
OBJECT-ORIENTED
PHP

C o n c e p t s , T e c h n i q u e s ,
a n d C o d e

by Peter Lavin

San Francisco

®

OOPHP_02.book Page iii Friday, May 5, 2006 2:25 PM

OBJECT-ORIENTED PHP. Copyright © 2006 by Peter Lavin.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

 Printed on recycled paper in the United States of America

1 2 3 4 5 6 7 8 9 10 – 09 08 07 06

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Publisher: William Pollock
Managing Editor: Elizabeth Campbell
Associate Production Editor: Christina Samuell
Cover and Interior Design: Octopod Studios
Developmental Editor: William Pollock
Technical Reviewer: Peter MacIntyre
Copyeditors: Publication Services, Inc. and Sarah Lemaire
Compositor: Riley Hoffman
Proofreader: Stephanie Provines

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Library of Congress Cataloging-in-Publication Data

Lavin, Peter.
 Object-oriented PHP : concepts, techniques, and code / Peter Lavin.
 p. cm.
 Includes index.
 ISBN 1-59327-077-1
1. PHP (Computer program language) 2. Object-oriented programming (Computer science) I. Title.
QA76.73.P224L38 2006
 005.1'17--dc22
 2006015309

oophp_TITLE_COPY.fm Page iv Tuesday, May 16, 2006 9:32 AM

B R I E F C O N T E N T S

Acknowledgments .. xiii

Introduction ...xv

Chapter 1: What a Tangled Web We Weave..1

Chapter 2: Basics of Object-Oriented Programming ..5

Chapter 3: Object-Oriented Features New to PHP 5 ..11

Chapter 4: Show a Little Class ..17

Chapter 5: Mod UR Class ..25

Chapter 6: The ThumbnailImage Class...35

Chapter 7: Building the PageNavigator Class...47

Chapter 8: Using the PageNavigator Class ..57

Chapter 9: Database Classes ...65

Chapter 10: Improvement Through Inheritance..75

Chapter 11: Advanced Object-Oriented Programming Concepts ..91

Chapter 12: Keeping It Fresh..99

Chapter 13: More Magic Methods..111

Chapter 14: Creating Documentation Using the Reflection Classes125

Chapter 15: Extending SQLite ..139

Chapter 16: Using PDO...157

Appendix A: Setting Up PHP 5 ...165

Appendix B: Conversion Table: PHP 4 and PHP 5...169

Glossary ..173

Index ...179

OOPHP_02.book Page v Friday, May 5, 2006 2:25 PM

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS xiii

INTRODUCTION xv

What Does This Book Have to Offer? ... xvi
Who Should Read This Book? .. xvi
Requirements ... xvi

Software .. xvi
Skills ..xvii

Overview of Contents ...xvii
Companion Website .. xix
Resources ... xx

Websites ... xx
Books ... xx

1
WHAT A TANGLED WEB WE WEAVE 1

Do We Really Need Objects? .. 2
Just a Scripting Language ... 2
Object Orientation Is for Large Software Shops ... 3
Leave Well Enough Alone .. 3
Increased Complexity .. 3

The PHP Culture ... 4

2
BASICS OF OBJECT-ORIENTED PROGRAMMING 5

Class .. 6
Classes Versus Records .. 6
A Cohesive Whole .. 6
Objects Are Instances .. 6

Objects Need Access Modifiers ... 7
Object Reuse and Inheritance .. 7

Multiple Inheritance ... 8
Having Your Cake and Eating It Too .. 8

Where to Go from Here .. 9

3
OBJECT-ORIENTED FEATURES NEW TO PHP 5 11

Access Modifiers .. 12
Built-in Classes ... 12

Exceptions .. 12
Database Classes .. 13

OOPHP_02.book Page vii Friday, May 5, 2006 2:25 PM

viii Conten t s in Detai l

Web Services ... 13
Reflection Classes ... 14
Iterator ... 14

Backward Compatibility .. 14
Pass By Reference ... 14
Prognosis ... 15

Where to Go from Here .. 15
Adoption of PHP 5 .. 16
Compromise ... 16

4
SHOW A LITTLE CLASS 17

Design .. 18
Defining the Problem ... 18

Not the Da Vinci Code ... 19
The Constructor ... 19
Referencing Instance Variables ... 20
Wrapper Methods ... 20

Creating an Instance .. 21
What Have You Accomplished? ... 23
But Will It Fly? ... 23

5
MOD UR CLASS 25

Upgrading to PHP 5 ... 26
Access Modifiers ... 26
The Constructor ... 28

Modifying Your Class ... 29
Reconstructing the Constructor .. 29
Filtering Content .. 31
Resetting the Array .. 32

Summary of Changes ... 33

6
THE THUMBNAILIMAGE CLASS 35

What Does a Designer Do? ... 36
Mimicking the Designer ... 36
Help from PHP Functions .. 36

The ThumbnailImage Class .. 37
Data Members .. 37
Deconstructing the Constructor .. 37
Two Ways to Construct an Object ... 38
Internal Behavior—Private Methods ... 39
Must It Be Private? ... 40
A Helper Method .. 40
Public Methods ... 41
Garbage Collection ... 41

OOPHP_02.book Page viii Friday, May 5, 2006 2:25 PM

Conten ts in Detai l ix

Displaying the Image ... 41
Get and Set Methods ... 42
Image Quality ... 42
When to Change the Quality .. 43

Displaying a Thumbnail .. 44
Putting It All Together .. 44
Where to Go from Here .. 45

7
BUILDING THE PAGENAVIGATOR CLASS 47

How Will the Navigator Behave? ... 47
Different Kinds of Searches ... 48

What Will It Look Like? ... 48
The Code .. 49

The Constructor ... 51
Ain’t Misbehavin’ .. 52
Other Constructor Method Calls .. 52

The getNavigator Method ... 54
Move First and Move Previous .. 54
Main Body of the Navigator ... 55
Move Next and Move Last ... 56
Current and Total Number of Pages .. 56

Where to Go from Here .. 56

8
USING THE PAGENAVIGATOR CLASS 57

DirectoryItems Change .. 58
CSS and Reusability ... 58
Paging with Class .. 60

Displaying an Array Slice ... 61
Creating the PageNavigator Object .. 62

Where to Go from Here .. 63

9
DATABASE CLASSES 65

Using What You Know ... 65
One Lump or Two? ... 66
The MySQLConnect Class ... 66

A Class-Conscious Variable .. 67
Making Other Connections ... 68
You Can Only Get There from Here ... 68

The MySQLResultSet Class ... 69
Using the Page Navigator ... 70

Ordering, Filtering, and Extracting .. 71
Traversing the Result Set ... 72
Your Navigator Needs Directions .. 73

Where to Go After the Navigator ... 74

OOPHP_02.book Page ix Friday, May 5, 2006 2:25 PM

x Conten ts in Detai l

10
IMPROVEMENT THROUGH INHERITANCE 75

The Standard PHP Library .. 76
Extending a Class Through Inheritance .. 76

The Exception Class ... 77
protected ... 77
final ... 78
More Magic Methods .. 78

Replacing Errors with Exceptions .. 79
The MySQLException Class ... 80
Changes to the MySQLConnect Class ... 81

Prodding Your Class into Action .. 82
Catching Exceptions ... 83
Implementing an Interface ... 84

Learning About the Iterator Interface .. 85
Implementation ... 86
Leaving a Method Undefined .. 88
Implementation and Access .. 88
Iterating Through a MySQLResultSet .. 89

Where to Go from Here .. 89

11
ADVANCED OBJECT-ORIENTED PROGRAMMING
CONCEPTS 91

Abstract Classes ... 91
Private Methods Can’t Be Abstract .. 92
Interface or Pure Abstract Class? ... 92

Polymorphism .. 93
Controlling How Functions Are Used ... 93

Static Classes .. 94
Static Math Classes ... 94
Instances of Static Classes .. 95
Preventing Instantiation of a Static Class ... 96

Design Patterns .. 96
The Singleton Pattern ... 96
Which Implementation? ... 98

Where to Go from Here .. 98

12
KEEPING IT FRESH 99

SimpleXML .. 100
XML ... 100
RSS ... 101
Structure of an RSS File .. 101
Reading the Feed .. 102

Site-Specific Search .. 103
Google API .. 104
AJAX ... 104
Installing SOAP ... 104

OOPHP_02.book Page x Friday, May 5, 2006 2:25 PM

Conten ts in Detai l xi

The SOAP Extension .. 105
A SOAP Client .. 105
Testing the Functionality ... 108
Viewing the Results Using AJAX .. 109

Complex Tasks Made Easy .. 110
Would You Want to Do It Procedurally? .. 110

13
MORE MAGIC METHODS 111

__get and __set .. 112
Is It Worth It? .. 113

__isset and __unset ... 113
__call ... 114
__autoload .. 115
__sleep and __wakeup ... 116
__clone ... 116

Where’s Waldo? .. 117
clone ... 118
Aggregate Classes .. 119
A Get Method for Object Data Members of an Aggregate Class 121
No Clones Allowed ... 122

A Note About Overloading ... 122

14
CREATING DOCUMENTATION USING
THE REFLECTION CLASSES 125

What Are the Reflection Classes? ... 126
The Reflection Group of Classes ... 126

The Reflection Class ... 127
The ReflectionClass Class ... 128
ReflectionMethod and ReflectionParameter ... 129
Built-in Functions .. 129

What Format Do You Want? ... 130
The Documenter Class .. 130

Describing the Documenter Class .. 130
Describing Methods and Data Members .. 131
The Constructor ... 132
Method and Data Member Modifiers ... 132

Using the Documenter Class .. 134
Creating a Sidebar of Classes and Interfaces ... 134
Formatting Detailed Documentation ... 134
Formatting Comments for the Documenter ... 136

Reflecting .. 137

15
EXTENDING SQLITE 139

Brief Overview ... 140
Directory Structure .. 140

OOPHP_02.book Page xi Friday, May 5, 2006 2:25 PM

xii Content s i n De ta i l

How It’s Done .. 141
Getting Started .. 141
Creating a Table .. 142
Views ... 143
Triggers .. 144
PHP Implementation of SQLite .. 145
Extending SQLiteDatabase .. 145
Override the Query Methods ... 146

Error Messages ... 147
Query Methods ... 148

Utility Methods ... 151
Getting Metadata .. 152
Using Metadata .. 153

User-Defined Functions .. 154
Uses and Limitations of SQLite ... 156

16
USING PDO 157

Pros and Cons ... 158
Converting the SQLite Application .. 158

Code Changes ... 158
Additional Capabilities of PDO .. 161

The PDO Class .. 161
PDOStatement .. 161

Assessment .. 164
Is It the Holy Grail? .. 164

A
SETTING UP PHP 5 165

php.ini Settings .. 166
E_STRICT .. 167
Don’t Escape Twice ... 168

B
CONVERSION TABLE: PHP 4 AND PHP 5 169

GLOSSARY 173

INDEX 179

OOPHP_02.book Page xii Friday, May 5, 2006 2:25 PM

A C K N O W L E D G M E N T S

Special thanks to my family for their support, encouragement, and
forbearance; to the folks at No Starch for so deftly smoothing over the
rough edges; and lastly, thanks to Rasmus Lerdorf, creator of PHP.

OOPHP_02.book Page xiii Friday, May 5, 2006 2:25 PM

I N T R O D U C T I O N

A number of years ago, before I started using PHP, I
created dynamic web pages using C. This really wasn’t
too different from some of the other options available
at the time, though it seems almost unthinkable now.
Creating a dynamic page meant outputting HTML
from your script and recompiling that script if any
changes needed to be made. What PHP had to offer was the ability to
embed server-side scripts into the body of a page wherever they were needed.
This was a considerable improvement because it meant you could code the
HTML as HTML and insert scripting when required. Introducing changes
was much easier, and since PHP is an interpreted language, there was no
need for recompilation.

The paths to using PHP are many and varied, but the single most
important reason for staying with it is ease of use. This is the major reason
that PHP has become such a popular web programming language. With the
arrival of version 5, PHP once again makes life simpler for web developers.
You can now add the power of a robust but uncomplicated object-oriented
(OO) language to your arsenal of web development tools.

OOPHP_02.book Page xv Friday, May 5, 2006 2:25 PM

xvi I n troduct ion

What Does This Book Have to Offer?

This book teaches OO PHP by doing it. If you are a PHP programmer who
wants to make the switch to an OO approach, Object-Oriented PHP can ease
the transition from procedural to object-oriented programming (OOP). Basic
concepts are introduced using simple but useful classes. In short, this book:

� Brings together information from a variety of sources for a comprehen-
sive overview of OO PHP

� Explains OO concepts through concrete examples, not in the abstract

� Takes a practical and easy-to-understand approach

� Demonstrates the advantages of OOP rather than just asserting them

The classes developed in this book are fully functional and are all
available for download at the companion website. This code can be put to
work immediately in a variety of situations.

The code takes full advantage of the capabilities of PHP 5 but, where
possible, a PHP 4 version of the code is also provided, because you don’t
always have a choice about where your code is deployed. Additionally, this
will ease the transition for anyone already familiar with OOP under PHP 4.

Who Should Read This Book?

This book will appeal to the developer who is familiar with PHP and wants to
learn how to use its OO capabilities. However, programmers already familiar
with an OO language, such as Java, who want to learn a scripting language will
also find it useful. Additionally, if you are a system administrator who is consid-
ering installing PHP 5, this book will help you make an informed decision.

PHP is first and foremost a language for creating dynamic web pages, but
the relative simplicity of OOP in PHP makes it an ideal language for a general
introduction to OOP. The concepts learned here are applicable to any OO
language, so if you want to get a feel for OOP, OO PHP is a good place to begin.

Whatever your motivation, by the time you’ve finished this book you’ll
have an excellent understanding of OOP and numerous classes that can
easily be reused in a variety of circumstances. But, more importantly, you’ll
be able to create your own classes and extend existing ones.

Requirements

In order to get the maximum benefit from this book, there are software and
skill prerequisites.

Software

With one or two minor exceptions (they are noted in the text), all the code
in this book will run on PHP 5.0.4 and higher. The PHP 4 code will run just
fine under PHP 5 but will issue warnings if error reporting is set to E_STRICT.
(See Appendix A for more information about this new error reporting level.)

OOPHP_02.book Page xvi Friday, May 5, 2006 2:25 PM

I n troduct ion xvii

PHP is available for virtually any operating system, so there are no
restrictions in this regard. As far as databases are concerned, any recent
version of MySQL, specifically versions 3 or higher, will do. Apache is the
preferred web server but Internet Information Server (IIS) can also be used.
(However, the acronym for Windows using IIS and MySQL with PHP may
serve to dissuade you from using this particular platform.)

Skills

Some knowledge of PHP is desirable, but barring that, a good understanding
of C-type syntax should get you through most code examples. Some knowl-
edge of (X)HTML and CSS is also assumed—after all, PHP is primarily a
web development language. You need only the most basic understanding
of XML even when working with the SimpleXMLElement or SOAPClient classes.
Some understanding of JavaScript would be beneficial.

Familiarity with relational databases, especially MySQL, is recommended.

Overview of Contents

OOP is often described as an iterative process, and this is the approach we
take in this book. We will develop working examples of classes in order to
explore specific OO concepts and then return to improve these classes.

This book has sixteen chapters and two appendices. It is made up of
three different sections. The first three chapters offer an introduction to
OOP as implemented in PHP. Chapters 4 through 9 develop some useful
classes that demonstrate the basic syntax and concepts of OOP. Code com-
patible with PHP 4 and PHP 5 is provided. The remainder of the book
makes use of built-in classes available in PHP 5 only; consequently, there is
no PHP 4–compatible code. A brief outline of each chapter is provided here.

Chapter 1

Strangely enough, there are still web developers who question whether a
scripting language really needs to be object-oriented. This chapter deals with
issues related to this question.

Chapter 2

This chapter introduces the basics of OOP. The intent is not to exhaustively
cover the theoretical underpinnings of OOP—far from it. Think of this chap-
ter as a quick check for shallow water and rocks before diving in. The concepts
discussed are class, access modifiers, and inheritance—all you need to start
coding as quickly as possible.

Chapter 3

This chapter gives a broad overview of the changes introduced with PHP 5.
If you are new to PHP, it’s a good opportunity to assess the capabilities of the
language, but it should also appeal to the PHP 4 programmer who’s consid-
ering upgrading. This chapter also deals with some compatibility issues when
moving from version 4 to version 5.

OOPHP_02.book Page xvii Friday, May 5, 2006 2:25 PM

xviii In t roduc ti on

Chapter 4

Hands-on programming begins here. A relatively straightforward class is coded
in the style of PHP 4. The most basic concept of OOP, a class, is introduced.

Chapter 5

The directory items class, created in Chapter 4, is upgraded to use the syntax
of PHP 5. Further functionality is added to this class.

Chapter 6

This chapter creates a thumbnail image class for reducing images on the
fly. This class is used in conjunction with the directory items class created in
Chapter 5 to display images of a uniform size.

Chapter 7

After dealing with the size of images, the problem of displaying a large num-
ber of images is addressed. A page navigator class is created in order to step
through numerous images in an orderly fashion.

Chapter 8

Creating one class has lead to the creation of two other classes. This chapter
demonstrates that these classes can work well in unison.

Chapter 9

Databases are an important element in most dynamic web pages. Creating
our own MySQL database classes highlights the advantages of OOP in this
area. Using the page navigator class in a different context demonstrates the
reusability of OO code.

Chapter 10

Inheritance can improve the performance and ease of use of the MySQL
database classes. Catching exceptions is cleaner and much less tedious than
error trapping.

Chapter 11

In the interest of getting on with the coding, some advanced concepts of OOP
were glossed over in Chapter 10. This chapter returns to some of the topics
previously raised. It includes an in-depth discussion of abstract classes, inter-
faces, and static classes. Design patterns and polymorphism are also examined.

Chapter 12

PHP is all about creating dynamic websites. So far we’ve seen how this can be
done using databases. This chapter explores the creation of dynamic pages
using the SimpleXMLElement and SOAPClient classes. This chapter also shows how
asynchronous JavaScript and XML (AJAX) can work in unison with PHP. See
just how easy it is to implement web services using classes built in to PHP 5.

OOPHP_02.book Page xviii Friday, May 5, 2006 2:25 PM

In t roduc ti on xix

Chapter 13

This is one of the few non–project-oriented chapters. It explores in detail all
the magic methods available in PHP 5. Understanding these methods is
essential for getting the maximum benefit out of OO PHP and for avoiding
some common “gotchas.”

Chapter 14

PHP 5 includes a group of classes called the Reflection classes, typically used
to reverse engineer code. Pay a little attention to the format of internal docu-
mentation, and these classes can be used to make your code self-documenting.

