
php|architect’s Guide to
Programming Magento

by Mark Kimsal

php|architect’s Guide to Programming Magento
Contents Copyright ©2007-2008 Mark Kimsal – All Rights Reserved
Book and cover layout, design and text Copyright ©2004-2008 Marco Tabini & Associates, Inc. – All Rights Reserved

First Edition: May 2008
ISBN: 978-0-9738621-7-1
Produced in Canada
Printed in the United States

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or
by means without the prior written permission of the publisher, excet in the case of brief quotations
embedded in critical reviews or articles.

Disclaimer
Although every effort has been made in the preparation of this book to ensure the accuracy of the
information contained therein, this book is provided ”as-is” and the publisher, the author(s), their
distributors and retailers, as well as all affiliated, related or subsidiary parties take no responsibility
for any inaccuracy and any and all damages caused, either directly or indirectly, by the use of such
information. We have endeavoured to properly provide trademark information on all companies and
products mentioned in the book by the appropriate use of capitals. However, we cannot guarantee the
accuracy of such information.

Marco Tabini & Associates, The MTA logo, php|architect, the php|architect logo, NanoBook and the
NanoBook logo are trademarks or registered trademarks of Marco Tabini & Associates, Inc.

Written by Mark Kimsal

Published by Marco Tabini & Associates, Inc.
28 Bombay Ave.
Toronto, ON M3H 1B7
Canada

(416) 630-6202 / (877) 630-6202
info@phparch.com / www.phparch.com

Publisher Marco Tabini

Technical Reviewer Paul Reinheimer

Layout and Design Arbi Arzoumani

Managing Editor Elizabeth Naramore

Finance and Resource Management Emanuela Corso

Contents

Chapter 1 — Introduction 1
Who Can Use This Book? . 2

Developers . 2
Store Owners . 2

About This Book . 2
Code Formatting . 2

XML Examples . 3
Operating System Considerations . 4

Chapter 2 — Developing for Magento 7
Prep Your Environment . 7

LAMP/WAMP Platform . 7
Subversion . 7
MySQL Tools . 8

Installation . 8
Database Setup . 8
Magento Setup . 8

Initializing Subversion . 9

Chapter 3 — Exploring Magento 13
Magento Catalogs . 15

Categories . 15
Products . 18
Attribute System . 20

vi ” CONTENTS

Multiple Stores . 22
Languages . 23
Multiple Catalogs . 23
Multiple Designs . 24

Chapter 4 — Magento Modules 27
Module Structure . 27

Code Pools . 28
Module Packages . 28
Models . 28
Blocks . 29
Controllers . 29
Helpers . 30
Config files . 31

Template System . 32
Layout Files . 32
Template Files . 34

Mage Application . 35
Magento’s Request Cycle . 36

Chapter 5 — Database Design 43
Resources and Database Connections . 43

Master Slave Setup . 44
Models and Resource Models . 45
EAV Design . 46

EAV versus Normalization . 48
Entities . 49

Default Entities . 49
Defining Entities . 51
Saving Entities . 52

Entity Attributes . 52
Attribute Values . 53

Collections . 53

CONTENTS ” vii

Chapter 6 — Custom Modules 57
The Filesystem . 57
The Shell Module . 58

Default Directories . 58
Default Files . 59

Module Requirements . 61
Plan of Attack . 61

Configuration Files . 61
Config.xml . 62

Template Changes . 65
Layout Changes . 67

Overridding a Block . 69
Conclusion . 73

Chapter 7 — CMS Integration 75
CMS Driven Approach . 75

Technical Considerations . 76
The UserConnect Module . 77
Passwords . 83
Entity Attributes . 84
Dealing with Legacy Attributes . 85
Registration . 89
Conclusion . 89

Synchronizing Sessions . 90
Magento Listeners . 90
CMS Sessions . 92

Shared Themes . 93
Store Driven Integration . 93

Chapter 8 — Made to Order Module 97
Example Scenario . 98
Plan of Attack . 99
The Length Attribute . 99
New Module . 99

Installation . 100

viii ” CONTENTS

Overriding the Block . 102
Recording User Input . 104

Adding Data to the Quote . 105
Adding Data to the Order . 107

Show Customizations to the Customer . 108
Modify the Cart Page . 108
Separating Similar Products in the Cart 109

Conclusion . 110

Chapter 9 — Points and Rewards Module 113
Plan of attack . 114
Adding New Attributes to Products . 114
Creating a Shell Module . 115
Recording Points Ordered . 116

Making a Model . 117
Event Listeners . 121
Summary . 124

Show the Customer Their Points . 124
Dashboard Layout . 124
Summary . 127

Dynamic Coupons . 128
Coupon Models . 129

Deducting Points . 132
Conclusion . 132

Chapter 10 — Backend Integration 135
Starting a New Module . 135

The Controller . 136
CRUD Controller . 137
Read Action . 138
Update Action . 141
Delete Action . 142
Create Action . 144
Securing the Controller . 145

Client Access . 147

CONTENTS ” ix

Chapter 11 — Quick Answers to Common Questions 151
Magento’s naming conventions are crazy! . 151
How do I run a raw query against the database? 152
How do I turn off the price in the layered navigation? 153
How do I move the admin panel to a new name for security? 154
How do I use installation and upgrade files in my custom modules? 155
How do I run Magento code without building a module? 157
How do I show the root catalog category on the home page? 158
How do I hide the price of products before they go into the cart or if a person

is not logged in? . 159
How do I find out the proper table name? . 161
How do I show Magento products on a non-Magento page? 162
Help, my product changes don’t show up on the frontend! 163
I give up! Magento is too confusing . 164

Index 167

Chapter 1

Introduction

E-commerce programming represents what is probably the most creative outlet for
a developer. Implementing an e-commerce solution for yourself, or for a client,
requires creative solutions to stay one step ahead of your competitors in the ever-
changing online world. Enticing potential customers to “turn-over” and become
customers of your store calls for the best user experience. Organization, searching,
fast load times, attractive display, and intuitive navigation must all come together to
form a shopping experience that builds a level of trust between your store and the
customer. Starting an e-commerce solution with the absolute best tools gives you
a solid foundation on which to try out your customer-enticing ideas. Starting with
less than adequate tools creates artificial and time wasting barriers between you and
your ultimate goal: enticing customers to buy from you.

Starting an e-commerce solution with Magento gives you the best possible foun-
dation for your online Web store. Whether you know a little or a lot about program-
ming, you will see how Magento offers you the best programming platform to flex
your creative mind. From minute template controls to custom modules, to exclusive
product behaviors, Magento can help you finish an implementation faster than the
alternatives.

2 ” Introduction

Who Can Use This Book?

Developers

This book should serve as a thorough introduction for developers to the structure
of Magento, as well as provide you with enough examples that you can take any of
your coding ideas to fruition. Developers will learn how to write custom modules
for Magento for redistribution or for simply deploying on a corporate installation of
Magento.

Store Owners

If you are not a programmer, but simply want to run a Magento store, this book
might not be for you, but if you think you might need custom programming for your
shopping cart this book can help you communicate better with your developers.

It’s tough to avoid getting the wool pulled over your eyes when hiring a remote
developer. Armed with the knowledge of Magento provided by this book, you should
be able to verify any cost estimates you receive and find out if your developers are
stalling or not.

About This Book

This book is organized roughly into two sections. The first section describes how
Magento works from a code perspective and from a general user-interface perspec-
tive. The remaining chapters will walk the reader through building various modules
for Magento by example. Although not a complete detail of Magento’s API, this book
should give the reader all the learning by examples that he or she should need to
understand all the concepts that drive Magento’s code.

Code Formatting

Since Magento is built on the Zend Framework the code formatting of the examples
in this book will follow the Zend Framework style guidelines. Sometimes the code

Introduction ” 3

examples in this book are shortened to fit on the pages, so style may suffer in some
instances to conserve space.

When referring to variables, classes, objects, or concepts this book will put the
word or words in question into italics. When specifically referring to the word of a
variable, class name, etc. the words will be formatted as inline code. File names will
also be formatted this way.

When talking about Mage_Core_Model_Abstract the object class italics will be
used, but when talking about why a class is named Mage_Core_Model_Abstract, in-
line code formatting will be used.

XML Examples

When referencing XML the ellipses, ..., are used to suggest that other, optional, or
pre-existing XML tags are present. Given the XML structure below:

<config>
<modules>

<Company_RewardPoints>
<version>0.1.0</version>
<depends>

<Mage_Customer />
<Mage_Checkout />

</depends>
</Company_RewardPoints>

</modules>
<global>

<resources>
<rewardpoints_setup>

<setup>
<module>Company_RewardPoints</module>
<class>Mage_Core_Model_Resource_Setup</class>

</setup>
<connection><use>core_setup</use></connection>

</resources>
</global>

</config>

The section enclosed in the rewardpoints_setup tag may be represented as this:

<config>

4 ” Introduction

...
<global>

...
<resources>

<rewardpoints_setup>
<setup>

<module>Company_RewardPoints</module>
<class>Mage_Core_Model_Resource_Setup</class>

</setup>
<connection><use>core_setup</use></connection>

</resources>
...

</global>
...
</config>

Operating System Considerations

When possible, this book will describe technical procedures for Linux, Mac OS X, and
Windows operating systems. However, to keep examples brief, simple references to
file locations will use Windows directory and file naming conventions. When listing
directories, the forward slash (/) will be used as a directory separator as this conven-
tion falls in line with standard Unix behavior (Mac OS X and Linux) plus PHP and
Apache can automatically translate forward slashes to back slashes where need be
on Windows.

Do not be surprised to see a directory like this:
C:/xampp/apache/htdocs/magento/

Chapter 2

Developing for Magento

Prep Your Environment

Make sure you have the most up-to-date version of Magento downloaded.
Start by downloading the latest release of Magento from

http://magentocommerce.com/.

LAMP/WAMP Platform

If you are on the Windows platform the easiest way to install PHP, Apache and MySQL
is with the XAMPP family of packages from http://apachefriends.org. Install the
XAMPP-lite package anywhere on your drive and run the setup.bat file. There is a
version of XAMPP for Mac OS X and Linux as well.

Subversion

For developing your own modules, it is recommended that you use Subversion
version control to keep track of all of your code changes. TortoiseSVN from
http://tortoisesvn.tigris.org is the recommended client and server for Windows
users. For Mac and Linux users, the command line svn program plus the PHP pack-
age websvn is recommended. If you are not familiar with the Subversion system, you
can read more about it at the Subversion Web site (http://subversion.tigris.org/).

8 ” Developing for Magento

MySQL Tools

Apart from the actual MySQL server, it is most useful to have a graphical client to
inspect Magento’s database tables from time to time. The MySQL Query Browser tool
is the official client provided by MySQL AB and is available for all major operating
systems. Some users prefer mysqlcc or phpMyAdmin over MySQL Query Browser,
though.

Installation

Unzip Magento into your Web server’s document root (from here on, referenced as
{docroot}). You should see a directory layout like this:

{docroot}/magento/
app/
index.php
js/
lib/
LICENSE.txt
media/
pear
skin/
var/

Database Setup

Magento will not create its required database for you, even if your database user
has proper rights to create a database. Because of this, we will need to create the
database using one of the previously mentioned MySQL tools. A normal database
name, sometimes called a schema, can be “magento”, or “magento_dev”, or you can
even include the version number “magento_10”.

Magento Setup

You should now continue with Magento’s base installation by pointing your browser
to http://localhost/magento/. Here, you will see a basic step-by-step form for in-

Developing for Magento ” 9

stalling most PHP Web applications. Follow the on-screen directions and your Ma-
gento installation will be complete.

Sample Data

If this is your first time trying out Magento you should install the optional sample
data. The sample data is provided as a separate download as it is about 35 MB. The
sample data provides some sample products, categories, and product images. Once
you have downloaded the package, copy the media folder over your own media folder
under your Magento installation. Then run the provided SQL file with your MySQL
management tool.

As of the time of this writing, the sample data is distributed as a complete database
installation. Therefore, it needs to be inserted before you proceed with the regular
setup. The regular setup will actually upgrade the sample data to the latest version.

Initializing Subversion

Magento has three directories from which modules are executed: core, community,
and local. All the examples in this book assume that you are developing in the local

module directory. Under the local directory, you can group all of your modules to-
gether under one package. This package is called Mage for all magento core modules,
but this book will use Company for all the examples. You can use any package name
besides Company for a package name that represents your company or organization.

Initializing subversion is a bit tricky. First, you need to initialize a repository. Then,
you need to create a folder or directory to import into this new repository. After that
you are not ready to start using subversion. The directory which was imported needs
to be removed, and then checked out of the repository in order for it to be connected
with subversion. Let’s look at the steps in detail.

Picking a subversion repository on the Linux platform is pretty easy. Af-
ter installing Subversion from RPM, there usually exists a directory similar to
/var/lib/subversion/repositories/. Initialize a new repository with the command:

svnadmin create /var/lib/subversion/repositories/magento_modules

10 ” Developing for Magento

If you are using TortoiseSVN under Windows, create a folder anywhere on your com-
puter, right-click that folder, and select Create repository here... from the Tortois-
eSVN menu.

Our goal for setting up Subversion is to have a folder named Company under the
app/code/local directory of Magento. This will allow us to easily add new modules
and save our work to Subversion whenever we want. Create a new directory under
the app/code/local folder called svn_import. Under this temporary svn_import direc-
tory create another folder called Company, or whichever name you’ve decided to use
for your packaging. If you are running on a Unix platform, run this command from
inside the svn_import directory (ignoring the shell prompt):

[svn_import]$ svn import . \
file:///var/lib/svn/repositories/magento_modules/

On Windows, use TortoiseSVN by right-clicking on the svn_import folder and choos-
ing the Import... menu item. A new dialog will appear and ask you to input the
URL of the repository. Click the ellipses button and browse to the folder which you
designated as your repository in the previous step.

Delete the svn_import folder after successfully importing into your new repository.
Next, we need to checkout the folder we just imported to get a Subversion activated
directory. On Unix:

[local]$ svn checkout \
file:///var/lib/svn/repositories/magento_modules/Company

On Windows, right click on the local folder and choose SVN Checkout.... Accept the
default settings in the dialog, and confirm Yes when it asks you if you really want to
overwrite the folder.

Covering all Subversion commands is beyond the scope of this book. But you are
now prepared to develop and save your custom Magento modules in a subversion
directory if you so choose.

Chapter 3

Exploring Magento

Magento’s administrative interface gives you control over all the standard features of
your shopping cart site. Looking at this backend interface can shed some light on
what features Magento has to offer. Login to the backend with the admin account
which you setup during the installation and you will see something like the screen
shown in Figure 3.1.

Figure 3.1

Magento provides standard functionality that you would expect from any shop-
ping cart, including:

• Multiple category trees

14 ” Exploring Magento

• Definable attributes

• Customer and customer group management

• Discount rules for promotions

• Newsletter management

• Web page manager

• Order review system

• Reporting features

• System configuration and settings

In addition to these features, there are a number of features that would not be pro-
vided by default in other shopping carts. A short list of these impressive features
include:

• Reviewing search terms

• Reviewing customer tags

• Poll manager

• Currency exchange rates

• Google Sitemap integration

• Abandoned shopping cart report

• Layered category navigation

None of these features by themselves are probably that impressive. But to have a
system in which they are all present, by default, with no plugins necessary, is truly a
breath of fresh air in the open source e-commerce arena.

By now, you’ve probably “clicked” around in the backend a little. The remainder
of this chapter will guide you through the basics of what Magento has to offer and
cover Magento specific terms. It is necessary to have a thorough understanding of
Magento’s basic operation in order to better understand the code. Let’s start with
Magento’s product catalog.

Exploring Magento ” 15

Magento Catalogs

A product catalog is the combination of products that you wish to sell and those
products’ categorizations and pricing. You can equate this with any catalog you
might receive in the mail. The pages are organized by category, the products have
a description, a picture, a price, and some product code or number that you can use
when placing an order. As you are flipping through the pages of the catalog, the cata-
log itself represents your entire view of that company’s products. If, for some reason,
the catalog is not organized correctly, or the product images seem unattractive, you
might be quite inclined to toss the catalog to the side and not think about ordering
from that company. Likewise, when a customer is browsing your e-commerce site,
the product catalog is possibly their only view of you or your company.

Figure 3.2

As you can see from Figure 3.2, a catalog, in Magento, consists of categories, prod-
ucts, and attributes. A few other tools that Magento lumps into catalog maintenance
are: URL rewrite management, search term review, customer product review, prod-
uct tags, and Google Sitemap. While there are no direct relationships between these
features and a physical, printed catalog, there is no doubt that all of these features
contribute to the customer’s overall view of your e-commerce site.

Categories

Categories are the most visible aspect of your catalog. The structure of the categories
directly translates into navigation for the customer. A customer viewing your site
store on a product display page, coming from either a search engine or from another
link, will see the product’s categorization as a bread crumb trail near the top of the
page.

16 ” Exploring Magento

While a paper catalog is limited to the amount of pages that can be delivered to a
potential customer, a digital catalog is not. Any product can be categorized under as
many categories as it makes sense. Thankfully, Magento does allow for a product to
be listed under multiple categories.

Start by clicking on the Manage Categories link under Catalog in the Magento
backend. You will see the current categories listed as a nested folder tree. Selecting
any category by clicking on it will reload the page and allow you to edit that category
on the right side of the page. There are some fairly standard attributes of any cate-
gory that you can edit, including: name, description, category image, meta keywords,
etc. Magento specific features of categories include: CMS block, display mode, URL
key, layout updates, and anchor mode.

CMS Blocks

Using a CMS block with a category allows you to go above and beyond a plain text
description of your category. CMS blocks allow full HTML to be used inside them, as
well as special Magento commands. The display mode allows you to turn on and off
the listing of products, CMS blocks, or both for the front-end view of the category.

URL Key

The URL key, sometimes referred to as SEO text (Search Engine Optimization), gives
you the opportunity to include any keywords that you wish to display in the URL for
this category. By default, the URL key is taken from the name of the category, re-
moving or replacing any characters that would not show well in a URL. You should
use care when changing this value. Having special SEO words in your category URLs
is great for search engine rankings, but if the words constantly change it might ap-
pear that you have too many distinct URLs pointing to one page. This might have
the effect of lowering your rankings in certain search engines, or causing any index-
ing spider to stop indexing your site. This problem is well documented in various
articles about SEO.

Exploring Magento ” 17

Layout Updates

There are two types of layout changes you can make for each category. The first is
just a page layout change. This allows you to display your category with one of the
pre-built page layouts. The basic page layouts are: 1 column, 2 columns with right
bar, 2 columns with left bar, and 3 columns. This gives you the flexibility to turn
on and off any content that would normally show up in the side columns, like the
category menu or your shopping cart contents.

The other type of layout update is the “Custom Layout Update”. This text box al-
lows you to enter raw XML commands, exactly like those that power the layout sys-
tem. We will talk more about the layout system later, but this feature is very powerful,
allowing you to control almost any aspect of the final rendering of any category.

Anchor Mode

The anchor mode attribute is probably the worst named of all attributes in the sys-
tem. For any category, setting Is Anchor to Yes will turn on the feature known as lay-
ered navigation. When a category is an anchor, the normal list of sub-categories that
would appear when browsing that category is replaced by a set of attribute groups of
all products contained in that category and below.

This new navigation control allows your customers to find products based on any
available attribute of the products contained at or below the current category. A typ-
ical layered navigation panel might look something like this to the end user:

Shop By

Category:
Digital Cameras (7)
Film Cameras (2)

Price:
$1-$100 (4)
$101-$200 (3)
$201-$400 (2)

Manufacturer:
Fuji (3)
Canon (3)
Olympus (3)

18 ” Exploring Magento

It is referred to as an “anchor” because the user no longer “moves” to lower sub-
categories, instead the list of available products is merely filtered by the customer’s
chosen attributes. This is a very powerful feature and Magento might be the first to
offer such a feature in an open source shopping cart.

Products

Products are the heart of any e-commerce site. But in Magento, they might be called
another body part: the Achilles’ heel. In Magento, the definition of a product is ex-
ceedingly simple. One SKU is one product that a customer can buy. The problem
with Magento’s product support is that you must create one SKU for each product
that you want to sell. There is no SKU formula nor SKU pattern where selected op-
tions alter, or add to, an existing SKU for a base product. This can be problematic
for manufacturers, handicraft artisans, printing shops, or anyone who wants to take
instructions from the client. But, there are ways around this hiccup, that is why you
are reading this book, no doubt. We will cover all the ways around this limitation.

Grouped Products

Grouped products provide the store owner with a way to collect many products and
display them all on one product page. The products can be very similar to each other
or loosely related, it doesn’t matter. The grouped product type makes sense to use
when you think the customer might want to purchase multiple different types of
products at the same time. An example of this might be buying batteries: a typical
customer might wish to add many different packs of batteries to their cart at the
same time, the only difference being the standard size of the batteries (i.e. A, AA, C,
etc.).

Configurable Products

Configurable products are similar to grouped products in that they both are a col-
lection of simple products. But, configurable products try to represent only one end
product to a customer. When you associate simple products with a configurable
product, all the simple products must share a common attribute set. The similarities

Exploring Magento ” 19

Figure 3.3

and differences between the attribute values of the simple products form a choice
for the customer.

The best example of a configurable product would be shirts or clothing. A cus-
tomer thinks of a shirt with an interesting design on it as just one product which is
availble in many sizes and colors. Store owners think about the inventory of each
size and color combination of that shirt. The simple products represent the physical
inventory of real shirts in different sizes and colors, the configurable product repre-
sents the choice of which shirt the customer wants.

When a user browses to a configurable product, they see a series of input boxes
which allow them to choose available values of the configurable attributes.

Figure 3.4

20 ” Exploring Magento

Bundled Products

Bundled products are not yet available at the time of this writing. The idea for a
bundle is similar to what most systems call a kit. A bundled product will be one
product in the customer’s shopping cart, but it will be made of a number of real
SKUs in the system that are treated as one whole. This is different from configurable
products in that the goal of a configurable product is to select one real product from
a set of products with similar attributes. The goal of a bundle is to provide a discount
for purchasing things as a set, or to track inventory for all of the parts that combine
to create one product.

Selling a computer, monitor, mousepad, and printer all together as one package
would be an example of the first goal of bundled products. Selling a wooden bird
house which is composed of 5 pieces of wood, 2 bolts, 1 package of glue, etc... would
be an example of the second goal of bundling. No customer wants to directly pur-
chase your raw material in the second example, but someone might simply want one
mousepad from the first example.

Attribute System

The attribute system in Magento consists of attributes and attribute sets. An at-
tribute set is a named group of attributes and can be attached to any number or
products and thus defines which attributes can be associated with a product. Defin-
ing an attribute set for each class of product that you wish to sell is another way to
organize your products, since some of the import and export functions can be lim-
ited to all the products of a specific attribute set.

The attributes themselves, while technically advanced, offer limited flexibility
from a store owner’s point of view. Defining a new attribute for use in the system
can be complex if you don’t understand all of the properties presented to you. Items
like Scope and Unique Values might not make immediate sense to the store owner
who is creating a new attribute. Let’s take a look at each attribute property in detail.
Remember that when you are designing a new attribute, all of the options relate to
the product as it exists in your inventory, not to the user interface that a customer
might see.

Exploring Magento ” 21

Attribute Identifier

This small identifier is used as a code word for the attribute throughout the system.
Sometimes this identifier is used in XML, so don’t use too many strange characters
when naming it.

