
Creating Interactive
Websites with PHP
and Web Services

4279c00.qxd 10/27/03 6:19 PM Page i

4279c00.qxd 10/27/03 6:19 PM Page ii

San Francisco • London

Creating Interactive
Websites with PHP
and Web Services

Eric Rosebrock

4279c00.qxd 10/27/03 6:19 PM Page iii

Associate Publisher: Joel Fugazzotto
Acquisitions Editor: Tom Cirtin
Developmental Editor: Brianne Agatep
Production Editor: Susan Berge
Technical Editor: Grant K. Rauscher
Copyeditor: Kim Wimpsett
Compositor/Graphic Illustrator: Happenstance Type-O-Rama
Proofreaders: Emily Hsuan, Laurie O’Connell, Nancy Riddiough
Indexer: Lynnzee Elze
Cover Designer: Caryl Gorska, Gorska Design
Cover Photographer: Jon Morgan, Photo Japan

Copyright © 2003 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this publication may
be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy, photograph, magnetic, or
other record, without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 2003114161

ISBN: 0-7821-4279-6

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or other countries.

Transcend Technique is a trademark of SYBEX Inc.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991-1999 Inbit Incorporated. All rights reserved.
FullShot is a trademark of Inbit Incorporated.

Internet screen shot(s) using Microsoft Internet Explorer 6 reprinted by permission from Microsoft Corporation.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by following
the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software whenever
possible. Portions of the manuscript may be based upon pre-release versions supplied by software manufacturer(s). The author and the pub-
lisher make no representation or warranties of any kind with regard to the completeness or accuracy of the contents herein and accept no
liability of any kind including but not limited to performance, merchantability, fitness for any particular purpose, or any losses or damages
of any kind caused or alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

4279c00.qxd 10/27/03 6:19 PM Page iv

This book is dedicated in memory of my father
who passed away shortly before I completed the

last chapters of my writing. My father was a
hard-working, dedicated man who believed in

God, family, friends, and his country. He raised
me well and taught me that the important things

in life are not the things we want, but the true
happiness of everyone you affect in your own

special way. I will always miss him, and I will
always carry with me the memories we had

together. I dedicate this book in memory of John
Dennis Rosebrock, my father, and to Marilyn

Rosebrock, my mother, to whom I wish strength,
courage, and happiness along her path.

4279c00.qxd 10/27/03 6:19 PM Page v

Acknowledgments

Iwant to acknowledge the people who came together and helped me write this book. With-
out them, it would not have been possible. I want to thank Dan Del Pino, Bradley Beard,

Tim McKinzey, Cody William Brocious, Brian Swan, George Derek Ford, Rick Blundell,
Joel Bondorowsky, Eric Gach, Alex Beauclair, Jeraimee Hughes, and my friends known as the
Blue Tails for all of their encouragement.

I also want to thank all of the staff at Sybex involved with this book. Every person I have
worked with at Sybex has shown me outstanding courtesy, commitment, and professionalism
that is unparalleled by any other company in the industry.

The next group of people I want to acknowledge is the large community of supporters at
www.phpfreaks.com. If it were not for them, this book would not have been written. I gath-
ered their input and created a book that they all wanted. I thank them for their ongoing sup-
port, and I look forward to working with them.

Finally, and most important, I would like to thank my wife and kids who put up with me as
I pulled my hair out every step of the way during the writing of my first book. They were
supportive, forgiving me for the sacrifices I had to make, and they gave me the space I
needed to accomplish this major task. Thanks to Tracy, Summer, and Gage for loving me and
providing support when I needed it the most.

4279c00.qxd 10/27/03 6:19 PM Page vi

Introduction xvii

Chapter 1: Introducing PHP 1

Chapter 2: Planning Your Project 25

Chapter 3: Building a Database Schema with MySQL 39

Chapter 4: Building a Website Template with PHP 67

Chapter 5: Creating a Website Membership System 85

Chapter 6: Developing a Website News System 145

Chapter 7: Enhancing Your Website with Web Services and APIs 203

Chapter 8: Creating a Shopping Cart System 229

Chapter 9: Processing Payments for Your Website 275

Chapter 10: Tracking Website Statistics 315

Chapter 11: Using Third-Party PHP Scripts 333

Chapter 12: Closing Statements 351

Appendix A: PHP Reference 357

Appendix B: MySQL Syntax Reference 375

Index 395

Contents at a Glance

4279c00.qxd 10/27/03 6:19 PM Page vii

4279c00.qxd 10/27/03 6:19 PM Page viii

Introduction xvii

Chapter 1 Introducing PHP 1

Getting a History Lesson in PHP 2
Understanding the Requirements for PHP 3

Operating System Support 3
Web Server Support 4

Exploring PHP-Related Software 4
MySQL Database Management Tools 4
PHP Editors 5

Working with PHP 5
Writing Your First PHP Script 6
Working with Strings and Variables 8
Working with PHP Functions 15
Error Handling and Trapping 21
Using Output Buffering 22

What’s Next? 23

Chapter 2 Planning Your Project 25

Getting the Most from Your Idea 26
Brainstorming Details for an Idea 27
Researching Concepts 28

Planning and Information Gathering 29
Planning a Website Layout, Sections, and Features 30
Planning a MySQL Database 30
Planning for a Target Audience 31

Setting Up the Project Logistics 32
PHP Developers 32
Graphic Artists 32
Server Administrators 33

Contents

4279c00.qxd 10/27/03 6:19 PM Page ix

x

Project Managers/Team Coordinators 35
What’s Best for You? 35

Considering the Hardware Requirements 36
What’s Next? 37

Chapter 3 Building a Database Schema with MySQL 39

Understanding MySQL 40
MySQL Table Types 40
MySQL Column Types 41
What Is ADOdb? 42

Using MySQL Database Tools 43
Using phpMyAdmin: Web-Based MySQL Administration 43
SQLyog MySQL Manager for Windows 57
Connecting to MySQL Databases with PHP 63
Persistent and Nonpersistent MySQL Connections 64
Making the Connection 64

What’s Next? 66

Chapter 4 Building a Website Template with PHP 67

Designing Your Layout 68
Creating the HTML 69
Creating the PHP Code 71
Using the layout.php File 73

Introducing Classes 75
Creating the Basic Class Structure 75
Creating the META Content Class 77
Using the Meta Content Class 81

What’s Next? 84

Chapter 5 Creating a Website Membership System 85

Preparing the Membership System 86
Creating the common.php File 86
Including a Welcome Message HTML File 87
Securing Web Directories 88

Setting Up the Membership System Database Tables 89
Creating a Membership Signup Script 90

Contents

4279c00.qxd 10/27/03 6:19 PM Page x

Creating the HTML Signup Form 90
Creating the join.php Script Structure 93
Processing the Form Information 94
Inserting the Members’ Data into the MySQL Database 106
Sending E-mail with PHP 107
Displaying Success Message After Signup 113
Verifying the User’s E-mail Address 114
Looking at the join.php File Summary 118

Creating the Login System 123
Starting PHP Sessions 123
Creating the Login Verification Script 124

Creating a Lost Password Script 130
Creating the Membership Hyperlinks Box 137
Granting Member-Only Access 141
Logging Out 142
What’s Next? 144

Chapter 6 Developing a Website News System 145

Planning the News System 146
Preparing the Website Administrator Access 146
Preparing the MySQL Database 147
Creating the News Article Category Management System 148

Creating the News Article Category Insert Script 148
Creating the News Article Category Update and Delete Script 154
Creating the News Article Category Administrator Hyperlinks 161
Testing the News Article Category Management System 163

Creating the News Article Management System 166
Creating the News Article Insert Script 166
Creating the News Article Modify and Delete Script 172
Testing the News Article Management System 182
Creating the News Article Index Include File 186
Creating the Read Full Articles Script 192
Creating a Hyperlinks Box 198

Challenge: Create a News Article Comment System 200
Adding News Feeds 200
What’s Next? 201

Contents xi

4279c00.qxd 10/27/03 6:19 PM Page xi

xii

Chapter 7 Enhancing Your Website with Web Services and APIs 203

Working with Web Services 204
Using Google Language Translation Services 204
Using the Google Search Engine in Your Website 208

Working with APIs 214
Amazon Web Services API Made Simple 214

What’s Next? 228

Chapter 8 Creating a Shopping Cart System 229

Planning Your Shopping Cart 230
Preparing the Code for Your Shopping Cart 231
Creating a Simple Storefront 234
Making a Shopping Cart Class 238

Shopping Cart Class: get_cart_id Function 241
Shopping Cart Class: cart_add Function 242
Shopping Cart Class: empty_cart Function 246

Building the Shopping Cart Interface: cart.php 246
Shopping Cart Interface: cart.php Initialization 251
Shopping Cart Interface: cart.php add case 251
Shopping Cart Interface: cart.php default case 252
Shopping Cart Interface: cart.php update case 257
Shopping Cart Interface: cart.php remove case 259
Shopping Cart Interface: cart.php empty_confirm case 260
Shopping Cart Interface: cart.php empty case 261

Building the Shopping Cart Interface: checkout.php 261
Providing a Shopping Cart Side Box 268
Testing Your Shopping Cart System 270
Creating a Products Catalog Hyperlink 273
What’s Next? 274

Chapter 9 Processing Payments for Your Website 275

Merchant Account Gateways vs. Third-Party Payment Solutions 276
What Is a Merchant Account Gateway? 276
What Is a Third-Party Payment Solution? 278
What’s the Major Difference? 279

Preparing Your Site for E-Commerce 281

Contents

4279c00.qxd 10/27/03 6:19 PM Page xii

Creating the Payment Processing Scripts 282
Processing Payments with VeriSign Payflow Pro 284
Processing Payments with PayPal 296
Completing the Order: ordercomplete.php 300

Testing the Payment Systems 306
Testing the VeriSign Scripts 306
Testing PayPal Payment Scripts 309

Utilizing Curl to Process Payments 309
Customizing This Project 312
What’s Next? 313

Chapter 10 Tracking Website Statistics 315

Creating Custom Tracking with PHP and MySQL 316
Setting a PHP Sessions Counter 316
Tracking the Number of Users and Visitors Online 318
Tracking Search Engine Spiders 325
Creating a Quick Stats Box 329

Using Web Analyzing Software 330
Using Webalizer 331
Using Urchin 331

Monitoring Your Website with Alexa 332
What’s Next? 332

Chapter 11 Using Third-Party PHP Scripts 333

Exploring Some Great Third-Party PHP Scripts 334
Using the phpAdsNew Advertisement System 334
Using the phpBB Bulletin Board System 340
Using the PowerPhlogger Statistics Tracking Script 345
Using the MyNewsGroups News Client 347

Finding Third-Party PHP Scripts 350
What’s Next? 350

Chapter 12 Closing Statements 351

It Gets in Your Blood 352
Getting Support 352

PHP Support Sites 353

Contents xiii

4279c00.qxd 10/27/03 6:19 PM Page xiii

xiv

PHP Manual 355
Live Support 355
PHP Frequently Asked Questions (FAQ) 355

Contributing to PHP 356
Keep On Truckin’ 356

Appendix A PHP Reference 357

Popular PHP Functions 358
Array Functions 358
Date and Time Functions 360
File Handling Functions 362
MySQL Database Functions 363
String Manipulation Functions 365
System Configuration Functions 366
System Execution Functions 366
Text Formatting Functions 366

Control Structures 367
PHP Superglobals 369

Superglobal: $_SERVER 369
Other Superglobals 371

Operators 372
Arithmetic Operators 372
Assignment Operators 372
Comparison Operators 372
Error Control Operator 373
Incrementing Operators 373
Logical Operators 374
String Operators 374

Appendix B MySQL Syntax Reference 375

ALTER 376
ANALYZE TABLE 377
BACKUP TABLE 377
BEGIN 378
CHECK TABLE 378
COMMIT 378

Contents

4279c00.qxd 10/27/03 6:19 PM Page xiv

CREATE 378
DELETE 381
DESC 382
DESCRIBE 382
DO 382
DROP 382
EXPLAIN 382
FLUSH 383
GRANT 383
INSERT 384
JOIN 385
KILL 385
LOAD DATA INFILE 386
LOCK TABLES 387
OPTIMIZE 387
RENAME 387
REPAIR TABLE 387
REPLACE 388
RESET 388
RESTORE TABLE 388
REVOKE 388
ROLLBACK 388
SELECT 389
SET 391
SET TRANSACTION 393
SHOW 393
TRUNCATE 393
UNION 393
UNLOCK TABLES 394
UPDATE 394
USE 394

Index 395

Contents xv

4279c00.qxd 10/27/03 6:19 PM Page xv

4279c00.qxd 10/27/03 6:19 PM Page xvi

Introduction

I f you are a webmaster, web developer, or just a web junky, you may have noticed the
rapidly growing scripting language known as PHP. It’s no joke; PHP is becoming the top

web developing language of choice, and many webmasters are dropping their old scripting
languages to pick up PHP. The reasoning is simple: PHP was written with ease of use in
mind, but at the same time, the developers did not sacrifice functionality.

By using PHP in your website, you will have a large realm of options with which to work.
You can store information in databases, write files on the fly, manage content, alter the web-
site’s appearance, process credit cards, interact with remote servers, and do so much more.
The features and capabilities with PHP are endless!

If the PHP fairy gave me one wish a year ago, I would have asked for a book that was writ-
ten by an author who takes the time to explain every step of the learning process instead of
listing lines of code with no explanation. I would have asked for a book in which the author
did not assume the reader was an experienced developer. With those needs in mind and the
practical input and requests from a community of more than 10,000 PHP developers, I have
written the book that eluded me a year ago.

This book helps you enhance your website using PHP. You will learn about the language—
from the basics to some of the more intermediate levels of web design. This book is packed
with many useful code examples and routines that took more than a year to compile into my
bag of tricks.

You will also learn about the powerful database server known as MySQL. Using PHP, you
will learn how to manage your MySQL databases and information on the fly without using
command line tools. Additionally, you will learn the methodology that I have used to success-
fully plan and implement websites on the Internet.

If you are interested in learning PHP, have already dabbled with it, or would like to have a
reference library of practical code examples with explanations handy, this book is for you.

Conventions Used in This Book
This book uses certain typographic styles to help you quickly identify important information
and to avoid confusion over the meaning of words such as onscreen prompts:

● Italicized text indicates technical terms that are introduced for the first time in a chapter.
(Italics are also used for emphasis.)

4279c00.qxd 10/27/03 6:19 PM Page xvii

xviii

● A monospaced font indicates the contents of configuration files, messages displayed at a
text-mode Linux shell prompt, filenames, and Internet addresses.

● Italicized monospaced text indicates a variable—information that differs from one sys-
tem or command run to another, such as the name of a client computer or a process ID
number.

● Bold monospaced text is information you need to type into the computer, usually at a
Linux shell prompt. This text can also be italicized to indicate that you should substitute
an appropriate value for your system.

In addition to these text conventions, which can apply to individual words or entire para-
graphs, a few conventions are used to highlight segments of text.

NOTE A Note indicates information that’s useful or interesting but that’s somewhat peripheral to
the main discussion. A Note might be relevant to a small number of networks, for
instance, or refer to an outdated feature.

TIP A Tip provides information that can save you time or frustration and that may not be
entirely obvious. A Tip might describe how to get around a limitation or how to use a fea-
ture to perform an unusual task.

WARNING Warnings describe potential pitfalls or dangers. If you fail to heed a Warning, you may end
up spending a lot of time recovering from a bug or even restoring your entire system from
scratch.

Help Us Help You
The goal of this book is to help you learn and understand PHP. Additionally, this book is
widely supported by the community at www.phpfreaks.com. If you have any trouble or need
assistance, please feel free to stop by; the community there will be glad to help.

Furthermore, please stay up-to-date! PHP is a rapidly evolving language. If you find that
information in this book has changed and will no longer work, you can submit errata reports
at the Sybex website: www.sybex.com. To easily find the errata for this book, search for 4279.

Additionally, the source codes for this book will be available on the book’s page at the
Sybex website. On the book’s web page, you will find a download section for the code.

Introduction

4279c00.qxd 10/27/03 6:19 PM Page xviii

Introducing PHP

Chapter 1

4279c01.qxd 10/27/03 6:19 PM Page 1

2

PHP, which stands for PHP: Hypertext Processor, is a widely used, general-purpose scripting
language that is especially suited for Web development and can be embedded into

Hypertext Markup Language (HTML). PHP is rapidly spreading through the Internet and
is soon to be the leading development language on the Internet. It gives you the ability to
interact with users on your website similarly to what you could do on a website using Perl
(CGI) and Active Server Pages (ASP).

Because PHP is an open-source project (which means that the source code is available to
developers to enhance and expand its functionality and features), the possibilities are limit-
less. Virtually anyone can contribute to the expansion of the project, unlike commercial
products with source code that is updated only by the people who own it. With PHP, you can
create membership systems, process credit card transactions, view system statistics, store data
in databases, and much, much more. Throughout this book, I cover what you need to know
to build your own dynamic website with PHP.

In this chapter, you’ll learn all about the history of PHP and how to start using it.

Getting a History Lesson in PHP
In 1994, Rasmus Lerdorf set out on a project called Personal Homepage Tools for tracking
access to his online resume. He wrote Personal Homepage Tools in C with a small part of it
utilizing Perl. As Personal Homepage Tools grew in popularity and more functionality was
needed of it, Rasmus rewrote Personal Homepage Tools utilizing a much larger C imple-
mentation that could communicate to databases, which in turn allowed a more dynamic
capability. Eventually, Rasmus released a version called Personal Home Page Forms Interpreter
(PHP/FI).

Eventually, Rasmus decided to release the source code of PHP/FI so everybody could use
it, expand upon it, and fix bugs in it. Even though the project was in the early stages—much
more limited than Perl and somewhat inconsistent—PHP/FI was growing in popularity
quite rapidly. By 1997, PHP/FI 2.0, the second version, was known to have several thousand
users around the world. Some 50,000 domains were reported to have PHP/FI installed,
which accounted for one percent of the domains on the Internet. Even though there were
several contributions to the project, Rasmus continued to carry the weight and led PHP to
the next phase. Shortly after he officially released PHP/FI 2.0 in November of 1997, the ini-
tial stages of the popular PHP 3.0 were underway.

PHP 3.0 was the first version of the project that resembles the PHP you see on the Inter-
net today. Andi Gutmans and Zeev Suraski decided to rewrite the PHP/FI parser after they
found it did not have enough functionality and power for their requirements. Andi, Rasmus,
and Zeev teamed up to continue the project with a much stronger work force than previous
versions.

Chapter 1 • Introducing PHP

4279c01.qxd 10/27/03 6:19 PM Page 2

3

PHP 3.0 was a significant phase in the evolution of this project. It was released under the new
name of PHP, which is a recursive acronym for PHP: Hypertext Processor. The new name was
derived from a desire to remove the implications of limited personal use from the old name,
Personal Home Page Tools. Other significances of this release were the introduction of object-
oriented programming (OOP) and a much more powerful and consistent language syntax.

PHP 3.0 was officially released in June 1998 after nine months of public beta testing. By
the winter of 1998, PHP was installed on approximately 10 percent of the web servers on the
Internet.

The next major release of PHP was version 4.0. In May 2000, the development team offi-
cially released 4.0 and introduced more significant changes to the core of PHP. For example,
the Zend engine, a complete rewrite of the version 3 core, was implemented as the new PHP
engine. Zend (the name composed of the developers’ first names, Zeev and Andi) and PHP
4.0 implemented support for many more web servers, HTTP sessions, output buffering,
enhanced security, and a wide range of new language constructs.

Currently, PHP is being used by hundreds of thousands of developers and is estimated to
be installed on several million web servers, which accounts for more than 30 percent of the
web servers on the Internet. At the time of writing this book, PHP has just entered the 4.3.x
version.

If you are interested in more accurate and up-to-date statistics for how many domains are
using PHP, you can visit these links:

PHP Usage Report www.php.net/usage.php

SecuritySpace’s Web Survey www.securityspace.com/s_survey

Programming Community Index www.tiobe.com/tpci.htm

Understanding the Requirements for PHP
Depending on the intentions and design of your scripts, PHP can run on virtually any hard-
ware because of its compact design and system resource requirements. If you are installing on
a Unix-based system, then basic Unix skills, including knowledge of make, to build installa-
tion binaries and a web server are required. If you are installing on Windows-based systems,
administrator privileges and a web server are required.

Operating System Support
You can install PHP on HP-UX, Linux, MacOS, OpenBSD, Solaris, Unix, and Windows
operating systems. Complete operating system installation instructions are available in the
PHP manual on the PHP website located at www.php.net.

Understanding the Requirements for PHP

4279c01.qxd 10/27/03 6:19 PM Page 3

4

Web Server Support
You can install PHP on a wide range of web servers including Apache, Netscape, iPlanet,
Caudium, fhttpd, OmniHTTPd, Oreilly Website Pro, Sambar, and Xitami. PHP can also be
custom built for other web servers if needed.

Exploring PHP-Related Software
PHP supports a wide range of other software. There are many key elements to any success-
ful PHP-driven website; the following are the ones I think are the most important:

Apache web server Apache is the most widely used web server on the Internet today. PHP
and Apache integrate smoothly to provide you with a free, powerful, and easy-to-use combi-
nation to run your website reliably. Apache is supported by a wide range of operating systems
including Unix/Linux and Windows. Approximately 12MB of disk space is required to install
the Apache web server. You can learn more about the Apache web server at httpd.apache.org.

MySQL database server Combined with PHP, MySQL gives you the ability to store,
edit, delete, and format information using a database with the PHP MySQL functions. You
can download a free copy of the MySQL database server at www.mysql.org.

MySQL Database Management Tools
There are many great tools for managing your MySQL databases. Here are a few I use every
day:

phpMyAdmin phpMyAdmin is a free complete set of PHP scripts you can download
from the project’s website and install on your web server to manage virtually every aspect
of your MySQL server. With phpMyAdmin, you can do the following:

● Create databases, tables, and users

● Search, browse, insert, and delete data

● Export and import data files

● View MySQL usage statistics

● Reload/flush your MySQL server

You can download phpMyAdmin for free at www.phpmyadmin.net.

SQLyog SQLyog is a Windows-based application that allows full control over your
MySQL server. Its features are similar to phpMyAdmin, except you access it as an
application rather than through your web browser. You can download a trial version
at www.webyog.com/sqlyog/download.html.

Chapter 1 • Introducing PHP

4279c01.qxd 10/27/03 6:19 PM Page 4

5

PHP Editors
More than a handful of editors can handle PHP editing. PHP is a text-based scripting lan-
guage that does not require any special compiling or building to create a script. You may use
an editor as basic as Notepad (for Windows) or VI (for Linux), or you may use advanced text
editors such as UltraEdit-32 or jEdit. Let’s discuss a few of those editors now:

Notepad Notepad is as simple as it gets and comes preinstalled on Windows operating
systems. I do not recommend editing your PHP scripts with Notepad because it does not
come with any special features to make your code easier to understand.

UltraEdit-32 UltraEdit-32 is an advanced text editor, which includes PHP and HTML
syntax highlighting. With UtraEdit-32, you have the ability to create templates to use over
and over again, the ability to perform advanced search and replace functions, and the abil-
ity to search and replace criteria on entire directories at the same time. The latter is very
useful! User contributed add-ons are available. A trial version of UltraEdit-32 is available
at www.ultraedit.com.

jEdit jEdit is an advanced text editor. It includes PHP and HTML syntax highlighting.
It has the ability to “skin” or create custom themes for the editor. Because jEdit is Java
based, you must have Java Runtime Environment (JRE) installed. Another useful feature of
jEdit is that it gives you the ability to collapse function brackets to condense the view of
your code in the editor. User contributed add-ons are available, and jEdit itself is free soft-
ware. See www.jedit.org for more information.

Dreamweaver MX Dreamweaver MX is an advanced HTML WYSIWYG (What-You-
See-Is-What-You-Get) editor and has the ability to generate record set MySQL queries.
Dreamweaver MX supports various database formats. It is commercial software and is
quite expensive, around $399. You can get more information at www.macromedia.com.

There are many editors out there, and I have given you some information about the editors
I have used. The bottom line is if you can type directly into the PHP script as if it were a text
document, then your editing application is serving its purpose. The syntax highlighting,
function collapsing, templates, and so on are just bonuses. Find something you feel comfort-
able using and stick with it.

Once you have found a good editor, you are ready to begin coding. Let’s begin your first
PHP script.

Working with PHP
To begin working with PHP, you’ll need to ensure you have a web server installed and con-
figured to use PHP. The PHP manual has complete installation instructions to set up PHP
for the most popular web servers available.

Working with PHP

4279c01.qxd 10/27/03 6:19 PM Page 5

6

For developmental purposes, I prefer to install Apache web server and PHP on either
Linux or Windows, depending on where I am developing. At home, I use a dedicated Linux
server that is similar to the production environment I use. This method ensures maximum
compatibility between the development server and the production server and dramatically
reduces headaches when it is time to push a project onto the live production server. If I am
traveling, I configure Apache with PHP on a laptop and use Windows. Either way, if you use
good developing habits, you should not have any issues when going live with your project.

Writing Your First PHP Script
The first script you will work with shows you how to identify if PHP is installed properly
on your system. This is an important script to use because it tells you virtually everything
about your PHP installation and your web server.

In your web server’s document root (where the web page files are stored for access to the
public), create a new file and call it info.php. Next, open the file with your editor of choice
and type the following:

<?php
phpinfo();
?>

Next, save the file and open it in your web browser from your web server—for example,
http://localhost/info.php. You should see a web page like that shown in Figure 1.1.

F I G U R E 1 . 1 :
phpinfo script

Chapter 1 • Introducing PHP

4279c01.qxd 10/27/03 6:19 PM Page 6

7

NOTE If you are prompted to download a file attachment, or you see your code exactly as it is in
the script when you access this script in your web browser, then you do not have your
Apache web server configured properly. You should edit your httpd.conf file to add
AddType application/x-httpd-php .php. Please check the PHP documentation located
in your PHP directory regarding the installation of PHP on Apache web server. You will find
complete instructions on configuring your httpd.conf file for using Apache with PHP.

If you see the PHP information page similar to Figure 1.1, then congratulations to you!
You have created your first useful PHP script! Don’t get too exited, the phpinfo function is a
freebie; the formatting of your next PHP script is up to you!

Let’s take a moment to break down those three lines of code you just used. This will help
you understand the structure of a PHP script a little more. The first line is considered the
open tag:

<?php

This simply starts processing any subsequent code through the PHP engine. Otherwise, the
PHP engine is not processing the code, and the web server is simply transmitting the text.
From the open tag, everything until the close tag will be processed by PHP.

NOTE If you edit your php.ini settings file and change short_open_tags to the On value, you
can eliminate the longer <?php and just use <? instead.

On the second line of this code, you used a PHP function. PHP has a large supply of func-
tions, quite a few of which are covered in this book. This particular function is called phpinfo
and does just that—it gives you the PHP info:

phpinfo();

You may also notice that you use parentheses () after the function name. This allows you to
pass arguments to the function. To determine which arguments you may pass to this func-
tion, you should look the function up in the PHP documentation. Don’t worry; I am going to
cover PHP functions later in this chapter.

One more thing to note about the second line of code: You may notice that the last thing
on the line is a semicolon. This terminates the line and tells the PHP engine that there is no
further code to the line, and the engine may go to the next line to process the code. If you do
not terminate the line, PHP will give you a nasty error, and your script will exit without giv-
ing you the output you originally intended.

Let’s stop the PHP engine from processing any further code by adding the close tag:
?>

Working with PHP

4279c01.qxd 10/27/03 6:19 PM Page 7

8

From this point on, the PHP engine will not process anything further in the script as PHP
code until it reaches another open tag. This is extremely useful for you because you can cre-
ate an HTML outline and simply insert the PHP code when you need it into the HTML.
You will see some examples of this shortly.

Now that you have seen a basic PHP script, let’s discuss the next important key element to
PHP, working with strings and variables.

Working with Strings and Variables
When developing your PHP code, you will be dealing with strings and variables every day.
They partially make up the PHP scripts you write.

A string is a group of characters that make up code. In PHP, a character is the same as a
byte. There are 256 different characters available in PHP. Do not be fooled: There is no
limit on how long a string can be. You can have a string that is five characters long or 5,000
characters long. There are no major performance concerns for really long strings.

A variable is a simple identifier for strings and other data. In PHP, a variable is represented
by a dollar sign ($), followed by the variable name. A simple example is $MyVariable. With-
out strings and variables, the PHP script is an empty shell.

Building Strings
There are a few different methods for building a string; you may decide you like to use
single quotes, or you may determine that double quotes are better for you. Let’s look at the
differences.

Using Single-Quoted Strings
A single-quoted string uses single quotes to contain the contents. They will appear like this
in your code:

echo ‘This is an example of a single-quoted string’;

There are major advantages of using single-quoted strings; some of them may be the ability
to simply paste HTML into a string without escaping each double quote in the HTML tags.
(I go into more depth on this in the “Using Double-Quoted Strings” section.) A simple way
to explain a single-quoted string is that you get exactly what you type into a single quoted
string, nothing more.

NOTE You complete a string by issuing a closing single quote and terminate the line with a
semicolon.

Chapter 1 • Introducing PHP

4279c01.qxd 10/27/03 6:19 PM Page 8

9

Escaping Single-Quoted Strings
If you are using a character such as the single quote or apostrophe (‘) character, you need to
escape that character by a backslash (\) in the string itself; otherwise, PHP will exit the script
and give you a Parse Error because it will think you have already closed the string where you
used your apostrophe. Everything after that code will cause PHP to error because it is not
valid PHP code.

For example, the following example will cause PHP to exit because everything after the
apostrophe in I’m will be treated as code:

echo ‘Hi, I’m using PHP!’;

A simple way to fix this problem when using single-quoted strings is to use a backslash (\)
to escape the apostrophe from terminating the string. Here is an example:

echo ‘Hi, I\’m using PHP!’;

Do not be fooled—you do not have to escape a double quote in a single-quoted string. Here
is an example of what I am talking about:

echo ‘He said, “PHP is awesome!”’;

There is nothing wrong with this string because it was not enclosed between double quotes;
therefore, you do not need to escape the quotes.

Another important concern when using a single-quoted string is that you cannot display
another string inside it without concatenation. Concatenation is the arrangement (in this case,
of strings of characters) into a chained list.

Let’s look at a few examples of embedding a string variable within a single-quoted string. It
might be illustrative to first look at an example of a common mistake:

$string1 = ‘String 1 Example’;

echo ‘This is an incorrect example of embedding $string1 into this string’;

This will display the following:
This is an incorrect example of embedding $string1 into this string

Through the usage of string concatenation, you can still display the contents of another
string imbedded into the current string. Let’s see how this works.

$string1 = ‘String 1 Example’;
$string2 = ‘This is a correct way to embed ‘.$string1.’ into this string!’;

If you were to display $string2 using the echo function, you will see the following:
This is a correct way to embed String 1 Example into this string!

As you can see, by closing the current string, adding a single quote and a period, the vari-
able name you want to embed, and then another period and a single quote, you can concate-
nate the strings together. Do not forget to close out the rest of the string with a single quote
and terminate the line with a semicolon.

Working with PHP

4279c01.qxd 10/27/03 6:19 PM Page 9

10

NOTE The echo function is a built-in PHP function that allows you to display the contents of a
string to your web browser. I discuss echo in the “Working with PHP Functions” section
later in this chapter.

Using Double-Quoted Strings
A double-quoted string uses double quotes to enclose the contents of a string. They will
appear in your code similar to this example:

“This is a double quoted string.”

As with single-quoted strings, the double-quoted string has advantages and disadvantages.
The major disadvantage is that you have to escape double quotes with a backslash. The only
time this would be a problem is if you are using double-quoted strings with a large portion
HTML code. However, I discuss when to use HTML with strings throughout this book, and
you will learn methods of getting around this disadvantage.

One great advantage of using double-quoted strings is that you can embed strings together
much more easily using the double-quoted method. Let’s see how:

$string1 = “String 1 Example”;
$string2 = “This is an example of embedding $string1 into the current string”;

You do not have to concatenate this method, and you could save yourself a lot of time and
characters by using the double-quoted method. The output of this string through the echo
function is as follows:

This is an example of embedding String 1 Example into the current string.

The results are the same as the single-quoted method but with fewer characters in your code.

Escaping Double-Quoted Strings
Let’s look at escaping double quotes. First, you will explore an error in escaping a double-
quoted string:

echo “Visit PHP Freaks.com!”;

This example would produce a nasty parse error, and your script would exit. Here is the
proper way to escape this string:

echo “Visit PHP Freaks.com!”;

This correctly formatted example would produce a hyperlink that says “Visit PHP
Freaks.com!”

Second, a great advantage of using double-quoted strings is the ability to utilize escape
sequences for special characters such as linefeeds, tabs, carriage returns, and so on. For example:

echo “Line 1: This string is an example of a carriage return.\n
Line 2: As you see, this is the second line!”;

Chapter 1 • Introducing PHP

4279c01.qxd 10/27/03 6:19 PM Page 10

11

This example, if output to a text document or viewed through special HTML tags such as
<pre></pre>, will display the following:

Line1: This string is an example of a carriage return.
Line2: As you see, this is the second line!

If you viewed this code using the echo function, you would see one continuous line and no
new lines because HTML does not display carriage returns without the use of
 tags.

Table 1.1 shows more examples of the special escape sequences.

TABLE 1.1: Special Escape Sequences

Sequence Meaning

\n Linefeed

\r Carriage return

\t Horizontal tab

\\ Backslash

\$ Dollar sign

\” Double quote

\’ Single quote

Throughout this book, you will use strings quite extensively. I will give you examples of com-
mon string usage as you view other code examples. If you want to learn more about string usage,
please refer to the “Strings” section in the PHP documentation at www.php.net/docs.php.

Using Variables
In the previous section, you learned about strings, which contain information. Now you will
see how to identify a string with a name by using variables. For example:

$MyVariable = “This is my string assigned to a variable”;

With this example, you made a new variable called MyVariable and assigned it a value using a
string.

There are many uses for variables. You do not always have to assign a string to a variable;
you can assign numeric values and Boolean values to them as well. Let’s see how to do some
math with a variable:

$a = 5;
$b = 15;
$c = $a + $b;
echo $c;

Output: 20

Working with PHP

4279c01.qxd 10/27/03 6:19 PM Page 11

12

With this example, you assigned to each variable a numerical value, which does not need
quotes. Then, you added the values of variables $a and $b together and stored the result in
the variable $c. When you echo $c to the browser, you will see the total of $a and $b com-
bined, which in this case equals 20. This is not practical for everyday use, but you see now
that you can add the values of variables together.

NOTE Boolean is a data type or variable in a programming language that can have one of two
values, true or false.

A Boolean allows you to assign true or false values to a variable. A simple example of a
Boolean usage is as follows:

$A = true;
$B = false;
if($A){

echo “A is true”;
}
if(!$B){

echo “ and B is false”;
}

In this example, you defined the $A variable as true and the $B variable as false. Next, you
used a control structure called IF to verify the conditions of the variables and take the applic-
able action. In this example, the output to the web browser is “A is true and B is false.”

Using a Boolean will give you simple methods of validating logic and allowing the output
of your PHP script based on that logic. I will go more in depth using the IF ELSE control
structures throughout this book.

Naming Variables
You should be aware of a few limitations to naming variables:

Numbered naming You cannot start a variable name with a number. For example,
$6Pack is an invalid variable name. However, you may use a number in the variable name
after the first alphabetic character. For example, $My6Pack is a valid variable name.

Underscore naming You cannot start a variable name with an underscore. For example,
$_MyVariable is an invalid variable name. But you may use an underscore in the variable
name after the first alphabetic character. So, $My_Variable is a valid variable name.

Altering and Referencing Variables
Now you’re ready for something a little more fun, but it can be confusing. PHP allows you
to reference and alter variables within your code. A good example is assigning a name to a

Chapter 1 • Introducing PHP

4279c01.qxd 10/27/03 6:19 PM Page 12

13

variable and referencing that same variable within another variable using the & operator. Let’s
see how this works:

<?php
$var1 = ‘Blue’;
echo “1.) $var1
”;

$var2 = &$var1;

echo “2.) var2 = $var2
”;

$var2 = “3.) The color of the sky is $var2
”;

echo $var2;
?>

The output to the web browser looks like this:
1.) Blue
2.) var2 = Blue
3.) The color of the sky is Blue

Let’s start from the beginning on this code example. First, you use your “open tag” and
define $var1 as Blue and then echo the value of $var1 followed by an HTML line break:

<?php
$var1 = ‘Blue’;
echo “1.) $var1
”;

Next, you reference $var1 from $var2, which makes $var2 have the same value of $var1,
and then echo the contents of $var2:

$var2 = &$var1;

echo “2.) var2 = $var2
”;

After you display the contents of $var2, you modify the value of it and echo the new value:
$var2 = “3.) The color of the sky is $var2
”;

echo $var2;
?>

Variable referencing is not very popular, but it may be useful if you can figure out ways
to implement this feature. For example, using variable references can be helpful if you are
developing your code and you know that you need to fill in a blank later. Specifically, you
can use a reference, and during a global definition file you can fill in that blank later without
going back to modify all of the code on which you previously worked.

Working with PHP

4279c01.qxd 10/27/03 6:19 PM Page 13

14

Variable and String Appending, or Concatenating
A method that works well is to concatenate, or append, to a string using your variables. Using
this method, you will have the ability to append to a string using loops and IF statements, or
you can use them just to keep your code more legible. Let’s see how this works:

<?php
$var1 = “This is a test”;
$var1 .= “ for appending strings.”;
$var1 .= “ You can append information to strings”;
$var1 .= “ on multiple lines.”;
echo $var1;
?>

And the output is as follows:
This is a test for appending strings. You can append information to strings on
multiple lines.

Through the usage of the string concatenating assignment operator .=, you can append
values to an existent string. Let’s take one more look at a useful method to append strings:

<?php
$message = “Welcome “;
if($first_name == “Eric”){

$message .= “Eric”;
} elseif($first_name == “Jeff”){

$message .= “Jeff”;
} else {

$message .= “Stranger”;
}
$message .= “ to our website!”;
echo $message;
?>

With this script, you have initiated a string and assigned it to a variable named $message.
Using some control structures on a variable called $first_name, you are able to customize
the message for anyone named Eric or Jeff. If this name is not found, you append the
Stranger name to your $message variable. After completing the control structure, you
append the rest of the sentence, and you now have something that would look like this if
your name is not Eric or Jeff:

Welcome Stranger to our website!

Throughout this section, I have discussed variables, Booleans, variable naming, referencing
and altering, and string appending. If you have never used PHP before, you may be curious
about using control structures and functions by now. Let’s move on to the next section where
you learn how to use functions in PHP.

Chapter 1 • Introducing PHP

4279c01.qxd 10/27/03 6:19 PM Page 14

15

Working with PHP Functions
A function is simply a group of operations or information assigned to a name and is waiting
to be used. PHP has thousands of functions readily available to use. Additionally, you can
compile or enable more functions through installing PHP. Functions have many uses—from
text formatting to database querying and so on. One of the greatest features of PHP is the
ability to create a custom function. In the following sections, I will show you how to echo
text, format text, query a database, include files, and create a custom function.

Using the echo Function
In the previous few sections of this chapter, I have mentioned and used the echo function a
few times. The echo function is actually a language construct, but it is still listed under the
“Functions” section of the PHP manual. So, for now, I will refer to it as a function.

According to the PHP manual, the echo function will output one or more strings. How-
ever, echo, defined as a function, also has a shortcut syntax that allows you to echo a string
much more simply. Let’s look at both of the methods of echoing information. The normal
echo function usage looks like this:

<?php
echo “This is an example for the echo function.
”;

$var1 = “This is a method to echo a single string
”;
echo $var1;
?>

Whereas the echo function shortcut syntax usage looks like this:
<?=”This is an example for the echo function shortcut
syntax.
”;?>

Both of these examples will display the contents to the web browser.

Text Formatting Functions
PHP has some great text formatting functions. You can convert the carriage returns to the
HTML
 characters, convert the first letter of a string to upper case, and much more.
Let’s review some examples of these functions.

nl2br() Function
The nl2br or New Line to br function is simple and will automatically insert the HTML
equivalent of a carriage return (
) before the \n or \r\n special characters. This func-
tion is especially useful for converting user input from form posts so that it will display prop-
erly in HTML. The same goes for data that was posted and stored into MySQL and then
extracted and displayed in your page.

Working with PHP

4279c01.qxd 10/27/03 6:19 PM Page 15

16

Let’s view a usage of the nl2br function now:
<?php
// Information posted from the user
$user_post = “This is an example of nl2br.\n

This function translates carriage returns to the HTML
equivalent.”;

echo nl2br($user_post);
?>

The nl2br raw HTML output is as follows:
This is an example of nl2br.

This function translates carriage returns to the HTML equivalent.

This is displayed in a web browser as follows:
This is an example of nl2br.
This function converts carriage returns to the HTML equivalent.

Anytime the user hits the Enter key on the keyboard, a \n on Unix\Linux or a \r\n on
Windows-based systems will be generated in the raw data. The nl2br function allows you to
translate the carriage returns much more simply.

ucwords() Function
One of the most annoying things as a data manager is when users use all lower-case letters to
enter content on a website. The bottom line is that it makes things look unprofessional, and
you have to fix it if it bothers you. With PHP, a function called ucwords will convert the first
letter to upper case of each word and leave the rest of the characters in the string the way
they are:

Let’s take a look at the ucwords function usage: <?php
$data = “eric”;
$data = ucwords ($data);
echo $data;
?>

The output looks like this:
Eric

Pretty simple, eh? You convert the first letter of each word in the string, and things look
much better already. But wait! What if someone uses all upper-case letters in the posted data?
This is much more annoying, and you have to fix this! This example is great because now you
get to compound two functions together and use them both at the same time. Let’s see how:

<?php
// Compounded Example

Chapter 1 • Introducing PHP

4279c01.qxd 10/27/03 6:19 PM Page 16

17

$data = “ERIC”;
$data = ucwords(strtolower($data));
echo $data;
?>

The ouput looks like this:
Eric

You can also achieve the same results from the previous example without compounding the
functions:

<?php
// Non-Compounded Example
$data = “ERIC”;
$data = strtolower($data);
$data = ucwords($data);
echo $data;
?>

As you would expect, the output looks like this:
Eric

In the previous example, I gave you two methods of achieving the same result. The first
way is the shorter way and reduces the code and file size of your script, and the second
method is the longer version of the first example. Either way, both examples produce the
same result—the results desired. The beauty of PHP is there are at least five different ways
to achieve the same result for nearly everything you do. You will discover this more as you
become proficient as a developer.

Also in the previous example, I utilized the function strtolower, which simply converts all
characters in a string to lower-case characters. Let’s look at some of the other text formatting
functions.

strtoupper Converts all characters in a string to upper case.

strtolower Converts all characters in a string to lower case.

ucwords Converts the first character of each word to upper case in a string.

ucfirst Converts only the first character in a string to upper case.

Database Querying Functions
PHP would not be complete without methods of querying a database. For this chapter, I will
list the most commonly used MySQL functions and their definitions. As you move through
this book, I will show you how to use these functions when you build your website.

Working with PHP

4279c01.qxd 10/27/03 6:19 PM Page 17

18

NOTE A resource link identifier is a name assigned to a resource such as mysql_query. An exam-
ple is $sql = mysql_query(“query_here”). $sql becomes your resource identifier.

The following are the most commonly used MySQL functions:

mysql_connect [string server [, string username [, string password [, bool

new_link [, int client_flags]]]]]) Opens a connection to a MySQL server.

mysql_pconnect ([string server [, string username [, string password [, int

client_flags]]]]) Opens a persistent connection to a server. A persistent connection
allows a single connection to be used by multiple users asynchronously instead of opening
and closing new connections; a persistent connection remains open and will be assigned to
a user upon request.

mysql_select_db (string database_name [, resource link_identifier]) Selects a
specific database by name with the resource identifier from one of the previous functions,
mysql_connect or mysql_pconnect.

mysql_query (string query [, resource link_identifier [, int result_mode]])

Sends a MySQL query to the server.

mysql_fetch_array (resource result [, int result_type]) Fetches the results of
the resource identifier from mysql_query and returns the results as an array.

mysql_result (resource result, int row [, mixed field]) Gets the result data of a
mysql_query resource identifier.

mysql_fetch_assoc (resource result) Fetches a result row as an associative array.

mysql_num_rows (resource result) Gets the number of rows in the result for a
mysql_query resource identifier.

mysql_error ([resource link_identifier]) Returns the text of the error message
from the previous MySQL operation.

mysql_affected_rows ([resource link_identifier]) Gets the number of affected
rows in the previous MySQL operation.

mysql_insert_id ([resource link_identifier]) Gets the ID generated from the pre-
vious INSERT operation from an AUTO_INCREMENT column.

The functions listed here are used in nearly every website using PHP with MySQL.
You will find in-depth examples of these functions as you move along and get deeper into
the code.

Chapter 1 • Introducing PHP

4279c01.qxd 10/27/03 6:19 PM Page 18

19

File Include Functions
Many functions are for including files into your PHP scripts. The great advantage of includ-
ing files is that you can reuse code in many different files and keep your scripts looking cleaner
without having the same code over and over again. Let’s look at a few of the functions:

require Same as the include function except failure will result in a fatal error.

require_once This function will evaluate the code being executed before including the
code again. If the code has already been included in the current script, require_once will
skip the inclusion and avoid duplicate code. Failure will result in a fatal error.

include Same as the require function except failure will result in a warning message.

include_once Same as require_once except failure will result in a warning message.

With the functions listed here, you will have the ability to include files within another file.
Let’s see how include works:

File name: test.php

<?php
$var1 = “This string is part of the \”test.php\” file.”;
?>

File name: current.php

<?php
include ‘test.php’;
echo $var1;
?>

This is the output from current.php:
This string is part of the “test.php” file.

When I build a website, I create a directory called includes on my server’s document root.
Inside that directory, I create files for sending e-mails, connecting to databases, and just
about any common routine that my scripts would require. Using these functions, I have now
reduced my code dramatically, and I don’t have to research or retype the code in the included
scripts any longer.

Creating Custom Functions
If you desire to create custom functions, you are in luck! PHP allows you to create custom
functions as long as they do not use a reserved function’s name. Let’s say you want the ability
to create a function that will allow you to calculate what day is 100 days after a specific date
and then display that date in a particular format, such as “June 5, 2004.” Each time you want

Working with PHP

4279c01.qxd 10/27/03 6:19 PM Page 19

20

to perform this operation, you would have to type the date and mktime function code
together and then format the date as well. If you create your own function, you can create a
method for you to call this function much more easily. Let’s look at this code:

<?php

function date_add ($hour, $minute, $day) {
$newdate = date(“r”, mktime(date(‘h’) + $hour,

date(‘i’) + $minute, 0,
date(‘m’), date(‘d’) +$day,
date(‘y’)));

return $newdate;
}
echo “Today’s Date: “.date(‘r’);
echo “
”;
echo “New Date: “.date_add(0, 0, -9);

?>

The output displays today’s date and the date nine days ago:
Today’s Date: Wed, 9 Apr 2003 20:58:59 +0200
New Date: Mon, 31 Mar 2003 08:58:00 +0200

In this code example, you created a custom function called date_add and then defined three
arguments that you will pass to this function: $hour, $minute, and $day. You enclose the
function’s content with the curly braces ({ }) and then entered the code.

This custom function example is comprised of prebuilt PHP functions such as date, which
formats and displays a date, and mktime, which can be used for arithmetic operations on
dates. Take a close look; each time you want to add a date in your PHP script, you would
have to type everything between those curly braces. That would be a waste of time if you
used this in many places throughout your website, so instead you make your own function
that is suitable for your needs.

Consider the return $newdate section of the last line inside the custom function. The
return simply returns the value created by the date math you used in the $newdate string. By
using return, you can simply tell PHP all that you want is a value, and you will choose what
to do with it. You could have simply used echo $newdate, and then when the function exe-
cuted, PHP would have displayed the value in the web browser immediately. With return,
you can do whatever you desire with this value, including insertion into a database, echo to
the user’s browser, and so on.

If you were to save this custom function and include the file into the PHP script you want
to use it in, you could call up the function using date_add(5, 0, 0); and simply add five
hours, zero minutes, and zero days to the current date. Now you can start building a custom

Chapter 1 • Introducing PHP

4279c01.qxd 10/27/03 6:19 PM Page 20

21

code library of functions each time you find something useful that required a lot of research
to make happen.

I will expand on the usage of custom functions throughout this book. Along with custom
functions, you can also create a container system for similar functions called a class. Starting
in Chapter 3, “Building a Database Schema with MySQL,” I will start demonstrating classes
and introduce them thoroughly.

Now that you have a better understanding of PHP functions, you will move on to error
handling and trapping. Do not worry if you do not know how to use functions just yet—you
will revisit using functions throughout this book.

Error Handling and Trapping
One of the most important considerations on a production server and website is handling
errors properly. You want to hide the errors from an end user as much as possible while, at
the same time, log those errors and fix them behind the scenes. PHP has many methods for
you to use such practices.

The following sections cover error handling and trapping and show you the best methods
to hide errors and log them. I refer to this process as error handling and trapping.

Error Reporting Levels
PHP has different levels of error reporting in its engine. Through a setting called error_
reporting in your php.ini file, you will be able to manage those error levels and turn the
error reporting on or off with various settings. For a complete list of the error reporting lev-
els, please refer to the “Error Reporting” section of the PHP manual.

In your php.ini file, you will find a section called “Error Reporting.” There you will find a
brief explanation of a few of the settings listed in this section. You can change the levels of
error reporting that you desire. I do not recommend disabling the error reporting during
your development phase. I recommend you use a setting on your development server such as:

error_reporting = E_ALL & ~E_NOTICE

This setting will ensure that all errors are reported to you at the time of development and
will allow you to fix them before you get too deep into your code and realize there were
errors that could have been fixed in the early stages. If you can code your PHP scripts with-
out displaying errors with these settings, you are definitely on the right track.

On a production server, I also recommend you keep the same levels of reporting; however,
you have the option to use a setting in your php.ini file called display_errors. Simply change
this setting to off and restart your web server. You should no longer see any errors on your
website; however, you’ll probably get a blank white screen if an error occurs. This could be

Working with PHP

4279c01.qxd 10/27/03 6:19 PM Page 21

22

confusing to some people, even you. I will describe how to log these errors in the “Error Trap-
ping” section shortly.

You should take special note that if you edit your php.ini file on a web server that runs
multiple virtual hosted websites, you will be making these changes for every virtual host, not
just one. If you need to change only one website, I recommend using the virtual host config-
uration files or a .htaccess file in the Apache web server.

You can also change the error reporting of a specific PHP script only. You can do this with
the error_reporting function that is compiled into PHP by default. Let’s look at an example:

<?php
error_reporting(‘E_ALL’);
// rest of script here.
?>

Using the error_reporting function, you will be able to change error_reporting levels
without affecting your entire website. This is great for debugging a script if you choose not
to log errors to a file. Let’s look at error logging or error trapping now.

Error Trapping
Every webmaster should view log files on a regular basis. Log files are an important factor in
maintaining a smooth-running website. PHP allows you to log the errors into a file of your
choice.

Here is how you do it: In your php.ini file, you will find the settings log_errors and
error_log. You will want to set the log_errors to On and define a filename and path to the
file you want to log your errors for the error_log setting.

Here is an example of a Linux production server php.ini with error handling and error
logging:

error_reporting = E_ALL & ~E_NOTICE
display_errors = Off
log_errors = On
error_log = /var/log/phpfreaks.com/php_error.log

Whenever a PHP error occurs with these settings, the error is directly entered into the
log, and the user is presented with a blank page that does not display the errors directly to
them.

Using Output Buffering
Output buffering allows you to control the output of a script and put that output into a
buffer for later use. This is useful for building a buffer of information in one part of your
script and displaying it later. Using some built-in functions that PHP has to offer, you can
accomplish this.

Chapter 1 • Introducing PHP

4279c01.qxd 10/27/03 6:19 PM Page 22

23

To find a complete list of output buffering functions, please refer to the “Output Buffering”
section of the PHP manual.

When using output buffering to capture information, you will more than likely use more
than one of the associated output buffering functions at a time. Here is an example of how to
build an output buffer:

<?php
ob_start();
echo “This is an output_buffering example”;
$mybuffer = ob_get_contents();
ob_end_clean();

// HTML or PHP code here

echo $mybuffer;
?>

In this example, you build a buffer that contains the echo statement and that will not be
displayed by the script until you tell it to be displayed. This method allows you to build more
of your script, set cookies, and even start sessions before displaying the original buffer that
you built.

What’s Next?
This chapter introduced PHP, gave a history lesson in PHP, and introduced strings, vari-
ables, functions, error handling, error trapping, and output buffering.

Now that you have looked at the beginning of coding PHP and where it can take you, let’s
discuss methods of planning your projects. The next chapter covers some basic concepts
involved with coming up with an idea and planning to develop a project.

What’s Next?

4279c01.qxd 10/27/03 6:19 PM Page 23

4279c01.qxd 10/27/03 6:19 PM Page 24

Planning Your Project

Chapter 2

4279c02.qxd 10/27/03 6:19 PM Page 25

26

O nce you have an idea for a website, you want it to be up and running as soon as possi-
ble. However, for a website to be successful, it has to be well planned. If you want to

take chances by using a shotgun method of building a large-scale project, it will more than
likely fail.

For example, if I came up with an idea to sell funnel cakes on the Internet and offer free
delivery worldwide without researching and planning this kind of idea, I would definitely be
in for a big surprise. Say I built the website from this idea without researching how to actu-
ally ship a funnel cake to a person without it becoming rotten—not only would my customers
be irritated at me, but I would lose a lot of money. I think you can figure out where I am
going with this: Planning is essential.

Furthermore, investing some time for planning in the early stages of a project can save a
lot of time on the back end. In this chapter, I walk you through the methods used to plan a
full-scale project. It is well worth the time and effort to do this right.

Getting the Most from Your Idea
When an idea for a website pops into your head or someone brings you an idea and wants
you to design a website, the possibilities may seem endless. You should allow your mind to
wander into as many depths of creative thinking as you can. Creative thinking is the key to a
great start with the website.

Do not approach your website idea with a single focus or a narrow mind. You should take
into account your development skills, budget, hardware, target audience, and the time
involved to implement your idea. When you have considered all of these variables, the idea
turns into a project.

Usually, when I come up with an idea, I try to make every effort to mull over the idea
before taking it seriously. If I can keep my mind focused on this idea for more than a day or
two, then I begin the next phase, brainstorming.

Let’s look at an example: Around Christmas time a few years ago, I decided I would try to
get my wife a dog. I looked up all of the phone numbers for dog kennels or veterinarians in
our local phone directory. Unfortunately, the phone directory was not organized very well, so
I became frustrated. I had the impression that the phone directory had a website, so I called
the publisher and asked if they had a website where a person could search for phone num-
bers. The reply I received was not too promising. The previous webmaster had moved on to
other things, and the website was built with Macromedia Flash and was no longer updated
because nobody had the source files. Unfortunately, this website was two years old, and most
of the information was incorrect anyway.

Chapter 2 • Planning Your Project

4279c02.qxd 10/27/03 6:19 PM Page 26

27

After I hung up the phone from talking to the publisher of the phone directory, I started
thinking. I came up with the idea to use PHP and MySQL to create a dynamic website that
would allow users to search for the phone numbers they desired as well as a method for the com-
pany that owns the phone directory to allow people in their office to easily manage and maintain
it through web-based administration pages. After thinking for a few more days of how useful it
would be to have a website such as this, I started to brainstorm some details for this idea.

Brainstorming Details for an Idea
When you start brainstorming details for an idea, you should consider every variable possible
for all types of audiences. Think of every detail you can for your project and then write them
down. It does not matter how crazy the details you think of for your idea, you should make a
record of them. You will start the process of eliminating the bad ideas later; for now, just
write them down while they are still fresh in your head. Try to give this phase of the process
at least a day or two to get your initial ideas documented; when it is time to move on, you will
start the process of elimination.

Expanding on the example I started in the previous section, the following list contains the
ideas I came up with for the user-accessible pages:

● Phone number listings

● Which data fields need to be collected?

● Business name

● Voice phone number

● Fax number

● E-mail address

● Website address

● Office hours

● Other information (products for sale, special contact information, and so on)

● Phone directory index with categories for phone numbers to be assigned to based on
their genre

● Yahoo-style link index?

● Subcategories under parent category

● How many subcategories before displaying a More link?

● Only show one subcategory depth to the main category?

● How to sort the subcategories under each parent category: alphabetical, sort order,
or number of listings assigned to the category?

Getting the Most from Your Idea

4279c02.qxd 10/27/03 6:19 PM Page 27

28

● Drop-down menu category list?

● Which method to sort the parent categories: alphabetical, sort order, or number of
listings assigned to a category?

● Search engine

● Which fields to search?

● Advanced search options

● Limit search result options

● Custom telephone list

● Allow users to create a custom telephone list via the MySQL database

● Use cookies or sessions?

● Allow users to print their custom telephone lists with a printer-friendly page

This example shows a small portion of my brainstorming ideas for the project. The list
could go on for quite awhile. As you can see, I simply started writing down my ideas and kept
them flowing. Even though they may not be fully suited to the project and may not be used, I
still wrote them down.

After I have a complete list of ideas on paper, so to speak, I start researching them to every
extent possible.

Researching Concepts
Once you have your idea and brainstorming phases completed, you can start researching the
details. Researching can be simple, or it can be hair pulling. As valuable as the Internet is
these days, it is still difficult to find the information you need. PHP has only been around for
a few years. This makes researching ideas for using a PHP-based development platform
somewhat complicated. However, there are still some great places to find the information
you need. Here are some I use every day:

Google search engine A priceless asset for finding virtually anything you need on the
Internet. See www.google.com.

Google Groups Millions of newsgroup messages have been indexed in the Google
Groups section for nearly all of the newsgroups in existence. Google Groups is a great
source for finding questions and answers from newsgroups for nearly the last five to 10
years. See groups.google.com.

PHP manual The PHP manual, although not always the most comprehensive material
for everyone, has some great information that may directly involve your project. Also, the

Chapter 2 • Planning Your Project

4279c02.qxd 10/27/03 6:19 PM Page 28

29

online version of the manual and the Windows Help (CFM) version also have helpful user
comments. See the “Documentation” section at www.php.net.

PHP information sites Another great source of PHP information are the sites that fel-
low developers have set up for you to find tutorials, code examples, and user forums. Here
are a few:

PHP Freaks.com This is my personal site, and nearly 15,000 visitors a day interact
to help each other with various PHP topics. The site is complete with forums, tutori-
als, code examples, live chat, and more. See www.phpfreaks.com.

OxyScripts.com A fellow PHP developer has his own site with a small community
similar to PHP Freaks.com. See www.oxyscripts.com.

Zend Technologies This is another great source for tutorials, tips, and much more.
Zend Technologies is also the home of Zend PHP accelerators and other add-on soft-
ware. See www.zend.com.

HotScripts.com This is a great script directory with links to scripts and tutorials.
See www.hotscripts.com.

This list, although not complete, will get you started finding the information you need.

When you start researching your ideas, try to find something similar to what you have in
mind. It does not really matter if what you find is written in PHP because if it is on the Web
and it is dynamic, you can do it with PHP. For example, it is easy to reproduce a site written
in Perl or Active Server Pages (ASP) once you learn the ropes.

For the project example I have already given you in this chapter, I had to research some of
the ideas, such as how to build a PHP and MySQL search engine, how to use cookies with
PHP, and so on. Through my research findings, I determined the best approaches for my
project, and I moved into the next phase: planning and information gathering. Keep in mind
that as the development phase progresses, you will more than likely have to research addi-
tional problems, so do not overdo the initial research. Hold off on researching every intricate
detail until the coding portion.

Planning and Information Gathering
Have you ever heard of the concept known as the “peanut butter and jelly of programming?”
Basically, it does not matter whether you put on the peanut butter or the jelly first—you still
get the same result: a peanut butter and jelly sandwich. Working with that metaphor, you
have already found the bread (the idea and the details) required to make the sandwich. Now
you need to spread on the peanut butter and jelly—in no certain order. I prefer to put the

Planning and Information Gathering

4279c02.qxd 10/27/03 6:19 PM Page 29

30

peanut butter (layout and design) on first, instead of the jelly (the coding portion) so that is
where you will head right now.

Planning a Website Layout, Sections, and Features
Now that you have an idea and some details, and you have done some research, it is time to
start a layout. Some people prefer to do the coding first and the layout later, but I can assure
you from experience, it is much more practical to do the layout first. When you have some-
thing visual to look at during development, you can see how your code fits the layout and
reduce your development time dramatically. Once again, this is the “peanut butter and jelly
of programming.”

When you plan your layout for a project, try to determine the best way to use the layout
space you have. If you are going to advertise on your project’s website, consider where you
want the advertising to “plug in” without distracting the readers from the reason they are at
your site. Try to make your layout as smooth and clean as possible.

When I developed the project mentioned in this chapter, I knew that the company wanted
to advertise on their website, and I also knew that I needed to provide an easy navigation sys-
tem of links on the left side of the website. From there, I started to build the layout. I tried
every means possible to avoid using frames and stuck to using HTML tables and cells to
build the layout. Once I built the layout files, I started to code the website into the layout.

For the sections of the project’s website, I started using my brainstorming process to see
what would actually fit the best, and I looked for logical ways to put them all together. I knew
that I would create the directory index with all the categories listed, the custom telephone list
feature, and the administration functions. Using the same layout files for the “shell” of the
website, I modified them accordingly to navigate through all of the sections I built. If you
plan smartly, you can modify any section of your website easily throughout the development.
Chapter 4, “Building a Website Template with PHP,” covers how to build a reusable website
template and covers more layout concepts.

Planning a MySQL Database
When it’s time for you to begin planning a database, you need to have the basic ideas for
what you are going to do. A database consists of tables and columns (or fields). A table is the
section, and the columns or fields are the subsections of the table. For example, a table called
news is a main section of the database, and the columns or fields in the news section—such as
title, date, author, and article—are the subsections.

When it is time to plan a MySQL database for your project, you should follow the ideas
you came up with in the brainstorming phase. Let’s expand some more on the example for

Chapter 2 • Planning Your Project

4279c02.qxd 10/27/03 6:19 PM Page 30

31

this chapter; I will give you an example of the database layout I used for the phone numbers
section of the project.

First, I decided which tables to use. For this example, I created a table called
phonebook_listings. I try to use a prefix for all of my tables that matches their relevance.
For example, this table will be prefixed with phonebook_. This also allows me to use the data-
base for other sections that I create later, for example, news_articles and news_categories
for a news section of my website. Now I know that I have a phonebook section and a news
section, and I know what tables belong to what section. This is only a personal preference,
but it may help you keep your database looking tidy.

Now that I have chosen a table name, I need to create columns. I began thinking of what I
would need for each phone number listing, and I came up with a list similar to this:

● Company name or person’s name

● Category ID (comes from a separate table)

● Primary phone number

● Secondary phone number

● Fax number

● Address

● Website address

● E-mail address

● Business hours

● Other information

This list covers all of the information I will need to gather about each phone number list-
ing in my database. With my basic list, I will create “MySQL-friendly” names for each of the
columns; when it is time to design the database, I will refer back to this plan.

Along with planning the sections, you should consider a table layout such as the example I
just gave you for each of the sections where you desire to use MySQL. Try to think of each
element for the section you are going to use and make a list of them. The next chapter covers
in depth how to create and administrate the MySQL databases.

Planning for a Target Audience
Another important planning consideration is the target audience. You should decide at an
early stage for whom you want your website to be built. I built my PHP Freaks.com website
specifically for web developers who desired a more advanced application of their skills. Based
on that information, I decided how to create my layout and plan the sections for the site.

Planning and Information Gathering

4279c02.qxd 10/27/03 6:19 PM Page 31

32

Your website may have a wide or narrow target audience, depending on what you are
building. A website such as Google is built for almost anyone to search for information,
whereas a site such as PayPal is built for people wanting to transfer money between other
PayPal members. For the phone book example, the target audience is anyone who needs to
look up a phone number. That means the site should be easy to use. Every site needs to be
planned, laid out, and developed accordingly for your target audience. You should make an
attempt to eliminate anything that is not applicable to your target audience.

Setting Up the Project Logistics
Depending on the scale of your project, you may need to build a team to compensate for the
logistics required. Whether your team consists of a graphic artist, additional developers,
server managers, team coordinators, and so on, you must carefully consider each of these
roles. You know that you will definitely need a developer, but what about the other people?

PHP Developers
If you decide you need a PHP developer other than yourself, you are in luck. Good PHP
developers are spawning all over at a rapid pace. Because PHP is evolving quickly, you should
have no problem putting together a team of developers for your project. A good place to look
for people hunting for work is usually in message boards or web-based forums. My PHP
Freaks.com website has a separate forums system with a subforum for freelance developers.
Usually, you can post your request in these forums, and someone will reply shortly if inter-
ested. You can visit the PHP Freaks.com forums at www.phpfreaks.com/forums and click the
PHP Freelancing forum.

Currently, the going rate for an experienced PHP developer ranges from $25 to $75 per
hour, depending on the skills required. However, if you are compiling a project team, the
developer may be interested in a percentage of the earnings. If you are putting together a
freeware project, the developer may be interested in developing just for the recognition.
Many developers have their own opinions on projects; some do not care about the money
and only develop as a hobby. Once again, this shows the dynamics involved with this type of
skill and expertise.

Graphic Artists
Graphic artists, in my experience, are the most difficult to find. Sometimes you will get lucky
and find someone experienced enough with Adobe Photoshop, and they may only be inter-
ested in getting their name in the credits for your project or adding another page into their
portfolio. However, you may also find money-hungry graphic artists who are only seeking a

Chapter 2 • Planning Your Project

4279c02.qxd 10/27/03 6:19 PM Page 32

33

quick way to make cash. Regardless, you will need to find someone who will fulfill your
requirements and be readily available to accomplish the project’s demands. Keep in mind
that most projects you develop will require some sort of alterations and graphic elements
throughout the stages of development. A perfect example of this is the need for icons, bullets,
and web banners; in my experience, these are items people think of as the project progresses.
When you negotiate with your graphic artist, try to keep something open in your agreement
for additional work beyond the initial layouts. If you need to hire a graphic artist, you can
easily find one at www.elance.com.

Server Administrators
Server administrators are becoming fairly easy to find these days, depending on the level of
skill and trust you desire. Linux, the preferred operating system for web servers, is growing
rapidly in popularity. A Linux administrator should not be too hard to find if you keep your
eyes open. Try to keep in mind when searching for a good Linux administrator that you will
need someone who is proficient in all aspects of web server administration. This means you
not only need someone who knows how to configure PHP for your server but who can also
handle a wide range of duties. The following is a short list of technologies that I would want
a Linux administrator to have familiarity with:

Apache web server Of course, in Linux, I prefer to use Apache because of its speed and
reliability, so I would require someone who knows how to install and maintain Apache. A
few important skills to look for specifically are the ability to manage Secure Sockets Layer
(SSL) connections, virtual hosts, and security.

PHP PHP is not always a plug-and-play operation. You will need someone who knows
how to configure PHP, edit the configuration files, compile additional modules, and, most
important, ensure security is set properly. PHP could potentially be any server’s worse
security nightmare if not configured properly, so make sure your server administrator
really knows what they are doing!

MySQL database server This is fairly easy to configure and maintain. You should still
consider someone who has experience in this area. Even though you may easily manage
MySQL by using some great third-party applications, knowledge of the MySQL configu-
ration files, security, and options should still be an important consideration.

FTP server Using the File Transfer Protocol (FTP) to update your files on the server is
an absolute requirement. Once again, someone who knows how to configure FTP to be
secure and prevent access to root file systems is a definite consideration. FTP, like most
applications that run on your server, could potentially be dangerous if not configured
properly.

Setting Up the Project Logistics

4279c02.qxd 10/27/03 6:19 PM Page 33

34

Domain Name Server (DNS) DNS allows you to translate a domain name into the
server’s address on the Internet. DNS management involves a large learning curve, and
DNS server administration is something that should not be taken lightly. A few different
types of DNS servers are available, but for Linux, I prefer to use the BIND package.

E-mail server Although there are more than a few handfuls of e-mail servers out there,
the most popular ones are Sendmail (default mail server on Linux, www.sendmail.org) and
Qmail (www.qmail.org) for Linux servers. Regardless of which one you choose, security
should be the number-one issue.

An incorrectly configured e-mail server could damage your communication requirements
involved in any website. For example, if your e-mail server is an open relay, some compa-
nies or individuals could use your server to relay their spam, or bulk mail, through your
server. After a few spam reports to selected agencies, your server could be blacklisted, and
those using spam mail filters might block important e-mails coming from your server, thus
reducing your communication capabilities and, in turn, reducing your business capabilities.

The bottom line is that e-mail is important; find someone who knows exactly what they are
doing!

Updates and security All but the least of your worries is the security and updates
required to maintain your servers. Someone who knows how to configure a firewall, dis-
able anonymous access, harness root access, and perform required updates on the core
operating system and the applications involved is essential to the operation of your server.

Linux servers are known for being secure because people make every attempt to find
exploits in the software; when an exploit is found, it is usually reported to the Linux devel-
opers, and patches are released within days.

Some Linux operating systems will notify your server administrator when an update is
required. You will need a server administrator who will stay up-to-date and ensure that you
have all of the latest versions and patches installed on your system.

Miscellaneous Although most flavors of Linux will manage themselves through smart
planning and implementation of the operating system, they will always need some sort of
management to ensure things are running smoothly. This task may be minimal, depending
on the activity on your server, or it could be time consuming. Either way, you would be
able to sleep well at night knowing that someone is monitoring your systems to ensure that
maximum uptime is achieved.

The bottom line to choosing the right server administrator is to find someone you can trust.
You will find that not every experienced Linux administrator has a certification. Personally, I
would hire someone regardless of a certification, based upon their skills and experience. Linux

Chapter 2 • Planning Your Project

4279c02.qxd 10/27/03 6:19 PM Page 34

35

certifications are not given out as frequently as the Microsoft certifications, so the certified
administrators are hard to find.

If you are determined to use your own servers, I think the best place to find a person who
can fit all of the requirements for the previous list is someone who has run or worked at a
web hosting company. These people will more than likely have experience in all of the
requirements for a good server administrator. Most of the requirements may be learned
fairly easily through documentation on the Web, but it requires some talent and ambition
to become competent at these tasks. If you need assistance with learning Linux, check out
www.linuxforum.com.

Project Managers/Team Coordinators
Depending on how many people you have on your project team, you may need a project
manager/team coordinator to keep things moving in the right direction. A project manager is
the person who will maintain a list of tasks involved, build timelines, coordinate between the
project team members, and compile all of the elements involved with the project into phases.

To be the most effective, your project manager should not perform any other task besides
project management. However, this may not be practical, so you may find that one person
will perform many different elements. Besides, the fewer people you have on the project, the
easier the project could be to manage, so you will have to take this into consideration when
you decide who to involve and what positions to fill.

What’s Best for You?
Not every project requires a large team to be successful. You have to alter the requirements
depending on the scale and budget of your project. For example, most of the projects I work
on, I go solo and fill most of the positions myself. I find it easier to work by myself than wait
around for other people to catch up to me. I find it difficult and frustrating to wait for another
developer to get back from vacation or to find time in their busy schedules to work on the
sections that I need before I can move on to the next phase. That is one disadvantage of
building a team of people—the actual time loss involved in waiting for other people to com-
plete their portions of work.

Regardless, if you have a strict timeline, what happens if someone does not complete their
work at the expected deadline? What happens if someone backs out on your project, and you
have to start over? For instance, consider the amount of time lost to figure out what hap-
pened and to find a replacement to do that person’s work while the rest of the team has to
wait. If you are on a critical timeline, this could be devastating to your project. However,
when things work smoothly, everyone benefits from a team effort.

Setting Up the Project Logistics

4279c02.qxd 10/27/03 6:19 PM Page 35

36

When I was asked to develop the phone book project I discussed earlier in this chapter, I
developed all aspects of the project on my own. This was a good learning experience because
I got to see what it takes to build a project like this and I had a taste of what each of the posi-
tions on a team would go through. Based on that experience, I learned to better manage a
team on later projects.

Considering the Hardware Requirements
Every project has different needs for hardware requirements. Surprisingly, hardware consid-
erations are the least of your problems. PHP and MySQL do not require massive top-of-the-
line hardware systems to run efficiently. To be honest, I have found that most web servers
will run smoothly on the minimum system requirements to run Linux. Because Linux utilizes
your hardware and processor much differently than Windows-based systems, you are not
required to have massive amounts of hardware to run a Linux server that does not use a
graphical interface.

Another great advantage of running a dedicated server is the fact that you do not need
hyped-up sound and video cards. In fact, you can remove the sound card completely and step
down to a standard Video Graphics Adapter (VGA) video card that would cost you around $20.

Let’s look at a standard system required for a web server.

● Computer case

● Motherboard

● Central Processing Unit (CPU)

● Random Access Memory (RAM)

● Hard drive

● CD-ROM (for installation of the operating system)

● Memory (RAM)

● Video card (basic)

● Network adapter

With this system, you can probably find a nice motherboard that has the integrated network
and video adapters. You only need the CD-ROM for installation; otherwise, you can remove
it if you like.

To consider the size of the hardware you require to run your websites from, you need to
know more about your project. One of my web servers runs from an AMD Athlon 650MHZ
processor with 512MB of RAM and a single 40GB hard drive. This is probably the smallest

Chapter 2 • Planning Your Project

4279c02.qxd 10/27/03 6:19 PM Page 36

37

computer I would use for a project, but it efficiently runs 25 websites, an e-mail server, a
DNS server, and an FTP server, along with some other applications I use. During the first
few months of running the phone book project, we utilized this server with high traffic loads
with no problems.

It really does not matter about the size of the hardware. If you are building a website that
will be viewed by 10,000 or 100,000 users per day and that uses PHP and MySQL, you do
not need a massive server that costs a lot of money. Even though I say this, many people will
still try to purchase as top-of-the-line servers as they can. This is not a bad idea because once
you move through the steps involved in configuring a new server, I am sure you would not
want to move to another server anytime soon.

The bottom line with hardware requirements is to find something you can afford without
breaking your budget. If you can afford a top-of-the-line server, then go for it because as you
move on to new projects, you will probably be able to share the same server with multiple
websites. However, if you do not want to break the bank, purchase something a little bit
slower but expandable in memory size. You can always attempt to upgrade later.

What’s Next?
This chapter covered quite a bit of information about planning your project. It is up to you
to choose how to plan, design, and implement your project. This chapter was written to aid
and to share with you the methods I use to develop a project. The chapter covered many
areas such as thinking of an idea, brainstorming, planning features and sections, planning
your database, building your team, and considering hardware requirements.

In Chapter 3, “Building a Database Schema with MySQL,” you will start working with
MySQL. You will learn about using different column types, creating a database, creating
tables, creating columns, and working with some excellent third-party software to manage
your MySQL databases.

