
area. You will have to look in the drop-down box in the Edit Category panel to confirm that your
category has indeed been added.

Now we have a category, let's add some pages.

Time For Action—Adding a Content Page
1. In the Content Manager area of the administration area, scroll down to find the Add a

New Page panel.

2. Enter the title of the page into the Title textbox. In our case, this page will be titled
Privacy Policy.

3. Select Site Documents from the Category drop-down box.
4. Enter the Dinosaur Portal Privacy Policy into the Sub-Title field.
5. Next comes the Header Text. Enter the following into that field:

This policy applies to all web sites and email services provided by the
Dinosaur Portal. By using these web sites you consent to the general terms
and conditions of usage and to the terms of this privacy policy.

6. The Page Text field contains the body of the page. We'll enter the following:
<h2>Collection of your Personal Information</h2>
<p>We will ask you when we need information that personally identifies you
(personal information) or allows us to contact you. Generally, we request
this information when you are registering before ordering products from
theDinosaurPortal.com, downloading or viewing limited-access content,
entering a contest, ordering email newsletters. In each circumstance we
try to limit the information we request to the minimum required to deliver
the service to you. We also use various standard technologies such as
cookies to track user activity on our sites.</p>
<!--pagebreak-->
<h2>Use of your Personal Information</h2>
<p>We use your personal information for the following purposes...</p>

7. There are two fields remaining, Footer Text and Signature. We'll enter this for the
Footer Text:
If you require any further assistance, please contact
contact@thedinosaurportal.com

and this for the Signature:
the DINOSAUR PORTAL – Just because you've never seen one, doesn't mean
they've all died out...

8. Click the Send button.
9. When the page reloads, the details of our first page are visible in the Content

Manager panel, confirming its creation:

 151

Content Management Modules

10. Now click on the Content link in the Modules block, or go straight to
http://localhost/nuke/modules.php?name=Content. You will see the list of
content categories:

11. Click on the Site Documents link, and you will see the list of content pages in
this category:

 152

Chapter 7

12. Clicking on the Privacy Policy link will take us to our document:

13. Click the Next Page link to see the rest of the document:

 153

Content Management Modules

What Just Happened?
We just added a content page, and then viewed the page. We assigned the content page to the Site
Documents category when we created the page. It is possible to create content pages that do not
belong to any category. The current list of content pages is shown in a table in the Content
Manager area; we saw this screenshot at the end of step 11.

When you visit the front page of the Content module, the list of categories is displayed. Only the
categories that have content pages associated with them are displayed. Also, if there are any
content pages not associated with a category, their titles will be listed here.

Clicking on a category takes you to a list of the content pages associated with that category. This
list is ordered by the date on which the pages were entered; the content page created first is
displayed at the top of the list and so on. For each content page, the text entered into its Title field
is displayed in this list, along with the Sub-Title in brackets. Clicking on the title of a content page
will take you to display of the page itself. The following diagram shows this navigation hierarchy:

Note that there is no direct link to go back from the content page to its 'parent' category. You will
have to use the Back button of your browser to do this. You can get back to the list of all
categories by clicking the Content link in the Modules block, but you will still need to click again
on the category to display the list of content pages it contains.

Returning to our privacy content page, we see that our content page has been split into two pages.
This is done by inserting the <!--pagebreak--> text into the Page Text field, which forces
PHP-Nuke to break the page at that point. The contents of the Page Text field form the body of a
content page, with the Title and Sub-Title always displayed at the top.

The Next Page pager is automatically provided by PHP-Nuke, and with that you can navigate
through the pages of the content page. On the first page, the Header Text is displayed before the
Page Text starts, and on the final page, the Footer Text is displayed at the end of the Page Text,
followed by the Signature text. A copyright notice, including the site name, follows the
Signature, and then there is the date the page was created, followed by the number of times the
page has been read.

Since we were still logged in as an administrator, at each part of this journey there are panels
allowing you to edit the details of either the category or the content pages. For example, there is a
panel for altering the category on the page displaying that category's content pages, in addition to a
'content page editing' panel on each page of the content itself:

 154

Chapter 7

Any of these links can be used to change the object in question. Of course, these links are visible
only to an administrator. No visitor will be able to see these links or access their functionality.

Deactivating a page makes it invisible to a visitor from the list of available content pages, and the
page will not be displayed even if the visitor manages to enter the URL of the content page. The
administrator will be able to see a list of deactivated pages on the front page of the Content
module (http://localhost/nuke/modules.php?name=Content) or in the Content Manager area
of the administration area.

Currently, our Privacy Policy document is at the URL http://localhost/nuke/modules.php?
name=Content&pa=showpage&pid=1. To view this page, the visitor need not go through the entire
Content 'hierarchy' if they are provided with a direct link. We could, for example, add a link to the
Privacy Policy in the footer of our page, from the Web Site Configuration menu. The link would
point to the above URL, and the reader would be taken directly to our document.

The pid value of the query string is the unique identifier for this piece of content in the same way
as we saw the story ID when looking at stories. This value will not change with subsequent
modifications of the content page, or even moving it to another category.

The Content Block
The Content block is part of the standard PHP-Nuke installation, but isn't loaded. You can load
this block from Blocks area of the administration area by selecting Content from the Filename
dropdown, and choosing a title for the block as usually done for file blocks.

Once the block is activated, it will display a list of the titles of all active content pages, with links
to view each content page in full.

Note that the Content block will still display the list of titles present in the content pages
even if the user does not have read access to the Content module.

Managing Categories
Categories can be edited or deleted through the Edit Category panel in the Content Manager area.
Simply select a category from the drop-down box and click the Edit button to go to the Edit
Category page. Here you can edit the title and description of the category, or delete the category.

Note that deleting the category does not delete the content pages associated with that category. All
pages in a deleted category are preserved, but no longer belong to any category (they belong to the
None category!).

Special Administrator
You can create a special administrator with rights to only the Content module in the Edit Admins
menu of the Administration Menu.

 155

Content Management Modules

Restricting Access
Access to the Content module is done on a 'whole module' basis. The visitor either sees nothing or
everything. You cannot configure individual categories or content pages to be viewed by certain
user groups.

Points and Prizes
There are no activities in the Content module that contribute any points towards a user's point score.

FAQ
The FAQ (Frequently Asked Questions) module allows you to create categories of questions, with
answers. This module contains a list of questions (and their answers) frequently asked by visitors.

Only an administrator may enter questions and answers, and by default, the text in neither the
question nor the answer is searchable. However, if you provide suitably named categories it
should not be difficult for a visitor to find the question they are after.

By default, the FAQ module is not activated.

Time For Action—Adding a FAQ Category
1. Log in as the administrator.

2. Click the FAQ icon in the Modules menu of the administration area:

3. We first need to create a new category. We will create a category called Dinosaur
Survival Tips. This category will provide visitors with answers to common
questions about what to do when confronted with some marauding dinosaur. Enter
the text Dinosaur Survival Tips into the Categories field to create a new category
with this name.

4. Click the Save button.
5. The title of our newly created FAQ category is displayed, along with links to add a

question to that category, edit the title of the category, or delete the category:

 156

Chapter 7

What Just Happened?
We visited the FAQ Administration area and created the new category. All that was required was
for us to specify the category title. The current list of categories is displayed in a table, along with
three icons for each category. The first icon is the Content icon, which allows you to add a FAQ to
that category. The next icon is the Edit icon, which allows you to modify the category title. The
final icon is the Delete icon, which removes the category.

Time For Action—Adding a FAQ
Now that we have a category, we can add a question (and answer) to it:

1. In the table of Active FAQs in the FAQ Administration area, find our Dinosaur Survival
Tips category. (We only have one category—it shouldn't be too hard to find.)

2. Click the Content icon of the Dinosaur Survival Tips category to add a new question
to that category. You will be taken to the Add a New Question panel. Enter the
following text into the Question field:
What do I do if a fearsome Allosaurus tries to bite me?

and into the Answer field, type:
Bite it.

The Allosaurus is actually rather timid, and a quick chomp
will put him back in his place.

3. Click the Save button.
4. Our new question is now displayed, along with links to edit it further, or delete it.

We are done here.

5. Let's see what the visitor will see. Click the FAQ link in the Modules block on the
left-hand side of the screen to start the FAQ module:

 157

Content Management Modules

6. We have only one category, so click the Dinosaur Survival Tips category and the
questions in that category will be displayed. Underneath the questions, the answers
are displayed. Clicking on any of the questions will take you down to the part of the
page containing the answer:

7. Clicking the Back to Top link will take you back to the list of questions, and the Back
to FAQ Index link takes you back to the list of FAQ categories.

What Just Happened?
We just added a FAQ. We selected the category to add the FAQ to (from the list of Active FAQs),
and then provided the question and answer, and we were done.

Managing FAQs
From the list of FAQ categories shown in the Active FAQs panel of the FAQ Administration area,
we can edit the category title, delete the category, or modify questions in that category.

Note that deleting a FAQ category will delete all the questions associated with that
category. You should also be aware that there is no functionality to move questions
from one category to another other than by manual copy and paste of the question and
answer texts.

 158

Chapter 7

Editing a FAQ
Clicking the Content icon of a category in the FAQ Administration area brings up a list of entered
questions for that category, and allows you to enter a new question, or edit an existing question. In
the list of questions here and when presented to the visitor, the most recently entered FAQ is
displayed first, and then the next most recent FAQ and so on. In other words, the list of FAQs is
ordered by the date the FAQ was entered, in descending order.

The FAQ Block
There is no block shipped with PHP-Nuke for displaying the list of most recent FAQs or
FAQ categories.

Special Administrator
You can create a special administrator with rights to only the FAQ module in the Edit Admins
menu of the Administration area.

Restricting Access
Access to the FAQ module is done on a 'whole module' basis. The visitor either sees nothing or
everything. You cannot configure individual categories or questions to be viewed by certain
user groups.

Points and Prizes
There are no activities in the FAQ module that contribute any points towards a user's point score.

Encyclopedia
The Encyclopedia module provides sets of 'alphabetized' entries. As the name suggests, this
module is used as a reference for terms or definitions. The collection of terms is known as an
encyclopedia, and the Encyclopedia module allows you to create these, and then add terms or
entries to each encyclopedia.

Only an administrator may enter encyclopedia entries or create a new encyclopedia. Entries are
searchable from the Search module, but it is easy to retrieve an entry in an encyclopedia since the
module offers a simple, alphabetical navigation menu.

By default, the Encyclopedia module is not activated.

We will make use of the Encyclopedia module to provide information about a range of dinosaurs.
We can create different encyclopedias for the different periods during which dinosaurs existed
(Triassic, Cretaceous, Jurassic, and so on).

 159

Content Management Modules

Time For Action—Adding a new Encyclopedia
1. Log in as the administrator.

2. Click on the Encyclopedia icon in the Modules Administration area:

3. You are in the Encyclopedia Manager area; scroll down to find the Add a New
Encyclopedia Panel, and enter The Jurassic Period into the Title field.

4. Enter the following for the Description:
A collection of dinosaurs from the Jurassic period, which began some
210 million years ago, and lasted for about 70 million years.

5. Make sure that Activate this Page? is set to Yes.
6. Click the Save button.
7. When the page reloads, the title of your newly created encyclopedia is displayed in

the list of existing encyclopedia:

What Just Happened?
You just added a new encyclopedia; all that was required was a title and a description, and this
was entered from the Encyclopedia Manager area of the administration area. A table of created
encyclopedias is displayed in the Encyclopedia Manager area, along with icons for editing the
titles and descriptions, activating or deactivating each encyclopedia, or deleting each encyclopedia
entirely. Also displayed is a count of the number of terms currently entered for each encyclopedia,
and whether that encyclopedia has currently been activated. Each of the icons is one of the
familiar ones that we have seen much of before, and their meaning should be clear. Simply hover
the mouse cursor over one of the icons to be reminded of its action.

Note that an encyclopedia has to be activated before it can be displayed to the visitor.

Time For Action—Adding a new Entry
Now that we have an encyclopedia, we can add our first definition to our encyclopedia.

1. In the Encyclopedia Manager area, scroll down to find the Add a New Encyclopedia
Term panel.

 160

Chapter 7

2. The definition will require a title and some body text, and then needs to be assigned
to an encyclopedia. Let's add the Title of Allosaurus.

3. In the Term Text field, we will enter the following:
The Allosaurus lived about 150 to 145 million years ago in the Late
Jurassic period. Allosaurus was a carnivore with big, curved teeth that
were grooved for extra sharpness, and was about 12m long and weighed up to
3 tonnes.
<center><img src="images/dinosaurs/allosaur.jpg"
 title="Allosaurus" border="1"></center>

4. Select The Jurassic Period from the Encyclopedia drop-down box.
5. Click the Add button.
6. When the page reloads, you can see from the count of terms that our encyclopedia

now has an entry:

What Just Happened?
We just added an encyclopedia entry. Entries are added from the Add a New Encyclopedia Term
panel below the Add a New Encyclopedia panel. You provide the title and text for the entry, and
then you select the encyclopedia to add the entry to from a drop-down box. In the same way as
you could with Content pages, you can create multi-page entries by inserting <!--pagebreak-->
into your text, and the text will be broken at that point, with PHP-Nuke providing the Next and
Previous page navigation for you.

Managing the Encyclopedia
Once an encyclopedia is created, you can edit its title to rename it, deactivate it, or delete it
completely. This can be done from either the Encyclopedia Manager area, or from the visitor end
of the site when logged is as the administrator:

If you choose to delete an encyclopedia, you will be prompted to confirm your choice before the
encyclopedia is deleted.

 161

Content Management Modules

Note that deleting an encyclopedia will delete all the entries associated with it. You
should also be aware that there is no way to move entries from one encyclopedia to
another other than by manual copy and paste of the entries.

Viewing the Encyclopedia
To get a proper visitor's view of the Encyclopedia, we'll log out by clicking the Logout link in the
Administration block, or the Logout icons in the Administration Menu.

The list of active encyclopedias is found by clicking on the Encyclopedia link in the Modules
block. The title of each encyclopedia along with its description is then shown:

There are Edit, Deactivate, and Delete links that are only shown when you are logged in as the
administrator; the administrator is also able to see any deactivated encyclopedia listed here. As
mentioned above, these extra links take you to the Encyclopedia Manager area from where you
can edit, deactivate, or delete that encyclopedia.

Clicking on the title of the encyclopedia will bring up the alphabetical navigation menu:

 162

Chapter 7

Entries are alphabetized by the first letter of their title, and any letters that actually have entries are
shown underlined; this is because they are actually links to those entries. In our case, we only have
one entry, Allosaurus, so only the A entry is underlined. By clicking on one of these underlined
entries you can view all the entries corresponding to that letter (we click on A):

The entries will be arranged alphabetically by their titles. Clicking on any of the entries will
display that entry's text. Here we click on our only entry, Allosaurus:

 163

Content Management Modules

 164

(Note that you will only see the image if you have added it from the code download into the
images/dinosaurs folder of your PHP-Nuke installation.)

In each of these screens, there is a Go Back link, which has the same effect as clicking Back in
your browser; it does not necessarily take to you to the previous screen in the Encyclopedia
navigation process unless that is where you have come from.

When logged in as the administrator, you will catch sight of an Edit link at the right-hand foot of
the entry. Clicking this link takes you into the Encyclopedia Terms Edit panel in the Encyclopedia
administration area. From this panel, you can edit the text of the entry, assign it to another
encyclopedia if you like, or delete the entry entirely.

The Encyclopedia Block
There is an Encyclopedia block that ships with PHP-Nuke. (It is not displayed by default.) The
Encyclopedia block simply displays a menu of the currently active encyclopedias, with links to
view the entries in those encyclopedias.

Like the Content block, the Encyclopedia block will display the list of active encyclopedias even if
the visitor does not have access to the Encyclopedia module to view the entries.

Special Administrator
An administrator for only the Encyclopedia module can be created from the Edit Admins area of
the Administration Menu.

Restricting Access
Access to the Encyclopedia module is done on a 'whole module' basis. The visitor either sees
nothing or everything. You cannot configure individual encyclopedias to be viewed only by
certain user groups.

Points and Prizes
Since the visitor doesn't really do much with this module, there are no activities in the
Encyclopedia module that contribute any points towards a user's score.

Web Links and Downloads
The Web Links module is an excellent piece of work; it provides directories of links to other
websites. Visitors themselves are able to suggest sites and links to add to the collection, after
administrator moderation.

The Web Links module has a 'sister' module, the Downloads module, with virtually identical
functionality and use. One of the main differences between the modules is that while Web Links is
used to manage links that will point at other web pages on other sites, Downloads is intended to
manage links to files on other sites. When the visitor clicks on a download, they will download the

Chapter 7

file from the other site rather than viewing the page on that site. We won't spend much time
covering the Downloads module here—you will be able to apply the Web Links expertise you gain
here to that module.

Web Links works with links. For each link, you provide this information to PHP-Nuke:

• The title of the page the link points to
• A URL for the link
• A description of the content of the page or site the link is pointing to

The text contained in these details can be searched from the Search module.
When you visit the index of the Web Links module, either by clicking the Web Links link in
the Modules block or going straight to the URL,
http://localhost/nuke/modules.php?name=Web_Links, the top panel gives you an idea of
the features you can expect from the Web Links module:

From here people can add their own links to the collection, view the newest links added, view the
most popular (most clicked-on) links, or view the highest-rated web links. There is also an option
to view a randomly-chosen link from the collection. All of this suggests that there is much that can
be done with the Web Links module, for both administrator and visitor, so let's press on.

Links are organized into categories. Categories can be nested, so within one category you can
have other categories. The top-level categories are called main categories.
For the Dinosaur Portal, we are going to add a Museums category. This will hold links to the
websites of various Natural History and Dinosaur Museums around the world.

Time For Action—Creating a Web Link Category Structure
1. Ensure you are logged in as the administration, and go to the administration menu.

2. Click on the Web Links icon in the Modules Administration menu:

3. You will come to the Web Links administration area. We are going to add a main
category, our Museums category.

4. Enter Museums in the Name field.

 165

http://localhost/nuke/admin.php

Content Management Modules

5. Enter the following text into the Description field:
Visit Natural History and Dinosaur Museums from all round the world.

6. Click the Add button.
7. When the page reloads, you will see the Add a Main Category panel again. Scroll

down to find the Add a SUB-Category panel that has just appeared.
8. In the Add a SUB-Category panel, enter North America into the Name field, and leave

Museums selected in the drop-down box.
9. Enter the following text into the Description field:

Museums in North America.

10. Click the Add button.

What Just Happened?
We just added two new categories, Museums and North America. Museums is a main (top-level)
category and North America a subcategory. The parent category has to be created first, and then the
subcategory is created from the Add a SUB-Category panel and added to the parent category.

Time For Action—Adding a Web Link
Our first link will point to the website of the Fossil Halls at the American Museum of Natural
History in New York. We will add it to the North America subcategory of Museums.

1. In the Web Links Administration page, under the Add a Main Category and Add a
SUB-Category panel, you will find the Add a New Link panel.

2. In the Add a New Link panel, enter Fossil Halls: American Museum of Natural History
into the Page Title field.

3. Enter the following URL into the Page URL field:
http://www.amnh.org/exhibitions/permanent/fossilhalls/?src=h_h

4. Ensure that Museums/North America is selected from the Category drop-down box:

 166

Chapter 7

5. In the Description field, enter the following text:
This museum is home to the world's largest collection of vertebrate
fossils, totaling nearly one million specimens.

6. Enter your name into the Name field, and your email address into the Email field.
7. Click the Add this URL button. When the page reloads, you will see a message

confirming the successful addition of your file to the collection.
8. Click the link to return to the Web Links administration page.

What Just Happened?
We just added our first web link. We provided a title for the link, the URL for the link, as well as a
short description about the link. Note that the URL of the link can only appear once in the database;
you cannot submit two different links pointing to the same URL. This will be refused by PHP-Nuke.

The link was assigned to the North America category by selecting it from the Category drop-down
box. The 'full path' of the category shown in this drop-down box—Museums/North America—
indicates that North America is a subcategory of Museums. If we were to go on to create a
subcategory of North America, say MidWest, then it would appear as Museums/North
America/MidWest in the drop-down box.

If you now click the Web Links link in the Modules block, or go straight to the URL
http://localhost/nuke/modules.php?name=Web_Links, then you can see the list of web links.
First, each of the main categories is displayed, followed by a list of its subcategories. At this point
our web links database is rather bare:

 167

Content Management Modules

If you click the North America link, you will be taken to the list of web links within that category:

The new text next to the title of the link indicates that it has been added to the database recently.

The visitor is able to sort the list of links with the Sort Links by options. The links can be sorted in
ascending or descending order, and by title, date of submission, rating, or popularity, which we
will come to in a minute.

To follow the link itself, and visit its target site, you simply click its title. Note that this link does not
actually point to the target of the web link; it actually points back to another part of the Web Links
module on our PHP-Nuke site, and from there, you will be redirected to the target of the link.

The advantage of this approach is that PHP-Nuke is able to keep a count of the number of times
the link has been clicked-through in the Web Links module; if clicking the title of the link took you
straight to the target of the link, this would be impossible. You can see the number of times the
link has been clicked-through in the Hits field under the Description in the screenshot above.

If you click the link now, you will be taken to the Fossil Halls of the American Museum of
Natural History. While that site is interesting in its own right, we still have to continue our work
with the Web Links module.

Since clicking the link takes you to its target, we're going to refer to this page as the 'exit page' of
the link. This will help us in a moment.

A consequence of the way PHP-Nuke handles web links is that there isn't actually any
record of the URL of the web link on any of your pages. The link of a web link points
back to your site, from where you are redirected to the target. There is no <a> tag
anywhere in the page that points to the target site. This means that the Web Links module
isn't suitable for link exchanges, where you put a link to someone's site on your site, in
return for them putting a link to your site on theirs.

Although the Web Links module allows visitors to move easily from your site to other
sites that may be of interest to them, the point of a link exchange is to actually increase
incoming links to each site. The physical presence of the link in the page is beneficial to
the search ranking of the target site, and this is often a primary purpose of link exchanges.

 168

Chapter 7

Interacting with Web Links
Visitors are able to rate a web link and add comments by clicking Rate this Site. This brings them
to a page where they can score the target site from 1 to 10, and, if they don't have a bad or devil
karma, they can add comments:

After selecting your rating from the Rate this Resource dropdown, entering your comment, and then
clicking the Rate this Resource button, you are presented with a thank-you screen and some options:

Note that Report Broken Link is only shown to registered users. When you are logged in, you can
only vote once for any particular link. Unregistered users are checked by their IP address—there
can be only one rating submitted from a given IP address in a particular day, or PHP-Nuke will
reject the rating.

The results of visitor ratings can be seen by clicking the Additional Details link. This brings up the
Link Profile page, which shows how people have rated the web link, breaking down the votes
between registered users, unregistered users, and outside voters, and showing a distribution of the
scores within each of these groups:

 169

Content Management Modules

An outside vote is one where the rating has been done through an external website—the Is this
your resource? Allow other users to rate it from your web site! link at the bottom of the Link Profile
provides three options for website/resource owners to let visitors to their site vote in this poll.

Clicking on Link Comments at the top of the Links Profile area shows the comments left by visitors
expressing what they thought of that link:

Note that the Link Profile page can lead to some confusion since there is more than one route to the
same feature. Once a rating has been logged for a web link, a Details link appears under the web
link description:

The Details link takes you to the Link Profile page we saw above. Once on the Link Profile page,
there is an Additional Details link, which again points to the Link Profile page.

Similarly, when comments have been entered for a web link, a Comments link appears under the
description, showing how many comments have been added for that web link (in the same way as
the number of comments is displayed for a story, as seen in the previous chapter). Clicking that
Comments link will display the comments, and takes you to the same place as the Link Comments
link from the Link Profile page.

Checking the Web Link
Visitors are also able to assist the administrator of the site by reporting if the details of the web
link are incorrect, or if the link is broken. Broken means the file is no longer there; possibly the
website isn't available at this time, or maybe the website has stopped its service or the page has
been moved. In any case, having your visitors submit corrections to existing information makes
the job of managing a large number of web links easier.

Modifying Web Link Details
First of all, the visitor can click the Modify link to bring up the details of the current web link:

 170

Chapter 7

The visitor is able to edit any of these fields, and click the Send Request button to notify the
administrator that some of the details may need amending. We will see how to manage these
modification requests in a moment.

Reporting Broken Links
When the visitor is a registered user and logged in, the other important way they can contribute to
the Web Links module is to report broken links. This is done by clicking Report Broken Link under
the web link description. This link is only visible to registered users.

Clicking this brings up a screen with a button to click to submit the broken link report:

When the user clicks the Report Broken Link button, this link is submitted, and the user's job is done!

 171

Content Management Modules

Submitting Web Links
Visitors are able to submit their own web links to be included in the list. Clicking Add Link from
the top menu of the Web Links module brings up the familiar web link details screen:

The user enters the details of their web link and then clicks Add this URL. A confirmation that their
submission has been received is displayed, and the user's part is done.

Note that the submitted link is not immediately added to the system; administrator action is
required before that happens. That's what we will look at now.

Managing Web Links
Now that we've seen what the visitor can do with a web link, let's have a look at what the
administrator is able to do. We'll see how to:

• Modify web link details
• Manage user web link submissions, modifications, and broken link reports
• Change the existing category structure and move web links from one category

to another

 172

Chapter 7

Modifying Web Links
The details of a particular web link can be edited in one of two ways:

• From an Edit link that appears under the web link description when logged in as
the administrator

• From the Modify a Link panel in the Web Link Administration area

Both of these methods take you to the same page for editing details. The first method is simple;
when logged in as administrator, an Edit link appears for you on any given web link:

Clicking this will take you to the Modify a Link page in the administration area, which we will look
at in a moment.

The other way to access the details of a web link is from the Web Links administration area. Scroll
down to find the Modify a Link panel:

You enter the link ID and click the Modify button. This ID is found from the front-end display of
the web link itself. Hover your mouse cursor over the title of the link, and the URL it points to will
appear in your browser status bar. This URL will be of the form:

http://localhost/nuke/modules.php?name=Web_Links&l_op=visit&lid=1

The link ID is got from looking at the lid value in the URL. Here, the value is 1, and this is the
link ID that we enter into the Modify a Link panel to begin editing its details:

Clicking the Modify button brings us to the Modify a Link page. This is the same page that we arrive
at when we click Edit from the web link description:

 173

Content Management Modules

Here you can change any of the details of the web link, or reassign it a different category from the
Category drop-down box. You click the Modify button to save your changes, or the Delete button
to remove the web link from the database. Despite the fact these buttons are right next to the
Category drop-down box, they do apply to the web link and are not ways to modify or delete
categories. We'll come onto that in a moment.

Underneath the Modify a Link panel there is the Add Editorial panel.

This panel allows you to add some 'editorial' comments about the web link, and the presence of an
editorial is indicated by an Editorial link that appears under the link description:

The editorial text can be viewed by clicking that link or by clicking the Editor Review link of the
Link Profile page.

There is more underneath the Add Editorial panel when you edit web link details. You can find a
list of all the comments and ratings that have been submitted for that web link:

 174

Chapter 7

If you have a large number of ratings for your web link, this could be a very long list!

Each table has a Delete column, and clicking the X link in that column will remove the comment
or the rating of the web link.

Managing User-Submitted Web Links
Earlier we saw ways for the visitor to submit information about web links—requesting
modifications to details, reporting a broken link, and also submitting a new web link. We left
that at the point of the visitor making their submission, and now we'll continue from there.

Firstly we'll look at handling web links submitted by users. After the submission, the
administrator will know there is a link submission in the queue by looking at the Waiting
Content administration block.

The number next to Links indicates the length of the queue for submitted web links. Clicking
Waiting Links here brings you to the Links Waiting for Validation page:

 175

Content Management Modules

The Submitter field shows the name of the user who added the web link. After that, the details are
the same as those that you worked with earlier while adding a web link through the administration
area. Since these details were entered by another user, you will have to check through them
carefully before deciding what to do with the web link.

You are able to edit and correct any of these details before clicking the Add button to accept the
web link, or Delete to discard it. Clicking either of these will remove the web link from the queue.

Managing User-Submitted Modification Requests
Earlier we saw that a visitor is able to request changes to the web link details—possibly to point
out an inaccuracy in it that needs to be corrected.

Once the visitor submits their change request, the Waiting Content administrator block notifies the
administrator of it:

Again, the number next to Mod. Links indicates the length of the queue for web link modification
requests. Clicking that link brings you to the User Link Modification Requests page. Each of the
submitted requests is shown along with the original web link and options to Accept or Ignore the
request. Choosing to Accept or Ignore the request removes it from the queue. Clicking Accept will
replace the existing web link details with the requested details. Be certain to check these details
carefully! Clicking Ignore simply discards the request.

Managing User-Submitted Broken Link Notifications
We also saw earlier that visitors are able to report 'broken' links. In the same way as modification
requests, the Waiting Content administration block also notifies you of any broken links submitted:

Clicking Broken Links brings you to the User Reported Broken Links page, your control center for
investigating these claims. All reports of broken links are listed here, along with options to Ignore
(discard) the report, Delete the report and the web link that goes with it, or Edit the web link
details to correct the link. The link itself is in the Link column—a click of that should confirm if
your link is indeed broken.

 176

Chapter 7

If you click the Edit link, and then correct the link, you will still have to return to the User
Reported Broken Links page to discard the report.

An alternative way to access these last two features is from a menu at the top of the Web Links
administration page:

This menu has links to web link modification request and broken link reports that we have just
seen, along with the Clean Links Votes link, which tidies up the rating totals and averages,
resetting all the votes to zero for each link.