Scope

This allows you to specify how far any values of an attribute will spread in the sys-
tem. If you are selling a product in multiple stores and you want each store to have
one unique value for this attribute, then choose “Store View”. We haven’t discussed
multiple stores yet, but if you imagine a Web site that sells to both American and Eu-
ropean customers, you might want the “length” attribute to only have a “Store View”
scope. That way, when you change the value to “12 inches” for the American store,
the same product will keep any previous value for the European store, like “30 cm”.
Rarely would you ever want a value other than “Global” here.

Catalog Input Type for Store Owner

This allows you to select what sort of form control is present when you are edit-
ing your product inventory. This does not affect any visual form controls for the
customer view. Most of the time it is sufficient to say “Dropdown”. Using a drop-
down control allows the attribute designer to list all possible values for this attribute,
thereby reducing human error when editing the field.

Unique Value

If set to “Yes”, this field will not allow you to have more than one product with the
same value as another product using the same attribute. Think of this attribute like a
license plate number, no two cars can have the same plate number at the same time.

Values Required

This property simply forces the store owner, or whoever is inputting the product
data, to enter some value for this attribute when creating or editing a product. If set
to “No” it allows the data entry person to skip over this attribute and leave it blank.

22 ” Exploring Magento

Input Validation for Store Owner

This property will run the store owner’s data entry through a validation routine be-
fore saving the product data. Selecting “Dropdown” from the input type negates the
value of this field.

Apply To

“Apply To” lets you specify that an attribute should behave differently if attached to a
Configurable or Grouped product. If you are making an attribute that is the deciding
factor between many of the same products (think size and color for shirts), then you
will want to apply this attribute to a grouped or configurable product.

Multiple Stores

Magento only allows you to have one product catalog. This seems antithetical to
what most people would want in an advanced shopping cart. But, what most sys-
tems would call a catalog, Magento calls a store. Each store can have its own root
category, thus slicing the entire list of categories into many independent category
trees. On the other hand, each category can have different products and settings for
each store view. So it is up to you to decide whether reusing a category structure is
useful for your situation when dealing with multiple stores.

To manage your stores, store views, and Web sites, login to the administrative
back-end and click the Manage Stores link under the System tab. Here you can add
new stores or store views. You can also rename a store or store view, but this only
has an effect on the various controls of the admin interface, not the customer fac-
ing front-end. After you have created more than one store or store view you will see
a store switcher widget on most of the admin interface pages. Selecting different
store views in this drop-down menu will refresh the screen you’re current viewing
and allow you to make changes to values that will affect only the current store or
store view.

Exploring Magento ” 23

Languages

After adding another store view to your site, you are allowed to enter alternative text
to categories, products, and product attributes for each store view. If you have mul-
tiple stores installed you will see a special store view box on most admin pages. This
box allows you to change values for a specific store view instead of the default values
for products or categories. If you haven’t specified any new values for the new store
view, the view will take all of its values from the default store view. This is the most
common way to run a store in multiple languages.

Figure 3.5 shows the store view switcher on the categories page to allow for chang-
ing values of a category only for one store view. The store switcher is also available for
products, attributes, and general configurations when you have created more than
one store view.

Figure 3.5

Multiple Catalogs

With Magento, you can create two completely separate product catalogs and basi-
cally run two separate stores from one installation. The trick involves creating a new
store, not a store view. When you create a new store, you are allowed to choose which
category is the root category for that store. Any product category whose parent is the
Root Category is available to use as your new store’s root category. These new cate-
gories will not be visible by anyone browsing a the original store.

There is no automatic way to activate the new store, however. Small changes to
the index.php file are required if you wish to have a dynamic site which selects differ-
ent stores at run-time. If you are running two different domain names, it might be
easiest to install Magento once under each virtual host and simply enter in the same
database settings into both installations.

24 ” Exploring Magento

Making the index file dynamically select a store view at run-time can be done a
number of different ways and is heavily dependent on your particular situation. The
core of the matter revolves around one line in the index.php file:

Mage::run();

The run method can accept the name of a store view as a parameter. You can simply
type in the code name for your store and all hits to the Web site will use that store. A
more sophisticated approach might be to inspect which sub-domain the customer
has accessed the site with and pass that value to the run method. Another approach
would be to inspect the customer’s IP and try to geo-locate their country of origin, or
simply inspect the browser’s headers for the Accept-Language line.

if (stristr($_SERVER[’HTTP_ACCEPT_LANGUAGE’],
’zh-cn’) !== false)

{
$storecode = ’chinese’;

} else {
$storecode = ’default’;

}
Mage::run($storecode);

Multiple Designs

If you are running multiple stores, you probably want to have multiple designs. For
multi-language sites it is almost a requirement, since some of the Web site’s assets
will no doubt have language directly written on graphics or logos. Magento’s concept
of designs is split up into two ideas: packages and themes. Packages are a complete
rewrite of every single part of Magento’s front-end, and are usually over-kill unless
you know that your project will radically alter how products are shown to the cus-
tomer.

Using different themes in the same design package allows a fine-grained approach
to tweaking Magento’s layout, graphics and CSS files. A theme is physically a new
folder under a design package folder. Themes have the advantage of falling back to
the default theme folder if a certain template, graphic, or CSS file is not found in the

Exploring Magento ” 25

custom theme. Custom packages do not fall back to the default package if a file is
missing.

Different themes can be applied to a single category, an entire branch of cate-
gories, or to a new store or store view. Applying themes to individual categories is
useful for different promotional or advertising needs, but it is probably not a good
approach for managing design changes for internationalization needs.

Chapter 4

Magento Modules

Modules are the core of Magento. Every action on the site, frontend or backend,
goes through a module. Modules act as containers for one or more of the follow-
ing: settings, database schemas, rendering objects, utility helpers, data models, or
action controllers. A module can be made of all six of these things, or just one.
Modules are defined as being on or off in an XML configuration system located in
app/etc/modules/. Each module can specify its own settings in an XML file as well,
located under the module’s etc/ directory.

Since everything in Magento is a module, and modules have self-contained con-
figuration and database settings, this allows you, as a developer, to extend Magento
exactly as the core system is built.

Module Structure

Below you can see the directory structure of the Catalog module. The catalog module
contains all of the aspects of a module.

- Mage/
|- Catalog/
| |- Block/
| |- Helper/
| |- Model/
| |- controllers/

28 ” Magento Modules

| |- etc/
| - sql/

Code Pools

Modules are located in one of three code pools. The code pools are: core, local, and
community. All of the modules distributed with the base Magento are in the core

code pool. All of the custom modules that you develop can be installed in the local

code pool. The community pool was originally designed for installed third-party
modules, but this idea might be phased out, as you can simply install any module in
local as well as community.

- app/
- code/

|- local/
|- community/
- core/

Module Packages

All models exist under a package directory. The package serves no purpose other
than to allow for consistent naming of classes. All Magento modules are part of the
Mage package. Thus, all Magento class names begin with Mage_. It is an acceptable
practice to create a new package for your custom modules that has the name of your
company or organization instead of Mage. There is no functional detriment when not
using Mage as your package.

Models

Models are the muscle of Magento. They help move data from the database into the
program itself. The output, or rendering, of the data is done by the Blocks, but the
models are mainly responsible for manipulating the data. Models, in any program-
ming environment, help to identify and shape data domains. What this means is that
models draw boundaries between definitions of data groups and relate data groups
to other data groups.

Magento Modules ” 29

To help illustrate the idea of data modeling imagine creating a shopping cart sys-
tem and that you want to have a Product class. This product should have an im-
age associated with it. But, the question is, how does that image get modeled? Do
you simply give the product one $image_url variable? Perhaps it is best to link the
Product class to an Image_Gallery class and create linking methods between the two,
e.g. getDefaultImage. The resulting model classes are the end result of your decision
on how the data interrelates.

Blocks

Blocks are the brains behind Magento’s templating scheme. Blocks form a nested set
of objects that coordinate the models with the template files. Each block controls
one template file: a simple HTML and PHP mixed file with a .phtml extension. What
this means is that for any page request on Magento, you are dealing with an equal,
but large, number of Block objects and .phtml template files.

All blocks extend the base class Mage_Core_Block_Template, which, in turn, ex-
tends Mage_Core_Block_Abstract. The chief method of a block is its toHtml() method.
This method translates the block’s template file into HTML using the renderView()

method.
Magento’s template system is just plain PHP. They don’t re-implement any other

templating system, so the renderView() method simply does an include() on the
requested .phtml template file. If, in fact, you wanted to add a different templating
mechanism into Magento, the Mage_Core_Block_Template class’s renderView method
is where you would trigger your chosen template system’s rendering functions.

Controllers

Controllers are the starting point for all business logic in Magento. The line between
what is considered business logic (rules that define a business’s methodology) and
what is domain logic (instructions about a set of data) is blurry in Magento. Some
people would consider checking for required and optional form fields as “business
logic”, other people would consider that “domain logic”. Most of the logic in Magento
is done in the models.

30 ” Magento Modules

Controllers extend a base class of Mage_Core_Controller_Varien_Action, which is
a close copy of the Zend Framework class Zend_Controller_Action. The important
methods of this class are:

• dispatch($action)

• preDispatch()

• postDispatch()

The rest of the methods are simply utility URLs to pass commands to other key parts
of the system. The dispatch method starts all the business logic of the current re-
quest. The value of $action is determined from the URL and is generally “index” as
a default. The dispatch method first calls preDispatch which triggers some events
which you can listen for:

• controller_action_predispatch

• controller_action_predispatch_ModuleName

• controller_action_predispatch_ModuleName_ControllerName_ActionName

The dispatch method is called only if the preDispatch method does not mark the
request as being dispatched already. The dispatch method calls the particular action
method in the desired controller instance (Figure 4.1).

Helpers

Helpers in Magento are simply a way to abstract (or refactor) utility methods out of
core classes. Most access to helpers are doubly wrapped up inside various Block and
Model methods anyway, so the value of helpers is pretty dubious. Very rarely do you
want to override or sub-class a helper. It is very easy to simply add a new helper to
provide additional utility functionality to your scripts.

The two major methods of helpers that you should be interested in are:

• __ (just two underscores)

Magento Modules ” 31

Figure 4.1

• htmlEscape

The double underscore method __ is a translation helper. This helper function
is wrapped from almost any object context, which means you can safely call
$this->__(’My English Text’) at almost any point in your code to translate a string.
The htmlEscape function simply wraps PHP’s native htmlspecialchars function, but
it can also accept an array of data and escape each item individually.

Config files

Module configuration files are found in the etc folder under a module’s main di-
rectory. There are 3 different config files available, all of which are XML. The only
config file that directly affects your module’s behavior is config.xml. The other two,
system.xml and convert.xml, automatically create some setting forms for you on the
system’s main backend configuration page.

The contents of all modules’ config files are merged into one massive collection of
settings. This means that you can override the settings of any module in any other
module simply by putting in the correct XML tags. This is the essence of overriding
in Magento.

32 ” Magento Modules

You can create any class for any purpose, and to install it into the system you create
a new config.xml that specifies your class name in the same spot where the original
class was defined.

This is also why you will see method calls like getModel(’catalog/product’)

used throughout the system instead of a more simple approach like: new

Catalog_Model_Product().
The use of “tags”, or names, for each class gives you a powerful way to override any

part of the system.

i The use of tags for classes assumes a context of Block, Model or Helper. See the Quick
Answers chapter for an explanation of the naming structure and how catalog/product

translates into a real class name.

Template System

The template system in Magento is pretty controversial. The choice of using regular
PHP for the templating language has caught some criticism from a few users. But, the
choice of regular PHP has not made the templating system simple or under-powered,
not by a long shot. This has to be the most flexible and advanced templating system
that this author has ever seen (in PHP).

A complete page is rendered as a nested set of template files (technically, a nested
set of Blocks). There are no explicit “widgets” in the system, that means, you won’t
find a specific “Form” class nor “Button” class or object. The lowly Block classes
straddle the line between widgets and templates. The nested set of templates and
blocks is controlled by... you guessed it, an XML file, specifically a set of XML files.
This is quite powerful for developers and plug-in contributors, but it seems that it is
overly complicated for most designers (even those familiar with PHP et al.).

Layout Files

The layout files control the structure of any final page rendering. They are located in
the layout folder under your design theme. There are a number of XML files whose
names loosely relate to an individual module, but they are all lower-case letters,

Magento Modules ” 33

Figure 4.2

whereas the module names traditionally use the so-called camel-case method. The
most important XML file is page.xml.

app/design/frontend/default/default/layout/
...
page.xml
catalogsearch.xml
catalog.xml
checkout.xml
cms.xml
contacts.xml
...

The page.xml file specifies the default page structure. All modifications from any of
the other XML files are modifications of settings under the default XML tag. The
following is a list of tags that are common to all layout files.

• layout

• default

34 ” Magento Modules

• reference

• block

• action

• update

Sometimes you will see tags like the following. These tags are layout handles, they
behave like the default tag, but only during certain requests. These tags follow a
pattern that relates to the module, controller, and action of the given Web request.
If the tag only has two parts, separated by an underscore, like cms_page, then these
settings are applied to all requests to that module and controller.

• cms_page

• cms_index_defaultindex

• cms_index_defaultnoroute

• customer_account_index

• tag_customer_view

• catalog_product_view

Template Files

There’s not much to say about the template files, they are simply plain PHP + HTML
files that end in .phtml extension. The syntax used in these files tries to use the tem-
plating language features of PHP’s syntax. You will see PHP’s alternate loop structure
syntax, which utilizes the colon (:) and endwhile, endfor, and endif, a lot in these
files. Until recently, short tags were used throughout the template files, but all these
have now been expanded to full PHP open tags plus the word echo where appropri-
ate.

The structure of the directories mimics the structure of the corresponding mod-
ules, but it does not have to. This author has found that, when building your own
custom modules, it is much easier to manage the files if you break convention and

Magento Modules ” 35

keep all your template files in one directory. You can do this by simply replacing
slashes with underscores in your filename, thereby mimicking the original filename
and directory structure. The worth of this advice is dependent on the size and scope
of your custom modules. If you are overriding a small number of files, anywhere from
one to fifty, the ability to instantly see which files are overridden by having them all
in one directory is definitely beneficial.

There are a few important template files with which you should familiarize your-
self. All of these files are located under the page sub-directory. The .phtml files in this
directory are the highest level of change you can apply to any page. They grant 1, 2,
or 3 column structure to any page, as well as providing “dashboard” type pages and
a printer-friendly layout.

Although you can add any top-level template files in the page directory to your
own theme, the default files are the only choice available to you via the admin inter-
face. Let’s say that you want a 4-column layout, so you create 4column.phtml. This
4column.phtml file will not be available to you in the admin interface as a setting for
any CMS page. You can, however, switch the top-level file to your new 4column.phtml

file or any other file that you make with XML settings in the layout files. So, this
limitation is only a user interface limitation.

This book will focus on the application developer’s needs and will only discuss the
layout and template system to address the programmatic challenges of dealing with
that system. For a designer’s view of Magento’s template system, read the design
guide on http://magentocommerce.com//.

Mage Application

What happens in the code when you hit any given page in Magento? If you start
by looking in the index.php file you will see that it is pretty light on code and docu-
mentation. The index file simply loads up the app/Mage.php file and tells it to run the
“default” store.

//important contents of the index.php file

$mageFilename = ’app/Mage.php’;
// [snip]
require_once $mageFilename;

36 ” Magento Modules

umask(0);
Mage::run(’default’);

This Mage::run() method is simply a wrapper for 3 things: loading extensions, load-
ing the App model, and running the Model View Controller (MVC) style front con-
troller (front “actions”). Any exceptions that make it this far up the execution stack
are handled by first checking that Magento is completely installed, and, if so, printed
to the screen. If Magento has not been installed any exception is treated as a signal
that the installer needs to be run.

Magento’s Request Cycle

Now we will discuss how a browser request to a URL gets translated into module
execution. Generally speaking, any URL can be deconstructed like this:

http://example.com/magento/(index.php)/customer/account/index/
^ ^ ^ ^ ^
| | | | |
| | | | ‘- Action
| | | | (indexAction())
| | | |
| | | ‘- Controller
| | | (AccountController)
| | |
| | ‘- Module (frontName)
| |
| |
| ‘- Optional
|
‘-- URL prefix

Magento’s request cycle can be a little confusing to trace through. This is mostly
due to the hierarchical nature of the file nesting (routers located under controllers)
and the use of the term “dispatch” to mean 3 different things. The front controller
“dispatches” the request to its internal list of “routers” and determines if any of the
routers “match()” the request’s parameters. If so, then a new MVC Controller (not
front-controller) is created from the matching module and, again, the request is
“dispatched” to this controller object. The final MVC-style controller is technically

Magento Modules ” 37

a “Front Action”, it houses a number of methods that define the business logic tier.
This new Action object dynamically calls one of its own action methods and marks
the request as being “dispatched” (i.e. finished). All these uses of “dispatch” are still
different from the event mechanism’s dispatchEvent() method.

Figure 4.3

This directory listing shows all the files (except base Zend Framework files) that
are involved in dispatching a request to the proper module. The directory layout has
nothing to do with the class hierarchy, it is simply a product of class naming and
PHP’s autoloading capabilities.

Core
|- Controller/
| |- Front/
| | |- Action.php
| | ‘- Router.php
| |- Request/
| | ‘- Http.php
| |- Response/
| | ‘- Http.php
| ‘- Varien/
| |- Action.php
| |- Front.php
| ‘- Router/

38 ” Magento Modules

| |- Abstract.php
| |- Admin.php
| |- Default.php
| ‘- Standard.php

The App Model

The “App” model is the main kickoff point for the execution path of any request to
Magento. Although the Mage class is important for loading all sorts of classes and
configurations, the execution path starts and ends inside the App. The App is re-
sponsible for:

• Initializing the system cache

• Instantiating the default front controller (Mage_Core_Controller_Varien_Front)

• Instantiating the default request object (Mage_Core_Controller_Request_Http)

The Front Controller

From here, the responsibility transfers to the front controller. The front controller
has an array of “routers” that it uses to decide which module the URL should trigger.
This correlation between URL and module name is defined in the config.xml files.
The available routers are:

• Standard

• Admin

• Default (only used for 404s)

The definition of a match between a router and a module looks like this for the Cus-
tomer module:

<routers>
<customer>

<use>standard</use>

Magento Modules ” 39

<args>
<module>Mage_Customer</module>
<frontName>customer</frontName>

</args>
</customer>

</routers>

Routers

Once a router has found a match of the first part of the URL to a defined frontName
value from the XML, this value gets directly translated into a module name with a
little adjustment to the capitalization of the words. The controller and the action
names are taken from the URL as diagrammed above. If any value is missing, the
defaults are taken from the core XML config via the getDefault method.

When specifying a URL, you don’t always specify exactly which module, con-
troller, and action you want to run. A request to example.com/customer/ does not
fully specify which controller of the customer module, nor which action to run. If
any indicators of module, controller, or action are missing from the URL the val-
ues are read from the default tag under web, then under front (default/web/front).
By default, the CMS supplies these XML values it its own config.xml file. You can
change these values in the administrative back-end under the menu items System

> Configuration > Web. If the XML values happen to be completely missing, the
fall-back values of core, index, and again, index are used for the values of module,
controller, and action, respectively.

Actions

Actions are classes that extend Mage_Core_Controller_Front_Action which, in turn,
extends Mage_Core_Controller_Varien_Action. Actions also have a dispatch method,
but this method dispatches the request to an action method. Action methods
have the word “Action” appended to their names to distinguish them from normal
class methods. Appending a word to the method name also helps to stop peo-
ple from running unexpected methods from the URL. Imagine someone requesting
example.com/index.php/customer/account/__destruct. If the system did not protect
action names, the resulting method call would look something like this:

40 ” Magento Modules

$controllerInstance->__destruct();

Something like this could potentially be a vector to open up attacks on your site.
But, I digress, Magento does protect the action method names by appending Action

to any value taken from the URL, so this argument is purely academic.
During the dispatch event, the preDispatch method is called, and following the

actual execution of the action method, the postDispatchmethod is called. By default,
the postDispatch will save the current URL into the user’s session as the last URL
visited.

Action and action methods are where the primary business logic for a request hap-
pens. Typically the action methods will load a model or two based on IDs or other
URL parameters, kick off a few methods of these models, and then run the layout
sequence. Having the action methods be responsible for outputting their own lay-
out is an important issue to understand. This makes it more difficult to integrate
with other systems, as you cannot as easily supplant your own layout or templat-
ing methods after executing the business logic. Also, it does not allow for any “post
dispatch” logic to make any alterations to the output.

Chapter 5

Database Design

Magento’s database design is one of its most controversial aspects. Key data are mod-
eled using the Entity Attribute Value method (EAV). Utilizing an EAV modeling pat-
tern allows for unlimited attributes on any product, category, customer, or order, but
EAV also depletes a programmer’s ability to write ad-hoc queries against the data.

Before we delve deep into Magento’s database design, we will look at the basic way
of communicating with the database - the resource.

Resources and Database Connections

The role of a resource in Magento is to manage database connections. Resources
are defined under the global XML tag of any config.xml file. To make a new
database connection you would add XML like the following to any config.xml file.
Each resource has a name of the form module/name and each connection has a
name. Connection names are generally of the pattern module_read, module_write,
or module_setup.

<resources>
<default_setup>
<connection>
<host>localhost</host>
<username></username>
<password></password>

44 ” Database Design

<dbname>magento</dbname>
<model>mysql4</model>
<initStatements>SET NAMES utf8</initStatements>
<type>pdo_mysql</type>
<active>1</active>

</connection>
</default_setup>

....

The format should be mostly self explanatory, most of these values end up being
passed to the Zend_Db_Adapter_Abstract class. The initStatements tag is executed
upon every connection to the database server. The model tag seems unnecessary,
perhaps it was part of an idea that didn’t pan-out completely. The type tag refers
to one of two connection types defined in the global app/etc/config.xml file. Only
pdo_mysql and mysqli are implemented at the moment.

To retrieve a Magento database connection we must first get a resource. If you
require a generic database handle, you can use the name core/resource for the re-
source name, and core_write for the connection name. The Mage::getSingleton

method keeps track of all classes loaded through it as singletons and returns a pre-
viously initialized object if the name matches. Each module may have its own
database settings - usernames and passwords - or it might even be connecting to
a separate database server, so be sure to use the most appropriate resource name
when you can. In a default setup, all of Magento’s connections use the settings of
default_setup, default_write, or default_read.

$write = Mage::getSingleton(’core/resource’)
->getConnection(’core_write’);

if ($write instanceof Zend_Db_Adapter_Abstract) {
echo get_class($write);

}
//outputs: Varien_Db_Adapter_Pdo_Mysql

Master Slave Setup

As you can see, the construction of database connections as named resources means
that the system is ready for a “Master-Slave” database setup. You change the settings

Database Design ” 45

of the resource default_write to point to one MySQL database and all write opera-
tions will be sent to that database. You must be diligent in your own code to properly
request *_read and *_write connections if you plan on setting up a master-slave sit-
uation.

The default_setup must be left to point to the slave databases as it is used to write
information to upon module installation, and it is read from every request to verify
that a module is up to date.

The default_read resource is not easily modifiable to read from a pool of MySQL
slaves. One solution to this is to use a hostname value that is different for each fron-
tend Web server with Magento installed. On Linux, this can be done easily by mod-
ifying the /etc/hosts file. But, this solution leads to a one-to-one mapping of Web
servers to MySQL slaves, which is not always desirable. The problem of balancing
read requests amongst all slave databases is not unique to Magento. Various other
techniques exist to spread the load across slave databases evenly, but these solutions
are beyond the scope of this book.

Models and Resource Models

All Magento models extend the base Mage_Core_Model_Abstract class. This class helps
any model save itself to the database in a straight property-to-column name manner.
The model, when saving, calls up its own resource singleton and passes itself ($this)
to the resource’s save method. The resource is then scripted to collect any values
from the model’s internal _data array and prepare an insert or an update statement
with those values.

