

Magento 1.3: PHP Developer's
Guide

Design, develop, and deploy feature-rich Magento
online stores with PHP coding

Jamie Huskisson

 BIRMINGHAM - MUMBAI

Magento 1.3: PHP Developer's Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2010

Production Reference: 1150110

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847197-42-9

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author
Jamie Huskisson

Reviewers
Jose Argudo

Erik Hansen

Acquisition Editor
Douglas Paterson

Development Editor
Swapna Verlekar

Technical Editor
Aditya Belpathak

Indexer
Hemangini Bari

Editorial Team Leader
Abhijeet Deobhakta

Project Team Leader
Lata Basantani

Project Coordinator
Joel Goveya

Proofreader
Sandra Hopper

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

About the Author

Jamie Huskisson, a passionate 23-year-old freelance developer from Nottingham,
has been working with Magento for the past two years since the very early BETA
versions. His development client list features names such as NHS, Volkswagen, and
Nike with his day-to-day work life spent building everything from web applications
to e-commerce stores and small business sites. He also trains groups of developers,
and provides consulting on adopting open source technologies over closed systems
for clients when required.

Jamie also writes and maintains a popular online blog at http://www.jhuskisson.
com/ where he gives advice on various aspects of the web, including freelancing,
Magento, Wordpress, PHP, and running your own business.

I'd like to thank my girlfriend Vicky for putting up with my late
nights working on the book. I'd also like to thank my family and
especially my mother, for raising me to believe that I can achieve
anything I put my mind to.

To everyone that reads this, enjoy your time developing what you
read in and out of this book. I look forward to hearing from any of
you that develop sites or modules based on what you read between
these covers.

About the Reviewers

Jose Argudo is a web developer from Valencia, Spain. After finishing his studies,
he started working for a web design company. After six years of working for that
company, and others, he decided to start working as a freelancer.

Now, he thinks it's the best decision that he has ever taken, a decision that lets him
work with the tools that he likes, such as Joomla!, CodeIgniter, CakePHP, jQuery,
and other known open source technologies.

In the last few months, he has reviewed books for Packt Publications such as
Magento 1.3 Theme Design, Magento: Beginner's Guide, Joomla! 1.5 SEO, Joomla!
with Flash, and Symfony 1.3 Web Application Development, along with Magento
1.3: PHP Developer's Guide.

If that weren't enough, he authored CodeIgniter 1.7 for Packt Publications, a book
that he put a lot of effort into.

 To my brother, I wish him the best.

Erik Hansen is an entrepreneurial techie with a bent for business. He's the
co-founder and CTO of Classy Llama Studios, an e-commerce-centric company
that he helped start in 2007. He leads a team of developers in providing creative
solutions for Classy Llama's clients.

Hansen's interest in technology is hard-wired in his brain. He started out building
basic circuit boards in his basement as a child, and after being involved in a number
of startups right out of high school, he focused his efforts to become an expert in
Magento e-commerce development.

When he's not staying up until the wee hours of the morning programming (on his
MacBook Pro, of course), Hansen enjoys spending time with family and friends,
reading, playing sports, and listening to music.

I would like to thank Kurt Theobald, Timothy Rhodes, Matt Johnson,
and the rest of the Classy Llama team for investing their time in my
personal development.

Table of Contents
Preface 1
Chapter 1: Magento 1.3: PHP Developer's Guide 7

Extending Magento 8
Core development functionality coverage 8

Core principles of development 9
System maintenance 9
Payment and shipping module development 9
Module development 9
Data portability and interaction 9

Chapter overview 9
Installing, upgrading, and preparing for development 10
System architecture 10
Shipping modules 11
Payment modules 11
Basic module creation and implementation 11
Fully-featured module development with administration panels 11
Integration of third-party CMS 12
Magento's core API 12
Importing and exporting data 12

Summary 13
Chapter 2: Installing/Upgrading Magento and Preparing for
Development 15

Requirements 15
Types of installation 18

Manual 18
Installing 18
Upgrading 26

Downloader 27

Table of Contents

[ii]

Installing 27
Upgrading 30

SSH (Secure Shell) 33
Installing 33
Upgrading 34

SVN (Subversion Network) 34
Summary 35

Chapter 3: Magento's Architecture 37
Magento's base structure 37

Base directory 38
The function of each of the files in the base directory 39
The function of each of the folders in the base directory 40

The template system architecture 41
Structural blocks and content blocks 41

XML layout files 44
Hierarchical file processing 45

Modules and how they work within the system 46
Distribution of the modules between directories 47
Modules included with Magento 47
Setting up the folder structure of a module 49

Zend Framework and its role within Magento 50
What is Zend Framework 50
How Zend Framework works 51
It's role and effect in Magento 51

Backing up Magento's data 52
Backing up the files 52

Manually 52
Using SSH 52

Backing up the database 53
Using the system itself 54
Using phpMyAdmin 55

Summary 56
Chapter 4: Shipping Modules in Magento 57

What shipping modules do 57
How to begin with a shipping module 59

The configuration files 59
The adaptor model 64
The administration setup 67
Declaring further fields and learning how they're structured 69
Appearing in the administration 71

Free shipping 71
Handling 72

Table of Contents

[iii]

Restricting a shipping method to certain countries 73
Using our template to create a shipping method 74

The configuration files 74
Our adaptor 76
The administration configuration 79
Testing our newly built module 80
Code to allow our shipping module to meet our needs 81

Summary 82
Chapter 5: Building a Payment Module for Magento 83

How payment methods work in Magento 83
Payment methods that are bundled with Magento 84
Downloadable payment methods on Magento Connect 85

Building the base of a payment method 86
Module declaration 86
Module configuration 86
The adaptor model 90

Payment information storage 93
Four core components 93

Declaring configuration options for the admin panel 95
Setting up the core fields 95
Some other field types you can use 97
Obscuring fields 98
Custom fields from our models 98

Tying in automatic shipping tracking/updating 99
Automatic shippingtracking and code-generation tie-in 99

Summary 103
Chapter 6: Building a Basic Featured Products Module 105

How it works 105
Creating the attributes in the system 106
Setting the field values 107

Attribute Properties 107
Frontend Properties 108
Manage Label/Options 108

Creating the core module with functionality 110
Adding the XML block declaration for display of the module
on the frontend 112
Creating templates for display 113
Defining the module in the local .xml module configuration file 115

Summary 115

Table of Contents

[iv]

Chapter 7: Fully-Featured Module for Magento with
Admin Panel 117

Creating our first Hello World message 118
Setting up the display template 118
Placing the display template in a layout .xml file 118

Creating our first /helloworld/ URL structure 120
The directory structure 120
Giving the module a backend 121
Configuring the module 121
Our controller 124
The Helper model 125
The module's default model 125
Template blocks and display 126

Display block class 126
The layout .xml file 126
The design template file 127

Viewing /helloworld/ 127
Taking a look at what we've put together 128

Using the Module Creator script to get Hello World 128
Installing the Module Creator 129
Creating our first module with the Module Creator 130
The contents of our new module 132

Hello World 133
Expanding our module further into a database-driven, administrated
brands module 134

Recreating the base 134
The directory structure 134
Enabling the module in the backend 135
Our controller 135
Configuring the module 136
The Helper model 137
The module's default model 137
The module’s frontend display base 137

Extending the base towards introducing a database 138
The configuration .xml file 138
The mySQL4 data models 141
Database setup and installation of the file 142

Extending the module to include an administration 143
Adminhtml directories 143
Administrative display blocks 143
Defining the core administrative backend to the system 144
Defining the add/edit screens to the system 146
The module's grid display declaration 147
Preparing the form 150

Table of Contents

[v]

Defining the add/edit form tabs 151
Configuring and preparing the form for display 152
Setting up our brand status array 154
Creating a controller to process access URLs 156
Changing the module's config.xml to reflect the administrative backend 162
Giving our administrative backend a layout .xml file 165
A look at the administrative backend 166

The index controller 167
Displaying the brands data 169

Summary 171
Chapter 8: Integration of Third-Party CMS 173

Notable things about CMS Integration 173
The WYSIWYG editor implementation 174
Integrating Wordpress 174

Installation 175
Configuration 180

WordPress Blog Settings 181
WordPress Blog Menu 181

Changing the display of integration 182
Page/post layout 182
Sidebar 182

Other content management systems 184
Typo3 184
Drupal 184
ExpressionEngine 185
Joomla! 185

Summary 186
Chapter 9: Magento's Core API 187

What is the Core API? 187
Which Core APIs are included? 188
What do the Core APIs do? 188
Prerequisites to using the Core API 189
Examples of what can be done with the Core API 190
Giving scripts access to the Core API 190

Choice of protocols 195
SOAP 195

Checking for SOAP installation on the server 195
Putting SOAP to use 196
Zend Framework SOAP Client 197

XML RPC 197
Getting XML RPC on our server 198
Setting up the Zend Framework XML RPC class 198
Putting XML RPC to use 199

Table of Contents

[vi]

Basic API methods 200
Describing the methods 200
Understanding the methods individually 201

startSession() 201
endSession(sessionId) 201
login(apiUser, apiKey) 202
call(sessionId, resourcePath, array arguments) 202
multiCall(sessionId, array calls, array options) 203
resources(sessionId) 203
globalFaults(sessionId) 204
resourceFaults(sessionId, resourceName) 204

Global API Faults 205
Basic API scripting: Customer API 206

Getting started 206
Creating a customer 207
Retrieving an individual customer's details 208
Updating the customer's details 208
Listing all customers from the database 209
Deleting a customer from the database 209

Complete list of available resources and methods 209
Customer methods 210
Directory methods 210
Catalog methods 211
Sales methods 213
Inventory methods 214

Summary 215
Chapter 10: Importing and Exporting Data 217

What kind of data can I export or import? 217
An introduction to the interface 218

Profile Wizard 219
Profile Information 219
File information 221
Data Format 222
Field Mapping 223
Export Filters 224

Upload Files 224
Run Profile 225
Profile Action XML 226
Profile History 227

Sample implementation: Import/Export of metadata 227
Exporting our metadata 227

Setting up the Profile Information 228
Adding the File Information 228

Table of Contents

[vii]

Selecting the Data Format 228
Mapping our fields 229
Choosing the Export Filters 229

Importing our metadata 229
Setting up the Profile Information 230
Adding the File Information 230
Selecting the Data Format 230
Mapping our fields 231

Common issues with importing/exporting 232
Bad CSV file formatting 232
Short descriptions 232
Import/export paths 232
Images location 232
Importing multiple images 232

Summary 233
Index 235

Preface
Magento 1.3: PHP Developer's Guide will guide you through development with
Magento, an open source e-commerce platform. Exploring commonly approached
areas of Magento development, Magento 1.3: PHP Developer's Guide provides you
with all the information you'll need to get a very solid understanding of developing
with Magento.

What this book covers
Chapter 1, Magento 3.1: PHP Developer's Guide shows you what this book will cover
entirely in detail for you to read through.

Chapter 2, Installing/Upgrading Magento and Preparing for Development will prepare
you for development with Magento as well as showing you how to install and
upgrade Magento using a variety of different methods.

Chapter 3, Magento's Architecture introduces you to Magento's architecture, the
Zend framework, and how the system works from a development point of view.

Chapter 4, Shipping Modules in Magento shows you how to put together shipping
modules in Magento to handle shipping calculation and information.

Chapter 5, Building a Payment Module for Magento guides you in putting together
payment methods in Magento and building connecting modules between Magento
and the payment gateway of your choice.

Chapter 6, Building a Basic Featured Products Module walks you through building a
featured product module into your web site so that you can show featured products
in your Magento categories.

Preface

[2]

Chapter 7, Fully-Featured Module for Magento with Admin Panel shows you how to put
together a fully featured module in Magento as well as giving it a full backend to
manage data with. You'll also learn how to use the module creator to quickly deploy
module skeletons to use yourself in the future.

Chapter 8, Integration of Third-Party CMS will show you how to integrate Wordpress
with your Magento installation. It will also show you the other options available
should you use any other content management systems.

Chapter 9, Magento's Core API guides you through the Magento Core API and how
to utilize it with scripts of your own to interface with Magento's data.

Chapter 10, Importing and Exporting Data shows you how to work with import and
export data profiles in Magento to work with basic order, product, and customer data.

Appendix, Resources for Further Learning, contains additional resources for further
learning. Its not a part of this book and it can be downloaded from Packt's website
//www.packtpub.com/files/7429-Appendix-Resouces-for-Further-Learning.
pdf.

What you need for this book
You will need an installation of Magento, either on your local machine or on a
remote server, your favorite code editor, and permissions to manipulate files.

Who this book is for
If you are a PHP developer who wants to understand the architecture of Magento,
learn how to extend the system with PHP code, add new features, and integrate
Magento with a third-party CMS, this book is for you.

You are expected to be a confident PHP 5 developer. No experience of Magento
development is expected, although you should be familiar with the operation of
Magento. No experience of the Zend framework is expected.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

Preface

[3]

A block of code is set as follows:

public function _prepareLayout()
 {
 return parent::_prepareLayout();
 }
 public function getHelloworld()
 {
 return 'Hello world';
 }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public function _prepareLayout()
 {
 return parent::_prepareLayout();
 }
 public function getHelloworld()
 {
 return 'Hello world';
 }

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in
either writing or contributing to a book on, see our author guide on
 www.packtpub.com/authors.

.Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/7249_Code.zip
to directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in the text or the code—we would be grateful if you would report this to us.
By doing so, you can save other readers from frustration, and help us to
improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the let us know link, and entering the details of your errata.
Once your errata are verified, your submission will be accepted and the errata
added to any list of existing errata. Any existing errata can be viewed by selecting
your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Magento 1.3: PHP
Developer's Guide

After developing a site or two in Magento, we would want to take our development
a step ahead. Magento 1.3: PHP Developer's Guide is a book for those developers
who want to work with the Magento e-commerce platform. In this book, we will be
guided through the fundamentals of development with Magento.

If we're either frustrated with the "give you all the code" tutorials and articles online
or actually really prefer them then, we'll find comfort in the code examples given
in this book. Each code block in the book is followed by a detailed piece-by-piece
explanation of what each part of the code does. This way, we can get information
about not just the functionality, but also learn about the inner workings of the code
being implemented.

Practical knowledge focused on common requirements of any Magento
development is gained in this book, in both the day-to-day environment, as well as
casual pick-it-up-when-you-need-it situations. This book will add to our development
knowledge, once we go through it thoroughly. We will learn the following:

•	 Bettering our standards - We'll begin to understand the standards of
Magento development and learn the outline of Magento itself, following
through to the core architecture.

•	 Providing an extremely solid base for development. - The solid base, built
by reading this book and following the practical examples in this book, will
enable us to experiment with Magento's functionality and extend it in ways
unheard of previously.

•	 The ability to solve frequently occurring issues. - The time spent developing
with Magento will help us in resolving frequently occurring issues. We'll
learn to build payment and shipping modules. We'll also learn how to
interact with the Magento Core API and importing/exporting data for
our websites.

Magento 1.3: PHP Developer's Guide

[8]

Extending Magento
In this book, we'll be extending Magento in four core areas throughout. These can
be broken down into the following:

•	 Extensions of existing functionality with new modules that extend the
functionality of Magento beyond the module's capability.

•	 Brand new pieces of functionality that will seamlessly integrate with
Magento's infrastructure to introduce new features to the overall Magento
system, beyond its core base.

•	 Payment and Shipping methods which implement either special formulas
for processing payment and shipping, or integrate with existing gateways
of other providers.

•	 Wordpress CMS integration to implement Wordpress data into a Magento
store, both through a sidebar display block and a blog using our Magento
theme template.

With each of these methods for extending Magento, we'll go through how existing
modules within Magento do it and how we can too, building real-world examples as
we go along.

Practical examples will be used and explained block by block as we go along.
Every piece of code is run through to start, allowing us to skim through the chapters
when we need the code in a hurry. It is also then backtracked over to ensure that
proper understanding and meaningful explanation is given to every block that is
placed into our modules or scripts. This ensures that no function is unknown, once
the code it written.

We'll extend Magento throughout this book, without touching any of the core
files in the installation. This means that the methods taught in this book and those
used throughout this book, will not affect the core installation of Magento. When
upgrading, we won't need to worry about module malfunctioning.

Core development functionality coverage
In this book, we will cover several topics that we encounter when programming
with Magento. These vary from functionality you will touch upon in every single
site you build or maintain that is using Magento to functionality that will be touched
upon not quite so much, but is equally as important to be aware of when developing
with Magento.

Chapter 1

[9]

Core principles of development
We'll learn everything from building modules that are not touching upon
Magento's core installation, to the file structure of Magento, to the core principles
of development with Magento in this book.

System maintenance
Important factors such as upgrading Magento and installed modules, backing
up internal system data, and fixing commonly occurring issues will be covered
in this book.

Payment and shipping module development
We'll learn how to build both payment and shipping modules while reading this
book. These will expand upon Magento's base and provide additional functionality.

Module development
We will build several modules in this book, from basic modules that bring additional
features to Magento, to fully featured extensions that manage data in the backend
of Magento, as well as having dynamic frontends and their own dedicated URL
structure for display.

Data portability and interaction
Probably the biggest factor in choosing any content management system has to, be
whether or not we can get the data in or out of the system. Whether or not it will
integrate with our existing systems is also a large concern.

In this book, we'll cover mass importing and updating of data via Excel documents
and the built-in Core API. These will allow integration with existing backend or
internal systems. We'll also cover how to integrate Magento with third-party content
management systems.

Chapter overview
The chapters in this book vary greatly in terms of what they teach, to ensure that
as many topics are covered as possible. This ensures that in depth knowledge of
development is gained from them.

Magento 1.3: PHP Developer's Guide

[10]

The following topics on Magento development will be covered:

Installing, upgrading, and preparing for
development
We'll start by walking through the server requirements for installing Magento
and proceed onto how to check manually and how to check automatically using a
prepared script that Magento provides for you to check hosting environments prior
to installing Magento on them.

Installing Magento manually will be covered step by step, from downloading
Magento to uploading the contents of the zip file to our server and going through the
installation right to the end. Upgrading will then be covered to ensure that Magento
installations are kept up to date with the latest updates released by Varien.

We'll walk through how to perform both these actions through a Secure Shell
connection to be able to use your root server access to speed up the upgrade and
installation process as well as automate it. SVN (Subversion) users will be able to
keep the installation updated using Magento's repository. Overall, this chapter will
make sure Magneto's installation and upgrade process can fit into our workflow and
suit our hosting environment setup.

System architecture
In this chapter we'll run through the architecture behind Magento's system, covering
the core file structure and through to how the template system works. This will be
important to understanding Magento as a whole and placing our files in the right
place when beginning development. It will help break down the barriers between
approaching Magento for the first time and developing your first project that plague
most developers.

We'll learn more about the Zend Framework and how it powers Magento's core
architecture. This will be explained for a better understanding of Magento's structure.

We'll also go through the best methods for backing up data within Magento, to make
sure you're covered before doing anything drastic with your installation and that any
data is safe from loss going forward.

Chapter 1

[11]

Shipping modules
Every Magento installation uses Shipping modules to give the user the option of
how their items are delivered to them once they are paid for. In this chapter, we'll
be learning how to build a basic shipping module for Magento that will form a
module skeleton of functions which can be used in further development of shipping
modules. We'll go through what other shipping modules have done and what's
possible when building shipping modules for Magento.

Proceeding from there, we'll build a basic shipping module with a few methods
applied to it, which will put what we've learned into practice.

Payment modules
Payment modules are vital in Magento, and we'll walk through how to build a basic
skeleton of a payment module, in the payment module chapter. From this, we'll
learn how they are structured and how to build the base before advancing ahead to
something better.

We'll learn how to add basic events to our payment module to advance it towards a
fuller integration than expected from a basic module.

Basic module creation and implementation
We'll learn the basics of module creation to build a simple featured-products module
implementation which features products on a per category basis. This will outline
the principles of structure and implementation of a basic module development useful
for further development.

In addition to this, we'll run through some quick tips that will help with
Magento development. We'll try to resolve a few common issues that arise
during development.

Fully-featured module development with
administration panels
With this chapter, we'll be delving deeper into Magento by building a basic brand
management module. This will manage brands and display their details, which will
be output in a dynamic template that has its own dynamic URL.

Magento 1.3: PHP Developer's Guide

[12]

This chapter will show the implementation and functioning of the administration
section inside Magento, which allows management of our module from the backend.
We'll then use this module and its backend for getting a dedicated URL on the
frontend and a dynamic output for the managed data.

We'll also go through using the Module Creator script, put together by <credit>
to speed up our module creation process in the future. This will cover the base
installation of the Module Creator script and how to put it to use.

Integration of third-party CMS
In this chapter, we'll be covering third-party CMS integration, the possibilities and
the helping aids in integrating our favourite CMS into Magento for data portability.
We'll use Wordpress as a core example and implement Wordpress into Magento
using a popular extension.

We'll also walk through other options available for implementation with other CMS.
These CMS include Drupal, Typo3, Expression Engine, and Joomla!; the overview
and options available for each are described in the chapter.

Magento's core API
Every installation of Magento comes with an available data API for external scripts
and internal scripts to interact with the Magento installation's data. We'll walk
through how it can be used, setting up the API within an installation, and handling
error feedback when it occurs during usage.

We'll learn about the available methods which the API offers and see examples
of what can be done with basic outlay of what comes with a default Magento
installation. Along with this, there will be practical examples of how to put the
API to use with these calls to produce something viable (such as a script) to be used
in the future.

Importing and exporting data
Managing data is an import aspect of Magento, and in this chapter we'll be
discussing the built-in methods of mass customer, order, and product data available
within Magento.

We'll go through how to import externally located files for retrieving and storing
information from and to external sources, to mass update or export information with
our Magento installation.

Chapter 1

[13]

Summary
This book aims to provide us with a solid foundation of knowledge to develop a site
upon by using Magento. The ideas gained by reading this book will enable us to use
Magento to build something advanced.

The internal functioning of Magento will be explained in depth, along with
extending the present functions. This book will help us in developing our ideas
into and onto Magento's default installation.

Installing/Upgrading
Magento and Preparing for

Development
In this chapter, we will get everything setup in order to begin development with
Magento. We will go through the four methods that are available when installing
and upgrading our Magento installation, so that we're able to pick the one that best
suits our path in development.

Please note: upgrading is not a requirement of installing Magento, but it will be
covered in this chapter. This will ensure that we're able to upgrade the system, as
necessary, when an upgrade is released for Magento. Upgrading ensures that the
system remains bug free and secure.

Requirements
The following are the specifications that Magento requires in order to run at a base
level. These are not the requirements for tens of thousands of products but will have
Magento running a small installation. These specifics are copied directly from the
requirements page on MagentoCommerce.com for maximum reliability:

•	 Supported operating systems
	° Linux x86, x86-64

•	 Supported Web Servers:
	° Apache 1.3.x
	° Apache 2.0.x
	° Apache 2.2.x

Installing/Upgrading Magento and Preparing for Development

[16]

•	 Supported Browsers:
	° Microsoft Internet Explorer 6 and above
	° Mozilla Firefox 2.0 and above
	° Apple Safari 2.x
	° Google Chrome
	° Adobe Flash browser plug-in should be installed

•	 PHP Compatibility:
	° 5.2.0 and above
	° Required extensions:
	° PDO_MySQL
	° simplexml
	° mcrypt
	° hash
	° GD
	° DOM
	° iconv
	° SOAP (if Webservices API is to be used)
	° Safe_mode off
	° Memory_limit 32M or more

•	 MySQL:
	° 4.1.20 or newer
	° InnoDB storage engine

•	 SSL:
	° If HTTPS is used to work in the admin, SSL certificate should

be valid. Self-signed SSL certificates are not supported
•	 Server - hosting - setup:

	° Ability to run scheduled jobs (crontab) with PHP 5
	° Ability to override options in .htaccess files

We can keep up to date with the latest system requirements for
Magento at the following URL: http://www.magentocommerce.
com/system-requirements

Chapter 2

[17]

To check that our development setup meets the system requirements (mentioned
previously), Magento Commerce provides an automated solution that can be
downloaded and placed on our server. The script can be downloaded from:
http://www.magentocommerce.com/_media/magento-check.zip. After
downloading this file, we must unzip it into a directory and upload the contents
into our directory in which we want to install Magento. Then, we simply navigate
our browser to the URL, appending it with /magento-check.php to run the file.
This file starts with a <? PHP short tag, as opposed to a <?php PHP opening tag.
We'll have to change that in the file, if our server does not have short tags enabled on
the PHP configuration.

The script's URL will appear on the download script's knowledge base entry:
http://www.magentocommerce.com/knowledge-base/entry/how-
do-i-know-if-my-server-is-compatible-with-magento.

When you run the PHP file to check the requirements and your server meets them,
you'll see a screen along the lines of the following:

If the Magento check fails, the server administrator or web host is to be consulted
for advice.

For instructions on dealing with other operating systems,
there are plenty of Magento Commerce Wiki entries available at
http://www.magentocommerce.com/download/noregister.
Just click the How to Get Started tab.

Installing/Upgrading Magento and Preparing for Development

[18]

Once a Congratulations message (similar to the one in the previous screenshot) is
displayed, then we're ready to proceed onto the installation.

Types of installation
We'll go through all the methods available for the installation of Magento, to extend
our knowledge. It's not necessary to know all of them, but it will help us discover
our preferred methods and the one which moulds itself to our development practices
the best.

There are four methods of installation available for Magento:

•	 Manual—manually downloading and uploading all files needed
•	 Downloader—downloading a script for some of the files which when

uploaded and run, will download the rest.
•	 SSH—connecting to the server via shell and running a set number of

commands which will download, unzip, and set all the file permissions
correctly for us

•	 Subversion (SVN)—checking out or exporting from the repository to
our server, before committing to the local directory where we would like
our installation

Manual
This method of installation is dubbed Manual, as we will have to do all the
downloading and uploading ourselves. None of the other methods make us do this
and will automate at least small parts of the process. Unfortunately, not everybody's
server environment allows the use of the other methods for various reasons. So, the
Manual method is vital for those stubborn or restricted hosting environments where
we have no other choice.

Installing
We'll start by going to the Magento Commerce download page online, at
http://www.magentocommerce.com/download.

Chapter 2

[19]

From here, we choose Full Release and download in the appropriate format. There
isn't any difference in the formats apart from the size. If we're unsure about the
format which our computer can unzip, then its better to simply choose the most
universally compatible format, the .zip format.

Installing/Upgrading Magento and Preparing for Development

[20]

Once we've downloaded our archive of the Magento files, we expand the archive and
get our full listing of files, as shown in the following screenshot:

One thing to note about the directory structure is that it contains the downloader
and the pear file for two of the other methods for installing/upgrading. So we're
free to switch to other methods for upgrading, after an initial Manual install.

Once we've expanded the archive of files that we have downloaded, we connect to
our FTP server, navigate to the folder where we want our Magento installation to
reside in, and upload everything.

When the upload process finishes, we must ensure that the folders and contents of
the folders (mentioned below) are set to 0755 in CHMOD permissions:

•	 /app/etc/

•	 /var/

•	 /media/

We proceed by navigating to the URL of our chosen install location. There are two
ways to progress from here:

•	 By following the graphical interface and the instructions on-screen to
complete the installation of Magento.

•	 By navigating to /app/etc/ and finding the local.xml.template file. We
duplicate this file and save it as local.xml. Then we fill in all the details
between the tags. This is best done after the first install of Magento, so
that we can see how the data is formatted after the template is used by the
graphical interface for populating data.

Chapter 2

[21]

Those who choose the graphical interface option should see the following when
navigating to the URL of our chosen Magento installation location:

The license agreement for Magento covers what we can and cannot do with the
software. It's important to read it throughly (if we have the time) as it gives us a
fantastic insight into the inner workings of the Open Source movement and how the
licensing process works.

Installing/Upgrading Magento and Preparing for Development

[22]

Presuming that we agree to abide by the terms, we then tick the box and click
Continue to proceed to the next stage of the installation.

This screen allows us to set the default locale, the time zone, and the initial
currency for our Magento installation. These can all be changed, once we go into the
administration after installation finishes. However, it's best to set them right away so
that we don't have to change them later. Clicking Continue after configuring these
variables takes us onto the Configuration screen of the installation.

Chapter 2

[23]

Installing/Upgrading Magento and Preparing for Development

[24]

We'll break this screen down by section, as it is much longer than the previous screens.

Database Connection
•	 Host, Database Name, User Name, and User Password are all the details

Magento needs to connect to the database we created to install Magento into.
•	 Tables prefix will set up a prefix for all table names in the database if we

wish to keep our Magento tables separate from anything else, in case we
have placed something inside the database.

Web access options
•	 Base URL, the installation URL on which the Magento installation will reside.
•	 Admin Path, which will be appended onto the end of the Base URL to gain

access to the administration of our Magento installation.
•	 Skip Base URL validation allows us to skip validation of the URL at which

the installation resides. Base URL validation typically causes issues if setting
a system up for a URL other than the one where we uploaded our files.

•	 Web Server Rewrites will enable search engine friendly URLs for our system.
(mod_rewrite must be installed and activated, as it is required on our
Apache web server for Web Server Rewrites to work)

•	 Secure URLs will enable the installation's SSL, if we already have one set up
for the URL on which we'll be setting up our installation.

Session storage options
This provides us a choice between storing sessions in the file system or the database.
The difference is:

•	 Storing sessions in a file system enables quicker access if we're only going to
have just Magento running on one server

•	 Storing sessions inside a database allows easier clustering when deploying a
Magento installation across multiple servers for load balancing

The next screen is the final one and will finish the process of installation through the
graphical interface. It is the screen for creating an Admin account.

Chapter 2

[25]

The previous screen is straightforward; all the information in it is about the Admin
account, which we'll use to access our system. The only part to take particular notice
of is the Encryption Key field at the bottom. It is advisable to leave it blank in the
case of a standard installation. However, if we install a setup that corresponds with
another on our server (for example, a development or a testing version of a site), then
we will need to copy the previous key into the Encryption Key field.

Installing/Upgrading Magento and Preparing for Development

[26]

Once we've finished this section, we'll see the standard Magento installation success
screen that tells us our Encryption Key. It gives us links to both the backend and the
frontend of our installation, in case we want to progress onto either.

Upgrading
When an upgrade is required for our site, we can manually update Magento using
the following routine. An upgrade is not required directly after an initial install.

To upgrade the installation—using the Manual method with a full package
download—we have to:

•	 Back up our core files (for "just incase it goes wrong" purposes only)
	° Back up the database
	° Back up all code that we have modified ourselves (modules,

themes, skins, and so on)
	° Back up our media directory, which contains all uploaded

images for categories or products
	° Back up our /app/etc/local.xml file, which contains our

database configuration and encryption key
•	 Upload all files from our downloaded full release file. We can either:

	° Skip overwriting the backed up files and upload everything
else or

Chapter 2

[27]

	° Overwrite all backed up files and then re-upload them to
their appropriate directories

•	 Clear our /var/cache and /var/session directories to ensure no data from
the previous install version lies around unwanted

•	 Point the browser to any page in the Magento installation to run the upgrade
script from the previous version to the current version and we're done!

Downloader
The advantage of the downloader is that we have a much smaller initial download.
Later the script can download the bigger files, saving the extra time taken to set up
Magento. This reduces the initial download from between 40-50 MB to 1 MB and
is especially useful for slower connections. It also means we can stay away from
FTP when it comes to upgrading in the future, as the downloader also allows us to
upgrade existing installations that have been installed using other methods.

Installing
To download from http://www.magentocommerce.com/download, we select
the Downloader package. Expanding that displays a directory that looks similar
to next screenshot:

Installing/Upgrading Magento and Preparing for Development

[28]

Next, we upload everything to the chosen Magento installation directory and
load /downloader/ URL in our browser. A screen welcoming us to the downloader
is displayed:

Once we click on Start the download process, we'll be presented with a screen that
shows us the download progress. We must be patient, as it could take a long time
before anything comes up. We should keep our browser window open and ensure
that it isn't disrupted in any way. When it's done, the page will look similar to the
next screenshot:

Chapter 2

[29]

After clicking on Continue Magento Installation at the bottom of the page, we
progress onto the standard GUI in order to complete the installation. We can refer
to the previous section (Manual installation) to learn about installation using the
standard GUI.

Installing/Upgrading Magento and Preparing for Development

[30]

Upgrading
Once an update is available for Magento, we can load the /downloader/ directory
onto our chosen Magento installation URL. We are prompted with a login screen.

We type in our administration Username and Password for the chosen
Magento installation into the boxes, after which, we're be allowed into the
downloader interface.

Chapter 2

[31]

Here we can install new extensions (should we want to), at the top of the page.
Below, we find a Check for Upgrades button and a list of the extensions currently
installed. We can select re-install or un-install actions from the drop-downs for
each extension as we wish, and commit all the changes at once using the button at
the bottom.

Installing/Upgrading Magento and Preparing for Development

[32]

As we're upgrading, we would want to click on the Check for Upgrades button at
the top. Once the page has refreshed from checking for upgrades, we'll see all the
extensions that have available upgrades highlighted in the table.