Validating Links
Although visitors can report broken links, it would be good for you to periodically check on the
status of all your links, without having to go through them individually and click on all the links.
This is done by clicking the Validate Links link.

This brings you to a list of your categories:

By clicking one of the category titles, each web link in that category will be checked (or every web
link in the database if you click Check ALL Links). Once this is complete, you see the status report:

 177

Content Management Modules

'Checking the links' means that PHP-Nuke will be sending a request to the server hosting each of
your web links, and then waiting for a response. As such, this process could take quite a while,
depending on various network connection factors. The Status column reports whether the link is
Ok! or if there was some problem with the link.

In fact, link validation doesn't actually check if there is a problem with the target page at all, it
only checks if there is a response from the host site of the link. If the target page of the web link
has been moved to a different location on the host server (or even if it is no longer on that server),
then the Status will still be Ok!, although the link itself is no longer useful. If the host doesn't exist
or is unavailable at the time, only then will PHP-Nuke report a problem.

If the Status does show as Failed!, then you will find links in the Functions column to edit the web
link details, or delete the web link entirely.

Changing Category Structure
It is also possible to modify the web link category structure. We have already seen how to create
new categories, and now we will see how to 'move' categories around to different points in the
hierarchy, and how to transport their web links along with the category.

The process that we describe here moves all the web links from one category to another.
If you only want to move certain web links within a category, then you will have to do
that on an individual basis by assigning them to a new category from the Modify a Link
panel in the Web Links administration menu.

Time For Action—Moving Categories
We will add a subcategory of Museums called Fossils, and we will move our North America
category along with its web links into that category.

1. From the Web Links administration area, we begin by creating a new subcategory, Fossils,
to go in the Museums category. Enter the details as shown, and click the Add button:

 178

Chapter 7

2. Next we create another subcategory called North America. This has the same
description as the North America category we created earlier, but this time, the
category is a subcategory of Museums/Fossils. We enter the details, and click Add to
create the subcategory:

3. When the page reloads, scroll down the screen to find the Transfer all links from category
panel. Select Museums/North America from the upper Category drop-down box:

4. And now select Museums/Fossils/North America from the lower in Category
drop-down box, and then click Transfer:

 179

Content Management Modules

5. When the page reloads, scroll down to the find the Modify a Category panel. Select the
Museums/North America category from the Category dropdown, and click Modify.

6. When the page reloads, you see the name and description of the category displayed;
click the Delete button to delete this category:

7. You will then be asked to confirm the deletion of this category, so click Yes.
8. Now when you revisit the index of your Web Links, you will see the Fossils subcategory:

 180

Chapter 7

9. Clicking the Fossils link shows the new Fossils/North America category that
we just created, in which can be found the web links copied from the original
Museums/North America category.

What Just Happened?
We moved a set of web links from one category to another. In PHP-Nuke, you can change the
name or description of a category, but you cannot actually move it to another parent category.
What we performed above achieved the equivalent of this.

To obtain the effect of moving a category to a new parent category, you first have to create the
new subcategory in the 'target' category. This was done in the first two steps by creating the
Fossils subcategory of Museums, and then a North America subcategory of Fossils. The
Museums/Fossils/North America category is our target category, and it will become the new home
for the web links of the Museums/North America category.

With the target category in place, the next step is to move the web links from one category to the
other. This is done through the Transfer all links from category panel. From the top drop-down box
in that panel you select the category that you are moving the web links from, and in the bottom
drop-down box you select the category you are moving the web links to. After selecting these
categories, clicking the Transfer button moves the web links from one category to the other.

At the end of step 4, we had created a new Museums/Fossils/North America category and moved
all the web links from the existing Museums/North America category to that category. The final
piece of tidying up was to delete the original Museums/North America category; this is done from
the Modify a Category panel.

In this panel, you first select the category and then click the Modify button. This brings you to a
screen where you can edit the details of the category, or click the Delete button to remove the
category. Note that deleting a category removes all its web links from the database, in addition to
removing any subcategories.

Web Links Block
The Top10_Links block that ships with PHP-Nuke displays the ten most viewed links, along with a
link to their details. Similarly, there is a Top10_Downloads block that displays the ten most
popular downloads.

Like the other blocks mentioned in this chapter, these blocks still display the list of links or
downloads even if the visitor has no access to the modules themselves.

Special Administrator
An administrator with privileges only for the Web Links module can be created from the Edit
Admins menu of the administration area.

Restricting Access
You can restrict access to the Web Links module from the Modules administration area as you can
for any other module.

 181

Content Management Modules

The same holds for the Downloads module. However, restricting access in this way means that
before the visitor has even had a chance to see what downloads you have on offer, they are
presented with the 'NO ACCESS' screen, and told they need to register or login to proceed.

You might consider this as rather unfriendly to your visitors; people may be prepared to register in
order to get at a particular download, but they're not prepared to register blindly without knowing
what's on offer.

One way of giving people a taste of what is in your Downloads module is through the Top 10
module. This module displays a list of 10 pieces of content from a variety of modules. Like many
of the module blocks we have seen in this chapter, the list will be displayed to the visitor even if
they do not have permission to access the full content itself. However, the Top10 module does not
display a list of the top 10 web links, so this strategy will fail for Web Links.

Points and Prizes
There are a number of activities in the Web Links module that can earn points for registered
visitors. The administrator can allot points for clicking a web link, rating a web link, or
commenting on a web link. Same goes for the sister module, Downloads.

Reviews
The Reviews module enables the creation of a collection of articles, ratings, and comments about
particular products, or indeed, about anything.

Like Encyclopedia, the reviews are alphabetized, and this makes it easy for the visitor to find a
review on something—they simply have to know the first letter of the subject of the review to find it.

The image below shows the welcome screen of the Reviews module; the alphabetical navigation
menu is clear:

Clicking on any of the letters or digits brings up a list of the entered reviews whose titles begin
with that letter:

 182

Chapter 7

From the list of reviews, clicking the title of the review shows the review, and the list also shows
the author of the review, the rating awarded in the review, and the number of views of that review.
There are little arrows in the title bar of the list to sort the display by any of the columns.

Submitting Reviews
Reviews can be submitted by registered or unregistered visitors, and the submitted reviews need to
be approved by the administrator before they are posted to the site. Administrator-submitted
reviews go directly onto the site.

The review-submitting process begins by clicking the Write a Review link on the Reviews
welcome page. This brings up a form for the details of the review; here is the top part:

 183

Content Management Modules

You enter the Product Title followed by the text of the review into the Review textbox. The
Product Title must be entered, and so must some text for the review, or the review will not be
accepted. Underneath it you will find more fields:

First of all are fields for your name and email address. If you are already logged in, these will be
filled with the details from your user account. The name and email address must be provided or
the review is not accepted. Under those fields is a drop-down box to select a Score from 1 to 10.
After that are fields for adding a link to the product website, and a title to accompany that link—if
you enter some text for one of these fields you must enter text for them both.

The Image Filename field only appears if you are the administrator. This is the name of an
accompanying image that must be located in the /images/reviews/ folder. There is no facility to
upload images to this location from within the module, so the image must be placed there by other
means (such as FTP). This is why the field only appears for administrators; ordinary users should
not be able to place images directly onto the server. If the image is missing from that folder, it will
simply be displayed in the same way as any missing image is displayed on a web page.

To proceed, you must click the Preview button, or click Cancel to discard your review:

 184

Chapter 7

Clicking the Yes button submits the review, or No goes back to the previous page to amend
the details.

When logged in as the administrator, the review is immediately posted to the site, and can be seen
in the list of recent reviews on the Reviews welcome page:

Clicking the review title in this list will display the review immediately. If the review is submitted
by an ordinary visitor, it goes into the reviews queue, and the length of the queue can be seen by
the administrator in the Waiting Content administrator block:

 185

Content Management Modules

Clicking the Waiting Reviews link brings you to a page showing the Reviews Waiting for Validation
panel, which—in the same way as you saw with the Web Link checking—displays the details of
the review, and allows you to add or discard the review.

Interacting with Reviews
Visitors are able to post comments to submitted reviews. There is a Post Comment link on the review
itself from where visitors can add their own opinion about the product, and their own rating. On each
comment there is a Delete link for the administrator to remove the comment if required.

Managing Reviews
The administrator interface of the Reviews module is limited, since the power to edit and delete
reviews is accessed from the review display itself. When logged in as administrator, there are Edit
and Delete links embedded in the text of the review:

These links give you power to manage the reviews in the database. Clicking the Edit link brings up
a form that allows you edit the details of the review. After making your changes, you can preview
your changes as you did earlier, and click Yes to accept them. Note that only the administrator can
edit reviews in this way; the original submitter of the review cannot do so.

Customizing the Reviews Welcome Page
Clicking the Reviews icon in the Modules Administration menu brings you to the Reviews
Administration page:

The Reviews Administration page really has only one feature—the ability to change the text that is
displayed on the reviews welcome page:

 186

Chapter 7

Changing the text in these fields and clicking the Save Changes button gives your Reviews
module a new-look front page:

The Reviews Block
There is a Reviews block that ships with PHP-Nuke, but is not displayed by default. This block
simply displays the titles of the ten most-recently entered reviews, with a link to read each review.

Special Administrator
You can create a special administrator with rights to only the Reviews module in the Edit Admins
menu of the administration area. This administrator has the ability to approve or remove submitted
reviews, in addition to posting their own.

Restricting Access
Access to the Reviews module is done on a 'whole module' basis. The visitor either sees nothing or
everything. You cannot configure individual reviews to be viewed by certain user groups.

Points and Prizes
Posting a review is strangely not worth any points, but posting a comment to a review is eligible
for earning user points.

Module Feature Comparison
We've now seen the major content types of PHP-Nuke. In an attempt to help you remember
what you have seen, here is a table listing the content types for you to quickly compare the
features they have:

Feature Stories Content Web Links /
Downloads

FAQ Encyclopedia

Searchable Yes No Yes No Yes

Categorized Yes Yes Yes Yes Yes

Hierarchical
(nested)

No No Yes No No

 187

Content Management Modules

 188

Feature Stories Content Web Links /
Downloads

FAQ Encyclopedia

Ordered By Category
Topics
Date of
Publication

Category Category
Subcategory

Category Encyclopedia

User Submitted
Content

Yes No Yes No No

Ratings Yes No Yes No No

Comments Yes No No No No

Polls Yes No No No No

Points Awarded Yes No Yes No No

Special
Administrator

Yes Yes Yes Yes Yes

Block Available No Yes Yes No Yes

Summary
In this chapter we have had a tour of the other default modules that ship with PHP-Nuke, and seen
the types of content they manage.

We looked at the Content, FAQ, Encyclopedia, Web Links and Downloads, and Reviews modules.

Each of these modules handles different types of content, but there are similarities. Each module
organizes the content into hierarchical structures, and most allow their content to be searched from
the Search module.

We saw that the Web Links and Downloads modules (which are very similar) have the most
features among the modules in this chapter. These two modules allow users to submit their own
links, rate or comment on existing links, and also help out the administrator by notifying the
administrator of any broken link or download.

For each module, we looked at both the visitor and the administrator experience, seeing how to
add, edit, and manage the content these modules work with. We also looked at the existence of
blocks that come with PHP-Nuke that can be used to display lists of content from the module, as
well as which module activities let the user earn points.

8
Managing the Discussion

Forums

PHP-Nuke has an awesome discussion board module, the Forums module, which is a complete
application. phpBB—the leading free, open-source discussion board application—has been
'refitted' as a PHP-Nuke module, providing integration with the PHP-Nuke user accounts.

In this chapter, we will begin to explore the PHP-Nuke Forums module. You will:

• Learn about the structure of a discussion board
• Learn how to create categories and forums, and make postings
• Create groups, and set simple permissions for forums
• See how to moderate forum content

Forum Structure
Rather than having a single discussion area, with topics intermingling with other topics, themes of
conversation are organized into a number of different containers, rather like the folder and file
structure of your hard disk.

The top-level of organization is the category. Note that the categories here are different from the
categories we have met in the other modules!

Within categories, the next level of organization is into forums. Forums consist of topics, and
finally, users are able to creating postings on these topics. Thus categories, forums, and topics act
like folders, with postings being analogous to the files, to continue the file system analogy.

Only forum administrators can create categories and forums. Topics (and obviously postings, since
they are the real body of a discussion area) can be added by users of the forum. A topic is essentially
a 'first' posting, with subsequent postings on that topic being replies to the topic subject.

Managing the Discussion Forums

Here is a diagram of the forums hierarchy:

Although a forum is contained in a category, the term 'forum' is generally used informally to refer
to the whole discussion environment, covering categories, forums, topics, and postings. When you
'post to a forum', you are actually posting to a topic in a particular forum of a certain category! The
general term 'board' or 'discussion board' is usually used to refer to the whole forum experience.

Access to categories and forums can be restricted to groups of users. These restricted categories
and forums can also be made invisible to those unable to access them. This is in contrast with
other modules in PHP-Nuke where you restrict access to the entire module. In general, visitors
either see all the contents of the module or none of it. The Forums module enables a set of 'mini-
administrators', forum moderators, who are able to control who is able to post what, and where.
We'll see more about that later.

The Forums Administration Area
The Forums administration area is accessed through the PHP-Nuke Administration area, in the
same way as for any other module.

 190

Chapter 8

This brings you to an area very different from the other PHP-Nuke module administration areas.
This is the phpBB administration area, and is the nerve center of your phpBB forums.

The page has a frame-based layout, with the left-hand frame being the navigation panel, giving you
links to the various phpBB administration tasks. The right-hand frame holds the main page content.

This screen shows you some statistics about your board, and the details of current, online visitors.
Clicking the Admin Index link will return you to this page, with the Forum Index link taking you
into your forums. The Preview Forum link also takes you to your forums, but opens them up in the
right-hand frame of the browser, retaining the phpBB administration navigation in the left-hand
frame, so you can continue to work in the phpBB administration area if you need to.

phpBB is truly awesome. It is arguably one of the most impressive free, open-source PHP web
applications available, and we can only scratch the surface of its true power here. phpBB is worthy
of a book by itself, and there is one: Building Online Communities with phpBB 2 by Stoyan
Stefanov, Jeremy Rogers, and Mike Lothar from Packt Publishing (ISBN 1-904811-13-2).

 191

Managing the Discussion Forums

Here we will step through the tasks of creating the structure to allow users to make postings,
follow the posting process, and also see how to make some basic configuration changes.

Forum Configuration
Just as with PHP-Nuke where we began by making changes to PHP-Nuke's site configuration,
here too, we begin with some global configuration settings for phpBB. Clicking the Configuration
link in the General Admin part of the left-hand panel takes you to the phpBB configuration area.
There are many options; only some of the top ones are shown here:

The Domain Name, Site name, and Site description fields are similar to the Site URL, Site Name,
and Slogan fields of the PHP-Nuke preferences. The Domain Name field holds the domain name
of your site, and we'll set the Site name and Site description fields to match those in our PHP-
Nuke site configuration.

We will also set the Cookie Domain to our site domain name, and the Cookie name to
dinoportalforum. Note that if you change these settings after your site has gone live with people
having visited the forums and logged in, then they won't be able to log in automatically since the
Forums module will be looking for a different cookie from the one they have stored in their browser.

 192

Chapter 8

PHP-Nuke generally uses the PHP mail() function to send its emails, but the Forums module
offers the option to use an SMTP server to send mail. If you know the details of an SMTP server
that you can use (possibly your Internet Service Provider has given you access to an SMTP
server), then you can enter the settings for this in the Email Settings panel. If you don't have access
to an SMTP server, then the default action of the Forums module is to use the PHP mail()
function, as PHP-Nuke would normally do.

Scrolling down the screen you will find a Submit button that will save your changes.

Creating a Category
Click the Management link in the Forum Admin panel to begin creating the forum structure. First,
you will need to create a category:

Once you enter the name for the category into the box and click the Create new category button,
you have a category.

Creating a Forum
When the page reloads after creating the category, you are presented with a screen confirming the
creation of your forum, and a Click Here to return to Forum Administration link. Clicking this link
brings you to a page with the list of current categories displayed, along with links to edit, delete, or
change their ordering in the list. You are also able to continue creating new categories.

Immediately underneath our new category is a box for entering the name of a new forum for that
category, and clicking the Create new forum button will create a forum of that name:

 193

Managing the Discussion Forums

When the page reloads, you will be given a screen into which you can enter a description of the
forum, and set some properties for it. You can assign the forum to another category from the
Category dropdown, or you can set the Forum Status. The Forum Status is Locked or Unlocked.
An Unlocked forum is free for all to view and contribute to; a Locked forum requires the user to
have specific access to write or post to it.

There are also 'pruning' options available for removing topics that haven't seen enough activity in
the forum. These options will be useful for keeping your 'board' clean over time.

Clicking the Create new forum button creates the forum:

Now we have forums, we are ready for topics. It is only a matter of time before we are posting!

 194

Chapter 8

The Visitor Experience
Open a new browser window, visit your PHP-Nuke site, and click the Forums link. The visitor is
welcomed to the Forums module with a list of the categories:

Clicking the Who is Online link presents you with a list of people who are currently viewing the
forum, and where they are in the forum.

Clicking on one of the forums takes you to the list of topics in that forum. At the moment, our
forum is empty.

 195

Managing the Discussion Forums

As the screen is encouraging us to do, we can click on the new topic button to post a new topic to
the forum. We do not have to be an administrator to do this, but we do have to be a registered user
of the PHP-Nuke site.

Posting a Topic
The form for posting a new topic is rather exciting:

 196

Chapter 8

You can enter the Subject of your topic, and enter the body of the topic in the Message body box.
You are able to use a range of formatting effects within the body of your posting, including
inserting those the little emoticons by clicking on them to add them to your text.

Before posting your topic, it is worth taking a moment to preview it by clicking the Preview
Post button:

If you are happy with the posting as it is, click the Submit button and the posting is submitted.
Your new topic is displayed in the forum's topic list:

Clicking the topic title brings up the submitted postings for that topic. At this point, we have only
one—the topic posting:

 197

Managing the Discussion Forums

Users can now continue the discussion by posting a reply to this post. The author of the post is
able to reply to, edit, or delete his or her own post with the aid of the three icons in the top
right-hand corner of the post before any replies have been posted to the posting.

Forum Permissions
Access to particular forums can be restricted to groups of users. Going one step further, forums
can be made invisible to anyone outside the group.

Before we set up permissions, we will create a group of users who will have access to our Project
Chimera forum. The moderator of this group will be our testuser account, and that user will have
the responsibility of approving membership to the group.

Creating Groups
We return to the Forum Administration area, and click the Management link in the Group Admin
section of the left-hand navigation pane:

 198

Chapter 8

We are presented with the Group Administration page, where we begin the process of configuring
group permissions by selecting the group from the dropdown. At this point, we need to create a
group, so we click the Create New Group button instead:

This brings us to a form for entering our group's details:

We provide the group name, a description, and also enter the username of a group moderator. (The
Find a username button opens a dialog that allows you to search the list of users to find your
moderator if you have forgotten their full username.) You must specify a moderator for the group;
you won't be allowed to create the group without one.

The Group status works like this:

• Anyone can apply to join an open group, and the moderator approves or denies their
membership. Alternatively, the moderator can add them directly to the group.

• For a closed group, there is no application process, and the moderator has to add the
user directly to the group.

• Hidden groups work in the same way as closed groups, except they are invisible to
non-members.

 199

Managing the Discussion Forums

We select testuser as our moderator and Open group for the group status.

Once our details are complete, we click the Submit button and our group is created.

Setting Forum Permissions
To begin the process of restricting permissions, we return to the Forum Administration area, and
click the Permissions link in the left-hand navigation frame:

This takes you to the Forum Permissions Control interface. From here you select a forum; click the
Look up Forum button and then you can set the permissions for that forum:

The next screen presents you a dropdown for selecting the access mode of the forum. There is a
Simple Mode of assigning phpBB privileges and, for finer control over your forum privileges,
there's also a link to the Advanced Mode. Discussion of that is beyond our scope here; suffice it to
say that this allows control over what users can do within a particular forum. This level of
permissions is reflected by the text at the right-hand foot of the forum area:

We will select Private from the dropdown, so that only authorized users will be able to see the
forum. The authorized users will be members of the Project Chimera team.

 200

Chapter 8

After selecting Private, we click the Submit button, and our forum's permissions are updated.

Now, if you return to the Forums homepage and attempt to view the Project Chimera forum, you
will receive a 'no entry' message:

Although you are still logged in as testuser, and that user is the moderator of the Project
Chimera Team group, that group itself has no access to the forum. Thus we will need to add that
in order to continue.

Setting Group Permissions
Click the Permissions link in the Group Admin section of the left-hand navigation frame:

You find yourself in the Group Permissions Control page. From here we can select a group and
move on to manage its permissions. We select Project Chimera Team from the dropdown and
click Look up Group:

 201

Managing the Discussion Forums

Now we are able to allow the members of the Project Chimera Team to view their forum by selecting
Allowed Access from the Simple Permissions dropdown. Again, there is an Advanced Mode, but that
is beyond the scope of our discussion here. Clicking the Submit button saves our permissions:

Now, when you return to the Forums homepage you will be able to view the Project Chimera
forum, when logged in as testuser.

Joining Groups
We've created another user for the PHP-Nuke site, called Zak. As a member of the ill-fated Project
Chimera team, he wants to add himself to the Project Chimera Team group so that he is able to
view the forum, and find out what's going on.

Zak does this by going to the Forums module, and clicking the Usergroups link:

This brings you to a page with group membership details. In the list of Non-member groups, we
can see the groups that can be joined. Zak can select one from the dropdown, and then click its
View Information button:

 202

Chapter 8

On clicking the button, Zak is presented with details of the group, including the group
description that we entered when we created the group, a button to join the group, and a list of
the group members:

Clicking the Join Group button begins the process of Zak joining the Project Chimera Team group.
To be fully accepted into the group, the application has to be approved by a moderator of the
group, as can be seen below when Zak views the group's information:

Approving the Membership Application
Now it is up to the moderator, testuser, to approve Zak's membership. This process begins by
testuser clicking on the Usergroups link, selecting the Project Chimera Team group from the
Group Membership Details, and clicking the View Information button.

The moderator's view of the group information is different from that of the standard user. In
addition to seeing the list of group members, there are buttons to remove members from the group,
and also an opportunity to add a new member without the need for the approval stage.

At the foot of the display is a list of pending memberships:

 203

Managing the Discussion Forums

By checking the box next to zak's name, and clicking the Approve Selected button, zak is admitted
to the group.

Now zak is free to read the Project Chimera forum, and post to his heart's content.

Underneath the list of pending members is a textbox to add members directly to the group:

By entering the username into the textbox and clicking the Add Member button, that user is added
to the group. For closed or hidden groups, there will be no list of pending members since
applications are not accepted, and you add members through this textbox.

Moderating the Forum
Although testuser is the Project Chimera Team group moderator, that user is not the moderator
of the forum itself. In order to make testuser the forum moderator, so that they can edit or delete
posts to that forum, we need to set this permission explicitly.

Setting a Forum Moderator
We start by clicking the Permissions link in the User Admin portion of the left-hand navigation frame:

This brings us to the User Permission Control page, where we first have to enter the username of
the user whose permissions we wish to modify:

 204

Chapter 8

Clicking the Look up User button brings us to the details of this user's permissions. At the top of
the page is information about the level of that user (Administrator or User), and the groups that
they are members of:

Underneath that is the information about the user-to-forum permissions:

Although the Simple Permissions column of the Project Chimera forum shows Disallowed Access,
this is overridden by testuser's membership of the Project Chimera Team group, and they are
able to access that forum. However, to allow Zak and the other members of the Project Chimera
Team to view the forum, it needs to be set to Allowed Access.

To make testuser a moderator of the forum, select Is Moderator from the Moderator status
dropdown, and click the Submit button.

Now that testuser is a moderator of the Project Chimera forum, on their next visit they will
notice an extra 'toolbar' that is added to the top right-hand of each of the posts:

The buttons on this toolbar allow testuser to edit the post, delete the post, or view the IP address
of the poster.

 205

Managing the Discussion Forums

 206

Clicking the edit button allows you to modify the post, maybe removing or disclaiming some
statement in the text. Click the delete button (the cross icon) and confirm that you want that post
deleted to remove it from the topic.

Summary
As we mentioned earlier, we can only hope to scratch the surface of phpBB's awesome power in this
single chapter. However, we have covered the basics of working with PHP-Nuke's Forums module.

We covered the basic structure of a discussion board, and saw how categories, forums, and
postings relate to each other.

We then moved on to create some categories and forums, and make postings to the forum.
Restricting forums to particular groups of users was our next stop, creating groups, setting the
permissions for those groups, and then seeing how users can be assigned to those groups. We
finished off with a quick look at moderation, how to set up a user as a forum moderator, and saw
the extra information visible to the moderator that appeared in each post. Also, we finally saw
exactly what Project Chimera is.

9
Customizing Layout with

Themes

In this chapter, we are going to transform the look of the Dinosaur Portal with the help of a new
PHP-Nuke theme. A PHP-Nuke theme is a collection of HTML files, CSS styles, images, and
PHP code that defines the layout and appearance of your pages, and hence, the look and feel of
your site. Through the use of themes, without having to touch the inner workings of PHP-Nuke,
you can create a new look for your site, enforced throughout the site. There is even the possibility
of allowing the user to choose a personal theme.

Creating a PHP-Nuke theme gives your site its own special look, distinguishing it from other
PHP-Nuke-created sites and offers an effective outlet for your creative talents. Creating a theme
requires some knowledge of HTML, confidence in working with CSS and PHP, but most
important is some imagination and creativity!

Unlike the tasks we have tackled in previous chapters, where we have been working exclusively
through a web browser to control and configure PHP-Nuke, working with themes is the start of a
new era in your PHP-Nuke skills; editing the code files of PHP-Nuke itself. Fortunately, the
design of PHP-Nuke means that our theme work won't be tampering with the inner workings of
PHP-Nuke. However, becoming confident in handling the mixture of HTML and PHP code that is
a PHP-Nuke theme will prepare you for the more advanced work ahead, when we really get to
grips with PHP-Nuke at the code level.

In this chapter, we will look at:

• Theme management
• Templates in themes
• Changing the page header
• Working with the stylesheet
• Changing blocks
• Changing the format of stories

Customizing Layout with Themes

 208

What Does a Theme Control?
Despite the fact that we say 'themes control the look and feel of your site', a theme does not
determine every aspect of the page output. PHP-Nuke is an incredibly versatile application, but it
cannot produce every website imaginable.

Appearance
First of all, the appearance of the page can be controlled through the use of colors, fonts, font
sizes, weights, and so on. This can either be done through the use of CSS styles or HTML. You
can also add JavaScript for fancier effects, or even Flash animations, Java applets, or sounds—
anything that you can add to a standard HTML page.

Graphical aspects of the page such as the site banner, background images, and so on, are under the
care of the theme. There are also some modules that allow their standard graphical icons to be
overridden with images from a theme.

Page Layout
Roughly speaking, a PHP-Nuke page consists of three parts; the top bit, the bit in the middle, and
the bit at the bottom! The top bit—the header—usually contains a site logo and such things as a
horizontal navigation bar for going directly to important parts of your site. The bottom bit—the
footer—contains the copyright message.

In between the header and the footer, the output is usually divided into three columns. The
left-hand column typically contains blocks, displayed one of top each other, the middle column
contains the module output, and the right-hand column contains more blocks. The layout of these
columns (their width for example) is controlled by the theme. You may have noticed that the
right-hand column is generally only displayed on the homepage of a PHP-Nuke site; this too, is
something that is controlled by the theme.

The appearance of the blocks is controlled by the theme; PHP-Nuke provides the title of the block
and its content, and the theme will generally 'frame' these to produce the familiar block look.

The theme also determines how the description of stories appears on the homepage. In addition,
the theme determines how the full text of the story, its extended text, is displayed.

We've talked about how the theme controls the 'look' of things. The theme also allows you to add
other site-related data to your page; for example the name of the site can appear, and the site
slogan, and you can even add such things as the user's name with a friendly welcome message.

Theme Management
Basically, a theme is a folder that sits inside the themes folder in your PHP-Nuke installation.
Different themes correspond to different folders in the themes folder, and adding or removing a
theme is as straightforward as adding or removing the relevant folder from the themes folder.

By default, you will find around 14 themes in a standard PHP-Nuke installation. DeepBlue is the
default theme.

Chapter 9

Themes can be chosen in one of two ways:

• By the administrator: You can simply select the required theme from the General
Site Info panel of the Site Preferences administration menu and save the changes.
The theme selected by the administrator is the default theme for the site and will be
seen by all users of the site, registered or unregistered.

• By the user: Users can override the default theme set by the administrator from the
Themes option of the Your Account module. This sets a new, personal, theme that
will be displayed to that user. Note that this isn't a theme especially customized for
that user; it is just one chosen from the list of standard themes installed on your site.

Unregistered visitors do not have an option to choose a theme; they have to become registered users.

Theme File Structure
Let's start with the default theme, DeepBlue. If you open up the DeepBlue folder within the
themes folder in the root of your PHP-Nuke installation, you will find three folders and two files.
The three folders are:

• forums: This folder contains the theme for the Forums module. This is not strictly a
requirement of a PHP-Nuke theme, and not every PHP-Nuke theme has a forums
theme. The Forums module (otherwise known as phpBB) has its own theme 'engine'.
The purpose of including a theme for the forums is that you have consistency
between the rest of your PHP-Nuke display and the phpBB display.

• images: This folder contains the image files used by your theme. These include the
site logo, background images, and graphics for blocks among others. As mentioned
earlier, within this folder can be other folders containing images to override the
standard icons.