Model’s have a _getResource method which retrieves a previously setup resource.
This resource is initialized by the init method using a resource name of the pattern
module_name. The name portion of that pattern represents the final portion of a class
name. The prefix of the class name is specified by a portion of the XML in the mod-
ule’s etc/config.xml. If class names have the term Mysql4 in their names, they are
generally straight model resources. If the word Entity appears in the class name,
then the resource is an EAV Entity.

Let’s look at the Wishlist module as an example. In the config.xml of the wishlist
module we see a resourceModel tag under the main definition of models. The value of
this resourceModel tag points to another XML tag under the models tag. The class tag

46 ” Database Design

of this new definition specifies the class name prefix for any resource of this module.
The following code shows how the sample XML file would produce a resource for the
wishlist module.

$wish = Mage::getResourceSingleton(’wishlist/wishlist’);
echo get_class($wish);
//outputs: Mage_Wishlist_Model_Mysql4_Wishlist

...
<global>

<models>
<wishlist>

<class>Mage_Wishlist_Model</class>
<resourceModel>wishlist_mysql4</resourceModel>

</wishlist>
<wishlist_mysql4>

<class>Mage_Wishlist_Model_Mysql4</class>
<entities>

<wishlist>
<table>wishlist</table>

</wishlist>
<item>

<table>wishlist_item</table>
</item>

</entities>
</wishlist_mysql4>

...

EAV Design

EAV can be thought of as “vertical” modeling instead of “horizontal” modeling of
columns in a database table. Instead of a table consisting of a number of columns,
denoting attributes of a conceptual piece of data, the attributes are stored in one
column of a separate table. The differences between traditional table design and
EAV table design of an example “user” table are shown below.

Traditional User Table
table: user

Database Design ” 47

+--+
| user_id | username | password | first_name | last_name |
+=========+==========+==========+-===========+===========+
| 1 | steve | [enc] | Steve | Smith |
+---------+----------+----------+------------+-----------+
| 2 | ronnie | [enc] | Ronnie | Smith |
+---------+----------+----------+------------+-----------+

This seemingly simple (and lacking) table would require at least 3 tables to capture
the same data when using an EAV methodology.

EAV Style Tables

table: user_entity
+-------------------------------+
| user_id | username | password |
+=========+==========+==========+
| 1 | steve | [enc] |
+---------+----------+----------+
| 2 | ronnie | [enc] |
+---------+----------+----------+

table: user_varchar
+-------------------------------------+
| entity_id | attribute_id | value |
+===========+==============+==========+
| 1 | 1 | Steve |
+-----------+--------------+----------+
| 2 | 1 | Ronnie |
+-----------+--------------+----------+
| 1 | 2 | Smith |
+-----------+--------------+----------+
| 2 | 2 | Smith |
+-----------+--------------+----------+

table: eav_attribute
+--+
| attribute_id | name | display | type |
+==============+==============+====================+
| 1 | first_name | First | varchar |
+--------------+--------------+----------+---------+
| 2 | last_name | Last | varchar |
+--------------+--------------+----------+---------+

48 ” Database Design

As you can see from looking at the chart, adding a new attribute to a user simply in-
volves adding a new record in the eav_attribute table. Adding a new attribute does
not involve altering tables to add any new columns. This opens the door for graph-
ical interfaces to easily manage adding new attributes to most parts of the system,
while keeping the database schema consistent across installations.

Notice that the eav_attribute table has extra type information. In EAV systems, the
key to having a flexible, workable system is meta-data about the attributes. Adding
more columns to eav_attribute could allow for information about the attributes,
like how attributes are grouped together, whether or not values are required, or if the
attribute should be restricted to certain entity types (should you allow “first_name”
for a product, or just a user?).

One downside to working with an EAV database is that the table design seems too
loose. There is not one single source for the definition of a user that can easily be
seen with traditional database tools and queries. Working with Magento’s core data
components is most easily done by utilizing the core libraries and their methods
instead of directly running queries on the database. See the Quick Answers chapter
for an example of a skeletal script to allow for writing quick database maintenance
scripts.

EAV versus Normalization

Developers might wonder, “how is EAV different than normalization?” And the an-
swer is, not much. Normalization, when it comes to abstracting attributes into one-
to-many style tables is concerned with proper design from a database point of view.
Not all one-to-many relationships are required in all situations. But, with the EAV
style, all attributes are abstracted, or “normalized” into join tables, regardless if they
violate traditional normalization rules.

The reason that attributes are put into join tables, regardless of traditional normal-
ization rules, is because it is believed, by the application developers, that the running
application will have too many unknown attributes to be properly designed for.

Database Design ” 49

Entities

An entity is a core thing that is being modeled. In Magento, a product is modeled
as an entity, but the product’s SKU is not an entity, it is too simple. The difference
can be likened to the difference between objects and object properties. Objects are
entities, and object properties are attributes.

Entities extend Magento’s resource objects and resources are simply connections
to the database (actually they manage the different read/write connections and au-
tomatically figure out table names based on convention). Basically, Entities are
“core” things that pair up to selected Models and help them save to the database.
Entities behave mostly like resource models, as they are just a special sub-class of
resources.

Figure 5.1

In the chart shown in Figure 5.1, we can see that a core Model has a Resource. This
resource can be a plain resource, one which simply saves row data, or an Entity. En-
tities have a number of Entity_Attributes. References to these attributes are held in a
number of attributes, allowing for quick reference look-up from a number of aspects:
by table name, by id, or by attribute code.

Default Entities

By default, Magento comes with 26 entity types installed:

• catalog_category

• catalog_product

50 ” Database Design

• creditmemo

• creditmemo_comment

• creditmemo_item

• customer

• customer_address

• invoice

• invoice_comment

• invoice_item

• invoice_payment

• order

• order_address

• order_item

• order_payment

• order_status_history

• quote

• quote_address

• quote_address_item

• quote_address_rate

• quote_item

• quote_payment

• shipment

Database Design ” 51

• shipment_comment

• shipment_item

• shipment_track

Every entity listed (with the exception of credit memos, shipments, and invoices) has
a corresponding “entity” table in the database. Credit memos, shipment tracking,
and invoices are all saved in the same set of tables that orders are saved in.

Defining Entities

Resources and entities are highly correlated in the Magento codebase. All entities
extend resources to gain access to database connections. This is a shame, since a lot
of method names seem to use the two words “resource” and “entity” interchangeably.

...
<global>

<models>
<sales>

<class>Mage_Sales_Model</class>
<resourceModel>sales_entity</resourceModel>

</sales>
<sales_entity>

<class>Mage_Sales_Model_Entity</class>
</sales_entity>

...
</global>
...

As you can see from the above code, the <resourceModel> tag points to the
“sales_entity” model name, which in-turn specifies a class name prefix of
Mage_Sales_Model_Entity. The configuration for all modules does not follow this pat-
tern.

Entities are entities, as explained above in the EAV section. But there are some
database tables that don’t use the EAV style; poll, newsletter, and wishlist are some
of the very few tables that don’t use the EAV pattern. For these modules, ones that
don’t use the EAV pattern, the resource models generally use the prefix Resource in-
stead of Entity.

52 ” Database Design

Saving Entities

An entity works with a model to save data to a number of different tables.
The _collectSaveData works with the model and the entities’ own collection of
Entity_Attributes to gather the necessary information to save to the database.
The _collectSaveData routine returns an associative array containing the keys:
newObject, entityRow, insert, update, and delete. Each key represents a nested ar-
ray of information which is processed by _processSaveData. The _processSaveData

method makes multiple database calls, one for entityRow and one for each child of
insert, update, or delete. The newObject key holds a reference to the model which
will receive a new ID if the entity row data was successfully saved to the database.

Entity Attributes

Entity attributes work much like a regular property of an object, only they contain
much more meta-data than a normal object property. If you are looking at the
database table eav_attribute you’ll see a column attribute_code. The attribute’s
attribute_code works as a key to the model’s private _data array.

The entity attribute also specifies the table to which the data is saved. Nor-
mally, an entity attribute will use the table name of its parent entity and append
its own type to the end. So an entity table of customer and an entity attribute of
firstname, with a backend_type of varcharwould result in storing the firstname value
in customer_entity_varchar. This behavior can be overridden by specifically sup-
plying a value for backend_table in the database for the definition of your entity at-
tribute.

The number one thing to keep in mind when dealing with entity attributes is that
they are merely instructions for saving, and loading attribute information. It is true
that they are used for displaying information on the front-end, but most of your work
creating Magento modules will probably have you debugging the database values
more than debugging front-end display logic. I say to keep this in mind because the
actual values of the attributes are stored on the entity object itself, in its private _data
array. So, don’t look to the attribute for a method like getValue. The proper way to
render attribute values of an entity object is with the attribute’s frontend renderer.

Database Design ” 53

Attribute Values

A prime example of using the entity attributes for displaying data is in the catalog
module’s product view block. The getAdditionalData method cycles through a prod-
uct’s loaded attributes and stores the rendered value in an array, which the template
then prints out. The getFrontend method of an attribute retrieves a special render-
ing object which understands how to display an attribute value. Some attributes, like
Yes/No style attributes are stored in the database as ones and zeros, but is displayed
in the catalog as either Yes or No. It is the job of the frontend object to render the
value correctly.

$attributes = $product->getAttributes();
foreach ($attributes as $attribute) {
if ($attribute->getIsVisibleOnFront()

&& $attribute->getIsUserDefined()) {

$value = $attribute->getFrontend()->getValue($product);
if (strlen($value) && $product->hasData(

$attribute->getAttributeCode())) {

$data[$attribute->getAttributeCode()] = array(
’label’ => $attribute->getFrontend()->getLabel(),
’value’ => $value
)

);
}

}
}

Notice how the product gets passed to getValue. The frontend object inspects the
product for a value based on the attribute code with a call to getData, passing the
attribute code as a parameter.

Collections

Working with entities allows you to load and save complex relationships to and from
the database. But, most of the time when we think of database queries we want to
write a SELECT statement that gives use a result with multiple rows. The entity models
are not able to do that. Entities are designed to load one item, or record, at a time.

54 ” Database Design

Only being able to deal with one record at a time means that we must know that
records primary ID value to load it. But, what happens when we want to select all
records from the database matching some criteria. Normally, a simple SELECT state-
ment with a WHERE clause would work. But, things are not that simple when dealing
with entities. Not all of the data that makes up an entity lives in one table, so we need
to JOIN more tables. To properly construct a WHERE clause we would have to know ex-
actly which tables our specific data is stored in. Even if we inspect the database and
find the exact table, it’s not guaranteed to stay the same after upgrading Magento to a
new version. This is the problem that collections solve. Loading an arbitrary number
of records based on criteria is the job of entity collection.

Collections come in two varieties - resource collections, and entity collections. Re-
source collections are just a stripped down version of the entity collections, so we
won’t cover them here.

Probably the most useful method of a collection is the addAttributeToFilter
method. This method takes an attribute code and a condition.

$products = Mage::getModel(’catalog/product’)->getCollection();
$products->addAttributeToFilter(’sku’, ’9999’);
$products->load();
foreach($products as $_prod) {

var_dump($_prod->getData());
}

In the above example, the condition is a simple string, but the condition can
also be an array. When passing a condition array, the key of the array designates
the type of comparison. The type can be eq, for equals, like for like compar-
isons, gt for a greater than comparison, or many one of more. The complete
list can be found in the source code for the method _getConditionSql in the class
Varien_Data_Collection_Db. Here is the same example above, but searching for an
array of product IDs.

$products = Mage::getModel(’catalog/product’)->getCollection();
$products->addAttributeToFilter(’entity_id’,

array(’in’=> array(1,2,36,35))
);
$products->load();
foreach($products as $_prod) {

Database Design ” 55

var_dump($_prod->getData());
}
//runs the query:
/*
SELECT ‘e‘.* FROM ‘catalog_product_entity‘ AS ‘e‘
WHERE (e.entity_type_id = ’4’) AND (e.entity_id in (1, 2, 36, 35))

*/

If you wish to see the query being run, you can pass true to the collection’s load

method. This will print the exact query being run against the database.
The preceding examples result in some pretty basic SQL. If we want to grab

complex results, like loading all the entity’s attribute values, we can use the
addAttributeToSelect method. For reporting purposes, you will most likely just want
to add all attribute values to your query, so we will pass the wildcard * to this method.

$products = Mage::getModel(’catalog/product’)->getCollection();
$products->addAttributeToFilter(’entity_id’,

array(’in’=> array(1,2,36,35))
);
$products->addAttributeToSelect(’*’);
$products->load();
foreach($products as $_prod) {

var_dump($_prod->getData());
}

You will notice that a lot more data is printed in this version, after we have added
all attributes to the select statement. The collections classes use the Zend Frame-
work database classes under the hood to construct all the necessary queries to pull
data out of the database. For more information on the Zend Framework database
libraries, look at the source code in lib/Zend/Db/ or visit http://framework.zend.com.

This is only scratching the surface of the SQL that you can generate with collec-
tions. Look at the Eav/Model/Entity/Collection/Abstract.php file for a full list of
methods to manipulate your SQL. Remember that collections are the only way to
load entity objects if you need to use a WHERE clause other than querying against the
table’s primary key field. When dealing with non-entity models, you can always write
raw SQL and run it against a resource connection. Technically, you can write raw SQL
to load entities and all of their associated attribute values, but you might want to try
using Magento’s built-in query methods first.

Chapter 6

Custom Modules

In this chapter we are going to discover how to create a custom module. To start out,
we will make some simple modifications to the product view page.

The Filesystem

You might have noticed that all of Magento’s modules are located under a directory
calledMage, short for Magento. This directory, which is located under app/code/core,
can be thought of as the entire Magento application. But, you can also think of the
Mage directory as just a namespace, lending another prefixed name to every piece of
code that falls under it.

In fact, this directory has no other function than to simply add naming consistency
to all the classes under it, it has no bearing on the inclusion of modules into the “Ma-
gento” application. Keeping this fact in mind we can initiate a directory structure for
our own module, using our company’s or organization’s name where we would nor-
mally see “Mage”.

app/code/core/
Mage/

Admin/
Catalog/
Cms/

58 ” Custom Modules

local/
Company/

NewProduct/

In the above directory layout we can see a new module called “NewProduct” under
the Company directory under app/code/local/. Using our own organization’s name
keeps our modules from conflicting with any other installable user contributions. If,
for example, another developer decides to make a module called “NewProduct” just
like our module, but it has different features, we can safely install both if we keep the
top level prefixes different.

The Shell Module

You will probably be creating at least a few Magento modules. If this is the case, it is
very beneficial to be familiar with starting new modules. All modules covered in this
book are meant to be installed under app/code/local. This is referred to as the “local
code pool”. We will create all modules under a parent directory called Company, you
can treat this as a package name. This will help to distinguish our modules – ones
that we develop for our company or ourselves – from the core Magento modules,
which are all under the package Mage.

Default Directories

Whenever this book tells you to initialize a new module you should create a directory
structure like the following under app/code/local:

|- Company/
| - ModuleName/
| |- Block/
| |- controllers/ <-- lower case, plural
| |- Model/
| |- Helper/
| |- etc/
| | - config.xml <-- shell XML file
| - sql/

Custom Modules ” 59

This will ensure that we have all the necessary directories to create the most common
parts of any module.

There are two parts of a module that cannot be defined within a module’s own
directory. One part of a module that is not self-contained is the design portion. The
templates and layout settings for a module live in a separate directory, the app/design

folder. To counteract this, you can create a design directory with sub-directories of
layout and templates. Dealing with the skin directory can be tackled the same way
as the design directory. Magento’s skin directory is for storing CSS files and images
or icons.

The other portion of a module that needs to exist but which is not kept under a
module’s own directory is an XML file which instructs Magento to turn-on your mod-
ule.. Under the directory app/etc/modules there exist a number of XML files which
tell the system which modules are on or off. These files are generally grouped by the
package, or company name, and each file can enable or disable multiple modules.
Without this, your module will not be activated and no configuration settings will
be read. You can include the necessary XML file to activate your module inside the
module’s directory, but you need to copy this file to app/etc/modules to complete the
installation.

Default Files

Almost every custom Magento module is going to need the same basic settings as
any other module. As a result, a basic config.xml will serve our needs quite well. Put
the following code into etc/config.xml.

<?xml version="1.0"?>
<config>

<!-- turn on our module, required for install support -->
<modules>

<Company_ModuleName>
<version>0.1.0</version>

</Company_ModuleName>
</modules>

<global>
<!-- turn on models -->
<models>

<modulename>

60 ” Custom Modules

<class>Company_ModuleName_Model</class>
</modulename>

</models>
<!-- turn on models -->
<blocks>

<modulename>
<class>Company_ModuleName_Model</class>

</modulename>
</blocks>

<!-- turn on database connections -->
<resources>

<!-- setup is needed for automatic installation -->
<modulename_setup>

<use>default_setup</use>
</modulename_setup>
<modulename_write>

<use>default_write</use>
</modulename_write>
<modulename_read>

<use>default_read</use>
</modulename_read>

</resources>
</global>

</config>

This XML file will give us the absolute basics for a working model. Don’t worry about
turning on models or blocks even if we don’t need them. The XML tags don’t actively
change anything, they simply live in the global XML configuration DOM.

The last XML file we need is the one that turns our module on. Not all directories
are treated as modules and scanned for config files, a module must be specified in
the global directory app/etc/modules. Place this XML into a file in app/etc/modules

and call it Company_Module.xml.

<?xml version="1.0"?>
<config>

<modules>
<Company_ModuleName>

<active>true</active>
<codePool>local</codePool>

</Company_ModuleName>
</modules>

</config>

Custom Modules ” 61

Module Requirements

Let’s take a moment to read over and understand the requirements of our new mod-
ule. These requirements are contrived to provide the best demonstration of how to
create a custom module and might not make sense for all e-stores.

• Must force certain products to be ordered in specified quantity intervals (12,
24, 36, etc.)

• Must limit maximum allowable quantity ordered to 24 cases for certain prod-
ucts

These two simple requirements allow us to focus on understanding Magento mod-
ules while adding real value to the system and avoiding unnecessarily complicated
(at this point) SQL.

Plan of Attack

Here is an overview of the steps we will perform to make the first requirement of this
new module a reality:

• Create a shell module

• Activate the module with a config.xml file

• Create the desired effect in a template file

• Connect the template to a template block

• Conditionally turn the new feature on and off

Configuration Files

Magento does not recognize your module as being a module simply because you
have created the directory in the proper place. An XML configuration needs to be
put in the proper place detailing the existence of your module. Under the top level
app/etc/modules/ directory all XML files are scanned and the relevant modules are

62 ” Custom Modules

activated. Listing a module as active means that that module’s own etc/config.xml

file will also be scanned. So, the only information we need to place in the top level
app/etc/modules/ folder is just enough information to turn our module on.

Below is the complete syntax of the XML file you need to activate your module.
Save this XML in a file under app/etc/modules/Company_All.xml The syntax should
be self-explanatory. Once this file is in place, you should be able to see your new
module listed in the admin system configuration panel. Browse to System > Con-
figuration > Advanced and you should see Company_NewProduct as an option to
enable or disable. If you do not see your new module listed after creating the new
XML file, ensure that Magento’s caching is off (System > Cache Management > All
Cache: disable) and remove any files in var/cache/.

<?xml version="1.0"?>
<config>

<modules>
<Company_NewProduct>

<active>true</active>
<codePool>local</codePool>

</Company_NewProduct>
</modules>

</config>

Config.xml

Once you have activated your new module, the system will scan your module’s etc

folder for any of the following XML files:

• config.xml (defines models, resources, and other settings for basic functional-
ity)

• system.xml (defines admin menus and default settings for forms)

• convert.xml (works with the Dataflow component for importing / exporting
data)

• install.xml (only used for one-time Magento installation)

Custom Modules ” 63

The config.xml file is the chief file you will be using for setting up the configuration
of your module. None of the other files are required. The XML files are not exam-
ined with respect to any module, so you will see most settings wrapped in tags that
refer to the current module; tags like <Company_NewProduct>. Let’s start with a simple
config.xml and review what each part of the XML does.

<config>
<modules>

<Company_NewProduct>
<version>0.7.32</version>
<depends>
<!-- no dependencies -->
</depends>

</Company_NewProduct>
</modules>
<global>

<models></models>
<resources></resources>
<blocks></blocks>
<newproduct><!-- config values --></newproduct>

</global>
<adminhtml>

<menu></menu>
<acl></acl>
<events></events>
<translate></translate>

</adminhtml>
<frontend>

<routers></routers>
<events></events>
<translate></translate>
<layout></layout>

</frontend>
<default>

<config_vars><!-- config values --></config_vars>
</default>

</config>

Modules Tag

The modules tag provides a way to define some basic information about your mod-
ule. The version number is critical to automatic installation and upgrades. Without

64 ” Custom Modules

a version number none of the installation files under sql/module_setup will be run
automatically. You can define dependencies for your module. Setting dependencies
ensures that your module is included after the declared modules. This keeps your
classes from breaking if they extend classes from another module. The modules tag
is the same place to define your application as enabled or disabled and to specify
in which codePool it lives. Since, your module is not scanned, and thus your mod-
ule’s config.xml isn’t scanned, unless it is already enabled, we must specify the en-
abled status and the codePool in the app/etc/modules/ directory. Every XML file in
app/etc/modules/ is always scanned.

Global Tag

The global tag is where you specify models, resources, blocks, and other configura-
tion directives like entity definitions. The global block is always included on each
request.

Adminhtml Tag

The adminhtml tag contains special settings which are only used by the back-end
administration page. This tag is mostly used to define any special menus and access
control you want specifically for the administrative back-end.

Frontend Tag

This tag is a lot like the adminhtml tag, except the values under it are strictly used on
the front-end of Magento. This is where you can specify a custom layout XML file
for your module. The routers tag lets you decide which of Magento’s routers should
trigger connections to your module.

Default Tag

The default tag allows you to specify any set of config variables needed for your mod-
ule. The values are normally obtained with getStoreConfig, passing the name of your
XML tags as a slash separated string. For better organization of these ad-hoc vari-
ables it is customary to wrap all of your settings in a tag that matches your module’s

Custom Modules ” 65

name. The values in the default tag can be overwritten on the configuration page
of the administrative back-end. Any changes to the defaults are inserted into the
database table core_config_data. These modified values are still retrieved with a call
to getStoreConfig.

Template Changes

Unfortunately, the module structure in Magento lacks the ability to include any sort
of files containing design changes with the other files your module. All the template
and layout files are kept in a directory completely separate from the business logic
code. Keeping your custom template files and layout changes with your module is a
good idea for developing and distributing your module. The only steps that would
need to be taken are simply copying some files from one directory to another. In fact,
this sort of post-installation procedures might be handled at the end of your installer
script, but this idea is not duplicated anywhere else in Magento.

For now, we will create a design directory under your module with template and
layout directories to match the directory app/design/frontend/default/default/.

local/
- Company/

- NewProduct/
|- etc/
| - config.xml
- design/
|- template/ <-- keep local template files here
- layout/ <-- keep local layout files here

Our first step in creating this custom module is to simply make the HTML changes
necessary to show the quantity input box as a drop-down list. This will force the user
to make a quantity choice of only the displayed choices. Later, we will enhance the
module by adding more features and configuration to this simple change.