Chapter 15

SQLite is packaged with PHP 5 and comes with an OO interface. This chapter
extends SQLite and develops a web-based resource management program.
No knowledge of SQLite is presupposed.

Chapter 16

PHP Data Object (PDO) is a data-access abstraction layer that works with most
databases. The application developed in Chapter 15 is converted to a PDO
application.

Appendix A

This appendix deals with OO issues related to the installation and config-
uration of PHP 5.

Appendix B

The major syntactic differences between PHP 4 and PHP 5 are presented
here in tabular form.

Companion Website

This book has a companion website (http://objectorientedphp.com) where
you can download all the code related to it. Downloads are available as
zipped files or tarballs, chapter by chapter or as one complete download.
Code compatible with PHP 4 is clearly marked as such and, depending upon
your circumstances, may not need to be downloaded at all.

The principle purpose of the companion site is to provide these down-
loads, but working examples of some of the classes created in this book are
also incorporated into the site. The DirectoryItems class is used to present the
downloads, and a page navigator is used in conjunction with MySQL classes
to page through a database of articles. Resources are added and displayed
using PDO and an SQLite database. Finally, documentation of internal PHP
classes is generated using the Documenter class. The companion website not
only provides support for this book, it is also a graphic demonstration of its
contents; to rephrase an expression, “the message becomes the medium.”

OOPHP_02.book Page xix Friday, May 5, 2006 2:25 PM

xx In t roduc ti on

You can also post or review errata on the website, and links to many of
the resources used in this book are provided.

Resources

For your convenience, some of the most useful resources are reproduced here.

Websites

International PHP Magazine: www.phpmag.net
Cutting-edge articles and news about PHP. Available by subscription only.

PHP.net: http://php.net
The official PHP site, where you will find documentation and many code
examples. It is the primary source of information about PHP.

php|architect: http://phparchitect.com
A monthly magazine for PHP professionals. Available by subscription only.

Planet PHP: www.planet-php.net
Links to articles and all the latest news about PHP.

Zend: www.zend.com
Information about Zend products, but also many good tutorials by the
creators of the scripting engine that underlies PHP.

Books

Essential PHP Security, by Chris Shiflett (O’Reilly)

Learning XML, by Erik T. Ray (O’Reilly)

PHP 5 Power Programming, by Andi Gutmans, Stig Bakken, and Derick
Rethans (Prentice Hall)

PHP Cookbook, by David Sklar and Adam Trachtenberg (O’Reilly)

PHP Hacks, by Jack D. Herrington (O’Reilly)

php|architect’s Guide to PHP Design Patterns, by Jason Sweat (php|architect)

php|architect’s Guide to PHP Security, by Ilia Alshanetsky (php|architect)

Programming PHP, by Kevin Tatroe, Peter MacIntyre, and Rasmus Lerdorf
(O’Reilly)

Thinking in Java, by Bruce Eckel (Prentice Hall)

Upgrading to PHP 5, by Adam Trachtenberg (O’Reilly)

OOPHP_02.book Page xx Friday, May 5, 2006 2:25 PM

1
W H A T A T A N G L E D W E B

W E W E A V E

Creating a web page ain’t what it used to be.
Setting up a website today usually means

incorporating numerous technologies, among
them (X)HTML, CSS, JavaScript, SQL, and a

server-side scripting language. But that’s not all—a web
page also runs within a browser. There are several different browsers, of course,
and each behaves differently. Not only that, but different versions of the same
browser can act differently, and even the same version of the same browser
can’t be relied upon to behave the same when running on different operating
systems, with different hardware, different screen resolutions, and so on.

Add to this the various configuration files—for the scripting language
and the web server, for example—which also affect the display of a particular
web page, and you can see that the web developer’s lot is not a happy one.

It may not be readily apparent that an object-oriented (OO) approach is
a means of simplifying this situation. OO development might be seen as
symptomatic of the larger problem. To the embattled web developer an OO
approach can appear to be just another complication of what’s already a
messy business.

OOPHP_02.book Page 1 Friday, May 5, 2006 2:25 PM

2 Chapter 1

Do We Really Need Objects?

The ability of any server-side scripting language to “include” files within a web
page reduces initial work and ongoing maintenance. For instance, suppose a
website contains a menu at the top of each web page, and this menu is iden-
tical throughout the site. You could cut and paste the appropriate code into
every page, but this is both cumbersome and counterproductive. It’s much
better to write the code once and use a server-side scripting language to insert
the menu wherever it’s needed. That way, should an update be required, you
can make one change to one file rather than changing many files. This makes
site-wide updates much easier.

You could summarize this approach as “include and reuse; don’t rewrite.”
In a sense, object-oriented programming (OOP) is just an extension of this
concept. Objects simplify web development by eliminating the need to cut,
paste, and adapt existing code. If the usefulness of OOP were this evident, it
would meet with little resistance. This has not been the case, however. Let’s
look at some of the more interesting objections to OO web development to
remove any nagging doubts you may have.

Just a Scripting Language

PHP is a scripting language. Some of the objections to OOP focus on this fact.
Some scripting languages simply string together a series of commands

and for this reason are sometimes referred to as “glue.”1 A shell script, for
example, may combine a number of operating system commands in order
to eliminate the tedium of repetitively typing the same thing. The variety of
requirements of a web page might seem to support the view that PHP is just
this sort of scripting language—it provides a glue to hold together the dispa-
rate elements of a web page. If this is all that PHP does, then there is probably
no need for it to be object-oriented. In fact, object orientation might even be
a disadvantage. In this view, which is sometimes expressed with a degree of
condescension, OO capabilities are best left to full-blown programming lan-
guages and are an unnecessary encumbrance for a scripting language. An
OO scripting language is a contradiction in terms; it’s a language that’s
“getting above itself.”2

To some extent, the limited OO capabilities of PHP 4 reinforced the
view that a scripting language shouldn’t attempt to be object-oriented. PHP 4
looked like a half-hearted attempt to jump on the OO bandwagon. Because
it was missing some of the major elements associated with OOP, it was easy
to dismiss OO PHP as a wannabe OO language. It simply lacked the tools of a
serious OO language. In light of the much-improved OO capabilities of PHP 5,
this view needs to be reassessed.

1 You’ll even find this description on the PHP site (http://php.net). In the FAQ on installation,
PHP is described as “the glue used to build cool web applications.”
2 For a recent variation on this argument see “James Gosling: Java Is Under No Serious Threat
from PHP, Ruby C#,” available at www.sys-con.tv/read/193146.htm. There, James Gosling argues
that “they are scripting languages and get their power through specialization: they just generate
web pages.” (Accessed March 19, 2006.)

OOPHP_02.book Page 2 Friday, May 5, 2006 2:25 PM

What a Tangled Web We Weave 3

Chapter 3 deals with the improvements to PHP’s object model in version 5.
With these improvements, PHP is now a full-blown OO language. It should be
judged by how well it does the job, not on the basis of a preconceived notion of
what a scripting language should or shouldn’t do. After all, a programming
language, scripting or otherwise, is just a tool, a means to an end. Tools are
meant to be judged not by what they are, but by what they can do.

Object Orientation Is for Large Software Shops

Another argument against OOP goes like this: OOP is something best left
to the large shops. If a number of programmers are involved in the same
project, an OO approach is a necessary evil, but it’s not much use for the
lone developer. Because big software shops have many different program-
mers doing somewhat specialized jobs, the modular, OO approach is required.
It is not something that the lone developer needs to worry about. The lone
developer doesn’t have to coordinate his efforts with others, so a procedural
approach is the better way.

This point of view correctly identifies the fact that an OO approach is
more modular and thus more suitable to an environment that requires col-
laboration. It is also true that in some circumstances a single developer can
do a superior job—too many cooks can spoil the broth. And it is probably
also true that taking an OO approach will slow development. But an OO
solution takes more time than a procedural one only the first time that the
solution is created. The lone developer can benefit from the reusability and
adaptability of an OO solution just like any large software shop can.

Leave Well Enough Alone

We’ve dealt with some of the reasoned arguments against an OO approach
to web development, but in many cases what’s at work is simply a reluctance to
change. PHP has been exceptionally successful as a procedural language. If it
ain’t broke, why fix it?

Computer languages, like their natural counterparts, must keep pace with
changes in the environment or risk becoming irrelevant. OOP doesn’t replace
procedural programming or make it obsolete. Nor is an OO approach always
the right approach, as some OO enthusiasts might have you believe. However,
some web problems require an OO solution. Additionally, without a minimal
understanding of the basics of OOP, you can’t make full use of the capabilities
of PHP 5. For instance, if you want to create a SOAP client, there is really no
other way to do it than by using the SOAPClient class.

There’s no requirement that once you start programming using an OO
approach you need always code this way. PHP is a hybrid language with OO
capabilities grafted onto it. You can use an OO approach when you want and
otherwise revert to procedural programming.

Increased Complexity

Fear of PHP becoming overly complex is often a more subtly stated objec-
tion to an OO PHP. There’s no doubt that OOP can sometimes introduce

OOPHP_02.book Page 3 Friday, May 5, 2006 2:25 PM

4 Chapter 1

unwanted complexity—just look at multiple inheritance in C++ or Enterprise
Java, for example. This hasn’t happened with PHP, and there’s good reason
to suspect that it won’t. PHP is first and foremost a web development lan-
guage (which is probably why it has taken so long for PHP to adopt an OO
approach). Web programming is a specialized form of programming, and
OO capabilities have been introduced to serve this end. The fact that PHP’s
implementation of OOP doesn’t always make OO purists happy is indicative
of this. Even as a procedural language, PHP was never about being pretty or
being a model language; it has always been about solving web problems.

A quick look at the culture of PHP should convince you that PHP is
unlikely to develop into an overly complex language.

The PHP Culture

Culture is not something that is usually associated with a programming
language, but looking at the culture of PHP will help you understand PHP’s
implementation of OOP. PHP is an open-source language created more than
10 years ago by Rasmus Lerdorf. It has all the hallmarks of a successful open-
source project: It has been around for a number of years, it is continually being
upgraded, it has a robust developer community, and it has continuity of
leadership—Rasmus Lerdorf still takes a very active role in its development.

PHP is by far the most popular web development language, and the
major reason for its success is ease of use. This is no accident. It is easy to use
because it was conceived as a language to simplify web development.3 This
has not been forgotten with PHP’s upgrade to a full-blown OO language.
For example, one of the new classes introduced in PHP 5 is the aptly named
SimpleXMLElement. With this class you can incorporate an RSS feed into a web
page using only four lines of code (see Chapter 12).

The point of object orientation in PHP is not to turn PHP into Java or
something similar, but to provide the proper tools for web developers. Object
orientation is another strategy for adapting to the current circumstances of
web development.

NOTE The impetus to “Keep It Simple, Stupid” is alive and well (and, as it happens, living in
Paris). At a recent meeting of PHP core developers, the introduction of a new keyword
was rejected as “against the KISS approach of PHP” (minutes, PHP Developers Meet-
ing, Paris, November 11 and 12, 2005).

Unquestionably, there will be a learning curve for a procedural program-
mer adopting an OO approach to web development, but you’ll quickly pick
up on PHP’s implementation of OOP. In fact, you’ll probably find that some
of the tasks you’re used to doing procedurally are more easily done in an OO
manner. I suspect that once you’ve started on the OO path, you’ll find more
and more uses for it.

3 See Rasmus Lerdorf, “Do You PHP?” available at www.oracle.com/technology/pub/articles/
php_experts/rasmus_php.html. (Accessed March 14, 2006.)

OOPHP_02.book Page 4 Friday, May 5, 2006 2:25 PM

2
B A S I C S O F O B J E C T - O R I E N T E D

P R O G R A M M I N G

This chapter is aimed at an audience
unfamiliar with the basic concepts of

object-oriented programming (OOP).
The intent is to provide a general overview of

OOP with a view toward using PHP effectively. We’ll
restrict the discussion to a few basic concepts of OOP
as it relates to PHP, though it is sometimes useful to
look at other object-oriented (OO) languages such as
Java or C++.

We’ll discuss three aspects of object orientation in this chapter: class, access
modifiers, and inheritance. Although OOP may be a different programming
paradigm, in many respects it’s an extension of procedural programming, so
where appropriate, I’ll use examples from procedural programming to help
explain these concepts. Later chapters will return to the topics introduced
here and refine them through the use of concrete examples.

OOPHP_02.book Page 5 Friday, May 5, 2006 2:25 PM

6 Chapter 2

Class

You can’t have OOP without objects, and that’s what classes provide. At the
simplest level, a class is a data type. However, unlike primitive data types such
as an integer, a float, or a character, a class is a complex, user-defined data
type. A class is similar to a database record in that it encapsulates the char-
acteristics of an object. For example, the record of a Person might contain a
birth date, an address, a name, and a phone number. A class is a data type
made up of other data types that together describe an object.

Classes Versus Records

Although a class is like a record, an important difference is that classes con-
tain functions as well as different data types. And, when a function becomes
part of a data type, procedural programming is turned on its head, quite
literally, as you can see in the following example syntax. A function call that
looked like this:

function_call($somevariable);

looks something like this with OOP:

$somevariable->function_call();

The significant difference here is that OO variables don’t have things
done to them; they do things. They are the actors rather than the acted upon,
and for this reason they are said to behave. The behavior of a class is the sum
of its functions.

A Cohesive Whole

Procedural programmers often work with code libraries. These libraries usually
group related functions together. For instance, all database functions might
be grouped together in a file called dbfunctions.inc. The functions that make
up an object’s behavior should also be related to one another, but in a much
stronger fashion than functions in the same library. Just as the different ele-
ments of a Person record describe an individual, so too should the behavior of
a class describe the class. In order for something to be an object, it should be a
cohesive whole incorporating appropriate characteristics and appropriate
behavior.

Objects Are Instances

Classes aren’t themselves objects, but a way of creating objects—they are
templates or blueprints that form the model for an object. When speaking
loosely, these two terms are sometimes used interchangeably, but strictly
speaking an object is an instance of a class. This is somewhat like the difference

OOPHP_02.book Page 6 Friday, May 5, 2006 2:25 PM

Basic s of Object -Ori en ted P rogramming 7

between the concept of an integer and a specific variable $x with a specific
value. The concept of a class as a template for an object becomes clearer in
the context of inheritance, especially when we discuss multiple inheritance
(a topic we’ll deal with shortly).

Objects Need Access Modifiers

OOP is made possible by using this simple concept of a class as a cohesive
aggregate of characteristics and behaviors—as you’ll see in Chapter 3, this is
exactly what objects are in PHP 4—but one of the most important features of
any OO language is the use of access modifiers. Access modifiers refine the object
model by controlling how an object is used or reused. Simply put, access modi-
fiers provide guidance about what you can and cannot do with an object.
To get a sense of what this means, let’s use an example from procedural
programming.

Let’s define a subroutine as a function that is never invoked directly but
that is only called by other functions. Now suppose you’re a procedural pro-
grammer with a library of functions and subroutines that is used by several
other programmers. The ability to flag subroutines as secondary would be
helpful in instructing others how to use your library, but the only way to do
this is through documentation. However, in OOP, access modifiers not only
indicate the primacy of certain functions over others, they enforce it program-
matically. They implement language constraints to ensure that “subroutines”
are never called directly. Properly constructed classes are self-documenting
and self-regulating.

In the situation just described, the need to document a code library arises
because it’s used in a collaborative environment; the exact same circum-
stance accounts for the existence of access modifiers. One of the assumptions
of OOP is that it is conducted within an interactive context with access modi-
fiers defining the ways of interacting. This is one of the important differences
between OOP and procedural programming. Access modifiers provide the
rules for using a class and this syntactically defined “etiquette” is commonly
referred to as an interface. By providing an interface, there is less need to rely
on documentation and on user programmers “doing the right thing.”

Documenting code libraries is important because libraries get reused;
access modifiers matter for exactly the same reason—they facilitate reuse.

Object Reuse and Inheritance

In a biological sense, a child inherits genes from its parents, and this genetic
material conditions the appearance and behavior of the child. In OOP the
meaning of inheritance is analogous—it is the ability to pass along charac-
teristics and behavior. At first this feature of OOP may seem somehow
magical, but really inheritance is just a technique for reusing code—much
the way you might include a library of functions in procedural programming.

OOPHP_02.book Page 7 Friday, May 5, 2006 2:25 PM

8 Chapter 2

If you identify an existing class that exactly suits your needs, you can
simply use it and benefit from the predefined behavior. Inheritance comes
into play when a class doesn’t do quite what you want. This situation is not
much different from adding functions to an existing code library. Through
inheritance you can take advantage of existing behavior but also graft on any
additional capabilities you need. For example, if you know that you want to
create a Blue jay class and none exists, you can use an existing Bird class by
inheriting from it, then modify it to suit your specific situation.

When one class forms the basis for a new class, as a Bird class might for a
Blue jay class, the original class is often referred to as the base (or parent) class.
For obvious reasons, a class derived from another class is called a derived class
or a child class.

Multiple Inheritance

In nature, multiple inheritance is the norm, but in the world of OO PHP, an
object can have only one parent class. The creators of PHP 5 rejected the idea
of multiple inheritance for classes. To see why, let’s use the Bird class again to
show what multiple inheritance is and how it can lead to problems. If you
wanted to create a Whooping crane class, it would make sense to derive this
class from the Bird class. Suppose you also have an Endangered species class.
Multiple inheritance would allow you to create a Whooping crane class from a
combination of these two classes. This would seem to be an excellent idea
until you realize that both classes define an eating behavior. Which one should
you prefer? Awkward situations like this highlight the disadvantages of multiple
inheritance. With single inheritance this kind of situation never arises.

Having Your Cake and Eating It Too

Single inheritance offers a simpler and more straightforward approach, but
there are times when you may wish to combine behaviors from different classes.
A whooping crane is both a bird and endangered. It doesn’t make sense to
build one of these classes from scratch every time you want this combination.
Is there a way of combining different classes and avoiding the problem of
overlapping behavior?

PHP solves this problem by introducing the concept of an interface. In
this context, interface means a class with no data members that is made up
only of functions that lack an implementation (function prototypes with no
bodies). Any class that inherits from an interface must implement the missing
function body. If Endangered species were an interface rather than a class,
having more than one eating function wouldn’t matter. The method defini-
tion in the Bird class would act as the implementation of the interface function.
In this way interfaces avoid the problem of defining the same function twice.

NOTE Because PHP does not require function prototyping, you may be unfamiliar with this
concept. A function prototype is the declaration of a function name and parameters
prior to its use—the function signature, if you like.

OOPHP_02.book Page 8 Friday, May 5, 2006 2:25 PM

Basic s of Object -Ori en ted P rogramming 9

A class may inherit from only one class, but because interfaces lack an
implementation any number of them may be inherited. In true PHP fashion,
interfaces contribute to a powerful but flexible programming language.
(You’ll see how useful interfaces are in Chapter 10, where we add the
built-in interface Iterator to a database class.)