• style: This folder contains the CSS files for your theme. Usually, there is one CSS
file in the style folder, style.css. Each theme will make use of its style.css file,
and this is the file into which we will add our style definitions when the time comes.

Of the two files, index.html is simply there to prevent people browsing to your themes folder and
seeing what it contains; visiting this page in a browser simply produces a blank page. It is a very
simple security measure.

The themes.php file is a PHP code file, and is where all the action happens. This file must always
exist within a theme folder. We will concentrate on this file later when we customize the theme.

In other themes you will find more files; we will look at these later.

Installing a New Theme
Installing and uninstalling themes comes down to adding or removing folders from the themes
folder, and whenever a list of available themes is presented, either in the Site Preferences menu or
the Your Accounts module, PHP-Nuke refreshes this list by getting the names of the folders in the
themes folder.

 209

Customizing Layout with Themes

 210

You will find a huge range of themes on the Web. For example, there is a gallery of themes at:
http://nukecops.com/modules.php?set_albumName=packs&op=modload&name=Gallery&
file=index&include=view_album.php

Many of these are themes written for older versions of PHP-Nuke, but most are still compatible
with the newer releases.

There is also a live demonstration of some themes at:
http://www.portedmods.com/styles/

On this page you can select the new theme and see it applied immediately, before you download it.

Removing an Existing Theme
To remove a theme from your PHP-Nuke site you simply remove the corresponding folder from
the themes folder, and it will no longer be available to PHP-Nuke.

However, you should be careful when removing themes—what if somebody is actually using
that theme?

• If a user has that theme selected as their personal theme, and you remove that
theme, then that user's personal theme will revert to the default theme selected in
Site Preferences.

• If you remove the site's default theme, then you will break your site!

Deleting the site's default theme will produce either a blank screen or messages like the following
when you attempt to view your site.

Warning: head(themes/NonExistentTheme/theme.php)
[function.head]: failed to create stream:
No such file or directory in c:\nuke\html\header.php on line 31

The only people who can continue to use your site in this situation are those who have selected a
personal theme for themselves—and only if that theme is still installed.

To correct such a faux pas, make a copy of one of the other themes in your themes folder (unless
you happen to have a copy of the theme you just deleted elsewhere), and rename it to the name of
the theme you just deleted.

In conclusion, removing themes should only be a problem if you somehow manage to remove
your site's default theme. For users who have selected the theme you just removed, their theme
will revert to the default theme and life goes on for them.

A final caveat about the names of theme folders; do not use spaces in the names of the folders in
the themes folder—this can lead to strange behavior when the list of themes is displayed in the
drop-down menus for users to select from.

From an Existing Theme to a New Theme
We'll create a new theme for the Dinosaur Portal by making changes to an existing theme. This
will not only make you feel like the theme master, but it will also serve to illustrate the nature of

http://nukecops.com/modules.php?set_albumName=packs&op=modload&name=Gallery&file=index&include=view_album.php
http://nukecops.com/modules.php?set_albumName=packs&op=modload&name=Gallery&file=index&include=view_album.php
http://www.portedmods.com/styles/
http://www.php.net/function.head

Chapter 9

the theme-customization problem. We'll be making changes all over the place—adding and
replacing things in HTML and PHP files—but it will be worth it. Another thing to bear in mind is
that we're creating a completely different looking site without making any changes to the inner
parts of PHP-Nuke. At this point, all we are changing is the theme definition.

The theme for the Dinosaur Portal will have a warm, tropical feel to it to evoke the atmosphere of
a steaming, tropical, prehistoric jungle, and will use lots of orange color on the page.

First of all, we need a theme on which to conduct our experiments. We'll work on the
3D-Fantasy theme.

Starting Off
The first thing we will do is to create a new theme folder, which will be a copy of the
3D-Fantasy theme.

Open up the themes folder in your file explorer, and create a copy of the 3D-Fantasy folder.
Rename this copy as TheDinosaurPortal.

Now log into your site as testuser, and from the Your Account module, select TheDinosaurPortal
as the theme. Your site will immediately switch to this theme, but it will look exactly like
3D-Fantasy, because, at the moment, it is!

You will also need some images from the code download for this chapter; you will find them in
the SiteImages folder of this chapter's code.

Replacing Traces of the Old Theme
The theme that we are about to work on has many occurrences of 3D-Fantasy in a number of files,
such as references to images. We will have to remove these first of all, or else our new theme will
be looking in the wrong folder for images and other resources.

Open each of the files below in your text editor, and replace every occurrence of 3D-Fantasy with
TheDinosaurPortal in a text editor, we'll use Wordpad. "You can use the replace functionality of
your editor to do this. For example, in Wordpad, select Edit | Replace; enter the text to be
replaced, and then click Replace All to replace all the occurrences in the open file. After making all
the changes, save each file:

• blocks.html
• footer.html
• header.html
• story_home.html
• story_page.html
• theme.php
• tables.php

 211

Customizing Layout with Themes

 212

Templates and PHP Files
We've just encountered two types of file in the theme folder—PHP code files (theme.php and
tables.php) and HTML files (blocks.html, footer.html, and so on). Before we go any further,
we need to have a quick discussion of what roles these types of file play in the theme construction.

PHP Files
The PHP files do the main work of the theme. These files contain the definitions of some
functions that handle the display of the page header and how an individual block or article is
formatted, among other tasks. These functions are called from other parts of PHP-Nuke when
required. We'll talk about them when they are required later in the chapter. Part of our
customization work will be to make some changes to these functions and have them act in a
different way when called.

Historically, the code for a PHP-Nuke theme consisted of a single PHP file, theme.php. One
major drawback of this was the difficulty you would have in editing this file in the 'design' view of
an HTML editor. Instead of seeing the HTML that you wished to edit, you probably wouldn't see
anything in the 'design' view of most HTML editors, since the HTML was inextricably intertwined
with the PHP code. This made creating a new theme, or even editing an existing theme, not
something for the faint-hearted—you had to be confident with your PHP coding to make sure you
were changing the right places, and in the right way.

The theme.php file consists of a number of functions that are called from other parts of PHP-Nuke
when required. These functions are how the theme does its work.

One of the neat appearances in recent versions of PHP-Nuke is the use of a 'mini-templating'
engine for themes. Not all themes make use of this method (DeepBlue is one theme that doesn't),
and that is one of the reasons we are working with 3D-Fantasy as our base theme, since it does
follow the 'templating' model.

Templates
The HTML files that we modified above are the theme templates. They consist of HTML, without
any PHP code. Each template is responsible for a particular part of the page, and is called into
action by the functions of the theme when required.

One advantage of using these templates is that they can be easily edited in visual HTML editors,
such as Macromedia's Dreamweaver, without any PHP code to interfere with the page design.

Another advantage of using these templates is to separate logic from presentation. The idea of a
template is that it should determine how something is displayed (its presentation). The template
makes use of some data supplied to it, but acquiring and choosing this data (the logic) is not done
in the template. The template is processed or evaluated by the 'template engine', and output is
generated. The template engine in this case is the theme.php file.

To see how the template and PHP-Nuke 'communicate', let's look at an extract from the
header.html file in the 3D-Fantasy folder:

Chapter 9

 <img src="themes/3D-Fantasy/images/logo.gif" border="0"
 alt="Welcome to $sitename" align="left">

The $sitename text (shown highlighted) is an example of what we'll call a placeholder. There is a
correspondence between these placeholders and PHP variables that have the same name as the
placeholder text. Themes that make use of this templating process more or less replace any text
beginning with $ in the template by the value of the corresponding PHP variable.

This means that you can make use of variables from PHP-Nuke itself in your themes; these could
be the name of your site ($sitename), your site slogan, or even information about the user. In fact,
you can add your own PHP code to create a new variable, which you can then display from within
one of the templates.

To complete the discussion, we will look at how the templates are processed in PHP-Nuke. The
code below is a snippet from one of the themeheader() function in the theme.php file. This
particular snippet is taken from the 3D-Fantasy theme.

function themeheader()
{
 global $user, $banners, $sitename, $slogan, $cookie, $prefix,
 $anonymous, $db;
 ... code continues

 $tmpl_file = "themes/3D-Fantasy/header.html";
 $thefile = implode("", file($tmpl_file));
 $thefile = addslashes($thefile);
 $thefile = "\$r_file=\"".$thefile."\";";
 eval($thefile);
 print $r_file;
 ... code continues

The processing starts with the line where the $tmpl_file variable is defined. This variable is set
to the file name of the template to be processed, in this case header.html. The next line grabs the
content of the file as a string. Let's suppose the header.html file contained the text You're
welcomed to $sitename, thanks for coming!. Then, continuing in the code above, the $thefile
variable would eventually hold this:

\$r_file = \" You\'re welcomed to $sitename, thanks for coming!\";

This looks very much like a PHP statement, and that is exactly what PHP-Nuke is attempting to
create. The eval() function executes the statement; it defines the variable $r_file as above. This
is equivalent to putting this line straight into the code:

$r_file = " You\'re welcomed to $sitename, thanks for coming!";

If this line were in the PHP code, the value of the $sitename variable will be inserted into the
string, and this is exactly how the placeholders in the templates are replaced with the values of the
corresponding PHP variables.

This means that the placeholders in templates can only use variables accessible at the point in the
code where the template is processed with the eval() function. This means any parameters passed to
the function at the time—global variables that have been announced with the global statement or
any variables local to the function that have been defined before the line with the eval() function.
This does mean that you will have to study the function processing the template to see what variables
are available. In the examples in this chapter we'll look at the most relevant variables.

 213

Customizing Layout with Themes

The templates do not allow for any form of 'computation' within them; you cannot use loops or
call PHP functions. You do your computations 'outside' the template in the theme.php file, and the
results are 'pulled' into the template and displayed from there.

Now that we're familiar with what we're going to be working with, let's get started.

Changing the Page Header
The first port of call will be creating a new version of the page header. We will make these
customizations:

• Changing the site logo graphic
• Changing the layout of the page header
• Adding a welcome message to the user, and displaying the user's avatar
• Adding a drop-down list of topics to the header
• Creating a navigation bar

Time For Action—Changing the Site Logo Graphic
1. Grab the logo.gif file from the SiteImages folder in the code download.
2. Copy it to the themes/TheDinosaurPortal/images folder, overwriting the existing

logo.gif file.
3. Refresh the page in your browser. The logo will have changed!

What Just Happened?
The logo.gif file in the images folder is the site logo. We replaced it with a new banner, and
immediately the change came into effect.

Time For Action—Changing the Site Header Layout
1. In the theme folder is a file called header.html. Open up this file in a text editor,

we'll use Wordpad.
2. Replace all the code in this file with the following:

<!-- Time For Action—Changing the Site Header Layout -->
<table border="0" cellspacing="0" cellpadding="6" width="100%"
 bgcolor="#FFCC33">
 <tr valign="middle">
 <td width="60%" align="right" rowspan="2">
 <img src="themes/$GLOBALS[ThemeSel]/images/logo.gif"
 border="1" alt="Welcome to $sitename">
 </td>

 214

Chapter 9

 <td width="40%" colspan="2">
 <p align="center">WELCOME TO $sitename!</td>
 </tr>
 <tr>
 <td width="20%">GAP</td>
 <td width="20%">GAP</td>
 </tr>
</table>
<!-- End of Time for Action -->
$public_msg

<table cellpadding="0" cellspacing="0" width="99%" border="0"
 align="center" bgcolor="#ffffff">
<tr><td bgcolor="#ffffff" valign="top">

3. Save the header.html file.
4. Refresh your browser. The site header now looks like this:

What Just Happened?
The header.html file is the template responsible for formatting the site header. Changing this file
will change the format of your site header.

We simply created a table that displays the site logo in the left-hand column, a welcome message
in the right-hand column, and under that, two GAPs that we will add more to in a moment. We set
the background color of the table to an orange color (#FFCC33). We used the $sitename
placeholder to display the name of the site from the template.

Note that everything after the line:
<!-- End of Time for Action -->

in our new header.html file is from the original file. (The <!-- ... --> characters here denote an
HTML comment that is not displayed in the browser). This is because the end of the header.html
file starts a new table that will continue in other templates. If we had removed these lines, the page
output would have been broken.

There was another interesting thing we used in the template, the $GLOBALS[ThemeSel] placeholder:
<img src="themes/$GLOBALS[ThemeSel]/images/logo.gif"

ThemeSel is a global variable that holds the name of the current theme—it's either the default site
theme or the user's chosen theme. Although it's a global variable, using just $ThemeSel in the
template would give a blank, this is because it has not been declared as global by the function in
PHP-Nuke that consumes the header.html template. However, all the global variables can be
accessed through the $GLOBALS array, and using $GLOBALS[ThemeSel] accesses this particular
global variable. Note that this syntax is different from the way you may usually access elements of
the $GLOBALS array in PHP. You might use $GLOBALS['ThemeSel'] or $GLOBALS["ThemeSel"].
Neither of these work in the template so we have to use the form without the ' or ".

 215

Customizing Layout with Themes

Time For Action—Fixing and Adding the Topics List
Next we'll add the list of topics as a drop-down box to the page header. The visitor will be able to
select one of the topics from the box, and then the list of stories from that topic will be displayed
to them through the News module. Also, the current topic will be selected in the drop-down box to
avoid confusion.

This task involves fixing some bugs in the current version of the 3D-Fantasy theme.

1. First of all, open the theme.php file and find the following line in the themeheader()
function definition:
$topics_list = "<select name=\"topic\" onChange='submit()'>\n";

2. Replace this line with these two lines:
global $new_topic;
$topics_list = "<select name=\"new_topic\" onChange='submit()'>\n";

3. If you move a few lines down in the themeheader() function, you will find this line:
if ($topicid==$topic) { $sel = "selected "; }

4. Replace $topic with $new_topic in this line to get:
if ($topicid==$new_topic) { $sel = "selected "; }

5. Save the theme.php file.
6. Open the header.html file in your text editor, and where the second GAP is, make the

modifications as shown below:
 <td width="20%">GAP</td>

<td width="20%"><form action="modules.php?name=News&new_topic"
method="post">
Select a Topic:
$topics_list</select></form></td>

</tr>
</table>
<!-- End of Time for Action -->

7. Save the header.html file.
8. Refresh your browser. You will see the new drop-down box in your page header:

What just Happened?
The themeheader() function is the function in theme.php responsible for processing the
header.html template, and outputting the page header.

The $topics_list variable has already been created for us in the themeheader() function, and
can be used from the header.html template. It is a string of HTML that defines an HTML select
drop-down list consisting of the topic titles.

 216

Chapter 9

However, the first few steps require us to make a change to the $topics_list variable, correcting
the name of the select element and also using the correct variable to ensure the current topic (if
any) is selected in the drop-down box. The select element needs to have the name of new_topic,
so that the News module is able to identify which topic we're after.

This is all done with the changes to the theme.php file. First, we add the global statement to
access the $new_topic variable, before correcting the name of the select element:

global $new_topic;
$topics_list = "<select name=\"new_topic\" onChange='submit()'>\n";

The next change we made is to make sure we are looking for the $new_topic variable, not the
$topic variable, which isn't even defined:

if ($topicid==$new_topic) { $sel = "selected "; }

Now the $topics_list variable is corrected, all we have to do is add a placeholder for this
variable to the header.html template, and some more HTML around it. We added the placeholder
for $topics_list to display the drop-down list, and a message to go with it encouraging the
reader to select a topic into one of the GAP table cells we created in the new-look header.

The list of topics will be contained in a form tag, and when the user selects a topic, the form will be
posted back to the server to the News module, and the stories in the selected topic will be displayed.
(The extra HTML that handles submitting the form is contained with the $topics_list variable.)

<form action="modules.php?name=News" method="post">
Select a Topic:
$topics_list

All that remains now is to close the select tag—the tag was opened in the $topics_list variable
but not closed—and then close the form tag:

</select></form>

When the page is displayed, this is the HTML that PHP-Nuke produces for the topics drop-down list:
<form action="modules.php?name=News&new_topic" method="post">
Select a Topic:
<select name="topic" onChange='submit()'>
<option value="">All Topics</option>
<option value="1">The Dinosaur Portal</option>
<option value="2">Dinosuar Hunting</option>
</select></form>

Time For Action—Adding a Welcome Message to the User
We will add some more information the page header; a friendly message to salute our visitors:

1. Open the theme.php file in your text editor, and inside the themeheader() function
definition, find the following line:
$theuser = " Welcome $username!";

2. Change that line to the following:
$theuser = " Hi $username!, how you doing?";

3. Save the theme.php file.
4. Open the header.html file, and modify the remaining GAP as shown below:

<td width="20%">$theuser</td>
 <td width="20%"><form action="modules.php?name=News"

 217

Customizing Layout with Themes

 method="post">
Select a Topic:
$topics_list</select></form></td>
</tr></table>
</div>

<!-- End of Time for Action -->

5. Save the header.html file.
6. Refresh the browser. A polite welcome is displayed to the user:

What Just Happened?
The $theuser variable already contained a message of the form Welcome <username>! However,
we wanted a friendlier greeting, so we edited the definition of the $theuser variable in theme.php.
The $username variable, used to define $theuser, holds the name of the user, and had been set up
earlier in the themeheader() function definition.

After that was done, all we had to do was add a placeholder for the $theuser variable into our
template, and we were away.

The introductory Hi was added to the $theuser string because if the user is not logged in, a link to
Create an Account is displayed instead. If we had put Hi in the template instead of the variable, it
would say Hi Create An Account to a new visitor, which could be rather confusing.

Time For Action—Adding the User Avatar
We've said hello to our user, now let's show the user their face—well, their avatar at least. We will
display their avatar underneath the welcome message:

1. In the theme.php file, add the following code immediately after the line we just
modified (shown highlighted—it's in the themeheader() function definition if you
have lost track):
$theuser = "Hi $username!, how you doing?";
$profile = getusrinfo($user);
$avatar = $profile['user_avatar'];
if ($avatar)
{
 $theuser .= "
<center>
 <img src=\"modules/Forums/images/avatars/$avatar\"
 alt=\"Your Face!\"></center>\n";

 }

2. Save the theme.php file.
3. Refresh your browser to see the avatar.

 218

Chapter 9

What Just Happened?
Extended information about the user is obtained through a call to the getusrinfo() function,
passing in the $user variable. The $user global variable holds a limited amount of information
about the user, including the username and password, which is used to identify the user and
retrieve their profile. This is all done in the getusrinfo() function in the mainfile.php file. This
function returns an array of data to us, which we store in an array we call $profile.

The exciting bit of data for us is the avatar entry in our $profile array (accessed through
$profile['avatar']). This contains the filename of the user avatar image, and all we have to do
is add the path to the avatar images in the Forums module and we have a picture.

If the user isn't logged in, this bit of code won't even be executed, so there is no need to worry
about not finding an avatar image for a non-existent user.

Time For Action—Adding a Horizontal Navigation Bar
Now we'll take the first steps towards adding a horizontal navigation bar. These first steps will not
produce a very exciting result; we will put the finishing touches to this when we use CSS in the
next section.

1. Open the header.html file, and add the highlighted code as shown below:
Select a Topic:
$topics_list</select></form></td>
</tr>
<tr>

<td colspan="3" >
<div id="navBar">
 Home
 Downloads
 Encyclopedia
 Your Account
 Submit News
</div>
</td>

</tr>
</table>
<!-- End of Time for Action -->

2. Save the file.
3. Refresh your browser, and your navigation bar will be there:

What Just Happened?
All that we did here was to insert an extra row into the page header table, and then add a couple of
links to that row. We had to set the colspan for the td element to 3, since there are three columns
in the table, and our row was to have only one column that spans the entire width of the table.

Time For Action—Changing Some Background Colors
There are a couple of global variables defined by the theme that can be used by various modules of
PHP-Nuke. Two of these are $bgcolor1 and $bgcolor2. These define background colors, and are
used, for example, by the comments navigation bar:

 219

Customizing Layout with Themes

1. Open the theme.php file in your text editor.
2. Find the definition of the $bgcolor1 and $bgcolor2 variables:

$bgcolor1 = "#d5d5d5";
$bgcolor2 = "#7b91ac";

3. Change them to the following:
$bgcolor1 = "#FFCC33";
$bgcolor2 = "#FFCC99";

4. Save the theme.php file.

Now view one of the stories on your site, and have a look at the comments navigation bar; the
dark and light shades of blue have been replaced by dark and light shades of orange:

What Just Happened?
We set new values for the $bgcolor1 and $bgcolor2 global variables. We set $bgcolor2 to a dark
orange and $bgcolor1 to a lighter orange. After making the change, we had a look at the
comments navigation bar, which is one place where these background colors are actually used.
These variables are also used in the Downloads, News, Statistics, and Web Links modules among
others, and are used to control the 'shading' or background color of a number of elements.

Working with the Stylesheet
Now it's time to start making changes to the theme's Cascading Style Sheet (CSS) file, the
stylesheet. Using the stylesheet will allow us to move formatting details out of the theme's HTML
templates (and PHP code).

However, to prepare the way for using the stylesheet we will sometimes find ourselves having to
remove some hardcoded HTML attributes from the templates (or PHP code). We will need to do
this because these HTML attributes will override our settings in the CSS file, and our changes to
the stylesheet won't be seen. We will also find that, as we move the formatting from the templates
and PHP code into the stylesheet, we get greater control over the formatting of our elements. As
we make further customizations to our theme in this chapter, we will move the formatting
responsibility to the stylesheet and out of the templates.

 220

Chapter 9

Time For Action—Background Image with Style
The first thing we're going to do is set the background image of the page from the CSS file.

1. Grab the background.jpg file from the SiteImages folder in the code download,
and copy it to the themes/TheDinosaurPortal/images folder.

2. Open the theme.php file in your text editor.
3. Inside the themeheader() function definition, find the following line:

echo "<body bgcolor=\"#ffffff\" text=\"#000000\" link=\"#363636\"
 vlink=\"#363636\" alink=\"#d5ae83\">
\n\n\n";

4. Remove all the attributes after <body, and then remove the
, to produce
the following:
echo "<body>\n\n\n";

5. Save the file.
6. In the style folder of the theme you will find the style.css file; open this file in

your text editor.
7. Delete the following line:

BODY {FONT-FAMILY: Verdana,Helvetica; FONT-SIZE: 10px}

8. Move your cursor to the end of this file (you may have to move to the right-hand end
of the last line in the file and press Enter to create a new line).

9. Enter the following into the file:
body {
 color:#000000;
 background-image: url(../images/background.jpg);
 font-family: arial, helvetica, sans-serif;
 font-size: 1em;
 }

10. Save the style.css file.
11. Refresh your browser—nothing should have changed!

What Just Happened?
The first three steps were preparing the way for using CSS—we removed the hardcoded HTML
attributes from the body tag. We could have set the background image from the line in the
themeheader() function with the background attribute of the body tag, but controlling the format
of the body tag from the stylesheet will offer us greater flexibility.

Every theme has its own stylesheet, style.css, located in the style subfolder of its folder. To
add any CSS information, we make changes there. That's what the remainder of the steps do.

Once we are in style.css, we remove the existing style information for the body tag (step 4).
This leaves us a clean slate for creating new style information for this tag.

The new style information—known as properties in CSS parlance—is added in step 9. First of all,
we added properties for the body tag:

 221

Customizing Layout with Themes

 222

body {
 color:#000000;
 background-image: url(../images/background.jpg);
 font-family: arial, helvetica, sans-serif;
 font-size: 1em;
 }

The color property specifies the color of the text used in the body of the document—here we've
gone for black (#000000). The background-image property specifies the image used for the body
background. The font-family and font-size properties are simple enough. The font-size has
been specified using the em units, setting the font-size in relative units.

The path to the background-image property is interesting:
url(../images/background.jpg)

This path is relative to the stylesheet, unlike the path to images used from the templates in the
theme, which are relative to the root of our PHP-Nuke installation (like
/themes/TheDinosaurPortal/images/logo.gif for example).

To get from the stylesheet (in TheDinosaurPortal/style/style.css) you have to go up a folder
(../) bringing you to the TheDinosuarPortal folder, and then into the images folder. Specifying
background images using CSS in this way means that you bypass the need for including the name
of the theme.

When you view the new page, you will see that much of our background image is obscured by
large blocks of white on the page. We need to look into the header.html to find what is
responsible for this. In the last few lines of the header.html file you will find:

<table cellpadding="0" cellspacing="0" width="99%" border="0"
 align="center"
 bgcolor="#ffffff">
<tr><td bgcolor="#ffffff" valign="top">

We need to remove the two bgcolor="#fffff" instances to get:
<table cellpadding="0" cellspacing="0" width="99%" border="0"
 align="center" >
<tr><td valign="top">

Then we can resave the header.html file. When you refresh your browser, the background image
should be more clearly visible. The bgcolor="#ffffff" attributes we just removed were setting the
background color of the main part of the page to white. The table starting at the end of header.html
contains the block and module output, and the background image was being hidden by the white
background color of this table, which will fill up most of the page when the page is finished.

Time For Action—Changing the Links
In the last task we also removed the definitions for displaying links from the body tag. Now we
will add these to the stylesheet:

1. Open the style.css file in your text editor.
2. Delete the following four lines (only the first line is shown in full, the other lines

contain the same text between the braces):

Chapter 9

A:link {BACKGROUND: none; COLOR: #000000; FONT-SIZE: 11px; FONT-
FAMILY: Verdana, Helvetica; TEXT-DECORATION: underline}
A:active {...}
A:visited {...}
A:hover {...}

3. Move your cursor to the end of this file, and add these lines:
a {text-decoration:none; color:red; font-weight:bold;}

4. Save the style.css file, and refresh your browser.

What Just Happened?
We specified a new definition for links in the CSS stylesheet. We removed the line under the link
with the text-decoration:none setting, and set the color of a link to red, and made it bold.

Note that we removed four link definitions and replaced them with one. The color of a standard
link is defined by a:link, and a:visited takes care of links that have been visited. The behavior
of a link as you click on it is determined by a:active. These settings correspond to the values of
the link, alink, and vlink HTML attributes we removed from the body tag in theme.php.

The a:hover definition comes into play when you move your mouse cursor over a link and takes
care of that link's format. We will make use of that in a moment. For our settings here, we have
simply set all links to look the same—using a in the stylesheet rather than a:link, a:active, and
so on, means the definition will apply to all links, regardless of whether the visitor is hovering
their mouse cursor over the link, or if they have already clicked on that link.

Time For Action—Changing the OpenTable() Function
The OpenTable() and CloseTable() functions defined in tables.php are used to enclose
elements on the page, and they are used throughout PHP-Nuke.

1. In the TheDinosaurPortal folder is a file called tables.php. Open it in your text editor.
2. Select all the text in this file and delete it.
3. Add the following text to this file:

<?php
function OpenTable()
{
 echo "\n<table class=\"openTable\"
 cellspacing=\"0\" cellpadding=\"0\" width=\"100%\">
 <tr>
 <td>";
}

function CloseTable()
{
 echo "\n</td>
 </tr></table>

";
}

function OpenTable2()
{
 echo "\n<table class=\"openTable\"
 cellspacing=\"0\" cellpadding=\"0\" width=\"100%\">
 <tr>
 <td>";
}

 223

Customizing Layout with Themes

function CloseTable2()
{
 echo "\n</td>
 </tr></table>

";
}
?>

4. Save the tables.php file.
5. Open the style.css file and add the following to the end of the file:

table.openTable {
 border:1px black solid;
 background-color:white;
 padding-top:8px;padding-bottom:8px;
 padding-left:4px;padding-right:4px;

 }

6. Save the style.css file, view the homepage of your site, and have a look at the
message at the top of the middle column:

What Just Happened?
The OpenTable() and CloseTable() functions are used throughout PHP-Nuke to define how
elements in the main body of the page are enclosed. The OpenTable() function starts the element,
usually a table, and the CloseTable() function finishes it. For our example here, we simply
removed all the existing code and started from scratch with the definitions; all we had to do was to
define these functions, as well as OpenTable2() and CloseTable2(), which are used less
frequently but still need a definition. Note that we have just used the same code for the definition
of this pair of functions as we did for the first pair.

OpenTable() starts a new table. This table only needs one column because of its simple design;
the table will just hold content; it won't do anything fancy since we already have enough striking
elements on our page.

function OpenTable()
{

echo "\n<table class=\"openTable\"
 cellspacing=\"0\" cellpadding=\"0\" width=\"100%\">
 <tr>
 <td>";

}

We mark the table with the openTable class, which we will define in the stylesheet, so we can
basically forget about these functions now. We begin the output with a newline \n character, to aid
readability of the HTML source.

 224

Chapter 9

The CloseTable() function is simple—all it has to do is close the single td element, and then
close off the table:

function CloseTable()
{

echo "\n</td>
 </tr></table>

";

}

The final step is to create the openTable class in the stylesheet:
table.openTable {
 border:1px black solid;
 background-color:white;
 padding-top:8px;padding-bottom:8px;
 padding-left:4px;padding-right:4px;
 }

We specified a thin border for the table, (a one-pixel solid-black border), some padding to move
the text away from the edge of the table, and a background color of white for the element. Note
that specifying the border like this in the stylesheet, rather than using the border attribute of the
table tag, gives us a border only around the outside of the table, rather than borders around the
cells of the table.

Time For Action—Styling the Navigation Bar
Now we can make our navigation bar actually look good. So far, it just looks like a group of links.
A few additions to the stylesheet and it will be transformed.