In Figure 6.1, you can see three sections annotated with text balloons which show
the XML syntax used to initiate that block. The entire content area of the page is ren-
dered with the template catalog/product/view.phtml. Various sub-components of
the page are called from within that template as $this->getChildHtml(’blockName’).
The sub-component areas must be defined in the layout XML as block tags nested

66 ” Custom Modules

Figure 6.1

under the definition of the containing block (or under a reference tag if the block
was defined elsewhere). The area that contains the quantity input box is part of the
product_type_data block (when referring to block names, the as XML attribute over-
rides the name attribute). Let’s start the templates for the custom module by copying
the existing product_type_data template file to our own directory.

Starting from: app/design/frontend/default/default/

template/
|- catalog/
| - product/
| - view/
| - type/
| - simple.phtml <-- copy this file...
|
- newproduct/
- product_view_type_simple.phtmltml <-- ... as this file.

As you can see, we are “flattening” the file name from a complex, nested set of
sub-directories to a more simplified view. Since our module will only have a lim-
ited number of template files, keeping them all in one directory should not pose
a problem. The nesting of template files as Magento’s default nesting is need-
lessly complex and provides no inherent benefit. Placing a file in the directory

Custom Modules ” 67

catalog/product/view/type/ and giving it a prefix of catalog_product_view_type has
little to no impact throughout most of the system.

Now we can modify this template to include the HTML changes that are required
for our “sell-by-case” feature. For now, we will simply write the hard-coded HTML to
show a drop-down list and revise the file later to read values from a new block file.
Modify your file by commenting out the initial quantity input box so that it looks like
the example below.

<?php if($_product->isSaleable()): ?>
<fieldset class="add-to-cart-box">

<legend><?php echo $this->__(’Add Items to Cart’) ?></legend>

<label for="qty"><?php echo $this->__(’Qty’) ?>:</label>
<!-- our custom changes -->

<select name="qty" class="input-text" id="qty">
<option value="12">12</option>
<option value="24">24</option>
<option value="36">36</option>
<option value="48">48</option>
<option value="60">60</option>

</select>
<!--

old input box
<input name="qty" type="text" class="input-text qty"

id="qty" maxlength="12" value="
<?php echo $this->getMinimalQty($_product) ?>
"/> -->

Layout Changes

To view your changes, we must activate this new template in the layout system. Re-
member that the layout system is controlled by a number of XML files. The exact
file that you would want to change depends on the module being used for any par-
ticular Web “hit”. Viewing a product is considered to be part of the catalog module.
Normally, the tag you want to search for in the XML is directly related to the URL.
Unfortunately, the SEO URLs don’t allow us to see the traditional URL that would
map directly to a module-controller-action combination. Luckily, we have this book

68 ” Custom Modules

that lets us in on all the secrets of Magento, so we are aware that the page that shows
us product info relates to the layout XML tag of <catalog_product_view>.

This particular layout change is not normal. When dealing with products, the dif-
ferent product types are now handled by special layout tags, called layout update
handles. Special layout update handles are called by the controller file (usually) and
are not specifically documented anywhere in the system. For now, though, we will
just update the one layout handle for PRODUCT_TYPE_simple and activate our new tem-
plate file. The changes to catalog.xml should look similar to the code below.

<!--
Additional block dependent on product type
-->
<PRODUCT_TYPE_simple>

<reference name="product.info">
<!--
<block type="catalog/product_view_type_simple"
name="product.info.simple"
as="product_type_data"
template="catalog/product/view/type/simple.phtml"/>

-->
<block type="catalog/product_view_type_simple"
name="product.info.simple"
as="product_type_data"
template="newproduct/product_view_type_simple.phtml"/>

</reference>
</PRODUCT_TYPE_simple>

Now you should be able to refresh any product info page and see a drop-down list of
choices for quantity instead of the usual input box. If you do not see your changes,
make sure that you have disabled caching in the backend administration area (Sys-
tem > Cache Management). If you still don’t see your changes, try debugging the
original simple.phtml file by putting syntax errors inside and refreshing the page,
you should see a partial rendering of the page. If you still don’t see your changes, try
checking all the file names and the capitalization of all the names.

Custom Modules ” 69

Overridding a Block

Now that the first step is done, we can start to make our feature more functional, by
adding our own custom template block. Blocks act as the communication gateway
for template files into the rest of the system. As it stands now, the quantity drop-
down feature affects every single product in the system, and it only shows the quan-
tity options that we have hardcoded into the HTML. The idea behind this feature is
that some products are only sold by the case, and others are not, but that customers
comparison shop for the item based on individual prices, not prices by the dozen.
Using a block will help us inject some display logic “brains” into this feature.

Create a new class called ProductViewCase.php in a new Block directory under your
NewProduct module. The class definition is below:

<?php
/**
* This class allows the template to check for a case count

* variable.

*/
class Company_NewProduct_Block_ProductViewCase

extends Mage_Catalog_Block_Product_View_Type_Simple {

//getCaseCount()
//hasCaseCount()
//getMaxQty()

}

Here again, in this code sample, we have shortened the directory nesting level just
for simplicity’s sake by combining the last few words into ProductViewCase. Even with
this code as simply a shell of logic we should be able to activate it, override the exist-
ing block, and see no errors on the product information screen. To do that, we must
use the original block name as an XML tag name in our module’s etc/config.xml file.

<?xml version="1.0"?>
<config>
<modules>

<Company_NewProduct>
</Company_NewProduct>

</modules>
<!-- add this block section to your config.xml -->

70 ” Custom Modules

<blocks>
<catalog>

<rewrite>
<product_view_type_simple>

Company_NewProduct_Block_ProductViewCase
</product_view_type_simple>

</rewrite>
</catalog>

</blocks>
<!-- DONE: add this block section to your config.xml -->
</config>

i
Warning
Because of a bug in Magento’s code that treats XML whitespace as significant,
the contents of the above tag product_view_type_simple must be on one line. It is
broken up only to fit on the page properly. If you were to were to use this XML exactly
as written the code would try to instantiate a new object with a class name of with
newline and space characters at the beginning and end.

Since the original block is of type catalog/product_view_type_simple, we must use
the catalog tag to enclose any of our changes. The rewrite tag is used, specifically, to
express the desire to override some class names with new ones. Normally, all blocks
are defined as having a module-wide class prefix, as in the following XML taken from
Catalog/etc/config.xml:

<blocks>
<catalog><class>Mage_Catalog_Block</class></catalog>

</blocks>

This means, that for every block labeled catalog/product_view, the system will look
for Mage_Catalog_Block_Product_View as the class name.

Now we will fill out our three methods of the block class.

class Company_NewProduct_Block_ProductViewCase
extends Mage_Catalog_Block_Product_View_Type_Simple {

/**

Custom Modules ” 71

* Return the value of "case_count" or 0

*
* return int quantity of product per case

*/
function getCaseCount() {

$product = $this->getProduct();
return intval($product->getCaseCount());

}

/**
* Return true if this product is sold "by-the-case".

*
* return boolean

*/
function hasCaseCount() {

$product = $this->getProduct();
return $product->getCaseCount() > 1 ;

}

/**
* Use Magento’s stock level classes to determine the

* maximum allowable quantity per order.

*
* return int

*/
function getMaximumQty() {

$product = $this->getProduct();
$stock = $product->getStockItem();
return $stock->getMaxSaleQty();

}
}

In order for these methods to work properly, we need to add a variable called
case_count to each product that we would like to sell by the case. Notice how
$product->getCaseCount() automatically searches for an attribute with the code
case_count. You will not find any method defined called getCaseCount() as this relies
on PHP’s magic method __call() to hunt down the proper properties of any object
that extends Varien_Object.

Once these methods are complete, we need to modify our existing template to
make use of them.

<label for="qty">

72 ” Custom Modules

Figure 6.2

<?php echo $this->__(’Qty’) ?>:</label>
<?php if ($this->hasCaseCount()): ?>

<select name="qty" class="input-text" id="qty">
<?php

$caseCount = $this->getCaseCount();
for($x = $caseCount; $x <= $this->getMaximumQty();

$x += $caseCount): ?>
<option value="<?=$x;?>"><?=$x;?></option>

<?php
endfor;

?>
</select>

<?php
else:

?>
<input name="qty" type="text" class="input-text qty"
id="qty" maxlength="12"
value="<?php echo $this->getMinimalQty($_product) ?>"/>

<?php

Custom Modules ” 73

endif;
?>

Conclusion

In this chapter you have seen how to make a module by collecting a few changes from
other classes together under one roof. This technique should be used for any change
that you want to make to Magento’s core code classes. If you discover that you need
to alter the behavior of files in lib/ you can simply copy them to app/code/local/

since the include_path is set to look there before the lib directory. For more ad-
vanced customization you will need to learn about event listeners, models and enti-
ties, and Magento’s database design.

Chapter 7

CMS Integration

CMS Integration means different things to different people. Even the term CMS
(Content Management System) has some variance in its definition. At the core of
the integration feature is a desire to reuse a user’s login credentials and share a sin-
gle sign-on process between two software packages. Some organizations have an
existing community with a large list of registered users. Some organizations do not
have an existing CMS, or they want to leverage a new CMS to increase search engine
rankings.

For existing CMS, the store is generally an add-on feature where existing users
can purchase merchandise related to the content. We will call this type of setup
the “CMS-driven” integration. Organizations that are looking to republish product
content to new or existing blogs, forums, wikis or “static” pages we will refer to that
integration style as “store-driven” integration.

CMS Driven Approach

Anecdotally, I would say the most asked for integration is with Joomla/Mambo or
Drupal CMS systems. This would fall under the “CMS-driven” scenario where people
are looking to Magento to fulfill a secondary need to sell merchandise while leverag-
ing the existing user base.

At a bare minimum, user integration consists of re-using a user’s login name and
password to allow for signing in to either site without any extra work from the user.

76 ” CMS Integration

This can be accomplished with a simple export of login information from one system
and importing it into the other. If we do this, we are left with two separate databases
full of user information.

Technical Considerations

What happens when a user wants to change their password? Well, it depends on
where they do it. If they change their password in Magento, then the two systems
will have different values. We could rectify this with scheduled synchronization rou-
tines between the two databases, but when two records are different we have to ask
ourselves, which is the correct one? Without a timestamp for each value change we
don’t know if the user changed their password in the CMS database or in Magento’s,
all we know is that the two values are different. This situation is called the “Non-
Authoritative Data Source” syndrome, or NADS.

To avoid NADS, we will only use one database as the source for all login informa-
tion. In addition to creating confusion, importing and exporting the data between
Magento and another CMS might be technically impossible if the database password
hashing schemes are different.

Even though we have made a decision about how to integrate the login informa-
tion, it does not tackle the single sign-on issue (SSO). A user would still have to login
to either the CMS, to post comments or contribute content, and then also login to
Magento to make purchases. To allow the user an SSO experience we need to share
session information between the two systems, or, at least, initiate two different ses-
sions at the same time.

We will take the approach of initiating sessions on both systems whenever a user
logs-in to either one. This will not allow us to directly share session information be-
tween the two sites, but this need is low because of the specialized nature of data
stored in a session for a particular piece of software. To think about it another way
ask yourself, “What would Magento do with the last 5 forum topics that a user vis-
ited?” or “What would Joomla do with the last 2 products that I viewed?”. When
looked at it that way, you can see how specialized the data is for each system. I’m
not saying that cross-pollinating the information is never valuable, I’m saying that
for the majority of integration scenarios that it is a want not a need.

CMS Integration ” 77

The UserConnect Module

To accomplish our goals of sharing login information and starting dual sessions be-
tween a CMS and Magento we will start a new module called UserConnect. Refer to
the Custom Modules chapter for how to initialize a new shell module.

Database Design

Magento’s EAV database makes using any other table of users a challenge. We must
remember that Magento treats customers as entities. Anything related to the cus-
tomer is an entity_attribute; this includes the password hash, the ID of the user’s
default shipping and billing addresses, and the user’s first and last names. So, a typi-
cal, flat database table for users might look like this:

+--+
| user_id | username | password | first_name | last_name | ship_id |
+=========+==========+==========+-===========+=====================+
| 1 | steve | [enc] | Steve | Smith | 1 |
+---------+----------+----------+------------+---------------------+
| 2 | ronnie | [enc] | Ronnie | Smith | 2 |
+---------+----------+----------+------------+---------------------+

Magento’s tables are organized according to EAV methodology. It would require mul-
tiple pages to list exactly how Magento stores the same user information as the above
table shows. But, we can summarize the data relationships in a graph like the one in
Figure 7.1.

Figure 7.1

78 ” CMS Integration

As you can see, storing the same information in Magento requires four tables. The
shaded columns highlight the entity_type_id field. This value will be the same for
all entities of the same type. For example, all customers have an entity_type_id of 1.
Therefore, any attribute that could relate to a customer, such as their default ship-
ping id, also has an entity_type_id of 1.

In the graph above, the circles represent related data for the notion of “User 1’s
firstname”. The triangles represent the relationship of the datum “User 2’s default
shipping address id”. Note how the backend_type column dictates to which table we
must relate to get the value of the attribute.

You might think the entity_type_id field is redundant, and it could be considered
such, but see the Database chapter for an explanation of why it is useful.

Creating New Entities

In your UserConnect module we will create a new entity to handle the loading and
saving of the user object to and from a database. Creating the entity the easy part.
The hard part is trying to keep some of the attributes from the customer entity not to
follow us along to our new (read: already existing) database. What I mean by this is
that we do not want to store all attributes about a user in our CMS database. Perhaps
our CMS does not handle shipping addresses, so we probably don’t have a place for
storing the default shipping address ID anywhere in our system. Forcing Magento to
split up the entity and the entity’s attributes is the most involved part of this module.

Let’s start by adding some XML to our config.xml to turn on entities for our mod-
ule. Hopefully you already have the models portion of your config filled out ac-
cording to the shell module in the Custom Modules chapter. We need to add one
resourceModel tag under the models tag where we specify our class prefix for models.

...
<models>
<userconnect>

<class>Company_UserConnect_Model</class>
<resourceModel>userconnect_entity</resourceModel>

</userconnect>
..

CMS Integration ” 79

The resourceModel tag instructs Magento to look in another spot for more detailed
information about any resource models that our module might use. For this exam-
ple, we will reference userconnect_entity as the tag that holds more resource model
information.

Using _entity is simply convention to distinguish EAV entities from regular re-
source models. The following XML goes under the models tag outside of our
userconnect tag.

...
<models>

...
<userconnect_entity>

<class>Company_UserConnect_Model_Entity</class>
<entities>

<customer_entity>
<table>user</table>

</customer_entity>
</entities>

</userconnect_entity>

Models

When overriding existing entities, the only way to get them to play with the models
to which they are associated is to override the core model as well. The model’s init

method sets which resource model the regular model uses. So, we must add some
more XML to our config.xml so that we can override the core Customer class model.

...
<models>

...
<customer>
<rewrite>
<customer>Company_UserConnect_Model_Customer</customer>

</rewrite>
</customer>

When we copy the customer class model over to our Model directory, we want to
change the class name to match ours, and change the extends to the original class.

80 ” CMS Integration

We only want to change a few things in the customer model, and the rest of the meth-
ods can fall back to the way the parent model behaves.

Below is a list of all the methods that we want to keep in our sub-class, the rest can
be deleted.

Company_UserConnect_Model_Customer
extends Mage_Customer_Model_Customer
{
function _construct()
public function authenticate($login, $password)
public function loadByEmail($customerEmail)
protected function _beforeSave()
public function changePassword($newPassword, $checkCurrent=true)
public function setPassword($password)
public function hashPassword($password, $salt=null)
public function generatePassword($length=6)
public function validatePassword($password)
public function encryptPassword($password)
public function decryptPassword($password)

Entities

Now, we get to create new entities. Let’s start by copying the default customer en-
tity. If you’ve been poking around in the Customer/etc/config.xml you probably al-
ready know which file it is. Copy Customer/Model/Entity/Customer.php to our own
UserConnect/Model/Entity/ directory. Create the Entity directory if you haven’t al-
ready.

For this class, we will not extend the original. If we forget to override or cus-
tomize a particular part of our entity we do not want the default behavior of
the customer entity. This would send data to two different locations simultane-
ously. But we still want our class to behave like an entity, so we need to extend
Mage_Eav_Model_Entity_Abstract.

First, we will change the constructor. We will be using our own connections, see
the Custom Modules chapter for defining your own database connections. The code
sample below shows what your constructor should look like.

class Company_UserConnect_Model_Entity_Customer

CMS Integration ” 81

extends Mage_Eav_Model_Entity_Abstract {

public function __construct() {
$this->setType(’userconnect’);

$resource = Mage::getSingleton(’core/resource’);
$this->setConnection(

$resource->getConnection(’userconnect_read’),
$resource->getConnection(’userconnect_write’)

);
}

Entities in the Database

The constructor’s first order of business is to set this entity’s type with setType. The
type is a code that matches up to an entity_type_code in the database in the ta-
ble eav_entity_type. The eav_entity_type table has lots of configuration points for
your entity. The field entity_model allows you to specify which entity model class
file you want to use. The format of this field is module/resourcemodelcode. The
resourcemodelcode portion represents a class name, but it also gets a class prefix at-
tached to the front. The prefix is the value of the class tag which is under the value of
your resourceModel tag. Here’s an example:

...
<models>

<userconnect>
<class>Company_UserConnect_Model</class>
<resourceModel>userconnect_entity</resourceModel>

</userconnect>
<userconnect_entity>

<class>Company_UserConnect_Model_Entity</class>
<!-- a model_entity value in the database of

"userconnect/customer"
would result in a classname of
Company_UserConnect_Model_Entity_Customer

-->

The next thing the constructor does is set the default read and write connections.
You will want to setup your own connections for this module so that you can talk to a

82 ” CMS Integration

different database. See the Magento Modules chapter for the XML to create your own
database connections.

To insert our own entity type, normally we would use a setup resource model and
call its installEntities method. But, it doesn’t allow us to completely control all of
the values of the eav_entity_type table. So we will use some raw SQL. This is a good
candidate for putting into the sql directory for automatic installation.

INSERT INTO ‘eav_entity_type‘ (
‘entity_type_code‘,
‘attribute_model‘,
‘entity_model‘,
‘entity_table‘,
‘value_table_prefix‘,
‘entity_id_field‘)

VALUES (
’userconnect’,
’’,
’userconnect/customer’,
’userconnect/customer_entity’,
’customer_entity’,
’user_id’
);

Configuring the Entity

If you were to try to login right now, you’d see some error about a missing website_id.
This is because our CMS’s database tables do not have a website_id field (hopefully).
Now we enter the process of configuring the entity, which can largely be done by
trial and error. Change the _getDefaultEntities() method to return an empty array.
Next, remove all references to getSharingConfig and website_id from the following
methods:

• _beforeSave()

• _getLoadRowSelect()

• loadByEmail()

CMS Integration ” 83

Passwords

Before we can login to Magento with our CMS logins, we need to adjust the customer
model so that it processes passwords just like our other system. For this example, I
assume that only the MD5 encrypted versions of passwords are stored in the CMS
database.

Magento is able to decrypt its saved passwords. This can cause some problems for
us if we have a database full of one-way hashed passwords, such as ones encrypted
with MD5. One thing we can do is to create our own getPasswordHash method to
return the regular password, which is already encrypted, so the customer model
doesn’t double the encryption.

public function getPasswordHash()
{

return $this->getPassword();
}

Now, we only have two other password related changes and we will be done. The
validatePassword method uses a core helper to centralize support for old and new
Magento hashing schemes. But, to keep this example short, we won’t override the
helper, we will simply write our own validation routine. The last change is simply to
change the hashPassword method to use a simple md5 call.

public function hashPassword($password, $salt=null)
{

return md5(sha1($password));
}

public function validatePassword($password)
{

if (!($hash = $this->getPasswordHash())) {
return false;

}
return $this->hashPassword($password) === $hash;

}

You should now be able to login to Magento using a username and password from
your CMS database.

84 ” CMS Integration

Entity Attributes

You may have noticed that after you login, your user’s first name and last name are
missing. If they are not missing, then that means your CMS table that holds the login
information also has firstname and lastname columns. First names and last names
are most likely part of your existing CMS database. If they are not in the same table
as the username, we’ll cover how to get that data into Magento.

For other attributes, like the ID of the user’s default shipping address, we will sim-
ply keep storing them in the existing Magento tables.

Creating Entity Attributes

In order for Magento to understand where we want to store our attribute values,
we have to create new records in the table eav_attribute. This is akin to overriding
code, but we must do it in the database by adding new records. We will create 2 new
records, one for the default shipping address and one for the default billing address.

INSERT INTO ‘eav_attribute‘ (
‘entity_type_id‘,
‘attribute_code‘,
‘backend_model‘,
‘backend_table‘,
‘backend_type‘)

VALUES (
’get this value from the userconnect
entity we made in the previous section’,
’default_shipping’,
’customer_entity_int’,
’customer/customer_attribute_backend_billing’,
’int’
);

Repeat this SQL and swap billing for shipping.

First and Last Names

The _getLoadRowSelect method constructs a Varien_Db_Select object (which extends
the Zend_Db_Select object) which is responsible for loading up all of the core data for

CMS Integration ” 85

an entity. The values for any entity attributes that are part of this entity are loaded
from the _getLoadAttributesSelect.

This is different from the loadAllAttributes method, which simply loads the
meta-data about an attribute, but not values for any particular attribute of an ob-
ject.

If we have a database where the firstname and lastname values are stored in an-
other table, we can join that table to the main entity select.

Assume that we have an account table, with a foreign key called user_id which
matches up to the primary key in our user table.

protected function _getLoadRowSelect($object, $rowId)
{

//override this to rid where clause of ambiguity
$select = $this->_read->select()

->from($this->getEntityTable())
->where($this->getEntityTable().’.’.

$this->getEntityIdField()."=?", $rowId);

$select->join(’account’, ’account.user_id=user.user_id’,’*’);
return $select;

}

We are specifying the entity’s table in the “where” clause to remove ambiguity in the
resulting SQL statement. If we didn’t prepend the table, then the database would not
know which user_id field we were referring to, since both the account table and the
user table both have a user_id field.

Everything from the resulting query is stored on the object’s private _data array.
The object is, of course, our regular customer model. Remember this about Ma-
gento: you do not need special EAV attribute objects to load the attribute values of a
model. You only need the EAV attribute objects to find out where the attribute value
is living in the database and how to display it.

Dealing with Legacy Attributes

As of right now, there are a number of attributes of the customer entity that cannot
be saved. When saved, the system attempts to save them into your CMS database
under the same table names that Magento uses (i.e. customer_entity_int). This is a

86 ” CMS Integration

list of all the attributes of a customer. The email attribute isn’t really used, it’s stored
directly in the customer_entity table. The first and last names don’t need special
handing, since they’re already saved in our CMS table. The remainder, however, are
still pretty important to Magento’s operation. But they are not important at all to
our CMS’s functionality. So, we will shove them back into Magento by overriding
key methods in our customer entity class, and revert the behavior back to normal
Magento mode.

• created_in

• default_billing

• default_shipping

• email

• firstname

• group_id

• lastname

• password_hash

• store_id

• website_id

Update and Save Attributes

The saveAttribute and _updateAttribute methods need to be corrected. The de-
fault behavior is to use the same database connection as the parent entity, and this
is not what we want. The fix is pretty easy. Copy the function definitions from
Mage/Eav/Model/Entity/Abstract.php. What we’re going to do is save our current
database connection, swap in the old customer connection, call the parent method,
then put our saved connection back in place.

CMS Integration ” 87

//force attributes back into M
protected function _updateAttribute($object, $attribute,

$valueId, $value)
{
$cmsWrite = $this->_write;
$cmsRead = $this->_read;
$cmsEntityIdField = $this->_entityIdField;
$this->_entityIdField = ’entity_id’;
$resource = Mage::getSingleton(’core/resource’);
$this->_write = $resource->getConnection(’core_write’);
$this->_read = $resource->getConnection(’core_read’);
parent::_updateAttribute($object, $attribute, $valueId, $value);
$this->_entityIdField = $cmsEntityIdField;
unset($this->_write);
unset($this->_read);
$this->_write = $cmsWrite;
$this->_read = $cmsRead;
return $this;

}

Do this for the saveAttribute method as well, switching the parent call to
parent::saveAttribute($object, $attributeCode).