Select Upgrade to… from the drop-down, in the extensions you want to upgrade,
and click Commit Changes at the bottom of the page. After doing this, a dialog area
appears which shows the progress, similar to how the install dialog appeared for
showing progress during installation.

We can access any URL in our Magento installation and all mySQL upgrades will
take place to complete the upgrade.

Chapter 2

[33]

SSH (Secure Shell)
SSH is the fastest of the four installations and upgrade options for Magento and
a preferred choice of the four. It is command line only and enables us to do the
entire process without the use of any GUI, besides the client that we use to run the
commands. It is typically available only on dedicated hosting environments and
will be available to those who have root access to the contents of their hosting server
environment. The majority of shared hosting or reseller hosting will not provide SSH
access or root access. VPS usually provide root access similar to dedicated hosting
environments, but it's not standard everywhere.

For each of these stages, we must ensure that we're connected via SSH to our server,
using the following command:

ssh username@server_address

Note that the server address can be a direct URL or the IP address of the server
that we are connecting to. Afterwards, we will be prompted for our username's
password. Once we have done that, we'll be logged in and can get to the planned
installation's directory. The command to get there is:

cd /full/path/to/installation/directory/

We're ready to install/upgrade, once we're inside the directory of the chosen
installation address.

Installing
Like the downloader, we will still need to run through the GUI after installation.
However, this will be much quicker and we will get real time feedback on what is
happening, once we start executing the commands.

The first line is spread over two lines due to the length of the URL from where the
download is fetched. We have to insert that as a single command. We'll be installing
version 1.3.2.4. We need to switch all occurrences of this version number with the
most current version so that it installs the most recent version of Magento.

wget http://www.magentocommerce.com/downloads/assets/1.3.2.4/magento-
1.3.2.4.tar.gz

tar -zxvf magento-1.3.2.4.tar.gz

mv magento/* magento/.htaccess .

chmod o+w var var/.htaccess app/etc

chmod -R o+w media

./pear mage-setup .

Installing/Upgrading Magento and Preparing for Development

[34]

./pear install magento-core/Mage_All_Latest-stable

rm -rf downloader/pearlib/cache/* downloader/pearlib/download/*

rm -rf magento/ magento-1.3.2.4.tar.gz

Mac users should replace the line beginning with wget with the

following:

curl http://www.magentocommerce.com/downloads/assets/1.3.2.3/magento-
1.3.2.3.tar.gz > magento-1.3.2.3.tar.gz

From here, we can access our chosen Magento installation location via HTTP and
follow the graphical user interface to complete the installation.

There is a way to bypass the installation wizard, but it requires the reader
to know all the correct variables to proceed into the required areas.
Information on it can be found at: http://www.magentocommerce.
com/wiki/groups/227/command_line_installation_wizard.

Upgrading
Upgrading is just as simple as installation. Go to the directory of the Magento
installation you wish to upgrade and run the following:

./pear mage-setup .

./pear install magento-core/Mage_All_Latest

rm -rf downloader/pearlib/cache/* downloader/pearlib/download/*

After we've executed the previous command, the Magento installation will be
upgraded. We'll just need to access it at its appropriate URL, as with the other
methods, and all MySQL related updates will take place.

If we need to clear our cache and sessions, we can use the following command:

rm –rf var/cache/* var/session/*

SVN (Subversion Network)
For those unfamiliar with Subversion, there are numerous links in the Appendix
where we can learn about what it is, what it does, and how it can be used on our
platform of choice.

Chapter 2

[35]

For those familiar with SVN already, there is an available SVN repository setup,
if we want to use it. Those already trained in working with SVN will only need to
know the following command to keep the installation up-to-date or to install it at
another location:

svn export http://svn.magentocommerce.com/source/branches/1.3

There is also a trunk setup for versions in progress and in alpha testing, though it is
advisable to not use it in any production environments. In case we want to test it, we
can do so with the following command:

svn export http://svn.magentocommerce.com/source/branches/1.3-trunk

These commands relate to the 1.3 string of Magento, so for future versions you will
need to replace the version number in the commands.

Summary
In this chapter, we've learned how to install and upgrade Magento in all four
methods available to us. We can now do the following:

•	 Install/upgrade manually, by downloading/uploading all files and backing
up the appropriate files we need to

•	 Install/upgrade via the downloader
•	 Install/upgrade via SSH
•	 Install/upgrade via SVN

In the next chapter, we will learn about the structure of Magento and the inner
architecture that makes Magento work. This is key to understanding how to develop
with it. Whether it is themes, skins, modules, or moving it from server to server,
the next chapter will teach us how to handle Magento and where to find what we
looking for when we need to.

Magento's Architecture
Magento has a wonderful architecture behind its system. It's a very strict architecture
that relies on us knowing where the files should be placed and how to structure our
templates and modules. But this is part of what makes Magento a great system, in
that it enforces these standards.

Here in this chapter, we will learn about this architecture and how it applies to
development with Magento. We will learn:

•	 Where everything is within Magento
•	 What all the base directory files and folders do
•	 The basics of how the template system works
•	 How modules work within the system
•	 How the Zend Framework fits into the equation
•	 The best methods for backing up Magento

Magento's base structure
The fundamental knowledge of Magento's architecture begins with its file structure.
It's important to know what goes where by default, so that we may position our
new files accordingly, especially in terms of ensuring that our development doesn't
overwrite core files.

Magento's Architecture

[38]

Base directory
The default installation contains the following files and directories in the
base directory:

•	 .htaccess

•	 .htaccess.sample

•	 404 (directory)
•	 app (directory)
•	 cron.php

•	 downloader (directory)
•	 favicon.ico

•	 index.php

•	 index.php.sample

•	 js (directory)
•	 lib (directory)
•	 LICENSE_AFL.txt

•	 LICENSE.txt

•	 media (directory)
•	 pear

•	 pkginfo (directory)
•	 report (directory)
•	 skin (directory)
•	 var (directory)

Each of these files and directories has a different purpose. We'll go through them
to ensure that we understand the function of each. This will help us later, if ever
we need to find something specific, or when developing. It will also be helpful
when we'll be looking to place the files coming out of our new module into the
appropriate directory.

Chapter 3

[39]

The function of each of the files in the base
directory
The following is a run through of all the files in the base directory, to show us what
they do:

•	 .htaccess—This file controls mod_rewrite for fancy URLs and sets
configuration server variables (such as memory limit) and PHP maximum
execution time, so that Magento can run better.

•	 .htaccess.sample—Works as a backup for .htaccess, so that we know
the default .htaccess file (if ever we edit it and need to backtrack).

•	 cron.php—The file that should be executed as a cron job every few
minutes to ensure that Magento's wide caching doesn't affect our
server's performance.

•	 favicon.ico—Magento's default favicon; it's the small icon that appears
in the toolbar of our browser.

•	 index.php—The main loader file for Magento and the file that
initializes everything.

•	 index.php.sample—The base template for new index.php files, useful
when we have edited the index.php file and need to backtrack.

•	 LICENSE_AFL.txt—It contains the Academic Free License that Magento
is distributed under.

•	 LICENSE.txt—It contains the Open Software License that Magento is
distributed under.

•	 pear—This controls all automatic updating via the downloader and SSH.
This file is initialized and handles the updating of each individual module
that makes up Magento.

•	 php.ini—A sample php.ini file for raw PHP server variables
recommended when setting up Magento on our server. This should not be
used as a complete replacement, but only as a guide to replace certain lines
of the php.ini server file. It is useful when overriding these variables when
.htaccess isn't enabled on our server.

Magento's Architecture

[40]

The function of each of the folders in the base
directory
The following is a run through of all the folders in the base directory to show us
their contents:

•	 404—The default 404 template and skin storage folder for Magento.
•	 app—All code (modules), design (themes), configuration, and translation

files are stored in this directory. This is the folder that we'll be working
in extensively, when developing a Magento powered website. Also
contained in this folder are the template files for the default administration
theme and installation.

•	 downloader—The web downloader for upgrading and installing Magento
without the use of SSH (covered in Chapter 2).

•	 js—The core folder where all JavaScript code included with the installation
of Magento is kept. We will find all pre-compiled libraries of JavaScript here.

•	 lib—All PHP libraries used to put together Magento. This is the core code
of Magento that ties everything together. The Zend Framework is also stored
within this directory.

•	 media—All media is stored here. Primarily for images out of the box, this
is where all generated thumbnails and uploaded product images will be
stored. It is also the container for importing images, when using the mass
import/export tools (that we'll go through in Chapter 10).

•	 pkginfo—Short form of package information, this directory contains text
files that largely operate as debug files to inform us about changes when
modules are upgraded in any way.

•	 report—The skin folder for the reports that Magento outputs when any
error occurs.

•	 skin—All assets for themes are stored within this directory. We typically
find images, JavaScript files, CSS files, and Flash files relating to themes,
in this directory. However, it can be used to store any assets associated
with a theme. It also contains the skin files for the installation of skins and
administration templates.

•	 var—Typically where we will find all cache and generated files for Magento.
We can find the cache, sessions (if storing as files), data exports, database
backups, and cached error reports in this folder.

Chapter 3

[41]

The template system architecture
The template architecture is broken into three areas—two for development of the
theme and one for the containment of the assets:

•	 /app/design/frontend/default/<template_name>/

	° layout/—For all the XML files declaring which module tied
functions should be called to which template files

	° template/—For all the templates processing the output that
is passed from functions called from layout/ and structured
into the final output to the user.

•	 /skin/frontend/default/<template_name>/—For the containment
of all assets relating to our template, images, CSS, Flash, and JavaScript.

Structural blocks and content blocks
Each theme contains structural and content blocks. Structural blocks are the ones
that lay out the theme into sections. Let's take a look at a three-column layout.
The following are the structural blocks in a three-column layout:

•	 header
•	 left
•	 content
•	 right
•	 footer

Magento's Architecture

[42]

Here's a visual representation of those structural blocks laid over the Magento
demo store:

In each of the structural blocks, we then have content blocks that give each structural
block its content for output to the browser. Let's take the right column; our content
blocks set for this column on a standard theme could be:

•	 mini cart
•	 recently viewed products
•	 newsletter subscription block
•	 poll

Chapter 3

[43]

Here we have a visual representation of these content blocks on top of the Magento
demo store:

On receiving a request from a user connecting to our site to view the page:

1. Magento will load the structural areas
2. Each structural area will be processed through
3. Magento will gather the content blocks assigned to each structural area
4. It will then progress through the content block template for each structural

area, to process the output
5. It sends all of this back as final output to the user, who then views the

Magento page that was requested

Magento's Architecture

[44]

XML layout files
To assign blocks to each of these structural blocks, Magento loads an XML layout file
for each request. This XML layout file is called by the URL that the user is accessing
on the site. It declares all modules that are to be loaded in each structural area of the
site. On top of this, we have a page.xml file, which is the default loader for all pages
on the site.

A layout XML file is typically structures as follows:

<default>
 <reference name="header">
 <block type="page/html_header" name="header" as="header">
 <block type="page/template_links" name="top.links"
 as="topLinks"/>
 <block type="page/switch" name="store_language"
 as="store_language"
 template="page/switch/languages.phtml"/>
 <block type="core/text_list" name="top.menu" as="topMenu"/>
 </block>
 </reference>
</default>

In the above code, we have:

•	 <default>—The handler for the URL, in this case default will load no matter
what other handler is being initialized

•	 <reference>—The reference structure which calls the blocks in our theme
•	 <block>—A content block which defines the type of block and the template

which will process the block's outgoing data in the system

In addition to this, Magento uses actions within blocks for functions which need to
process the data that is input to them, for example adding CSS stylesheets:

<block type="page/html_head" name="head" as="head">
 <action method="addCss">
 <stylesheet> css/menu.css </stylesheet>
 </action>
 <action method="addCss">
 <stylesheet> css/clears.css </stylesheet>
 </action>

Chapter 3

[45]

<action method="addItem">
 <type>js</type>
 <name>varien/iehover-fix.js</name>
 <params/>
 <if>lt IE 7</if>
</action>
<action method="addCss">
 <stylesheet>css/print.css</stylesheet>
 <params>media="print"</params>
</action>
 <action method="addCss">
 <stylesheet> css/print.css </stylesheet>
 <params> media="print" </params>
 </action>
</block>

We'll notice that there are several tags within the action method tag. These are
processed into an array and then passed through the action method="" parameter,
in this case addCss. This function then places the input into an output, ready for its
appropriate template.

Layouts are fully explained online in Magento's designer guide:
http://www.magentocommerce.com/design_guide/
articles/intro-to-layouts.

Hierarchical file processing
When creating new themes, we do not have to worry about copying all the theme
and skin files from the default theme over to our new one. Let's presume that we
have an additional theme called new_theme, alongside our default theme. Our
theme calls files called logo.gif and image.gif on one of its pages.

Magento's Architecture

[46]

The themes that we have contain the following files in their skin's images directory:

default new_theme
logo.gif logo.gif

image.gif

test.gif

Magento would process this main requesting logo.gif and image.gif. As
new_theme is our current active theme, it will pull logo.gif from there., However,
as image.gif does not exist in new_theme, Magento would grab that from default.
So now, it works like this:

Requested file Theme it will come from
logo.gif new_theme

image.gif default

Similarly, if test.gif were called in our template then it would come from the
default theme. If we upload an image called test.gif to the image directory of
new_theme, then it would immediately come from there instead.

This applies to all files for themes in Magento, which include the following:

•	 Templates
•	 Layout XML files
•	 Anything in the theme skin folders

Magento's template architecture and hierarchy is also explained online
in the designer's guide to Magento: http://www.magentocommerce.
com/design_guide

Modules and how they work within the
system
Magento primarily works on a base of modules. All functionality is divided up
into modules that make up the system overall. It's important to understand what
each module does and how to go about adding modules to the system, in order to
understand the architecture of modules themselves.

Chapter 3

[47]

Distribution of the modules between
directories
All modules are located within the /app/code/ directory. Directories are commonly
referred to as codePools. There are three possible locations for all modules that
relate to the system. They are all split by type to prevent any confusion:

•	 community—For community-distributed extensions, usually those that we
have installed through Magento Connect or have downloaded from a source,
other than our own. Anything installed through Magento Connect will be
installed here automatically.

•	 core—Reserved for core Magento modules, so that we cannot directly
overwrite or interfere with them. We keep our modules out of core to avoid
any conflict with the core modules or any future updates. Anything from a
Magento upgrade or any new Magento modules will go into this directory.

•	 Local—This is where we should be placing our modules when they are
either under local development or are not distributed among the community.
It's best to keep anything that we develop in this directory, so as to not
interfere with the core or community modules. Nothing will be automatically
installed here, unless we have physically uploaded it.

Modules included with Magento
Included modules in the core folder of default Magento installation are as follows:

•	 Mage_Admin

•	 Mage_AdminNotification

•	 Mage_Api

•	 Mage_Backup

•	 Mage_Bundle

•	 Mage_Catalog

•	 Mage_CatalogIndex

•	 Mage_CatalogInventory

•	 Mage_CatalogRule

•	 Mage_CatalogSearch

•	 Mage_Checkout

•	 Mage_Cms

•	 Mage_Contacts

•	 Mage_Core

Magento's Architecture

[48]

•	 Mage_Cron

•	 Mage_Customer

•	 Mage_Dataflow

•	 Mage_Directory

•	 Mage_Downloadable

•	 Mage_Eav

•	 Mage_GiftMessage

•	 Mage_GoogleAnalytics

•	 Mage_GoogleBase

•	 Mage_GoogleCheckout

•	 Mage_GoogleOptimizer

•	 Mage_Install

•	 Mage_Log

•	 Mage_Media

•	 Mage_Newsletter

•	 Mage_Page

•	 Mage_Paygate

•	 Mage_Payment

•	 Mage_Paypal

•	 Mage_PaypalUk

•	 Mage_Poll

•	 Mage_ProductAlert

•	 Mage_Rating

•	 Mage_Reports

•	 Mage_Review

•	 Mage_Rss

•	 Mage_Rule

•	 Mage_Sales

•	 Mage_SalesRule

•	 Mage_Sendfriend

•	 Mage_Shipping

•	 Mage_Sitemap

•	 Mage_Tag

•	 Mage_Tax

Chapter 3

[49]

•	 Mage_Usa

•	 Mage_Weee

•	 Mage_Wishlist

Setting up the folder structure of a module
Let's presume that we want to set up a module's folder structure, ready
for development. Our module's core folders will be placed in /app/code/local/
Book/Example/.

These folders will primarily be used for storing our code that makes the module
work. The folder structure breaks down as follows:

•	 Block/

•	 controllers/

•	 etc/

•	 Model/

	° Mysql4/

	° Book/

•	 sql/

	° book_setup/

Typically, developers will pick or choose each folder, depending on whether or
not they're going to use it within their module.

Note that Model/Mysql4/Book/ has its first letter in uppercase, whereas
sql/book_setup/ does not. We must be sure to keep this the same way throughout
our development.

Template files for the frontend of our module will be stored as follows:

•	 XML files will be stored in /app/design/frontend/<interface>/<theme>/

layout/example/

•	 Output files will be stored in /app/design/
frontend/<interface>/<theme>/template/example/

Any admin template files for the frontend of our module will be stored as follows:

•	 XML files will be stored in /app/design/

adminhtml/<interface>/<theme>/layout/example/

•	 Output files will be stored in /app/design/
adminhtml/<interface>/<theme>/template/example/

Magento's Architecture

[50]

Here's a breakdown of what each folder is for:

•	 Block/—For processing of all display blocks called by the system for the
module. These are controllers that will be called in the XML layout files
within a theme, in order to display something.

•	 controllers/—Our controllers that support the application and structurally
keep things together.

•	 etc/—Configuration files for the module, for declaring things such as the
default options when installed and declaring all blocks, models, and install/
upgrade actions.

•	 Model/—For placement of all models to support controllers in the module.
•	 sql/—SQL actions when the module is installed/upgraded/uninstalled.

Zend Framework and its role within
Magento
Magento (at its raw PHP base) is built on the Zend Framework. From the database
class to the handling of URLs, Magento is in its raw form, with Zend Framework
doing all the work. Alongside this, Varien has built several core modules on top of
the Zend Framework, in order to tie it altogether into the system as we know it.

What is Zend Framework
Zend Framework's official site best describes the framework as follows:

Zend Framework (ZF) is an open source framework for developing web applications
and services with PHP 5. ZF is implemented using 100% object-oriented code. The
component structure of ZF is somewhat unique; each component is designed with
few dependencies on other components. This loosely coupled architecture allows
developers to use components individually. We often call this a "use-at-will" design.

Chapter 3

[51]

While they can be used separately, Zend Framework components in the standard
library form a powerful and extensible web application framework when combined.
ZF offers a robust, high performance MVC implementation, a database abstraction
that is simple to use, and a forms component that implements HTML form rendering,
validation, and filtering so that developers can consolidate all of these operations
using one easy-to-use, object-oriented interface. Other components, such as
Zend_Auth and Zend_Acl, provide user authentication and authorization against all
common credential stores. Still others implement client libraries to simply access to
the most popular web services available. Whatever your application needs are, you're
likely to find a Zend Framework component that can be used to dramatically reduce
development time with a thoroughly tested foundation.

How Zend Framework works
The Zend Framework (at its core) is designed to be used as a package or separate
modules. This (among other features) makes it unique, as most other frameworks
are designed to be used plainly as frameworks or not at all.

However, the Zend Framework comes with classes that allow us to use it as a
standalone framework and develop with it as one. Instead of being delivered with a
preset amount of directories and layout for developers, it only suggests a layout for
our files. This means that we can adapt the framework to meet our current workflow
and choose how much we adapt the workflow to fit the framework.

It's role and effect in Magento
The Zend Framework allows Magento to focus on the core issues at hand. It removes
a lot of the work on the database and core structural classes and puts the work
towards fixing and adding to core modules of Magento.

Most importantly it gives developers a standard approach to development that they
can move across and apply to Magento. The standard development practices help
greatly in adopting Magento as a platform and make it easier for developers having
experience with Zend Framework to adapt to Magento.

More information on learning the Zend Framework and resources can be
found at the back of this book in the Appendix attached. Its official site is
located at: http://framework.zend.com/.

Magento's Architecture

[52]

Backing up Magento's data
It's important to know how to back up our site, to ensure that our installation's data
is not lost (if ever things go bad).

It is recommended to back up our Magento installation:

•	 Regularly as a base to ensure that there are incremental backups
of our system

•	 Before installing new modules or themes from Magento Connect
•	 When developing modules
•	 Before upgrading our system

Backing up the files
We will need to back up all the files relating to the Magento installation, when
backing up our system. Two of the ways in which this can be done are given below.

Manually
Manually, we are able to download all the files of the installation to our hard
drive. This is the longest method of backing up the files and is the most foolproof
method available.

Using SSH
Using SSH, we're able to vastly speed up the duration of backing up the servers.
We can do this in two ways:

•	 Zipping up all files, if the server has it enabled
•	 Copying all files to another directory

Both of these depend on whether or not our server has SSH. So if this isn't available
to us, then we cannot use these methods.

Chapter 3

[53]

Both of these methods require us to connect to our server via SSH first
and then use the cd command to get to the directory (which Magento is
installed in), before running the commands.

Zipping up all files
This will create a zip file of our entire Magento installation's files and folders called
magento_archive.zip.

tar cf magento_archive.tar *

To untar this archive, extract the files afterwards:

tar -xvf yourfilename.tar

We can then move this to another directory of our choice using the mv command:

mv magento_archive.zip /path/to/new/destination/

Copying all files to another directory
We run the following command to copy all files (as they are) into another directory
on our server. We'll replace the full path with the path to the desired directory, into
which we want to copy all the files.

cp –R * /path/to/new/destination/

Backing up the database
We'll need to back up the database as part of our Magento backup. Let's go
through how.

Magento's Architecture

[54]

Using the system itself
Magento comes with a built-in method for backing up our installation and keeping
several backups logged, in case we want to download older backups at any time. It
can be found in the System menu under Tools:

The initial screen will be similar to the next screenshot:

Chapter 3

[55]

To create a backup via the System panel, all we need to do is click on Create Backup
in the upper-right of the screen and wait for it to finish:

The process of creating a backup can take quite a while (especially for bigger
databases), so we will need to keep an eye on our server's memory limits and PHP
execution limits. These are set in our .htaccess file on runtime, but some servers
will only run the defaults and not allow them to be overridden. If we encounter a
white screen instead of the success message (shown in the previous screen), then
the problem is either memory limit or execution time limit. We will need to increase
them ourselves or contact our web host.

Once the backup is completed, however, we'll be able to find it in our /var/
backups/ folder. They will be named by timestamp and the highest numbered
filename will be the last to be backed up.

Using phpMyAdmin
The most common back up solution is phpMyAdmin, and some people prefer it over
any built-in method. To export via phpMyAdmin, we:

1. Navigate to the database
2. Switch to the export tab
3. Select all tables and SQL as the export type
4. Under options on the right-hand side select Disable foreign key checks
5. Select save as file at the very bottom of the page
6. If we want to match the compression type of Magento's output, select

gzipped as our compression method
7. Click the Go button to export

Magento's Architecture

[56]

This will give us an SQL file, which we can then import at a later date back into an
empty database and restore our data.

Summary
In this chapter, we've learned the following:

•	 How Magento's folder structure and files are laid out
•	 What each of the base directory's folders and files do
•	 How the template system works
•	 How modules work within Magento
•	 About the Zend Framework and how it benefits Magento
•	 How best to go about backing up Magento and when to go about it

Further to this chapter, I want you to read the Magento designer's guide and the
Zend Framework documentation and examples. There are also a very good group
of links for you to read through in the Appendix at the back of this book. These will
increase your knowledge of the Magento architecture and benefit you throughout
this book.

Shipping Modules in Magento
In this chapter, we will apply our newfound knowledge of Magento's core
architecture (that we learned in the previous chapter) and apply it to one of
the fundamental building blocks of Magento, its shipping module.

Here, we will learn how to create a shipping module, so that we can develop
our own when the need arises. By the end of this chapter we will:

•	 Know where to find shipping modules that others have produced
•	 Know how to put together a basic shipping module and know what

values pertain to what information
•	 Be able to create our own methods for calculation or handling shipping

with Magento

What shipping modules do
Shipping modules are used to define the handling of the order, before it goes
through the payment method section of the order process. They take the order itself
and decide how to go about charging and delivering it to the customer. Magento
takes the order through each shipping module that is installed and active in the
system. Each shipping module is then able to process the order currently in the cart
and present any available options to the user, from what it sees in the order.

For example: we have a shipping module in our system that provides free
delivery to people located within the UK and ordering over £40. Let's presume
that we are ordering £50 worth of goods and are located within the UK. When
the order is sent through this module, it checks whether or not the user is in the UK
and the order total is over £40. If these conditions are met, (which our order does),
then we are presented with a free delivery option, among others, to choose during
our order process.

Shipping Modules in Magento

[58]

This is a very simple version of what a shipping module can do. The full range of
what can be done using shipping modules can be grasped by looking at Shipping
Modules on Magento Connect and finding what it has on offer. Here's a small range
of what has been made public:

•	 Royal Mail UK, EU, and Worldwide Shipping module—For calculation and
handling of all of Royal Mail's shipping methods using weight and distance.
This module sends key product information to Royal Mail via their API,
authenticating with information that the Magento store administrator has
input, and outputs pricing for various shipping options on the current order.

•	 Regional Free Shipping module—Gives the Magento administrator
the option to allow free shipping by region, instead of by country. This
provides a choice to the store administrator of breaking down free shipping
further than country. For example, this would be good for someone who
runs a store based in Nottingham that wants to reward local customers in
the East Midlands, as opposed to simply giving free shipping to the entire
United Kingdom.

•	 Basic Store Pickup Shipping module—Enables customers to choose
between picking up the item themselves and having it delivered to them.
This is advantageous for companies which use Magento and have a physical
store presence with stock held.

Magento Connect can be accessed at the following URL:
http://www.magentocommerce.com/magento-connect.

The three core types of shipping module can be summarized in the following:

•	 Third-party API and/or web service integration. For integration with
existing couriers that have web-based APIs or web services that offer the
same for organization of your shipping. Many existing services make an
API available to us for integrating into Magento. We should check Magento
Connect for any existing modules that others have created.

•	 Using customer data to provide unique calculations and opportunities to
certain users. Anything that the customer puts in it while checking out can
be used for this type of module.

Chapter 4

[59]

•	 Shipping methods that involve a physical store or location for additional
options that compliment others. We could theoretically build up a set of
stores under the Magento store company's business. We could then link
them up with local computers at the locations and use the shipping module
to check for stocks at each location. We should do that before suggesting the
store as a location for the user to be able to pick up the item.

How to begin with a shipping module
Here we'll be learning about how to begin with a shipping module. This is the
skeletal structure of a shipping module that we can use as a template for any
shipping module which we create. We will also be using it to create a very basic
shipping module at the end of this chapter.

For the purpose of following this tutorial, we will be creating all files in /app/code/
local/MagentoBook/ShippingModule/, which will be the base directory for all
files created (from this point onwards). We must make sure that this directory
and sub-directory are set up before continuing onwards. This means that if the
file is declared to be /hello/world.php, we place this on the end of our initial base
address and it becomes /app/code/local/MagentoBook/ShippingModule/hello/

world.php

Please start by creating the directory MagentoBook in /app/code/local/ and a
sub-directory within that called ShippingModule, creating the directory structure
/MagentoBook/ShippingModule/.

The configuration files
We create /app/code/local/MagentoBook/ShippingModule/etc/config.xml in
our module's folder. Here, we'll place the following code which will declare our new
module for use, make it depend on Mage_Shipping being enabled, set it at version
0.1.0 and allow it to use the existing global database connection which is set up for
our store.

<?xml version="1.0"?>
<config>

 <modules>
 <MagentoBook_ShippingModule>
 <version>0.1.0</version>
 <depends>
 <Mage_Shipping />
 </depends>
 </MagentoBook_ShippingModule>

Shipping Modules in Magento

[60]

 </modules>

 <global>
 <models>
 <shippingmodule>
 <class>MagentoBook_ShippingModule_Model</class>
 </shippingmodule>
 </models>

 <resources>
 <shippingmodule_setup>
 <setup>
 <module>MagentoBook_ShippingModule</module>
 </setup>
 <connection>
 <use>core_setup</use>
 </connection>
 </shippingmodule_setup>
 </resources>
 </global>
 <default>
 <carriers>
 <shippingmodule>
 <model>MagentoBook/carrier_ShippingModule</model>
 </shippingmodule>
 </carriers>
 </default>
</config>

Let's walk back through this code and go over what each individual section does.

We start by defining our XML header tag for the file, to ensure that it is accepted
as an XML file when read by the XML parsing class in the system.

<?xml version="1.0"?>

We define the <config> tag, to ensure that everything within it is read as
configuration variables to be loaded into Magento's configuration for whatever
we define internally within this tag.

<config>

We define the <modules> tag, so that we're setting configuration variables for
modules defined within this tag.

 <modules>
 <MagentoBook_ShippingModule>

Chapter 4

[61]

We set the module's version number to 0.1.0, to supply Magento with versioning
for the module in the future, if we update and need to perform statements within
the update portion of the module, so as to execute above a certain version number.

 <version>0.1.0</version>

We have to make sure that our module cannot be activated, or possibly run,
without the Mage_Shipping core shipping handler and module activated. This is
vital because the module being a shipping module is simply going to cause fatal
errors without the parent Mage_Shipping module providing the helper functions
needed internally.

 <depends>
 <Mage_Shipping />
 </depends>

Next, we close off our module declaration tag and modules tag.

 </MagentoBook_ShippingModule>
 </modules>

We set up our <global> tag to define global assets to Magento.

 <global>

Next, we define the <models> tag to define global models to the system and for
setting up our module's default model to be one of those global models which is
automatically loaded.

 <models>
 <shippingmodule>
 <class>MagentoBook_ShippingModule_Model</class>
 </shippingmodule>
 </models>

We define the <resources> tag, so that we can configure the database resources
available to the module within the system.

 <resources>

Shipping Modules in Magento

[62]

Defining the <resources> tag allows us to include a setup file with our module that
accesses the database. This helps if we need to load in any variables (such as default
table rate rules) for our module, or for loading additional data required locally by the
module, when calculating the shipping rates.

 <shippingmodule_setup>
 <setup>
 <module>MagentoBook_ShippingModule</module>
 </setup>

Here, we'll use the core database connection (the default one), and ensure that we do
not overwrite the database connection set up for this particular module.

 <connection>
 <use>core_setup</use>
 </connection>

We close off all tag pairs, besides <config>, that have been opened at this point.

 </shippingmodule_setup>
 </resources>
 </global>

Finally, we end the configuration file with a declaration that our module is a
shipping module and should be processed as one, within the system. This will
register the module to the system, so that it can actually display shipping methods
to the user on checkout. Without this, nothing will be returned to the user from
this module.

 <default>
 <carriers>
 <shippingmodule>
 <model>MagentoBook/carrier_ShippingModule</model>
 </shippingmodule>
 </carriers>
 </default>

We close the <config> tag to end the XML configuration file.

</config>

After we've done this, we need to declare our module to Magento by creating a
configuration file in /app/etc/modules/MagentoBook_ShippingModule.xml.

Next, we place the following code in our new configuration file, to allow this
module to interact with Magento and be turned on/off under the System
Configuration menu:

Chapter 4

[63]

<?xml version="1.0"?>
<config>
 <modules>
 <MagentoBook_ShippingModule>
 <active>true</active>
 <codePool>local</codePool>
 </MagentoBook_ShippingModule>
 </modules>
</config>

We break this file down into the individual lines:

<?xml version="1.0"?>

The <config> wrapper tag defines the XML to be read, as a configuration of
something inside Magento.

<config>

The <modules> wrapping tag defines this as a module to Magento.

 <modules>

The next tag is used for defining that this is the configuration of a module entitled
<MagentoBook_ShippingModule> and for applying the settings inside the tag to
the module:

 <MagentoBook_ShippingModule>

We make sure that it's active by default (this will be overwritten when activated/
deactivated in the Magento administrative back-end).

 <active>true</active>

The <code pool> tag is used for keeping this module in our local module's directory.

 <codePool>local</codePool>

Closing tags are for closing the XML tags that we started the <config> tag with.

 </MagentoBook_ShippingModule>
 </modules>
</config>

codePools are explained in full detail in Chapter 3, Magento's
Architecture earlier in this book starting on page 47.

Shipping Modules in Magento

[64]

Now that we have the configuration set up, to allow the module to be managed within
Magento and versioning control to allow for upgrades in the future, we can progress
onto the module itself. It also means that we can now turn our module on/off within
the administration. To do this, we go to System|Configuration, then to Advanced
under the Advanced heading on the left-hand side. Once here, we will be presented
with Enable/Disable dropdowns for each module installed in the system.

We'll set the dropdown for our module to Disable until we have completed the
adaptor model and administration setup. This will prevent the module from crashing
the system, while it is incomplete. We will re-activate the module once we're ready to
see the output.