Interfaces can be described as abstract because they always require an
implementation. Because they are abstract, interfaces bear more resemblance
to templates than classes do. Unlike classes, they can never be used “as is”;
they are only meaningful in the context of inheritance. Because interfaces lack
an implementation they can act only as a model for creating a derived class.

Where to Go from Here

We’ve touched on three topics central to OOP: classes, access modifiers, and
inheritance. Classes define objects, access modifiers determine how objects
can be used, and inheritance makes it easy to adapt objects for different cir-
cumstances. I’ve emphasized the ways in which procedural programming is
like OOP with a view to easing the transition to an OO approach, but I’ve
also shown important differences. A data type like a class, which incorporates
functions, is unlike anything encountered in procedural programming. Addi-
tionally, OOP provides access modifiers to control how an object may be used.
Instead of relying on documentation and a disciplined approach, OOP
incorporates constraints into the language.

The next chapter discusses the differences between PHP 4 and PHP 5.
This will be particularly useful for people already familiar with the OO capa-
bilities of PHP 4 who want an overview of the improvements.

OOPHP_02.book Page 9 Friday, May 5, 2006 2:25 PM

3
O B J E C T - O R I E N T E D F E A T U R E S

N E W T O P H P 5

PHP 3 was released in mid-1998. Some basic
object-oriented (OO) capabilities were

included, more or less as an afterthought,
to “provide new ways of accessing arrays.”1 No

significant changes were made to the object model when
version 4 was released in mid-2000. The basics of object-
oriented programming (OOP) were there—you could
create a class and single inheritance was supported.

With the release of PHP 5 in 2004 there was plenty of room for improv-
ing PHP’s OO capabilities. At this point, Java, the most popular OO language
to date, had already been around for almost 10 years. Why did it take PHP so
long to become a full-fledged OO language? The short answer is because
PHP is principally a web development language and the pressures of web
development have only recently pushed it in this direction.

1 See Zeev Suraski, “Object-Oriented Evolution of PHP,” available at www.devx.com/webdev/
Article/10007/0/page/1. (Accessed March 27, 2006.)

OOPHP_02.book Page 11 Friday, May 5, 2006 2:25 PM

12 Chapter 3

Support for objects has been grafted onto the language—you can choose
to use objects or simply revert to procedural programming. That PHP is a
hybrid language should be viewed as something positive, not as a disadvantage.
There are some situations where you will simply want to insert a snippet
of PHP and other situations where you will want to make use of its OO
capabilities.

As I have already argued in Chapter 1, in some cases, an OO solution is
the only solution. PHP 5 recognizes this fact and incorporates a full-blown
object model, consolidating PHP’s position as the top server-side scripting
language.

Like Chapter 2, this will be a chapter of broad strokes. I’ll give a general
overview of how the object model has been improved, and then I’ll get into
the details using concrete examples in later chapters. I’ll also address the
issue of backward compatibility.

Access Modifiers

Chapter 2 identified access modifiers as an essential element of an OO lan-
guage. PHP 5 gives us everything we would expect in this area. In previous
versions of PHP there was no support for data protection, meaning that all
elements of a class were publicly accessible. This lack of access modifiers was
probably the biggest disincentive to using objects in PHP 4.

NOTE A notion closely related to data protection is information hiding. Access modifiers
make information hiding possible by exposing an interface (as defined in Chapter 2).
This is also referred to as encapsulation of an object.

Built-in Classes

Every OOP language comes with some built-in classes, and PHP is no excep-
tion. PHP 5 introduces the Standard PHP Library (SPL), which provides a
number of ready-made classes and interfaces. As of version 5.1, depending
upon how PHP is configured, all in all, there are well over 100 built-in classes
and interfaces—a healthy increase from the number available in version 5.0.

Having ready-made objects speeds up development, and native classes
written in C offer significant performance advantages. Even if these built-in
classes don’t do exactly what you want, they can easily be extended to suit
your needs.

NOTE There are far too many classes for us to deal with all of them in this book, and some are
still not very well documented. We’ll focus on the classes that are especially noteworthy.

Exceptions

All OOP languages support exceptions, which are the OO way of handling
errors. In order to use exceptions, we need the keywords try, catch, and throw.
A try block encloses code that may cause an error. If an error occurs, it is

oophp03_02.fm Page 12 Tuesday, May 16, 2006 9:35 AM

Object -Or ien ted Fea ture s New to PHP 5 13

thrown and caught by a catch block. The advantage of exceptions over errors
is that exceptions can be handled centrally, making for much cleaner code.
Exceptions also significantly reduce the amount of error-trapping code you
need to write, which offers welcome relief from an uninspiring task. Also, hav-
ing a built-in exception class makes it very easy to create your own customized
exceptions through inheritance. (You’ll learn how to make the transition
from error trapping to exception handling in the section “Replacing Errors
with Exceptions” on page 79.)

Database Classes

Because PHP is all about building dynamic web pages, database support is all-
important. PHP 5 introduces the mysqli (MySQL Improved) extension with
support for the features of MySQL databases versions 4.1 and higher. You
can now use features such as prepared statements with MySQL, and you can
do so using the built-in OO interface. In fact, anything you can do procedur-
ally can also be done with this interface.

SQLite is a database engine that is incorporated directly into PHP. It is
not a general-purpose database like MySQL, but it is an ideal solution in
some situations, in many cases producing faster, leaner, and more versatile
applications. Again an entirely OO interface is provided.

PHP versions 5.1 and higher also bundle PHP Data Objects (PDO) with
the main PHP distribution. If you need to communicate with several differ-
ent database back ends, then this package is the ideal solution. PDO’s
common interface for different database systems is only made possible by
the new object model.

Given the importance of databases, we’ll deal with them extensively in
this book. We’ll develop a MySQL database class starting with Chapter 9.
In Chapter 15 we’ll look at SQLite, and in Chapter 16 we’ll discuss PDO.

Web Services

In PHP 5 all Extensible Markup Language (XML) support is provided by
the libxml2 XML toolkit (www.xmlsoft.org). The underlying code for the
Simple API for XML (SAX) and for the Document Object Model (DOM)
has been rewritten, and DOM support has been brought in line with the
standard defined by the World Wide Web Consortium.

Unified treatment of XML under libxml2 makes for a more efficient and
easily maintained implementation. This is particularly important because sup-
port for XML under PHP 4 is weak, and web services present many problems
that require an OO approach.

Under PHP 4, creating a SOAP client and reading an RSS feed are
challenging programming tasks that require creating your own classes or
making use of external classes such as NuSOAP (http://sourceforge.net/
projects/nusoap). There’s no such need in PHP 5. In Chapter 12, you’ll
see just how easy these tasks are using the built-in SOAPClient class and
SimpleXMLElement. Again it’s the improved object model that makes this
possible.

OOPHP_02.book Page 13 Friday, May 5, 2006 2:25 PM

14 Chapter 3

Reflection Classes

The reflection classes included in PHP 5 provide ways to introspect objects
and reverse engineer code. The average web developer might be tempted
to ignore these classes, but Chapter 14 shows how useful they are for auto-
mating a task that most developers approach with little enthusiasm: the
creation of documentation.

Iterator

In addition to built-in classes, PHP 5 also offers built-in interfaces. Iterator is
the most important, as a number of classes and interfaces are derived from
this interface. I’ll show you how to use Iterator in Chapter 10.

Backward Compatibility

Backward compatibility may be an issue if your code already uses objects.
PHP 5 introduces a number of new “magic” methods. Magic methods begin
with a double underscore, and this requires changing any user-defined meth-
ods or functions that use this naming convention. All of these methods will
be discussed, particularly in Chapter 13. The most important ones relate to
how objects are created and destroyed. The PHP 4 style of object creation
is still supported, but you are encouraged to use the new magic method
approach.

PHP 5 deprecates some existing object-related functions. For example,
is_a has been replaced by a new operator, instanceof (see Chapter 14). This
particular change won’t affect how your code runs under PHP 5. If you use a
deprecated function, you’ll see a warning if the error-reporting level is set to
E_STRICT (a useful technique for discovering where your code may need upgrad-
ing and discussed in more detail in Appendix A). In another example, the
get_parent_class, get_class, and get_class_methods functions now return a case-
sensitive result (though they don’t require a case-sensitive parameter), so if
you are using the returned result in a case-sensitive comparison you will have
to make changes.

Pass By Reference

The preceding examples of changes are relatively minor and fairly easy to
detect and upgrade. However, there is one change in particular that is of an
entirely different magnitude.

The major change to PHP in version 5 relating to OOP is usually summed
up by saying that objects are now passed by reference. This is true enough,
but don’t let this mask what’s really at issue: a change in the way that the
assignment operator works when used with objects.

Granted, the assignment operator is often invoked indirectly when
an object is passed to a function or method, but objects are now passed by
reference because of the implicit assignment. Prior to PHP 5, the default
behavior was to assign objects by value and pass them to functions by value.

OOPHP_02.book Page 14 Friday, May 5, 2006 2:25 PM

Object -Or ien ted Fea ture s New to PHP 5 15

This is perfectly acceptable behavior for primitives, but it incurs far too much
overhead with objects. Making a copy of a large object by passing it by value
can put strains on memory and in most cases, all that’s wanted is a reference
to the original object rather than a copy. Changing the function of the assign-
ment operator is a fairly significant change. In fact, the scripting engine
that underlies PHP, the Zend engine, was entirely rewritten for PHP 5.

NOTE In PHP 4 it’s possible to pass objects by reference using the reference operator (&), and in
fact it is good programming practice to do so. Needless to say, this use of the reference
operator becomes entirely superfluous after upgrading to PHP 5. We’ll discuss the
implications of this change in Chapter 13, in the section “__clone” on page 116.

Prognosis

The mere enumeration of the details of backward compatibility masks what
can be a highly charged issue. Whenever you change an established language,
there are competing interests. In many cases you’re damned if you do and
damned if you don’t. For example, retaining inconsistent function naming
conventions may be necessary to maintain backward compatibility, but you
may also be criticized for this very lack of consistency.

Of course, breaking backward compatibility means that some existing
code won’t function properly. In many circumstances it’s not easy to decide
where and when to break backward compatibility, but changing PHP to pass
objects by reference is a fairly defensible change despite any inconveniences.
The only thing you can be sure of is that any change will give rise to complaints
in some quarter. Certainly, having deprecated functions issue warnings is
one good way to give advance notice and let developers prepare for coming
changes.

Where to Go from Here

If you’ve bought this book and read this far you’re obviously interested in
OOP. If you know PHP already, then learning OO PHP will not be too
difficult. Given the relative simplicity of PHP’s object model, certainly less
effort is required than for a C programmer to learn C++. Nevertheless, mov-
ing to a new language or a new version of a language entails some cost in
terms of time and effort, especially if it has an impact on your existing code
libraries.

We’ve covered some of the backward compatibility issues as they relate to
OOP. Almost all procedural code will run with no changes under PHP 5. No
rewrites are required, and code does not need to be converted to an OO style.

Upgrading existing applications to take advantage of PHP 5 is a different
matter. In the case of some large applications, upgrading may require sig-
nificant effort. Many applications will benefit by being upgraded. If you’ve
ever tried to customize software such as phpBB (the popular open-source
forum), you know that the task would be much simpler if the application was
object-oriented. However, upgrading an application such as phpBB means
beginning again from scratch.

OOPHP_02.book Page 15 Friday, May 5, 2006 2:25 PM

16 Chapter 3

And there are other considerations besides code compatibility. After
learning the ins and outs of OOP with PHP 5, will you actually be able to
make use of it? Are there actually servers out there running PHP 5?

Adoption of PHP 5

As of this writing PHP 5 is hardly a bleeding-edge technology. It has been
available for more than a year, and there have been a number of bug fixes.
It’s a stable product. Where developers have control over web server config-
uration there’s no question that upgrading to PHP 5 will be beneficial. But
developers don’t always have a choice in this matter. In some situations
(where the developer has no control of the web host, for instance), the
decision to upgrade is in someone else’s hands.

PHP is a victim of its own success. The popularity and stability of PHP 4
have slowed the adoption of PHP 5. PHP 4 is a mature language that supports
many applications, open-source and otherwise. There’s naturally a reluctance
to rock the boat. For this reason the adoption of PHP 5 has been somewhat
slow, especially in shared hosting environments.

NOTE Other web hosting options have been much quicker to adopt PHP 5. The various virtual
private server (VPS) hosting options usually include PHP 5, as do dedicated hosts.
As a more secure and increasingly inexpensive hosting option, VPS is becoming much
more popular.

Compromise

Widespread adoption of PHP 5 will happen sooner or later, but this book
recognizes that developers may need, at least for a time, to continue writing
new applications that will run under PHP 4. For this reason, wherever possible,
a PHP 4 version of code has been provided in addition to the PHP 5 version.

In a sense, PHP 5 just formalizes what was already possible in PHP 4.
For instance, even though PHP 4 allows direct access to instance variables,
when creating a class in PHP 4 it makes sense to write accessor methods
for variables rather than setting or retrieving them directly. This requires a
disciplined approach, but it will yield code that not only runs under PHP 4
but also will be much easier to upgrade to PHP 5. Adding restrictive access
modifiers to variables will be a relatively simple task if accessor methods are
already in place. Writing code with the expectation of upgrading it will also
invariably mean writing better code.

That’s all the talk about OOP. In the remaining chapters you’re going
to do OOP.

OOPHP_02.book Page 16 Friday, May 5, 2006 2:25 PM

4
S H O W A L I T T L E C L A S S

Introductory books on object-oriented
programming (OOP) often use examples

of objects taken from the real world. For
example, you may be asked to imagine a “dog”

class. We are all familiar with dogs, of course, so it’s
relatively easy to describe a dog’s attributes. Most dogs have hair, four legs,
and a tail. A dog’s behavior is equally easy to describe. Dogs bark, jump, run,
roll over, dig, and, when passing fire hydrants . . .

I don’t mean to belittle this approach, but the objects that a web developer
deals with are not often objects “out there” that one can point to. They are
more likely to be conceptual rather than physical objects, and these are a
little harder to identify. Once identified, it is not easy to describe the objects’
attributes and behavior.

With that in mind, the class I propose you create is a list of files. (I know,
it’s not terribly exciting, but by keeping things simple, we can easily deal with
some of the basic concepts of OOP.) This class certainly won’t bark or jump,
but by the time we’re finished, it may roll over and do a few tricks.

OOPHP_02.book Page 17 Friday, May 5, 2006 2:25 PM

18 Chapter 4

NOTE We’ll use the syntax of PHP 4 to help ease into OOP. Starting with PHP 4 will also be
helpful for those who have already used OOP with PHP and want to upgrade their
code. I’ll show you how to do this in Chapter 5, and for convenience, I have also
included an appendix on this topic. (PHP 4 style code will run just fine under PHP 5
but will raise warnings if error reporting is set to E_STRICT in the php.ini file. See
Appendix A for the OO configuration options of the php.ini file.)

Design

OOP doesn’t eliminate the need for systems analysis. It’s easy to forget about
this step and to just start coding, especially when dealing with a fairly simple
task. However, a little forethought during the design stage will reap benefits
later on, so make sure you have a clear idea of what you want to do.

Defining the Problem
You often need to look at and manipulate the files in a specific directory, and
you often want to do this with directories that hold resources such as photos
or images, .pdf files, or files that are compressed for downloading. Probably
the simplest approach, if your web server is Apache, is not to use any code at
all and simply put a .htaccess file containing the directive Options +Indexes
into the appropriate directory.

By using a .htaccess file, you can simply point your browser to the
directory that contains this file to see a list of its contents. Of course, if this
were your only goal, then building a class to mimic this functionality would
be entirely superfluous. However, you want to do a bit more than just list
files. You want to have control over the order in which they appear and the
file types that are listed, and you may also want to know the number of files.

Consider this fairly specific task: Suppose you have some cleanup work
that needs doing on directories that contain graphics. You need to remove
deadwood, but before you can do so, you need to view the images. Rather than
open each picture individually using an application such as Photoshop or
GIMP, you want to open all the files at once in your browser. Not only do you
want to see the image, you also want to note the filename of the image
in case you decide to remove it.

This is not a situation that requires an object-oriented (OO) solution. If
you are familiar with PHP, you’ve probably already formulated a rough algo-
rithm of how to solve this problem and determined which functions you
need to use.

If you are a programmer but not familiar with OOP, a procedural
approach will doubtless seem more natural and be easier to execute, especially
when approaching a straightforward problem. However, remember that we
are deliberately trying to keep things simple to begin with. Stick with me at
least until the end of the next chapter—you won’t be disappointed.

At this early stage, our simple class may not convince you of the utility of
OOP, but it will highlight the fact that OOP doesn’t do away with the need
for procedural programming. The logic required for OOP is every bit as pro-
cedural as the functions you’re used to creating and using.

oophp04_02.fm Page 18 Tuesday, May 16, 2006 9:37 AM

Show a L i t t le Class 19

Not the Da Vinci Code

We’ll reproduce the code here and intersperse it with comments. (If you
would like an overview of the entire class, now would be a good time to
download the code for this chapter from the companion website at http://
objectorientedphp.com.)

In order to create a class, use the keyword class and an appropriate name:

class DirectoryItems{ ... }

Braces enclose all the elements of a class, indicated by the ellipsis in the
preceding line of code.

We discussed the concept of a class in Chapters 2 and 3, but a bit of repeti-
tion here won’t be amiss. In its simplest form, a class can simply encapsulate a
variety of data types, the way a struct does in C or a type in Visual Basic. This
class will encapsulate data types, but it will also contain functions or methods.

Like PHP’s built-in classes, we’ll use Java-style naming conventions for
the class name—not underscores, but uppercase letters for the start of each
word, otherwise known as studly caps. We’ll use the same naming convention
for files that contain class definitions. For example, the file that holds the
DirectoryItems class will be called DirectoryItems.php. This naming convention
is not a requirement but helps readily identify classes and their files.

The first statement inside the class is the declaration of the variable
$filearray. Upon declaration, this variable is initialized as an array.

var $filearray = array();

NOTE Notice the use of the var keyword. This syntax will be replaced in PHP 5, but here it
simply denotes an instance variable.

Any variable declared at this level, namely inside the braces that enclose
the class but outside any class function, is an instance variable or, as we might
also refer to it, a data member. (In most cases, classes contain more than one
data member, but one is sufficient for the moment.) Instance variables are
sometimes also referred to as properties. The placement of instance variables
outside of any function indicates that they have scope throughout the class.
Their visibility is not restricted to any specific function—they can be accessed
from anywhere within the class. You could say they are global to the class.