Inserting Attributes

The _insertAttribute method isn’t as nice to override because of the update and
save methods, but it is shorter than the previous update method change. The
_insertAttributemethod assumes that the name of the primary key for our attribute
tables is the same as our main entity table, but this isn’t the case. So, we must force
the name entity_id as our primary field name, and we also want to use whatever
connection is configured for the customer module, not our own.

//force attributes back into M
protected function _insertAttribute($object, $attribute, $value)
{

$entityIdField = ’entity_id’;
$row = array(

$entityIdField => $object->getId(),
’entity_type_id’=> $object->getEntityTypeId(),
’attribute_id’ => $attribute->getId(),
’value’ =>
$this->_prepareValueForSave($value, $attribute)

88 ” CMS Integration

);
$resource = Mage::getSingleton(’core/resource’);
$w = $resource->getConnection(’customer_write’);
$w->insert($attribute->getBackend()->getTable(), $row);
return $this;

}

Loading Attributes

We face the same problem with loading attributes. There is no clean way to override
this code. This should prove as a good argument for the pattern of always naming
your primary field as the table name plus _id.

//force attributes back into M
protected function _getLoadAttributesSelect($object, $table)
{

$select = $this->_read->select()
->from($table)
->where(’entity_id’ . ’=?’, $object->getId());

return $select;
}

Finally, the entity’s own load method must be overridden to switch the resource
when loading the entity’s own attributes. Copy the entire load method from
Mage/Eav/Model/Entity/Abstract.php into your entity class. We only have to change
the bottom portion of this method, the part that loads the attributes.

/**
* Load data for entity attributes

*/
$resource = Mage::getSingleton(’core/resource’);
$r = $resource->getConnection(’core_read’);
foreach ($this->getAttributesByTable() as $table=>$attributes) {

$select = $this->_getLoadAttributesSelect($object, $table);
$values = $r->fetchAll($select);
foreach ($values as $valueRow) {

$this->_setAttribteValue($object, $valueRow);
}

}

CMS Integration ” 89

Registration

We can now use your CMS database for logging into Magento. What we cannot do
(still) is register on the Magento registration page. Saving any customer information,
other than the default billing and shipping IDs, has not been implemented in our
code. We have to make a decision about how our two sites integrate. If we allow
registrations on Magento, we have to duplicate the same data validation and notifi-
cation e-mails as the CMS registration process.

Also, we have to handle saving and updating of the values that we have pulled
from the CMS: email, password, first name, and last name. We could do this in
the entity’s _beforeSave or _afterSave methods. Our other option is to add more
eav_attribute entries for these fields, and perform checks in the _insertAttribute

and _updateAttribute methods to choose which table and database connection to
save the attribute values.

One option to avoid piling more code onto our solution is to simply remove the
registration page from Magento and change all the links to point to our existing CMS
registration process. There isn’t a compelling argument to have two separate regis-
tration processes as you would have to keep two sets of registration logic in sync and
bug free in two systems.

Another option to avoid two sets of logic is to integrate the CMS’s registration pro-
cess into Magento’s by including libraries and code inside an overridden Magento
controller.

Conclusion

After making all the code changes suggested above, you should be able to login to
Magento with a username and password from another database system, most likely
a flat table structure. With this account you can change your address book, choose
your default addresses, and place an order. As discussed previously, we cannot mod-
ify any information in the CMS’s database without doubling our coding efforts. A lot
of work went into this solution, but it simplifies all the ongoing maintenance of a
solution which publishes information to two separate spots, and gives the end user
a seamless shopping experience.

90 ” CMS Integration

Synchronizing Sessions

Even though our two databases are now sharing login information, we are still not
allowing a user to log-in on one site and still be logged in when they visit the other.
Both sites must be located on the same domain for this solution to work, as it in-
volves sending two session cookies from both the CMS and Magento.

Magento Listeners

Magento’s event listener system can be used to trigger a custom method in our User-
Connect module. Let’s make a Helper/Login.php file to serve as our helper. The code
is quite small for both of these methods.

class Company_UserConnect_Helper_Login
extends Mage_Core_Helper_Abstract

{
/**
* Start a session

*/
static function loginEvent($observer) {

$event = $observer->getEvent();
//calling code
// Mage::dispatchEvent(’customer_login’,
// array(’customer’=>$customer));
$customer = $event->getCustomer();
$customerId = $customer->getId();
$cgnUser = Cgn_User::load($customerId);
$cgnUser->bindSession();

}

You can see that the loginEvent grabs the $event object off of the passed in observer.
I have commented the Magento code that triggers this event so you can see what
parameters are passed along - the customer object - and the name of the event =
customer_login.

The bindSession method and Cgn_User objects are specific to my own framework,
Cognifty. It should be no trouble for you to replace the two lines of code with session
initializing code from whatever CMS you are already working with. Remember to
include or require any necessary libraries.

CMS Integration ” 91

/**
* Destroy a session

*/
static function logoutEvent($observer) {

$event = $observer->getEvent();
//calling code
// Mage::dispatchEvent(’customer_login’,
// array(’customer’=>$customer));
$customer = $event->getCustomer();
$customerId = $customer->getId();
$cgnUser = Cgn_User load($customerId);
$cgnUser->unBindSession();

}

The logoutEvent follows the style of the loginEvent. To activate these methods, we
must add some XML to the config.xml file for our UserConnect module.

...
<frontend>
...
<events>
<customer_login>
<observers>
<userconnect_login>
<type>model</type>
<class>Company_UserConnect_Helper_Login</class>
<method>loginEvent</method>

</userconnect_login>
</observers>

</customer_login>
...

The events tag falls under the frontend tag. The next tag is the name of the event we
would like to listen to, in this case it’s customer_login. The observers tag defines a
list of the classes and methods which we would like to have triggered whenever the
event in question is fired. We must give our event observer a name, it doesn’t matter
what the name is as long as it is unique. It is probably best to prepend this name with
a module name to guarantee uniqueness amongst all the listeners for the system.

The class and method tags should be self explanatory. The type tag can be one of
singleton or model. For most event listeners, the distinction between the two choices
is not noticeable.

92 ” CMS Integration

The configuration for the logout event listener is almost identical to the login lis-
tener, except for the name of the observer: userconnect_logout and the name of the
method.

...
<frontend>
...

<customer_logout>
<observers>
<userconnect_logout>
<type>model</type>
<class>Company_UserConnect_Helper_Login</class>
<method>logoutEvent</method>

</userconnect_logout>
</observers>

</customer_logout>
</events>

...

CMS Sessions

To fully finish the integration, we need to modify the content system’s login method
to start a Magento session. The structure of this code will be heavily dependent on
how your chosen framework or CMS handles modules, plugins, etc. Again, this ex-
ample uses the Cognifty framework as I can speak with authority on its functionality.
The example code is also slimmer than any example using other popular content
management systems.

class Cgn_Slot_Magento {

function bindMagentoSession($signal) {
$source = $signal->getSource();
$user = $source->user;

include(’magento/app/Mage.php’);
Mage::app(’base’);
$customer = Mage::getModel(’customer/customer’);
$customer->loadByEmail($user->email);
$session = Mage::getSingleton(’customer/session’);
$session->start();

CMS Integration ” 93

$session->setCustomer($customer);
}

}

Shared Themes

As a final pièce de résistance to our integration methods, we will cover how to re-use
an existing CMS theme or template to wrap Magento’s core output. Magento’s layout
system is built as a set of nested blocks. We can inspect the layout, grab the core
content block, and throw away the rest of the layout. Plugging in this output into our
content system’s templating system results in a fairly nice result.

Care must be taken to include all of Magento’s CSS and Javascript dependencies
on our existing theme.

function mainEvent(&$req, &$t) {
ob_end_clean();
//Start Magento
Mage::app(’default’);
//don’t automatically send output
$controller = Mage::app()->getFrontController()->setNoRender(true)->

dispatch();
//*do* send output
$controller->setNoRender(false);
//don’t start output at the root layout block
$controller->getAction()->getLayout()->removeOutputBlock(’root’);
//*do* start output at the content layout block
$controller->getAction()->getLayout()->addOutputBlock(’content’);
$controller->getAction()->renderLayout();
$t[’mage_output’] = $controller->getResponse()->__toString();

}

Store Driven Integration

In this chapter we have reviewed how to integrate a CMS into Magento with a style
that I call “CMS driven” integration. The flip-side of this style would be “store-driven”

94 ” CMS Integration

integration, in which Magento takes center stage and all methods and pages default
to Magento, instead of the CMS.

Store driven integration will not be covered in this book. Store driven integration
really makes the most sense for new sites or communities which do not have an ex-
isting user-base. Given Magento’s ability to create static and dynamic pages, inte-
grating in a plain CMS which has no native ability to extract product information
from Magento has limited appeal.

Chapter 8

Made to Order Module

In Magento, everything you wish to sell must be defined as a Simple Product having
its own SKU and price. But there are times when a merchant wishes to sell items that
do not have a unique identifying code, like a SKU. The reason that some products
might not have an identifying SKU depend largely on the type of item being sold and
the organization of the merchant’s business.

These types of situations are especially common for manufacturers who take spe-
cial orders for items that they may only make one time. An example that most any-
body can relate to would be purchasing produce or meat at a supermarket. Apples
are sold by the pound, purchasing one pound of apples costs more than purchasing a
half pound of apples, or any fractional weight in between. But, each possible weight
of apples does not have its own predetermined and unique SKU number. The type
of apple probably has a unique PLU, or Price Look-Up code, but the final item of the
transaction is an item and a specific quantity; weight in this example.

This fabricated receipt shows an example of how individual line-items of a receipt
can be composed of a dimension or quantity plus a unique identifying number, such
as a SKU or PLU.

Sample receipt print-out of buying apples.

0.5 @ $3.00 / lbs
........ 1200 Red Apples $1.50

98 ” Made to Order Module

3.19 @ $2.00 / lbs
........ 2200 Florida Oranges $6.38

Sub-Total $7.88

Magento currently lacks the ability to accept user input as a determining factor for
the end result of a transaction. The customer can only pick from a predetermined
selection of items. For manufacturers, who might take special orders for products
with varying dimensions of size, this could result in Magento’s database containing
millions of “products”. The management of such a database would become cumber-
some, in part because it is not how the manufacturer thinks about their own prod-
ucts.

Example Scenario

The best example situation where a user’s input would affect the price is choosing
the size of an item. Let’s pretend that you work for a manufacturer of rain gutters
and you need to implement a shopping cart which allows the customer to enter the
quantity and length of each desired piece. A customer who needs gutters for the
front and back of his thirty foot wide house might order:

• 1 x 30 foot piece

• 3 x 5 foot pieces

• 2 x 12.5 foot pieces

Obviously we would like to record the length required for each piece as part of each
line-item on the order. We would also like the length to determine the price for each
piece. Although possible, it would not be the best option to enter an individual prod-
uct for every available fractional length. Not only would you have hundreds of prod-
ucts for each style of gutter, imagine trying to update the price because the cost of
raw materials increased.

Made to Order Module ” 99

Plan of Attack

In order to implement user input as part of our order, we need to understand how
the order process works. When a user adds a product to their cart, a quote item is
created from the product and that quote item is what is added to the user’s cart, not
the product itself. When the user completes the order, the quote, and all of its items
are transformed into an order. Just like adding attributes to a product, we can add
new attributes to quote items and order items. Although there is no user interface for
this task, the concept is the same.

• Create a new attribute for length products

• Create a new attribute for quote items

• Create a new attribute for order items

• Create a new product template to get length input

• Add event listeners to the order process to alter the quote and order items

• Alter the checkout screen to show the length attribute

The Length Attribute

Creating this new attribute does not affect the code of our new module. We will sim-
ply create a new product attribute using the admin interface. Create a new product
attribute called mto_length. This attribute will not be visible on the front end, and
it does not require any special validation. The input type should be Yes/No for the
store owner. All we want to do with this attribute is to signal the various blocks and
templates to show new inputs to the user (Figure 8.1).

When editing the product itself, we will only have a Yes/No choice for our gutter
products (Figure 8.3).

New Module

Start by create a shell module called Mto. The process for creating a shell module is
described in the Custom Modules chapter. For this module, we will be using the sql

100 ” Made to Order Module

Figure 8.1

Figure 8.2

directory to add new attributes to the database. We will also be overriding Magento
blocks and models, as well as creating a helper class for event listening purposes.

Installation

As described in the Custom Modules chapter, a module can run any SQL it needs
when it is first installed, or when it is upgraded. In order to add new attributes to the
order items and quote items, we need to create some new eav_attribute entries. Add
this PHP code to your mysql4-install-0.1.0.php file.

$c = array (
’entity_type_id’=>$quote_type_id,
’attribute_code’=>’mto_length’,
’backend_type’=>’varchar’,
’frontend_input’=>’text’,
’is_global’ => ’1’,

Made to Order Module ” 101

’is_visible’ => ’0’,
’is_required’ => ’0’,
’is_user_defined’ => ’1’,

);

This array defines all the values needed to create a new eav_attribute record. Copy
this code twice, but change quote_type_id to order_type_id in the second instance.
We need to create the mto_length attribute for both quotes and orders. I’ll explain
where the values of the type_id variables come from later.

$attribute = new Mage_Eav_Model_Entity_Attribute();
$attribute->loadByCode($c[’entity_type_id’],$c[’attribute_code’])
->setStoreId(0)
->addData($c);

$attribute->save();

This code creates a new attribute object, and loads it from the database if it exists
already with the same attribute_code. Setting the store ID to 0 is required for single
store installations. For multi-store installations, repeat this process for each store ID.

We want to duplicate both of these code blocks twice, once for the quote items
and once for the order items. To get the value of $quote_type_id and $order_type_id

we need to inspect the database. Since these values are auto-increment ID fields,
they could change per installation, but the entity codes do not change. We will use
the values quote_item and order_item to get the ID values from the database. The
following code should go above the rest of the code in your installation file.

$eid = $read->fetchRow(’select
entity_type_id
from eav_entity_type
where entity_type_code="quote_item"’);

$quote_type_id = $eid[’entity_type_id’];

$eid = $read->fetchRow(’select
entity_type_id
from eav_entity_type
where entity_type_code="order_item"’);

$order_type_id = $eid[’entity_type_id’];

The final installation file should look something like this:

102 ” Made to Order Module

$read = Mage::getSingleton(’core/resource’)
->getConnection(’core_read’);

$eid = $read->fetchRow(’select ... where entity_type_code="quote_item"’);

$quote_type_id = $eid[’entity_type_id’];

//repeat the above for "order_item" and "order_type_id"

$installer = $this;
$installer->startSetup();
$c = array (

’entity_type_id’=>$quote_type_id,
’attribute_code’=>’mto_length’,

...
);

$attribute = new Mage_Eav_Model_Entity_Attribute();
$attribute->loadByCode($c[’entity_type_id’],$c[’attribute_code’])
->setStoreId(0)
->addData($c);

$attribute->save();

//repeat the above for "order_item" and "order_type_id"
$installer->endSetup();

Overriding the Block

We want to develop our new length input field in the most modular way possible.
To accomplish this we will override the default Product View block and conditionally
add our new template piece, which we will create as a new core/template type block.

class Company_Mto_Block_Product_View
extends Mage_Catalog_Block_Product_View

{

protected function _prepareLayout()
{

$lengthBlock = $this->getLayout()->addBlock(’core/template’, ’
length_product’)
->setTemplate(’mto/length_product.phtml’);

$this->setChild(’length_product’,$lengthBlock);
return parent::_prepareLayout();

Made to Order Module ” 103

}
}

This code creates a new template block of the type core/template. This type is the
most basic type of block you can create. Its sole purpose is to include a template file.
It provides no custom display logic like other, more specific, block classes.

To implement our new block we need to modify the layout/catalog.xml file. You
can make this change by creating a new layout file and referencing the block in
question, see the Custom Modules chapter for more information on safely over-
riding blocks. Change the type attribute of the block under content in the cata-
log_product_view tag.

<catalog_product_view>
...

<reference name="content">
<!--

<block type="catalog/product_view" name="product.info"
template="catalog/product/view.phtml">

-->
<block type="mto/product_view" name="product.info"

template="catalog/product/view.phtml">
...

</reference>
...
</catalog_product_view>

Now, we have our new product view block, and it creates a new child block,
but this new block still will not show up on our product view page. We
must specifically instruct the original product view template to output this new
length_product block at a specific spot. We output child blocks within a tem-
plate with the method getChildHtml. The original product view template is in
template/catalog/product/view.phtml. The best place to add our new block output
is directly under the product_type_data block. The product_type_data block shows
specific information for each type of product: Simple, Configurable, and Bundle.

<?php echo $this->getChildHtml(’product_type_data’) ?>

//new block for products with length.

104 ” Made to Order Module

<?php echo $this->getChildHtml(’length_product’) ?>

The final piece of the template puzzle is the .phtml file itself. We have already refer-
enced it in the code as mto/length_product.phtml. This file is very simple, it simply
displays an input field to accept the user’s input. This file can be more advanced. By
adding a specific block for length-type products we could inspect more properties
about the current product, show a range of acceptable sizes, or even dynamically
update the price with AJAX-style coding. For now, our template file will remain bare-
bones.

<br style="clear:left;"/>

Length: <input type="text" name="user_length" size="3"/>

You should now see this input box on the product view page. The length box should
be just below the quantity box, like the screen shot show in Figure 8.3.

Figure 8.3

Recording User Input

To attach any input the user wants to add to their order, or any line-item of the order,
we must attach the data to an attribute of the quote item. We can’t attach the spe-
cific information to the product, because the product is universal to all customers;
whereas quote items and order items are not universal.

Attaching information to the quote can be done easily with event listeners. To un-
derstand the listener’s structure, we must understand a little about Magento’s pro-
cess of adding a product to your cart.

The controller file Checkout/controllers/CartContoller.php performs all the tasks
of adding, editing, and deleting products from the cart. The cart is just a quote ob-

Made to Order Module ” 105

ject, with associated quote item objects. Usually you can get the quote object from
any object with the getQuote method call. Quote items are regularly re-populated
with fresh database values from products. Anytime the quote is loaded, the products
related to the quote items are loaded and the items’ properties are refreshed from
the database. This makes trying to dynamically alter the price of an ordered item
more difficult than it should be. But that’s okay, since our length attribute is from the
customer, and not from a product. We could inject our code right in to the controller,
but we can wait for the quote item to be created, if a product that is not in the cart
yet.

Just before the cart is saved, we will attach the user input directly from the request
object.

Adding Data to the Quote

In order to enable the event listener, we need to register the listener in the
config.xml. I like to put my event listener code in Helper/Event.php, while most of
Magento’s core code uses Model/Observer.php. (See “observer pattern” in the Index
for more on this topic.)

<config>
...
<frontend>
<events>
<sales_quote_save_before>
<observers>
<my_cart_checker>
<type>singleton</type>
<class>Company_Mto_Helper_Event</class>
<method>cartBeforeSave</method>

</my_cart_checker>
</observers>

</sales_quote_save_before>
...

The code for the listener should go into Helper/Event.php. Your class should be
named after your module and it should extend Mage_Core_Helper_Abstract. The
only method which we need to implement is the one named in the config file;
cartBeforeSave. The body of this method is listed below.

106 ” Made to Order Module

/**
* Called from "sales_quote_save_before"

*/
static function cartBeforeSave($observer) {

$event = $observer->getEvent();

$req = Mage::app()->getRequest();
$items = $event->getQuote()->getItemsCollection();
$mto_length = $req->get(’user_length’);
$product_id = $req->get(’product’);
if (!$mto_length && !$product_id) {

//only run if the user is submitting
// data to the cart controller.
return;

}
foreach ($items as $item) {

if ($item->getProductId() === $product_id) {
if(!$item->getMtoLength()) {
$item->setMtoLength($mto_length);
break;

}
}

}
}

After implementing this method in your listener, you should be able to add any
product which has its own mto_length set to Yes in the admin to your cart with
any length value you want. If you inspect your database you should see a value in
sales_quote_item_varchar like shown in Figure 8.4.

Figure 8.4

Made to Order Module ” 107

Adding Data to the Order

Even though we have successfully recorded the user input for this product, the data
will not be saved to the order yet. For that, we need to implement one more event
listener just before the order is saved. We can add one more method to our event
helper to set certain order item attributes just before the order is committed to the
database. Add the following code to your helper and activate it with XML similar to
the previous event.

/**
* Listens for "sales_convert_quote_item_to_order_item"

*/
static function attachSpecialOrderAttribs($observer) {

$event = $observer->getEvent();
$orderItem = $event->getOrderItem();
$quoteItem = $event->getItem();

$orderItem->setMtoLength($quoteItem->getMtoLength());
}

XML to activate the listener

<config>
...
<frontend>
<events>

...
<sales_convert_quote_item_to_order_item>
<observers>
<my_order_attribs>
<type>singleton</type>
<class>Company_Mto_Helper_Event</class>
<method>attachSpecialOrderAttribs</method>

</my_order_attribs>
</observers>
</sales_convert_quote_item_to_order_item>

...

If you continue to purchase any product to which you’ve added a special length
value, you should see the mto_length attribute in the database in the table

108 ” Made to Order Module

sales_order_entity_varchar after the order is complete. The highlighted database
row in Figure 8.5 shows an order with a customer value of 15 for the length of one
section of gutter.

Figure 8.5

Show Customizations to the Customer

Now that we have products available to the customer which aren’t exactly repre-
sented in the database (i.e. of variable lengths) some parts of Magento don’t quite
look correct anymore. Take the cart page for example, if a customer adds two pieces
of 30 foot gutter, and four pieces of 5 foot gutter, on the cart page we will simply see
six pieces of gutter. We must divide this into two separate products, as well as show
the user their own selected length for each item.

Modify the Cart Page

The cart page utilizes a method from the checkout/cart block to show an extra de-
scription for certain products. Only configurable products use this extra descrip-
tion method. The block method in question is called getItemDescription and takes
a quote item as a parameter. This method acts as a facade for a helper event with
a longer name; it simply passes the quote item parameter to the checkout mod-
ule’s data helper. We can take advantage of this fact by overriding the checkout data
helper and inserting some logic to display our mto length attribute if necessary.

Override the checkout module’s data helper by inserting the correct XML into
our MTO module’s config.xml. Then create a Helper/Data.php file which extends
the original class Mage_Checkout_Helper_Data. The method name in question is
getQuoteItemProductDescription. Now you can see why the cart block provides a
façade for this method name. In the body of our overridden method we will defer to
the parent method first, then add our custom logic afterwards.

Made to Order Module ” 109

class Company_Mto_Helper_Data
extends Mage_Checkout_Helper_Data

{
public function getQuoteItemProductDescription($item)
{

$desc = parent::getQuoteItemProductDescription($item);

if ($item->getMtoLength()) {
if ($desc !== ’’) {

$desc .= ’
’;
}
$desc .= ’Length: ’.$item->getMtoLength().’\’’;

}
return $desc;

}
}

Separating Similar Products in the Cart

Because we are altering the cart contents in a way unexpected by Magento, the cart
may not behave the way we expect. Currently, if we add two products with different
length attributes, the cart will combine the two products together, as if we simply up-
dated the quantity of the first product. We need to tell Magento that products with
different length attributes are actually separate products. To do this we need to over-
ride the quote model from the sales module. This class contains getItemByProduct

method which searches through the quote items already in the cart to find one that
matches the product which the customer wants to add.