The adaptor model
The adaptor model handles the core functionality behind our shipping module. From
its name, we can guess that it adapts what we have into a real module that works
and functions. This is something that both shipping and payment modules have.

This is where all the calculations happen and where everything will be coded.
The coding is done behind the scenes to handle the shipping methods and the
rates returned to the user to choose from in their checkout process.

Here we apply the name of our shipping method within our bare-bones template.
For the sake of demonstration, we'll call ours BareBonesMethod in the code to follow.

Our adaptor in this case will be placed in:/app/code/local/MagentoBook/
ShippingModule/Model/Carrier/BareBonesMethod.php

<?php

class MagentoBook_ShippingModule_Model_Carrier_BareBonesMethod extends
 Mage_Shipping_Model_Carrier_Abstract
{
 protected $_code = 'shippingmodule';

Chapter 4

[65]

 public function collectRates(Mage_Shipping_Model_Rate_Request
 $request)
 {
 if (!$this->getConfigData('active')) {
 Mage::log('The '.$this->_code.' shipping method is not
 active.');
 return false;
 }

 $handling = $this->getConfigData('handling');

 $result = Mage::getModel('shipping/rate_result');

 foreach ($response as $method) {
 $rMethod = Mage::getModel('shipping/rate_result_method');

 $method->setCarrier($this->_code);
 $method->setCarrierTitle($this->getConfigData('title));

 $method->setMethod($method['code']);
 $method->setMethodTitle($method['title']);

 $method->setCost($method['amount']);

 $method->setPrice($method['amount']+$handling);

 $result->append($method);
 }

 return $result;
 }
}

In this example, $response is the parsed array of an API call response to a
third-party service and code, title, and amount are all values of the array resulting
from the request. We'll go through this block by block, so that we're aware of the
happenings at each stage:

Shipping Modules in Magento

[66]

We start by declaring our module and ensuring that it extends the shipping class of
Magento. This tells Magento that the module is a shipping module.

<?php

class MagentoBook_ShippingModule_Model_Carrier_BareBonesMethod extends
 Mage_Shipping_Model_Carrier_Abstract
{
 protected $_code = 'shippingmodule';

We need to declare the standard collectRates function for Magento to call, when
our shipping method is called.

 public function collectRates(Mage_Shipping_Model_Rate_Request
 $request)
 {

We'll skip the rest if our module isn't enabled and log it to the Magento logs, so that
we know it is being skipped.

 if (!$this->getConfigData('active')) {
 Mage::log('The '.$this->_code.' shipping method is not
active.');
 return false;
 }

We want to retrieve our configured handling fee to be added later to the total fee for
this shipping method.

 $handling = $this->getConfigData('handling');

We grab our overall result that is being returned to Magento, with all available
shipping modules and rates. We do that in case we need to add to it with any
methods available with our module.

 $result = Mage::getModel('shipping/rate_result');

$response in the code below is a theoretical example that we have returning from a
third-party API, likely via SOAP or another method. This is not a set array here, but
used as an example for adding multiple rates based on an array.

 foreach ($response as $method) {

We prepare the new method that will be added.

 $method = Mage::getModel('shipping/rate_result_method');

Chapter 4

[67]

Next, we record our important internal system variables that Magento will use to
store and refer to this shipping method.

 $method->setCarrier($this->_code);
 $method->setCarrierTitle($this->getConfigData('title));

Moving on, we add the method's code and title returned in our array to the new
shipping method which will be returned to the user.

 $method->setMethod($method['code']);
 $method->setMethodTitle($method['title']);

We set the cost, again from the returned array we have. This is not returned to the
user, but is used internally by the system to calculate profit (price – cost = profit).

 $method->setCost($method['amount']);

We set the price for the shipping method and add our handling fee that we gathered
earlier from the configured administration value.

 $method->setPrice($method['amount']+$handling);

Next, we add the rate to the result which will be returned to the system.

 $result->append($method);
 }

The result is returned to Magento for continuing processing onto the next shipping
module installed in the system.

 return $result;
 }
}

The administration setup
Now that we have an adaptor, we need to make it configurable within the
system. We must do so for the Magento administrator to be able to do something
constructive with what we've built. The administrator must be able to:

•	 Enter personal details
•	 Set up the handling rate
•	 Set the cost of the shipping method that we put into the store

Shipping Modules in Magento

[68]

Our administration configuration file defines how our shipping module appears
within the system configuration; which fields appear and what they relate to are
defined here. Once defined, the Magento administrator is able to configure the
module using these fields to get the desired result from the shipping module.

The file /app/code/local/MagentoBook/ShippingModule/etc/system.xml file
contains all the administration fields for the shipping method, and will be formatted
along the lines of the following code:

<?xml version="1.0"?>
<config>
 <sections>
 <carriers>
 <groups>
 <shippingmodule translate="label" module="shipping">
 <label>Bare Bones Shipping inc.</label>
 <frontend_type>text</frontend_type>
 <sort_order>13</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_sto <fields>
 <active translate="label">
 <label>Enabled</label>
 <frontend_type>select</frontend_type>
<source_model>adminhtml/system_config_source_yesno</source_model>
 <sort_order>1</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </active>
 <contentdesc translate="label">
 <label>Package Description</label>
 <frontend_type>text</frontend_type>
 <sort_order>12</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </contentdesc>
 {specific configurable fields listed here}
 </fields>
 </shippingmodule>
 </groups>
 </carriers>
 </sections>
</config>

Chapter 4

[69]

In this configuration file, we've simply set the options for whether or not the
shipping method is enabled and for a field to describe the contents of our shipping
method to the user checking out through the Magento checkout process. We will
learn how these fields are formatted, so that we can add our own as we want. We
will go through this in the next section.

Declaring further fields and learning how
they're structured
A large number of fields are not included in system.xml, as they can be
overwhelming without a thorough explanation. We'll pick and choose our fields
from the below code and insert them between the <fields> </fields> tag as we
go through the popular types of fields which can be used for the configuration of our
module. Our fields are all built up in the same format, with the required options for
each field being set out in the format below:

<account translate="label">
<label>Account number</label>
<frontend_type>text</frontend_type>
<sort_order>7</sort_order>
<show_in_default>1</show_in_default>
<show_in_website>1</show_in_website>
<show_in_store>1</show_in_store>
</account>

Breaking it down, we start with the surrounding tags of <account
translate="label"> </account>, which defines the configurable variable
account and contains its configuration. The translate="label" is a reference
to the <translate> tag that we defined earlier for translation of our module (for
multi-language stores). The value inside the tag will act as a key in the language
file when translating.

The <label> </label> tag pair contains the name of this configurable variable to
be displayed within the administration. We try to make this short in most cases, with
additional notes added where they are needed.

The <frontend_type> </frontend_type> tag pair defines the type of field that will
be shown on the frontend for the administrator configuring this shipping method.
This should be set to one of the following:

•	 text—For a text-input-based form element
•	 select—For a select-dropdown form element
•	 multiselect—For allowing the user to select multiple options from a list
•	 textarea—For a textarea-input-based form element

Shipping Modules in Magento

[70]

<sort_order> </sort_order> defines the order of the fields when they are output
within the administration for the shipping method.

The final three variables for each field (that need to be defined) decide when the
configurable variable should appear within the administration. Their values are
always 1 or 0 to define yes or no. Here is a breakdown of the individual tags that
explains to us what they do:

Tag pair What they do
<show_in_default> </show_in_default> Default Magento-wide configuration
<show_in_website> </show_in_website> Website-wide configuration
<show_in_store> </show_in_store> Store-specific configuration

There is one additional option tag that is not required, but is important for certain
types of fields. The <source_model> </source_model> tag pair defines a source
model which will populate options for a field. We consider the following as an
example of this:

<active translate="label">
 <label>Enabled</label>
 <frontend_type>select</frontend_type>
 <source_model>adminhtml/system_config_source_yesno</source_model>
 <sort_order>1</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</active>

This particular source model adminhtml/system_config_source_yesno populates
the select field with yes and no options for selection. The raw models for exploration of
all the available included functions for the value of this option within your field can be
found in: /app/code/core/Mage/Adminhtml/Model/System/Config/Source/.

For our adminhtml/system_config_source_yesno value, the file in question is
Yesno.php within the same directory.

Here are a few more source models and what they produce in our module's
administration for the user:

•	 shipping/source_handlingType—Lists Magento handling types for
shipping modules

•	 shipping/source_handlingAction—Lists Magento handling actions for
shipping modules

Chapter 4

[71]

•	 adminhtml/system_config_source_shipping_allspecificcountries—
Prints out a list containing the two core options All allowed countries and
Specific countries

•	 adminhtml/system_config_source_country—Lists all countries in the
system. It is usually used by means of multi-select lists for shipping modules
and payment gateways to select the country that they should be applicable to

Appearing in the administration
Once this has been done, the shipping method should appear in Shipping Methods
under System->Configuration:

Now, we will look at the most useful shipping module fields that are used when
putting the shipping module together. These are fields with predefined names and
types that have automatically processed the results that they output. Therefore, they
require no additional coding in the adaptor module to take them on board; Magento
performs these methods straight out of the box.

Free shipping
If we want to enable an automatic price-based amount for free shipping with our
method, we can add in a field called free_shipping_enable and combine this with
another field by the name of free_shipping_subtotal. When free_shipping_
enable is set to Enabled by the Magento administrator, then Magento will
automatically take free_shipping_subtotal into account and offer free shipping if
the total amount is above the value of free_shipping_subtotal.

If this field is disabled, Magento will simply process using the default shipping
calculation behavior of the module.

Shipping Modules in Magento

[72]

The fields are set up as follows, with sort_order and show_in_ values varying:

<free_shipping_enable translate="label">
 <label>Free shipping with minimum order amount</label>
 <frontend_type>select</frontend_type>
 <source_model>adminhtml/system_config_source_enabledisable</
source_model>
 <sort_order>21</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</free_shipping_enable>
<free_shipping_subtotal translate="label">
 <label>Minimum order amount for free shipping</label>
 <frontend_type>text</frontend_type>
 <sort_order>22</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</free_shipping_subtotal>

Handling
Handling charges sometimes come into the equation and need to be added onto the
overall transaction. Magento enables us to do this using the following source models
to present what we want to achieve:

<handling_type translate="label">
 <label>Calculate Handling Fee</label>
 <frontend_type>select</frontend_type>
 <source_model>shipping/source_handlingType</source_model>
 <sort_order>10</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
</handling_type>
<handling_action translate="label">
 <label>Handling Applied</label>
 <frontend_type>select</frontend_type>
 <source_model>shipping/source_handlingAction</source_model>
 <sort_order>11</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
</handling_action>

Chapter 4

[73]

<handling_fee translate="label">
 <label>Handling fee</label>
 <frontend_type>text</frontend_type>
 <sort_order>12</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</handling_fee>

Restricting a shipping method to certain countries
This will allow us to present the option to the administrator for filtering the shipping
method to be only accessible to certain countries. In practice, this means that if we
wanted to offer only one type of delivery to the United Kingdom, then we could do
so simply by selecting United Kingdom from the multi-select field created by the
following declaration.

The Magento administrator can choose the specific countries from the multiple select
list. Only orders from those countries that we have created shipping methods for will
be processed in the shipping module. This enables them to choose any number of
countries for restricting this shipping method to.

<sallowspecific translate="label">
 <label>Ship to applicable countries</label>
 <frontend_type>select</frontend_type>
 <sort_order>90</sort_order>
 <frontend_class>shipping-applicable-country</frontend_class>
<source_model>adminhtml/system_config_source_shipping_
allspecificcountries</source_model>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</sallowspecific>
<specificcountry translate="label">
 <label>Ship to Specific countries</label>
 <frontend_type>multiselect</frontend_type>
 <sort_order>91</sort_order>
<source_model>adminhtml/system_config_source_country</source_model>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</specificcountry>
<showmethod translate="label">
 <label>Show method if not applicable</label>
 <frontend_type>select</frontend_type>

Shipping Modules in Magento

[74]

 <sort_order>92</sort_order>
<source_model>adminhtml/system_config_source_yesno</source_model>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</showmethod>

Using our template to create a shipping
method
Now that we have our bare-bones shipping module, we continue with the creation of
something that we can see an outcome from. From this we should be able to start
to put together our own shipping module tailor-made for future needs.

The purpose of what we are going to build is going to be very simple: we're
going to create a shipping module that meets the following parameters:

•	 It has a handling fee, either per product or for the entire order
•	 It can be limited to specific countries
•	 It can set a simple flat-rate shipping cost, if 10 products or more are

being ordered
•	 It can set another simple flat-rate shipping cost, if 10 products or less

are being ordered
•	 All of the above can be configured via the Magento administration

Before progressing, we delete the previous shipping module from our installation
to make sure that it does not interfere with what we'll be building. To do this, we go
back to the Magento Downloader (which we've learned about in Chapter 2) and select
Uninstall from the module's supporting dropdown before committing the changes.

The configuration files
This time, we'll go with the directory MagentoBook and the name
FullShippingModule. For this, our /app/code/local/MagentoBook/
ShippingModule/MagentoBook/FullShippingModule/etc/config.xml
file will look like:

<?xml version="1.0"?>
<config>
 <modules>
 <MagentoBook_FullShippingModule>

Chapter 4

[75]

 <version>0.1.0</version>
 <depends>
 <Mage_Shipping />
 </depends>
 </MagentoBook_FullShippingModule>
 </modules>

 <global>
 <models>
 <FullShippingModule>
 <class>MagentoBook_FullShippingModule_Model</class>
 </FullShippingModule>
 </models>

 <resources>
 <fullshippingmodule_setup>
 <setup>
 <module>MagentoBook_FullShippingModule</module>
 </setup>
 <connection>
 <use>core_setup</use>
 </connection>
 </fullshippingmodule_setup>
 </resources>
 </global>
</config>

We turn on FullShippingModule, and allow it to be turned off/on from
within the administration. Then, we create /app/etc/modules/MagentoBook_
FullShippingModule.xml and place the following in it:

<?xml version="1.0"?>
<config>
 <modules>
 <MagentoBook_FullShippingModule>
 <active>true</active>
 <codePool>local</codePool>
 </MagentoBook_FullShippingModule>
 </modules>
</config>

Shipping Modules in Magento

[76]

Our adaptor
For those interested in cutting down on code, unnecessary comments have been
removed (which were included in the previous adaptor in this chapter).

We place the following code in: /app/code/local/MagentoBook/
FullShippingModule/Model/Carrier/FullBoneMethod.php

<?php

class MagentoBook_FullShippingModule_Model_Carrier_FullBoneMethod
extends Mage_Shipping_Model_Carrier_Abstract
{
 protected $_code = 'fullshippingmodule';

 public function collectRates(Mage_Shipping_Model_Rate_Request
 $request)
 {
 if (!$this->getConfigData('active')) {
 Mage::log('The '.$this->_code.' shipping method is not
 active.');
 return false;
 }

 $handling = $this->getConfigData('handling');

 $result = Mage::getModel('shipping/rate_result');
 $method = Mage::getModel('shipping/rate_result_method');
 $items = Mage::getModel('checkout/session')->getQuote()-
 >getAllItems();

 if (count($items) >= $this->getConfigData('minimum_item_limit')) {
 $code = $this->getConfigData('over_minimum_code');
 $title = $this->getConfigData('over_minimum_title');
 $price = $this->getConfigData('over_minimum_price');
 }
 else {
 $code = $this->getConfigData('under_minimum_code');
 $title = $this->getConfigData('under_minimum_title');
 $price = $this->getConfigData('under_minimum_price');
 }

 $method->setCarrier($this->_code);
 $method->setCarrierTitle($this->getConfigData('title'));
 $method->setMethod($code);

Chapter 4

[77]

 $method->setMethodTitle($title);
 $method->setPrice($price + $handling);
 $result->append($method);

 return $result;
 }
}

In short, this will check whether there are more items in the cart than the
pre-configured value of minimum_item_limit and then apply a rate if it is over
the set limit. If under the limit, it applies another rate.

We'll go through the code in blocks, so that we can understand it better.

First we declare our module as an extended class of Mage_Shipping, to make sure
Magento knows it as a shipping method.

<?php

class MagentoBook_FullShippingModule_Model_Carrier_FullBoneMethod
extends Mage_Shipping_Model_Carrier_Abstract
{
 protected $_code = 'fullshippingmodule';

We declare our collectRates function, which is the standard function for Magento
to call with the request for rates when processing through all available shipping
methods to it when a user is at the shipping method stage of ordering.

 public function collectRates(Mage_Shipping_Model_Rate_Request
$request)
 {

Here we'll use an active variable set in the backend, when the administrator wants to
disable this shipping method. We will check if the active variable is set to true and if
it is not, false will be returned, so that Magento does not process any further. We will
then tell the module to write to Magento's debug log using the Mage::log function
call to ensure that we're aware the module isn't being used when going through
them at any point in our development process.

 if (!$this->getConfigData('active')) {
 Mage::log('The '.$this->_code.' shipping method is not
 active.');
 return false;
 }

Shipping Modules in Magento

[78]

We get our handling fee configuration value for adding onto our shipping method
price later on. This variable has been set in the administration of our module and
we're getting it out of the database to be used dynamically.

 $handling = $this->getConfigData('handling');

We make sure that our shipping method is declared to the system and that
the result array is sent to the user of shipping methods, if we want to add any
available methods.

In practice this means that we set our method (if available), then add this method to
the result. The result in total (after going through all shipping modules installed in the
system) is then returned to the user for selection of the preferred shipping method.

We also want to get the total amount of items in the cart, as our module depends
on it.

 $result = Mage::getModel('shipping/rate_result');
 $method = Mage::getModel('shipping/rate_result_method');
 $items = Mage::getModel('checkout/session')->getQuote()
 ->getAllItems();

If the amount of items in the current order is more than or equal to the amount that
the minimum_item_limit variable is set to, we want discounted rates. Otherwise, we
get the standard rates, as there is no discount.

 if (count($items) >= $this->getConfigData('minimum_item_limit')) {
 $code = $this->getConfigData('over_minimum_code');
 $title = $this->getConfigData('over_minimum_title');
 $price = $this->getConfigData('over_minimum_price');
 }
 else {
 $code = $this->getConfigData('under_minimum_code');
 $title = $this->getConfigData('under_minimum_title');
 $price = $this->getConfigData('under_minimum_price');
 }

We now need to set the internal code Magento will refer to this shipping method as
when setting up orders and invoices in the system. We will then set its title and price
to also be presented in the system and to the user on the frontend who is awaiting
presentation of available shipping methods to them.

 $method->setCarrier($this->_code);
 $method->setCarrierTitle($this->getConfigData('title'));
 $method->setMethod($code);
 $method->setMethodTitle($title);
 $method->setPrice($price + $handling);

Chapter 4

[79]

 $result->append($method);

 return $result;
 }
}

The administration configuration
First, we'll create the /app/code/local/MagentoBook/FullShippingModule/
etc/system.xml file using the bare-bones template we put together earlier in this
chapter. We start by changing our carrier label to Full Boned Shipping inc.

<fullshippingmodule translate="label" module="shipping">
 <label>Full Boned Shipping inc.</label>

Then we add our text-based fields to the system.xml configuration file, front_end_

type text as per the previous conventions that we used with the following labels and
variable names:

Variable Name Label
minimum_item_limit Minimum item quantity (if over, the over minimum

rate is applied)
over_minimum_code Over minimum shipping code
over_minimum_title Over minimum title
over_minimum_price Over minimum price
under_minimum_code Under minimum shipping code
under_minimum_title Under minimum title
under_minimum_price Under minimum price

Here's a reminder of the format for the field tags and how they should be formatted:

<active translate="label">
 <label>Enabled</label>
 <frontend_type>select</frontend_type>
 <source_model>adminhtml/system_config_source_yesno</source_model>
 <sort_order>1</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</active>

We make sure to define our sort order as we proceed. As a reminder—the
<sort_order>1</sort_order> tag pair is how the order in which the fields appear

Shipping Modules in Magento

[80]

is controlled. From 1 being the field to appear first, the highest number appears last
in sequence.

After we have defined these fields, we add the handling fields and country
restriction fields (outlined previously in this chapter). Once this is done, we
have completed our configuration.

Testing our newly built module
We go into the administration under System->Configuration and then to
Shipping Methods. Our new shipping method Full Boned Shipping inc.
appears at the bottom.

Chapter 4

[81]

We must be sure to fill out the values here in the module and save them. In the
previous screenshot, we have a Standard Shipping method, as there are less than two
products in the cart. It provides Over Two Products special offer! shipping option
when the user has equal to or over that amount of products in their cart. The pricing of
both options has been set to reflect that and a handling charge of 5 per order has been
added, which is applied as per the base currency (Pounds in this case).

To test the frontend, we go to the store and place x amount of products into
the cart (either below or above the minimum item quantity set in our module)
and progress to shipping to check if the rates are output. If we see them, then it
works successfully!

Code to allow our shipping module to meet
our needs
Here we see some small pieces of code to use within our shipping modules to
achieve what we set out to do, when we created the module for a Magento store.

To get all items in the cart, we use:

$items = Mage::getModel('checkout/session')->getQuote()-
>getAllItems();
foreach($items as $item) {
 // process each item here
};

Within the items foreach loop, we get the quantity for each item that is currently in
the cart (also a great way to advance the fullbonesmodule built above):

$item_quantity = $item->getQty();

We check if a product is virtual or not, so that we don't need to calculate shipping:

if($item->getProduct()->getTypeInstance()->isVirtual()){
 // it's a virtual product
} else{
 // it's not a virtual product
}

Shipping Modules in Magento

[82]

Summary
In this chapter we've learned:

•	 How to set up a basic bare-bones shipping module template for use in the
future development of shipping modules

•	 How to use shipping module-specific fields to limit our shipping module
usage to certain countries

•	 How to set up a basic administration section for our shipping module to
allow it to be configured by Magento store administrators

•	 How to put together a shipping method that decides on the shipping rate by
the amount of items in the cart

•	 Some useful pieces of code to use in our own shipping modules, when
putting them together

Further to this chapter, we should create our own shipping modules for Magento
stores. It is an excellent opportunity to test the knowledge gained in this chapter,
by building modules on our own.

Building a Payment Module
for Magento

This chapter is about putting together a payment method for Magento and the
various aspects that go together to complete the process. We'll be using our
knowledge from Chapter 3 on Magento's architecture and grow what we've
put into action in Chapter 4 in building our shipping module.

In this chapter we'll go through the various parts that make up a payment
method, including:

•	 The declaration
•	 The configuration
•	 The functional operation
•	 The administrative setup of fields
•	 Tying in automatic shipping-tracking code generation and updating into

our payment module

How payment methods work in Magento
When it comes to going through an order in Magento, payment methods are the
last stage of the process. Once customer details have been filled in and the shipping
method has been chosen, the payment method comes into play. Its role is to finalize
the order and handle how the customer is going to pay for the item(s) that he will
be ordering through the Magento installation.

Magento will take all the order details, including what items are in the order, where
it is being shipped, and all the pricing totals, after which it will proceed to the
payment stage. Magento will load payment methods, one by one and present them
to the customer.

Building a Payment Module for Magento

[84]

Once the customer has selected a payment method, then Magento will progress
towards processing through the method's function for sending the data for
processing. This could be anything from sending the request via an API, processing
credit card details, or authorizing them.

The other functions of a payment method are to handle the invoicing, capturing,
voiding, and refunding of payment itself. These are all functions that the payment
method will deal, which we'll go through later on in the chapter.

Payment methods that are bundled
with Magento
Let's take some time here to go through the existing payment modules that are
bundled with Magento by default, so that we may learn from them by exploring
their inner depths. It helps a great deal when trying to underneath payment methods
to explore the files in these bundled modules and read through the code as best we
can, trying to understand how everything works.

There are numerous bundled payment methods included with Magento and they
are listed below, with their module names and the subsequent attached payment
gateways that they integrate into Magento:

•	 Amazon Payments (module folder name: AmazonPayments)
•	 Authorize.Net (module folder name: PayGate)
•	 Google Checkout (module folder name: GoogleCheckout)
•	 Magento standard methods: (module folder name: Payment)

	° Cheque/Money order
	° Purchase order
	° Saved CC
	° Zero Subtotal Checkout

•	 PayPal (module folder names: PayPal, PayPalUk)

Exploring through these bundled payment methods after reading through this
chapter will hopefully give us a fuller picture of how they work. A lot can be
learnedby jumping into the directories and files of pre-built modules that are
out there.

Chapter 5

[85]

Downloadable payment methods on
Magento Connect
In addition to bundled payment methods that come with Magento's default
installation, there are well over 100 downloadable extensions on Magento Connect
available for download. These vastly cover the majority of popular payment
gateways that we would want to implement for our installation, including—but not
limited to—the likes of the following:

•	 2checkout
•	 ePay
•	 Fontis
•	 Moneybookers
•	 Sage Pay (formally Protx)
•	 WorldPay

We'll also find functional non-payment processing methods such as:

•	 Bank pre-payment
•	 Cash on delivery

These modules show only a small piece of what is possible with
development of Magento's payment methods and I hope to show
you how to get started with building them in this chapter. Many
more payment modules can be found online on Magento Connect
(http://www.magentocommerce.com/magento-connect) and it
is worth browsing through modules under the Payment Gateways filter,
with over 200 individual payment modules available. Looking through
these modules and downloading some of them will allow you to discover
how the internals work as well as what's possible with payment modules.

Let's get started by building a base payment method, which we can build upon and
fill in the gaps with to create our desired method.

Building a Payment Module for Magento

[86]

Building the base of a payment method
Here, we're going to build the base of a payment method. This is something that
won't have a purpose, but to provide us with a base—which we can build on—to
create our fuller featured payment method.

It will show us what the bare bones are in order for you to be able to later go on
and create a fully functional method later on.

Module declaration
We need to start by declaring our module to the system. We'll do this by creating the
file MagentoBook_PaymentModule.xml in /app/etc/modules/ and filling it with the
following XML code:

<?xml version="1.0"?>
<config>
 <modules>
 <MagentoBook_PaymentModule>
 <active>true</active>
 <codePool>local</codePool>
 <depends>
 <Mage_Payment />
 </depends>
 <version>0.1.0</version>
 </MagentoBook_PaymentModule>
 </modules>
</config>

A noticeable feature is that we're using the <depends></depends> tags, to ensure
that this module cannot be activated or used without Mage_Payment being activated.
This means that if the core payment-handling module in Magento has been disabled,
then the module will not be activated or used in any way by the system.

Module configuration
We're now going to move onto the configuration of our module, so that we can fit it
into the system and make sure it works with other internal components.

We'll create a file called config.xml in /app/code//MagentoBook/PaymentModule/
etc/ and fill it with the following XML code:

<?xml version="1.0"?>
<config>
 <modules>

Chapter 5

[87]

 <MagentoBook_PaymentModule>
 <version>0.1.0</version>
 </MagentoBook_PaymentModule>
 </modules>
 <global>
 <models>
 <paymentmodule>
 <class>MagentoBook_PaymentModule_Model</class>
 </paymentmodule>
 </models>
 <resources>
 <paymentmodule_setup>
 <setup>
 <module>MagentoBook_PaymentModule</module>
 </setup>
 <connection>
 <use>core_setup</use>
 </connection>
 </paymentmodule_setup>
 <paymentmodule_write>
 <connection>
 <use>core_write</use>
 </connection>
 </paymentmodule_write>
 <paymentmodule_read>
 <connection>
 <use>core_read</use>
 </connection>
 </paymentmodule_read>
 </resources>
 </global>
 <default>
 <payment>
 <paymentmodule>
 <active>0</active>
 <model>paymentmodule/paymentMethod</model>
 <order_status>1</order_status>
 <title>Credit Card (Magento Book Payment Module)</title>
 <cctypes>AE,VI,MC,DI</cctypes>
 <payment_action>authorize</payment_action>
 </paymentmodule>
 </payment>
 </default>
</config>

Building a Payment Module for Magento

[88]

Let's back up slightly here and break parts of this configuration down, so that
everything is clear before we continue.

We start by defining our XML version and the module version. This version
number is used for upgrades of the script later if database upgrades of data stored
or table structures are needed as the script progresses over time. In practice, this
means that if we need to make changes between versions, we can use Magento's
built-in version-control system for modules to deploy scripts between upgrades.
This is primarily used for executing changes, such as database structure or changes
to the database contents between upgrades. Code-only changes between upgrades
should be fine, without an upgrade script attachment to execute any actions:

<?xml version="1.0"?>
<config>
 <modules>
 <MagentoBook_PaymentModule>
 <version>0.1.0</version>
 </MagentoBook_PaymentModule>
 </modules>

We'll now open our <global></global> tags for declaration of models and
handling of database resources to the system. We'll begin by declaring our model:

 <global>
 <models>
 <paymentmodule>
 <class>MagentoBook_PaymentModule_Model</class>
 </paymentmodule>
 </models>

Next, we'll declare our handling of the database resources to the system. Here, we're
using core_setup, core_write, and core_read as our declarations because we
don't want to use any external database with this module. We would want to simply
use the existing Magento database setup:

 <resources>
 <paymentmodule_setup>
 <setup>
 <module>MagentoBook_PaymentModule</module>
 </setup>
 <connection>
 <use>core_setup</use>
 </connection>
 </paymentmodule_setup>
 <paymentmodule_write>
 <connection>

Chapter 5

[89]

 <use>core_write</use>
 </connection>
 </paymentmodule_write>
 <paymentmodule_read>
 <connection>
 <use>core_read</use>
 </connection>
 </paymentmodule_read>
 </resources>
 </global>

Now we'll set up our default configuration for this module and make sure it is
under the payment system configuration tab in the system. We use the
<payment></payment> tags here (surrounding this part of the configuration) to
declare to Magento that this is a payment module to be added to the system:

 <default>
 <payment>
 <paymentmodule>

We've to make sure that this module isn't set to active by default, when it's
installed. We'll have to set it to 1 if we want it to automatically become active:

 <active>0</active>

We must ensure that we're referencing the paymentMethod model:

 <model>paymentmodule/paymentMethod</model>

We'll set the default order status for new orders to processing:

 <order_status>1</order_status>

We'll name our block of configurable variables in the administration:

 <title>Credit Card (Magento Book Payment Module)</title>

Then we'll define which credit card types are available to this module:

 <cctypes>AE,VI,MC,DI</cctypes>

The default payment action for this module is now declared. This is a choice between
Authorize and Authorize and Capture. Authorize confirms that the payment
method is correct and valid, whereas Authorize and Capture grabs the payment
from the account at the same time as verification. There are two possible values for
this tag: authorize and authorize_capture. The differences between these two
core functions will be explained later in the chapter.

 <payment_action>authorize</payment_action>

Building a Payment Module for Magento

[90]

We can then close all our open tags to make sure this file is processed properly:

 </paymentmodule>
 </payment>
 </default>
</config>

Hopefully this has brought us closer to understanding the payment method's
configuration file.

The adaptor model
Our adaptor model is responsible for adapting the model towards a functional tool
to be used by the system. In our case all functionality is stored within this file.

We'll create a file called PaymentMethod.php in /app/code/local/CompanyName/
NewModule/Model/ and place the following code within it:

<?php
class MagentoBook_PaymentModule_Model_PaymentMethod extends Mage_
Payment_Model_Method_Cc
{
 protected $_code = 'paymentmodule';
 protected $_isGateway = true;
 protected $_canAuthorize = true;
 protected $_canCapture = true;
 protected $_canCapturePartial = false;
 protected $_canRefund = true;
 protected $_canVoid = true;
 protected $_canUseInternal = true;
 protected $_canUseCheckout = true;
 protected $_canUseForMultishipping = true;
 protected $_canSaveCc = false;
 public function authorize(Varien_Object $payment, $amount)
 {
 $data = $payment->getData();
 /*
 $data = array(
 store_id,
 customer_payment_id,
 method,
 additional_data,
 po_number,
 cc_type,
 cc_number_enc,

Chapter 5

[91]

 cc_last4,
 cc_owner,
 cc_exp_month,
 cc_exp_year,
 cc_number,
 cc_cid,
 cc_ss_issue,
 cc_ss_start_month,
 cc_ss_start_year,
 parent_id,
 amount_ordered,
 base_amount_ordered,
 shipping_amount,
 base_shipping_amount,
 method_instance)
 */
}
 public function capture(Varien_Object $payment, $amount)
 {
 // Grab stored payment data array for processing
 $paymentData = unserialize($payment->getAdditionalData());
 }
 public function void(Varien_Object $payment)
 {
 // actions when order is voided occur here
 }
 public function refund(Varien_Object $payment, $amount)
 {
 // actions when order is refunded occur here

 }
}
?>

Building a Payment Module for Magento

[92]

Let's go over the meaning of these initial variables' set up in our payment method
class before we continue:

$_isGateway Is this a payment gateway? (Uses authorize or capture
methods)

$_canAuthorize Can this module authorize? (Is the authorize function
available?)

$_canCapture Can this gateway capture payment? (Is the capture
function available?)