What’s Next?

4279c02.qxd 10/27/03 6:19 PM Page 37

4279c02.qxd 10/27/03 6:19 PM Page 38

Building a Database
Schema with MySQL

Chapter 3

4279c03.qxd 10/27/03 6:19 PM Page 39

40

O ne of the most important elements to building a website with PHP and MySQL is the
database. MySQL is a robust database server that supports a wide range of features. With

MySQL you have the ability to insert, update, drop, index, replicate (file), and lock tables,
and much more. If you build your database properly and configure your tables accordingly,
you should have no performance problems running your site from a MySQL back end. After
reading this chapter, you will be able to use MySQL and some of the associated third-party
software for MySQL management.

Before you go any further in this chapter, you should grab a copy of MySQL and install it.
You can download MySQL at www.mysql.com for free. I recommend you download all of the
associated files for your operating system with the MySQL base installation so that you
receive the MySQL Admin Tools.

Understanding MySQL
To effectively plan and use MySQL, you need to know some basics about the different types
of tables and columns you will use in building your databases. Using tables and columns
properly will ensure that your databases run smooth and efficiently. Let’s look at tables first.

MySQL Table Types
MySQL supports a few different types of tables for using with your databases. As of MySQL
version 3.23, you can choose from HEAP, ISAM, and MyISAM table types. Let’s take a quick
look at the differences:

HEAP This table type uses hashed indexes that are stored in memory, which makes them
very fast. However, if MySQL crashes, you will lose all the data stored in them. Thus, this
table type is great for temporary tables!

ISAM This type of table will be deprecated in future versions of MySQL. Furthermore,
it has no major advantages over the MyISAM table type. The following are some of the
properties and features of ISAM:

● Compressed and fixed-length keys.

● Fixed and dynamic record length.

● Sixteen keys with 16 key parts per key.

● Maximum key length of 256 (default).

● Data is stored in machine format; this is fast, but it is machine/operating system
dependent.

Chapter 3 • Building a Database Schema with MySQL

4279c03.qxd 10/27/03 6:19 PM Page 40

41

MyISAM This is the default table type and is compatible with nearly any requirements
you may have for a database. It is based on the ISAM code and has many more useful
extensions, including error checking, error repair, compression, and much more.

Furthermore, you can compile MySQL with additional table support such as InnoDB
and BDB (BerkeleyDB). Please check the MySQL manual for information regarding these
table types.

NOTE Throughout this book, I will use MyISAM table types by default.

MySQL Column Types
Before you begin building your database structure, you should understand the column types
and the purposes for which they are used. These are the most commonly used column types:

TINYINT A very small integer. The signed range is -128 to 127. The unsigned range is
0 to 255.

SMALLINT A small integer. The signed range is -32,768 to 32,767. The unsigned
range is 0 to 65,535.

MEDIUMINT A medium-sized integer. The signed range is -8,388,608 to 8,388,607.
The unsigned range is 0 to 16,777,215.

INT A normal-sized integer. The signed range is -2,147,483,648 to 2,147,483,647. The
unsigned range is 0 to 4,294,967,295.

BIGINT A large integer. The signed range is -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

FLOAT A floating-point number. Precision can be less than or equal to 24 for a single-
precision floating-point number and between 25 and 53 for a double-precision floating-
point number.

DOUBLE A normal-sized (double-precision) floating-point number. Allowable values
are -1.7976931348623157E+308 to -2.2250738585072014E-308, zero, and
2.2250738585072014E-308 to 1.7976931348623157E+308.

DECIMAL An unpacked floating-point number.

DATE A date. The supported range is 1000-01-01 to 9999-12-31.

DATETIME A date and time combination. The supported range is ‘1000-01-01
00:00:00’ to ‘9999-12-31 23:59:59’.

Understanding MySQL

4279c03.qxd 10/27/03 6:19 PM Page 41

42

TIMESTAMP A timestamp. The range is ‘1970-01-01 00:00:00’ to sometime in the
year 2037.

TIME A time. The range is ‘-838:59:59’ to ‘838:59:59’.

YEAR A year in two-digit or four-digit format (the default is four-digit format). The
allowable values are 1,901 to 2,155.

VARCHAR A variable-length string.

TINYBLOB or TINYTEXT A BLOB or TEXT column with a maximum length of
255 (2^8 – 1) characters.

BLOB or TEXT A BLOB or TEXT column with a maximum length of 65,535
(2^16 – 1) characters.

MEDIUMBLOB or MEDIUMTEXT A BLOB or TEXT column with a maximum
length of 16,777,215 (2^24 – 1) characters.

LONGBLOB or LONGTEXT A BLOB or TEXT column with a maximum length of
4,294,967,295 (2^32 – 1) characters.

ENUM An enumeration. A string object that can have only one value, chosen from the
list of values ‘value1’, ‘value2’, ..., NULL, or the special ‘’ error value. An ENUM can
have a maximum of 65,535 distinct values.

This list contains the most commonly used column types for your purposes. There are many
more column types, and you can find a complete list in the MySQL manual at www.mysql.com/
documentation. Do not worry if you do not understand these column types yet. Throughout the
database design in this book, I will give you practical examples of the column types you will need.

NOTE When working with MySQL, you may notice in various places the terms column and field. A
column relates to the database table structure, and a field relates to data stored for a
particular column in a row, which is stored inside the table.

What Is ADOdb?
ADOdb is a set of classes that attempts to hide the differences between the nonstandardized
PHP database access functions. It is most commonly used in applications such as PHAkt (a
third-party Macromedia Dreamweaver extension) and the PostNuke content management
system.

ADOdb currently supports the following database types:

● MySQL

● Oracle

Chapter 3 • Building a Database Schema with MySQL

4279c03.qxd 10/27/03 6:19 PM Page 42

43

● Microsoft SQL Server

● Sybase

● Sybase SQL Anywhere

● Informix

● PostgreSQL

● FrontBase

● Interbase (Firebird and Borland variants)

● Foxpro

● Access

● ADO

● ODBC

If you are interested in learning more about ADOdb, refer to the official website at
php.weblogs.com/adodb.

Using MySQL Database Tools
The best part about working with excellent software such as MySQL is that someone is
always working on third-party software to make your life better. In my experience, I have
found some great third-party software applications and web-based scripts that allow me to
create, delete, modify, and manage elements of my MySQL servers fairly easily without the
need to learn command-line arguments for each action I take. This chapter will not cover
how to manage MySQL from the command line, but it will show you some great point-and-
click software that will make your life much easier.

WARNING When managing a MySQL Server with root privileges, do not delete, or drop, the database
named mysql. This database contains all of the necessary information to run your MySQL
server. Deleting this database will render MySQL inoperative.

Using phpMyAdmin: Web-Based MySQL Administration
What better way to manage the MySQL portion of your PHP/MySQL website than using a
set of PHP scripts with an excellent interface? The folks over at phpMyAdmin.net have cre-
ated a set of scripts that you download and unpack (unzip or untar) on your website’s directo-
ries. Simply open your web browser and point to the directory where you unpacked the files,
and you now have an easy way to manage your MySQL.

Using MySQL Database Tools

4279c03.qxd 10/27/03 6:19 PM Page 43

44

Even if you do not plan to use phpMyAdmin, I encourage you to read this section to get a
better understanding of different column types and why you use them.

Let’s begin by grabbing phpMyAdmin:

1. Go to www.phpmyadmin.net and pick the file format of your choice. Download the files
either directly to your web server or to your local computer.

2. Unpack the files and place them in your website’s directory. For this example, I have
placed my copy of phpMyAdmin in a directory called phpMyAdmin in my website’s docu-
ment root.

3. Modify the file called config.inc.php with your PHP editor and follow the directions for
entering your MySQL server information, usernames, passwords, and so on. See Fig-
ure 3.1 where I configured the config.php file for the $cfg[‘PmaAbsoluteUri’] setting
and Figure 3.2 where I configured the username and password in the phpMyAdmin
config.php file.

4. Open your web browser and type the address to the phpMyAdmin files. For example,
because I created a directory called phpMyAdmin on my web server’s document root, I go to
www.mysite.com/phpMyAdmin in my web browser (see Figure 3.3).

WARNING phpMyAdmin has various types of authentication. The method used in this chapter is a
direct authentication method where you do not have to enter a username and password
to access phpMyAdmin. Ensure that you protect your server by password protecting the
phpMyAdmin directory with your web server or use the cookie-based authentication for
the auth_type directive.

F I G U R E 3 . 2 :
Configuring
phpMyAdmin’s
config.inc.php
file for username
and password
settings

F I G U R E 3 . 1 :
Configuring
phpMyAdmin’s
config.inc.php
file for the Pma-
AbsolueURI setting

Chapter 3 • Building a Database Schema with MySQL

4279c03.qxd 10/27/03 6:19 PM Page 44

45

While you are in the main screen, you will have options to select your databases via the
drop-down menu on the left panel, create new databases in the right (main) panel to view
statistics, reload your MySQL server, and so on.

Creating Databases Using phpMyAdmin
Probably the first thing you will do when designing the database is to create one. In php-
MyAdmin, this is simple. In the right window, simply type your database name and then click
the Create button. For now, let’s create a database named mydb (see Figure 3.4).

Once you have created your database, you will see a new screen that allows you to create
tables in your database. Let’s create a new table called news_articles and add five columns
to it (see Figure 3.5).

F I G U R E 3 . 4 :
Creating a new data-
base in phpMyAdmin

F I G U R E 3 . 3 :
Introduction screen of
phpMyAdmin

Using MySQL Database Tools

4279c03.qxd 10/27/03 6:19 PM Page 45

46

On the next screen, you will be able to give your columns names and types for this database
(see Figure 3.6).

After you have entered your column information, click Save; you will see the screen in
Figure 3.7.

Let’s take a moment to discuss the column types used in this example. This will give you an
opportunity to explore the column types you learned about earlier in this chapter.

news_articles.article_id
The first column is called article_id. I created this column to give each article a unique and
simple method of identification: an ID number. This field is a medium integer (number) with
a length of 25 values. When you assign a length to a column, it does not mean that you can
only enter up to that length in numbers or characters; however, it means that the length of
the field can be up to 25 numbers long, for example: 9999999999999999999999999.

F I G U R E 3 . 6 :
Configuring fields for
the newly created
table in phpMyAdmin

F I G U R E 3 . 5 :
Creating a new table
for a database in php-
MyAdmin

Chapter 3 • Building a Database Schema with MySQL

4279c03.qxd 10/27/03 6:19 PM Page 46

47

This column also has an auto_increment value assigned to it. MySQL has the ability to
automatically increment the row numbers for you. In other words, every time you make a
new database entry, a unique value will be assigned to the new row. This value will be incre-
mented by one each time a new row is entered into the database, for example, 1, 2, 3, 4….

The last important element about this column is that it is the primary key for this table. A
key is used as a method to index the information inside the table. You can have more than one
key, and the keys can be primary or unique. For this example, you will stick to using the pri-
mary key and assign it to this column.

news_articles.article_title
When I planned this table in my database, I decided I would need a column to store the title
of the article. I then decided that each title should be fewer than 255 characters, and I chose
the VARCHAR type of column for it.

VARCHAR stands for variable characters. VARCHAR columns are great because they can
store simple information, and they also truncate the values if you exceed the maximum limit
of 255 characters. Also, another value of using VARCHAR is that the trailing spaces are
trimmed from the data entered.

news_articles.article_date
A great method to keep track of your dates and times is to use the DATE or DATETIME
column type. In the article_date column, for example, I used DATETIME, which will

F I G U R E 3 . 7 :
Confirmation screen
for creating a new
table in phpMyAdmin

Using MySQL Database Tools

4279c03.qxd 10/27/03 6:19 PM Page 47

48

return a value such as YYYY-MM-DD HH:MM:SS. For example, 2003-09-22 13:30:01
would be September 22, 2003, at 13:30:01 in the afternoon.

During the data insertion, you can use a MySQL function called now() to enter the current
date and time information into a column. You will use this function quite often in this book,
so keep your eyes open for it!

news_articles.article_caption
During the planning phase for this table, I decided I would have a caption on the front page
of my website where the articles would appear. Then, when the user clicks a link, I would dis-
play the full article from the database. Using the TEXT column type, I can enter up to
65,535 characters for my caption. This may be too many characters, but that is okay because
it is a lot better than having data truncated when using the TINYTEXT column, which has a
maximum value of 255 characters.

news_article.article_body
For my article body, the column that stores the full article, I wanted to ensure that I would
not run out of space if I wanted to write a really long article. So, I decided to use a LONG-
TEXT column. The LONGTEXT column allows 4,294,967,295 characters. MySQL has
field types for every usage scenario, so you will not have any problems with space when
designing your applications either.

Adding Additional Table Fields in phpMyAdmin
The greatest feature of phpMyAdmin is flexibility. You never know when you will need to go
back and add, delete, or alter tables and fields. Let’s look at how to add additional columns to
the table you created in the previous section. Follow these steps:

1. Open phpMyAdmin and choose the database you created from the drop-down menu on
the left column. You’ll see the screen shown in Figure 3.8.

2. Click the Properties link next to the table name. You will see a new screen that shows you
the columns for that table. Toward the bottom of your screen, you will see a section that
looks like Figure 3.9.

3. In the Add New Field text box, change the number to however many fields you want to
add and then select where you want to add the columns from the drop-down menu. For
this example, let’s add one new field at the end of the table. Click the Go button, and you
will see the screen in Figure 3.10.

4. In Figure 3.10, I added a new VARCHAR column named article_author and assigned it
a 255-character length. Once again, I value those VARCHAR column types. Click the
Save button, and you’ll see Figure 3.11.

Chapter 3 • Building a Database Schema with MySQL

4279c03.qxd 10/27/03 6:19 PM Page 48

49

Now you should have a good understanding of how to create new columns with php-
MyAdmin. Next, you will learn how to change and drop fields.

F I G U R E 3 . 1 0 :
Naming new columns
in phpMyAdmin

F I G U R E 3 . 9 :
Adding new columns
to an existing table in
phpMyAdmin

F I G U R E 3 . 8 :
Database properties
screen in phpMyAdmin

Using MySQL Database Tools

4279c03.qxd 10/27/03 6:19 PM Page 49

50

Changing and Dropping Tables and Fields with phpMyAdmin
Sometimes you just have to modify your database. The authors at phpMyAdmin.net recog-
nize that and have incorporated ways for you to alter your table structures rather easily. Let’s
see how!

For this example, let’s create a new table with two columns to it:

1. Open phpMyAdmin and select the database from the left drop-down menu. Below the
current table information you will see a Create a New Table on Database mydb box, as
shown in Figure 3.12.

2. Enter junk in the Name box and 2 in the Fields box and then click Go. You should be in
familiar territory if you followed the steps for creating a table and columns earlier in this
chapter. For the first column, enter junk1 as the name, select INT as the column type,
select 25 as the length values, select AUTO_INCREMENT for the EXTRA section, and select
Primary Key.

F I G U R E 3 . 1 2 :
Creating a new table
to an existing data-
base in phpMyAdmin

F I G U R E 3 . 1 1 :
Verification screen for
creating new columns
in phpMyAdmin

Chapter 3 • Building a Database Schema with MySQL

4279c03.qxd 10/27/03 6:19 PM Page 50

51

3. In the second column, enter the name junk2, select VARCHAR as the column type, and
enter 255 for the column length. See Figure 3.13 for this table setup.

4. Finally, click the Save button, and you should see the acknowledgement screen that dis-
plays the new table.

Now that you have the junk table created, you can practice changing column names, drop-
ping columns, and finally dropping the entire table.

Let’s start by opening your database from scratch. Open your web browser, go to php-
MyAdmin, and select your database from the left drop-down menu. When you have your
database selected, you should now see two tables, junk and news_articles (see Figure 3.14).

Click the Properties link next to the junk table. Now you should see the detailed informa-
tion for this column. Next to the junk2 column, let’s click the Change hyperlink. You will see
a screen similar to Figure 3.15.

In this screen, you can change the name, column type, and so on. Let’s change the name
from junk2 to junk3, set the Length/Values to 155, and then click Save (see Figure 3.16).

F I G U R E 3 . 1 4 :
Database properties
screen in phpMyAdmin

F I G U R E 3 . 1 3 :
Naming new fields for
a new table in php-
MyAdmin

Using MySQL Database Tools

4279c03.qxd 10/27/03 6:19 PM Page 51

52

As you may notice, the column has been modified. You are definitely on the right track
now! Let’s see how to drop a column.

Because this screen is similar to the properties screen, click the Drop hyperlink next to the
junk3 column. This will delete the column after you confirm your intentions (see Figure 3.17).

Click OK to confirm your deletion and refresh your screen. You should see that the junk3
column has disappeared, as shown in Figure 3.18.

Now that you know how to manage columns, you will learn how to drop tables. Open
your database from scratch again, and you’ll see the two tables, junk and news_articles.
Next to the junk table, click the Drop hyperlink, and then you will be asked if you want to
drop the table junk (see Figure 3.19). Click the OK button to confirm, and your screen will
refresh with only the news_articles column visible. You have successfully deleted your
junk table!

F I G U R E 3 . 1 7 :
Alter table
verification message
in phpMyAdmin

F I G U R E 3 . 1 6 :
Table alteration verifi-
cation screen in php-
MyAdmin

F I G U R E 3 . 1 5 :
Modifying field proper-
ties in phpMyAdmin

Chapter 3 • Building a Database Schema with MySQL

4279c03.qxd 10/27/03 6:19 PM Page 52

53

Now that you have mastered the ability to create, change, and delete tables and columns,
the last cool thing I will show you with phpMyAdmin is how to back up and restore entire
databases.

Performing Backups and Restores with phpMyAdmin
Let’s face it—you never know when you are going to need a good backup and restore of your
database. I generally make it a point to create a backup on a live site before I do any modifica-
tions to my database. You never know when the server is going to take a “lunch break” on
you and cause havoc on your website. It’s a good feeling to know you have something stand-
ing by to fix your problems.

To make a backup, follow these steps:

1. Open phpMyAdmin.

2. Select your database from the drop-down menu on the left panel, and you will see your
database open on the right panel.

3. Click the Export hyperlink, as shown in Figure 3.20. You’ll see a new page that has the
export options in Figure 3.21.

F I G U R E 3 . 1 9 :
Drop table
verification message
in phpMyAdmin

F I G U R E 3 . 1 8 :
You have successfully
deleted junk3.

Using MySQL Database Tools

4279c03.qxd 10/27/03 6:19 PM Page 53

54

phpMyAdmin has many different export options. The following are the major ones:

Structure Only This allows you to back up on the structure of the database and not
the data.

Structure and Data Create a full backup of the database including structure and data.

Data Only Only back up the data, not the structure.

Add ‘Drop Table’ This is useful when performing a restore on an existing database. It
will drop or delete the tables and data before rebuilding the database with the backup file.
It is important to select this option if you want to perform a restore. If you are going to
dump this backup into a new server, you do not have to select this option; however, I rec-
ommend it anyway.

Save As File If you select this option you will be prompted to download the database
backup as a file. If you chose to compress the file, your backed-up file will be in the com-
pression format that you choose.

Now that you better understand these options, let’s perform a simple backup of the struc-
ture and data. Select the following options: Structure and Data, Add ‘Drop Table,’ and Save
As File (see Figure 3.22). You will be prompted to download the file to your hard drive (see
Figure 3.23).

F I G U R E 3 . 2 1 :
phpMyAdmin export
options

F I G U R E 3 . 2 0 :
Export options tab for
phpMyAdmin

Chapter 3 • Building a Database Schema with MySQL

4279c03.qxd 10/27/03 6:19 PM Page 54

55

Tuck this file away in a safe place because you will use it again in a moment when you
restore the database.

To restore a database, follow these steps:

1. Select your database from the drop-down menu.

2. In the database screen, click the SQL hyperlink, as shown in Figure 3.24.

3. You’ll see a screen similar to Figure 3.25. This screen allows you to copy and paste a
MySQL query directly or select a file that contains a query from your hard drive.

F I G U R E 3 . 2 4 :
phpMyAdmin SQL
options tab

F I G U R E 3 . 2 3 :
phpMyAdmin down-
load export file

F I G U R E 3 . 2 2 :
Your phpMyAdmin
export options

Using MySQL Database Tools

4279c03.qxd 10/27/03 6:19 PM Page 55

56

4. Click the Browse button and select the file from your hard drive that you saved in the
backup procedure. Next, click the Go button to initiate the upload and query process on
the file you chose.

5. Once you have uploaded your file, you should see the query performed on the next
screen. Thus, the restore will be complete (see Figure 3.26).

F I G U R E 3 . 2 6 :
phpMyAdmin SQL
query success
message

F I G U R E 3 . 2 5 :
phpMyAdmin SQL
options page

Chapter 3 • Building a Database Schema with MySQL

4279c03.qxd 10/27/03 6:19 PM Page 56

57

This section has covered the basic tasks involved in managing your MySQL database with
phpMyAdmin. Although it only touched on the potential of what phpMyAdmin can do with
MySQL, you are off to a good start. I recommend you explore this awesome application as much
as possible; you will find that there are many more features that phpMyAdmin has to offer.

SQLyog MySQL Manager for Windows
I love Linux, and I attempt to use it every chance I get; however, working on Windows makes
life much easier—when it works properly. I am extremely happy that I have found SQLyog
to manage MySQL easily through my Windows Desktop.

SQLyog is an application developed by the folks over at Webyog.com. It was designed to
be lightweight, super fast, and user friendly, and I believe the authors have achieved their
goals. You can download SQLyog at www.webyog.com/sqlyog/.

After you have downloaded SQLyog, all that you have to do to install it is click the file; it
will set itself up like many other Windows Installer applications do.

When you run SQLyog for the first time, you will see the Connection Manager (see Fig-
ure 3.27). From this screen, you will be able to manage connections to multiple servers and mul-
tiple usernames and passwords. Simply enter the connection information for your server, and
click Save to save the information for later use or click Connect to connect using your settings.

NOTE It is important you understand how to create MySQL connections to remote servers and
user permissions. Usually, when a hosting provider configures a user account, it does not
allow connections outside of the “localhost” environment. If you are attempting to con-
nect to a remote server, you must allow the user you are connecting with to use remote
connections. Please refer to the MySQL manual to get a better understanding of this.

F I G U R E 3 . 2 7 :
SQLyog Connection
Manager

Using MySQL Database Tools

4279c03.qxd 10/27/03 6:19 PM Page 57

58

Once you have made a connection, you will see the main screen for SQLyog. This screen
provides you with a list of databases, information screens on the right, and more (see
Figure 3.28).

Creating Databases with SQLyog
Creating a new database with SQLyog is simple. Press Ctrl+D on your keyboard, and a
new window will appear. Enter the database name you want and then click OK. For this
example, I will create the database named mydb. If you followed the same steps in the previ-
ous section with phpMyAdmin, you may want to name yours mydb2 or something similar
(see Figure 3.29).

After you click the OK button, you will see your database appear in the list of databases on
the left panel (see Figure 3.30).

F I G U R E 3 . 2 9 :
SQLyog Create Data-
base screen

F I G U R E 3 . 2 8 :
SQLyog main screen

Chapter 3 • Building a Database Schema with MySQL

4279c03.qxd 10/27/03 6:19 PM Page 58

59

Now that you have your database created, you will add a new table to it. Click the database
in the list and press the Insert key on your keyboard. A new window will appear, and you can
now enter your column information in this new window (see Figure 3.31).

You will now set up this table the same as you did with news_articles using phpMyAdmin.
Table 3.1 lists the table fields.

TABLE 3.1: Field Setup for the articles Table

Field Name Data Type Length Extra

article_id MEDIUMINT 25 Primary key, auto increment

article_title VARCHAR 255

article_date DATETIME

article_caption TEXT

article_body LONGTEXT

article_author VARCHAR 255

If you have any questions about these field types, please refer to the “Using phpMyAdmin:
Web-Based MySQL Administration” section earlier in this chapter.

After you are done entering your field information, click the Create Table button at the
bottom-left corner of this window (see Figure 3.32). You will be prompted for a table name,
so enter news_articles, as shown in Figure 3.33.

F I G U R E 3 . 3 1 :
SQLyog field
setup screen

F I G U R E 3 . 3 0 :
SQLyog database
list panel

Using MySQL Database Tools

4279c03.qxd 10/27/03 6:19 PM Page 59

60

After you have entered your table name and clicked the OK button, you should see a suc-
cess message, as shown in Figure 3.34. After you click OK on this window, you will have the
ability to add more tables, as shown in Figure 3.35. Simply click No on this window, and you
will be back in the main screen of SQLyog.

Modifying Tables with SQLYog
A major strength of SQLyog is the ability to perform multiple actions from one screen.
When you open SQLyog and make a connection to the MySQL server, you will see your
database list on the left. Double-click the database you want to work with, and you will
notice the tables list expand below the database name (see Figure 3.36).

F I G U R E 3 . 3 6 :
SQLyog database
table listings

F I G U R E 3 . 3 5 :
SQLyog prompt
message

F I G U R E 3 . 3 4 :
SQLyog new table suc-
cess message

F I G U R E 3 . 3 3 :
SQLyog new table
name entry screen

F I G U R E 3 . 3 2 :
SQLyog field setup
screen actions

Chapter 3 • Building a Database Schema with MySQL

4279c03.qxd 10/27/03 6:19 PM Page 60

61

If you click the table you want to modify, press the F6 key or right-click, and then choose
Alter Table Structure, you will see a screen that allows you to perform multiple tasks such as
adding new fields and dropping fields from the same screen (see Figure 3.37).

To add a new field to your table, simply enter the information for the new field on the first
empty row and click the Alter Table button on the bottom-left corner of this window.

If you need to modify a field, simply make the changes and click the Alter Table button on
the bottom-left corner of this window.

If you would like to delete or “drop” a field, click the field name and click the Drop Field
button on the lower button bar. You will be prompted to acknowledge the deletion of a table
before the program carries out the action.

That is all there is to modifying table structures in SQLyog! It is pretty easy to use and
very user friendly. The authors have really planned this software well, and they have taken
into account ways to make working with your databases easier and quicker!

Performing a Database Backup with SQLYog
This application would not be complete without a method of creating database backups. It is
really simple to back up your database, as well! All you have to do is open SQLyog and make
a connection to the server. Once in the main screen, right-click your database and select
Export Database As Batch Scripts. You will see the window shown in Figure 3.38.

F I G U R E 3 . 3 7 :
SQLyog modify fields
screen

Using MySQL Database Tools

4279c03.qxd 10/27/03 6:19 PM Page 61

62

From this window, you have to give the file a name and a location to save to in the Export to
File box. You can leave everything else as the default. When you click the Export button at the
bottom, a new file will be saved on your hard drive. The file should look something like this:

/*
SQLyog v3.11
Host - localhost : Database - mydb
**
Server version 3.23.55-nt
*/

create database if not exists `mydb`;

use `mydb`;

/*
Table struture for news_articles
*/

drop table if exists `news_articles`;
CREATE TABLE `news_articles` (
`article_id` mediumint(25) NOT NULL auto_increment,
`article_title` varchar(255) default NULL,
`article_date` datetime default NULL,
`article_caption` text,

F I G U R E 3 . 3 8 :
SQLyog Export Data
screen

Chapter 3 • Building a Database Schema with MySQL

4279c03.qxd 10/27/03 6:19 PM Page 62

63

`article_body` longtext,
`article_author` varchar(255) default NULL,
PRIMARY KEY (`article_id`)

) TYPE=MyISAM;

This file is compatible with phpMyAdmin and command-line tools because it is a simple
set of commands that will build the database structure.

NOTE SQLyog does not provide any dialog boxes after the export procedure completes. You will
see the message “Exporting of data successful. Total Time Taken = nnn ms” directly
above the Export and Cancel buttons in the Export Data window. You must manually close
the Export Data dialog box after you see this message.

If you would like to restore a database from a batch file, simply select Tools ➢ Execute
Batch Script from the menu. Browse to the batch file you created in the previous step and
click the Execute button. You will see a status message appear in the window, as shown in
Figure 3.39, which means you are done!

NOTE SQLyog does not provide any dialog boxes upon completion of the restore process. You
will see a message similar to “N Query(s) Executed Successfully. Total Time Take = n ms.”
You must close the Execute Query(s) from a File window manually.

This section covered the basics of using SQLyog, including creating databases, adding
tables, adding and modifying columns, exporting backups, and restoring backups to your
database. I encourage you to learn more about this excellent application for managing your
MySQL databases.

Connecting to MySQL Databases with PHP
Now that you know how to create a MySQL database with some third-party applications, it
is time to make a connection to the database using PHP. The following sections discuss how
to make a connection, the differences between a persistent and nonpersistent connection,

F I G U R E 3 . 3 9 :
SQLyog Execute
Query(s) from a File
screen

Using MySQL Database Tools

4279c03.qxd 10/27/03 6:19 PM Page 63

64

and how to set up a global file that you will include throughout your website to establish the
connection to your database for you.

Persistent and Nonpersistent MySQL Connections
What are the persistent and nonpersistent connections? With PHP, you have a few different
methods to connect to your database. How you want to manage these connections is entirely
up to you as the developer to choose. You may share the database connections with persistent
connections, or you may close them and open new connections on demand with nonpersis-
tent connections. Let’s take a look at the differences.

Persistent Connections (mysql_pconnect)
I prefer to use this method of connecting to the MySQL server with all of my websites. With
a persistent connection, PHP will first check for a connection that has already been estab-
lished using the same username and password as the same host. If one is found and it is not
currently being used by anyone else, PHP will pick up that connection and use it. When
PHP is done with the connection, it will return it to the “pool” and free it up until it is
needed again instead of closing the connection.

There are major advantages of using persistent connections, mainly efficiency. However,
you should be aware that if you are limited to any number of persistent connections and your
server’s workload is high, if you exceed your connection limits, your script may not be able to
connect and an error message will be displayed.

NOTE If you have any questions about persistent connections, please refer to Chapter 21 of the
PHP manual.

Nonpersistent Connections (mysql_connect)
A nonpersistent connection will be opened when the mysql_connect function is called and
will remain open until the script has completed execution or until you use the mysql_close
function to close the resource identifier. A nonpersistent connection simply opens the con-
nection, performs the operations, and closes when the script is done with it.

Making the Connection
Now that we have discussed the types of connections, let’s make one with PHP now. For this
example, assume that your server is going to have an address of localhost, and your username
will be root with a password of password. You can also assume that you are using the database
that you created in the previous examples of this chapter, mydb. Let’s check out the PHP code:

<?php
$sql = mysql_pconnect(‘localhost’, ‘root’, ‘password’);

Chapter 3 • Building a Database Schema with MySQL

4279c03.qxd 10/27/03 6:19 PM Page 64

65

mysql_select_db(‘mydb’, $sql) or die (mysql_error());
?>

Let’s break down this code into sections.

First, you started the PHP engine to parse the code with the <?php open tag. Next, you
used a function called mysql_pconnect and the applicable arguments for this function. Here’s
the usage of the mysql_pconnect function:

mysql_pconnect — Open a persistent connection to a MySQL server
Description
resource mysql_pconnect ([string server [, string username [, string password [, int
client_flags]]]])

As you can see, you entered the server address for string server, the username for string
username, and the password for string password in this function usage. Notice that you
assigned a variable called $sql to the mysql_pconnect function. This simply returns a
resource identifier to use in the mysql_select_db function.

Finally, you select a database with the mysql_select_db function. Let’s look at this function
usage:

mysql_select_db — Select a MySQL database
Description
bool mysql_select_db (string database_name [, resource link_identifier])

Using the mysql_select_db function, you entered the database name mydb for the string
database_name, and you used the $sql variable for the resource link_identifier. This
allows you to use the persistent connection function with the select database function.

You can compound these two functions if you want. You achieve this similar to this example:
<?php
mysql_select_db(‘mydb’, mysql_pconnect(‘localhost’, ‘root’, ‘password’))

or die (mysql_error());
?>

The last portion of this code I want to point out is the mysql_error function. This func-
tion, when used with or die, will terminate the script execution and display the error from
the MySQL server regarding the connection attempt and failure. If no errors were detected,
the script will execute as advertised without error messages.

Finally, save this file as database.php and place it inside a directory called includes in your
web server’s document root. You will use this file when you start performing MySQL queries
in Chapter 5, “Creating a Website Membership System.”

Using MySQL Database Tools

4279c03.qxd 10/27/03 6:19 PM Page 65

66

What’s Next?
Throughout this chapter, I introduced you to some information about MySQL, table types,
and field and column types, as well as using some excellent third-party applications and web
scripts to make life with MySQL much easier. Finally, I gave you examples to create connec-
tions with PHP to your MySQL server.

In the next chapter, I will show you how using PHP will make your life as a webmaster
much easier when it comes to building a PHP-driven web template. I will also introduce you
to PHP classes to build a META Content class.

Chapter 3 • Building a Database Schema with MySQL

4279c03.qxd 10/27/03 6:19 PM Page 66

Building a Website Template
with PHP

Chapter 4

4279c04.qxd 10/27/03 6:19 PM Page 67

68

B uilding a website template with PHP has to be one of the most fascinating elements of
synchronizing the look and feel of your website. By creating one file that includes the

Hypertext Markup Language (HTML) layouts of your site, you can dramatically reduce the
time and effort needed to manage changes in your site’s layout.

I have been using this method for the past few years to develop all of my websites. It is
much easier to work with one file and then include the layout sections I need by using cus-
tom functions; that way, I can develop the PHP code for each portion of my website without
looking at the HTML. Furthermore, you can change the look and feel of your entire website
by merely changing the one template file.

In this chapter, I will show you the methods I have used to successfully design a website
template with PHP. I will also share one of the greatest secrets to getting ranked high in the
search engines and, at the same time, introduce you to PHP classes and Object-Oriented
Programming (OOP).

Designing Your Layout
In this chapter, you’ll design a simple table-based layout in HTML for our examples. Alter-
natively, you may use many different types of software that allow you to easily design your
website. Software such as Adobe Photoshop and Adobe Image Ready allow you to create a
graphical layout and then “slice” the image file into separate images for an HTML layout.
Using the Image Ready software, for example, you can export an HTML file with all of your
slices in place. This allows you to get true What-You-See-Is-What-You-Get (WYSIWYG)
results when designing in applications such as Photoshop.

Let’s begin the initial layout based on the concepts from Chapter 2, “Planning Your Pro-
ject.” To keep this as simple as possible, let’s design a basic table-based layout. After you work
through this chapter, you should have no problem designing a more advanced graphical-
based layout using tables and cells.

For my initial design, I used Adobe Photoshop to create a simple logo for the site (see Fig-
ure 4.1). Although this may not be important now, I will use this example logo as a reference
point for the HTML layout. You should create a similar logo that matches your site.

F I G U R E 4 . 1 :
Adobe Photoshop
logo design

Chapter 4 • Building a Website Template with PHP

4279c04.qxd 10/27/03 6:19 PM Page 68

69

Creating the HTML
Let’s move on to the HTML design. Using your favorite HTML editor, create a table with a
100-percent width, three table rows, and three columns in the second and third rows. Set the
cell padding to 0, the cell spacing to 0, and the border to 0. Figure 4.2 shows the table (I col-
ored the borders for the table so that you can see exactly what I am talking about).

The code in Listing 4.1 is used for the table layout page. Do not worry about any of the
head section information; you will get to that later:

➲ Listing 4.1 HTML Layout

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>
<html>
<head>
<title>Untitled Document</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1”>
</head>

<body>
<table width=”100%” border=”2” cellpadding=”0”
cellspacing=”0” bordercolor=”#000000”>
<tr>
<td colspan=”3”> </td>

</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>

</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>

</tr>
</table>
</body>
</html>

F I G U R E 4 . 2 :
Table example

Designing Your Layout

4279c04.qxd 10/27/03 6:19 PM Page 69

70

Now that you have the layout, if you want, you can insert your logo into the page in the
first cell. I inserted my logo so that I have something to reference during this chapter; you
can insert the logo you created. The following is an important tip: When building a layout
like this, you always want to use hyperlinks and image links that relate to the site root or the
document root of your website. For example, if you were to simply type images/logo.gif as
the image source path, you are not telling the web browser to go to the root of your website
and begin the path from that point. However, if you were to type /images/logo.gif, the
leading forward slash would direct your web browser to the beginning of your document
root and start looking for the image from that point. This is important when building a tem-
plate for your website. Always try to reference the images and links with the leading forward
slash!

You have your layout started now. Let’s save this file and name it layout.php in your web-
site’s document root. Inside this new PHP document, you will start out by creating custom
functions around the header and footer portions of the layout script. To better understand
what you are about to do, look at Figures 4.3 through 4.5. These figures depict how you sep-
arate the HTML table into parts with the custom functions you are about to use. The shaded
areas are the areas in use for the function. Specifically, Figure 4.3 shows the use of a custom
header function, Figure 4.4 shows the use of a custom footer function, and Figure 4.5 shows
the use of a content area.

F I G U R E 4 . 5 :
HTML usage for con-
tent area

F I G U R E 4 . 4 :
HTML usage for cus-
tom footer function

F I G U R E 4 . 3 :
HTML usage for cus-
tom header function

Chapter 4 • Building a Website Template with PHP

4279c04.qxd 10/27/03 6:19 PM Page 70

71

Creating the PHP Code
Now that you have an understanding of how this HTML layout is going to be divided so you
can sandwich your content between the header and footer, let’s take a look at the PHP code
you are going to use to create the functions required to make this happen. See Listing 4.2.

➲ Listing 4.2 layout.php File

<?php
function myheader($ptitle){
?>
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>
<html>
<head>
</head>

<body>
<table width=”100%” border=”2” cellpadding=”0”
cellspacing=”0” bordercolor=”#000000”>
<tr>
<td colspan=”3”> </td>

</tr>
<tr>
<td> </td>
<td>
<!-- End Header and Begin Content -->

<?php
} // close myheader()
function footer(){
?>
<!-- End Content and Begin Footer -->

</td>
<td> </td>

</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>

</tr>
</table>
</body>
</html>
} //close footer()
?>

Now that you have seen the code, let’s break it down for further understanding. First, you
are going to start the PHP engine by initiating a <?php open tag. Next, you are going to cre-
ate your own function by naming it myheader and giving the argument that you are going to
pass into the function. You are going to use the variable name $ptitle, which stands for page

Designing Your Layout

4279c04.qxd 10/27/03 6:19 PM Page 71

72

title. You will understand why you use this argument when you get to the “Creating the
META Content Class” section later in this chapter. Here are the first few lines of code:

<?php
function myheader($ptitle){
?>

As you can see, after you name the function and define the arguments, you use a close tag
for PHP. Next, you insert the HTML that you want to be above the main content area of the
website. At this point, you can also insert the image logo into the first cell of the first table
row. Here is the HTML code for the myheader function:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>
<html>
<head>
</head>

<body>
<table width=”100%” border=”2” cellpadding=”0”
cellspacing=”0” bordercolor=”#000000”>
<tr>
<td colspan=”3”></td>

</tr>
<tr>
<td> </td>
<td>
<!-- End Header and Begin Content -->

Next, you issue another open tag that allows you to end the custom myheader function and
start the footer function that is going to contain the footer HTML:

<?php
}
function footer(){
?>

You may have noticed that I put HTML comments in my code such as <!-- End Header
and Begin Content -->. This allows me to debug my scripts more easily when using the
source view of my web browser. If you create hidden comments such as the examples in my
code, you will be able to determine where your header and footer begin much more easily.
Here is the rest of the HTML code for the footer function:

<!-- End Content and Begin Footer -->
</td>
<td> </td>

</tr>
<tr>
<td> </td>

Chapter 4 • Building a Website Template with PHP

4279c04.qxd 10/27/03 6:19 PM Page 72

73

<td> </td>
<td> </td>

</tr>
</table>
</body>
</html>

Now that you have the HTML code inserted, let’s close out the footer function by issuing
a PHP close tag and complete this file for now:

<?php
} // close myheader()
?>

Using the layout.php File
With your layout file coded into PHP, you are ready to put it to use for the first time. Create
a text file, call it index.php, and save it in the same directory, preferably in your document
root, along with the layout.php file. Here are the contents of the index.php file:

<?php
// include the layout file
include $_SERVER[‘DOCUMENT_ROOT’].’/layout.php’;

// Use the myheader function from layout.php
myheader(“Welcome to My Website!”);

// Enter some content such as this message:
echo “Welcome to My Website!”;

// Use the footer function from layout.php
footer();
?>

On the first line after the open tag, I used a comment in PHP. You can start a comment
with the two forward slashes for a single-line comment such as // include the layout
file. On the next line of code, you include the layout.php file using the PHP include func-
tion. Now that the file is included, you can use the functions available in the included file. In
the next example, you will see how to call the myheader function that is located inside the
layout.php from within the index.php file:

// Use the myheader function from layout.php
myheader(“Welcome to My Website!”);

Notice how you call the function and pass an argument into the function. In this example,
I have included the page title in place of the $ptitle variable I used when creating the func-
tion in the layout.php file. You will use this argument later in this chapter in the “Creating
the META Content Class” section.

Designing Your Layout

4279c04.qxd 10/27/03 6:19 PM Page 73

74

Your next objective is to fill in the middle of the web page with your content. In the follow-
ing code example, you use a simple echo statement to put the words Welcome to My Website
between the custom header and footer functions:

// Enter some content such as this message:
echo “Welcome to My Website!”;

This example is as simple as it can be. Keep in mind that you can include HTML files
or dynamic content to fill this section, but for now, I am keeping this simple for this
demonstration.

Your final objective in this script is to display the footer portion of your layout.php file.
So, you will call the footer function from the layout.php file into the current file. You
achieve this much like the example when you called your myheader function. You will also
issue the PHP close tag to end the script:

// Use the footer function from layout.php
footer();
?>

When you open this script in your web browser, using a URL such as
http://yourphpsite.com/index.php, you should see something similar to Figure 4.6.

F I G U R E 4 . 6 :
Viewing the
index.php script

Chapter 4 • Building a Website Template with PHP

4279c04.qxd 10/27/03 6:19 PM Page 74

75

In Figure 4.6, you will see the borders around in the table. In the final layout.php file, you
will remove the borders because they are not going to be used in the real layout. For Figure 4.6,
I left the borders turned on to show you a clear picture of the results for this example.

You have created a basic HTML layout and chopped it up for PHP to use as custom
header and footer functions with which to surround your content. With this layout, you can
always include files in the left and right columns that allow you to add more links or what-
ever you desire.

Introducing Classes
As you are developing websites, you will find that you often need to use a piece of code that
you have used before. Fortunately, the developers of PHP have taken into consideration that
developing the same code repeatedly is a waste of time; as such, they have created a method
of using pieces of code with variables to alter the way the code is used. This is called a class.

A class is a collection of functions and variables associated within a group. When you begin
developing with PHP, you may discover Object Oriented Programming (OOP). OOP allows
you to create reusable code and use it whenever and wherever you desire. A good example of
OOP is to build an HTML META Content class that you can use throughout any of your
websites. You can store this file on your hard drive and use it in as many projects as you like,
and it will still serve the same purpose with minimal changes.

In the following sections, you will create the META Content class and include it into your
layout.php file. Furthermore, by using the arguments you passed through the myheader
function, you will dynamically generate unique page titles, keywords, and descriptions for
your META Content for every page on your website. This is one of my most secretly kept
techniques for building web pages throughout my PHP career, and it has proven to work
well with search engines. Let’s get started with the OOP by designing the first class.

Creating the Basic Class Structure
Based on my experience, I try to create classes inside their own file, and then I name the file
with the prefix clsXXXX where XXXX is the name of the class. This is not required, but it will
definitely help you figure out what file performs certain actions by just viewing the filename.
The following code is a standard class structure:

<?php
class ClassName{

var $var1;
var $var2;

function myfunction1(){

Introducing Classes

4279c04.qxd 10/27/03 6:19 PM Page 75

76

// Import the vars into this function
$result = “$this->var1 and $this->var2”;

// Return the result
return $result;

}

function myfunction2(){
// Reference myfunction1 within this function
$myfunction1 = $this->myfunction1();

// Return result
return $myfunction1;

}

}
?>

In this code, you see the basic class structure. First, you use your open tag for PHP, initi-
ate a new class, and then give the class a name. The var in this code simply references a
variable that has been defined after the class has been initialized. Next, you will see the first
function that is used within this class. Within the first function, it assigns the variables
defined into this function using the $this-> operator.

The previous example also depicts how you would call functions or variables from within
the class. The $this-> operator is best thought of as meaning “within this class.” I will give
you a more practical example when you design the META Content class.

The following example shows you how to include the class file from the previous example
in your current PHP script, initialize it, and put this class and its functions to use:

<?php
include $_SERVER[‘DOCUMENT_ROOT’].”/classes/clsMyClass.php”;

$myclass = &new ClassName;

$myclass->var1 = “Apples”;
$myclass->var2 = “Oranges”;

echo $myclass->myfunction1().”
”;
echo $myclass->myfunction2().”
”;
?>

First, you start PHP with the open tag, and then you include the class filename. Notice how
you use $_SERVER[‘DOCUMENT_ROOT’] and then the full path of the file when you use an include
function. This ensures that the reference path to the file will be accurate every time. This is my
preference, and it never fails—unless I type something wrong or the file does not exist.

Chapter 4 • Building a Website Template with PHP

4279c04.qxd 10/27/03 6:19 PM Page 76

77

After you have the file included, you call the class by using $myclass = &new ClassName;.
The $myclass is simply a reference name to the class, and the &new is an operator that calls
the class object by the class name. From this point forward, any time you want to use a func-
tion or an object from within that class, you will call it by using $myclass-> followed by the
function name.

The output from the previous example would be as follows:
Apples and Oranges
Apples and Oranges

The first Apples and Oranges text was generated by the myfunction1, and the second Apples
and Oranges was generated from myfunction1 from within myfunction2.

Now that you have been introduced to a basic class structure, let’s create a more practical
class for everyday use, the META Content class.

Creating the META Content Class
It is now time to create your first OOP class. This class will generate all of the META Con-
tent from an argument passed to the function. You will get this argument from the $ptitle
in the myheader function from your layout.php. From the $ptitle string, you will break
apart each word into a keyword, fill in the META data, and then generate the META Con-
tent description, copyright information, and page titles.

Create a new text file, name this file clsMetaContent.php, and save it in a separate direc-
tory of your choice in your web server’s document root. I prefer to put mine in a directory
called classes for a more organized web structure. The example in Listing 4.3 is the com-
plete META Content class. I will break this class down into small portions and explain it one
step at a time:

➲ Listing 4.3 META Content Class

<?php
class Meta{

function metadata($ptitle){

// Formulate the description for each page.
if(empty($ptitle)){

$description = $this->description;
} else {

$description = “$ptitle - $this->description”;
}

// Make the keywords of the title lower case
$keywords = strtolower($ptitle);

Introducing Classes

4279c04.qxd 10/27/03 6:19 PM Page 77

78

// Replace double spaces with single spaces
$keywords = str_replace(“ “, “ “, $keywords);

// Make string comma seperated
$meta_words = str_replace(“ “, “, “, $keywords);

// If no Page Title, Use Alternative
if(!$ptitle){

$meta .= “<TITLE>$this->sitename - “.
$meta .= “$this->slogan</TITLE>\n”;

} else {
$meta .= “<TITLE>$this->sitename: “.
$meta .= “$ptitle</TITLE>\n”;

}

// Append META content to the $meta string for output
$meta .= “<META NAME=\”KEYWORDS\”
CONTENT=\”$meta_words, $this->keywords2\”>\n”;
$meta .= “<META NAME=\”DESCRIPTION\”
CONTENT=\”$this->description\”>\n”;
$meta .= “<META NAME=\”ROBOTS\”
CONTENT=\”INDEX,FOLLOW\”>\n”;
$meta .= “<META NAME=\”GENERATOR\”
CONTENT=\”$this->company_name\”>\n”;
$meta .= “<META NAME=\”AUTHOR\”
CONTENT=\”$this->company_name\”>\n”;
$meta .= “<META NAME=\”REVISIT-AFTER\”
CONTENT=\”2 DAYS\”>\n”;
$meta .= “<META NAME=\”RESOURCE-TYPE\”
CONTENT=\”document\”>\n”;
$meta .= “<META NAME=\”COPYRIGHT\”
CONTENT=\”Copyright (c) 2003
$this->company_name\”>\n”;
$meta .= “<META NAME=\”DISTRIBUTION\”
CONTENT=\”Global\”>\n”;
$meta .= “<META NAME=\”GENERATOR\”
CONTENT=\”$this->generator\”>\n”;
$meta .= “<META NAME=\”RATING\”
CONTENT=\”GENERAL\”>\n”;
$meta .= “<META HTTP-EQUIV=\”REPLY-TO\”
CONTENT=\”webmaster@yourdomain.com\”>\n”;
$meta .= “<META HTTP-EQUIV=\”Content-Type\”
CONTENT=\”text/html;
charset=iso-8859-1\”>\n”;

return $meta;
}

}
?>

Chapter 4 • Building a Website Template with PHP

4279c04.qxd 10/27/03 6:19 PM Page 78

79

This class is a great learning tool for understanding many different PHP functions, espe-
cially text formatting and manipulation functions. Let’s begin:

<?php
class Meta{

With any PHP script, you must issue the open tag <?php. Next, you initialize a class and
give it a name by using the code class Meta. This class is named Meta. Also, you will enclose
the entire contents of this class with the brackets {}.

Your first and only function in this META class is the function that generates the META
content and returns it to the reference that executes this function in your PHP script. You cre-
ate a custom function by giving it a name and defining the arguments allowed for that func-
tion; in this case, it is the $ptitle that you will get from your layout.php myheader function:

function metadata($ptitle){

Now you begin having fun with PHP! The first portion of the META function will use an
IF ELSE control structure to determine if the $ptitle has any value assigned to it. If it does
not, or the string is empty, you will use an alternative META description. Notice how you
reference the var $description in this example from within this function. I will show you
how to assign the value to the var $description later in this chapter. For now, take notice
of how I used the $this->description operator:

// Formulate the description for each page.
if(empty($ptitle)){

$description = $this->description;
} else {

$description = “$ptitle - $this->description”;
}

For text formatting, I will convert all of the words in the $ptitle string into lower case and
assign this new converted string to the variable named $keywords:

// Make the keywords of the title lower case
$keywords = strtolower($ptitle);

Before you break apart the $keywords string, you need to remove any double spaces and
replace them with a single space to ensure that your str_replace function works properly:

// Remove extra spaces
$keywords = str_replace(“ “, “ “, $keywords);

The next portion of code takes the $keywords string and convert it to a comma-separated
word list for each word in the string. You achieve this by using the str_replace function
once again:

// Make string comma seperated
$meta_words = str_replace(“ “, “, “, $keywords);

Introducing Classes

4279c04.qxd 10/27/03 6:19 PM Page 79

80

Using the same method to determine if the $ptitle string is empty, you use the empty
function along with the IF ELSE control structure. If the $ptitle string is empty, you will
make a page title from the $sitename var and the $slogan var. This prevents no page title
from being displayed at all:

// If no Page Title, Use Alternative
if(!$ptitle){

$meta .= “<TITLE>$this->sitename - “.
$meta .= “$this->slogan</TITLE>\n”;

} else {
$meta .= “<TITLE>$this->sitename: “.
$meta .= “$ptitle</TITLE>\n”;

}

The next portion of code uses the string appending technique to append to the output of
$meta. You also use the $this-> operator and all of the strings you have been creating and
manipulating throughout the meta function so far:

// Append META content to the $meta string for output
$meta .= “<META NAME=\”KEYWORDS\”
CONTENT=\”$meta_words, $this->keywords2\”>\n”;
$meta .= “<META NAME=\”DESCRIPTION\”
CONTENT=\”$this->description\”>\n”;

$meta .= “<META NAME=\”ROBOTS\”
CONTENT=\”INDEX,FOLLOW\”>\n”;

$meta .= “<META NAME=\”GENERATOR\”
CONTENT=\”$this->company_name\”>\n”;

$meta .= “<META NAME=\”AUTHOR\”
CONTENT=\”$this->company_name\”>\n”;

$meta .= “<META NAME=\”REVISIT-AFTER\”
CONTENT=\”2 DAYS\”>\n”;

$meta .= “<META NAME=\”RESOURCE-TYPE\”
CONTENT=\”document\”>\n”;

$meta .= “<META NAME=\”COPYRIGHT\”
CONTENT=\”Copyright (c) 2003
$this->company_name\”>\n”;

$meta .= “<META NAME=\”DISTRIBUTION\”
CONTENT=\”Global\”>\n”;

$meta .= “<META NAME=\”GENERATOR\”
CONTENT=\”$this->generator\”>\n”;

$meta .= “<META NAME=\”RATING\”
CONTENT=\”GENERAL\”>\n”;

$meta .= “<META HTTP-EQUIV=\”REPLY-TO\”
CONTENT=\”webmaster@yourdomain.com\”>\n”;

$meta .= “<META HTTP-EQUIV=\”Content-Type\”
CONTENT=\”text/html;
charset=iso-8859-1\”>\n”;

Chapter 4 • Building a Website Template with PHP

4279c04.qxd 10/27/03 6:19 PM Page 80

81

Now you have one long string named $meta that contains the entire HTML, you need to
pass back to your PHP script and fill in your <HEAD></HEAD> section for your page titles,
META data, and so on. Now all you have left for this function is to return the string when
the function inside this class is called within a PHP script. You achieve this last operation by
using the return control structure:

return $meta;

Finally, you need to close this function and complete the class as well as issue the PHP
close tag:

}
}
?>

Congratulations! You have now completed your first useful PHP object-oriented Class.
Let’s put this OOP lesson to use!

Using the Meta Content Class
Now that you have your class created, it’s time to test it out! Currently, the layout.php file
does not have any META content, and the <HEAD></HEAD> sections are empty. Let’s open the
layout.php files and fill in those blanks with your spiffy new class!

The newly modified layout.php file will look like Listing 4.4 when you are done adding
the META content class.

➲ Listing 4.4 Modified layout.php File

<?php
function myheader($ptitle){

include $_SERVER[‘DOCUMENT_ROOT’].”/classes/clsMetaContent.php”;
$meta = &new Meta;

$meta->company_name = “My Company”;
$meta->description = “This is my first PHP enabled website.”;
$meta->keywords2 = “PHP, MySQL, Web Development”;
$meta->sitename = “My PHP Site”;
$meta->slogan = “Be patient, I’m learning!”;
$meta->generator = “PHP”;
?>
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>
<html>
<head>
<?php echo $meta->metadata($ptitle); ?>
</head>

<body>

Introducing Classes

4279c04.qxd 10/27/03 6:19 PM Page 81

82

<table width=”100%” border=”2” cellpadding=”0”
cellspacing=”0” bordercolor=”#000000”>
<tr>
<td colspan=”3”></td>

</tr>
<tr>
<td> </td>
<td>
<!-- End Header and Begin Content -->

<?php
}
function footer(){
?>
<!-- End Content and Begin Footer -->

</td>
<td> </td>

</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>

</tr>
</table>
</body>
</html>
<?php
}
?>

The only part of the layout.php file that you have modified is the portion that contains the
myheader function. You will begin right below the section where you named and initialized
the myheader function. First, you need to include the clsMetacontent.php file:

include $_SERVER[‘DOCUMENT_ROOT’].”/classes/clsMetaContent.php”;

Once again, notice how you use the $_SERVER[‘DOCUMENT_ROOT’] to ensure you have the
complete path to the actual file included. Next, you will initialize the class and assign a refer-
ence variable to it:

$meta = &new Meta;

Do you remember all of that var $varname stuff I was talking about when you created the
META Content class? Well, here is how you assign values to those vars:

$meta->company_name = “My Company”;
$meta->description = “This is my first PHP enabled website.”;
$meta->keywords2 = “PHP, MySQL, Web Development”;
$meta->sitename = “My PHP Site”;
$meta->slogan = “Be patient, I’m learning!”;
$meta->generator = “PHP”;

Chapter 4 • Building a Website Template with PHP

4279c04.qxd 10/27/03 6:19 PM Page 82

83

Skip down to below the <head> tag in your HTML portion and change it as follows:
<head>
<?php echo $meta->metadata($ptitle); ?>
</head>

NOTE If you desire to use the shortcut syntax for echo, you may use <?=$meta->metadata
($ptitle) ?> instead of the full <?php echo $meta->metadata($ptitle); ?>. If you
want to use the shortcut syntax, you must ensure that the short_open_tag value is set
to On in your php.ini file.

You can leave the rest of your layout.php script as you originally coded it in this chapter.
Open your script in your web browser from your web server and take a look at the source of
the HTML. You can do this via Internet Explorer by selecting View ➢ Source. You should
see the HTML in Listing 4.5.

➲ Listing 4.5 HTML Output to Web Browser from Test Scripts

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>
<html>
<head>
<TITLE>My PHP Site: Welcome to My Website!</TITLE>
<META NAME=”KEYWORDS” CONTENT=”welcome, to, my, website!,
PHP, MySQL, Web Development”>
<META NAME=”DESCRIPTION” CONTENT=”This is my first PHP enabled website.”>
<META NAME=”ROBOTS” CONTENT=”INDEX,FOLLOW”>
<META NAME=”GENERATOR” CONTENT=”My Company”>
<META NAME=”AUTHOR” CONTENT=”My Company”>
<META NAME=”REVISIT-AFTER” CONTENT=”2 DAYS”>
<META NAME=”RESOURCE-TYPE” CONTENT=”document”>
<META NAME=”COPYRIGHT” CONTENT=”Copyright (c) 2003 My Company”>
<META NAME=”DISTRIBUTION” CONTENT=”Global”>
<META NAME=”GENERATOR” CONTENT=”PHP”>
<META NAME=”RATING” CONTENT=”GENERAL”>
<META HTTP-EQUIV=”REPLY-TO” CONTENT=”webmaster@yourdomain.com”>
<META HTTP-EQUIV=”Content-Type” CONTENT=”text/html; charset=iso-8859-1”>
</head>

<body>
<table width=”100%” border=”2” cellpadding=”0”
cellspacing=”0” bordercolor=”#000000”>
<tr>
<td colspan=”3”></td>

</tr>
<tr>
<td> </td>
<td>
<!-- End Header and Begin Content -->

Welcome to My Website!

Introducing Classes

4279c04.qxd 10/27/03 6:19 PM Page 83

84

<!-- End Content and Begin Footer -->
</td>
<td> </td>

</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>

</tr>
</table>
</body>
</html>

If you see the same output, or something similar, depending on the settings you chose for
your code, then congratulations! You have just created your first portable OOP class that you
can use in all of your websites. The search engines will love your site, and you will have page
titles on all of your pages.

What’s Next?
In this chapter, you have designed a simple layout and used that layout to create a theme for
your entire website. You now have a method of simply modifying one file and changing every
single page on your site easily. Throughout the rest of this book, you are going to be building
on this basic template to create a complete website, so please do not delete your files created
in this chapter yet!

You are moving right along, and it is now time to start working with databases, user input
forms, and e-mail systems in the next chapter.

Chapter 4 • Building a Website Template with PHP

4279c04.qxd 10/27/03 6:19 PM Page 84

Creating a Website
Membership System

Chapter 5

4279c05.qxd 10/27/03 6:19 PM Page 85

86

Awebsite membership system offers visitors a sense of attachment to your site. This chap-
ter covers how to use PHP and MySQL to create a website membership system that

allows your users to sign up, validate, log in, and gain access to special areas of your site.
Additionally, the chapter will expand on the Object-Oriented Programming (OOP) tech-
niques you learned in the previous chapter; you will learn how to use the PHP mail func-
tions, how to work with MySQL to perform queries, and how to expand upon the website
layout you created in the previous chapter.

Preparing the Membership System
In the previous chapter, you learned how to create a reusable website theme with PHP.
Before you begin to create your membership system, you need to modify your website files
to utilize the MySQL database and META Content class. This is what you will do:

● Create a common file that will include all of the classes and essential files required
throughout the website.

● Modify the index.php file to include a Hypertext Markup Language (HTML) document
with your welcome message.

● Secure directories on your website with a special index file to keep out unwanted visitors.

Creating the common.php File
Let’s begin by creating a file called common.php and saving it to your document root. This file
will use the PHP include function to include all of the files you need. The file will look like
this example:

<?php

// Include Meta Content Class
include $_SERVER[‘DOCUMENT_ROOT’].’/classes/clsMetaContent.php’;

// Include Database Connection File
include $_SERVER[‘DOCUMENT_ROOT’].’/includes/database.php’;

?>

NOTE When including files, it is good practice to prefix the path of the file with $_SERVER[‘DOCU-
MENT_ROOT’] followed by the relative path to the actual file. This assures successful porta-
bility with your website.

This file simply includes the META Content class file from Chapter 4, “Building a Website
Template with PHP,” and the database.php file from Chapter 3, “Building a Database Schema
with MySQL.” You will include more files when you create them throughout this book.

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:19 PM Page 86

87

Editing the layout.php File
You need to edit your layout.php file to include the common.php file you have just created.
Open your layout.php file and delete the line where you included the clsMetaContent.php
file. Directly under the PHP open tag, add an include statement for the common.php file.
The first portion of the new layout.php file will look like this example:

<?php

include $_SERVER[‘DOCUMENT_ROOT’].”/common.php”;

function myheader($ptitle){
$meta = &new Meta;
$meta->company_name = “My Company”;

Including a Welcome Message HTML File
To better understand the technique of keeping large chunks of HTML code in separate files,
you will create an HTML file with your welcome message inside it. I use this method
because working with PHP can be complicated, and the less code you have to look at, the
easier it should be to understand.

First, create a directory in your document root called html, and then create an HTML file
called index_page.html. This file should contain a welcome message formatted with some
fonts of your choosing, and you can strip out any of the HTML code from above and below
the <BODY></BODY> tags. This is important because some browsers and search engines do not
like multiple header tags. Your index_page.html file should look something like this:

<p>Welcome
to my PHP driven website! </p>

<p>The purpose of
this site
is for me to learn and practice using PHP and MySQL, so stick around and stay
tuned, this is going to be exciting!</p>

Next, open your index.php file from Chapter 4, “Building a Website Template with PHP”,
in your document root and change the welcome message content to an include statement
with this file. This is the new index.php file:

<?php
// include the layout file
include $_SERVER[‘DOCUMENT_ROOT’].’/layout.php’;

// Use the myheader function from layout.php
myheader(“Welcome to My Website!”);

// Include the welcome html page.
include $_SERVER[‘DOCUMENT_ROOT’].’/html/index_page.html’;

Preparing the Membership System

4279c05.qxd 10/27/03 6:19 PM Page 87

88

// Use the footer function from layout.php
footer();
?>

When you open your index.php file in the web browser, it should now look like Figure 5.1.

Securing Web Directories
When you have a directory structure with files that are to be included and not accessed
directly, it is a good idea to secure that directory with some method to prevent people from
inadvertently viewing a list of the files. Some web servers are configured to automatically list
all of the files in the visitor’s browser if there is no index page present. You can use a file that
will redirect the user back to the index of the site if they try to access these directories.

Let’s secure your images, html, includes, and classes directories by placing a file named
index.php in each of them. The index.php file should contain this code:

<?php
header(“Location: http://”.$_SERVER[‘SERVER_NAME’]);
?>

Using the PHP header function, you can redirect the visitor back to your index page
forcefully.

F I G U R E 5 . 1 :
Modified
index.php file

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:19 PM Page 88

89

NOTE $_SERVER[‘SERVER_NAME’] is a PHP superglobal. These superglobals were introduced in
recent versions of PHP. You can find a complete list of superglobals in the PHP manual in
the “Predefined Variables” section.

Now you are all set up, so you can begin your membership system!

Setting Up the Membership System Database Tables
When your members sign up for access to your website, you will collect information about
them. To store this information, you will need to create a table with some columns in your
database. Using your preferred method to edit the MySQL database, follow these steps:

1. Add a table called members to your database.

2. Create columns for the members table as depicted in Table 5.1.

TABLE 5.1: Column Setup for the members Table

Field Name Data Type Length/Values Default Extra

id MEDIUMINT 25 Primary key, auto
increment

first_name VARCHAR 50

last_name VARCHAR 50

email_address VARCHAR 50

signup_date DATETIME

verified ENUM ‘0’ and ‘1’ 0

last_login DATETIME

bio TINYTEXT

admin_access ENUM ‘0’ and ‘1’ 0

username VARCHAR 25

password VARCHAR 100

These columns will gather information such as first name, last name, e-mail address, signup
date, date of last login, and a short biography about the person. Additionally, you will use the
ENUM column type, which is a list of specific values that operate similarly to radio buttons
in an HTML form. When you code the signup and verification scripts, you will better
understand the ENUM column types and why you use them.

Setting Up the Membership System Database Tables

4279c05.qxd 10/27/03 6:19 PM Page 89

90

If you want to manually enter this table structure into MySQL, you can use this example:
CREATE TABLE members (
id mediumint(25) NOT NULL auto_increment,
first_name varchar(50) NOT NULL default ‘’,
last_name varchar(50) NOT NULL default ‘’,
email_address varchar(50) NOT NULL default ‘’,
signup_date datetime NOT NULL default ‘0000-00-00 00:00:00’,
verified enum(‘0’,’1’) NOT NULL default ‘0’,
last_login datetime NOT NULL default ‘0000-00-00 00:00:00’,
bio tinytext NOT NULL,
admin_access enum(‘0’,’1’) NOT NULL default ‘0’,
username varchar(25) NOT NULL default ‘’,
password varchar(100) NOT NULL default ‘’,
PRIMARY KEY (id)

) TYPE=MyISAM COMMENT=’Membership System for My PHP Site’;

Creating a Membership Signup Script
In the following sections, you will create the signup script that will gather and validate the
user input. Then you will compare the database for existing information; if no matches are
found, you will allow the user to be created in the database. After you achieve all of this, you
will send the new member a welcome e-mail and also notify the site administrator (which is
you) about the signup with an e-mail.

Creating the HTML Signup Form
The first step you need to accomplish is to create an HTML form that will collect informa-
tion about your visitor and present a method of displaying errors based on the input of the
visitor and your criteria. Using your HTML editor, create an HTML form similar to the
example in Listing 5.1.

➲ Listing 5.1 HTML Signup Form

<p>Become
a Member!</p>

<p>Join our website
and enjoy the benefits of becoming a member!</p>

<?php
if($errors){
echo “<p align=\”center\”><font size=\”2\” face=\”Verdana, Arial, Helvetica,
sans-serif\” color=\”#FF0000\”>$errors</p>\n”;
}
?>

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:19 PM Page 90

91

<form method=”post” action=”/join.php”>
<table width=”50%” border=”1” align=”center” cellpadding=”4” cellspacing=”0”>
<tr>
<td width=”200” align=”left” valign=”top” nowrap><font size=”2”

face=”Verdana, Arial, Helvetica, sans-serif”>First Name</td>
<td width=”179” align=”left” valign=”top”><input name=”first_name”

type=”text” id=”first_name” value=”<?=$_POST[‘first_name’];?>”></td>
</tr>
<tr>
<td width=”200” align=”left” valign=”top” nowrap><font size=”2”

face=”Verdana, Arial, Helvetica, sans-serif”>Last Name</td>
<td align=”left” valign=”top”><input name=”last_name” type=”text”

id=”last_name” value=”<?=$_POST[‘last_name’];?>”></td>
</tr>
<tr>
<td width=”200” align=”left” valign=”top” nowrap><font size=”2”

face=”Verdana, Arial, Helvetica, sans-serif”>Email Address</td>
<td align=”left” valign=”top”><input name=”email_address” type=”text”

id=”email_address” value=”<?=$_POST[‘email_address’];?>”></td>
</tr>
<tr>
<td align=”left” valign=”top” nowrap><font size=”2” face=”Verdana, Arial,

Helvetica, sans-serif”>Verify Email Address</td>
<td align=”left” valign=”top”><input name=”email_address2” type=”text”

id=”email_address3” value=”<?=$_POST[‘email_address2’];?>”></td>
</tr>
<tr>
<td width=”200” align=”left” valign=”top” nowrap><font size=”2”

face=”Verdana, Arial, Helvetica, sans-serif”>Desired Username</td>
<td align=”left” valign=”top”><input name=”username” type=”text”

id=”username” value=”<?=$_POST[‘username’];?>”></td>
</tr>
<tr>
<td width=”200” align=”left” valign=”top” nowrap><font size=”2”

face=”Verdana, Arial, Helvetica, sans-serif”>Password</td>
<td align=”left” valign=”top”><input name=”password” type=”password”

id=”password” value=”<?=$_POST[‘password’];?>”></td>
</tr>
<tr>
<td width=”200” align=”left” valign=”top” nowrap><font size=”2”

face=”Verdana, Arial, Helvetica, sans-serif”>Password Again</td>
<td align=”left” valign=”top”><input name=”password2” type=”password”

id=”password2” value=”<?=$_POST[‘password2’];?>”></td>
</tr>
<tr>
<td width=”200” align=”left” valign=”top” nowrap><font size=”2”

face=”Verdana, Arial, Helvetica, sans-serif”>Tell us about yourself!</td>
<td align=”left” valign=”top”><textarea

name=”bio”><?=$_POST[‘bio’];?></textarea></td>
</tr>
<tr>

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:19 PM Page 91

92

<td align=”left” valign=”top”> </td>
<td align=”left” valign=”top”><input name=”req” type=”hidden” id=”req”

value=”process”>
<input type=”submit” name=”Submit” value=”Submit Information!”></td>

</tr>
</table>

</form>

Save the HTML in Listing 5.1 as a file in your website document root in the directory
html/forms and name it membership_signup.html. Let’s talk about some of the features this
form contains.

The first portion of your form is a simple welcome message with a heading and a sentence to
convince the visitor to sign up for your site. This is basic HTML with some font formatting:

<p>Become
a Member!</p>

<p>Join our website
and enjoy the benefits of becoming a member!</p>

Next, you will embed some PHP code that will display any errors from your PHP form
validation when you post the form information to this script. Do not worry; I will cover how
to generate these errors shortly. Here is the error message display code:

<?php
if($errors){
echo “<p align=\”center\”><font size=\”2\” face=\”Verdana, Arial, Helvetica,
sans-serif\” color=\”#FF0000\”>$errors</p>\n”;
}
?>

The rest of this HTML document is a standard HTML form with PHP imbedded into the
VALUE field for each form element. When the visitor posts the information to your script,
each form element such as text input types are stored into the $_POST array within PHP.
Take a look at this form element example:

<input type=”text” name=”first_name” value=”<?=$_POST[‘first_name’];?>”>

With the previous example, I used a basic text input type for my form. In the value, I
entered the shortcut PHP syntax to echo the $_POST array value for the first_name key. The
reason I use these form values in this HTML document is for error checking purposes. If
your visitor does not enter all of the required information or enters invalid information, you
will include this HTML document into the error checking part of your script—the values
they entered into the form that passed the error check will automatically fill into the form,
and the invalid information they entered will be deleted. I will cover the error checking por-
tion in the processing part of this script.

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:19 PM Page 92

93

The last portion of this HTML form that I will point out is the hidden input type form
element. I use these form elements for script navigation, which I will show you when you
structure your join.php script. Let’s look at the example, and then I will explain it in more
detail:

<input type=”hidden” name=”req” value=”process”>

The hidden type of input type means that there will be nothing visible to the user regard-
ing this form element. With PHP, you will create a navigation system inside your script
called req; with the values assigned to this name, you can jump to different sections inside
your script and perform the actions in those sections. This is a neat feature of PHP, which is
useful for minimizing the amount of files for your website. A good example of this is the tra-
ditional method of posting forms; you would post from file A to file B. With PHP, you can
use file A to perform multiple actions by using this switch as a navigation system. You will set
up this navigation system in the next section.

Creating the join.php Script Structure
Now that you have your form created, it is time to set up the script. Create a file named
join.php in your website’s document root. In this file, you will start out by including the
layout.php file you created in Chapter 4, “Building a Website Template with PHP.” Take
a look at the top portion of this script:

<?php
include $_SERVER[‘DOCUMENT_ROOT’].’/layout.php’;

Next, you start structuring the navigation system mentioned earlier in this chapter. You
will use a switch control structure in PHP to divide your script into subsections to perform
certain actions. To start your switch, you use this code:

switch($_REQUEST[‘req’]){

In this switch, you pass the argument $_REQUEST[‘req’]. You are assigning the values of the
$_REQUEST superglobal array from PHP with the key value of req that is passed to the PHP
script from the browser. There are a few different types of superglobal arrays within PHP,
such as $_POST, $_GET, and $_REQUEST. To learn more about superglobals, please refer to the
PHP manual; however, I will cover most of them in this book.

When working with the switch, if no value is passed to the arguments, the switch will go
directly to the “default” section specified. In this case, you will allow the default to include
the signup form. This allows the signup form to automatically display when the user accesses
the join.php file for the first time. The following is the code for the default section of the
switch:

default:
myheader(“Become a Member!”);

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:19 PM Page 93

94

include $_SERVER[‘DOCUMENT_ROOT’].
‘/html/forms/membership_signup.html’;

footer();
break;

The default value for the switch displays the header portion of the website from the cus-
tom function myheader with the custom page title from your layout.php file. It also includes
the HTML membership signup form you created and displays the footer function inside the
layout.php file.

After each section of a switch, you must issue a break; for that section to end. Otherwise,
each section of your switch will display simultaneously.

Next, close out your switch and the script by using this code:
}
?>

To understand the logical flow of this script at this point, see Listing 5.2.

➲ Listing 5.2 join.php Default Case

<?php
include $_SERVER[‘DOCUMENT_ROOT’].’/layout.php’;

switch($_REQUEST[‘req’]){
default:

myheader(“Become a Member!”);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/membership_signup.html’;
footer();

break;
}
?>

If you were to display the script in Listing 5.2 in your web browser, you would see the
HTML form you created with your layout surrounding it. At this time, your PHP script
will not process any information from the form. If you were to fill the form fields in your
web browser and click the button Submit Information, you would see the same form dis-
played with the information you entered already filled in. This shows you that the $_POST
values are working properly.

Let’s save this file for now and begin working on the processing portion of this script.

Processing the Form Information
Now that you have the ability to post the information to your PHP script, it’s time to figure
out what you want to do with it. You can relate this to the planning section of Chapter 2,

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:19 PM Page 94

95

“Planning Your Project”; however, I have already taken care of the planning for you. I have
decided that the course of action you need to take with this information is as follows:

● Validate if the visitor has posted all of the required form information; for this script,
everything is required.

● Check if the username already exists in the database; if it does, have the visitor change it
before accepting this visitor as a new member.

● Check if the e-mail address has already been used; if it has, do not allow the visitor to join
with that e-mail address. This is for security purposes.

● Validate that the password and the confirm password fields match. If they do not, have the
visitor verify their password again.

● Validate that the e-mail address and the verify e-mail address fields match. This prevents
the visitor from entering an incorrect e-mail address.

● Insert the visitor into the database if all validation checks pass.

● Send the visitor and yourself an e-mail notification of the new signup. Inside the e-mail
sent to the visitor, create a hyperlink that will validate that the user has properly received
the e-mail and validated their e-mail address. Once the user clicks the link, their member-
ship will become active, and they can log in to the system.