Magento’s cart only matches quote items and products based on the product IDs.
We need to override the getItemByProduct to compare a quote item’s length against
any posted length attribute from the request. Create a new Model/Sales/Quote.php

file in your Mto module, make the class extend the original Mage_Sales_Model_Quote
class.

//original code
else {

if ($item->getProductId() == $productId
&& is_null($superProductId)) {
return $item;

}

110 ” Made to Order Module

}

//new code
else {

if ($item->getProductId() == $productId
&& is_null($superProductId)) {
if ($item->getMtoLength()) {

if ($item->getMtoLength() !== Mage::app()->getRequest()
->get(’user_length’)) {

return false;
}

}
return $item;

}
}

You should now be able to add two of the same product and as long as you have
different length values entered for each, they will appear as separate products in the
cart. Figure 8.6 shows what you might see.

Figure 8.6

Conclusion

We have seen, in this chapter, how to alter the order process to attach special at-
tributes to any product. This feature is ideal for products that are available in many
different sizes. It can be extended to allow for changing the price of the quote item
as well. Changing the price dynamically allows for many more possibilities than just
dimensions or length. Some ideas for future changes might include:

• Adding support for ranges of values

Made to Order Module ” 111

• Charging for engravings on products by the letter

• Accepting spreadsheets from the customer, charge for processing data from
the file

• Collecting different shipping dates for individual products with a calendar
widget

• Recording special preparation instructions for food items

Chapter 9

Points and Rewards Module

Rewarding repeat customers with discounts is a time-tested method of garnering
customer loyalty. In America, credit card companies, airline companies, soft drink
companies, book stores, and coffee shops are all examples of businesses that reward
their customers with points that can be redeemed for discounts on their next pur-
chase. Redeeming points doesn’t just have to be for a discount on the customer’s
next purchase, some ideas for the redemption of points include:

• Buying into a raffle for one large prize

• Recognition on a community Web site by increasing the customer’s status or
rank

• Discounted shipping rates

• Free membership to special Web site areas (e.g. private forums)

• Increased priority for shipping or problem resolution

• Send free gifts with your company’s logo imprinted on them

• (pens, bags, clocks, stress relievers, etc.)

114 ” Points and Rewards Module

We are going to build a simple points and rewards module for Magento that hooks
into the coupon system of Magento to apply a discount to the customer’s entire or-
der. Using the coupon system will reduce the overall complexity of the module and
require less customization of Magento’s templates.

Plan of attack

We are going to build this module in stages, the first stage is simply to keep track of
points as the customer places orders. The second stage is to let the customer view
their total points in the My Account area. Then we will tackle the redemption part of
the process by using dynamic coupon codes. Lastly we will deduct any points used
during an order from the customer’s points total.

• Add points to products

• Record points for each product ordered

• Show the customer’s accumulated points in the My Account area

• Create a dynamic coupon that will adjust its savings based on customer input

• Update the customer’s points upon checkout

Adding New Attributes to Products

In order to have different point values for each product we will use Magento’s at-
tribute system and create an attribute called reward_points. Create this new at-
tribute in Manage Attributes section of the backend. Make sure the following settings
are correct:

• Attribute Identifier: reward_points

• Score: store view

• Catalog Input Type: text field

• Input Validation for Store Owner: Integer Number

Points and Rewards Module ” 115

• Visible on Catalog Pages: yes

• Manage Labels/Options: Points

When creating this attribute we have two choices when it comes to the visibility of
the points. Setting the attribute as visible on the frontend catalog will display the
points as any other attribute of the product in the Additional Information section
of the product view page. This is a decent default behavior, but some stores might
want to integrate the points value of a product throughout the store catalog with
custom templates. If you are looking to integrate points throughout your entire store
as a promotion technique, you might want to set the attribute now to show on the
frontend catalog. This does not completely restrict the value from ever showing on
the catalog, it just means that it now requires some special code in order for the
value to be loaded and shown in various templates. For this example we will leave
the visibility on.

After creating the attribute, attach it to any attribute set that is in use by a product.
Afterwards, edit the product and give it a sample point value, let’s use 100 as our
sample points value. See figure 6.2 in the Custom Modules chapter for an example of
adding a new attribute to a product.

You should now see the Points value on the product view page in the Additional
Information section. If you don’t see it, double check that your chosen product is
enabled, and that when you saved the points value to the product that there weren’t
errors. Lastly, double check the visibility setting of the points attribute.

Creating a Shell Module

Initialize a new module called RewardPoints. Referring to the module as RewardPoints
is much easier to say than PointsandRewards over and over. We want to start off with
an SQL table, so the new module’s config file needs to be ready to run an installation
file. (See the Magento Modules chapter for a thorough introduction to modules and
directory structures.) The new config.xml file should look like the following:

<?xml version="1.0"?>
<config>

<modules>

116 ” Points and Rewards Module

<Company_RewardPoints>
<version>0.1.0</version>
<depends>

<Mage_Customer />
<Mage_Checkout />

</depends>
</Company_RewardPoints>

</modules>
<global>

<resources>
<rewardpoints_setup>

<setup>
<module>Company_RewardPoints</module>
<class>Mage_Core_Model_Resource_Setup</class>

</setup>
<connection><use>core_setup</use></connection>

</rewardpoints_setup>
<rewardpoints_write>

<connection><use>core_write</use></connection>
</rewardpoints_write>
<rewardpoints_read>

<connection><use>core_read</use></connection>
</rewardpoints_read>

</resources>
</global>

</config>

This is the bare minimum configuration you need to have a module that runs and
one which is installable automatically.

Recording Points Ordered

Recording points requires a place to store the values associated with a customer.
Our first step will be to create an SQL table and a model class to keep track of the
points from each order. The table will hold information about the current number
of points in a customer’s account, the maximum points accumulated and the total
points spent. The SQL table definition that holds the points information can be cre-
ated by inserting the SQL into the module’s sql directory.

<?php
$installer = $this;

Points and Rewards Module ” 117

$installer->startSetup();
$installer->run("
DROP TABLE IF EXISTS {$this->getTable(’rewardpoints_account’)};
CREATE TABLE {$this->getTable(’rewardpoints_account’)} (
’rewardpoints_account_id’ integer(10) unsigned NOT NULL auto_increment,
’customer_id’ integer(10) unsigned NOT NULL default ’0’,
’store_id’ smallint(5) unsigned NOT NULL default ’0’,
’points_current’ integer(10) unsigned NULL default ’0’,
’points_received’ integer(10) unsigned NULL default ’0’,
’points_spent’ integer(10) unsigned NULL default ’0’,
PRIMARY KEY (’rewardpoints_account_id’),
KEY ’FK_catalog_category_ENTITY_STORE’ (’store_id’),
KEY ’customer_idx’ (’customer_id’)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT=’Reward points for an account’;
");
$installer->endSetup();

Place the above code into RewardPoints/sql/rewardpoints_setup/mysql4-install-0.1.0.php.
The next page load on your Magento installation should run the install file and
create the table for you.

Making a Model

In order for us to be able to access our any models of RewardPoints, we need to add
some XML to tell Magento the class prefix we want to use with our models. Add the
following code to your module’s etc/config.xml inside the global tag.

...
<global>

<models>
<rewardpoints>

<class>Company_RewardPoints_Model</class>
</rewardpoints>

</models>
</global>

...

Now, any call to Mage::getModel(’rewardpoints/x’) will return a class like
Company_RewardPoints_Model_X. Next we will create a model to load and save data
from the table. Create a Models directory in your module directory. Make a class
called Account.php in the Models folder and add the code below.

118 ” Points and Rewards Module

<?php
class Company_RewardPoints_Model_Account

extends Mage_Core_Model_Abstract {

protected $customerId = -1;
protected $storeId = -1;
protected $pointsCurrent = NULL;
protected $pointsReceived = NULL;
protected $pointsSpent = NULL;

//public setters and getters for every attribute

//save and load methods

//add and subtract points methods
}

Model Methods

We won’t go cover the creation of getters and setters here, but create them in the
class on your own. The two methods that we want to concentrate on are save and
load. The load usually takes two arguments, the some ID value and the name of the
ID field. The save method takes no arguments.

We will have to get our own database connections and write the SQL directly. If
we decided to use a resource model we would get automatic database saves, but the
configuration and setup is more complicated. See the Database chapter for a review
of models and resource models.

public function save() {
$connection = Mage::getSingleton(’core/resource’)

->getConnection(’rewardpoints_write’);
$connection->beginTransaction();
$fields = array();
$fields[’customer_id’] = $this->customerId;
$fields[’store_id’] = $this->storeId;
$fields[’points_current’] = $this->pointsCurrent;
$fields[’points_received’] = $this->pointsReceived;
$fields[’points_spent’] = $this->pointsSpent;

try {
$this->_beforeSave();

Points and Rewards Module ” 119

if (!is_null($this->rewardpointsAccountId)) {
$where = $connection->quoteInto(’customer_id=?’,

$fields[’customer_id’]);
$connection->update(’rewardpoints_account’,

$fields, $where);
} else {

$connection->insert(’rewardpoints_account’, $fields);
$this->rewardpointsAccountId =

$connection->lastInsertId(’rewardpoints_account’);
}
$connection->commit();
$this->_afterSave();

}
catch (Exception $e) {

$connection->rollBack();
throw $e;

}
return $this;

}

public function load($id, $field=null) {
if ($field === null) {

$field = ’customer_id’;
}
$connection = Mage::getSingleton(’core/resource’)

->getConnection(’rewardpoints_read’);
$select = $connection->select()

->from(’rewardpoints_account’)
->where(’rewardpoints_account.’.$field.’=?’, $id);

$data = $connection->fetchRow($select);
if (!$data) {

return $this;
}

$this->setRewardpointsAccountId(
$data[’rewardpoints_account_id’]

);
$this->setCustomerId($data[’customer_id’]);
$this->setStoreId($data[’store_id’]);
$this->setPointsCurrent($data[’points_current’]);
$this->setPointsReceived($data[’points_received’]);
$this->setPointsSpent($data[’points_spent’]);

$this->_afterLoad();

120 ” Points and Rewards Module

return $this;
}

Notice the difference in preference of “id” fields between the load and save methods,
the save method checks the table’s primary key, but the load uses the customer_id

field by default. You will probably have direct access to the customer_id value when
trying to access a customer’s points, but not the usually the row’s primary key.

While developing this or any module, you will probably want to test the system
iteratively. Setting up an entire controller, and template just to see if you’ve written
your code correctly is overkill, you can include a simple shell script to load up Ma-
gento and execute just the methods of your model. See the last chapter for a detailed
explanation of writing a shell method. For now, you can place this code in your mod-
ule’s directory, not the chdir() call to move the execution point back to Magento’s
main directory.

<?php
chdir(’../../../../../’);
require_once ’app/Mage.php’;
umask(0);
Mage::app(’default’);

$points = Mage::getModel(’rewardpoints/account’);
$points->load(1);
$points->save();
$points->save();
$points->save();
$points->load(3, ’rewardpoints_account_id’);
var_dump($points);

Just two more simple methods and we’ll be done with our model. We will be adding
two utility methods to help keep track of the total points received and the total points
spent.

public function addPoints($p) {
$this->pointsCurrent += $p;
$this->pointsReceived += $p;

}

public function subtractPoints($p) {

Points and Rewards Module ” 121

$this->pointsCurrent -= $p;
$this->pointsSpent -= $p;

}

Event Listeners

So far, our new module doesn’t do very much other than install itself. We can load
and save models, but only with our own test code. To record the points with each
order we can simply write a function that listens to a Magento event that is fired every
time an order is complete. For this we will need to add some XML to our module’s
etc/config.xml.

<config>
...

<frontend>
<events>

<sales_order_place_after>
<observers>

<recordOrderPoints>
<type>singleton</type>
<class>rewardpoints/observer</class>
<method>recordPointsForOrderEvent</method>

</recordOrderPoints>
</observers>

</sales_order_place_after>
</events>

</frontend>
...
</config>

The XML for listening to events falls under the frontend tag. You can also listen for
events specifically when they are fired in the admin by putting the same XML under
the admin tag. Under the events tag we list the actual names of the events that we
want to listen to. Then we create our observer and give it any unique name with
another XML tag. In this example our unique name is recordOrderPoints. This has
no effect on your code. The type can either be model or singleton. A model type
observer will be instantiated fresh before each call to the method. A singleton type
observer is only created once no matter how many events it listens to or how many

122 ” Points and Rewards Module

times an event is fired per request. The class tag specifies your model in the usual
Magento short-hand syntax. The method tag should be self-explanatory.

The usual class name that Magento’s own code uses for all event listeners
is ModuleName/Model/Observer.php. This author likes to store event listeners in
ModuleName/Helper/Event.php. The difference in the class name is minor, but the
differences between event listener patterns and observer patterns is pretty distinct.
An observer/observable pattern usually doesn’t involve a third party event dispatcher,
the observing object usually has a direct reference to the observable code. One other
difference is that in event systems, or signal-slot systems, the events are have spe-
cific names, but in an observer/observable pattern the observer simply waits for one
standard method call, like update().

For this example, we will tow the line and use the Model/Observer.php naming con-
vention. Create a class in your module’s Model directory that looks like the following
code:

<?php
class Company_RewardPoints_Model_Observer
extends Mage_Core_Model_Abstract {

/**
* Record the points for each product.

*
* @triggeredby: sales_order_place_after

* @param $eventArgs array "order"=>$order

*/
public function recordPointsForOrderEvent($observer) {

$order = $observer->getEvent()->getOrder();
$items =$order->getItemsCollection();

//load all products for each sales item

//sum up points per product per quantity

//record points for item into db
}

}

The method recordPointsForOrderEvent should match the value of the method tag
in your event XML. Each event listening method receives one argument: $observer.

Points and Rewards Module ” 123

For most every case, the only thing you want to do is retrieve the event from the
observer with getEvent(). The event object contains a variable number of arguments
depending on the code that triggered the event. You can print out the array keys
of $event->getData() or search for the event producing code and see which exact
variables are included as arguments.

To finish off the recordPointsForOrderEvent method add the following code under
the comments.

//grab the customerId
$customerId = Mage::getModel(’customer/session’)

->getCustomerId();

//load all products for each sales item
$rewardPoints = 0;
$prodIds = array();
foreach ($items as $_item) {

$prodIds[] = $_item->getProductId();
}
//load products from quote IDs to get the points
//(this won’t work if points were set dynamically
// in the addToCart process)

$prod = Mage::getResourceModel(’catalog/product_collection’)
->addAttributeToSelect(’reward_points’)
->addIdFilter($prodIds);

//sum up points per product per quantity
foreach ($items as $_item) {

$rewardPoints += $prod->getItemById($_item->getProductId())
->getRewardPoints() * $_item->getQtyOrdered();

}

//record points for item into db
$this->recordPoints($rewardPoints, $customerId);

For the saving of points we will segment the code into another method. The
recordPoints method will be well defined with 2 inputs, the total points and the cus-

124 ” Points and Rewards Module

tomer’s ID. What we lose here is the tracking of points per individual item, but the
loss of this history should be acceptable for our purposes.

public function recordPoints($pointsInt, $customerId) {
$points = Mage::getModel(’rewardpoints/account’)

->load($customerId);
$points->addPoints($pointsInt);
$points->save();

}

Summary

We have completed the first 2 steps in our plan of attack for this module. Now you
should be able to complete a real order with any product that you have added points
to. The points should accumulate in our new database table. Double check that
the points are saving by peeking at MySQL and looking at our rewardpoints_account
table. Assuming that you can see the points correctly in the database, we need to
allow the customer to see their points.

Show the Customer Their Points

Now that we have the points saving properly, we need to show the customer how
many points they have. We will add a simple box the account dashboard—Figure 9.1
shows an example of what we want to dashboard to look like.

Dashboard Layout

To add our own box to the customer’s account dashboard we need to make a copy
of the current dashboard template, create a new template that shows our points in-
formation, and create a new layout XML file to inject our new template file into the
copied dashboard template. It is pretty important to understand why we have to
make 3 copies to get 1 change into the template.

The dashboard page is composed of a dashboard.phtml which includes a few
other parts into itself. We have to make a copy of this file so we can specify that we
also want it to include our points template file. Even if we just wanted to write some

Points and Rewards Module ” 125

Figure 9.1

PHP directly into the dashboard file, instead of following the pattern that Magento
has done by segmenting portions of the dashboard into include files, we would still
want to make a copy of the dashboard file to avoid conflicts when upgrading.

Our layout file will only include enough instructions to change the current dash-
board template file to our own, and to initialize a new block that will parse our points
template file. Remember that all template files have a parent block which owns them.
You can avoid writing a new class file for every template you use by calling on an ex-
isting block, like core/template, to simply parse any .phtml file you want. But you
cannot directly inject a .phtml file anywhere into the layout without some kind of
block owning it.

When you write a module for Magento, there is no default place to save your tem-
plate files or layout file changes. We will create a new directory under our module
called design. This will hold two more directories, templates and layout. Now we
have all of our work saved into one directory for easy packaging or CVS or SVN com-
mitting. This way, we don’t files for our module spread out all over the Magento
installation.

Now we will create our module’s layout XML file, save this file as
RewardPoints/design/layout/rewardpoints.xml.

<?xml version="1.0"?>
<layout>
<!--
Customer account home dashboard layout
-->

126 ” Points and Rewards Module

<customer_account_index>
<reference name="customer_account_dashboard">

<action method="setTemplate">
<template>rewardpoints/my_dashboard.phtml</template>

</action>
<block type="core/template"

name="customer_account_points"
as="points"
template="rewardpoints/dashboard_points.phtml"/>

</reference>
</customer_account_index>

</layout>

The tag customer_account_index is taken from the customer.xml layout file, which
defines the base screen that we see when we login to the My Account page. If
you examine the customer.xml file you will see where the reference name comes
from for the value customer_account_dashboard. What the above XML config-
uration does is reset the main template for that block to our new template,
my_dashboard.phtml, and adds a new core template type block as a new child of the
customer_account_dashboard block. The core template type block provides only the
base template functionality, so we won’t have any specialized display logic available
to us inside the dashboard_points.phtml file.

Now, we must copy the original dashboard file to our templates directory (our tem-
plate directory under the main design directory, not to our module’s design direc-
tory). Then, we can simply add one call to tell the system to parse our new child
block called points. The original dashboard file can be found under the default de-
sign directory at template/customer/account/dashboard.phtml.

<div class="page-head">
<h3><?php echo $this->__(’My Dashboard’) ?></h3>

</div>
<?php echo $this->getMessagesBlock()->getGroupedHtml() ?>
<?php echo $this->getChildHtml(’hello’) ?>
<?php echo $this->getChildHtml(’top’) ?>

<div class="account-box ad-account-info">
<div class="head">

<h4><?php echo $this->__(’Points’) ?></h4>
</div>

<?php echo $this->getChildHtml(’points’) ?>

Points and Rewards Module ” 127

</div>

The above code is only a portion of the dashboard template, but the last div
is the entirety of what we need to add to it. The last file which we need to
write is the actual template to display the points. We’ve already added this to
the layout, and we’ve told our new dashboard file to display the contents of
this file with the getChildHtml(’points’) method. Put the following code into
templates/rewardpoints/dashboard_points.phtml. Remember to clear Magento’s
cache if you are having problems seeing changes in the system, and hopefully you’ve
remembered to create all the getters and setters in the Account model.

<?php
$customerId = Mage::getModel(’customer/session’)->getCustomerId();
$customerPoints = Mage::getModel(’rewardpoints/account’)

->load($customerId);
?>
Your Points: <?= sprintf(’%d’,

$customerPoints->getPointsCurrent()); ?>

Total Points Accumulated: <?= sprintf(’%d’,
$customerPoints->getPointsReceived()); ?>

Total Points Spent: <?= sprintf(’%d’,
$customerPoints->getPointsSpent()); ?>

Summary

If all goes well you should be seeing a page similar to the one presented at the begin-
ning of this section. Now we have completed the third step in our plan of attack for
this module. The last two steps are just as easy as the first three.

128 ” Points and Rewards Module

Dynamic Coupons

The idea for redeeming your coupons is that the customer applies however many
points they want to their final order just like a coupon. Magento already has a
coupon system built-in, but the problem is that we want to accept a variable number
of points from users. The current Magento coupon system requires that you define
every possible coupon code. Our plan for this section is to create 1 coupon for points,
define some basic rules, and hijack the coupon system to dynamically alter the value
of discount.

By piggy-backing off of the existing coupon system we gain a lot of advantages:

• The coupon submission is already part of the template

• There already exists a controller to handle applying discounts to orders

• The existing rules can perform percentage or dollar amount discounts

• The existing rule structure has start and stop dates

• The rules can be limited to applying coupons to certain SKUs only.

All these existing features make the coupon system a good choice to start our coupon
redemption phase. In order to get these benefits from the coupon system, we have
to create a coupon code first. Let’s make a discount with the coupon code points.
Whenever the customer wants to use their points, they will enter points100 as the
coupon code to apply 100 of their earned points towards the current order. When
creating our one and only discount rule, we can specify a percentage discount, or a
flat dollar discount. For now, we will go with a flat dollar discount and make each
point worth one cent.

From the above figure you can see that there are a number of discount methods
available. The names are a bit confusing, the percentage one takes off a percentage
of any matching SKU, or the entire order if no SKU is specified. For our example,
we’ll choose Fixed amount for whole cart.

Points and Rewards Module ” 129

Figure 9.2

Coupon Models

To start, we need to copy two models into our module, change their class-
name, and write some XML to set them as override models. Start by copying
Mage/SalesRules/Model/Rule.php and Mage/SalesRules/Model/Validator.php to our
module. Next, add the following XML into our etc/config.xml file:

...
<global>

...
<models>
<salesrule>
<rewrite>
<rule>Company_RewardPoints_Model_Rule</rule>
<validator>Company_RewardPoints_Model_Validtor</validator>

</rewrite>
</salesrule>

</models>
...
</global>

...

130 ” Points and Rewards Module

Now, rename the classnames to match the prefix Company_RewardPoints_

and change their parent class to the original classname (i.e. extends
Mage_SalesRule_Model_Validtor). In the validator class we can delete every-
thing except the init method. In the rule class we can delete everything except the
getDiscountAmout method. These are the only 2 methods that we need to modify in
order to hijack the coupon system.

class Company_RewardPoints_Model_Validator
extends Mage_SalesRule_Model_Validator

{

public function init($websiteId, $customerGroupId, $couponCode)
{
$this->setWebsiteId($websiteId)
->setCustomerGroupId($customerGroupId)
->setCouponCode($couponCode);

if (substr($couponCode,0,6) === ’points’) {
$codeName = ’points’;
$pointsAmt = substr($couponCode,6);

} else {
$codeName = $couponCode;
$pointsAmt = 0;

}

$this->_rules = Mage::getResourceModel(’salesrule/rule_collection’)
->setValidationFilter($websiteId, $customerGroupId, $codeName)
->load();

foreach ($this->_rules as $_rule) {
if ($_rule->getCouponCode() == ’points’) {
$_rule->setCouponCode($couponCode);
$_rule->setPointsAmt($pointsAmt);

}
}
return $this;

}
}

In our extended validator we are overriding the init method to transform the
coupon code. If we get a user submitted coupon code that has the word “points”
in it, then we will trick the system into loading the “points” discount rule. But, we

Points and Rewards Module ” 131

will also reset the rule’s name to the original, user submitted, coupon code so that it
has access to the original user input for later checking or double checking.

class Company_RewardPoints_Model_Rule
extends Mage_SalesRule_Model_Rule

{

public function validate(Varien_Object $object) {
if (substr($this->getCouponCode(),0,6) != ’points’) {
return parent::validate($object);

}

$customerId = Mage::getModel(’customer/session’)
->getCustomerId();

$points = Mage::getModel(’rewardpoints/account’)
->load($customerId);

$current = $points->getPointsCurrent();

if ($current < $this->getPointsAmt()) {
Mage::getSingleton(’checkout/session’)->addError(
’Not enough points available.’