$_canCapturePartial Can this module partially capture payments?
$_canRefund Can this module refund payments? (Is the refund

function available?)
$_canVoid Can this module void payments? (Is the void function

available?)
$_canUseInternal Can this payment module appear in the Magento

payment modules administration panel?
$_canUseCheckout Can this module show as a method in the Magento

checkout?
$_
canUseForMultishipping

Is this module multi-shipping compatible?

$_canSaveCc Can this module save credit card information for
future processing?

What this code does is that it provides a very solid base for building our payment
method. Here, we have:

•	 Our class declaration and initial payment module declaration to Magento
•	 Our protected variables which define to Magento what the module can

and cannot do, so that it automatically restricts how the module operates
•	 Four functions defining key operations of a payment method:

	° authorize()

	° capture()

	° void()

	° refund()

Chapter 5

[93]

Payment information storage
The $payment model that gets passed to each of the methods in our class is
an instance of Mage_Sales_Model_Order_Payment. Every time a payment is
processed, the data for that payment is stored in the sales_flat_quote_payment
table. There is an additional_data field that our module could use to store values
for each transaction.

Four core components
The four core components of a payment module are key operations that can be
defined into two blocks, as follows:

•	 The processing of the payment prior to completing the sale
•	 After the order has had its payment successfully authorized and captured

Let's go through both of these now and understand a little more about how the core
operations work.

The processing of the payment
The processing of the payment covers the authorize() and capture() functions.
Going back to our module's configuration, the <payment_action></payment_
action> tags define which of the two functions is called, once the initial order
has taken place. We've set this to Authorize Only, which by default which will
call authorize() and capture() later when we click the capture button after
invoicing. But if we choose Authorize and Capture, then only the capture()
function is called.

Our code for authorizing and capturing payment will need to be placed
appropriately within these functions. The choice to be made between the two options
should depend on our choice of payment gateway that we're building the module
for. An Authorize Only approach means that payment is held until we decide to
capture it, whereas Authorize and Capture will automatically take payment as soon
as it is authorized. This will highly depend on the workflow that we had in mind for
the module.

Building a Payment Module for Magento

[94]

Let's recap on how these two functions operate under the two core options in our
<payment_action></payment_action> tags.

Choice authorize() capture()
Authorize Only Authorizes the customer's

payment method via our
payment gateway and
does not capture the actual
payment. It waits for further
processing before doing
so. This happens when the
order is placed and happens
automatically.

Once the customer is
invoiced via Magento a
capture button appears
in the upper right of
the invoice screen
within Magento's
administration. When
clicked, this will then
execute the contents
of the function for the
payment module the user
has authorized through.

This happens after the
order has been placed
and it happens manually.

Authorize and Capture Isn't executed at any point. Automatically takes
care of both the role
of authorize() and
capture() functionality
at checkout immediately
upon the order being
placed. Note: This does
not call authorize()
automatically; it will
only call capture()
which should be built to
handle both sides of the
functionality.

After the order has had its payment successfully
processed
The return() and void() functions are called when an administrator goes into an
order after invoicing and clicks the Return or Void buttons in the upper right of
the order screen. The code placed within these functions will determine how the
payment method handles an order once these buttons have been clicked.

Chapter 5

[95]

Declaring configuration options for the admin
panel
Now that we have a module with the required functionality and setup, we'll need to
declare our configuration options, which appear on the payment methods page of
the System -> Configuration menu.

Setting up the core fields
Create a file called system.xml in /app/code/local/MagentoBook/
PaymentModule/etc/ and start by filling it with the following XML code:

<?xml version="1.0"?>
<config>
 <sections>
 <payment>
 <groups>
 <paymentmodule translate="label" module="paygate">
 <label>NewPayment Module</label>
 <sort_order>670</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
 <fields>
 {…fields…}
 </fields>
 </paymentmodule>
 </groups>
 </payment>
 </sections>
</config>

Replace {…fields…} with the following fieldset XML code:

<active translate="label">
 <label>Enabled</label>
 <frontend_type>select</frontend_type>
 <source_model>adminhtml/system_config_source_yesno</source_model>
 <sort_order>1</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
</active>
<order_status translate="label">
 <label>New order status</label>
 <frontend_type>select</frontend_type>

Building a Payment Module for Magento

[96]

 <source_model>adminhtml/system_config_source_order_status_processing
 </source_model>
 <sort_order>4</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
</order_status>
<title translate="label">
 <label>Title</label>
 <frontend_type>text</frontend_type>
 <sort_order>2</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
</title>

As you can see in the XML, it does not matter which order you place the fields in.
Only the sort_order field name will be used when deciding the order of the fields
on output in the section of the Magento administration.

This would create three base fields for the module, as follows:

Field name What it would be used for

Enabled To turn the module on/off within the system

New order status Gives us the ability to choose Authorize Only or
Authorize and Capture

Title The title of the module when presented to the user

These three fields are a suggested base for the module in order to control the very
basics of our payment module. It's a suggestion to enable control of whether or not
the module is enabled, the new order status, and the title of the module itself on the
frontend when presented to the user as a form of payment method they can choose
on checkout.

If we go to System->Configuration and choose Payment Methods from the sidebar
menu, we would see a New Module group of configurable options for our module.

Chapter 5

[97]

Some other field types you can use
There are numerous other fields that we can setup for our module which can be
grabbed from pre-existing modules in Magento at the moment. These come in handy
as we won't need to set them up ourselves and they slot in easily. A typical field
setup is as follows:

<title translate="label">
 <label>Title</label>
 <frontend_type>text</frontend_type>
 <sort_order>2</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
</title>

In our scenario the <frontend_type></frontend_type> tag pair is the most
important tag pair, as this is the only value we change when pre-populating field
types. The following are examples of values which can be placed inside these tags
to produce different fields:

•	 adminhtml/system_config_source_yesno—returns yes or no for you
field type

•	 adminhtml/system_config_source_order_status_new—returns an
array of options for use when selecting a new order's status

•	 adminhtml/system_config_source_email_identity—returns a list
of email identities in the system from which to send emails from

•	 adminhtml/system_config_source_email_template—returns a list
of email templates in the system from which to send emails with

•	 adminhtml/system_config_source_payment_cctype—returns a list of
credit card types, useful for multi-selects when deciding the types of cards
that we would want our module to accept

We'll have a look at the file /app/code/core/Mage/adminhtml/Model/System/
Config/Source.php to see all the options available to us as source models.
This could potentially unveil some additional options that will benefit us in our
module development.

Building a Payment Module for Magento

[98]

Obscuring fields
We could use the following pair to obscure data in the backend and reveal the data
when it placed back into the field on its way out of the database:

<frontend_type>obscure</frontend_type>
<backend_model>adminhtml/system_config_backend_encrypted
</backend_model>

This would, of course, be placed within our standard field tag. Take the following
example from Google Checkout's setup:

<merchant_id translate="label">
 <label>Merchant ID</label>
 <frontend_type>obscure</frontend_type>
 <backend_model>adminhtml/system_config_backend_encrypted
 </backend_model>
 <sort_order>20</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
</merchant_id>

The backend_model makes sure it is encrypted when put into the database and the
frontend_type means that it's unencrypted on the way back out.

Custom fields from our models
We can create our own field population source models by making use of the Models/
directory. Take the following example from the Google Checkout module's /app/
code/core/Mage/GoogleCheckout/etc/system.xml file:

<checkout_image translate="label">
 <label>Checkout Image Style</label>
 <frontend_type>select</frontend_type>
 <source_model>googlecheckout/source_checkout_image</source_model>
 <sort_order>40</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
</checkout_image>

Chapter 5

[99]

This calls the model /app/code/core/Mage/GoogleCheckout/Model/Source/
Checkout/Image.php and the inner function toOptionArray().This returns the
values to Magento, which handles the output into the Magento administration.
Take a read of the file should you be interested in digging further into how they
make it work.

Tying in automatic shipping tracking/updating
The following is an example of payment methods offering a specialized feature in
hooking up shipping integration. Hopefully, we should be able to take something
from this and be able to either re-apply these methods within our payment modules
or apply similar methods in our custom modules built for Magento.

Automatic shippingtracking and
code-generation tie-in
Amazon Payments has a setup due to which, if we mark an item as shipped or
update the tracking code for that order, then it will report the codes and the status
of the order for tracking in their system back to Amazon.

This is useful in several ways:

•	 It helps the user stay in the loop without coming to the website
•	 The user somewhat expects this to happen if their payment gateway that

they are paying through provides this as functionality with other websites
•	 This then, of course, helps them relate to our brand more and gives them the

unexpected surprise that makes them come back or talk about the site more

This is done via observation on events in the system. The two events that the module
observes and then acts upon are:

•	 The confirmation of an order shipment
•	 The saving of a tracking shipping number to an order

If the /app/code/core/Mage/AmazonPayments/etc/config.xml file is opened
in default installation of Magento, we'll see the following code that defines the
observers in the system between <adminhtml></adminhtml> tags:

<events>
 <sales_order_shipment_save_after>
 <observers>
 <amazonpayments>
 <type>model</type>

Building a Payment Module for Magento

[100]

 <class>amazonpayments/observer</class>
 <method>confirmShipment</method>
 </amazonpayments>
 </observers>
 </sales_order_shipment_save_after>
 <sales_order_shipment_track_save_after>
 <observers>
 <amazonpayments>
 <type>model</type>
 <class>amazonpayments/observer</class>
 <method>salesOrderShipmentTrackSaveAfter</method>
 </amazonpayments>
 </observers>
 </sales_order_shipment_track_save_after>
</events>

This XML information and set of fields defines the observers so that information is
passed to a set type of class and method for processing. Take the second definition
for example:

<sales_order_shipment_track_save_after>
 <observers>
 <amazonpayments>
 <type>model</type>
 <class>amazonpayments/observer</class>
 <method>salesOrderShipmentTrackSaveAfter</method>
 </amazonpayments>
 </observers>
</sales_order_shipment_track_save_after>

This makes sure that when a sales order shipment tracking code is saved, directly
afterwards the AmazonPayments module will look for:

•	 Something in the /model/ folder of (defined in the <type></type> tag pair)
•	 The AmazonPayments module called Observer.php (defined in the

<class></class> tag pair)
•	 The salesOrderShipmentTrackSaveAfter() method within this file

(defined in the <method></method> tag pair)

Chapter 5

[101]

On the other end of these observers is the model file itself (Observer.php) that sits
within the /model/ folder of the AmazonPayments module folder. If we go to /app/
code/core/Mage/AmazonPayments/Model/Observer.php we'll see the code for the
methods that are on the other end of these observers that are set:

class Mage_AmazonPayments_Model_Observer
{
 public function confirmShipment(Varien_Event_Observer $observer)
 {
 $shipment = $observer->getEvent()->getShipment();
 if ($shipment->getOrder()->getPayment()->getMethod() !=
'amazonpayments_cba') {
 return;
 }
 Mage::getModel('amazonpayments/api_cba')
 ->confirmShipment($shipment);
 }
 public function salesOrderShipmentTrackSaveAfter(Varien_Event_
Observer $observer)
 {
 $track = $observer->getEvent()->getTrack();
 $order = $track->getShipment()->getOrder();
 /* @var $order Mage_Sales_Model_Order */
 if ($order->getPayment()->getMethod() != 'amazonpayments_cba') {
 return;
 }
 Mage::getModel('amazonpayments/api_cba')
 ->sendTrackingNumber($order, $track);
 }
}

There are a few key areas to pick up upon here that are important when replicating
this functionality in your own modules. Let's go through a few certain key blocks to
ensure we're benefiting from reading this code.

We start by noticing that Varien_Event_Observer $observer is the only variable
being caught within both of these functions. This is how observers are setup and
work with the system to properly process the event they are observing. A notable
aspect is that these functions are public, and not private.

public function confirmShipment(Varien_Event_Observer $observer)
{

Building a Payment Module for Magento

[102]

Next, we've got a block of code for ensuring that the payment method used for this
order is actually Amazon Payments CBA. This is important, as Amazon Payments
doesn't need to hear about orders placed through other payment gateways. This is
vital to ensuring smooth integration of the payment module. If the payment method
isn't amazonpayments_cba then we can simply return nothing and let Magento carry
on as usual through the other observers waiting for this action to occur.

$shipment = $observer->getEvent()->getShipment();
if ($shipment->getOrder()->getPayment()->getMethod() !=
'amazonpayments_cba') {
 return;
}

It's also important to notice the code separation going on here. The observer class
is only used for receiving notification of the event. All actual executed code is in
external models that are built for the next step. We can see how they've included
an external model here:

Mage::getModel('amazonpayments/api_cba')
 ->confirmShipment($shipment);

The last thing to notice from the functions at hand is the way they gather
the shipping, tracking, and order information and how they make use of the
$observer class.

$shipment = $observer->getEvent()->getShipment();

And in the second function within the class:

$track = $observer->getEvent()->getTrack();
$order = $track->getShipment()->getOrder();

These methods could be used in our observer classes if we wish to place them
within our built payment modules.

To see how the objects created by those three functions are processed, open the file
/app/code/core/Mage/AmazonPayments/Model/Api/Cba.php and search for the
functions that the two observer functions execute from this file when looking to the
executable action of the observation they were there to observe:

•	 confirmShipment

•	 sendTrackingNumber

These two functions teach us a lot about how to learn more about those three
variables created and passed to the functions. They also elaborate on how the
three variables are used when passed through to the resulting function.

Chapter 5

[103]

We'll also see the same two observers across other bundled payment gateways such
as Google Checkout, which should be explored for further depth of information on
the topic.

Summary
In this chapter, we learned the following:

•	 Which payment methods are bundled with Magento by default
•	 The popular payment methods that can be downloaded from Magento

Connect
•	 How to put together the basics of a payment method for Magento and

the core functions Magento uses automatically from the methods it uses
•	 How to setup the fields as well as how to obscure and encrypt them
•	 How to link in our own pre-populated arrays of field values from our

custom models
•	 Tying in automatic shipping-tracking code generation and updating into

our payment module

Further, we should research the other payment methods available on Magento
Connect. These will help us learn more about how payment methods are structured
and function internally. When we try to create functionality for us, we will learn in
depth about the existing payment methods.

We should also be able to create our own payment methods for our Magento
installations that need them.

Building a Basic Featured
Products Module

In this chapter, we will learn how to put together a basic module in Magento.
This module will allow us to feature products on the site and within our product
categories. This will introduce us to some of the basics of module development in
Magento and enable us to form a fundamental base for future module development.

One of the most implemented features on a Magento site is the ability to feature
products. Whether it is the home page, or the sidebar, or the footer, featured
products are a fundamental building block of an e-commerce website. Typically this
is done through banner advertising, but with this module we'll use the products
themselves as a base for our information. We'll display product blocks on the
site using this featured product data, gathered dynamically in the administrative
backend of Magento.

How it works
To make this happen, we'll set up an attribute in our system to mark a product as
featured and then create a bespoke module that will allow us to display products
marked as featured on a per category basis.

The process for getting a product to appear in the Featured Product block will go
as follows:

•	 Create or edit a product
•	 Find the field featured and select yes from the dropdown
•	 Save the product information that we have changed or created
•	 Go to a category that this product is assigned to and it will appear

Building a Basic Featured Products Module

[106]

To build our module we will:

•	 Create the attribute
•	 Create our module with the core functionality
•	 Extend the category view to include our featured product display
•	 Create templates for display
•	 Define the module in our local.xml module configuration file
•	 Add in our XML block declaration, so that the module displays on

the frontend, and get started

Creating the attributes in the system
We'll start by going to Catalog -> Attributes -> Manage Attributes from within
the administration.

Next, we'll click on Add New Attribute in the upper right of the Manage
Attributes screen.

Chapter 6

[107]

The New Product Attribute screen is shown in the following screenshot:

Setting the field values
We'll set the fields on this page as follows, to set up our Featured Product attributes
in the system.

Attribute Properties
The properties of each attribute from the previous screenshot is given below:

Field name Field value
Attribute Code featured
Scope Store View
Catalog Input Type for Store Owner Yes/No
Default Value No
Unique Value (not shared with other products) No
Values Required No
Input Validation for Store Owner None
Apply To All Product Types

Building a Basic Featured Products Module

[108]

Frontend Properties
The Frontend Properties are described as follows:

Field name Field value
Use in quick search No
Use in advanced search Yes
Comparable on Front-end No
Use In Layered Navigation (it also refers to
Multiple Select and Price.)

No

Visible on Product View Page on Front-end Yes

Ignore all other attributes that appear and leave
them as their default values

Manage Label/Options
This is found by clicking on the Manage Label/Options tab on the left-hand side
of the current page.

We chose Featured Product as our label for this attribute when displayed.
However, we can replace this field value with another one, if we want something
else to appear.

Field name Field value
Admin Featured Product

The Manage Label/Options tab will look something like this:

We must remember to save our attribute to complete this section of the chapter.

Following this you will need to go to Catalog -> Attributes -> Manage Attribute
Sets. Once here select your chosen attribute set that you'd like to add this new
featured attribute into. You can repeat this step multiple times, should you want to
for each attribute set that you’d like to add the attribute to.

Chapter 6

[109]

I've chosen to select Default in this example.

You should see the attribute that we've created under Unassigned Attributes on
the right hand side of the screen that now appears.

Proceed by clicking and holding your mouse down to drag and drop the featured
attribute into the attribute group of your choice in the middle.

Building a Basic Featured Products Module

[110]

You should now see something along the lines of the following with the featured
attribute under the group:

Creating the core module with functionality
We'll now create the function that allows us to present the products that are featured
to our block, for displaying them to the end user. The class that we created contains
the function that expands existing Magento catalog functionality. This occurs so that
we can interact with other catalog functionality directly and integrate directly with
the existing class files.

We'll create the file Featured.php and the directories to create the path: app/code/
local/MagentoBook/Catalog/Block/Product/Featured.php.

For adding functionality, we'll edit the newly created Featured.php file and place
the following in it:

<?php
class MagentoBook_Catalog_Block_Product_Featured extends
 Mage_Catalog_Block_Product_Abstract
{
 protected $_limit = 1;
 public function getFeaturedProducts()
 {
 $productCollection = Mage::registry('current_category')-
 >getProductCollection();

Chapter 6

[111]

 Mage::getModel('catalog/layer')->prepareProductCollection
 ($productCollection);
 $productCollection
 ->addAttributeToFilter('featured', true)
 ->setPageSize($this->_limit)
 ->load();
 return $productCollection;
}
 public function setLimit($limit = null)
 {
 if(intval($limit) > 0)
 $this->_limit = intval($limit);
 }
}
?>

Let's break this down, so that we fully understand the contents of the file.

First, we'll declare the class, which will extend the core Mage_Catalog module to
integrate directly into the system and allow us to interact with core functionality
that we need in order to create this module:

<?php
class MagentoBook_Catalog_Block_Product_Featured extends
 Mage_Catalog_Block_Product_Abstract
{

We'll then set up the $_limit variable, which will hold the number of featured
products that are to be fetched:

protected $_limit = 1;

Next, we'll declare getFeaturedProducts with which we will grab the featured
product for the current category:

public function getFeaturedProducts()
 {

We'll build $productCollection result by building a base line query for get
products for current category:

 $productCollection = Mage::registry('current_category')-
 >getProductCollection();
 Mage::getModel('catalog/layer')->prepareProductCollection
 ($productCollection);

Building a Basic Featured Products Module

[112]

We'll then add filters to make sure that we only select where the Featured attribute
is set to true (or Yes) and limit the results to the amount stored in the variable
(which we set earlier in the class).

 $productCollection
 ->addAttributeToFilter('featured', true)
 ->setPageSize($this->_limit)
 ->load();

This is then returned for usage in the template file of the module's output:

 return $productCollection;
}

We will end the file with the setLimit function, which allows us (or anyone using
the module) to override the output limit:

 public function setLimit($limit = null)
 {
 if(intval($limit) > 0)
 $this->_limit = intval($limit);
 }

We'll end our class declaration and our file:

}
?>

That completes the class file of our module!

Adding the XML block declaration for display
of the module on the frontend
We'll open /app/design/frontend/default/default/layout/catalog.xml.
We want to add a new <block> right above the Product List block in the Default
Category layout.

We'll search for the <catalog_category_default> tag and the content within it.
Once we've found this, we have two choices as to where we can place our featured
content block, The choices are <reference name="left"> and <reference
name="content">, which both relate to the left sidebar of our layout and the content
layout. We can also add other references between these tags, if the layout requires it.

Chapter 6

[113]

Once we've chosen the relevant reference tag, we add in the following block to call
our module that we have put together every time the category page loads:

<block type="catalog/product_featured" name="product_featured"
 as="product_featured"
 template="catalog/product/featured.phtml"></block>
 <block type="catalog/product_featured" name="product_featured"
 template="catalog/product/featured.phtml">
 <action method="setLimit"><limit>2</limit></action>
</block>

The template address catalog/product/featured.phtml, can be replaced with
whatever custom file we want, if we wish to separate the template out from the
existing set that comes with Magento's default frontend theme.

It's worth noting that the following code sets how many products should be returned
by the template:

<action method="setLimit"><limit>2</limit></action>

With the code we've just inserted, two featured products will output. To change,
simply switch the number '2' for the number of products you'd like to output in your
template files.

The product_featured return statement from our previous section in putting
together the module is featured here. Imagine this block as the part where Magento
requests product_featured and the View.php file that we built above as the part of
our module that returns the appropriate content.

Creating templates for display
In order for our module to appear, we need our templates to call the function that
we've created at some point. In this case, we presume that we've gone with the
choice of <reference name="content"> and include the featured block in the
content area of our layout.

We'll open up the View.phtml file located at /app/design/frontend/default/
default/template/catalog/category/View.phtml and add the following code
above the first occurrence of <?php echo $this->getProductListHtml(); ?> in
this template file:

<?php echo $this->getFeaturedProductHtml(); ?>
<?php echo $this->getChildHtml('product_featured'); ?>

Building a Basic Featured Products Module

[114]

This will place our Featured Product content block above the place where products
are output.

We'll now need a physical template file for our featured product block, in order for
it to display our featured products. To do this, we'll create featured.phtml (if it
doesn't exist already) at the location /app/design/frontend/default/default/
template/catalog/product/featured.phtml and place some code within it to
present our featured products out onto the website.

Here is an example that shows (in code order):

•	 The name of the product linked to its individual product page
•	 Its image at a 200 x 200 size
•	 An Add to Cart button for the user to add it into their cart directly from

where it is displayed
•	 A check to see if the item is out of stock or not before displaying the Add

to Cart button, with a warning message if it is in fact out of stock
<?php
foreach($this->getFeaturedProducts() as $_product): ?>
 <form action="<?php echo $this->getAddToCartUrl($_product) ?>"
 method="post" id="product_addtocart_form">
 <a href="<?php echo $_product->getProductUrl() ?>">
 <?php echo $this->htmlEscape($_product->getName()) ?>
 <img class="product-image" src="<?php echo
 $this->helper('catalog/image')->init($_product, 'small_image')-
 >resize(200, 200) ?>" alt="<?php echo $this
 ->htmlEscape($_product->getName()) ?>" />
 <?php if($_product
 ->isSaleable()): ?>
 <button class="form-button" onclick="setLocation
 ('<?php echo $this->getAddToCartUrl($_product) ?>')">
 <?php echo $this->__('Add to Cart') ?></button>
 <?php else: ?>
 <div class="out-of-stock"><?php echo
 $this->__('Out of stock') ?></div>
 <?php endif; ?>
 </form>
<?php endforeach; ?>

Chapter 6

[115]

Defining the module in the local .xml module
configuration file
Now that everything is in place, we need to ensure that our module is declared
to Magento by including it in our local.xml file. We can find this file in the
/app/etc/ directory.

We'll add the following inside the <config></config> global tag pair that
surrounds all inner declaration tags:

<blocks>
 <catalog>
 <rewrite>
 <product_featured>MagentoBook_Catalog_Block_Product_Featured
 </product_featured>
 </rewrite>
 <rewrite>
 <category_view>MagentoBook_Catalog_Block_Category_View
 </category_view>
 </rewrite>
 </catalog>
</blocks>

Once this is done, our Featured Products module will be included in the system.
We do not need to activate/deactivate the module, as it extends a core component
of Magento and for this reason does not need to be declared separately.

This concludes adding a featured product section into your Magento
category templates.

Summary
In this chapter, we've learned:

•	 How to put together a basic module in Magento
•	 How to create a featured product attribute which allows us to feature

products by which category the user is currently browsing

We must continue developing these modules further to fit our specific needs, to
extend other parts of Magento's core modules, and to integrate what we've learned
in this chapter into our Magento implementations.

Fully-Featured Module for
Magento with Admin Panel

In this chapter, we'll go through the basics of module development, right from
getting a simple Hello World message displayed to managing the module's
information in the database and making it into a dynamic extension of Magento.
This extension will be used to manage the output of brands on a page that will be
displayed on the frontend of our installation.

We'll go through:

•	 Getting the module set up using a pre-built module creation tool
•	 Getting our first Hello World displayed on the frontend
•	 The overall structure of where files should go and what structure to use
•	 How all the files of the module are put together and what each of them does
•	 Extending the result into a brand management module
•	 Displaying the managed results data on the frontend of our

Magento installation
We'll start by assembling the basic structure and the files needed to get a Hello
World message displayed and proceed ahead to upgrading the module to bring in
additional elements. These will include an administration panel and dynamic output
to Magento. It will also include giving the module its own unique URL within the
installation. It provides our module with a dynamic frontend, using which visitors
can browse through the data that is managed in the backend.

Fully-Featured Module for Magento with Admin Panel

[118]

Creating our first Hello World message
We'll start with a quick Hello World via a display block. This process is more
complex than displaying a message directly, but it shows us the fundamentals of
what we'll be trying to achieve in this chapter. With the exception of simply typing
Hello World in an existing template block, this is the quickest way of getting our
own template block into Magento's display system.

Setting up the display template
We'll start the process by setting up the template itself with our Hello world
statement inside of it.

First, we'll create the directory /app/design/frontend/default/default/
template/hello/ and create/place the file world.phtml within it. Hence, the full
address should be /app/design/frontend/default/default/template/hello/
world.phtml.

Next, we'll insert our Hello World text within the file:

<h2>Hello World!</h2>

We've placed an <h2> tag on either side of the statement so that it stands out
on screen.

Placing the display template in a layout
.xml file
Now that we have our display template, we need to ensure that the layout block
appears on a layout .xml file, so that it can be output on the site.

We'll place the following block of code in the layout .xml file of our choice:

<block type="core/template" name="helloworld" template="hello/world.
phtml" />

For example, we'll take the core.xml file, which contains the following by default:

<?xml version="1.0"?>
<layout version="0.1.0">
 <default>
 <block name="formkey" type="core/template" template="core/
formkey.phtml" />
 </default>
</layout>

Chapter 7

[119]

Let's place our layout block within the XML file and ensure that it appears correctly
within the reference name in our layout, in the right-hand column:

<?xml version="1.0"?>
<layout version="0.1.0">
 <default>
 <block name="formkey" type="core/template" template="core/
formkey.phtml" />
 <reference name="right">
 <block type="core/template" name="helloworld" template="hello/
world.phtml" />
 </reference>
 </default>
</layout>

After we've saved these files, our Hello world! message will be displayed in the right
sidebar, as shown below:

As we can see, the Hello world! message is displayed between Compare Products
and BACK TO SCHOOL advertisement.

Fully-Featured Module for Magento with Admin Panel

[120]

Creating our first /helloworld/ URL
structure
Another step into Magento module development is to create a complete module that
becomes a section of the site via having a URL of its own. We're now going to create
one of these modules to get ourselves a /helloworld/ URL structure and a section
of the site dedicated to our created module.

First, we need to put together the module's structure before adding the URL. This is
so that we're set-up going forward. Should you want to just have the URL for your
module, you only need to follow the last step of this section in the chapter.

The directory structure
We'll create and set up folders to match the following directory structure in
preparation for putting together the module for the rest of this chapter.

The directories for the module's core files need to be set as follows:

•	 /app/code/local/Book/Helloworld/

	° Block/

	° controllers/

	° etc/

	° Helper/

	° Model/

	° Mysql4/

	° Helloworld/

	° sql/

	° helloworld_setup/

For the module's design template files:

•	 /app/design/frontend/default/default/

	° template/

	° helloworld/

Chapter 7

[121]

Giving the module a backend
Now that we have our directory structure in place, we'll need to create a configuration
file which makes sure that Magento can view our module in the system.

The file /app/etc/modules/Book_Helloworld.xml should be created for our
module and should contain the following:

<?xml version="1.0"?>
<config>
 <modules>
 <Book_Helloworld>
 <active>true</active>
 <codePool>local</codePool>
 </Book_Helloworld>
 </modules>
</config>

The module will now appear in the Disable Modules Output section under
System->Configuration, then Advanced under the left sub-menu. We can either
disable or enable this module through this menu.

Note: If the module does not appear on the page, then we'll need to clear the
Magento installation's cache. To do this, we should go to System->Cache
Management in our backend menu, select Disable from the drop-down to
the right of All Cache, and click Save cache settings.

Configuring the module
Every module requires a config.xml file to set it up. In this case, we'll set up a very
basic version of the file (and nothing more) to get the module up and running. Later
on this file becomes very important in making the module dynamic and we'll extend
it much further than this base.

We'll create the file /app/code/local/Book/Helloworld/etc/config.xml and fill
it with the following:

<?xml version="1.0"?>
<config>
 <modules>
 <Book_Helloworld>
 <version>0.1.0</version>
 </Book_Helloworld>
 </modules>
 <frontend>

Fully-Featured Module for Magento with Admin Panel

[122]

 <routers>
 <helloworld>
 <use>standard</use>
 <args>
 <module>Book_Helloworld</module>
 <frontName>helloworld</frontName>
 </args>
 </helloworld>
 </routers>
 <layout>
 <updates>
 <helloworld>
 <file>helloworld.xml</file>
 </helloworld>
 </updates>
 </layout>
 </frontend>
 <global>
 <blocks>
 <helloworld>
 <class>Book_Helloworld_Block</class>
 </helloworld>
 </blocks>
 <helpers>
 <helloworld>
 <class>Book_Helloworld_Helper</class>
 </helloworld>
 </helpers>
 </global>
</config>

We'll break the code down and go through each tag individually.

We'll start by defining the <config> tag and the XML header for the file:

<?xml version="1.0"?>
<config>

We'll follow it up with the declaration of our module and defining our module
version number:

 <modules>
 <Book_Helloworld>
 <version>0.1.0</version>
 </Book_Helloworld>
 </modules>

Chapter 7

[123]

Opening the <frontend> tag, here we'll be setting up the module's URL; the
<frontName> tag defines the URL, via which the module will be directly accessed. In
our example, we've used helloworld, as we want to achieve a /helloworld/ setup.

 <frontend>
 <routers>
 <helloworld>
 <use>standard</use>
 <args>
 <module>Book_Helloworld</module>
 <frontName>helloworld</frontName>
 </args>
 </helloworld>
 </routers>

We'll continue inside the <frontend> tag to define the layout .xml file attached
to this module. These are the XML blocks that will be processed once the module
is accessed directly via the frontName value we set in the tag above. In this case,
when /helloworld/ is accessed by a user, the layout .xml file will be accessed to get
module-specific blocks to load. This is followed by the closing of the <frontend> tag,
as it concludes our module's frontend configuration tags.

 <layout>
 <updates>
 <helloworld>
 <file>helloworld.xml</file>
 </helloworld>
 </updates>
 </layout>
 </frontend>

The module's display block models are next. Here, we're declaring that this module
has a display block model class, which lets us use this model as display block types
in Magento's .xml layout files.

 <global>
 <blocks>
 <helloworld>
 <class>Book_Helloworld_Block</class>
 </helloworld>
 </blocks>

Fully-Featured Module for Magento with Admin Panel

[124]

Continuing with the <global> tag, we'll define our Helper model for the module,
so that it is available to the blocks when they are used. This is then followed by the
closing of the module's <global> tag:

 <helpers>
 <helloworld>
 <class>Book_Helloworld_Helper</class>
 </helloworld>
 </helpers>
 </global>

We'll close the <config> tag to end the file and that finishes everything:

</config>

We now have a config.xml file for our module.

Our controller
The module's controller will take in the direct URL and process the layout attached
to it. Later on it will be responsible for loading the data to the index of our module,
when accessed via /helloworld/. At the moment however, it will load just the
<default> tag from our layout. .xml file (which we'll set up later).

We'll create the file /app/code/local/Book/Helloworld/controllers/
IndexController.php and fill it with the following:

<?php
class Book_Helloworld_IndexController extends Mage_Core_Controller_
Front_Action
{
 public function indexAction()
 {
 $this->loadLayout();
 $this->renderLayout();
 }
}

There are two core functions to this controller: the first loads the module's layout
.xml file and processes it:

$this->loadLayout();

The second function renders this layout using the blocks defined in the layout
.xml file and outputs it:

$this->renderLayout();

Chapter 7

[125]

The Helper model
Not every module uses a Helper model, but we'll be working on one anyway (for
illustrating this chapter). We'll be learning about the best practices for using them
in our module. Typically, a Helper model will be utilized for its helper functions,
which are used for formatting or altering output in some way. Examples of that are
as follows:

•	 Number formatting (currency, number rounding into thousands)
•	 Alternative row color/class outputting

We'll create the file /app/code/local/Book/Helloworld/Helper/Data.php and
place the following code within it:

<?php

class Book_Helloworld_Helper_Data extends Mage_Core_Helper_Abstract
{
}

At the moment the file is empty in order to set it up for later editing. We will place a
function or two in the Helper model later for usage.