The Constructor

Next is a function that bears the same name as the class: the constructor.
Constructors are commonly used to initialize data members, and as in
Listing 4-1, filenames are added to the instance variable $filearray.

function DirectoryItems(�$directory){
 $d = "";
 if(is_dir($directory)){
 $d = opendir($directory) or die("Couldn't open directory.");

OOPHP_02.book Page 19 Friday, May 5, 2006 2:25 PM

20 Chapter 4

 while(false !== ($f=readdir($d))){
 if(is_file("$directory/$f")){
 $this->�filearray[] = $f;
 }
 }
 closedir($d);
 }else{
 //error
 die("Must pass in a directory.");
 }
}

Listing 4-1: The DirectoryItems constructor

Constructors are called whenever an object is created. In Listing 4-1, the
constructor accepts, as a parameter, a string variable of � a directory name.
Any files contained within this directory are added to $filearray.

Referencing Instance Variables

The only remarkable thing about this code is the unusual syntax required to
refer to the instance variable. Variables such as $d and $f, which are local to
the constructor, are referenced in the same way as any other PHP variable,
but when using � $filearray, we must precede it with $this->.

If you’re familiar with other OO languages such as C++ or Java, you’ll be
familiar with $this, a “pseudo-variable” that identifies what follows as an
instance variable. However, unlike those other OO languages, use of $this
when referring to an instance variable is not optional in PHP.

So much for the explanation of the syntax of the constructor. The
constructor actually performs a fairly simple and straightforward program-
ming task.

Wrapper Methods

The rest of the class is made up of a series of functions. Some of these func-
tions simply enclose or wrap existing array-related functions and are called
wrapper functions. These wrapper functions count or sort the list of filenames,
but instead of calling them functions, let’s use OO terminology and refer to
them as methods.

NOTE When declaring the methods of a class you are required to use the keyword function.
This can perhaps lead to some confusion. However, throughout we will use the term
method to distinguish between a regular function call and the calling a class function.

Again, following the studly caps naming convention, if a method name
is a compound word, use lowercase for the first word and uppercase for any
subsequent words. Listing 4-2 includes three methods that use built-in PHP
array functions.

OOPHP_02.book Page 20 Friday, May 5, 2006 2:25 PM

Show a L i t t le Class 21

function indexOrder(){
 sort($this->filearray);
}
//
function naturalCaseInsensitiveOrder(){
 natcasesort($this->filearray);
}
//
function getCount(){
 return count($this->filearray);
}

Listing 4-2: Wrapper methods

Finally, add one final method to check that files are all images:

function checkAllImages(){
 $bln = true;
 $extension = "";
 $types = array(�"jpg", "jpeg", "gif", "png");
 foreach ($this->filearray as $key => $value){
 $extension = substr($value,(strpos($value, ".") + 1));
 $extension = strtolower($extension);
 if(!in_array($extension, $types)){
 $bln = false;
 break;
 }
 }
 return $bln;
}

Listing 4-3: A method to select only images

The checkAllImages method loops through each element in the file array,
extracts the extension, and checks that it is one of � the acceptable file types.

In sum, the DirectoryItems class is made up of one data member, a special
function called a constructor, and four other functions or methods. As already
noted, you should save this file as DirectoryItems.php.

Creating an Instance

A class by itself is of absolutely no use whatsoever, and if you preview in a
browser the code created so far, nothing will be displayed. That’s because at
this point we don’t really have anything—just the idea for something. We
need to create an instance of the class.

The many Platonists amongst you will immediately know what we’re
talking about. Remember Plato and “ideal forms?” Of course you do—it
hasn’t been that long since you took Philosophy 101. The explanation of a
form usually involved a chair, because there was always one in the classroom.
The form of a chair doesn’t exist anywhere, but any specific chair embodies

OOPHP_02.book Page 21 Friday, May 5, 2006 2:25 PM

22 Chapter 4

that form. In other words, each particular chair is an instantiation of the chair
class. (If you skipped that lecture, we could say that a class acts as a template
for a specific occurrence of a class in much the way that a building relates to
its blueprint.)

Listing 4-4 is a PHP page that creates an instance of the DirectoryItems
class. Briefly, this web page opens a directory immediately below the current
working directory, checks that all the files in that directory are graphics files,
sorts them in a case-insensitive way, and then displays them.

<html>
<head>
<title>Images</title>
</head>
<body>
<?php
require �'DirectoryItems.php';
$di =& new DirectoryItems('graphics');
$di->checkAllImages() or die("Not all files are images.");
$di->�naturalCaseInsensitiveOrder();
//get array
echo "<div style = \"text-align:center;\">";
foreach ($di->�filearray as $key => $value){
 echo "
\n";
}
echo "</div>
";
?>
</body>
</html>

Listing 4-4: Creating an instance of the DirectoryItems class

Since we are going to create an instance of the DirectoryItems class, we
need to include this class by requiring the file that holds � the class defini-
tion, namely the file saved as DirectoryItems.php. We create the class instance
with the code, $di =& new DirectoryItems('graphics');, where $di is the variable
or instance of the object, and new both allocates memory and, in association
with the class name, invokes the constructor. (When creating an object under
PHP 4, it is advisable to return a reference using the assignment by reference
operator, =&. The reason for this is discussed in detail in Chapter 13, in the
section “__clone” on page 116.)

The constructor for the DirectoryItems class expects a directory name to
be passed in. In this case, use graphics, which is assumed to be a directory
immediately below the current directory. If the constructor cannot locate this
directory, construction fails and the program terminates. But if it’s successful,
an array of filenames is created.

In this particular case we want to ensure that all the files in the graphics
directory are images. After all, we’re going to use this class to set the src
attribute of an img tag. The checkAllImages method does this work by looking
at filename extensions. The arrow operator we saw when using the pseudo-
variable $this, reappears here when we want to call an object method:
$di->checkAllImages().

OOPHP_02.book Page 22 Friday, May 5, 2006 2:25 PM

Show a L i t t le Class 23

Calling an object method is similar to calling a function in procedural
programming. However, instead of passing a variable to a function as is
commonly done, a class method is called on a variable, or more properly
speaking, an object or instance of a class. This is how objects may be said
to behave: they do things rather than having things done to them.

Next, perform � a case-insensitive sort of the filenames. Directly access
the data member, � $filearray, and iterate through this array to display each
image.

As you can see, we’ve created a class and used it to accomplish exactly
what we set out to do.

What Have You Accomplished?

Using the syntax of PHP 4, you have created a class to assist in the display
of images in a web page. It is a fairly simple class, and it should be readily
apparent how the same job could be done procedurally.

However, despite the simplicity of the class and of the task it performs,
there are some obvious advantages. On the plus side, you could say the
HTML page is fairly clean—the somewhat messy task of determining if all
files are image files has been hidden away inside the class file. Additionally,
if you want to reuse this code, you won’t have to cut and paste the way you
so often do with procedural programming; you need only use the require
directive with the class filename, and away you go.

But would you want to reuse this class? Skeptics might say that we’ve
come the long way around and built a class to solve a specific problem, but
that we could have achieved the same effect more quickly using procedural
programming. Additionally, they might argue that this class is just an ad hoc
solution not easily reused elsewhere.

There may be some truth to these criticisms; certainly the more a class is
tied to the specifics of a situation, the less reusable it is. However, remember
that we set out to create a fairly simple class with the intention of elucidating
some of the basics of OO programming. At this point we only have a fledg-
ling class that requires more nurturing.

But Will It Fly?

OO enthusiasts are usually eager to point out the big ways in which OOP is
superior to procedural programming, through capabilities such as inheri-
tance, for instance. True enough, but probably of more importance is the fact
that once you have a class, providing that the basic design is sound, you can
easily add to its functionality. If it doesn’t do something you want it to do, the
simplest and often the best solution is to add a method to create additional
behavior.

For example, you could easily add a method modeled on the method
checkAllImages that would check for other types of files. Or, suppose some of
the files in the directory passed to the constructor are not image files, and
you don’t want your program to attempt to display them. This could be

OOPHP_02.book Page 23 Friday, May 5, 2006 2:25 PM

24 Chapter 4

remedied with a filter method. I’m sure you can think of other ways in which
this class can be improved. The next chapter will improve on this class so that
it can be used in a variety of ways, but the focus will be on its use with a direc-
tory of image files.

Furthermore, some of the shortcomings of this class suggest the creation
of additional classes rather than additions to the DirectoryItems class. First,
images are of varying sizes. This not only affects the aesthetics of a web page,
but, if the images are large, this can significantly slow the rate at which a
page downloads. Second, if there are a considerable number of files in one
directory, a single web page that displays all of them will be unacceptably long.
In later chapters we’ll follow up on both of these ideas.

At the beginning of this chapter I promised that we wouldn’t create a
dog class, and perhaps instead, we’ve created an ugly duckling. In any case,
you’ll want to stick around for another chapter not only to see if our fledgling
can fly but also to see whether our ugly duckling turns into a swan.

OOPHP_02.book Page 24 Friday, May 5, 2006 2:25 PM

5
M O D U R C L A S S

Chapter 4 left us with some clear objec-
tives. We need to add functionality to the

DirectoryItems class, and we need to upgrade it
to take advantage of the changes introduced in

PHP 5. And that’s exactly what we’ll do in this chapter.
We’ll upgrade the syntax of the DirectoryItems class
first; then we’ll improve its functionality by adding
methods.

Keeping in mind that we plan to use the DirectoryItems class to display
images, we’ll add a method that ignores all non-image files, so we don’t need
to worry if other file types occur within a directory containing mostly images.
We’ll also broaden the scope of the class so that we can filter the contents of
a directory and focus on a specific file type.

OOPHP_02.book Page 25 Friday, May 5, 2006 2:25 PM

26 Chapter 5

Upgrading to PHP 5

As you’re aware, the major change to PHP with version 5 is improved support
for OOP. In this regard, two of the most important changes are the introduc-
tion of access modifiers and changed syntax for class construction. Both of
these changes will have an impact on the DirectoryItems class.

Access Modifiers

Next to the concept of a class, access modifiers are arguably the most important
feature of an OO language. The principal use of access modifiers is to describe
and constrain data members and methods. The access modifiers we are con-
cerned with in this chapter are public and private. The modifier private is
used to modify or describe matters relating to the internal behavior of a class.
The modifier public is used to describe the external behavior of a class or, if
you prefer, a class’s interface.

As far as syntactic changes to the DirectoryItems class are concerned, this
means replacing the keyword var with private, so that

var $filearray = array();

becomes

private $filearray = array();

As you’ll recall, $filearray is the sole data member of the DirectoryItems
class. In most cases (except static classes, which we will discuss in Chapter 11),
you should make all data members private, because by doing so, you are
protecting the integrity of your data by restricting access to it.

To better understand access modifiers, it’s useful to think of data
members or instance variables as though they are data in a database. In order
to maintain the integrity of the data in a database, it’s wise to limit access and
restrict the ways in which data can be added or changed. A programmer might
well write an application to achieve this result, requiring users to log in and
implementing controls on the way in which data are formatted. For instance,
you may want dates stored in a particular format and enforce this through
the use of a masked textbox.

Since access modifiers are nonexistent in PHP 4, changing the value
of a variable only requires a simple assignment. You could modify the
$filearray variable in the following way:

$di->filearray[0] = "anyfile.jpg";

It’s a disadvantage to do things this way because changes to $filearray
are not controlled and allowing direct access to data members greatly increases
the risk of contaminating your data. If you use the keyword private, direct
access is no longer possible.

OOPHP_02.book Page 26 Friday, May 5, 2006 2:25 PM

Mod UR Class 27

NOTE In terms of the preceding database analogy, making an instance variable private
means that access to the data is only permitted through use of the programmer’s
application or front end.

But wait, it’s your code, right? You won’t change it improperly, so why
should you care? Because OO programming assumes that other programmers
may use your objects and vice versa.

Bruce Eckel refers to this as client programmers using objects created by
class creators.1 Even if you are a lone developer and don’t expect other pro-
grammers to use your code, access modifiers are still an important safeguard.
Why? How many times have you returned to your own code, even after only a
short period of time away from it, and had trouble trying to figure out what
exactly you were trying to achieve? Clearly, in this situation, even though
you are the class originator, you are also, at the same time, a client pro-
grammer. The use of access modifiers forces the programmer to make his
or her intentions explicit. If a particular data member or method relates to
the internal behavior of a class, then applying the appropriate access modifier
documents this intention. If nothing else, we all need access modifiers to
protect our code from that most presumptuous of client programmers—
ourselves.

When first encountering the private keyword, there is sometimes a mis-
taken tendency to view it solely as a security measure and then point out its
ineffectiveness by showing how easily a malicious user programmer could
subvert it. Even more so with a non-compiled language like PHP, because
it’s an easy matter to change a modifier from private to public. It’s better to
view the use of access modifiers as indicative of the originating program-
mer’s intentions—as a form of internal documentation. (However, the use
of access modifiers does add to security insofar as any well thought out and
well documented class is a more secure class.)

The private keyword can be applied to methods as well as to data
members. You’ll see an example of a private method later in this chapter,
but for the moment, let’s look at the use of the modifier public when applied
to a method.

Once the need for the keyword private is apparent, so also is the need for
a public method or interface so that private data members may be accessed
in a controlled fashion. Now that the $filearray variable is private, you no
longer have any kind of access to it. For this reason, you need a public method,
sometimes called an accessor method, in order to retrieve that private variable:

public function getFileArray(){
return $this->filearray

}

In the previous chapter, you directly accessed this data member thus:
$di->filearray. You might well wonder what the difference is and conclude
that direct access is preferable because it is more succinct. However, the impor-
tant difference is that when you directly access a data member, you are working

1 Bruce Eckel, Thinking in Java (Prentice Hall, 1998), 30.

OOPHP_02.book Page 27 Friday, May 5, 2006 2:25 PM

28 Chapter 5

with the original, but when you use a method to retrieve a data member, you
retrieve a copy of that original. When working directly with the original, you
risk changing its value, inadvertently or otherwise. When working with a copy,
there is no such danger because, should the copy be changed, the original
will remain intact. In other words, what’s returned from the getFileArray
method is returned by value, not by reference. Changing the copy won’t
have any effect on the original.

It is perhaps clearer now how a public method is an interface. A public
method mediates between a data member and a user programmer in the
same way that the front end of a database mediates between a user and the
data. Controlled access to the data simplifies how a class is used and, in so
doing, helps preserve its integrity.

The Constructor
In Chapter 4, you saw how the class name functioned as a special method
called the constructor. However, PHP 5 changes the way that objects are
constructed. Specifically,

function DirectoryItems($directory){ ... }

becomes

public function __construct($directory){ ... }

Methods beginning with a double underscore are magic methods. They
are given this name because they are not (usually) called directly. This new
method for constructing objects is invoked in exactly the same way as a con-
structor is invoked under PHP 4. Creating an instance of the DirectoryItems
class still uses the keyword new along with the class name:

$di = new DirectoryItems("graphics");

The syntax for creating an object is the same, but in PHP 5, the __construct
method is executed rather than a method bearing the class name.

NOTE In PHP 5, you need not return the object created by the constructor (or any method for
that matter) by reference. The reason for this is explained in Chapter 13 in the section
“__clone” on page 116.

Altering the constructor may seem like an unnecessary change to those
of you familiar with constructors in other OO languages, but there are advan-
tages that you’ll see when we discuss inheritance. Without getting into the
details of inheritance at this early stage, let’s just say that having a fixed name
for the constructor in every class allows you to avoid hard-coding class names
unnecessarily. This in turn will of course make your code easier to maintain.

NOTE The access modifier public is optional when applied to a constructor (or any other
method, for that matter), but it certainly doesn’t hurt to use it. You may still create a
constructor using the class name, but adopting the style of PHP 5 now will avoid any
future backward-compatibility issues.

OOPHP_02.book Page 28 Friday, May 5, 2006 2:25 PM

Mod UR Class 29

Modifying Your Class
You’ve upgraded the syntax of your code to PHP 5 standards, but you still
need to improve the functionality of your DirectoryItems class. This involves
rewriting the constructor to make it do a bit more work and adding more
methods to the class. The additional methods will improve the flexibility of
the class by filtering for specific file types.

Reconstructing the Constructor
Currently, the constructor for the DirectoryItems class uses an array to keep
track of filenames. The underutilization of the capabilities of an array suggest
changes to the constructor.

Arrays in PHP are very flexible—they can be either numerical or associa-
tive. The current constructor simply stores the filenames in a numeric array,
but if you change this to an associative array, you can make better use of the
data member $filearray. Since all operating systems require that each filename
within a directory be unique, the filename is ideal for acting as a key in an
associative array. Let’s see how you might take advantage of this.

When properly ordered and created, a directory and its subdirectories
can function like a database and its tables; in fact, for some databases, a table
is a directory and its contents.

If you consider the DirectoryItems class as a table and the files in the array
as “records,” then, if you set things up in just the right way, filenames can
function as the “title” field for each file in that database.

You can implement this by using a strict naming convention for all your
files. For example, if all your files are formatted using underscores to separate
words (Lady_of_Shallott.jpg, for instance), then by replacing underscores
with spaces and stripping out filename extensions, the filename alone can
serve as the title for each image when it is displayed.

I won’t reproduce the original code for the constructor here, but look
back at Chapter 4 if you need to refresh your memory. The code for the new
constructor and a private method called from within the constructor is
shown in Listing 5-1.

public function __construct($directory, �$replacechar = "_"){
$this->directory = $directory;
$this->�replacechar=$replacechar;
$d = "";
if(is_dir($directory)){

$d = opendir($directory) or die("Failed to open directory.");
while(false !== ($f=readdir($d))){

if(is_file("$directory/$f")){
$title = $this->�createTitle($f);
$this->filearray[$f] = $title;
}

}
closedir($d);

}else{
//error

OOPHP_02.book Page 29 Friday, May 5, 2006 2:25 PM

30 Chapter 5

die("Must pass in a directory.");
}

}
�private function createTitle($title){

//strip extension
$title = substr($title,0,strrpos($title, "."));
//replace word separator
$title = str_replace($this->replacechar," ",$title);
return $title;

}

Listing 5-1: The constructor and the createTitle method

The original constructor for this class accepted only one parameter—a
directory name. You are now passing an additional parameter, � $replacechar,
and it has a default value of “_”. This parameter will function as the character
in a filename and will be replaced by a space in order to make a readable,
English “title” from the filename.

By assigning a default value to $replacechar, users of the DirectoryItems
class have three options. They can:

1. Use another replacement character by passing a second value to the
constructor (a hyphen, perhaps)

2. Let the second value default to an underscore

3. Simply ignore the existence of this parameter (if they don’t want to use
a title)

Next, you copy the character used as a word separator into � an instance
variable, because you need to reference it not only in the constructor but
also in the createTitle method.