You are ready to begin coding the next portion of your join.php script. Earlier in this
chapter, I introduced you to the switch method of navigation in your script. You now need to
create a new section of switch called a case. A switch validates the argument passed to it and
looks for a case name that matches the argument’s value. When the match is found, it will
then execute the code for that case until PHP processes a break. When the break is found,
the case you are working with will end, and PHP will look for the next match. In your script,
you will only have one match per case, so the script will finish executing and will not per-
form anymore actions.

You may have noticed in the HTML form that you used <INPUT TYPE=”HIDDEN” NAME=”req”
VALUE=”process”>. This HTML code presents the value of $_REQUEST[‘req’] to your switch
argument, and it tells that the VALUE of this is “process”, which will cause PHP to execute the
code in the process case.

Let’s go ahead and create a case called process in your script directly below the switch
initialization. In theory, you should always put your default case at the end of the switch
according to the PHP documentation; however, I have found that this does not really matter.
Your switch code should now look similar to this example:

switch($_REQUEST[‘req’]){
case “process”:

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:19 PM Page 95

96

break;

default:
myheader(“Become a Member!”);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/membership_signup.html’;
footer();

break;
}

TIP If you would like to check what information is posted from your HTML form to your PHP
script in your process case, type the following code: print_r($_POST);. This will pre-
sent you with the $_POST array printed with all of the keys and values that were sent to
the script using the $_POST method.

In this process case, you will start developing a system that will validate all of the infor-
mation required by the visitor. See Listing 5.3 for the process case containing the form vali-
dation code and the rest of the actions you will perform upon successful signup. I will break
Listing 5.3 down step by step in a moment.

➲ Listing 5.3 The process case from join.php

case “process”:
myheader(“Become a Member: Step 2”);

// Validate all required fields were posted
if(!$_POST[‘first_name’] ||

!$_POST[‘last_name’] ||
!$_POST[‘email_address’] ||
!$_POST[‘email_address2’] ||
!$_POST[‘username’] ||
!$_POST[‘password’] ||
!$_POST[‘password2’] ||
!$_POST[‘bio’]){

$error = true;
$errors .= “Form Input Errors:”.

“\n\n”

if(!$_POST[‘first_name’]){
$errors .= “Missing First Name\n”;

}

if(!$_POST[‘last_name’]){
$errors .= “Missing Last Name\n”;

}

if(!$_POST[‘email_address’]){

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:19 PM Page 96

97

$errors .= “Missing Email Address\n”;
$email_error = true;

}

if(!$_POST[‘email_address2’]){
$errors .= “Missing Email Address”.

“Verification\n”;
$email_error = true;

}

if(!$_POST[‘username’]){
$errors .= “Missing Username\n”;

}

if(!$_POST[‘password’]){
$errors .= “Missing Password\n”;
$password_error = true;

}

if(!$_POST[‘password2’]){
$errors .= “Missing Password Verification\n”;
$password_error = true;

}

if(!$_POST[‘bio’]){
$errors .= “Missing Information About “.

“Yourself\n”;
}

}

// If both emails were posted, validate they match.
if($email_error == false){

if($_POST[‘email_address’] !=
$_POST[‘email_address2’]){

$error = true;
$errors .= “Email addresses do not match!\n\n”;
$email_error = true;

}
}

// If both passwords were posted, validate they match.
if($password_error == false){

if($_POST[‘password’] != $_POST[‘password2’]){
$error = true;
$errors .= “Passwords do not match!\n\n”;
$password_error = true;

}
}

if($email_error == false){
// Verify if email address has been used already.
$ecount = mysql_result(mysql_query(“SELECT COUNT(*)

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:19 PM Page 97

98

AS ecount FROM members
WHERE email_address =
‘{$_POST[‘email_address’]}’”),0);

// If email exists, generate error and message.
if($ecount > 0){

$error = true;
$errors .= “This email address has already “.

“been used “.
“please choose another.\n\n”;

}
}

// Verify if username already exists.
$ucount = mysql_result(mysql_query(“SELECT COUNT(*)

AS ucount FROM members
WHERE username =
‘{$_POST[‘username’]}’”),0);

// If username exists, generate error and message.
if($ucount > 0){

$error = true;
$errors .= “Username already exists, “.

“please choose another.\n\n”;
}

// If $error is TRUE, then include the signup form
// and display the errors we found.

if($error == true){
$errors = nl2br($errors);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/membership_signup.html’;
footer();
exit();

}

// All checks have passed, insert user in database

// Email user

// Email Admin

// That’s it! Done!
break;

It appears that I have a lot of explaining to do for your process case in Listing 5.3. Let’s
start breaking this code down by pieces.

The first portion of code will validate that each of the fields that you decided are required
have been completed and posted by the visitor. This code example uses an IF control structure

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:19 PM Page 98

99

to validate the fields. Additionally, you use the not (!), equals (==), and or (||) comparison
operators to validate multiple arguments at the same time. If you would like to learn more
about comparison operators, please see the “Comparison Operators” section in the PHP
manual. Here is the code:

// Validate all required fields were posted
if(!$_POST[‘first_name’] ||

!$_POST[‘last_name’] ||
!$_POST[‘email_address’] ||
!$_POST[‘email_address2’] ||
!$_POST[‘username’] ||
!$_POST[‘password’] ||
!$_POST[‘password2’] ||
!$_POST[‘bio’]){

If any of these posted fields are empty or do not exist, they will return TRUE for this IF
statement, and the code between the curly braces {} will execute. Otherwise, the statement
will bypass the code in the curly braces because the IF statement was declared FALSE.

The next portion of code executes inside the IF statement if the visitor has not posted all of
the required fields. You are going to figure out exactly which fields were not posted and cre-
ate an error message for each one. Let’s go through this code now:

$error = true;
$errors .= “Form Input Errors:”.

“\n\n”

The $error variable is a Boolean. Because it does not exist, if you attempt to validate it
using a comparison operator, it will evaluate to FALSE by default. For now, because you have
errors, you want to assign a TRUE value to it. You will use this later in this script to determine
if any errors were detected. Also, you have created an appended string named $errors with
the HTML code and error messages inside of it. Take special notice of the newline charac-
ters \n in these examples. You will format your final error message when it is time to display
it on the error page.

You are going to start verifying one by one which $_POST variables caused the FALSE value
of the IF statement now. You will use an IF statement on each one of these values and create
an error message for each one that was not present when the visitor posted the information.
Here are the examples for the First Name and Last Name form fields:

if(!$_POST[‘first_name’]){
$errors .= “Missing First Name\n”;

}

if(!$_POST[‘last_name’]){
$errors .= “Missing Last Name\n”;

}

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:19 PM Page 99

100

The next validation is a little bit different because now you are going to assign a new
Boolean named $email_error to the e-mail address verification. You do this because you are
going to perform a match on the e-mail addresses later in this script. If the user did not post
the required fields to check the match, there is really no sense in presenting an extra error
stating that they do not match. Check out this code:

if(!$_POST[‘email_address’]){
$errors .= “Missing Email Address\n”;
$email_error = true;

}

if(!$_POST[‘email_address2’]){
$errors .= “Missing Email Address “.

“Verification\n”;
$email_error = true;

}

The next check for the username is the same as the previous ones without any additional
Booleans assigned to them. They will check the information is there and, if it is not, generate
an error message for that field:

if(!$_POST[‘username’]){
$errors .= “Missing Username\n”;

}

Once again, you are going to assign a Boolean to avoid another check for the password
field. If both passwords were not posted, you will assign a Boolean for these fields and gener-
ate an error message:

if(!$_POST[‘password’]){
$errors .= “Missing Password\n”;
$password_error = true;

}

if(!$_POST[‘password2’]){
$errors .= “Missing Password Verification\n”;
$password_error = true;

}

The final step to determining which form fields were not posted is the About Yourself
field. You also need to close out this IF statement with a curly brace:

if(!$_POST[‘bio’]){
$errors .= “Missing Information About “.

“Yourself\n”;
}

}

Now that you know which form fields were posted, you will run a check on the e-mail
address posted by the Email and Email Confirmation form fields as well as the Password and
Password Confirmation fields.

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:19 PM Page 100

101

You start by checking the Boolean that would have been assigned if either of the two
required fields to verify the match exists. If the visitor did not post the information required,
the Boolean would have been assigned and the IF statement would skip generating a different
error message for it:

// If both emails were posted, validate they match.
if($email_error == false){

if($_POST[‘email_address’] !=
$_POST[‘email_address2’]){

$error = true;
$errors .= “Email addresses do not match!\n\n”;
$email_error = true;

}
}

In the previous example, you checked that $email_error is a FALSE Boolean. If it is a FALSE
Boolean or it does not exist by using the comparison operator because the visitor did post
both required fields, you will run a check that they match by comparing the two posted items
with the not equal (!=) comparison operator. In this case, if Email Address is “not equal” to
the confirmation e-mail address, you will assign the $error Boolean a TRUE value and append
to the $errors string a message about this error.

Next, you will use the same method as the previous one for the passwords the user has posted:
// If both passwords were posted, validate they match.
if($password_error == false){

if($_POST[‘password’] != $_POST[‘password2’]){
$error = true;
$errors .= “Passwords do not match!\n\n”;
$password_error = true;

}
}

Now it is time to start using MySQL! You have created your tables using the examples from
the “Setting Up the Membership System Database Tables” section earlier in this chapter, and
it is time to start performing some checks against the database to ensure that the username
and e-mail address your visitors are trying to use do not exist in your database already.

Once again, you will use the $email_error Boolean and ensure that no previous e-mail
errors exist from the validation code. If the Boolean is FALSE or does not exist, then it is time
to perform a MySQL check on the e-mail address.

You will use a MySQL function called COUNT in a compounded MySQL function query. COUNT
is an alternative to, and much more efficient than, using the PHP function mysql_num_rows.
Take a look at this code:

if($email_error == false){
// Verify if email address has been used already.

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:19 PM Page 101

102

$ecount = mysql_result(mysql_query(“SELECT COUNT(*)
AS ecount FROM members
WHERE email_address =
‘{$_POST[‘email_address’]}’”),0);

// If email exists, generate error and message.
if($ecount > 0){

$error = true;
$errors .= “This email address has already “.

“been used “.
“please choose another.\n\n”;

}
}

Let’s break this down a little further. The first portion is the Boolean check on the variable
$email_error, and then you pull your MySQL query from the database. Keep in mind that
the MySQL connection is created from your database.php file, which is included in the
common.php file you created in the “Preparing the Membership System” section at the
beginning of this chapter.

The following is your MySQL query that uses the PHP functions mysql_result and
mysql_query combined to return a value to the $ecount variable:

$ecount = mysql_result(mysql_query(“SELECT COUNT(*)
AS ecount FROM members
WHERE email_address =
‘{$_POST[‘email_address’]}’”),0);

This query will return a number value and assign it to the $ecount variable.

I want to take a moment to explain the query. Here, you are selecting COUNT from all of the
fields in the table members where the email_address field matches the user-posted e-mail
address and assigning the result the name ecount in the query.

Do not worry if you do not completely understand SQL queries yet. I will cover them
throughout the rest of this book. You should be proficient at building queries with SQL
when you are done reading this book and completing the code examples. If you desire to
learn about building queries now, you can check out sql.org.

To conclude the e-mail database check, you will perform an IF statement on the $ecount
variable to see if it is greater than zero by using the comparison operator for greater than (>).
If the value of $ecount is greater than zero, then you will assign a TRUE value to the $error
Boolean and append an error message to the $errors string.

Next, you perform the same database checks for the username the visitor wants to use:
// Verify if username already exists.
$ucount = mysql_result(mysql_query(“SELECT COUNT(*)

AS ucount FROM members

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:19 PM Page 102

103

WHERE username =
‘{$_POST[‘username’]}’”),0);

// If username exists, generate error and message.
if($ucount > 0){

$error = true;
$errors .= “Username already exists, “.

“please choose another.\n\n”;
}

Now all of the error checking is done. If any errors existed or if the $error Boolean is
TRUE, you will halt the operation and present the signup form with the errors above it and the
form fields completed with the information they posted:

// If $error is TRUE, then include the signup form
// and display the errors we found.

if($error == true){
$errors = nl2br($errors);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/membership_signup.html’;
footer();
exit();

}

The first IF statement checked the value of $error. If it was TRUE, then you moved on to
formatting the $errors string. Here you are using a PHP text formatting function called
nl2br, which converts newline characters into HTML line breaks (
). This will ensure
that your error message is clean looking and easy to read.

After you format the $errors string, you include the form that you created in the “Creat-
ing the HTML Signup Form” section earlier in this chapter. I mentioned earlier that the
form is embedded with PHP to automatically complete the form fields the visitor has already
submitted. This presents a more professional appearance to your website, and it prevents the
user from using the Back button in their web browser.

Next, you will display the footer of the website using your footer function from the layout
.php file, and then you use the exit PHP function, which will halt any further processing of
the script. When you exit the script, it will prevent the visitor’s information from being
entered into the database, and it will additionally prevent the e-mails from being sent. This is
good a trick you can use anytime you want to stop subsequent code from executing.

Take a look at Figure 5.2 through Figure 5.5 for examples of the error checking code you
have created in this script. Specifically, Figure 5.2 shows a form entry with missing fields,
and Figure 5.3 shows the error message that results. Figure 5.4 shows a form entry with mis-
matched e-mail address and password information, and Figure 5.5 shows the errors that result.

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:19 PM Page 103

104

F I G U R E 5 . 3 :
Form validation errors
displayed in browser
from Figure 5.2

F I G U R E 5 . 2 :
Form entry with
missing fields

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 104

105

F I G U R E 5 . 5 :
Form validation errors
displayed in browser
from Figure 5.4

F I G U R E 5 . 4 :
Form entry with mis-
matched e-mail
address and pass-
word information

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:20 PM Page 105

106

All of your form validation is complete for this script. I encourage you to test your script
out if you are coding these examples while you are reading. Try every possible combination
and check out how robust this script is.

Inserting the Members’ Data into the MySQL Database
Now that all of your form validation is coded and working properly, you need to store the
information into the members table of the MySQL database. You will use the PHP function
mysql_query to store the data you have collected and validated about your new member. Take
a look at this code example:

// All checks have passed, insert user in database
$sql = @mysql_query(“INSERT INTO members (first_name,

last_name, email_address, signup_date,
bio, username, password)
VALUES (‘$_POST[first_name]’,

‘$_POST[last_name]’,
‘$_POST[email_address]’,
now(),
‘$_POST[bio]’,
‘$_POST[username]’,
‘“.md5($_POST[password]).”’)
“);

if(!$sql){
echo “Error inserting your information into MySQL: “.mysql_error();
footer();
exit();

}

Let’s break this down step by step for better understanding. First, you use a mysql_query func-
tion to INSERT the data into the appropriate columns. The first set of parentheses is the column
names of the table into which you are inserting the data. The next set of parentheses is the actual
values you are inserting into the columns defined in the first set of parentheses. MySQL will not
accept a mismatch query, meaning that you must have an equal amount of columns defined in
the first set of parentheses and an equal number of values in the second set. Here is the code:

$sql = @mysql_query(“INSERT INTO members (first_name,
last_name, email_address, signup_date,
bio, username, password)
VALUES (‘$_POST[first_name]’,

‘$_POST[last_name]’,
‘$_POST[email_address]’,
now(),
‘$_POST[bio]’,
‘$_POST[username]’,
‘“.md5($_POST[password]).”’
)”);

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 106

107

When you assign a variable name to the mysql_query function, such as $sql in this case, the
value of the $sql variable name will be a Boolean TRUE or FALSE, depending on if there were
errors found in the query. This allows you to suppress the output errors of the mysql_query
function using an at (@) symbol in front of the function call.

The next important item I want to point out in this query is the now() function. The now()
function will format any DATE, DATETIME, TIMESTAMP, and related MySQL columns with the
current date and time of the MySQL query. This is a perfect function for time stamping
information in your database.

When dealing with passwords in your MySQL database, it is always best to encrypt them
in some way. PHP offers a function called md5, which is a one-way encryption and cannot be
decrypted. This may sound confusing at first, but when you need to validate a value against
md5 encrypted data, you convert the new data to md5 and then compare the two values together.
If they match, you have validated the information. In this case, you will encrypt the user’s
password in the database using the md5 one-way encryption. Be safe, be secure!

After you have performed the query, you use an IF statement to check the value of the $sql
Boolean. If the query failed, you will give the user an error in the browser and embed the
response from the MySQL server by using the mysql_error function. Once again, you will
display the footer of your website with the custom footer function from the layout.php file
and exit the script with the exit function. This method is much cleaner in appearance than
using the common method you may have seen, or die, which exits the script immediately
upon receiving the error from the MySQL server during the query:

if(!$sql){
echo “Error inserting your information into MySQL: “.

mysql_error();
footer();
exit();

}

The final step to the MySQL query is to get the ID number from the AUTO_INCREMENT
ID column in your database. This number is incremented one value from the previous row
each time a new row is created, hence the term auto increment. The AUTO_INCREMENT column
types are good for creating unique numbers for just about any type of table you create. In
this example, you are assigning a number to each new user and making it their user ID. Let’s
grab this information from MySQL so you can send it to the user in e-mail. You will use the
mysql_insert_id function to get the number:

$userid = mysql_insert_id();

Sending E-mail with PHP
When the form validation has passed the test and you have successfully entered the user into
the database, you will send the user and the website administrator an e-mail notifying them

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:20 PM Page 107

108

of the new user signup. You will be using a custom e-mail class that you will create in this
section.

For Windows-based web servers, you will need a Simple Mail Transfer Protocol (SMTP)
server to send e-mails from PHP. Windows does not ship with an SMTP server by default, so
you will have to find a third-party application that can handle this task. When I am develop-
ing on Windows, I use Workgroup Mail (www.workgroupmail.com). Workgroup Mail is a
shareware application that offers a free 30-day trial.

TIP Windows users can create a fake domain name and edit a file called hosts in your
C:\Windows\System32\drivers\etc directory to set up a domain name to point to your
local computer. With this domain name, you can check your e-mail using Workgroup Mail
and even set up Apache for virtual hosts and then access your website.

Because sending e-mails is a common task that requires some memorization of the mail
function, you can reduce the amount of code to memorize by creating a custom class to send
e-mails. In this chapter, I will show you a simple text-based class that you are going to use. If
you want to expand on this class to add HTML mail and file attachments, you could have a
fully functional mail class for virtually every use you desire. For now, you will keep it simple
and build the e-mail headers required by mail servers. Let’s look at this class now:

<?php
class Email {

function SendMail(){
$Message = stripslashes($this->Message);
$Message = stripslashes($this->Message);
$headers .=”From: “.$this->FromName.

“<”.$this->FromMail.”>\n”;
$headers .=”Reply-To: “.$this->FromName.

“<”.$this->FromMail.”>\n”;
//$headers .=”X-Priority: 1\n”;
//$headers .=”X-MSMail-Priority: High\n”;
$headers .=”X-Mailer: My PHP Mailer\n”;
$headers .=”Origin: “.$_SERVER[‘REMOTE_ADDR’].”\n”;
mail($this->ToMail, $this->Subject, $Message,

$headers);
}

}
?>

This file initializes a new class, and then it creates a new custom function named SendMail.
This function will remove any backslashes that PHP inserts before the quotes and escape
characters in form-posted values. You do this by using the stripslashes function on the

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 108

109

string that is passed through the internal pointer $this->Message from the variables defined
above the function inside the class. Here is the code I have just described:

<?php
class Email {

function SendMail(){
$Message = stripslashes($this->Message);
$Message = stripslashes($this->Message);

This class will also build a nice set of e-mail headers that mail servers and mail clients use to
identify elements of the e-mail that is sent through them. These headers are the main reason I
create a custom e-mail class. I like to ensure that I have all of the proper headers, and I do not
want to memorize all of them. This is the advantage of classes: to reduce the amount of code you
have to type when you need to perform an action. Here are the e-mail headers for this class:

$headers .=”From: “.$this->FromName.
“<”.$this->FromMail.”>\n”;

$headers .=”Reply-To: “.$this->FromName.
“<”.$this->FromMail.”>\n”;

//$headers .=”X-Priority: 1\n”;
//$headers .=”X-MSMail-Priority: High\n”;
$headers .=”X-Mailer: My PHP Mailer\n”;
$headers .=”Origin: “.$_SERVER[‘REMOTE_ADDR’].”\n”;

NOTE I have coded the e-mail priorities for certain mail clients into this class; however, I have
disabled them. If you want to use these priorities, remove the two forward slashes on the
applicable lines.

Next, you will use the PHP mail function to send the e-mail using the values you have
compiled into this class. Also, you are finished with the function, so you close the function
and the class. Here is the code:

mail($this->ToMail, $this->Subject, $Message,
$headers);

}
}
?>

Save this class file in your classes directory and name it clsEmail.php.

Before you can use the class, though, you have to include it. Using your common.php file,
enter a new include line for this class. You will use this in multiple places throughout your
website, so this is a great file to be included all the time. Here is my current common.php file:

<?php

// Include Meta Content Class

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:20 PM Page 109

110

include $_SERVER[‘DOCUMENT_ROOT’].
‘/classes/clsMetaContent.php’;

// Include Database Connection File
include $_SERVER[‘DOCUMENT_ROOT’].

‘/includes/database.php’;

// Include Email Class
include $_SERVER[‘DOCUMENT_ROOT’].

‘/classes/clsEmail.php’;
?>

Now it is time to go back to your join.php file and send out an e-mail to the client. Below
the MySQL queries, you will add the following code:

$verify_url = “http://”.$_SERVER[‘SERVER_NAME’].
“/join.php?req=verify&id=$userid&vcode=”.
md5($_POST[‘first_name’]);

$mailer = &new Email;
// Email user
$mailer->ToMail = $_POST[‘email_address’];
$mailer->FromMail = “admin@test.com”;
$mailer->FromName = “My PHP Site Administrator”;
$mailer->Subject = “Your Membership at My PHP Site”;
$mailer->Message = “Dear $_POST[first_name],\n”.

“Thanks for joining our website! We”.
“ welcome you and look forward to”.
“ your participation.\n\n”.
“Below you will find the “.
“information required to “.
“Login to our website!\n\n”.
“First, you will need to verify”.
“ your email address “.
“by clicking on this “.
“hyperlink:\n$verify_url\nand “.
“following the directions in your “.
“ web browser.\n\n”.
“=====================\n”.
“Username: $_POST[username]\n”.
“Password: $_POST[password]\n”.
“UserID: $userid\n”.
“Email Address: “.
“$_POST[email_address]\n”.
“=====================\n\n”.
“Thank you,\n”.
“My PHP Site Administrator\n”.
“http://$_SERVER[SERVER_NAME]\n”;

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 110

111

$mailer->SendMail();

I will break down the usage of this class for better understanding.

You want to find a way to verify the user’s e-mail address. The best way to verify an e-mail
address is to send an e-mail with a Uniform Resource Locator (URL) that contains a method
of verifying the user with a special code embedded into it. You create this special code by
using the ID number that MySQL returned from the database insert query, and then you can
validate the person by a number of methods. The method I chose to use is to encrypt their
first name using the md5 function and put the output into the URL. You will create the verifi-
cation code later in this chapter. This is the code you will use to create this special URL to be
e-mailed to the user:

$verify_url = “http://”.$_SERVER[‘SERVER_NAME’].
“/join.php?req=verify&id=$userid&vcode=”.
md5($_POST[‘first_name’]);

Next, you will initialize the mail class that was included through your common.php file,
and you assign a variable $mailer with which to associate that class:

$mailer = &new Email;

With the class initialized, you can start using it. First, you need to define the variables the
class will use. You tell the class to whom you will send the e-mail:

$mailer->ToMail = $_POST[‘email_address’];

Next, you will define the e-mail address from whom the e-mail will be sent. In this case, it
is admin@test.com:

$mailer->FromMail = “admin@test.com”;

Next, define the name of the person who sent the e-mail:
$mailer->FromName = “My PHP Site Administrator”;

Then, define the subject of the e-mail:
$mailer->Subject = “Your Membership at My PHP Site”;

Now you need to create the e-mail message body for the e-mail being sent. This body
identifies the user by first name, welcomes them with a nice message, describes how to verify
their e-mail address with the special URL, and gives them their username, password, and
e-mail. You can customize this e-mail to your needs. Here is the code:

$mailer->Message = “Dear $_POST[first_name],\n”.
“Thanks for joining our website! We”.
“ welcome you and look forward to”.
“ your participation.\n\n”.
“Below you will find the “.
“information required to “.
“Login to our website!\n\n”.

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:20 PM Page 111

112

“First, you will need to verify”.
“ your email address “.
“by clicking on this “.
“hyperlink:\n$verify_url\nand “.
“following the directions in your “.
“ web browser.\n\n”.
“=====================\n”.
“Username: $_POST[username]\n”.
“Password: $_POST[password]\n”.
“UserID: $userid\n”.
“Email Address: “.
“$_POST[email_address]\n”.
“=====================\n\n”.
“Thank you,\n”.
“My PHP Site Administrator\n”.
“http://$_SERVER[SERVER_NAME]\n”;

Finally, the last step to sending this e-mail is to use the SendMail function from your class:
$mailer->SendMail();

When this code executes successfully, an e-mail will be sent to the user upon signup. Fig-
ure 5.6 shows the e-mail I received upon signup.

Now that you have e-mailed the user, let’s send the administrator an e-mail. You achieve
this by using the same method as the user e-mail. Here is the code:

// Email Admin
$mailer->ToMail = “eric@test.com”;
$mailer->FromMail = “admin@test.com”;
$mailer->FromName = “My PHP Site Administrator”;
$mailer->Subject = “New Member at My PHP Site [$userid]”;
$mailer->Message = “Hi,\n\n”.

“A new member has just signed up “.
“at My PHP Site! Here’s their “.
“ information:\n\n”.
“=====================\n”.
“First Name: $_POST[first_name]\n”.
“Last Name: $_POST[last_name]\n”.
“Email Address: “.
“$_POST[email_address]\n”.
“UserID: $userid\n”.
“=====================\n\n”.
“Thank you,\n”.
“My PHP Site Administrator\n”.
“http://$_SERVER[SERVER_NAME]\n”;

$mailer->SendMail();

Figure 5.7 shows the e-mail the administrator receives after signup.

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 112

113

Displaying Success Message After Signup
The next task to perform for the process case of the signup procedure is to display a welcome
message to notify the user to check their e-mail for login information. This message is only
displayed upon a successful signup. If the signup is not successful, you have already taken care
of displaying an error message in the previous code from this chapter. Because this message is
short and simple, you do not need to create an HTML file and include it; you can just echo it
in the PHP script. Let’s display a message and complete this portion of your script:

// Display Success Message
echo ‘<p align=”center”><font size=”4” ‘.

‘face=”Verdana, Arial, Helvetica, sans-serif”>’.
‘Your Signup Was Successful!’.
‘</p>’.

F I G U R E 5 . 7 :
E-mail received by
administrator after
signup

F I G U R E 5 . 6 :
E-mail received by
user after signing up

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:20 PM Page 113

114

‘<p align=”center”><font size=”4” ‘.
‘face=”Verdana, Arial, Helvetica, sans-serif”>’.
‘Please check your email for instructions.’.
‘</p>’;

// That’s it! Done!

Figure 5.8 depicts the success message after signup.

This concludes the process case for your join.php script. You only have one more portion
of the join.php script to complete: the verify case that validates the user’s e-mail when
they click the URL.

Verifying the User’s E-mail Address
The next task is to create the code to verify the special URL you embedded into the welcome
e-mail sent to the user upon signup. You will begin by creating a new case in your switch
and naming it verify. This switch will perform a MySQL query using the information in
the URL and will check your database for a row matching the encrypted first name values
and the ID number. Let’s view the code:

case “verify”:
myheader(“Verify Information”);

// Perform MysQL Query:
$sql = mysql_result(mysql_query(“SELECT COUNT(*)

AS vcount FROM members WHERE
id=’{$_GET[‘id’]}’ AND
md5(first_name) = ‘{$_GET[‘vcode’]}’
“),0);

if($sql == 1){
$update = mysql_query(“UPDATE members SET

verified=’1’ WHERE
id=’{$_GET[‘id’]}’”);

if(!$update){
echo “Error with MySQL Query: “.mysql_error();

} else {
echo ‘<p align=”center”><font size=”4” ‘.
‘face=”Verdana, Arial, Helvetica, sans-serif”>’.
‘You Have Been Verified!’.
‘</p>’;
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/login_form.html’;
}

} else {
echo “Sorry, Could not be verified!”;

}
break;

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 114

115

First, you initialize the case and display the custom myheader function with a custom page
title from the layout.php:

case “verify”:
myheader(“Verify Information”);

Next, you perform the MySQL query to match the values. In this query, you use the COUNT
MySQL function again to return the number of rows found in the database that matched the
criteria. Also, you use the md5 PHP function to encrypt the first_name column before you
can match it against your encrypted value for the vcode in the URL:

// Perform MysQL Query:
$sql = mysql_result(mysql_query(“SELECT COUNT(*)

AS vcount FROM members WHERE
id=’{$_GET[‘id’]}’ AND
md5(first_name) = ‘{$_GET[‘vcode’]}’
“),0);

Now your $sql variable contains a number of rows found matching your criteria. You will
perform an IF statement to decide what exactly you want to do with this value. In this case, if
the value is 1, you will update the user in your database and change the ENUM verified field
from 0 to 1, symbolizing that the user has clicked this link and validated their e-mail address.

F I G U R E 5 . 8 :
Signup successful
screen in web browser

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:20 PM Page 115

116

When you assign a variable to a MySQL query, the return of the variable is a Boolean with
the values 0 if the query failed or 1 if the query was successful. With Booleans, you can use
the comparison operator ! to see if there was an error. The first portion of this IF statement
validates the Boolean found in the $update variable and then either displays a success mes-
sage with a login form or displays a failure message to the user’s browser:

if(!$update){
echo “Error with MySQL Query: “.mysql_error();

} else {
echo ‘<p align=”center”><font size=”4” ‘.
‘face=”Verdana, Arial, Helvetica, sans-serif”>’.
‘You Have Been Verified!’.
‘</p>’;
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/login_form.html’;
}

In the previous example, I have also created a standard HTML form that will accept the
user’s username and password values and post them to a PHP script named login.php that
you will create shortly. This file is located in the website document root /html/forms direc-
tory, and it will be named login_form.html. Listing 5.4 shows the login_form.html file.

➲ Listing 5.4 login_form.html File

<div align=”center”><font size=”4” face=”Verdana, Arial, Helvetica,
sans-serif”>Please
Login </div>

<form action=”/login.php” method=”post”>
<table width=”30%” border=”0” align=”center” cellpadding=”4” cellspacing=”0”>
<tr>
<td width=”19%”><font size=”2” face=”Verdana, Arial, Helvetica, sans-

serif”>Username:</td>
<td width=”81%”><input name=”username” type=”text” id=”username”

value=”<?=$_POST[‘username’];?>”></td>
</tr>
<tr>
<td><font size=”2” face=”Verdana, Arial, Helvetica, sans-

serif”>Password:</td>
<td><input name=”password” type=”password” id=”password”></td>

</tr>
<tr>
<td> </td>
<td><div align=”center”>

<input type=”hidden” name=”req” value=”validate”>
<input type=”submit” name=”Submit” value=”Submit”>

</div></td>
</tr>

</table>
</form>

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 116

117

F I G U R E 5 . 1 0 :
Invalid e-mail verifica-
tion message

F I G U R E 5 . 9 :
Successful verification
and login form

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:20 PM Page 117

118

Figure 5.9 depicts the verification success message and the login form.

The last portion of this verify case is to display an error message if the criteria in your
first MySQL query failed and the $sql variable has any other value than 1:

} else {
echo “Sorry, Could not be verified!”;

}

Figure 5.10 depicts the “Sorry, Could not be verified!” message.

Finally, you display your custom footer function from the layout.php, and then you issue
a break to end the code execution for this case:

break;

Looking at the join.php File Summary
Before moving to any other files, let’s take a look at the complete join.php file (see Listing 5.5).

➲ Listing 5.5 The Complete join.php File

<?php
include $_SERVER[‘DOCUMENT_ROOT’].’/layout.php’;

switch($_REQUEST[‘req’]){
case “process”:

myheader(“Become a Member: Step 2”);

// Validate all required fields were posted
if(!$_POST[‘first_name’] ||

!$_POST[‘last_name’] ||
!$_POST[‘email_address’] ||
!$_POST[‘email_address2’] ||
!$_POST[‘username’] ||
!$_POST[‘password’] ||
!$_POST[‘password2’] ||
!$_POST[‘bio’]){

$errors .= “Form Input Errors:”.
“\n\n”;

$error = true;

if(!$_POST[‘first_name’]){
$errors .= “Missing First Name\n”;

}

if(!$_POST[‘last_name’]){
$errors .= “Missing Last Name\n”;

}

if(!$_POST[‘email_address’]){
$errors .= “Missing Email Address\n”;

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 118

119

$email_error = true;
}

if(!$_POST[‘email_address2’]){
$errors .= “Missing Email “.

“Address Verification\n”;
$email_error = true;

}

if(!$_POST[‘username’]){
$errors .= “Missing Username\n”;

}

if(!$_POST[‘password’]){
$errors .= “Missing Password\n”;
$password_error = true;

}

if(!$_POST[‘password2’]){
$errors .= “Missing Password Verification\n”;
$password_error = true;

}

if(!$_POST[‘bio’]){
$errors .= “Missing Information About Yourself\n”;

}
}

// If both emails were posted, validate they match.
if($email_error == false){

if($_POST[‘email_address’] !=
$_POST[‘email_address2’]){

$error = true;
$errors .= “Email addresses do not match!\n\n”;
$email_error = true;

}
}

// If both passwords were posted, validate they match.
if($password_error == false){

if($_POST[‘password’] != $_POST[‘password2’]){
$error = true;
$errors .= “Passwords do not match!\n\n”;
$password_error = true;

}
}

// Verify if username already exists.
$ucount = mysql_result(mysql_query(“SELECT COUNT(*)

AS ucount FROM members
WHERE username =
‘{$_POST[‘username’]}’”),0);

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:20 PM Page 119

120

// If username exists, generate error and message.
if($ucount > 0){

$error = true;
$errors .= “Username already exists, “.

“please choose another.\n\n”;
}

if($email_error == false){
// Verify if email address has been used already.
$ecount = mysql_result(mysql_query(“SELECT COUNT(*)

AS ecount FROM members
WHERE email_address =
‘{$_POST[‘email_address’]}’”),0);

// If username exists, generate error and message.
if($ecount > 0){

$error = true;
$errors .= “This email address has already “.

“been used “.
“please choose another.\n\n”;

}
}

// If $error is TRUE, then include the singup form
// and display the errors we found.

if($error == true){
$errors = nl2br($errors);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/membership_signup.html’;
footer();
exit();

}

// All checks have passed, insert user in database
$sql = @mysql_query(“INSERT INTO members (first_name,

last_name, email_address, signup_date,
bio, username, password)
VALUES (‘$_POST[first_name]’,

‘$_POST[last_name]’,
‘$_POST[email_address]’,
now(),
‘$_POST[bio]’,
‘$_POST[username]’,
‘“.md5($_POST[password]).”’
)”);

if(!$sql){
echo “Error inserting your information “.

into MySQL: “.mysql_error();
footer();

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 120

121

exit();
}

$userid = mysql_insert_id();
$verify_url = “http://”.$_SERVER[‘SERVER_NAME’].

“/join.php?req=verify&id=$userid&vcode=”.
md5($_POST[‘first_name’]);

$mailer = &new Email;
// Email user
$mailer->ToMail = $_POST[‘email_address’];
$mailer->FromMail = “admin@test.com”;
$mailer->FromName = “My PHP Site Administrator”;
$mailer->Subject = “Your Membership at My PHP Site”;
$mailer->Message = “Dear $_POST[first_name],\n”.

“Thanks for joining our website! We”.
“ welcome you and look forward to”.
“ your participation.\n\n”.
“Below you will find the “.
“information required to “.
“Login to our website!\n\n”.
“First, you will need to verify”.
“ your email address “.
“by clicking on this “.
“hyperlink:\n$verify_url\nand “.
“following the directions in your “.
“ web browser.\n\n”.
“=====================\n”.
“Username: $_POST[username]\n”.
“Password: $_POST[password]\n”.
“UserID: $userid\n”.
“Email Address: “.
“$_POST[email_address]\n”.
“=====================\n\n”.
“Thank you,\n”.
“My PHP Site Administrator\n”.
“http://$_SERVER[SERVER_NAME]\n”;

$mailer->SendMail();

// Email Admin
$mailer->ToMail = “eric@test.com”;
$mailer->FromMail = “admin@test.com”;
$mailer->FromName = “My PHP Site Administrator”;
$mailer->Subject = “New Member at My PHP Site [$userid]”;
$mailer->Message = “Hi,\n\n”.

“A new member has just signed up “.
“at My PHP Site! Here’s their “.
“ information:\n\n”.
“=====================\n”.
“First Name: $_POST[first_name]\n”.
“Last Name: $_POST[last_name]\n”.

Creating a Membership Signup Script

4279c05.qxd 10/27/03 6:20 PM Page 121

122

“Email Address: “.
“$_POST[email_address]\n”.
“UserID: $userid\n”.
“=====================\n\n”.
“Thank you,\n”.
“My PHP Site Administrator\n”.
“http://$_SERVER[SERVER_NAME]\n”;

$mailer->SendMail();
// Display Success Message
echo ‘<p align=”center”><font size=”4” ‘.

‘face=”Verdana, Arial, Helvetica, sans-serif”>’.
‘Your Signup Was Successful!’.
‘</p>’.
‘<p align=”center”><font size=”4” ‘.
‘face=”Verdana, Arial, Helvetica, sans-serif”>’.
‘Please check your email for instructions.’.
‘</p>’;

// That’s it! Done!
break;

case “verify”:
myheader(“Verify Information”);

// Perform MysQL Query:
$sql = mysql_result(mysql_query(“SELECT COUNT(*)

AS vcount FROM members WHERE
id=’{$_GET[‘id’]}’ AND
md5(first_name) = ‘{$_GET[‘vcode’]}’
“),0);

if($sql == 1){
$update = mysql_query(“UPDATE members SET

verified=’1’ WHERE
id=’{$_GET[‘id’]}’”);

if(!$update){
echo “Error with MySQL Query: “.mysql_error();

} else {
echo ‘<p align=”center”><font size=”4” ‘.
‘face=”Verdana, Arial, Helvetica, sans-serif”>’.
‘You Have Been Verified!’.
‘</p>’;
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/login_form.html’;
}

} else {
echo “Sorry, Could not be verified!”;

}
footer();

break;

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 122

123

default:
myheader(“Become a Member!”);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/membership_signup.html’;
footer();

break;
}
?>

Creating the Login System
You have created a method for your user to sign up and validate their e-mail address. Now
that you have validated them, you have to create a method for them to log in to your website.
In the following sections, you will use PHP sessions for the first time in this book, and you
will perform more MySQL queries. Let’s get started!

Starting PHP Sessions
Before you validate your members against the database, you need to start a PHP session.
PHP sessions are arrays of information that you can modify with information about your
users. They can contain virtually anything you want, such as names, e-mail addresses, pages
viewed, and other text-based information.

Sessions are stored on the web server in files, and they are only kept during the duration of
the user’s visit. Once the user leaves the website, PHP will destroy the files. Each session also
has its own unique identifier automatically generated by PHP when the session is created.

A session must be started before any text or HTML is output to the web browser, or you
will receive errors from PHP. To start a session, you will use the session_start function.
You will also create a unique session name for your sessions using the session_name function.
I do not like to type the same code over and over again, so I have created a custom file that
will start the session for me. I include this file into the common.php file so my sessions will be
available on every page of the website. Here is the file named session.php in the includes
directory:

<?php
session_start();
session_name(‘MyPHPSite’);
header(“Cache-control: private”); // Fix for IE
?>

Please ensure that you include the file in the previous example in your common.php file.

Creating the Login System

4279c05.qxd 10/27/03 6:20 PM Page 123

124

NOTE Some web browsers such as Microsoft Internet Explorer have problems caching PHP ses-
sions. This problem is most noticeable when posting form information and using the web
browser’s Back button to modify information in the form. You may notice a “Page Cannot Be
Displayed” error. To fix this, you use the PHP code header(“Cache-control: private”);.
If the header function I have just described does not work properly, you may set the
session_cach_limiter setting to none in your php.ini file.

NOTE To use a PHP session in a file, you must ensure that the session_start function is on
every page. In the previous example, you have included the session.php file into the
layout.php to ensure you are always using sessions throughout your entire website.

Creating the Login Verification Script
You have already created an HTML form that accepts the username and password and posts
them to the script named login.php. Create a new text file and name it login.php in your
website’s document root. Once again, you will use a switch to perform multiple actions
within a single PHP file. This file will contain the HTML form to log in by default, and
when you pass a hidden value through your HTML form, you will use the validate case to
do the validation. Listing 5.6 shows the login file.

➲ Listing 5.6 The login.php File

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;
switch($_REQUEST[‘req’]){

case “validate”:
$validate = @mysql_query(“SELECT * FROM members

WHERE username=’{$_POST[‘username’]}’
AND password = md5(‘{$_POST[‘password’]}’)
AND verified=’1’”);

if(mysql_num_rows($validate) == 1){
while($row = mysql_fetch_assoc($validate)){

$_SESSION[‘login’] = true;
$_SESSION[‘userid’] = $row[‘id’];
$_SESSION[‘first_name’] = $row[‘first_name’];
$_SESSION[‘last_name’] = $row[‘last_name’];
$_SESSION[‘email_address’] = $row[‘email_address’];

if($row[‘admin_access’] == 1){
$_SESSION[‘admin_access’] = true;

}

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 124

125

$login_time = mysql_query(“UPDATE members
SET last_login=now()
WHERE id=’{$row[‘id’]}’”);

}
header(“Location: /loggedin.php”);

} else {
myheader(“Login Failed!”);
echo ‘<p align=”center”>Login Failed</p>’;
echo ‘<p align=”center”>If you have already joined ‘.

‘our website, you may need to validate ‘.
‘your email address. ‘.
‘Please check your email for instructions.’;

footer();
}

break;

default:
myheader(“Login!”);

include $_SERVER[‘DOCUMENT_ROOT’].
‘/html/forms/login_form.html’;

footer();
break;
}
?>

Let’s break the file in Listing 5.6 down. The first portion of the file starts the PHP engine,
includes your layout.php, and starts the structure for the switch:

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;
case “validate”:

You will not use the custom myheader function in the validate case yet. You will use it
when you need it because you will later use a PHP function called header to redirect the user
to a different page. The header function is similar to session_start—you must issue it
before you output any text or HTML to the web browser, or you will get errors.

Next, you will perform a MySQL query on the information the user posted from the login
form. This time, you will perform a direct mysql_query with the criteria you need to validate
the user. You will use this same mysql_query statement again in a couple of different places
within this script.

You should also notice that you are using the md5 function on the password the user posted.
The password in the database was already passed through the md5 when the user signed up,
so now you need to match the password the user is posting to the one in the database. This
query is also going to use error suppression with the @ symbol in front of the mysql_query

Creating the Login System

4279c05.qxd 10/27/03 6:20 PM Page 125

126

function. You do not want nasty errors displayed on your page from MySQL because you
want to project a professional image and create your own error handling. Here is the code:

$validate = @mysql_query(“SELECT * FROM members
WHERE username=’{$_POST[‘username’]}’
AND password = md5(‘{$_POST[‘password’]}’)
AND verified=’1’
“);

After you have performed the query, you will use an IF statement combined with the
mysql_num_rows function. The mysql_num_rows function will return a result for the number
of rows found in a mysql_query by the query identifier. In this case, the identifier is
$validate. The IF statement checks that the number of rows found is equal to 1; if the
expression matches, the code within the IF statement executes:

if(mysql_num_rows($validate) == 1){

Now you are going into new territory. With your mysql_query you told MySQL to SELECT
* FROM members based upon the set of criteria in the WHERE clause. This is the second time
you get to use the same query in this code. You will extract all of the data in the row returned
from the query into an array:

while($row = mysql_fetch_assoc($validate)){

With the previous code example, you will have an array named $row with keys and values for
each column in your table, for example: $row[‘first_name’], $row[‘last_name’], and so on.

Now you have your data extracted and an array named $row, so you can start using it to
register session variables. Take a look at this example of how to build your sessions:

$_SESSION[‘login’] = true;
$_SESSION[‘userid’] = $row[‘id’];
$_SESSION[‘first_name’] = $row[‘first_name’];
$_SESSION[‘last_name’] = $row[‘last_name’];
$_SESSION[‘email_address’] = $row[‘email_address’];

You set a session value just like adding new keys and values to an array. You define the key
$_SESSION[‘first_name’] and then assign the value to it: $_SESSION[‘first_name’] = value;.

For these purposes, you first assign a Boolean value to the login key of the session, and
then you assign values to the rest of the custom keys.

You want to verify if the user who has just logged in has administrative access to your web-
site, so you perform a check on the admin_access field returned from the database. If it con-
tains a value of 1, you add a Boolean key to the user’s session for admin_access (you will
utilize this in the next chapter when you create a website news system):

if($row[‘admin_access’] == 1){
$_SESSION[‘admin_access’] = true;

}

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 126

127

The next step is to update the last_login field in the database for this user. You want to
record the last time they logged in with the current time this script was executed. You use this
field for maintenance purposes. If the user has not logged in for six months, you could proba-
bly assume they are not active any longer and delete them from your database if you want:

$login_time = mysql_query(“UPDATE members
SET last_login=now()
WHERE id=’{$row[‘id’]}’”);

The previous example is a mysql_query. To better understand it, verbalize it in your head
like this: “Update the members table and SET the last_login field to the current time WHERE
the id field matches the $row[‘id’] from my database query.”

Next, you will close out the while loop you used to build the array with the database
query:

}

The final portion of a successful login is to redirect the user to a new script named
loggedin.php. This will allow the web browser to refresh itself and update any areas in your
layout.php file that display information if the user is logged in. I will cover these areas later
in this chapter.

To redirect the user with PHP, you will use the header PHP function with the Location
argument to redirect the user to the loggedin.php script:

header(“Location: /loggedin.php”);

If your user could not be validated by the mysql_num_rows result from the mysql_query,
you will display the custom myheader function and give them a message stating that the login
has failed. You will also include your custom footer function to complete the layout of the
website. Also, you will issue a break for this case to stop PHP from executing the rest of the
switch. Here is the code for the ELSE statement for failure:

} else {
myheader(“Login Failed!”);
echo ‘<p align=”center”>Login Failed</p>’;
echo ‘<p align=”center”>If you have already joined ‘.

‘our website, you may need to validate your email ‘.
‘address. Please check your email for instructions.’;

footer();
}
break;

Figure 5.11 depicts the “Login Failed” message.

Creating the Login System

4279c05.qxd 10/27/03 6:20 PM Page 127

128

You want to display the HTML login form when the user accesses the login.php by
default, so you will create the default case that will display your custom myheader function,
the login form, and the custom footer function. Take a look at the default case:

default:
myheader(“Login!”);

include $_SERVER[‘DOCUMENT_ROOT’].
‘/html/forms/login_form.html’;

footer();
break;
}
?>

In the previous example, I closed the default case, the switch, and the PHP script.

That’s it for the login verification script. That wasn’t too bad! By now, you should be start-
ing to understand how things flow together with the custom layout you created in Chapter 4,
“Building a Website Template with PHP.” You still have a few more things to do with the
membership system. Next, you will create the script that is displayed to welcome the mem-
ber after a successful login.

F I G U R E 5 . 1 1 :
“Login Failed” mes-
sage

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 128

129

The Post Login Script
After the user has logged in and been verified, you will redirect them to a script called
loggedin.php. You do this to refresh the web browser, update the hyperlinks in your
layout.php file, and start displaying the session information.

Let’s create an HTML file and save it in your html directory. Name this file loggedin_
message.html. Here is how mine looks:

<p>Welcome
<?=$_SESSION[‘first_name’];?>!</p>
<p>You have
successfully
logged in! You have special access to the Members

Area!</p>
<p>Would you like
to logout now?</p>

F I G U R E 5 . 1 2 :
Post login script
message

Creating a Lost Password Script

4279c05.qxd 10/27/03 6:20 PM Page 129

130

Create a new file and name it loggedin.php in your website’s document root. This script is
going to include the welcome message with your custom layout functions. This script will
look like this example:

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

myheader(“Login Successful!”);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/loggedin_message.html’;
footer();
?>

Figure 5.12 shows the loggedin.php script with the welcome message displayed.

Creating a Lost Password Script
Users are funny; they have a tendency to forget passwords sometimes, so it would benefit you
to create a script that will allow them to reset their passwords easily if they forget them. In
this section, you will create a script that will randomly generate a password upon e-mail veri-
fication and e-mail it to the user.

First, create a simple HTML form that will allow the user to enter their e-mail address to
recover their username and password. Second, save this file in your /html/forms directory
and name it lostpw_form.html. Listing 5.7 shows what my form looks like.

➲ Listing 5.7 Lost Password Form HTML File (lostpw_form.html)

<p>Reset My
Password</p>

<p>If you have lost
your password,
you may enter your email address below and a new password will be sent to your
email address.</p>

<form name=”form1” method=”post” action=”/lostpw.php”>
<table width=”42%” border=”0” cellspacing=”0” cellpadding=”4”>
<tr>
<td width=”20%” nowrap><font size=”2” face=”Verdana, Arial, Helvetica,

sans-serif”>Your
Email Address:</td>

<td width=”21%”><input name=”email_address” type=”text”
id=”email_address”>

</td>
<td width=”59%”><input name=”req” type=”hidden” id=”req” value=”recover”>

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 130

131

<input name=”Go!” type=”submit” id=”Go!” value=”Go!”></td>
</tr>

</table>
</form>

Next, create a script named lostpw.php and save it in your website’s document root. You
will once again use a switch to create multiple uses for a single PHP file in this script. List-
ing 5.8 shows how my lostpw.php file looks.

➲ Listing 5.8 Reset Lost Password File (lostpw.php)

<?php

include $_SERVER[‘DOCUMENT_ROOT’].
‘/layout.php’;

switch($_REQUEST[‘req’]){

case “recover”:
myheader(“Reset Password”);
$sql = mysql_query(“SELECT * FROM members

WHERE
email_address = ‘{$_POST[‘email_address’]}’
“);

if(mysql_num_rows($sql) == 1){
while($row = mysql_fetch_assoc($sql)){

$alphanum = “abchefghjkmnpqrstuvwxyz0123456789”;
for($i=0; $i <= 10; $i++) {

$num = rand() % 33;
$tmp = substr($alphanum, $num, 1);
$newpass = $newpass . $tmp;

}
$update = mysql_query(“UPDATE members

SET password = ‘“.md5($newpass).”’
WHERE id=’{$row[‘id’]}’”);

stripslashes(extract($row));
}
if(!$update){

echo ‘<p align=”center”>Password Could ‘.
‘not be reset! Sorry!</p>’;

} else {
echo ‘<p align=”center”>Password Reset! ‘.

‘Please check your email for your new’.
‘password.</p>’;

include $_SERVER[‘DOCUMENT_ROOT’].
‘/html/forms/login_form.html’;

Creating a Lost Password Script

4279c05.qxd 10/27/03 6:20 PM Page 131

132

// mail user.
$mailer = &new Email;
$mailer->ToMail = $email_address;
$mailer->FromMail = “admin@test.com”;
$mailer->FromName = “My PHP Site Administrator”;
$mailer->Subject = “New Password For My PHP Site”;
$mailer->Message = “Dear $first_name,\n\n”.

“You have requested a new “.
“password for My PHP Site. “.
“Below is your new login “.
“informaiton:\n\n”.
“=====================\n”.
“Username: $username\n”.
“New Password: $newpass\n”.
“=====================\n\n”.
“You may login at any time “.
“at http://”.
“$_SERVER[‘SERVER_NAME’]”.
“/login.php\n\n”.
“Thank You!\n”.
“My PHP Site Administrator”;

$mailer->SendMail();

}
} else {

echo ‘<p align=”center”>We could not find ‘.
‘any matches for that email address! ‘.
‘Please try again!</p>’;

}
footer();

break;

default:
myheader(“Reset Password”);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/lostpw_form.html’;
footer();

break;
}
?>

Let’s break the script in Listing 5.8 down. First, you start the PHP engine and include your
layout.php file. Next, you initialize your switch and create the first case named recover.
Take a look at this code:

<?php

include $_SERVER[‘DOCUMENT_ROOT’].

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 132

133

‘/layout.php’;

switch($_REQUEST[‘req’]){

case “recover”:

The recover case will first call the custom myheader function from the layout.php file,
then compare the e-mail address (the user input from the form), and then check to see if
there is a match in the database by performing a mysql_query and then by using an IF state-
ment on the mysql_number_rows function:

myheader(“Reset Password”);
$sql = mysql_query(“SELECT * FROM members

WHERE
email_address = ‘{$_POST[‘email_address’]}’
“);

if(mysql_num_rows($sql) == 1){

When the IF statement is validated by the mysql_num_rows function returning a value of 1,
you will start to generate a new password with which to update the user’s information in the
database.

Next, you will fetch the associated values of this mysql_query into an array using the
mysql_fetch_assoc function:

while($row = mysql_fetch_assoc($sql)){

You start generating a random password by creating a string containing values to randomly
pick from using your FOR loop combined with a few other functions to randomly pick from
the string. This next portion of code also uses an appended string, so each time the PHP
loops through the FOR loop, it will append a new letter to this $new_pass string:

$alphanum = “abchefghjkmnpqrstuvwxyz0123456789”;
for($i=0; $i <= 10; $i++) {

$num = rand() % 33;
$tmp = substr($alphanum, $num, 1);
$newpass = $newpass . $tmp;

}

After the previous portion of code has executed, you will end up with a randomly gener-
ated password. It is now time to update the database with the md5 encrypted version of it:

$update = mysql_query(“UPDATE members
SET password = ‘“.md5($newpass).”’
WHERE id=’{$row[‘id’]}’”);

Creating a Lost Password Script

4279c05.qxd 10/27/03 6:20 PM Page 133

134

The next function you will use is called extract, and it creates variables from all of the
keys and values in an array. For example, $row[‘id’] would be converted to $id. Also, you
will use the stripslashes function, which will remove any backslashes on any escaped char-
acters in the values of these new variables:

stripslashes(extract($row));

Because you are done with your while loop from the database query, close out the loop by
using the right curly brace:

}

With your $update Boolean that was returned from the mysql_query, you can check to see
if the password was successfully updated in the database. If the update failed, you will show
a message to the user notifying them of the failure. If it did not fail, you will display a success
message followed by a login form and then send the user an e-mail notifying them of the new
password generated for their membership:

if(!$update){
echo ‘<p align=”center”>Password Could ‘.

‘not be reset! Sorry!</p>’;
} else {

echo ‘<p align=”center”>Password Reset! ‘.
‘Please check your email for your new ‘.
‘password.</p>’;

include $_SERVER[‘DOCUMENT_ROOT’].
‘/html/forms/login_form.html’;

// mail user.
$mailer = &new Email;
$mailer->ToMail = $email_address;
$mailer->FromMail = “admin@test.com”;
$mailer->FromName = “My PHP Site Administrator”;
$mailer->Subject = “New Password For My PHP Site”;
$mailer->Message = “Dear $first_name,\n\n”.

“You have requested a new “.
“password for My PHP Site. “.
“Below is your new login “.
“informaiton:\n\n”.
“=====================\n”.
“Username: $username\n”.
“New Password: $newpass\n”.
“=====================\n\n”.
“You may login at any time “.
“at http://”.
“$_SERVER[‘SERVER_NAME’]”.
“/login.php\n\n”.
“Thank You!\n”.

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 134

135

“My PHP Site Administrator”;
$mailer->SendMail();

}

Take special notice of the e-mail portion of the previous code for the method used to dis-
play the e-mail address and username. Because you use the extract function, the keys were
turned into variables from the MySQL query. This enables you to use a variable such as
$email_address that came from $row[‘email_address’] in the mysql_fetch_assoc
while loop.

In the previous example, you performed your error checking, created a new instance of the
custom e-mail class included through your common.php file, and then sent the e-mail. You
also have closed out the first IF statement that used mysql_num_rows to determine if you had
a match to the e-mail address the user entered in the form.

The next portion of the code is the ELSE statement if your mysql_num_rows result returned
any value other than 1. If you could not find a match in the database, you will notify the user
accordingly:

} else {
echo ‘<p align=”center”>We could not find ‘.

‘any matches for that email address! ‘.
‘Please try again!</p>’;

}

For the rest of this current case you are working with, you will use the custom footer func-
tion and issue the break to stop the code execution for this portion of your switch:

footer();
break;

The last portion of this script is the default case you use to display the e-mail form with
your custom myheader and footer functions. This is the form you saw in Listing 5.7.

default:
myheader(“Reset Password”);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/lostpw_form.html’;
footer();

break;
}
?>

Figures 5.13 through 5.15 show you the process of resetting a password. Specifically, Fig-
ure 5.13 shows that the user enters their e-mail address to get a new password, Figure 5.14
shows the message they get after entering their e-mail address, and Figure 5.15 shows the
e-mail message they receive.

Creating a Lost Password Script

4279c05.qxd 10/27/03 6:20 PM Page 135

136

F I G U R E 5 . 1 4 :
Reset password suc-
cess message

F I G U R E 5 . 1 3 :
Resetting your pass-
word form

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 136

137

Now your users have the ability to reset those lost passwords. This handy script will save
you a lot of time when dealing with a large amount of users.

Creating the Membership Hyperlinks Box
When you designed your site layout in the previous chapter, you built a table that has a left
column, a middle column, and a right column. The left column is used primarily for hyper-
links. Sometimes these hyperlinks are grouped into blocks, or boxes, as some people refer to
them. The names came from the traditional PHP portal systems, and they were named this
because they were “blocky” in appearance.

Let’s create a box that will display a login hyperlink if the user is not logged in as a member
or that will display a logout hyperlink if they are logged in already. You will determine if the
user is logged in with the PHP sessions you created in your login script.

Create a new PHP file, name it member_box.php, and save it in your website’s document
root in a directory named boxes.

Listing 5.9 shows the member_box.php code.

➲ Listing 5.9 Membership Box File (member_box.php)

<table width=”160” border=”0” cellspacing=”0” cellpadding=”0”>
<tr bgcolor=”#000066”>
<td width=”5” height=”10”> </td>
<td width=”150”><div align=”center”><font color=”#FFFFFF” size=”2”

face=”Verdana, Arial, Helvetica, sans-
serif”>Membership</div></td>

<td width=”5”> </td>
</tr>
<tr>
<td height=”5”> </td>
<td align=”left” valign=”top”>

F I G U R E 5 . 1 5 :
Reset password
e-mail

Creating the Membership Hyperlinks Box

4279c05.qxd 10/27/03 6:20 PM Page 137

138

<?php
if($_SESSION[‘login’] == true){

// show logout hyperlinks
echo ‘- Welcome ‘.$_SESSION[first_name].’!
’;
echo ‘- Member\’s Area
’;
echo ‘- Logout’;

} else {
// show login form
echo ‘Member Login
’;
echo ‘Lost Password?’;

}
?>

</td>
<td> </td>

</tr>
<tr>
<td width=”5” height=”10”> </td>
<td width=”150”> </td>
<td width=”5”> </td>

</tr>
</table>
<hr size=”1”>

This file starts out with basic HTML. The HTML will build a table with the first row col-
ored and the word Membership in the middle column.

The next table row will break out into PHP in the middle column and check if the user is
logged in using your $_SESSION[‘login’] value, which is a TRUE or FALSE Boolean. You
assigned the TRUE value when the user logged in successfully. If this session value does vali-
date TRUE, you will display a welcome message with the user’s first name, a member’s area
hyperlink, and a logout hyperlink. If the $_SESSION[‘login’] value does not exist, it will not
validate TRUE, and then this script will display a login hyperlink in the ELSE statement:

<?php
if($_SESSION[‘login’] == true){

// show logout hyperlinks
echo ‘- Welcome ‘.$_SESSION[first_name].’!
’;
echo ‘- Member\’s Area
’;
echo ‘- Logout’;

} else {
// show login form
echo ‘Member Login
’;
echo ‘Lost Password?’;

}
?>

Next, you will finish the HTML of the table and save the file so you can include it in your
layout.php file for the left column! Open the layout.php file and make the modifications now.

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 138

139

For my columns to look proper when I open them in a web browser, I had to create a new
table inside the left HTML table column where I wanted my hyperlinks to go. The only rea-
son I added this column is for padding and alignment. In the middle column for the new
table, I simply included the member_box.php file and then saved the file. Listing 5.10 shows
the middle portion of the layout.php file.

➲ Listing 5.10 Middle Section of layout.php

<body>
<table width=”100%” border=”0” cellpadding=”0” cellspacing=”0”
bordercolor=”#000000”>
<tr>
<td colspan=”3”><img src=”/images/logo.jpg” ALT=”My PHP Site”

BORDER=”0”><hr size=”1”></td>
</tr>
<tr>
<!-- Left Links Column -->
<td width=”170” valign=”top”>
<table width=”170” border=”0” cellpadding=”0” cellspacing=”0”>
<tr>
<td width=”10”> </td>
<td valign=”top”>

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/boxes/member_box.php’;
?>

</td>
<!-- End Left Links Column -->
<td width=”10”> </td>
</tr>
</table>
</td>
<td>
<!-- End Header and Begin Content -->

<?php
}
function footer(){
?>

Looks pretty simple eh? You should be familiar with including files by now! The one thing
I want to note is that I made some cosmetic modifications to the layout.php file when I
included the member_box.php. Specifically, I created a hyperlink on the website logo to go
back to the index, and then I added a one-pixel HTML horizontal line below the logo. This
gives the website a little bit more definition, especially because it has a white background.

Figure 5.16 shows the member block when the user is not logged in, and Figure 5.17
shows when the member is logged into the website.

Creating the Membership Hyperlinks Box

4279c05.qxd 10/27/03 6:20 PM Page 139

140

F I G U R E 5 . 1 7 :
Member block—
logged in

F I G U R E 5 . 1 6 :
Member block—
not logged in

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 140

141

Granting Member-Only Access
When the member has logged into the website, you can use the same method you used to
show the logout hyperlinks in the previous section to display hyperlinks to special areas.
Furthermore, you can control access to these areas by checking the $_SESSION[‘login’]
Boolean value and then granting access if the value exists.

I am going to take this opportunity to touch on another element of OOP. In the previous
examples of OOP in this book, you always used PHP classes. I am going to give you an example
of OOP without using a class structure. In your session.php file, you will create a custom
function named login_check directly below the functions used to start the session.

The custom function will use an IF statement that will check that $_SESSION[‘login’] is
equal to TRUE. If it is not, you will display the myheader function, login HTML form, and
footer function and then exit the script using the exit function.

Open your session.php file inside your includes directory that you created earlier in this
chapter and modify it as follows:

<?php
session_start();
session_name(‘MyPHPSite’);
header(“Cache-control: private”); // Fix for IE

function login_check(){
if($_SESSION[‘login’] != TRUE){
myheader(“Login Required!”);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/login_form.html’;
footer();
exit();

}
}
?>

The new function is now available throughout your PHP scripts through the hierarchy of
the include structure you used. It is included like the classes, and you can use this function
any time by simply calling it.

The next file will be named access.php, and it will reside in your website’s document root.
This file corresponds with the hyperlink you made in the member_box.php file, and the link is
displayed when the member is logged in. Let’s take a look at this script and the usage of the
login_check function:

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

Granting Member-Only Access

4279c05.qxd 10/27/03 6:20 PM Page 141

142

login_check();

myheader(“Members Area”);

echo ‘<p align=”center”>Welcome to the ‘.
‘Members Area ‘.$_SESSION[‘first_name’].
‘!’;

footer();
?>

The most important element of the previous example is the login_check(); line. This
code will call the login_check function and check for the session value. If the session value
does not exist, it will exit the script and the rest of the code in the script will not be visible
to the user. If the session value does exist, the rest of the code in this script below the
login_check(); function call will be visible, hence you have just granted access to a member
that has been logged in!

Congratulations! You now have a method to control access to virtually any portion of your
website using PHP sessions!

Logging Out
The last portion of the membership system is a method to allow the member to log out. This
method is not really required because the member will automatically get logged out when
they close their web browser; however, it provides an additional sense of security to your
members.

Let’s create a script named logout.php and save it in your web server’s document root.
You will use a switch to create multiple uses with the same physical file. This file will ask
the member if they want to log out and provide them with hyperlinks for a “Yes” or “No”
response. If they click the Yes hyperlink, you will destroy their session and log them out. If
they choose No, you will send them back to the previous page using a JavaScript back hyper-
link. Listing 5.11 shows the logout.php file.

➲ Listing 5.11 Logout Script (logout.php)

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

switch($_REQUEST[‘req’]){
case “logout”:

session_destroy();
header(“Location: /logout.php?req=loggedout”);

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 142

143

break;

case “loggedout”:
myheader(“Logout”);
echo ‘<p align=”center”>You are now logged out!</p>’.
footer();

break;

default:
myheader(“Logout”);
echo ‘<p align=”center”>Are You Sure ‘.

‘you want to logout?</p>’.
‘<p align=”center”>’.
‘Yes’.
‘ | No’.
‘</p>’;

footer();
break;

}
?>

Let’s break the script in Listing 5.11 down. You should already be familiar with the first
portion. You start the PHP engine and then include your layout.php file. Next, you build
your switch structure and create the cases you need to perform the logout:

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

switch($_REQUEST[‘req’]){

The logout case is the second step to the logout process. This is the portion of your
switch that will be used when the member clicks the Yes hyperlink in the default case.

This case uses a PHP session function called session_destroy. This function will com-
pletely remove all session values and destroy any references to the session and the member’s
web browser. After the session has been destroyed, you will redirect the user directly to the
next case, which is loggedout, and this case will display a message to the member stating
they have been logged out:

case “logout”:
session_destroy();
header(“Location: /logout.php?req=loggedout”);

break;

The next case is the portion of your switch that the member is redirected to from the
logout case. It simply displays a message to the member upon successful logout:

case “loggedout”:
myheader(“Logout”);

Logging Out

4279c05.qxd 10/27/03 6:20 PM Page 143

144

echo ‘<p align=”center”>You are now logged out!</p>’.
footer();

break;

The default case, which is the first step in the logout process, simply displays two hyper-
links to the member, giving them the option to log out or to continue their session as a mem-
ber. I prefer to use this confirmation method because I think it is rude to immediately log the
member out if they inadvertently clicked the Logout hyperlink:

default:
myheader(“Logout”);
echo ‘<p align=”center”>Are You Sure ‘.

‘you want to logout?</p>’.
‘<p align=”center”>’.
‘Yes’.
‘ | No’.
‘</p>’;

footer();
break;

Let’s complete the switch structure and the PHP script:
}
?>

Now your membership system is complete!

What’s Next?
This chapter covered some common routines used to work with PHP. You created an advanced
system that allows you to gather information from user inputs, validate form information, uti-
lize MySQL query functions, use PHP sessions, reset passwords, and log out your members.

In the next chapter, you will start building content for your website. You will build a news
system using PHP and MySQL that will allow you to write, display, edit, and delete news
articles directly on your website. You will also look at using news feeds from other websites
to populate your news section automatically.

Chapter 5 • Creating a Website Membership System

4279c05.qxd 10/27/03 6:20 PM Page 144

Developing a Website
News System

Chapter 6

4279c06.qxd 10/27/03 6:20 PM Page 145

146

A valuable key to any website’s success is fresh content. Many websites use some sort of
news system to keep their readers updated with information about the site or a topic

related to the site. When your readers see fresh content, they will probably return to your
site repeatedly to see what is new and, in turn, boost your website statistics. This method has
proven to be true for my website at www.phpfreaks.com.

This chapter gives you a practical solution for everyday routines involving PHP and
MySQL while at the same time showing these routines put to use in a website news system.
These routines involve the standard insert, update, display, and delete procedures required
for most website management systems developed in PHP and MySQL. With these methods,
you will be able to manage your website’s content with your web browser and not your File
Transfer Protocol (FTP) client.

Specifically, you will plan a news system, configure the database, and develop PHP scripts
to manage your news articles from your website interface. You will create a two-part archive
page that will either display all of the news articles in the database or display a category and
all of the news articles related to that category.

Another great technique I will show you is how to link news articles to categories. By cre-
ating a category-based article system, you will have the ability to archive your articles and
sort them in relationship to their categories. Let’s begin planning this news system!

Planning the News System
With any script or section of your website that you create, planning is required. For this
news system, you will link each article to a category. By linking all of the news articles to cat-
egories, you have better options for storing and sorting the articles. In this chapter, you will
create an index page for the news articles that will display all of the categories and the num-
ber of articles linked to each category.

You have already planned the MySQL table for the news articles; however, in the “Prepar-
ing the MySQL Database” section of this chapter, you will modify the table structure a little
to enhance the original plan. Get used to modifying your original structures, files, and plans
because you will probably find yourself doing so quite often.

Preparing the Website Administrator Access
Some areas of this website will require special administrator access assigned to your users
(specifically, you) when they log in. In Chapter 5, “Creating a Website Membership System,”
you created a special column in the members table that allows you to grant administrative
access to certain members of your website. When a user logs in and has the special flag

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 146

147

enabled in the admin_access column, they get a special $_SESSION value assigned to them.
With this value, they are able to access privileged areas of the website.

If you have not done so yet, create a membership for yourself, and using your MySQL
administrator application, edit your information in the members table and enable admin_access
for yourself. The next time you log into your site, you will have administrative access, and you
will be able to pass the administrative checks you are about to create.

You will modify the session.php file in your includes directory to add a new function
named admin_check. This new function will be available throughout the website, and it will
help you to control access to your sensitive files. Open the session.php file and add this
function to the bottom of it:

function admin_check(){
if($_SESSION[‘admin_access’]){
myheader(“Access Denied!”);
echo “<center>This area is restricted”.

“ for website administrators!”;
footer();
exit();

}
}

You will use this function throughout the development of your news article management
system.

Preparing the MySQL Database
For the article portion of the database, I have determined that you will need to use a table
named news_articles. This is the same table you created in Chapter 3, “Building a Database
Schema with MySQL,” with a few additional columns. Table 6.1 shows the table structure;
modify your news_articles table accordingly.

TABLE 6.1: Structure Setup for the news_articles Table

Field Name Data Type Length Extra

article_id MEDIUMINT 25 Primary key, auto increment

cat_id MEDIUMINT 25

article_title VARCHAR 255

article_date DATETIME

article_caption TEXT

article_body LONGTEXT

article_author VARCHAR 255

article_read_count MEDIUMINT 25

Preparing the MySQL Database

4279c06.qxd 10/27/03 6:20 PM Page 147

148

In the example for Table 6.1, I added three new columns to the existing news_articles
table: cat_id to link to the category ID from the new table you will create in a moment,
article_author to display the name of the author, and article_read_count to count the
number of times an article has been read.

The next step is to create the news_categories table. Table 6.2 shows the structure; create
your table accordingly.

TABLE 6.2: Structure Setup for the news_categories Table

Field Name Data Type Length Extra

cat_id MEDIUMINT 25 Primary key, auto increment

cat_name VARCHAR 155

cat_description TINYTEXT

Now that you have created your tables, it is time to start coding some PHP to interact with
the MySQL database!

Creating the News Article Category Management System
Before you begin writing news articles, you need to create a system to manage the news arti-
cle categories. The following sections are a great introduction to the common routines of
inserting, updating/modifying, and deleting that make up any web-based management sys-
tem when working with PHP.

Creating the News Article Category Insert Script
You have already created the news_categories database table from Table 6.2, so let’s start by
creating a script that will enter the data into the database and create the new categories.

In Chapter 5, “Creating a Website Membership System,” you utilized a switch control
structure to create multiple uses for a single PHP file. In the news article category manage-
ment script, you will use a switch structure as well.

The first Hypertext Markup Language (HTML) file you will create serves as an index page
for the default case that allows you to click whichever action you want to perform for the
category management. This HTML file is named news_cat_admin.html and is stored in the
website document root under the html directory (see Listing 6.1).

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 148

149

➲ Listing 6.1 Category Management Index HTML File

<div align=”center”>
<p>News Article
Category Administration</p>

<p>Please select
an option:</p>

<p>Add

News Article Categories</p>
<p><font size=”2” face=”Verdana, Arial,

Helvetica, sans-serif”>Delete
or Modify News Article Categories</p>

</div>

The next file will serve as an input HTML form that will post the category name and
description to the PHP script for validation and insertion into the MySQL database’s
news_categories table. This HTML file is named news_category_insert.html and is stored
in your website document root under the html/forms directory (see Listing 6.2).

➲ Listing 6.2 Category Management Insert Form

<p>Create a News
Article
Category</p>

<form action=”/admin/newscategory.php” method=”post”>
<table width=”33%” border=”0” align=”center” cellpadding=”4” cellspacing=”0”>
<tr>
<td width=”17%” align=”left” valign=”top”><font size=”2” face=”Verdana,

Arial, Helvetica, sans-serif”>Category
Name</td>

<td width=”83%”><input name=”cat_name” type=”text” id=”cat_name”></td>
</tr>
<tr>
<td align=”left” valign=”top” nowrap><font size=”2” face=”Verdana, Arial,

Helvetica, sans-serif”>Category
Description</td>

<td><textarea name=”cat_description” id=”cat_description”></textarea></td>
</tr>
<tr>
<td> </td>
<td><div align=”center”>

<input name=”req” type=”hidden” value=”create_cat”>
<input type=”submit” name=”Submit” value=”Create Category!”>

</div></td>
</tr>

</table>
</form>
<p></p>

Creating the News Article Category Management System

4279c06.qxd 10/27/03 6:20 PM Page 149

150

Let’s now create the PHP script that will handle these HTML files and perform the
MySQL insert operations for the categories. Create a file named newscategory.php and
place it in a directory under your website document root named admin (see Listing 6.3).

➲ Listing 6.3 News Category Management Script

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

// Quick Admin session check
admin_check();

switch($_REQUEST[‘req’]){
// Category Insert Case
case “create_cat”:
myheader(“Add News Category”);

// Double check form posted values are there
// before performing INSERT query
if(!$_POST[‘cat_name’] || !$_POST[‘cat_description’]){

echo ‘<p align=”center”>Missing Form ‘.
‘Information!</p>’.
‘<p align=”center”>Please use your ‘.
‘browser back button and complete ‘.
‘the form.</p>’;

footer();
exit();

}

// Insert Query
$sql = mysql_query(“INSERT INTO news_categories

(cat_name, cat_description)
VALUES(‘{$_POST[‘cat_name’]}’,

‘{$_POST[‘cat_description’]}’)”);

// Insert query results
if(!$sql){

echo “Error with MySQL Query: “.mysql_error();
} else {

echo ‘<p align=”center”>Category
‘.$_POST[cat_name].
‘ created!
New category id:
‘.mysql_insert_id();

echo ‘
Create ‘.
‘another category’;

}
break;

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 150

151

// Create category form case
case “new_cat”:

myheader(“Create News Category”);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/news_category_insert.html’;
footer();

break;

default:
myheader(“News Category Administration”);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/news_cat_admin.html’;
footer();

break;

}
?>

Let’s break down the previous code example. The first portion of the script starts the PHP
engine and includes the layout.php file. You should be familiar with this by now.