);
return false;

}
return true;

}

public function getDiscountAmount() {
if (substr($this->getCouponCode(),0,6) == ’points’) {

return ($this->getPointsAmt() / 100);
}
return parent::getDiscountAmount();

}
}

In our extended rule class, we need to address 2 issues. The first one is, does the
user have enough points to cover what they requested to use? This is done in the
validate method. The second issue is, what is the current value of the coupon? The
value is figured out dynamically by dividing the points by 100. This should give us
a reasonable 1% discount for each 100 points. Obviously, the math is going to rely
heavily on how many points you have assigned to your own products.

132 ” Points and Rewards Module

Deducting Points

Now, we are at the last section of our reward points module. The last thing we need
to do is deduct points used by the customer upon checkout. We already have a lis-
tener setup to add points from products purchased, let’s use that same listener (the
Observer.php file) to deduct points that a user has spent.

//add this to the very end of recordPointsForOrderEvent() in
// Model/Observer.php

//subtract points for this order
if ($couponCode = $order->getCouponCode()) {

$this->useCouponPoints($couponCode, $customerId);
}

//this completely new method should be placed outside
// recordPointsForOrderEvent(), but inside the class

public function useCouponPoints($couponCode, $customerId) {
if (’points’ !== substr($couponCode,0,6)) {

return;
}
$pointsAmt = substr($couponCode,6);
$points = Mage::getModel(’rewardpoints/account’)

->load($customerId);
$points->subtractPoints($pointsAmt);
$points->save();

}

If done properly our event listener will add or subtract points gained or spent on
each order.

Conclusion

We have seen how to build a simple reward points system for our customers. But
there are still some areas that could benefit from improvement. There are a number
of cosmetic changes that can be applied to the templates to better present the con-
cept of points to the customer. We could modify the product info page to display the
value of the points attribute in a more prominent manner. We could also give better

Points and Rewards Module ” 133

instructions on the checkout page, or make a completely new block to accept reward
points from the customer.

There are other ideas that could fit into a reward points system altogether. With a
little work we could take turn this whole concept into a reseller system. Modifying
the registration page, we could capture a reseller ID in the URL or ask the user, “Who
referred you?”. Upon checkout, the reseller gets points as a percentage of the total
sale, not the customer. For this we wouldn’t need points on the products at all, but
we still could use them, if so desired.

Another area of improvement could be to create a log table of all the points trans-
actions, rewardpoints_log. Then we would update the rewardpoints_account table
with a sum of the transactions in the log table, instead of modifying the account ta-
ble all the time. This would provide an audit trail, as well as the ability to track more
information, like when points were added or spent, what type of action created the
points (order, registration, referral, etc.), and maybe even an expiration date for the
points.

Chapter 10

Backend Integration

Fulfilling your orders is a big part of selling online. After an order is accepted into
Magento, or any shopping cart system, you have to package the order, ship the or-
der, check for fraud, and collect the payments. You may find that the Web interface
to managing orders in Magento is lacking. Perhaps you need a team of people scan-
ning orders for fraud. Perhaps you need to send messages to other parties to com-
plete your order: shipping partners or manufacturing partners. In any case, if the
Web interface doesn’t meet your needs you will have to move the data into another
system.

The most straight-forward way to export data out of Magento’s backend is to create
a simple REST-style system that prints out XML. But, after processing an order, we
also want to update order statuses. So, we will need a full CRUD system available via
REST style URL patterns.

Starting a New Module

Let’s start by creating a new module called AdminRest under our Company package. We
need to give it a shell config.xml and enable the module in app/etc/modules/. See
the Magento Modules chapter for a detailed explanation of the XML file formats. We
are going to add the XML in the config.xml to allow our module to have its own URL.
Anything matching the frontName adminrest in the URL will trigger a controller ac-
tion in our module’s controller directory.

136 ” Backend Integration

<?xml version="1.0"?>
<config>

<modules>
<Company_AdminRest>

<version>0.6.0</version>
</Company_AdminRest>

</modules>
<admin>

<routers>
<adminrest>

<use>admin</use>
<args>

<module>Company_AdminRest</module>
<frontName>adminrest</frontName>

</args>
</adminrest>

</routers>
</admin>

</config>

The Controller

To make a new controller we must add the directory controllers to our module. This
must be lower case, as controllers are included differently than models, blocks, and
helpers. When requesting a module with no other parameters in the URL the de-
fault controller file name is IndexController.php. The default method name when
no other parameters (other than the module name) are passed is indexAction.

<?php
class Company_AdminRest_IndexController

extends Mage_Adminhtml_Controller_Action
{

public function indexAction()
{

echo "Hello, World.";
}

}

This is the ubiquitous Hello, World example. Pointing your browser at:

Backend Integration ” 137

http://127.0.0.1/magento/index.php/adminrest/

...should result in a display of Hello, World.. Adjust the URL to whenever your de-
velopment copy of Magento is installed. The index.php is optional, depending on
your specific configuration, but its presence is always tolerated.

CRUD Controller

We want to design a controller that can support some simple CRUD operations. It
may be tempting to think that we can make one controller that can handle all types
of models in Magento, but the relationships between models can become quite com-
plex, therefore we will make one controller for every type of data that has a complex
relationship with other models. Think about the relationships between orders, line
items, customers, addresses, and discounts, would it be sanely possible to design a
URL structure that could flag whether or not to include all of these relationships on
demand? Well, it is possible, but the decision making inside the controller would be
just as complex and code heavy as making four or five independent controllers.

For starters, we will create an OrderController.php in the controllers folder.

<?php
class Company_AdminRest_OrderController

extends Mage_Adminhtml_Controller_Action
{

public function readAction() {}

public function updateAction() {}

public function deleteAction() {}

public function createAction() {}

public function echoXmlArray($array) {}

public function echoXmlString($msg, $errcode=-1) {}

public function wrapXml($arr, &$xmlString, $tagName=’item’) { }
}

138 ” Backend Integration

It is very easy to query the database for some records and spit them out as XML.
Trying to organize PHP data structures in such a way that they can be presented as a
set of nested XML tags is challenging. Here is an example of how we want our XML
to show up.

<?xml version="1.0"?>
<orders>
<order>

<entity_id>1</entity_id>
<...>...</...>
<items>
<item>
<entity_id>1</entity_id>
<...>...</...>

</item>
</items>
<addresses>
<address>
<type>shipping</type>
<...>...</...>

<address>
</addresses>

</order>
</orders>

Read Action

For the task of printing XML we are going to use a nested array structure. Any set
of arrays that should be nested under a parent XML tag will be prepended with the
array key _entityChildren. To avoid the ugly hacks of trying to guess at the English
language rules of pluralization, any tag whose sole purpose is to group lower tags
will simply be appended with _col for collection. Below are the necessary, but evil,
functions of dealing with arrays and XML in the most simplistic way.

public function echoXmlArray($array) {
echo "<?xml version=\"1.0\" ";
echo "<orders>\n";
$xmlString = ’’;
foreach ($array as $_order) {

echo $this->wrapXml($_order, $xmlString, ’order’);

Backend Integration ” 139

}
echo $xmlString;
echo "</orders>";

}

public function wrapXml($arr, &$xmlString, $tagName=’item’) {
$xmlString .= "<$tagName>\n";
foreach ($arr as $fieldName => $fieldValue) {

if ($fieldName === ’_entityChildren’) {
foreach ($arr[’_entityChildren’] as $type => $nodes) {

//the next line is optional, but produces
// a different structure
$xmlString .= ’<’.$type.’_col>’."\n";

foreach ($nodes as $_node) {
$this->wrapXml($_node,$xmlString,$type);

}
//the next line is optional, but produces
// a different structure
$xmlString .=’</’.$type.’_col>’."\n";

}
continue;

}
$fieldValue = "<![CDATA[$fieldValue]]>";
$xmlString.= "<$fieldName>$fieldValue</$fieldName>\n";

}
$xmlString.= "</$tagName>\n";

}

The readAction method is going to handle requests to :

http://127.0.0.1/magento/index.php/adminrest/order/read

This read method will pull a collection of orders, any related entities, and format the
arrays into a format suitable for the echoXmlArray method. This method can have
quite a bit of flexibility by reading URL parameters.

public function readAction() {
$collection = Mage::getResourceModel(’sales/order_collection’)

->addAttributeToSelect(’*’);

$status = $this->getRequest()->getParam(’status’);
if ($status !== NULL) {

140 ” Backend Integration

$collection->addFieldToFilter(’status’, $status);
}
$collection->load()->getItems();

$getItems = $this->getRequest()->getParam(’items’) !== NULL;
$getAddr = $this->getRequest()->getParam(’addresses’) !== NULL;

$collectionArray = $collection->toArray();
foreach ($collectionArray as $_key => $_order) {

$_order[’_entityChildren’] = array();

if ($getItems) {
$_order[’_entityChildren’][’item’] =

$collection->getItemById($_order[’entity_id’])
->getItemsCollection()
->toArray();

//write array back into place
$collectionArray[$_key] = $_order;

}

if ($getAddr) {
$_order[’_entityChildren’][’address’] =

$collection->getItemById($_order[’entity_id’])
->getAddressesCollection()
->toArray();

//write array back into place
$collectionArray[$_key] = $_order;

}
}
$this->echoXmlArray($collectionArray);

}

What we see in the readAction method is the loading of an order collection object.
Collection objects are a specialized way of dealing with multiple objects and are just
about the only way to select items from the database with where clauses without
writing raw SQL or using the Zend Framework Select object. The status parameter
is read from the URL and, if it is present, is added as a filter to the collection object
before it loads its orders.

In a similar manner, we can control which related data items we want to pull from
the database by passing items and addresses parameters in the URL. These sub-items
are not loaded from the collection object. Instead, as we are looping through the
array of orders, trying to structure our data for XML output, if we see that items or

Backend Integration ” 141

addresses are requested we pull the order model out of the original collection and
ask it to find its own collections of related items.

Lastly, we pass the organized and structured array to our echoXmlArray method.
This loops through the items of the array, encoding every value in CDATA brackets,
and recursively calls itself if it finds any _entityChildren.

Here is how this read action method might be called:

• index.php/adminrest/order/read/

• index.php/adminrest/order/read/status/pending/addresses/1

• index.php/adminrest/order/read/status/pending/addresses/1/items/1

Update Action

The next most common task after exporting the data to a third party tool is to update
the data, most likely with a new status. When updating we probably want to update
a lot of records at the same time, a batch update. The most critical part of batch
updating is handling errors. Reporting errors to the invoking client is essential to the
client’s proper functioning.

When considering how to create this module, we are essentially creating an API
for other clients to use. We must balance ease of use with functionality. Updating
multiple properties of a record during each call is easy if we are only dealing with
one record at a time. If we decide to accept a list of IDs and perform a batch update
on multiple records, the error reporting that goes back to the client could be pro-
hibitively complicated. The trade off of updating multiple records at a time but only
one attribute at a time should form a good balance of flexibility and ease of use.

For our module, this will be our test URL.

• index.php/adminrest/order/update/a/status/v/processing/ids/1,2,3,4

The code for creating our update action looks like this.

public function updateAction() {
$collection = Mage::getResourceModel(’sales/order_collection’)

->addAttributeToSelect(’*’);

142 ” Backend Integration

$request = $this->getRequest();
$attribute = $request->getParam(’a’);
$attributeValue = $request->getParam(’v’);
if (!$attribute) {

$this->echoXmlString(’no attribute’);
return false;

}
$idList = explode(’,’, $request->getParam(’ids’));
$collection->addFieldToFilter(’entity_id’, $idList);

$collection->load()->getItems();

$results = array();
foreach ($collection as $_key => $_order) {

$_order->setData($attribute, $attributeValue);
try {

$_order->save();
$results[] = array(’success’=>’yes’, ’entity_id’=>$_order->getId

());
}
catch (Exception $e){

$results[] = array(’success’=>’no’, ’entity_id’=>$_order->getId
());

}
}
$this->echoXmlArray($results);

}

The create and delete methods round out our CRUD system. You should be able to
easily copy the updateAction and change a few lines to make the createAction and
deleteAction methods on your own.

Delete Action

For both the deleteAction and the updateAction we have two choices for imple-
menting the database calls. We can send direct SQL statements to the database
server for updating rows and deleting rows. The other way involves, as the exam-
ple code demonstrates, loading objects individually and calling save after updating
its attributes or calling delete. At first, the second method may seem like an unop-
timized way to achieve the same results. But there is one difference. By loading
each object individually, then calling save or delete we gain the advantage of call-

Backend Integration ” 143

ing system events and _afterSave and _beforeLoad model methods. This may not
seem like such a great advantage, but you might not be sure which exact class is re-
turned as a “sales/order” model. Any installed module has the ability to override
that core model with its own sub-class which might be relying on the _afterSave or
_beforeLoad methods.

Think about interaction with other modules while you are writing Magento code.
If you are making a module for redistribution, don’t assume that the target installa-
tion will not have any other models modifying the same data and methods that you
are modifying.

The code for the deleteAction is almost identical to the update action, except we
will call delete on the order instead of save.

public function deleteAction() {
$collection = Mage::getResourceModel(’sales/order_collection’);

$request = $this->getRequest();
$idList = explode(’,’, $request->getParam(’ids’));
if (!is_array($idList)) {

$this->echoXmlString(’no ids supplied’);
return false;

}
$collection->addFieldToFilter(’entity_id’, $idList);

$collection->load()->getItems();

$results = array();
foreach ($collection as $_key => $_order) {

try {
$_order->delete();
$results[] = array(’success’=>’yes’, ’entity_id’=>$_order->getId

());
}
catch (Exception $e){

$results[] = array(’success’=>’no’, ’entity_id’=>$_order->getId
());

}
}
$this->echoXmlArray($results);

}

144 ” Backend Integration

Create Action

The createAction method allows us to create one order at a time. The argument
list can become very long because of the amount of data required to create a valid
order. We could probably make the argument list smaller by inserting some default
data into the order object, like created_at, but this would reduce the flexibility of
the API for some use cases. This method would probably be better suited to a POST
call, rather than a GET HTTP request because of the amount of arguments involved.
Luckily, this will not affect our code, unless we want to enforce the POST method to
be used by the client.

index.php/adminrest/order/create/
POST data:
attr1=val1
attr2=val2
attr3=val3
...

After a successful creation we want to send the new entity_id back to the client.
After a failure, we will return the message from any caught exception.

public function createAction() {
$order = Mage::getModel(’sales/order’);
$request = $this->getRequest();
$params = $request->getParams();
foreach ($params as $key => $value) {

$order->setData($key, $value);
}
$results = array();
try {

$order->save();
$results[] = array(’success’=>’yes’,

’entity_id’=>$order->getId());
}
catch (Exception $e){

$results[] = array(’success’=>’no’,
’message’=>$e->getMessage());

}
$this->echoXmlArray($results);

}

Backend Integration ” 145

Securing the Controller

Currently, anyone is allowed to use our fancy, new CRUD controller. Securing
our controller is pretty involved. Magento’s Mage_Adminhtml_Controller_Action class
does not give any security benefits. All the security settings come from the Adminhtml

module. Since our module is not the Adminhtml module, we must hack together some
security support ourselves.

A controller action’s preDispatch method is called before every action method is
called. Accordingly, we can inject some authentication into the preDispatch method.

Magento’s core uses specialized events for handling access to the Adminhtml mod-
ule. The code is not re-usable in a way where any module can enforce an admin login
to access itself.

public function preDispatch() {
parent::preDispatch();
$session = Mage::getSingleton(’admin/session’);
$request = $this->getRequest();
$user = $session->getUser();
if (!$user) {

$this->echoXmlString(’no login’);
$request->setDispatched(FALSE);

}
}

The code is fairly simple, the session either returns a valid and logged-in user or
NULL from the getUser method. If the user is not present, we want to echo an XML
response saying so. Since we are not using an advanced XML API like XML-RPC or
SOAP, we have no standard way of suggesting to the client where the login controller
is, like with an HTTP redirect header. We just hope that the client is reading our
responses and will act accordingly to a “no login” error.

Calling setDispatched(FALSE) on the request stops any more processing of this
request. The problem is that Magento uses this flag in two ways. Once a router
matches a request URL to a controller, the router flags the request as “already
dispatched”. But the controllers use the flag in a different, and very specific,
way. A controller’s preDispatch method can basically unset the dispatch flag with
setDispatched(FALSE), but it must forward the request to a different module, con-
troller, or action. Unsetting the dispatch flag stops the main action of a controller

146 ” Backend Integration

from executing, but the main front controller loops through all the routers again un-
til a new match is found. If you don’t forward the request (internally) to another con-
troller, your preDispatch method will be called 100 times, even though your action
methods are skipped. This strange logic is part of the reason why Magento handles
its own security in a separate event. There just simply is no methodology for ask-
ing a matched controller if it should continue processing or not without throwing an
exception. Throwing an exception is not a possibility for us since all output from a
module is self-contained, that means that the core system has no idea that we al-
ways want to output XML, and therefore an exception would result in echoing the
exception’s message and a broken XML document to our client.

The overriding rule here is that for every request, at least one action method must
be processed, or else you will end up cycling through all of your routers and con-
trollers 100 times.

Let’s look at our preDispatch method again after that lengthy explanation of Ma-
gento’s internals. We are no going to incorporate a noaccessAction method to handle
displaying anything we want when the user doesn’t have an admin session.

public function preDispatch() {
parent::preDispatch();
$session = Mage::getSingleton(’admin/session’);
$request = $this->getRequest();
$user = $session->getUser();
if ($request->getActionName() !== ’noaccess’) {

if (!$user) {
$request

->setControllerName(’order’)
->setActionName(’noaccess’)
->setDispatched(false);

}
}

}

Now, we are forwarding the request onto another action in the same order controller
class. Remember that setting the dispatch flag to false does two things: skips main
action execution, and recycles all routers to try matching again. If the request’s ac-
tion name is not yet set to noaccess we check the user object. If it is NULL, we simply
set the request to forward back onto ourselves. Nothing is done in preDispatch if the
action is already noaccess.

Backend Integration ” 147

public function noaccessAction() {
$data = array(’username’=>’’, ’password’=>’’);
$this->_initLayoutMessages(’adminhtml/session’);
$block = $this->getLayout()->createBlock(’adminhtml/template’)

->setTemplate("$tplName.phtml");
foreach ($data as $index=>$value) {

$block->assign($index, $value);
}
$this->getResponse()->setBody($block->toHtml());

}

The contents of noaccessAction are taken from the Adminhtml module’s
IndexController as a way to easily show the login.phtml file. Now, showing
the login page may not result in a proper XML document for our clients as much as
showing an exception stack trace, but we can display any sort of template file we
want here. We can even skip templating all together an output an XML message or
call $this->echoXmlString(’no access’) and be done with it. Showing a complete
HTML page to a hapless end-user that stumbled onto our AdminRest module via a
browser would probably be more user friendly than showing XML output.

Client Access

Now that we have completed our simple order CRUD controller, we need to access
it. Making your client log-in to the system is probably the most challenging part.
It seems that simply posting login information an HTTP library, like cURL, is not
sufficient to initialize a session. The specific steps involved to login to the admin are:

• Hit the login page to get a session cookie

• Save the cookies from the Set-cookie response header

• POST login[username] and login[password] to index.php/admin

• GET the URL index.php/admin (this triggers a redirect to the dashboard

• GET or POST to the CRUD API: index.php/adminrest/order/read

• Log out by request: index.php/admin/index/logout

148 ” Backend Integration

The code, using the Cognifty HTTP library, looks like this:

Cgn::loadLibrary(’Http::lib_cgn_http’);

//get a cookie
$http = new Cgn_Http_Connection($ip,

$url.’index.php/adminrest/order/read’,
$scheme,
$port);

$http->setMethod(’get’);
$http->fetch();
list($cookie,$junk) = explode(’;’,

$http->responseHeaders[’Set-Cookie’]);

$http = new Cgn_Http_Connection($ip,
$url.’index.php/admin/’, $scheme, $port);

$http->setMethod(’post’);
$http->setHeader(’Cookie’, $cookie);
$http->setHeader(’Content-Type’,

’application/x-www-form-urlencoded’);
$http->setBody(urlencode(’login[username]’).

’=admin&’.urlencode(’login[password]’).’=password’);
$http->fetch();

$http = new Cgn_Http_Connection($ip,
$url.’index.php/admin/’, $scheme, $port);

$http->setMethod(’get’);
$http->setHeader(’Cookie’, $cookie);
$http->fetch();

$http = new Cgn_Http_Connection($ip,
$url.’index.php/adminrest/order/read’, $scheme, $port);

$http->setMethod(’get’);
$http->setHeader(’Cookie’, $cookie);
$http->fetch();
if (strlen($http->responseBody)) {

try {
$xml = new SimpleXMLElement($http->responseBody);

} catch (Exception $e) {
// die("BAD XML: ".htmlentities($http->responseBody));
return false;

}
}

Backend Integration ” 149

What you do with the XML after you get it out is up to you and your specific needs.
If you are connecting Magento to an order fulfillment system, ERP, or accounting
package you will probably want to update the order’s status to “processing” after
each order is successfully inserted.

Some general ideas for integration include:

• Push the order into Mantis BT for tracking and alerts.

• Feed the data into an RSS stream (this was added to Magento 1.0)

• Scan the order for products that require attention.

• Push the order to different suppliers based on the items ordered

• Scan for fraudulent orders (high totals, ship to P.O. Boxes, etc)

• Insert the order into an order fulfillment system or accounting package

Hopefully you have seen the basics of getting order data out of Magento’s back-end
and into your developer hands as XML. With this information you can customize a
solution to your organization’s specific needs.

Chapter 11

Quick Answers to Common
Questions

Magento’s naming conventions are crazy!

Yes, they are. But there is a pattern to them. Whenever you see something in like
module/some_thing that string directly translates into a class name. The only problem
is, one of the pieces is missing. The missing piece is determined from the context, or
reason, for getting the class. Here is the basic pattern:

"module/package_classname"

This translates into:

Mage_Module_???_Package_Classname

The ??? can only be known based on the context.

So, it can be said that mage/package_classname doesn’t refer to anything unique, it
could be one of a number of classes. This is true. But, we know from the basic struc-
ture of a module, that the only sub-directories available to us are:

• Model

152 ” Quick Answers to Common Questions

• Controller

• Helper

• Block

So, the resulting class can only be one of those four, and it’s not Controller. Con-
trollers are special cases and don’t follow the normal naming conventions. The con-
text may or may not be readily apparent, but as you become more experienced with
Magento the context will be apparent. Let’s look at some examples and see the dif-
ferent contexts.

$product = Mage::getModel(’customer/address’);
//Translates into Mage_Customer_Model_Address

$url = $this->helper(’customer’)->getLoginPostUrl();
//Translates into Mage_Customer_Helper_Data ("/data" is appended

by default to helpers)

$url = $this->helper(’giftmessage/url’)->getSaveUrl();
//Translates into Mage_Giftmessage_Helper_Url

<block type="catalog/product_list" name="product_list"
template="catalog/product/list.phtml" />

<!-- Even XML translates into Mage_Catalog_Block_Product_List -->

How do I run a raw query against the database?

First, you need a resource model, then you need a database connection
from that resource model. After that, you are dealing with a simple Varien
PDO Adapter (Varien_Db_Adapter_Pdo_Mysql) object, which is just a sub-class of
Zend_Db_Adapter_Pdo_Mysql.