In the original version of this class, you did not need to keep track of
the directory name passed to the constructor because once it was used in the
constructor, it was no longer needed. Because you intend to filter filenames,
you now need to preserve the directory name, so you copy it into an instance
variable. How you use the variable $directory will become apparent when we
discuss the removeFilter method later in this chapter.

NOTE Local variables can have the same name as instance variables because the pseudo-
variable $this allows you to distinguish one from the other.

The method createTitle (�) creates the title for each image by remov-
ing the filename extension and replacing the underscores with spaces. This
method is reproduced in full starting at �.

Notice the use of � the access modifier private. This method, the only
private method in the entire class, is private because there is no reason to
access it except from the constructor. The createTitle method affects the
internal behavior of the DirectoryItems class and identifying it as private
allows you to indicate that this behavior is internal and hidden rather than
external and exposed.

OOPHP_02.book Page 30 Friday, May 5, 2006 2:25 PM

Mod UR Class 31

To briefly return to our earlier discussion of access modifiers, another
way of describing the difference between public and private access, as far as
methods are concerned, is to say that they separate the interface from the
implementation. A user programmer need only concern himself with the
public methods of a class in order to use it efficiently. In other words, he
need not worry about private functions because they represent the inner
workings of a class’s implementation. For this reason, you can say that the
separation of public and private methods simplifies the use of a class.

In the original version of the constructor presented in Chapter 4, you
assigned each filename to an array element, effectively creating a numeric
array. In the revised constructor, however, you have created an associative
array, with the filename functioning as the key and the title as the value. As
noted earlier, you can’t have files in the same directory with duplicate
names, so the filename can function as a unique key.

Filtering Content
To this point, you have changed the DirectoryItems class to take advantage
of changes to the syntax of PHP, namely by using access modifiers and the
“magic” constructor. You’ve also changed the internal workings of the con-
structor in order to create a “title.” All that remains is to create the methods
that relate to filtering the contents of a directory.

However, there’s no point in filtering if you don’t have to; a directory
may already contain only the file type you are interested in. Hence, you need
a method to loop through all files and determine whether they are the same
type. Listing 5-2 contains this method.

public function checkAllSpecificType(�$extension){
$extension = strtolower($extension);
$bln = true;
$ext = "";
foreach ($this->filearray as $key => $value){

$ext = substr($key,(strpos($key, ".") + 1));
$ext = strtolower($ext);
if($extension != $ext){

$bln = false;
break;

}
}
return $bln;

}

Listing 5-2: The checkAllSpecificType method

Listing 5-2 is a simple modification of the method developed in Chap-
ter 4—checkAllImages. You can check that a directory contains only a specific
file type by passing � an $extension to this method. For instance, you can
determine if a directory holds only Portable Document Format (PDF) files
by passing the value pdf to this method. This method returns true if all file
extensions in this directory match pdf.

OOPHP_02.book Page 31 Friday, May 5, 2006 2:25 PM

32 Chapter 5

But in the real world, things aren’t usually quite so tidy. Often a directory
holds a variety of file types. If you call the method checkAllSpecificType and it
returns false, you know you need to filter the contents of a directory, and that’s
what the code in Listing 5-3 does.

public function filter($extension){
$extension = strtolower($extension);
foreach ($this->filearray as $key => $value){

$ext = substr($key,(strpos($key, ".")+1));
$ext = strtolower($ext);
if($ext != $extension){

�unset ($this->filearray[$key]);
}

}
}

Listing 5-3: The filter method

If you use the example of Portable Document Format files again, passing
the file extension pdf to the filter method removes all other files from
$filearray. This is done by looping through the array and � unsetting
elements that don’t match. If there are a variety of files in a directory and
you invoke the filter method, you no longer have a complete list of files.

While this isn’t going to be a problem in some situations, suppose you
have a mixture of .pdf files and images in a specific directory and you want
to download all the .pdf files and after that, display all the images. Once you
have filtered for .pdf files, you need to reset the file array to its original
values so that you can view the images. You need a method to remove the
filter from a directory.

Resetting the Array
An alternative to resetting the file array would be to construct another
instance of the DirectoryItems object. The less radical approach, shown in
Listing 5-4, is to remove the filter.

public function removeFilter(){
 unset($this->�filearray);
 $d = "";
 $d = opendir($this->�directory) or die("Couldn't open directory.");
 while(false !== ($f = readdir($d))){
 if(is_file("$this->directory/$f")){
 $title = $this->createTitle($f);
 $this->filearray[$f] = $title;
 }
 }
 closedir($d);
}

Listing 5-4: The removeFilter method

OOPHP_02.book Page 32 Friday, May 5, 2006 2:25 PM

Mod UR Class 33

This removeFilter method first empties (unsets) � the $filearray variable
and then repeats the process that occurred in the constructor; namely, it
recreates the $filearray variable.

As mentioned earlier when discussing the constructor, the original
version of this class discarded the directory name after it was used in the
constructor. It’s now apparent that you need this value because you may have
to reconstruct � the file array from scratch.

You have an existing method—checkAllImages—that reports whether all
the files within a directory are image files, but you also require a method that
filters out all non-image files. The checkAllSpecificType method won’t do
because it filters for one extension only, and there are a variety of different
extensions for image files. Hence the need for the imagesOnly method in
Listing 5-5 that removes all non-image files from the array instance variable.

public function imagesOnly(){
 $extension = "";
 �$types = array("jpg", "jpeg", "gif", "png");
 foreach($this->filearray as $key => $value){
 $extension = substr($key,(strpos($key, ".") + 1));
 $extension = strtolower($extension);
 if(!in_array($extension, $types)){
 unset($this->filearray[$key]);
 }
 }
}

Listing 5-5: The imagesOnly method

This code performs exactly the same function as the checkAllSpecificType
method, but it retains files with the four different extensions associated with
images rather than just one file type. This is done by looping through all
the filenames, extracting the extension and examining whether it appears in
� the $types array. Again, to restore the file array to its original state, use the
removeFilter method.

Summary of Changes

In this chapter, we’ve built upon the simple DirectoryItems class that was
introduced in Chapter 4 to produce an expanded and upgraded class. As
you’ve seen, you needed to make surprisingly few changes to this class in
order to implement some of the key changes introduced with PHP 5.

Certainly, the changes described in this chapter are not the only changes
to PHP’s OO capabilities; however, one of them—the use of access modifiers—
is possibly the most important. The single most glaring shortcoming of OO
programming in PHP 4 is this lack of access modifiers. While disciplined use
and careful documentation can take you part of the way toward mitigating
this deficiency, it’s much better to rely on the structure of the language to
enforce the appropriate use of an object.

OOPHP_02.book Page 33 Friday, May 5, 2006 2:25 PM

34 Chapter 5

Not only have you upgraded the DirectoryItems class, but you’ve also
expanded its functionality with a view to using it to display a series of images.
The ugly duckling class is well on its way to becoming a full-fledged swan.

The DirectoryItems class was created in order to display a directory of
images. Further changes are needed to perform this task properly but these
changes require the creation of additional classes. In Chapter 6 let’s look at
creating a thumbnail image class to produce thumbnails of images.

OOPHP_02.book Page 34 Friday, May 5, 2006 2:25 PM

6
T H E T H U M B N A I L I M A G E C L A S S

Images are often of unequal dimensions,
and their file sizes can vary greatly. This

inconsistency creates problems when down-
loading and displaying a group of images because

one large image can take up the entire screen, dwarfing
smaller images. Also, if image files are large, they can
slow downloading to an unacceptable pace.

One solution to the problem of inconsistently sized images is to create a
thumbnail image class, which creates small images (thumbnails) of equal size.
By reducing the quality of an image, this class will be able to further reduce
file size and hence download times.

Since we intend to use the DirectoryItems class with directories of images,
this additional supporting class takes the next step toward improving the
utility of the DirectoryItems class. Furthermore, developing this class should
give you a good idea of when a method should be private, how to limit access
to data members with set and get methods, how to set default values for data
members upon declaration, and how to ensure that resources are disposed of
properly.

OOPHP_02.book Page 35 Friday, May 5, 2006 2:25 PM

36 Chapter 6

What Does a Designer Do?

To determine what the DirectoryItems class should do, consider how web
designers create thumbnail images. They typically open an image file in a
graphic editor, reduce its dimensions (and perhaps its quality), and then
resave the file under a different name.

For ease of placement on the screen, images in a group are usually
reduced to approximately the same thumbnail size as each other. In other
words, the thumbnail for a large image is roughly the same size as the
thumbnail for a medium-sized image. The image is typically reduced to a
predetermined maximum dimension while constraining its proportions so as
not to distort it. This maximum dimension is usually applied to the width or
the height, depending upon whether the image’s orientation is landscape
or portrait. While this maximum will vary, the maximum size of a thumbnail
should be such that it is small enough to download quickly, but large enough
for the viewer to form an accurate impression of the full-sized picture. Once
created, the thumbnail is typically displayed in a web page, where it might
function as a hyperlink to its full-sized counterpart.

Mimicking the Designer

Having considered how the web designer handles thumbnails, we can better
determine how a thumbnail class should behave. We will build a class that
mimics the way a designer creates a thumbnail but with certain improvements.

When the designer creates a thumbnail, he writes a separate file to disk.
While it might make sense in some cases for a class to create thumbnail images
only once and then save them to disk, we will create them on the fly, as needed,
and output them to the browser without saving them. This approach allows
us to create a simpler, and in some respects, a more flexible class. We won’t
have to worry about where to store the thumbnails or whether a thumbnail
has already been created for a specific image.

NOTE The downside to this approach is that it requires more server-side processing, and, if
there are a large number of images per web page, it may degrade server performance.
We’ll solve this problem in Chapter 7.

Help from PHP Functions

When creating the thumbnail image class, the equivalent of the designer’s
graphic editor is the existing PHP image function library, which contains the
tools you need to manipulate common image types. PHP’s imagecreatefrom
functions return a resource making it possible to programmatically copy an
image, reduce its dimensions, and also reduce its quality if necessary.

Thus, you have your editor and you know how your class should behave.
You know too that you want to preserve the proportions of an image when
you create a thumbnail and that you want to reduce all images to the same
approximate thumbnail size. You’re all set to start coding.

OOPHP_02.book Page 36 Friday, May 5, 2006 2:25 PM

The Thumbna il Image Class 37

NOTE The code used in this chapter requires a minimum version 2.0.1 of the GD graphics
library. This will not be a problem if you are using PHP 5, but it may be if you are
following along and creating a class in PHP 4. To determine which version you have,
use the phpinfo function or the more specific gd_info.

The ThumbnailImage Class

In the following sections, you’ll examine the entire ThumbnailImage class,
interspersing the code with comments.

Data Members

As always, the data members are private. The variable $image holds the actual
thumbnail image itself.

 private $image;
 private $quality = 100;
 private $mimetype;
 private $imageproperties = array();
 private $initialfilesize;

Since, in some cases, you may want to vary the quality of the thumbnail,
you create the attribute $quality. For very large files (large in terms of byte
count rather than just dimensions), you may need to reduce the quality of an
image as well as its size. Give $quality a default value of 100 to indicate no
reduction in quality, because in most cases, you will retain the quality of the
original image.

NOTE The assignment of a value to $quality shows that data members may be initialized
upon declaration, but they must be initialized with constant values. You could not,
for instance, invoke a PHP function call or a method.

If you are going to output an image, you need to know whether it’s a
.jpeg, .gif, or .png file, hence the need for a MIME type attribute. Finally, add
$imageproperties, principally to capture the dimensions of the original image.
Initialize it as an array (although there is no requirement to do so), because
doing so is a nice way to document the data type of this variable.

NOTE Knowing the MIME type makes it easier for the browser to display an image.

Deconstructing the Constructor

As you saw in Chapter 5, the constructor is a magic method that begins with
a double underscore and is invoked whenever a new instance of a class is
created. The constructor for the ThumbnailImage class is shown in Listing 6-1.

public function� __construct($file, $thumbnailsize = 100){
 //check file

OOPHP_02.book Page 37 Friday, May 5, 2006 2:25 PM

38 Chapter 6

�is_file($file) or die ("File: $file doesn't exist.");
 $this->initialfilesize = filesize($file);
 $this->imageproperties = getimagesize($file) or die ("Incorrect file_
type.");
 // new function image_type_to_mime_type
 $this->mimetype = �image_type_to_mime_type($this->imageproperties[2]);
 //create image
 switch($this->imageproperties[2]){

case IMAGETYPE_JPEG:
 $this->image = �imagecreatefromJPEG($file);
 break;

case IMAGETYPE_GIF:
 $this->image = imagecreatefromGIF($file);
 break;

case IMAGETYPE_PNG:
 $this->image = imagecreatefromPNG($file);
 break;

default:
 die("Couldn't create image.");
 }

�$this->createThumb($thumbnailsize);
}

Listing 6-1: The constructor for the ThumbnailImage class

The code first checks that � the $file passed in is legitimate, and, if so,
it retrieves the properties of the image. In addition to file dimensions, the
built-in PHP function filesize returns a constant integer that indicates the
file’s MIME type. This PHP constant can be converted to a string value by
using � the image_type_to_mime_type function.

NOTE This function is new to PHP 5, so if you are working in PHP 4, the code needs to be
different. This work has been done for you. Download the version 4 files of Chapter 6 to
see how the same results are achieved by looking at file extensions. Knowing the MIME
type will be necessary when you want to output your image.

The appropriate, image-specific imagecreatefrom function (�) is called
and a resource is returned. The actual thumbnail is created by manipulating
this resource in � the createThumb method.

Two parameters are passed to � the constructor. The parameter $file is
required; $thumbnailsize is optional because it has a default value. The $file
variable tells your class where to find the image that is to be reduced, and
$thumbnailsize indicates the dimension that it will be reduced to.

Two Ways to Construct an Object
When discussing constructors in Chapter 5, you saw how default values can
be assigned to parameters, thus providing flexibility and improving ease of
use. The assignment of the value 100 to the variable $thumbnailsize means
that the default size of your thumbnail will be 100 pixels.

OOPHP_02.book Page 38 Friday, May 5, 2006 2:25 PM

The Thumbna il Image Class 39

Because this variable has a default value, you can create a class instance
in two different ways. To accept the default thumbnail size, create an object
like so:

$thumb = new ThumbnailImage("graphics/My_Picture.jpg");

In this case, the maximum dimension of the thumbnail will be the
default value.

To construct a thumbnail of different dimensions, do the following:

$thumb = new ThumbnailImage("graphics/My_Picture.jpg", 250);

Assigning a default value to an argument to the constructor is simply a
convenience for users of your class.

NOTE When assigning default values to arguments to a method, you may have as many
default values as you wish. However, arguments without a default value should not fol-
low those that have a default value; in this particular class, the $path variable should
not follow the $thumbnailsize variable.

Internal Behavior—Private Methods

So far you have seen only private data members, but here you encounter your
first private method. Private methods relate to the internal workings of a class
and can be invoked only from within the class itself. The method that performs
the image reduction (see Listing 6-2) is a private method—createThumb—
called from within the constructor.

private function createThumb($thumbnailsize){
 //array elements for width and height
 $srcW = $this->imageproperties[0];
 $srcH = $this->imageproperties[1];
 //only adjust if larger than max
 if($srcW > $thumbnailsize || $srcH �> $thumbnailsize){
 $reduction = $this->calculateReduction($thumbnailsize);
 //get proportions
 $desW = $srcW/$reduction;
 $desH = $srcH/$reduction;
 $copy = imagecreatetruecolor($desW, $desH);
 imagecopyresampled($copy,$this->image,0,0,0,0,$desW, $desH, $srcW,
$srcH) or die ("Image copy failed.");
 //destroy original
 imagedestroy($this->image);

�$this->image = $copy;
 }
}

Listing 6-2: The createThumb method

OOPHP_02.book Page 39 Friday, May 5, 2006 2:25 PM

40 Chapter 6

In this listing, createThumb checks the width and height of the image to
determine whether � it is greater than the targeted size. If it is, the method
creates a reduced copy and � overwrites the original image with the copy.

This private method for image reduction is called from the constructor
and may only be invoked from within the class. By calling it from within the
constructor, it need not be called directly, and the client programmer benefits
by having a fully-formed and usable object immediately upon construction.

Must It Be Private?

Suppose for a moment, though, that your intention was to make a number of
different-sized reductions of the same image, just as a photographer often
makes different-sized copies of the same picture. In this case, it might make
sense to save the original image and make the createThumb method public. As
such, an image could be recreated at different sizes by repeatedly calling this
method and passing the method different values.

In fact, with minimal change to the code and the interface, you could
make your class accommodate this scenario and still fulfill its original
intention.

A Helper Method

From within the createThumb method, you call another private method,
calculateReduction, shown in Listing 6-3.

private function calculateReduction($thumbnailsize){
 $srcW = $this->imageproperties[0];
 $srcH = $this->imageproperties[1];
 //adjust
 if($srcW < $srcH){

$reduction = round($srcH/$thumbnailsize);
 }else{

$reduction = round($srcW/$thumbnailsize);
 }
 return $reduction;
}

Listing 6-3: The calculateReduction method

The calculateReduction method determines whether the height or width
of the image is larger and then calculates the percentage reduction based on
the targeted thumbnail size. In other words, it determines whether the image’s
orientation is landscape or portrait and reduces the image on the appropriate
dimension.

NOTE Unlike the createThumb method, the calculateReduction method is inherently private.
It is a helper method that returns the percentage reduction to the createThumb method.

OOPHP_02.book Page 40 Friday, May 5, 2006 2:25 PM

The Thumbna il Image Class 41

Public Methods

Following the constructor is another public method with the name __destruct.
This method is known as a destructor. The double underscore (__) in front of
the function name indicates that this method, like the constructor, is another
magic method. Again, it is a method newly introduced in PHP 5. (Recall from
Chapter 5 that magic methods happen in the background, like magic.)

public function __destruct(){
 if(isset($this->image)){
 imagedestroy($this->image);
 }
}

While the use of destructors is new with PHP 5, anyone familiar with
other OO languages has probably already come across them. As its name
suggests, a destructor is the opposite of a constructor. A constructor initializes
an object, while a destructor frees up resources that a class may have allocated.
Generally, PHP does a good job of cleaning up after itself so destructors are
often not strictly necessary. It’s used here to ensure that the image resource
is disposed of.

Garbage Collection

Like Java, PHP employs a garbage collector to automatically clean up
resources. Because the programmer is not responsible for allocating and
freeing memory (as he is in a language like C++, for example), an automated
program must free up resources. The garbage collector determines when
objects are no longer used and then disposes of them, for example, when
they go out of scope. However, using destructors can act as a cue that speeds
up garbage collection. In the case of the ThumbnailImage class, the destructor
disposes of the reduced image copy by calling the imagedestroy function.