Because this script is going to be restricted only to your administrative members, you will use
the special function you created earlier in the “Preparing the Website Administrator Access”
section of this chapter. Once this function has been used and the person accessing the script is
not an administrator, they will be presented a message stating they are not authorized to access
this portion of the website. If the person accessing the script is granted the special administra-
tive flag in their session, they will be able to view the intended code of this script:

// Quick Admin session check
admin_check();

Next, you initialize the switch structure and develop your first case. This case will accept
the form input and perform a simple form validation on the posted fields. After the form vali-
dation has passed, a mysql_query is performed to insert the data into the table. After the
query has been performed, a simple check on the Boolean value of the $sql variable identi-
fies failure or success on the query and displays an error or success message. The last portion
of this case will display a hyperlink to the previous form and close out the case with a break:

switch($_REQUEST[‘req’]){
// Category Insert Case
case “create_cat”:
myheader(“Add News Category”);

// Double check form posted values are there
// before performing INSERT query
if(!$_POST[‘cat_name’] || !$_POST[‘cat_description’]){

echo ‘<p align=”center”>Missing Form ‘.
‘Information!</p>’.

Creating the News Article Category Management System

4279c06.qxd 10/27/03 6:20 PM Page 151

152

‘<p align=”center”>Please use your ‘.
‘browser back button and complete ‘.
‘the form.</p>’;

footer();
exit();

}

// Insert Query
$sql = mysql_query(“INSERT INTO news_categories

(cat_name, cat_description)
VALUES(‘{$_POST[‘cat_name’]}’,

‘{$_POST[‘cat_description’]}’)”);

// Insert query results
if(!$sql){

echo “Error with MySQL Query: “.mysql_error();
} else {

echo ‘<p align=”center”>Category
‘.$_POST[cat_name].
‘ created!
New category id:
‘.mysql_insert_id();

echo ‘
Create ‘.
‘another category’;

}
break;

The next case will actually display the HTML form from Listing 6.2 in the web browser:
// Create category form case
case “new_cat”:

myheader(“Create News Category”);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/news_category_insert.html’;
footer();

break;

The default case will include the HTML index file you created for the category manage-
ment system in Listing 6.1:

default:
myheader(“News Category Administration”);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/news_cat_admin.html’;
footer();

break;

Let’s close the switch structure and the PHP script:
}
?>

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 152

153

Now the insert portion of your script is complete, so run it in your web browser and insert
a couple of categories.

Figure 6.1 displays the news category management index, or the default case in this
script.

In Figure 6.2, I have entered a category named World News, and in Figure 6.3, I have
entered a category named Computer Stuff. Figure 6.4 depicts the confirmation screen after
creating the category.

F I G U R E 6 . 4 :
Confirming the new
Computer Stuff category

F I G U R E 6 . 3 :
Creating a Computer
Stuff category

F I G U R E 6 . 2 :
Creating a World News
category

F I G U R E 6 . 1 :
News category man-
agement index

Creating the News Article Category Management System

4279c06.qxd 10/27/03 6:20 PM Page 153

154

Creating the News Article Category Update and Delete Script
The next task is to create script that will allow you to update categories with new titles and
descriptions and to delete categories you no longer want.

First, you will create the HTML forms required to perform these actions. The first form is
named mod_news_category_index.html, and it goes in your html/forms directory. This HTML
form will serve as the starting point for modifying and deleting your categories. It will contain
two sections of dynamically generated HTML select menus with the category information
inside of them. When the category is selected and the form is submitted, a mysql_query will
fetch the appropriate information about the category you have chosen and display a new page
based upon the action you chose. This form looks like Listing 6.4.

➲ Listing 6.4 Modify News Categories Index Form

Modify News Article
Category
<table width=”90%” border=”0” cellspacing=”0” cellpadding=”4”>
<tr>
<td width=”200” align=”left” valign=”top”><font size=”2” face=”Verdana,

Arial, Helvetica, sans-serif”>Select
a category to modify:</td>

<td align=”left” valign=”top”><form name=”form1” method=”post”
action=”/admin/mod_news_category.php”>

<?php cat_list(NULL);?>
<input name=”req” type=”hidden” id=”req” value=”mod_category”>
<input type=”submit” name=”Submit” value=”Go”>

</form></td>
</tr>

</table>
<hr size=”1”>
<p>Delete News
Article
Category:</p>

<table width=”90%” border=”0” cellspacing=”0” cellpadding=”4”>
<tr>
<td width=”200” align=”left” valign=”top”><font size=”2” face=”Verdana,

Arial, Helvetica, sans-serif”>Select a category to delete:</td>
<td align=”left” valign=”top”><form name=”form1” method=”post”

action=”/admin/mod_news_category.php”>
<?php cat_list(NULL);?>
<input name=”req” type=”hidden” id=”req” value=”del_category”>
<input type=”submit” name=”Submit” value=”Go”>

</form></td>
</tr>

</table>
<hr size=”1”>
<p>Create
a News Article Category</p>

<hr size=”1”>

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 154

155

The next form you will create is named mod_news_category_form.html, and it will be
stored in your html/forms directory. This next form will look like the form you created ear-
lier that gathered the information you needed to insert a new category into the database.
This form has embedded PHP for the input fields. You will extract the information to com-
plete these fields from the database before the form displays in the web browser.

When you initially see this form in action, the information will be completed in the input
fields from the database; from there you will be able to make the changes to the information
and submit the form to the PHP script to update the database. Listing 6.5 shows the form.

➲ Listing 6.5 Category Modification Form

<p>Modify News
Article
Category</p>

<form action=”/admin/mod_news_category.php” method=”post”>
<table width=”33%” border=”0” align=”center” cellpadding=”4” cellspacing=”0”>
<tr>
<td width=”17%” align=”left” valign=”top”><font size=”2” face=”Verdana,

Arial, Helvetica, sans-serif”>Category
Name</td>

<td width=”83%”><input name=”cat_name” type=”text” id=”cat_name”
value=”<?=stripslashes($row[cat_name]);?>”></td>

</tr>
<tr>
<td align=”left” valign=”top” nowrap><font size=”2” face=”Verdana, Arial,

Helvetica, sans-serif”>Category
Description</td>

<td><textarea name=”cat_description”
id=”cat_description”><?=stripslashes($row[cat_description]);?></textarea></td>

</tr>
<tr>
<td> </td>
<td><div align=”center”>

<input name=”cat_id” type=”hidden” id=”cat_id”
value=”<?=$row[‘cat_id’];?>”>

<input name=”req” type=”hidden” value=”update_category”>
<input type=”submit” name=”Submit” value=”Modify Category!”>

</div></td>
</tr>

</table>
</form>

Now it is time to create a script named mod_news_category.php in your website document
root in the admin directory (see Listing 6.6).

Creating the News Article Category Management System

4279c06.qxd 10/27/03 6:20 PM Page 155

156

➲ Listing 6.6 Modify and Delete News Article Category Script

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

// Quick Admin session check
admin_check();

// Dynamic Form Select Menu
// For Categories
function cat_list($selected){

// Perform the query
$sql = mysql_query(“SELECT * FROM

news_categories”);

// Begin select menu
echo “<select name=\”cat_id\”>\n”;
echo “<option value=\”NULL\”>Please Select</option>\n”;

// Do the loop for the categories
while($row = mysql_fetch_array($sql)){

echo “<option value=\””.
stripslashes($row[cat_id]).”\””;

// if $selected is equal
// to current row, select
// this item in menu.

if($selected == $row[cat_id]){
echo “selected”;

}

echo “>”.stripslashes($row[cat_name]).
“</option>\n”;

}
// Close select statement
echo “</select>\n”;

}
// Initiate myheader function
myheader(“Modify or Delete News Categories”);

// Start switch
switch($_REQUEST[‘req’]){

// Modify category form
case “mod_category”:

$sql = mysql_query(“SELECT * FROM
news_categories WHERE
cat_id=’{$_POST[‘cat_id’]}’”);

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 156

157

$row = mysql_fetch_assoc($sql);

include $_SERVER[‘DOCUMENT_ROOT’].
‘/html/forms/mod_news_category_form.html’;

break;

// Modify category query
case “update_category”:

$sql = mysql_query(“UPDATE news_categories
SET cat_name=’{$_POST[‘cat_name’]}’,
cat_description=’{$_POST[‘cat_description’]}’
WHERE cat_id=’{$_POST[‘cat_id’]}’}”);

if(!$sql){
echo “Error performing query: “.

mysql_error();
} else {
echo ‘<p align=”center”>Category Updated!</p>’;
echo ‘<p align=”center”>’.

‘’.
‘Modify Another Category’;

}
break;

// Delete category confirmation
case “del_category”:

echo ‘<p align=”center”>Are you sure ‘.
‘you want to delete this category?’.
‘</p>’;

echo ‘<p align=”center”>’.
‘<a

href=”/admin/mod_news_category.php?req=delete_category&cat_id=’
.$_POST[‘cat_id’].’”>Yes ‘.
‘| No</p>’;

break;

// Delete category query
case “delete_category”:

$sql = mysql_query(“DELETE FROM news_categories
WHERE cat_id=’{$_GET[‘cat_id’]}’”);

if(!$sql){
echo ‘Error performing DELETE query: ‘.

mysql_error();
} else {

echo ‘<p align=”center”>Category Deleted!</p>’;
echo ‘<p align=”center”>’.

‘’.
‘Modify another category</p>’;

}
break;

Creating the News Article Category Management System

4279c06.qxd 10/27/03 6:20 PM Page 157

158

// Modify and delete category forms
default:

include $_SERVER[‘DOCUMENT_ROOT’].
‘/html/forms/mod_news_category_index.html’;

break;

}

// Footer
footer();

?>

Let’s break this script down for further understanding. First, you include your layout.php
file and then perform your administrative session check:

<?php

include $_SERVER[‘DOCUMENT_ROOT’].
‘/layout.php’;

// Quick Admin session check
admin_check();
}

Next, you create a custom function that dynamically generates an HTML select menu
with the category names and the category ID numbers. This function will be used in the
HTML from Listing 6.4 that will be included in your default case:

// Dynamic Form Select Menu
// For Categories
function cat_list($selected){

// Perform the query
$sql = mysql_query(“SELECT * FROM

news_categories”);

// Begin select menu
echo “<select name=\”cat_id\”>\n”;
echo “<option value=\”NULL\”>Please Select</option>\n”;

// Do the loop for the categories
while($row = mysql_fetch_array($sql)){

echo “<option value=\””.
stripslashes($row[cat_id]).”\””;

// if $selected is equal
// to current row, select
// this item in menu.

if($selected == $row[cat_id]){

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 158

159

echo “selected”;
}

echo “>”.stripslashes($row[cat_name]).
“</option>\n”;

}
// Close select statement
echo “</select>\n”;

}

In this script, I have determined that you will use any special code functions that will pre-
vent you from using the myheader and footer functions from the layout.php file outside of
the switch, so I have included these functions as necessary:

myheader(“Modify or Delete News Categories”);

Next, you initialize the switch and build your first case. The first case, modify_category,
will include the form from Listing 6.5, and it will contain all of the information about the
category you have selected by performing a mysql_query and embedding the result values
into the form using PHP:

// Start switch
switch($_REQUEST[‘req’]){

// Modify category form
case “mod_category”:

$sql = mysql_query(“SELECT * FROM
news_categories WHERE
cat_id=’{$_POST[‘cat_id’]}’”);

$row = mysql_fetch_assoc($sql);

include $_SERVER[‘DOCUMENT_ROOT’].
‘/html/forms/mod_news_category_form.html’;

break;

The intent of the previous case is to allow you to make changes to an existing category in
the database and then post the changes to the next case, which updates the affected row in
the MySQL database. Let’s take a look at the next case, update_category:

// Modify category query
case “update_category”:

$sql = mysql_query(“UPDATE news_categories
SET cat_name=’{$_POST[‘cat_name’]}’,
cat_description=’{$_POST[‘cat_description’]}’
WHERE cat_id=’{$_POST[‘cat_id’]}’);

if(!$sql){
echo “Error performing query: “.

mysql_error();

Creating the News Article Category Management System

4279c06.qxd 10/27/03 6:20 PM Page 159

160

} else {
echo ‘<p align=”center”>Category Updated!</p>’;
echo ‘<p align=”center”>’.

‘’.
‘Modify Another Category’;

}
break;

In the previous code example, you used a mysql_query with the UPDATE syntax. The UPDATE
syntax must contain the columns and their new values as well as a WHERE clause defining exactly
which row the query will update. The previous code example also uses an error checking
method to determine if the query was a success or failure and presents a message accordingly.

The next case in your script contains the delete category confirmation screen. As stated
previously, I think it is rude to omit a confirmation screen before deleting any data from the
database. This next case is simply a confirmation screen that will ask you if you want to delete
the category you have selected. You will present a Yes or No option to perform the action. If
the user chooses Yes, the hyperlink will take them to the next case, which is delete_category.
If the user chooses No, they will go back to the default case, which is the index of this script:

// Delete category confirmation
case “del_category”:

echo ‘<p align=”center”>Are you sure ‘.
‘you want to delete this category?’.
‘</p>’;

echo ‘<p align=”center”>’.
‘<a href=”/admin/mod_news_category.php?req=delete_category&cat_id=’
.$_POST[‘cat_id’].’”>Yes ‘.
‘| No</p>’;

break;

To perform the actual delete operation, you will use a mysql_query with the DELETE FROM
syntax. This particular syntax must also include a WHERE clause to identify exactly which row
you are attempting to delete:

// Delete category query
case “delete_category”:

$sql = mysql_query(“DELETE FROM news_categories
WHERE cat_id=’{$_GET[‘cat_id’]}’”);

if(!$sql){
echo ‘Error performing DELETE query: ‘.

mysql_error();
} else {

echo ‘<p align=”center”>Category Deleted!</p>’;
echo ‘<p align=”center”>’.

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 160

161

‘’.
‘Modify another category</p>’;

}
break;

WARNING A common mistake is improperly using the DELETE syntax. Do not use DELETE * or any
other column definition in the query. The proper use is DELETE FROM table WHERE col-
umn=’value’.

The last portion of the switch is the default case, which will include the HTML forms
identified in Listing 6.4. This case will allow you to select a category and either delete or
modify it from one of the previous case examples in this script:

// Modify and delete category forms
default:

include $_SERVER[‘DOCUMENT_ROOT’].
‘/html/forms/mod_news_category_index.html’;

break;

As stated earlier when explaining this script, I have determined that the myheader and
footer functions could be initiated outside of the switch because you are not worrying about
displaying HTML from these functions before using any special functions such as header or
session_start, which are picky about output buffers. Therefore, you use the custom footer
function outside of the switch in this script:

}

// Footer
footer();

?>

This script is complete. You are at a point now where you need to create some hyperlinks
in the left column that only the website administrators will see. Let’s do that now.

Creating the News Article Category Administrator Hyperlinks
You have a smooth system going at this point. When a user logs into your website, you assign
session values to identify the user and their access levels throughout the website. If a user is
flagged as an administrator by the admin_access value in your members table, you will assign
them a special flag in their session. Based upon this concept, you can display special hyper-
links for the administrators that the regular users will not see.

Creating the News Article Category Management System

4279c06.qxd 10/27/03 6:20 PM Page 161

162

Create a new file called box_admin_links.php inside your website document root boxes
directory. Take a look at this code example:

<?php
if($_SESSION[‘admin_access’] == true){
?>
<table width=”160” border=”0” cellspacing=”0” cellpadding=”0”>
<tr bgcolor=”#000066”>
<td width=”5” height=”10”> </td>
<td width=”150”><div align=”center”><font color=”#FFFFFF” size=”2”

face=”Verdana, Arial, Helvetica, sans-serif”>Admin
Links</div></td>

<td width=”5”> </td>
</tr>
<tr>
<td height=”5”> </td>
<td align=”left” valign=”top”>
<p>
Create News Article

Categories</p>
<p> Modify/Delete
News Article Categories</p>

<p>Add

News Article</p>
<p>Modify/Delete
News Article</p>

<p> </p>
</td>
<td> </td>

</tr>
</table>
<hr size=”1”>
<?
}

This code example simply creates a nice-looking table around the hyperlinks that point to
the administration functions of the website.

In your layout.php file directly below the point where you included your member_box.php
file, include the new file you just created. Here is what this portion of the layout.php file
looks like:

<!-- Left Links Column -->
<td width=”170” valign=”top”>

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 162

163

<table width=”170” border=”0” cellpadding=”0” cellspacing=”0”>
<tr>
<td width=”10”> </td>
<td valign=”top”>
<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/boxes/member_box.php’;

include $_SERVER[‘DOCUMENT_ROOT’].
‘/boxes/box_admin_links.php’;

?>
</td>
<!-- End Left Links Column -->

When you reload your website in the browser, you should now see your hyperlinks in the
administration links on the left side if you are logged in as an administrator, as shown in
Figure 6.5.

Testing the News Article Category Management System
The scripts are built and the administrative links are in place, so it is time to put all this hard
work to the test. Load your web browser and follow these steps to test your management
system:

1. Log in to your website with the username and password to which you have granted
administrator access.

2. Click the Create News Article Categories hyperlink under the “Admin Links” heading
and then click the Add News Article Categories hyperlink in the middle of the page, as
shown in Figure 6.6.

F I G U R E 6 . 5 :
Administration links

Creating the News Article Category Management System

4279c06.qxd 10/27/03 6:20 PM Page 163

164

3. Next, create a new category named Test Category 1 with a description of your choice in the
Category Description field, as shown in Figure 6.7. You will receive a confirmation mes-
sage, as shown in Figure 6.8.

4. Click the Modify/Delete News Article Categories hyperlink under the “Admin Links”
heading in the left column, as shown in Figure 6.9.

5. Select Test Category 1 in the first select menu and click the Go button. You will see the
screen shown in Figure 6.10.

6. Modify your category by renaming the category name to Test Category 2 and changing the
description. When you are done making changes, click the Modify Category button. You
will see the screen in Figure 6.11.

F I G U R E 6 . 8 :
Confirming a new
category

F I G U R E 6 . 7 :
Creating the test
category

F I G U R E 6 . 6 :
The news article cate-
gory index page

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 164

165

7. Click the Modify Another Category hyperlink on the confirmation screen or click the
Modify/Delete News Article Categories link from the administration links in the left col-
umn. You will see the index screen again.

8. Select Test Category 2 from the Delete News Article Category select menu and click the
Go button. You will see the screen in Figure 6.12.

F I G U R E 6 . 1 1 :
The modify category
confirmation screen

F I G U R E 6 . 1 0 :
The modify category
screen

F I G U R E 6 . 9 :
The category
modify/delete
index screen

Creating the News Article Category Management System

4279c06.qxd 10/27/03 6:20 PM Page 165

166

9. Click the Yes hyperlink under the question “Are you sure you want to delete this cate-
gory?” You will see the screen in Figure 6.13.

10. Click the Modify Another Category link on the category deleted confirmation screen.

11. Check either select menu on this screen, and you should notice that the Test Category 2
is no longer available.

If everything works like it should, congratulations! You have just created a complete man-
agement system for your news article categories. Believe it or not, all of this work is a routine
task for any web-based management system.

You will have to decide if you like this method over using a MySQL manager such as php-
MyAdmin or SQLyog; however, there are advantages to using this method. The main advan-
tage is to prevent granting access to the MySQL database or tables for administration helpers
(users granted administrative access) on websites.

Creating the News Article Management System
Now that you have mastered the skill of creating a management system for your news article
categories, it is time to create a similar system for your news articles. I will cover this process
again to show you some variants involved in creating different types of administration sys-
tems in your websites.

Creating the News Article Insert Script
You need to make a script that will allow you to type the news articles into a form and store
the information into the database. This script is not too difficult compared to the scripts you
have already created in this chapter; however, you will link the news articles to the categories,
so this may be new to you.

Create a new script in your website document root in the admin directory. Name this script
news_insert.php. For this script, you will create an HTML form named news_insert_
form.html and store it in the html/forms/ directory. Listing 6.7 is the HTML form that will

F I G U R E 6 . 1 3 :
Category deleted con-
firmation screen

F I G U R E 6 . 1 2 :
Requesting confirma-
tion screen

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 166

167

gather the article title, caption, body, and the cat_id value for the category with which you
want to associate the article.

➲ Listing 6.7 News Article HTML Insert Form

<p>News Article
Submission</p>
<form name=”form1” method=”post” action=”/admin/news_insert.php”>
<table width=”51%” border=”0” align=”center” cellpadding=”4” cellspacing=”0”>
<tr>
<td width=”25%” align=”left” valign=”top” nowrap><font size=”2”

face=”Verdana, Arial, Helvetica, sans-serif”>Article
Title</td>

<td width=”75%”><input name=”article_title” type=”text” id=”article_title”
size=”60”></td>

</tr>
<tr>
<td align=”left” valign=”top” nowrap><font size=”2” face=”Verdana, Arial,

Helvetica, sans-serif”>Article
Category</td>

<td><?php cat_list(NULL); ?></td>
</tr>
<tr>
<td align=”left” valign=”top” nowrap><font size=”2” face=”Verdana, Arial,

Helvetica, sans-serif”>Article
Caption</td>

<td><textarea name=”article_caption” cols=”60”
id=”article_caption”></textarea></td>

</tr>
<tr>
<td align=”left” valign=”top” nowrap><font size=”2” face=”Verdana, Arial,

Helvetica, sans-serif”>Full
article</td>

<td><textarea name=”article_body” cols=”60” rows=”15”
id=”article_body”></textarea></td>

</tr>
<tr>
<td align=”left” valign=”top”> </td>
<td><div align=”center”>

<input name=”req” type=”hidden” id=”req” value=”submit_article”>
<input type=”submit” name=”Submit” value=”Submit News Article!”>

</div></td>
</tr>

</table>
</form>

Listing 6.8 depicts the PHP script that will insert the news article into the database.

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 167

168

➲ Listing 6.8 News Article Insert PHP Script

<?php

include $_SERVER[‘DOCUMENT_ROOT’].
‘/layout.php’;

// Quick Admin session check
admin_check();

// Dynamic Form Select Menu
// For Categories
function cat_list($selected){

// Perform the query
$sql = mysql_query(“SELECT * FROM

news_categories”);

// Begin select menu
echo “<select name=\”cat_id\”>\n”;
echo “<option value=\”NULL\”>Please Select</option>\n”;

// Do the loop for the categories
while($row = mysql_fetch_array($sql)){

echo “<option value=\””.
stripslashes($row[cat_id]).”\””;

// if $selected is equal
// to current row, select
// this item in menu.

if($selected == $row[cat_id]){
echo “selected”;

}

echo “>”.stripslashes($row[cat_name]).
“</option>\n”;

}
// Close select statement
echo “</select>\n”;

}
// Initiate myheader function

myheader(“Insert News Article”);

switch($_REQUEST[‘req’]){
case “submit_article”:

if(!$_POST[‘article_title’] ||
!$_POST[‘article_caption’] ||
!$_POST[‘article_body’] ||
$_POST[‘cat_id’] == 0){
echo ‘<p align=”center”>Missing

Form Information!</p>’.

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 168

169

‘<p align=”center”>Please use
your browser back ‘.
‘button and complete the form.</p>’;

footer();
exit();

}

$full_name = $_SESSION[‘first_name’].” “
.$_SESSION[‘last_name’];

$sql = mysql_query(“INSERT INTO news_articles
(cat_id, article_title, article_caption,
article_body, article_author,
article_date)
VALUES (‘{$_POST[‘cat_id’]}’,

‘{$_POST[‘article_title’]}’,
‘{$_POST[‘article_caption’]}’,
‘{$_POST[‘article_body’]}’,
‘$full_name’,
now())”);

if(!$sql){
echo “Error performing query: “.

mysql_error();
} else {
echo ‘<p align=”center”>Article Inserted!
’.

‘ID Number: ‘.
mysql_insert_id().’</p>’;

echo ‘<p align=”center”>’.
‘’.
‘Enter Another News Article’;

}

break;

default:
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/news_insert_form.html’;
break;

}

footer();

?>

Let’s break down this script for further understanding. First, you start PHP, include your
layout.php file, and perform an administrative check on the session. Looks pretty familiar,
doesn’t it?

<?php

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 169

170

include $_SERVER[‘DOCUMENT_ROOT’].
‘/layout.php’;

// Quick Admin session check
admin_check();

Next, you build your dynamic form select menu function that will be called from within
the HTML form by the embedded PHP code. This function is the same as in the news arti-
cle category management scripts:

// Dynamic Form Select Menu
// For Categories
function cat_list($selected){

// Perform the query
$sql = mysql_query(“SELECT * FROM

news_categories”);

// Begin select menu
echo “<select name=\”cat_id\”>\n”;
echo “<option value=\”NULL\”>Please Select</option>\n”;

// Do the loop for the categories
while($row = mysql_fetch_array($sql)){

echo “<option value=\””.
stripslashes($row[cat_id]).”\””;

// if $selected is equal
// to current row, select
// this item in menu.

if($selected == $row[cat_id]){
echo “selected”;

}

echo “>”.stripslashes($row[cat_name]).
“</option>\n”;

}
// Close select statement
echo “</select>\n”;

}

Once again, I have determined that the custom myheader function may be used outside of
the switch, so I have initiated it here and then started the switch:

// Initiate myheader function

myheader(“Insert News Article”);

switch($_REQUEST[‘req’]){

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 170

171

The first case in this switch will perform a form validation against the posted fields to
ensure everything you need has been posted. Once the form validation passes, the
mysql_query will insert the applicable information into the database.

Notice that you have also built a variable called $full_name with the session values
first_name and last_name to insert as the article_author in the news article.

The next important thing I want you to notice about this code is the usage of the now()
function in MySQL. The now() function will set the date on any date- or time-related col-
umn type in MySQL to the current date at the time of the query:

case “submit_article”:
if(!$_POST[‘article_title’] ||

!$_POST[‘article_caption’] ||
!$_POST[‘article_body’] ||
$_POST[‘cat_id’] == 0){
echo ‘<p align=”center”>Missing

Form Information!</p>’.
‘<p align=”center”>Please use
your browser back ‘.
‘button and complete the form.</p>’;

footer();
exit();

}

$full_name = $_SESSION[‘first_name’].” “
.$_SESSION[‘last_name’];

$sql = mysql_query(“INSERT INTO news_articles
(cat_id, article_title, article_caption,
article_body, article_author,
article_date)
VALUES (‘{$_POST[‘cat_id’]}’,

‘{$_POST[‘article_title’]}’,
‘{$_POST[‘article_caption’]}’,
‘{$_POST[‘article_body’]}’,
‘$full_name’,
now())”);

if(!$sql){
echo “Error performing query: “.

mysql_error();
} else {
echo ‘<p align=”center”>Article Inserted!
’.

‘ID Number: ‘.
mysql_insert_id().’</p>’;

echo ‘<p align=”center”>’.
‘’.

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 171

172

‘Enter Another News Article’;
}

break;

The default case in this code simply includes the HTML form you created from List-
ing 6.7:

default:
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/news_insert_form.html’;
break;

And finally, you close the switch, include your custom footer function, and close the PHP
script.

This completes the news article insert script. It’s getting much easier now, isn’t it? Let’s
move onto the next portion of the news article management, the news article modify and
delete script!

Creating the News Article Modify and Delete Script
The next script you will create is the news article modify and delete script. With this script, I
will show you how to create an alternating row color index with all of your news articles
inside of a table. Every other row in the table will contain an alternated color that allows
users to read the table much more easily.

Let’s get started on this script. First, you will need one HTML form that allows you to
modify the existing information in the database and post it to your PHP script to perform an
UPDATE query. Create an HTML form named news_modify_form.html and save it in your
html/forms directory (see Listing 6.9).

➲ Listing 6.9 News Article Modification HTML Form

<p>News Article
Modification</p>
<form method=”post” action=”/admin/mod_news_article.php”>
<table width=”51%” border=”0” align=”center” cellpadding=”4” cellspacing=”0”>
<tr>
<td width=”25%” align=”left” valign=”top” nowrap><font size=”2”

face=”Verdana, Arial, Helvetica, sans-serif”>Article
Title</td>

<td width=”75%”><input name=”article_title” type=”text” id=”article_title”
value=”<?= stripslashes($row[‘article_title’]);?>” size=”60”></td>

</tr>
<tr>
<td align=”left” valign=”top” nowrap><font size=”2” face=”Verdana, Arial,

Helvetica, sans-serif”>Article

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 172

173

Category</td>
<td><?php cat_list($row[cat_id]); ?></td>

</tr>
<tr>
<td align=”left” valign=”top” nowrap><font size=”2” face=”Verdana, Arial,

Helvetica, sans-serif”>Article
Caption</td>

<td><textarea name=”article_caption” cols=”60”
id=”article_caption”><?=stripslashes($row[‘article_caption’]);?></textarea></td>

</tr>
<tr>
<td align=”left” valign=”top” nowrap><font size=”2” face=”Verdana, Arial,

Helvetica, sans-serif”>Full
article</td>

<td><textarea name=”article_body” cols=”60” rows=”15”
id=”article_body”><?=stripslashes($row[‘article_body’]);?></textarea></td>

</tr>
<tr>
<td align=”left” valign=”top”> </td>
<td><div align=”center”>

<input name=”article_id” type=”hidden” id=”article_id”
value=”<?=$row[‘article_id’];?>”>

<input name=”req” type=”hidden” id=”req” value=”update_news_article”>
<input type=”submit” name=”Submit” value=”Modify News Article!”>

</div></td>
</tr>

</table>
</form>

The form in Listing 6.9 will display the information about the news article using embed-
ded PHP tags that you create with the extracted information from the database. The news
article information that you modify will be posted to a case inside your PHP script to per-
form the UPDATE query. This form also uses the dynamic category select menu function you
created in the modify categories scripts.

The next task is to create the PHP script that will perform all of your update and delete
functions. Create a script named mod_news_article.php and save it in your admin directory
(see Listing 6.10).

➲ Listing 6.10 Modify and Delete News Articles PHP Script

<?php

include $_SERVER[‘DOCUMENT_ROOT’].
‘/layout.php’;

// Quick Admin session check
admin_check();

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 173

174

// Dynamic Form Select Menu
// For Categories
function cat_list($selected){

// Perform the query
$sql = mysql_query(“SELECT * FROM

news_categories”);

// Begin select menu
echo “<select name=\”cat_id\”>\n”;
echo “<option value=\”NULL\”>Please Select</option>\n”;

// Do the loop for the categories
while($row = mysql_fetch_array($sql)){

echo “<option value=\””.
stripslashes($row[cat_id]).”\””;

// if $selected is equal
// to current row, select
// this item in menu.

if($selected == $row[cat_id]){
echo “selected”;

}

echo “>”.stripslashes($row[cat_name]).
“</option>\n”;

}
// Close select statement
echo “</select>\n”;

}

// Display myheader
myheader(“Modify or Delete News Articles”);

// Switch navigation
switch($_REQUEST[‘req’]){

// Modify article form
case “mod_news_article”:

$sql = mysql_query(“SELECT * FROM
news_articles WHERE
article_id=’{$_GET[‘article_id’]}’
“);

$row = mysql_fetch_assoc($sql);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/news_modify_form.html’;
break;

// Modify article query
case “update_news_article”:

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 174

175

// Form validation
if(!$_POST[‘article_title’] ||

!$_POST[‘article_caption’] ||
!$_POST[‘article_body’] ||
$_POST[‘cat_id’] == 0){
echo ‘<p align=”center”>Missing ‘.

‘Form Information!</p>’.
‘<p align=”center”>Please use your ‘.
‘browser back ‘.
‘button and complete the form.</p>’;

footer();
exit();

}

// Update query
$sql = mysql_query(“UPDATE news_articles SET

article_title=’{$_POST[‘article_title’]}’,
article_caption=’{$_POST[‘article_caption’]}’,
article_body=’{$_POST[‘article_body’]}’,
cat_id=’{$_POST[‘cat_id’]}’
WHERE article_id=’{$_POST[‘article_id’]}’”);

// Query error check
if(!$sql){

echo “Error performing query: “.
mysql_error();

} else {
echo ‘<p align=”center”>Article Updated!!</p>’;
echo ‘<p align=”center”>’.

‘’.
‘Modify Another News Article’;

}
break;

// Delete article confirmation
case “confirm_delete”:

echo ‘<p align=”center”>Are you sure ‘.
‘you want to delete this article?’.
‘</p>’;

echo ‘<p align=”center”>’.
‘<a

href=”/admin/mod_news_article.php?req=delete_news_article&article_id=’
.$_GET[‘article_id’].’”>Yes ‘.
‘| No</p>’;

break;

// Delete article query
case “delete_news_article”:

$sql = mysql_query(“DELETE FROM news_articles

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 175

176

WHERE article_id=’{$_GET[‘article_id’]}’”);

if(!$sql){
echo ‘Error performing DELETE query: ‘.

mysql_error();
} else {

echo ‘<p align=”center”>Article Deleted!</p>’;
echo ‘<p align=”center”>’.

‘’.
‘Modify Another Article</p>’;

}
break;

// Default case: modify/delete index
default:

// Define alternating row colors
$color1 = “#E6E6E6”;
$color2 = “#F4FEFF”;
// Set row_count
$row_count = 0;

// Build top of the table
echo ‘<p><font size=”4” face=”Verdana, ‘.

‘Arial, Helvetica, sans-serif”>’.
‘Modify or Delete News Articles’.
‘</p>’;

echo ‘<table align=”center” width=”90%” border=”0” ‘.
‘cellpadding=”4” cellspacing=”0”>’;

echo ‘<tr>’;
echo ‘<td width=”300”>Article</td>’;
echo ‘<td width=”150”>Article Date</td>’;
echo ‘<td width=”5”>Modify</td>’;
echo ‘<td width=”5”>Delete</td>’;
echo “</tr>”;

// Perform MySQL Query to get rows
$sql = mysql_query(“SELECT * FROM news_articles”) or die (mysql_error());
while($row = mysql_fetch_array($sql)){

// Determine which row color to use
$row_color = ($row_count % 2) ? $color1 : $color2;

// Display table row with data
echo ‘<tr bgcolor=”’.$row_color.’”>’;
echo ‘<td width=”300”>’.

‘<a href=”/articles.php?req=read&article_
id=’.$row[‘article_id’].

‘“>’.$row[‘article_title’].’</td>’;
echo ‘<td width=”150”>’.$row[‘article_date’].’</td>’;
echo ‘<td width=”5”><a href=”/admin/mod_news_article.php?req=’.

‘mod_news_article&article_id=’.$row[‘article_id’].’”>’.

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 176

177

‘Modify</td>’;
echo ‘<td width=”5”><a href=”/admin/mod_news_article.php?req=’.

‘confirm_delete&article_id=’.$row[‘article_id’].’”>’.
‘Delete</td>’;

echo “</tr>”;

$row_count++; // Increment row count
} // end while loop
// Close the table
echo ‘</table>’;

break;
}
footer();

?>

You should already understand the first half of the script. You start the PHP engine,
include your layout, perform a session check for the administrator values, create the dynamic
category select menu function, and include the custom myheader function.

Let’s move onto the first case in the script. This case is similar to the category modifica-
tion script. Here, you will extract the data from the database about the article you have
selected from the default case. Based on that information, you will populate the HTML
form you included in this script from Listing 6.9:

// Modify article form
case “mod_news_article”:

$sql = mysql_query(“SELECT * FROM
news_articles WHERE
article_id=’{$_GET[‘article_id’]}’
“);

$row = mysql_fetch_assoc($sql);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/news_modify_form.html’;
break;

The next case will be used when you submit the information from the HTML form in
Listing 6.9. This case performs a quick form validation to ensure you have all of the required
fields in the posted information. If all the required fields are there, you will update the news
article in the database with the posted information and then show a message based on the
result of the query:

// Modify article query
case “update_news_article”:

// Form validation
if(!$_POST[‘article_title’] ||

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 177

178

!$_POST[‘article_caption’] ||
!$_POST[‘article_body’] ||
$_POST[‘cat_id’] == 0){
echo ‘<p align=”center”>Missing ‘.

‘Form Information!</p>’.
‘<p align=”center”>Please use your ‘.
‘browser back ‘.
‘button and complete the form.</p>’;

footer();
exit();

}

// Update query
$sql = mysql_query(“UPDATE news_articles SET

article_title=’{$_POST[‘article_title’]}’,
article_caption=’{$_POST[‘article_caption’]}’,
article_body=’{$_POST[‘article_body’]}’,
cat_id=’{$_POST[‘cat_id’]}’
WHERE article_id=’{$_POST[‘article_id’]}’”);

// Query error check
if(!$sql){

echo “Error performing query: “.
mysql_error();

} else {
echo ‘<p align=”center”>Article Updated!!</p>’;
echo ‘<p align=”center”>’.

‘’.
‘Modify Another News Article’;

}
break;

Now it is time to work on the delete article portion of this script. As previously stated, I
think it is rude to delete information without a confirmation screen, so your first case will
present the user with a question, and they will have to click Yes to delete the news article.
If they click Yes, they will move to the case in your switch that performs the delete query. If
they click No, they will be presented the news article management index page:

// Delete article confirmation
case “confirm_delete”:

echo ‘<p align=”center”>Are you sure ‘.
‘you want to delete this article?’.
‘</p>’;

echo ‘<p align=”center”>’.
‘<a href=”/admin/mod_news_article.php?req=delete_news_

article&article_id=’

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 178

179

.$_GET[‘article_id’].’”>Yes ‘.
‘| No</p>’;

break;

The next case simply deletes the news article from the database and presents a message
about the query results:

// Delete article query
case “delete_news_article”:

$sql = mysql_query(“DELETE FROM news_articles
WHERE article_id=’{$_GET[‘article_id’]}’”);

if(!$sql){
echo ‘Error performing DELETE query: ‘.

mysql_error();
} else {

echo ‘<p align=”center”>Article Deleted!</p>’;
echo ‘<p align=”center”>’.

‘’.
‘Modify Another Article</p>’;

}
break;

The last portion of this script is the default case. I will take this opportunity to cover how
to make your HTML table rows alternate in color for a MySQL result set because this is
currently a hot item on the Internet. Let’s break this case down into portions to better
understand how to alternate these row colors!

The first task is to define the default case:
// Default case: modify/delete index
default:

To allow your rows to alternate in color, you need to pick two HTML colors and assign
them to variables such as $color1 and $color2:

// Define alternating row colors
$color1 = “#E6E6E6”;
$color2 = “#F4FEFF”;

Next, you need to create a variable named $row_count with the value of 0. This $row_count
variable will determine which of the $color1 or $color2 variables to use when displaying the
row color:

// Set row_count
$row_count = 0;

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 179

180

Now you need to build the top of the table and the first row for the column headings. This
table is a simple HTML table with four columns:

// Build top of the table
echo ‘<p><font size=”4” face=”Verdana, ‘.

‘Arial, Helvetica, sans-serif”>’.
‘Modify or Delete News Articles’.
‘</p>’;

echo ‘<table align=”center” width=”90%” border=”0” ‘.
‘cellpadding=”4” cellspacing=”0”>’;

echo ‘<tr>’;
echo ‘<td width=”300”>Article</td>’;
echo ‘<td width=”150”>Article Date</td>’;
echo ‘<td width=”5”>Modify</td>’;
echo ‘<td width=”5”>Delete</td>’;
echo “</tr>”;

Performing MySQL queries should be becoming easier and easier by now! Let’s perform a
query to get all of the information about the news articles from the database:

// Perform MySQL Query to get rows
$sql = mysql_query(“SELECT * FROM news_articles”) or die (mysql_error());

Because you will fetch the results into an array, you will use a while loop to display the
results one by one:

while($row = mysql_fetch_array($sql)){

Inside the while loop, you will perform a simple math query to determine if $row_count is
divisible by two. If the result is true, you will use $color2; if it is not true, you will use
$color1. The $row_count value is incremented each time a row is extracted from the data-
base, so this value will be divisible by two every other time the while loop is performed:

// Determine which row color to use
$row_color = ($row_count % 2) ? $color1 : $color2;

Now that your $row_color has been determined, you will display the HTML row with the
BGCOLOR value in the new variable $row_color. You now have the row color for this row
selected and in place:

// Display table row with data
echo ‘<tr bgcolor=”’.$row_color.’”>’;

The next portion of the code simply displays the information about the current article in
the while loop. Additionally, you will display hyperlinks to the applicable case inside this
switch to perform the administrative action you desire:

echo ‘<td width=”300”>’.
‘<a href=”/articles.php?req=read&article_id=’.$row[‘article_id’].
‘“>’.$row[‘article_title’].’</td>’;

echo ‘<td width=”150”>’.$row[‘article_date’].’</td>’;
echo ‘<td width=”5”><a href=”/admin/mod_news_article.php?req=’.

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 180

181

‘mod_news_article&article_id=’.$row[‘article_id’].’”>’.
‘Modify</td>’;

echo ‘<td width=”5”><a href=”/admin/mod_news_article.php?req=’.
‘confirm_delete&article_id=’.$row[‘article_id’].’”>’.
‘Delete</td>’;

echo “</tr>”;

To ensure that the correct color that will be used in the next row, you increment the
$row_count variable by using a post increment operator (++) each time this loop occurs.
This will cause the math query you created earlier to be either odd or even in value and
will choose the applicable row color:

$row_count++; // Increment row count

NOTE To learn more about incrementing operators, please see the “Incrementing/Decrementing
Operators” section of the PHP manual.

Next, you close the while loop for the MySQL query and then close the HTML table:
} // end while loop
// Close the table
echo ‘</table>’;

Terminate the current case with the break; statement:
break;

Finally, you close the switch, display your custom footer, and then terminate the PHP
script:

}
footer();

?>

The news article administration scripts are now complete! Do not forget to add some new
hyperlinks to your box_admin_links.php file so that you can find these files more easily. List-
ing 6.11 shows my current box_admin_links.php file.

➲ Listing 6.11 Current Admin Hyperlinks Box

<?php
if($_SESSION[‘admin’] == true){
?>
<table width=”160” border=”0” cellspacing=”0” cellpadding=”0”>
<tr bgcolor=”#000066”>
<td width=”5” height=”10”> </td>
<td width=”150”><div align=”center”><font color=”#FFFFFF” size=”2”

face=”Verdana, Arial, Helvetica, sans-serif”>Admin
Links</div></td>

<td width=”5”> </td>

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 181

182

</tr>
<tr>
<td height=”5”> </td>
<td align=”left” valign=”top”>
<p>
Create News Article

Categories</p>
<p> Modify/Delete
News Article Categories</p>

<p>Add

News Article</p>
<p>Modify/Delete
News Article</p>

<p> </p>
</td>
<td> </td>

</tr>
<tr>
<td width=”5” height=”10”> </td>
<td width=”150”> </td>
<td width=”5”> </td>

</tr>
</table>
<hr size=”1”>
<?
}
?>

Testing the News Article Management System
Because you have been working so hard on these scripts, it is time to test them and ensure
that everything is working properly! Follow these steps to make sure your system works:

1. Log in to your website with the administrator-enabled membership.

2. Click the Add News Article hyperlink in the “Admin Links” section of the left column.
You will see the screen shown in Figure 6.14.

3. Add a news article with the following information, as shown in Figure 6.15:

● Article Title: Test News Article 1

● Article Category: Computer Stuff

● Article Caption: This is a test news article!

● Full Article: Test article body

4. Click Submit News Article to see the confirmation screen shown in Figure 6.16.

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 182

183

F I G U R E 6 . 1 6 :
The confirmation
screen for adding a
test article

F I G U R E 6 . 1 5 :
Adding the test article

F I G U R E 6 . 1 4 :
Adding a news article

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 183

184

5. Next, click the Enter Another News Article link, repeat step 3 two times, and change the
number of the title for each new article. You can also choose a different category for each
news article if you want.

6. Click the Modify/Delete News Article link from the “Admin Links” section of the left
column. You should now see the alternating row colors on this page, as shown in Fig-
ure 6.17.

7. In the Test News Article 1 row, click the Modify hyperlink. You will see the screen in
Figure 6.18.

F I G U R E 6 . 1 8 :
Modifying the news
article form

F I G U R E 6 . 1 7 :
Modify or delete index
screen with alternat-
ing row colors

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 184

185

8. Change the title from Test News Article 1 to My PHP Site Opening Soon! and then change
the category to Computer Stuff using the drop-down box. Alter the news article caption
to announce the opening of your website and write an article about it if you want, as
shown in Figure 6.19. You can use HTML in the Article Caption and Full Article fields to
present hyperlinks, images, tables, or whatever you like.

9. Click Modify News Article to see the confirmation screen, as shown in Figure 6.20.

10. Next, click the Modify/Delete News Article link from the “Admin Links” section of the
left column. In the second row, click the Delete hyperlink for the Test News Article 2
article, as shown in Figure 6.21.

11. Click the Yes hyperlink to delete the hyperlink from the delete article confirmation
screen, as shown in Figure 6.22. You will see a message notifying you that the article has
been deleted, as shown in Figure 6.23.

F I G U R E 6 . 2 1 :
The Delete link

F I G U R E 6 . 2 0 :
Article modified confir-
mation screen

F I G U R E 6 . 1 9 :
Modifying the news
article

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 185

186

12. Next, click the Modify/Delete News Article link from the “Admin Links” section of the
left column. Modify the Test News Article 3 to whatever you would like it to say or delete
it. For my Test News Article 3, I went to CNN.com, found an interesting news article,
and entered some information with a link to the full article at CNN.com. I also assigned
this article to the World News category, as shown in Figure 6.24.

If everything has worked until this point, you are on the right track. You now have a com-
plete management system to administer your news categories and news articles! Now all you
have left to do is to create a method to display the news articles on your website.

Creating the News Article Index Include File
The purpose of this script is mainly for the index page, but you can also include it anywhere
you want because you will make it portable. Create a file in the website document root
includes directory named news_index.php (see Listing 6.12).

F I G U R E 6 . 2 4 :
Adding a link to an
outside article

F I G U R E 6 . 2 3 :
Article deleted message

F I G U R E 6 . 2 2 :
Article delete confir-
mation screen

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 186

187

➲ Listing 6.12 News Index Include Script

<!-- Articles Begin-->
<hr size=”1”>
<table width=”100%” border=”0” cellpadding=”0” cellspacing=0>
<tr>
<td>

News Articles
</td>
</tr>
<tr>
<td>
<?php
$sql = mysql_query(“SELECT *,

date_format(article_date, ‘%M %D, %Y’) as article_date
FROM news_articles
ORDER BY article_id
DESC LIMIT 5”);

while($row = mysql_fetch_array($sql)){
stripslashes(extract($row));

$cat_name = mysql_result(mysql_query(“SELECT cat_name
FROM news_categories
WHERE cat_id=’$cat_id’”),0);

?>
<table width=”100%” border=”0” cellpadding=”2” cellspacing=”0”>
<tr>
<td valign=”bottom”>

<a href=”/articles.php?req=read&article_id=<?=$article_id?>”>
<?=stripslashes($cat_name).”: “.$article_title?>

By: <?=$article_author?> - <?=$article_date?>
</td>
</tr>
<tr>
<td valign=”top”>
<p align=”justify”>

<?=$article_caption?>

</p>
</td>
</tr>
<tr>
<td valign=”top”>

<a href=”/articles.php?req=read&article_id=<?=$article_id?>”>

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 187

188

Read Full Article

</td>
</tr>
</table>
<hr size=”1”>

<?php
}
?>
</td>
</tr>
</table>
<!-- Articles End-->

Let’s break this script down. First, you build an HTML table outline for the articles to fit
inside. I also included a hidden comment inside the HTML to help debug any problems you
may have when viewing the source code of the web browser output:

<!-- Articles Begin-->
<hr size=”1”>
<table width=”100%” border=”0” cellpadding=”0” cellspacing=0>
<tr>
<td>

News Articles
</td>
</tr>
<tr>
<td>

Next, you fire up the PHP engine and perform a MySQL query to get the last five entries
in the news_articles table and put them into an array with which to use a while loop:

<?php
$sql = mysql_query(“SELECT *,

date_format(article_date, ‘%M %D, %Y’) as article_date
FROM news_articles
ORDER BY article_id
DESC LIMIT 5”);

Let’s talk about the previous MySQL query example. There is a lot of new information in
this query. First, you may notice that you selected everything in the table by using * and that
you also selected the date by using the date_format MySQL function.

When you store dates in MySQL, you have the ability to format them any way you like by
using a built-in MySQL function called date_format. To format a date using MySQL, you
need to perform a date_format query like this:

SELECT date_format(date_column, ‘FORMAT RULES’) as output_name FROM table_name
WHERE field=’value’

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 188

189

You can find a complete list of formatting values for your dates in the MySQL manual
under “Date and Time Functions.” You can find the MySQL manual at www.mysql.com/
documentation or at www.phpfreaks.com/mysqlmanual.php.

The next important part of this query is the ORDER BY clause. MySQL allows you to order
your results by a particular column with the ascending (ASC) or descending (DESC) rules. In
this query, you want the last articles entered into the database to be displayed first and then
the previous four articles displayed in descending order.

The last element of this query is the LIMIT clause. MySQL allows you to limit the number
of results. You can limit the results to the first x number of results, or you can limit the num-
ber of rows using an offset. For example, this will return the first five results:

SELECT * FROM table WHERE field=’value’ LIMIT 5

This will return five results starting with the fifth row, or rows 5–9:
SELECT * FROM table WHERE field=’value’ LIMIT 5, 5

This will return five results starting with the tenth row, or rows 5–14.
SELECT * FROM table WHERE field=’value’ LIMIT 5, 10

Next, you will create the while loop using mysql_fetch_array with your query:
while($row = mysql_fetch_array($sql)){
stripslashes(extract($row));

In previous MySQL examples, I have given you the long method of displaying your infor-
mation. In this example, you will use the extract function combined with the stripslashes
function to turn each of your array keys from the $row array into their own variable names
with their values assigned to them, with the backslashes stripped out.

For example, if you had an array named $row and its contents were as follows:
Array
(

[article_id] => 1
[aricle_title] => My PHP Site

)

when you use the extract function on $row: extract($row), you will create the following
variables and values:

$article_id = 1;
$article_title = “My PHP Site”;

Because you went through all the trouble of assigning the news article to a category, let’s
get the category name from the database in a single-field mysql_result query using the

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 189

190

$cat_id that was extracted from the $row array. You will display this category name in front
of the article title:

$cat_name = mysql_result(mysql_query(“SELECT cat_name
FROM news_categories
WHERE cat_id=’$cat_id’”),0);

Next, you build the HTML for the news articles to be displayed on the front page or
wherever you choose on the site. Notice how you close the PHP engine. Also, throughout
this HTML example, you are using the PHP echo shortcut syntax to fill in the blanks for
your HTML news article layout:

<table width=”100%” border=”0” cellpadding=”2” cellspacing=”0”>
<tr>
<td valign=”bottom”>

<a href=”/articles.php?req=read&article_id=<?=$article_id?>”>
<?=stripslashes($cat_name).”: “.$article_title?>

By: <?=$article_author?> - <?=$article_date?>
</td>
</tr>
<tr>
<td valign=”top”>
<p align=”justify”>

<?=$article_caption?>

</p>
</td>
</tr>
<tr>
<td valign=”top”>

<a href=”/articles.php?req=read&article_id=<?=$article_id?>”>
Read Full Article

</td>
</tr>
</table>
<hr size=”1”>

Next, you start PHP to close out your while loop; then you immediately issue the PHP
close tag and close out your HTML tables:

<?php
}
?>

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 190

191

</td>
</tr>
</table>
<!-- Articles End-->

All that you have to do now is open your index.php file in the website document root and
include this file below your welcome_message.html file. Go ahead and modify your
index.php script according to Listing 6.13; when you are done making the changes, open the
index page in your web browser to see a site similar to Figure 6.25.

➲ Listing 6.13 Index.php File

<?php
// include the layout file
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

// Use the myheader function from layout.php
myheader(“Welcome to My Website!”);

// Include the welcome html page.
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/index_page.html’;

// Include News Index File
include $_SERVER[‘DOCUMENT_ROOT’].

‘/includes/news_index.php’;

// Use the footer function from layout.php
footer();
?>

F I G U R E 6 . 2 5 :
News articles included
on the front page

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 191

192

The site is really coming together now! You may have noticed that there are some hyper-
links in your news articles on the front page that do not go anywhere yet. Let’s fix this prob-
lem by creating the actual script that will display the full news articles on your website.

Creating the Read Full Articles Script
It is time to create the script that allows you to read the full news article that is inside the
article_body column of your database. But wait, there’s more! Now you finally get to test
the full capabilities of your dynamic page title and META Content functions of your lay-
out.php script. Each news article you display in this new script will have its own dynamically
generated page title and META Content! Listing 6.14 shows the read full articles script.

➲ Listing 6.14 Read Full Articles Script

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

switch($_REQUEST[‘req’]){
case “read”:

$sql = mysql_query(“SELECT *,
date_format(article_date, ‘%M %D, %Y’) as article_date
FROM news_articles
WHERE article_id=’{$_GET[‘article_id’]}’”);

mysql_query(“UPDATE news_articles
SET article_read_count =
(article_read_count +1) WHERE
article_id = ‘{$_GET[‘article_id’]}’”);

$row = mysql_fetch_assoc($sql);
stripslashes(extract($row));
$cat_name = mysql_result(mysql_query(“SELECT cat_name

FROM news_categories
WHERE cat_id=’$cat_id’”),0);

myheader(“News: $article_title”);
?>
<table width=”90%” border=”0” cellpadding=”2” cellspacing=”0”>
<tr>
<td valign=”bottom”>

<?=$article_title?>

Category:
<a href=”/articles.php?req=category&cat_id=<?=$cat_id?>”>
<?=stripslashes($cat_name)?>

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 192

193

By: <?=$article_author?> - <?=$article_date?>

This article has been read: <?=$article_read_count?> times.
</td>
</tr>
<tr>
<td valign=”top”>
<p align=”justify”>

<?=nl2br($article_body)?></p>
</td>
</tr>
</table>
<hr size=”1”>

Back to News Articles

<a href=”/articles.php?req=category&cat_id=<?=$cat_id?>”>
View Articles From <?=stripslashes($cat_name)?> Category

<?php
break;

case “category”:
$cat_name = mysql_result(mysql_query(“SELECT cat_name

FROM news_categories
WHERE cat_id=’{$_GET[‘cat_id’]}’”),0);

myheader(“News Articles: “.stripslashes($cat_name));
?>
<!-- Articles Begin-->
<table width=”100%” border=”0” cellpadding=”0” cellspacing=0>
<tr>
<td>

News Article Category: <?=stripslashes($cat_name)?>

</td>
</tr>
<tr>
<td>

<?php
$sql = mysql_query(“SELECT *,

date_format(article_date, ‘%M %D, %Y’) as article_date
FROM news_articles
WHERE cat_id=’{$_GET[‘cat_id’]}’
ORDER BY article_id
DESC”);

while($row = mysql_fetch_array($sql)){
stripslashes(extract($row));

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 193

194

$cat_name = mysql_result(mysql_query(“SELECT cat_name
FROM news_categories
WHERE cat_id=’$cat_id’”),0);

?>
<table width=”100%” border=”0” cellpadding=”2” cellspacing=”0”>
<tr>
<td valign=”bottom”>

<a href=”/articles.php?req=read&article_id=<?=$article_id?>”>
<?=stripslashes($cat_name).”: “.$article_title?>

By: <?=$article_author?> - <?=$article_date?>
</td>
</tr>
<tr>
<td valign=”top”>
<p align=”justify”>

<?=$article_caption?>

</p>
</td>
</tr>
<tr>
<td valign=”top”>

<a href=”/articles.php?req=read&article_id=<?=$article_id?>”>
Read Full Article

</td>
</tr>
</table>
<hr size=”1”>

<?php
}
?>
</td>
</tr>
</table>
<!-- Articles End-->

<?
break;

default:
myheader(“News Articles Archive”);
?>
<!-- Articles Begin-->
<table width=”100%” border=”0” cellpadding=”0” cellspacing=0>
<tr>

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 194

195

<td>

News Articles Archive
</td>
</tr>
<tr>
<td>

<?php
$sql = mysql_query(“SELECT *,

date_format(article_date, ‘%M %D, %Y’) as article_date
FROM news_articles
ORDER BY article_id
DESC”);

while($row = mysql_fetch_array($sql)){
stripslashes(extract($row));
$cat_name = mysql_result(mysql_query(“SELECT cat_name

FROM news_categories
WHERE cat_id=’$cat_id’”),0);

?>
<table width=”100%” border=”0” cellpadding=”2” cellspacing=”0”>
<tr>
<td valign=”bottom”>

<a href=”/articles.php?req=read&article_id=<?=$article_id?>”>
<?=stripslashes($cat_name).”: “.$article_title?>

By: <?=$article_author?> - <?=$article_date?>
</td>
</tr>
<tr>
<td valign=”top”>
<p align=”justify”>

<?=$article_caption?>

</p>
</td>
</tr>
<tr>
<td valign=”top”>

<a href=”/articles.php?req=read&article_id=<?=$article_id?>”>
Read Full Article

</td>
</tr>
</table>
<hr size=”1”>

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 195

196

<?php
}
?>
</td>
</tr>
</table>
<!-- Articles End-->

<?
break;

}

?>

Listing 6.14 is a fairly large script. This is one of the drawbacks of coding HTML directly
into your scripts, but sometimes it is more practical to use this method. I will break down the
important elements of this script.

First, you build the top portion of your script using the methods covered thoroughly in
this book. The most important element you should notice is that you are not going to use the
custom myheader function outside of the switch. The purpose for this is that you want to
pass a dynamically generated page title for each news article the user reads. So, you must
include the function only after you have extracted the article title from the database.

The first case named read in this switch displays when the reader clicks the hyperlinks to
access the article. Take a look at the MySQL query portions of this case:

switch($_REQUEST[‘req’]){
case “read”:

$sql = mysql_query(“SELECT *,
date_format(article_date, ‘%M %D, %Y’) as
article_date
FROM news_articles
WHERE article_id=’{$_GET[‘article_id’]}’”);

mysql_query(“UPDATE news_articles
SET article_read_count =
(article_read_count +1) WHERE
article_id = ‘{$_GET[‘article_id’]}’”);

$row = mysql_fetch_assoc($sql);
stripslashes(extract($row));
myheader(“News: $article_title”);
?>

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 196

197

Once again in this example, you use the date_format function to format your date in the
first MySQL query.

The second MySQL query is an interesting one. You perform an UPDATE query and a math
function at the same time to update the article_read_count field in the database table:

mysql_query(“UPDATE news_articles
SET article_read_count =
(article_read_count +1) WHERE
article_id = ‘{$_GET[‘article_id’]}’”);

Next, you create an associative array named $row using the mysql_fetch_assoc function
utilizing the mysql_query. You do not need to use a while loop on this function because you
are only extracting one row of information in the database.

Here you use the stripslashes and extract functions again to create simple variable
names to use in the rest of this case:

stripslashes(extract($row));

Next, you grab the category name from the news_categories table using the same query
you used in the news_index.php file. The category name will display directly under the title
of the news article, and it will contain a hyperlink to a list of articles that are linked to that
category:

$cat_name = mysql_result(mysql_query(“SELECT cat_name
FROM news_categories
WHERE cat_id=’$cat_id’”),0);

I have been building up the suspense of generating dynamic page titles long enough!
Because you now have the news article title available to you from the database, you can create
a dynamic page title that will be different for each news article on your website. Check out
the custom myheader function call in the next example:

myheader(“News: $article_title”);
?>

From this point of this case forward, you close PHP and create your HTML formatting
for the news article.

When you allow user input into HTML form text areas, many people assume that by press-
ing the Enter key on the keyboard PHP and HTML can automatically translate the special
ASCII characters into a human-readable format; however, this is not true. The computer
knows there is a line break there, but the web browser does not decode these line breaks for

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 197

198

you. So, you fix this by using the nl2br function covered in Chapter 1, “Introducing PHP.”
Take a look at this example for the article body:

<p align=”justify”>
<font size=”2” face=”Verdana, Arial, Helvetica,
sans-serif”>
<?=nl2br($article_body)?>
</p>

This example allows an HTML
 to be generated each time the user presses the Enter
key while typing an article into the text fields while using an HTML form to input data.

The news article archive system, which is part of this script as well, will consist of two
parts. The first part will contain a category-based listing and all of the news articles that are
linked to that category. You achieve this with the code found in the category case. The cat-
egory case does not require any special explanation; it’s basically the same code from the
news_index.php file that you created earlier with minor HTML formatting and a modified
MySQL query.

You will find the full list of news articles in your archive in the default case. The default
case does not need an in-depth explanation either. It is simply a modified version of the
news_index.php file you included in your index page. The only differences are minor format-
ting, and I have removed the LIMIT clause from the MySQL query because I wanted this to
serve as an archive displaying all of the news articles on the website.

Your website should be looking much better already! You have created a fairly advanced
news management system that gives your readers fresh content.

Creating a Hyperlinks Box
Now that you have some content to display and some sections to link to on your site, you
need to create a hyperlinks box for your users to navigate through the site. In your website
document root boxes directory, create a new PHP file and name it box_main_links.php.
This box will contain all of the applicable links that point inside the website, as shown in
Listing 6.15.

➲ Listing 6.15 Main Website Hyperlinks Box

<table width=”160” border=”0” cellspacing=”0” cellpadding=”0”>
<tr bgcolor=”#000066”>
<td width=”5” height=”10”> </td>
<td width=”150”>
<div align=”center”>

Site Links
</div>

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 198

199

</td>
<td width=”5”> </td>

</tr>
<tr>
<td height=”5”> </td>
<td align=”left” valign=”top”>

Index

News Articles

</td>
<td> </td>

</tr>
<tr>
<td width=”5” height=”10”> </td>
<td width=”150”> </td>
<td width=”5”> </td>

</tr>
</table>
<hr size=”1”>

Next, include this new file into your layout.php file directly under the
box_admin_links.php file. Here is my include section of the layout.php file:

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/boxes/member_box.php’;

include $_SERVER[‘DOCUMENT_ROOT’].
‘/boxes/box_admin_links.php’;

include $_SERVER[‘DOCUMENT_ROOT’].
‘/boxes/box_main_links.php’;

?>

When a user is not logged into the website, the layout will appear as in Figure 6.26.

F I G U R E 6 . 2 6 :
Main website hyper-
links box

Creating the News Article Management System

4279c06.qxd 10/27/03 6:20 PM Page 199

200

Challenge: Create a News Article Comment System
By this point, you should be comfortable with creating HTML forms and inserting informa-
tion into the database. As a challenge, I recommend you practice the skills you have learned
by creating a comment system for your news articles. The following are some of the steps I
have come up with to create this assignment:

● Create a table in your database that has a comment ID, comment subject, comment body,
comment date, and a link to the article ID number.

● Create a PHP script that will insert the required information about the comment, such as
the comment subject, comment date, comment body, username of the person submitting
the comment, and the article ID to which the comment belongs.

● Create the links required to access the form from the news article at the bottom of the
news article itself.

● Control access to the comment system to allow only members to post the comments
using the login_check() function inside the session.php file you created in Chapter 5,
“Creating a Website Membership System.”

● Display the comments from your comments table for the article being viewed in a while
loop at the bottom of each article.

Have some fun with creating this comment system. If you are having a hard time planning
your comment system, refer to www.phpfreaks.com to see the one I created for my personal
site. It may help you to figure out what you need to do. Good luck!

Adding News Feeds
If you desire to add news from other websites to your site automatically, you are looking for a
news feed. A news feed is usually received by a script that you can download or create on your
own website; this script connects to an external site and pulls information into your database.
With the information stored in your database, you may format it however you like to fit the
theme and requirements of your website.

At this time, news feeds are still being standardized throughout the Internet. Some web-
sites use Really Simple Syndication (RSS), and others use Resource Description Framework
(RDF) or other XML feeds. The following are some links you may find useful to determine
which type of feed fits the requirements you desire:

Newsfeed Type URL

RSS 2.0 at Backend.Userland.Com backend.userland.com/rss

RDF information www.w3.org/TR/1999/REC-rdf-syntax-19990222/

Chapter 6 • Developing a Website News System

4279c06.qxd 10/27/03 6:20 PM Page 200

201

Newsfeed Type URL

XML news feeds with PHP martin.f2o.org/php/xml-feed

Syndic8.com news feed information www.syndic8.com

Some of the content management systems such as PostNuke come with third-party add-on
modules that will automatically populate your database with other website news from their
feeds. If you would like to learn more about PostNuke, refer to www.postnuke.com.

What’s Next?
This chapter contained quite a bit of information regarding the daily routines involved in
creating a news management system for your website. Even though it covered mainly a news
system, there are a lot of hidden tips, tricks, and techniques throughout the chapter. If you
missed them, it is a good idea to review the chapter again because it could make life much
easier for you as a PHP developer.

In the next chapter, you will learn about working with web services and Application Pro-
gramming Interfaces (APIs). I will discuss how to add some valuable services from popular
websites to your site, such as search engine bars from Google, website statistics from Alexa,
and language translation from Google.com.

What’s Next?

4279c06.qxd 10/27/03 6:20 PM Page 201

4279c06.qxd 10/27/03 6:20 PM Page 202

Enhancing Your Website with
Web Services and APIs

Chapter 7

4279c07.qxd 10/27/03 6:20 PM Page 203

204

T he Internet is growing at a rapid pace these days. The rumors of the “dot-com” boom
being over are not as true as some of you may think. With the evolution of new technol-

ogy on the Internet, some websites and companies are beginning to offer methods for web-
masters to enhance their site’s capabilities. These technologies are usually offered through
web services or an Application Programmer Interface (API).

This chapter covers how to use the language translation tools available at www.google.com/
language_tools to display your site in different languages automatically and how to use the
Google search engine (www.google.com) to provide your readers with a method of searching
within your website or the Internet from your site. The chapter also shows you how to work
with the Amazon Web Services API to provide your users with a method of searching Ama-
zon.com for books, music, or other merchandise from within your site.

Working with Web Services
A web service is usually a simple and easy-to-use method of enhancing your website using
another site’s technology. Web services are usually easier to use than an API. Let’s begin with
the Google language translation tools.

Using Google Language Translation Services
Google offers language tools to translate text and web pages for most languages. There is no
API available for this feature yet, so you will have to use it as a web service. You will create a
method to pass the current Uniform Resource Locator (URL) the user is viewing to the Google
translator to translate the page into the language the user has selected from a form on your site.

For this web service, you will create a form inside a box on the left column of your site.
This form will send the proper information to Google to translate the page, and then the
Google website will appear with your translated results.

The only script required for sending information to Google’s language translator is the
form itself. This may sound like it has nothing to do with PHP, but you will use PHP in this
form to pass the current URL that the reader is viewing to the translator, as shown in
Listing 7.1.

➲ Listing 7.1 Language Translation Select Box

<?php
$URL = “http://”.$_SERVER[‘SERVER_NAME’].$_SERVER[‘REQUEST_URI’];
?>
<table width=”160” border=”0” cellspacing=”0” cellpadding=”0”>
<tr bgcolor=”#000066”>
<td width=”5” height=”10”> </td>
<td width=”150”>

Chapter 7 • Enhancing Your Website with Web Services and APIs

4279c07.qxd 10/27/03 6:20 PM Page 204

205

<div align=”center”>

Translate
</div>
</td>
<td width=”5”> </td>

</tr>
<tr>
<td height=”5”> </td>
<td align=”left” valign=”top”>

<center>
Choose Your Language:

<form action=”http://translate.google.com/translate”>
<input type=”hidden” name=”u” value=”<?=$URL?>”>
<select name=langpair>
<option value=”en|de”>German</option>
<option value=”en|es”>Spanish</option>
<option value=”en|fr”>French</option>
<option value=”en|it”>Italian</option>
<option value=”en|pt”>Portuguese</option>
</select>
<input type=submit value=”Go!”>
</form>
Powered by

Google Language Tools

</center>
</td>
<td> </td>

</tr>
</table>
<hr size=”1”>

You may notice that this script starts with a portion of PHP code. This code allows maxi-
mum portability by reading the $_SERVER[‘SERVER_NAME’] superglobal array value and deter-
mining the name of your server, for example, http://www.yourphpsite.com. Next, you want to
obtain the name of the script and arguments passed to the script by using $_SERVER[‘REQUEST_
URI’]. Together, these two superglobal values provide you with a complete URL for the
page being viewed. For example, if you were viewing http://www.yourphpsite.com/news
.php?read=13, by using the previous code example, $_SERVER[‘SERVER_NAME’] would return
www.yourphpsite.com, and $_SERVER[‘REQUEST_URI’] would return /news.php?read=13.
Now you have a method to post the full URL into the Google translator form. This is the
code example just discussed:

<?php
$URL = “http://”.$_SERVER[‘SERVER_NAME’].$_SERVER[‘REQUEST_URI’];
?>

Working with Web Services

4279c07.qxd 10/27/03 6:20 PM Page 205

206

Next, you build the HTML layout for the box to include in your layout.php file. In the
content portion of your HTML table, put the following form, which will post the informa-
tion to Google:

<form action=”http://translate.google.com/translate”>
<input type=”hidden” name=”u” value=”<?=$URL?>”>
<select name=langpair>
<option value=”en|de”>German</option>
<option value=”en|es”>Spanish</option>
<option value=”en|fr”>French</option>
<option value=”en|it”>Italian</option>
<option value=”en|pt”>Portuguese</option>
</select>
<input type=submit value=”Go!”>
</form>

Take a look at the second line of the previous code example. You embed the $URL variable
you created at the top of this script into the URL value that Google requires to translate the
website:

<input type=”hidden” name=”u” value=”<?=$URL?>”>

The rest of the form consists of the languages and their form post values that Google uses
to determine to which language to translate. For your site, because it is in English, you are
translating from English to another language.

Next, save this file as box_translate.php in your website’s document root boxes directory.
You will also include this box into your layout.php file directly below the box_main_links.php
file. Take a look at the include portion of this layout.php file:

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/boxes/member_box.php’;

include $_SERVER[‘DOCUMENT_ROOT’].
‘/boxes/box_admin_links.php’;

include $_SERVER[‘DOCUMENT_ROOT’].
‘/boxes/box_main_links.php’;

include $_SERVER[‘DOCUMENT_ROOT’].
‘/boxes/box_translate.php’;

?>

Open your website in your browser, and you should see the new box appear at the bottom
of the left column, as shown in Figure 7.1.

Chapter 7 • Enhancing Your Website with Web Services and APIs

4279c07.qxd 10/27/03 6:20 PM Page 206

207

Let’s translate the site into Spanish. Click the drop-down menu, select Spanish as your
option, and then click the Go button. When the next page loads, you should see your site
translated in Spanish, as shown in Figure 7.2.

If everything has worked out, then congratulations! You have just used the Google transla-
tion tools as a web service to enhance the possibilities of your website!

F I G U R E 7 . 2 :
The Spanish
translation

F I G U R E 7 . 1 :
Translation tools box

Working with Web Services

4279c07.qxd 10/27/03 6:20 PM Page 207

208

NOTE You must ensure that the server you are testing this script on is an actual web server with
a domain name that can be translated on the Internet. When developing locally, you can
use names and resolve them on your own Domain Name System (DNS) servers or
through your Windows hosts file; however, Google cannot look those names up in DNS,
and therefore this script will not work properly.

Using the Google Search Engine in Your Website
Google was created at Stanford University and become one of the top search engines on
the Internet in a short time. In this section, I will show you a simple method of offering the
Google search engine on your website so that your users will not have to leave your website
to access the powerful Google search engine. You will also add a feature in this script that
allows your user to choose to search for results within your site (if the Google search spiders
have indexed your site).

You may be wondering why you would want to include Google on your site when a user can
just go to www.google.com and perform the search on the Google website. I cannot stress this
enough to you as a webmaster: The more features you have on your website and the longer you
can keep the user on your site clicking on pages and accessing sections, the better your search
engine rankings will be and the more success you will have as a webmaster. By adding features
such as an inline search capability for your users, users may come to your site to browse news
articles, access special sections, and do their searches. The more clicks, the better!

Let’s create a new file in your website’s document root under the html/forms directory; name
this file search_form.html. Listing 7.2 shows the full HTML and PHP code for this file.

➲ Listing 7.2 Google Search Form

<form method=”post” action=”/search.php”>
<table width=”100%” border=”1” cellpadding=”0” cellspacing=”0”
bordercolor=”#000000”>
<tr align=”left”>
<td width=”95%” align=”center” valign=”middle” bgcolor=”#006699” align=”center”>

Search:

<?php
if(!$_POST[‘q’]){
?>
<input name=”q” onFocus=”if(this.value==’Enter Search Words’)this.value=’’;”
value=”Enter Search Words”>
<?php
} else {
?>
<input name=”q” value=”<?=stripslashes($_POST[‘q’])?>”>

Chapter 7 • Enhancing Your Website with Web Services and APIs

4279c07.qxd 10/27/03 6:20 PM Page 208

209

<?php
}

?>
<select name=”where”>
<option value=”local” <?if($_POST[‘where’] == “local”) echo “selected”; ?>>My
PHP Site</option>
<option value=”external” <?if($_POST[‘where’] == “external”) echo “selected”;
?>>The Web</option>
</select>
<input type=”submit” value=”Go!”>
</td>
</tr>
</table>
</form>

The code in Listing 7.2 consists of an HTML form that will post to a script on your site
named search.php that you will create later. This file also has some PHP embedded into it,
so I will break down the important elements:

<?php
if(!$_POST[‘q’]){
?>
<input name=”q” onFocus=”if(this.value==’Enter Search Words’)this.value=’’;”
value=”Enter Search Words”>
<?php
} else {
?>
<input name=”q” value=”<?=stripslashes($_POST[‘q’])?>”>
<?php
}

?>

The previous code will check if you have posted the form value of q, which is short for query
in the Google search engine. If the q value has been posted, you will remove any backslashes
from the values using the PHP stripslashes function and automatically fill the text field val-
ues of the form with the posted values. If q is not posted or does not exist, you will use a nifty
JavaScript feature that will display Enter Search Words in the text box; when the user clicks the
box, the Enter Search Words text disappears so the user can enter their search words.

The next portion of PHP code in this example will help determine which form select item
the user chose before posting the form information. The form select menu name is where, so
you will check the value of $_POST[‘where’]; then, using an IF statement, you will enter the
“selected” value in the appropriate select menu option so that the selection the user made
before they posted the form is now selected on the preceding search.php script:

<select name=”where”>

Working with Web Services

4279c07.qxd 10/27/03 6:20 PM Page 209

210

<option value=”local” <?if($_POST[‘where’] == “local”) echo “selected”; ?>>My
PHP Site</option>
<option value=”external” <?if($_POST[‘where’] == “external”) echo “selected”;
?>>The Web</option>
</select>

Now that you have the form developed, you will create the script to which this form will
post. Make a new PHP script, name it search.php, and then place it in your website’s docu-
ment root. Listing 7.3 for the code.