$w = Mage::getResourceSingleton(’core/resource’)->getConnection(’core_write’);
$result = $w->query(’select ’entity_id’ from ’catalog_product_entity’);
if (!$result) {
return false;

}

Quick Answers to Common Questions ” 153

$row = $result->fetch(PDO::FETCH_ASSOC);
if (!$row) {
return false;

}

How do I turn off the price in the layered navigation?

The idea here is that showing a breakdown of prices doesn’t make sense to the end-
user so you want to get rid of the price filter. This may not make sense to a customer
of your site if you don’t offer competing products, such as different sized air filters.
You, as a customer, need to order a filter of a certain size to fill a certain sized hole in
your furnace, comparing prices would probably end up only showing you filters that
are too large or too small.

The price filter is constructed of blocks, specifically
Mage_Catalog_Block_Layer_View. The price filter is some rendered HTML from
a model, not from another block. The HTML specifically for the prices and
categories are simply a list of items, so the rendering happens inside a model
that contains the logic for splitting up the prices of all the products into groups.
Then, these items are passed up to the specific block and end up as a child of
Mage_Catalog_Block_Layer_View. We can easily remove this child with an unset*()

call. A downside of this solution is that all the logic of the price filter still happens,
the results are just thrown away.

• Edit your app/design/frontend/yourstyle/yourtheme/layout/catalog.xml

• Find the tag <catalog_category_layered>
• Add a tag under <block type="catalog/layer_view (this means break the self-

closing syntax)

• Add an action tag, method="unsetChild"

• Alter some core code to throw away non-objects

154 ” Quick Answers to Common Questions

<catalog_category_layered>
<reference name="left">

<block type="catalog/layer_view" name="catalog.leftnav"
after="currency" template="catalog/layer/view.phtml">

<!-- this is what was added -->
<action method="unsetChild">

<name>price_filter</name>
</action>

</block>
<!-- ^^ remember to add a closing tag to this block tag -->
</reference>

Since Magento’s 1.0 release, you will now have to alter the behavior of the core block
catalog/layer_view so that it doesn’t try to work with non objects as if they were
filters.

in Mage/Catalog/Block/Layer/View.php around line 135 make the foreach loop look
like this:

foreach ($filterableAttributes as $attribute) {
$x = $this->getChild($attribute->getAttributeCode().’_filter’);
if (is_object($x)) {

$filters[] = $x;
}
unset($x);

}

How do I move the admin panel to a new name for security?

Let’s say that you want to change the default URL of example.com/admin/ to
example.com/backend/ to avoid any unwanted snooping around on your Web
site. The only thing you have to do is adjust the Adminhtml module’s front-
Name so the router will match up the new URL to the module. Edit the
/Mage/Adminhtml/etc/config.xml like so:

<config>
...

<admin>
<routers>

Quick Answers to Common Questions ” 155

<adminhtml>
<use>admin</use>
<args>

<module>Mage_Adminhtml</module>
<frontName>backend</frontName>

</args>
</adminhtml>

</routers>
</admin>

...
</config>

Make sure you disable the system’s cache before you make this change, other wise
you might get locked out of your admin pages.

If you don’t like modifying the core code, you can create a shell module and make
this XML the only part of your new module’s config.xml file. Then, you simply en-
able your new module in app/etc/modules/*.xml. Look at the other XML files in that
directory for examples of enabling modules.

How do I use installation and upgrade files in my custom mod-
ules?

Magento automatically installs or upgrades any module that it en-
counters during runtime. The installation files are located under
YourModule/sql/yourmodule_setup/mysql4-install-X.Y.Z.php. The trigger for
running this file is that your module’s version number is not present in the DB
table core_resource and that you have defined a version number in your module’s
etc/config.xml file. You will also need to define a global resource for your module’s
setup, use a tag name of <yourmodule_setup>. Without the resource definition that
includes both setup module and a connection, the installation or upgrade will not
perform, even if you increase the version number.

etc/config.xml contents...
<?xml version="1.0"?>
<config>
<modules>
<Company_YourModule>
<version>0.9.12</version>

156 ” Quick Answers to Common Questions

</Company_YourModule>
</modules>
<global>
<resources>
<yourmodule_setup>
<setup>
<module>Company_YourModule</module>

</setup>
<connection>
<use>core_setup</use>

</connection>
</yourmodule_setup>

</resources>
</global>

</config>

Given that XML file, and an absence of any record containing company_yourmodule in
table core_resource, your module’s install file will be run the next time that module
is executed.

Once installed, upgrades can be triggered when you change the version number
in the XML configuration file to be greater than the value in core_resource. This will
trigger a succession of any mysql4-upgrade-X.Y.Z.php file that has a version number
greater than the number found in the core_resource table.

The syntax of these installation files looks like this:

$installer = $this;
/* @var $installer Mage_Catalog_Model_Resource_Eav_Mysql4_Setup */

$installer->startSetup();
$installer->run("
ALL YOUR SQL IN ONE STRING (the system breaks apart the SQL by semi-colon);
USE ’{$installer->getTable(’my_own_table’)}’ TO KEEP TABLE PREFIXES

CONSISTENT;
");

$installer->endSetup();

/*
$installer->installEntities(); //only needed if you are installing

new entities and they are defined properly

*/
//any other setup code such as inserting default data, caching data, etc.

Quick Answers to Common Questions ” 157

How do I run Magento code without building a module?

Sometimes, running update scripts to quickly update the database or to export
some data does not require a complete module to hold the code. For these types
of operations you can build a shell script to get into Magento’s environment with-
out executing a traditional browser based request. The file is basically the Magento
index.php file with one major change, instead of Mage::run(’default’) we will sim-
ply use Mage::app(’default’). This type of file can be used to export pending orders,
update product categorization, change available quantities, or any other type of au-
tomated maintenance.

<?php
//if you store this script outside the Web site document
// root (recommended) use chdir() to move execution back to
// the document root.
//chdir("../magento/’);

//if you are performing admin tasks, sometimes the system
// checks if you are in SSL mode. Uncomment the following
// line to get this behavior.
//$_SERVER[’SERVER_PORT’] = 443;

require_once ’app/Mage.php’;
umask(0);
Mage::app(’default’);

//add your own code below:
/*
Example code:
load a category
$category = Mage::getModel(’catalog/category’)-load(1);

get a database handle
$w = Mage::getResourceSingleton(’core/resource’)->getConnection(’core_write’);
$w->query(’select ’entity_id’ from ’catalog_product_entity’);

*/

?>

158 ” Quick Answers to Common Questions

How do I show the root catalog category on the home page?

Currently, there is no way to signal which category that the catalog/category_view

block acts on. The only way is by setting a category object in the Mage::registry(),
and since the layout XML only works on Block objects, there is no way to affect the
registry. You must alter (by re-writing or by overriding) the getCurrentCategory()

method of the Catalog/Block/Category/View.php class.

/**
* Retrieve current category model object

*
* @return Mage_Catalog_Model_Category

*/
public function getCurrentCategory()
{

$_currentCategory = Mage::registry(’current_category’);
if (isset($_currentCategory)){

return $_currentCategory;
} else {

$categoryId = (int)Mage::app()->getStore()->getWebsite()->
getDefaultGroup()->getData(’root_category_id’);

$category = Mage::getModel(’catalog/category’)->load($categoryId);
Mage::register(’current_category’, $category);

return $category;
}

}

Now you are able to edit the home page in the CMS > Manage Pages link of the admin
control panel. Change the Layout Update XML to this:

<reference name="content">
<block type="catalog/category_view" name="category.products"

template="catalog/category/view.phtml">
<block type="catalog/product_list" name="product_list"

template="catalog/product/list.phtml" />
</block>

</reference>

Now, the home page will load the regular category view block, and when it tries to
load the current category from the Mage registry, it will fail and find the current site’s

Quick Answers to Common Questions ” 159

configured root_category_id and load that category instead. You could also add a
simple setCurrentCategory() to this block class and pass it any ID you want from the
layout XML.

If you know the exact category ID that you want to show, you can skip the above
code and simply use this as the Layout Update XML for the home CMS page:

<reference name="content">
<block type="catalog/product_list" name="product_list"
template="catalog/product/list.phtml" >
<action method="setCategoryId"><id>3</id></action>

</block>
</reference>

How do I hide the price of products before they go into the cart
or if a person is not logged in?

There are two places where the prices are formatted for display to the end user. The
catalog (category view, and product view) and the cart. On the cart, one method is
used for showing all the prices, including sub-total, tax totals, and the grand total,
so it can be handled separately from the catalog’s price formatting method. Both
methods are helpers so we will override the two helpers and make sub classes in our
own module.

For the checkout page, the helper is the default Data helper; for the catalog the
helper is the Product helper class. The config.xml settings to override a helper are
detailed below:

<config>

...
<global>
...

<helpers>
<catalog>
<rewrite>
<product>Company_YourModule_Helper_Product</product>

</rewrite>

160 ” Quick Answers to Common Questions

</catalog>
<checkout>
<rewrite>
<data>Company_YourModule_Helper_Checkout</data>

</rewrite>
</checkout>

</helpers>

...
</global>
...
</config>

Now, we can make very small sub-classes of these base classes and change the meth-
ods in question.

class Company_YourModule_Helper_Product extends Mage_Catalog_Helper_Product {
/**
* Overridden to hide price from anonymous users.

*
* @param Mage_Catalog_Model_Product $product

* @param bool $displayMinimalPrice

* @return string

*/
public function getPriceHtml($product, $displayMinimalPrice = false)
{

$loggedIn = Mage::getResourceSingleton(’customer/session’)->isLoggedIn()
;

if (! $loggedIn) {
return "You must be logged into to see the price.";

}
return parent::getPriceHtml($product, $displayMinimalPrice);

}
}

And the Checkout helper:

class Company_YourModule_Helper_Checkout
extends Mage_Checkout_Helper_Data

{
/**
* Overridden to hide price from anonymous users.

*/

Quick Answers to Common Questions ” 161

public function formatPrice($price)
{

$loggedIn = Mage::getResourceSingleton(’customer/session’)
->isLoggedIn();

if (! $loggedIn) {
return "N/A";
//return "You must be logged into to see the price.";

}
return parent::formatPrice($price);

}
}

Notice how we can change the name of the helper from Data to Checkout, our own
class names do not have to directly follow the same patterns as the default class
names.

How do I find out the proper table name?

The core resource model has a method to get you any table name for any model in
the system. Table names do not have to follow the name of the model, an end-user
can change the table names by changing an XML setting. Also, any installation can
have an arbitrary prefix for any table. Therefore, it is best to use the getTable method
of the core resource.

$r = Mage::getResourceSingleton(’core/resource’)->getConnection(’core_read’)
$tableName = $r->getTable(’catalog/product’);
$tableName === ’catalog_product_entity’;

This happens because we have the following XML configuration in the catalog mod-
ule’s config file.

<global>
<models>

<catalog>
<class>Mage_Catalog_Model</class>
<resourceModel>catalog_resource_eav_mysql4</resourceModel>

</catalog>

<catalog_resource_eav_mysql4>

162 ” Quick Answers to Common Questions

<class>Mage_Catalog_Model_Resource_Eav_Mysql4</class>
<entities>

<product>
<table>catalog_product_entity</table>

</product>
...

How do I show Magento products on a non-Magento page?

This is an often requested feature. There are a number of ways to do it too. You
could create a listener to publish a category of products to static HTML whenever a
category changes. You could run a cron script or other scheduled task to run some
Magento code to export a category of products to a static file as well. The quickest
way to get the job done is to simply include the necessary Magento files in your other
PHP script and call the display logic.

Start with the basic shell magento script.

require_once ’/path/to/app/Mage.php;

umask(0);
//not Mage::run();
Mage::app(’default’);

Assuming we want to display an entire category of products, we need to load up the
category display block and render it. This will load the products and push the data
through the associated template file.

//code snipped
$className = Mage::getConfig()

->getBlockClassName(’catalog/product_list’);
$block = new $className();

$className = Mage::getConfig()
->getBlockClassName(’core/template’);

$toolbar = new $className();
$block->setChild(’toolbar’, $toolbar);

//choose whatever category ID you want

Quick Answers to Common Questions ” 163

$block->setCategoryId(3);
$block->setTemplate(’catalog/product/list.phtml’);
echo $block->renderView();

You might think that we would be using the category view block for this task, but
we’re not. The product list block is the component which does the actual printing of
the products. The category view block does too much work preparing the rest of the
page and is too integrated into Magento to cleanly use outside of Magento’s code.

The reason that we make a core/template type block and call it “toolbar” is be-
cause the template file for the product list wants to show the output from a block
called toolbar. If we set the real toolbar (type catalog/product_list_toolbar) then
we start unraveling a whole lot of Magento dependencies, as the toolbar requires a
product collection. This is the simplest, quickest way to render a category of prod-
ucts “outside” Magento.

Help, my product changes don’t show up on the frontend!

Recently, this issue has come up for some users. When they make changes in the
admin to certain products, the changes don’t show up on the front end. This is most
likely related to an incorrect website id. We haven’t discussed multiple Web site sup-
port in this book as it isn’t completely finished yet.

If you have this problem there is one simple solution that works most of the time.
In the administrative backend, go to the Manage Products page. You should see a
grid of products with a column of checkboxes on the left. This product grid is called a
“mass update grid” because it can perform operations on any product you check-off.
Select the problematic products by checking them. In the header bar for this grid, on
the right, there should be a drop-down box with Actions next to it. Choose Change
Status, then select Enable in the new status box that appears. Click the submit button
to simply re-enable all of the problem products. This seems to work for most people.

164 ” Quick Answers to Common Questions

I give up! Magento is too confusing

I hear you. Magento can certainly be overwhelming at times. Although it has some
quirks, and some people feel it is over-engineered, you can get done what you want
to get done. It’s just PHP, after all.

The best advice I have if you’re stuck is to simply make a copy of the
index.php.sample file, call it whatever you want. Change the line with Mage::run()

to Mage::app() and start trying out code samples below that line. The function
Mage::app() simply initializes the entire Magento framework, but does not execute
any request. This allows you to test any code you want in this file. You’ll be able to
figure out the problem if you just isolate your code troubles into a separate environ-
ment, like this sample file, and just keep plugging away at it.

Index

Symbols
.phtml files, 34, 125
_collectSaveData, 52
_processSaveData, 52

A
action, 37
action methods, 39
actions, 39
adding products to the cart, 104
admin

logging in, 147
admin interface

changing default URL, 154
administrative functions, 13
administrative interface, 13
anchor mode, 17
App model, 38
app/etc/config.xml, 44
attribute identifier, 21
attribute object, 101

creating for multiple stores, 101
creating for single stores, 101

attribute set, 20
attribute system, 20

attribute sets, 20
attributes, 20

attributes, 15, 20, 114

apply to, 22
catalog input type, 21
identifier, 21
input validation, 22
scope, 21
unique value, 21
values required, 21
visibility, 115

B
backend functions, 13
backend integration, 135
batch updates, 141
blocks, 29

base class, 29
Mage_Core_Block_Abstract, 29
Mage_Core_Block_Template, 29
toHtml method, 29

bread crumb, 15
bundled products, 20
business logic, 40

C
CartController.php, 104
catalog, 15

categories, 15
catalog input type, 21
categories, 15

168 ” INDEX

anchor mode, 16, 17
changing page layout, 17
CMS block, 16
display mode, 16
editing, 16
layout updates, 16, 17
making an anchor, 17
managing, 16
URL key, 16
viewing, 16

changing page layout, 17
classes, 28

naming convention, 28
CMS

reusing themes, 92
CMS blocks, 16
CMS integration, 75
CMS-driven integration, 75
code formatting, 2
code pools, 28
collections, 140
community, 28
config.xml, 31, 38, 43

adding models, 117
configurable products, 18
controllers, 29, 136, 137

base class, 30
default file name, 136
default method name, 136
dispatch method, 30
Mage_Core_Controller_Varien_Action, 30
methods, 30
preDispatch method, 30

convert.xml, 31
core, 28
coupon module, 113
creating an API, 141
custom modules, 57

changing content design, 65

config.xml, 63
creating, 57
default config.xml, 116
default files needed, 59
design changes, 65
directory structure, 57
enabling, 62
including, 61
initializing, 58
installing, 155
sample module requirements, 61
upgrading, 155
viewing template changes, 67
XML files, 62

custom template block
activating, 103

custom template blocks, 69
customer product reviews, 15

D
data helpers, 108

overriding, 108
data modeling, 29
database, 43

default connection settings, 44
design, 43
locating table names, 161
making a new connection, 43
master-slave setup, 44
non-EAV tables, 51
normalization, 48
querying, 152

database tables, 46
design, 24

packages, 24
themes, 24

directory structure, 4, 57
default, 8

display

INDEX ” 169

turning off price, 153
downloading latest version, 7
Drupal, 75

E
e-commerce, 1

introduction, 1
EAV, 43, 46

versus normalization, 48
eav_attribute, 101

defining values, 101
entities, 49

attributes, 52
configuring, 82
constructor, 80
creating new, 80
default types, 49
defining, 51
overriding, 80
saving, 52

entity attribute value, 43
entity attributes, 83
even listeners

enabling, 105
event listeners, 104, 121

vs. observers, 122
xml syntax, 121

event object, 123
execution path of requests, 38
exporting, 135

orders, 137
exporting data, 141

F
file naming conventions, 4
front action, 37
front controller, 36, 38
frontend, 163
functionality, 13

default, 13

G
Google Sitemap, 15
grouped products, 18

H
helpers, 30

methods, 30
translation helper, 31

hiding prices, 159
horizontal modeling, 46

I
index.php, 35
input validation

for store owner, 22
installation, 8

creating database, 8
sample data, 9
setup, 7

integrating logins, 76

J
Joomla, 75

L
layered navigation, 17
layout

modifiying, 124
reference tag, 126
saving your work, 125

layout files, 32
common xml tags, 33
directory structure, 32

layout handles, 34
layout system, 92
layout update handles, 68
layout updates, 17
loading App module, 36

170 ” INDEX

loading extensions, 36
loading front actions, 36
local, 28

M
Mage class, 38
Mage::getSingleton, 44
Mage::run(), 36
Mage_Core_Model_Abstract, 45
Mambo, 75
managing database connections, 43
models, 28, 45, 116

load method, 118
loading, 142
making your own, 117
save method, 118
saving, 142
testing, 120
versus raw SQL, 142

module execution, 36
modules, 27

automatic installation of, 81
catalog, 27
code pools, 28
config files, 31
configuration, 27
directory structure, 27, 28
for individually made items, 97
installation, 116
Mage package, 28
overriding with tags, 32

multiple catalogs, 23
multiple designs, 24
multiple languages, 23
multiple stores, 22

creating new attribute objects, 101
product catalogs, 22

MySQL, 8
tools for development, 8

N
naming conventions, 151
navigation, 15

layered, 17
Non-Authoritative Data Source Syndrome,

76

O
observer pattern, 122
observer patterns, 122

versus event listeners, 122
operating system requirements, 4
order items, 99

vs. quote items, 99
order process, 99
overriding core models, 79

P
page layout

default, 33
page layouts, 17

changing, 17
custom, 17
default, 17

page.xml, 33
paper catalog

comparison to, 15
passwords, 82
product attributes, 99

creating new, 99
product catalog, 14, 15, 22

module, 27
product kits, 20
product tags, 15
product view block, 102

overriding, 102
products, 15, 18

adding, 18
attribute sets, 20

INDEX ” 171

attributes, 20
showing outside of Magento, 162

Q
quote item, 104
quote items, 99

vs. order items, 99

R
rendering a complete page, 32
request cycle, 36

directory layout, 37
request forwarding, 146
resource, 43

managing database connections through,
43
retreiving, 45
sample, 45

resource model, 152
resourceModel

xml tag, 78
rewards

repeat customers, 113
rewards module, 113
routers, 36, 38, 39

matching controllers, 145
running scripts without a module, 157

S
scope, 21
search term review, 15
security, 146, 154
SEO keywords, 16
SEO pitfalls, 16
SEO text, 16
shell module, 58
shell scripts, 157
shopping cart

altering contents, 104, 109

single sign-on, 76
SKU, 18
store-driven integration, 75, 93
subcategories, 18
subversion, 7, 9
system.xml, 31

T
template blocks

outputting child blocks, 103
overriding with custom blocks, 69

template files, 34
directory structure, 34

template system, 32
rendering, 29

templates
saving your work, 125

templating system
design, 35

testing code, 164

U
URL key, 16
URL rewriting, 15
user input

accepting, 99
recording data, 104

UserConnect module, 77

V
vertical modeling, 46

W
wishlist module, 45

X
XML formatting, 3

Z
Zend Framework, 2
Zend_Db_Adapter_Abstract, 44

	Introduction
	Who Can Use This Book?
	Developers
	Store Owners

	About This Book
	Code Formatting
	XML Examples

	Operating System Considerations

	Developing for Magento
	Prep Your Environment
	LAMP/WAMP Platform
	Subversion
	MySQL Tools

	Installation
	Database Setup
	Magento Setup

	Initializing Subversion

	Exploring Magento
	Magento Catalogs
	Categories
	Products
	Attribute System

	Multiple Stores
	Languages
	Multiple Catalogs
	Multiple Designs

	Magento Modules
	Module Structure
	Code Pools
	Module Packages
	Models
	Blocks
	Controllers
	Helpers
	Config files

	Template System
	Layout Files
	Template Files

	Mage Application
	Magento's Request Cycle

	Database Design
	Resources and Database Connections
	Master Slave Setup

	Models and Resource Models
	EAV Design
	EAV versus Normalization

	Entities
	Default Entities
	Defining Entities
	Saving Entities

	Entity Attributes
	Attribute Values

	Collections

	Custom Modules
	The Filesystem
	The Shell Module
	Default Directories
	Default Files

	Module Requirements
	Plan of Attack

	Configuration Files
	Config.xml

	Template Changes
	Layout Changes

	Overridding a Block
	Conclusion

	CMS Integration
	CMS Driven Approach
	Technical Considerations
	The UserConnect Module
	Passwords
	Entity Attributes
	Dealing with Legacy Attributes
	Registration
	Conclusion

	Synchronizing Sessions
	Magento Listeners
	CMS Sessions

	Shared Themes
	Store Driven Integration

	Made to Order Module
	Example Scenario
	Plan of Attack
	The Length Attribute
	New Module
	Installation
	Overriding the Block

	Recording User Input
	Adding Data to the Quote
	Adding Data to the Order

	Show Customizations to the Customer
	Modify the Cart Page
	Separating Similar Products in the Cart

	Conclusion

	Points and Rewards Module
	Plan of attack
	Adding New Attributes to Products
	Creating a Shell Module
	Recording Points Ordered
	Making a Model
	Event Listeners
	Summary

	Show the Customer Their Points
	Dashboard Layout
	Summary

	Dynamic Coupons
	Coupon Models

	Deducting Points
	Conclusion

	Backend Integration
	Starting a New Module
	The Controller
	CRUD Controller
	Read Action
	Update Action
	Delete Action
	Create Action
	Securing the Controller

	Client Access

	Quick Answers to Common Questions
	Magento's naming conventions are crazy!
	How do I run a raw query against the database?
	How do I turn off the price in the layered navigation?
	How do I move the admin panel to a new name for security?
	How do I use installation and upgrade files in my custom modules?
	How do I run Magento code without building a module?
	How do I show the root catalog category on the home page?
	How do I hide the price of products before they go into the cart or if a person is not logged in?
	How do I find out the proper table name?
	How do I show Magento products on a non-Magento page?
	Help, my product changes don't show up on the frontend!
	I give up! Magento is too confusing

	Index