1. Open the style.css file in your text editor.
2. Add the following to the end of the file:

div#navBar {
 text-align:center; margin:4px;
 font-family:Arial; font-weight:bold;

 }

div#navBar a {
 color:#000000;
 padding: 5px 4px 5px 5px;
 border: 2px solid #808080;
 background: #cccccc;
 text-decoration: none;
 }

div#navBar a:hover {
 border-color: #000000;
 color: #ffffff;

 background: #336699;
 }

 225

Customizing Layout with Themes

3. Save the file, and refresh your browser. The image below shows the mouse being
hovered over the Encyclopedia link:

4. Open the header.html file in your text editor, and make the highlighted change
shown below:
<td colspan="3"
 class="navBarRow">
<div id="navBar">

5. Save the header.html file, open the style.css file again, and add this to the end:
td.navBarRow {
 padding: 6px;
 background-color: #2F5376;
 color: #FFFFFF;
 font-size:14pt;
 font-weight:bold;
 font-family:arial, helvetica, sans-serif;
 margin-left:8px;
 margin-right:8px;
 line-height: 1.5em;
 }

6. Save the file and refresh your browser.

What Just Happened?
You may recall that when we created the navigation bar, it was wrapped in a div element with an
id attribute:

<div id="navBar">

We can use the id of the element so that styles can be applied only to things within it:
div#navBar {
 text-align:center; margin:4px;
 font-family:Arial; font-weight:bold;
 }

The div#navbar syntax means the definition that follows will only be applied to the div element
with the id navbar. We do this to center its contents (with text-align:center), set a margin, and
define the font.

However, we can continue this syntax to define the style for links contained in the div element:
div#navBar a {
 color:#000000;
 padding: 5px 4px 5px 5px;
 border: 2px solid #808080;
 background: #cccccc;
 text-decoration: none;
 }

 226

Chapter 9

This sets the style for a link in our navbar div element. We define the color of the text (black),
some padding around the text, a background color (#cccccc, a pale grey), and remove the
underlining of links with text-decoration:none;. The other thing we do is set the border for
each link. The border is 2 pixel wide, a solid line, and colored #808080, which is a darker grey.
This is what gives each link its own little box.

The next definition, div#navBar a:hover, allows the links to behave differently when the mouse
cursor hovers over them. This removes the need for any kind of OnMouseOver JavaScript to
produce 'roll-over' effects; the stylesheet now takes care of this.

div#navBar a:hover {
 border-color: #000000;
 color: #ffffff;
 background: #336699;
 }

Here the definition changes the background colors, text color, and the border color. All the other
settings defined by div#navbar a will be 'inherited', so there is no need to specify these settings again.

The final steps added a class attribute to the table column holding the navigation bar, and in the
style.css file we set the definition for this class. We added some padding and margins to give
the bar some spacing, and set the background color to a dark-blue color (#2F5376).

Changing Blocks
Our next area of customization will be blocks. We will create new blocks in a moment, but first of
all we will do some quick customizations to put greater control of the display of blocks into the
hands of the theme.

Time For Action—Show Right-Hand Blocks on All Pages
You will notice that the right-hand blocks are not displayed for all modules; they are displayed on
the homepage, and also for some modules such as Downloads. Our next change will be to make
the right-hand blocks appear on every page, for every module.

1. Open the theme.php file in your text editor.
2. Find the themefooter() function definition, and locate the following lines within

that piece of code:
 if (defined('INDEX_FILE'))

{

3. Change the first line as shown below:
 //if (defined('INDEX_FILE'))

{

4. Save the file.
5. Now open up any module, and your right-hand blocks will be there.

 227

Customizing Layout with Themes

 228

What Just Happened?
The variable INDEX_FILE is set by certain modules when the 'front page' of that module is
displayed. The front page is the page displayed when there is no file value in the query string of
the URL. On all other pages, INDEX_FILE is not set.

The change we made in the code comments out a check for this value being set. Only if the check
is true will the next section of code execute. That section of code is shown below—you will see it
contains a call to blocks("right"). This is the function call for displaying the right-hand blocks.

 if (defined('INDEX_FILE'))
{
 $tmpl_file = "themes/TheDinosaurPortal/center_right.html";
 $thefile = implode("", file($tmpl_file));
 $thefile = addslashes($thefile);
 $thefile = "\$r_file=\"".$thefile."\";";
 eval($thefile);
 print $r_file;
 blocks("right");

 }

Since we comment out the check to see if the INDEX_FILE constant is defined, the code enclosed
by the braces ({ and }) will always execute, and the blocks will always be displayed.

Time For Action—Hide Right-Hand Blocks For Certain Modules
Now we've got the right-hand blocks on every page. This can be a bit much—the presence of the
right-hand blocks can make the page feel rather 'heavy'.

Next we are going to see how to turn off the right-hand blocks for certain modules. For our
example, we'll turn off the blocks for the Downloads, Feedback, and Search modules.

1. Open the theme.php file in your text editor.
2. Add the highlighted lines of code to the top of the file after the color definitions:

$textcolor2 = "#000000";
global $packt_hideRightBlocks;
$packt_hideRightBlocks = array('Downloads'=>1,'Feedback'=>1,
 'Search'=>1);
if(file_exists("themes/TheDinosaurPortal/tables.php")){

3. Find the line we commented out in the previous task in the themefooter()
function definition.

4. Add the following two lines of code between the commented line and the brace:
 // if (defined('INDEX_FILE'))
 global $packt_hideRightBlocks, $module_name;
 if (!$packt_hideRightBlocks[$module_name])

 {

5. Save the theme.php file.
6. In your browser, check that the right-hand blocks are displayed on the homepage and

on the Topics module page, but not on the Downloads, Search, and Feedback pages.

Chapter 9

What Just Happened?
We created a global variable, $packt_hideRightBlocks at the top of the theme.php file. This
variable is an array, and contains entries for the names of the modules that we will hide the
right-hand blocks for. If we want the right-hand blocks shown for a particular module, we do not
include it in the array.

We added the prefix packt_ to the variable name in order to avoid potential clashes with other
global variables. The definition of the array shows we want to hide the right-hand blocks for the
Downloads, Feedback, and Search modules.

Note that we had to put a global prefix before the definition of the $packt_hideRightBlocks
statement to declare it as a global variable. We had to explicitly declare this variable as global
because otherwise the variable will be scoped to the function that included the theme.php file,
and this is the head() function in the header.php file. (This file is in the root of the PHP-Nuke
installation, and is not part of a theme.) We'll talk more about this file later.

The idea now is simple—we need to get the name of the current module, and then see if there is an
entry for that in our array. If there is, we won't display the right-hand blocks.

We are able to add code to the themefooter() function at just the point we were working with in
the previous task. First we add the global statement, to access the $packt_hideRightBlocks and
$module_name global variables from our function. The $module_name global variable is defined by
the 'core' of PHP-Nuke, and contains the name of the current module.

Next we check if there is an entry in the $packt_hideRightBlocks array with the name of
$module_name.

 if (!$packt_hideRightBlocks[$module_name])

In fact, the code actually checks that there isn't such an entry—the ! character in front of the check
means 'not'. If there is no such entry, then the code to display the right-hand blocks will be
executed. Thus only a module whose name is not in the $packt_hideRightBlocks array will have
right-hand blocks displayed.

• If you want to turn off this feature, and have all the right-hand blocks displayed for
all modules, simply comment out the if statement line.

• If you want to use this feature to only show blocks for certain specified modules,
change the check to the following:
if ($packt_hideRightBlocks[$module_name])

Now the right-hand blocks will only be shown for modules whose name is in the
$packt_hideRightBlocks array.

It is also very easy to apply this method to handle the left-hand blocks. All you'd need is to set up
an array called $packt_hideLeftBlocks, similar to our $packt_hideRightBlocks array, and then
apply the same code to themeheader() function before the blocks("left") function call. Make
sure you have some alternative form of navigation if you turn off the left-hand blocks—you could
well have removed the Modules menu block!

 229

Customizing Layout with Themes

 230

Time For Action—Making the Block Titles Uppercase
Let's continue tweaking the block display:

1. Open the theme.php file in your text editor, and find the themesidebox()
function definition.

2. Add the highlighted line immediately after the first line of the function definition:
function themesidebox($title, $content) {
 $title = strtoupper($title);

3. Save the theme.php file.
4. Refresh your browser, and you will note your block titles are now in uppercase.

What Just Happened?
The themesidebox() function controls the display of blocks. It simply grabs the blocks.html
template, processes it, and spits out the result, producing a block. This function is called whenever
any part of the application wants a block drawn.

The block title is held in the $title variable, and all we did was use the PHP strtoupper()
function to convert the current title into uppercase. After that, the block display carries on as usual.

Time For Action—Creating a New Block
Now we've got blocks all over our page—but they're not 'our' blocks. Well, not yet. Our next job is
to create a new block design. Now we will really feel that we are stamping our identity on our site.

1. You will need to grab the blockTop.gif, blockBottom.gif, and
blockBackground.gif files from the SiteImages folder in the code download and
copy them to the images folder in the TheDinosaurPortal folder.

2. In the theme folder, you will find the blocks.html file. Open it in your text editor.
3. Delete the existing code, and enter this new code:

<table width="176px" cellspacing=0>
<tr height="28">
 <td background="themes/TheDinosaurPortal/images/blockTop.gif">
 </td>
</tr>
<tr>
 <td background="themes/TheDinosaurPortal/images/blockBackground.gif">
 <div class="blockTitle">$title</div>
 </td>
</tr>
<tr>
 <td background="themes/TheDinosaurPortal/images/blockBackground.gif">
 <div class="blockContent">$content</div>
 </td>
</tr>
<tr height="28">
 <td background="themes/TheDinosaurPortal/images/blockBottom.gif">
 </td>
</tr>

</table>

Chapter 9

4. Save the blocks.html file, and refresh your browser. The blocks should have changed:

5. Now open the style.css file in your text editor.
6. Add the following style definitions to the end of the file:

div.blockContent {
 margin-left:8px; margin-right:8px;
 padding-bottom:8px; padding-top:8px;
 padding-left:0px; padding-right:0px;
 }

div.blockTitle {
 background: #ffffff;
 margin-left:8px; margin-right:8px;
 color:black;
 padding-top:2px; padding-bottom:2px;
 font-size:1.2em; font-weight:bold;
 font-family:arial, verdana;
 text-align:center;
 }

7. Save the style.css file, and refresh your browser. You'll see this:

What Just Happened?
The blocks.html file is the template used for displaying blocks. It uses two placeholders, $title
and $content, which contain the title and content of the block respectively.

Our block consists of a single HTML table, set to a width of 176 pixels:
<table width="176px" cellspacing=0>

 231

Customizing Layout with Themes

 232

The cellspacing is set to 0 so that all the rows are right next to each other, and no gaps appear
between the rows.

The table consists of four rows, one row for the top (header) image of the block, one row for the
block title, one for the block content, and one for the block footer image. Note that the image for
the bottom row is the just a vertical flip of the top-row image.

The height of the top row is specified exactly as the height of its background image. This is to
make sure that the entire background image is shown, since it must link up with the background
image for the middle row.

<tr height="28">
 <td background="themes/TheDinosaurPortal/images/blockTop.gif" ></td>
</tr>

The next row shown displays the block title. This will be held in the $title placeholder. Note that
we wrap the title in a div element with a class of blockTitle, so we can defer fine tuning of its
look to the CSS file.

<tr>
 <td background="themes/TheDinosaurPortal/images/blockBackground.gif">
 <div class="blockTitle">$title</div>
 </td>
</tr>

The next row displays the block content. This will be held in the $content placeholder. Again, we
wrap the content in a div to take care of the styling in the CSS file.

<tr>
 <td background="themes/TheDinosaurPortal/images/blockBackground.gif">
 <div class="blockContent">$content</div>
 </td>
</tr>

Finally, the block footer. This is constructed in the same way as the block header.
<tr height="28">
 <td background="themes/TheDinosaurPortal/images/blockBottom.gif"></td>
</tr>
</table>

The
 at the end of the block adds a line break after the block, getting things ready for the next
block to be displayed.

The styling for the block title and content is done in the style.css file. For the block content, we
are only concerned with some spacing around the edges:

div.blockContent {
 margin-left:8x; margin-right:8px;
 padding-bottom:8px; padding-top:8px;
 padding-left:4px; padding-right:4px;
 }

The left- and right-hand margins are set so as to ensure that the text is far enough from the edge of
the image, and inside the thick black border of the block.

For the block title, we set its background color to white, and centered the text with the
text-align property.

Chapter 9

Time For Action—Making Right-Hand Blocks Different from Left-Hand
Blocks
At the moment, a block is a block, wherever it is displayed. Here we'll show a simple way to
choose a different template for the right-hand blocks, and so give you the opportunity to have the
right-hand blocks look different from those on the left-hand side of the page.

For our example we will use the same template as the left-hand blocks, except our background
images will be horizontal flips of the existing images.

1. Grab the files blockBottomRH.gif, blockTopRH.gif, and blockBackgroundRH.gif
from the SiteImages folder of the code download and copy them to the images
folder of our theme.

2. Open the blocks.html file in your text editor, and replace the word blockBottom
with blockBottomRH, replace blockTop with blockTopRH, and replace
blockBackground with blockBackgroundRH.

3. Save the file as blocks_right.html in the folder of your theme.
4. Open the theme.php file in your text editor.
5. Add the highlighted lines to the top of your file:

define("BLOCKSIDE_LEFT", 0);
define("BLOCKSIDE_RIGHT", 1);
global $packt_blockSide;
$packt_blockSide = BLOCKSIDE_LEFT;
if(file_exists("themes/TheDinosaurPortal/tables.php")){
include("themes/TheDinosaurPortal/tables.php");

6. Go to the themesidebox() function definition.
7. Change the code as below:

function themesidebox($title, $content)
{
 $title = strtoupper($title);
 global $packt_blockSide;
 if ($packt_blockSide==BLOCKSIDE_RIGHT)
 $tmpl_file = "themes/TheDinosaurPortal/blocks_right.html";
 else
 $tmpl_file = "themes/TheDinosaurPortal/blocks.html";

8. In the themefooter() function, add the highlighted lines above the call to
blocks("right"):
global $packt_blockSide;
$packt_blockSide = BLOCKSIDE_RIGHT;
blocks("right");

9. Save the theme.php file.
10. Refresh your browser, and compare a left-hand side block with a right-hand side block.

What Just Happened?
To make the left- and right-hand blocks different, first we had to define a new template for the
right-hand block. We did this by editing the standard block template, blocks.html, and creating a
new file, which we called blocks_right.html. The only difference between those two files is the

 233

Customizing Layout with Themes

 234

different background images used; each image used for this block is simply a horizontal flip of the
corresponding image for the block we created above.

With our new block template in place, we needed to create a mechanism for switching between
left- and right-hand blocks. The global variable $packt_blockSide will be used to do this—a
value of 0 means that left-hand block and a value of 1 means right-hand block. We defined two
PHP constants, BLOCKSIDE_LEFT with the value T 0 and BLOCKSIDE_RIGHT with the value 1:

define("BLOCKSIDE_LEFT", 0);
define("BLOCKSIDE_RIGHT", 1);

This was done for convenience—later in the file we will want to check the value of
packt_blockSide, and rather than trying to remember if 0 means left or right, we can use the
constants. Before that, we have to set the value of the $packt_blockSide variable:

global $packt_blockSide;
$packt_blockSide = BLOCKSIDE_LEFT;

Now we come to actual switching of the block templates. This goes on in the themesidebox()
function:

if ($packt_blockSide==BLOCKSIDE_RIGHT)
 $tmpl_file = "themes/TheDinosaurPortal/blocks_right.html";
else
 $tmpl_file = "themes/TheDinosaurPortal/blocks.html";

If the $packt_blockSide variable is indicating a right-hand block, the right-hand block template is
chosen, otherwise the standard block template is chosen. The template to be processed for the
block is determined by the $tmpl_file variable, and simply switching its value like this means a
different template will be used.

We're almost there—but we still haven't actually done anything to trigger the change in the
$packt_blockSide variable, which will in turn lead to a different template. We'll do this in the
themefooter() function. This function manages the display of the right-hand part of the page,
including the right-hand blocks. On the line before the function call to display these blocks, we
change the value of $packt_sideBlock:

global $packt_blockSide;
$packt_blockSide = BLOCKSIDE_RIGHT;
blocks("right");

Now the processing takes this form—the blocks() function will call the themesidebox() function
to display each block. In the themesidebox() function the variable $packt_blockSide is checked,
and if it has the value 1 (represented by the BLOCKSIDE_RIGHT constant) the right-hand block
template is chosen, processed, and displayed.

We save the file, and we are ready to roll with our two types of blocks!

Changing Story Layout
In this section we will change the formatting of stories. First of all, we will change the format
of the story summary that is displayed on the homepage. After that, we will change the format
of the extended view of the story, which is viewed when clicking the Read More... link of the
story summary.

Chapter 9

Creating a Rounded Box
We're going to take a moment to cover a simple technique for producing a pretty cool effect—an
HTML 'box' with rounded corners:

This box can be used to house a block, but we will be using it to decorate the stories on the
homepage of our site. We can even use only half of the box to easily create a rounded tab that
could be used in a navigation bar!

The technique we will cover here is pretty simple; it will make use of some simple images, and
some CSS properties to achieve the effect. You will find several CSS tutorials on the Web that
also cover this topic, producing more robust and fancier effects.

The plan is very simple—we color in a table with a background color, and then we 'eat' chunks out
of the four corners of the table, thus giving the rounded effect.

The chunks will be 'eaten' by using four tiny 'rounded' images, which we will create first. In fact,
we will create only one image, and then through a combination of 'flips', proceed to produce all of
the images we need.

Creating the Corner Images
The image below shows the 8x8 image we will use as our corner-removing chunk. It was
originally created from cutting out the corner of a rounded box drawn in Photoshop. However, the
image is small enough that you could create one like this pixel by pixel!

Since the picture we show here is in black and white, it is worth noting that the unshaded areas in
the screenshot are actually the transparent areas of the image. The pixels shown in black in this
picture will actually be white in the image.

Now that we have our basic image, we ensure that the unshaded area is set to transparent, and save
this file as corner-tl.gif in the images folder of our theme. You should refer to the documentation
of your graphics package if you are unsure how to set part of an image as transparent.

 235

Customizing Layout with Themes

 236

We are now ready to generate the three other corner images:

1. Make sure that the corner-tl.gif file is open in your graphics package.
2. In your graphics package, flip the image horizontally to produce the top-right corner

image. Save this image as corner-tr.gif in the images folder of the theme.
3. Now flip this image vertically to produce the bottom-right corner image. Save it as

corner-br.gif in the images folder of the theme.
4. Finally, flip this image horizontally to produce the bottom-left corner image, and

save it as corner-bl.gif in the images folder of the theme.

Stage one is complete; we have the four corner images.

Creating the HTML
The HTML is not complex, so we will create that next. The guts of this technique are contained in
the CSS information, which we will move on to in a moment.

First of all, create a file called rounded_box.html in the theme folder, and enter the following:
<html>
<head>
 <link rel="stylesheet" href="style/style.css" type="text/css">
</head>
<body>
 <table class="roundedbox" cellspacing=0 cellpadding=0>

 <tr><td class="cornertl"></td><td></td><td class="cornertr"></td></tr>
 <tr><td></td><td >THIS IS WHERE THE CONTENT GOES!!!</td><td></td></tr>
 <tr><td class="cornerbl"></td><td></td><td class="cornerbr"></td></tr>

 </table>
</body>
</html>

The HTML is not complex as you can see. For the purposes of our example, we have added a
reference to the theme stylesheet in the file with the <link> tag.

The rounded box consists of a table with three rows, with each row having three columns.

The table has a CSS class called roundedbox. We'll look at this in a moment when we tackle the
CSS, but all this CSS class will do is set the background color of the table. This will fill in the entire
table with a particular color. This sets us up to use our little images to eat the corner chunks out.

The first row in the table will be used for the top-left and top-right corners. The first column of
this row is defined like this:

<td class="cornertl"></td>

The attribute class and the absence of anything else in the element means that all the work will
be done by the CSS class cornertl, which we will see in a moment.

The third column in the first row is defined similarly:
<td class="cornertr"></td>

Another class is used here, and from its name, you can see that it will have something to do with
the top-right corner. The middle column in the first column is left blank.

Chapter 9

The second row is where the body of the box will go. The first column is left blank since that
'belongs' to the top-left and bottom-left corners. The third column is also left blank, since that
belongs to the top-right and bottom-right corners. The middle column is where all the action takes
place. We've just added some basic text for now.

The last row is similar to the first row, with a CSS class used in the first column and its last column:
<tr><td class="cornerbl"></td><td></td><td class="cornerbr"></td></tr>

The middle column is again left blank.

That's all there is to the block. This HTML does not look at all interesting at the moment; this shot
of it in an HTML editor gives you a clearer picture of the layout of the table:

However, there is no sign of corners yet, nor any reference to any of the images we created earlier.

All will now be made clear.

Creating the CSS
The real magic of this technique happens in the CSS definitions. In the HTML we have used four
classes, cornertl, cornertr, cornerbr, and cornerbl, and it is clear that in some way these are
going to be used to display the images we created above. The answer is the set of CSS background
properties. These allow you to control the background color of an element, set an image as the
background, repeat a background image vertically or horizontally, or position the background image.

You can read more about the background properties at http://www.w3schools.com/css/
css_background.asp.

Open the style.css file in the styles folder of the theme, and add these lines to the bottom of
the file:

td.cornertl {
 background-image: url('../images/corner-tl.gif');
 background-repeat: no-repeat;
 background-position: top left;
 width: 8px; height: 8px;
 }

This defines our CSS class cornertl. Let's walk through the properties that we have used.

First of all, the background image is set with the background-image property. We will use our
top-left image for this background. (It is the image that has the top-left colored in, while the rest of
the image is transparent.)

background-image: url('../images/corner-tl.gif');

 237

Customizing Layout with Themes

This image should only be displayed once in this element—if this background image is shown
over and over again then it will look rather strange (it will look like a collection of humps), so we
use the background-repeat property to ensure that the image is displayed only once:

background-repeat: no-repeat;

The background-position property is used to position the image within the element, its value
is obvious:

background-position: top left;

Finally, we set the width and height of the td element to ensure that it does not grow; this would
become rather awkward for our design.

width: 8px; height: 8px;

All we have to do now is define cornertr, cornerbr, and cornertl similarly in the file. The
definitions are very similar; we have highlighted the different lines:

td.cornertr {
 background-image: url('../images/corner-tr.gif');
 background-repeat: no-repeat;
 background-position: top right;
 width: 8px; height: 8px;
 }

td.cornerbr{
 background-image: url('../images/corner-br.gif');
 background-repeat: no-repeat;
 background-position: bottom right;
 width: 8px; height: 8px;
 }

td.cornerbl{
 background-image: url('../images/corner-bl.gif');
 background-repeat: no-repeat;
 background-position: bottom left;
 width: 8px; height: 8px;
 }

For each class, we simply specify the corresponding corner image with the background-image
property, and the background position with the background-position property. The value of the
background-position could not be more intuitive!

The final stroke is to add the class to fill the table with a background color:
table.roundedbox { background: #cccccc; }

Now save the file and open the rounded_box.html file in your browser:

This isn't particularly setting the world on fire, but let's apply the technique.

 238

Chapter 9

Time For Action—Change the Format of Stories on the Front Page
Changing the way a story is displayed on the front page of the site involves creating a new
template. That's exactly what we'll do now.

1. Open the story_home.html file in your text editor, and delete all the text. Enter the
following into the file:
<table class="storyBack" width="100%" cellspacing=0 cellpadding=0>
 <tr>
 <td class="cornertl"></td><td></td><td class="cornertr" width="10"></td>
 </tr>
 <tr>
 <td></td><td class="storyTitle">$title</td><td></td>
 </tr>
 <tr height=6><td colspan=3></td></tr>
 <tr>
 <td></td>
 <td>
 <table cellSpacing="0" cellPadding="4" border="0" width="100%">
 <tr>
 <td valign=top class="Normal" width="25%" bgcolor="#ff9933">
 <center></center></td>
 <td valign=top class="Normal" width="75%">$posted $content</td>
 </tr>
 <tr valign=top><td colspan="2" align="right"><hr>$morelink</td></tr>
 </table>
 </td>
 <td></td>
 </tr>
 <tr>
 <td class="cornerbl"></td><td></td>
 <td class="cornerbr" width="10"></td>
 </tr>
</table>

2. Save the file.
3. Open the style.css file in the style folder, and add the following at the end of the file:

table.storyBack {
 background: #ffcc33;
 }
.storyTitle {
 padding-left: 6px; padding-right:6px;
 padding-top:6px; padding-bottom:6px;
 background-color: #2F5376;
 color: #FFFFFF;
 font-size:14pt; font-weight:bold;
 font-family:arial, helvetica, sans-serif;
 margin-left:8px; margin-right:8px;
 line-height: 1.5em;
 }

.storyCat {
 color: #FFFFFF;
 font-size:14pt;
 font-weight:bold;
 font-family:arial, helvetica, sans-serif;
 }

 239

Customizing Layout with Themes

4. Save the file.
5. Return to the homepage of your site. The stories will now look like this:

What Just Happened?
The story_home.html file is the template for stories displayed on the homepage. We removed all
of the existing content and replaced it with our new definition. The story_home.html template is
processed by the themeindex() function in theme.php, although we did not work with any of the
code in this example.

The template we created is based around the HTML we put together in the previous section for the
rounded box. We added two rows to that table:

 <tr>
 <td></td><td class="storyTitle">$title</td><td></td>
 </tr>
 <tr height=6><td colspan=3></td></tr>
 <tr>

The first row will display the story title through the $title placeholder, and the next row is to add
a bit of space before the main part of the template. After that, we have an inner table, which is
effectively placed where the THIS IS WHERE THE CONTENT GOES!!! text was in the example from
the previous section.

The inner table has two columns, one for displaying the topic image and the other for showing the
story text:

<table cellSpacing="0" cellPadding="4" border="0" width="100%">
 <tr>
 <td valign=top class="Normal" width="25%" bgcolor="#ff9933">
 <center></center></td>
 <td valign=top class="Normal" width="75%">$posted $content</td>
 </tr>
 <tr valign=top><td colspan="2" align="right"><hr>$morelink</td></tr>
</table>

The $t_image placeholder is used to get the path to the topic image, and the $posted placeholder
holds text about who posted the story, and when it was posted. The story text itself is contained in
the $content placeholder.

 240

Chapter 9

The last line of the table outputs the navigation bar with the Read More... link, the number of
comments, and so on. This is all contained in the $morelink placeholder.

After creating the template, we add some styles to the style.css file, storyBack, storyTitle,
and storycat. The storycat style is not actually used in the template, it is already part of the
$title placeholder. This style holds the definition for the category name that is displayed before
the story title. The storyBack style sets the background color of the whole element. The
storyTitle style is used to format the title bar, and we specify a dark blue background color
(#2F5376), large white text, and plenty of space around the text with the padding settings.

Variables Available in Story Formatting
We saw a couple of the placeholders that can be used in formatting the story output. There are
several others that can be used in the story_home.html template by default:

Placeholder Description

$title The title of the story.

$thetext The short description of the story.

$aid The name of the administrator who posted the story to the site.

$informant The username of the story creator.

$datetime The date the story was posted.

$posted Uses $aid, $time, and $timezone to produce text of the form Posted on <time>
<timezone> by <name of administrator>, and also mentions the number of times the
story has been read (provided by $counter).

$content The summary text ($thetext) of the story, prefixed by <name of the story creator>
writes, and with any notes for the story attached on the end.

$t_image The path to the topic image.

$topictext The full title of the topic.

$counter The number of times the story has been read.

$notes Any notes added by the administrator when the story was posted.
This is not a variable passed to the function, but can be accessed with a global statement.

$time The time the story was posted. The variable $timezone contains the author's timezone.

Changing the Layout of the Story Extended View
To change the layout of a story's extended view, you change the story_page.html template. Our
new story_page.html template is below, and it is similar to the story_home.html template. The
main differences are shown highlighted:

<table class="storyBack" width="100%" cellspacing=0 cellpadding=0>
 <tr>

 <td class="cornertl"></td><td></td><td class="cornertr"
 width="10"></td>

 </tr>
 <tr>

 <td></td><td class="storyTitle">$title</td>
 <td></td>

 </tr>

 241

Customizing Layout with Themes

 242

 <tr height=6><td colspan=3></td></tr>
 <tr>
 <td></td>
 <td >
 <table class="openTable" width="100%">
 <tr><td>
 <img src="$t_image" align="middle" border="1"
 alt="$topictext">
 $content</td>
 </tr>
 </table>
 </td>
 <td></td>
 </tr>

 <tr>
 <td class="cornerbl"></td><td></td>
 <td class="cornerbr" width="10"></td>
 </tr>
</table>

This time, we use to have the topic image positioned on the right
of the table, with the text flowing to the side of it.

The story_page.html template is processed by the themearticle() function in theme.php. This
function has similar variables to those shown in the table for the themeindex() function, although
in themearticle(), the $thetext variable actually contains the story introduction and the story
extended text.

You will note that the same placeholder, $content, is used in both the story_home.html and
story_page.html templates. In story_home.html, it holds the short description of the story, and
in story_page.html, it holds the short description plus the extended text.

There are some lines in themearticle() that are worth noting, since they determine the whether
the creator's name is added to the start of the story:

if ("$aid" == "$informant")
{
 $content = "$thetext$notes\n";
}
else
{
 if($informant != "")
 {
 $content = ".....";
 }
 else
 {
 $content = "$anonymous ";
 }
 $content .= ""._WRITES." <i>\"$thetext\"</i>$notes\n";
}

If the author who posted the story ($aid) is the same as the user who wrote the story ($informant),
then the content of story is just the story description, story extended text, and any notes for the story.
There is no mention of the story creator or who posted the story in the $content variable if the story
creator is the same as the administrator who posted the story to the site.