➲ Listing 7.3 search.php Script

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

if($_POST[‘where’] == “local”){
$q = $_POST[‘q’].” site:www.phpfreaks.com”;

} else {
$q = $_POST[‘q’];

}

$q = htmlentities(urlencode($q));
$url = “http://www.google.com/search?q=$q”;

myheader(“Search Results”);
?>

<IFRAME SRC=”<?=$url?>”
TITLE=”Search Results”
width=”100%”
height=”500”>
<!-- Alternate content for non-supporting browsers -->
Your web browser does not support inline frames, therefore
this feature can not be used.

</IFRAME>

<?php
footer();
?>

The code in Listing 7.3 includes your layout.php and accepts the form-posted values from
search_form.html; then you determine what you want to do with them. I will break down
each section and cover what it does:

if($_POST[‘where’] == “local”){
$q = $_POST[‘q’].” site:www.phpfreaks.com”;

} else {

Chapter 7 • Enhancing Your Website with Web Services and APIs

4279c07.qxd 10/27/03 6:20 PM Page 210

211

$q = $_POST[‘q’];
}

Google offers many different search methods. When you go to the Google.com website
and enter a search phrase, you are doing an open search with no constraints. You want to give
your users the ability to search the Internet or search only within your website. Your users
have this option when they select what search results they want returned from the form
select menu. If they choose the My PHP Site option, the form select menu value of where
will be local. Based on this factor, you append site:www.yourphpsite.com to the search
query and only results found in www.yourphpsite.com will return on the page.

If the user chooses The Web option, then the value of where is not equal to local and the
first IF statement will not be validated, which means they must have selected The Web
option from the select menu. Therefore, you will perform an open search query without
constraints.

Next, you will convert the search phrase into the proper format for the Google search
engine to accept. This is known as URL encoding. To properly encode this URL for Google,
you need to use the PHP htmlentities function and then use the urlencode function. By
using only the urlencode function, all spaces are converted to %20. There are many special
characters that are converted, as well. Some sites such as Google require that white spaces
are converted to plus signs (+) instead, so you combine the two functions together to get the
output you need. For example the phrase this is a search phrase would be converted to
this+is+a+search+phrase:

$q = htmlentities(urlencode($q));
$url = “http://www.google.com/search?q=$q”;

After you have the URL created that will open the Google search engine with your query,
you open the HTML layout and display an inline frame (IFRAME) to present the results.
Using an IFRAME is the easiest method to include content from one website to another, so
that’s what you will do:

<IFRAME SRC=”<?=$url?>”
TITLE=”Search Results”
width=”100%”
height=”500”>
<!-- Alternate content for non-supporting browsers -->
Your web browser does not support inline frames, so
this feature cannot be used.

</IFRAME>

Notice the IFRAME SRC=”<?=$url?>” code in the previous example. You are simply telling
the IFRAME what to open and display in the frame; in this case, it is the URL that you created
from the PHP code.

Working with Web Services

4279c07.qxd 10/27/03 6:20 PM Page 211

212

Now, include the HTML form you created into the layout.php file. Directly below your
logo, create a new table row (TR) and insert a column that spans three columns: TD
COLSPAN=”3”. Include the search_form.html file into this new cell. Here is the modified lay-

out.php section:
<table width=”100%” border=”0” cellpadding=”0” cellspacing=”0”
bordercolor=”#000000”>
<tr>
<td colspan=”3”><img src=”/images/logo.jpg” ALT=”My PHP Site”

BORDER=”0”><hr size=”1”></td>
</tr>
<tr>
<td colspan=”3”>
<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/forms/search_form.html’;
?>

</td>
</tr>

Open your website in your browser, and you should see the new search bar below your
logo, as shown in Figure 7.3.

Before you begin testing this script, you should notice that the site I used for the My PHP
Site value in search.php is www.phpfreaks.com. I used a website that I knew was indexed by
the Google search engine for these tests. When you build your site and get in the search
engines, you can change this value.

Let’s test it out! First, type in the phrase PHP htmlspecialchars, leave the My PHP Site value
selected, and click the Go button. You will see all of the results from www.phpfreaks.com in
your inline frame, as shown in Figure 7.4.

Take special notice that the search words you entered are still presented in the form and
that the My PHP Site value is selected.

Next, enter PHP Freaks in the Search box, select The Web option, and click the Go but-
ton. You will see the results shown in Figure 7.5.

F I G U R E 7 . 3 :
Search engine bar

Chapter 7 • Enhancing Your Website with Web Services and APIs

4279c07.qxd 10/27/03 6:20 PM Page 212

213

F I G U R E 7 . 5 :
Search results for an
open search

F I G U R E 7 . 4 :
Search results for My
PHP Site selection

Working with Web Services

4279c07.qxd 10/27/03 6:20 PM Page 213

214

Take special notice that the select menu now has The Web option selected.

Your site is really shaping up with all of these nifty web services you have been using! Do
not stop there! The Internet is full of useful web services you can use if you like. Also, just
because something is not offered as a web service does not mean that it is not possible to use.
Be sure to give credit where credit is due to stay out of trouble! Poke around on the Internet
and see what you can find to enhance your site with PHP and web services.

Working with APIs
An API utilizes methods of sending information to the remote API server for processing and
receiving results back to your script regarding the type of transaction that was intended. You
will probably see APIs used most in applications for merchant account gateways to process
credit card information. Chapter 9, “Processing Payments for Your Website,” covers this
usage in depth.

APIs are starting to become more available on the Internet as new development languages
start to evolve. Companies are realizing the value of offering services such as an API to their
customers, and the Web is moving strongly toward using APIs for nearly every solution that
can support it. A perfect example is the Amazon Web Services API.

Amazon Web Services API Made Simple
For this chapter, you will use the Amazon Web Services API to retrieve information based on
a search phrase and format the results to fit your website while at the same time getting a
chance to earn money as a webmaster.

To begin using your Amazon Web Services API, you will need to obtain a developer token,
which is an ID number to identify you as the person or company performing the query. Go
to www.amazon.com/webservices to obtain your token key.

Next, it is a good idea to download the API documentation that is included in the API
Developer Kit, also available at the previous URL. You do not have to download the docu-
mentation for this project, but I strongly recommend it. Because it is free, I suggest taking
advantage of the download; you may be able to enhance the code you develop in this section
with more features.

Sometimes API documentation is not practical to use for PHP. Only recently have API
developers realized that the majority of the Internet is moving toward PHP as the develop-
ment language of choice and started supporting it in their documentation. Regardless of the
lack of documentation, there is usually a method around the downfalls due to lack of PHP
support because web APIs are usually based on one principle: to send and receive data via a
Hypertext Transfer Protocol (HTTP) request.

Chapter 7 • Enhancing Your Website with Web Services and APIs

4279c07.qxd 10/27/03 6:20 PM Page 214

215

During my research phase of implementing the Amazon Web Services API with PHP, I
found some exaggerated examples that required me to download three or four different
scripts to achieve the same results I will show you, which uses the Amazon Web Services API
with a custom PHP Extensible Markup Language (XML) parsing class and a simple code
example to utilize the class. I will also cover how to make those cool page numbers also
known as pagination for your script.

The Amazon Web Services API offers multiple ways of retrieving information through its
usage. You have the ability to use Simple Object Access Protocol (SOAP) with a PHP class
named NuSOAP (sourceforge.net/projects/nusoap), which is based on the principles of
the Perl SOAP class, Extensible Stylesheet Language Transformations (XSLT), and finally
the XML method you are going to use.

Regardless of which methods are available, you have to choose one that works best with
PHP. The bottom line is that you will send and receive data from the Amazon Web Services
API and format it to fit your page. The easiest method I have found is to use XML to
retrieve the results.

Before you begin developing your front end for the Amazon Web Services API, you will
need to obtain the XML parser class that I have made available for you to use:

1. Go to www.phpfreaks.com/script/view/202.php and download the file to your hard
drive.

2. Extract the clsParseXML.zip file.

3. Copy the clsParseXML.php file to your website document root’s classes directory.

Creating the HTML and PHP
Now you are ready to begin working with the Amazon Web Services API. To start, you will
create an HTML file that will display the results of each book to your website. This file will
be looped through all of the results you find and it will be included for each one. Create a file
in your website’s document root under the html directory and name it books_layout.html
(see Listing 7.4).

➲ Listing 7.4 Book HTML Layout File

<p></p>
<table width=”100%” border=”0” cellspacing=”0” cellpadding=”4”>
<tr>
<td colspan=”2”><font size=”4” face=”Verdana, Arial, Helvetica, sans-

serif”><a href=”<?=$product_link?>” target=”_blank”>
<?=$product_name?>
</td>

</tr>
<tr>

Working with APIs

4279c07.qxd 10/27/03 6:20 PM Page 215

216

<td width=”4%” align=”left” valign=”top”><a href=”<?=$product_link?>”
target=”_blank”>

<img src=”<?=$product_image?>” alt=”<?=$product_name?>” border=”0”>
</td>

<td width=”96%” align=”left” valign=”top”><p><font size=”3” face=”Verdana,
Arial, Helvetica, sans-serif”>

Publisher:
<?=$product_manufacturer?>

<font size=”3” face=”Verdana, Arial, Helvetica, sans-

serif”>Author<?php if($product_author2){ echo “s”; }?>:
<?php

$authors = $product_author1;
if($product_author2){

$authors .= “, $product_author2”;
}
if($product_author3){

$authors .= “, $product_author3”;
}
if($product_author4){

$authors .= “, $product_author4”;
}
if($product_author5){

$authors .= “, $product_author5”;
}
echo $authors;

?>

Release

Date: <?=$product_release_date?>

ISBN:

<?=$product_isbn?></p>
<p>New
Price:
<?=$product_new_price?>
<?php if($product_used_price){?>
/ Used Price:
<?=$product_used_price?>
<? } ?>

<a

href=”<?=$product_link?>” target=”_blank”>Buy
it Now!

</td>
</tr>
<tr>
<td colspan=”2”><font size=”4” face=”Verdana, Arial, Helvetica, sans-

serif”><a href=”<?=$product_link?>” target=”_blank”>
</td>

</tr>
</table>
<hr size=”1”>

Chapter 7 • Enhancing Your Website with Web Services and APIs

4279c07.qxd 10/27/03 6:20 PM Page 216

217

I will break down the important elements of Listing 7.4 for you. Before you include this
HTML file, you will do some work with the array of results returned from the XML parser
that you will develop later in this section. You will display the values of the variables you find
for each book in that layout, so you have embedded some PHP into this HTML.

The first important portion of embedded PHP is the part where you determine how many
authors wrote each book. These results are returned from the Amazon Web Services API,
and you want to make sure you have the grammar proper, so you determine if you need to
display Author or Authors for the heading of that section in the HTML document. You
achieve this with a simple IF statement to see if more than one author exists:

Author<?php
if($product_author2){ echo “s”; }?>:

Next, you determine the best method of displaying the author names for the book title. If
there is only one author, you do not want a comma behind the author’s name, and if there are
only two authors, you only want a comma after the first author’s name and so on. So you
develop this code that will format the author list properly:

<?php
$authors = $product_author1;
if($product_author2){

$authors .= “, $product_author2”;
}
if($product_author3){

$authors .= “, $product_author3”;
}
if($product_author4){

$authors .= “, $product_author4”;
}
if($product_author5){

$authors .= “, $product_author5”;
}
echo $authors;

?>

The last part of code in this file will determine if the “used price” value exists for the book
title. If it does, you put a forward slash and then the used price behind the new price:

New
Price:
<?=$product_new_price?>
<?php if($product_used_price){?>
/ Used Price:
<?=$product_used_price?>
<? } ?>

Working with APIs

4279c07.qxd 10/27/03 6:20 PM Page 217

218

You now have the HTML layout that will be looped through and completed by the results
you find. It is time to start with the XML parsing code! The next file will be called books.php,
and it will reside in the website document root directory (see Listing 7.5).

➲ Listing 7.5 Amazon Web Services API Script

<?php

include $_SERVER[‘DOCUMENT_ROOT’].
‘/layout.php’;

// XML Parser Class
include $_SERVER[‘DOCUMENT_ROOT’].

‘/classes/clsParseXML.php’;

myheader(“Amazon Books”);

if(!$_REQUEST[‘book’]){
$_REQUEST[‘book’] = “www dummy”;

}

// Page Number Determination
if(!isset($_REQUEST[‘page’])){

$page = 1;
} else {

$page = $_REQUEST[‘page’];
}

$amazon_xml = “http://xml.amazon.com/onca/xml3?”.
“t=webservices-20”. // Amazon Associate ID
“&dev-t=XXXXXXXXXXXX”. // Developer Token
“&KeywordSearch=”
.stripslashes(urlencode($_REQUEST[‘book’])). // Search Word
“&mode=books”. // Type of Product
“&type=lite”. // Search Mode
“&page=$page”. // Current Page Number
“&f=xml”;

$xml_parse = &new ParseXML;
$xml_tree = $xml_parse->GetXMLTree($amazon_xml);

// Display RAW $xml_tree Results
/*
echo “<pre>”;
print_r($xml_tree);
echo “</pre>”;
footer();
exit();
*/

Chapter 7 • Enhancing Your Website with Web Services and APIs

4279c07.qxd 10/27/03 6:20 PM Page 218

219

// Get Error Message if there is one.
$error_message = $xml_tree[PRODUCTINFO][0][ERRORMSG][0][VALUE];

if($error_message){
echo “<center>”.$error_message.”
”.
“The service may be down at the moment.</center>”;
footer();
exit();

}

// Get total number of pages for page code
$total_pages = $xml_tree[PRODUCTINFO][0][TOTALPAGES][0][VALUE];

// Get total number of results from the query
$total_results = $xml_tree[PRODUCTINFO][0][TOTALRESULTS][0][VALUE];

// Display top of page with search phrase, page numbers
// and total results found
echo ‘’.

‘Books for: ‘.stripslashes(urldecode($_REQUEST[‘book’])).
‘
’.
‘Page: ‘.$page.’ of ‘.$total_pages.’
’.
‘Total Results: ‘.$total_results.
‘<hr size=”1”>’;

// loop through and show products
foreach($xml_tree[PRODUCTINFO][0][DETAILS] AS $product){

// Results Retrieved, make quick
// variables from array values.
$product_link = $product[ATTRIBUTES][URL];
$product_isbn = $product[ASIN][0][VALUE];
$product_name = $product[PRODUCTNAME][0][VALUE];
$product_catalog = $product[CATALOG][0][VALUE];
$product_manufacturer = $product[MANUFACTURER][0][VALUE];
$product_release_date = $product[RELEASEDATE][0][VALUE];
$product_image = $product[IMAGEURLMEDIUM][0][VALUE];
$product_new_price = $product[OURPRICE][0][VALUE];
$product_used_price = $product[USEDPRICE][0][VALUE];
$product_author1 = $product[AUTHORS][0][AUTHOR][0][VALUE];
$product_author2 = $product[AUTHORS][0][AUTHOR][1][VALUE];
$product_author3 = $product[AUTHORS][0][AUTHOR][2][VALUE];
$product_author4 = $product[AUTHORS][0][AUTHOR][3][VALUE];
$product_author5 = $product[AUTHORS][0][AUTHOR][4][VALUE];

// include layout file for looping results
include $_SERVER[‘DOCUMENT_ROOT’].
‘/html/books_layout.html’;

}

// Build Pagination System (Page Numbers)
echo ‘<center><font size=”2” face=”Verdana, ‘.

Working with APIs

4279c07.qxd 10/27/03 6:20 PM Page 219

220

‘Arial, Helvetica, sans-serif”>’.
‘Page Number:
’;

for($i = 0; $i < $total_pages; $i++){
$p = ($i + 1);
if($page == $p){

echo “$page ”;
} else {

echo “”.
“$p ”;

}
}
echo “</center>”;

// Display footer
footer();
?>

It sure looks like I have a lot of explaining to do, so let’s get started! The first portion of the
script includes the layout.php file; it also includes the XML parser class that you down-
loaded earlier, and it displays the myheader function:

<?php

include $_SERVER[‘DOCUMENT_ROOT’].
‘/layout.php’;

// XML Parser Class
include $_SERVER[‘DOCUMENT_ROOT’].

‘/classes/clsParseXML.php’;
myheader(“Amazon Books”);

NOTE The XML parser class is included in this script instead of the common.php file because
you will only be using it one time.

Sometimes as a webmaster you just have to pull tricks on your users who like to test your
skills by submitting empty form data. When a user submits a form without typing in the
search phrase, you set a search phrase for them: www dummy:

if(!$_REQUEST[‘book’]){
$_REQUEST[‘book’] = “www dummy”;

}

Creating Page Numbers
Now you begin the real fun: pagination. Page-numbered results have grown in popularity
over the past few years; however, many people still struggle with the code to make them.

Chapter 7 • Enhancing Your Website with Web Services and APIs

4279c07.qxd 10/27/03 6:20 PM Page 220

221

This example is about the easiest it can get, but it appears in parts throughout the code in
Listing 7.5. First, you need to determine if you have a page number value set already and, if
you do have one set, what its value is. If you do not have a page number value set yet, you
need to set it to a value of 1, for the first page:

// Page Number Determination
if(!isset($_REQUEST[‘page’])){

$page = 1;
} else {

$page = $_REQUEST[‘page’];
}

Next, you need to build the URL to retrieve the Amazon web services XML document
from its API. Let’s break this code down into smaller portions. First, you start building the
$amazon_xml variable that will be passed to the XML parser class later:

$amazon_xml = “http://xml.amazon.com/onca/xml3?”.

Second, if you want to earn money and you have an Amazon Associates ID
(www.amazon.com/associates), you can enter it here to receive a percentage of each sale
made from users who clicked on the links from your website to purchase the item. For this
example, you will use the default Amazon Associate ID, which is webservices-20:

“t=webservices-20”. // Amazon Associate ID

Remember that developer token you had to get earlier? This is where you use it. I replaced
my developer token with XXXXXXXXXXXX for my security purposes, so put your token in that
place:

“&dev-t=XXXXXXXXXXXX”. // Developer Token

Now you need to enter the URL-encoded search phrase into the URL. Also, you always
use stripslashes on form-posted data to remove those backslashes automatically generated
by PHP:

“&KeywordSearch=”
.stripslashes(urlencode($_REQUEST[‘book’])). // Search Word

The next portion of this URL is the mode. You can choose from DVD, software, books,
and more. Refer to the Amazon Web Services API documentation for more information. For
this mode, use books:

“&mode=books”. // Type of Product

The search type has two available flavors, light and heavy, depending on how detailed you
want the results to be. For this purpose, light is more than sufficient:

“&type=lite”. // Search Mode

Working with APIs

4279c07.qxd 10/27/03 6:20 PM Page 221

222

Here is another portion of the pagination code! You will tell the API what page you are
viewing so you can retrieve the appropriate results from it. For your reference, the Amazon
Web Services API only returns 10 results per page:

“&page=$page”. // Current Page Number

The next portion of code simply specifies that you want XML as the result from the API:
“&f=xml”;

Remember that XML parser class I had you download? It is time to put it to use. Initialize
the class and call the function that builds your XML tree from the $amazon_xml variable you
just created:

$xml_parse = &new ParseXML;
$xml_tree = $xml_parse->GetXMLTree($amazon_xml);

To help you understand what the XML parser class actually accomplishes, I have left this
portion of the code in my examples. All you have to do is remove the comment tags /* and */
from above and below the code to see the raw output of the array generated from the class:

// Display RAW $xml_tree Results
/*
echo “<pre>”;
print_r($xml_tree);
echo “</pre>”;
footer();
exit();
*/

When you view the raw output of the XML parser class, you will see that the results are in
one large array, depending on the number of results found. Typing the full name of each
array key would be quite a pain, so you create simplified variable names for them.

Sometimes an API may go offline for maintenance or may simply return an error code. To
prevent your script from displaying nasty error messages, you perform a check on a specific
value of the results found in the results array:

// Get Error Message if there is one.
$error_message = $xml_tree[PRODUCTINFO][0][ERRORMSG][0][VALUE];

if($error_message){
echo “<center>”.$error_message.”
”.
“The service may be down at the moment.</center>”;
footer();
exit();

}

The previous example will check to see if the ERRORMSG value is present in the returned
results. If this value is present, you will display a nice message to the user and exit the script
to prevent further errors from being displayed.

Chapter 7 • Enhancing Your Website with Web Services and APIs

4279c07.qxd 10/27/03 6:20 PM Page 222

223

The next example shows you how you retrieve the total number of available pages from the
resulting search and turn it into the $total_pages variable. This variable is important
because you use it in the pagination code later:

// Get total number of pages for page code
$total_pages = $xml_tree[PRODUCTINFO][0][TOTALPAGES][0][VALUE];

As a courtesy to your users, you can show how many total results are found, so you create
the $total_results variable to display later:

// Get total number of results from the query
$total_results = $xml_tree[PRODUCTINFO][0][TOTALRESULTS][0][VALUE];

Now you will create a simple HTML section that displays the search phrase, the current
page number, and the number of results found at the top of the results page:

// Display top of page with search phrase, page numbers
// and total results found
echo ‘’.

‘Books for: ‘.stripslashes(urldecode($_REQUEST[‘book’])).
‘
’.
‘Page: ‘.$page.’ of ‘.$total_pages.’
’.
‘Total Results: ‘.$total_results.
‘<hr size=”1”>’;

Do you remember that books_layout.html file you created? This is where all the variables
from that file are created and the actual file is included into this loop. You use a foreach
function that converts array keys into variables and loops through the array until it does not
find any more keys to convert:

// loop through and show products
foreach($xml_tree[PRODUCTINFO][0][DETAILS] AS $product){

// Results Retrieved, make quick
// variables from array values.

First, you get the link to Amazon.com for the current product in the array:
$product_link = $product[ATTRIBUTES][URL];

Second, you want to display the book’s ISBN number, which on Amazon.com is the Ama-
zon Standard Identification Number:

$product_isbn = $product[ASIN][0][VALUE];

The rest of these variables are pretty easy to figure out by their names:
$product_name = $product[PRODUCTNAME][0][VALUE];
$product_catalog = $product[CATALOG][0][VALUE];
$product_manufacturer = $product[MANUFACTURER][0][VALUE];
$product_release_date = $product[RELEASEDATE][0][VALUE];
$product_image = $product[IMAGEURLMEDIUM][0][VALUE];
$product_new_price = $product[OURPRICE][0][VALUE];

Working with APIs

4279c07.qxd 10/27/03 6:20 PM Page 223

224

$product_used_price = $product[USEDPRICE][0][VALUE];
$product_author1 = $product[AUTHORS][0][AUTHOR][0][VALUE];
$product_author2 = $product[AUTHORS][0][AUTHOR][1][VALUE];
$product_author3 = $product[AUTHORS][0][AUTHOR][2][VALUE];
$product_author4 = $product[AUTHORS][0][AUTHOR][3][VALUE];
$product_author5 = $product[AUTHORS][0][AUTHOR][4][VALUE];

Next, you include the books_layout.html file to display the HTML-formatted results:
// include layout file for looping results
include $_SERVER[‘DOCUMENT_ROOT’].
‘/html/books_layout.html’;

}

The next portion of code is the bulk of the pagination code. Let’s break it down. First, you
create some HTML to show the words Page Number: and then you will display the results
below it:

// Build Pagination System (Page Numbers)
echo ‘<center><font size=”2” face=”Verdana, ‘.

‘Arial, Helvetica, sans-serif”>’.
‘Page Number:
’;

The next portion of code is one of my favorites. Using for loops allows you to increment
numbers easily. You achieve this by performing three actions inside the for loop function
itself. For example:

for(initial assignment, comparison, incrementation){
// Perform this inside the loop each time

}

Follow these steps:

1. Identify the initial value of $i. In this case, $i is equal to zero.

2. Define how many times the loop will run. In this example, if $i is less than the total num-
ber of pages, keep running the for loop until $i is equal to or greater than the
$total_pages value.

3. Increment the value of $i each time this loop is run using $i++:
for($i = 0; $i < $total_pages; $i++){

Next, you need to ensure your page numbers are set up properly, so you add 1 to the $i
value and assign it to the $p variable:

$p = ($i + 1);

Because you will be creating hyperlinks for the page numbers you are not currently view-
ing, you need to determine if the current loop cycle is equal to the current page. If it is, you

Chapter 7 • Enhancing Your Website with Web Services and APIs

4279c07.qxd 10/27/03 6:20 PM Page 224

225

do not want a hyperlink for this page, so you use an IF statement to determine the course of
action:

if($page == $p){
echo “$page ”;

} else {

All of the pages you will be returning except the current one will require a hyperlink. So,
you create a hyperlink with the $page variable and the value for the page number, which is
the current loop cycle. You also need to ensure that you pass the search phrase into the URL,
or when the user clicks the page link, they will be presented with nothing:

echo “”.
“$p ”;

}

Next, close out the for loop:
}

Clean up the HTML:
echo “</center>”;

Finally, display the footer and close PHP:
// Display footer
footer();
?>

Creating the Search Box
The last thing you need to accomplish before testing this is to create a search box for the left
column of the website. I created a box with a form inside of it, named the file box_books.php,
and placed it inside my website document root under the boxes directory. You should also
include this file in your layout.php file. See Listing 7.6 for the box_books.php file and List-
ing 7.7 for the include file portion of my layout.php file.

➲ Listing 7.6 Books Search Box

<table width=”160” border=”0” cellspacing=”0” cellpadding=”0”>
<tr bgcolor=”#000066”>
<td width=”5” height=”10”> </td>
<td width=”150”>
<div align=”center”> <font color=”#FFFFFF” size=”2” face=”Verdana, Arial,

Helvetica, sans-serif”>
Search for Books!</div>

</td>
<td width=”5”> </td>

</tr>
<tr>
<td height=”5”> </td>

Working with APIs

4279c07.qxd 10/27/03 6:20 PM Page 225

226

<td align=”left” valign=”top”>
<center>

Enter

a Search Phrase:
<form action=”/books.php” method=”post”>
<input name=”book” type=”text” size=”10”

value=”<?
if(isset($_REQUEST[‘book’]))
echo stripslashes($_REQUEST[‘book’]);
?>”>
<input type=submit value=”Go!”>

</form>
Powered by

 Amazon.com

</center>
</td>
<td> </td>

</tr>
</table>
<hr size=”1”>

➲ Listing 7.7 Include Portion of the layout.php File

<!-- Left Links Column -->
<td width=”170” valign=”top”>
<table width=”170” border=”0” cellpadding=”0” cellspacing=”0”>
<tr>
<td width=”10”> </td>
<td valign=”top”>
<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/boxes/member_box.php’;

include $_SERVER[‘DOCUMENT_ROOT’].
‘/boxes/box_admin_links.php’;

include $_SERVER[‘DOCUMENT_ROOT’].
‘/boxes/box_main_links.php’;

include $_SERVER[‘DOCUMENT_ROOT’].
‘/boxes/box_books.php’;

include $_SERVER[‘DOCUMENT_ROOT’].
‘/boxes/box_translate.php’;

?>
</td>
<!-- End Left Links Column -->

Chapter 7 • Enhancing Your Website with Web Services and APIs

4279c07.qxd 10/27/03 6:20 PM Page 226

227

Let’s test this new fancy Amazon Web Services API script! Open your site in your web
browser, and you should see the heading “Search for Books” above your translation box, as
shown in Figure 7.6. In that box, type in the word Sybex and click the Go button. You should
see a nicely formatted page with the results for the word Sybex, as shown in Figure 7.7.

Take a look at the top of the page above the first result found. You should see some statis-
tics regarding the search results for this query, as shown in Figure 7.8.

Scroll down to the bottom of the page, and you should see page numbers with hyperlinks
on every page except for the current one, as shown in Figure 7.9.

F I G U R E 7 . 7 :
Search results for the
word Sybex

F I G U R E 7 . 6 :
The “Search for
Books” header

Working with APIs

4279c07.qxd 10/27/03 6:20 PM Page 227

228

The last check I would like you to do is to ensure that your trick code is working properly.
Submit a form result with nothing entered in the search box and take a look at what happens.
If everything is working up to this point, then congratulations! You have just mastered work-
ing with an API!

What’s Next?
This chapter covered the value of using web services and APIs to enhance your website and
give your users more options. Do not stop here with what you have learned. There are more
web services and APIs out there for you to use! This chapter is just the tip of the iceberg for
working with web services and APIs. Do not worry, though; you will work with them more in
Chapter 9, “Processing Payments for Your Website.”

The next chapter will cover the basics of creating a shopping cart system to allow you to
sell products on your website. I will cover some of the basics about using cookies and gener-
ating shopping cart ID numbers as well as working with form input array values.

F I G U R E 7 . 9 :
Page numbers from
pagination code

F I G U R E 7 . 8 :
Search result
statistics

Chapter 7 • Enhancing Your Website with Web Services and APIs

4279c07.qxd 10/27/03 6:20 PM Page 228

Creating a Shopping
Cart System

Chapter 8

4279c08.qxd 10/27/03 6:20 PM Page 229

230

W ebsites that utilize online shopping cart systems are great places for you as a webmaster
or a business owner to earn money selling your products. When you are ready to step

up to the e-commerce part of the Internet, a shopping cart is the way to go. However, plan-
ning the shopping cart system can be tricky and will require some extensive testing and
implementation to ensure you have done it right.

This chapter covers the core of the shopping cart system including creating unique cart
identifier numbers, setting cookies to retrieve stored unique identifiers, posting arrays with
form elements, and controlling your stock.

Furthermore, you will create a simple product display page that will pull product informa-
tion from the MySQL database, format your products, and post the form information to the
shopping cart system. If you desire, you can create your own administrative functions using
the methods of insert, modify/update, and delete covered in Chapter 6, “Developing a Web-
site News System.” For this chapter, you will create the tables and insert your products using
your favorite MySQL database management tool.

When you are done with this chapter, you will have a fully functioning shopping cart sys-
tem that will lead you into the next chapter, which covers how to process credit card pay-
ments with merchant account gateways and Application Programming Interfaces (APIs).

Planning Your Shopping Cart
A shopping cart system must be handled delicately. When dealing with sales, you have to
project a flawless image of quality in your sales system. It’s almost the same as ensuring your
store is clean before you open the doors in the morning for a line of customers waiting out-
side. If your products are not priced right or your stock is not handled properly, your cus-
tomers may not want to purchase from you because they may doubt the quality of your
products. Keep that in mind while you plan your shopping cart system, and you may prevent
potential sales losses when your site goes live.

The tricky part about planning an e-commerce shopping cart system is finding a way to
make it foolproof. You have to ask yourself a wide array of questions regarding how even the
most computer-illiterate person would approach using your system. You are the developer,
but you’ll have to think of it from the novice’s point of view when you’re considering the
functionality of your system.

Let’s take into account some of the potential areas that users may find flaws in your shopping
cart system. I will run through some scenarios and then present the workarounds for them.

Scenario 1 You have a storefront with products. At the bottom of each product listing,
you will present a form field that allows the shopper to enter how many of each product

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 230

231

they want to purchase. When they submit this form, your system will add the product to
their cart.

But wait! What if they enter more than you have in stock? What if the item is one of a
kind, and you can’t purchase more to fill back orders? You need to prevent overselling your
stock, especially for limited items. Stock control is your most important feature of the cart.
It is much easier to prevent overselling and charging the shopper for products that you
don’t have than refunding their money and providing an explanation of what happened. To
prevent these downfalls, I will cover stock control thoroughly in this chapter.

Scenario 2 When the shopper views their shopping cart page, they will have the ability
to update the quantity of the item in their cart. If they have multiple items in their shop-
ping cart, you will need to provide a convenient method for them to change the quantity
of all of those products with one click. The easier you can make their shopping experience,
the better chance you will sell your product to them. Stock control also provides a strong
role in these features.

Scenario 3 The shopper has added an item to their shopping cart that they do not want
to purchase. In your shopping cart system, you need to provide a method to remove a
product without requiring the shopper to start over and add all of the products they want
to purchase again.

Scenario 4 The shopper decided after adding multiple items to their shopping cart that
they want to start again. You need to provide a method for them to empty their cart with
one swift click of the button.

Scenario 5 The shopper has added items to their cart but does not want to purchase
them at this time. They want to come back to the website at a later date, maybe sometime
around next payday, and purchase the items. You will have to create a method to identify
the shopper when they return and present them with their shopping cart and its contents
from the last time they visited the site.

The previous scenarios are the common concepts you must build into your shopping cart.
You should consider every possible situation to ensure you can get the customer to purchase
your products without distracting them by faulty code or planning.

Preparing the Code for Your Shopping Cart
To prepare for the code for this chapter, you need to modify your database and create new
scripts to support the objective—building your shopping cart system.

Preparing the Code for Your Shopping Cart

4279c08.qxd 10/27/03 6:20 PM Page 231

232

The first step you will take is to create a new column in your members table. You will name
this new column cart_id and make it a VARCHAR column type with a length of 255. This
column will store the unique ID that you create when the shopper adds an item to their
shopping cart for the first time. If the shopper is logged in as a member, you will update their
information in the database and insert the unique ID into this field.

Next, you will create a table named shopping_products with the information found in
Table 8.1.

TABLE 8.1: Structure Setup for the shopping_products Table

Field Name Data Type Length Extra

product_id MEDIUMINT 25 Primary key, auto increment

product_title VARCHAR 155

product_price FLOAT

product_qty MEDIUMINT 25

caption TINYTEXT

long_description TEXT

The usage for these columns is as follows:

product_id A unique automatically incremented number for each product in your table.

product_title The title of the product that is used in the shopping cart system and
storefront.

product_price The price of the product. This field type is FLOAT for use with numbers
such as prices.

product_qty Used for stock control purposes. This field is the number of each item you
have in stock.

caption A short description of the product to be used for the products index page.

long_description The full description of the product that will be displayed when view-
ing the product individually.

After you have created your product table, let’s enter two products into the database. You
can use your MySQL management tool of choice. I have entered the products in Table 8.2
and Table 8.3.

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 232

233

TABLE 8.2: Product 1, PHP Baseball Hat

Field Name Value

product_id

product_title PHP Baseball Hat

product_price 12.95

product_qty 19

caption These PHP hats are truly unique and hard to find. Grab yours while they
last! Limited stock!

long_description These PHP baseball hats are one size fits all and are made of wool. We only
have one color in stock: blue. The PHP logo is embroidered on the front of
the hat. Grab them while they last!

TABLE 8.3: Product 2, PHP Mousepad

Field Name Value

product_id

product_title PHP Mousepad

product_price 5.99

product_qty 45

caption Nice mousepad for those hard-core PHP developers out there!

long_description Looking for a mousepad? Why not get this PHP mousepad? It has been
proven to boost your PHP development time by 25 percent because of the
slick surface for your mouse to move along. Order now, and we will include
the special “Lint Free” edition!

Next, you will create the MySQL table to store the shopping cart information for your
shoppers (see Table 8.4).

TABLE 8.4: Structure Setup for the shopping_carts Table

Field Name Data Type Length Extra

id MEDIUMINT 25 Primary key, auto increment

cart_identifier VARCHAR 155

product_id MEDIUMINT 25

product_qty MEDIUMINT 25

product_title VARCHAR 155

product_price FLOAT

date DATETIME

Preparing the Code for Your Shopping Cart

4279c08.qxd 10/27/03 6:20 PM Page 233

234

The usage for these columns is as follows:

id Automatically incremented unique number for each row in the table.

cart_identifier A unique ID that you will generate to identify the shopper in the shop-
ping cart system.

product_id Obtained from the shopping_products table for each product entered in the
user’s shopping cart.

product_qty The quantity of the product the shopper wants to purchase.

product_title Used to reduce the number of queries from multiple tables when viewing
the shopping cart information.

product_price Used to multiply the product_qty by the product_price to get the total
product price in the shopping cart.

date Date of the last activity on this shopping cart. It can be used to run a CRON job or
a task that will clean up old and unused shopping carts after a certain period of time.

Creating a Simple Storefront
As mentioned earlier in this chapter, you will create a simple product page that will allow
your shoppers to see the products and add them to the shopping cart. If you want, you can
expand upon this storefront and add administrative functions based on the concepts to insert,
update/modify, and delete your products as discussed in Chapter 6, “Developing a Website
News System.”

To begin, you will create an index page for all of your products. This page will display the
product title, price, stock, a hyperlink to the product page, and a small form to quickly add
the product to the cart. To get started, you will create two Hypertext Markup Language
(HTML) templates for your products. The first template is the small description of the
product that will reside on the index page. Name this file product_small.html and save it in
your website document root under the html directory (see Listing 8.1).

➲ Listing 8.1 products_small.html Template File

<table width=”100%” border=”0” cellspacing=”0” cellpadding=”4”>
<tr>
<td colspan=”2”>
<a href=”/products.php?req=view&product_id=<?=$product_id?>”>

<?=$product_title?>
</td>

</tr>
<tr>

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 234

235

<td width=”16%” align=”left” valign=”top”><font size=”2” face=”Verdana,
Arial, Helvetica, sans-serif”>Description:</td>

<td width=”84%”>
<?=$caption?>

</td>
</tr>
<tr>
<td align=”left” valign=”top”><font size=”2” face=”Verdana, Arial,

Helvetica, sans-serif”>Price:</td>
<td>$
<?=$product_price?>

</td>
</tr>
<tr>
<td> </td>
<td><form method=”post” action=”/cart.php”>

Add To cart
<input name=”qty” type=”text” value=”1” size=”3”>
<input type=”hidden” name=”req” value=”add”>
<input type=”hidden” name=”product_id” value=”<?=$product_id?>”>
<input type=”submit” name=”Submit” value=”Go!”>
</form></td>

</tr>
</table>
<hr size=”1”>

You have seen these file types numerous times in this book. The file is an HTML layout
for your product, and it also has embedded PHP. You will loop this file through your
MySQL results and complete the information inside the template with PHP.

The next file you need to create is the larger template that will display the product by itself
on its own page. Create a new file in your website document root under the html directory
and name it product_large.html (see Listing 8.2).

➲ Listing 8.2 products_large.html Template File

<table width=”100%” border=”0” cellspacing=”0” cellpadding=”4”>
<tr>
<td colspan=”2”><font size=”4” face=”Verdana, Arial, Helvetica, sans-

serif”><?=$product_title?></td>
</tr>
<tr>
<td width=”16%” align=”left” valign=”top”><font size=”2” face=”Verdana,

Arial, Helvetica, sans-serif”>Description:</td>
<td width=”84%”><?=$long_description?></td>

</tr>
<tr>
<td align=”left” valign=”top”><font size=”2” face=”Verdana, Arial,

Helvetica, sans-serif”>Price:</td>
<td>$<?=$product_price?></td>

Creating a Simple Storefront

4279c08.qxd 10/27/03 6:20 PM Page 235

236

</tr>
<tr>
<td align=”left” valign=”top”><font size=”2” face=”Verdana, Arial,

Helvetica, sans-serif”>In Stock:</td>
<td><?=$product_qty?></td>

</tr>
<tr>
<td> </td>
<td>
<form method=”post” action=”/cart.php”>

Add To cart
<input name=”qty” type=”text” value=”1” size=”3”>
<input type=”hidden” name=”req” value=”add”>

<input type=”hidden” name=”product_id” value=”<?=$product_id?>”>
<input type=”submit” name=”Submit” value=”Go!”>

</form>
</td>

</tr>
</table>

This file also includes a template for your product information as well as a form that will
post to the shopping cart file and pass the product_id and product_qty to the shopping cart.

Now that you have your templates created, it is time to create a file in your website’s docu-
ment root directory and name it products.php. This file will utilize the previous examples to
complete the template and display your products (see Listing 8.3).

➲ Listing 8.3 products.php Products File

<?php

include $_SERVER[‘DOCUMENT_ROOT’].
‘/layout.php’;

switch($_REQUEST[‘req’]){
case “view”:

$sql = mysql_query(“SELECT *
FROM shopping_products
WHERE
product_id=’{$_REQUEST[‘product_id’]}’”);

$row = mysql_fetch_assoc($sql);
stripslashes(extract($row));
$page_title = “Our Products: “

.stripslashes($row[product_title]);
myheader($page_title);
$long_description = nl2br($long_description);
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/product_large.html’;

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 236

237

footer();
break;

default:
myheader(“Our Products”);
$sql = mysql_query(“SELECT *

FROM shopping_products
WHERE (product_qty > 0)
ORDER BY product_title”);

while($row = mysql_fetch_array($sql)){
stripslashes(extract($row));
$caption = nl2br($caption);

include $_SERVER[‘DOCUMENT_ROOT’].
‘/html/product_small.html’;

}
footer();

break;
}
?>

The products.php file contains two cases in the switch. The default case will display your
products in alphabetical order and provide the shopper with a chance to add the items to
their shopping cart or access the view case that allows a full detailed description of the prod-
uct. Figure 8.1 shows the default case, and Figure 8.2 shows the view case in action.

F I G U R E 8 . 1 :
Product index,
default case

Creating a Simple Storefront

4279c08.qxd 10/27/03 6:20 PM Page 237

238

If everything is working well, you have a method to allow your shoppers to browse prod-
ucts and add them to your shopping cart. Let’s move on to the core of the shopping cart
system.

Making a Shopping Cart Class
Because your shopping cart is going to contain a large set of complex code, you will make
things easier on yourself by creating a class that will contain all of the functions you need to
utilize the features of your cart. The first file you will work with will reside in the website
document root under the classes directory. Name this new file clsShoppingCart.php (see
Listing 8.4).

➲ Listing 8.4 Shopping Cart Class

<?php

class ShoppingCart{
// Get the cart id
// If one is not available, make one.
function get_cart_id(){

if(!isset($_COOKIE[‘cid’])){
$cart_id = FALSE;

} else {
$cart_id = $_COOKIE[‘cid’];

F I G U R E 8 . 2 :
Viewing a product’s
details, view case

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 238

239

$_SESSION[‘cid’] = $_COOKIE[‘cid’];
}
if($_SESSION[‘cid’]){

$cart_id = $_SESSION[‘cid’];
if($_SESSION[‘login’]){

@mysql_query(“UPDATE members SET
cart_id=’$cart_id’
WHERE id=’”.$_SESSION[‘userid’].”’”);

}
} else {

$cart_id = FALSE;
}
if(!$cart_id){

return FALSE;
} else {

return $cart_id;
}

}

function cart_add($product_id, $product_qty){

$cart_id = $this->get_cart_id();

if(!$cart_id){
// if no cart id found, generate one
$unique_cid = md5(uniqid(rand(),1));

// set cart id into the cookie
setcookie(‘cid’, $unique_cid, time()+24*3600*60);

// Register session with cart id value
$_SESSION[‘cid’] = $unique_cid;

// if person is a member
// modify their profile with
// cart id in the database

if($_SESSION[‘login’]){
$_SESSION[‘cid’] = $unique_cid;
@mysql_query(“UPDATE members SET

cart_id=’$unique_cid’
WHERE id=’”.$_SESSION[‘userid’].”’”);

}
}
$sql_get_product = mysql_query(“SELECT * FROM shopping_products

WHERE product_id=’$product_id’”);

$sql_check = mysql_query(“SELECT * FROM shopping_carts
WHERE
cart_identifier=’{$_SESSION[‘cid’]}’
AND product_id=’$product_id’”);

Making a Shopping Cart Class

4279c08.qxd 10/27/03 6:20 PM Page 239

240

while($row = mysql_fetch_array($sql_check)){
$products = mysql_fetch_assoc($sql_get_product);
if(($product_qty + $products[product_qty]) >

$products[product_qty]){
$new_qty = $products[product_qty];

} else {
$new_qty = ($product_qty + $row[product_qty]);

}

$sql = mysql_query(“UPDATE shopping_carts SET
product_qty = ‘$new_qty’,
date = now()
WHERE
id=’{$row[‘id’]}’”);

$skip = TRUE;
}
if(!$skip){

$products = mysql_fetch_assoc($sql_get_product);
if($products[product_qty] < $product_qty){

$product_qty = $products[product_qty];
}

if($product_qty > 0){

$sql = mysql_query(“INSERT INTO shopping_carts
(cart_identifier,
product_id,
product_title,
product_qty,
product_price,
date)

VALUES (‘{$_SESSION[‘cid’]}’,
‘$product_id’,
‘{$products[‘product_title’]}’,
‘$product_qty’,
‘{$products[‘product_price’]}’,
now())”);

} else {
$sql = FALSE;

}

}

if(!$sql){
return FALSE;

} else {
return TRUE;

}
}

function empty_cart(){

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 240

241

$cart_identifier = $this->get_cart_id();
$sql = @mysql_query(“DELETE FROM shopping_carts

WHERE
cart_identifier=’$cart_identifier’”);

if(!$sql){
return FALSE;

} else {
return TRUE;

}
}

}
?>

I will break down each of the functions in your shopping cart class file in the following sec-
tions so you can understand what they do.

Shopping Cart Class: get_cart_id Function
The first function, get_cart_id, may be a little confusing when you first glance at it. The
main purpose of this function is to return an error (a FALSE Boolean value) or to return a
unique shopping cart ID to the script that calls this function. It could be pretty complicated
if you have never used cookie functions before, but that is okay, I will break it down.

First, you define the function by the name get_cart_id and define the arguments passed to
it. In this case, you do not pass any arguments to this function:

function get_cart_id(){

Second, because your shopping cart is going to provide a cookie feature, you will check for
the cid value in your cookie using the PHP isset function. This IF statement would read “If
$_COOKIE[‘cid’] is not set” because you used the ! operator on the function call. Inside your
IF statement, if the cookie value is not set, you will assign $cart_id a FALSE value. I will
explain the usage of $cart_id at the end of this function:

if(!isset($_COOKIE[‘cid’])){
$cart_id = FALSE;

}

If the $_COOKIE[‘cid’] value is present, you will assign the current session value of
$_SESSION[‘cid’] to the value in the cookie. By assigning a session value of the cookie,
you can provide a redundant check to see if the shopping cart unique identifier has been
assigned to the shopper:

else {
$cart_id = $_COOKIE[‘cid’];
$_SESSION[‘cid’] = $_COOKIE[‘cid’];

}

Making a Shopping Cart Class

4279c08.qxd 10/27/03 6:20 PM Page 241

242

Next you will see if the $_SESSION[‘cid’] value is present. If it is, you will assign the
$cart_id variable the value of the unique cart identifier, and you will also make an attempt to
update the database to add the shopping cart ID to the member profile if the shopper is also
a member on your site:

if($_SESSION[‘cid’]){
$cart_id = $_SESSION[‘cid’];

if($_SESSION[‘login’]){
@mysql_query(“UPDATE members SET

cart_id=’$cart_id’
WHERE id=’”.$_SESSION[‘userid’].”’”);

}
}

If the cookie check and the session check have failed, you ensure that the $cart_id variable
has been assigned a FALSE value:

else {
$cart_id = FALSE;

}

The next task is to determine the value of $cart_id. If it is FALSE because the checks have
failed, you return FALSE as the output of this function. If the $cart_id variable actually contains
a value other than FALSE, you will return the $cart_id value in the output of this function:

if(!$cart_id){
return FALSE;

} else {
return $cart_id;

}
}

Do not worry if you do not fully understand the purpose of this function yet; by the time
you are done with this chapter, you will have a good understanding of it because you will use
it in multiple places of your shopping cart in order to include the cart_add function in this
class.

Shopping Cart Class: cart_add Function
The next function will be used when your shopper adds products to the cart. This function
will utilize the get_cart_id function to determine if the unique shopping cart ID exists, and
if it does, you will utilize it; if it does not, you will create one. I will now break it down.

First, you define the function and pass the arguments to it. You will pass two arguments to
this function: $product_id, which is the product ID posted from the product pages, and
$product_qty, which is the number of items the shopper wants to purchase:

function cart_add($product_id, $product_qty){

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 242

243

Second, you will determine if the shopping cart ID exists by using the nifty function you
created earlier:

$cart_id = $this->get_cart_id();

As mentioned in the get_cart_id function, the output will be a FALSE value if no cart ID
exists, or it will contain the cart ID. The next IF statement will create a unique ID if the
$cart_id variable is a Boolean and contains a FALSE value:

if(!$cart_id){

To generate a unique ID, you will use the following PHP functions together: md5, uniqid,
and rand. After you have your unique ID generated, you assign them to the $unique_cid
variable:

// if no cart id found, generate one
$unique_cid = md5(uniqid(rand(),1));

Ah! Finally, cookies! The next task is to set the cookie value of the unique ID. To set a
cookie, you simply use the setcookie function with the arguments passed to it like this:
setcookie(name of value, value, time limit to expire, additional arguments). In
this use, you will give the cookie value a name of cid and assign the value to it. You will use
the PHP time function to get the current time, and then you add, in seconds, 24 * 3600* 60
for the time limit to expire. This math equation will add 60 days to the current time when
this script was executed. After the setcookie function has executed, you will have the values
required to rerun the $cart_id value from the get_cart_id function:

// set cart id into the cookie
setcookie(‘cid’, $unique_cid, time()+24*3600*60);

After you have your cookie value set, you will also assign the value to the current session:
// Register session with cart id value
$_SESSION[‘cid’] = $unique_cid;

Next, you will update the database if the shopper is a member. This allows you to provide
redundancy to keep track of this valuable shopping cart ID:

// if person is a member
// modify their profile with
// cart id in the database
if($_SESSION[‘login’]){

$_SESSION[‘cid’] = $unique_cid;
@mysql_query(“UPDATE members SET

cart_id=’$unique_cid’
WHERE id=’”.$_SESSION[‘userid’].”’”);

}
} // end generate unique ID.

Making a Shopping Cart Class

4279c08.qxd 10/27/03 6:20 PM Page 243

244

After you have taken care of getting or generating the unique shopping cart ID, you check
to see if the shopper already has the product in their shopping cart. If they do, you will sim-
ply add the new quantity of the product to the current quantity. This check prevents having
duplicate products in the shopping cart. The first query will retrieve the product information
from your shopping_products table, and it will be used in multiple places throughout this
function, so you go ahead and define it here:

$sql_get_product = mysql_query(“SELECT * FROM shopping_products
WHERE product_id=’$product_id’”);

The next query will get the information about the user’s shopping cart from your database:
$sql_check = mysql_query(“SELECT * FROM shopping_carts

WHERE
cart_identifier=’{$_SESSION[‘cid’]}’
AND product_id=’$product_id’”);

The results from the $sql_check function are utilized in a while loop, which allows you to
loop through each product_id and update the quantity using a math function. The math
function adds the current product_qty of their shopping cart to the $product_qty the user
has chosen—if the product ID matches the result of the query:

while($row = mysql_fetch_array($sql_check)){

The next portion of code retrieves the current stock of the product and then checks to see
how many more of the product the shopper wants to purchase. If the sum of the current
shopping cart product quantity and the new quantity they want to purchase are greater than
the amount of stock you have, then you will adjust the shopper’s cart quantity to your maxi-
mum stock. If the sum is not greater, you will add the current shopping cart product quantity
to the new quantity and use that number to update the cart. The $new_qty variable sets the
quantity of the product in their cart:

$products = mysql_fetch_assoc($sql_get_product);
if(($product_qty + $products[product_qty]) >

$products[product_qty]){
$new_qty = $products[product_qty];

} else {
$new_qty = ($product_qty + $row[product_qty]);

}

After you figure out the correct quantity of the product to allow the user to purchase, you
update their shopping cart with this new value:

$sql = mysql_query(“UPDATE shopping_carts SET
product_qty = ‘$new_qty’,
date = now()
WHERE
id=’{$row[‘id’]}’”);

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 244

245

To prevent adding another instance of this product into the shopping cart, you create a
Boolean named $skip and assign a TRUE value for it to use for determining whether you need
to perform the INSERT query later in this script:

$skip = TRUE;
}

At this point, you have already determined if the product already exists in the shopping
cart; if it does, you update the quantity of the cart plus the new quantity of the item. If you
find the item in the cart and the shopper is trying to add more of the item, you skip this next
query because the $skip Boolean is TRUE from the previous listing. If it is not TRUE and the
product does not exist already, you add the product to the shopper’s cart:

if(!$skip){

Earlier, you defined the MySQL query for $sql_get_product. This is the second place in
your code that it is used. You will get the product information to include the stock quantity
that you have and perform the query to update their cart with this new product and the cor-
rect quantity that you can sell them:

$products = mysql_fetch_assoc($sql_get_product);
if($products[product_qty] < $product_qty){

$product_qty = $products[product_qty];
}

If the product quantity that the user has entered is greater than zero, you will perform the
query. Otherwise, you will skip the query on the next else statement:

if($product_qty > 0){

$sql = mysql_query(“INSERT INTO shopping_carts
(cart_identifier,
product_id,
product_title,
product_qty,
product_price,
date)
VALUES (‘{$_SESSION[‘cid’]}’,

‘$product_id’,
‘{$products[‘product_title’]}’,
‘$product_qty’,
‘{$products[‘product_price’]}’,
now())”) or die (mysql_error());

} else {
$sql = FALSE;

}

}

Making a Shopping Cart Class

4279c08.qxd 10/27/03 6:20 PM Page 245

246

After all of your queries have completed, you will determine if the operation was success-
ful. If it was, you will return the TRUE Boolean as the output for this function; otherwise you
will return FALSE:

if(!$sql){
return FALSE;

} else {
return TRUE;

}
}

This function is complex to understand. You perform multiple checks and redundancies to
ensure that your shopping cart is correct, that you are sure that the unique shopping cart ID
exists or is created, and that your product stock is not oversold. Do not worry if you do not
fully understand how it all comes together just yet; you will use these functions inside the
actual shopping cart files, and you will see a more practical application of them later.

Shopping Cart Class: empty_cart Function
The last function in your shopping cart class will empty the shopping cart. This happens by
getting the cart ID and performing a DELETE query based on the cart ID. After the query has
been performed, you will return a Boolean for the success or failure of the query:

function empty_cart(){
$cart_identifier = $this->get_cart_id();
$sql = @mysql_query(“DELETE FROM shopping_carts

WHERE
cart_identifier=’$cart_identifier’”);

if(!$sql){
return FALSE;

} else {
return TRUE;

}
}

The class is now complete and ready for use. Be sure to include this class into your
common.php file before you move on to creating the rest of the shopping cart. Let’s dig
in and create the core of the shopping cart system!

Building the Shopping Cart Interface: cart.php
You will create a single file that will allow the shopper to add products, update quantities, cal-
culate prices, and delete items from their cart. This file is going to utilize the class you cre-
ated previously. Create a file in your website document root directory and name it cart.php
(see Listing 8.5).

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 246

247

➲ Listing 8.5 Shopping Cart cart.php File

<?php

include $_SERVER[‘DOCUMENT_ROOT’].
‘/layout.php’;

$cart = &new ShoppingCart;
$cart_id = $cart->get_cart_id();

switch($_REQUEST[‘req’]){
case “add”:

$add2cart = $cart->cart_add($_REQUEST[‘product_id’],
$_REQUEST[‘qty’]);

myheader(“Shopping Cart”);
if(!$add2cart){

echo “<center>The product could not be “.
“to your shopping cart. You may “.
“have entered an invalid quantity</center>”;

} else {
echo “<center>Item added to your shopping cart!
”.

“View “.
“your cart</center>”;

}
footer();

break;

case “update”:
while(list($product_id, $qty) = each($_POST[qty])){

$sql = mysql_query(“SELECT * FROM
shopping_products
WHERE product_id=’$product_id’”);

$row = mysql_fetch_assoc($sql);
if($qty == 0){

mysql_query(“DELETE FROM shopping_carts
WHERE cart_identifier=’$cart_id’
AND
product_id=’$product_id’”);

}

if($qty > $row[product_qty]){
mysql_query(“UPDATE shopping_carts

SET product_qty=’{$row[product_qty]}’
WHERE cart_identifier=’$cart_id’
AND
product_id=’$product_id’”);

$error = TRUE;
$products[$product_id] =

Building the Shopping Cart Interface: cart.php

4279c08.qxd 10/27/03 6:20 PM Page 247

248

stripslashes($row[product_title]);

} else {
mysql_query(“UPDATE shopping_carts

SET product_qty=’$qty’
WHERE cart_identifier=’$cart_id’
AND
product_id=’$product_id’”);

}
}
if($error){

myheader(“Shopping Cart”);
echo “<center>You have selected more “.

“than our current stock for the following “.
“product(s):
”;

while(list($product_id, $product_name) = each($products)){
echo “”.

“$product_name
”;
}

echo “
”;
echo “We have updated your quantity to the maximum “.

“value that we have in stock.</center>
”;
echo “<center>”.

“Back to Cart</center>”;
footer();

} else {
header(“Location: /cart.php”);

}

break;

case “remove”:
$sql = mysql_query(“DELETE FROM

shopping_carts
WHERE cart_identifier=’$cart_id’
AND product_id=’{$_REQUEST[‘product_id’]}’”);

header(“Location: /cart.php”);

break;

case “empty_confirm”:
myheader(“Shopping Cart”);
echo “<center>Are you sure “.

“you want to empty your cart?
”.
“Yes”.
“ | ”.
“No</center>”;

footer();

break;
case “empty”:

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 248

249

myheader(“Shopping Cart”);
$cart->empty_cart();
echo “<center>Your cart has been emptied!</center>”;
footer();

break;

default:
myheader(“Your Shopping Cart”);

if($cart_id){
$num_items = mysql_result(mysql_query(“SELECT

COUNT(*) as items
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

if($num_items == 0){
echo “<center>Your Shopping Cart is Empty!</center>”;
footer();
exit();

}
} else {

echo “<center>Your Shopping Cart is Empty!</center>”;
footer();
exit;

}
?>
<p>
Your Shopping Cart
</p>
<p>
This page allows you to modify or empty your shopping cart contents.
Simply change the number of each product you wish to purchase and
select the “Update Cart” link at the bottom.</p>
<form name=”update” method=”post” action=”/cart.php”>
<input type=”hidden” name=”req” value=”update”>
<table width=”90%” border=”1” cellspacing=”0” cellpadding=”4”

align=”center”>
<tr>
<td>Qty</td>
<td>Product</td>
<td align=”right”>Price</td>
<td align=”right”>Product Total</td>
</tr>

<?php

$total = mysql_result(mysql_query(
“SELECT sum(product_qty * product_price) AS
subtotal FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

$total = number_format($total, 2);

Building the Shopping Cart Interface: cart.php

4279c08.qxd 10/27/03 6:20 PM Page 249

250

$sql = mysql_query(“SELECT * FROM shopping_carts
WHERE cart_identifier=’$cart_id’”);

while($row = mysql_fetch_array($sql)){
$product_total =

number_format(($row[product_qty] * $row[product_price]),2);
echo “<tr>”.

“<td>”.
“<input type=\”text\” “.
“name=\”qty[$row[product_id]]\” “.
“size=\”2\” value=\”$row[product_qty]\”>”.
“
”.
“<a href=\”/cart.php?req=remove&”.
“product_id=$row[product_id]\”>”.
“Remove”.
“</td>”.
“<td><a href=\”/products.php?req=view&”.
“product_id=$row[product_id]\”>”.
stripslashes($row[product_title]).
“</td>”.
“<td align=\”right\”>\$$row[product_price]</td>”.
“<td align=\”right\”>\$$product_total</td>”.
“</tr>”;

}
?>
<tr>
<td colspan=”2”> </td>
<td align=”right”>Total:</td>
<td align=”right”>$<?=$total?></td>
</tr>
<tr>
<td colspan=”4” align=”center”>
Update Cart
 |
Empty Cart
 |
Continue Shopping
 |
Checkout
</td>
</tr>
</table>
</form>

<?php
footer();

break;
}
?>

I will now break this file down so you can understand what it is doing.

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 250

251

Shopping Cart Interface: cart.php Initialization
To start the code in the cart.php file, you fire up the PHP engine and include your layout.php
file from your custom theme. Next you will initialize the shopping cart class and then get the
shopping cart ID from the get_cart_id function within the class. You grab the shopping cart
ID outside of the switch and at the top of the file because you will be using the $cart_id vari-
able throughout cart.php. By getting the $cart_id here, you are able to reduce the code:

<?php

include $_SERVER[‘DOCUMENT_ROOT’].
‘/layout.php’;

$cart = &new ShoppingCart;
$cart_id = $cart->get_cart_id();

Next you will start your switch that allows you to perform multiple operations within the
same physical file:

switch($_REQUEST[‘req’]){

Shopping Cart Interface: cart.php add case
This case allows the shopper to add products to their shopping cart. It utilizes the cart_add
function from within your shopping cart class. When the shopper posts the form from the
products.php file, the data is sent to this case, and you pass two arguments to the cart_add
function in the class: the product ID number and the quantity they want to add to their cart:

case “add”:
$add2cart = $cart->cart_add($_REQUEST[‘product_id’],

$_REQUEST[‘qty’]);

Next, you will display your custom myheader function from the layout.php file with the
dynamic page title you want to display for this page:

myheader(“Shopping Cart”);

Because the result of the cart_add function in the class is a Boolean value, you will deter-
mine which message to display to the shopper. You can display a message saying the product
was added to their cart, or you can display an error message, depending on the value of the
Boolean:

if(!$add2cart){
echo “<center>The product could not be “.

“to your shopping cart. You may “.
“have entered an invalid quantity</center>”;

} else {
echo “<center>Item added to your shopping cart!
”.

“View “.
“your cart</center>”;

}

Building the Shopping Cart Interface: cart.php

4279c08.qxd 10/27/03 6:20 PM Page 251

252

You also will need to display the footer function from the layout.php file to complete the
look of this page:

footer();

Finally, you close the case by issuing a break:
break;

Shopping Cart Interface: cart.php default case
I will cover the default case out of order from the flow of the script code because you need
to understand some things before I cover the rest of the script. The default case is the por-
tion of the cart.php file that displays the contents of the shoppers’ carts and allows them to
modify their contents, to update quantities, to remove individual items, or to empty their
carts. Figure 8.3 shows what this case looks like in the web browser.

I will now break the default case down. You start the case by identifying it as the default
value for the switch and include the custom myheader function from the layout.php file:

default:
myheader(“Your Shopping Cart”);

Next, you need to find if the shopper has a $cart_id and, if they do, if their cart is empty.
You do this by first checking if the $cart_id exists and is not a FALSE value. If it does exist,
you will perform a query based on the $cart_id and return the number of products the shop-
per has in their cart:

if($cart_id){

F I G U R E 8 . 3 :
cart.php file,
default case

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 252

253

$num_items = mysql_result(mysql_query(“SELECT
COUNT(*) as items
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

At this point, you have determined that the $cart_id does exist, and you have found the
number of items the shopper has in the cart. If the value is 0, you display the message that
their cart is empty, display the footer, and exit this script from going any further:

if($num_items == 0){
echo “<center>Your Shopping Cart is Empty!</center>”;
footer();
exit();

}

If the shopper does not have a $cart_id, you display a message about the cart being empty
and display the custom footer and then exit the script from going any further:

} else {
echo “<center>Your Shopping Cart is Empty!</center>”;
footer();
exit;

}

By this point, if the script is still executing, you have determined that the shopper has a
$cart_id and that they have products in their cart. So, you will format the page that displays
the shopping cart contents and allows them to modify their cart.

Next, you will exit PHP so you can easily format the HTML code for the top portion
of the shopping cart page that is directly below the custom myheader function from the
layout.php file:

?>

The next portion of HTML code creates a page heading and a table and starts a form that
will post to the update case of this script:

<p>
Your Shopping Cart
</p>
<p>
This page allows you to modify or empty your shopping cart contents.
Simply change the number of each product you wish to purchase and
select the “Update Cart” link at the bottom.</p>
<form name=”update” method=”post” action=”/cart.php”>
<input type=”hidden” name=”req” value=”update”>
<table width=”90%” border=”1” cellspacing=”0” cellpadding=”4” align=”center”>
<tr>
<td>Qty</td>
<td>Product</td>

Building the Shopping Cart Interface: cart.php

4279c08.qxd 10/27/03 6:20 PM Page 253

254

<td align=”right”>Price</td>
<td align=”right”>Product Total</td>
</tr>

Next, you will fire up the PHP engine and perform a query that will utilize the MySQL SUM
function. The SUM function allows you to calculate the total number values of one or more
columns combined for each row in the database matching the query. You utilize the SUM func-
tion to get the total of the shopper’s order by multiplying the product price and the product
quantity for each row found and then adding the totals together to output a number.

You use the SUM function like this: SELECT SUM(column) AS new_value FROM table. You
can use SUM on multiple columns like the next example:

<?php
$total = mysql_result(mysql_query(

“SELECT sum(product_qty * product_price) AS
subtotal FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

PHP and MySQL have a tendency to convert numbers to decimal values to provide an
exact number output. To simplify this number into an everyday use, such as dollars and cents,
you use the PHP number_format function on the value. I set the precision to 2 for my pre-
ferred output. It would convert a number such as 322.5983 to 322.60.

$total = number_format($total, 2);

Next, you will perform a query that will allow you to get the contents of your shoppers’
carts, loop it through a while loop, and display the results on the page:

$sql = mysql_query(“SELECT * FROM shopping_carts
WHERE cart_identifier=’$cart_id’”);

while($row = mysql_fetch_array($sql)){

In your shopping cart, you will display the product quantity, the title, the individual price
for this product, and a total price for this product and the quantity the user wants to pur-
chase. Based on this design, you will use number_format for the product_qty multiplied by
the product_price and assign it to the $product_total variable to display in the cart:

$product_total =
number_format(($row[product_qty] * $row[product_price]),2);

Now you will complete your HTML table and form with the results of each product in the
shoppers’ carts. But I will break this HTML down a little because there are some new ele-
ments I have not covered yet.

The first portion is the HTML table row and the first cell that is going to contain an input
box with the value of product_qty for the current product:

echo “<tr>”.
“<td>”.

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 254

255

The next element is important; PHP allows you to create an array from a form-posted value.
For each product you have, when the user updates their cart, you will create an array named
qty. This array will contain the product ID and the quantity they want to specify. So, for your
input type value, you can use qty[$row[product_id]] as the name of the input field, and then
you can use the value of the field when the form was posted to make the changes to the cart.

If your cart contained three items—for example, product_id 1, 2, and 3—and the quantity
values were all set to 5, you would have an array that looks similar to this when the form
posted, after you used the PHP function print_r() on the posted array:

Array([1] => 5 [2] => 5 [3] => 5)

Based on this concept, you can post an array of product IDs and their current or new quan-
tities and update the database with this information. I will cover how to handle the results in
the update case:

“<input type=\”text\” “.
“name=\”qty[$row[product_id]]\” “.
“size=\”2\” value=\”$row[product_qty]\”>”.

Next you create a hyperlink that links to the remove case to remove the product from
the cart:

“
”.
“<a href=\”/cart.php?req=remove&”.
“product_id=$row[product_id]\”>”.
“Remove”.
“</td>”.

Now you display the product title and use the stripslashes function on the value, and you
also link to the product page for this item:

“<td><a href=\”/products.php?req=view&”.
“product_id=$row[product_id]\”>”.
stripslashes($row[product_title]).
“</td>”.

The next section of code displays the individual product price for this item:
“<td align=\”right\”>\$$row[product_price]</td>”.

And finally, for your loop, you display the price for this product from the $product_total
variable created earlier:

“<td align=\”right\”>\$$product_total</td>”.
“</tr>”;

Close your while loop and close the PHP engine because the rest of this case is going to
be HTML with embedded PHP:

}
?>

Building the Shopping Cart Interface: cart.php

4279c08.qxd 10/27/03 6:20 PM Page 255

256

The next portion of HTML code is the table row and cells that display the total price of
the shopping cart using the $total variable:

<tr>
<td colspan=”2”> </td>
<td align=”right”>Total:</td>
<td align=”right”>$<?=$total?></td>
</tr>

To make your shopping cart look nicer, you will use a JavaScript function that allows you
to post a form from a hyperlink based on the name of the form instead of creating a form
submit button:

<tr>
<td colspan=”4” align=”center”>

Update Cart
 |

Next, you will provide a hyperlink to the empty_confirm case to present a last-chance
confirmation to empty the shopping cart:

Empty Cart
 |

You always want to provide a link to allow the shopper to go back to the storefront and
keep shopping! The following link takes the shopper back to the products.php page:

Continue Shopping
 |

The following link takes you to the checkout.php file that you will build in Chapter 9,
“Processing Payments for Your Website”:

Checkout
</td>

The rest of this case is cleanup. You close your table, open PHP to display your custom
footer from the layout.php file, and then issue the break:

</tr>
</table>
</form>

<?php
footer();

break;

Now that you know where all of the other cases in this switch will come into play, let’s take
a look at the rest of them now.

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 256

257

Shopping Cart Interface: cart.php update case
The next case is interesting. It processes the information in the $_POST[qty] array that you
created with the input fields that allow your shopper to change the product quantity for each
product. This case will also perform some stock control to prevent overselling your stock.

First, you will define the case:
case “update”:

Second, you perform a while loop and create a list of the keys and values in the
$_POST[qty] array by using the each function in PHP:

while(list($product_id, $qty) = each($_POST[qty])){

After you build your list and put it in a loop, you can go through each element of the array
and perform a query on the $product_id you extracted from the array in the list function:

$sql = mysql_query(“SELECT * FROM
shopping_products
WHERE product_id=’$product_id’”);

Once you have performed the query, you can fetch the results into an associative array
using mysql_fetch_assoc and then check the stock against the requested quantity:

$row = mysql_fetch_assoc($sql);

If the shopper tries to be tricky and enter 0 as the quantity they want to purchase, you will
remove the item from their shopping cart. Believe it or not, someone will try to do this, so be
prepared:

if($qty == 0){
mysql_query(“DELETE FROM shopping_carts

WHERE cart_identifier=’$cart_id’
AND
product_id=’$product_id’”);

}

If the shopper wants more than you currently have in stock, you will simply give them your
maximum stock value and prevent overselling your stock. You do this by updating their quan-
tity with the value from the $sql query that returns the maximum number of stock you have
for this product:

if($qty > $row[product_qty]){
mysql_query(“UPDATE shopping_carts

SET product_qty=’{$row[product_qty]}’
WHERE cart_identifier=’$cart_id’
AND
product_id=’$product_id’”);

You want to notify the shopper that you have modified their requested quantity to match
your stock, so you build an array and add the adjusted product title and product ID to this

Building the Shopping Cart Interface: cart.php

4279c08.qxd 10/27/03 6:20 PM Page 257

258

array. And then you create an $error Boolean variable and assign the TRUE value to it. You
will use the $products array and the $error Boolean later in this case:

$error = TRUE;
$products[$product_id] =

stripslashes($row[product_title]);

}

The next ELSE statement is used when you do not have to modify the requested product
quantity because the shopper has not requested more than you have in stock. Here you will
update the affected product in the shopper’s cart with the quantity requested:

else {
mysql_query(“UPDATE shopping_carts

SET product_qty=’$qty’
WHERE cart_identifier=’$cart_id’
AND
product_id=’$product_id’”);

}

Close the while loop for the $_POST[qty] array:
}

If the script assigned the $error Boolean, you will create a message to display to the shop-
per after the script executes. This message will notify them that they have requested more
than your maximum stock and you have adjusted their cart to fix this. This IF statement uses
a while loop with the list function and the each function for the $products array that was
created when the $error Boolean was assigned a TRUE value. Then each product that had a
maximum value reached will be displayed with a hyperlink back to that product:

if($error){
myheader(“Shopping Cart”);
echo “<center>You have selected more “.

“than our current stock for the following “.
“product(s):
”;

while(list($product_id, $product_name) = each($products)){
echo “”.

“$product_name
”;
}

echo “
”;
echo “We have updated your quantity to the maximum “.

“value that we have in stock.</center>
”;
echo “<center>”.

“Back to Cart</center>”;
footer();

}

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 258

259

To understand what happens when you reach a maximum stock value, Figure 8.4 depicts
the message displayed to the user.

If the $error Boolean was not assigned, you will direct the shopper back to their shopping
cart with the updated values by using the PHP header function. This usually happens as
quickly as the shopper submits the button and the page can load. If they did not reach your
maximum stock, the updated shopping cart should appear nearly instantly:

else {
header(“Location: /cart.php”);

}

Next, you close the case by issuing a break:
break;

Now your shopping cart has a method of updating the stock quantities of each item! Let’s
move on to the portion of your cart where you can remove individual items.

Shopping Cart Interface: cart.php remove case
This case allows a single product to be removed from the shopping cart. You achieve this by
adding a hyperlink below the product quantity input field for each product in the shopping
cart. The hyperlink contains the case name and the product_id to perform the DELETE query
in MySQL and then immediately directs the shopper back to the shopping cart. This case
should execute the query and immediately display the shopping cart as soon as the page
reloads when the user clicks the Remove hyperlink below a product’s quantity. Figure 8.5
shows the Remove hyperlink.

The following is the code for the remove case:
case “remove”:

$sql = mysql_query(“DELETE FROM
shopping_carts
WHERE cart_identifier=’$cart_id’
AND product_id=’{$_REQUEST[‘product_id’]}’”);

header(“Location: /cart.php”);

break;

F I G U R E 8 . 4 :
cart.php file, maxi-
mum stock reached
while updating quantity

Building the Shopping Cart Interface: cart.php

4279c08.qxd 10/27/03 6:20 PM Page 259

260

Shopping Cart Interface: cart.php empty_confirm case
You will offer the ability for the shopper to empty their entire shopping cart, but before you
do that, you want to provide them with a confirmation link and give them a Yes or No choice
if they want to empty their cart. It could be a potential loss if you do not provide a confirma-
tion screen and someone accidentally clicked the link to empty their cart.

This case simply links to the empty case, which will empty their cart if they click the Yes
link or link to the cart.php file if they choose No.

Figure 8.6 shows the confirmation screen.

The following is the code for the empty_confirm case:
case “empty_confirm”:

myheader(“Shopping Cart”);
echo “<center>Are you sure “.

“you want to empty your cart?
”.
“Yes”.
“ | ”.
“No</center>”;

footer();

break;

F I G U R E 8 . 6 :
cart.php file, empty
cart confirmation
screen

F I G U R E 8 . 5 :
cart.php file, the
Remove hyperlink

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 260

261

Shopping Cart Interface: cart.php empty case
This case utilizes the empty_cart function inside your shopping cart class and deletes all of
the affected rows for the shopping cart IDs this shopper has been assigned. When this case
executes, the shopper will see a message on the page.

Figure 8.7 shows the message displayed after the cart has been emptied.

The following shows the code for the empty case:
case “empty”:

myheader(“Shopping Cart”);
$cart->empty_cart();
echo “<center>Your cart has been emptied!</center>”;
footer();

break;

Building the Shopping Cart Interface: checkout.php
At this point, you have your shopping cart set up to allow your customers to add products to,
update, delete, and empty their shopping cart. The last step to prepare for the payment sys-
tem you will build in the next chapter is to create a checkout page that performs a sanity
check on your product stock and then provides users with a payment method. Listing 8.6
shows the shopping cart checkout.php script.