The module's default model
All modules have a default model that is attached to them. The default model
is responsible for fetching the data and/or setting it up for the module's design
template files to process through. It is called when we declare a block, for example
type=hello/world on a display block would call the world function inside the
Hello model.

We'll create the file /app/code/local/Book/Helloworld/Model/Helloworld.php
and place the following code within it:

<?php

class Book_Helloworld_Model_Helloworld extends Mage_Core_Model_
Abstract
{
 public function _construct()
 {
 parent::_construct();
 $this->_init('helloworld/helloworld');
 }
}

Fully-Featured Module for Magento with Admin Panel

[126]

This sets up the model for the module and initializes the model's functions for usage
in any template .xml file once we have some blocks.

Template blocks and display
Now we'll need to create the frontend for our module and make sure that Magento
has something to output, when our module's chosen URL /helloworld/ is accessed
by a user.

Display block class
This holds the functions for the display block to refer to and is needed for our
template .xml file to pass the messages across.

We'll create the file /app/code/local/Book/Helloworld/Block/Helloworld.php
and place within it the following:

<?php
class Book_Helloworld_Block_Helloworld extends Mage_Core_Block_
Template
{
 public function _prepareLayout()
 {
 return parent::_prepareLayout();
 }
 public function getHelloworld()
 {
 return 'Hello world';
 }
}

We can see that we have a getHelloworld function, which will return the Hello
world! message to our template file.

The layout .xml file
Our module needs a dedicated layout .xml file, in order to load the display blocks
for our module when it is accessed.

For that, we'll create the file /app/design/frontend/default/default/layout/
helloworld.xml and place the following within it:

<?xml version="1.0"?>
<layout version="0.1.0">
 <helloworld_index_index>
 <reference name="content">
 <block type="helloworld/helloworld" name="helloworld"
 template="helloworld/helloworld.phtml" />

Chapter 7

[127]

 </reference>
 </helloworld_index_index>
</layout>

The design template file
Finally, we have our design template file which will be used for formatting the
output from the display block model.

We'll create /app/design/frontend/default/default/template/Helloworld/
helloworld.phtml and place the following inside it:

<h2><?php echo $this->getHelloworld(); ?></h2>

This will return the getHelloWorld() function from our display block between a
pair of <h2> tags.

Viewing /helloworld/
Now that we've put everything together that's required, we have our first display
block powered Hello World!. Accessing /helloworld/ displays something along
the lines of the following, depending on our theme:

Fully-Featured Module for Magento with Admin Panel

[128]

Taking a look at what we've put together
Let's go over all the work that we've just done to create this module and get to
this point.

We have created:

•	 A directory system that holds our module and all its files
•	 A system configuration file to declare our module to the system
•	 A module configuration file to declare our module's configuration
•	 A controller which processes the request when the user loads /helloworld/

•	 A default model
•	 A helper for functions to help out with formatting in display templates
•	 A display block for passing the message to our template file
•	 A template file for echoing out our Hello world! message
•	 A layout .xml file dedicated to just this module's display blocks under

the URL /helloworld/

Using the Module Creator script to get
Hello World
We'll now go through an automated method of creating a module with backend
administration. This will show us how to quickly deploy a base of a fully featured
module in the future. After doing that, we'll go through this code to understand how
it all works individually.

We can find the Module Creator available as an extension
on Magento Connect at the following link: http://www.
magentocommerce.com/extension/1108/modulecreator.
Credit for the Module Creator script goes to Daniel Nitz, with
the example templates being created by Alistek.

Chapter 7

[129]

This script allows us to put together a solid base of required files for our modules,
without having to manually create each file. It saves some time when creating all the
individual files and all developers should know about this when getting into regular
module development for Magento. While it's not a substitute for knowing how to
put together the modules ourselves, it does help when we need to get a module up
and running quickly (most useful when we need a base with which to expand into
what we want to build).

Installing the Module Creator
The following sequence is to be followed when installing the Module Creator:

1. We'll get started by going to the extension page on Magento Connect for
the Module Creator and grabbing the key for this extension.

2. Next, we'll insert the extension key from the Module Creator Magento
Connect extension page at: http://www.magentocommerce.com/

extension/1108/modulecreator.
3. We'll open /downloader/ into the input box (at the top of the page) and

copy and paste the extension key into the input box at the top of the page.

4. We'll proceed by clicking Install to install the module into our
Magento installation.

A success message (similar to the one shown in the previous screenshot) is displayed.

Fully-Featured Module for Magento with Admin Panel

[130]

Creating our first module with the Module
Creator
We'll start by loading the /moduleCreator/ in our Magento installation's URL in
the browser. A default first screen is displayed, now that it's installed:

When we log in with the Magento administrative credentials, we'll find ourselves
inside the script of the Module Creator, and the functionality screen will unveil
itself. It will look similar to the following screenshot:

Chapter 7

[131]

All options are available to us in this initial screen, along with installed skeleton
module templates (with scripts). These can be loaded individually if we want to
install more later for rapid deployment. We can also develop a Skeleton Template
on our own, in future.

We'll be using a Blank News Module, which is the default available module with
the Module Creator extension.

It's important to note that the Magento Root Directory field is relevant to the
current location of the Module Creator directory. If the Module Creator is located
at http://example.com/moduleCreator/ and our Magento installation is located
at http://example.com/, then we can simply insert ../ as the value for this field
and it will work. In most cases, the correct value of this field should insert itself
automatically into the input field, so that we do not have to figure out the correct
path ourselves.

As we'll be using the default theme for easier display throughout this book, it's
advisable to leave the two design fields blank. If we use this Module Creator in
our installation with our own theme, these fields will need to be filled in.

For this chapter we'll be using the following:

Field Value
Namespace Book
Module Helloworld
Magento Root Directory ../
Design
Design

Next we'll click on Create, and the following message gets displayed:

New Module successfully created!

Go to the folder where this file is located. You'll find a new folder called new.

Within are all required files for your new module. This folder has the same structure
as your Magento installation. Just make sure you replace the interface and theme
folder with your current design path. If you want to add custom DB-fields go to /
new/local/Book/Helloworld/sql/module_setup/mysql4-install-0.1.0.php
and make your changes for line 12 to 14.

Copy /new/Book_Helloworld.xml to /app/etc/modules/. If you chose a
Magento install directory, all files can be found in their according directory.
Implement your module functionality and you're done!

Fully-Featured Module for Magento with Admin Panel

[132]

The contents of our new module
The module will create a solid amount of files for us to start with. The Module
Creator would have installed the following files:

•	 app/etc/modules/Book_Helloworld.xml

•	 app/code/local/Book/Helloworld/Block/Helloworld.php

•	 app/code/local/Book/Helloworld/controllers/IndexController.php

•	 app/code/local/Book/Helloworld/etc/config.xml

•	 app/code/local/Book/Helloworld/Model/Helloworld.php

•	 app/code/local/Book/Helloworld/Model/Mysql4/Helloworld.php

•	 app/code/local/Book/Helloworld/Model/Mysql4/Helloworld/
Collection.php

•	 app/code/local/Book/Helloworld/Model/Status.php

•	 app/code/local/Book/Helloworld/sql/helloworld_setup/mysql4-
install-0.1.0.php

•	 app/design/frontend/default/default/layout/helloworld.xml

•	 app/design/frontend/default/default/template/helloworld/
helloworld.phtml

•	 app/code/local/Book/Helloworld/Block/Adminhtml/Helloworld.php

•	 app/code/local/Book/Helloworld/Block/Adminhtml/Helloworld/Edit.
php

•	 app/code/local/Book/Helloworld/Block/Adminhtml/Helloworld/Grid.
php

•	 app/code/local/Book/Helloworld/Block/Adminhtml/Helloworld/Edit/
Form.php

•	 app/code/local/Book/Helloworld/Block/Adminhtml/Helloworld/Edit/
Tabs.php

•	 app/code/local/Book/Helloworld/Block/Adminhtml/Helloworld/Edit/
Tab/Form.php

•	 app/code/local/Book/Helloworld/controllers/Adminhtml/
HelloworldController.php

•	 app/code/local/Book/Helloworld/Helper/Data.php

•	 app/design/adminhtml/default/default/layout/helloworld.xml

If we didn't choose a Magento Root Directory, we'll need to manually copy the files
to their chosen locations, rather than have the installer doing it. The Module Creator
will place all the files within a directory called /new/ within our /moduleCreator/
folder. If this is the case, then we'll need to copy the files into their duplicate root
folders. For example /moduleCreator/new/app/etc/modules/ would go into /
app/etc/modules/ and we would need to match this structure throughout.

Chapter 7

[133]

Hello World
Now that we have our module's core files ready, we want to get a simple Hello
World message displayed. We'll start by opening: app/design/frontend/default/
default/template/helloworld/helloworld.phtml.

At the top of the file, we'll find the following:

<h4><?php echo $this->__('Module List') ?></h4>

We'll change that to Hello World:

<h4><?php echo $this->__('Hello World') ?></h4>

We'll save helloworld.phtml and then load /helloworld on our Magento
installation's installation URL; the following screenshot is displayed:

Now we have our Hello World using the Module Creator!

Fully-Featured Module for Magento with Admin Panel

[134]

Expanding our module further into a
database-driven, administrated brands
module
We'll now take the development of our module further and create a database-driven
list of brands for a section of the site. This part of the chapter will teach us how
convert the pieces that we built at the start, into a fully functional module
within Magento.

Our module will do the following:

•	 List a series of brands
•	 Turn those brands into links, which clicked, show the brand's name and an

outline of the location and history of that brand
•	 Store this data in a database table within the Magento database
•	 Make it content manageable in the administration of Magento, including

adding, editing, and deleting items

Recreating the base
For the sake of making it easier to progress through this chapter, we'll recreate what
we did at the start. This will help when we do not want to read everything that we've
previously gone through so far. Explanations of these code blocks are at the start of
the chapter.

After this, we will add to the base that we've already created earlier in the chapter
and introduce a database setup and backend administration into the module.

The directory structure
The directory structure for the module's core files is as follows:

•	 /app/code/local/Book/Brands/

	° Block/

	° controllers/

	° etc/

	° Model/

	° Mysql4/

	° Brands/

	° sql/

	° brands_setup/

Chapter 7

[135]

For the module's design template files, we have:

•	 /app/design/frontend/default/default/

	° template/

	° brands/

Enabling the module in the backend
The file /app/etc/modules/Book_Brands.xml will be created for our module
and it will contain the following:

<?xml version="1.0"?>
<config>
 <modules>
 <Book_Brands>
 <active>true</active>
 <codePool>local</codePool>
 </Book_Brands>
 </modules>
</config>

Our controller
We'll create the file /app/code/local/Book/Brands/controllers/
IndexController.php and fill it with the following code:

<?php
class Book_Brands_IndexController extends Mage_Core_Controller_Front_
Action
{
 public function indexAction()
 {
 $this->loadLayout();
 $this->renderLayout();
 }
}

Fully-Featured Module for Magento with Admin Panel

[136]

Configuring the module
We'll create the file /app/code/local/Book/Brands/etc/config.xml and fill it
with the following code:

<?xml version="1.0"?>
<config>
 <modules>
 <Book_Brands>
 <version>0.1.0</version>
 </Book_Brands>
 </modules>
 <frontend>
 <routers>
 <brands>
 <use>standard</use>
 <args>
 <module>Book_Brands</module>
 <frontName>brands</frontName>
 </args>
 </brands>
 </routers>
 <layout>
 <updates>
 <brands>
 <file>brands.xml</file>
 </brands>
 </updates>
 </layout>
 </frontend>
 <global>
 <blocks>
 <brands>
 <class>Book_Brands_Block</class>
 </brands>
 </blocks>
 <helpers>
 <brands>
 <class>Book_Brands_Helper</class>
 </brands>
 </helpers>
 </global>
</config>

Chapter 7

[137]

The Helper model
We'll create the file /app/code/local/Book/Brands/Helper/Data.php and place
the following code within it:

<?php

class Book_Brands_Helper_Data extends Mage_Core_Helper_Abstract
{
}

The module's default model
For the default model, we'll create the file /app/code/local/Book/Brands/Model/
Brands.php and place the following code within it:

<?php

class Book_Brands_Model_Brands extends Mage_Core_Model_Abstract
{
 public function _construct()
 {
 parent::_construct();
 $this->_init('brands/brands');
 }
}

The module's frontend display base
Here we'll put together the template blocks that form the display of this module.

Display block class
We'll create /app/code/local/Book/Brands/Block/Brands.php file and place
within it the following code:

<?php
class Book_Brands_Block_Brands extends Mage_Core_Block_Template
{
 public function _prepareLayout()
 {
 return parent::_prepareLayout();
 }
 public function getBrands()
 {

Fully-Featured Module for Magento with Admin Panel

[138]

 return 'Brands will go here';
 }
}

The layout .xml file
We'll create the file /app/design/frontend/default/default/layout/brands.
xml and place the following code within it:

<?xml version="1.0"?>
<layout version="0.1.0">
 <brands_index_index>
 <reference name="content">
 <block type="brands/brands" name="brands" />
 </reference>
 </brands_index_index>
</layout>

The design template file
We'll create the file /app/design/frontend/default/default/template/Brands/
brands.phtml and place the following in it:

<h2><?php echo $this->getBrands(); ?></h2>

Extending the base towards introducing a
database
Now that we have the base for our brands list, we need to advance it to introduce
our database integration.

The configuration .xml file
We'll be editing the existing config.xml file to include our database configuration.
For shortening the code, existing template tags from the previous config.xml
file have been shortened with a ... separator in between them to show that they
are unedited.

We'll edit our config.xml file to include the following outside of the ... separators:

<?xml version="1.0"?>
<config>
 <modules>
 ...
 </modules>
 <frontend>

Chapter 7

[139]

 ...
 </frontend>
 <global>
 <models>
 <brands>
 <class>Book_Brands_Model</class>
 <resourceModel>brands_mysql4</resourceModel>
 </brands>
 <brands_mysql4>
 <class>Book_Brands_Model_Mysql4</class>
 <entities>
 <brands>
 <table>brands</table>
 </brands>
 </entities>
 </brands_mysql4>
 </models>
 <resources>
 <brands_setup>
 <setup>
 <module>Book_Brands</module>
 </setup>
 <connection>
 <use>core_setup</use>
 </connection>
 </brands_setup>
 <brands_write>
 <connection>
 <use>core_write</use>
 </connection>
 </brands_write>
 <brands_read>
 <connection>
 <use>core_read</use>
 </connection>
 </brands_read>
 </resources>
 <blocks>
 ...
 </blocks>
 <helpers>
 ...
 </helpers>
 </global>
</config>

Fully-Featured Module for Magento with Admin Panel

[140]

We'll go into the detail of how config.xml and what they do. Our <models> tag
introduces database specific models that require mySQL4 in order to operate. This is
why we're appending _mysql4 and _Mysql4 onto the end of the class names and a
<resourceModel> tag in the code:

 <models>
 <brands>
 <class>Book_Brands_Model</class>
 <resourceModel>brands_mysql4</resourceModel>
 </brands>
 <brands_mysql4>
 <class>Book_Brands_Model_Mysql4</class>
 <entities>
 <brands>
 <table>brands</table>
 </brands>
 </entities>
 </brands_mysql4>
 </models>

The second block of code introduced into config.xml covers database resources and
what the module will use. This defines that the module has a setup file included that
needs to be executed and checked on update. We'll leverage Magento's core setup
and write and read database connection settings in order to access the database.

 <resources>
 <brands_setup>
 <setup>
 <module>Book_Brands</module>
 </setup>
 <connection>
 <use>core_setup</use>
 </connection>
 </brands_setup>
 <brands_write>
 <connection>
 <use>core_write</use>
 </connection>
 </brands_write>
 <brands_read>
 <connection>
 <use>core_read</use>
 </connection>
 </brands_read>
 </resources>

Chapter 7

[141]

The mySQL4 data models
We'll create the directory and file /app/code/local/Book/Brands/Model/Mysql4/
Brands.php and place the following code within it:

<?php

class Book_BrandsModel_Mysql4_Brands extends Mage_Core_Model_Mysql4_
Abstract
{
 public function _construct()
 {
 $this->_init('brands/brands', 'brands_id');
 }
}

Here we'll expand the core mySQL4 database class within Magento. The second value
in the function $this->_init() should match the Primary Key of our module's
database table.

We'll create the directory and file /app/code/local/Book/Brands/Model/Mysql4/
Brands/Collection.php and place within it the following code:

<?php

class Book_BrandsModel_Mysql4_Brands_Collection extends Mage_Core_
Model_Mysql4_Collection_Abstract
{
 public function _construct()
 {
 $this->_init('brands/brands');
 }
}

Just like the previous class, we'll expand Magento's core mySQL classes here, this time
the mySQL Collection class that Magento uses to collect data from the database.

Fully-Featured Module for Magento with Admin Panel

[142]

Database setup and installation of the file
In order for our module to store data in the Magento database, we'll need to set up
the database in which all the data will be kept, stored, and managed by our backend
within Magento.

We'll create the following directory and file /app/code/local/Book/Brands/sql/
brands_setup/mysql4-install-0.1.0.php and place within it the following code:

<?php

$installer = $this;
$installer->startSetup();

$installer->run("

DROP TABLE IF EXISTS {$this->getTable('brands')};
CREATE TABLE {$this->getTable('brands')} (
 `brands_id` int(11) unsigned NOT NULL auto_increment,
 `brand_name` varchar(255) NOT NULL default '',
 `brand_description` text NOT NULL default '',
 `brand_location` varchar(255) NOT NULL default '',
 `status` smallint(6) NOT NULL default '0',
 `created_time` datetime NULL,
 `update_time` datetime NULL,
 PRIMARY KEY (`brands_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
 ");

$installer->endSetup();

Let's run through the code that we've just put together here. We start by assigning
the variable $installer the current Magento parent class. Then we move onto
initializing the installation and calling the child function startSetup() to indicate
that the setup of the module is being started by the system:

$installer = $this;
$installer->startSetup();

We then run the SQL contained within the run() function through the system. We'll
notice the inclusion of {$this->getTable('brands')} in the SQL, which allows
us to insert the name of a module table (including any prefix that the Magento
installation may have). Any SQL query which is needed for the module later can be
included here.

$installer->run("
 ...
 ");

Chapter 7

[143]

The file is then finished off with the endSetup() function to complete the install run
for the module:

$installer->endSetup();

Extending the module to include an
administration
Now that we have our base and have extended it to include our database integration,
we'll take this a step further by including an administration. This is so that we can
add, edit, delete, and manage our module's information in the backend of Magento
prior to its display.

Adminhtml directories
Let's start by adding a couple of directories into our base in which to place all the
files required to add in an administrative backend.

These are contained in /app/code/local/Book/Brands/:

Block/
 Adminhtml/
 <Module>/
 Edit/
 Tab/
controllers/
 Adminhtml/

Administrative display blocks
Magento comes with classes and models for generating the administrative backend
for modules. This means that we can input the core information for the screens, and
the actual display of the data fields, grids, information, and buttons are output using
the currently selected adminhtml template in the system.

This automates the processes of paging, exporting data to CSV/XML, filtering
data, and searching, thereby saving a lot of work in the development of modules. It
also provides a consistent user experience for the users of Magento. The all-round
consistency between the modules that users install and use for their Magento
installations is a phenomenal benefit provided by this automation.

Fully-Featured Module for Magento with Admin Panel

[144]

There are several parts to putting together the administration for this module, which
we're going to go over:

•	 a core model, defining the administration to the system
•	 an add/edit model, allowing records to be added or edited as needed
•	 a setup of the module's grid display, for the administrative home page
•	 a class to declare the edit/add record form
•	 a class to set the tabs positioned to the left of the edit/add record form when

it is being used
•	 a class to declare fields used in the add/edit record form that appears
•	 a controller to bring it all together and process accessed URLs for the module

in the backend
•	 the final editing of the config.xml to set up the administrative backend and

activate it for our module
While this may seem like a lot of work to get a backend for a module in Magento,
it's not as much as would be required for other e-commerce systems (which require
us to template every screen and action, as well as creating the models/controllers for
our module).

This is also designed to show us everything that can be clubbed together in terms
of an administrative backend for our module in Magento. So, we may end up using
significantly less for simpler modules that we develop with administrative backends
in Magento.

Defining the core administrative backend to the
system
To start with, we'll need a model which ensures that the administrative backend is
held together and appears in the first place. It also defines our sub-menu item and
the labels for the two core buttons on the administrative screen:

•	 Brand manager (our sub-menu item)
•	 Add Brand (our Add New Record button)

We'll create the file /app/code/local/Book/Brands/Block/Adminhtml/Brands.
php and place the following code inside it:

<?php

class Book_BrandsBlock_Adminhtml_Brands extends Mage_Adminhtml_Block_
Widget_Grid_Container
{

Chapter 7

[145]

 public function __construct()
 {
 $this->_controller = 'adminhtml_brands';
 $this->_blockGroup = 'brands';
 $this->_headerText = Mage::helper('brands')->__('Item Manager');
 $this->_addButtonLabel = Mage::helper('brands')->__('Add Brand');
 parent::__construct();
 }
}

Let's break up the key lines of this file to make sure everything is understood as we
move forward.

We'll start by extending the Mage_Adminhtml_Block_Widget_Grid_Container
class which is Magento's Grid class for displaying grids of information across the
backend. We'll also notice that this is used for managing products, orders, customers,
newsletter subscribers, and every other type of information that is displayed in a
grid in the backend.

class Book_Brands_Block_Adminhtml_Brands extends Mage_Adminhtml_Block_
Widget_Grid_Container

Defining our controller and blockGroup to Magento's Grid Container class lets
Magento know what controller to look for to process this backend's URLs when
accessed. It also declares which folder to look into for the models and the container
that we'll be creating to put together in this administrative backend. This is common
throughout the code for the administrative setup files.

 $this->_controller = 'adminhtml_brands';
 $this->_blockGroup = 'brands';

We'll finish off by defining our headerText which appears at the top of the index
page for the module's administrative backend and the text used for the Add Record
button label. This is the common declaration and setting of key labels in the
administrative backend and will be used throughout other templates and files in
this chapter.

 $this->_headerText = Mage::helper('brands')->__('Brands Manager');
 $this->_addButtonLabel = Mage::helper('brands')->__('Add Brand');

Fully-Featured Module for Magento with Admin Panel

[146]

Defining the add/edit screens to the system
The following model defines the add/edit screens to the system and sets them up
for us.

We'll start by creating the file /app/code/local/Book/Brands/Block/Adminhtml/
Brands/Edit.php and place the following code inside it:

<?php

class Book_Brands_Block_Adminhtml_Brands_Edit extends Mage_Adminhtml_
Block_Widget_Form_Container
{
 public function __construct()
 {
 parent::__construct();

 $this->_objectId = 'id';
 $this->_blockGroup = 'brands';
 $this->_controller = 'adminhtml_brands';

 $this->_updateButton('save', 'label', Mage::helper('brands')->__
('Save Brand'));
 $this->_updateButton('delete', 'label', Mage::helper('brands')->__
('Delete Brand'));
 }

 public function getHeaderText()
 {
 if(Mage::registry('brands_data') && Mage::registry('brands_
data')->getId()) {
 return Mage::helper('brands')->__("Edit Brand '%s'", $this->html
Escape(Mage::registry('brands_data')->getTitle()));
 } else {
 return Mage::helper('brands')->__('Add Brand');
 }
 }
}

Key lines in this code
The line where we defined the objectId to the system, represents the URL key used
when the system outputs the /edit/id/5/ URL. When we change the value from id
to brand, we'll have the output of /edit/brand/5/.

$this->_objectId = 'id';

Chapter 7

[147]

The getHeaderText() function is key in this model, as it provides a way of
switching between showing an Edit Brand label and an Add Brand label depending
which screen the user is currently accessing. This is important to understand if we
want to change this behavior in any way for our own module.

 public function getHeaderText()
 {

If the _objectId set earlier appears in the URL, then we'll be on an Edit Brand page:
 if(Mage::registry('brands_data') && Mage::registry('brands_
data')->getId()) {
 return Mage::helper('brands')->__("Edit Brand '%s'", $this->html
Escape(Mage::registry('brands_data')->getTitle()));

If not, the user will be adding a brand, so the Add Brand label is displayed:
 } else {
 return Mage::helper('brands')->__('Add Brand');
 }
 }

The module's grid display declaration
For this class, we'll define the data grid that is displayed when the user clicks on the
Manage Brands sub-menu item, under our module's administrative backend menu
item. Although there's a lot of code to look at, we'll go through it later.

We'll create the file /app/code/local/Book/Brands/Block/Adminhtml/Brands/
Grid.php and place the following code inside it:

<?php

class Book_Brands_Block_Adminhtml_Brands_Grid extends Mage_Adminhtml_
Block_Widget_Grid
{
 public function __construct()
 {
 parent::__construct();
 $this->setId('brandsGrid');
 $this->setDefaultSort('brands_id');
 $this->setDefaultDir('ASC');
 $this->setSaveParametersInSession(true);
 }

 protected function _prepareCollection()
 {
 $collection = Mage::getModel('brands/brands')->getCollection();
 $this->setCollection($collection);

Fully-Featured Module for Magento with Admin Panel

[148]

 return parent::_prepareCollection();
 }

 protected function _prepareColumns()
 {
 $this->addColumn('brands_id', array(
 'header' => Mage::helper('brands')->__('ID'),
 'align' =>'right',
 'width' => '50px',
 'index' => 'brands_id',
));

 $this->addColumn('title', array(
 'header' => Mage::helper('brands')->__('Title'),
 'align' =>'left',
 'index' => 'title',
));
 $this->addColumn('status', array(
 'header' => Mage::helper('brands')->__('Status'),
 'align' => 'left',
 'width' => '80px',
 'index' => 'status',
 'type' => 'options',
 'options' => array(
 1 => 'Enabled',
 2 => 'Disabled',
),
));

 $this->addColumn('action',
 array(
 'header' => Mage::helper('brands')->__('Action'),
 'width' => '100',
 'type' => 'action',
 'getter' => 'getId',
 'actions' => array(
 array(
 'caption' => Mage::helper
 ('brands')->__('Edit'),
 'url' => array('base'=> '*/*/edit'),
 'field' => 'id'
)
),
 'filter' => false,
 'sortable' => false,
 'index' => 'stores',

Chapter 7

[149]

 'is_system' => true,
));

 return parent::_prepareColumns();
 }

 public function getRowUrl($row)
 {
 return $this->getUrl('*/*/edit', array('id' => $row->getId()));
 }

}

There are four core parts to this model's code that we'll learn:

1. The construct.
2. The prepareCollection() function, which gathers data from

the database ready for display.
3. Preparing the grid's columns.
4. The getRowUrl() function.

The __construct()
The __construct() function holds the core settings for the module's grid. It starts
off by defining the module's grid ID; this is used as an XHTML value applied to the
grid to give it a unique identifier. This is useful if we want to do anything with the
display by editing the Magento administrative stylesheet.

$this->setId('brandsGrid');

We'll then move on to defining the default sorting key for the table. In this case, we'll
sort by the database table column brand_name. We'll set the direction of the order to
DESC, to make sure that the table records are always in alphabetical order by default.

$this->setDefaultSort('brand_name');
$this->setDefaultDir('ASC');

The last variable that is set in the __construct() function defines whether or not
the user's custom filters and parameters applied to this grid should be saved in
their session, once they've changed the defaults. This ensures that they can filter by
another column, go to another page in the backend, and return with their filter and
ordering intact. If set to false, the module's grid page will always retain the default
settings set in the previous three settings in this function.

$this->setSaveParametersInSession(true);

Fully-Featured Module for Magento with Admin Panel

[150]

Preparing the columns
In the __prepareColumns() function, we'll define the columns for display in the
grid. We'll define several properties for each field, including the label, which field
this label should be displaying, its width, alignment, field type, and (if an option
field) its options.

The status field is the best example of this, as it does everything at once:

$this->addColumn('status', array(
 'header' => Mage::helper('brands')->__('Status'),
 'align' => 'left',
 'width' => '80px',
 'index' => 'status',
 'type' => 'options',
 'options' => array(
 1 => 'Active',
 0 => 'Inactive',
),
));

The getRowUrl() function
This function is used to set the URL for any row in the grid, when a user clicks when
hovering over a row. The */*/edit defines that the module's namespace and name
will appear before the /edit/ which will begin the URL. It will be then ended with
the $row->getId variable, to make sure that it forms a good /edit/id/1 URL to be
passed to the system for ensuring that the user is editing the record with the ID 1.

public function getRowUrl($row)
 {
 return $this->getUrl('*/*/edit', array('id' => $row->getId()));
 }

Preparing the form
This model defines the preparation of our form for loading. It declares the various
values of the form (id, action, and method) to the system following the conventions
previously outlined in other models.

We'll create the file /app/code/local/Book/Brands/Block/Adminhtml/Brands/
Edit/Form.php and place the following code inside it:

<?php

class Book_Brands_Block_Adminhtml_Brands_Edit_Form extends Mage_
Adminhtml_Block_Widget_Form

Chapter 7

[151]

{
 protected function _prepareForm()
 {
 $form = new Varien_Data_Form(array(
 'id' => 'edit_form',
 'action' => $this->getUrl('*/*/save', array('id' => $this-
>getRequest()->getParam('id'))),
 'method' => 'post',
)
);

 $form->setUseContainer(true);
 $this->setForm($form);
 return parent::_prepareForm();
 }
}

Defining the add/edit form tabs
This module is where the tabs positioned on the left of the form containing different
data are set up. In this case we'll only set up one tab, as we don't have enough fields
for them to be divided into multiple tabs.

We'll create the file /app/code/local/Book/Brands/Block/Adminhtml/Brands/
Edit/Tabs.php and place the following code inside it:

<?php

class Book_Brands_Block_Adminhtml_Brands_Edit_Tabs extends Mage_
Adminhtml_Block_Widget_Tabs
{
 public function __construct()
 {
 parent::__construct();
 $this->setId('brands_tabs');
 $this->setDestElementId('edit_form');
 $this->setTitle(Mage::helper('brands')->__('Brand Information'));
 }

 protected function _beforeToHtml()
 {
 $this->addTab('form_section', array(
 'label' => Mage::helper('brands')->__('Brand Information'),
 'title' => Mage::helper('brands')->__('Brand Information'),
 'content' => $this->getLayout()->createBlock('brands/
adminhtml_brands_edit_tab_form')->toHtml(),
));

Fully-Featured Module for Magento with Admin Panel

[152]

 return parent::_beforeToHtml();
 }
}

There are two key things going on here in this model. Firstly, in the __construct()
function we'll be setting the edit_form as the default form and Brand Information
as the default title to show when a add/edit form is shown:

 $this->setId('brands_tabs');
 $this->setDestElementId('edit_form');
 $this->setTitle(Mage::helper('brands')->__('Brand Information'));

Secondly, in the beforeToHtml() function the actual adding of the tab to the form
takes place:

 $this->addTab('form_section', array(
 'label' => Mage::helper('brands')->__('Brand Information'),
 'title' => Mage::helper('brands')->__('Brand Information'),
 'content' => $this->getLayout()->createBlock('brands/
adminhtml_brands_edit_tab_form')->toHtml(),
));

Here the label and title are both defined as Brand Information and we'll make sure
to block adminhtml_brands_edit_tab_form , as it's used for the tab's form. This
form is declared in the following class.

Configuring and preparing the form for display
Following the tab being declared to show our form block, we'll need to create it. In
this model well' creating the form block to be displayed when the form tab we've just
declared in the previous file is clicked. We're setting up the fieldsets and fields that
are to be used for the form block that appears.