You can call the destructor directly but, as with other magic methods the
destructor is designed to be invoked in the background without any inter-
vention by the programmer.

Displaying the Image

Next to the constructor, getImage (see Listing 6-4) is the most important
method in the ThumbnailImage class, because it actually sends a reduced image
to the browser. Its logic is simple: A header is sent to the browser announcing
what to expect, followed by the appropriate content.

public function getImage(){
 header("Content-type: $this->mimetype");
 switch($this->imageproperties[2]){

OOPHP_02.book Page 41 Friday, May 5, 2006 2:25 PM

42 Chapter 6

 case IMAGETYPE_JPEG:
 imagejpeg($this->image, "", �$this->quality);
 break;
 case IMAGETYPE_GIF:
 imagegif($this->image);
 break;
 case IMAGETYPE_PNG:
 imagepng($this->image, "", �$this->quality);
 break;
 default:
 die("Couldn't create image.");
 }
}

Listing 6-4: The getImage method

Because .png and .jpeg image types support a reduction in quality, � the
quality argument is included when the images are output. The proper MIME
type is sent to the browser first, and subsequently the image is sent in binary
format.

Get and Set Methods

Chapter 5 introduced the concept of private data members and discussed
how they create a need for accessor methods (also referred to as get and set
methods), which retrieve and change the value of data members. The
getMimeType method retrieves the MIME type of your thumbnail image.
(Recall that the value returned is a copy and not the original.)

public function getMimeType(){
 return $this->mimetype;
}

You need to retrieve the value of the private variable mimetype when you
display your thumbnail. Merely retrieving the MIME type can do no harm, but
the same cannot be said of setting this value. The MIME type is set in the
constructor by looking at an image’s properties. Since this information can
be determined programmatically and since an image’s MIME type does not
change, there is no need to set this value. Hence, there is no set method to
match the get method. To say the same thing in another way, $mimetype is a
read-only value and having only a get method contributes to data protection.

Image Quality

On the other hand, it makes sense to have both a set and get method for
image quality. The quality property of a ThumbnailImage object is quite different
from an image’s MIME type and is not something that must remain fixed.
In fact, getting and setting the quality of an image is one of the requirements
that you set out to achieve when you designed this class. Let’s first look at the
method that sets image quality in Listing 6-5.

OOPHP_02.book Page 42 Friday, May 5, 2006 2:25 PM

The Thumbna il Image Class 43

public function setQuality($quality){
if�($quality > 100 || $quality < 1){

 $quality = 75;
�if($this->imageproperties[2] == IMAGETYPE_JPEG || $this-

>imageproperties[2] == IMAGETYPE_PNG){
$this->quality = $quality;
}

}

Listing 6-5: The setQuality method

As you can see in this listing, � negative values and values greater
than 100 are prohibited because they are not valid values for image quality.
Furthermore, .gif images don’t support alterations of the image quality, so
� the second if statement checks for the appropriate image type before
changing the quality. A set method is superior to direct access to an object’s
properties because values can be tested and rejected, if need be, before they
are assigned. A set method allows you to restrict how the variable quality is
changed by screening out illegal values.

While the need to control the way in which object properties are
changed is somewhat obvious, retrieving object properties through an
accessor method is also superior to directly accessing a public data member.
Because you can’t alter the quality of a GIF, there is no need to retrieve it,
and the getQuality method (see Listing 6-6) reflects this.

public function getQuality(){
 $quality = null;
 if($this->imageproperties[2] == �IMAGETYPE_JPEG || $this-
>imageproperties[2] == IMAGETYPE_PNG){
 $quality = $this->quality;
 }
 return $quality;
}

Listing 6-6: The getQuality method

Just as the setQuality method restricted changes to the quality of a .gif
image, the getQuality method only returns a legitimate value if � the image
is a .jpeg or .png. Otherwise, null is returned.

Accessor methods are superior to direct access to public data members
because they restrict how a variable is changed and how it is retrieved. They
help ensure the integrity of your data and the functionality of the class as a
whole. Get and set methods allow you to ignore the fact that .gif images don’t
support a quality attribute in a way that unfettered public access cannot.

When to Change the Quality

In order to determine if the quality of an image needs reducing, it’s helpful
to know a bit more about the image. The getInitialFileSize function returns
the image’s original size in bytes. This information helps you decide whether
to reduce the quality of an image and, if so, by how much.

OOPHP_02.book Page 43 Friday, May 5, 2006 2:25 PM

44 Chapter 6

public function getInitialFileSize(){
 return $this->initialfilesize;
}

The code in this chapter doesn’t actually call this method, but you can
imagine the circumstances in which it might be useful.

Displaying a Thumbnail

The process of outputting a series of thumbnail images to the browser occurs
in two steps. First, you create a script that outputs an image; then you use
this script file as the source for an img tag.

The code in Listing 6-7 shows the script file for outputting an image. It
retrieves the path and size from a query string and uses these values to con-
struct a thumbnail and then display it (in this chapter’s downloads, this is
the file getthumb.php).

<?php
//this file will be the src for an img tag
require 'ThumbnailImage.php';
$path = $_GET["path"];
$maxsize = @$_GET["size"];
if(!isset($maxsize)){
 $maxsize = 100;
}
if(isset($path)){
 $thumb = new ThumbNailImage($path, $maxsize);

�$thumb->getImage();
}
?>

Listing 6-7: Constructing and displaying a thumbnail image

When passed a query string describing the path to an image file and the
desired image size, this code outputs a thumbnail directly to the browser.
The getImage method (�) tells the browser the MIME type to expect and
then sends the image file in binary format.

NOTE Typing getthumb.php?path=graphics/filename.jpg into the browser address bar is
equivalent to pointing your browser directly at an image file. However, because you
want to output a series of pictures and control their position, you will use this file as
the src attribute of an img tag.

Putting It All Together

The short piece of code in Listing 6-8 uses the DirectoryItems class together
with the ThumbnailImage class to display all images within a directory, at
reduced sizes.

<?php
require 'DirectoryItems.php';

OOPHP_02.book Page 44 Friday, May 5, 2006 2:25 PM

The Thumbna il Image Class 45

$dc = �new DirectoryItems('graphics');
$dc->imagesOnly();
$dc->naturalCaseInsensitiveOrder();
$path = "";
$filearray = $dc->getFileArray();
echo "<div style=\"text-align:center;\">";
echo "Click the filename to view full-sized version.
";
//specify size of thumbnail
$size = 100;
foreach ($filearray as $key => $value){
 $path = "graphics/".$key;
 /*errors in getthumb or in class will result in broken links
 - error will not display*/
 echo "<img �src=\"getthumb.php?path=$path&size=$size\" ".
 "style=\"border:1px solid black;margin-top:20px;\" ".
 "alt= \"$value\" />
\n";
 echo "";
 echo "Title: $value
\n";
}
echo "</div>
";
?>

Listing 6-8: Displaying all the images in a directory at reduced size

As shown in Listing 6-8, you first construct � a DirectoryItems object
and pass it the directory named graphics. You filter non-image files with the
imagesOnly function, and the path is passed as a query string to the getthumb.php
file, which, in turn, is assigned to � the src attribute of an img tag.

This may seem strange at first, but the getthumb.php file contains all the
information that the browser needs to display an image. However, if there
are any errors in this file or in the thumbnail class file, the image will fail to
display, and there will be no warning or error message, regardless of how
you have configured your php.ini file. The error message will simply be
interpreted as the binary output expected by the img tag.

NOTE In order to see error messages and warnings when debugging the ThumbnailImage class
file, you need to call the getthumb.php file directly and not set it as the src for an img
tag. Do this by hard-coding an image filename directly into the getthumb.php file and
typing getthumb.php in the browser address bar.

Where to Go from Here

Using the ThumbnailImage class enhances your ability to display a directory of
images by reducing the size of the images. This is a definite improvement in
both aesthetics and performance, because small images download faster and
use up less screen real estate.

But what if the image directory contains a few hundred or even a few
thousand images? Showing a large number of image files, even if they’re only
thumbnails, places unacceptable demands on server and client resources, and
creates a web page that is far too long. You need to limit the number of images
that display at any one time. Chapter 7 tackles this problem.

OOPHP_02.book Page 45 Friday, May 5, 2006 2:25 PM

7
B U I L D I N G T H E

P A G E N A V I G A T O R C L A S S

When there are a large number of images
in a directory, it’s not desirable to display

all of them on one web page because doing
so will probably create a very large and long page.

Web pages should be of reasonable length and should
not take too long to download. Rather than dumping all
your images onto one page, use a page navigator to step through them in an
orderly fashion. This chapter will take on the task of creating a navigator class;
Chapter 8 will use this class in conjunction with the DirectoryItems class.

Before you can create a page navigator, you need to determine how it
should behave. Keep its design flexible and make sure that its appearance is
easily configurable so that it can blend with the style of any particular page.

How Will the Navigator Behave?

A good starting point is to look at the navigator at the bottom of a Google
query page. When searching Google, the default settings show 10 results per
page and the navigator appears across the bottom of the page. One navigates
by clicking the Previous or Next links, by choosing a page number, or by

OOPHP_02.book Page 47 Friday, May 5, 2006 2:25 PM

48 Chapter 7

clicking one of the many “o”s in Google. If your query returns a large
number of pages, not all pages are shown in the page navigator. Records are
ordered by relevance to the search criteria. Given this ordering scheme,
there is little incentive to move to the last page of results and, in fact, there
is no easy way of doing so.

Different Kinds of Searches
However, in many cases, searches return a relatively small number of items,
and records are often ordered alphabetically. In situations such as this there
should be an easy way to move to the beginning and the end pages, in addition
to being able to move Previous and Next. Too, as with Google, the ability to
configure the number of items shown per page is also desirable.

You should also limit the number of pages or links shown at any one time
by your page navigator and make this option configurable to accommodate
different needs and situations. For example, if you have 2,000 items to display
and you’re showing 10 items per page, it’s probably not advisable to show all
200 links across the bottom of one page. But at the same time, you should show
the total number of pages and identify the current page so that the user is
not left in the dark.

Finally, the display style of navigation buttons should be configurable so
that they match the design of an existing page. The best way to do this is to
assign them a class name and manipulate their style using Cascading Style
Sheets (CSS).

What Will It Look Like?

In sum, you will design a page navigator that will look something like
Figure 7-1.

Figure 7-1: Your page navigator design

In this particular example, the maximum number of pages shown by
your navigator is 7. The total number of pages is 12, and the link to the
current page, 4, is disabled (indicated above by an italicized number). Each
button and page number functions as a hyperlink (except for that of the
current page). The button labeled |< displays the first page, and the button
labeled >| displays the last page. In this particular example, the Next button
displays page 5, and the Prev button displays page 3.

Now look at Figure 7-1 again, and note that pages 8 through 12 are not
displayed. You can go directly to page 12 by clicking the >| button, but there
is no way to go directly to pages 8 through 11. At what point should links to
these pages become visible?

Apply this question to the Google navigator, and you’ll see that the
answer is not very straightforward. Among other things, it depends on the
direction you want to move and the number of items your search returns.

OOPHP_02.book Page 48 Friday, May 5, 2006 2:25 PM

Buildi ng the PageNaviga to r Class 49

In some situations, the number of page links shown doubles. You probably
don’t want to emulate this behavior, because your navigator will be used in
a variety of situations, and in some cases space will be at a premium.

If you look more closely at a Google query, you can get a few hints about
how to implement other desired behavior. For instance, try the following:
Perform a Google query and put your mouse over one of the page number
links in the navigator. If you look at the status bar of your browser, you see a
query string that includes the variable start. If you haven’t changed Google’s
default setting of 10 items per page, the value assigned to this variable is
always a multiple of 10 that increases by 10 as the page numbers increase.

You’ll use a similar technique in your page navigator. Your navigator will
be a series of hyperlinks, each including a query string containing a page num-
ber indicating an offset from the start.

The Code
Go ahead and download the code for your page navigator, and look it over.
Notice that there are considerably more data members than in other classes
discussed so far. Names have been chosen in an attempt to make the purpose
of the variable explicit, and related variables have been grouped. We’ll discuss
these variables in the order in which they appear in the class file.

private $pagename;

The variable $pagename is the name of the page that will contain the
page navigator control. It could be replaced by $_SERVER['PHP_SELF'], but by
using a variable, you can accommodate situations where the Apache module
mod_rewrite is being used to rewrite URLs. It’s designed to hold a string.

private $totalpages;

$totalpages is a convenient way to refer to the total number of pages
required to display all the items in your list of images. It is calculated from
the total number of items and the number of items shown per page. Its value
will be an integer.

private $recordsperpage;
private $maxpagesshown;

$recordsperpage is the number of items shown on a page and $maxpagesshown
is the maximum number of links to additional pages shown on any one page.
The former affects the length of the page, while the latter affects the width of
the navigator. Again, these are intended to be integer variables.

private $currentstartpage;
private $currentendpage;
private $currentpage;

$currentstartpage, $currentendpage, and $currentpage are best understood
using a visual example. Refer back to Figure 7-1; these would be 1, 7, and 4,
respectively.

OOPHP_02.book Page 49 Friday, May 5, 2006 2:25 PM

50 Chapter 7

The next four variables are string variables that hold the HTML code
necessary to display inactive links.

//next and previous inactive
private $spannextinactive;
private $spanpreviousinactive;
//first and last inactive
private $firstinactivespan;
private $lastinactivespan;

If you are currently on the first page, moving to a previous page or to the
first page itself wouldn’t make sense. These variables will be used in place of
active hyperlinks. Inactive links will be enclosed by span tags. Assigning a CSS
class name to these spans allows their appearance to be manipulated by a
style sheet.

$firstparamname and $params are data members that will form the query
string in each hyperlink in your navigator.

//must match $_GET['offset'] in calling page
private $firstparamname = "offset";
//use as "&name=value" pair for getting
private $params;

$firstparamname is assigned a default value of “offset.” While the additional
parameters contained in $params may or may not be added to the query string,
the use of the “offset” parameter is not optional; this variable’s name must
always be matched by a $_GET['offset'] in the page that contains your navi-
gator. The $firstparamname will perform the same function as start in a Google
query string—you will always need to know where the current page is relative
to the start page. The variable $params will hold any other name/value pairs
that may be needed as part of a query string. (You’ll learn more about this in
Chapter 9.)

The next set of variables are string values that hold the CSS class names
for the page navigator and its elements.

//css class names
private $divwrappername = "navigator";
private $pagedisplaydivname = "totalpagesdisplay";
private $inactivespanname = "inactive";

You’ve assigned default values to each of these variables, but they all have
set and get methods so a client programmer can change them in order to
match existing CSS classes if need be. $divwrappername is the name of the div
tag that encloses the complete navigator. $pagedisplaydivname allows you to
separately manipulate the display of the message relating the current page
and total number of pages, such as page 4 of 12. You only need one class
name for all of your inactive spans, because you want them all to have the
same look.

OOPHP_02.book Page 50 Friday, May 5, 2006 2:25 PM

Buildi ng the PageNaviga to r Class 51

The remaining four variables are simply text strings that label the con-
trols used in the navigator, and they can be changed as the user sees fit:

//text for navigation
private $strfirst = "|<";
private $strnext = "Next";
private $strprevious = "Prev";
private $strlast = ">|";
//for error reporting
private $errorstring;

The use of variables for the navigation text means that a client program-
mer can configure these values—the look of the navigator is not fixed and
can be adjusted to accommodate different visual layouts. The final data
member is a string variable used for error reporting.

The Constructor
Now let’s see how the class is constructed. The constructor accepts six
arguments, two of which have default values. Here is the constructor
declaration:

public function __construct($pagename, $totalrecords, $recordsperpage,
$recordoffset, $maxpagesshown = 4, $params = "")

Four of the parameters to the constructor are simply copied into their
class equivalents, and all have been discussed in the previous section on the
data members.

 $this->pagename = $pagename;
 $this->recordsperpage = $recordsperpage;
 $this->maxpagesshown = $maxpagesshown;
 //already urlencoded
 $this->params = $params;

Note that $params (the variable that contains any additional parameters as
a name/value pair) is not URL-encoded within the class. If it is used, it will
need to be URL-encoded before it is sent.

The constructor finishes with calls to a number of private class methods:

 //check recordoffset a multiple of recordsperpage
 $this->checkRecordOffset($recordoffset, $recordsperpage) or

die($this->errorstring);
 $this->setTotalPages($totalrecords, $recordsperpage);
 $this->calculateCurrentPage($recordoffset, $recordsperpage);
 $this->createInactiveSpans();
 $this->calculateCurrentStartPage();
 $this->calculateCurrentEndPage();

Let’s look at each of these method calls in turn.

OOPHP_02.book Page 51 Friday, May 5, 2006 2:25 PM

52 Chapter 7

Ain’t Misbehavin’

If you want your navigator to behave properly, you can check some of the
values passed to the constructor; that’s exactly what the checkRecordOffset
method does. It terminates construction of your object if it returns false.
Let’s see why.

private function checkRecordOffset($recordoffset, $recordsperpage){
 $bln = true;
 if($recordoffset%$recordsperpage != 0){

$this->errorstring = "Error - not a multiple of records per page.";
$bln = false;

 }
 return $bln;
}

The $recordoffset variable passed to the constructor tells the navigator
where it is currently positioned.

Since you are paging through your list while keeping the number of
items shown per page constant, the record offset must be a multiple of the
number of items shown per page. If it’s not, the navigator may still function
but its behavior will be erratic. For this reason, the error message variable is
set, a value of false is returned, and the application terminates. Terminating
the application and identifying the reason saves having to debug a misbehav-
ing application.

Other Constructor Method Calls

The five remaining private method calls made from the constructor aren’t
quite as interesting as the checkRecordOffset method, but a few comments
are appropriate.

Determining the Total Number of Pages

Since your navigator always allows you to move to the last item, you need to
know the total number of pages:

private function setTotalPages($totalrecords, $recordsperpage){
 $this->totalpages = ceil($totalrecords/$recordsperpage);
}

You use the ceil function to round up, because your final page may be
a partial page.

For example, if you have 101 items to display, and you are showing 10
items per page, the first 10 pages will each show 10 items while the 11th page
will show only one.

OOPHP_02.book Page 52 Friday, May 5, 2006 2:25 PM

Buildi ng the PageNaviga to r Class 53

Determining the Current Page

In addition to the total number of pages, you also need to know the current
page, so you have a calculateCurrentPage method:

private function calculateCurrentPage($recordoffset, $recordsperpage){
 $this->currentpage = $recordoffset/$recordsperpage;
}

Simply dividing the record offset by the records per page gives you the
current page. Notice that if you’re at the beginning of your list, the value
of $recordoffset is 0, so the first page is also 0. This makes sense from a
programming point of view, but before displaying the current page to a user,
it’s incremented by 1.