➲ Listing 8.6 Shopping Cart checkout.php Script

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

$cart = &new ShoppingCart;
$cart_id = $cart->get_cart_id();

myheader(“Confirm Order”);

// Sanity check!
if($cart_id){

$num_items = mysql_result(mysql_query(“SELECT
COUNT(*) as items
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

F I G U R E 8 . 7 :
cart.php file, cart
emptied message

Building the Shopping Cart Interface: checkout.php

4279c08.qxd 10/27/03 6:20 PM Page 261

262

if($num_items == 0){
echo “<center>Your Shopping Cart is Empty!</center>”;
footer();
exit();

}
} else {

echo “<center>Your Shopping Cart is Empty!</center>”;
footer();
exit;

}

// Get cart conents
$sql = mysql_query(“SELECT * FROM shopping_carts

WHERE cart_identifier=’$cart_id’”);

while($row = mysql_fetch_array($sql)){
// Get product stock
$stock_sql = mysql_query(“SELECT * FROM shopping_products

WHERE product_id = ‘{$row[‘product_id’]}’”);

// Determine if cart stock is higher than product
// stock, if so, adjust cart and build error
// message.

while($stock = mysql_fetch_array($stock_sql)){
if($stock[‘product_qty’] < $row[‘product_qty’]){

// stock is lower than requested
// perform query to update cart
mysql_query(“UPDATE shopping_carts

SET product_qty = ‘{$stock[‘product_qty’]}’
WHERE product_id = ‘{$row[‘product_id’]}’
AND cart_identifier = ‘$cart_id’”);

// create $error and build products error array
$error = TRUE;
$products[$row[product_id]] = stripslashes($row[product_title]);

}
}

}
if($error){

// $error is present, so show message
echo “<center>You have selected more “.

“than our current stock for the following “.
“product(s):
”;

while(list($product_id, $product_name) = each($products)){
echo “”.

“$product_name
”;
}

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 262

263

echo “
”;
echo “We have updated your quantity to the maximum “.

“value that we have in stock.</center>
”;
echo “<center>Back to Cart</center>”;

// Display footer
footer();

// Exit script to prevent
// the rest of the script showing
exit();

}

// No errors present here, so show the
// order confirmation page.
?>

<p>
Please Confirm Your Order
</p>
<p>
Please verify your shopping cart contents before proceeding to the payment
pages.</p>
<table width=”90%” border=”1” cellspacing=”0” cellpadding=”4” align=”center”>
<tr>
<td>Qty</td>
<td>Product</td>
<td align=”right”>Price</td>
<td align=”right”>Product Total</td>
</tr>

<?php
$total = mysql_result(mysql_query(“SELECT

sum(product_qty * product_price) AS subtotal
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

$total = number_format($total, 2);

$sql = mysql_query(“SELECT * FROM shopping_carts
WHERE cart_identifier=’$cart_id’”) or die (mysql_error());

while($row = mysql_fetch_array($sql)){
$product_total = number_format(($row[product_qty] * $row[product_price]),2);
echo “<tr>”.

“<td>”.
“$row[product_qty]”.
“
”.
“</td>”.
“<td>”
.stripslashes($row[product_title]).
“</td>”.

Building the Shopping Cart Interface: checkout.php

4279c08.qxd 10/27/03 6:20 PM Page 263

264

“<td align=\”right\”>\$”.number_format($row[product_price],2).”</td>”.
“<td align=\”right\”>\$$product_total</td>”.
“</tr>”;

}
?>
<tr>
<td colspan=”2”> </td>
<td align=”right”>Total:</td>
<td align=”right”>$<?=$total?></td>
</tr>
<tr>
<td colspan=”4” align=”center”>
Back to Cart
 |
Continue Shopping
 |
Submit Payment
</td>
</tr>
</table>
<?php
footer();
?>

I will break this script down into parts. The first portion of the script includes your layout,
initializes the ShoppingCart class, and then includes the custom myheader function from the
layout.php file:

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

$cart = &new ShoppingCart;
$cart_id = $cart->get_cart_id();

myheader(“Confirm Order”);

I call this next part of the code a “sanity check” because you will check one last time for the
amount of stock you have in your inventory and compare it to the number of products this
customer is requesting. This will prevent you from overselling the item. This code is almost
identical to the update case in the cart.php file except you will not show the HTML forms
like you did with the cart.php. Instead, you will show static values for the product quantities,
and you will also not show the Remove hyperlinks and Update Cart hyperlink at the bottom
of the page:

// Sanity check!
if($cart_id){

$num_items = mysql_result(mysql_query(“SELECT

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 264

265

COUNT(*) as items
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

if($num_items == 0){
echo “<center>Your Shopping Cart is Empty!</center>”;
footer();
exit();

}
} else {

echo “<center>Your Shopping Cart is Empty!</center>”;
footer();
exit;

}

// Get cart conents
$sql = mysql_query(“SELECT * FROM shopping_carts

WHERE cart_identifier=’$cart_id’”);

while($row = mysql_fetch_array($sql)){
// Get product stock
$stock_sql = mysql_query(“SELECT * FROM shopping_products

WHERE product_id = ‘{$row[‘product_id’]}’”);

// Determine if cart stock is higher than product
// stock, if so, adjust cart and build error
// message.

while($stock = mysql_fetch_array($stock_sql)){
if($stock[‘product_qty’] < $row[‘product_qty’]){

// stock is lower than requested
// perform query to update cart
mysql_query(“UPDATE shopping_carts

SET product_qty = ‘{$stock[‘product_qty’]}’
WHERE product_id = ‘{$row[‘product_id’]}’
AND cart_identifier = ‘$cart_id’”);

// create $error and build products error array
$error = TRUE;
$products[$row[product_id]] = stripslashes($row[product_title]);

}
}

}
if($error){

// $error is present, so show message
echo “<center>You have selected more “.

“than our current stock for the following “.

Building the Shopping Cart Interface: checkout.php

4279c08.qxd 10/27/03 6:20 PM Page 265

266

“product(s):
”;

while(list($product_id, $product_name) = each($products)){
echo “”.

“$product_name
”;
}

echo “
”;
echo “We have updated your quantity to the maximum “.

“value that we have in stock.</center>
”;
echo “<center>Back to Cart</center>”;

// Display footer
footer();

// Exit script to prevent
// the rest of the script showing
exit();

}

// No errors present here, so show the
// order confirmation page.
?>

From this point forward, you will alter the HTML output from the way your cart.php file
displays it. Remove the HTML forms that allow changes to be made to the cart:

<p>
Please Confirm Your Order
</p>
<p>
Please verify your shopping cart contents before proceeding to the payment
pages.</p>
<table width=”90%” border=”1” cellspacing=”0” cellpadding=”4” align=”center”>
<tr>
<td>Qty</td>
<td>Product</td>
<td align=”right”>Price</td>
<td align=”right”>Product Total</td>
</tr>

<?php
$total = mysql_result(mysql_query(“SELECT

sum(product_qty * product_price) AS subtotal
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

$total = number_format($total, 2);

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 266

267

$sql = mysql_query(“SELECT * FROM shopping_carts
WHERE cart_identifier=’$cart_id’”) or die (mysql_error());

while($row = mysql_fetch_array($sql)){
$product_total = number_format(($row[product_qty] * $row[product_price]),2);
echo “<tr>”.

“<td>”.
“$row[product_qty]”.
“
”.
“</td>”.
“<td>”
.stripslashes($row[product_title]).
“</td>”.
“<td align=\”right\”>\$”.number_format($row[product_price],2).”</td>”.
“<td align=\”right\”>\$$product_total</td>”.
“</tr>”;

}
?>
<tr>
<td colspan=”2”> </td>
<td align=”right”>Total:</td>
<td align=”right”>$<?=$total?></td>
</tr>

You also want to provide a hyperlink back to the shopping cart and product pages in the
event the customer changes their mind and decides to keep shopping. The other hyperlink
on this page, Submit Payment, will take the customer to the payment options you will create
in the next chapter:

<tr>
<td colspan=”4” align=”center”>
Back to Cart
 |
Continue Shopping
 |
Submit Payment
</td>
</tr>
</table>
<?php
footer();
?>

Now your cart is all ready to allow your customers to populate it with the products they
want to purchase, to update it, and to modify it. Furthermore, they will be able to go to the
checkout confirmation pages where you will perform a sanity check on the stock for your
product inventory.

Building the Shopping Cart Interface: checkout.php

4279c08.qxd 10/27/03 6:20 PM Page 267

268

Providing a Shopping Cart Side Box
You want to provide a method to notify the shopper of how many items are in their shopping
cart and provide a link to the cart in the event that they get distracted by other areas of your
site while shopping. You can do this by creating a box and displaying it in the right column
away from your hyperlinks and features in the left column of the site.

Create a file named box_shopping_cart.php in your website document root boxes direc-
tory. Listing 8.7 shows the code.

➲ Listing 8.7 Shopping Cart Box

<?php
$cart = &new ShoppingCart;
$cart_id = $cart->get_cart_id();

if($cart_id){
$num_items = mysql_result(mysql_query(“SELECT

COUNT(*) as items
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

if($num_items > 0){
?>

<table width=”160” border=”0” cellspacing=”0” cellpadding=”0”>
<tr bgcolor=”#000066”>
<td width=”5” height=”10”> </td>
<td width=”150”>
<div align=”center”>

Shopping Cart
</div>
</td>
<td width=”5”> </td>
</tr>
<tr>
<td height=”5”> </td>
<td align=”left” valign=”top”>
<center>

<?=$num_items?> item(s) in cart!

</center>
<center>

View Cart!

</center>
</td>

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 268

269

<td> </td>
</tr>
</table>
<hr size=”1”>

<?php
}
}
?>

I will break this code down to the important elements. First, you start PHP, initialize the
shopping cart class, and get the shopper’s cart ID:

<?php
$cart = &new ShoppingCart;
$cart_id = $cart->get_cart_id();

If the $cart_id exists, you perform a query to find out how many products are in the shop-
per’s cart:

if($cart_id){
$num_items = mysql_result(mysql_query(“SELECT

COUNT(*) as items
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

If the number of products is greater than 0, you will display this box on the right column.
Otherwise, you will not display anything to the shopper or website visitor because it is irrele-
vant that they see this box:

if($num_items > 0){
?>

The rest of the code, with the exception of closing the IF statements, is a simple HTML-
formatted table like you have created in previous chapters of this book. This box will contain
a message saying xx item(s) in cart and provide a hyperlink to the user’s cart.

Open the layout.php file and add this box into the right column under the footer function.
I have made some minor modifications to my layout.php file to accommodate the right col-
umn. Here is the footer function code for my layout.php file:

<?php
}
function footer(){
?>
<!-- End Content and Begin Footer -->

</td>
<!-- Right Column Boxes and Links -->
<td width=”130” valign=”top”>
<?php

Providing a Shopping Cart Side Box

4279c08.qxd 10/27/03 6:20 PM Page 269

270

include $_SERVER[‘DOCUMENT_ROOT’].
‘/boxes/box_shopping_cart.php’;

?>
</td>
<!-- End Right Column Boxes and Links -->
</tr>
<tr>
<td> </td>
<td> </td>
<td width=”130” nowrap> </td>

</tr>
</table>
</body>
</html>
<?php
}
?>

Figure 8.8 shows this box example.

Testing Your Shopping Cart System
After you have completed the code in this chapter, let’s test your shopping cart system. Fol-
low these steps:

1. Open your web browser and go to the products.php page. You should see a page similar
to Figure 8.9. Notice the product titles and form to add the product to the cart. Also, take
notice that the box_shopping_cart.php file is not displayed in the right column.

2. Under the first product on the page, enter the value 25 into the input field and click the
Add to Cart button. Take notice that the box_shopping_cart.php file is now displayed in
the right column of the website. When the message is displayed saying The product has
been added to your cart, click the View Cart hyperlink. You should now see the shopping
cart depicted in Figure 8.10.

Take special notice that the quantity was automatically adjusted to the maximum number
of stock you have for this product: 19. The Product Total column and Total column
should read $246.05.

F I G U R E 8 . 8 :
Shopping cart box

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 270

271

3. Click the Continue Shopping hyperlink at the bottom of the shopping cart and go back to
the product page. For the same product you added earlier, add three more of this product
to your cart. Once you click the View Cart link on the next page, you will see your shop-
ping cart again. The quantity of this product should still be 19, which is the maximum
number of stock you have for this product.

4. Click the Continue Shopping hyperlink at the bottom of the shopping cart and go back to
the products page. Add five of the second product on the page to your cart and click the
Add to Cart button. Once again, click the View Cart link on the confirmation page. Note

F I G U R E 8 . 1 0 :
Shopping cart interface

F I G U R E 8 . 9 :
Products page

Testing Your Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 271

272

the Total value at the bottom of the shopping cart. It should be the sum of the two prod-
ucts multiplied by their quantities. For example, product 1 is $12.95 × 19 = $246.05.
Product 2 is $5.99 × 5 = $29.95. The total of the shopping cart is $276.00, which is the
total for product 1 and product 2 combined.

5. In the shopping cart interface, change the value of the first product to 5 and change the
value of the second product to 110 and then click the Update Cart hyperlink at the bot-
tom of the page. You should see a message notifying you that you have reached the maxi-
mum stock for the second product (see Figure 8.11).

6. Click the Back to Cart link on your browser and note the changes (see Figure 8.12).

7. In the shopping cart interface, change the quantity value for the second product to 0 and
click the Update Cart hyperlink. You should see the second product disappear almost
immediately when you clicked the Update Cart hyperlink. This happened because the
value was set to 0, and the code in your update case of the cart.php file took care of this
for you.

8. At the bottom of the shopping cart interface, click the Empty Cart hyperlink. On the
confirmation screen, click Yes and your cart will be emptied. The box_shopping_cart.php
file is no longer displayed because your shopping cart is now empty.

F I G U R E 8 . 1 2 :
Shopping cart interface
with updated values

F I G U R E 8 . 1 1 :
Maximum stock
reached for product 2

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 272

273

9. Go to your products page, add any quantity of a product, and then view your shopping
cart. Close your web browser and then open it again to your site. If you have cookies
enabled, you should see box_shopping_cart.php displayed. Click the View Cart link in
the box_shopping_cart.php box and view your cart. This step will test the cookies to
ensure they are working properly. If they are not working, then the shopping cart will not
be linked to the shopper if they leave your site. This is a common problem for nearly all
shopping carts that do not require a login system.

If everything is working as you intended, then you are on your way to making some money
with your site! Every shopping cart system will need to be tailored to your own needs. By now,
you should have enough knowledge of PHP to customize your cart to your requirements.

Creating a Products Catalog Hyperlink
The last task is to create the hyperlinks that will allow your shoppers to access the products
catalog. In my box_main_links.php file, I simply added a link to products.php. Take a look
at my box_main_links.php file:

<table width=”160” border=”0” cellspacing=”0” cellpadding=”0”>
<tr bgcolor=”#000066”>
<td width=”5” height=”10”> </td>
<td width=”150”>
<div align=”center”>

Site Links
</div>
</td>
<td width=”5”> </td>

</tr>
<tr>
<td height=”5”> </td>
<td align=”left” valign=”top”>

Index

News Articles

Our Products

</td>
<td> </td>

</tr>
<tr>
<td width=”5” height=”10”> </td>
<td width=”150”> </td>
<td width=”5”> </td>

</tr>
</table>
<hr size=”1”>

Creating a Products Catalog Hyperlink

4279c08.qxd 10/27/03 6:20 PM Page 273

274

When you are done modifying this file, the Our Products link should appear in the left
column under the “Site Links” box.

What’s Next?
In this chapter, you built a simple storefront followed by a complex shopping cart system that
will keep your shoppers from getting too confused. You have controlled your stock and given
your shoppers a method to store the products they want to purchase in their carts. Now it is
time to actually sell the product. The shopping cart system is ready for you to check out, so
you need to provide a method to perform credit card transactions on the Internet.

The next chapter covers what is required to get a merchant account and how to use mer-
chant account gateways and APIs to send your shopper’s credit card information to a gateway
for processing and to receive a result for finishing the order process. The chapter also covers
how to use a module for PHP to send and receive data to and from servers without being vis-
ible by the user.

Chapter 8 • Creating a Shopping Cart System

4279c08.qxd 10/27/03 6:20 PM Page 274

Processing Payments
for Your Website

Chapter 9

4279c09.qxd 10/27/03 6:20 PM Page 275

276

W hen it is time to move into processing payments for your website, you will find many
solutions available. The Internet is constantly expanding, and e-commerce is still

blooming with ways to earn money on the Internet. As a webmaster, you can take advantage
of these opportunities by utilizing merchant account gateway Application Programming
Interfaces (APIs) such as VeriSign or third-party payment solutions such as PayPal.

Chapter 8, “Creating a Shopping Cart System,” left off at the billing pages. Your shopping
cart system is ready to allow the customer to pay for their items and complete their shopping
experience. It is up to you, the web developer, to determine how to obtain a customer’s money
and complete their order. This chapter discusses the differences between using a merchant
account gateway API and using third-party payment solutions. It also shows you practical uses
of each type of payment system.

Merchant Account Gateways vs. Third-Party Payment Solutions
The major goal I try to accomplish when selling products or services on the Internet is to
project a professional, business-like appearance. The best method I can recommend is to uti-
lize a merchant account gateway instead of a third-party payment solution. Why? Because
the processing of the customer information remains on your website with a merchant account
gateway compared to outside your site with PayPal or another third-party payment solution.
There are plenty of pros and cons when trying to determine the best method to utilize. The
following sections explore some of them.

What Is a Merchant Account Gateway?
A merchant account gateway is a service you can utilize to process billing information regarding
a specific transaction with your customers. The customer information is compiled into a spe-
cial format and sent through a back-end resource to the gateway. The gateway validates the
information, processes it through a bank or financial institution, receives a response, and in
turn generates a response to send back to the requesting site (you) while recording the trans-
action into your gateway account.

Merchant account gateways are growing rapidly in popularity, with more companies
starting to offer them. You must have a valid merchant account through a financial institu-
tion to utilize a merchant account gateway. Some companies on the Internet offer a merchant
account gateway in conjunction with a merchant account. Do not get the impression that
you cannot get a merchant account because you do not have a business license, though. This
myth is not true; however, you will have to dig a little when talking to the merchant account
sales representatives. If you do not have a business license, ask about opening an account
based on a sole proprietorship, meaning that you are opening the account in your name to
do business.

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 276

277

Usually, when you set up a merchant account gateway, the gateway provider will list mer-
chant accounts they partner with, and you can get special deals through them.

This chapter covers using VeriSign because it offers a free 30-day trial (demo) account that
you do not need a merchant account to use. The following are some of the most popular
merchant account gateway providers:

Gateway Provider URL

VeriSign www.verisign.com/products/payment.html

Authorize.Net www.authorize.net

Cardservice International (LinkPoint) www.cardservice.com

The previous list is a small group of the most popular gateways. You can find thousands of
results by going to Google (www.google.com) and searching for merchant account gateways.

Merchant Account Gateway Pros
The following are some of the advantages of processing payments with a gateway:

● You do not have to redirect the customer to a different site to perform the billing.

● You project a more business-like appearance without losing the relationship between your
business and the customer performing the transaction.

● You have more options when logging the transaction; by gathering the billing informa-
tion on your site, you can log as much user input as you like.

● It is easier to set up recurring billing by altering the responses sent to the merchant
account gateway for the transaction.

● The customer is not forced to create an account on a third-party site to process the
payment.

● They have extremely fast processing! Usually it is quicker than three seconds from sub-
mission to retrieval of results.

Merchant Account Gateway Cons
Every solution has disadvantages; the following are some cons of a merchant account gateway:

● They are usually expensive to set up, about $300 in some cases.

● Monthly fees are not uncommon, sometimes up to $60 per month.

● An average of 2.5-percent transaction fees are deducted for the company that runs the
gateway.

Merchant Account Gateways vs. Third-Party Payment Solutions

4279c09.qxd 10/27/03 6:20 PM Page 277

278

● It is not as easy to develop for them. Sometimes they do not offer PHP support; however,
this is not a showstopper! Keep reading in this chapter to find out how to get around a
lack of PHP support.

● You should utilize a Secure Sockets Layer (SSL) certificate and a Hypertext Transfer
Protocol—Secure (HTTPS) website while gathering billing information from the cus-
tomer. SSL certificates cost from $39 per year to $199 per year, depending on where you
buy them.

TIP You can purchase valid QuickSSL certificates from www.rackshack.net in quicker than
20 minutes for less than $50. This is extremely easy to do, and you do not have to go
through the difficult process that most companies provide.

● If the gateway goes offline and your website is running, billing will fail. This causes cus-
tomers to get frustrated and cancel their orders because they may think your system is not
running properly and they lose trust in you.

What Is a Third-Party Payment Solution?
A third-party payment solution is a company that allows you to create virtual accounts with a
company; it processes transactions on your behalf. These companies are growing in popular-
ity since the advent of PayPal.

These companies have many different methods of allowing you to send your customers to
their websites and process a transaction on your behalf. Once the transaction has cleared
through their system, the company will credit the money to your virtual account, and you
can transfer or spend the money how you desire from that point.

This chapter shows how to use PayPal because it is the most popular and commonly used
third-party payment solution. However, the following are some of the other popular third-
party payment solutions I have found (and used) on the Internet.

Third-Party Payment Solution URL

PayPal www.paypal.com

iBill www.ibill.com

CCBill www.ccbill.com

2CheckOut.com www.2checkout.com

You can also find a complete list of these by searching the keywords credit card processing in
the Google search engine.

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 278

279

Third-Party Payment Solution Pros
The following are some of the advantages of third-party payment solutions:

● They are usually easy to set up without a large fee up front.

● They usually have an easy-to-use interface.

● They allow you to transfer the money you make to your bank account at any time and
allow you to pay other members with it (PayPal).

● They process the customers’ billing information and provide records of the payments.

● They usually do not charge monthly fees.

Third-Party Payment Solution Cons
Even third-party payment solutions have some disadvantages:

● When your customer leaves your site to complete a purchase, they may lose a brand
awareness of your site during the transaction. As a business, you should always try to
eliminate the middleman, especially when dealing with money. Third-party payment
solutions have a tendency to break this rule of thumb.

● They charge an average of 2.5-percent transaction fees. PayPal charges a different
amount every transaction, sometimes up to 5 percent or more.

● Support staff is overloaded. Because these companies usually process multiple types of
payments from a large quantity of users, you will usually get the runaround when trying
to contact support.

● They could require more extensive planning on your part to determine how to properly
check the customer out in your shopping cart system because the customer will depart
your site while making the transaction.

What’s the Major Difference?
There are many major differences between the two systems. Not only do you have to
develop your systems differently, the control panels between a merchant account gateway
and a third-party payment solution could differ greatly. Let’s concentrate on the process of
accepting customer payments through each of these solutions.

Figure 9.1 shows the processing of payments through your website with a merchant
account gateway API.

The following are the steps of Figure 9.1:

1. The customer comes to your website and populates their shopping cart system with the
products they want to purchase. Then they go to the checkout page, select the credit card
payment method, and enter their billing information.

Merchant Account Gateways vs. Third-Party Payment Solutions

4279c09.qxd 10/27/03 6:20 PM Page 279

280

2. Your script will compile the information required and send the customer’s billing infor-
mation to the payment gateway for processing.

3. The payment gateway will send a response through the API to the binary that is on your
server, and your script will decode the results and perform the proper checkout actions in
your shopping cart system.

4. You present a custom response to the customer.

That looks pretty simple, doesn’t it? The entire process takes usually less than three sec-
onds to complete! During this entire process, your customer never leaves your website to
process a payment somewhere else.

Figure 9.2 shows the third-party payment solution process.

6 15 2

4
3

Customer

Billing Pages at
Third-Party Solution

Your Website

F I G U R E 9 . 2 :
Processing payments
through a third-party
payment solution

1 4

23

Customer

Billing Page on Your WebsiteF I G U R E 9 . 1 :
Processing payments
through a merchant
account gateway

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 280

281

This is the process step by step:

1. The customer comes to your website and populates their shopping cart system with the
products they want to purchase. When they go to the checkout page, they select a third-
party payment solution for their payment method.

2. Your scripts will generate a special form and send it to the customer’s web browser.

3. Upon receiving the form, the customer’s web browser will be redirected to the third-
party payment solution’s billing pages, and the user will enter their billing information for
processing.

4. The customer is still on the third-party website, and the results are displayed in the third-
party payment processor.

5. The third-party payment processor provides a method for the customer to return to your
website with a “token” key that you embedded into the form from step 2. Once your
script receives this token, you process it immediately and check out the customer from
the shopping cart.

6. You now send the final custom response to the customer’s web browser.

As you may notice, the process of using a third-party payment solution is a lot more work
for you as the developer and for the customer. Furthermore, this process generally takes
longer to complete than a merchant account gateway takes.

Now that you have a better understanding of gateways and third-party payment solutions,
you will begin developing for them.

Preparing Your Site for E-Commerce
Before you begin processing, you need to prepare your site by adding some new tables to
your database. The first table you will create is for a special security measure called tokens,
which you will create in your processing scripts. I will explain using tokens later; for now, you
will just create the tables. Table 9.1 shows the structure for the shopping_cart_tokens table.

TABLE 9.1: Structure for shopping_cart_tokens Table

Field Name Data Type Length Extra

cart_id VARCHAR 255 Primary key

token VARCHAR 100

Preparing Your Site for E-Commerce

4279c09.qxd 10/27/03 6:20 PM Page 281

282

If you prefer the command line, you can use this query:
CREATE TABLE shopping_cart_tokens (
cart_id varchar(255) NOT NULL default ‘’,
token varchar(100) NOT NULL default ‘’,
PRIMARY KEY (cart_id)

) TYPE=MyISAM COMMENT=’Tokens for Shopping Carts’;

Next, you create another table to store the order information upon successful checkout.
This table is named shopping_cart_orders (see Table 9.2).

TABLE 9.2: Structure for shopping_cart_orders Table

Field Name Data Type Length Extra

orderid MEDIUMINT 25 Primary key, auto increment

order_date DATETIME

token VARCHAR 100

products TEXT

total FLOAT 0

type VARCHAR 25

user_id VARCHAR 10

If you prefer the command line, you can use this query:
CREATE TABLE shopping_cart_orders (
orderid mediumint(25) NOT NULL auto_increment,
order_date datetime NOT NULL default ‘0000-00-00 00:00:00’,
token varchar(100) NOT NULL default ‘’,
products text NOT NULL,
total float NOT NULL default ‘0’,
type varchar(25) NOT NULL default ‘’,
user_id varchar(10) NOT NULL default ‘’,
PRIMARY KEY (orderid)

) TYPE=MyISAM COMMENT=’Shopping Cart Orders’;

That concludes the preparation for this chapter. Let’s jump into processing some payments!

Creating the Payment Processing Scripts
In Chapter 8, “Creating a Shopping Cart System,” you left your shopping cart system ready
for the payment pages. This chapter covers two methods to process payments: VeriSign
Payflow Pro payment services (with a payment gateway API) and PayPal (a third-party pay-
ment service).

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 282

283

The checkout page in the shopping cart performed one last sanity check, adjusted the cus-
tomer’s order as necessary, and gave them a link to make a payment. The link pointed to a
script named payment.php, so you will create that script now.

Create a file in your document root named payment.php. This file will be a simple page
that asks the customer which method of payment they would like to use. In this book, I cover
two payment methods, so you will give hyperlinks to those payment methods in this script. If
you are going to offer only one payment method in your shopping cart, you can bypass this
page by altering the link in your shopping cart checkout page and pointing it to the relevant
script you will create in this chapter.

The following is the code for the payment.php script:
<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

myheader(“Select Payment Type”);
echo “<center>Please choose your “.

“payment method:
”.
“”.
“Credit Card via our Secure Server
”.
“”.
“Pay using PayPal
</center>”;

footer();
?>

When a user goes through your shopping cart system and confirms their order by clicking
the Submit Payment hyperlink, they will see a page like Figure 9.3 depicts.

F I G U R E 9 . 3 :
Payment options page

Creating the Payment Processing Scripts

4279c09.qxd 10/27/03 6:20 PM Page 283

284

As you may notice, you will give an option to process payments via your secure server first,
so the next section shows how to process credit cards with a payment gateway.

Processing Payments with VeriSign Payflow Pro
VeriSign has one of the best payment processing gateways available. VeriSign offers a gate-
way payment service called Payflow Pro that is fully loaded with all kinds of options includ-
ing: the Payflow Pro Manager (PPM) control panel, Address Verification Service (AVS),
recurring billing services, and much more. Additionally, VeriSign offers a 30-day trial
account that you can enable in less than an hour. This is a perfect place for you to explore the
developmental process for a payment services gateway!

WARNING Before you begin processing any live payments on your website, you should obtain an SSL
certificate for your website and run your processing scripts on your SSL website using
HTTPS. If you are using virtual web hosting, contact your web hosting provider and obtain
an SSL certificate. If you are using your own server, you can obtain an SSL certificate for
cheap at www.rackshack.net in less than 20 minutes.

Getting Your Payflow Pro Demo Account
Begin the process of setting up your payment gateway by going to www.verisign.com/prod-
ucts/payflow/pro/ and signing up for a trial account. While viewing this page, you should
see a Free Payment Trial Account link. Click this link, and complete the signup process.
Once you have completed the signup process, you will receive an e-mail notifying you of the
signup and giving you some links to the PPM control panel. The Uniform Resource Locator
(URL) I received was https://manager.verisign.com/login/login.cfm?partner=VeriSign.

Preparing Your System for Payflow Pro
Before you begin coding for the Payflow Pro payment services, you need to set up your web
server for its system. This is easy and does not require any compilations or restarting. Follow
these steps:

1. First, log in to the PPM with the username and password you created during signup.

2. Once you have logged in, click the Downloads tab at the top of the PPM.

3. Under the Documentation section, download the developer guide to your hard drive.
Click the Payflow Pro Developers Guide–Zipped PDF link. This is important because
you will learn how to use a developer guide in this chapter.

4. Under the Payflow Pro Software Development Kit (SDK) section, download the appro-
priate SDK for your system. I will cover how to use how to install the Windows SDK in
this chapter; however, the Linux installation is not much different. If you are a Linux user,

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 284

285

click the Linux–libc6 / glibc2 / ELF kernels 2.0.36 and Above link (or the one called
something similar). If you are a Windows user, click the Windows NT 4.0 or Win-
dows 2000 link.

5. Depending on which file you downloaded in the previous step, extract these files onto
your web server. Do not put them in your website’s document root because it is not secure
to do so. Put them somewhere on your system that the public cannot access through their
web browser. On my Windows system, I put them in d:\sites\sybex\win32 whereas my
document root is d:\sites\sybex\public_html.

Believe it or not, those are all of the prerequisites for configuring your system to develop
your scripts to use Payflow Pro.

You need the files you downloaded in the previous steps to utilize Payflow Pro. The main
files in the SDK consist of a binary file that will perform the transaction and return the
results and a certificate file that is required for the binary file to authenticate to the gateway.
These files really have nothing to do with PHP, but using some PHP system commands, you
will call these files, pass the arguments required to them, and capture the output.

Before you go any further, you should also understand that PHP supports Payflow Pro
through a special module that you can compile during installation. However, because your
web hosting provider probably does not have the Payflow Pro support modules enabled, I
cover how to use this payment service without them. By giving you the examples in this
chapter, you should be able to figure out how to code for any payment gateway, not just
VeriSign.

Understanding the Gateway and API Documentation
Each payment processing gateway has some sort of developer guide associated with its docu-
mentation. In the previous section, you downloaded the Payflow Pro developer guide from
the PPM. If you have never seen this type of documentation before, it could be difficult to
understand. Basically, these guides tell a developer how to determine where, how, and what
information to send to the payment gateway. Additionally, a good developer guide will list
the required data to send and give you a list of response codes.

After analyzing the Payflow Pro developer guide, you can determine how to develop your
scripts for the results you will retrieve. Looking through the documentation, you should
notice that you will have to develop your scripts to execute a binary file with arguments such
as the credit card numbers, your gateway username, and your gateway password in a URL-
encoded format. By executing this binary file, you will be able to retrieve a result, usually in a
URL-encoded format such as this: variable=value&variable2=value&variable3=value.

Do not worry; I will cover this in depth when it is time to start processing the information
through the gateway.

Creating the Payment Processing Scripts

4279c09.qxd 10/27/03 6:20 PM Page 285

286

VeriSign Payflow Pro Payment Processing Scripts
The first script you will create is named creditcard.php. The payment.php page links to it
when the user clicks the Credit Card via Our Secure Server hyperlink. This script will gather
the required billing information from the customer, send it to the VeriSign Payflow Pro
gateway for processing, retrieve a result from the gateway, and redirect the user to your
ordercomplete.php script according to the results.

Before you begin with this script, I have created a PHP class file that takes care of the hard
work involved in creating a billing information form. This class is the payment forms class,
and you can download it at www.phpfreaks.com/script/view/209.php. Download this class
file, and extract it into your website document root under the classes directory.

Next, you will create the Hypertext Markup Language (HTML) form that will gather the
customer billing information. Create a new HTML file named payment_form.html, and
place it in html/payment under your website document root.

This HTML page will utilize embedded PHP with the functions inside the payment forms
class to generate drop-down menus for dates, states, and countries. Listing 9.1 shows this
HTML form.

➲ Listing 9.1 Billing Information Form

<div align=”center”>
Please
Enter Your Billing Information

</div>
<form method=”post” action=”/creditcard.php”>
<table width=”50%” border=”1” align=”center” cellpadding=”4” cellspacing=”0”>
<tr>
<td width=”18%”>Order Total</td>
<td width=”82%”>$<?=$total?>
</td>

</tr>
<tr>
<td nowrap>Name on Credit Card</td>
<td><input name=”name” type=”text”></td>

</tr>
<tr>
<td>Credit Card Number</td>
<td><input name=”cardnumber” type=”text”></td>

</tr>
<tr>
<td>CCV2 Number</td>
<td><input name=”ccv2” type=”text” id=”ccv2” size=”6”></td>

</tr>
<tr>
<td>Expiration Date</td>

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 286

287

<td>
<?=$ccform->month_select($month);?>
/
<?=$ccform->year_select($year);?>

</td>
</tr>
<tr>
<td>Street Address</td>
<td><input name=”street” type=”text”></td>

</tr>
<tr>
<td>City</td>
<td><input name=”city” type=”text”></td>

</tr>
<tr>
<td>State</td>
<td>
<?=$ccform->state_select($state);?>

</td>
</tr>
<tr>
<td>Zip Code</td>
<td><input name=”zip” type=”text” size=”6”></td>

</tr>
<tr>
<td>Country</td>
<td>
<?=$ccform->country_select($country);?>

</td>
</tr>
<tr>
<td> </td>
<td><input name=”req” type=”hidden” value=”process”>
<input type=”submit” name=”Submit” value=”Submit Payment!”></td>

</tr>
</table>

</form>
</body>
</html>

Next, you will create the script that will utilize the previous HTML form and process your
payments using the gateway. Create a new file inside your website document root, and name
it creditcard.php. Listing 9.2 shows the script, which I will explain in further detail.

➲ Listing 9.2 creditcard.php Processing Script

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

Creating the Payment Processing Scripts

4279c09.qxd 10/27/03 6:20 PM Page 287

288

$cart = &new ShoppingCart;
$cart_id = $cart->get_cart_id();

switch($_REQUEST[‘req’]){
default:
myheader(“Payment Information”);

include $_SERVER[‘DOCUMENT_ROOT’].
‘/classes/clsCCForms.php’;

// Get shopping cart total.
$total = mysql_result(mysql_query(“SELECT

sum(product_qty * product_price) AS subtotal
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

$total = number_format($total, 2);

// Credit Card Forms Class by phpfreak
$ccform = &new CCForms;
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/payment/payment_form.html’;

break;

case “process”:
stripslashes(extract($_POST));

$total = mysql_result(mysql_query(“SELECT
sum(product_qty * product_price) AS subtotal
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

$total = number_format($total, 2);

$expdate = $month.substr($year, 2, 2);

$pfpro_path = “d:\sites\sybex\win32\bin\pfpro.exe”;
$params = “TRXTYPE=S&TENDER=C”.

“&PWD=XXXXXXXX&USER=XXXXXXXX”.
“&PARTNER=VeriSign”.
“&ACCT=$cardnumber&CCV2=$ccv2”.
“&EXPDATE=$expdate&AMT=$total”.
“&NAME=$name&STREET=$street”.
“&ZIP=$zip”;

putenv(“PFPRO_CERT_PATH=d:\sites\sybex\win32\certs”);
$transaction = exec($pfpro_path.’

test-payflow.verisign.com 443
“‘.$params.’” 30’);

// Convert the results into an array
$tmp_results = explode(‘&’, $transaction);

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 288

289

foreach($tmp_results AS $tmp_result){
$tmp = explode(‘=’, $tmp_result);
$result[$tmp[0]] = $tmp[1];

}
// Debug: Uncomment lines below
// to see $result array

// echo “<pre>”;
// print_r($result);
// echo “</pre>”;
// exit();

switch($result[RESULT]){
case “0”:

// Generate token
$token = md5(uniqid(rand(),1));

// Insert token into DB
$token_check = mysql_result(mysql_query(“SELECT COUNT(*)

FROM shopping_cart_tokens
WHERE cart_id=’$cart_id’”),0);

if($token_check == 0){
mysql_query(“INSERT INTO shopping_cart_tokens

(cart_id, token)
VALUES (‘$cart_id’, ‘$token’)”);

} else {
mysql_query(“UPDATE shopping_cart_tokens

SET token=’$token’
WHERE cart_id=’$cart_id’”);

}

// Redirect user to ordercomplete.php
header(“Location: /ordercomplete.php?req=success&t=$token”);

break;

default:
myheader(“Transaction Error”);
echo “There has been a problem with your transaction. “.

“You have not been charged for this order.
”.
“Please see below:
”.
“Results: $result[RESPMSG]
”.
“Reference Number: $result[PNREF]
”;

break;
}

break;
}
footer();
?>

Creating the Payment Processing Scripts

4279c09.qxd 10/27/03 6:20 PM Page 289

290

The first portion of this script should be pretty standard to you by now. You start the PHP
engine, include your required files, and then initialize the switch for the script. Because this
script is related to your shopping cart system, you utilize the ShoppingCart class and get the
cart identifier:

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

$cart = &new ShoppingCart;
$cart_id = $cart->get_cart_id();

switch($_REQUEST[‘req’]){

The default case includes the payment forms class (clsCCForms.php) that you down-
loaded earlier and then performs a query to get the total price of everything in the cus-
tomer’s shopping cart. After you initialize the payment forms class, you include the
payment_form.html file.

NOTE I show the default case in this switch first. This is to show you that even though the
PHP documentation shows the default case last, you can still use it in the first position.

The following is the default case:
default:
myheader(“Payment Information”);

include $_SERVER[‘DOCUMENT_ROOT’].
‘/classes/clsCCForms.php’;

// Get shopping cart total.
$total = mysql_result(mysql_query(“SELECT

sum(product_qty * product_price) AS subtotal
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

$total = number_format($total, 2);

// Credit Card Forms Class by phpfreak
$ccform = &new CCForms;
include $_SERVER[‘DOCUMENT_ROOT’].

‘/html/payment/payment_form.html’;

break;

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 290

291

The form in the default case will post the user inputs to the process case. Now you get
to figure out how to use that Payflow Pro gateway! Like always, I will break this case down
into smaller portions:

case “process”:

First, you extract the $_POST values into simple variables. Remember, when you use
extract, the key in an array becomes the variable name, and the value is assigned to it. For
example, $_POST[‘myvar’] = “test” would become $myvar = “test”:

stripslashes(extract($_POST));

Second, for security purposes, you never want to allow the total to be obtained by input
from the HTML form. Sooner or later, someone will try to alter their form posts and even
alter the prices of their shopping carts; therefore, you always recalculate after the form has
been submitted:

$total = mysql_result(mysql_query(“SELECT
sum(product_qty * product_price) AS subtotal
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

$total = number_format($total, 2);

VeriSign requires the credit card expiration date to be formatted as MMYY, and in my pay-
ment forms class the output of the year is YYYY. To compensate for the requirements of
Payflow Pro, you combine the $month and $year values and use the substring (substr) PHP
function to chop off the first two numbers of the year to make a variable named $expdate. To
simplify the explanation, the expiration date of January 2004 would be 0104 after you have
corrected it with this code:

$expdate = $month.substr($year, 2, 2);

Now you will dig into the Payflow Pro processing. You will define some variables that you
will pass into the PHP exec function, which will execute system commands, such as executa-
bles, with the arguments you pass into it. Using the exec function is similar to typing into a
DOS or shell prompt.

NOTE For this example, you will assign variables to each element of the exec argument. If you
choose, you could create one simple string and execute it with all of the variables in
Table 9.3.

The first variable you will define is the path to the Payflow Pro executable (pfpro.exe) file:
$pfpro_path = “d:\sites\sybex\win32\bin\pfpro.exe”;

The next variable you will create is the querystring of information about the user and your
Payflow Pro account. Table 9.3 explains the querystring.

Creating the Payment Processing Scripts

4279c09.qxd 10/27/03 6:20 PM Page 291

292

TABLE 9.3: Querystring Variables

Variable Value Purpose

TRXTYPE S The transaction type. Use S for sale.

PWD XXXXXXXX Your Payflow Pro password.

USER XXXXXXXX Your Payflow Pro username or store name.

Partner VeriSign Required! Demo accounts use VeriSign.

ACCT $cardnumber Credit card number. You obtained this by extracting the
$_POST array from the billing information form.

CCV2 $ccv2 Credit card verification number obtained from the billing
information form.

EXPDATE $expdate Expiration date. Previously defined in this script.

AMT $total Order total price. Previously obtained in this script.

NAME $name Name on credit card from billing information form.

STREET $street Street address from billing information form.

ZIP $zip ZIP code from billing information form.

The following shows the querystring:
$params = “TRXTYPE=S&TENDER=C”.

“&PWD=XXXXXXXX&USER=XXXXXXXX”.
“&PARTNER=VeriSign”.
“&ACCT=$cardnumber&CCV2=$ccv2”.
“&EXPDATE=$expdate&AMT=$total”.
“&NAME=$name&STREET=$street”.
“&ZIP=$zip”;

Next, you have to notify your system where the Payflow Pro certificate file is located. You
downloaded this file in the SDK during the “Preparing Your System for Payflow Pro” section of
this chapter. When I extracted the SDK, the file was located at d:\sites\sybex\win32\certs.
Using the PHP putenv function, you can put the required PFPRO_CERT into your system environ-
ment variable path:

putenv(“PFPRO_CERT_PATH=d:\sites\sybex\win32\certs”);

Now you will execute the Payflow Pro binary with all of the information you have gath-
ered. Look at the usage of the following exec function. You will assign a variable $transac-
tion to it. All of the output from the execution of the binary will be assigned to the
$transaction variable, and from there you can figure out how to use it:

$transaction = exec($pfpro_path.’
test-payflow.verisign.com 443
“‘.$params.’” 30’);

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 292

293

This exec function is executing a command line like this:
d:\sites\sybex\win32\bin\pfpro.exe test-payflow.verisign.com 443 [PARAMS] 30

NOTE Notice the 30 after PARAMS. This is the number of seconds to allow the binary file to wait
before it times out if no response is available from the gateway. Do not set this too high
or your PHP script may time out and the user may click away from the page; however, do
not set this too low or the script may not receive a response from the gateway. Fifteen to
thirty seconds is sufficient.

Now you have the output assigned to the $transaction string. This output is in the format
of a querystring, as mentioned earlier. With this string, you can break it into an array using
the explode function. The explode function accepts an argument and a string. It will search
for the argument inside of the string and create a new array key each time it finds a match for
the argument passed to it.

If you were to run your transaction script right now and echo the $transaction, you would
see something like this:

RESULT=0&PNREF=V64A31660131&RESPMSG=Approved&AUTHCODE=023PNI&AVSADDR=X&AVSZIP=
X&IAVS=X

The previous result will do you no good until you can break it apart. Break each element
into an array using the & argument:

// Convert the results into an array
$tmp_results = explode(‘&’, $transaction);

The output of the $tmp_results array using print_r and preformatted HTML tags
would be as follows:

Array
(

[0] => RESULT=0
[1] => PNREF=V64A31660131
[2] => RESPMSG=Approved
[3] => AUTHCODE=023PNI
[4] => AVSADDR=X
[5] => AVSZIP=X
[6] => IAVS=X

)

Now that you have $tmp_results in an array, you still do not have exactly what you need
to best determine how to handle the transaction results. Let’s break this array down one
more time using explode on the = argument:

foreach($tmp_results AS $tmp_result){
$tmp = explode(‘=’, $tmp_result);
$result[$tmp[0]] = $tmp[1];

}

Creating the Payment Processing Scripts

4279c09.qxd 10/27/03 6:20 PM Page 293

294

The output of the $result array you generated in the previous code would look like this:
Array
(

[RESULT] => 0
[PNREF] => V64A31660131
[RESPMSG] => Approved
[AUTHCODE] => 023PNI
[AVSADDR] => X
[AVSZIP] => X
[IAVS] => X

)

Now you have something with which to work!

If you would like to debug your arrays at any time, you can uncomment the following code
to see output similar to the previous examples:

// Debug: Uncomment lines below
// to see $result array

// echo “<pre>”;
// print_r($result);
// echo “</pre>”;
// exit();

After you have processed the return from $transaction, you can use a switch on the value
of $result[RESULT] to redirect the customer to the desired results based on the success or
failure of the transaction:

switch($result[RESULT]){

The first case is a successful transaction because the value of $result[RESULT] is 0. Check
the Payflow Pro developer guide to see what other values may be assigned to the RESULT. For
now, you really only care about 0 because for anything else you will display the other array
values and tell the customer their transaction has failed:

case “0”:

Okay, you are inside the successful transaction case now. Before you direct the customer to
a shopping cart checkout page where you record the order and empty their cart, you will add
some security to this transaction. This prevents anyone with an active shopping cart on your
site to find your ordercomplete.php script and check out by accident.

First, you use the md5, uniqid, and rand functions to generate an unpredictable and
difficult-to-reproduce unique ID. You assign this value to the $token variable:

// Generate token
$token = md5(uniqid(rand(),1));

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 294

295

Second, you check and see if the $cart_id is already in your shopping_cart_tokens table.
If it is, you update the row with the new $token; if it is not, you insert a new row. This check
allows your users to use the same shopping cart identifier for multiple purchases:

// Insert token into DB
$token_check = mysql_result(mysql_query(“SELECT COUNT(*)

FROM shopping_cart_tokens
WHERE cart_id=’$cart_id’”),0);

if($token_check == 0){
mysql_query(“INSERT INTO shopping_cart_tokens

(cart_id, token)
VALUES (‘$cart_id’, ‘$token’)”);

} else {
mysql_query(“UPDATE shopping_cart_tokens

SET token=’$token’
WHERE cart_id=’$cart_id’”);

}

After you have the $token generated and stored properly, you redirect the customer to the
ordercomplete.php script, which you will develop later in this chapter:

// Redirect user to ordercomplete.php
header(“Location: /ordercomplete.php?req=success&t=$token”);

break;

The default case is for any results other than 0 on the $result[RESULT] values. By using
the method shown here, you can eliminate long code by simply showing $result[RESPMSG],
which is the response message from the gateway, and giving the customer the PNREF code, which
is the transaction ID stored in the PPM:

default:
myheader(“Transaction Error”);
echo “There has been a problem with your transaction. “.

“You have not been charged for this order.
”.
“Please see below:
”.
“Results: $result[RESPMSG]
”.
“Reference Number: $result[PNREF]
”;

break;

The rest of this script is cleanup from the open switches and displays the custom footer function:
}

break;
}
footer();
?>

If you are up to speed now, then congratulations! You are now processing payments with a
gateway! This example is as simple as possible to describe the basics of this process. I recom-
mend you put extra-heavy error checking in your billing pages. Furthermore, I recommend

Creating the Payment Processing Scripts

4279c09.qxd 10/27/03 6:20 PM Page 295

296

you use PHP to validate the information to the payment gateway because web browsers give
your users the ability to disable JavaScript; therefore, the information may be processed
without any error checking and could result in a declined transaction. When a customer gets
a “declined” message from a gateway, and you could have prevented it by error checking,
then you have just potentially lost money. So, be smart!

You will break apart from this script now and develop the script to use PayPal. After you
are done with the PayPal script, you will pick up where you left off and develop the order-
complete.php script.

Processing Payments with PayPal
PayPal offers a simple method to accept payments for orders on your website, known as the
Buy Now buttons. With some creative thinking, you can utilize the Buy Now buttons and
manipulate them to fit your needs.

A common thought about the Buy Now buttons is that you have to generate them from
the PayPal website and then copy and paste the code into your website; however, this is not
true. You will create a script that will generate the required information and automatically
send the customer to the PayPal payment pages.

The methods you will use in this section will help you prevent users from altering their
shopping cart total price. You will use the $token system that you utilized earlier to identify
the customer when they return to your ordercomplete.php script after a successful transac-
tion at PayPal.

Begin by creating a file named paypal.php in your website document root. This file is also
linked to from the payment.php page when a customer clicks the Pay Using PayPal hyper-
link. Listing 9.3 shows this script.

➲ Listing 9.3 PayPal Script

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

$cart = &new ShoppingCart;
$cart_id = $cart->get_cart_id();

$total = mysql_result(mysql_query(“SELECT
sum(product_qty * product_price) AS subtotal
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

$total = number_format($total, 2);

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 296

297

// Generate token
$token = md5(uniqid(rand(),1));

// Insert token into DB
$token_check = mysql_result(mysql_query(“SELECT COUNT(*)

FROM shopping_cart_tokens
WHERE cart_id=’$cart_id’”),0);

if($token_check == 0){
mysql_query(“INSERT INTO shopping_cart_tokens

(cart_id, token)
VALUES (‘$cart_id’, ‘$token’)”);

} else {
mysql_query(“UPDATE shopping_cart_tokens

SET token=’$token’
WHERE cart_id=’$cart_id’”);

}

// Redirect user to PayPal
?>
<html>
<head>
<body onload=”document.paypal.submit();”>
<form name=”paypal” action=”https://www.paypal.com/cgi-bin/webscr”
method=”post”>
<input type=”hidden” name=”cmd” value=”_xclick”>
<input type=”hidden” name=”business” value=”you@you.com”>
<input type=”hidden” name=”return”
value=”http://<?=$_SERVER[‘SERVER_NAME’]?>/ordercomplete.php?req=success&type=pa
ypal&t=<?=$token?>”>
<input type=”hidden” name=”item_name” value=”MyPHP Site Order”>
<input type=”hidden” name=”item_number” value=”<?=$token?>”>
<input type=”hidden” name=”amount” value=”<?=$total?>”>
<input type=”hidden” name=”no_shipping” value=”1”>
<input type=”hidden” name=”cancel_return”
value=”http://<?=$_SERVER[‘SERVER_NAME’]?>/ordercomplete.php?req=error”>
<input type=”hidden” name=”quantity” value=”1”>
<input type=”hidden” name=” no_note” value=”1”>
</form>
</body>
</html>

In this script, your first tasks are to start PHP, include the shopping cart class file, and get
the cart identifier of this customer:

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

$cart = &new ShoppingCart;
$cart_id = $cart->get_cart_id();

Creating the Payment Processing Scripts

4279c09.qxd 10/27/03 6:20 PM Page 297

298

Next, you determine the total amount of the order and assign it to the $total variable:
$total = mysql_result(mysql_query(“SELECT

sum(product_qty * product_price) AS subtotal
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

$total = number_format($total, 2);

Now you generate the $token key like you did for the credit card processing earlier in this
chapter. This is where the $token is really going to shine because you need to figure out who
this customer is when PayPal sends them back to your site. Utilizing the $token in this mat-
ter will help you:

// Generate token
$token = md5(uniqid(rand(),1));

// Insert token into DB
$token_check = mysql_result(mysql_query(“SELECT COUNT(*)

FROM shopping_cart_tokens
WHERE cart_id=’$cart_id’”),0);

if($token_check == 0){
mysql_query(“INSERT INTO shopping_cart_tokens

(cart_id, token)
VALUES (‘$cart_id’, ‘$token’)”);

} else {
mysql_query(“UPDATE shopping_cart_tokens

SET token=’$token’
WHERE cart_id=’$cart_id’”);

}
// Redirect user to PayPal
?>

The next portion of the script builds the HTML form with hidden input values and automati-
cally submits it to PayPal by using a JavaScript onload function in the BODY tag of the HTML.
Table 9.4 explains the fields and values you are posting to PayPal for the payment processing.

TABLE 9.4: PayPal Data Fields

Field Value Purpose

Form Action URL of the PayPal payment processor.

cmd _xclick The type of transaction for the PayPal
server. Do not change this value!

Continued on next page

https://www.paypal.com/
cgi-bin/webscr

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 298

299

TABLE 9.4 CONTINUED: PayPal Data Fields

Field Value Purpose

business You@you.com This is your PayPal ID or e-mail
address used to create your PayPal
account.

return The URL to return the customer to
after a successful transaction. Notice
the usage of $token.

item_name MyPHP Site Order Name of the item, in your case the
order. Can be anything you want.

item_number $token This identifies a stock number of an
item. For your purposes, you use
$token.

amount $total The total amount of the order.

no_shipping 1 Do not display shipping pages. For
these purposes, I do not cover ship-
ping, so you can alter or remove this
if you want.

cancel_return This is the error page the customer
will be returned to if the transaction
was not successful. Do not put the
$token here!

quantity 1 The quantity of the item to purchase.
In your case, you use 1 and define it
here. If you alter this, the total
amount will be multiplied by this
value. Do not alter this!

no_note 1 Displays the note box to the cus-
tomer. Use 0 for yes and 1 for no.

Based on the fields in Table 9.4, build an HTML page that will automatically submit the
form contained inside it when the page loads into the web browser:

<html>
<head>
<body onload=”document.paypal.submit();”>
<form name=”paypal” action=”https://www.paypal.com/cgi-bin/webscr”
method=”post”>
<input type=”hidden” name=”cmd” value=”_xclick”>
<input type=”hidden” name=”business” value=”you@you.com”>
<input type=”hidden” name=”return”
value=”http://<?=$_SERVER[‘SERVER_NAME’]?>/ordercomplete.php?req=success&type=pa
ypal&t=<?=$token?>”>
<input type=”hidden” name=”item_name” value=”MyPHP Site Order”>

http://<?=$_SERVER[‘SERVER_NAME’]
?>/ordercomplete.php?req=error

http://<?=$_SERVER[‘SERVER_NAME’]
?>/ordercomplete.php?req=
success&type=paypal&t=<?=$token?>

Creating the Payment Processing Scripts

4279c09.qxd 10/27/03 6:20 PM Page 299

300

<input type=”hidden” name=”item_number” value=”<?=$token?>”>
<input type=”hidden” name=”amount” value=”<?=$total?>”>
<input type=”hidden” name=”no_shipping” value=”1”>
<input type=”hidden” name=”cancel_return”
value=”http://<?=$_SERVER[‘SERVER_NAME’]?>/ordercomplete.php?req=error”>
<input type=”hidden” name=”quantity” value=”1”>
<input type=”hidden” name=”no_note” value=”1”>
</form>
</body>
</html>

Once this page loads into the web browser after the user clicks the Pay with PayPal link on
the payment.php page, the user will be redirected almost immediately to PayPal, and all of the
required information will be passed to the PayPal system to process the transaction with the
user input for their billing information. Pretty easy, no?

You can utilize more options in the Buy Now section of the PayPal website once you log in.
See the PayPal Buy Now Buttons Manual at https://www.paypal.com/html/single_item.pdf.

Also, PayPal is developing a new system called Instant Payment Notification (IPN), which
will send special responses back to your script regarding the transactions. You can find more
information about IPN at https://www.paypal.com/html/ipn.pdf.

NOTE When testing the PayPal scripts, you need to use a different PayPal account as either the
store account or the customer account. In other words, PayPal will not allow you to pay
yourself for a transaction.

Now that you have your payment methods complete, it is time to build the script to accept
the responses from these different payment options and record the orders.

Completing the Order: ordercomplete.php
This chapter has been building up to the ordercomplete.php script for some time. The pre-
vious scripts, creditcard.php and paypal.php, are sending triggers to this script that allow
you to perform the final steps in the customer order if it was successful after the payment
processing.

Create a script named ordercomplete.php in your website document root (see Listing 9.4).

➲ Listing 9.4 ordercomplete.php Script

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

‘/layout.php’;

$cart = &new ShoppingCart;

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 300

301

$cart_id = $cart->get_cart_id();

switch($_REQUEST[‘req’]){
case “success”:

$sql = mysql_query(“SELECT * FROM shopping_cart_tokens
WHERE token=’{$_REQUEST[‘t’]}’”);

// Quick $token check
if(mysql_num_rows($sql) != 1){

echo “<center>Error! Please contact webmaster!</center>”;
footer();
exit();

}

list($cart_id, $token) = mysql_fetch_row($sql);

// if customer came from paypal,
// log them back in.
if($_REQUEST[‘type’] == “paypal”){

$_SESSION[‘cid’] = $cart_id;
mysql_query(“SELECT * FROM members

members WHERE cart_id=’$cart_id’”);
while($row = mysql_fetch_array($sql)){

$_SESSION[‘login’] = true;
$_SESSION[‘userid’] = $row[‘id’];
$_SESSION[‘first_name’] = $row[‘first_name’];
$_SESSION[‘last_name’] = $row[‘last_name’];
$_SESSION[‘email_address’] = $row[‘email_address’];
if($row[‘admin_access’] == 1){

$_SESSION[‘admin’] = true;
}

}
} else {
$type = “credit”;
}

// Get shopping car total again.
$total = mysql_result(mysql_query(“SELECT

sum(product_qty * product_price) AS subtotal
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

$total = number_format($total, 2);

$sql_get_cart = mysql_query(“SELECT * FROM
shopping_carts
WHERE cart_identifier=’$cart_id’”);

while($row = mysql_fetch_array($sql_get_cart)){
mysql_query(“UPDATE shopping_products

SET product_qty = (product_qty - {$row[‘product_qty’]})
WHERE product_id =’{$row[‘product_id’]}’”);

Creating the Payment Processing Scripts

4279c09.qxd 10/27/03 6:20 PM Page 301

302

$storage_array[$row[‘product_id’]][‘qty’] =
$row[‘product_qty’];

$storage_array[$row[‘product_id’]][‘price’] =
$row[‘product_price’];

$storage_array[$row[‘product_id’]][‘name’] =
$row[‘product_title’];

}

$sproducts = serialize($storage_array);
// record the order into the shopping cart
mysql_query(“INSERT INTO shopping_cart_orders

(order_date, token, products, total, type, user_id)
VALUES (now(), ‘$token’, ‘$sproducts’, ‘$total’,

‘$type’, ‘{$_SESSION[‘userid’]}’)”);

// Empty the shopping cart
$cart->empty_cart();

// E-mail users and Store Owner a receipt

// Display message
myheader(“Payment Success”);
echo “<center>Thank you for your payment!

”.

“Please check your email for your receipt.</center>”;
break;

case “error”:
// This case used for PayPal only.
myheader(“Payment Error”);
echo “<center>We’re sorry, there have been problems “.

“with your payment</center>”;
break;

default:
myheader(“Access Denied”);
echo “<center>You can’t access “.

“this page directly!</center>”;

break;
}

footer();
?>

In this code, you start PHP, include your layout and shopping cart class files, and then grab
the $cart_id:

<?php
include $_SERVER[‘DOCUMENT_ROOT’].

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 302

303

‘/layout.php’;

$cart = &new ShoppingCart;
$cart_id = $cart->get_cart_id();

Next, you define your switch and build the case used when you have a successful payment:
switch($_REQUEST[‘req’]){

case “success”:

To ensure that the $token is found in your database and that it was not altered between the
transaction pages, you perform a check to see if the $token passed to this script matches the
one you have stored:

$sql = mysql_query(“SELECT * FROM shopping_cart_tokens
WHERE token=’{$_REQUEST[‘t’]}’”);

If the value of $token found from the query is not equal to 1, you provide an error and exit
the script:

// Quick $token check
if(mysql_num_rows($sql) != 1){

echo “<center>Error! Please contact webmaster!</center>”;
footer();
exit();

}

At this point, you have verified the $token is valid, and you extract the $cart_id from the
shopping_cart_tokens table that matches the $token:

list($cart_id, $token) = mysql_fetch_row($sql);

// if customer came from paypal,
// log them back in.

Chances are that when the customer went to the PayPal site, their session was lost and you
do not have a session value for the cart. Just to be sure in case the cookie did not work for
some reason (browsers are picky about cookies), then you reset the session cid value to the
one you found in the database:

if($_REQUEST[‘type’] == “paypal”){
$_SESSION[‘cid’] = $cart_id;

Next, you can determine if the customer is a member on your site and give them the cour-
tesy of logging them in based on the cart_id field in the database. If the $cart_id matches
the members table’s cart_id column, you assume this is the right person and register the ses-
sion values for them:

mysql_query(“SELECT * FROM members
members WHERE cart_id=’$cart_id’”);

while($row = mysql_fetch_array($sql)){

Creating the Payment Processing Scripts

4279c09.qxd 10/27/03 6:20 PM Page 303

304

$_SESSION[‘login’] = true;
$_SESSION[‘userid’] = $row[‘id’];
$_SESSION[‘first_name’] = $row[‘first_name’];
$_SESSION[‘last_name’] = $row[‘last_name’];
$_SESSION[‘email_address’] = $row[‘email_address’];
if($row[‘admin_access’] == 1){
$_SESSION[‘admin’] = true;

}
}

} else {

In your creditcard.php script, you did not need to define a type variable for this script. If
$type is not equal to paypal, you set it to credit and use this value in the order storing
process later:

$type = “credit”;
}

Once again, you want to obtain the total amount of the order used to process this transac-
tion. You do not want to retrieve this anywhere but your database for security reasons:

// Get shopping car total again.
$total = mysql_result(mysql_query(“SELECT

sum(product_qty * product_price) AS subtotal
FROM shopping_carts
WHERE cart_identifier=’$cart_id’”),0);

$total = number_format($total, 2);

You want to ensure that you update the current stock of all of your products to subtract the
number of stocks sold in this transaction, so you will perform the query, loop through it, and
update the current stock deducted by the values in the shopping cart:

$sql_get_cart = mysql_query(“SELECT * FROM
shopping_carts
WHERE cart_identifier=’$cart_id’”);

while($row = mysql_fetch_array($sql_get_cart)){
mysql_query(“UPDATE shopping_products

SET product_qty = (product_qty - {$row[‘product_qty’]})
WHERE product_id =’{$row[‘product_id’]}’”);

The next task is going to grab all of the information from the customer’s shopping cart and
then put it into a custom built array. After the information is in the array, you will compact
it by using a PHP function called serialize:

$storage_array[$row[‘product_id’]][‘qty’] =
$row[‘product_qty’];

$storage_array[$row[‘product_id’]][‘price’] =
$row[‘product_price’];

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 304

305

$storage_array[$row[‘product_id’]][‘name’] =
$row[‘product_title’];

}

PHP and MySQL will not allow you to save an array in the database, so you must serial-
ize it before storage; when you want to extract it, you can use unserialize to turn the values
back into an array. You use this method to allow you to store an order with multiple prod-
ucts in a single row in your shopping_cart_orders table. This is how you serialize the array:

$sproducts = serialize($storage_array);

Now you store the shopping cart values in the shopping_cart_orders table:
// record the order into the shopping cart
mysql_query(“INSERT INTO shopping_cart_orders

(order_date, token, products, total, type, user_id)
VALUES (now(), ‘$token’, ‘$sproducts’, ‘$total’,

‘$type’, ‘{$_SESSION[‘userid’]}’)”);

WARNING Do not store credit card numbers regarding your transactions. It is extremely dangerous,
and you could potentially face severe penalties if your database is hacked and credit
cards are stolen. I do not even recommend encrypting them. Usually, payment gateways
will store them for you if you should need a credit card number for a recurring payment
later. Let the gateways handle the credit card numbers; if they get hacked, it is not only
your business that will be affected.

The next task for the successful transaction is to empty the customer’s shopping cart by
using the empty_cart function from the shopping cart class:

// Empty the shopping cart
$cart->empty_cart();

At this point, you can e-mail a copy of the receipt to yourself and your customer. Some
merchant account gateways can send a generic receipt to both of you if you include the cus-
tomer’s e-mail address in the transaction. I left this part out of the code for a couple of rea-
sons, mainly to keep this example as simple as possible and to allow you to determine which
method of notification you want to perform:

// E-mail users and Store Owner a receipt

And, finally, you display a “thank you” message to the customer:
// Display message
myheader(“Payment Success”);
echo “<center>Thank you for your payment!

”.

“Please check your email for your receipt.</center>”;
break;

Creating the Payment Processing Scripts

4279c09.qxd 10/27/03 6:20 PM Page 305

306

The next case is only used when something happens on the PayPal server and the transac-
tion was not completed successfully. Because PayPal will not transfer any relevant informa-
tion about the failure, you have to display a generic message to the customer:

case “error”:
// This case used for PayPal only.
myheader(“Payment Error”);
echo “<center>We’re sorry, there have been problems “.

“with your payment</center>”;
break;

In the event that someone accesses the script and a case is not defined, you display an
access denied error to them:

default:
myheader(“Access Denied”);
echo “<center>You can’t access “.

“this page directly!</center>”;

break;

Close out the switch, display the footer, and close the script.
}
footer();
?>

That is about it for the processing script. I cover more options after you test all of these
scripts.

Testing the Payment Systems
You have been working on your payment processing scripts, and you are now ready to test
them.

Testing the VeriSign Scripts
The first task you will accomplish is to test the VeriSign processing scripts. The VeriSign
documentation gives you a set of credit card numbers to test. Any other card numbers you
use are supposed to fail, so trying your personal credit card will not work. According to the
Payflow Pro developer guide, the credit cards and types shown in Table 9.5 will work with
the test gateway.

VeriSign Payflow Pro has a couple more requirements. The first requirement is that the
expiration date must be in the future. The second requirement is that the transaction is less
than $2001 because of the maximum transaction values set up for fraud protection.

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 306

307

TABLE 9.5: VeriSign Payflow Pro Test Credit Card Numbers

Card Number Card Type

4111111111111111 Visa

4012888888881881 Visa

4222222222222 Visa (This card number is valid, even though the charac-
ter count is fewer than 16 digits.)

5555555555554444 MasterCard

5105105105105100 MasterCard

378282246310005 American Express

371449635398431 American Express

378734493671000 American Express Corporate

6011111111111117 Discover

6011000990139424 Discover

3530111333300000 JCB

3566002020360505 JCB

38520000023237 Diners Club

30569309025904 Diners Club

To test your scripts, follow these steps:

1. First, go to your site and add some products to your shopping cart.

2. After adding your products, go to the checkout page from the shopping cart.

3. Confirm your shopping cart order by clicking the Submit Payment hyperlink.

4. Click the payment method Credit Card via Our Secure Server.

5. Complete the payment form by using one of the valid credit card numbers from Table 9.5
and use any information you desire for the rest of the form (see Figure 9.4).

6. Click the Submit Payment button, and notice how long the process takes. Usually it is
quicker than 2 seconds. The next screen you should see is the ordercomplete.php page
with the “thank you” message. Also, notice that the shopping cart box on the right col-
umn is no longer there; hence, your shopping cart is now empty (see Figure 9.5).

7. Finally, log in to the PPM, click the Reports link at the top, and then click Daily Activity
Report on the left column. You will see a form; just click the Submit button, and you
should see your transaction in the table. My transaction was assigned a number such as
V63A31666815. Click the hyperlink with your transaction number, and you can see all of
the information about the transaction.

Testing the Payment Systems

4279c09.qxd 10/27/03 6:20 PM Page 307

308

If you are interested in testing a transaction failure, repeat steps 1 through 7 again and enter a
false credit card number or an invalid expiration date (one from the past) during step 5. Your
transaction will still be recorded in the PPM, so you can see what happens when someone does
not enter valid information.

F I G U R E 9 . 5 :
The “thank you” page

F I G U R E 9 . 4 :
Billing information page

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 308

309

The last step is to check your shopping_cart_orders table and see if the new row was
entered for the order. If a new row was created, then everything is working properly.

Testing PayPal Payment Scripts
Next, you will test the PayPal system you have created. There is only one catch: You can-
not pay yourself with PayPal, and there is no way to perform test transactions with the Buy
Now button you are using. To test this, I set up my PayPal script to use a friend’s PayPal
account, and I also changed the price of my products to $1 so that I would not have to send
my friend too much money during the transactions. (“Brad, can I have my $20 back?”) Fol-
low these steps:

1. Go to your site and add some products to your shopping cart.

2. After adding your products, go to the checkout page from the shopping cart.

3. Next, confirm your shopping cart order by clicking the Submit Payment hyperlink.

4. Click the payment method Pay via PayPal. Immediately, your browser should be redi-
rected to the PayPal pages, and you can complete the payment process.

5. After you have successfully made a payment, you will see a Complete This Transaction
link. When you click this link, you will be sent back to the ordercomplete.php page on
your website. Take special notice of the URL in your browser. The URL will contain
req=success&type=paypal&token=XXXXXXXXXXXXXXX. You should also notice that you will
see a screen similar to Figure 9.5 in the previous section.

The last steps you need to complete are to have your friend log in to their PayPal account
and view the transaction that took place. Additionally, check your shopping_cart_orders
table and ensure that the order was recorded properly. If everything is working, then con-
gratulations! You are now on your way to making money with your shopping cart system.
Good work!

Utilizing Curl to Process Payments
Some payment gateway systems do not always have a binary file to use on your servers so that
you can execute and receive responses from the system. Often, you will find a gateway that
requires you to send information to its servers and receive a response via an HTML page.
This is actually quite common with many of the basic gateways; fortunately, you have meth-
ods of making them work and appear just like the API described earlier.

Thanks to the folks over at Curl (curl.haxx.se), you can compile or enable a module in
PHP that allows you to post form information and capture the results into a string.

Utilizing Curl to Process Payments

4279c09.qxd 10/27/03 6:20 PM Page 309

310

The Curl website states, “Curl is a command line tool for transferring files with URL syn-
tax, supporting FTP, FTPS, HTTP, HTTPS, GOPHER, TELNET, DICT, FILE, and
LDAP. Curl supports HTTPS certificates, HTTP POST, HTTP PUT, FTP uploading,
kerberos, HTTP form-based upload, proxies, cookies, user+password authentication, file
transfer resume, HTTP proxy tunneling, and a busload of other useful tricks.”

For this example, you will use a fictional processor. Let’s say you have signed up for Acme
Gateway payment processing, and you have downloaded the Acme Gateway developer guide.
You see that the fields in Table 9.6 are required to send to the gateway to receive the
responses outlined in Table 9.7.

TABLE 9.6: Acme Gateway Required Fields

Field Purpose

NAME Account holder name

CARDNUMBER Credit card number

EXPDATE Credit card expiration date

USERNAME Username or store identifier in the Acme Gateway system

TABLE 9.7: Acme Gateway Responses

Field Value

Response 0 = Success, 1 = Failure, 3 = Unknown

Result Approved, Declined, Unknown

transaction_id Transaction ID number generated by the gateway

To send these fields to the payment gateway via Curl, use the code in Listing 9.5.

➲ Listing 9.5 Processing Acme Gateway Payments with Curl

<?php
$urlstring = “USERNAME=wylie&NAME=Eric&CARDNUMBER=4111111111111111&EXPDATE=0905”;

$ch = curl_init();
curl_setopt($ch, CURLOPT_URL,”https://mypayment.acme.com”);
curl_setopt($ch, CURLOPT_POST, 1);
curl_setopt($ch, CURLOPT_POSTFIELDS, $urlstring);
ob_start();
curl_exec ($ch);
$retrieved_result = ob_get_contents();

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 310

311

ob_end_clean();
curl_close ($ch);

// $retrieved_result of
// response=0&result=Approved&transaction_id=92938493
$a = explode(‘&’, $retrieved_result);
$i = 0;
while ($i < count($a)) {

$b = split(‘=’, $a[$i]);
$var = htmlspecialchars(urldecode($b[0]));
$val = htmlspecialchars(urldecode($b[1]));
$$var = $val;

$i++;
}

echo “Response: $response
”;
echo “Result: $result
”;
echo “Transaction ID: $transaction_id”;
?>

In this code, the first task you have to do is to build the querystring of fields to post to the
gateway:

<?php
$urlstring = “USERNAME=wylie&NAME=Eric&CARDNUMBER=4111111111111111&EXPDATE=0905”;

Next, you initialize Curl with the PHP function curl_init. You also have to assign a
resource identifier $ch to this because you use this resource in the rest of the code:

$ch = curl_init();
curl_setopt($ch, CURLOPT_URL,”https://mypayment.acme.com”);

Some gateways do not allow HTTP GET methods, so you must find a way to post the
information using the HTTP POST method just like you would with an HTML form. Curl
makes this easy for you by providing the CURLOPT_POST and CURLOPT_POSTFIELDS options:

curl_setopt($ch, CURLOPT_POST, 1);
curl_setopt($ch, CURLOPT_POSTFIELDS, $urlstring);

Output buffering is a lifesaver here! I talked about output buffering in Chapter 1, “Intro-
ducing PHP.” Here you will use an output buffer to capture the response into a string for
further decoding:

ob_start();
curl_exec ($ch);
$retrieved_result = ob_get_contents();
ob_end_clean();
curl_close ($ch);

Utilizing Curl to Process Payments

4279c09.qxd 10/27/03 6:20 PM Page 311

312

At this point you have a string called $retrieved_result with the results of your transac-
tion. This string looks like a querystring, such as response=0&result=Approved&transac-
tion_id=92938493. I will break this string apart into individual variables. Using a more
difficult method than the one you used in the VeriSign payment processing scripts, you will
retrieve each element of this string in a variable with its value:

// $retrieved_result of
// response=0&result=Approved&transaction_id=92938493
$a = explode(‘&’, $retrieved_result);
$i = 0;
while ($i < count($a)) {

$b = split(‘=’, $a[$i]);
$var = htmlspecialchars(urldecode($b[0]));
$val = htmlspecialchars(urldecode($b[1]));
$$var = $val;

$i++;
}

Now that you have the variables from the $retrieved_result, you can display them or uti-
lize a switch to determine which action to take on the $response value:

echo “Response: $response
”;
echo “Result: $result
”;
echo “Transaction ID: $transaction_id”;
?>

Using Curl can be a lifesaver when you need one most. With Curl, I have been able to
bypass expensive gateways by using basic HTML payment processors and still maintain the
appearance of using an expensive full-blown API or gateway on my website. You may find
many different uses for Curl when trying to retrieve data from other sources on the Internet.
To learn more about Curl, you can visit these resources:

● Curl homepage: curl.haxx.se

● PHP manual for Curl functions: www.php.net/curl

● My tutorial for other methods of using Curl: www.phpfreaks.com/tutorials/49/0.php

Customizing This Project
This chapter’s examples were as basic as possible. With that in mind, I excluded a few ele-
ments from the payment processing system. At this point, you should feel comfortable with
the common routines of PHP and MySQL; therefore, I will leave the rest of the process up
to you to complete with the knowledge you have obtained from this book.