If the story was written by someone other than the administrator, the content of the story becomes
<username> writes, and then the story description, story extended text, and any notes for the story

Chapter 9

are enclosed in quotes and are put into italics. If the story was not submitted anonymously, a link
to the Your Account details of the story creator is created for the user name. (We have replaced
that part of the code with for brevity here.)

If you want to change the way the extended text view of the story is displayed, going beyond what
the template can do, these lines in themearticle() are a good place to start.

Changing the Footer
The footer is the last part of the theme. The footer template is the footer.html file, and we will
create a new template for it, based on the table that we created for OpenTable(). Here is the new
footer template:

</td></tr></table>

<center>
 <table class="openTable" cellspacing="0" cellpadding="0"
 width=\"50%\">
 <tr>
 <td align="center">$footer_message</td>
 </tr>
 </table>
<center>

The first line closes off the table that was started at the end of header.html; without it, our page
would not look right. After that, we create a new table with the openTable class that we defined
for the table in the OpenTable() function earlier. This table will be centered in the page, and have
a width of 50% of the page:

There is only one placeholder in this template, $footer_message. This contains the copyright
message, which must be displayed in order to comply with PHP-Nuke's license.

Our theme is complete!

Adding a Favicon
A Favicon is a small image displayed in the navigation bar of the browser, and also in the list
of bookmarks:

The Favicon is not something we can actually control with the theme, but it is the finishing touch
for the site, and it does lead us into another interesting area of PHP-Nuke customization. Favicons
behave rather strangely in Internet Explorer, and you will find that you need to add a site to your
Favorites before the Favicon is displayed.

 243

Customizing Layout with Themes

First of all, the Favicon is an image in a special format, ICO format. The file consists of a couple
of copies of the same image at different sizes (16x16 and 32x32 usually). We will need to convert
any standard graphical image we plan to use to this format before we continue.

You can download a free command-line tool to convert from PNG files to ICO files here:
http://www.winterdrache.de/freeware/png2ico/

There is an executable version of the application for Windows there, and instructions on how to
use it. For other platforms you will have to compile the code yourself.

In the code download, there is a file called favicon.ico in the SiteImages folder that has
already been converted. This should be copied to the images folder in the root of your
PHP-Nuke installation.

All that remains now is to add a link to this file. This link is not something that is handled by the
theme, since it goes between the <head> and </head> tags of the document, which are beyond the
control of the theme.

What we need to do is open our text editor, and enter the following code into a blank document:
<?php
echo "<link rel=\"SHORTCUT ICON\" href=\"images/favicon.ico?\">\n";
?>

The output of this file is the HTML required for the browser to download and display the Favicon.
The location of the Favicon is indicated by the href attribute.

Save this file as custom_head.php in the folder includes\custom_files in the root of the
PHP-Nuke installation.

Now when you refresh your browser, the Favicon will be displayed in the browser bar:

Including Custom Files
The \includes\custom_files folder can hold files with specific names that PHP-Nuke can process
at various points. The advantage of this approach is that you can throw your code into the PHP-Nuke
core 'mix' without having to hack its inner workings. This folder was new in PHP-Nuke 7.6. In
earlier versions, you could use the my_header.php file in the includes folder to achieve similar
results, but the custom_files folder in PHP-Nuke 7.6 introduced greater flexibility.

• Anything output from the custom_head.php file will be added between the <head>
and </head> tag of the document.

• Anything output from a file called custom_header.php will be added to the output
from the header.php file. This means it will be output after the </head> tag and
before the theme kicks in. Similarly, anything output from the custom_footer.php
file will be added to the output from the footer.php file.

• Any code in a file called custom_mainfile.php will be executed before any of the
code in the mainfile.php file.

 244

http://www.winterdrache.de/freeware/png2ico/

Chapter 9

Page Output from Start to Finish
We've made many changes to customize a theme in this chapter, and now we are ready for a
detailed overview of exactly how the theme controls the appearance of a page.

The theme doesn't start the page output. The page output process is started by the module that is
currently in action at that point. Every part of every module that wants to display a standard page
will have code like this:

include("header.php");
...
include("footer.php");

Page output actually starts in a function called header(), which is in the header.php file. The
module won't call this function directly; within the header.php file is the call to the header()
function, and simply including the file will get things started.

First of all, the header() function creates the META tags and TITLE tag, adds links to the required
stylesheet (this is by default the style.css file in the style folder of the current theme), and
opens the HTML tag.

Now the fun really starts. header() now makes the first call to one of the theme functions,
themeheader() in theme.php; and the theme has come into play.

When themeheader() is executed the following happens:

• The body tag is opened.
• Any advertising banners are displayed.
• The header.html template is processed and displayed. Usually the header.html

template finishes by starting a new table to hold the main page content, and starts a
column in that table.

• The left-hand blocks are rendered into this column. The themesidebox() function is
called to display each block.

• The left_center.html template is processed. This closes the column started earlier.
For some themes, it adds a 'padding' column. Then the column that will hold the
module content is started.

Now the module continues with its activities, outputting its content, probably wrapping it with the
OpenTable() and CloseTable() functions found in the tables.php file. After it has finished, to
close the page up the module includes the footer.php file. In footer.php is a function called
footer(). Similar to header.php, the footer() function is called from within the footer.php file.

The footer() function calls the themefooter() function, and the following happens:

• The center_right.html template is processed. The main column is closed; a
padding column is possibly added and a new column is started.

• The right-hand blocks are rendered. The themesidebox() function is called to
display each block.

• The footer.html template is processed. It closes a column (there will be one column
still left open at that point), and then renders the page footer message.

 245

Customizing Layout with Themes

 246

After the call to themefooter(), the final throes of the footer() function are to close the body tag
and the page's HTML tag. The body tag was opened in the themeheader() function, but is not
actually closed in the theme.

Note that the themeindex() and themearticle() functions in the theme are only involved when
the News module is in action, and are not part of the general page output process.

Summary
We have transformed the look of the Dinosaur Portal in this chapter from a standard looking
PHP-Nuke installation to a very distinctive looking site. To do this, we started with the
3D-Fantasy theme and gradually added our new design.

We met the main ingredients of a theme, the PHP code files theme.php and tables.php, and the
HTML templates that determine how a particular part of the page will look. We saw how the
templates and the PHP code interact, and how they are used to separate the design of the theme
from the PHP code that drives it.

We changed the page header, adding a new banner, and then a simple navigation bar. Then we
looked at using the CSS stylesheet, the style.css file in the style folder of the theme, to make
formatting changes independently of both the template and the PHP files.

After that, we looked at blocks in the theme. In particular, we saw how to create a new block. We
saw how to create a rounded box, and put this to use for formatting the stories on the homepage of
the site.

The final activity of the chapter was to add a Favicon to the site, which is not actually part of the
theme's responsibility, but it rounds off the customization nicely.

10
Programming PHP-Nuke

In this chapter we will look at programming PHP-Nuke. Specifically, this means creating new
blocks and modules. Before we get stuck into that, we will have a look at what actually happens
inside PHP-Nuke when a page is requested by a browser.

After that, we will create a new block, a better version of the Dinosaur of the Day block we
created in Chapter 4. That, if you recall, was a static HTML block, and we had hard-coded the
image of the dinosaur and its title into the block. Here we will create a block that takes the image
to display and title of the dinosaur from the database. This will introduce us to data access in
PHP-Nuke, a topic that you will use a lot as you begin to code more with PHP-Nuke.

After a quick look at the file and folder structure of a module, we then begin creating a new
module for PHP-Nuke. This module will allow items of content to be submitted for modules that
do not support user-submitted content. In this chapter, we will code functionality for users to
submit encyclopedia entries for administrator approval. However, this will not involve making any
modifications to the Encyclopedia module, and can be extended to cover other modules as well.

What Happens When a Page is Requested?
Let's see what happens when a visitor wants to view an article on the site, and the process that
PHP-Nuke goes through to construct the page containing this information. Viewing an article
means that the visitor will be navigating to a page similar to this:
http://localhost/nuke/modules.php?name=News&file=article&sid=1

The page requested by the visitor is modules.php, so let's have a look at that. Note that although
there are many PHP files in the PHP-Nuke installation, there are only four files actually requested
in the normal course of interaction with the site:

• index.php
• modules.php
• admin.php
• backend.php

The other files in the PHP-Nuke installation are used by these files when required.

Programming PHP-Nuke

 248

Where Does PHP-Nuke Get Information From?
PHP-Nuke is able to collect information about what module the visitor wants to see, what operation
they want to perform, and details of the user from request variables coming from these places:

• The query string in the URL: The URL of the page holds information that tells
PHP-Nuke which module to select, which part of the module to use, what item of
content to show, and so on. The query string information is used to select the page
from the system that needs to be shown to the visitor.

• Posted variables: When a user enters information in a form, and submits this back to
the server, this information will be available to PHP-Nuke. This posted information
is how PHP-Nuke gets input from the user to create items of content, enter terms to
search for, and so on.

• Cookie variables: There is user account information stored in a cookie (and
administrator account information if the user has such an account). This is used to
identify the user, so they do not have to keep logging on every time they view a page or
come to the site. When the user logs out, this information is deleted from the cookie.

The information that PHP-Nuke gets from these sources has to be treated very carefully within the
system. These sources are the only means through which visitors communicate with the site, and
are also the channels through which hacks or attacks might be conducted on the site. The patches
we applied in Chapter 2 while installing the system address precisely this issue, and they make
sure that the data PHP-Nuke collects from a visitor is in exactly the right form for working with.

Requesting a Page
Once the modules.php page is requested, the first step followed is to include the mainfile.php
file. This file does the following things:

• It checks and processes the request variables (namely the input to the application), to
avoid possibly harmful tags, or other indicators of some form of SQL injection attack.

• It creates global variables for each request variable.
• It sets up a connection to the database.
• It gets the site configuration such as the site name, site logo, and so on, from

the database.

The mainfile.php file also contains a number of core functions such as checking if the user is
logged in or is an administrator, choosing the blocks to display, and filtering text, among others.
These will be used at different points in the creation of the page.

After this file has been included, the next thing to happen in modules.php is that PHP-Nuke gets
the requested module from the $name global variable, which corresponds to the name query string
variable (as in modules.php?name=News), and checks if this module is active. If the module isn't
active, and the visitor isn't an administrator, a 'Module Not Active' message is displayed, and the
page output is done.

Chapter 10

If the module is active, then PHP-Nuke checks if the visitor has rights to access this module.
PHP-Nuke checks to see if the access is restricted to a particular user group, and if so, is the user a
member of that group? PHP-Nuke also checks if the module is for subscribers only, and if so, is
the user a subscriber to the site? If the visitor doesn't have the right permissions to view the
module, then a 'No Access' message is displayed, and the page output is done.

If the module selected by the visitor is active, and they do have permission to view it, then
PHP-Nuke can get on with passing control to that module. Control is passed to the selected
module by attempting to include the index.php file in the folder of the selected module. However,
if there is a file variable in the query string, then the file with that name is included instead. If
these files can't be found, a 'Module Cannot Be Found' error is displayed to the visitor.

Thus if the user requests a page like modules.php?name=News&file=article&sid=1, the
article.php file in the News folder will be included by PHP-Nuke. If the user requests a page like
modules.php?name=News&sid=1, then the index.php file in the News folder will be included.
Attempting to request a page like modules.php?name=News&file=nosuchfile returns a page with
a 'No such page' message, since there is no file called nosuchfile.php in the News folder. The 'No
such page' message is generated by PHP-Nuke, since it's in control of the process.

If the user has selected an active module for which they have view permission, and are requesting
a page that is part of the module, then control passes to the module, and it's up to that module to do
its work and create the page. We'll see how this works later in the chapter, but for now, our
overview of how PHP-Nuke gets the page creation underway is complete.

Seeing how PHP-Nuke works isn't particularly exciting, what is more exciting is seeing how we
can extend the power of PHP-Nuke by creating new blocks and modules. Along the way, we'll see
most of the components required for 'programming' with PHP-Nuke, and you'll get a good idea of
how to go about your own development projects.

Creating a Block
Our development efforts begin with creating a File block. A File block is a PHP script that is stored
in the blocks folder. It must have a filename of the form block-NAME.php, where NAME will be
used by PHP-Nuke as the title for the block. The filename should not contain any spaces.

The goal of a block is simple. It just has to create one variable, $content, that holds the content of
the block. After that, the PHP-Nuke core will bring the theme into play to take care of displaying
the block.

The block we will create is a better version of the Dinosaur of the Day static HTML block we
created in Chapter 4. The block will display the name of the Dinosaur of the Day, and a thumbnail
image of the lucky lizard. However, on the next day, a different dinosaur will be chosen, and the
block display will be updated.

 249

Programming PHP-Nuke

 250

This is how the block works:

• We will create a database table to hold the date, the title of the dinosaur for that day,
and a link to the thumbnail image of that dinosaur.

• We will create a text data file that will contain the name of a dinosaur and a link to
its thumbnail image on each line. The data in this file will be the dinosaur pool from
which the dinosaur of the day is chosen at random.

• When the block code is executed, it will look in the database table to see if there is any
information for the current date. If there is, it will retrieve it and build the block output.

• If there is no information for the current date, the data from the text file will be
loaded in. One of the entries in that file will be selected at random, and that data will
be inserted into the database. This will become the Dinosaur of the Day. That data
will then be used to create the block output.

We will use the text file to hold the 'Dinosaur of the Day' candidates rather than a database table so
that we do not have to create a separate administration feature to add these details. To add more
dinosaurs to the list, we simply upload a new version of the text file.

Make sure that you copy the dinosaur thumbnails from the code download into the
\images\dinosaurs\tnails folder of your PHP-Nuke installation root.

Time For Action—Creating the Database Table
1. Open up phpMyAdmin in your web browser, and select the nuke database from the

drop-down list in the left-hand panel.
2. Click on the SQL tab, and enter the following code into the textbox, then click Go.

CREATE TABLE dinop_dinoportal_dotd (
id INT(10) NOT NULL AUTO_INCREMENT ,
day VARCHAR(16) NOT NULL ,
title VARCHAR(128) NOT NULL ,
image VARCHAR(250) NOT NULL ,
PRIMARY KEY ('id')
) TYPE = MYISAM ;

What Just Happened?
We just created our database table. There is only one table needed, with a simple design. There
are four fields in the table. The id field will hold an auto-incrementing unique numerical value
and the other fields will hold the current date, the title of the dinosaur, and the link to the image
of the dinosaur.

Time For Action—Creating the Text File
1. Open up your text editor, and enter the following:

Tyrannosaurus Rex,images/dinosaurs/tnails/tyro.gif
Stegosaurus,images/dinosaurs/tnails/stego.gif
Triceratops,images/dinosaurs/tnails/triceratops.gif

2. Save this file as dotd_list.txt in the blocks folder.

Chapter 10

What Just Happened?
The dotd_list.txt file will be the data source for choosing a new Dinosaur of the Day image.
You will notice that we are storing the data here in the form 'name of the dinosaur', 'path to the
image', so it will be easy to extract the information when we need it.

Time For Action—Creating the Block Code
1. Open up your text editor, and enter the following code into a blank file:

<?php

 if (!defined('BLOCK_FILE'))
 {
 Header("Location: ../index.php");
 die();
 }

global $prefix, $db;

$today = date('d-m-Y');

$sql = "SELECT * from ".$prefix."_dinoportal_dotd WHERE day='$today'";

$result = $db->sql_query($sql);
$content = "";
$dino_title = "";
$image = "";

 $numrows = $db->sql_numrows($result);
 if ($numrows)
 {
 $row = $db->sql_fetchrow($result);
 $dino_title = $row['title'];
 $image = $row['image'];
 }
 else
 {
 $filename = "blocks/dotd_list.txt";
 $possibles =@ file($filename);

 if ($possibles)
 {
 $choice = rand(1, count($possibles));
 $imp = explode("," , $possibles[$choice-1]);
 $dino_title = $imp[0];
 $image = $imp[1];
 $sql = "INSERT INTO ".$prefix."_dinoportal_dotd(day,title,image)
 VALUES ('$today', '$dino_title', '$image')";
 $result = $db->sql_query($sql);
 }
 $choice = rand(1, count($possibles));

 $imp = explode("," , $possibles[$choice-1]);
 $dino_title = $imp[0];
 $image = $imp[1];
 }
if ($dino_title)
{

$content = "Today's dinosaur
is:
<center>$dino_title<center>
";
 $content .= "<center><img src=\"$image\"
alt=\"$dino_title\"></center>
";

}
?>

 251

Programming PHP-Nuke

 252

2. Save this file as block-DinosaurOfTheDay.php in the blocks folder of your
PHP-Nuke installation.

What Just Happened?
We just entered the code for the Dinosaur of the Day block, and we'll step through it now.

This first part of the code stops this file being requested directly by a visitor— the BLOCK_FILE
constant is defined in mainfile.php, and without that constant being defined, the visitor would be
redirected back to the homepage of the site. Block files are never requested directly by the visitor,
they are included by PHP-Nuke. These first few lines of code are found in every block file:

 if (!defined('BLOCK_FILE'))
 {
 Header("Location: ../index.php");
 die();
 }

Now we can get started. First, we set ourselves to access some of the global variables of the
application, and we will have our first look at the objects to access data from the database. The
only global variables we need here are the ones for data access—$prefix, which holds the value
of the database tables prefix, and $db, which is used to actually perform database operations.

global $prefix, $db;

Next, we grab today's date, formatted as digits like this 24-05-2005.
$today = date('d-m-Y');

Now we set up the SQL statement to retrieve the information corresponding to this date from the
database:

$sql = "SELECT * from ".$prefix."_dinoportal_dotd WHERE day='$today'";

Now we execute the SQL statement:
$result = $db->sql_query($sql);

It is possible that there is no data corresponding to today's date, so we check the number of rows
returned from this last query. If there are zero rows, there will be no information.

$numrows = $db->sql_numrows($result);

If there are some rows returned, we can start creating the block output. We use the
sql_fetchrow() method to retrieve a row of data from the result of the query. This row is
returned as an array, and we set some variables from the array. We'll only grab one row. If for
some reason, there is more than one entry for today's date, we simply ignore the others.

if ($numrows)
{
 $row = $db->sql_fetchrow($result);
 $dino_title = $row['title'];
 $image = $row['image'];
}

Chapter 10

Now we move on to the situation where there is no information for today's date, and we have to
create it. The first thing we do is to read the contents of the dotd_list.txt file into an array—
there will be one entry in the array for each line in the text file. However, we have to consider
what will happen if there is some kind of problem reading the file.

else
{
 $filename = "blocks/dotd_list.txt";

Note that the path to the file for the dodt_list.txt file is \blocks\dotd_list.txt. This may
seem strange, since both this file and the block file are in the same blocks folder. However, PHP
will be looking for this file from the executing script, which will be one of index.php,
modules.php, or admin.php, all of which are outside the blocks folder. Thus we need to add the
blocks folder in the path to the dotd_list.txt file.

Now we try to grab the file itself:
$possibles =@ file($filename);

The file function opens the named file, and reads the input into an array called $possibles. The
use of the @ character here will suppress any error messages—if there is a problem opening or
reading the file, no untidy error messages will be displayed to the user, and execution can
continue. Of course, if there is a problem reading the file then there will be a problem with
$possibles. So we check this next—if there has been some problem reading the file then
$possibles will be false:

if ($possibles)
{

If there is something stored in $possibles, then this check will be passed, and we can proceed to
choose one element from it at random. We choose a random number, between 1 and the number of
lines in the text file.

 $choice = rand(1, count($possibles));

All we have to do now is choose that element from the array (we have to subtract one from the
random number because the first element of the array is 0, rather than 1), and then split up that line
to get at the title and the path to the image.

 $imp = explode("," , $possibles[$choice-1]);
 $dino_title = $imp[0];
 $image = $imp[1];

We split the line using the explode() function. The explode() function converts a string to an array
by splitting it at certain characters. We will split the string at the ',' character, and we get an array
with two entries. The first entry is the name of the dinosaur; the second is the path of the image.

Now we have the details of our Dinosaur of the Day, we can add it to the database using an
INSERT SQL statement.

 253

Programming PHP-Nuke

 254

 $sql = "INSERT INTO ".$prefix."_dinoportal_dotd(day,title,image)
 VALUES ('$today', '$dino_title', '$image')";
 $result = $db->sql_query($sql);
}

}

At this point, we should have a Dinosaur of the Day, one way or another, and so we can finalize the
block output. However, we check the value of the $dino_title variable just in case there has been
some problem either retrieving data or creating the new Dinosaur of the Day. If there has been a
problem with either of these, there will be no value for the $dino_title variable, and if so, this code
will ensure that the block content will remain empty, rather than producing some useless output.

if ($dino_title)
{

$content = "Today's dinosaur
is:
<center>$dino_title<center>
";
$content .= "<center><img src=\"$image\"
 alt=\"$dino_title\"></center>
";

}

That's it, our block is complete! The key points of this block were the initial few lines that
stopped the file from being requested directly, and this was also our first encounter with the data
access code. Another thing to note from this example is the effort we made to ensure that the
block output was only created if everything went smoothly. We suppressed errors when trying
to read in a file, we checked that the reading of a file had actually given us some data, and then
we didn't create any output if there was a problem with dino_title variable, which would be an
indicator of some problem.

All this means that if there is a problem, the visitor will not be confronted with lots of error
messages, which could disturb the visitor and lead to a poor impression of your site, or even break
the layout of the page, or reveal some information about your code that could be used against you.

All that remains now is to set up this File block using the steps we saw in Chapter 4, and we
are away!

Data Access in PHP-Nuke
In the code for creating the block we had a couple of lines with data access functions:

$result = $db->sql_query($sql);
$numrows = $db->sql_numrows($result);
$row = $db->sql_fetchrow($result);

PHP-Nuke uses a 'data abstraction layer', which means that you call functions against an object,
which translates them into specific calls against the database of your choice. Generally, MySQL is
the database used with PHP-Nuke, but you could choose another database server to power your
site. A more pertinent advantage is that you don't need to use database-specific functions to access
data in PHP-Nuke; you only need to learn about the functions of the data access object (You will
still need to know some SQL to create queries that will be executed on the database).

The code for the data access object is found in the file \db\mysql.php. In fact, the db folder
contains code for different types of database server, but this file is the one selected by default by
PHP-Nuke for working with the MySQL database server.

Chapter 10

The data access object is a genuine object, that is, it's an instance of a class, sql_db in this case.
Classes are one of the basics of object-oriented programming, but other than this instance
PHP-Nuke does not make much use of object-oriented programming. A discussion of
object-oriented programming in PHP is beyond the scope of this book, and it won't particularly
help here since PHP-Nuke makes so little use of it. All that we need to know is how to access the
methods (functions) of the data access object.

Object-oriented programming is covered in more detail in any book on PHP programming,
and you can read an article about it at http://www.devarticles.com/c/a/PHP/Object-Orien
ted-Programming-in-PHP/.

The data-access object provides a number of methods that you can use to execute a query, retrieve
a row of data, check the number of rows returned by the query, or get the last inserted
auto-increment field. Working with the object follows a similar process to the standard way of
working with data in PHP using functions like mysql_query() or mysql_fetch_field().

To access data in PHP-Nuke, you will need two global variables, and $prefix $db. The $prefix
variable holds the table prefix of the database tables, and this needs to be used in your SQL
queries. The $db variable is the data access object itself.

In our block example, we had these lines to create a SQL query and then execute it:
$sql = "SELECT * from ".$prefix."_dinoportal_dotd WHERE day='$today'";
$result = $db->sql_query($sql);

Note the $db->sql_query() syntax. This syntax is used in PHP to call a method on an object, in this
case the sql_query() method of the $db object. The sql_query() method executes an SQL query as
its name suggests. You provide a string with the query that's to be executed as a parameter.

Following the execution of a query, you can retrieve a row using the sql_fetchrow() method:
$row = $db->sql_fetchrow($result);

This method returns an array, and you can refer to the fields in the data using $row['fieldname'],
as we do in the block example to get the title and image fields:

$dino_title = $row['title'];
$image = $row['image'];

If you want to insert or update data, you need to create the relevant SQL query and then use the
sql_query() function to do it:

$sql = "INSERT INTO ".$prefix."_dinoportal_dotd(day,title,image)
 VALUES ('$today', '$dino_title', '$image')";
$result = $db->sql_query($sql);

This is only a small selection of the methods of the data access object. Another interesting one is
the sql_nextid() method, which you can use after an INSERT statement to get the value of the last
auto-increment field created. However, these are the methods that you will see the most of as you
look around the code in PHP-Nuke.

 255

http://www.devarticles.com/c/a/PHP/Object-Oriented-Programming-in-PHP/
http://www.devarticles.com/c/a/PHP/Object-Oriented-Programming-in-PHP/

Programming PHP-Nuke

Module File and Folder Structure
Before we get started creating a new module, let's have a look at the file structure of a typical
module. A module is simply a collection of files (usually only PHP files) contained in a folder that
goes in the modules folder in the root of the PHP-Nuke installation. The name of the folder is the
name that PHP-Nuke will recognize the module by.

However, we can't just place the files into the module folder in any order. There is an organization
of files, subfolder names, and filenames that modules need to follow in order to function properly
with PHP-Nuke.

The image below shows the contents of the module folder: News

We have already seen how PHP-Nuke switches between files in the module folder based on the
value of the file query string variable. If there is no value for this variable, the index.php file of
the module is used. Files that sit inside the module folder are the 'front-end' files, which will be
used during a standard user's visit to the module.

The code for the administration part of a module resides in the admin folder within the module
folder. In earlier versions of PHP-Nuke (before 7.5), the administration code for any module
would have to go into the admin folder (the one in the root of the PHP-Nuke installation), and
would be mixed with the 'core' administration code. The decision to have a module's
administration code contained within the module folder itself means that the module is much more
self-contained, keeps people away from the core code itself, and generally makes the module
easier to set up, install, and maintain. We'll see more about what is found in the admin folder when
we create the administration area of our new module later in this chapter.

We saw in Chapter 4 that the Language block allows you to change PHP-Nuke's user interface
language. This ability to switch languages is something that has made PHP-Nuke so popular all
around the world. This multi-language support is achieved by module developers avoiding coding
any 'localizable' text into the module output. Localizable text is text that needs to be translated if a
different interface language is selected. Instead of coding the text, PHP constants are used, with
the values of the constants defined in a language file. The language files are found in the
language folder of the module, and there is a separate language file for each language, each with a
filename of the form lang-LANGUAGE.php. All PHP-Nuke needs to do is select the correct file
based on the desired language.

 256

Chapter 10

Creating a User Submissions Module
Writing a new module allows you to extend PHP-Nuke to get it to do exactly what you want it to
do. What we will do here is to create a general-purpose module that will allow users to submit
content for modules that do not support user-submitted material. We'll call it UserSubmissions. It
will work in the way the module works for stories: Submit News

• The user will submit the material through a form.
• The administrator will be notified of the new submission by email.
• The administrator will be able to see a list of the submitted material in the

administration area, and can edit, delete, or approve the material to go into
the database.

The point of this module is that it does not touch the modules for which it allows the submission
of content; everything will happen in the UserSubmissions module. In this chapter, we will only
code in functionality for users to submit encyclopedia entries. It is straightforward to extend this to
allow submissions for the Content module, or questions for the FAQ module.

Conceptually what the module does is to:

• Present a form to the user similar to the one the administrator would use for entering
an encyclopedia entry.

• Take the user's input and store it in a 'general' way in a single database table.
• After the administrator checks the input, the data is then stored in the encyclopedia's

database tables using the same kind of code that the Encyclopedia module uses.

We will see exactly what the 'general' way we store the data in is later. Basically, the module will
take all the parts of the encyclopedia entry—the title, the text, the encyclopedia ID—and put them
all together into one bundle, which can then be easily retrieved and broken out to form the
individual pieces of data for the administrator to view, approve, or delete.

Rather than presenting the development as a series of steps for you to follow, we will break the
code up into various tasks, and then examine each piece of code or activity. You can type in the
code as it is presented, although it is probably easiest to grab the example code for this module
from the code download, and refer to it as we go.

Module Development Steps
The steps that we will follow to create the module are these:

• Create the module folder
• Create the database tables
• Code the front end (visitor view) of the module
• Adapt the code for multi-language support
• Set up module administration
• Code the administration area

 257

Programming PHP-Nuke

 258

Rather unusually, we're going to start by coding the front end of the site. The reason this is
unusual is that modules typically display some kind of data (that is what all the modules we have
encountered in the book do), and you would first need to enter this data into the database. This
data is usually entered by the administrator, through the administration interface. With some
example data in place, the front end of the site will be able to display it. It will be difficult to test
the front end if it is supposed to display data and there is no data to display!

This module does not require any existing data in the database to work. In fact, the data is entered
by a standard visitor, and the administrator only has to look at this data, and edit or delete it. There
is no facility in the administrator part of the module for the administrator to add new data into the
module, which would rather defeat the point of this module! Thus we can start on the front end of
the module quite happily.

Let's start off with creating the module folder.

Creating the Module Folder
Create a new folder in the modules folder called UserSubmissions. This will be our module
folder. Within this folder, create two new folders called admin and language. The admin folder
will contain our administration code, and the language folder will contain the user interface
language files. We create another folder, inside the admin folder, also called language. This folder
will hold the language files for the module's administration interface.

That's the first step out of the way, so let's move on to the database tables.