Inactive Spans

The following method—createInactiveSpans—prepares the HTML code
necessary to display inactive Next, First, Previous, and Last links:

private function createInactiveSpans(){
 $this->spannextinactive = "<span class=\"".
 "$this->inactivespanname\">$this->strnext\n";
 $this->lastinactivespan = "<span class=\"".
 "$this->inactivespanname\">$this->strlast\n";
 $this->spanpreviousinactive = "<span class=\"".
 "$this->inactivespanname\">$this->strprevious\n";
 $this->firstinactivespan = "<span class=\"".
 "$this->inactivespanname\">$this->strfirst\n";
}

While setting these variables is not strictly necessary (there may, in fact,
not be any inactive spans on a particular page), by creating a method to
prepare inactive links beforehand, you unclutter your code and make the
logic of the most important method—getNavigator—clearer.

Finding the Start Page

Since links to all pages are not always shown, page 1 is not always the first link
on a page. For this reason you need to determine the current start page. For
example, if the total number of items is 100 with 5 items per page, and you
are showing 4 links in your navigator and the current page is 6, the current
start page for the navigator will be 5.

private function calculateCurrentStartPage(){
 $temp = floor($this->currentpage/$this->maxpagesshown);
 $this->currentstartpage = $temp * $this->maxpagesshown;
}

OOPHP_02.book Page 53 Friday, May 5, 2006 2:25 PM

54 Chapter 7

Calculating the Current End Page

The last page displayed in the navigator is easily calculated once the first page
has been determined:

private function calculateCurrentEndPage(){
 $this->currentendpage = $this->currentstartpage + $this->maxpagesshown;
 if($this->currentendpage > $this->totalpages){
 $this->currentendpage = $this->totalpages;
 }
}

The current end page is the current page plus the maximum number of
pages shown, unless that number is greater than the total number of pages,
in which case, the end page is equal to the total number of pages.

The getNavigator Method

We’ve covered the data members, the constructor, and some related private
methods of the page navigator class, but it’s the public methods that allow
you to use it.

The get and set methods basically allow manipulation or retrieval of the
CSS class names for the various components in the navigator, so we won’t
spend time on them. The method that performs most of the work in this
class is the getNavigator method. It returns a string of the HTML-encoded
links that make up your navigator. The navigator (shown in Figure 7-1) is
created by starting at the left with the Move First link and finishes on the right
with the Move Last link. We’ll discuss the code piece by piece and relate it
back to this figure. The declaration of this method is:

public function getNavigator()

The very first responsibility of this method is to wrap the entire navigator
in a div tag and assign a class name to this div. Doing so allows you to manip-
ulate the appearance of your navigator via CSS:

$strnavigator = "<div class=\"$this->divwrappername\">\n";

Move First and Move Previous
The first element displayed is the hyperlink that allows you to move to the
very first page of items. It’s disabled if the current page is the first page; if
the current page is not the first page, you call a private class method—
createLink—to create the hyperlink.

//output movefirst button
 if($this->currentpage == 0){
 $strnavigator .= $this->firstinactivespan;

OOPHP_02.book Page 54 Friday, May 5, 2006 2:25 PM

Buildi ng the PageNaviga to r Class 55

 }else{
 $strnavigator .= $this->createLink(0, $this->strfirst);
 }

The createLink method to create the hyperlink is as follows:

private function createLink($offset, $strdisplay){
 $strtemp = "pagename?$this->firstparamname=";
 $strtemp .= $offset;
 $strtemp .= "$this->params\">$strdisplay\n";
 return $strtemp;
}

This method constructs a hyperlink that includes a query string contain-
ing the required offset parameter and any additional parameters that may be
needed. For a Move First button, this link appears as |< if the default value of
the variable—$strfirst—has not been altered.

The same logic applies to the Move Previous link, which is disabled if the
current page is the first page:

//output moveprevious button
if($this->currentpage == 0){

 $strnavigator .= $this->spanpreviousinactive;
}else{

 $strnavigator .= $this->createLink($this->currentpage-1, $this-
>strprevious);

}

Main Body of the Navigator
The main body of the navigator (see Listing 7-1) is created by looping through
the pages, starting with the current start page.

//loop through displayed pages from $currentstart
�for($x = $this->currentstartpage; $x < �$this->currentendpage; $x++){

 //make current page inactive
 if($x == �$this->currentpage){
 $strnavigator .= "inactivespanname\">";
 $strnavigator .= $x + 1;
 $strnavigator .= "\n";
 }else{
 $strnavigator .= $this->createLink($x, $x+1);
 }

}

Listing 7-1: The main body of the navigator

This � for loop creates hyperlinks for all the pages except the current
page, and the number of iterations is determined by � the $currentendpage
data member.

As with the Move First button, � the current page will be inactive, but all
other pages will be hyperlinks.

OOPHP_02.book Page 55 Friday, May 5, 2006 2:25 PM

56 Chapter 7

Move Next and Move Last
Finally, create the Move Next and Move Last buttons in the same manner as
the Move First and the Move Previous buttons, as shown in Listing 7-2.

//next button
if($this->currentpage == $this->totalpages-1){
 $strnavigator .= $this->spannextinactive;
}else{
 $strnavigator .= $this->createLink($this->currentpage + 1, $this->strnext);
}
//move last button
if($this->currentpage == $this->totalpages-1){
 $strnavigator .= $this->lastinactivespan;
}else{
 $strnavigator .= $this->createLink($this->totalpages -1, $this->strlast);
}

Listing 7-2: Creating the Move Next and Move Last buttons

Current and Total Number of Pages
The navigator proper is complete, but information about the current page
and the total number of pages helps orient the user:

 $strnavigator .= �"</div>\n";
 $strnavigator .= $this->getPageNumberDisplay();
 return $strnavigator;

A terminating div tag (�) encloses the navigator, and a call to
getPageNumberDisplay creates the HTML code to display the current page
and the total number of pages.

private function getPageNumberDisplay(){
 $str = "<div class=\"$this->pagedisplaydivname\">\nPage ";
 $str .= $this->currentpage + 1;
 $str .= " of $this->totalpages";
 $str .= "</div>\n";
 return $str;
}

NOTE The string that displays the current page and the total number of pages is enclosed
within a separate div tag in order to easily manipulate its placement and appearance.

Where to Go from Here
You’ve developed a page navigator class that implements behavior similar to
the Google navigator. You’ve learned how to set the number of items shown
per page and adjust the width of the navigator. The major components of
the navigator have been assigned CSS class names, allowing manipulation
of the navigator’s appearance. Chapter 8 will demonstrate how to use the page
navigator in conjunction with the DirectoryItems class and the ThumbnailImage
class, and how to configure its appearance.

OOPHP_02.book Page 56 Friday, May 5, 2006 2:25 PM

8
U S I N G T H E P A G E N A V I G A T O R

C L A S S

In this chapter we’ll use the PageNavigator
class to step through a directory of images

reduced on the fly using the ThumbnailImage class. We’ll
use all three of the classes you have developed so far:

� The DirectoryItems class stores a list of filenames of images.

� The ThumbnailImage class reduces the dimensions of each image.

� The PageNavigator class steps through these images in an orderly fashion.

We’ll also look at how to use CSS classes to adjust the appearance of
the page navigator; this will greatly improve the reusability of the class.
(This isn’t directly related to object-oriented programming [OOP], but if
a class’s appearance cannot blend with various different designs, then its
usefulness—and reusability—is greatly compromised. A web development
language should integrate well with other web technologies.)

OOPHP_02.book Page 57 Friday, May 5, 2006 2:25 PM

58 Chapter 8

DirectoryItems Change

Fortunately, because the list of images in the DirectoryItems class is an array,
you can use the ready-made PHP function to return a portion of an array—
array_slice. All you need to do is wrap this function inside a method. Here is
the additional method you require:

public function getFileArraySlice($start, $numberitems){
 return array_slice($this->filearray, $start, $numberitems);
}

The $start variable passed to this method performs the same function
as the start variable in the Google query string discussed in Chapter 7. The
$numberitems variable sets the number of items you wish to display per page.
In a way, the entire PageNavigator class is an answer to the question, “How can
you pass values to the getArraySlice method so that you can step through the
list of images in an orderly fashion?”

CSS and Reusability

No matter how reusable an object is, it won’t be reused if it can’t be adapted
to fit to a variety of page designs. Unlike the DirectoryItems class, which does
its work on the server, the navigator is client-side HTML—it is a series of
enabled or disabled hyperlinks. It’s important to control the page navigator’s
appearance, because it’s a component of a web page. Figure 8-1 shows that
page navigator again.

Figure 8-1: The page navigator

Recall that in order to control the navigator’s appearance, you wrapped
it in a div tag and set the class attribute of the div tag to navigator. One way to
display this component is to shrink the font by setting the font-size property
to smaller and to use the text-align property to center the text. Here’s how
the CSS code to produce that effect might look:

div.navigator{
 font-size:smaller;
 padding:5px;
 text-align:center;
}

This CSS code will ensure that the navigator is centered and that the font
size of its buttons is smaller than the surrounding text.

OOPHP_02.book Page 58 Friday, May 5, 2006 2:25 PM

Using the PageNav igator Class 59

The div tag of the class, totalpagesdisplay, manipulates the appearance of
the total page count in the following way:

div.totalpagesdisplay{
�font-style:italic;
�font-size:8pt;

 text-align:center;
�padding-top:15px;

}

A different � font style and � size are appropriate for displaying the
current page and the total page count (page 3 of 6, as shown in Figure 8-1).
Increased � padding at the top separates the page number display from the
navigator proper, which improves readability.

You’ll make the anchor tags within your navigator distinctive by assign-
ing style characteristics to them. Because the inactive spans will share some
of those characteristics, you can define them here as well. Those shared
properties might look something like the following:

.navigator a, span.inactive{
 margin-left:0px;
 border-top:1px solid �#999999;
 border-left:1px solid �#999999;
 border-right:1px solid �#000000;
 border-bottom:1px solid �#000000;
 padding: 0px 5px 2px 5px;
}

Using � a lighter color for the top and left borders and then � a darker
color for the bottom and right borders outlines the links and creates the
illusion of depth.

Assign properties to the anchor pseudo-classes in order to override the
default behavior—they should be different from other anchors on this page:

.navigator �a:link, .navigator �a:visited,
 .navigator �a:hover,.navigator �a:active{
 color: #3300CC;
 background-color: #FAEBF7;
 text-decoration: none;
}

Because these hyperlinks look like buttons, it makes sense to assign the
same characteristics to each of the different states represented by � the
pseudo-classes: link, visited, hover, and active.

Finally, you differentiate inactive links from active ones by changing the
background and the font style. For example, in Figure 8-1, because page 3 is
the current page, it is disabled and has a gray background and italic font style.

OOPHP_02.book Page 59 Friday, May 5, 2006 2:25 PM

60 Chapter 8

span.inactive{
 background-color :#EEEEEE;
 font-style:italic;
}

You can, of course, style your own navigator much differently, using
different CSS styles and, really, that’s the whole point.

Paging with Class

In Chapter 6, we created a web page to loop through a directory of images
and display a thumbnail of each image. We’re going to do the same thing
here, but this time we’ll incorporate the page navigator in order to display
a limited number of images per page.

The very first thing you need to do is include the classes you’ll be using.
This is done with two require statements:

require 'PageNavigator.php';
require 'DirectoryItems.php';

The PERPAGE variable defines how many images to display on each page.
Define it as a constant (5), because it is used in a number of different places
on this page and you don’t want to change its value accidentally:

//max per page
define("PERPAGE", 5);

Recall that within the PageNavigator, the variable called $firstparam is
assigned a default value of offset—the name for the first name/value pair of
the query string associated with the URL of each hyperlink in the navigator.
Each page needs to retrieve the offset value in order to determine which
group of images to display:

//name of first parameter in query string
define(�"OFFSET", "offset");
/*get query string - name should be same as first parameter name
passed to the page navigator class*/
$offset = @$_GET[OFFSET];

Like PERPAGE, � OFFSET is defined as a constant because you do not want
its value to change. You want to ensure that the variable you’re requesting
matches the variable passed into this page by the navigator.

You also want the flexibility to open this page even when no query string
has been passed. For this reason, you should check the value of $offset:

//check variable
if(!isset($offset)){
 �$totaloffset = 0;

OOPHP_02.book Page 60 Friday, May 5, 2006 2:25 PM

Using the PageNav igator Class 61

}
else{
 //then calculate offset
 $totaloffset = $offset * �PERPAGE;
}

If no query string is passed into the page, you want to begin displaying
images at the beginning of your list, so you set � $totaloffset to 0. If $offset
does have a value, multiplying it by � the PERPAGE value calculates the start
position within the array of image filenames.

The name of the directory you want to use is assigned to the variable
$directory:

$directory = "graphics";
$di = new DirectoryItems($directory);

Listing 8-1: Hard-coded directory name

Because you want to display the directory of images in the graphics
directory, pass the value graphics to the constructor of the DirectoryItems
class.

The imagesOnly method filters out all non-images, and the method
naturalCaseInsensitiveOrder ignores case and orders numerically where
appropriate.

$di->imagesOnly();
$di->naturalCaseInsensitiveOrder();

In Chapter 6, when you displayed all the thumbnails on one page, you
retrieved the entire list of filenames from the DirectoryItems class instance.
Since the page navigator controls the starting position and since you can
retrieve a slice of the array, you need only retrieve a specific number of items
here. Do this by passing the getArraySlice method a start position and the
number of items you wish to display.

//get portion of array
$filearray = $di->getFileArraySlice($totaloffset, PERPAGE);

Displaying an Array Slice

You retrieve each filename and pass it to the getthumb.php file so it can serve
as the file source for an img tag. You don’t need to make any changes to
the version of the getthumb.php file you used in Chapter 6—it includes the
ThumbnailImage class and uses it to create a reduced image.

The code to loop through the thumbnail images hasn’t changed from
Chapter 6 either. For ease of reference, it’s reproduced in Listing 8-2.

OOPHP_02.book Page 61 Friday, May 5, 2006 2:25 PM

62 Chapter 8

echo "<div style=\"text-align:center;\">";
echo "Click the file name to view full-sized version.
";
$path = "";
//specify size of thumbnail
$size = 100;
foreach (�$filearray as $key => $value){
 $path = "$directory/".$key;
 /*errors in getthumb or in class will result in broken links
 - error will not display*/
 echo "<img src=\"getthumb.php?path=$path&size=$size\" ".
 "style=\"border:1px solid black;margin-top:20px;\" ".
 "alt= \"$value\" />
\n";
 echo "";
 echo "Title: $value
\n";
}
echo "</div>
";

Listing 8-2: Code to loop through thumbnail images

This code differs from the code in Chapter 6 only in that � the $filearray
variable that contains the image filenames is the portion of the total array
retrieved by the getArraySlice method and not all the filenames.

Creating the PageNavigator Object

In order to create the page navigator, you need the current page name and
also the total number of image files; the global $_SERVER array supplies the
name of the current page and getCount the total number of images.

$pagename = basename($_SERVER["PHP_SELF"]);
$totalcount = $di->getCount();

You only need to create the navigator if there is more than one page, so
calculate that number first, as shown in the code in Listing 8-3.

$numpages = ceil($totalcount/PERPAGE);
//create if needed
if($numpages > 1){
 //create navigator
 $nav = new PageNavigator(�$pagename, $totalcount, PERPAGE, $totaloffset);
 //is the default but make explicit
 �$nav->setFirstParamName(OFFSET);
 echo �$nav->getNavigator();
}

Listing 8-3: Creating the navigator if there’s more than one page

OOPHP_02.book Page 62 Friday, May 5, 2006 2:25 PM

Using the PageNav igator Class 63

When constructing the PageNavigator instance, you pass it � the four
required parameters and let the two additional parameters—$maxpagesshown
and $params—default to 4 and an empty string, respectively. This means that
the navigator will show links to a maximum of four pages and that there are
no additional name/value pairs for the query string. (As promised in Chap-
ter 7, you’ll learn more about $params in Chapter 9. However, you may already
have surmised that this variable can be used to replace the hard-coded
directory name given in Listing 8-1.)

You do not need to set � the first parameter name; it has a default value
of offset. However, by setting the name here, you make it clear that this is the
name of the one required name/value pair, and that it can be changed if
desired.

Finally, the HTML code that makes up � the navigator is returned and
displayed in the web page.

Where to Go from Here

Using the PageNavigator class solves two problems: it alleviates the demand on
server resources and it improves the aesthetics of the web page display. Only
a limited number of images are displayed at any one time, thus reducing the
demands on the server. Aesthetic requirements are satisfied by reduced web
page length.

As noted on many occasions, the real value of objects is in their reusability.
Through the use of CSS, you’re able to adjust the appearance of the page
navigator to match it to a variety of situations. By using span and div tags,
you can manipulate the look and feel of the navigator so that it blends easily
with any design. The number of items shown on each page and the number
of pages accessible at any one time can be set to any number desired.

We’ve seen that the PageNavigator class’s design is adaptable and that
you can use it to step through an array of images, but what about its use in
other situations? A navigator is much more commonly required with database
queries that return a large number of records. In the next chapter, we’ll
develop a database class and then see how well the PageNavigator class can
handle a large result set. The ability to reuse the navigator class in various
and different circumstances will be a true test of its robustness.

OOPHP_02.book Page 63 Friday, May 5, 2006 2:25 PM

9
D A T A B A S E C L A S S E S

The last chapter ended by saying we would
create a database class in order to test the

versatility of the page navigator. That’s what
we’re going to do in this chapter. I noted earlier

that it’s sometimes difficult to identify objects, because
often what’s needed is something conceptual rather than something physical
and concrete. The database class or classes that we are going to create in this
chapter are definitely of this nature. We can probably determine some of the
requirements by looking at the DirectoryItems class—after all, as you learned
in Chapter 5, this class is similar to a database table.

Using What You Know

Pursuing this line of thought, you need to:

� Filter and order records

� Know the total number of records

� Be able to extract sequential subsets of the total

OOPHP_02.book Page 65 Friday, May 5, 2006 2:25 PM

66 Chapter 9

In the context of database classes, the description of the requirements
immediately suggests the use of the SQL ORDER BY, WHERE, and LIMIT clauses to
order, filter, and extract subsets respectively. You had to create this kind of
functionality for the DirectoryItems class, but why recreate what’s already
available in SQL?

Just as PHP’s built-in image manipulation functions helped create the
ThumbnailImage class, look also for assistance from the existing MySQL-related
functions. If you’ve used these functions before, you’ll immediately know
which ones are the most important and the most commonly required. Obvi-
ously, you’ll need mysql_connect to create a connection to a specific server.
Creating a connection is a prerequisite for using mysql_select_db to select
a database and mysql_query to execute a query and return a result set of rows.