Chapter 9 • Processing Payments for Your Website

4279c09.qxd 10/27/03 6:20 PM Page 312

313

The following are some tasks you could perform next:

● Follow up in the Payflow Pro developer guide for additional fields to send to the gateway
for payment processing.

● Include detailed error checking in the billing form.

● Modify the payment scripts to send invoices to the customer and store owner upon
checkout.

● Create a page within the website for customers to view their orders and an extra orders
page for the store owner to view all of the orders and details.

● Create a box in the right column that allows customers to view their orders, if they
have any.

You may want to do something different, so be sure to carefully examine your needs and
tailor your process to best suit your situation.

What’s Next?
This chapter covered payment processing with payment gateways, third-party payment solu-
tions, and Curl. It covered some nifty tricks to help secure your payment processing, and you
stored customer orders into your database. You have a few more things to do to complete this
system, but with a little creative thinking and the skills you have learned thus far, you should
be able to make a really cool payment system.

The next chapter covers how to track website statistics with custom PHP scripts and third-
party solutions.

What’s Next?

4279c09.qxd 10/27/03 6:20 PM Page 313

4279c09.qxd 10/27/03 6:20 PM Page 314

Tracking Website Statistics

Chapter 10

4279c10.qxd 10/27/03 6:20 PM Page 315

316

W ebsite statistics are notorious for catching a webmaster’s attention. Keeping track of how
your website is doing allows you to measure how valuable your efforts have been. The

more traffic your website generates, the more interested you may be to improve and develop
new sections for it.

On my website, I track as much information as possible. I even have a script built into my
site to track the Google search engine spider and how, when, and what pages it is indexing.
Why? Because I want to know how Google indexes my site. I usually use three major third-
party website statistics trackers and quite a few internal mechanisms that I have created with
PHP to track elements of my site.

This chapter discusses some of the different tracking techniques and creates some methods
to tell how many people have been on your website in the past 15 minutes. By the time you
are done with this chapter, you should be able to generate virtually any kind of custom track-
ing system. You will begin by coding some custom scripts to track your site visitors.

Creating Custom Tracking with PHP and MySQL
Utilizing the PHP $_SERVER superglobal array, you can obtain some important information
about your users for statistical tracking. Some of this information includes a visitor’s Internet
Protocol (IP) address, web browser type, the referring Uniform Resource Locator (URL),
and much more. This allows you to detect and analyze information about your users.

NOTE The examples in this chapter utilize the error suppression operator (@) before the MySQL
queries because you do not want errors displayed if any logging fails.

Setting a PHP Sessions Counter
By tracking the number of sessions on your site, you can tell how many times a visitor has
connected to your website and browsed through it. This is considered a visit in some website
analyzing software. You can do this with easily with PHP and MySQL with minimal impact
on the database size and performance with a single row in a table.

Setting Up the Database
You will start by creating a MySQL table in your database named stats_visits. Table 10.1
shows the values it will have.

TABLE 10.1: The stats_visits Table

Field Name Data Type Length Extra

count INT 15 Primary key

Chapter 10 • Tracking Website Statistics

4279c10.qxd 10/27/03 6:20 PM Page 316

317

If you would like to dump this query into your MySQL editor, you can use the following:
CREATE TABLE stats_visits (
count int(15) NOT NULL default ‘0’,
PRIMARY KEY (count)

) TYPE=MyISAM;

After you have created the table, insert a new row with a value of 0 into it using your
MySQL editor or using the following command:

INSERT INTO stats_visits VALUES (0);

Creating the Logging Script
Now you have your database prepared, so you can begin coding this simple script to count
how many sessions have been started on your server. Create a file in your website document
root under the includes directory. Name this file stats_visits.php; it will look like the fol-
lowing code:

<?php
if(!$_SESSION[‘visits’]){

@mysql_query(“UPDATE stats_visits
SET count=(count + 1)”);

$_SESSION[‘visits’] = TRUE;
}
?>

This is an extremely easy portion of code to use. It starts by checking if the $_SESSION
[‘visits’] session value exists. If it does, then nothing will happen in this script because
it does not pass the IF statement check. If the session value does not exist, the IF statement
will validate TRUE, and you will add 1 to the current value of the stats_visits row in the
database.

All you have left to do to use this simple tracking script is to include it in your common.php
file below where you included the database.php file:

// Include Session Counter File
include $_SERVER[‘DOCUMENT_ROOT’].’/includes/stats_visits.php’;

Testing the Logging Script
To test your script, all you have to do is open your website, click a couple of pages, and close
your browser. Do this a few times and then check the stats_visits row to verify that the
value of count is increasing each time you open your web browser to your site.

If everything has worked properly, then congratulations! You have created your first log-
ging script.

Creating Custom Tracking with PHP and MySQL

4279c10.qxd 10/27/03 6:20 PM Page 317

318

Displaying the Logging Results
To display the results of this script, you will perform a simple query and echo the result:

<?php
// include database connection if needed
$visit_count = mysql_result(

mysql_query(“SELECT count FROM stats_visits”),0);
echo $visit_count;
?>

Later in this chapter, you will create a box for the left column that will show your current
website statistics; you will include this query at that time.

Tracking the Number of Users and Visitors Online
Another popular tracking technique is to show how many visitors and users are visiting your
website within a certan period of time. You can easily achieve this by using sessions in PHP
and MySQL. The examples in the following sections show you how to utilize some of the
advanced MySQL functions to extract information from your database using a specific set of
limits during your queries.

Your site uses PHP sessions, so you have a unique way of identifying each user when they
are on your site, their session ID. The session ID is a unique, randomly generated string of
characters to identify each session on the site. It is impossible for two users to have the same
session ID at one time on a site, so you do not have to worry about this factor. Let’s dig in
and start developing this handy script.

Setting Up the Database
You will utilize MySQL for this process, so you need to create a table in your database to
store the information. Create a new table named stats_ppl_online, and use the values in
Table 10.2 to set up the structure.

TABLE 10.2: The stats_ppl_online Table

Field Name Data Type Length Default Extra

session_id VARCHAR 255 Primary key

member ENUM(‘0’, ‘1’) 0

activity DATETIME 0000-00-00 00:00:00

ip_address VARCHAR 24

refurl VARCHAR 255

user_agent VARCHAR 255

Chapter 10 • Tracking Website Statistics

4279c10.qxd 10/27/03 6:20 PM Page 318

319

The following is the command line query for this structure:
CREATE TABLE stats_ppl_online (
session_id varchar(255) NOT NULL default ‘’,
member enum(‘0’,’1’) NOT NULL default ‘0’,
activity datetime NOT NULL default ‘0000-00-00 00:00:00’,
ip_address varchar(24) NOT NULL default ‘’,
refurl varchar(255) NOT NULL default ‘’,
user_agent varchar(255) default NULL,
PRIMARY KEY (session_id),
KEY session_id (session_id)

) TYPE=MyISAM;

Creating the Logging Script
The logging script will capture certain information about the person visiting and determine
if you need to insert a new row into the database if they have not been logged yet or simply
update their existing row. Because the primary key in the database is the session_id column,
you can only have one entry per session ID, so this is another trick to keep from getting a
false reading on the counter.

Start by creating a script in your website document root’s includes directory. Name this
script people_online.php. Listing 10.1 shows the full code.

➲ Listing 10.1 People Online Logging Script

<?php
if(!$_SESSION[‘online’]){

@mysql_query(“INSERT INTO stats_ppl_online(session_id,
activity,
ip_address,
refurl,
user_agent)

VALUES (‘“.session_id().”’,
now(),
‘{$_SERVER[‘REMOTE_ADDR’]}’,
‘{$_SERVER[‘HTTP_REFERER’]}’,
‘{$_SERVER[‘HTTP_USER_AGENT’]}’
)”);

$_SESSION[‘online’] = TRUE;
} else {

if($_SESSION[‘login’]){
@mysql_query(“UPDATE stats_ppl_online

SET activity=now(),
member=’1’
WHERE
session_id=’”.session_id().”’”);

}
}

Creating Custom Tracking with PHP and MySQL

4279c10.qxd 10/27/03 6:20 PM Page 319

320

if($_SESSION[‘online’] && !$_SESSION[‘login’]){
@mysql_query(“UPDATE stats_ppl_online

SET activity=now()
WHERE session_id=’”.session_id().”’”);

}

// cleanup
$cleanup_time = time() - 301;
@mysql_query(“DELETE FROM stats_ppl_online

WHERE
UNIX_TIMESTAMP(activity) < ‘$cleanup_time’”);

?>

I will now cover how this script works. The first task you want to do is open PHP and
check to see if a session value named online is set. If it is not, you will perform a query and
insert a new row into the database:

<?php
if(!$_SESSION[‘online’]){

@mysql_query(“INSERT INTO stats_ppl_online (session_id,
activity,
ip_address,
refurl,
user_agent)

You use the PHP session_id function to insert into the session_id field of the new row:
VALUES (‘“.session_id().”’,

Next, you use the MySQL now() function to set the date and time of the activity column.
This column is specifically used to record the last time the user accessed a page on your site
and to update the row matching the session_id with the correct time values.

While you are here, I will explain why I used a DATETIME column type instead of a TIME-
STAMP column type in the database structure. A TIMESTAMP is the number of seconds from
January 1, 1970, until the TIMESTAMP was made. When I am browsing the database, I do not
like to perform math equations in my head to figure out the date of a TIMESTAMP, so I use a
more human-readable format for storage. That way, you can see what is going on by merely
browsing your database entries. You have the ability to convert any date and time into a
TIMESTAMP; I will show you how to do this later in this script. For now, let’s insert the current
time for this field using the MySQL now() function:

now(),

The next value you insert into the ip_address field is the IP address of the person access-
ing your website. You utilize the $_SERVER[‘REMOTE_ADDR’] superglobal, which is the IP
address of the visitor:

‘{$_SERVER[‘REMOTE_ADDR’]}’,

Chapter 10 • Tracking Website Statistics

4279c10.qxd 10/27/03 6:20 PM Page 320

321

The next field, refurl (the referring URL), is only used when browsing through the database
to tell you from where the visitor came. For example, if I had a link on www.phpfreaks.com and
the visitor clicked that link, the HTTP_REFERER would be http://www.phpfreaks.com. Pretty
cool! Here is the code:

‘{$_SERVER[‘HTTP_REFERER’]}’,

Even though the user_agent fields are not used in anything to display the number of visi-
tors online, you can still log them to figure out what type of web browser the visitor is using
to access your website. You obtain the web browser type by using the
$_SERVER[‘HTTP_USER_AGENT’] superglobal values:

‘{$_SERVER[‘HTTP_USER_AGENT’]}’
)”);

The next task is to prevent any attempts to perform the previous query again. You do this
by registering the online session value and setting it to a TRUE Boolean value. This will cause
the first IF statement in your script to bypass the query because the session value is set:

$_SESSION[‘online’] = TRUE;
} else {

At this point, you have already inserted a row into the database for this visitor. Now you
are going to check to see if the visitor is logged in as a member by validating the login ses-
sion Boolean that you set when a user logs into the site. When this IF statement validates
TRUE, you will update the row in the table for this visitor and set the member field ENUM flag
to 1 to indicate that this visitor is a member. You will also update the time this script was
accessed. You will utilize this ENUM flag later when you display how many visitors and mem-
bers are logged into your site. Additionally, this query is only used for members who are
logged in and have the online session value set:

if($_SESSION[‘login’]){
@mysql_query(“UPDATE stats_ppl_online

SET activity=now(),
member=’1’
WHERE
session_id=’”.session_id().”’”);

}

}

In this portion of the script, you have already logged the visitor in the database, and you
are going to determine if they are a member by using the && operator to limit the IF state-
ment to matching two rules. Once you have determined that the online session value has
been set and that this is a visitor and not a member, you want to update the database with the

Creating Custom Tracking with PHP and MySQL

4279c10.qxd 10/27/03 6:20 PM Page 321

322

time of the last page they accessed through the site. Based on this theory, you will perform a
query if the online session value has been set:

if($_SESSION[‘online’] && !$_SESSION[‘login’]){
@mysql_query(“UPDATE stats_ppl_online

SET activity=now()
WHERE session_id=’”.session_id().”’”);

}

After a few weeks of running this script on a high-traffic website, this database table can
grow rather quickly, so you want to perform some maintenance on your tables while the
script runs. You can set a time limit to clean up old entries that are no longer counted when
you display the results; so, based on that factor, you set a variable called $cleanup_time. The
$cleanup_time value utilizes the PHP time function that returns a TIMESTAMP, and then you
subtract the equivalent of five minutes and one second from that value returned by the time
function. The 301 value is equivalent to 60 seconds × 5 minutes + 1 second:

// cleanup
$cleanup_time = time() - 301;

NOTE Using a five-minute timeout is the standard that most websites use for these types of
statistics.

Now that you have determined the limit of records you want to keep, you will perform a
DELETE query and utilize the MySQL UNIX_TIMESTAMP function to convert that DATETIME field
into a TIMESTAMP. This query would read like the following if you were to say it aloud:
“DELETE records FROM the stats_ppl_online table WHERE the UNIX_TIMESTAMP-converted value
of the activity field is less than the $cleanup_time.” Here is the code:

@mysql_query(“DELETE FROM stats_ppl_online
WHERE
UNIX_TIMESTAMP(activity) < ‘$cleanup_time’”);

?>

Go ahead and include this file in your common.php file located inside the document root.
Be sure to add this below your session.php file because you need to ensure that the ses-
sions have already been started to utilize the session array. The following is how my full
common.php file looks from all of the previous chapters in this book with the new entry for
the people_online.php file:

<?php

// Include Meta Content Class
include $_SERVER[‘DOCUMENT_ROOT’].’/classes/clsMetaContent.php’;

Chapter 10 • Tracking Website Statistics

4279c10.qxd 10/27/03 6:20 PM Page 322

323

// Include Database Connection File
include $_SERVER[‘DOCUMENT_ROOT’].’/includes/database.php’;

// Include Email Class
include $_SERVER[‘DOCUMENT_ROOT’].’/classes/clsEmail.php’;

// Include Session Start & Name File
include $_SERVER[‘DOCUMENT_ROOT’].’/includes/session.php’;

// Include Shopping Cart Class
include $_SERVER[‘DOCUMENT_ROOT’].’/classes/clsShoppingCart.php’;

// Include Session Counter File
include $_SERVER[‘DOCUMENT_ROOT’].’/includes/stats_visits.php’;

// Include People Online Counter File
include $_SERVER[‘DOCUMENT_ROOT’].’/includes/people_online.php’;
?>

Testing the Logging Script
After you have everything coded and included in your site, test this script by following
these steps:

1. Open your website.

2. Check your database using your MySQL management tool. You should see a new row
created with your relevant information. Note that the member field has an ENUM value of 0
at this point. Also, note the date and time values of the activity field.

3. Click any page in your site. Go back to the database, and refresh the results of the table.
Notice that the date and time values of the activity field should be updated at this point.

4. Log in to your website as a member. Go back to the database, and refresh the results of
the table. Notice that the date and time values of the activity field have updated and also
notice that the member ENUM value should now be 1.

5. Close your web browser, open it again, and access your website. Check the database: You
should have two rows with different session ID values at this point.

6. Leave your website open and go take about a five-minute break—go grab some caffeine (a
web developer’s lifeline), stretch your legs, or do whatever makes you happy.

7. After your five-minute sanity break, click another page on your website. Go back to the
database, and refresh the results. You should notice that the old row is now deleted because
it is older than the five minutes and one second that you configured as the $cleanup_time.

Creating Custom Tracking with PHP and MySQL

4279c10.qxd 10/27/03 6:20 PM Page 323

324

Displaying the Logging Results
You have coded your script and have determined that it is working properly at this point. So, it
is time to figure out how to display the results and show off how many people have accessed
your website within the past five minutes. To do this, you will perform some queries with
MySQL and display the results.

If you have been analyzing the script you just created, you may be wondering how you can
get an accurate reading if a visitor closes their browser and then opens it to your site within
five minutes. The question may have popped into your head, “Wouldn’t that create a dupli-
cate entry?” Well, with MySQL, you can group your results by field and eliminate duplicate
entries from being counted as individual entries.

Listing 10.3 shows the code required to properly display these results.

➲ Listing 10.3 Visitors and Members Online Results Script

<?php
// include database connection if necessary
$limit_time = time() - 300;
$visitors_sql = @mysql_query(“SELECT COUNT(*) AS visitors FROM

stats_ppl_online
WHERE UNIX_TIMESTAMP(activity) >= $limit_time
AND member=’0’
GROUP BY ip_address”);

$visitors = @mysql_num_rows($visitors_sql);

$members_sql = @mysql_query(“SELECT COUNT(*) AS members FROM
stats_ppl_online
WHERE UNIX_TIMESTAMP(activity) >= $limit_time
AND member=’1’
GROUP BY ip_address”);

$members = @mysql_num_rows($members_sql);

echo “Visitors Online: $visitors
”;
echo “Members Online: $members
”;
?>

Listing 10.3 contains some new routines that I have not explained yet, so I will do that
now. First, you start PHP and include a database connection if necessary; however, you will
use this code in a box included on your site, so you do not need to include one here:

<?php
// include database connection if necessary

Second, you a set a time limit on the results to be extracted. This is similar to the DELETE
query you created in the logging script:

$limit_time = time() - 300;

Chapter 10 • Tracking Website Statistics

4279c10.qxd 10/27/03 6:20 PM Page 324

325

For this query, you perform the query and utilize the PHP mysql_num_rows function to get
the results. This query will select all of the rows from the stats_ppl_online table where the
member ENUM value is equal to 0, and then it will return all the results in groups of IP addresses
from the ip_address field. By utilzing the GROUP BY clause, you can get a more accurate num-
ber of visitors on your site:

$visitors_sql = @mysql_query(“SELECT COUNT(*) AS visitors FROM
stats_ppl_online
WHERE UNIX_TIMESTAMP(activity) >= $limit_time
AND member=’0’
GROUP BY ip_address”);

Now you will assign the result of the mysql_num_rows function from the previous query to
the $visitors variable. The value of $visitors is the number of rows found in the database
matching your query:

$visitors = @mysql_num_rows($visitors_sql);

The next query is the same routine as the previous one, except now you are getting the
number of results for the members ENUM value of 1 indicating how many members are online:

$members_sql = @mysql_query(“SELECT COUNT(*) AS members FROM
stats_ppl_online
WHERE UNIX_TIMESTAMP(activity) >= $limit_time
AND member=’1’
GROUP BY ip_address”);

$members = @mysql_num_rows($members_sql);

Now you display the results by using the echo function:
echo “Visitors Online: $visitors
”;
echo “Members Online: $members
”;
?>

Everything should be working as advertised at this point; you now have a method of dis-
playing how many users have been on your site in the past five minutes.

NOTE If you are testing your counter by closing and opening your browser, logging in and logging
out, keep in mind that some of these statistics may not be entirely accurate until a five-
minute timeout period has passed. This statstics tracking mechanism was designed for
normal usage of your website, so keep that in mind before you get the impression that it
does not work properly.

Tracking Search Engine Spiders
I will now show you a trick for figuring out exactly what that good ol’ GoogleBot (the search
engine web spider) is doing on your site. Let’s face it, Google is growing to be the number-
one search engine on the Internet. If your site ranks well in Google, you are definitely

Creating Custom Tracking with PHP and MySQL

4279c10.qxd 10/27/03 6:20 PM Page 325

326

golden—you will be getting traffic like crazy from it. In order to really understand what the
GoogleBot is doing, I devised a method of tracking it and storing the results in my database.
This may be considered extremely “geeky,” but, hey, I like knowing what is going on!

Expanding on my original code, this section presents a better solution for you to be able
track more than just the GoogleBot. The following sections show you a method of tracking
the major search engine bots on the Internet and logging what they do.

Preparing the Database
Create a table named stats_search_engines in your database using the values in Table 10.3.

TABLE 10.2: The stats_search_engines Table

Field Name Data Type Length Default Extra

id INT 25 Primary key, auto increment

bot_name VARCHAR 255 0

access_time DATETIME 0000-00-00
00:00:00

page VARCHAR 255

ip_address VARCHAR 24

The following is the command line query for this structure:
CREATE TABLE stats_search_engines (
id int(25) NOT NULL auto_increment,
bot_name varchar(255) NOT NULL default ‘’,
access_time datetime NOT NULL default ‘0000-00-00 00:00:00’,
page varchar(255) NOT NULL default ‘’,
ip_address varchar(24) NOT NULL default ‘’,
PRIMARY KEY (id)

) TYPE=MyISAM;

Creating the Logging Script
This script works based on the results found from the $_SERVER superglobal array. You search
for certain words in the HTTP_USER_AGENT that will identify the search engine bots. For example,
by analyzing some search engine logs, I was able to determine that the GoogleBot uses the
HTTP_USER_AGENT value of Googlebot/2.1 (+http://www.googlebot.com/bot.html) and the
MSN search engine spider uses MSNBOT/0.1 (http://search.msn.com/msnbot.htm). Even
though these spiders are using versions, you can still provide a method to detect the spiders
in your script. Let’s jump into the code and learn how to perform the logging for this con-
cept (see Listing 10.4).

Chapter 10 • Tracking Website Statistics

4279c10.qxd 10/27/03 6:20 PM Page 326

327

➲ Listing 10.4 Search Engine Spider Logger

<?php
$spiders[] = “MSNBOT”;
$spiders[] = “Google”;
$spiders[] = “Inktomi”;
$spiders[] = “Mozilla”; // Test Only
foreach($spiders AS $spider){

if(@eregi($spider, $_SERVER[‘HTTP_USER_AGENT’])){
@mysql_query(“INSERT INTO stats_search_engines

(bot_name,
access_time,
page,
ip_address)

VALUES (‘{$_SERVER[‘HTTP_USER_AGENT’]}’,
now(),
‘{$_SERVER[‘REQUEST_URI’]}’,
‘{$_SERVER[‘REMOTE_ADDR’]}’)”);

}
}
?>

As always, I will break this script down for you. First, open PHP:
<?php

Second, you need a method of identifying the spiders by searching the HTTP_USER_AGENT
value with a simple word. To achieve this with a list of different words such as MSN, Google,
Inktomi, you create an array with each word as a new entry. You do not want to use the entire
value that the spider reports as its HTTP_USER_AGENT value because if the version changes, you
will have to change your code:

$spiders[] = “MSNBOT”;
$spiders[] = “Google”;
$spiders[] = “Inktomi”;

NOTE The following array entry is for testing only.

If your site is not live yet, it will not be in the spider queue for the search engines. There-
fore, you will utilize the word Mozilla to test this script with your web browser:

$spiders[] = “Mozilla”; // Test Only

Now you will use a foreach function to create a variable from the key for the current array
element being looped through. With this variable, you can perform your check to see if you
have a match and then perform a query:

foreach($spiders AS $spider){

Creating Custom Tracking with PHP and MySQL

4279c10.qxd 10/27/03 6:20 PM Page 327

328

You use the PHP eregi function for a case-insensitive match based on the argument and the
string. If a match is found with an eregi function, the result returned by it will be TRUE, and you
can utilize an IF statement in conjunction with it to perform further actions. Based on these
factors, you can validate if the value of $spider is found in the $_SERVER[‘HTTP_USER_AGENT’]
superglobal array value. If it is, the IF statement will validate TRUE, and you can perform your
query to log the request:

if(@eregi($spider, $_SERVER[‘HTTP_USER_AGENT’])){
@mysql_query(“INSERT INTO stats_search_engines

(bot_name,
access_time,
page,
ip_address)

VALUES (‘{$_SERVER[‘HTTP_USER_AGENT’]}’,
now(),

The next $_SERVER superglobal array value you will use is REQUEST_URI, which is the page
you are requesting. For example, the REQUEST_URI for www.mysite.com/articles.php would
be /articles.php:

‘{$_SERVER[‘REQUEST_URI’]}’,

The $_SERVER[‘REMOTE_ADDR’] superglobal array contains the IP address of the client
accessing the script:

‘{$_SERVER[‘REMOTE_ADDR’]}’)”);
}

}
?>

Save your work, and then edit your common.php toward the bottom to include this new file.

Testing the Logging Script
There is not really much to test with this script. However, you have included an array value
that allows you to log your request for testing purposes. To test your script, you can open
your web browser and browse a few pages. After you have browsed a few pages, open your
database and view the rows in your stats_search_engines table. Figure 10.1 shows an
example of my database rows.

You can determine the best method of viewing these logs to suit your needs. I scan my
database tables using phpMyAdmin when I want to see what is happening. There is really no
use for me to display this information on my websites, so I do not create a front-end script
for them.

Chapter 10 • Tracking Website Statistics

4279c10.qxd 10/27/03 6:20 PM Page 328

329

Creating a Quick Stats Box
You have the ability to log your statistics, so now it is time to show off your skills, features,
and statistics by creating a new box in your left column. Create a box in your website docu-
ment root under the boxes directory. Name the file box_quick_stats.php and use the display
code from previous examples in this chapter (see Listing 10.5).

➲ Listing 10.5 Quick Stats Box

<?php

$visit_count = mysql_result(mysql_query(“SELECT count FROM
stats_visits”),0);

$limit_time = time() - 300;
$visitors_sql = mysql_query(“SELECT COUNT(*) AS visitors FROM stats_ppl_online

WHERE UNIX_TIMESTAMP(activity) >= $limit_time
AND member=’0’
GROUP BY ip_address”);

$visitors = mysql_num_rows($visitors_sql);

$members_sql = mysql_query(“SELECT COUNT(*) AS members FROM stats_ppl_online
WHERE UNIX_TIMESTAMP(activity) >= $limit_time
AND member=’1’
GROUP BY ip_address”);

$members = mysql_num_rows($members_sql);
?>

F I G U R E 1 0 . 1 :
Database entries for
the search engine log-
ging script

Creating Custom Tracking with PHP and MySQL

4279c10.qxd 10/27/03 6:20 PM Page 329

330

<table width=”160” border=”0” cellspacing=”0” cellpadding=”0”>
<tr bgcolor=”#000066”>
<td width=”5” height=”10”> </td>
<td width=”150”>
<div align=”center”>

Quick Stats
</div>
</td>
<td width=”5”> </td>

</tr>
<tr>
<td height=”5”> </td>
<td align=”left” valign=”top”>
Total Visits: <?=$visit_count?>

Visitors Online: <?=$visitors?>

Members Online: <?=$members?>

</td>
<td> </td>

</tr>
<tr>
<td width=”5” height=”10”> </td>
<td width=”150”> </td>
<td width=”5”> </td>

</tr>
</table>
<hr size=”1”>

Listing 10.5 is pretty basic to understand, and most of it was described previously. I modi-
fied my layout.php file and included this new file at the bottom of my left column. Fig-
ure 10.2 (on the following page) shows what this box looks like in action.

Using Web Analyzing Software
There are many methods to analyze your website statistics through your web server log files.
Most web servers will log extensive information that it sends to the client by request. Based
on this concept, you can install web statistic analyzing software on your server and generate
HTML reports telling you in detail what is happening on your site. Do not worry too much
if you do not have control over the web server your site is hosted on; most web hosting com-
panies should provide these statistics for you using some of the popular analyzing software
available.

The following sections show some of the web statistics analyzing software you can use to
generate your reports.

Chapter 10 • Tracking Website Statistics

4279c10.qxd 10/27/03 6:20 PM Page 330

331

Using Webalizer
Webalizer is a free web server log file analyzer. It can generate custom reports for multiple
websites on a server. You can configure the way the reports are generated from the configu-
ration files if you want to customize the output. Additionally, Webalizer utilizes a history fea-
ture that allows you to delete old log files after it has generated the reports.

Webalizer is available for the most popular operating systems; you can download it and
learn more about it at www.webalizer.com.

If you would like to see a statistics page generated by Webalizer, you can take a look at my
site’s statistics at www.phpfreaks.com/webalizer.

Using Urchin
Urchin is commercial web analyzing software based on similar principles as Webalizer.
Urchin, however, is rather expensive to use; you have to purchase licenses for different levels
of usage. An Urchin license starts at $695 to purchase; however, you may find that your web
hosting provider is a reseller, and you can purchase your licenses fairly cheaply. I was able to
purchase a single-configuration Urchin license for less than $100 from my hosting provider.

You can learn more about Urchin at www.urchin.com.

F I G U R E 1 0 . 2 :
Quick stats box

Using Web Analyzing Software

4279c10.qxd 10/27/03 6:20 PM Page 331

332

Monitoring Your Website with Alexa
Amazon.com has caught the attention of many webmasters with its Alexa service. Alexa uti-
lizes a toolbar add-on for web browsers to determine how websites rank against each other.
This toolbar sends information to the Alexa server about the websites the toolbar user is
browsing. According to the Alexa website, their toolbar has been downloaded more than 10
million times since 1997 when it was first introduced.

The Alexa monitoring service is packed with features for you to use when comparing your
site to millions of other websites. You can view daily graphs that are generated by Alexa to
see how your site was ranked each day for as long as the past year.

Alexa has its own ways of ranking websites in its system. The basic principle is that the
lower the overall ranking, the better your site is. You can learn more about how Alexa ranks
websites at pages.alexa.com/prod_serv/traffic_learn_more.html.

Alexa also offers webmasters services to display their traffic rankings directly on their web-
sites using graphical images. These images may consist of a simple traffic ranking, or you can
display the traffic graphs on your site, as well. To learn more about these services, visit the
Alexa webmaster services at pages.alexa.com/prod_serv/webmasters.html.

What’s Next?
This chapter covered how to create statistical logging scripts for your website. It covered
how to log the number of visits your site has obtained, how to log and display the number of
visitors and members on your website within the past five minutes, and how to track search
engine spiders as they crawl through your site. Additionally, I discussed some web analyzing
software that can examine your web server log files and generate reports for you to track how
your site is doing.

The next chapter discusses some of the best third-party PHP scripts that you can utilize in
your website.

Chapter 10 • Tracking Website Statistics

4279c10.qxd 10/27/03 6:20 PM Page 332

Using Third-Party
PHP Scripts

Chapter 11

4279c11.qxd 10/27/03 6:21 PM Page 333

334

PHP has a large supporting community. Within this community, developers have created
scripts for many uses that are available for you to download or purchase via the Internet.

This is great for most developers because it means someone else has already taken care of
doing all of the hard work; all you have to do is download, install, and configure the scripts.
You can usually find a solution on the Internet that has already been researched, developed,
and tested for just about anything related to PHP. For example, I talked about phpMyAdmin
in Chapter 3, “Building a Database Schema with MySQL.” phpMyAdmin is a set of scripts
that allow you to manage your MySQL databases and servers. This is just one example of a
third-party script; many more are available for different types of solutions.

This chapter covers some of my favorite third-party scripts that I use on a daily basis. I will
also cover where to find other third-party scripts via the Internet.

Exploring Some Great Third-Party PHP Scripts
I have been using third-party PHP scripts for quite a while now. I primarily use them as addi-
tions to sites I have developed; with them, I enhance the site’s capabilities and avoid spending
too much time on developing something that someone else has already developed. Like they
say, why reinvent the wheel? The following sections introduce you to a few of my favorite
third-party scripts.

Using the phpAdsNew Advertisement System
A superior set of PHP scripts that allows you to display advertisements on websites is php-
AdsNew. phpAdsNew is loaded with features that allow you to display nearly every kind of
web-based advertisement. In addition to displaying the advertisements, phpAdsNew has an
extremely advanced tracking solution.

You can download phpAdsNew at www.phpadsnew.com. phpAdsNew is fairly easy to install.
The scripts provide an installation wizard that is as easy as setting up an application on a
Windows platform. Figure 11.1 shows the beginning of the installation process, and Fig-
ure 11.2 shows a successful installation screen.

After you have phpAdsNew installed and configured, you can log in to start working with
the administrator control panel (see Figure 11.3).

One of the features of phpAdsNew is its inventory control. The Inventory tab allows you
to add new advertisers, create advertiser campaigns, and add banners for advertisers. Fig-
ure 11.4 shows the Inventory tab, Figure 11.5 shows the Add New Campaign screen, and
Figure 11.6 shows the Campaign Overview screen.

Chapter 11 • Using Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 334

335

F I G U R E 1 1 . 2 :
Completing the
installation

F I G U R E 1 1 . 1 :
Setting up a
phpAdsNew account

Exploring Some Great Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 335

336

F I G U R E 1 1 . 4 :
phpAdsNew
Inventory tab

F I G U R E 1 1 . 3 :
Logging in to
phpAdsNew

Chapter 11 • Using Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 336

337

F I G U R E 1 1 . 6 :
phpAdsNew Campaign
Overview screen

F I G U R E 1 1 . 5 :
phpAdsNew Add New
Campaign screen

Exploring Some Great Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 337

338

After you have created an advertiser campaign, you can add banners to that campaign.
phpAdsNew offers multiple methods of storing banners. You can store your banners locally
on the web server, in MySQL as a BLOB, or externally on another website. Figure 11.7
shows the Banner Properties screen. In this figure, I have created a simple JPEG banner and
uploaded it through phpAdsNew for this advertiser.

After you have created your advertisers and configured banners for them, you can use the
phpAdsNew Direct Selection screen to generate code and include it on your website to dis-
play the banners. phpAdsNew offers different types of delivery options, including a local
mode, which is a set of PHP code that you can include in your PHP scripts, or remote invo-
cation, which uses JavaScript to display and track the advertisements. Figure 11.8 shows the
Direct Selection screen, and Figure 11.9 shows some generated code.

Once you have obtained your code and included it on your website, your advertisements
should display according to your settings. While your advertisements are displayed, php-
AdsNew keeps track of how many impressions (times) and clicks you get for your banners.
You can log in at any time and check the statistics by clicking the Statistics tab of the php-
AdsNew control panel (see Figure 11.10).

phpAdsNew is packed with options and features you may find handy. To learn more about
this awesome advertisement script, refer to the website at www.phpadsnew.com.

F I G U R E 1 1 . 7 :
phpAdsNew Banner
Properties screen

Chapter 11 • Using Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 338

339

F I G U R E 1 1 . 9 :
phpAdsNew-
generated code

F I G U R E 1 1 . 8 :
phpAdsNew Direct
Selection screen

Exploring Some Great Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 339

340

Using the phpBB Bulletin Board System
Bulletin board systems, also known as forums, are a great and easy way to build an online
community that can interact with each other on your website. You can allow your members
to post questions and get answers utilizing these systems. The great thing about the PHP
community is that there are more than 20 different types of bulletin board systems you can
use for free! This section covers my favorite bulletin board system.

phpBB is a complete forum system that allows online collaboration between community
members. You can download phpBB for free at www.phpbb.com.

phpBB offers many features that will enhance the experience of your members. Some of
these include topic watches (e-mail notifications), code formatting within the topics, smart
Uniform Resource Locator (URL) conversion, private messaging, search engines, cookie
features, and much more. For the administrator, you have the ability to administer forums,
categories, users, posts, and more. Additionally, you have the ability to back up and restore
the database through the swift administration panel.

phpBB also provides an excellent installation wizard that is as easy to use as a Windows-
based application installer. Figure 11.11 shows the installation’s welcome screen, and
Figure 11.12 shows what it looks like after you have created a username.

F I G U R E 1 1 . 1 0 :
phpAdsNew
Statistics tab

Chapter 11 • Using Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 340

341

F I G U R E 1 1 . 1 2 :
Creating a username
in phpBB

F I G U R E 1 1 . 1 1 :
phpBB’s welcome
screen

Exploring Some Great Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 341

342

After you complete your installation of phpBB, you will be taken to the administration
panel where you can add forum categories, add forums, change your settings, back up and
restore your database, and much more. Figure 11.13 shows the administrative panel.

The public side of phpBB displays a forum category index and statistics about the current
database (see Figure 11.14).

When you are on the main forum page of phpBB, you can select a forum and post a topic
inside (see Figure 11.15). Notice how I use the special formatting options inside the text box
when posting a message.

After your message has been posted, it will appear in the forum to which you posted it (see
Figure 11.16).

When you click your topic inside the forum, you will see a screen that shows you the topic
text (see Figure 11.17). Notice the special formatting inside the text.

Figure 11.18 shows a customized and populated version of phpBB.

F I G U R E 1 1 . 1 3 :
phpBB administration
panel

Chapter 11 • Using Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 342

343

F I G U R E 1 1 . 1 5 :
Posting a message
with phpBB

F I G U R E 1 1 . 1 4 :
phpBB forum index

Exploring Some Great Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 343

344

F I G U R E 1 1 . 1 7 :
Viewing a topic
with phpBB

F I G U R E 1 1 . 1 6 :
phpBB forum topics

Chapter 11 • Using Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 344

345

Using the PowerPhlogger Statistics Tracking Script
When keeping track of statistics is your game, PowerPhlogger could help you out. Power-
Phlogger is a set of scripts designed to track your website’s visits, clicks, referrers, keywords,
and more. PowerPhlogger was also written to allow webmasters to run a hit counter service
for other websites. It has a complete control panel for administrators and users to manage
statistics. You can download PowerPhlogger at www.phpee.com.

PowerPhlogger tracks your website statistics by embedding a JavaScript code into your
website’s Hypertext Markup Language (HTML). The JavaScript code sends information to a
receiving PHP script and stores that information in your database. Figure 11.19 shows the
logs, Figure 11.20 shows the statistics, and Figure 11.21 shows the calendar and charts that
you can generate.

F I G U R E 1 1 . 1 8 :
Populated and cus-
tomized version of
phpBB

Exploring Some Great Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 345

346

F I G U R E 1 1 . 2 0 :
PowerPhlogger
statistics

F I G U R E 1 1 . 1 9 :
PowerPhlogger logs

Chapter 11 • Using Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 346

347

Using the MyNewsGroups News Client
If you have ever used a newsgroup before, you probably know that they contain a lot of
information that is posted much like sending an e-mail. The information is stored on a
server, and newsgroup users from around the world are able to respond to topics and com-
municate through the newsgroups. Well, there is a set of PHP scripts called MyNewsGroups
for your website that allows you to retrieve and store these messages in your MySQL data-
base. Once you have retrieved the messages, you can view, respond, and subscribe to them
with the smooth web-based interface.

You can download MyNewsGroups at mynewsgroups.sourceforge.net for free.

Figure 11.22 shows the MyNewsGroups welcome screen, Figure 11.23 shows the news-
group index screen, Figure 11.24 shows the topic list, and Figure 11.25 shows an individ-
ual post.

If you would like to view a customized and populated version of MyNewsGroups, visit
www.phpfreaks.com/newsgroups.

F I G U R E 1 1 . 2 1 :
PowerPhlogger calen-
dar and charts

Exploring Some Great Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 347

348

F I G U R E 1 1 . 2 3 :
MyNewsGroups news-
group index screen

F I G U R E 1 1 . 2 2 :
MyNewsGroups wel-
come screen

Chapter 11 • Using Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 348

349

F I G U R E 1 1 . 2 5 :
MyNewsGroups post

F I G U R E 1 1 . 2 4 :
MyNewsGroups news-
group topic list

Exploring Some Great Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 349

350

Finding Third-Party PHP Scripts
If you need to find third-party PHP scripts for your solutions, you can search for them in
quite a few places. Script archive websites contain directories of scripts for you to browse,
download, rate, and review. The following are a few I use when trying to find a solution:

PHP Freaks script archive www.phpfreaks.com/scripts.php

HotScripts.com www.hotscripts.com

freshmeat.net www.freshmeat.net

SourceForge www.sourceforge.com

Zend.com www.zend.com

What’s Next?
If you have made it this far through the book, you are probably ready to take advantage of all
PHP has to offer. Where do you go from here? The next chapter presents some additional
resources so you can jump in with both feet!

Chapter 11 • Using Third-Party PHP Scripts

4279c11.qxd 10/27/03 6:21 PM Page 350

Closing Statements

Chapter 12

4279c12.qxd 10/27/03 6:21 PM Page 351

352

T his book has presented practical examples of PHP and has discussed the major issues of
working with PHP every day. Even though the book went into depth on some topics, it

kept the topics as simple as possible, logical in nature, and practical to use. At the same time,
you were able to get your hands dirty by digging in and developing the real-world examples.

This chapter provides resources where you can find more information about PHP.

It Gets in Your Blood
If you have enjoyed what you have learned so far, which I hope you have, you will find that
PHP is an addictive language. It is easy to learn, forgiving, and constantly expanding. Most
important, it provides you with excellent results when you do it right. With all of these fac-
tors, once you have tackled and achieved your first objective with PHP, you will find that it
will get into your blood, and you will want to find something new to do with it next.

I work with PHP on a daily basis; in fact, it has become part of my thought process. I can-
not tell you how many times I have looked at a problem related to website development and
thought about how I could conquer it using PHP. I will be honest: There are not too many
problems related to web development that I have not been able to solve with some quick
research, development, and basic testing of how things flow together.

If you want to become a serious PHP developer, naturally you will have to constantly push
yourself to learn everything you can about PHP. I found myself learning just enough to get
myself by when I first started, and then I later found more efficient methods of reducing the
amount of code and optimizing it at the same time. Now I look for the more complicated yet
proper methods to create my scripts.

Regardless of how you approach developing with PHP, you should keep an open mind
about the right ways to develop your project. In Chapter 2, “Planning Your Project,” I gave
you the methods I use to plan and implement a project. With these examples, you should
have no problem making your real-life “Acme.com” websites.

Getting Support
Getting support for PHP is becoming easier every day. In fact, the communities that support
PHP are growing as you read this book. You do not have to pay for support, and you will
more than likely not have to wait long to get an answer to your question within these realms
of information. The following sections provide some of the great support channels you can
use if you get stumped when working with PHP.

Chapter 12 • Closing Statements

4279c12.qxd 10/27/03 6:21 PM Page 352

353

PHP Support Sites
PHP support sites are spawning all over the place because of the rapidly growing popularity
of this awesome language. I receive e-mails nearly every day from a new PHP help site web-
master who asks me to help publicize a new site, and I try to help the best I can. The follow-
ing sites are the ones that I found most useful.

PHP Freaks.com
During the writing of this book, I have watched the community of members at PHP Freaks
(www.phpfreaks.com) nearly double. Even though this is not the only source of help related
to PHP on the Internet and although it is my personal site, a growing community of devel-
opers—of all levels—use the site to provide support for each other.

You can find the following resources on PHP Freaks to help you solve your problems:

Online manuals The online manuals offer a plethora of official information for you to
learn from:

● PHP manual: www.phpfreaks.com/phpmanual.php

● MySQL manual: www.phpfreaks.com/mysqlmanual.php

● Smarty manual: www.phpfreaks.com/smartymanual.php

● Apache manual: www.phpfreaks.com/apachemanual.php

More manuals are available; please see the site’s Documentation section.

Quick code libraries These libraries are examples of real scripts you can download to
your hard drive from PHP users who have contributed their work. The code libraries are
available at www.phpfreaks.com/quickcode.php.

Tutorials I have a selective writing staff that writes tutorials on a regular basis. These
tutorials walk you through the planning and developing process for PHP tasks. More than
100 tutorials are available at www.phpfreaks.com/tutorials.php.

Forums This site offers an extremely active community of forums members that answer
questions quickly and efficiently. Usually, if you post a sensible question, you will get an
answer within a couple of hours. You can find the forums at www.phpfreaks.com/forums.

PHP newsgroups More than 250,000 questions, answers, and announcements about
PHP are available in this section. If you can’t find your answer, try digging through this
archive, and you’ll probably find something of use. You can find the newsgroups at
www.phpfreaks.com/newsgroups.

Getting Support

4279c12.qxd 10/27/03 6:21 PM Page 353

354

PHP reference library This is a growing library of the most commonly used elements
in PHP. Each reference should have a practical example of how to use the reference in a
real PHP script. This is a great section for browsing and picking up tidbits. Browse the
library at www.phpfreaks.com/phpref.php.

Much more is available on PHP Freaks.com. Stop by if you need help or if you come to
the point where you can assist a struggling newbie.

PHP.net
PHP.net (not PHP.com) is the official resource for PHP. You can find support in the online
manual and mailing lists. Additionally, the site has downloadable documentation and source
files for PHP. You can find PHP.net at www.php.net.

PHP-Editors.com
PHP-Editors.com is a quickly growing website that has many similar topics as PHP
Freaks.com. If you are looking for other resources to get support, give this site a shot. It
has tutorials, code examples, forums, contests, and more. You can find PHP-Editors.com
at www.php-editors.com.

SitePoint
SitePoint is another great resource for PHP and other web-related topics. SitePoint has an
active community and offers some excellent affiliate programs for webmasters to earn money.
Find it at www.sitepoint.com.

WeberDev.com
This is a large webmaster-related site that caters to PHP. There is a lot of information on
this site; however, you just have to dig for it. Visit www.weberdev.com.

Zend Technologies
Zend Technologies provides the Zend engine that runs inside the core of PHP. Zend has
advanced tutorials and even add-ons for PHP. Find the site at www.zend.com.

This list is a small portion of the sites where you will find PHP support. If you want to
look for additional sites, just jump onto Google and search for PHP Help; you will definitely
find some help.

PHP Manual
Regardless of the numerous websites available for getting PHP help, I can tell you the major
source that helps me out the most: the PHP manual. The PHP manual is written very well,

Chapter 12 • Closing Statements

4279c12.qxd 10/27/03 6:21 PM Page 354

355

and you can learn practically everything you need to know. However, the PHP manual is not
exactly written for everyone to understand, but once you have worked with it for a short
period of time, you will be able to decipher the language in it and make it work to your
advantage.

You have your choice when it comes to reading the PHP manual. You can either read it
online or download it for offline reading. Additionally, you can print it and take it on the
road with you. The copyrights within the manual allow you to reproduce it for your
personal needs.

To obtain the official PHP manual, go to www.php.net/download-docs.php.

Live Support
Believe it or not, there is actually live support throughout the Internet for PHP. For example,
I run a live Internet Relay Chat (IRC) channel that is usually staffed 24 hours a day by enthu-
siasts who love to help for free. To find my IRC channels, please visit www.phpfreaks.com/
ircchan.php.

Additionally, you can usually access a channel by the identifier “#php” on most popular
IRC servers.

If you need to learn more about IRC, go to www.irc.org and learn how to use it to get
online with your preferred network.

WARNING Beware of IRC channels. They are not the friendliest places to get help. Be sure you have
done your research before asking questions on any IRC channel, or you may be treated
with less than respect when receiving your answers. However, if you approach your ques-
tion in a mature way and present yourself as having done your research, you should have
no problems retrieving answers for your problems.

PHP Frequently Asked Questions (FAQ)
When a language gets as popular as PHP is, the same questions get asked repeatedly. Many
resources are available that have documented these FAQs and the answers to them. The fol-
lowing are some sites that may help you along your journeys into PHP development:

Official PHP.net FAQ www.php.net/FAQ.php

PHP Freaks.com PHP FAQ www.phpfreaks.com/faq.php

ALT-PHP-FAQ www.alt-php-faq.org

PHP.Faqts php.faqts.com

Getting Support

4279c12.qxd 10/27/03 6:21 PM Page 355

356

Contributing to PHP
If you are one of the more skillful people who know how to develop the inner workings of
something such as PHP, you can join the open-source development community and con-
tribute to future releases of PHP. To learn more about contributing, see www.php.net/
cvs-php.php.

Keep On Truckin’
Well, my fellow PHP developers, I hope I have shown you the light about PHP. Keep your
head up, keep the wheels turning, and hone your skills to help spread PHP throughout the
Internet. You and I both know it is a powerful language, but how powerful is it really? This is
a question I will leave to you because my answer keeps getting reconfirmed every day I use it.
I have no reason to switch to another language to make a dynamic website, and I hope you
will feel the same way soon. So, keep on truckin’ your way through as you learn the tricks to
hone your skills as a powerful PHP developer. I will see you on the other side!

Chapter 12 • Closing Statements

4279c12.qxd 10/27/03 6:21 PM Page 356

PHP Reference

Appendix A

4279cA.qxd 10/27/03 6:21 PM Page 357

358

T hroughout this book, you have been utilizing numerous PHP features and functions. This
appendix emphasizes the most common features of PHP; you can use it as a quick refer-

ence on a daily basis. This is not a complete reference to PHP, however. Please refer to the
PHP manual for more in-depth PHP information.

Popular PHP Functions
To make the following sections easier to use, I list only the most popular PHP functions that
I use in my PHP applications.

Array Functions
The following are array functions:

array_chunk (array input, int size [, bool preserve_keys]) Splits an array into chunks

array_count_values (array input) Counts all the values of an array

array_diff (array array1, array array2 [, array ...]) Computes the difference of arrays

array_fill (int start_index, int num, mixed value) Fills an array with values

array_flip (array trans) Flips all the values of an array

array_key_exists (mixed key, array search) Checks if the given key or index exists in
the array

array_keys (array input [, mixed search_value]) Returns all the keys of an array

array_merge_recursive (array array1, array array2 [, array ...]) Merges two or more
arrays recursively

array_merge (array array1, array array2 [, array ...]) Merges two or more arrays

array_pad (array input, int pad_size, mixed pad_value) Pads array to the specified
length with a value

array_pop (array array) Pops the element off the end of array

array_push (array array, mixed var [, mixed ...]) Pushes one or more elements onto
the end of array

array_rand (array input [, int num_req]) Picks one or more random entries out of
an array

Appendix A • PHP Reference

4279cA.qxd 10/27/03 6:21 PM Page 358

359

array_reverse (array array [, bool preserve_keys]) Returns an array with elements in
reverse order

array_search (mixed needle, array haystack [, bool strict]) Searches the array for a
given value and returns the corresponding key if successful

array_shift (array array) Shifts an element off the beginning of array

array_slice (array array, int offset [, int length]) Extracts a slice of the array

array_splice (array input, int offset [, int length [, array replacement]]) Removes a
portion of the array and replaces it with something else

array_sum (array array) Calculates the sum of values in an array

array_unique (array array) Removes duplicate values from an array

array_unshift (array array, mixed var [, mixed ...]) Prepends one or more elements
to the beginning of array

array_values (array input) Returns all the values of an array

array_walk (array array, string func [, mixed userdata]) Applies a user-defined func-
tion to each member of an array

array ([mixed ...]) Creates an array

arsort (array array [, int sort_flags]) Sorts an array in reverse order and maintains
index association

asort (array array [, int sort_flags]) Sorts an array and maintains index association

compact (mixed varname [, mixed ...]) Creates array containing variables and their
values

count (mixed var) Counts elements in a variable

current (array array) Returns the current element in an array

each (array array) Returns the current key and value pair from an array and advances
the array cursor

end (array array) Sets the internal pointer of an array to its last element

extract (array var_array [, int extract_type [, string prefix]]) Imports variables into
the current symbol table from an array

Popular PHP Functions

4279cA.qxd 10/27/03 6:21 PM Page 359

360

in_array (mixed needle, array haystack [, bool strict]) Returns TRUE if a value exists
in an array

key (array array) Fetches a key from an associative array

krsort (array array [, int sort_flags]) Sorts an array by key in reverse order

ksort (array array [, int sort_flags]) Sorts an array by key

list (mixed ...) Assigns variables as if they were arrays

next (array array) Advances the internal array pointer of an array

pos (array array) Gets the current element from an array

prev (array array) Rewinds the internal array pointer

range (mixed low, mixed high) Creates an array containing a range of elements

reset (array array) Sets the internal pointer of an array to its first element

rsort (array array [, int sort_flags]) Sorts an array in reverse order

shuffle (array array) Shuffles an array

sizeof (mixed var) Gets the number of elements in variable

sort (array array [, int sort_flags]) Sorts an array

uasort (array array, function cmp_function) Sorts an array with a user-defined com-
parison function and maintains index association

uksort (array array, function cmp_function) Sorts an array by keys using a user-
defined comparison function

usort (array array, function cmp_function) Sorts an array by values using a user-
defined comparison function

Date and Time Functions
The following are date and time functions:

checkdate (int month, int day, int year) Validates a Gregorian date

date (string format [, int timestamp]) Formats a local time/date (with the format
rules in Table A.1):

echo date(‘H:j’);

Appendix A • PHP Reference

4279cA.qxd 10/27/03 6:21 PM Page 360

361

TABLE A.1: Date Function Format Rules and Output

Format Rule Output

a am or pm

A AM or PM

B Swatch Internet time

d Day of the month, two digits with leading zeros; in other words, 01 to 31

D Day of the week, textual, three letters; for example, Fri

F Month, textual, long; for example, January

g Hour, 12-hour format without leading zeros; in other words, 1 to 12

G Hour, 24-hour format without leading zeros; in other words, 0 to 23

h Hour, 12-hour format; in other words, 01 to 12

H Hour, 24-hour format; in other words, 00 to 23

i Minutes; in other words, 00 to 59

I 1 if Daylight Savings Time; 0 otherwise

j Day of the month without leading zeros; in other words, 1 to 31

l Boolean for whether it is a leap year; in other words, 0 or 1

m Month; in other words, 01 to 12

M Month, textual, three letters; for example, Jan

n Month without leading zeros; in other words, 1 to 12

O Difference to GMT in hours; for example, +0200

r RFC 822 formatted date; for example, Thu, 21 Dec 2000 16:01:07 +0200

s Seconds; in other words, 00 to 59

S English ordinal suffix for the day of the month, two characters; in other words, st,
nd, rd, or th

t Number of days in the given month; in other words, 28 to 31

T Time zone setting of this machine; for example, EST or MDT

U Seconds since the Unix epoch (January 1 1970 00:00:00 GMT)

w Day of the week, numeric; in other words, 0 (Sunday) to 6 (Saturday)

W ISO-8601 week number of year, weeks starting on Monday

Y Year, four digits; for example, 1999

y Year, two digits; for example, 99

z Day of the year; in other words, 0 to 365

Z Time zone offset in seconds (in other words, -43200 to 43200). The offset for time
zones west of UTC (which is Coordinated Universal Time) is always negative; for
those east of UTC, it is always positive.

Popular PHP Functions

4279cA.qxd 10/27/03 6:21 PM Page 361

362

getdate ([int timestamp]) Gets date/time information

gettimeofday () Gets the current time

gmdate (string format [, int timestamp]) Formats a Greenwich Mean Time
(GMT)/UTC date/time

gmmktime (int hour, int minute, int second, int month, int day, int year [, int is_dst])
Gets a Unix timestamp for a GMT date

gmstrftime (string format [, int timestamp]) Formats a GMT/UTC time/date
according to locale settings

localtime ([int timestamp [, bool is_associative]]) Gets the local time

microtime () Returns current Unix timestamp with microseconds

mktime (int hour, int minute, int second, int month, int day, int year [, int is_dst])
Gets Unix timestamp for a date

strftime (string format [, int timestamp]) Formats a local time/date according to
locale settings

strtotime (string time [, int now]) Parses just about any English textual date/time
description into a Unix timestamp

time () Returns current Unix timestamp

File Handling Functions
The following are file handling functions:

chgrp (string filename, mixed group) Changes file group

chmod (string filename, int mode) Changes file mode

chown (string filename, mixed user) Changes file owner

copy (string source, string dest) Copies file to a destination

delete (string file) Deletes a file (an alias for unlink or unset)

fclose (int fp) Closes an open file pointer

feof (int fp) Tests for end of file on a file pointer

file (string filename [, int use_include_path]) Reads entire file into an array

Appendix A • PHP Reference

4279cA.qxd 10/27/03 6:21 PM Page 362

363

filesize (string filename) Gets file size

filetype (string filename) Gets file type

fopen (string filename, string mode [, int use_include_path [, resource zcontext]])
Opens file or Uniform Resource Locator (URL)

fputs (int fp, string str [, int length]) Writes to a file pointer (also an alias to fwrite)

fread (int fp, int length) Performs a binary-safe file read

fwrite (int fp, string string [, int length]) Performs a binary-safe file write

readfile (string filename [, int use_include_path]) Outputs a file

touch (string filename [, int time [, int atime]]) Sets access and modification time of file

unlink (string filename) Deletes a file

MySQL Database Functions
For this appendix, I will show all example code with the resource identifier $sql_result for
the query, and I will reference all MySQL connection identifiers as $connection. The fol-
lowing are MySQL database functions:

mysql_affected_rows ([resource link_identifier]) Returns the number of affected
rows from the previous MySQL query:

print mysql_affected_rows($sql_result);

mysql_close ([resource link_identifier]) Closes a connection identified by the
resource link identifier to a MySQL database:

mysql_close($connection);

NOTE mysql_close will not close persistent connections from mysql_pconnect.

mysql_connect ([string server [, string username [, string password [, bool new_link
[, int client_flags]]]]]) Creates a resource connection to the MySQL server to be used
with MySQL queries in your PHP scripts. See also mysql_pconnect:

$connection = mysql_connect(‘localhost’, ‘usrename’, ‘password’);

mysql_error ([resource link_identifier]) Returns an error message from the MySQL
server if an error occurs:

print mysql_error();

Popular PHP Functions

4279cA.qxd 10/27/03 6:21 PM Page 363

364

mysql_escape_string (string unescaped_string) Escapes a string for use with a
mysql_query. This function is useful for preventing SQL commands to be executed from
user input:

$string = mysql_escape_string($string);
// perform MySQL query with $string

mysql_fetch_array (resource result [, int result_type]) Creates an associative or
numeric array with the results from a MySQL query:

$sql_result = mysql_query(“….”);
while($row = mysql_fetch_array($sql_result)){

echo $row[‘column_name’].’
’;
}

mysql_fetch_assoc (resource result) Equivalent to mysql_fetch_array when the
MYSQL_ASSOC argument is passed as to the result_type:

$sql_result = mysql_query(“….”);
while($row = mysql_fetch_assoc($sql_result)){

echo $row[‘column_name’].’
’;
}

mysql_fetch_row (resource result) Returns an array that corresponds to the fetched
row or FALSE if there are no more rows.

mysql_fetch_object (resource result) Returns the result of a MySQL query into an
object:

$sql_result = mysql_query(“….”);
while($row = mysql_fetch_object($sql_result)){

echo $row->column_name.’
’;
}

mysql_free_result (resource result) Frees the memory associated with a resource:

$sql_result = mysql_query(“….”);
mysql_free_result($sql_result);

mysql_info ([resource link_identifier]) Returns detailed information about the last
MySQL query:

$sql_result = mysql_query(“….”);
print mysql_info($sql_result);

mysql_insert_id ([resource link_identifier]) Returns the ID of a row inserted with
an AUTO_INCREMENT column present:

$sql_result = mysql_query(“INSERT INTO…”);
print mysql_insert_id();

Appendix A • PHP Reference

4279cA.qxd 10/27/03 6:21 PM Page 364

365

mysql_num_rows (resource result) Returns the number of rows found in a query:

$sql_result = mysql_query(“SELECT …”);
print mysql_num_rows($sql_result);

mysql_pconnect ([string server [, string username [, string password [, int
client_flags]]]]) Creates a persistent connection to a MySQL server:

$connection = mysql_pconnect(‘localhost’, ‘username’, ‘password’);

mysql_query (string query [, resource link_identifier [, int result_mode]])
Performs a MySQL query based upon the arguments passed to the function:

$sql_result = mysql_query(“SELECT * FROM mytable WHERE
something=’some_value’”);

mysql_result (resource result, int row [, mixed field]) Retrieves data from a
MySQL query:

mysql_select_db (string database_name [, resource link_identifier]) Selects a data-
base to be used by default in a mysql_query:

mysql_select_db($connection);
$sql_result = mysql_query(“SELECT * FROM table…”);

String Manipulation Functions
The following are string manipulation functions:

addslashes (string str) Returns slashes before characters that need to be escaped in a
string

ltrim (string str [, string charlist]) Removes white space from the beginning of a string

md5 (string str) Calculates the md5 hash of a string

rtrim (string str [, string charlist]) Removes white space from the end of a string:

$string = rtrim($string);

trim (string str [, string charlist]) Removes white space from the beginning and the
end of a string

stripslashes (string str [, string charlist]) Strips backslashes used to escape special
characters in a string

str_replace (mixed search, mixed replace, mixed subject) Replaces all occurrences
of the search string with the replacement string

substr (string string, int start [, int length]) Returns a portion of a string defined by
the starting point and length arguments passed to the function:

$string = substr($string, 3, 5);

Popular PHP Functions

4279cA.qxd 10/27/03 6:21 PM Page 365

366

System Configuration Functions
The following are system configuration functions:

error_reporting ([int level]) Sets which PHP errors are reported. The higher the
integer you use for the range, the more verbose the error reporting output will be. For
example, 0 turns error reporting off, and 2047 is full error reporting with warnings, notes,
and so on.

getenv (string varname) Gets the value of a system environment variable.

ini_set (string varname, string new_value) Sets the value of a PHP configuration
option.

phpinfo ([int what]) Outputs a lot of PHP information.

phpversion () Gets the current PHP version.

putenv (string setting) Sets the value of an environment variable.

set_time_limit (int seconds) Limits the maximum execution time.

System Execution Functions
The following are system execution functions:

exec (string command [, array output [, int return_var]]) Executes an external
program

passthru (string command [, int return_var]) Executes an external program and
displays raw output

shell_exec (string cmd) Executes commands via shell and returns complete output as
string

system (string command [, int return_var]) Executes an external program and dis-
plays output

Text Formatting Functions
The following are text formatting functions:

htmlentities (string string [, int quote_styrrle [, string charset]]) Converts all
applicable characters to Hypertext Markup Language (HTML) entities

htmlspecialchars (string string [, int quote_style [, string charset]]) Converts
HTML entities to special characters

Appendix A • PHP Reference

4279cA.qxd 10/27/03 6:21 PM Page 366

367

nl2br (string string) Inserts HTML line breaks (
) before all new lines in a string

strtolower (string str) Converts all characters in a string to lowercase

strtoupper (string str); Converts all characters in a string to uppercase

ucwords (string str) Converts the first letter of each word in a string to uppercase

ucfirst (string str) Converts the first letter of the string to uppercase

Control Structures
Control structures allow you to compare values, perform loops, include files, and more. The
following are control structures and simple examples:

if Executes fragments of code if an expression returns TRUE:

$val1 = 1;
$val2 = 1;
if($val1 == $val2){

// execute code
}

else Used in conjunction with the IF control structure. ELSE will execute the code frag-
ments within its control structure if the expression in the IF control structure returned
FALSE:

$val1 = 1;
$val2 = 2;
if($val1 == $val2){

// execute code
} else {

// execute this code
}

elseif Used in conjunction with the IF control structure. ELSEIF will execute the code
fragments within its control structure if the expression in the IF control structure returned
FALSE and the expression defined in the ELSEIF control structure returns TRUE:

$val1 = 1;
$val2 = 2;
if($val1 == $val2){

// execute code
} elseif($val2 = 2) {

// execute this code
}

Control Structures

4279cA.qxd 10/27/03 6:21 PM Page 367

368

for This is a loop structure that accepts three expressions. The first expression is exe-
cuted at the beginning of the loop, and the second expression is evaluated each time the
loop is performed, which will cause the loop to occur again as long as this expression
returns TRUE. The third expression is executed each time the loop occurs:

for($i = 0; $i < 50; $i++){
echo “$i
”;

}

foreach A foreach is used on arrays. They are useful for extracting array elements one at
a time and executing code each time the loop iterates:

$myarray = array(“Dog”, “Cat”, “Cow”);
foreach($myarray AS $animal){

echo “$animal
”;
}

break Using break will stop a loop or a switch from going any further:

foreach($myarray AS $animal){
echo “$animal
”;
if($animal == “Cat”){
break;

}
}

continue Using continue allows you to skip over the current iteration in a loop structure
and continue executing the loop:

foreach($myarray AS $animal){
echo “$animal
”;
if($animal == “Cat”){
continue;

}
}

switch A switch is similar to a series of IF statements made easy. However, you must
evaluate the same variable or expression:

$val = “Dog”;
switch($val){
case “Cat”:
// this will not execute.

break;
case “Dog”:
echo “Woof Woof!”;

break;
case “cow”:
// this will not execute.

break;
}

Appendix A • PHP Reference

4279cA.qxd 10/27/03 6:21 PM Page 368

369

return Returns a value to the script:

if($val == “Dog”){
return TRUE;

}

require Includes and evaluates a specified file. Returns a fatal error and halts the script if
the file is not found:

require(“/path/to/file”);

require_once Same as require; however, if the resulting file has already been included,
it will not be included again.

include Includes and evaluates specified file. Returns a warning and allows the script to
continue to execute if the specified file is not found:

include(“/path/to/file”);

include_once Same as include; however, if the resulting file has already been included,
it will not be included again.

PHP Superglobals
PHP superglobals are arrays of information that are available in all of your PHP scripts.
They are used to store information about the type of request performed, about user sessions
and cookies, and about global scope.

Superglobal: $_SERVER
PHP contains an array that contains headers, paths, script locations, remote IP addresses,
and much more. This array is called $_SERVER, and it is a superglobal. In Table A.2, you will
find a list of array keys that may be available on your server.

TABLE A.2: PHP $_SERVER Superglobal

Key Output

PHP_SELF The filename of the currently executing script, relative to the document root.

ARGV Array of arguments passed to the script. When the script is run on the
command line, this gives C-style access to the command line parameters.
When called via the GET method, this will contain the query string.

ARGC Contains the number of command line parameters passed to the script (if
run on the command line).

Continued on next page

PHP Superglobals

4279cA.qxd 10/27/03 6:21 PM Page 369

370

TABLE A.2 CONTINUED: PHP $_SERVER Superglobal

Key Output

GATEWAY_INTERFACE What revision of the CGI specification the server is using; in other words
CGI/1.1.

SERVER_NAME The name of the server host under which the current script is executing. If
the script is running on a virtual host, this will be the value defined for that
virtual host.

SERVER_SOFTWARE Server identification string, given in the headers when responding to requests.

SERVER_PROTOCOL Name and revision of the information protocol via which the page was
requested; in other words, HTTP/1.0.

REQUEST_METHOD Which request method was used to access the page; in other words, GET,
HEAD, POST, or PUT.

QUERY_STRING The query string, if any, via which the page was accessed.

DOCUMENT_ROOT The document root directory under which the current script is executing,
as defined in the servers configuration file.

HTTP_ACCEPT Contents of the Accept: header from the current request, if there is one.

HTTP_ACCEPT_CHARSET Contents of the Accept-Charset: header from the current request, if there
is one. For example: iso-8859-1,*,utf-8.

HTTP_ACCEPT_ENCODING Contents of the Accept-Encoding: header from the current request, if there
is one. For example: gzip.

HTTP_ACCEPT_LANGUAGE Contents of the Accept-Language: header from the current request, if
there is one. For example: en.

HTTP_CONNECTION Contents of the Connection: header from the current request, if there is
one. For example: Keep-Alive.

HTTP_HOST Contents of the Host: header from the current request, if there is one.

HTTP_REFERER The address of the page (if any) that referred the user agent to the current
page. This is set by the user agent. Not all user agents will set this, and
some provide the ability to modify HTTP_REFERER as a feature. In short, it
cannot really be trusted.

HTTP_USER_AGENT Contents of the User_Agent: header from the current request, if there is
one. This is a string denoting the user agent that is accessing the page. A
typical example is Mozilla/4.5 [en] (X11; U; Linux 2.2.9 i586). Among
other things, you can use this value with get_browser() to tailor your
page’s output to the capabilities of the user agent.

REMOTE_ADDR The Internet Protocol (IP) address from which the user is viewing the cur-
rent page.

REMOTE_PORT The port being used on the user’s machine to communicate with the web
server.

SCRIPT_FILENAME The absolute pathname of the currently executing script

SERVER_ADMIN The value given to the SERVER_ADMIN (for Apache) directive in the web
server configuration file. If the script is running on a virtual host, this will
be the value defined for that virtual host.

Continued on next page

Appendix A • PHP Reference

4279cA.qxd 10/27/03 6:21 PM Page 370

371

TABLE A.2 CONTINUED: PHP $_SERVER Superglobal

Key Output

SERVER_PORT The port on the server machine being used by the web server for commu-
nication. For default setups, this will be 80; using Secure Sockets Layer
(SSL), for instance, will change this to whatever your defined secure HTTP
port is, which is 443 by default.

SERVER_SIGNATURE String containing the server version and virtual host name that are added
to server-generated pages, if enabled.

PATH_TRANSLATED File system–based path (not document root–based) to the current script,
after the server has done any virtual-to-real mapping.

SCRIPT_NAME Contains the current script’s path. This is useful for pages that need to
point to themselves.

REQUEST_URI The Uniform Resource Indicator (URI) that was given in order to access
this page; for instance, /index.html.

PHP_AUTH_USER When running under Apache as module doing HTTP authentication, this
variable is set to the username provided by the user.

PHP_AUTH_PW When running under Apache as a module doing HTTP authentication, this
variable is set to the password provided by the user.

PHP_AUTH_TYPE When running under Apache as a module doing HTTP authentication, this
variable is set to the authentication type.

Other Superglobals
Table A.3 lists PHP superglobals that contain arrays of information relative to the naming of
the superglobal.

TABLE A.3: Other Superglobals

Superglobal Description

$_COOKIE Contains an array of HTTP cookie values

$_ENV Contains variables imported into PHP’s global namespace from the environment
under which PHP is running

$_FILES Contains an array of file information from files uploaded via the HTTP POST method

$_GET Contains an array of HTTP GET values

$GLOBALS Contains an array of information containing references to all variables that are cur-
rently defined in the global scope of the script

$_POST Contains an array of HTTP POST values

$_REQUEST Contains an array of $_GET, $_POST, $_COOKIE, and $_FILES information

$_SESSION Session information is stored inside this superglobal array

PHP Superglobals

4279cA.qxd 10/27/03 6:21 PM Page 371

372

Operators
Operators are used in nearly every application of PHP. They allow you to alter, assign, com-
pare, and modify values of variables and strings.

Arithmetic Operators
Arithmetic operators allow you to perform calculations on variables. A simple usage is $var1
+ $var2 = $var3. As such, $var3 would contain the sum values of $var1 and $var2. See
Table A.4 for more arithmetic operators.

TABLE A.4: Arithmetic Operators

Operator Purpose

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

Assignment Operators
Assignment operators allow you to set values to variables. A common example is $var = “my
value”. See Table A.5 for more assignment operators.

TABLE A.5: Assignment Operators

Operator Purpose

= Sets value

+= Adds the current value of a variable to this value and makes the variable the sum of both

.= Appends this value to the current string.

Comparison Operators
Comparison operators allow you to compare values together and will return a TRUE or FALSE
Boolean depending on the result. A common example is to compare dog and cat together by
using the == operator. The result would be FALSE because dog and cat are not the same. See
Table A.6 for a list of comparison operators.

Appendix A • PHP Reference

4279cA.qxd 10/27/03 6:21 PM Page 372

373

TABLE A.6: Comparison Operators

Operator Purpose

== Equal

=== Identical

!= Not equal

<> Not equal

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Error Control Operator
By using an at (@) symbol before an expression, you can easily suppress any errors from
being output by the script. A common example is $fp =
@fopen(‘/incorrect/path/to/file.txt’, ‘r’); If the fopen function fails, no error output
will be displayed.

NOTE The @ operator works only on expressions. A simple rule of thumb is if you can take the value
of something, you can prepend the @ operator to it. For instance, you can prepend it to vari-
ables, function and include() calls, constants, and so forth. You cannot prepend it to func-
tion or class definitions, conditional structures such as IF and foreach, and so forth.

Incrementing Operators
If you need to increment a value, you can use incrementing operators. A common example of
how to increment the value of $var1 by 1 is $var1 = 1; $var1++;. Incrementing operators
are commonly used in loops. See Table A.7 for a list of incrementing operators.

TABLE A.7: Incrementing Operators

Operator Purpose

++$var Pre-increment the value of $var by 1

$var++ Post-increment the value of $var by 1

--$var Pre-decrement the value of $var by 1

$var-- Post-decrement the value of $var by 1

Operators

4279cA.qxd 10/27/03 6:21 PM Page 373

374

Logical Operators
Logical operators compare whether variables hold TRUE or FALSE values. A common example
is if(!$val) { echo “$val is FALSE.”; } See Table A.8 for a list of logical operators.

TABLE A.8: Logical Operators

Operator Purpose

and Returns TRUE if both values compared are TRUE

or Returns TRUE if either one of the values compared are TRUE

xor Returns TRUE if one of the values compared are TRUE, but not both

! Returns TRUE if value compared is not TRUE

&& Alias for and

|| Alias for or

String Operators
String operators assign values to and manipulate strings. A common example is $val = “mys-
tring”;. See Table A.9 for the string operators.

TABLE A.9: String Operators

Operator Purpose

= Assigns a string to a variable

.= Appends a string to an existing variable

. Appends a string to a string

Appendix A • PHP Reference

4279cA.qxd 10/27/03 6:21 PM Page 374

MySQL Syntax Reference

Appendix B

4279cB.qxd 10/27/03 6:21 PM Page 375

376

T his appendix contains the SQL statements and syntax used by MySQL version 4.0. For
newer versions, you should see the documentation that comes with your distribution, or

visit the MySQL site (www.mysql.com).

NOTE Adapted from Mastering MySQL 4 by Ian Gilfillan, ISBN 0-7821-4162-5

The convention used throughout the appendixes is as follows:

● Square brackets ([]) denote something optional. For example:
SELECT expression [FROM table_name [WHERE where_clause]]

indicates that the expression is compulsory (for example SELECT 42/10) and that the WHERE
clause is optional but can only exist if the optional FROM table_name clause exists. (You can
have SELECT * FROM t1, but not SELECT * WHERE f1>10, because the table_name clause is
then missing.)

● A vertical bar (|) separates alternatives. For example:
CREATE [UNIQUE | FULLTEXT] INDEX

indicates that UNIQUE and FULLTEXT are separate options.

● Curly brackets ({}) indicate that one of the options must be chosen. For example:
CREATE TABLE ... [TYPE = {BDB | HEAP | ISAM | InnoDB | MERGE |
MRG_MYISAM | MYISAM }]

If the optional TYPE clause is specified, one of BDB, HEAP, ISAM, InnoDB, MERGE, MRG_MYISAM
or MYISAM must be specified.

● Three dots (...) indicate that the option can be repeated. For example:
SELECT expression,...

indicates that the expression can be repeated (separated by a comma), as follows: SELECT
f1,f2,f3.

ALTER
The ALTER syntax is as follows:

ALTER [IGNORE] TABLE table_name alter_specification [, alter_specification ...]

The alter_specification syntax can be any of the following:
ADD [COLUMN] create_definition [FIRST | AFTER field_name]
ADD [COLUMN] (create_definition, create_definition,...)
ADD INDEX [index_name] (index_field_name,...)
ADD PRIMARY KEY (index_field_name,...)
ADD UNIQUE [index_name] (index_field_name,...)