Creating the Database Tables
The module has only one database table. The table will be called <prefix>_usersubmissions.
You can follow the same steps in phpMyAdmin as we did earlier for creating the block database
table to create this table:

CREATE TABLE dinop_usersubmissions (
 id int(11) NOT NULL auto_increment,
 data text NOT NULL,
 parent_id int(11) NOT NULL default '0',
 type varchar(36) NOT NULL default '1',
 user_id int(11) NOT NULL default '0',
 date timestamp NOT NULL default
 CURRENT_TIMESTAMP on update CURRENT_TIMESTAMP,
 title varchar(255) NOT NULL default '',
 user_name varchar(250) NOT NULL default '',
 PRIMARY KEY (id)
) COMMENT='Table for holding user submitted content' ;

Each row in this table will represent a single item of submitted content. The row will be identified
by its id field.

With only one table, you may be wondering how this module is going to be able to hold data from
different modules. The answer is that the submitted data will be bundled up into a single object,
then 'serialized' and stored in the data field. When the data is needed for viewing, it will be
unbundled, and 'unserialized' back into a form that can be worked with. The 'title' of the
submission will be stored in the title field.

Chapter 10

The type of module that we are storing data for will be held in the type field of the row. The
details of the submitter will be stored in the user_id and user_name fields. We actually only use
the user_name field in this version of the module, but we store both for future use. The date the
item is submitted is held in the field called date. This field is a MySQL TIMESTAMP, and
whenever a row is inserted, the current date and time will be inserted into the field automatically
by the database, so we will not need to record the date and time ourselves.

The final field is parent_id. Recall how an encyclopedia entry belongs to an Encyclopedia; a
content page belongs to a Content category; a FAQ question belongs to a particular category, and
so on. For each of these types of content, you needed to provide a 'parent' object that the content
would belong to. That is where our parent_id field comes in. The ID of the parent object will be
stored in this field. For an encyclopedia entry, this will be the ID of the chosen Encyclopedia.

The Visitor Code—the index.php File
In this section, we will walk through the code for the visitor part of the module. There is only one
file that we will need, index.php.

First we will consider the overall structure of the index.php file, and the parts of the code that
every module should contain. Then we will look at the individual parts of code in the index.php
file that perform various tasks. The tasks performed in index.php are:

• Inviting the user to submit an item (an encyclopedia entry in this case)
• Displaying the form for user input
• Preparing the user input for storage
• Storing the user input, and notifying the administrator

Overall Structure of the Module index.php File
Before our detailed exploration of the code, let's have a look at the overall structure of the
index.php file. Here is a view of the code listing with the code for each function removed. There
are three main parts to the code, with the parts separated by the /* ---- */ lines.

<?php
if (!defined('MODULE_FILE'))
{
 die ("You can't access this file directly...");
}

define('INDEX_FILE', true);
$module_name = basename(dirname(__FILE__));
get_lang($module_name);
$pagetitle = "- $module_name";

/* --- */

function ShowTypes()
{
 ...
}

function ShowFormForInput($oid)

 259

Programming PHP-Nuke

 260

{
 ...
}
function AddEnyclopediaEntry($eid, $title, $text, $language)
{
 ...
}

function formatEncyclo()
{
 ...
}

function storeSubmission($type, $storageArray, $parent_id, $title_field)
{

}

function get_user_object()
{

}
/* --- */

switch($op)
{

 case "add_encycloentry":
 AddEnyclopediaEntry($usr_eid, $usr_title, $usr_text, $usr_language);
 break;
 case "add":
 SubmitContent($oid);
 break;
 default:
 ShowTypes();
 break;
}
?>

The first part is standard to every module in PHP-Nuke. The first couple of lines make sure that
this file can only be used through the modules.php or index.php file. This check is similar to the
one used at the start of the block code we saw earlier. With this check, no one can access the file
directly. After that, we define a constant to indicate that we are on the homepage of the module:

if (!defined('MODULE_FILE')) {
 die ("You can't access this file directly...");
}

define('INDEX_FILE', true);

The next line gets the module name. Rather than simply typing in the module name, it is taken
from the name of the folder containing the current file. The __FILE__ PHP constant contains the
full path of the current file, the dirname() function returns the name of that file's parent folder,
and the basename() function returns the filename part of this, which in this case is actually the
top-most directory.

$module_name = basename(dirname(__FILE__));

Once the module name is defined, it is passed to the get_lang() function, which includes the
language file for this module. The module name is also used to set the title of the page:

get_lang($module_name);
$pagetitle = "- $module_name";

Chapter 10

Now we will look at the third part of the code in index.php, which contains a construct used in all
PHP-Nuke modules.

At the end of the file is a switch-case construct. It checks the value of the $op variable.
Depending on the value of this variable, different functions are called within the file. The $op
variable holds the value of the op request variable, and determines which operation in the module
is to be performed. If the value of $op is add, the SubmitContent() function is called; if the value
is add_encycloentry, the AddEnyclopediaEntry() function is called. For any other value of $op
(including no value) the ShowTypes() function is called:

switch($op)
{
 case "add_encycloentry":
 AddEnyclopediaEntry($usr_eid, $usr_title, $usr_text, $usr_elanguage);
 break;
 case "add":
 SubmitContent($oid);
 break;
 default:
 ShowTypes();
 break;
}

In this way PHP-Nuke is able to map visitor requests to functions in code. You will notice that
some of the functions have parameters passed to them (for example, SubmitContent() has a
variable called $oid passed to it). This is a convention followed by modules in PHP-Nuke wherein
request variables used in a function are passed to it from the function call in the switch-case
construct. If the variables aren't passed to the function, they can still be accessed as global
variables from within the function, but we will follow this convention here.

You can read more about the switch-case construct at
http://www.php.net/manual/en/control-structures.switch.php.

By convention in PHP-Nuke, this selection process comes toward the end of the module file, since
it is easy to locate. You look to the switch-case construct to see what bit of code is executed for a
particular module operation.

Tracking Down the Code for a Module Operation
Check the code that was executed when a visitor clicks on a link in the Web Links module. This
has a URL of the form:

http://localhost/nuke/modules.php?name=Web_Links&l_op=visit&lid=1

At the bottom of the index.php file in the Web_Links module, you will find the switch-case construct:
switch($l_op) {

Here the variable being checked is $l_op rather than $op. Looking at that switch-case construct,
you find the check for visit, and can see what action is taken. In this case, it is a call to a function
called : visit()

case "visit":
 visit($lid);
 break;

 261

Programming PHP-Nuke

 262

Now you move up the file to find the visit() function (you can search for function visit(
since we are looking for a function definition):

function visit($lid)
{
 global $prefix, $db;
 $lid = intval($lid);
 $db->sql_query("update ".$prefix."_links_links set
 hits=hits+1 where lid='$lid'");
 update_points(14);
 $row = $db->sql_fetchrow($db->sql_query("SELECT url
 from ".$prefix."_links_links where lid='$lid'"));
 $url = stripslashes($row['url']);
 Header("Location: $url");
}

In this way, you are able to see the exact code that is executed when a visitor clicks on a web link.
The $lid variable is converted to an integer, the number of clicks stored for that link in the
database is increased, the user's point score is updated (with the call to update_points(14)), and
then the URL of the web link numbered $lid is retrieved. Finally, the PHP Header() function
redirects the visitor's browser to the target of the web link.

The details of the Web Links module aren't important to us now, but the point of this discussion
was to illustrate how you can track down the piece of code in a module that is responsible for a
particular operation. This is very useful for understanding how modules work, and especially
useful if you want to tinker with the existing operation of a module.

Let's continue with our discussion of the functions in the index.php file of the UserSubmissions
module.

Inviting the User to Submit an Item
The homepage of the module displays a list of the types of content that the visitor can submit. For
this example, visitors can only submit a new encyclopedia entry, although the module can be
extended to allow FAQ or Content submissions quite easily. When the visitor visits the homepage
of the module (modules.php?name=UserSubmissions), PHP-Nuke will call the ShowTypes()
function in index.php.

function ShowTypes ()
{
 global $module_name;
 include("header.php");
 title("Submit a new Item");
 OpenTable();
 $u = get_user_object();
 if (!$u)
 {
 echo "<center>You need to be a registered user to submit or
 edit new items of content<center>

";
 CloseTable();
 include("footer.php");
 exit;
 }
 echo "Choose the type of content to add

";

 echo "";
 echo "
 Submit a new Encyclopedia entry";

Chapter 10

 echo "";
 echo "
";
 CloseTable();
 include("footer.php");
}

The function starts with a global statement, so that our function has access to certain variables
defined outside our function. Anything defined outside of a function will be defined in the global
scope, hence the reason we use the global statement to get at the $module_name variable. This
function will offer the visitor a choice of content types to add a new submission for; at the
moment, there is only one type, an encyclopedia entry. The ShowTypes() function gets the page
output underway:

function ShowTypes()
{
 global $module_name;
 include("header.php");
 title("Submit a new Item");
 OpenTable();

The title() function creates a boxed element on the page, displaying a message in a large font.
We saw mention of the header.php file and the OpenTable() function in Chapter 9. The
header.php file starts the page output, and renders the page header and the left-hand blocks. The
call to OpenTable() defines an enclosing element for our module output.

Before we display a list of possible types of content to offer to the visitor, we need to check if the
current user is actually logged in. We will not be allowing anonymous submissions, so the user
must be logged in. Of course, this can be achieved by restricting the module to registered visitors
only, but if this restriction isn't in place, then the code will break without first checking that the
user is indeed a logged in user.

If the user is not logged in, a message will be displayed to them, and the page output will be
brought to an end.

 $u = get_user_object();
 if (!$u)
 {
 echo "<center>You need to be a registered user to submit or
 edit new items of content<center>

";
 CloseTable();
 include("footer.php");
 exit;
 }

We have introduced another function here, get_user_object(). Let's talk about that now.

Getting User Information
The information about the current user is got from the get_user_object() function that is defined
later in the file. The reason we have put this functionality into its own function is so that we don't
have to keep typing the same code over and over again in the file to get user information. The
function will return false if there is no user information (when they aren't logged in, even if they
have an account), but if the visitor is logged in, it will return an array with some details.

 263

Programming PHP-Nuke

 264

Let's look at the function definition:
function get_user_object()
{

global $user;

The $user global variable holds the user details. This variable is actually stored in a cookie in the
visitor's browser, and contains information stored in a form that we have to sort out. First of all, if
the $user variable doesn't have a value, we return false for the function, since there is no user
information available.

 if (!$user) return false;

The next few lines of code in the function are found in many, many places throughout PHP-Nuke
and its modules. When the $user variable is taken from the cookie variables, it is a long string,
something like this:

Mjp0ZXN0dXNlcjo1ZDljNjhjNmM1MGVkM2QwMmEyZmNmNTRmNjM5OTNiNjoxMDp0
aHJlYWQ6MDowOjA6MDpUaGVEaW5vc2F1clBvcnRhbDozMg

This long string has to be processed and then converted to an array. However, this process is not
done only once, for the benefit of the rest of the application. Anytime you want to work with user
information you will need to follow this process, which is why we are putting it into its own
function. Our function takes care of these details, and we only have to deal with the results.

First, we check if the $user variable is not an array. If it isn't, we make it into one. The string is
actually encoded, so it needs to be decoded first. Note that we do not actually change the $user
variable itself, we make a copy $user2, and work on that.

 if(!is_array($user))
 {

 $user2 = addslashes($user);
 $user2 = base64_decode($user2);

After this decoding, the string will be something like this, and is getting easier to work with:
2:testuser:5d9c68c6c50ed3d02a2fcf54f63993b6:10:thread:0:0:
0:0:TheDinosaurPortal:32

The final step in our function is to split the string at each : character to produce an array.
 $user2 = explode(":", $user2);
 }

Now we have an array, which we will return from the function:
 return $user2;
}

The reason we don't change the $user variable itself into an array is because there are some parts
of PHP-Nuke that do the above decoding and splitting process themselves, without checking if
$user is already an array. If the variable is already an array, then that process will fail, and the
values returned will be unexpected.

The advantage of using our get_user_object() function is that we don't have to worry about any
of the details of cleaning and preparing the user information, we just call the function to check if
the information is available, and if it is, it will be ready for us as an array.

Chapter 10

Returning to our ShowTypes() function, we call the get_user_object() function, and then check
the value returned:

if (!$u)
{
...

You should always check that the user information is there before attempting to use it. Once we
have the user information as an array, we can get such things as the name of the user, and their
user ID. The user ID is the first element of the array, and the user name is the second element.

The remainder of the code in the ShowTypes() function displays a list of the types of content that
users can submit, with links to begin the process. Note how the link is built using the
$module_name variable rather than typing in the name of the module itself. We are only using one
type of content in this chapter, an encyclopedia entry:

 echo "Choose the type of content to add

";
 echo "";
 echo "
 Submit a new Encyclopedia entry";
 echo "";
 echo "
";

And finally, the function closes page output, first with the call to CloseTable() and then by
including the footer.php file, which takes care of the right-hand blocks and the page footer, in the
same way as discussed in Chapter 9.

Preparing the ShowTypes() Function for Languages
Before we move on to the other functions, we prepare our ShowTypes() function to make use of
language constants. You will notice that we used four pieces of text in the ShowTypes() function.
We will move these out of the function and into the language file as language constants. We create
a file called lang-english.php in the languages subfolder of the UserSubmissions folder and add
these lines:

<?php

define("_SUBMITNEWITEM", "Submit a new Item");
define("_CHOOSETYPE", "Choose the type of content to add");
define("_SUBMITNEWENCYCLOENTRY", "Submit a new Encyclopedia entry");
define("_YOUNEEDTOBEAUSER", "You need to be a registered user to submit or
edit new items of content");
?>

This is the English language file, and contains the text that we used in the ShowTypes() function.
We have given the constants names that are very similar to the text that they hold. The final step is
to modify the ShowTypes() function to use these constants. The lines with the new constants are
shown highlighted:

function ShowTypes()
{
 global $module_name;
 include("header.php");
 title(_SUBMITNEWITEM);
 OpenTable();
 $u = get_user_object();
 if (!$u)
 {
 echo "<center>"._YOUNEEDTOBEAUSER."<center>

";

 265

Programming PHP-Nuke

 CloseTable();
 include("footer.php");
 exit;
 }
 echo _CHOOSETYPE."

";

 echo "";
 echo ""
 ._SUBMITNEWENCYCLOENTRY."";
 echo "";
 echo "
";
 CloseTable();
 include("footer.php");
}

For the remainder of the code, we will use the language constants from the start, and show the constants
afterwards. If you wish, you can begin the process of translating the text into other languages!

This is the result of our module so far. A table that displays the list of content types the user can enter:

There is only one link for the user to click. This will take them to a page of the form:
modules.php?name=UserSubmissions&op=add&oid=1

The value of oid will be used to determine what form they are shown, as we shall now see.

Displaying the Form for User Input
The next function is called ShowFormForInput(). This function shows the form for the user to
enter their content, and is executed when the op request variable has the value add. The function
checks the value of the $oid variable to see what type of content they want to enter. Before we
check the value of

 266

$oid, we explicitly convert it to an integer with the intval() function.

We have only one option for the value of $oid:
function ShowFormForInput($oid)
{
 global $pagetitle, $module_name;
 $oid = intval($oid);
 if ($oid==1)
 {
 $pagetitle = "- $module_name : "._ADDENYCLOENTRY;
 include("header.php");
 title (_ADDENYCLOENTRY);
 OpenTable();

 formatEncyclo();

 CloseTable();

Chapter 10

 include("footer.php");
 }
 else
 header("Redirect: modules.php?name=$module_name");

}

Anything other than the value 1 for $oid will have the user redirected to the module homepage.
PHP's header() function is used to perform the redirection.

The ShowFormForInput() function doesn't display the form itself, it calls the formatEncyclo()
function. This function actually displays a form for the user to enter their new entry.

Here we are following a coding convention whereby a function called from the switch-case
construct at the end of the file has the first letter of its name capitalized. A function that is called
from within one of these functions will have the first letter of its name in lower case, such as
formatEncyclo(). This simple convention makes it easy to distinguish between functions that
correspond to user operations of the module (ShowFormForInput()), and the functions that support
them (formatEncyclo()).

The ShowFormForInput() function uses a new language constant, : _ADDENYCLOENTRY

define("_ADDENYCLOENTRY", "Add a New Encyclopedia Entry");

The form for entering the encyclopedia entry itself is identical to the form used by the
administrator to submit an encyclopedia entry. The first part of the function creates a form with a
textbox for the title of the encyclopedia entry, and a text area for the text of the entry. Note the
name of the title textbox is usr_title, and the name of the entry text area is usr_text.

function formatEncyclo()
{
 global $db, $prefix;
 global $module_name;
 echo " <form action=\"modules.php?name=$module_name\" method=\"post\">\n
 <p>Title:
\n
 <input name=\"usr_title\" size=\"50\" type=\"text\" value=\"\">\n

 Term Text:

 If you want multiple pages you can write <!--pagebreak-->
 where you want to cut.

 <textarea name=\"usr_text\" cols=\"60\" rows=\"20\"></textarea>

 Encyclopedia:

 <select name=\"usr_eid\">\n";

After the form, we need to display a list of the active encyclopedias to the user so that they can
select one to put their entry in. The SQL statement to get the list of encyclopedias is easy to obtain
from looking at the code in the Encyclopedia module:

 $sql = "SELECT eid, title FROM " . $prefix . "_encyclopedia
 WHERE active='1'";

Now we have the SQL statement, we can execute the query against the database, retrieve the rows,
and build a drop-down SELECT element. T

We loop through all of the returned rows, getting the title of the encyclopedia and its ID, and
create the options for the drop-down list. Note that we use the stripslashes() function to strip
away slashes from the title, since the code in the encyclopedia administration for adding an
encyclopedia uses addslashes() on the title before storing it in the database.

 267

Programming PHP-Nuke

 268

It is always wise to apply addslashes() to any text being stored in the database to avoid
problems with quotes in the text.

 $result = $db->sql_query($sql);
 while ($row = $db->sql_fetchrow($result))
 {
 $eid = intval($row['eid']);
 $title = stripslashes($row['title']);
 echo "<option value=\"$eid\">$title</option>\n";
 }

We finish the SELECT HTML element: T

 echo "</select>\n

";

The next element of the form is a hidden field with the name op. This holds the value
add_encycloentry. When the user submits the form, this value of op will be used to determine the
next action.

 echo " <input name=\"op\" value=\"add_encycloentry\" type=\"hidden\">";

Finally, we add a submit button to the form, and close up the form:
 <input value=\"Submit Item\" type=\"submit\"></p>
 </form>";
 }

After the user clicks the button to submit their item, the page is posted back to the server. The $op
variable in that page will have the value add_enycloentry, thus the AddEncyclopediaEntry()
function is called from the switch-case construct at the end of the file.

Preparing to Add the Encyclopedia Entry
There are three parameters passed to the AddEnyclopediaEntry() function. These parameters are
the selected encyclopedia ID, the title of the new entry, and the text of the new entry. Here is the
function:

function AddEnyclopediaEntry($eid, $title, $text)
{
 global $module_name;
 $eid = intval($eid);

 if ($title=="" || $text=="" || $eid<1)
 {
 $pagetitle = "- $module_name : "._ADDENYCLOENTRY;
 include("header.php");
 title (_ADDENYCLOENTRY);
 OpenTable();
 echo "You need to supply a title, some text, and select an
 EncylopediaEncyclopedia!

";
 echo "[Go Back]

";

 CloseTable();
 include("footer.php");
 exit;
 }

 $storageArray = array('title'=>$title,
 'text'=>$text);

Chapter 10

 storeSubmission("encyclo", $storageArray, $eid, $title);
 $pagetitle = "- $module_name : "._THANKYOUSUBMISSION;
 include("header.php");
 title (_THANKYOUSUBMISSION);
 OpenTable();
 echo "<center>"._THANKSTEXT."

";
 echo "["._ADDMOREITEMS."
]</center>

";

 CloseTable();
 include("footer.php");
}

First we convert the $eid value, the encyclopedia ID, to an integer. It is supposed to be an integer,
so we make sure it is with the intval() function.

function AddEnyclopediaEntry($eid, $title, $text)
{
 $eid = intval($eid);

 if ($title=="" || $text=="" || $eid<1)
 {

If the visitor hasn't submitted a title or some text for the entry, or an encyclopedia ID, we won't
accept their submission. We display a message to them that they have missed filling in some
details, and allow them to go back to the form and enter the information.

 $pagetitle = "- $module_name : "._ADDENYCLOENTRY;
 include("header.php");
 title (_ADDENYCLOENTRY);
 OpenTable();

Now comes our message, and the link to go back a page. Note that the link isn't a URL, but a
JavaScript call to step back one page in the browser history, which is the same as the user clicking
the button in their browser. Back

 echo "You need to supply a title, some text, and select an
 Encyclopedia!

";
 echo "[Go Back]

";

Now we finish the page output, and end PHP-Nuke:
 CloseTable();
 include("footer.php");
 exit;
 }

So we must have a title for the entry, some text, and an encyclopedia ID. All that remains now is
to prepare all of this for storage. We create an array with the title and text, and then we call the
storeSubmission() function to take care of the storage:

 $storageArray = array('title'=>$title,
 'text'=>$text);
 storeSubmission("encyclo", $storageArray, $eid, $title);

We pass four parameters to the storeSubmission() function. The first parameter is a string
indicating the type of content we want to store. The second parameter is an array containing the
data that we want to store (the title, text, and language of the entry). The third parameter is the
parent ID of the content.

 269

Programming PHP-Nuke

 270

The fourth parameter is the title of the entry. We pass this again so that it can be stored separately
from the other data, because that data will be stored in a very general way. By passing the title
separately, the title can be easily retrieved to identify the item in a list for the administrator. We'll
see that later.

The final part of the function displays a message to the visitor, thanking them for their submission.
 $pagetitle = "- $module_name : "._THANKYOUSUBMISSION;
 include("header.php");
 title (_THANKYOUSUBMISSION);
 OpenTable();
 echo "<center>"._THANKSTEXT."

";
 echo "["._ADDMOREITEMS.
 "]</center>

";

 CloseTable();
 include("footer.php");

And here is the list of the new language constants used in this function. These need to be added to
the lang-english.php file in the languages folder.

define("_THANKYOUSUBMISSION", "Thank you for your submission.");
define("_THANKSTEXT","We will check your submission in the next few hours,
if it is interesting, and accurate we will publish it soon.");
define("_ADDMOREITEMS", "Add More Items");

Storing the Submission
The final function, storeSubmission() is the real guts of this module. It is intended to take data
for different types of content, and store it in one form. The storeSubmission() function does not
need to know how the data is structured, where it came from, or how to display it. All this function
needs to do is store it.

The function requires quite a few global variables. It needs the database access variables, $prefix
and $db, and it needs the module name, $module_name. After it has finished storing the data, the
function will send a notification email to the administrator, telling them that an item has been
submitted, and providing them with a link to view the submission. To do this, we need the
$admin_file global variable, which holds the name of the administration file, since the link to
view the submission will point to an administration page.

We also need the $nukeurl, $sitename, and $adminmail variables. These variables hold the
values of some of the site's configuration settings (the site URL, the site name, and the email
address of the administrator). For each site configuration setting, a global variable is created in
mainfile.php file. This snippet of code from mainfile.php shows the definition of the first few
site configuration variables:

$result = $db->sql_query("SELECT * FROM ".$prefix."_config");
$row = $db->sql_fetchrow($result);
$sitename = $row['sitename'];
$nukeurl = $row['nukeurl'];
$site_logo = $row['site_logo'];
$slogan = $row['slogan'];
$startdate = $row['startdate'];
$adminmail = stripslashes($row['adminmail']);

Chapter 10

You can see that all the columns are retrieved from the <prefix>_config table, which holds the site
configuration settings. All the site configuration settings are stored in this one table, with each
column corresponding to a setting. In mainfile.php, there are a number of lines that go through this
and define a variable for each setting. If you want to access one of the site configuration settings in
your code, look to this part of the mainfile.php file to find the name of the corresponding variable.

Returning to our storeSubmission() function, it begins in the usual way with global statements
to make sure we can access all the variables we need:

function storeSubmission($type, $storageArray, $parent_id, $title_field)
{
 global $prefix, $db, $module_name, $admin_file;
 global $nukeurl, $sitename, $adminmail;

Recall that only registered users can submit items. We make one last check to make sure that the
visitor is indeed a registered user of the site, and is logged in. If they're not, they're redirected to
the module homepage.

 $u = get_user_object();
 if (!$u)
 {
 Header("Location: modules.php?name=$module_name");
 }

If our user is logged in, we can get their ID and username from the result of the
get_user_object() function:

 $user_id = $u[0];
 $user_name = $u[1];

Now comes the bit where we take the submitted data and transform it so that it is ready for
storage. Remember we created an array from the submitted data in the AddEnyclopediaEntry()
function. Arrays are not particularly easy to store in a MySQL database, so we use the PHP
serialize() function to convert the array into a single string. The serialize() function takes an
object and returns a simple string representation of it. There is an unserialize() function, that
takes that string representation and recreates the object. The idea should be becoming clear now—
we serialize the array and store a string representation of it, and when the administrator needs to
view the data to approve the submission, the string will be unserialized so that the data can be
easily extracted.

 $storage = serialize($storageArray);

We use the addslashes() function to prepare the text variables for storing in the database. The
addslashes() function escapes ' and " characters in a string by adding a \ character in front of
them. Without escaping them, the database will reject any values containing ' or ". We don't escape
the $type variable, since we created that ourselves, and we are certain it has no ' or " characters.

 $storage = addslashes($storage);
 $title_field = addslashes($title_field);

Now we are ready to create the SQL statement to insert the details of the submitted item into our
<prefix>_usersubmissions table:

 $sql = "INSERT INTO ".$prefix."_usersubmissions(
 type, parent_id, data, user_id, user_name, title)
 VALUES ('$type', '$parent_id', '$storage', '$user_id',
 '$user_name', '$title_field')";

 271

Programming PHP-Nuke

 272

Now we execute the query:
 $db->sql_query($sql);

Our work is almost done. The final step is to create the email that is to be sent to the administrator.
Creating the text is easy; the important step is to create the URL for the administrator to view the
submission. The URL will be of the form: <admin_page>?op=UserSubEdit&sid=XXXX, where
XXXX is the ID of the row we just inserted. To get that ID, we use the $sql_nextid() function of
the database access object. This function returns the last created auto-increment field on the
database connection, which should be the value of the ID column in our table. This is precisely the
value we need to make the URL.

 $lid = $db->sql_nextid();

Now we create the body of the email to send, set a FROM address, the TO address, which is the
administrator's email address, the $adminmail variable, and the SUBJECT of the email.

 $mailBody = "A new piece of user-submitted content has been added to the
 site.

";

 $mailBody .= "Visit this link to check it out.

";

 $mailBody .= "Here";

 $from = "$sitename <$adminmail>";
 $to = $adminmail;

 $subject = "A new piece of content has been submitted";

Now we use PHP's mail() function to send the mail, and our function is done.
 mail($to, $subject, $mailBody, "From: $from\nX-Mailer: PHP/" .
 phpversion());
 }

If you do not have access to a mail server on your testing machine, then comment out the last line
with the mail() function.

That brings us to the end of the visitor part of the module. The module is ready for testing,
although after making your submissions there isn't much else that happens, since only the
administrator sees the submissions. That is our next task.

The User Submission Administration Area
Before we get onto writing the administration code, we will set up our module to feature in the
Modules Administration menu. After that, we will see how PHP-Nuke selects the correct bit of
code for performing the desired administrative operation; it is not as straightforward as the way
that the module is selected for the visitor end of the site.

After that, it will be time to complete the administration code for the UserSubmissions module.

Chapter 10

Creating the Modules Administration Menu Entry
To create the Modules Administration menu, PHP-Nuke looks for a file with a name of links.php in
the admin folder of each module folder that the current administrator user has access to. (Recall that
an administrator may have super user power or may have access restricted to certain modules.) If
such a file is found, then a menu entry can be added to the Modules Administration menu.

The links.php file provides the following information to PHP-Nuke:

• A link to the main page for administering that function
• A title for its Modules Administration menu entry
• An image for its icon in the Modules Administration menu

Here is the links.php file that we will use for our UserSubmissions module. Any links.php file
in an admin folder should resemble this:

<?php
if (!defined('ADMIN_FILE'))
{
 die ("Access Denied");
}

global $admin_file;
adminmenu($admin_file.".php?op=UserSubs",
 ""._USERSUBMISSIONS."",
 "usersubs.gif");
?>

The first line checks what page is attempting to make use of this file; if the page is not an
administration page, execution is stopped, and the message Access Denied is displayed. (The
ADMIN_FILE constant is only defined in the file admin.php.)

The adminmenu() function takes the three parameters that we listed earlier, and creates the menu
entry. The first parameter is the link to the main page of the module's administration area. The
second parameter is the title of the entry in the menu, _USERSUBMISSIONS. Again PHP-Nuke uses
language constants.

Note that we have to define this _USERSUBMISSIONS constant used in a language file in
the core \admin\language folder, not the \admin\language folder in the module itself. If
the constant is defined only in the module's language file, the text _USERSUBMISSIONS will
be displayed in the Modules Administration menu rather than the value of the constant.

The final parameter is the image for the menu entry, usersubs.gif, and it is the name of an image
file found in the \images\admin folder. (The usersubs.gif image can be found in the code
download for this chapter.) Although the module code is self-contained, the image file of the menu
entry needs to be located in the \images\admin folder.