We'll create the file /app/code/local/Book/Brands/Block/Adminhtml/Brands/
Edit/Tab/Form.php and place the following code inside it:

<?php

class Book_Brands_Block_Adminhtml_Brands_Edit_Tab_Form extends Mage_
Adminhtml_Block_Widget_Form
{
 protected function _prepareForm()
 {
 $form = new Varien_Data_Form();
 $this->setForm($form);

Chapter 7

[153]

 $fieldset = $form->addFieldset('brands_form', array('legend'=>Mage
 ::helper('brands')->__('Brand information')));

 $fieldset->addField('brand_name', 'text', array(
 'label' => Mage::helper('brands')->__('Brand Name'),
 'class' => 'required-entry',
 'required' => true,
 'name' => 'brand_name',
));

 $fieldset->addField('status', 'select', array(
 'label' => Mage::helper('brands')->__('Status'),
 'name' => 'status',
 'values' => array(
 array(
 'value' => 1,
 'label' => Mage::helper('brands')->__('Active'),
),

 array(
 'value' => 0,
 'label' => Mage::helper('brands')->__('Inactive'),
),
),
));

 $fieldset->addField('brand_location', 'text', array(
 'label' => Mage::helper('brands')->__('Location'),
 'class' => 'required-entry',
 'required' => true,
 'name' => 'brand_location',
));

 $fieldset->addField('brand_description', 'editor', array(
 'name' => 'brand_description',
 'label' => Mage::helper('brands')->__('Description'),
 'title' => Mage::helper('brands')->__('Description'),
 'style' => 'width:98%; height:400px;',
 'wysiwyg' => false,
 'required' => true,
));

 if (Mage::getSingleton('adminhtml/session')->getBrandsData())
 {
 $form->setValues(Mage::getSingleton('adminhtml/session')-
 >getBrandsData());
 Mage::getSingleton('adminhtml/session')->setBrandsData(null);
 } elseif (Mage::registry('brands_data')) {

Fully-Featured Module for Magento with Admin Panel

[154]

 $form->setValues(Mage::registry('brands_data')->getData());
 }
 return parent::_prepareForm();
 }
}

Three key things happen here. Firstly, we have the fieldset that is added at
the start:

$fieldset = $form->addFieldset('brands_form',
array('legend'=>Mage::helper('brands')->__('Brand Information')));

Without this, we can't place the fields anywhere. They need the defined $fieldset
variable in order to add themselves to the form.

Secondly, the fields are added, in a way remarkably similar to the way they were
added to the grid for display previously. We have the same options and a few
additional options such as class, which defines the class of the form field and
whether or not the field is required upon being input.

Lastly, we have some callback functions to the current session in progress to see if
they've already tried to fill in this form and failed, therefore needing to place their
information back in the form rather than the default:

 if (Mage::getSingleton('adminhtml/session')->getBrandsData())
 {
 $form->setValues(Mage::getSingleton('adminhtml/session')-
 >getBrandsData());
 Mage::getSingleton('adminhtml/session')->setBrandsData(null);
 } elseif (Mage::registry('brands_data')) {
 $form->setValues(Mage::registry('brands_data')->getData());
 }

This function is an extremely useful function to have, in terms of usability and
consistency of user experience throughout the Magento administration.

Setting up our brand status array
A standard across Magento modules and other manageable information in the
backend is to have statuses assigned to data. For this we'll need to create the file /
app/code/local/Book/Brands/Model/Status.php and place the following code
inside it:

<?php

class Book_Brands_Model_Status extends Varien_Object
{

Chapter 7

[155]

 const STATUS_ENABLED = 1;
 const STATUS_DISABLED = 2;

 static public function getOptionArray()
 {
 return array(
 self::STATUS_ENABLED => Mage::helper('brands')->__
 ('Enabled'),
 self::STATUS_DISABLED => Mage::helper('brands')->__
 ('Disabled')
);
 }
}

Let's break this down briefly to go over what we've just done.

To start with, we have two constants being declared to define the stored database
variables with which Magento will refer to these statuses internally:

const STATUS_ENABLED = 1;
const STATUS_DISABLED = 2;

After this comes our getOptionArray() function which defines our array of status
options that we will implement for our module and their variables:

static public function getOptionArray()
 {
 return array(
 self::STATUS_ENABLED => Mage::helper('brands')->__
('Enabled'),
 self::STATUS_DISABLED => Mage::helper('brands')->__
('Disabled')
);
 }

This passes an array of the following to Magento for our status array:

Value Label
1 Enabled
2 Disabled

Fully-Featured Module for Magento with Admin Panel

[156]

Creating a controller to process access URLs
This controller file will process all the URLs, as they're accessed in the backend.
We'll see everything split into functions set up as <name>Action. For example, /
module/index/ will be set up as indexAction() and the rest follow the same
naming convention.

The code inside this file controls the core actions for these individual URLs and
sets the individual pages up for loading.

We'll create the file /app/code/local/Book/Brands/controllers/Adminhtml/
BrandsController.php and place the following code inside it:

<?php

class Book_Brands_Adminhtml_BrandsController extends Mage_Adminhtml_
Controller_action
{
 protected function _initAction()
 {
 $this->loadLayout()
 ->_setActiveMenu('brands/items')
 ->_addBreadcrumb(Mage::helper('adminhtml')->__('Brands Manager'),
Mage::helper('adminhtml')->__('Brands Manager'));
 return $this;
 }

 public function indexAction() {
 $this->_initAction();
 $this->renderLayout();
 }

 public function editAction()
 {
 $brandsId = $this->getRequest()->getParam('id');
 $brandsModel = Mage::getModel('brands/brands')->load($brandsId);

 if ($brandsModel->getId() || $brandsId == 0) {
 Mage::register('brands_data', $brandsModel);

 $this->loadLayout();
 $this->_setActiveMenu('brands/items');

 $this->_addBreadcrumb(Mage::helper('adminhtml')->__('Brands
Manager'), Mage::helper('adminhtml')->__('Brands Manager'));
 $this->_addBreadcrumb(Mage::helper('adminhtml')->__('Brand
Description'), Mage::helper('adminhtml')->__('Brand Description'));

 $this->getLayout()->getBlock('head')->setCanLoadExtJs(true);

Chapter 7

[157]

 $this->_addContent($this->getLayout()->createBlock('brands/
adminhtml_brands_edit'))
 ->_addLeft($this->getLayout()->createBlock('brands/adminhtml_
brands_edit_tabs'));

 $this->renderLayout();
 } else {
 Mage::getSingleton('adminhtml/session')->addError(Mage::helper('
brands')->__('Brand does not exist'));
 $this->_redirect('*/*/');
 }
 }

 public function newAction()
 {
 $this->_forward('edit');
 }

 public function saveAction()
 {
 if ($this->getRequest()->getPost()) {
 try {
 $postData = $this->getRequest()->getPost();
 $brandsModel = Mage::getModel('brands/brands');

 if($this->getRequest()->getParam('id') <= 0)
 $brandsModel->setCreatedTime(Mage::getSingleton('core/
date')->gmtDate());

 $brandsModel
 ->addData($postData)
 ->setUpdateTime(Mage::getSingleton('core/date')-
>gmtDate())
 ->setId($this->getRequest()->getParam('id'))
 ->save();

 Mage::getSingleton('adminhtml/session')->addSuccess(Mage::help
er('adminhtml')->__('Brand was successfully saved'));
 Mage::getSingleton('adminhtml/session')->setBrandsData(false);

 $this->_redirect('*/*/');
 return;
 } catch (Exception $e) {
 Mage::getSingleton('adminhtml/session')->addError($e-
>getMessage());
 Mage::getSingleton('adminhtml/session')-
>set<Module>Data($this->getRequest()->getPost());
 $this->_redirect('*/*/edit', array('id' => $this-
>getRequest()->getParam('id')));
 return;

Fully-Featured Module for Magento with Admin Panel

[158]

 }
 }
 $this->_redirect('*/*/');
 }

 public function deleteAction()
 {
 if($this->getRequest()->getParam('id') > 0) {
 try {
 $brandsModel = Mage::getModel('brands/brands');

 $brandsModel->setId($this->getRequest()->getParam('id'))
 ->delete();

 Mage::getSingleton('adminhtml/session')->addSuccess(Mage::help
er('adminhtml')->__('Brand was successfully deleted'));
 $this->_redirect('*/*/');
 } catch (Exception $e) {
 Mage::getSingleton('adminhtml/session')->addError($e-
>getMessage());
 $this->_redirect('*/*/edit', array('id' => $this-
>getRequest()->getParam('id')));
 }
 }
 $this->_redirect('*/*/');
 }
}

Let's break down the code and go through it so that you understand what we've just
done in this file.

We start out by declaring our BrandsController class that will hold the admin
together.

<?php

class Book_Brands_Adminhtml_BrandsController extends Mage_Adminhtml_
Controller_action

{

Our first function is _initAction() which sets the brands/brands manager as
active in the menu handler in the backend of Magento as well as setting the
breadcrumb trail.

 protected function _initAction()
 {
 $this->loadLayout()
 ->_setActiveMenu('brands/items')

Chapter 7

[159]

 ->_addBreadcrumb(Mage::helper('adminhtml')->__('Brands Manager'),
Mage::helper('adminhtml')->__('Brands Manager'));
 return $this;
 }

Our indexAction() function calls our _initAction() function to start and then
renders the layout.

 public function indexAction() {
 $this->_initAction();
 $this->renderLayout();
 }

Next we're putting actions to our edit function.

 public function editAction()
 {

We grab the get parameter ID and use it to load the brand in our database by
that ID.

 $brandsId = $this->getRequest()->getParam('id');
 $brandsModel = Mage::getModel('brands/brands')->load($brandsId);

If there's a brand by that ID we're going to set brands_data in the Magento
global registry.

 if ($brandsModel->getId() || $brandsId == 0) {
 Mage::register('brands_data', $brandsModel);

Followed by the initializing of the loading for the page layout and setting of the
active brand navigation item. We'll then make sure we can load the extra functions in
the JavaScript library should we need them.

 $this->_initAction();

 $this->_addBreadcrumb(Mage::helper('adminhtml')->__('Brand
Description'), Mage::helper('adminhtml')->__('Brand Description'));

 $this->getLayout()->getBlock('head')->setCanLoadExtJs(true);

The following loads our content for the page which will load the edit form and any
tabs that will appear in the left sided navigation of the edit page.

 $this->_addContent($this->getLayout()->createBlock('brands/
adminhtml_brands_edit'))
 ->_addLeft($this->getLayout()->createBlock('brands/adminhtml_
brands_edit_tabs'));

 $this->renderLayout();

Fully-Featured Module for Magento with Admin Panel

[160]

If the brand doesn't exist, show an error box with the contents Brand does not exist
and redirect to the brands index.

 } else {
 Mage::getSingleton('adminhtml/session')->addError(Mage::helper('
brands')->__('Brand does not exist'));
 $this->_redirect('*/*/');
 }
 }

Our newAction() will handle a new brand being inserted. It will call the
editAction() function and load the form as a new brand instead of one being edited.

 public function newAction()
 {
 $this->_forward('edit');
 }

The saveAction() function will be called once the edit form is posted.

 public function saveAction()
 {

We'll check if posted information exists, and if it goes grab it and the brand
controller module to interface with brand information going forward.

 if ($this->getRequest()->getPost()) {
 try {
 $postData = $this->getRequest()->getPost();
 $brandsModel = Mage::getModel('brands/brands');

If we have a brand ID we'll set the record created time to attach to our database entry
for the saved brand once inserted.

 if($this->getRequest()->getParam('id') <= 0)
 $brandsModel->setCreatedTime(Mage::getSingleton('core/
date')->gmtDate());

Followed by the inserting of the brand into the database.

 $brandsModel
 ->addData($postData)
 ->setUpdateTime(Mage::getSingleton('core/date')-
>gmtDate())
 ->setId($this->getRequest()->getParam('id'))
 ->save();

Chapter 7

[161]

We then set a success message, remove the saved brand data in the Magento registry
and redirect to the brands information index.

 Mage::getSingleton('adminhtml/session')->addSuccess(Mage::help
er('adminhtml')->__('Brand was successfully saved'));
 Mage::getSingleton('adminhtml/session')->setBrandsData(false);

 $this->_redirect('*/*/');
 return;

If we have an error at any point we'll set an error message and forward back to the
brands index.

 } catch (Exception $e) {
 Mage::getSingleton('adminhtml/session')->addError($e-
>getMessage());
 Mage::getSingleton('adminhtml/session')->setBrandsData($this-
>getRequest()->getPost());
 $this->_redirect('*/*/edit', array('id' => $this-
>getRequest()->getParam('id')));
 return;
 }
 }
 $this->_redirect('*/*/');
 }

The final function in the file is that of the function that handles deletion of records,
deleteAction().

 public function deleteAction()
 {

Once again we confirm an 'id' parameter is set before we continue.

 if($this->getRequest()->getParam('id') > 0) {
 try {

We then load the brands model and proceed to call the delete() function to remove
the brand that matches the current set ID.

 $brandsModel = Mage::getModel('brands/brands');

 $brandsModel->setId($this->getRequest()->getParam('id'))
 ->delete();

We can then set a success message and forward back to the brands index.

 Mage::getSingleton('adminhtml/session')->addSuccess(Mage::help
er('adminhtml')->__('Brand was successfully deleted'));
 $this->_redirect('*/*/');

Fully-Featured Module for Magento with Admin Panel

[162]

If an error occurs we set an error message and go back to the brands index.

 } catch (Exception $e) {
 Mage::getSingleton('adminhtml/session')->addError($e-
>getMessage());
 $this->_redirect('*/*/edit', array('id' => $this-
>getRequest()->getParam('id')));
 }
 }
 $this->_redirect('*/*/');
 }
}

Next we'll alter our configuration file, so that our XML reflect the code we've
just implemented.

Changing the module's config.xml to reflect the
administrative backend
Now that we have all our files together for the complete backend administrative
display of our module, we'll need to define these blocks and actions in our module's
config.xml file. As we used the separator to define tags that remain unchanged to
cut down the amount of repeated code.

We'll open /app/code/local/Book/Brands/etc/config.xml and make the
following additions:

<?xml version="1.0"?>
<config>
 <modules>
 ...
 </modules>
 <frontend>
 ...
 </frontend>
 <admin>
 <routers>
 <brands>
 <use>admin</use>
 <args>
 <module>Book_Brands</module>
 <frontName>brands</frontName>
 </args>
 </brands>

Chapter 7

[163]

 </routers>
 </admin>
 <adminhtml>
 <menu>
 <brands module="brands">
 <title>Brands</title>
 <sort_order>71</sort_order>
 <children>
 <items module="brands">
 <title>Manage Brands</title>
 <sort_order>0</sort_order>
 <action>brands/adminhtml_brands</action>
 </items>
 </children>
 </brands>
 </menu>
 <acl>
 <resources>
 <all>
 <title>Allow Everything</title>
 </all>
 <admin>
 <children>
 <Book_Brands>
 <title>Brands Module</title>
 <sort_order>10</sort_order>
 </Book_Brands>
 </children>
 </admin>
 </resources>
 </acl>
 <layout>
 <updates>
 <brands>
 <file>brands.xml</file>
 </brands>
 </updates>
 </layout>
 </adminhtml>
 <global>
 ...
 </global>
</config>

Fully-Featured Module for Magento with Admin Panel

[164]

We'll break down the additions to our config.xml file so that they once again make
sense as we proceed forward.

The first part defines that we have a controller to handle the URLs in the backend:

 <admin>
 <routers>
 <brands>
 <use>admin</use>
 <args>
 <module>Book_Brands</module>
 <frontName>brands</frontName>
 </args>
 </brands>
 </routers>
 </admin>

We then have a starting <adminhtml> block tag, which brings in three groups
of configuration options to the file, the first of which defines our menu to the
administrative backend. It defines the title of the menu item, the sort order (when
it should appear in the order of the main menu items), and the sole sub-item in the
menu (referred to as children). We'll call it Manage Brands:

 <menu>
 <brands module="brands">
 <title>Brands</title>
 <sort_order>71</sort_order>
 <children>
 <items module="brands">
 <title>Manage Brands</title>
 <sort_order>0</sort_order>
 <action>brands/adminhtml_brands</action>
 </items>
 </children>
 </brands>
 </menu>

The second of the <adminhtml> block tag group defines permissions for our module.
It defines which resources should be made available as options to select in the
permissions section of setting up a user and what it should allow them access to
in the administrative backend. Here we've defined an Allow Everything resource
group which allows complete access to do anything in our module to the user or user
group given the permission:

 <acl>
 <resources>
 <all>
 <title>Allow Everything</title>

Chapter 7

[165]

 </all>
 <admin>
 <children>
 <Book_Brands>
 <title>Brands Module</title>
 <sort_order>10</sort_order>
 </Book_Brands>
 </children>
 </admin>
 </resources>
 </acl>

The third and last set of tags in the new <adminhtml> block tag of configuration
options defines the layout .xml file, which provides the display blocks for processing
when the URLs are accessed:

 <layout>
 <updates>
 <brands>
 <file>brands.xml</file>
 </brands>
 </updates>
 </layout>

This layout .xml file is going to be created next in our process.

Giving our administrative backend a layout .xml file
Just like on the front end, we'll need to create a layout .xml file for our adminhtml
files defined for Magento. This pulls everything together and ensures that everything
loads properly.

We'll create the file /app/design/adminhtml/default/default/layout/brands.
xml and place the following inside of it:

<?xml version="1.0"?>
<layout version="0.1.0">
 <brands_adminhtml_brands_index>
 <reference name="content">
 <block type="brands/adminhtml_brands" name="brands" />
 </reference>
 </brands_adminhtml_brands_index>
</layout>

Fully-Featured Module for Magento with Admin Panel

[166]

This will ensure that when we access our module in the backend, it loads as it
should through the controller that we created for it earlier and along with all
subsequent files.

With the addition of this file, we have ourselves a fully active administrative backend
for our module that connects with the database table that we put together earlier.

A look at the administrative backend
Let's take a minute or two to admire what the backend looks like, now that we've put
it together and everything is in the system.

In the following screenshot, we'll look at the data display grid:

The Add Brand form is shown in the following screenshot:

Chapter 7

[167]

The final stage in this process is making sure all the information from the backend
administrative component can output on the frontend of the system, when the URL
is accessed. This is done by editing the display block models and template files that
we setup earlier in the chapter for both, brands list, and a singular brand view. Here
we can use the data that we've put together as needed.

Let's look back at the fields that we set up for our module:

•	 brand_id

•	 brand_name

•	 brand_description

•	 brand_location

•	 status

•	 updated_time

•	 created_time

For our purpose, we'll set up the following:

1. An index loading function, which lists all (active status) brands in the
database and when they were last updated.

2. A singular brand loading function, which lists all information that we have
on the individual brand being viewed.

The index controller
To start off, we need to ensure that we load the data correctly on the core index and
also while viewing the individual brand's page. Here we'll make sure that the data is
loaded for it to be used in our template files on the frontend.

We'll open and edit /app/code/local/Book/Brands/controllers/
IndexController.php file and make sure it looks like the following:

<?php
class Book_Brands_IndexController extends Mage_Core_Controller_Front_
Action
{
 public function indexAction()
 {
 $brands_id = $this->getRequest()->getParam('id');

 if($brands_id != null && $brands_id != '') {
 $brands = Mage::getModel('brands/brands')->load($brands_id)-
>getData();

Fully-Featured Module for Magento with Admin Panel

[168]

 } else {
 $brands = null;
 }

 if($brands == null) {
 $resource = Mage::getSingleton('core/resource');
 $read= $resource->getConnection('core_read');
 $brandsTable = $resource->getTableName('brands');

 $select = $read->select()
 ->from($brandsTable,array('brands_id','brand_
 description','brand_location','status'))
 ->where('status', 1)
 ->order('created_time DESC') ;

 $brands = $read->fetchRow($select);
 }
 Mage::register('brands', $brands);

$this->loadLayout();
 $this->renderLayout();
 }
}

Let's go through these edits to make sure that everything is clear.

First off, we'll start by assigning $brand the value of $_GET['id']. We'll use this
function, as it filters out any cross-site scripting and to eliminate the bad things that
can happen to the raw variable, when we use it as we please.

$brands_id = $this->getRequest()->getParam('id');

If this value isn't blank (that is, if we're looking at a singular brand's page), then we'll
call the load() function from our brands data model. If not, then we set $brands to
null for the next bulk of the code that follows.

if($brands_id != null && $brands_id != '') {
$brands = Mage::getModel('brands/brands')->load($brands_id)-
>getData();
} else {
 $brands = null;
}

If $brands == null, then this means that we're not looking at an individual brand
page and are looking at the index, which needs to list them all.

if($brands == null){

Chapter 7

[169]

We'll assign the database functions to the variable $resource and make sure that
we use the core_read database setup and assigning the brands table name to the
variable $brandsTable.

$resource = Mage::getSingleton('core/resource');
 $read= $resource->getConnection('core_read');
 $brandsTable = $resource->getTableName('brands');

Now we will build the query needed to obtain all brands from the table where
status = 1 ordered by the newest created to oldest entries in the table. Status 1
means Enabled in this case.

 $select = $read->select()
 -> from($brandsTable,array('brands_id','brand_description','brand_
 location','status'))
 ->where('status',1)
 ->order('created_time DESC') ;

 $brands = $read->fetchRow($select);
 }

To finish off, $brands, which is now set to either a group of all the brands or a
singular brand, is now registered as a variable which can be accessed across the
module further on:

 Mage::register('brands', $brands);

Displaying the brands data
To display the data that we've set by editing our index controller, we'll open and
make edits to the module's template file located at the address /app/design/
frontend/default/default/templates/brands/brands.phtml. Here's the file
after the edits are made:

<?php
$brands = $this->getBrands();
if (count($brands) > 0)
{
 foreach ($brands as $brand) :
 echo '<h3>getUrl('brands?id='.$brand['brand_
 id']).'">Name: '.$brand['title'].'</h3>';
 echo '<p>Location: '.$brand['location'].'</p>';
 echo '<p>Desciption: '.$brand['brand_description'].'</p><hr />';
 endforeach;
}
else

Fully-Featured Module for Magento with Admin Panel

[170]

{
 print 'We don\'t have any brands here right now. Please try again
later.';
}

We'll go through this code step by step.

We start off by assigning the brands (if we're on the index) or brand (if we use
?id=<brand_id> on the end of the URL) to the variable $brands.

$brands = $this->getBrands();

We then need to make sure that this is an array. If it isn't, then our data model tells
us that the result is not found.

if (count($brands)>0)
{

If we have a result inside our array (or multiple results), then we go through them
in a foreach loop and echo out simple formatting to display them on the site:

foreach ($brands as $brand) :
 echo '<h3>getUrl('brands?id='.$brand['brand_
 id']).'">Name: '.$brand['title'].'</h3>';
 echo '<p>Location: '.$brand['location'].'</p>';
 echo '<p>Desciption: '.$brand['brand_description'].'</p><hr />';
 endforeach;

However, if we don't have a result inside the array, we'll display a simple message
to the person visiting the page that we don't have any brands just yet and that they
need to come back a little bit later.

}
else
{
 print 'We don\'t have any brands here right now. Please try again
later.';
}

There we go, we have our module's data displaying on the frontend! If we follow
all the steps in this chapter, then our brand data display will look as shown in the
following screenshot:

Chapter 7

[171]

Summary
In this chapter, we've covered the basics of creating an advanced module for
Magento. With this knowledge, we will be able to progress onto building more
advanced modules in Magento.

We've covered multiple topics on building modules including:

•	 Setting up the module
•	 Getting our first Hello World output on its own dedicated URL
•	 Creating a sample module quickly through the Module Creator script
•	 Altering and editing this sample module to create our very own Brands

Management module
After reading this chapter, we should try and enhance it by:

•	 Adding more fields and information to the brands output
•	 Splitting brands into pages—for example, 1, 2, 3, 4, and so on
•	 Giving brands their own singular templates and custom URLs
•	 Building a form to accept submissions on the brands which people would

like to see added onto the site or to take requests
•	 Allowing users to review brands
•	 Providing the brands more information than on the listing, for each

individual brand page to display

Fully-Featured Module for Magento with Admin Panel

[172]

Other small modules we could develop, to use the knowledge gained in this chapter
and put it to practical use by analyzing, include:

•	 A Google maps inclusion module—to include a simple Google map
•	 A Twitter/Flickr/del.icio.us feed inclusion script
•	 A basic blog/news system

Integration of Third-Party
CMS

Sometimes, the built-in content management functionality of Magento isn't enough
for our site, or we need a blog or news section in addition to Magento's e-commerce.
In some cases, it's the other the way around, and we would like to add Magento's
e-commerce functionality to our chosen content management system.

In this chapter we'll go over a few of the content management system integration
options available, while focusing on WordPress. We will learn the following:

•	 Installing the WordPress extension
•	 Configuring the WordPress extension
•	 Configuring Magento's display of the WordPress extension
•	 Changing the look and display of your templates for the WordPress

integration
•	 Which other third party CMS integration packages and extensions

for ExpressionEngine, Drupal, Typo3, and Joomla! are available

Notable things about CMS Integration
We must ensure that we back up both our Magento installation and our CMS
installation before editing them. Sometimes, the core files are to be edited, and so
we'll need to keep a backup of the original version of the files before editing them.
Keeping a copy of the database is also advisable.

Integration of Third-Party CMS

[174]

It's also advisable to back up the files with changes intact after finishing the
integration, in case an upgrade of either system knocks the integration out of sync.

The WYSIWYG editor implementation
If we simply want to implement a WYSIWYG editor into our Magento install,
there are two available modules that can be installed to integrate this functionality
available at the following URLs:

http://www.magentocommerce.com/extension/586/fontis-wysiwyg-editor.

http://www.magentocommerce.com/extension/1426/bouncingorange-tinymce-
wysiwyg.

Integrating Wordpress
In this section, we'll learn about integrating Wordpress with Magento.

WordPress is an entirely open source, free system available for download
by anyone who can navigate to http://wordpress.org/download/.
Initially built to be a small content management system based around
improving typography, WordPress has grown to power hundreds and
thousands of blogs worldwide and is the biggest self-hosted blogging tool
available on the web today.

Here, we'll install a popular available module by the name of Lazzymonks, a
WordPress integration from Magento Connect for integrating WordPress into
Magento. It enables the viewing of blog posts and pages within the Magento
layout, as well as a sidebar block being included in the module for archives,
categories, and RSS feed links to be shown to the users.

Chapter 8

[175]

Installation
To install the WordPress integration module, we need to make sure that both
Magento and WordPress are installed in the same database; otherwise, the module
will not work.

Before we start, it must be ensured that our preferred state setting is set to beta,
as this module is currently marked as, in beta development. This can be found under
the settings tab whilst within the downloader.

We must also ensure that our WordPress installation is installed in a folder named
/wordpress/ in our root Magento installation folder. This is also vital as the
extension does not look for any other folder and is currently not configurable to look
for folders not named /wordpress/.

The module that we'll be installing is located at: http://www.magentocommerce.
com/extension/296/lazzymonks-wordpress-integration.

Once we find and load the page for the Lazzymonks Wordpress Integration plugin
we click on the Get extension key button (shown in the previous screenshot) to
unveil the extension key for the module. We have to make sure to copy the extension
key from the input area for the next step.

Next, we load up our Magento Connect downloader located at /downloader/ from
our root installation address or System->Downloader in the Magento administration
menu. Once we have logged into the downloader, we paste the extension key into the
text input located under Install New Extensions, as shown in the following screenshot:

Integration of Third-Party CMS

[176]

The install should be relatively quick:

We open index.php from our Magento installation folder and find the line:

require_once $mageFilename;

Next, we place the following code after the above code:

define('WP_USE_THEMES', true);
require('./wordpress/wp-blog-header.php');

We must make sure that the second line here points to our WordPress installation,
otherwise this will break.

After that, we open /wordpress/wp-settings.php. We will need to find and
remove the & symbol from the code. This is to make the code compatible with
Magento. The line numbers are placed for a quick reference, roughly related to the
latest version of WordPress:

Line 520:

$wp_the_query =& new WP_Query();

Line 535:

$wp_rewrite =& new WP_Rewrite();

Line 524:

$wp =& new WP();

Line 578:

$wp_locale =& new WP_Locale();

Next, we find the following and comment it out (around Line 583):

// Escape with wpdb.
$_GET = add_magic_quotes($_GET);
$_POST = add_magic_quotes($_POST);
$_COOKIE = add_magic_quotes($_COOKIE);
$_SERVER = add_magic_quotes($_SERVER);

Chapter 8

[177]

This results in the following:

// Escape with wpdb.
//$_GET = add_magic_quotes($_GET);
//$_POST = add_magic_quotes($_POST);
//$_COOKIE = add_magic_quotes($_COOKIE);
//$_SERVER = add_magic_quotes($_SERVER);

We'll keep them in (rather than removing them), so that it is easier to reverse the
changes later if we need to (if we're uninstalling).

Now, we open wordpress/wp-includes/l10n.php and find the following (in
WordPress 2.7.1, on Line 112):

function __($text, $domain = 'default') {
return translate($text, $domain);
}

Next, we replace this block of code with the following to allow Magento's translate
function to operate, where necessary:

if (!function_exists('__')) {
function __($text, $domain = 'default') {
return translate($text, $domain);
}
}

That's all for the code edits needed for installation. After we have done this, we
will take the magento folder from within /wordpress_module_files/Wordpress-
theme/ and place it within our /wordpress/wp-content/themes/ Wordpress
themes folder. This will give WordPress a theme called Magento, which allows us to
interface with the Magento installation.

Integration of Third-Party CMS

[178]

Next, we log into our WordPress administration and go to Appearance->Themes,
where we'll see the Magento theme that is now available:

We click the title to pop up the theme preview and activate it. If we navigate
to /wordpress/ directly, we will receive a blank page.

We go to Settings->General and change our WordPress URL to our Magento
installation URL /blog/. For example, this means that if our Magento installation
is at http://localhost/magento/, then our WordPress URL would be
http://localhost/magento/blog.

We must make sure to save and then head over to Settings->Permalinks. It must be
ensured that the Permalinks are set to Default and turned off entirely; otherwise,
this will affect our Magento/WordPress integration. Hopefully better Permalinks
will be implemented in a future version of this module.

Chapter 8

[179]

When we navigate to our newly set WordPress URL, we will see our newly
integrated WordPress blog within our store, as shown below:

We will also see the blog sidebar block included by default on the right-hand side of
our layout:

Integration of Third-Party CMS

[180]

Configuration
Once the install process has finished, we head to our Magento administration system
and to System->Configuration. We will now see a Blog sub-menu that controls our
WordPress integration settings for this plugin.

Under this new menu item, we will find all our configuration options for integration
that the extension allows within Magento:

Chapter 8

[181]

Let's browse through the configuration values so that we could understand what
each configuration value does.

WordPress Blog Settings

Configuration value What it does
Enable WordPress Blog Enables or disables /blog/ from working

Require Login To View Requires log in to the Magento user system to view the
blog, allows for private member news

Require Login To
Comment

Requires log in to the Magento user system to comment on
the blog

Page Title Changes the page title when a user is accessing the blog
URL on our Magento installation

Enable Footer Link Puts the blog automatically into the footer links menu to be
dynamically output if we call the function

Page Layout Decides which Magento page template to use when
showing the blog

WordPress Blog Menu
The following table illustrates the configuration values of a blog menu and what
they do:

Configuration value What it does
Require Login To Show Menu Decides whether or not to show the sidebar to

logged out members of our Magento installation.
Enable Left Menu Determines whether or not the blog sidebar block

shows in the left menu (when available)
Enable Right Menu Determines whether or not the blog sidebar block

shows in the right menu (when available)
Enable Archive Descriptions If enabled, the user will see a statement similar

to the following in the blog sidebar block, when
browsing a blog archive on the site: You are
currently browsing the blog archives for May,
2009

Enable RSS links Determines whether or not to show the links to
your blog's RSS feeds in the blog sidebar block. If
disabled, they disappear

Integration of Third-Party CMS

[182]

It's advisable to configure these options (the way we need them now, rather than
later) to make sure that everything is set up before we start tweaking the display.
Doing so will display the following message:stop you have to come back later on.

If we're going to use widgets in our sidebar, rather than editing the sidebar directly,
it's recommend to turn off Enable RSS links to ensure that we don't have anything
pre-appended to the sidebar widget output.

Changing the display of integration
The extension contains base templates which can we change to alter the display
of the integration. Templates for the extension can be found in /app/design/
frontend/default/default/template/blog/.

There are two templates in this directory for alteration:
•	 blog.phtml—For alteration of the blog page template
•	 menu.phtml—For alteration of the sidebar display

Page/post layout
The blog.phtml template doesn't consist of much display, only that of an if/
elseif/else statement to decide the template to be included. It does, however
contain the output for the message: You must be logged in to view the blog if
the option is enabled.

The actual templating of the blog post look and feel is done within the WordPress
theme and the magento.php template within the theme directory named magento
that we copied over earlier. Everything is templated the way a normal WordPress
theme would be, besides the fact that we don't call get_header(), get_sidebar(),
or get_footer() in our templates.

The default magento.php template also uses <?php wp_reset_query();?>, which
must stay at the top of the file no matter what edits we put in place. This function
ensures compatibility with Magento and that no errors occur.

Sidebar
The menu.phtml template consists of our sidebar block for display in our chosen
Magento sidebar, if its turned on. It contains the archive description messages, a
widgetized sidebar, and a non-widgetized sidebar.

This means that it will have a default display if we're not using widgets. However,
if we use widgets, then it will set a default set of content to display below the
widgets that we select.

Chapter 8

[183]

Let's take this sidebar widget set up as an example; we've put the following
widgets into our sidebar under Appearance->Widgets under the WordPress
administration system:

•	 Pages
•	 Links: Blogroll
•	 Meta
•	 Search
•	 Recent Posts

The end result on both the WordPress configuration and the Magento display is
shown in the following screenshots:

Integration of Third-Party CMS

[184]

Here, we notice that the RSS feeds are automatically placed at the bottom as the
Enable RSS links option is set to Enabled within Magento. Otherwise, we have a
perfect display and control for our blog sidebar widget throughout the site. This
widgetized sidebar will also stay active throughout the site, not just on /blog/.