Appendix B • MySQL Syntax Reference

4279cB.qxd 10/27/03 6:21 PM Page 376

377

ADD FULLTEXT [index_name] (index_field_name,...)
ADD [CONSTRAINT symbol] FOREIGN KEY index_name
(index_field_name,...)[reference_definition]
ALTER [COLUMN] field_name {SET DEFAULT literal | DROP DEFAULT}
CHANGE [COLUMN] old_field_name create_definition [FIRST | AFTER field_name]
MODIFY [COLUMN] create_definition [FIRST | AFTER field_name]
DROP [COLUMN] field_name
DROP PRIMARY KEY
DROP INDEX index_name
DISABLE KEYS
ENABLE KEYS
RENAME [TO] new_table_name
ORDER BY field_name

table_options

ALTER TABLE allows you to change the structure of an existing table. You can ADD columns,
CHANGE column names and definitions, MODIFY (non-ANSI Oracle extension) column defini-
tions without changing the name, DROP columns or indexes, RENAME tables, ORDER data, and
DISABLE or ENABLE indexes.

A non-ANSI MySQL extension is that ALTER TABLE can contain multiple components
(CHANGE, ADD, and so on) in one statement.

You need ALTER, INSERT, and CREATE permission on the table to use ALTER TABLE.

IGNORE (non-ANSI MySQL extension) causes MySQL to delete records that would result
in a duplicate primary or unique key. Usually MySQL would simply abort and the ALTER
would fail.

FIRST and ADD...AFTER allow you to specify where a field is to be added in the definition.

ANALYZE TABLE
ANALYZE TABLE table_name [,table_name...]

For MyISAM and BDB tables, this analyzes and stores the key distribution for the speci-
fied tables. It locks the table with a read lock for the operation’s duration.

BACKUP TABLE
BACKUP TABLE table_name [,table_name...] TO ‘path_name’

For MyISAM tables, this copies the data and data definition files to the backup directory.

BACKUP TABLE

4279cB.qxd 10/27/03 6:21 PM Page 377

378

BEGIN
BEGIN

The BEGIN statement begins a transaction, or set of statements. The transaction remains
open until the next COMMIT or ROLLBACK statement.

CHECK TABLE
CHECK TABLE tbl_name[,tbl_name...] [option [option...]]

The option can be one of the following:
CHANGED
EXTENDED
FAST
MEDIUM
QUICK

This checks a MyISAM or InnoDB table for errors and, for MyISAM tables, updates the
index statistics. The QUICK option doesn’t scan the rows to check links. The FAST option only
checks tables that weren’t closed properly. The CHANGED option is the same as FAST, except
that it also checks tables that have changed since the last check. The MEDIUM option verifies
that deleted links are correct, and the EXTENDED option does a full index lookup for each key
in each row.

COMMIT
COMMIT

The COMMIT statement ends a transaction, or set of statements, and flushes the results to disk.

CREATE
The CREATE syntax can be one of the following:

CREATE DATABASE [IF NOT EXISTS] database_name
CREATE [UNIQUE|FULLTEXT] INDEX index_name ON table_name
(field_name[(length)],...)
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table_name [(create_definition,...)]
[table_options] [select_statement]

The create_definition syntax can be any of the following:
field_name type [NOT NULL | NULL] [DEFAULT default_value]

[AUTO_INCREMENT] [PRIMARY KEY] [reference_definition]

Appendix B • MySQL Syntax Reference

4279cB.qxd 10/27/03 6:21 PM Page 378

379

PRIMARY KEY (index_field_name,...)
KEY [index_name] (index_field_name,...)
INDEX [index_name] (index_field_name,...)
UNIQUE [INDEX] [index_name] (index_field_name,...)
FULLTEXT [INDEX] [index_name] (index_field_name,...)
[CONSTRAINT symbol] FOREIGN KEY [index_name] (index_field_name,...)
[reference_definition]
CHECK (expr)

The type syntax can be any of the following:
TINYINT[(length)] [UNSIGNED] [ZEROFILL]
SMALLINT[(length)] [UNSIGNED] [ZEROFILL]
MEDIUMINT[(length)] [UNSIGNED] [ZEROFILL]
INT[(length)] [UNSIGNED] [ZEROFILL]
INTEGER[(length)] [UNSIGNED] [ZEROFILL]
BIGINT[(length)] [UNSIGNED] [ZEROFILL]
REAL[(length,decimals)] [UNSIGNED] [ZEROFILL]
DOUBLE[(length,decimals)] [UNSIGNED] [ZEROFILL]
FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]
DECIMAL(length,decimals) [UNSIGNED] [ZEROFILL]
NUMERIC(length,decimals) [UNSIGNED] [ZEROFILL]
CHAR(length) [BINARY]
VARCHAR(length) [BINARY]
DATE
TIME
TIMESTAMP
DATETIME
TINYBLOB
BLOB
MEDIUMBLOB
LONGBLOB
TINYTEXT
TEXT
MEDIUMTEXT
LONGTEXT
ENUM(value1,value2,value3,...)
SET(value1,value2,value3,...)

The index_field_name syntax is as follows:
field_name [(length)]

The reference_definition syntax is as follows:
REFERENCES table_name [(index_field_name,...)] [MATCH FULL

| MATCH PARTIAL] [ON DELETE reference_option] [ON UPDATE reference_option]

The reference_option syntax is as follows:
RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

CREATE

4279cB.qxd 10/27/03 6:21 PM Page 379

380

The table_options syntax can be any of the following:
TYPE = {BDB | HEAP | ISAM | InnoDB | MERGE | MRG_MYISAM | MYISAM }
AUTO_INCREMENT = #
AVG_ROW_LENGTH = #
CHECKSUM = {0 | 1}
COMMENT = “string”
MAX_ROWS = #
MIN_ROWS = #
PACK_KEYS = {0 | 1 | DEFAULT}
PASSWORD = “string”
DELAY_KEY_WRITE = {0 | 1}
ROW_FORMAT= { default | dynamic | fixed | compressed }
RAID_TYPE= {1 | STRIPED | RAID0 } RAID_CHUNKS=# RAID_CHUNKSIZE=#
UNION = (table_name,[table_name...])
INSERT_METHOD= {NO | FIRST | LAST }
DATA DIRECTORY=”absolute_path_to_directory”
INDEX DIRECTORY=”absolute_path_to_directory”

The select_statement syntax can be as follows:
[IGNORE | REPLACE] SELECT ... (select statement)

The CREATE statement creates a database, table, or index.

MySQL returns an error if the database or table already exists unless the IF NOT EXISTS

clause is used.

TEMPORARY tables exist only for as long as the connection is active. You need to have CREATE
TEMPORARY TABLES permission to do this.

Fields definitions default to NULL. Numeric fields default to 0 (except with AUTO_INCRE-
MENT), and string fields default to an empty string (except for ENUM fields, which default to the
first option). Date and time fields by default fill the field with zeros.

AUTO_INCREMENT fields begin counting at 1 by default and increment by one each time a
new record is added.

KEY and INDEX are synonyms in this context.

A PRIMARY KEY specifies that the index cannot contain duplicates, and the field (or combina-
tion of fields) must be specified as NOT NULL.

UNIQUE specifies that the index cannot contain duplicates.

The RAID_TYPE option helps operating systems that cannot support large files to overcome
the file size limit. The STRIPED option is the only one currently used. For MyISAM tables,
this creates subdirectories inside the database directory, each containing a portion of the data
file. The first 1024 * RAID_CHUNKSIZE bytes go into the first portion, the next 1024 *
RAID_CHUNKSIZE bytes go into the next portion, and so on.

Appendix B • MySQL Syntax Reference

4279cB.qxd 10/27/03 6:21 PM Page 380

381

The DATA DIRECTORY=”directory” and INDEX DIRECTORY=”directory” options specify
absolute paths to where the data or index file is stored.

The PACK_KEYS=1 option packs numeric fields in the index for MyISAM tables (as well as
strings, which it does by default). This is only useful if you have indexes with many duplicate
numbers.

Use AVG_ROW_LENGTH to give MySQL an idea of the average row length for the table. This
is only useful where the table is large and has variable size records.

CHECKSUM can be set to 1 for MyISAM tables if you want to keep a checksum for all rows,
which makes it easier to repair the table if it becomes corrupted but does slow down the table.

COMMENT is a comment of up to 60 characters for the table.

MAX_ROWS and MIN_ROWS specify the maximum and minimum rows, respectively, that you
plan to store in the table.

PASSWORD encrypts the data definition file (.frm) with a password.

DELAY_KEY_WRITE causes MySQL to wait until a MyISAM table is closed before updating
the index, which speeds up mass UPDATEs and INSERTs.

ROW_FORMAT specifies whether a MyISAM table should be FIXED or DYNAMIC.

DELETE
The DELETE syntax can be any of the following:

DELETE [LOW_PRIORITY | QUICK] FROM table_name [WHERE
where_clause] [ORDER BY ...] [LIMIT rows]

DELETE [LOW_PRIORITY | QUICK] table_name[.*]
[,table_name[.*] ...] FROM table-references [WHERE where_clause]

DELETE [LOW_PRIORITY | QUICK] FROM table[.*], [table[.*]
...] USING table-references [WHERE where_clause]

The DELETE statement deletes records from the table (or tables) that adhere to the
where_clause (or all records if there is no clause).

The LOW PRIORITY keyword causes the DELETE to wait until no other clients are reading the
table before processing it.

The QUICK keyword causes MySQL not to merge index leaves during the DELETE, which is
sometimes quicker.

LIMIT determines the maximum number of records to be deleted.

The ORDER BY clause causes MySQL to remove records in a certain order (which is useful
with a LIMIT clause).

DELETE

4279cB.qxd 10/27/03 6:21 PM Page 381

382

DESC
DESC is a synonym for DESCRIBE.

DESCRIBE
DESCRIBE table_name {field_name | wildcard}

DESCRIBE returns the definition of the specified table and fields (the same as SHOW COLUMNS

FROM table_name).

The wildcard can be part of the fieldname and can be a percentage sign (%), meaning a
number of characters, or an underscore (_), meaning one character.

DO
The DO syntax is as follows:

DO expression, [expression, ...]

DO has the same effect as a SELECT, except that it does not return results (making it slightly
faster).

DROP
The DROP syntax is as follows:

DROP DATABASE [IF EXISTS] database_name
DROP TABLE [IF EXISTS] table_name [, table_name,...] [RESTRICT | CASCADE]
DROP INDEX index_name ON table_name

DROP DATABASE removes the database and all its tables.

DROP TABLE removes the specified table.

DROP INDEX removes the specified index.

MySQL returns an error if the database doesn’t exist, unless the IF EXISTS clause is used.

DROP TABLE automatically commits active transactions.

RESTRICT and CASCADE are not currently implemented.

EXPLAIN
EXPLAIN table_name
EXPLAIN select_query

Appendix B • MySQL Syntax Reference

4279cB.qxd 10/27/03 6:21 PM Page 382

383

The select_query is the same as specified in the SELECT description.

Using EXPLAIN with a table name is a synonym for DESCRIBE table_name. Using EXPLAIN
with a query provides feedback about how the query will be executed, which is useful for
optimizing the query and making the best use of the associated indexes.

FLUSH
FLUSH flush_option [,flush_option] ...

The flush_option can be any of the following:
DES_KEY_FILE
HOSTS
LOGS
QUERY CACHE
PRIVILEGES
STATUS
TABLES
[TABLE | TABLES] table_name [,table_name...]
TABLES WITH READ LOCK
USER_RESOURCES

Flushing the DES_KEY_FILE reloads the DES keys. With the HOSTS option, the host’s cache
is emptied (which you use after changing IP addresses, for example). Flushing the LOGS closes
and reopens log files and increments the binary log. Flushing the QUERY CACHE defragments
the query cache. Flushing the PRIVILEGES reloads the permission tables from the mysql data-
base. Flushing the STATUS resets the status variables. Flushing the TABLES is the same as flush-
ing the QUERY CACHE, but it also closes all open tables. You can specify only certain tables to
flush. You can place a READ LOCK on the tables, which is useful for locking a group of tables
for backup purposes. Flushing the USER_RESOURCES resets user resources (used for limiting
queries, connections, and updates per hour).

GRANT
GRANT privilege_type [(field_list)] [, privilege_type [(field_list)]
...] ON {table_name | * | *.* | database_name.*} TO user_name
[IDENTIFIED BY [PASSWORD] ‘password’] [, user_name [IDENTIFIED BY
‘password’] ...] [REQUIRE NONE | [{SSL| X509}] [CIPHER cipher [AND]]
[ISSUER issuer [AND]] [SUBJECT subject]] [WITH [GRANT OPTION |
MAX_QUERIES_PER_HOUR # | MAX_UPDATES_PER_HOUR # |
MAX_CONNECTIONS_PER_HOUR #]]

GRANT gives a privilege of a particular kind of permission to a user. Table A.1 describes the
available privileges.

GRANT

4279cB.qxd 10/27/03 6:21 PM Page 383

384

TABLE A.1: Privileges

Privilege Description

ALL Grants all the basic permissions.

ALL PRIVILEGES Same as ALL.

ALTER Permission to change the structure of a table (an ALTER statement),
excluding indexes.

CREATE Permission to create databases and tables, excluding indexes.

CREATE TEMPORARY TABLES Permission to create a temporary table.

DELETE Permission to remove records from a table (a DELETE statement).

DROP Permission to drop databases or tables, excluding indexes.

EXECUTE Permission to run stored procedures (scheduled for MySQL 5).

FILE Permission to read and write files on the server (for LOAD DATA
INFILE or SELECT INTO OUTFILE statements). Any files that the
mysql user can read are readable.

INDEX Permission to create, modify, or drop indexes.

INSERT Permission to add new records to the table (an INSERT statement).

LOCK TABLES Permission to lock a table for which the user has SELECT permission.

PROCESS Permission to view the current MySQL processes or kill MySQL
processes (for SHOW PROCESSLIST or KILL SQL statements).

REFERENCES Not currently used by MySQL and provided for ANSI SQL compatibility
(it applies to the use of foreign keys).

RELOAD Permission to reload the database (a FLUSH statement or a reload,
refresh, or flush issued from mysqladmin).

REPLICATION CLIENT Permission to ask about the replication slaves and masters.

SHOW DATABASES Permission to see all databases.

SELECT Permission to return data from a table (a SELECT statement).

SHUTDOWN Permission to shut down the server.

SUPER Permission to connect even if the maximum number of connections is
reached and perform the CHANGE MASTER, KILL thread, mysqladmin
debug, PURGE MASTER LOGS, and SET GLOBAL commands.

UPDATE Permission to modify data in a table (an UPDATE statement).

USAGE Permission to connect to the server and perform statements available
to all (for early versions of MySQL 4 this included SHOW DATABASES).

INSERT
The INSERT syntax can be any of the following:

INSERT [LOW_PRIORITY | DELAYED] [IGNORE] [INTO] table_name
[(field_name,...)] VALUES ((expression | DEFAULT),...),(...),...

Appendix B • MySQL Syntax Reference

4279cB.qxd 10/27/03 6:21 PM Page 384

385

INSERT [LOW_PRIORITY | DELAYED] [IGNORE] [INTO] table_name
[(field_name,...)] SELECT ...

INSERT [LOW_PRIORITY | DELAYED] [IGNORE] [INTO] table_name
SET field_name=(expression | DEFAULT), ...

INSERT [LOW_PRIORITY] [IGNORE] [INTO] table_name [(field list)] SELECT ...

INSERT adds new rows into a table. Without the initial field list, fields are assumed to be in
the same order as they were defined, and a value must exist for each field. Any columns not
explicitly set are set to their default value.

The LOW PRIORITY keyword causes the INSERT to wait until no other clients are reading the
table before processing it. With the DELAYED keyword, MySQL frees the client but waits to
perform the INSERT.

IGNORE causes MySQL to ignore INSERTs that would causes a duplicate primary key or
unique key, instead of aborting the INSERT.

INSERT...SELECT allows you to INSERT into a table from existing rows in one or more tables.

JOIN
MySQL accepts any of the following join syntaxes:

table_name, table_name
table_name [CROSS] JOIN table_name
table_name INNER JOIN table_name condition
table_name STRAIGHT_JOIN table_name
table_name LEFT [OUTER] JOIN table_name condition
table_name LEFT [OUTER] JOIN table_name
table_name NATURAL [LEFT [OUTER]] JOIN table_name
table_name LEFT OUTER JOIN table_name ON conditional_expr
table_name RIGHT [OUTER] JOIN table_name condition
table_name RIGHT [OUTER] JOIN table_name
table_name NATURAL [RIGHT [OUTER]] JOIN table_name

The table can simply be a table_name, use an alias (with AS), or specify or ignore indexes
(with USE/IGNORE index).

The condition syntax is as follows:
ON conditional_expr | USING (field_names)

The conditional_expr is the same as what can exist in a WHERE clause.

KILL
KILL thread_id

Kills the specified thread. You can use SHOW PROCESSLIST to identify thread IDs. The SUPER
privilege is required to kill processes not owned by the current connection.

KILL

4279cB.qxd 10/27/03 6:21 PM Page 385

386

LOAD DATA INFILE
The LOAD DATA INFILE syntax is as follows:

LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE
‘file.txt’ [REPLACE | IGNORE] INTO TABLE table_name
[FIELDS [TERMINATED BY ‘\t’] [[OPTIONALLY] ENCLOSED BY
‘’] [ESCAPED BY ‘\\’]] [LINES TERMINATED BY ‘\n’]
[IGNORE number LINES] [(field_name,...)]

LOAD DATA reads data from a text file and adds it to a table. This is a quicker way of adding
high volumes of data than using INSERT.

The LOCAL keyword indicates that the file is on the client machine; otherwise the file is
assumed to be on the database server. LOCAL will not work if the server was started with the
--local-infile=0 option, or the client has not been enabled to support it.

Files on the server must be readable by all or be in the database directory, and you need the
FILE permission to use LOAD DATA for a file on the server.

On the server, the file is assumed to be in the database directory of the current database if
no path is given. If the path is relative, it is assumed to be from the data directory. Absolute
paths can also be used.

The LOW PRIORITY keyword causes the LOAD DATA to wait until no other clients are reading
the table before processing it.

The CONCURRENT keyword allows other threads to access a MyISAM table at the same time
as the LOAD DATA is executing (which will slow down the LOAD DATA).

The REPLACE keyword causes MySQL to delete and replace an existing record if it has the
same primary or unique key as the record being added. IGNORE causes MySQL to continue
with the next record.

If a FIELDS clause is specified, at least one of TERMINATED BY, [OPTIONALLY] ENCLOSED BY, and
ESCAPED BY is required. If no FIELDS clause is specified, the defaults are assumed to be FIELDS
TERMINATED BY ‘\t’ ENCLOSED BY ‘’ ESCAPED BY ‘\\’. These clauses specify the character at
the end of a field (default tab), surrounding a field (default nothing), and the escape character
(default backslash). Be careful when using Windows paths to escape the path correctly.

Without a LINES clause, the default is assumed to be LINES TERMINATED BY ‘\n’. This speci-
fies the character at the end of a record (default newline).

The IGNORE number LINES option ignores a number of lines at the top of the file (which is
useful when the file contains a header).

LOAD DATA INFILE is the complement of SELECT...INTO INFILE.

Appendix B • MySQL Syntax Reference

4279cB.qxd 10/27/03 6:21 PM Page 386

387

LOCK TABLES
LOCK TABLES table_name [AS alias] {READ | [READ LOCAL] | [LOW_PRIORITY]
WRITE} [,table_name {READ | [LOW_PRIORITY] WRITE} ...]

LOCK TABLES places a lock on the specified tables. The lock can be READ (other connections
cannot write, only read), READ LOCAL (same as READ except that writes from other connections
that do not conflict are allowed), or WRITE (which blocks reading or writing from other con-
nections). If the WRITE lock is LOW PRIORITY, READ locks are placed first. Usually WRITE locks
have higher priority.

OPTIMIZE
OPTIMIZE TABLE table_name [,table_name]...

For MyISAM tables, this sorts the index, updates the statistics, and defragments the
data file.

For BDB tables, this is the same as ANALYZE TABLE.

This locks the table for the duration of the operation (which can take some time).

RENAME
The RENAME syntax is as follows:

RENAME TABLE table_name TO new_table_name[, table_name2 TO new_table_name2,...]

RENAME allows you to give a table (or list of tables) a new name. You can also move a table to
a new database by specifying database_name.table_name, as long as the database is on the
same disk.

You need the ALTER and DROP permissions on the old table, and the CREATE and INSERT per-
missions on the new table.

REPAIR TABLE
REPAIR TABLE table_name [,table_name...] [EXTENDED] [QUICK] [USE_FRM]

Repairs a corrupted MyISAM table. With the QUICK option, only the index tree is repaired.
With EXTENDED, the index is re-created row by row. With USE_FRM, the index is repaired based
upon the data definition file (for when the index is missing or totally corrupted).

REPAIR TABLE

4279cB.qxd 10/27/03 6:21 PM Page 387

388

REPLACE
The REPLACE syntax can be one of the following:

REPLACE [LOW_PRIORITY | DELAYED] [INTO] table_name
[(field_name,...)] VALUES (expression,...),(...),...

REPLACE [LOW_PRIORITY | DELAYED] [INTO] table_name [(field_name,...)] SELECT ...
REPLACE [LOW_PRIORITY | DELAYED] [INTO] table_name SET

field_name=expression, field_name=expression, ...

REPLACE is exactly like INSERT, except that when MySQL encounters a record with a pri-
mary or unique key that already exists, it will be deleted and replaced.

RESET
RESET reset_option [,reset_option] ...

The reset_option can be any of the following:
MASTER
QUERY CACHE
SLAVE

RESET MASTER deletes all binary logs and empties the binary log index. RESET SLAVE resets a
slave’s position for replicating with a master. RESET QUERY CACHE empties the query cache.

RESTORE TABLE
RESTORE TABLE table_name [,table_name...] FROM ‘path’

Restores a table backed up with BACKUP TABLE. It will not overwrite existing tables.

REVOKE
REVOKE privilege_type [(field_list)] [,privilege_type [(field_list)]
...] ON {table_name | * | *.* | database_name.*} FROM user_name
[, user_name ...]

Removes previously granted privileges from the specified users. The privilege_type can
be one of the privileges listed for GRANT.

ROLLBACK
ROLLBACK

The ROLLBACK statement ends a transaction, or set of statements, and undoes any state-
ments in that transaction.

Appendix B • MySQL Syntax Reference

4279cB.qxd 10/27/03 6:21 PM Page 388

389

SELECT
The SELECT syntax is as follows:

SELECT [STRAIGHT_JOIN] [SQL_SMALL_RESULT] [SQL_BIG_RESULT]
[SQL_BUFFER_RESULT] [SQL_CACHE | SQL_NO_CACHE]
[SQL_CALC_FOUND_ROWS] [HIGH_PRIORITY] [DISTINCT |
DISTINCTROW | ALL] expression, ... [INTO {OUTFILE |
DUMPFILE} ‘file_name’ export_options]

[FROM table_names
[WHERE where_clause] [GROUP BY {unsigned_integer |

field_name | formula} [ASC | DESC], ... [HAVING
where_definition] [ORDER BY {unsigned_integer |
field_name | formula} [ASC | DESC], ...] [LIMIT
[offset,] rows] [PROCEDURE procedure_name] [FOR UPDATE | LOCK IN SHARE MODE]]

SELECT statements return data from tables. The expression is usually a list of fields (with a
function if required), but it can also be a computation or function that has nothing to do with
the table fields. For example:

SELECT VERSION();

or as follows:
SELECT 42/10;

Fields can be specified as field_name, table_name.field_name, or database_name.table_
name.field_name. The longer forms are required if there’s any ambiguity.

The expression can also be given an alias with the keyword AS. For example:
SELECT 22/7 AS about_pi

The expression can be used elsewhere in the statement (but not in the WHERE clause, which
is usually determined first).

The table_names clause is a comma-separated list of tables used in the query. You can also
use an alias for a table name. For example:

SELECT watts FROM wind_water_solar_power AS n;

You can also control MySQL’s index usage if you’re unhappy with MySQL’s choice (which
you can view by using EXPLAIN) with the USE INDEX and IGNORE INDEX clauses after the table
name. The syntax is as follows:

table_name [[AS] alias] [USE INDEX (indexlist)] [IGNORE INDEX (indexlist)]

The ORDER BY clause orders the returned results in ascending (default, or using the ASC key-
word) or descending (DESC) order. It does not have to use items explicitly returned in the
expression. For example:

SELECT team_name FROM results ORDER BY points DESC

SELECT

4279cB.qxd 10/27/03 6:21 PM Page 389

390

The WHERE clause consists of conditions (which can contain functions) that a row needs to
adhere to in order to be returned:

SELECT team_name FROM results WHERE points > 10

GROUP BY groups output rows, which are useful when you use an aggregate function. Two
non-ANSI MySQL extensions that you can use are ASC or DESC with GROUP BY, and you can
also use fields in the expression that are not mentioned in the GROUP BY clauses. For example:

SELECT team_name, team_address, SUM(points) FROM teams GROUP BY team_name DESC

The HAVING clause is also a condition, but it is applied last so it can apply to items you
group by. For example:

SELECT team_name, SUM(points) FROM teams GROUP BY team_name HAVING SUM(points) > 20

Do not use it to replace the WHERE clause, as it will slow down queries.

DISTINCT and its synonym, DISTINCTROW, indicate that the returned row should be unique.
ALL (the default) returns all rows, unique or not.

HIGH_PRIORITY (non-ANSI MySQL extension) gives the SELECT a higher priority than any
updates.

SQL_BIG_RESULT and SQL_SMALL_RESULT (non-ANSI MySQL extensions) assist the MySQL
optimizer by letting it know whether the results returned will be large or small before it
begins processing. Both are used with GROUP BY and DISTINCT clauses and usually result in
MySQL using a temporary table for greater speed.

SQL_BUFFER_RESULT (non-ANSI MySQL extension) causes MySQL to place the result in a
temporary table.

LIMIT takes one or two arguments to limit the number of rows returned. If one argument,
it’s the maximum number of rows to return; if two, the first is the offset and the second the
maximum number of rows to return. If the second argument is –1, MySQL will return all
rows from the specified offset until the end. For example, to return from row 2 to the end,
use this:

SELECT f1 FROM t1 LIMIT 1,-1

SQL_CALC_FOUND_ROWS causes MySQL to calculate the number of rows that would have
been returned if no LIMIT clause existed. This figure can be returned with the SELECT
FOUND_ROWS() function.

SQL_CACHE gets MySQL to store the result in the query cache, and SQL_NO_CACHE causes the
result not to be cached. Both are non-ANSI MySQL extensions.

STRAIGHT_JOIN (non-ANSI MySQL extension) causes the optimizer to join the tables in
the order in they are listed in the FROM clause, which can speed up queries if tables are joined
non-optimally (use EXPLAIN to check this).

Appendix B • MySQL Syntax Reference

4279cB.qxd 10/27/03 6:21 PM Page 390

391

SELECT...INTO OUTFILE ‘file_name’ writes the results into a new file (readable by every-
one) on the server. You need to FILE permission to use this. It is the complement of LOAD
DATA INFILE, and it uses the same options.

Using INTO DUMPFILE causes MySQL to write one row into the file, without any column or
line terminations and without any escaping.

With InnoDB and BDB tables, the FOR UPDATE clause write locks the rows.

SET
SET [GLOBAL | SESSION] variable_name=expression, [[GLOBAL | SESSION |
LOCAL] variable_name=expression...]

SET allows you to set variable values. SESSION (or LOCAL, a synonym) is the default, and it
sets the value for the duration of the current connection. GLOBAL requires the SUPER privilege,
and it sets the variable for all new connections until the server restarts. You still need to set it
in the configuration file for an option to remain active after the server restarts. You can find
the full list of variable names using SHOW VARIABLES. Table A.2 describes the variables that you
set in a nonstandard way.

TABLE A.2: Variables You Set in a Nonstandard Way

Syntax Description

AUTOCOMMIT= 0 | 1 When set (1), MySQL automatically COMMITs state-
ments unless you wrap them in BEGIN and COMMIT
statements. MySQL also automatically COMMITs all
open transactions when you set AUTOCOMMIT.

BIG_TABLES = 0 | 1 When set (1), all temporary tables are stored on disk
instead of in memory. This makes temporary tables
slower, but it prevents the problem of running out of
memory. The default is 0.

INSERT_ID = # Sets the AUTO_INCREMENT value (so the next INSERT
statement that uses an AUTO_INCREMENT field will
use this value).

LAST_INSERT_ID = # Sets the value returned from the next
LAST_INSERT_ID() function.

LOW_PRIORITY_UPDATES = 0 | 1 When set (1), all update statements (INSERT, UPDATE,
DELETE, LOCK TABLE WRITE) wait for there to be no
pending reads (SELECT, LOCK TABLE READ) on the
table they’re accessing.

Continued on next page

SET

4279cB.qxd 10/27/03 6:21 PM Page 391

392

TABLE A.2 CONTINUED: Variables You Set in a Nonstandard Way

Syntax Description

MAX_JOIN_SIZE = value | DEFAULT By setting a maximum size in rows, you can prevent
MySQL from running queries that may not be making
proper use of indexes or that may have the potential
to slow the server down when run in bulk or at peak
times. Setting this to anything but DEFAULT resets
SQL_BIG_SELECTS. If SQL_BIG_SELECTS is set, then
MAX_JOIN_SIZE is ignored. If the query is already
cached, MySQL will ignore this limit and return the
results.

QUERY_CACHE_TYPE = OFF | ON | DEMAND Sets the query cache setting for the thread.

QUERY_CACHE_TYPE = 0 | 1 | 2 Sets the query cache setting for the thread.

SQL_AUTO_IS_NULL = 0 | 1 If set (1, the default), then the last inserted row for an
AUTO_INCREMENT can be found with WHERE auto_
increment_column IS NULL. This is used by
Microsoft Access and other programs connecting
through ODBC.

SQL_BIG_SELECTS = 0 | 1 If set (1, the default), then MySQL allows large queries.
If not set (0), then MySQL will not allow queries where
it will have to examine more than max_join_size
rows. This is useful to avoid running accidental or mali-
cious queries that could bring the server down.

SQL_BUFFER_RESULT = 0 | 1 If set (1), MySQL places query results into a temporary
table (in some cases speeding up performance by
releasing table locks earlier).

SQL_LOG_OFF = 0 | 1 If set (1), MySQL will not log for the client (this is not
the update log). The SUPER permission is required.

SQL_LOG_UPDATE = 0 | 1 If not set (0), MySQL will not use the update log for the
client. This requires the SUPER permission.

SQL_QUOTE_SHOW_CREATE = 0 | 1 If set (1, the default), MySQL will quote table and col-
umn names.

SQL_SAFE_UPDATES = 0 | 1 If set (1), MySQL will not perform UPDATE or DELETE
statements that don’t use either an index or a LIMIT
clause, which helps prevent unpleasant accidents.

SQL_SELECT_LIMIT = value | DEFAULT Sets the maximum number of records (default unlim-
ited) that can be returned with a SELECT statement.
LIMIT takes precedence over this.

TIMESTAMP = timestamp_value | DEFAULT Sets the time for the client. This can be used to get
the original timestamp when using the update log to
restore rows. The timestamp_value is a Unix epoch
timestamp.

The old SET OPTION syntax is now deprecated, so you should not use it anymore.

Appendix B • MySQL Syntax Reference

4279cB.qxd 10/27/03 6:21 PM Page 392

393

SET TRANSACTION
SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL { READ UNCOMMITTED
| READ COMMITTED | REPEATABLE READ | SERIALIZABLE }

Sets the transaction isolation level. By default it will be for the next transaction only, unless
the SESSION or GLOBAL keywords are used (which set the level for all transactions on the cur-
rent connection or for all transactions on all new connections, respectively).

SHOW
The SHOW syntax can be any of the following:

SHOW DATABASES [LIKE expression]
SHOW [OPEN] TABLES [FROM database_name] [LIKE expression]
SHOW [FULL] COLUMNS FROM table_name [FROM database_name] [LIKE expression]
SHOW INDEX FROM table_name [FROM database_name]
SHOW TABLE STATUS [FROM database_name] [LIKE expression]
SHOW STATUS [LIKE expression]
SHOW VARIABLES [LIKE expression]
SHOW LOGS
SHOW [FULL] PROCESSLIST
SHOW GRANTS FOR user
SHOW CREATE TABLE table_name
SHOW MASTER STATUS
SHOW MASTER LOGS
SHOW SLAVE STATUS

SHOW lists the databases, tables, or columns, or it provides status information about the server.

The wildcard can be part of the database, table, or fieldname, and it can be a percentage
sign (%), meaning a number of characters, or an underscore (_), meaning one character.

TRUNCATE
TRUNCATE TABLE table_name

The TRUNCATE statement deletes all records from a table. It is quicker than the equivalent
DELETE statement as it DROPs and CREATEs the table. It is not transaction safe (so will return an
error if there are any active transactions or locks).

UNION
SELECT ... UNION [ALL] SELECT ... [UNION SELECT ...]

Union combines many results into one.

Without the ALL keyword, rows are unique.

UNION

4279cB.qxd 10/27/03 6:21 PM Page 393

394

UNLOCK TABLES
UNLOCK TABLES

Releases all locks held by the current connection.

UPDATE
UPDATE [LOW_PRIORITY] [IGNORE] table_name SET field_name1=expression1 [,
field_name2=expression2, ...] [WHERE where_clause] [LIMIT #]

The UPDATE statement updates the contents of existing rows in the database.

The SET clause specifies which fields to update and what the new values are to be.

The where_clause gives conditions the row must adhere to in order to be updated.

IGNORE causes MySQL to ignore UPDATEs that would cause a duplicate primary key or
unique key, instead of aborting the UPDATE.

The LOW PRIORITY keyword causes the UPDATE to wait until no other clients are reading the
table before processing it.

The expression can take the current value of a field; for example, to add 5 to all employees’
commissions, you could use the following:

UPDATE employee SET commission=commission+5;

LIMIT determines the maximum number of records to be updated.

USE
USE database_name

Changes the current active database to the specified database.

Appendix B • MySQL Syntax Reference

4279cB.qxd 10/27/03 6:21 PM Page 394

Index

Note to the Reader: Page numbers in bold indicate the principle discussion of a topic or the
definition of a term. Page numbers in italic indicate illustrations.

Numbers
@ (at symbol) operator, 373
\ (backslashes) in PHP, 9, 10–11
$ (dollar signs) in PHP, 8
() (parentheses) in PHP, 7
; (semicolons) in PHP, 7

A
add (to shopping cart) cases, 251–252
addslashes function, 365
administration panel in phpBB, 342, 342
administrators

web server administrators, 33–35
website administrators

access, granting to members, 146–147
for news articles, 181–182
for news categories, 161–163, 163

ADOdb (set of classes), 42–43
Alexa monitoring service, 332
ALTER syntax in MySQL, 376–377
ANALYZE TABLE syntax in MySQL, 377
Apache web servers, 4, 33, 353
APIs (Application Programmer Interfaces), See also

web services
Amazon Web Services API

creating HTML book layout files, 215–217,
223, 224

creating search boxes, 225–228, 227–228
defined, 204

developer tokens, 214, 221
documentation, 214
error messages, 222
information retrieval methods, 215
paginating search results, 215, 220–225, 227,

228
PHP script for using, 218–220
preparing to use, 214–215
submitting empty search boxes, 220, 228
XML parser class and, 215, 220, 222

defined, 214
overview of, 204, 228

arithmetic operators, 372
array functions, 358–360
arrays, creating, 255
assignment operators, 372
authentication in phpMyAdmin, 44
auto incrementing MySQL columns, 47, 107

B
backslashes (\) in PHP, 9, 10–11
BACKUP TABLE syntax in MySQL, 377
backups with phpMyAdmin, 53–55, 54–55
backups with SQLyog, 61–63, 62
BEGIN syntax in MySQL, 378
BIGINT columns in MySQL, 41
billing. See payment
BLOB columns in MySQL, 42
Booleans, 12
brainstorming, 27–28
break control structure, 94, 95, 368, 368

4279indx.qxd 10/27/03 6:21 PM Page 395

396

bulletin boards. See PHP third-party, phpBB
Buy Now buttons, PayPal, 296, 300

C
cart_add function, 242–246, 251
$cart_id values, 241–242, 251, 252–253
characters in PHP, 8
characters, special, escaping, 10–11
CHECK TABLE syntax in MySQL, 378
checkdate function, 360
checkout (shopping) pages, 261–267
chgrp function, 362
chmod function, 362
chown function, 362
classes. See PHP classes
close tags, 7–8
color alternating HTML table rows, 179–181
columns. See MySQL
comment system for website news, 200
COMMIT syntax in MySQL, 378
common.php files, 86–87, 322–323
compact function, 359
comparison operators, 99, 372–373
concatenating strings, 9, 14
connecting to MySQL with PHP, See also MySQL

functions for, 64–65, 363, 365
making connections, 64–65
nonpersistent connections, 64
overview of, 63–64
persistent connections, 64

Connection Manager in SQLyog, 57, 57
control structures, See also PHP

break, 94, 95, 368
continue, 368
else, 367
elseif, 367
for, 224–225, 368
foreach, 368
if, 367
include, 19, 86–88, 369
include_once, 19, 369

require, 19, 369
require_once, 19, 369
return, 369
switch, 93–94, 95, 368

cookie cid values, 241–242, 243
$_COOKIE superglobal, 371
copy function, 362
count function, 101–102, 359
CREATE syntax in MySQL, 378–381
credit cards. See payment processing
Curl command-line tool, 309–312
current function, 359

D
databases. See MySQL
DATE columns in MySQL, 41
date functions, 360–362
DATETIME columns in MySQL, 41, 46–47, 47–48
DECIMAL columns in MySQL, 41
default (shopping cart) cases, 252, 252–256
delete function in PHP, 362
DELETE syntax in MySQL, 160–161, 381
deleting

news articles, 175–176, 178–179
news categories, 160–161
table columns with phpMyAdmin, 52, 52–53
table columns with SQLyog, 61, 61
tables with phpMyAdmin, 52, 53

DESC or DESCRIBE syntax in MySQL, 382
developer tokens, 214, 221
developers, PHP, 32
directories, web, securing, 88, 88–89
DNS (Domain Name Server), 34
DO syntax in MySQL, 382
dollar signs ($) in PHP, 8
domain usage in PHP, 3
DOUBLE columns in MySQL, 41
double-quoted strings, 10–11
Dreamweaver MX software, 5
DROP syntax in MySQL, 382
dynamic web page titles, 197–198

bulletin boards—dynamic web page titles

4279indx.qxd 10/27/03 6:21 PM Page 396

397

E
e-mail

sending notices, 107–113, 113
server administrators, 34
verifying addresses, 114–118, 117

each function, 359
echo function, 9–10, 15
editor programs for PHP, 5
else control structure, 367
elseif control structure, 367
embedding variables in strings, 9
empty (shopping cart) cases, 261, 261
empty_cart function, 246, 261
empty_confirm cases, 256, 260, 260
end function, 359
ENUM columns in MySQL, 42
$_ENV superglobal, 371
errors, See also PHP

error_reporting function, 21–22, 366
handling, 21–22
messages in Amazon Web Services, 222
“Page Cannot Be Displayed”, 124
suppressing with @ operator, 125–126, 373
user input, checking for, 94–106, 104–105

escaping, See also strings
double-quoted strings, 10
single-quoted strings, 9
special characters, 10–11

exec function, 366
EXPLAIN syntax in MySQL, 382–383
Export Data screen in SQLyog, 61–62, 62
extract function, 359

F
fclose function, 362
feof function, 362
fields, 30, 42, See also MySQL
file handling functions, 362–363
file include functions. See control structures
$_FILES superglobal, 371

FLOAT columns in MySQL, 41
FLUSH syntax in MySQL, 383
fopen function, 363
for control structure, 224–225, 368
foreach control structure, 368
forums, 32, 353, See also PHP third-party, phpBB
fputs function, 363
fread function, 363
FTP administrators, 33
functions in MySQL, See also PHP

COUNT, 101–102
defined, 18, 363–365
overview of, 17
SUM, 254
UNIX_TIMESTAMP, 322

fwrite function, 363

G
$_GET superglobal, 371
get_cart_id function, 241–242, 251
getdate function, 362
getenv function, 366
gettimeofday function, 362
Gilfillan, Ian, 376
$GLOBALS superglobal, 371
gmdate function, 362
gmmktime function, 362
gmstrftime function, 362
Google, See also search engines

GoogleBot, 325–326
language translation service, 204–208, 207
link to on your site, 204, 208–214, 212–213

GRANT syntax in MySQL, 383–384
graphic artists, hiring, 32–33
Gutmans, Andi, 2–3

H
hardware requirements, 36–37
HEAP tables, 40

e-mail—HEAP tables

4279indx.qxd 10/27/03 6:21 PM Page 397

398

HTML, creating in
alternating table row colors, 179–181, 184
Amazon book layouts, 215–217, 223, 224
billing information forms, 286–287, 308
Google search forms, 208–209, 212, 212
line breaks and, 197–198
login success messages, 129–130, 129
lost password forms, 130–131, 135, 136
member login forms, 116–118, 117
member signup forms, 90–93
news article index pages, 190–191, 191
news article insert forms, 167, 183
news article modify forms, 172–173, 177, 184
news article modify indexes, 179–181, 184
news category indexes, 148–149, 152, 153
news category modify forms, 155, 165
news category modify indexes, 154, 158–159, 165
product pages, 234–236, 237–238
shopping cart contents, 254–256, 271
website layouts, 69–70, 69–70
Welcome messages, 87–88, 88

HTML Meta Content classes, See also PHP classes
adding to layout.php files, 81–83
creating, 77–81
defined, 75
search engines and, 68, 84
viewing HTML source, 83–84

htmlentities function, 366
htmlspecialchars function, 366
hyperlinks

to continue shopping, 256, 267
to Google on your site, 204, 208–214, 212–213
for members to login/out, 137–140, 140
for news article administrators, 181–182
for news article users, 198–199, 199
for news category administrators, 161–163, 163
to product pages, 273–274
to shopping cart interfaces, 268–270, 270

I
if control structure, 367
in_array function, 360

include control structure, 19, 86–88, 369
include_once control structure, 19, 369
incrementing operators, 373
index pages in securing web directories, 88, 88–89
indexes for news articles, 186, 186–192, 191
ini_set function, 366
insert script for news articles, 166–172
insert script for news categories, 148–153, 153
INSERT syntax in MySQL, 384–385
inserting member data in MySQL, 106–107
INT columns in MySQL, 41
IPN (Instant Payment Notification), PayPal, 300
IRCs (Internet Relay Chats), 355
ISAM tables, 40

J
jEdit software, 5
JOIN syntax in MySQL, 385
joining websites. See website membership

K
key function, 360
KILL syntax in MySQL, 385
krsort function, 360
ksort function, 360

L
language translation services, Google, 204–208, 207
layouts, See also website templates

creating in HTML, 69–70, 69–70
creating PHP files, 71–73
entering content, 73–74
overview of, 68, 68, 75
planning, 30
viewing in browsers, 74–75, 74

Lerdorf, Rasmus, 2
link identifiers, resource, 18
links. See hyperlinks

HTML—links

4279indx.qxd 10/27/03 6:21 PM Page 398

399

Linux web server administrators, 33–35
list function, 360
listed function, 366–367
LOAD DATA INFILE syntax in MySQL, 386
localtime function, 362
LOCK TABLES syntax in MySQL, 387
logging errors, 22, See also errors; tracking
logical operators, 374
login systems, See also website membership

granting member-only access, 141–142
login success messages, 129–130, 129
login verification script, 124–128, 128
login/out links boxes, 137–140, 140
logout script, 142–144
overview of, 123
reset lost password script, 130–137, 136–137
starting PHP sessions, 123–124

LONGBLOB columns in MySQL, 42
LONGTEXT columns in MySQL, 42, 46–47, 48
ltrim function, 365

M
manuals, online, 3, 28–29, 353, 354–355
Mastering MySQL 4 (Gilfillan), 376
md5 function, 107, 365
MEDIUMBLOB or MEDIUMTEXT columns in

MySQL, 42
MEDIUMINT columns in MySQL, 41, 46–47,

46–47
membership, website. See website membership
merchant account gateways, See also payment pro-

cessing
defined, 276
overview of, 309
pros and cons, 277–278
providers, listed, 277
setting up, 276–277
SSL certificates and, 278, 284
steps in, 279–280, 280
versus third-party solutions, 276, 279–281, 280
VeriSign Payflow Pro

billing info forms, 286–287, 308

credit card processing, 287–296
developer guide, 285
overview of, 284
preparing web servers, 284–285
securing with tokens, 294–295
testing scripts, 306–309, 308
trial accounts, 284

Meta. See HTML Meta
microtime function, 362
mktime function, 362
monitoring. See tracking
MyISAM tables, 41
MyNewsGroups client, 347, 348–349
MySQL

administrators, 33
defined, 4
downloading, 40
manual, 42, 353
syntax, 376–394

ALTER, 376–377
ANALYZE TABLE, 377
BACKUP TABLE, 377
BEGIN, 378
CHECK TABLE, 378
COMMIT, 378
CREATE, 378–381
DELETE, 160–161, 381
DESC or DESCRIBE, 382
DO, 382
DROP, 382
EXPLAIN, 382–383
FLUSH, 383
GRANT, 383–384
INSERT, 384–385
JOIN, 385
KILL, 385
LOAD DATA INFILE, 386
LOCK TABLES, 387
OPTIMIZE, 387
RENAME, 387
REPAIR TABLE, 387
REPLACE, 388
RESET, 388

Linux web server administrators—MySQL

4279indx.qxd 10/27/03 6:21 PM Page 399

400

RESTORE TABLE, 388
REVOKE, 388
ROLLBACK, 388
SELECT, 389–391
SET, 391–392
SET TRANSACTION, 393
SHOW, 393
TRUNCATE, 393
UNION, 393
UNLOCK TABLES, 394
UPDATE, 394
USE, 394

MySQL databases, 40–66
ADOdb and, 42–43
column types

BIGINT, 41
BLOB, 42
DATE, 41
DATETIME, 41, 46–47, 47–48
DECIMAL, 41
DOUBLE, 41
ENUM, 42
FLOAT, 41
INT, 41
LONGBLOB, 42
LONGTEXT, 42, 46–47, 48
MEDIUMBLOB, 42
MEDIUMINT, 41, 46–47, 46–47
MEDIUMTEXT, 42
SMALLINT, 41
TEXT, 42, 46–47, 48
TIME, 42
TIMESTAMP, 42, 320, 322
TINYBLOB, 42
TINYINT, 41
TINYTEXT, 42, 48
VARCHAR, 42, 46–47, 47
YEAR, 42

columns
adding with phpMyAdmin, 46–51, 46–51
adding with SQLyog, 59, 59–61, 61
auto increment values, 47, 107
changing with phpMyAdmin, 51–52, 51–52

defined, 30, 42
deleting with phpMyAdmin, 52, 52–53
deleting with SQLyog, 61, 61
types, 41–42, 46–48

connecting to with PHP
functions for, 64–65, 363, 365
making connections, 64–65
nonpersistent connections, 64
overview of, 63–64
persistent connections, 64

encrypting passwords in, 107
fields, 30, 42
formatting dates in, 188–189
functions

for connections, 64–65, 363, 365
COUNT, 101–102
overview of, 17–18
for queries, 363–365
SUM, 254
UNIX_TIMESTAMP, 322

managing with phpMyAdmin
adding columns, 46–51, 46–51
adding tables, 45–46, 46, 50, 50
authentication warning, 44
backing up databases, 53–55, 54–55
changing columns, 51–52, 51–52
creating databases, 45, 45
defined, 4, 43
deleting columns, 52, 52–53
deleting tables, 52, 53
export options, 53–54, 54
main screen, 44–45, 45
overview of, 57
restoring databases, 55–56, 55–56
setting up, 44, 44
SQL options, 55–56, 55–56

managing with SQLyog
adding columns, 59, 59–61, 61
adding tables, 59–60, 59–60
altering tables, 60–61, 60–61
backing up databases, 61–63, 62
Connection Manager, 57, 57
creating databases, 58, 58–59

MySQL databases—MySQL databases

4279indx.qxd 10/27/03 6:21 PM Page 400

401

defined, 4
deleting columns, 61, 61
downloading, 57
Export Data screen, 61–62, 62
main screen, 58, 58
restoring databases, 63, 63

overview of, 66
planning, 30–31
tables

adding with phpMyAdmin, 45–46, 46, 50, 50
adding with SQLyog, 59–60, 59–60
altering with SQLyog, 60–61, 60–61
defined, 30
deleting with phpMyAdmin, 52, 53
HEAP tables, 40
ISAM tables, 40
MyISAM tables, 41
for payment processing, 281–282
for PHP sessions counters, 316–317
primary keys for, 47
for shopping carts, 231–234
for tracking visitors, 318–319
for website members, 89–90, 106–107
for website news, 147–148

time stamping data, 107
warning, 43

N
naming variables, 12
news. See website news
next function, 360
nl2br() function, 15–16, 367
nonpersistent connections, 64
Notepad software, 5
now() function, 107, 171, 320
numerics, assigning to variables, 11–12

O
OOP (Object Oriented Programming), 75
open tags, 7

open-source, 2
operating systems support, 3
operators, See also PHP

arithmetic operators, 372
assignment operators, 372
comparison operators, 99, 372–373
defined, 372
error control operator, 373
incrementing operators, 373
logical operators, 374
string operators, 374

OPTIMIZE syntax in MySQL, 387
ordercomplete.php script, 300–306
output buffers, 22, 23

P
paginating search results, 215, 220–225, 227, 228
parentheses () in PHP, 7
passthru function, 366
passwords in databases, encrypting, 107
passwords script, reset lost, 130–137, 136–137
payment processing, 276–313, See also shopping

creating scripts for
to complete orders, 300–306
to use Curl, 309–312
payment options page, 282–284, 283
to use PayPal, 296–300
SSL certificates and, 284
to use VeriSign, 286–296
warning, 284

creating tables for, 281–282
customizing, 312–313
using merchant account gateways

defined, 276
overview of, 309
pros and cons, 277–278
providers, listed, 277
setting up, 276–277
SSL certificates and, 278
steps in, 279–280, 280
versus third-parties, 276, 279–281, 280
VeriSign, 277, 284–296, 306–309, 308

naming variables—payment processing

4279indx.qxd 10/27/03 6:21 PM Page 401

402

overview of, 276, 313
with PayPal

Buy Now buttons, 296, 300
data fields, 298–299
IPN system, 300
overview of, 278
payment scripts, 296–300
testing scripts, 308, 309
token system, 296, 298

using third-party solutions
defined, 278
versus gateways, 276, 279–281, 280
listed, 278
PayPal, 278, 296–300, 309
pros and cons, 279
steps in, 280–281, 280

token tables, 281–282
with VeriSign Payflow Pro

billing info forms, 286–287, 308
credit card processing, 287–296
developer guide, 285
overview of, 284
preparing web servers, 284–285
securing with tokens, 294–295
testing scripts, 306–309, 308
trial accounts, 284

warning, 305
“peanut butter and jelly of programming”, 29–30
persistent connections, 18, 64
Personal Homepage Tools, 2, 3
PHAkt application, 42
PHP classes, See also shopping cart; website templates

creating class structure, 75–76
creating custom classes, 108–110
defined, 21, 75
HTML Meta Content classes

adding to layout.php files, 81–83
creating, 77–81
defined, 75
search engines and, 68, 84
viewing HTML source, 83–84

Object Oriented Programming and, 75
PHP (PHP: Hypertext Processor) scripting language,

2–23, 358–374

@ at operator, 125–126, 373
\ backslashes, 9, 10–11
$ dollar signs, 8
() parentheses, 7
; semicolons, 7
cases, 95
characters, 8
close tags, 7–8
connecting to MySQL with

functions for, 64–65, 363, 365
making connections, 64–65
nonpersistent connections, 64
overview of, 63–64
persistent connections, 64

contributing to, 356
control structures

break, 94, 95, 368
continue, 368
else, 367
elseif, 367
for, 224–225, 368
foreach, 368
if, 367
include, 19, 86–88, 369
include_once, 19, 369
require, 19, 369
require_once, 19, 369
return, 369
switch, 93–94, 95, 368

creating arrays, 255
defined, 2, 3
developers, 32
domain usage, 3
error handling, 21–22
error suppressing, 125–126, 373
functions

array functions, 358–360
classes of, 21
custom, creating, 19–21
date functions, 360–362
defined, 15
echo, 9–10, 15
exit, 103
for formatting text, 15–17, 366–367

“peanut butter and jelly of programming”—PHP scripting language

4279indx.qxd 10/27/03 6:21 PM Page 402

403

for handling files, 362–363
header, 125
for manipulating strings, 365
md5, 107, 365
for MySQL databases, 17–18, 363–365
now(), 107, 171, 320
number_format, 254
phpinfo, 6–7, 6, 366
stripslashes, 108–109, 365
for system configuration, 366
for system execution, 366
time functions, 322, 360–362

history, 2–3
navigation system, 93–94
online support, See also website addresses

FAQs, 355
via Google, 354
HotScripts, 29
live support, 355
overview of, 352
OxyScripts, 29
PHP Freaks, 29, 353–354
PHP manual, 3, 28–29, 353, 354–355
PHP-Editors, 354
PHP.net, 3, 11, 354, 356
SitePoint, 354
WeberDev, 354
Zend Technologies, 29, 354

open tags, 7
operators

arithmetic operators, 372
assignment operators, 372
comparison operators, 99, 372–373
defined, 372
error control operator, 373
incrementing operators, 373
logical operators, 374
string operators, 374

output buffers, 22–23
overview of, 23, 353, 356
requirements, 3–4
server administrators and, 33
setting up, 5–6

software support
database managers, 4
database servers, 4
operating systems, 3
PHP editors, 5
web servers, 4

strings
building, 8–11
concatenating, 9
defined, 8
double-quoted strings, 10–11
escaping, 9, 10–11
overview of, 11
single-quoted strings, 8–9
special characters in, 10–11
usage, 11

superglobal arrays
$_POST, 96, 371
$_REQUEST, 93–94, 371
$_SERVER, 87, 89, 316, 369–371
defined, 369
listed, 371
overview of, 93

variables
altering, 12–13
appending to strings using, 14
assigning Booleans to, 12
assigning numerics to, 11–12
assigning strings to, 11
defined, 8
naming, 12
predefined variables, 89
querystring variables, 291–293
referencing, 12–13

writing first scripts, 6–8, 6
PHP sessions

destroying, 143
$_SESSION superglobal, 371
session IDs, 319–320
starting, 123–124
tracking counters

creating logging script, 317
creating tables for, 316–317

PHP sessions—PHP sessions

4279indx.qxd 10/27/03 6:21 PM Page 403

404

displaying log results, 318
overview of, 316
testing logging script, 317

PHP third-party scripts, 334–350
finding, 350
MyNewsGroups, 347, 348–349
overview of, 334
phpAdsNew ad system

Add New Campaign screen, 334, 337
Banner Properties screen, 338, 338
bannercode, 338, 339
Campaign Overview screen, 334, 337
defined, 334
installing, 334, 335
Inventory tab, 334, 336
logging in, 334, 336
New Direct Selection screen, 338, 339
Statistics tab, 338, 340
website, 338

phpBB bulletin board system
administration panel, 342, 342
defined, 340
forum index, 342, 343
forum topics, 342, 344
installing, 340, 341
populated/custom version, 342, 345
posting messages, 342, 343
viewing topics, 342, 344
website, 340

PowerPhlogger statistics tracker, 345, 346–347
PHP/FI (Personal Home Page Forms Interpreter), 2
phpinfo function, 366
phpMyAdmin database manager, See also MySQL

adding columns, 46–51, 46–51
adding tables, 45–46, 46, 50, 50
authentication warning, 44
backing up databases, 53–55, 54–55
changing columns, 51–52, 51–52
creating databases, 45, 45
defined, 4, 43
deleting columns, 52, 52–53
deleting tables, 52, 53
export options, 53–54, 54

main screen, 44–45, 45
overview of, 57
restoring databases, 55–56, 55–56
setting up, 44, 44
SQL options, 55–56, 55–56

phpversion function, 366
planning, See also website planning

shopping cart systems, 230–231
website news systems, 146

pos function, 360
$_POST superglobal, 96, 371
PowerPhlogger statistics tracker, 345, 346–347
prev function, 360
primary keys, 47
project teams, See also website planning

versus going solo, 35–36
graphic artists, 32–33
logistics and, 32
PHP developers, 32
project managers, 35
team coordinators, 35
web server administrators, 33–35

putenv function, 366

Q
querystring variables, 291–293

R
range function, 360
read full news articles script, 192–198
readfile function, 363
referencing variables, 12–13
remove (shopping cart) cases, 255, 259, 260
RENAME syntax in MySQL, 387
REPAIR TABLE syntax in MySQL, 387
REPLACE syntax in MySQL, 388
reporting, error, 21–22
reports of website statistics, 330–331
$_REQUEST superglobal, 93–94, 371
require control structure, 19, 369

PHP third-party scripts—require control structure

4279indx.qxd 10/27/03 6:21 PM Page 404

405

require_once control structure, 19, 369
researching ideas, 28–29
reset function, 360
RESET syntax in MySQL, 388
resource link identifiers, 18
RESTORE TABLE syntax in MySQL, 388
restoring databases in phpMyAdmin, 55–56, 55–56
restoring databases in SQLyog, 63, 63
return control structure, 369
REVOKE syntax in MySQL, 388
ROLLBACK syntax in MySQL, 388
rsort function, 360
rtrim function, 365

S
“sanity checks”, 261–263, 264–266
search boxes, creating in Amazon Web Services,

225–228, 227–228
search boxes, submitting empty, 220, 228
search engines, See also Google

Meta Content classes and, 68, 84
tracking bot activities

creating logging script, 326–328
creating tables for, 326
overview of, 325–326
testing logging script, 328–329, 329

search results, paginating, 215, 220–225, 227, 228
sections in websites, planning, 30
securing transactions. See tokens
securing web directories, 88, 88–89
SELECT syntax in MySQL, 389–391
semicolons (;) in PHP, 7
$_SERVER superglobal, 87, 89, 316, 369–371
servers, See also MySQL

Domain Name Server, 34
MySQL database server, 4
web servers

administrators, 33–35
Apache web servers, 4, 33, 353
preparing for VeriSign use, 284–285
support for PHP, 4

$_SESSION superglobal, 371

sessions. See PHP sessions
SET syntax in MySQL, 391–392
SET TRANSACTION syntax in MySQL, 393
setcookie function, 243
set_time_limit function, 366
shell_exec function, 366
shopping cart systems, 230–274, See also payment

building shopping cart interfaces
add cases, 251–252
buying 0 products, 257
checkout pages, 261–267
continue shopping links, 256, 267
default cases, 252–256, 252
empty cases, 261, 261
empty_confirm cases, 256, 260, 260
initializing, 251
MySQL SUM function, 254
PHP code listing for, 246–251
product stock and, 257–259, 259
providing box/link to, 268–270, 270
remove cases, 255, 259, 260
update cases, 257–259, 259

creating links to product pages, 273–274
creating product pages, 234–238, 237–238
creating ShoppingCart class

$cart_id values, 241–242, 251, 252–253
cart_add function, 242–246, 251
cookie cid values, 241–242, 243
empty_cart function, 246, 261
get_cart_id function, 241–242, 251
PHP code listing for, 238–241
setcookie function, 243

creating tables for, 231–234
overview of, 230, 274
planning, 230–231
stock control

overview of, 231
via “sanity checks”, 261–263, 264–266
in update cases, 257–259, 259

testing, 270–273, 271–272
SHOW syntax in MySQL, 393
shuffle function, 360
signup script. See website membership

require_once control structure—signup script

4279indx.qxd 10/27/03 6:21 PM Page 405

406

single-quoted strings, 8–9
sizeof function, 360
SMALLINT columns in MySQL, 41
Smarty manual, 353
sort function, 360
source, open, 2
special characters,, escaping, 10–11
SQLyog database manager, See also MySQL

adding columns, 59, 59–61, 61
adding tables, 59–60, 59–60
altering tables, 60–61, 60–61
backing up databases, 61–63, 62
Connection Manager, 57, 57
creating databases, 58, 58–59
defined, 4
deleting columns, 61, 61
downloading, 57
Export Data screen, 61–62, 62
main screen, 58, 58
restoring databases, 63, 63

SSL certificates, 278, 284
statistics. See tracking
strftime function, 362
strings, See also PHP

appending to with variables, 14
assigning to variables, 11
building, 8–11
concatenating, 9, 14
defined, 8
double-quoted strings, 10–11
embedding variables in, 9
escaping

double-quoted strings, 10
single-quoted strings, 9
special characters, 10–11

functions for, 365
overview of, 11
single-quoted strings, 8–9
string operators, 374

stripslashes function, 108–109, 365
str_replace function, 365
strtolower() function, 17, 367
strtotime function, 362

strtoupper() function, 17, 367
substr function, 365
SUM function in MySQL, 254
superglobal arrays, See also PHP

$_POST, 96, 371
$_REQUEST, 93–94, 371
$_SERVER, 87, 89, 316, 369–371
defined, 369
listed, 371
overview of, 93

Suraski, Zeev, 2–3
switch control structure, 93–94, 95, 368
system functions, 366

T
tables in databases. See MySQL
target audiences, 31–32
teams. See project teams
templates. See website templates
testing scripts

for logging
PHP session counters, 317
search engine bot activities, 328–329, 329
website visitors, 323, 325

for news article management, 182–186, 183–186
for news category management, 163–166,

164–166
for PayPal payments, 308, 309
for shopping cart systems, 270–273, 271–272
for VeriSign payments, 306–309, 308

TEXT columns in MySQL, 42, 46–47, 48
text formatting functions, 15–17, 366–367
third-party payment solutions, See also payment pro-

cessing
defined, 278
listed, 278
versus merchant gateways, 276, 279–281, 280
PayPal

Buy Now buttons, 296, 300
data fields, 298–299
IPN system, 300
overview of, 278

single-quoted strings—third-party payment solutions

4279indx.qxd 10/27/03 6:21 PM Page 406

407

payment scripts, 296–300
testing scripts, 308, 309
token system, 296, 298

pros and cons, 279
steps in, 280–281, 280

TIME columns in MySQL, 42
time functions, 322, 360–362
TIMESTAMP columns in MySQL, 42, 320, 322
TINYBLOB columns in MySQL, 42
TINYINT columns in MySQL, 41
TINYTEXT columns in MySQL, 42, 42, 48
titles in web pages, dynamic, 197–198
tokens, See also payment processing

in Amazon Web Services, 214, 221
creating tables for, 281–282
securing PayPal with, 296, 298
securing VeriSign with, 294–295

touch function, 363
tracking website statistics, 316–332

with Alexa service, 332
with analyzing software, 330–331
creating quick stats boxes, 329–330, 331
and generating reports, 330–331
number of visitors online

creating logging script, 319–323
creating tables for, 318–319
displaying log results, 324–325
overview of, 318
testing logging script, 323, 325

overview of, 316, 332
with PHP sessions counters

creating logging script, 317
creating tables for, 316–317
displaying log results, 318
overview of, 316
testing logging script, 317

with PowerPhlogger software, 345, 346–347
search engine bot activities

creating logging script, 326–328
creating tables for, 326
GoogleBot, 325–326
overview of, 325–326
testing logging script, 328–329, 329

with Urchin software, 331
with Webalizer software, 331

trapping (or logging) errors, 22
trim function, 365
TRUNCATE syntax in MySQL, 393

U
uasort function, 360
ucfirst() function, 17, 367
ucwords() function, 16–17, 367
uksort function, 360
UltraEdit-32 software, 5
UNION syntax in MySQL, 393
UNIX_TIMESTAMP function in MySQL, 322
unlink function, 363
UNLOCK TABLES syntax in MySQL, 394
update news articles script, 172–178
update news categories script, 155–160
update (shopping cart) cases, 257–259, 259
UPDATE syntax in MySQL, 394
Urchin analyzing software, 331
URL encoding, 211
USE syntax in MySQL, 394
users. See visitors; website membership
usort function, 360

V
validating member input, 94–106, 104–105
VARCHAR columns in MySQL, 42, 46–47, 47
variables, See also PHP

altering, 12–13
appending to strings using, 14
assigning Booleans to, 12
assigning numerics to, 11–12
assigning strings to, 11
defined, 8
embedding in strings, 9
naming, 12
predefined variables, 89

TIME columns in MySQL—variables

4279indx.qxd 10/27/03 6:21 PM Page 407

408

querystring variables, 291–293
referencing, 12–13

verification script, login, 124–128, 128
verifying user e-mail addresses, 114–118, 117
VeriSign Payflow Pro, See also payment processing

billing info forms, 286–287, 308
credit card processing, 287–296
developer guide, 285
overview of, 284
preparing web servers, 284–285
securing with tokens, 294–295
testing scripts, 306–309, 308
trial accounts, 284

visitors online, tracking, See also website membership
creating logging script, 319–323
creating tables for, 318–319
displaying log results, 324–325
overview of, 318
testing logging script, 323, 325

W
web directories, securing, 88–89, 88
web servers

administrators, 33–35
Apache web servers, 4, 33, 353
preparing for VeriSign use, 284–285
support for PHP, 4

web services, See also APIs
defined, 204
Google language translation, 204–208, 207
Google search engine, 204, 208–214, 212–213
overview of, 214, 228

Webalizer software, 331
website addresses

ADOdb, 43
Amazon, 214, 221
Apache, 4
e-mail servers, 34
Google, 28, 204
hiring developers, 32
hiring graphic artists, 33

Internet Relay Chats, 355
learning Linux, 35
merchant gateway providers, 277
MySQL, 4, 40, 42, 353
newsfeeds, 200–201
PayPal, 300
PHP

contributing to, 356
domain usage, 3
editors, 5
string usage, 11

PHP Freaks
code libraries, 353
defined, 29, 353
FAQs, 355
forums, 32, 353
manuals, 353
newsgroups, 353
payment forms class, 286
reference library, 354
scripts, 350
tutorials, 353
Webalizer statistics, 331

PHP support
FAQs, 355
via Google, 354
HotScripts, 29
live support, 355
overview of, 352
OxyScripts, 29
PHP Freaks, 29, 353–354
PHP manual, 3, 29, 353, 354–355
PHP-Editors, 354
PHP.net, 3, 11, 354, 356
SitePoint, 354
WeberDev, 354
Zend Technologies, 29, 354

PHP third-party scripts
freshmeat, 350
HotScripts, 350
MyNewsGroups, 347
PHP Freaks, 350
phpAdsNew, 334

verification script—website addresses

4279indx.qxd 10/27/03 6:21 PM Page 408

409

phpBB, 340
PowerPhlogger, 345
SourceForge, 350
Zend, 350

phpMyAdmin, 4
SQLyog, 4
SSL certificates, 278
third-party pay tools, 278
Urchin, 331
Verisign, 284
Webalizer, 331
Workgroup Mail, 108

website administrators. See administrators
website membership systems, 86–144

defined, 86
login system

granting member-only access, 141–142
login success messages, 129–130, 129
login verification script, 124–128, 128
login/out link boxes, 137–140, 140
logout script, 142–144
overview of, 123
reset lost password script, 130–137, 136–137
starting PHP sessions, 123–124

member signup script
creating HTML login forms, 116–118, 117
creating HTML signup forms, 90–93
creating join.php script, 93–94
inserting member data in MySQL, 106–107
overview of, 90
sending e-mail notices from PHP, 107–113,

113
signup success messages, 113–114, 115
validating member input, 94–106, 104–105
verifying e-mail addresses, 114–118, 117
viewing join.php summary, 118–123

overview of, 144
preparing for

creating common.php files, 86–87
creating HTML files, 87–88
overview of, 86
securing web directories, 88–89, 88
setting up tables, 89–90

website news systems, 146–201
adding news feeds, 200–201
creating tables for, 147–148
granting administrator access to members,

146–147
news article comment system, 200
news article management system

administrator links, 181–182
alternating HTML table row colors, 179–181
delete script, 175–176, 178–179
dynamic page titles, 197–198
index include script, 186–192, 186, 191
insert script, 166–172
overview of, 166
read full articles script, 192–198
testing, 182–186, 183–186
update script, 172–178
user links, 198–199, 199

news category management system
administrator links, 161–163, 163
delete script, 160–161
insert script, 148–153, 153
overview of, 148
testing, 163–166, 164–166
update script, 155–160

overview of, 146, 201
planning, 146

website planning, 26–37
databases, 30–31
getting the most from ideas

brainstorming, 27–28
creative thinking, 26–27
researching, 28–29

hardware, 36–37
layout, 30
overview of, 26, 37
“peanut butter and jelly” concept, 29–30
project teams

versus going solo, 35–36
graphic artists, 32–33
logistics and, 32
PHP developers, 32
project managers, 35

website administrators—website planning

4279indx.qxd 10/27/03 6:21 PM Page 409

410

team coordinators, 35
web server administrators, 33–35

sections, 30
target audiences, 31–32

website templates, 68–84
classes, See also PHP classes

creating class structure, 75–76
creating Meta Content classes, 77–81
defined, 75
using Meta Content classes, 81–84
Object Oriented Programming and, 75
search engines and, 68, 84

layout design
creating in HTML, 69–70, 69–70
creating PHP files, 71–73
entering content, 73–74
overview of, 68, 68, 75
viewing in browsers, 74–75, 74

overview of, 68, 84

website tracking. See tracking
Workgroup Mail, 108

X
XML parser class, 215, 220, 222

Y
YEAR columns in MySQL, 42

Z
Zend engine in PHP 4.0, 3
Zend Technologies, 29, 350, 354

website templates—Zend Technologies

4279indx.qxd 10/27/03 6:21 PM Page 410

	Creating Interactive Websites with PHP and Web Services
	Frontmatter
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction

	Chapter 1: Introducing PHP
	Getting a History Lesson in PHP
	Understanding the Requirements for PHP
	Operating System Support
	Web Server Support

	Exploring PHP-Related Software
	MySQL Database Management Tools
	PHP Editors

	Working with PHP
	Writing Your First PHP Script
	Working with Strings and Variables
	Working with PHP Functions
	Error Handling and Trapping
	Using Output Buffering

	What's Next?

	Chapter 2: Planning Your Project
	Getting the Most from Your Idea
	Brainstorming Details for an Idea
	Researching Concepts

	Planning and Information Gathering
	Planning a Website Layout, Sections, and Features
	Planning a MySQL Database
	Planning for a Target Audience

	Setting Up the Project Logistics
	PHP Developers
	Graphic Artists
	Server Administrators
	Project Managers/Team Coordinators
	What's Best for You?

	Considering the Hardware Requirements
	What's Next?

	Chapter 3: Building a Database Schema with MySQL
	Understanding MySQL
	MySQL Table Types
	MySQL Column Types
	What Is ADOdb?

	Using MySQL Database Tools
	Using phpMyAdmin: Web-Based MySQL Administration
	SQLyog MySQL Manager for Windows
	Connecting to MySQL Databases with PHP
	Persistent and Nonpersistent MySQL Connections
	Making the Connection

	What's Next?

	Chapter 4: Building a Website Template with PHP
	Designing Your Layout
	Creating the HTML
	Creating the PHP Code
	Using the layout.php File

	Introducing Classes
	Creating the Basic Class Structure
	Creating the META Content Class
	Using the Meta Content Class

	What's Next?

	Chapter 5: Creating a Website Membership System
	Preparing the Membership System
	Creating the common.php File
	Including a Welcome Message HTML File
	Securing Web Directories

	Setting Up the Membership System Database Tables
	Creating a Membership Signup Script
	Creating the HTML Signup Form
	Creating the join.php Script Structure
	Processing the Form Information
	Inserting the Members' Data into the MySQL Database
	Sending E- mail with PHP
	Displaying Success Message After Signup
	Verifying the User's E- mail Address
	Looking at the join.php File Summary

	Creating the Login System
	Starting PHP Sessions
	Creating the Login Verification Script

	Creating a Lost Password Script
	Creating the Membership Hyperlinks Box
	Granting Member-Only Access
	Logging Out
	What's Next?

	Chapter 6: Developing Website News System
	Planning the News System
	Preparing the Website Administrator Access
	Preparing the MySQL Database
	Creating the News Article Category Management System
	Creating the News Article Category Insert Script
	Creating the News Article Category Update and Delete Script
	Creating the News Article Category Administrator Hyperlinks
	Testing the News Article Category Management System

	Creating the News Article Management System
	Creating the News Article Insert Script
	Creating the News Article Modify and Delete Script
	Testing the News Article Management System
	Creating the News Article Index Include File
	Creating the Read Full Articles Script
	Creating a Hyperlinks Box

	Challenge: Create a News Article Comment System
	Adding News Feeds
	What's Next?

	Chapter 7: Enhancing Your Website with Web Services and APIs
	Working with Web Services
	Using Google Language Translation Services
	Using the Google Search Engine in Your Website

	Working with APIs
	Amazon Web Services API Made Simple

	What's Next?

	Chapter 10: Tracking Website Statistics
	Creating Custom Tracking with PHP and MySQL
	Setting a PHP Sessions Counter
	Tracking the Number of Users and Visitors Online
	Tracking Search Engine Spiders
	Creating a Quick Stats Box

	Using Web Analyzing Software
	Using Webalizer
	Using Urchin

	Monitoring Your Website with Alexa
	What's Next?

	Chapter 11: Using Third-Party PHP Scripts
	Exploring Some Great Third-Party PHP Scripts
	Using the phpAdsNew Advertisement System
	Using the phpBB Bulletin Board System
	Using the PowerPhlogger Statistics Tracking Script
	Using the MyNewsGroups News Client

	Finding Third-Party PHP Scripts
	What's Next?

	Chapter 12: Closing Statements
	It Gets in Your Blood
	Getting Support
	PHP Support Sites
	PHP Manual
	Live Support
	PHP Frequently Asked Questions (FAQ)

	Contributing to PHP
	Keep On Truckin'

	Appendix A: PHP Reference
	Popular PHP Functions
	Array Functions
	Date and Time Functions
	File Handling Functions
	MySQL Database Functions
	String Manipulation Functions
	System Configuration Functions
	System Execution Functions
	Text Formatting Functions

	Control Structures
	PHP Superglobals
	Superglobal: $_SERVER
	Other Superglobals

	Operators
	Arithmetic Operators
	Assignment Operators
	Comparison Operators
	Error Control Operator
	Incrementing Operators
	Logical Operators
	String Operators

	Appendix B: MySQL Syntax Reference
	ALTER
	ANALYZE TABLE
	BACKUP TABLE
	BEGIN
	CHECK TABLE
	COMMIT
	CREATE
	DELETE
	DESC
	DESCRIBE
	DO
	DROP
	EXPLAIN
	FLUSH
	GRANT
	INSERT
	JOIN
	KILL
	LOAD DATA INFILE
	LOCK TABLES
	OPTIMIZE
	RENAME
	REPAIR TABLE
	REPLACE
	RESET
	RESTORE TABLE
	REVOKE
	ROLLBACK
	SELECT
	SET
	SET TRANSACTION
	SHOW
	TRUNCATE
	UNION
	UNLOCK TABLES
	UPDATE
	USE

	Index
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