After working its way through all the modules that the current user has access to, and executing
each links.php file, PHP-Nuke is able to produce the menu. Modules Administration

 273

Programming PHP-Nuke

 274

To add our language constant, we will add it at the end of the \admin\languages\
lang-english.php file:

define("_WEBLINKS","Web Links");
define("_IMAGESWFURL","Image or Flash file URL");
define("_USERSUBMISSIONS", "User Submissions");

?>

After adding the highlighted line to that file, save the file.

Selecting the Correct Administration Area
PHP-Nuke uses the value of the op request variable to determine what part of the administration
area to present to the user. This variable can be in the URL of the page, as seen here in the URL
for the Downloads administration area:

http://localhost/nuke/admin.php?op=downloads

Alternatively, the op variable can be a hidden field in a form when the administrator is entering
some information. When the page is submitted, the value of the op field will 'override' any value
of the op query string variable, and will be used to determine the action.

Once PHP-Nuke has the value of the op variable, it begins a lengthy process to see which part of
the system will 'claim' it.

First of all, PHP-Nuke 'tries' all PHP files with a name like case.something.php in the case folder
of the admin folder in the root of the installation. The case.messages.php file looks like this:

switch($op)
{
 case "messages":
 case "addmsg":
 case "editmsg":
 case "deletemsg":
 case "savemsg":
 include("admin/modules/messages.php");
 break;
}

The switch-case mechanism is used to match the value of $op against one of the strings. The
strings here are a list of all of the 'operations' the messages administration area uses. Any URL of
the form admin.php?op=messages, admin.php?op=addmsg, admin.php?op=editmsg,
admin.php?op=deletemsg, or admin.php?op=savemsg will be matched here.

If a match is found, the file \admin\modules\messages.php is included, and execution passes to
there. That is the file that will do the work for the messages administration area.

PHP-Nuke loads in all the files in the \admin\case folder and checks to see if there is match of the
value of $op. If there is, code for that part of the administration area will be executed. If there is no
match found in any of the files in \admin\case, then PHP-Nuke moves on to the module folders
as it did with the Module Administration menu above. It looks through all the module folders that
the user has access to, and checks for the file \admin\case.php.

Here is the case.php file for the User Submissions module. All the case.php files are similar to this:

Chapter 10

<?php

if (!defined('ADMIN_FILE'))
{
 die ("Access Denied");
}
$module_name = "UserSubmissions";
include_once("modules/$module_name/admin/language/lang-".
 currentlang.".php");

switch($op)
{
 case "UserSubDelete":
 case "UserSubEdit":
 case "UserSubs":
 case "UserEncycloAccept":
 case "UserSubAccept":
 include ("modules/$module_name/admin/index.php");
 break;

}

?>

If there is a match here, then the index.php file in the admin folder of that module is included, and
code execution continues there. In this way, all the administration functionality of the module can
be kept inside the module folder itself. Note that this setup means that there is only one file for the
module's administration code, the index.php file in the admin folder. Unlike with the front end of
a module where PHP-Nuke selects a different file based on the value of the file query string
variable, PHP-Nuke will not choose a different file in the admin folder, unless you add code for
that yourself.

PHP-Nuke will look through all the module folders to try to match the value of the op query string
variable. If there is no match after all this, a blank page is displayed, and that's the end of that.

We are now ready to code the administration area of the module. If you check out the Modules
Administration area in the administration area, you will see the icon for our module. However,
clicking on it does not produce anything since there is no code there yet!

Creating the Administration Code
The administration code is contained in a single file, index.php, in the admin folder of the module.

Let's begin with an overview of the structure of the code; again it is broken up into parts by /* --
-- */ comment lines:

<?php
if (!defined('ADMIN_FILE'))
{
 die ("Access Denied");
}

$module_name = "UserSubmissions";
$aid = substr($aid, 0,25);
$query = $db->sql_query("SELECT title, admins FROM ".$prefix."_modules WHERE
title='$module_name'");

$row = $db->sql_fetchrow($query);

 275

Programming PHP-Nuke

 276

$admins = $row['admins'];

$auth_user = 0;

$query2 = $db->sql_query("SELECT name, radminsuper FROM ".$prefix."_authors
WHERE aid='$aid'");

$row2 = $db->sql_fetchrow($query2);
$name = $row2['namer'];
$radminsuper = $row2['radminsuper'];

if ($row2)
{
 if (stristr(",".$admins, ",".$name.","))
 $auth_user = 1;
}
if ($radminsuper == 1 || $auth_user == 1)
{
/* ------------------------------------ */
function UserSubs()
{

}
function UserSubDelete($sid)
{

}
function UserSubEdit($sid)
{

}
function editEncycloEntry($sid, $row)
{

}
function removeFromPending($sid)
{

}
function UserEncycloAccept ($sid, $title, $text, $eid, $user_name, $user_id)
{

}
/* ------------------------------------ */

switch($op)
{
 case "UserSubEdit":
 UserSubEdit($sid);
 break;
 case "UserSubDelete":
 UserSubDelete($sid);
 break;
 case "UserEncycloAccept":
 UserSubAccept($sid, $usr_title, $usr_text, $usr_eid,
 $user_name, $user_id);
 break;
 case "UserSubs":
 UserSubs();
 break;

}
}
else
{
 include("header.php");
 GraphicAdmin();
 OpenTable();
 echo "<center>"._ERROR."

You do not have administration

Chapter 10

 permission for module \"$module_name\"</center>";
 CloseTable();
 include("footer.php");
}
?>

The first part is standard to all modules. The first line checks if the ADMIN_FILE constant has been
declared. This constant is only defined in the admin.php file, and this check makes sure the file
isn't being requested directly or from a non-administration part of the system. If the check fails,
the Access Denied message is displayed.

The next line sets the $module_name variable. We can't use the basename(dirname(__FILE__))
setup here that we used in the front end of the module, since that will return admin, rather the
name of the module folder. If you really don't want to type in the name of your module, you can
use the following instead:

$module_name = basename(dirname(dirname(__FILE__)));

but it is quicker to type in the module name here!

The rest of the lines in this top chunk of code check to see if you have permission to administer
this module. Each module has a row in the <prefix>_modules table in the PHP-Nuke database.
This row contains information about the module, including a list of the administrators who are
permitted to access this module. This list is stored in the admins field of the row. We grab that
from the database:

$query = $db->sql_query("SELECT title, admins FROM ".$prefix."_modules WHERE
title='$module_name'");

$row = $db->sql_fetchrow($query);

$admins = $row['admins'];

Now we grab the 'credentials' of the current administrator from the database. Administrator details
are stored in the <prefix>_authors table, and the author is identified by their aid. We get the
name of the administrator, and find out if they are a super user.

$query2 = $db->sql_query("SELECT name, radminsuper FROM ".$prefix."_authors
WHERE aid='$aid'");

$row2 = $db->sql_fetchrow($query2);
$name = $row2['name'];
$radminsuper = $row2['radminsuper'];

If the current administrator is a super user, $radminsuper will have the value 1.

Now all we have to do is check if the administrator's name is in the list of module administrators.
This list, held in the $admins variable, consists of the names of the administrators for this module,
separated by commas, including a comma at the end of the list. To check if our administrator's name
is in that list, we add a comma to the start and end of the name, and use the stristr() function to
find an occurrence of that string inside the $admins variable. We add a comma to the start of the
$admins variable so that every name in the list is surrounded by commas, and this way there can be a
match for the exact name use the stristr() function. If there is a match, $auth_user is set to 1.

if ($row2)
{
 if (stristr(",".$admins, ",".$name.","))
 $auth_user = 1;
}

 277

Programming PHP-Nuke

 278

The only way this administrator can access the administration area is if they have super user
powers or if $auth_user is 1, which implies that they have administrative rights for this module:

if ($radminsuper == 1 || $auth_user == 1)
{

The second chunk of code in the file is only executed if the administrator passes this test. This is
where all the action happens and we will talk about that in a moment.

The bottom chunk of code after the switch-case construct in the file handles the situation where
the user does not have the required administrator permissions to access the file. It simply displays
the administration area with a message that they have no access to this module's administration.
This gives us a good opportunity to see how the administration page is created:

 include("header.php");
 GraphicAdmin();
 OpenTable();
 echo "<center>"._ERROR."

You do not have administration
 permission for module \"$module_name\"</center>";
 CloseTable();
 include("footer.php");

The first line starts the page output in the same way as the front end of the module, by including
the header.php file. Next comes the call to GraphicAdmin(). This displays the administration
menus. Whenever you create an administration page, you will need to call this function to display
these menus.

After that, page output continues as usual with OpenTable(), the error message, CloseTable()
and then including footer.php to wrap things up.

Now that we've seen the overall shape of the code in the file, let's begin to dig into the individual
functions in the file.

Displaying the List of Submitted Items
The main part of the administration area will display a list of all the submitted items. The type of
content, the title, the user who submitted it, and some buttons to view or delete the item will be
displayed. This is similar to the administration functionality we have seen throughout PHP-Nuke.

The main operation is the UserSubs() function, and is the default function called when the page
is viewed:

function UserSubs()
{
 global $db, $prefix;
 global $admin_file;

 include("header.php");

 GraphicAdmin();

 $contenttypes = array('encyclo'=>"Encyclopedia");
 title(_USERSUBADMIN);

 OpenTable();

 echo "<center>";

Chapter 10

 $sql = "select id, title, type, user_id, user_name, UNIX_TIMESTAMP(date)
 AS theDate from ".$prefix."_usersubmissions order by date desc";
 $result = $db->sql_query($sql);
 echo "<table border=1>";
 echo "<tr><td>ID</td><td>Submission Type</td>
 <td>Title</td><td>User</td><td>Date</td>
 <td colspan=3>Functions</td></tr>";
 while($row = $db->sql_fetchrow($result))
 {
 $type = $row['type'];
 $id = $row['id'];
 $title = $row['title'];
 echo "<tr><td>$id</td>";
 echo "<td align=\"center\">".$contenttypes[$type]."</td>";
 echo "<td>$title</td>";
 echo "<td>".$row[user_name]."</td>";
 echo "<td>".date("l dS of F Y h:i:s A", $row['theDate'])."</td>";
 echo "<td>
 <img src=\"images/unban.gif\" alt=\"Approve\"
 title=\"Approve\" border=0></td>";
 echo "<td>
 <img src=\"images/edit.gif\" alt=\"Edit\" title=\"Edit\"
 border=\"0\"></td>";
 echo "<td>
 <img src=\"images/delete.gif\" alt=\"Delete\"
 title=\"Delete\"></td>";
 echo "</tr>";
 }
 echo "</table>";
 echo "</center>";
 CloseTable();
 include("footer.php");
}

The function begins with the usual global declarations, $db and $prefix for data access, and
$admin_file for the name of the admin file. Next, it starts the page output, and displays the
administration menus with a call to GraphicAdmin().

An array called contenttypes is created:
 $contenttypes = array('encyclo'=>"Encyclopedia");

This array will hold the module names that correspond to values in the type field of the stored,
submitted data.

Now we retrieve the current list of submitted items:
$sql = "select id, title, type, user_id, user_name, UNIX_TIMESTAMP(date) AS
theDate FROM ".$prefix."_usersubmissions ORDER BY date ASC";
$result = $db->sql_query($sql);

Note the UNIX_TIMESTAMP() function. This is a MySQL function, and it returns the TIMESTAMP
field, date, as a UNIX timestamp. This is a number counting the number of seconds between the
Unix Epoch (January 1 1970 00:00:00 GMT) and the time specified. Retrieving the date in this
form means we do not have to do any further formatting with the date to work with it. The 'AS
theDate' part creates an alias for this field, so that we can subsequently refer to it as theDate.
Note that we order the submissions by the date on which they were submitted.

 279

Programming PHP-Nuke

 280

Now we create a table to display the list of submitted items:
echo "<table border=1>";
 echo "<tr><td>ID</td><td>Submission Type</td>
 <td>Title</td><td>User</td><td>Date</td>
 <td colspan=2>Functions</td></tr>";

We loop through all the retrieved rows and retrieve the type of content, the ID, and the title:
 while($row = $db->sql_fetchrow($result))
 {
 $type = $row['type'];
 $id = $row['id'];
 $title = $row['title'];

We begin the display of a single row in the table. The first column displays the ID of the
submitted item, the second column the type of content it is, the third column shows the title, the
fourth column the name of the user who submitted it, and the fifth column the date:

 echo "<tr><td>$id</td>";
 echo "<td align=\"center\">".$contenttypes[$type]."</td>";
 echo "<td>$title</td>";
 echo "<td>".$row[user_name]."</td>";
 echo "<td>".date("l dS of F Y h:i:s A", $row['theDate'])."</td>";

The final two columns in the table show the icons for editing (and approving) the item, and
deleting the item:

 echo "<td>
 <img src=\"images/edit.gif\" alt=\"Edit\" title=\"Edit\"
 border=\"0\"></td>";
 echo "<td>
 <img src=\"images/delete.gif\" alt=\"Delete\" title=\"Delete\"
 border="0"></td>";
 echo "</tr>";
 }

The icon for editing is edit.gif and the icon for deleting is delete.gif. Both these files are
found in the images folder of PHP-Nuke and are the same as those used throughout the
administration area. The alt attribute is used as substitute text in case there is some problem
displaying the image file. We have added the title attribute to give a visual cue about the
function of the icon (the text that appears as you hover the cursor over it).

Each of these images is enclosed by a link to the relevant function in our administration area. The
ID of the submitted item is held by the $id variable, and will be passed to the pages through the
sid query string entry. Note that we use the $admin_file variable in the links rather than typing in
admin.php. This ensures that our module supports the renaming of the administration file.

The rest of the function finishes off the page output:
echo "</table>";
 echo "</center>";
 CloseTable();
 include("footer.php");
}

Now when you visit the administration area of the UserSubmissions module, you will see the list
of your submitted items.

Chapter 10

Let's set about coding the first administrative function, to allow the administrator to view and
approve the submitted item.

Editing and Approving the Submitted Item
The UserSubEdit() function allows the administrator to view, edit, and approve or reject the
submitted item.

function UserSubEdit($sid)
{
 global $admin_file, $db, $prefix;

 $sid = intval($sid);

 $sql = "select * from ".$prefix."_usersubmissions where id=$sid";
 $result = $db->sql_query($sql);
 $row = $db->sql_fetchrow($result);
 if (!$row)
 Header("Location: ".$admin_file.".php?op=UserSubs");

 $arry = unserialize($row['data']);
 $row['data'] = $arry;
 $type = $row['type'];
 switch($type)
 {
 case "encyclo":
 $ok = editEncycloEntry($sid, $row);
 break;
 default:
 Header("Location: ".$admin_file.".php?op=UserSubs");
 }
}

This function requires the global $admin_file, $db, and $prefix variables, and begins by
converting the $sid variable to an integer. The next thing done is to retrieve the submission from
the UserSubmissions table:

 $sql = "select * from ".$prefix."_usersubmissions where id=$sid";
 $result = $db->sql_query($sql);
 $row = $db->sql_fetchrow($result);

If there is no row of data returned, we redirect to the main User Submission Administration page:
 if (!$row)
 Header("Location: ".$admin_file.".php?op=UserSubs");

 281

Programming PHP-Nuke

 282

If the check is passed, it means that we must have some data, so we unserialize the contents of the
data column; remember this column contains a serialized array that we created in the
storeSubmission() method of the visitor area.

$arry = unserialize($row['data']);

We store the array back in the $row variable, so that all our data is back together again.
 $row['data'] = $arry;

Now we need to process the data based on the type of content, stored in the $type field of $row.
 $type = $row['type'];
 switch($type)
 {

For a case of type encyclo, we call the editEnycloEntry() function to display the data to
administrator. If the there is any other value for type, we will redirect to the main User Submission
Administration page:

 case "encyclo":
 $ok = editEncycloEntry($sid, $row);
 break;
 default:
 Header("Location: ".$admin_file.".php?op=UserSubs");
 }

This UserSubEdit() function is similar to the ShowFormForInput() function of the module front
end, in that it will select a different type of form to show to the administrator based on the type of
content being looked at.

Displaying the Submitted Item
The editEncycloEntry() function displays the submitted item to the administrator. It contains
code similar to the formatEncyclo() function of the front end that displayed the form to the
visitor, the difference being that the visitor saw an empty form, but the administrator will be
seeing a form populated with the submitted item data.

function editEncycloEntry($sid, $row)
{
 global $db, $prefix, $admin_file;

 $usr_eid = $row['parent_id'];

 $eid = intval($eid);
 $data = $row['data'];
 $usr_text = $data['text'];
 $usr_title = $data['title'];

 include("header.php");
 GraphicAdmin();

 OpenTable();

 echo " <form action=\"".$admin_file.".php?op=UserSubs\"method=\"post\">\n
 <p>Title:
\n
 <input name=\"usr_title\" size=\"50\" type=\"text\"
 value=\"$usr_title\">\n

 Term Text:

 If you want multiple pages you can write <!--pagebreak--

Chapter 10

 > where you want to cut.

 <textarea name=\"usr_text\" cols=\"60\"
 rows=\"20\">$usr_text</textarea>

 Encyclopedia:

 <select name=\"usr_eid\">";

 $sql = "SELECT eid, title FROM " . $prefix . "_encyclopedia WHERE
 active='1'";

 $result = $db->sql_query($sql);
 while ($row2 = $db->sql_fetchrow($result))
 {

 $eid = intval($row2['eid']);
 $title = stripslashes($row2['title']);
 echo "<option value=\"$eid\" ";

 if ($eid == $usr_eid)
 echo "selected";

 echo ">$title</option>\n";

 }
 echo "</select>\n

";
 echo "

";

 echo "<input name=\"user_name\" value=\"".$row['user_name']."\"
 type=\"hidden\">\n";
 echo "<input name=\"user_id\" value=\"".$row['user_id']."\"
 type=\"hidden\">\n";
 echo "<input name=\"sid\" value=\"$sid\" type=\"hidden\">\n";
 echo " <input name=\"op\" value=\"UserEncycloAccept\" type=\"hidden\">";
 echo "<input value=\"Accept\" type=\"submit\">";
 echo "Delete";

echo "Ignore";
echo "</form>";
CloseTable();
include("footer.php");
}

The code begins by picking out and cleaning data from the $row variable:
 $usr_eid = $row['parent_id'];

 $eid = intval($eid);
 $data = $row['data'];
 $usr_text = $data['text'];
 $usr_title = $data['title'];

After beginning the page output, we create the form for the administrator. This code is almost
identical to the code in formatEncyclo(); the difference this time is that we actually fill in the
fields in the form (shown highlighted):

echo " <form action=\"".$admin_file.".php?op=UserSubs\" method=\"post\">\n
 <p>Title:
\n
 <input name=\"usr_title\" size=\"50\" type=\"text\"
 value=\"$usr_title\">\n

 Term Text:

 If you want multiple pages you can write <!--pagebreak--
 > where you
 want to cut.

 <textarea name=\"usr_text\" cols=\"60\"
 rows=\"20\">$usr_text</textarea>

 283

Programming PHP-Nuke

 284

 Encyclopedia:

 <select name=\"usr_eid\">";

The next thing is to create the drop-down list of Encyclopedias. Again, this is similar to the code
in formatEncyclo(), except this time we have to select the Encyclopedia chosen by the submitter
(these lines are highlighted):

 $sql = "SELECT eid, title FROM " . $prefix . "_encyclopedia WHERE
 active='1'";

 $result = $db->sql_query($sql);
 while ($row2 = $db->sql_fetchrow($result))
 {

 $eid = intval($row2['eid']);
 $title = stripslashes($row2['title']);
 echo "<option value=\"$eid\" ";

 if ($eid == $usr_eid)
 echo "selected";

 echo ">$title</option>\n";

 }
 echo "</select>\n

";

We add some hidden fields that contain the details of the user who submitted the item, the ID of
the item itself, and a value for op to determine the next action when the page is submitted:

 echo "<input name=\"user_name\" value=\"".$row['user_name']."\"
 type=\"hidden\">\n";
 echo "<input name=\"user_id\" value=\"".$row['user_id']."\"
 type=\"hidden\">\n";
 echo "<input name=\"sid\" value=\"$sid\" type=\"hidden\">\n";
 echo " <input name=\"op\" value=\"UserEncycloAccept\" type=\"hidden\">";

Finally, we add a submit button, and some links for the administrator to delete the item outright, or
just ignore the item and return to the main User Submission Administration page:

 echo "<input value=\"Accept\" type=\"submit\">";
 echo "<a href=\"".
 $admin_file.".php?op=UserSubDelete&sid=$sid\">Delete";

 echo "Ignore";
 echo "</form>";

With this form, the administrator is able to view the submission, and make some modifications if
they choose. If they are happy with the submission, they can click the Accept button and the data
will be added to the encyclopedia database. When they click the Accept button and the page is
submitted, the value of op will be UserEncycloAccept, and the process of inserting the submitted
item into the encyclopedia begins.

Accepting the Submitted Item
And at last we come to inserting the data into the encyclopedia.

function UserEncycloAccept($sid, $title, $text, $eid, $user_name, $user_id)
{
 global $db, $prefix, $admin_file;

 $sid = intval($sid);
 $eid = intval($eid);

Chapter 10

 if ($sid<1 || $eid<1)
 Header("Location: ".$admin_file.".php?op=UserSubs");

 $text .= "
Submitted by: ".$user_name."
";

 $text = stripslashes(FixQuotes($text));
 $title = stripslashes(FixQuotes($title));

 $db->sql_query("insert into ".$prefix."_encyclopedia_text values(NULL,
 '$eid', '$title', '$text', '0')");

 removeFromPending($sid);

 Header("Location: ".$admin_file.".php?op=UserSubs");
}

We begin by preparing, and checking the ID of the submitted item, and the Encyclopedia it is
supposed to be going into. If we have no value for either of these, we redirect the administrator to
the main administration page.

Before we insert the data, we add a note to the end of the entry text indicating who added the entry:
$text .= "
Submitted by: ".$row['user_name']."
";

We have to prepare the text and title before storing it in the same way that the Encyclopedia
module does. You can see what needs to be done in the encyclopedia_save() function in the
index.php file of the encyclopedia administration code. We do it here too:

 $text = stripslashes(FixQuotes($text));
 $title = stripslashes(FixQuotes($title));

We insert the data into the encyclopedia table.
 $db->sql_query("INSERT INTO ".$prefix."_encyclopedia_text
 VALUES(NULL, '$eid', '$title', '$text', '0')");

Now we remove the submitted item from the list with a call to removeFromPending(), and redirect
the administrator to the main User Submission Administration page since we are done.

 removeFromPending($sid);
 Header("Location: ".$admin_file.".php?op=UserSubs");

}

Removing a Submitted Item
The removeFromPending() function is where the deleting action happens. We create a SQL
statement to delete the entry from the UserSubmissions table, and then execute that query:

function removeFromPending($sid)
{
 global $db, $prefix;
 $sql = "DELETE FROM ".$prefix."_usersubmissions WHERE id=$sid";
 $db->sql_query($sql);
}

This deleting functionality is kept separate from the function called by the administrator to delete
an item because more than one operation will want to delete the item from the list.

 285

Programming PHP-Nuke

 286

Deleting a Submitted Item
The UserSubDelete() function is how the administrator deletes a submitted item. This function
doesn't do too much; it calls the removeFromPending() function that actually removes an item
from the database. After the entry has been deleted, the administrator is redirected to the User
Submission Administration main page:

function UserSubDelete($sid)
{
 $sid = intval($sid);
 if ($sid<1) return;
 removeFromPending($sid);
 Header("Location: ".$admin_file.".php?op=UserSubs");
}

And that completes the code for this module.

Extending the Module
To extend this module for other types of content from different modules (including your own),
you will need to make changes to both the front end of the module and the administration end.

Extending at the Front End
At the front end, you will need:

• A form for the visitor to enter their submission—you will need to add a new check
against the value of $oid in the ShowFormForInput() function in the front end
index.php file, and then create a new function like formatEncyclo() for displaying
the form.

• A function for serializing the submitted data—like the AddEnyclopediaEntry()
function. This will require you add a new entry to the switch-case construct at the
end of the index.php file.

Extending at the Administration End
At the administration end, you will need to:

• Create a new entry in the contenttypes array in the UserSubs() function.
• Add a new entry in the $type switch-case construct in the UserSubEdit() function,

and a new function for displaying the submitted item similar to
editEncycloEntry(). In that function, you will need to state a new value for the op
hidden field, and make sure you add this value both to the switch-case construct
near the end of the index.php file, and also in the case.php file, or else that action
will never get recognized by PHP-Nuke.

• Finally, you will need a new function to insert the submission into the relevant database.

Chapter 10

Summary
In this chapter, we have seen a lot of code. We began with a look at how PHP-Nuke handles
requests for a page.

After that, we created a new block, a better version of the Dinosaur of the Day block we created in
Chapter 4. We created a block that displayed an image and the title of a dinosaur from the
database, adding that information to the database if there was none there. This introduced us to
data access in PHP-Nuke, a topic which we used throughout the chapter after that.

After a quick look at module file and folder structure, we began creating a new module for
PHP-Nuke, a UserSubmissions module. The steps that we followed to create the module were:

• Creating the module folder structure
• Creating the database table
• Coding the front end (visitor view) of the module
• Adapting the code for multi-language support
• Coding the module administration area, and adding the module to the Modules

Administration menu

 287

A
Installing XAMPP

In this appendix we will walk through downloading, installing, and setting up the XAMPP
package. XAMPP is a free package that has a collection of free applications assembled to provide
you with an easy-to-setup web server (Apache), database server (MySQL), and server-side
scripting language (PHP). XAMPP lets you experiment with these technologies and develop your
own web applications.

Setting up an AMP (Apache, MySQL, PHP) environment has typically required configuring the
different applications to work on their own, and then to work with each other. With XAMPP this
interplay has already been set up for you, and the system comes ready configured and ready to go.
In addition to being easy to get started, XAMPP includes a number of useful extensions, code
libraries, and other applications, all already configured so you don't need to spend a long time
trying to get them working together.

Note that we are installing XAMPP here as a 'development' or 'testing' environment only.
We will only be using XAMPP for testing and exploring the technologies, and not as a
'production' environment for serving our website to the outside world. Setting up a
production web server and a database server, and securing and optimizing them is a topic
beyond the scope of this text.

There is a version of the XAMPP package available for Windows, Linux, Mac OS X, and the
Solaris operating system. XAMPP is free to download, and the package contains the following:

• The AMP environment of Apache, MySQL, PHP.
• PHP 4 and PHP 5, and many extensions.
• phpMyAdmin, the leading web-based interface to MySQL.
• The PEAR library. PEAR (PHP Extension and Application Repository) is a

framework for reusable PHP components, and is a favorite among professional PHP
developers. You can find out more about PEAR at pear.php.net.

• eAccelerator, a PHP caching utility to speed up the serving of your pages.
• FileZilla, an FTP server.
• An implementation of OpenSSL for running your site under HTTPS.

Installing XAMPP

The advantage of the XAMPP package is that everything you need is collected together for you,
tested, and ready to go. The downside is that you will have a very large file to download. On the
brighter side, you only have to download one file rather than downloading lots of files, and then
trying to get them working.

The home of the XAMPP package is the site www.apachefriends.org/en/. The installation
walkthrough in this chapter may not solve all your problems, and only covers Windows. If you
find yourself in need of further help, check out the XAMPP documentation page at:

http://www.apachefriends.org/en/faq-xampp.html

Details of the XAMPP package itself can be found at:
http://www.apachefriends.org/en/xampp.html

On that page, you will find a link to the XAMPP version of your particular operating system. We
will be choosing XAMPP for Windows. Clicking the XAMPP for Windows link on this page brings
you to:

http://www.apachefriends.org/en/xampp-windows.html

You will find that there are several options for downloading XAMPP. First, you can choose from
one of three types of package:

• XAMPP
• XAMPP add-ons
• XAMPP Lite

Each of these packages is available in different download formats, a Windows installer file, a ZIP
file, or a self-extracting 7-ZIP archive:

We will be choosing the Installer version of the full XAMPP package. This is some 25MB to
download. You can choose the Upgrade Package if you already have an earlier version of
XAMPP installed on your system.

 290

http://www.apachefriends.org/en/faq-xampp.html

Appendix A

The XAMPP add-ons package consists of more open-source technologies, such as Python, Perl,
Tomcat, and Cocoon. We will not need them in this book. The XAMPP Lite package is half the
size of the full XAMPP package, but it does contain everything that you will need to run the code
in this book. However, the Lite package does not come as a Windows installer.

Clicking the Installer link takes you to a page where you select the 'nearest' Sourceforge mirror site
from which to download the file. You can download the file from any of the sites listed, so you
might want to pick the one nearest to you. The downloaded file will have a filename of the form:

xampp-win32-1.4.16-installer.exe.

The 1.4.16 part is the current XAMPP version.

We will install the XAMP package into a folder called c:\apachefriends\. You can either create
this folder before you begin, or from within the installation process.

We begin by double-clicking on the file, and we will be presented with a dropdown to choose the
language of our installation. Select and click English OK to move on to the welcome page, which
displays a simple message, and you can click to move to the start of the process. Next

You will be presented with a dialog asking you to choose the location for XAMPP to install its
files into. XAMPP will create a folder called xampp in the Destination Folder specified, and add its
files in there. Clicking the Browse button allows you to create the apachefriends folder if you
have not already done so, and then the folder can be selected:

Click Install to continue and the installation begins. The files are extracted and copied to the
specified folder. A command-line window will open at one point, right before the end; do not be
disturbed by that! After the command-line window closes, the installation is complete, and you are
presented with the end screen. Click Finish to complete the installation.

 291

Installing XAMPP

After clicking Finish, you will be asked if you wish to install the XAMPP servers as Windows
services. This will save you the trouble of having to start them manually every time you boot up.