Other content management systems
There are numerous other content management systems (not covered directly in this
book) that can integrate very well with Magento. All these are publically available
modules, either for sale or free download, to integrate their systems with Magento.
Most of these are third party and their quality has been ensured, prior to their
inclusion in this section of the chapter.

Typo3
Typo3 was founded in 2004 and is defined as a professional Web Content
Management Framework. It is an open source system and has an estimated install
base of 290,000 websites.

TypoGento http://www.typogento.com allows for Magento integration into Typo3.
It uses both an extension for Typo3 and an extension for Magento to make it work.
However, it permits us to install Magento as a component of Typo3 and to display
our store seamlessly within Typo3. It uses the Typo3 user system and allows for
seamless template customization.

There is an excellent guide available on how to install TypoGento
available at http://www.typogento.com/need-a-docu/how-to-
install-typogento.html.

Drupal
Drupal is an open source content management system that allows an individual or
community to easily publish, manage, and organize a wide variety of content on a
website. Tens of thousands of people and organizations are using Drupal to power
scores of different websites.

Chapter 8

[185]

Magento integration with Drupal has been put forward for the Google Summer
of Code as an idea: http://drupal.org/node/236456. It is yet to be seen how
significant the idea will be, but it seems like it is gaining some traction in the
Drupal community.

ExpressionEngine
ExpressionEngine is a flexible and a feature-rich content management system that
empowers thousands of individuals, organizations, and companies around the world
to easily manage their websites.

eeCommerce (http://eecommerce.com) implements its own mammoth web
services framework to vastly expand the Magento web services API for enabling it to
integrate Magento into ExpressionEngine entirely. It currently lists its feature set as a
complete solution to integration with ExpressionEngine and Magento.

Joomla!
Joomla! is an award-winning and one of the most popular online CMS today. Joomla!
is also open source and offers a mass variety of extensions, with the current catalog
standing at 4400 extensions.

Integration of Third-Party CMS

[186]

Magento bridge (http://opensource.jira.nl/projects/magento-bridge) adds
a bridge between Joomla! 1.5 and the Magento e-commerce platform. It not only
allows for displaying Magento content within the Joomla! component area, but also
ships with Joomla! modules and Joomla! plugins. It's available for purchase at €195.

The bridge uses two types of extensions: on the Joomla!-side a backend component
helps us to configure the bridge, while a frontend component shows the Magento
content inside the Joomla! component area. Joomla! modules are used to show the
Magento shopping cart somewhere within our Joomla! template. Also, plugins are
available to allow for further integration (search the catalog, user synchronization,
and so on).

On the other side, there is a Magento module which is called through web services.
This not only allows for flexible development, but also to have Joomla! and Magento
installed on separate servers.

Summary
That's the end of our integration of third party content management systems chapter.
In this chapter, we have gone through the following:

•	 How to install the WordPress extension
•	 How to configure the WordPress extension
•	 Configuring Magento's display of the WordPress extension
•	 Changing the look and display of your templates for the WordPress

integration
•	 Which other third party CMS integration packages and extensions for

Expression Engine, Drupal, Typo3 and Joomla! are available

Now, you can practice the integration of Magento for your chosen content
management systems. Try it out with WordPress as a starter, and maybe give one
of the other packages (highlighted towards the end of this chapter) a go and see
how they work out for you!

Magento's Core API
In this chapter, we'll be covering one of the most documented features of Magento by
Varien. Bundled with any default installation of Magento comes a web services API
that allows interaction of third party applications and scripts, with several sets of
core data. We can use either SOAP or XML RPC protocols to execute Core API calls
for interaction with those available in the system.

In this chapter, we will go through the following:

•	 What the Core API actually does
•	 What it can be used for
•	 What APIs we have available to us
•	 Setting up API access for our scripts
•	 What methods of using the API we have available to us
•	 The methods and functions the Core API has available
•	 Common errors in the API
•	 A sample implementation of the customer API for creating, updating,

deleting, and retrieving customer data from within Magento

What is the Core API?
The Core API is Magento's bundled API (Application Programming Interface) that
comes with a default installation. It enables us to build applications that interface
with the Customer, Product, and Order data in any Magento installation.

Magento's Core API

[188]

Which Core APIs are included?
Eighteen APIs currently exist in the system:

•	 Customer API
•	 Customer's Groups API
•	 Customer Address API
•	 Country API
•	 Region API
•	 Category API
•	 Category Attributes API
•	 Product API
•	 Product Attributes API
•	 Product Attribute sets API
•	 Product Types API
•	 Product Images API
•	 Product Tier Price API
•	 Product links API
•	 Order API
•	 Shipment API
•	 Invoice API
•	 Inventory API

What do the Core APIs do?
Each API allows us to retrieve, insert, update, or delete data belonging to the
appropriate data group with direct code access. This allows us to interface with
data by integrating with our thirdparty script or content management system.

Covering everything from customer data to invoicing and shipping to product data,
each API has its own purpose. The APIs are gathered into groups that each have
their purpose:

•	 Customer—For import/export of customer details and addresses
to/from Magento

	° Customer API
	° Customer's Groups API
	° Customer Address API

Chapter 9

[189]

•	 Directory—Retrieving country/regions from within Magento
	° Country API
	° Region API

•	 Catalog—For import/export of categories and products to/from Magento
	° Category API
	° Category Attributes API
	° Product API
	° Product Attributes API
	° Product Attribute sets API
	° Product Types API
	° Product Images API
	° Product Tier Price API
	° Product Links API

•	 Sales—Import/export of orders to/from Magento
	° Order API
	° Shipment API
	° Invoice API
	° Inventory API

Prerequisites to using the Core API
The API can be used out of the box as soon as Magento is installed. The only thing
required for using the API is user permission, set up in the system for authentication.
An account is set up before any script accesses the given APIs. Later on, our script
is able to execute all API calls, using the authorization set up (this will be covered in
detail later).

Magento's Core API

[190]

Examples of what can be done with
the Core API
There are several interesting implementations of the Core API that could be
developed into thirdparty CMSs, such as:

•	 Automatic stock updates from the system to a thirdparty application
•	 Creating a customer record, invoice, shipment, and updating stock inventory

online when an order is placed off-line
•	 Building an import script for all products, customers, and order data (but not

for orders themselves) from an old database or an e-commerce installation
•	 Automatically syncing stock inventory into the system, when Excel or CSV

files are not available

Giving scripts access to the Core API
In order for our scripts to use the Core API, we need to have an authorization from
Magento. This involves setting up an API user and API key to be passed to Magento,
in order to be allowed to access the API(s) that we would want to use with the script.

Let's start by setting up a role for our API user. A role is Magento's term for a set of
access permissions. For example, Administrator and Customer are two different
roles in the standard Magento user system. Here we define our roles in terms of
which resources and methods a user could execute in the system, once authenticated
in the Core API.

We start by logging into the Magento administration system and going to
System->Web Services->Roles, as seen in the following screenshot:

Chapter 9

[191]

A blank table of roles will be shown initially, as there will be none setup in a default
Magento installation. If the roles have been setup beforehand, then we will see roles
on the page.

We click on Add New Role in the upper-right of the previous screen.

Magento's Core API

[192]

We will immediately see a page that asks for our new Role Name. Let's call this one
Complete Access. Now that we have a name, it's time to assign resources which the
role will be allowed to execute when it's connected to our API.

We click Role Resources in the left sub-navigation menu to bring up the complete
list of resources available which could be assigned to our new role. In this case, we'll
select All from the Resource Access drop-down list (at the top of the page) to give
our API role complete access to all resources.

For limiting the role that we're creating (in any way), we can keep the Resource
Access drop down on Custom and tick the boxes applicable to the resources that we
would like our role to gain access to, when assigned to a user.

Chapter 9

[193]

In this example, however, we'll select All from the Resource Access drop down. We
click Save Role in the upper-right of the page and head back to our roles index (as
we did before). We will see our newly created role on the page.

Next, let's head on over to create the API user to whom this role will apply. We'll go
to System->Web Services->Users. The No records found screen will be displayed
unless users have been created previously in the system.

We click Add New User in the upper-right side of the screen and progress to the add
New User screen.

In this screen, we'll be able to set our User Name and Api Key, required to interface
with the API. We can also set our personal information such as First Name, Last
Name, and Email. We also have a setting to deactivate the account, (if we ever want
to) without deleting it, but for now let's keep it active.

Magento's Core API

[194]

We set values to the following, as this will be used as an example later in the chapter:

Field name Field value
User Name Magentobook
First Name Magento
Last Name Developer's guide
Email me@jhuskisson.com
Api Key Developersguide
Api Key Confirmation Developersguide
This account is Active

Once the details are filled in, we click on User Role from the sub-menu on the left of
the screen and choose the role we created earlier, for our new user.

Next, we click Save User for the successful creation of our API User Name and
API Key for later use in this chapter. Just for full confirmation, we head back to
the System->Web Services->Users page to see our new user account appear with
all its details.

Now that we're done, we can start experimenting with the API and begin using the
methods available to us.

Chapter 9

[195]

Choice of protocols
Magento provides a couple of choices for the protocol to use with its Core API;
these are:

•	 SOAP
•	 XML RPC

It's a matter of choice between the two. A few of us would simply decide on preference
from previous usage, while some may not be able to use one of the protocols and end
up using the alternative. The following information introduces us to both of them, so
that we can choose between the two protocols.

SOAP
SOAP is the newer standard of the two and the most popular. It is also faster in
comparison and should be our default choice of protocol, if it is available to us.

More information about the SOAP protocol and its history can be found
at: http://en.wikipedia.org/wiki/SOAP or at its official site
http://www.w3.org/TR/soap/.

Checking for SOAP installation on the server
Before we're able to use SOAP on our server and therefore use SOAP as the method
of interacting with the API, we need to make sure that we have the SOAP PHP
extension installed on the server.

To do this, we create a file called phpinfo.php and place the following inside it:

<?php
phpinfo();
?>

Magento's Core API

[196]

We can save, upload, and access the file directly by inserting the public URL to
this file in our browser. Once accessed, we'll see our server's core setup information
laid out in front of us, to be devoured! We'll have a look at the following screen
titled soap.

Firstly, we'll look for the fact that this SOAP block actually appears. This means that
SOAP is installed on the server. If it isn't installed, we'll have to contact our web host
or server administrator to get the SOAP PHP extension installed before continuing.
If this isn't available to us as an option, we'll have to install XML RPC as the chosen
protocol for interacting with the Magento Core API.

Secondly we'll look inside the block at the first setting Soap Client. This shows
whether or not we're able to execute SOAP clients from our web server. If set to
enabled, it means that it is installed and we can go ahead with using SOAP as the
method of choice. If set to disabled, we'll need to contact our web host or web
administrator and make sure that they set it to enabled.

Putting SOAP to use
If the SOAP PHP extension is installed and enabled on our server, then we'll be
able to use the SOAP API provided by the Magento Core API without any external
libraries of any kind. Magento's Core API documentation outlines a basic example of
usage, shown below:

$client = new SoapClient('http:// example.com/api/soap/?wsdl');

// If somestuff requires api authentification,
// we should get session token
$session = $client->login('apiUser', 'apiKey');

$result = $client->call($session, 'somestuff.method');
$result = $client->call($session, 'somestuff.method', 'arg1');

Chapter 9

[197]

$result = $client->call($session, 'somestuff.method', array('arg1',
'arg2', 'arg3'));
$result = $client->multiCall($session, array(
 array('somestuff.method'),
 array('somestuff.method', 'arg1'),
 array('somestuff.method', array('arg1', 'arg2'))
));

// If you don't need the session anymore
$client->endSession($session);

The key line is the first one, which defines our SoapClient for usage of the API:

$client = new SoapClient('http://example.com/api/soap/?wsdl');

Between the SOAP and XML RPC implementation (in terms of code), this last line
is the only line that is different. It is used to initiate the connection to the Magento
Core API and attach an instance of the Core API class to the $client variable. For
example, the function call() will now be accessed via $client->call(), now
that this variable is assigned properly. We must ensure to use the IP address of our
computer (rather than localhost), if we encounter issues, as some versions of PHP
are affected by a problem which stops this call from working properly.

Zend Framework SOAP Client
If we prefer using Zend Framework for everything to retain consistency throughout
all of our code in development with Magento, then Zend Framework has a SOAP
Client class. We could use it with Magento Core API, available at the following URL:

http://framework.zend.com/manual/en/zend.soap.client.html.

XML RPC
XML RPC is a fantastic fallback, if SOAP is not available on our web host. Although
it's slightly slower, it's by all accounts a very solid protocol for accessing the Core
API.. By no means is it a different set of code or executions from SOAP.

More information about XML RPC and its history can be obtained at
http://en.wikipedia.org/wiki/XML-RPC or at its official site
http://www.xmlrpc.com/.

Magento's Core API

[198]

Getting XML RPC on our server
With XML RPC, there's no need to install anything on our server to get it to work.
With our implementation, we'll work with Zend Framework's XML RPC client class
to simplify things across the board. What this class does for us is that it provides
an exact match of the SOAP interaction of calling methods and brings consistency
between the methods of using the API.

More about Zend Framework XML RPC class can learned at:
http://framework.zend.com/manual/en/zend.xmlrpc.html.

Setting up the Zend Framework XML RPC class
Before we can use anything related to XML RPC, we need the Zend Framework
XML RPC class. We'll be using this particular class for two reasons:

1. For consistency between code from Magento and custom modules
2. Simply to make sure that we're using the same framework for everything

throughout book

We can still use whichever class we choose to with the XML RPC API, as it isn't
limited to the class we're using to interact with it.

We start by heading over to http://framework.zend.com/download/current/
and downloading the minimal package with just the Zend Framework files. We
would not want any tests, demos, or Dojo Toolkit clogging up our time when
uploading afterwards.

Chapter 9

[199]

Once we have the minimal package, we place the extracted Zend directory in the
same directory as the planned script that will use the Magento Core API. We use
the following lines of code for including the class:

require_once 'Zend/XmlRpc/Client.php';

This will give us everything that we need to start putting the Magento Core API
XML RPC protocol to use.

Putting XML RPC to use
Magento's provided XML RPC documentation is as follows:

$client = new Zend_XmlRpc_Client('http://example.com/api/xmlrpc/');

// If somestuff requires api authentification,
// we should get session token
$session = $client->call('login', array('apiUser', 'apiKey'));

$client->call('call', array($session, 'somestuff.method',
array('arg1', 'arg2', 'arg3')));
$client->call('call', array($session, 'somestuff.method', 'arg1'));
$client->call('call', array($session, 'somestuff.method'));
$client->call('multiCall', array($session,
 array(
 array('somestuff.method', 'arg1'),
 array('somestuff.method', array('arg1', 'arg2')),
 array('somestuff.method')
)
));

// If you don't need the session anymore
$client->call('endSession', array($session));

The important line of this example is the initial one:

$client = new Zend_XmlRpc_Client('http://example.com/api/xmlrpc/');

This is the only line that is different from the SOAP protocol example in the code.
This is what initializes the XML RPC connection to the Magento Core API and allows
us to start executing calls to interact with Magento.

Magento's Core API

[200]

Basic API methods
Magento provides a set of methods, or functions, that we can use once we have our
API $client set and ready to use. These methods are the standard for performing
calls to the Core API and are the standard for using the Core API with your scripts.

Describing the methods
Here are the Basic API methods as outlined by Magento's Core API guide
introduction page:

Method Description Return
value

startSession() starts API session and returns
sessionId

string

endSession(sessionId) ends API session boolean

login(apiUser, apiKey) starts API session, returns sessionId
and authorizes apiUser

string

call(sessionId,
resourcePath, array
arguments)

calls API resource that is allowed in
current session (if no session is specified,
you can call only resources that are not
protected by ACL)

Mixed

multiCall(sessionId,
array calls, array
options)

calls API resource's methods that are
allowed for current session (if no session
is specified, you can call only resources
that are not protected by ACL). If break
option is specified, multiCall breaks
on first error

array

resources(sessionId) returns list of available API resources
and methods allowed for current
session.

array

globalFaults(sessionId) returns list of fault messages and
their codes that do not depend on any
resource.

array

resourceFaults(sessionId,
resourceName)

returns list of the specified resource fault
messages, if this resource is allowed in
current session.

array

Chapter 9

[201]

Understanding the methods individually
We'll go through these methods individually, so that we can properly understand
them before moving forward.

The following methods are designed to be used separately in each of the code
examples given. We must remember to separate them and not combine them one
after the other, when trying them out for the first time.

startSession()
This method is used to start a session where API authorization isn't required to access
a resource. It's a great option for those building their own APIs for modules, that allow
sharing the Magento installation's data with anyone who wants to work on the API.

A sample usage is as follows:

// API opening
$session = $client->call('startSession');
// API calls and other actions
// Ending of the session

The $session variable is populated with our session ID for use later with other
methods and throughout the rest of the script, though in this scenario we won't have
many resources to work with. We can try calling the resources method, to see just
how many we can access.

endSession(sessionId)
Used to end the API session at the end of our script, to make sure that the API
session has been ended properly.

A sample usage is described below:

// API opening
// API session start
// API calls and other actions
$client->call('endSession', array($session));

This would be placed at the end of our API usage script. The variable $session
would be set either via the startSession() method or returned via the login
method at the start of our script. This array is then passed to our endSession()
method at the end of the script. It's important to end sessions for cleaning up the
data that is being stored while the session is in progress.

Magento's Core API

[202]

login(apiUser, apiKey)
This method is used to authenticate your script with Magento using your API user
and key.

The following is a sample of its usage:

// API opening
$session = $client->call('login', array('Magentobook',
'Developersguide'));
// API calls and other actions
// Ending of the session

The $session variable is populated with our session ID for use later with other
methods and throughout the rest of the script.

call(sessionId, resourcePath, array arguments)
This is used to call API methods one at a time; it is likely to be the most popular
method that we will use, while working with the Magento Core API. The following
examples demonstrate its usage.

Example one, no arguments needed for a call:

$customers = $client->call($session, 'customer.list');

Example two, single argument for a call:

$client->call($session, 'customer.delete', $CustomerId);

Example three, multiple arguments for a call:

$calls = array(
 array('catalog_product.info', 1),
 array('catalog_product.info', 2),
 array('catalog_product.info', 3),
);
$results = $client->multiCall($session, $calls);

We notice that the $session variable is required for all calls, and that a called
function is executed in the format of: $client->call($session, $resource,
$arguments); no matter which variation of the method is being used.

Chapter 9

[203]

multiCall(sessionId, array calls, array options)
This is used for batch calls, if ever required. It is similar to the previous call method,
but is used for calling several methods at the same time.

It can be used as follows:

$client->call('multiCall', array($session,
 array(
 array('somestuff.method', 'arg1'),
 array('somestuff.method', array('arg1', 'arg2')),
 array('somestuff.method')
)
));

This method is best used when mass updating records or if we like to tidy up
multiple actions into one statement. For example, when inserting an order with a
shipment and invoice all at the same time while importing from another installation.

resources(sessionId)
This method returns a list of the available methods relating to the current session.

The following is an example of its usage:

$resources = $client->resources($session);

This will return an array of available resources to our current session. Jisse Reitsma
of Jira ICT wrote the following code to produce a simple output of all the resources
and methods returned by the method, which helps us visualize the output better:

<?php if(is_array($resources) && !empty($resources)) { ?>
<?php foreach($resources as $resource) { ?>
<h1><?php echo $resource['title']; ?></h1>
Name: <?php echo $resource['name']; ?>

Aliases: <?php echo implode(',', $resource['aliases']); ?>
<table>
 <tr>
 <th>Title</th>
 <th>Path</th>
 <th>Name</th>
 </tr>
 <?php foreach($resource['methods'] as $method) { ?>
 <tr>
 <td><?php echo $method['title']; ?></td>
 <td><?php echo $method['path']; ?></td>

Magento's Core API

[204]

 <td><?php echo $method['name']; ?></td>
 <td><?php echo implode(',', $method['aliases']); ?></td>
 </tr>
 <?php } ?>
</table>
<?php } ?>
<?php } ?>

This call is useful when debugging the existing session and can save a lot of heartache
when trying to figure out why a resource or method is not executing properly!

globalFaults(sessionId)
This method returns global faults with our API usage. It's useful for seeing which
global API faults are occurring, if anything goes wrong. The complete list of these
faults can be found later in this chapter.

It is used as follows:

$faults = $client->globalFaults($session);

This sets $faults to an array of the global faults currently occurring. You can then
use a foreach() function to get the faults out of the array for a comfortable display
and easy reading.

resourceFaults(sessionId, resourceName)
This returns faults for a specific resource.

It is used as follows:

$faults = $client->resourceFaults($session, 'resource.name');

This then sets an array of faults for the resource.name resource to the variable
$faults , on which we can then use the foreach() function for reading on the
front end.

Chapter 9

[205]

Global API Faults
The following are global Core API fault codes that can be returned, no matter what
Core API is being used or which call we execute. These errors apply to each Core API
call available. The support guide outlines them as follows:

Fault Code Fault Message
0 Unknown Error
1 Internal Error. (For details, we can read the log file)
2 Access denied
3 Invalid API path
4 Resource path is not callable
5 Session expired, re-login

These will be directly in PHP error format, if the server allows error reporting when
they occur, as shown below:

In the following table, we can see what these errors are and why they occur:

Fault Code Reason for fault
0 This error is rare and it normally means something extraordinary has

gone wrong.
1 If we read the log, we will come to know exactly what has gone wrong to

cause this error.
2 When we called login, we passed an incorrect API user and key

combination or the API key and user that we passed to the method does
not have rights to call the API method that we're trying to execute.

3 The API path that we had called at the start of our script is invalid and
does not exist.

4 The resource that we're trying to call in our function is not callable by
our API key and user, or simply does not exist.

5 Our API session has expired and we need to log in again.

Magento's Core API

[206]

In the following table, we have the two fault tables together for a quick overview:

Fault Code Fault Message Reason for fault

0 Unknown Error This error is rare and it normally means something
extraordinary has gone wrong.

1 Internal Error. Please
see log for details

If we read the log, we will come to know exactly what
has gone wrong to cause this error.

2 Access denied When we called login, we passed an incorrect API
user and key combination or the API key and user
that we passed to the method does not have rights to
call the API method that we're trying to execute.

3 Invalid API path The API path that we had called at the start of our
script is invalid and does not exist.

4 Resource path is
not callable

The resource that we're trying to call in our function
is not callable by our API key and user, or simply
does not exist.

5 Session expired,
re-login

Our API session has expired and we need to log in
again.

Basic API scripting: Customer API
We start with some basic API scripting to ease us into the operations of the Magento
Core API, starting with the Customers API.

Getting started
Most of us would be using SOAP, but this is easily interchangeable with XML RPC
(as mentioned earlier in the chapter). We start by setting up our connection to the
API, creating a file called api.php, and placing in it the following:

<?php

$client = new SoapClient('http://m.jhuskisson.com/api/soap/?wsdl');

$session = $client->login('Magentobook', 'Developersguide');

$client->endSession($session);

?>

Once we've loaded it into our browser, we'll see a blank screen which means that
everything is working nicely.

Chapter 9

[207]

Creating a customer
We start by creating a customer in our database; we have data in our default
Magento installation at the moment. Hence, we'll need to insert customers before
we have any data to retrieve or update. Between our login() and endSession()
functions we'll enter:

$customerInfo = array(
 'firstname' => 'First',
 'lastname' => 'Last',
 'email' => 'test@example.com',
 'password_hash' => md5('password'),
 'store_id' => 0,
 'website_id' => 0
);

$newCustomerId = $client->call($session, 'customer.create',
array($customerInfo));

We reload our file in the browser and it should take slightly longer to load, but will
still return a blank screen. However, if we take a look at the Manage Customers
screen under Customers->Manage Customers in the Magento administration, we'll
see that the new customer has been created successfully.

We'll also be able to log in as this newly created customer with the e-mail and
password inserted straightaway.

Magento's Core API

[208]

Retrieving an individual customer's details
Now that the customer is in the database, we can retrieve the fictional customer's
details using the customer.info call and the ID of that customer. For example:

$customerId = 1;
$customerInfo = $client->call($session, 'customer.info', $customerId);
print var_dump($customerInfo);

Once we save our file and reload the page, we'll see an array output with all the
variables applicable to this customer's core data.

array(12) {
 ["customer_id"]=> string(1) "1"
 ["created_at"]=> string(19) "2009-05-25 16:37:40"
 ["updated_at"]=> string(19) "2009-05-25 16:37:40"
 ["increment_id"]=> string(9) "000000001"
 ["store_id"]=> string(1) "0"
 ["website_id"]=> string(1) "0"
 ["created_in"]=> string(5) "Admin"
 ["email"]=> string(16) "test@example.com"
 ["firstname"]=> string(5) "First"
 ["group_id"]=> string(1) "1"
 ["lastname"]=> string(4) "Last"
 ["password_hash"]=> string(32) "5f4dcc3b5aa765d61d8327deb882cf99"
}

Updating the customer's details
We can use this how we like. In our current situation, we can change the name of
this customer via the API, assuming that we have updated it elsewhere away from
Magento. To do this, we should use the following code:

$newCustomerInfo = array(
 'firstname' => 'Updated',
 'lastname' => 'Customer'
);

$client->call($session,
 'customer.update',
 array($customerId, $newCustomerInfo)
);

var_dump($proxy->call($session, 'customer.info', $customerId));

Chapter 9

[209]

This will update our customer and print out his new details for us to confirm that it
works. If our script has worked, we'll see the customer record updated in Magento, as
well as a new array printed out of the customer's data that shows the new information.

Listing all customers from the database
In some cases, we may need to get several customers out of the database rather than
just the one. Maybe we're inserting the information from the customer database of
Magento into another database or need to use it in some way. Magento's Customer
API provides a simple way of doing this, as follows:

$customerList = $client->call($session, 'customer.list');

This will return an array of all customers in the database, for us to process through.
It will output exactly how customer.info outputs, but in separate arrays for each
customer returned via the method.

Deleting a customer from the database
Lastly, if we want to delete a customer record from the Magento database there's a
method available, (provided we know the customer ID):

$client->call($session, 'customer.delete', $customerID);

It's as simple as that; the customer with the ID contained in the $customerID
variable will be deleted from the database.

Complete list of available resources and
methods
The following is a complete list of all the available resources, APIs, and methods in
the Magento Core API for quick reference.

For full reference with example code for each of the APIs, we can visit:
http://www.magentocommerce.com/wiki/doc/webservices-
api/api online.

Magento's Core API

[210]

Customer methods
For handling of customer information in Magento's database, the following methods
are available:

Customer API
Resource name: customer

Customer Groups API
Resource name: customer_group

customer.list—Retrieve customers

customer.create—Create customer

customer.info—Retrieve customer data

customer.update—Update customer data

customer.delete—Delete customer

customer_group.list—Retrieve
customer's groups

Customer Address API
Resource name: customer_address

customer_address.list—Retrieve
customer addresses

customer_address.create—Create
customer address

customer_address.info—Retrieve
customer address

customer_address.update—Update
customer address

customer_address.delete—Delete
customer address

Directory methods
For retrieval of region and country information from Magento's database, the
following methods can be used:

Country API
Resource name: country

Region API
Resource name: region

country.list—List of countries region.list—List of regions in
specified country

Chapter 9

[211]

Catalog methods
For handling catalog-related information in Magento's database, we have:

Category API
Resource name: category

category.currentStore—Set/Get current
store view
category.tree—Retrieve hierarchical tree
category.level—Retrieve one level of
categories by website/store view/parent
category
category.info—Retrieve category data
category.create—Create new category
category.update—Update category
category.move—Move category in tree
category.delete—Delete category
category.assignedProducts—Retrieve
list of assigned products
category.assignProduct—Assign
product to category
category.updateProduct—Update
assigned product
category.removeProduct—Remove
product assignment
Category attributes API
Resource name: category_attribute

Product API
Resource name: product

category_attribute.currentStore—
Set/Get current store view
category_attribute.list—Retrieve
category attributes
category_attribute.options—Retrieve
attribute options

product.currentStore—Set/Get
current store view
product.list—Retrieve products
list by filters
product.info—Retrieve product
product.create—Create new
product
product.update—Update product
product.setSpecialPrice—Set
special price for product
product.getSpecialPrice—Get
special price for product
product.delete—Delete product

Magento's Core API

[212]

Product attributes API
Resource name: product_attribute

Product attribute sets API
Resource name: product_
attribute_set

product_attribute.currentStore—
Set/Get current store view
product_attribute.list—Retrieve
attribute list
product_attribute.options—Retrieve
attribute options

product_attribute_set.list—
Retrieve product attribute sets

Product types API
Resource name: product_type

Product Images API
Resource name: product_
attribute_media

product_type.list—Retrieve product
types

product_attribute_media.
currentStore—Set/Get current
store view
product_attribute_media.
list—Retrieve product image list
product_attribute_media.
info—Retrieve product image
product_attribute_media.
types—Retrieve product image
types
product_attribute_media.
create— Upload new product
image
product_attribute_media.
update—Update product image
product_attribute_media.
remove—Remove product image

Chapter 9

[213]

Product Tier Price API
Resource name: product_attribute_
tier_price

Product links API
Resource name: product_link

product_attribute_tier_price.
info—Retrieve product tier prices

product_attribute_tier_price.
update—Update product tier prices

product_link.list—Retrieve
linked products

product_link.assign—Assign
product link

product_link.update—Update
product link

product_link.remove—Remove
product link

product_link.types—Retrieve
product link types

product_link.attributes—
Retrieve product link type attributes

Sales methods
For invoices, shipments and credit memos in Magento's database, we have:

Order API

Resource name: order

Shipment API

Resource name: order_shipment

order.list—Retrieve list of orders by
filters

order.info—Retrieve order
information

order.addComment—Add comment to
order

order.hold—Hold order

order.unhold—Unhold order

order.cancel—Cancel order

order_shipment.list—Retrieve list of
shipments by filters

order_shipment.info—Retrieve
shipment information

order_shipment.create—Create new
shipment for order

order_shipment.addComment—Add new
comment to shipment

order_shipment.addTrack—Add new
tracking number

order_shipment.removeTrack—Remove
tracking number

order_shipment.getCarriers—Retrieve
list of allowed carriers for order

Magento's Core API

[214]

Invoice API
Resource name: order_invoice

order_invoice.list—Retrieve list of
invoices by filters
order_invoice.info—Retrieve
invoice information
order_invoice.create—Create new
invoice for order
order_invoice.addComment—Add
new comment to shipment
order_invoice.capture—Capture
invoice
order_invoice.void—Void invoice
order_invoice.cancel—Cancel
invoice

Inventory methods
For updating of stock and inventory for products in Magento's database, we have:

Inventory API
Resource name: product_stock

product_stock_item.list—Retrieve
stock data by product ids
product_stock_item.update—Update
product stock data

Chapter 9

[215]

Summary
In this chapter, we've learned about interacting with the Magento Core API and
the mass database of data that Magento holds. It's certainly a great addition to the
excellent e-commerce system that is Magento Commerce.

We have gone through the following:

•	 What the Core API actually does
•	 What it can be used for
•	 What APIs are available to us
•	 Setting up API access for our scripts
•	 What methods of using the API we have available to us
•	 The methods and functions the Core API has available
•	 Common errors in the API
•	 A sample implementation of the customer API for creating, updating,

deleting, and retrieving customer data from within Magento

With this knowledge, we should be able to write scripts using the Magento Core API.
We must take up the challenge of integrating with a third-party system, for testing
our newly acquired knowledge of Magento Core API.

Importing and Exporting Data
In this chapter, we will learn about the built-in method of getting your data in and
out of Magento. Magento is delivered with a set of features aimed at making it
easy to get certain types of data in and out of the system. With the import/export
functionality, we can set up profiles which act as saved records, so that we can
regularly import and export the same data. In practice, this means that if we wish
to do that process regularly, then we can set up a profile which will ensure that we
don't need to run the filters each time. We can then come back to this, which acts as
a save point for all the settings set up previously for the data import/export action.

Here we'll be looking at the profiles that are set up with the system by default, and
how we can add our own for easy import/export of data.

What kind of data can I export or import?
Magento has the following default Import/Export data profiles that come with the
default installation and what data they relate to:

•	 Customer data (users who have signed up for the system)
•	 Product stock data (product stock data only)
•	 Product data (all attributes relating to products)

It's worth increasing the value of the PHP max_execution_time
directive, as product databases over 200-300 products will experience
issues with script timeouts on certain web hosting.

Importing and Exporting Data

[218]

There are two types of files that can be used for import/export in Magento:

•	 Excel Spreadsheet
•	 CSV (Comma Separated Values)

The typical process is as follows:

1. Creating a new profile
2. Naming the profile and choosing direction (import/export)
3. Choosing a data type
4. Configuring the data type (for example with CSV, we choose tabular or

comma separated values)
5. Choosing which type of system data we want to interact with (customers or

products)
6. Filtering this data to meet our needs
7. Saving our work
8. Running the profile to produce the desired result

Developers can also export their profiles as XML, in order to advance them under the
Advanced Profiles functionality that comes with Magento. If we'd like to advance a
profile further than the profile builder tool allows, then we can export the profile as
XML to tweak into an Advanced Profile with more advanced actions.

An introduction to the interface
Profiles can be found under the Import/Export menu, in System->Import/ Export->
Profiles. Initially, we'll see a screen displaying all the profiles that we have set up, as
follows:

Chapter 10

[219]

The default profiles that come with Magento (shown in the previous screenshot)
cover the Import/Export of Customers, Product, and Product Stocks. These will help
us get started with the feature and can also act as a template for profiles that will be
set up later.

We start with opening Export Product Stocks, profile ID 2. At the bottom left-hand
side of the screen, we see four sections: Profile Wizard, Run Profile, Profile Actions
XML, and Profile History. These can be seen when exporting data; an additional tab
named Upload File appears when importing data.

The four sections can be summarized as follows:

•	 Profile Wizard is where we set up the profile through an interface aimed at
not having us do any of the XML involved with Advanced Profiles.

•	 Upload File allows us to upload files to be executed through the profile.
•	 Run Profile allows us to run the current profile, as it was last saved.
•	 Profile Actions XML allows us to take the raw XML that makes up this

profile and take it into the Advanced Profiles section for advancement with
options that aren't available via the Profile Wizard interface.

•	 Profile History shows us actions previously performed with this profile.

Profile Wizard
We will focus on the Profile Wizard, as it is where the core of the Import/Export
profile feature is based. Let's run through our fields on this tab, which is the default.

Profile Information
Profile Information comprises the following components, shown in the screenshot:

Importing and Exporting Data

[220]

Name
The name that we assign to our profile in order to locate it later on from within
the system.

Entity type
This decides which fieldset we interact with for the profile. It takes the options,
Products and Customers. For example, if we select Products, then the fieldset for
Products from the selected store(s) will be loaded for interaction with the actions
and methods as selected in the rest of the form.

Direction
This decides the direction of which we're using the data for the profile. For example,
whether we'll be taking a file and importing the data using the profile, or we'll be
taking the data output from the profile and exporting to a file. It takes the options
Import and Export.

Upon selecting Import for Direction, two additional fields will appear. Number of
Records allows us to define how many records will be processed at a time, whereas,
Decimal Separator defines what separates the fields in the file that is being used to
import products.

For example:

Sample data row: store,manufacturer,and price

Decimal Separator is the comma (,) being used to separate data.

Store
This option allows us to filter the profile to a specific store in our Magento setup.
Store-specific fields will be loaded and only this data will be interacted with. It will
automatically use this store ID for any data being imported, so that there is no need
to declare it in our file when importing. It has the following option: Default (Admin)
Store - <list of all stores in your Magento setup>.

Selecting Default (Admin) Store defines this as a global profile that applies to
all stores, so the store field in our data will need to be set when importing to
specific stores.

Chapter 10

[221]

File information
File Information consists of the following components, shown below:

Data transfer
Options: Interactive and Local/Remote Server.

Interactive (available only for imports), allows us to upload files to be run through
the Run Profile tab.

Local/Remote Server enables us to fill out the fields to get the file from a source.

Type
Options: Local Server and Remote Server.

Local Server: The file is located on the same server as our Magento installation or
within Magento installation's directories.

Remote Server: We need to connect to an FTP connection to either fetch our file for
importing or to store our file after exporting. This will then save the exported file on
another server, ready to be used by another system. Else, it will be fetched from an
external server and then imported.

When we select Remote Server , we will be asked to insert our FTP
information for the connection. This must be filled in for the Remote
Server connection to work.

Importing and Exporting Data

[222]

Path
Path is the relative path to the file that we use for the profile, minus the trailing
slash. It should always be /var/import_folder, rather than /var/import_folder/.
There is no need to put our entire root address into the import directory here, just
the part after the Magento root directory. If we have it installed in /root/address/
magento/, then our path will always be automatically prefixed with this by Magento.

File
File name is the name of the file once in this directory, with file extension, for
example: sample.csv.

When using Remote Server as our File Information type, we must be sure to put our
path as relative to the start directory of the FTP connection, once connected. We must
always include our directory name in the public HTML folder.

Data Format
Data Format consists of the following components, shown below:

Type
Options: MS Excel XML and CSV/Tab Separated. This allows us to choose the file
type that is going in or out of the profile.

Original Magento attribute names in first row
Options: Yes and No.

Chapter 10

[223]

This allows us to define whether or not Magento should check the field names
against those that are in the Magento attribute database, when importing. It defines
whether we use only field mapping or use it in combination with standard attribute
names from the Magneto database. If set to Yes, it will match against Magneto
attribute names, before looking to the field mapping for answers (about which field
to map the value against).

Export
Options: All fields and Only mapped fields. This is an export only field.

This decides whether our Export profile will export all fields from the Magento
attribute database or it will export only the mapping fields that we outline under
the Field Mapping section.

Field Mapping

Field mapping allows us to control the fields that are imported/exported. It is
required before anything is exported, when the Export setting under Data Format
is set to Only mapped fields. It is required for fields that don't match their existing
names, on importing.

It also allows us to change the labels that fields are exported or imported as. For
example, we can export qty as quantity because it's more readable in Excel, or we
could change it to output as product_quantity because this file is to be used to
import data directly into the database.

Importing and Exporting Data

[224]

Export Filters
This section is extremely valuable when filtering down large datasets for more
efficient export profiles. It allows us to put in filters to be applied to our dataset, so
that we create profiles that are specific to certain needs. Below, we see the Export
Filters screen, when exporting products:

The Export Filters screen only appears when we select Export in
the Direction field.

For example:

•	 With products, exporting a stock quantity between 0 and 20 would allow
us to export those products that are low in stock.

•	 With products, selecting a certain product type from the Type field would
allow us to distribute product type management to a relevant department.

•	 With customers, selecting our wholesale group would allow us to only
export our wholesale customers.

•	 With customers, we can filter by country to get customers from
certain countries.

Upload Files
The Upload Files tab only appears on import, but allows us to upload files onto
the server to be processed. Once we've selected our file, we click Save and Continue
Editing; this will upload the file onto the server. Once it's uploaded, we select
Run Profile.

Chapter 10

[225]

Upload Files appears only in Import profiles and does not relate to
Export profiles.

Run Profile
This is the section from which we can run our profile. We click on Run Profile
in Popup to initiate the profile, ensuring beforehand that any changes performed
have been saved. Once we have done this, we will be presented with a series of
messages until the profile is complete. This will finish with a log of the actions that
the script has gone through and some debug messages that keep us posted about
the happenings.

If we import, then we will need to upload our files through the Upload File tab and
select the file from a dropdown before clicking Run Profile in Popup.

Importing and Exporting Data

[226]

The profile will not run unless our changes are saved. Hence, we'll need
to save changes prior to uploading a file through the profile.

Profile Action XML
From here, we can get the Profile Action XML to be placed into the Advanced
Profiles section within the Import/Export menu. This section is advancing our
profile beyond what the default profile builder will allow us to do.

Chapter 10

[227]

Profile History
This tab has a history of when the current profile was created, updated, and executed.
It also provides us with the details of the person who performed these actions.

Sample implementation: Import/Export
of metadata
A sample usage of importing/exporting data in Magento is to use it to control the
product metadata stored for all of our products. Sometimes SEO (Search Engine
Optimization) companies want to tweak metadata en masse. When using Magento's
import/export functionality, this reduces the overhead of appointing someone to
traverse the data, product-by-product, to edit everything.

To do this, we create:

•	 An export profile to get all of our product metadata out for us to edit
and manage

•	 An import profile to import all of our changes back into the system

Exporting our metadata
We begin by creating a new profile. For that, we click on the Add New Profile button
in the top-right of the initial Profiles screen.

For setting up our metadata export profile, we have the following settings:

Importing and Exporting Data

[228]

Setting up the Profile Information
This will be a products export profile across all stores and should be named Export
META Data.

Field Value
Name Export META Data

Entity Type Products

Direction Export

Store Default (Admin) Values

Adding the File Information
Our file should be stored in /var/export and be named as meta_data_export.xml
on our local server, once the profile has been executed.

Field Value
Data transfer Local/Remote server

Type Local server

File Name meta_data_export.xml

Path var/export

Selecting the Data Format
We try an MS Excel XML formatted file with a spreadsheet named Meta Data. This
format has its advantages over CSV, as its less prone to formatting issues causing
rows to not import. There is more of an internal file structure separating data, which
leads to better results when using it.

We set it only to mapped fields which we outline and ensure that Magento attribute
names will not be used.

Field Value
Type MS Excel XML

Spreadsheet Name Meta Data

Original Magento Attribute Names

in the first row

No

Export Only mapped fields

Chapter 10

[229]

Mapping our fields
We stick to only meta information fields and the store/sku values, so that we have
product relation covered when we import back into Magento. To make things a little
more interesting, we customize the field names.

Original field Mapped to
store store_code

sku product_sku

meta_title meta_data_title

meta_keyword meta_data_keyword

meta_description meta_data_description

Choosing the Export Filters
Here we limit the number of export filters, so that only enabled products are
exported, to cut down on unnecessary changes to products not on the site.

Field Value
Status Enabled

Once saved, we go back to the Run Profile section to export our file. After this is
done, we go into the /var/export directory within the Magento setup directory to
find the exported file of product metadata.

When we open this file in MS Excel, it appears nicely (as any normal spreadsheet
would), with our spreadsheet name as outlined previously. We make a few random
edits, and take note of the products that we have edited for future use, when we
wish to ensure that the import has worked.

Importing our metadata
Now that we have our export profile and we've edited all of our data, we need to
be able to import our changes back and have Magento process them. To do this, we
need to set up a profile to import and process this data correctly.

Now, we set up another profile with the following settings for our import profile:

Importing and Exporting Data

[230]

Setting up the Profile Information
This will be a products import profile across all stores and be named Import
META Data.

Field Value
Name Import META Data

Entity Type Products

Direction Import

Store Default (Admin) Values

Number of records 1

Decimal Separator .

Adding the File Information
We make the profile interactive, so that we can upload our own file to be executed
and processed.

Field Value
Data transfer Interactive

Selecting the Data Format
We use MS Excel XML with a spreadsheet named Meta Data, limiting it to only
mapped fields (outlined by us). We ensure that Magento attribute names will be
used in the first row.

Field Value
Type MS Excel XML

Spreadsheet Name Meta Data

Original Magento Attributes
Names

in the first row

No

Chapter 10

[231]

Mapping our fields
We map the fields similar to how we did before.

Original field Mapped to
store store_code

sku product_sku

meta_title meta_data_title

meta_keyword meta_data_keyword

meta_description meta_data_description

Once we set this up, we click the Save and Continue Editing button and go to
Upload File on the left sub-navigation menu and upload our changed file via the
Upload File tab. Then we click on Save and Continue Editing and return to the Run
Profile tab. Then we select the file that we just uploaded from the drop-down list and
run our import profile through. The following screenshot will be displayed:

The profile has been imported successfully and the test run updated all the profiles
without fail. We check our products via the sku values that we changed under
Manage->Manage Products. We find that the META data information has now
been updated.

Importing and Exporting Data

[232]

Common issues with importing/exporting
The following issues are encountered while importing/exporting.

Bad CSV file formatting
Often the cause of a bad import and missing rows from the import, is that of bad
file formatting. This case is more likely to occur in the CSV file format than MS
Excel. This happens because the CSV file type is much more prone to data breakages
through bad formatting.

Short descriptions
Although we can make sure a short description goes on for as long as we like within
Magento, via Profiles we should ensure that it isn't more than 255 characters.

Import/export paths
We need to verify that they are writeable. It sounds like an obvious mistake, but
many developers don't look at the basics before they look into why everything is
going wrong.

Images location
We need to ensure that if we import images with your products, they are placed in
/media/import. Otherwise, they will throw errors and will not be imported. If the
value of our image column is /sub-directory/image_name.jpg, then the URL to
where the image should be placed within Magento installation is: media/import/
sub-directory/image_name.jpg.

Importing multiple images
In our CSV/MS Excel XML file, adding either multiple image or small images, or
thumb columns to add multiple images into the product, causes a problem.

Chapter 10

[233]

Summary
In this chapter, we have learned:

•	 What types of data we can export from Magento from a default installation
•	 What types of data we can import into Magento from a default installation
•	 The file types that we can use for these actions
•	 How to set up our own data profile in order to import/export data ourselves
•	 How to manage META data en masse using these profiles
•	 How to solve some of the common issues in the profile functionality

Further to this, we should try and experiment with Magento's import/export data
functionality. We should be able to comfortably manage the data profiles that are
included in the default Magento installation and should be able to create our own
basic profiles.

Index
Symbols
__construct() function 149
__prepareColumns() function 150
/helloworld/ URL structure

backend, giving to module 121
creating 120
default model, module 125
directory structure 120
Helper model 125
module, configuring 121-123
module controller 124
template blocks 126
viewing 127

A
adaptor model

about 90
core components 93
payment information storage 93
PaymentMethod.php, creating 90, 91
payment, processing 93

adaptor model, shipping modules 64-67
Adminhtml directories 143
administration setup, shipping

modules 67, 68
administrative backend 166
authorize() function 93
automatic shipping tracking code

generation
tying in 99-102

B
backup, Magento

about 52
database, backing up 53
files 52
files, backing up manually 52
oSSH, using 52

base directory
.htaccess 38
.htaccess.sample 38
404 (directory) 38
about 38
app (directory) 38
cron.php 38
downloader (directory) 38
favicon.ico 38
functions, files 39
functions, folders 40
index.php 38
index.php.sample 38
js (directory) 38
lib (directory) 38
LICENSE_AFL.txt 38
LICENSE.txt 38
media (directory) 38
pear 38
pkginfo (directory) 38
report (directory) 38
skin (directory) 38
var (directory) 38

base, extending towards database introduc-
tion

about 138
configuration .xml file 138, 140

[236]

database, setting up 142
file, installing 142
mySQL4 data models 141

base recreating, module development
about 134
block class, displaying 137, 138
controller 135
default model 137
design template file 138
directory structure 134
Helper model 137
layout .xml file 138
module, configuring 136
module, enabling in backend 135
template blocks 137

base structure, Magento
about 37
base directory 38

basic API methods
about 200
call(sessionId, resourcePath, array argu-

ments) 202
endSession(sessionId) 201
global Core API faults 205
globalFaults(sessionId) 204
login(apiUser, apiKey) 202
multiCall(sessionId, array calls, array

options) 203
resourceFaults(sessionId, resourceName)

204
resources(sessionId) 203
startSession() 201

basic module
attributes, creating 106
core module, creating with functionality

110
defining, in local.xml module configuration

file 115
field values, selecting 107
templates, creating 113
working 105, 106
XML block declaration, adding 112, 113

basics, payment methods
about 86
adaptor model 90
configuration options, declaring 95
module,configuring 86-90

module, declaring 86
shipping integration, hooking up 99

beforeToHtml() function 152
brands data

displaying 169, 170
bundled payment methods, Magento

about 84
Amazon Payments 84
Authorize.Net 84
Google Checkout 84
Paypal 84
standard methods 84

C
call(sessionId, resourcePath, array

arguments) method 202
capture() function 93
catalog methods 211
category API

assignedProducts method 211
assignProduct method 211
create method 211
currentStore method 211
delete method 211
info method 211
level method 211
move method 211
removeProduct method 211
tree method 211
update method 211
updateProduct method 211

category attributes API
currentStore method 211
list method 211
options method 211

CMS integration
about 173
integration display, changing 182
WordPress integration module,

installing 175
WordPress integration settings 180
WYSIWYG editor, implementing 174

CMSs
about 184
Drupal 184
ExpressionEngine 185

[237]

Joomla! 185
Typo3 184

configuration files, shipping modules 59
configuration, Magento

database connection 24
session storage options 24
web access options 24

configuration options, admin panel
core fields, setting up 95, 96
custom fields 98
declaring 95
obscuring fields 98
typical fields 97

content blocks
about 42
visual representation 43

core APIs
about 12, 187
Category API 188
Category attributes API 188
Country API 188
Customer Address API 188
Customer API 188
Customer's Groups API 188
functions 188, 189
implementations 190
Inventory API 188
Invoice API 188
Order API 188
prerequisites 189
Product API 188
Product attributes API 188
Product attribute sets API 188
Product Images API 188
Product links API 188
Product Tier Price API 188
Product types API 188
Region API 188
script access, getting 190-194
Shipment API 188

core development functionality coverage
data interaction 9
data portability 9
module development 9
payment and shipping module

development 9
principles 9

system maintenance 9
core fields

about 95
enabled 96
new order status 96
setting up 95
title 96

core module
creating 110, 111

country API
list method 210

customer address API
create method 210
delete method 210
info method 210
list method 210
update method 210

customer API
create method 210
delete method 210
info method 210
list method 210
update method 210

customer groups API
list method 210

customer methods215
customers API

customer, creating 207
customer, deleting from database 209
customer details, retrieving 208
customer details, updating 208
customers, listing from database 209
starting 206

custom fields 98

D
database backup, Magento

about 53
phpMyAdmin, using 55
sysem, using 54, 55

database connection, Magento configuration
 24

data format, import/export data profiles
about 222
export 223
Magneto attribute names 222

[238]

type 222
data grid

__construct() function 149
__prepareColumns() function 150
columns, preparing 150
defining 147
getRowUrl() function 150

design template file 127
directory methods 210
downloader, installing methods

about 27
advantages 27

Drupal 184

E
endSession(sessionId) method 201
export filters, import/export data profiles

224
ExpressionEngine 185

F
field mapping, import/export data profiles

223
field values, basic module

attribute properties 107
front end properties 108
label/options, managing 108
setting 107

file backup, Magento
files, copying to directory 53
files, zipping up 53
manually 52
SSH, used 52

file information, import/export data profiles
about 221
data transfer 221
file name 222
path 222
type 221

free shipping method 71

G
getOptionArray() function 155
getRowUrl() function 150

global API faults
about 205
codes 205
errors 205

globalFaults(sessionId) method 204

H
handling method 72
Hello world

about 133
Module Creator used 133

Hello world message, creating
about 118
display template, placing in layout

.xml file 118, 119
display template, setting up 118

Helper model 125
hierarchical file processing 45, 46

I
import/export data profiles

about 217, 218
CSV, used 218
Excel spreadsheet, used 218
profile actions XML 219, 226
profile history 219
profile history tab 227
profile wizard 219
run profile section 219, 225
upload files tab 219, 224

importing/exporting, Magento
about 217
issues 232

importing/exporting META data example
227

indexAction() function 156
index controller 167-169
installation methods, Magento

about 18
downloader 18
manual 18
SSH 18
SVN 18

inventory API
list method 214
update method 214

[239]

inventory methods 214
invoice API

addComment method 214
cancel method 214
capture method 214
create method 214
info method 214
list method 214
void method 214

issues, importing/exporting
about 232
CSV file formatting 232
images location 232
import/export paths 232
multiple images, importing 232
short description 232

J
Joomla! 185

L
layout .xml file 126
login(apiUser, apiKey) method 202

M
Magento

architecture 37
base structure 37
basic API methods 200
basic module 105
configuring 22
core API 12, 187
core development functionality coverage 8
data, backing up 52
data, exporting 12
data, importing 12
downloader installation 27
downloading 18
extending 8
import/export data profiles 217
importing/exporting META data example

227
installation methods 18
installing 10, 19-22
installing, manually 18

installing, via downloader 27-29
installing, via SSH 33
manual installation 18
module creation 11
module implementation 11
modules 46-49
payment methods 83
payment modules 11
protocols 195
requisites 15
shipping modules 11, 57
SSH installation 33
structural blocks 41
SVN installation 34
system architecture 10
third party CMS integration 12
upgrading 10
upgrading, manual method used 26
upgrading, via downloader 30-32
upgrading, via SSH 34

Magento/WordPress integration
about 174
display, changing 182

Magento/WordPress integration display
page/post layout 182
sidebar 182

manual installation, Magento 18
META data

exporting 227
importing 229

META Data export profile
creating 227
data format, selecting 228
export filters, selecting 229
fields, mapping 229
file information, adding 228
profile information, setting up 228

META Data import profile
creating 229
data format, selecting 230
fields, mapping 231
file information, adding 230
profile information, setting up 230

module configuration
about 86
config.xml, creating 86
database resources handling, declaring 88

[240]

default configuration, setting up 89
model, declaring 88
module version, defining 88
XML version, defining 88

Module Creator
about 129
contents, of module 132
installing 129
module, creating 130

Module Creator script 12
about 128
using 129

module development
about 134
base, extending 138
base, recreating 134
brands data, displaying 169, 170
index controller 167, 168
module, extending 143
with administration panels 11

module, extending
add/edit form tabs, defining 151, 152
add/edit screens, defining to system 146
Adminhtml directories 143
administrative backend 166, 167
administrative display blocks 143
brand status array, setting up 154, 155
config.xml, changing 162-165
controller, creating 156
core administrative backend, defining to

system 144
data grid, defining 147
form, configuring 152-154
form, preparing 150-54
layout .xml file, creating 165

modules
about 46
community 47
core 47
declaring 86
folder structure, setting up 49, 50
local 47
spliting, by type 47

multiCall(sessionId, array calls, array op-
tions) method 203

MySQL, Magento requisites
4.1.20 or newer 16

InnoDB storage engine 16

N
non-payment processing methods, Magento

bank pre-payment 85
cash on delivery 85

O
obscuring fields 98
order API

addComment method 213
cancel method 213
hold method 213
info method 213
list method 213
unhold method 213

P
payment gateways, Magento

2checkout 85
ePay 85
Fontis 85
Moneybookers 85
Sage Pay 85
WorldPay 85

payment methods, Magento
about 83
base, building 86
downloadable extensions, on Magento Con-

nect 85
working 83, 84

payment module
order status, updating 99-102

PHP Compatibility, Magento requisites
5.2.0 and above 16
extensions 16
memory_limit 32M or more 16
safe_mode off 16

product API
create method 211
currentStore method 211
delete method 211
getSpecialPrice method 211
info method 211
list method 211

[241]

setSpecialPrice method 211
update method 211

product attributes API
currentStore method 212
list method 212
options method 212

product attributes sets API
list method 212

product images API
create method 212
currentStore method 212
info method 212
list method 212
remove method 212
types method 212
update method 212

product links API
assign method 213
attributes method 213
list method 213
remove method 213
types method 213
update method 213

product tier price API
info method 213
update method 213

product types API
list method 212

profile Action XML, import/export data
profiles 226

profile history tab, import/export data
profiles 227

profile information, import/export data
profiles

direction 220
entity type 220
name 220
store 220

profile wizard, import/export data profiles
about 219
data format 222
export filters section 224
field mapping 223
file information 221
profile information 219

protocols, Magento
about 195
SOAP 195
XML RPC 197

R
region API

list method 210
requisites, Magento

MySQL 16
PHP Compatibility 16
Server - hosting - setup 16
SSL 16
supported Browsers 16
supported operating systems 15
supported Web Servers 15

resourceFaults(sessionId, resourceName)
method 204

resources(sessionId) method 203
return() function 94
run profile section, import/export data

profiles 225

S
sales methods 213
session storage options, Magento

configuration 24
shipment API

addcomment method 213
addtrack method 213
create method 213
getCarriers method 213
info method 213
list method 213
removetrack method 213

shipping method
restricting, to certain countries 73

shipping modules
about 57
adaptor model 64
administration setup 67
appearing, in administration 71
basic store pickup shipping module 58
beginning 59
configuration files 59-62

[242]

creating 74
example 57
fields, declaring 69, 70
free shipping method 71
handling method 72
regional free shipping module 58
Royal Mail shipping methods 58
shipping method, restricting to certain

countries 73
shipping modules, creating

adaptor 76-78
administration configuration 79
code 81
configuration files 74
template, using 74
testing 80

SOAP
about 195
installation on server, checking 195, 196
using 196
Zend Framework SOAP client 197

SSH 33
startSession() method 201
structural blocks

about 41
content blocks 42
hierarchical file processing 45
visual representation 42
XML layout files 44

supported Browsers, Magento requisites
Adobe Flash browser plug-in 16
Apple Safari 2.x 16
Google Chrome 16
IE 6 and above 16
Mozilla Firefox 2.0 and above 16

supported operating systems, Magento
requisites

Linux x86, x86-64 15
supported Web Servers, Magento requisites

Apache 1.3.x 15
Apache 2.0.x 15
Apache 2.2.x 15

SVN 34
system architecture, Magento 10

T
template blocks, /helloworld/ URL structure

about 126
block class, displaying 126
design template file 127
layout .xml file 126

templates
creating 113, 114

template system architecture 41
third party CMS integration 12
typical fields

about 97
setting up 97

Typo3 184
TypoGento 184

U
upload files tab, import/export data profiles

224

V
void() function 94

W
web access options, Magento configuration

24
WordPress

about 174
integrating 174

WordPress Blog menu 181
WordPress Blog Settings 181
WordPress integration module

installing 175-179
WordPress integration settings

about 180
WordPress Blog menu 181
WordPress Blog Settings 181

WYSIWYG editor implementation 174

[243]

X
XML block declaration

adding, on front end 112, 113
XML layout files

about 44
structure 44

XML RPC
about 197
getting, on server 198
using 199
Zend Framework XML RPC class, setting

up 198, 199

Z
Zend Framework

about 50, 51
role, within Magento 51
working 51

Zend Framework SOAP client 197

Thank you for buying
Magento 1.3: PHP Developer’s
Guide

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Magento 1.3: PHP Developer's Guide, Packt will have given
some of the money received to the Magento project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Magento 1.3 Theme Design
ISBN: 978-1-847196-64-4 Paperback: 188 pages

Customize the appearance of your Magento
e-commerce store with Magento's powerful theming
engine

1. Give your Magento stores a unique branded
look and feel by creating your own Magento
themes

2. Use design techniques to reinforce your brand
message and increase sales

3. Customise your Magento theme’s look, feel,
layout, and features

Magento: Beginner's Guide
ISBN: 978-1-847195-94-4 Paperback: 300 pages

Create a dynamic, fully featured, online store with the
most powerful open source e-commerce software

1. Step-by-step guide to building your own online
store

2. Focuses on the key features of Magento that
you must know to get your store up and
running

3. Customize the store's appearance to make it
uniquely yours

4. Clearly illustrated with screenshots and a
working example

Please check www.PacktPub.com for information on our titles

	Packt - Magento 1.3 PHP Developer's Guide (01-2010) (ATTiCA)
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Magento 1.3: PHP Developer's Guide
	Extending Magento
	Core development functionality coverage
	Core principles of development
	System maintenance
	Payment and shipping module development
	Module development
	Data portability and interaction

	Chapter overview
	Installing, upgrading, and preparing for development
	System architecture
	Shipping modules
	Payment modules
	Basic module creation and implementation
	Fully-featured module development with administration panels
	Integration of third-party CMS
	Magento's core API
	Importing and exporting data

	Summary

	Chapter 2: Installing/Upgrading Magento and Preparing for Development
	Requirements
	Types of installation
	Manual
	Installing
	Upgrading

	Downloader
	Installing
	Upgrading

	SSH (Secure Shell)
	Installing
	Upgrading

	SVN (Subversion Network)

	Summary

	Chapter 3: Magento's Architecture
	Magento's base structure
	Base directory
	The function of each of the files in the base directory
	The function of each of the folders in the base directory

	The template system architecture
	Structural blocks and content blocks
	XML layout files
	Hierarchical file processing

	Modules and how they work within the system
	Distribution of the modules between directories
	Modules included with Magento
	Setting up the folder structure of a module

	Zend Framework and its role within
Magento
	What is Zend Framework
	How Zend Framework works
	It's role and effect in Magento

	Backing up Magento's data
	Backing up the files
	Manually
	Using SSH

	Backing up the database
	Using the system itself
	Using phpMyAdmin

	Summary

	Chapter 4: Shipping Modules in Magento
	What shipping modules do
	How to begin with a shipping module
	The configuration files
	The adaptor model
	The administration setup
	Declaring further fields and learning how they're structured
	Appearing in the administration
	Free shipping
	Handling
	Restricting a shipping method to certain countries

	Using our template to create a shipping method
	The configuration files
	Our adaptor
	The administration configuration
	Testing our newly built module
	Code to allow our shipping module to meet our needs

	Summary

	Chapter 5: Building a Payment Module for Magento
	How payment methods work in Magento
	Payment methods that are bundled
with Magento
	Downloadable payment methods on
Magento Connect

	Building the base of a payment method
	Module declaration
	Module configuration
	The adaptor model
	Payment information storage
	Four core components

	Declaring configuration options for the admin panel
	Setting up the core fields
	Some other field types you can use
	Obscuring fields
	Custom fields from our models

	Tying in automatic shipping tracking/updating
	Automatic shippingtracking and
code-generation tie-in

	Summary

	Chapter 6: Building a Basic Featured Products Module
	How it works
	Creating the attributes in the system
	Setting the field values
	Attribute Properties
	Frontend Properties
	Manage Label/Options

	Creating the core module with functionality
	Adding the XML block declaration for display of the module on the frontend
	Creating templates for display
	Defining the module in the local .xml module configuration file

	Summary

	Chapter 7: Fully-Featured Module for Magento with Admin Panel
	Creating our first Hello World message
	Setting up the display template
	Placing the display template in a layout
.xml file

	Creating our first /helloworld/ URL
structure
	The directory structure
	Giving the module a backend
	Configuring the module
	Our controller
	The Helper model
	The module's default model
	Template blocks and display
	Display block class
	The layout .xml file
	The design template file

	Viewing /helloworld/
	Taking a look at what we've put together

	Using the Module Creator script to get Hello World
	Installing the Module Creator
	Creating our first module with the Module Creator
	The contents of our new module

	Hello World
	Expanding our module further into a database-driven, administrated brands module
	Recreating the base
	The directory structure
	Enabling the module in the backend
	Our controller
	Configuring the module
	The Helper model
	The module's default model
	The module’s frontend display base

	Extending the base towards introducing a database
	The configuration .xml file
	The mySQL4 data models
	Database setup and installation of the file

	Extending the module to include an administration
	Adminhtml directories
	Administrative display blocks
	Defining the core administrative backend to the system
	Defining the add/edit screens to the system
	The module's grid display declaration
	Preparing the form
	Defining the add/edit form tabs
	Configuring and preparing the form for display
	Setting up our brand status array
	Creating a controller to process access URLs
	Changing the module's config.xml to reflect the administrative backend
	Giving our administrative backend a layout .xml file
	A look at the administrative backend

	The index controller
	Displaying the brands data

	Summary

	Chapter 8: Integration of Third-Party CMS
	Notable things about CMS Integration
	The WYSIWYG editor implementation
	Integrating Wordpress
	Installation
	Configuration
	WordPress Blog Settings
	WordPress Blog Menu

	Changing the display of integration
	Page/post layout
	Sidebar

	Other content management systems
	Typo3
	Drupal
	ExpressionEngine
	Joomla!

	Summary

	Chapter 9: Magento's Core API
	What is the Core API?
	Which Core APIs are included?
	What do the Core APIs do?
	Prerequisites to using the Core API
	Examples of what can be done with
the Core API
	Giving scripts access to the Core API

	Choice of protocols
	SOAP
	Checking for SOAP installation on the server
	Putting SOAP to use
	Zend Framework SOAP Client

	XML RPC
	Getting XML RPC on our server
	Setting up the Zend Framework XML RPC class
	Putting XML RPC to use

	Basic API methods
	Describing the methods
	Understanding the methods individually
	startSession()
	endSession(sessionId)
	login(apiUser, apiKey)
	call(sessionId, resourcePath, array arguments)
	multiCall(sessionId, array calls, array options)
	resources(sessionId)
	globalFaults(sessionId)
	resourceFaults(sessionId, resourceName)

	Global API Faults

	Basic API scripting: Customer API
	Getting started
	Creating a customer
	Retrieving an individual customer's details
	Updating the customer's details
	Listing all customers from the database
	Deleting a customer from the database

	Complete list of available resources and methods
	Customer methods
	Directory methods
	Catalog methods
	Sales methods
	Inventory methods

	Summary

	Chapter 10: Importing and Exporting Data
	What kind of data can I export or import?
	An introduction to the interface
	Profile Wizard
	Profile Information
	File information
	Data Format
	Field Mapping
	Export Filters

	Upload Files
	Run Profile
	Profile Action XML
	Profile History

	Sample implementation: Import/Export
of metadata
	Exporting our metadata
	Setting up the Profile Information
	Adding the File Information
	Selecting the Data Format
	Mapping our fields
	Choosing the Export Filters

	Importing our metadata
	Setting up the Profile Information
	Adding the File Information
	Selecting the Data Format
	Mapping our fields

	Common issues with importing/exporting
	Bad CSV file formatting
	Short descriptions
	Import/export paths
	Images location
	Importing multiple images

	Summary

	Index