Click to begin installing these servers as Windows Services. Yes

If you are running the IIS server or Skype VOIP application, then exit them before
attempting to install Apache as a Windows Service. Otherwise, the Apache service will
fail to install as a Windows Service, with XAMPP reporting a problem with port 443 (for
Skype) or port 80 (for IIS).

You will first be asked if you wish to install Apache as a Windows service. Again, click Yes. Then
you will be asked if you wish to install MySQL as a Windows Service. Again, click Yes. The next
choice is if you want to install Filezilla FTP as a Windows Service. We don't have need of an FTP
server in this book, so you can click No.

After this, you are presented with a congratulatory message, and an option to view the : Control Panel

The XAMPP Control Panel is used to control and monitor the status of the services that XAMPP
has installed. When the Control Panel is running, you will see an icon like:

in your System Tray, and you can double-click it to get the XAMPP Control Panel back on your
screen. If you have closed the Control Panel, you can open it again from Start | Programs |
apachefriends | xampp | CONTROL XAMPP SERVER PANEL. Alternatively, you can control and
monitor these services in the usual way from the Windows Control Panel, (Start | Settings | Control
Panel), by using the area found in

 292

Services Administrative Tools.

With our servers installed as services, we are ready to go. Open up your browser, and enter
http://localhost/ into the navigation bar. You should see the following splash screen, inviting
you to select a language. We will select : English

Appendix A

Now you will be taken to your XAMPP homepage. In future you will directly be taken to this page
when you enter http://localhost/ into your browser, bypassing the language splash screen.

You will find a range of options in the left-hand panel for you to test out what comes with
XAMPP. Of particular interest is phpMyAdmin, which we will be making use of in many parts of
the book, and which is likely to become a very important tool as you work more with PHP and
MySQL. You can click the link in the left-hand panel, or enter its URL (http://localhost/
phpMyAdmin/) directly into the browser to get started with it.

 293

Installing XAMPP

There is one step left. By default, XAMPP is configured to run PHP 5. We will need to set
XAMPP to run PHP 4. PHP-Nuke is written in PHP 4, so it is sensible to be running this while
using PHP-Nuke. Although there is great compatibility for PHP 4 applications running under PHP
5, there is no particular reason to run PHP 5 for PHP-Nuke, so we will make the switch.

There is a file called php-switch.bat in the apachefriends\xampp\ folder that allows you to
make the switch between PHP 5 and PHP 4 (and back again). However, before you can use it you
need to stop the Apache Service.

Open up the XAMPP Control Panel, and click the Stop button next to the Apache service. You
should see a message reporting the service has been stopped:

Now double-click the file php-switch.bat in the apachefriends\xampp folder, and a
command-line window will open, and you will be prompted to choose the version of PHP.

 294

Simply press 4 followed by Enter, and XAMPP will switch over to PHP 4 for you. Once it has
completed, you will see a message containing this report:

 OKAY ... PHP SWITCHING WAS SUCCESSFUL

Press any key to close the window. You will now have to restart Apache from the Control Panel
by clicking the Start button, and then you can return to your browser and visit your XAMPP home
page. Once you are finished with the Control Panel, click to shut it down. Exit

You can use php-switch.bat to switch back to PHP 5 again if you want to continue working with
PHP 5, but remember to stop the Apache service before using it.

Before we finish off, it's worth noting two important folders in your XAMPP installation.

• htdocs: This folder is your 'document root'. A file placed in this folder will be made
available by the web server. We will be copying our installation of PHP-Nuke into
this folder to get it working properly.

Appendix A

• apache: This folder contains a file called apache_installservice.bat. If Apache
failed to install as a service during the installation process, then you can run this file
to try again. Also in the apache folder is a folder called bin. This contains most of
the binary files of the XAMPP installation, and also a number of configuration files.
In particular, it contains the PHP configuration file, php.ini. There are two php.ini
files in the standard installation of XAMPP, but if you need to make changes to 'the
PHP configuration file', you should make changes to the php.ini file in the
apache\bin\ folder or you may find your changes do not have any effect.

Your XAMPP installation is now set up and working, and you are ready to begin installing
PHP-Nuke!

 295

Index

A
account activation, new user, 78
activate comments, stories, 110
Activate Personal Menu, 87
Activate? option, blocks, 59
activating modules, 67
active modules, 66
Add a New Administrator option, 98
Add a New User panel, 74
Add Headline panel, 62
Add Member button, forums, 204
AddEnyclopediaEntry() function, 261, 268
adding blocks, 57
addslashes() function, 267
Admin Index link, Forums administration, 191
admin sub-folder, html, 14
admin.php, 32
administration area, 42
administration area, user submission, 272
administration code, module development, 275
Administration Menu

about, 43
Backup DB, 48
Blocks, 50
General Site Info, 46
Optimize DB, 50
Preferences, 44

administrator, 30, 31
Administrator Email option, General Site

Info, 46
administrator types

authors, 97
special administrator, stories, 142

administrators group, 39
adminmenu() function, 273
After Expiration option, blocks, 59
aid variable, story formatting, 241
anonymous users group, 39
apache folder, XAMPP, 295
Apache installation, XAMPP, 289
appearance, themes, 208
Article Rating block, 114

author, administrator type, 97
Avatar Control Panel, 85
avatars, 218

B
background colors, theme modification, 219
background image, theme modification, 221
background-image property, style.css, 222
backing up database, 48
Backup DB option, Administration Menu, 49
Ban IP module, 125
banning IPs, 125
basename() function, 260
bgcolor variable, header.html, 219
blocks

about, 27, 50
adding, 57
adding a file block, 63
adding a Headline site, 61
adding a static block, 59
adding an RSS/RDF block, 60
administration area, 53
changing positions, 56
Content block, 155
creating a block, 249
Encyclopedia block, 164
language, 256
Languages block, 51
options, 58
positioning, 53
Related Links block, 114
Reviews, 187
Survey block, 51
Top10_Links block, 181
Total Hits block, 63
types, 52
visibility, 53
Waiting Content block, 51

Blocks Administration area, 53
blocks sub-folder, html, 14
blocks, theme modification

different right and left blocks, 233
hide some right blocks, 228

new block, 230 page navigation, 154
show right blocks on all pages, 227 restricting access, 156
uppercase block titles, 230 special administrator, 155

splitting content pages, 154 Broadcast Public Message, Your Account
module, 84 content page, 149, 151

content variable, blocks, 249
content variable, story formatting, 241 C cookie domain, Forums administration, 192

categories cookie variables, 248
story categories, 104 cookies, 48
deleting, 155 counter variable, story formatting, 241
editing, 155 creating a block, 249, 250, 251

Censure Options, Web Site Configuration
menu, 122

creating a content category, 150
creating a forum, 193

Change start date to today field, 38 creating a module, 257
check_num, 79 creating an author, 98
CloseTable() function, 224 creating a new topic, 105
colors, theme modification, 219 creating tables, PHP-Nuke database, 18
Comment Configuration page, 131 custom files, theme modification, 244
comment moderation, 123, 127
comments, stories D about, 100, 117

allowing comments, 120 data abstraction layer, 254
customizing user view, 130 data access, 254
deleting comments, 122 data access object, 255
disallowing comments, 120 database connection, troubleshooting, 23
karma, 123 database, PHP-Nuke

about, 41 moderating comments, 123
backing up, 48 posting a comment, 117
creating, 17 replying to a comment, 119
creating tables, 18 restricting access, 120, 121
database user, 17 viewing comments, 120
phpMyAdmin, 16 community sites, PHP-Nuke, 9
populating, 18 community-driven websites, 5

datetime variable, story formatting, 241 comparision, modules, 187
db variable, creating blocks, 252 config.php

graphical security code, 80 dbname variable, config.php, 21
Default Theme for your site option, General

Site Info, 47
config.php settings

$dbname, 21
$prefix, 21 Dinosaur Portal

introduction, 10 $user_prefix, 21
dirname() function, 260 configuration, PHP-Nuke, 21
Disallowed Access, forums, 205 configuration, user accounts, 86
download PHP-Nuke, 13 Content block, 155
Downloads module, 29, 164 content category, 150
dynamic PHP blocks, 52 content filtering, 122

content management system, 9
Content module E about, 149

eAccelerator installation, XAMPP, 289 adding content pages, 151
Edit Category panel, 155 creating a content category, 150

298

editEncycloEntry() function, 282 forum status, forum administration, 194
editing a theme, 210 Forums module

about, 83 editing properties, modules, 68
administration, 190 editing text, 34
configuration, 192 Encyclopedia block, 164
creating a forum, 193 Encyclopedia module

about, 159 group permissions, 201
adding new encyclopedia, 160 groups, 198
adding new entry, 160 joining a group, 202
multi-page entries, 161 moderation, 204
restricting access, 164 permissions, 198
special administrator, 164 posting a topic, 196
viewing encyclopedia, 162 structure, 189

themes, 209 Encyclopedia Terms Edit panel, 164
user interface, 195 error messages, Warning: failed to open

stream, 24 functions
 AddEnyclopediaEntry(), 261, 268 eval() function, theme.php, 213
 addslashes(), 267 Expiration field, 38
 adminmenu(), 273 Expiration option, blocks, 59
 basename(), 260 explode() function, 253
 CloseTable(), 224 exposing news, 143
 dirname(), 260 extending modules, 286
 editEncycloEntry(), 282
 eval(), theme.php, 213 F explode(), 253

FAQ administration area, 156 file(), 253
FAQ module formatEncyclo(), 267

adding a FAQ, 157 get_lang(), 260
adding a FAQ category, 156 get_user_object(), 263
editing a FAQ, 159 getusrinfo(), theme.php, 219
restricting access, 159 GraphicAdmin(), 279
special FAQ administrator, 159 intval(), 266

FavIcon, theme modification, 243 mysql_fetch_field(), 255
feeds, RSS, 52 mysql_query(), 255
file block, adding, 63 OpenTable(), 224, 263
file function, 253 removeFromPending(), 285, 286
file structure, modules, 256 serialize(), 271
file structure, themes, 209 ShowFormForInput(), 266, 267
FileZilla installation, XAMPP, 289 ShowTypes(), 261
filtering offensive content, 122 sql_fetch_row(), 252
filters sql_fetchrow(), 255

comments filter, 134 sql_nextid(), 255
filth filter, 122 sql_query(), 255

folder references, theme modification, 211 storeSubmission(), 269, 282
folder structure, modules, 256 stripslashes(), 267
footer, theme modification, 243 stristr(), 277
forbidden HTML tags, 35 strtoupper(), 230
formatEncyclo() function, 267 SubmitContent(), 261
Forum Index link, Forums administration, 191 themearticle(), theme.php, 242
Forum Permissions Control interface, forums

administration, 200
 themeheader(), 213
 themeindex(), theme.php, 242

 299

 themesidebox(), 230 extracting PHP-Nuke, 14
 title(), 263 testing, 22
 UNIX_TIMESTAMP(), 279 troubleshooting, 22
 UserSubDelete(), 286 installing a theme, 209
 UserSubEdit(), 281 installing XAMPP, 291
 UserSubs(), 278 intval() function, 266
 visit(), 262 invisible modules, 69

IP banning, 125

G
J General configuration, Forums

administration, 192 Join Group button, forums, 203
joining groups, forums, 202 General Site Info, Web Site Configuration, 46
journal, users get_lang() function, 260

about, 89 get_user_object() function, 263
add new entry, 90 getusrinfo() function, theme.php, 219
view entries, 91 God account, 98
view other user journals, 92 GraphicAdmin() function, 279

graphical code, user registration, 80
Graphics Options, Administration Menu, 48 K group administration page, forums

administration, 199 karma, 123
group permissions, forums administration,

201 L
Group status, forums administration, 199 language block, 256 groups, forums, 198 language sub-folder, html, 14, 256

Languages block, 51
H linking to websites, 164

links, adding, 35, 164 Headline site, adding, 61
links, theme modification, 222 home module, 29
logo.gif, theme modification, 214 htdocs folder, XAMPP, 294
Look up User button, forums administration,

205
HTML blocks, 52
HTML editor, 36
html folder, PHP-Nuke, 14

M HTML rules, 34
HTML tags, forbidden, 35 mainfile.php, 248

management interface, PHP-Nuke, 6
I Management link, Forums administration, 193

Members List module, 82 icons, administration menu, 47
message, 37 images folder, themes, 209
Messages Administration panel, 33 images sub-folder, html, 14
META DESCRIPTION tag, 46 images, adding, 36
moderating comments, 123 inactive modules, 66
moderators, forums, 190, 204 includes sub-folder, html, 14
modifying a theme, 210 index.php, module development, 259
modular structure, PHP-Nuke, 7 informant variable, story formatting, 241
modular system, 6 installation
module development configuring PHP-Nuke, 21

about, 257 creating database, 17
accepting submitted item, 284 downloading PHP-Nuke, 13

300

adding encyclopedia entry, 268 editing module properties, 68
administration code, 275 editing properties, 68
approving submitted item, 281 functions column, 67
creating database tables, 258 invisible modules, 69
creating module folder, 258 restricting access, 66
deleting submitted item, 286 status column, 66
displaying submitted items, 282 Visible To column, 66
displaying submitted items list, 278 modules block, 28
editing submitted item, 281 modules sub-folder, html, 14
extending the administration end, 286 moving blocks, 54
extending the front end, 286 multiple comment moderation, 130
getting user information, 263 My Headlines, Your Account module, 84
index.php, 259 MySQL installation, XAMPP, 289
removing submitted item, 285 mysql_fetch_field() function, 255
selecting administration area, 274 mysql_query() function, 255
storing submission, 270
user input form, 266 N user submission administration area, 272

navigation bar, theme modification, 219, 225 user submissions, 262
new topic, forums, 196 module extension, 286
new user account activation, 78 modules
new user registration, 76 about, 28
new_topic variable, header.html, 217 access rights, 249
News module, 102 activating modules, 67
news, sharing, 143 active modules, 66
Next Page pager, 154 adding new modules, 70
notes variable, story formatting, 241 administration area, 65

content module, 149
O Downloads module, 164

editing properties, 68 object-oriented programming, 255 Encyclopedia module, 159 offensive content filtering, 122 FAQ module, 156 open source, 8 feature comparison, 187 OpenSSL installation, XAMPP, 289 file structure, 256 OpenTable() function, 224, 263 folder structure, 256 OpenTable() function, theme modification, 223 Forums module, 83 Optimize DB option, Administration Menu, 50 inactive modules, 66 overview, theme modification, 245 installing modules, 70
invisible modules, 69

P management, 65
Members List, 82 page header, theme modification, 214
News module, 102 page layout, themes, 208
restricting access, 66, 95 page output process, theme modification, 245
Reviews module, 182 page request. See requesting a page
Story Archive module, 140 patches, PHP-Nuke
Submit News module, 102 applying, 15
Your Account, 83 downloading, 14

Modules Administration area modifying file permissions, 16
about, 65 PEAR installation, XAMPP, 289
activating modules, 67 permissions field, administrators, 98
adding new modules, 70 permissions, forums, 198, 200

 301

rename theme, theme modification, 211 personal menu, 87
Report Broken Link option, Web Links

module, 169
PHP blocks, 52
PHP installation, XAMPP, 289

requesting a page, 247 phpBB, 189
restoring a database, 49 phpBB for PHP-Nuke, 14
restricting access, 38 PHP-Nuke

about, 7 restricting access, user groups, 67
administration area, 42 Reviews Administration page, 186
community, 9 Reviews block, 187
configuration, 21 Reviews module

about, 182 features, 6
posting comments, 186 management interface, 6
restricting access, 187 modular structure, 7
review modification, 186 multi-lingual interface, 8
Reviews Administration page, 186 themes, 7, 207
special administrator, 187 php-switch.bat, XAMPP, 294
submitting reviews, 183 placeholder, 213

rewards, users, 93 point score, 262
root directory, 22 points, users, 93, 143
rounded box, theme modification Position option, blocks, 59

corner images, 235 positioning blocks, 54
CSS code, 237 possibles array, 253
HTML code, 236 Post Comment button, 117

RSS, 52 posted variable, story formatting, 241
RSS blocks, 52 posted variables, 248
RSS/RDF block, adding, 60 posting a topic, 196

postings, forums, 189
preferences option, 44 S prefix variable, config.php, 21

search module, 29, 140 prefix variable, creating blocks, 252
security code, user registration, 80 Preview Forum link, Forums administration,

191 serialize() function, 271
ShowFormForInput() function, 266, 267 private messages, 88
ShowTypes() function, 261 profiles, users, 84
ShowTypes() function, languages, 265 public messages, 86
simultaneous login - user and administrator,

48
publishing a story, 102

site administrator, 30 Q Site Documents link, 152
query string, 28, 248 site header layout, theme modification, 214

Site Name option, General Site Info, 46
site preferences, 44 R site slogan option, General Site Info, 46

ratings, Web Links module, 169 Site URL option, General Site Info, 46
RDF/RSS block, adding, 60 sql file, opening, 19
recommend us module, 29 sql folder, PHP-Nuke, 14
Refresh Time, RSS/RDF blocks, 63 sql_fetch_row() method, 252
registered users group, 39 sql_fetchrow() method, 255
registration, users, 76 sql_nextid() method, 255
removeFromPending() function, 285, 286 sql_query() method, 255
removing a theme, 210 static block, adding, 59

302

background image, 221 statistics module, 29
blocks, 227 storeSubmission() function, 269, 282
creating a block, 230 stories
custom files, 244 about, 102
FavIcon, 243 adding new story, 109
folder references, 211 attaching a poll, 144
footer, 243 categories, 104
hide blocks, 228 creating, 102
links, 222 deleting, 135
logo.gif, 214 editing, 135
navigation bar, 219 interacting, 103
navigation bar, 225 mail notification to user, 136
OpenTable() function, 223 organizing, 103
page header, 214 searching, 103, 139
page output process, 245 submitting stories, unregistered visitors, 137
rounded boxes, 235 surveys, 146
show blocks, 227 topic management, 105
site header layout, 214 topics, 103
starting off, 211 user submitted stories, 136
story extended view layout, 241 visitor view, 112
story format, 239 Stories Archive module, 29, 103, 140
story layout, 234 Stories Submission Administration page, 138
stylesheet, 220 story extended view layout, theme

modification, 241 templates, 212
topics list, 216 story format, theme modification, 239
uppercase titles, blocks, 230 story layout, theme modification, 234
user avatars, 218 story publication process, 102
welcome message, 217 stripslashes() function, 267

theme.php, 212 stristr() function, 277
themearticle() function, theme.php, 242 strtoupper() function, 230
themeheader() function, 213 style folder, themes, 209
themeindex() function, theme.php, 242 stylesheet, theme modification, 220
themes Submit News module, 29, 102

file structure, 209 SubmitContent() function, 261
forums theme, 209 subscribed users group, 39
images folder, 209 subscribing users, 75
installing a new theme, 209 subscription period, 76
modifying a theme, 210 super user, 30
removing a theme, 210 Survey block, 51
selecting a theme, administrator, 209 surveys module, 29
selecting a theme, user, 209 switch-case construct, 261
style folder, 209
templates, 212 T themes folder, 208

t_image variable, story formatting, 241 themes sub-folder, html, 14
table prefix, PHP-Nuke database, 18, 144 ThemeSel variable, header.html, 215
templates, theme modification, 212 themesidebox() function, 230
testing environment, XAMPP, 293 thetext variable, story formatting, 241
text, editing, 34 theuser variable, theme.php, 218
theme modification time variable, story formatting, 241

background colors, 219 title option, blocks, 58

 303

points and rewards, 93 title variable, story formatting, 241
private messages, 88 title() function, 263
registration, 76 tmpl_file variable, theme.php, 213
subscribing, 75 Top10_Links block, 181
user details, 74 topic management, stories, 105
user profiles, 84 topics list, theme modification, 216
User's Administration panel, 74 Topics Manager, 106

topics, forums, 189 User's Administration panel, 74
topics, stories UserSubDelete() function, 286

about, 29, 103 UserSubEdit() function, 281
creating, 105 UserSubs() function, 278
deleting, 108
editing, 107 V Topics Manager, 106

validating links, web links module, 177 topics_list variable, header.html, 216
viewing points, 94 topictext variable, story formatting, 241
Visible To Subscribers? option, blocks, 59 Total Hits block, 63
visit() function, 262 troubleshooting, installation

database connection problem, 23
W no data in database, 24

XAMPP Apache service problem, 292 Waiting Content block, 51, 176 Type Security Code field, user registration, 80 Warning
failed to open stream, error messages, 24

U Web Links module
about, 29, 164, 261 UNIX_TIMESTAMP() function, 279
adding web links, 166 unlimited expiration, 38
checking broken links, 170 upgrades folder, PHP-Nuke, 14
creating category structure, 165 user access, restricting, 38
editing web links, 173 user accounts
modifying category structure, 178 about, 74
points and prizes, 182 administrators, 39
ratings, 169 anonymous users, 39
restricting access, 182 registered users, 39
submitting links, 172 subscribed users, 39
special administrator, 181 user avatar, theme modification, 218
switch-case construct, 261 user groups
validating links, 177 about, 67

Web Site Configuration menu restricting access, 95
about, 44 User Permission Control page, forums

administration, 204 censure options, 122
web server root, 22 user ratings, web links, 169
websites, PHP-Nuke, 10 user submissions module, 257
welcome message, changing, 36 user_prefix variable, config.php, 21
welcome message, theme modification, 217 username variable, theme.php, 218
welcome screen, PHP-Nuke, 26 users
Who can View This? field, 38 account configuration, 86
Who can View This? option, blocks, 59 creating a new user, 74
Who is Online link, forums, 195 journals, 89
WYSIWYG editor, PHP-Nuke, 36 new user registration, 79

personal menu, 87

304

X htdocs folder, 294
XAMPP package installation, 291

about, 289 Installer version, 290
apache folder, 294 php-switch.bat file, 294
configuration, 293
contents, 289

Y control panel, 292
Your Account module, 29, 83 download options, 290

 305

Thank you for buying Building Websites with
PHP-Nuke

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that project.
Therefore by purchasing Building Websites with PHP-Nuke Packt will have given some of the
money received to the PHP-Nuke project.

In the long term, we see ourselves and you—customers and readers of our books—as part of the
Open Source ecosystem, providing sustainable revenue for the projects we publish on. Our aim at
Packt is to establish publishing royalties as an essential part of the service and support a business
model that sustains Open Source.

If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to authors@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us: one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed,' published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you
the knowledge and power to customize the software and technologies you're using to get the job
done. Packt books are more specific and less general than the IT books you have seen in the past.
Our unique business model allows us to bring you more focused information, giving you more of
what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.PacktPub.com.

	Cover Page
	Table of Contents
	Preface
	What This Book Covers
	What You Need To Use This Book
	Conventions
	Reader Feedback
	Customer Support
	Errata
	Questions

	Chapter 1: An Introduction to PHP-Nuke
	What PHP-Nuke Can Do for You
	The Visitor Experience
	The Management Experience

	What Exactly is PHP-Nuke?
	Modular Structure
	Themed Interface
	 Multi-Lingual Interface

	PHP-Nuke as an Open-Source Content Management System
	Open Source
	Content Management System

	Getting Help in the PHP-Nuke Community
	The Dinosaur Portal
	 Summary

	Chapter 2: Installing PHP-Nuke
	Downloading PHP-Nuke
	 Extracting PHP-Nuke

	Downloading the Patches
	Applying the Patches

	Preparing the PHP-Nuke Database
	Creating the Database
	Creating a Database User
	Populating the Database

	 Configuring PHP-Nuke
	Putting PHP-Nuke Files into the Web Server Root
	Testing the Installation
	Database Connection Problem
	No Data in the Database
	Still Having Problems?

	Summary

	Chapter 3: Your First Page
	Your New Homepage
	Blocks
	Modules
	A Fistful of Default Modules

	Creating the Super User
	Becoming the Administrator
	A New Welcome
	Editing Text in PHP-Nuke
	HTML Rules
	 Forbidden Tags
	Adding Links
	 Adding Images
	HTML Editor in PHP-Nuke 7.7

	Restricting User Access
	 Summary

	Chapter 4: Managing the Site
	Your Site, Your Database
	 Visiting the Administration Area
	Site Preferences
	 Turning off the Graphical Icons

	The Cookie Crumbles
	Backing Up the Site Database
	Managing Blocks
	Types of Blocks
	 Block Positioning
	Block Visibility

	The Blocks Administration Area
	Adding Blocks
	Options for All Blocks
	Adding Other People's News with RSS/RDF Blocks
	Adding a File Block

	Managing Modules
	Editing Module Properties
	Adding New Modules

	 Summary

	Chapter 5: Managing Users
	 Ingredients of a User
	Setting Up a New User
	Subscribing a User
	Graphical Code for User Registration
	Seeing Who's Who

	The Your Account Module
	Editing the User Profile
	 Your Account Configuration
	Talking to the World with Public Messages
	It's My Block and I'll Cry if I Want to...

	Private Messages
	User Journal
	Your Journal Entries
	Adding a Journal Entry
	Peeking into the Journals of Others

	Rewarding the User
	Points on Offer
	Restricting Module Access to User Groups

	Managing Other Administrators
	Authors versus the Super User
	 Creating an Author

	Summary

	Chapter 6: Story Management with PHP Nuke
	 The Story Story
	The Story Publication Process
	Finding and Interacting with Stories

	Organizing Stories
	Topics
	Categories
	Planning the Dinosaur Portal Topics and Categories

	Topic Management
	Deleting a Topic

	Adding Stories
	Category Management

	The Visitor View of a Story
	Related Links, Scoring, and Friends
	 Everyone Has an Opinion... Comments
	 Seeing Your Comments
	Controlling Comment Posting
	Allowing Comments
	Disallowing Comments
	Restricting Comment Posting to Registered Visitors
	 Administrator Removal of Comments
	Filth Filter
	Karma and Comment Moderation

	Comments in Moderation
	Customizing the User View of Comments

	Story Management
	Editing Stories
	Deleting Stories
	User-Submitted Stories
	Setting Up the Mail Notification
	Visitor Story Submission
	Approving Stories

	Finding Stories
	From the Homepage
	 From the Topics module
	From the Search module
	From the Story Archive
	From the Categories Menu Block

	 Special Administrator
	Points and Prizes
	Sharing your News
	Polls and the Surveys Module
	Attaching a Poll to a Story
	The Surveys Module
	Survey Management

	 Summary

	Chapter 7: Content Management Modules
	Content
	The Content Block
	Managing Categories
	Special Administrator
	 Restricting Access
	Points and Prizes

	FAQ
	Managing FAQs
	 Editing a FAQ

	The FAQ Block
	Special Administrator
	Restricting Access
	Points and Prizes

	Encyclopedia
	Managing the Encyclopedia
	Viewing the Encyclopedia
	The Encyclopedia Block
	Special Administrator
	Restricting Access
	Points and Prizes

	Web Links and Downloads
	 Interacting with Web Links
	Checking the Web Link
	Modifying Web Link Details
	Reporting Broken Links

	 Submitting Web Links
	Managing Web Links
	 Modifying Web Links
	Managing User-Submitted Web Links
	Managing User-Submitted Modification Requests
	Managing User-Submitted Broken Link Notifications
	Validating Links
	Changing Category Structure

	Web Links Block
	Special Administrator
	Restricting Access
	Points and Prizes

	Reviews
	Submitting Reviews
	Interacting with Reviews
	Managing Reviews
	Customizing the Reviews Welcome Page

	The Reviews Block
	Special Administrator
	Restricting Access
	Points and Prizes

	Module Feature Comparison
	Summary

	Chapter 8: Managing the Discussion Forums
	Forum Structure
	The Forums Administration Area
	Forum Configuration
	Creating a Category
	Creating a Forum

	 The Visitor Experience
	Posting a Topic

	Forum Permissions
	Creating Groups
	Setting Forum Permissions
	Setting Group Permissions
	Joining Groups
	Approving the Membership Application

	Moderating the Forum
	Setting a Forum Moderator

	Summary

	Chapter 9: Customizing Layout with Themes
	 What Does a Theme Control?
	Appearance
	Page Layout

	Theme Management
	Theme File Structure
	Installing a New Theme
	Removing an Existing Theme

	From an Existing Theme to a New Theme
	Starting Off
	Replacing Traces of the Old Theme

	 Templates and PHP Files
	PHP Files
	Templates

	Changing the Page Header
	Working with the Stylesheet
	Changing Blocks
	Changing Story Layout
	 Creating a Rounded Box
	Changing the Layout of the Story Extended View

	Changing the Footer

	Adding a Favicon
	Including Custom Files

	 Page Output from Start to Finish
	Summary

	Chapter 10: Programming PHP-Nuke
	What Happens When a Page is Requested?
	 Where Does PHP-Nuke Get Information From?
	Requesting a Page

	Creating a Block
	Data Access in PHP-Nuke
	 Module File and Folder Structure
	 Creating a User Submissions Module
	Module Development Steps
	Creating the Module Folder
	Creating the Database Tables
	The Visitor Code—the index.php File
	Overall Structure of the Module index.php File
	Inviting the User to Submit an Item
	Displaying the Form for User Input
	Preparing to Add the Encyclopedia Entry
	Storing the Submission

	The User Submission Administration Area
	 Creating the Modules Administration Menu Entry
	Selecting the Correct Administration Area

	Creating the Administration Code
	Displaying the List of Submitted Items
	Editing and Approving the Submitted Item
	Displaying the Submitted Item
	Accepting the Submitted Item
	Removing a Submitted Item
	 Deleting a Submitted Item

	Extending the Module
	Extending at the Front End
	Extending at the Administration End

	 Summary

	Appendix A: Installing XAMPP
	Index