One Lump or Two?

There are two distinct classes that can be built around these existing PHP
MySQL functions, depending upon your preferences: a connection class and
a result set class. First, you’ll create a database connection class, as you might
imagine, making use of the mysql_connect function. A connection is server-
specific and can be used to create any number of result sets taken from any
database on that server. It simply sets up communication between a web page
and a database server. A result set makes use of a connection in order to
update or display data. You’ll build a MySQL result set class around the
mysql_select_db and mysql_query functions.

You will develop fairly skeletal versions of these two classes, emphasizing
any unexplored areas of object-oriented programming (OOP). Nevertheless,
these classes will be perfectly fit for the task of testing the versatility of the
PageNavigator class.

In this chapter, we’ll take a slightly different approach to the code. I’ll
show the data members and the methods of the class, but I’ll only reproduce
code that requires comment. As usual, the complete code is available at the
companion website, so don’t hesitate to download it and refer to it if you find
this helpful.

The MySQLConnect Class

The MySQLConnect class is a fairly modest class with only two data members and
four public methods.

//data members
private $connection
private static $instances = 0
//methods
public function __construct($hostname, $username, $password)
public function __destruct()
public function createResultSet($strSQL, $databasename)
public function close()

OOPHP_02.book Page 66 Friday, May 5, 2006 2:25 PM

Database Classe s 67

What is immediately noteworthy about this class is the use of the keyword
static to modify a data member. Identifying a variable as static means that it
is shared among all instances of a class. If one instance changes the value of
a static variable, it is changed for all instances. Unique variables are created
each time a class is instantiated, and they belong to that specific instance.
Not so with static variables—they belong to the class as a whole (and for
this reason are sometimes referred to as class variables). Let’s look at the
code for the constructor and see how this can be useful.

A Class-Conscious Variable

The parameters passed to the constructor are those necessary to make a
database connection using the built-in PHP function, mysql_connect. Again,
this method is a wrapper method but with a few additional bells and whistles.

public function __construct($hostname, $username, $password){
 if(�MySQLConnect::$instances == 0){
 $this->connection = mysql_connect($hostname,$username,$password) or

die (mysql_error(). " Error no:".mysql_errno());
MySQLConnect::$instances = 1;

 }else{
 $msg = "Close the existing instance of the ".
 "MySQLConnect class.";
 die($msg);
 }
}

This class won’t be instantiated if there is already an existing instance.
If the $instances variable has a value of 0, a connection is made to the server,
and the value of $instances is set to 1. Checking the value of this static variable
makes sense because it is shared among all instances, it’s available to all
instances, and its value is the same for all instances.

The syntax for referencing a static variable (�) is different from that used
to reference a normal data member. It would not make sense to use the
pseudo-variable $this with $instances, since $this refers to the current object
and by definition, static variables belong to the class rather than a specific
instance. Quite sensibly, the class name is used instead, and the arrow operator
is replaced by a double colon—the scope resolution operator.

The scope resolution operator is principally used when referencing static data
members or static methods. In Chapter 10 you’ll see the two other occasions
when this operator is used, but for now you need only concern yourself with
its use with static data members. When referencing a static variable from
within its class, you also have the option of replacing the class name with
the keyword self. In this case, the expression self::$instances is equivalent
to MySQLConnect::$instances. Static members referenced outside the confines
of their class must use the class name. You don’t need to worry about that
here, since $instances is private and cannot be referenced outside the
MySQLConnect class.

OOPHP_02.book Page 67 Friday, May 5, 2006 2:25 PM

68 Chapter 9

At this point you may be thinking, “That’s all well and good, but why
would I want a class that I can only create one instance of?” Creating a
database connection is an expensive operation so restricting creation of
connections conserves resources.

NOTE By restricting the connection class to a single instance, we are mimicking the built-in
mysql_connect function. Its default behavior is to reuse a connection resource rather
than create a new one.

However, there are some circumstances where a new connection is a
necessity.

Making Other Connections
Two different connection objects are required if a single script needs to con-
nect to two different servers. The close method makes it possible to connect
to a different server.

public function close(){
 MySQLConnect::$instances = 0;
 if(isset($this->connection)){
 mysql_close($this->connection);
 unset($this->connection);
 }
}

Two instances of the MySQLConnect class can exist, but not simultaneously.
If you want to create a connection to another server, you must first close the
existing connection. The close method closes the current connection and
resets the static variable $instances to 0. Manipulating the $instances variable
in this way allows you to create a new connection, but only after the current
one is closed.

Explicitly closing a connection and unsetting it makes for clearer error
messages should you accidentally call a result set method after closing its
connection. The requirement to close the current connection also serves
as a reminder that a result set is a dependent object.

To make this even clearer, let’s look at how a result set is created.

You Can Only Get There from Here
The following method serves as a very strong reminder that you first need a
connection in order to create a result set:

public function createResultSet($strSQL, $databasename){
 $rs = new MySQLResultSet($strSQL, $databasename, $this->connection);
 return $rs;
}

The creation of a MySQLResultSet requires a reference to the connection data
member of the MySQLConnect class. This data member is private and does not
have an accessor method, so it’s only available from within the MySQLConnect

OOPHP_02.book Page 68 Friday, May 5, 2006 2:25 PM

Database Classe s 69

class. Short of reverting to procedural programming to create a connection
resource, you cannot create an instance of the MySQLResultSet class except by
using this method of the MySQLConnect class. This makes it very clear that a
result set is a dependent object. You can’t create one without first having a
connection to a server. Instantiating an object of the MySQLResultSet class from
within the MySQLConnect class serves not only to remind you of this dependency,
but it enforces it programmatically. To understand the connection class,
you’ve had to look ahead at the constructor for the result set class.

Let’s examine the rest of this class in detail.

The MySQLResultSet Class

Not surprisingly, the MySQLResultSet class (shown in Listing 9-1) has more data
members and methods than the MySQLConnect class. However, in many ways,
it’s a much simpler class and requires much less explanation. To get an
overview of this class, find all its data members and methods listed here:

 //data members
 private $strSQL
 private $databasename
 private $connection
 private $result
 // public methods
 public function __construct($strSQL, $databasename, $connection)
 public function __destruct()
 //return current record
 public function getRow()
 //accessor method for returning database name
 public function getDatabaseName()
 public function getNumberColumns()
 public function getNumberRows()
 //get id of most recently inserted record
 public function getInsertId()
 //find total number without a LIMIT clause
 public function getUnlimitedNumberRows()
 public function getFieldNames()
 public function findVersionNumber()
 //private methods
 //make sure the sql is a SELECT
 private function checkForSelect()
 //close result set and unset
 private function close()
 //version specific count methods
 private function countVersionFour()
 private function countVersionThree($tempsql, $end)

Listing 9-1: The MySQLResultSet class

You’ve already seen the constructor for this class, but a few general
comments are in order before looking at any of the methods in more detail.
One notable absence from the list of methods is a method equivalent to the

OOPHP_02.book Page 69 Friday, May 5, 2006 2:25 PM

70 Chapter 9

getArraySlice method of the DirectoryItems class. You could have created
something equivalent by selecting all the required records and then using
the built-in function mysql_data_seek to reposition the record pointer as
necessary, but the price to pay for this relatively easy implementation would
be poor performance. Imagine paging through 1,000 records 10 records at a
time and for each page, bringing over all 1,000 records. The more scalable
solution is to restrict the number of records selected by using a LIMIT clause
in the SQL that creates the result set.

However, in order for your page navigator to function, you also need to
know the total number of records without a LIMIT clause. With MySQL versions
4.0 and higher, there is an easy way of doing this using SQL_CALC_FOUND_ROWS,
followed by a call to the FOUND_ROWS function. For MySQL version 3, you can
use the COUNT function without a LIMIT clause.

This is a fairly easy process to automate, so to make things easier on
yourselves and your client programmers, you create the getUnlimitedNumberRows
method. Briefly, the getUnlimitedNumberRows method confirms that the query is
a SELECT, determines the MySQL version number, and discovers the total
number of records that would be returned without a LIMIT clause by calling
the private method countVersionThree or countVersionFour.

Most of the remaining methods are simply wrapper methods for exist-
ing MySQL functions, or they make use of these functions to perform fairly
straightforward tasks. You won’t actually be using some of these methods—
getNumberColumns, for instance—but they give you an idea of how this class
could be expanded.

This isn’t the last you’ll see of the MySQLResultSet class. We’ll return to
it again in Chapter 10 because it provides an ideal opportunity for further
exploring OO programming. Right now though, your primary concern is to
see how it functions with the PageNavigator class.

Using the Page Navigator

In order to use the page navigator to page through a result set, you’ll need a
database and a table. Almost any database will do; feel free to use one that
you have at hand, but for your convenience, the following SQL statement
creates the table used with the code example:

CREATE TABLE `tblbooks` (
 `inventorynumber` int(11) NOT NULL auto_increment,
 `cat` char(3) NOT NULL default '',
 `title` varchar(150) NOT NULL default '',
 `author` varchar(100) NOT NULL default '',
 `publisher` varchar(4) NOT NULL default '',
 `sold` tinyint(1) default 0,
 PRIMARY KEY (`inventorynumber`),
 KEY `authidx` (`author`)
)

OOPHP_02.book Page 70 Friday, May 5, 2006 2:25 PM

Database Classe s 71

This is a fairly simple table, but it’s perfectly adequate for your needs—
as long as it’s populated with a sufficient number of records. The example
shows five records per page, so at least six records are required.

NOTE The SQL to create this table and insert a number of records is available with the
downloads for this chapter. Find the file books.sql.

The code to use the page navigator with a result set is very similar to the
code you used when testing the DirectoryItems class. I’ll comment on the
differences only.

require 'MySQLConnect.php';
require 'PageNavigator.php';
define("OFFSET", "offset");
//get query string
$offset = @$_GET[OFFSET];
//max per page
define("PERPAGE", 5);
//check variable
if (!isset($offset)){
 $recordoffset = 0;
}else{
 //calc record offset
 $recordoffset = $offset * PERPAGE;
}

To this point, the code is identical to the code in Chapter 8, but the
MySQLConnect class replaces the DirectoryItems class. Remember that the
MySQLResultSet class has been included within the MySQLConnect.php file, so it
doesn’t need to be included here with a require statement.

$category = �@$_GET["category"];
//check variable
if (!isset($category)){
 $category = "LIT";
}

To demonstrate the versatility of the PageNavigator class, another name/
value pair is passed to this page. In addition to the $offset value, you pass in
� a $category value. Doing this allows you to use the identical query for any
category of books you choose by simply adding another criterion to the WHERE
clause of your SQL. Using the $category value also demonstrates, as I promised
earlier, how the final parameter passed to the page navigator (in this case,
$otherparameter) is used—but more about that shortly.

Ordering, Filtering, and Extracting

In plain English, your SQL statement (Listing 9-2) allows you to select the
author and title for unsold books in the specified category. The books are
ordered by the author name.

OOPHP_02.book Page 71 Friday, May 5, 2006 2:25 PM

72 Chapter 9

$strsql = "SELECT author, title ".
 "FROM tblbooks ".
 "WHERE sold = 0 AND cat = '$category' ".
 "ORDER BY author LIMIT �$recordoffset,". �PERPAGE;

Listing 9-2: The SQL statement

The MySQLResultSet class is created using a fairly simple SQL query with a
LIMIT clause. This clause performs the same function as the getArraySlice
method of the DirectoryItems class by selecting only a portion of the total.
Notice that � the first parameter—$recordoffset—indicates the start position
within the result set, and � the second parameter—PERPAGE—indicates the
number of records that will be returned.

You create an instance of a MySQLConnect object by passing in the required
parameters: host, username, and password.

$con = new MySQLConnect('localhost', 'webuser', 'webpassword');

For the sake of clarity, literal values are shown, but in a real-life situation,
you would probably want to use variables rather than literals and perhaps
for security reasons, locate the file that contains these variables outside
the web directory. Substitute values appropriate to your MySQL database
for the literals given above. Likewise with the database name used when
creating a result set.

Using a method of the MySQLConnect object, you create a MySQLResultSet—$rs.

//get result set
$rs = $con->createResultSet($strsql, 'mydatabase');

The constructor for the result set class selects the database and executes
the query against it.

Traversing the Result Set

All that remains before displaying your page navigator is to traverse the result
and output it.

echo "<div style=\"text-align:center\">";
while($row = $rs->getRow()){
 echo $row[0]." - ".$row[1];
 echo "
\n";
}
echo "
";
echo "</div>\n";

The getRow method of a MySQLResultSet calls the PHP function
mysql_fetch_array, retrieving the current record and moving the record
pointer forward to the next record. (This is a perfectly adequate way of

OOPHP_02.book Page 72 Friday, May 5, 2006 2:25 PM

Database Classe s 73

iterating through your results, but you will develop a different approach in
Chapter 10.) There are only two fields in your result set, and both of these
are echoed to the screen centered within a div tag.

Your Navigator Needs Directions

Next, you need to collect the information needed by the page navigator.

$pagename = basename($_SERVER['PHP_SELF']);
//find total number of records
$totalrecords = $rs->getUnlimitedNumberRows();
$numpages = ceil($totalrecords/PERPAGE);

In Chapter 8, the DirectoryItems class simply called the built-in count
function of an array to determine the total number of items but here the
method getUnlimitedNumberRows is used. This method returns the total number
of records that there would be if the SQL statement shown in Listing 9-2 was
executed without a LIMIT clause. Remember, the LIMIT clause allows you to
return a selection of records much like the getFileArraySlice method of the
DirectoryItems class.

//create category parameter
$otherparameters = "&category=LIT";

It is often the case that web pages are invoked passing a query string
that contains a number of name/value pairs; this is the purpose of the
$otherparameters variable. When you used the PageNavigator class with the
DirectoryItems class, you ignored this parameter and let it default to an
empty string. Here, you are only passing one name/value pair, but any
number may be passed as long as they are formatted properly using the
character entity for an ampersand (&) and an equal sign (=). (In some
cases, you may also need to URL-encode them.)

//create if needed
if($numpages > 1){
 //create navigator
 $nav = new PageNavigator($pagename, $totalrecords, PERPAGE,
 $recordoffset, 4, $otherparameters);
 echo $nav->getNavigator();
}

This PageNavigator instance is slightly different from the one in Chapter 8.
In that chapter, you let the last two parameters default, but because you are
making use of $otherparameters, and because this variable is the last value
passed to the PageNavigator constructor, you have no choice but to specify all
preceding values.

NOTE Remember that no parameter may have a default value if it is followed by a parameter
with a specified value. (PHP enforces this at call time, not when the method is defined.)

OOPHP_02.book Page 73 Friday, May 5, 2006 2:25 PM

74 Chapter 9

Recall that the second-to-last value passed to the navigator determines
the width of the navigator and the number of links shown. In the preceding
code, its value is 4.

How the navigator actually appears depends on the number of records
in the tblbooks table and, of course, on how you have configured the CSS
classes that control the navigator’s appearance. If you have been following
along and coding as you read, you’ll see that the PageNavigator class functions
every bit as well with a database as it did with the DirectoryItems class—it is a
reusable object.

Where to Go After the Navigator

We developed these database classes because they are useful in themselves,
but they also show the versatility of the PageNavigator class—this is not a one
trick pony but a class that can be reused in a variety of situations. Along the
way, you’ve also learned more about OOP and the process of class creation.
This is not something that takes place in a vacuum. Knowledge of existing
PHP functions and of SQL was essential to the process and conditioned the
result. What you already know about PHP as a procedural programmer and
about SQL has proven to be an invaluable asset.

In the next chapter we’ll improve on the database classes introduced
here and explore one of the most important concepts of OOP, inheritance.
We’ll also look at one of the classes built in to PHP 5, namely Exception. From
now on we will make use of classes built in to PHP 5 so code compatible with
PHP 4 can no longer be provided.

OOPHP_02.book Page 74 Friday, May 5, 2006 2:25 PM

10
I M P R O V E M E N T T H R O U G H

I N H E R I T A N C E

Anyone who has played Monopoly knows
that a player’s financial situation can be

improved through inheritance. In object-
oriented programming (OOP), inheritance

can also bring improvement. In this chapter we’ll use
inheritance to improve the MySQL classes developed
in Chapter 9, by simplifying error trapping and by
modifying the behavior of the MySQLResultSet class.

Trapping errors is not a job that developers approach with enthusiasm.
It is tedious and a distraction from the task at hand. No one sets out to write
error-handling code; it is a necessary evil. Not only that, error trapping is
ugly. It clutters up well-written code and often ends up obscuring what was
initially readable. Further, it’s not a good idea to write error trapping in the
early stages of development because you want errors to be readily apparent.
For these reasons error trapping is often left until the final stages of develop-
ment and, if it is done at all, it is tacked on more or less as an afterthought.

OOPHP_02.book Page 75 Friday, May 5, 2006 2:25 PM

76 Chapter 10

One of the big advantages of OOP is the ability to catch exceptions
rather than trap errors. By catching exceptions, the task of handling errors
can be centralized. This makes for much tidier code and eases the transition
from development to production code—erasing the need to tack on error
trapping at the end.

This improvement to error handling is made possible because of a built-
in class, Exception. In this chapter you will use this class as the base class for
building your own exception class.

The second improvement we’ll apply involves modifications to the user-
defined class, MySQLResultSet. As you saw in the previous chapter, result sets
and arrays have characteristics in common; you often need to iterate through
them to examine each element. It is exceptionally easy to traverse an array by
using a foreach loop. This easy traversal is the modification in behavior that
we have in mind for the MySQLResultSet class. In this case, a built-in interface
(rather than a class) facilitates adding this behavior to the MySQLResultSet class.

The Standard PHP Library

These planned improvements to the MySQL classes use the Standard PHP
Library (SPL), a collection of classes and interfaces aimed at solving common
programming problems. The SPL, new to PHP 5, is roughly comparable to
the Standard Template Library in C++ or the many classes built in to the Java
language. But whereas there are thousands of classes to draw upon in Java, the
number available in PHP is much more modest.

We’ll use the Exception class to form the basis for a MySQLException class
and the SPL to adapt the MySQLResultSet class for use with a foreach loop by
using the Iterator interface. Besides the classes belonging to the SPL, there
are well over 100 built-in classes in PHP 5. We’ll deal with some of the other
built-in classes in Chapters 12, 14, 15, and 16.

Extending a Class Through Inheritance

One of the major advantages of OOP is that you don’t always have to start
from scratch. Existing classes may be able to do the job for you. If an existing
class does exactly what’s required, then you can simply use it “as is.” If it does
something similar, but not exactly what you need, you can adapt it. This
process of adaptation is called inheritance.

Inheritance is one of the most important features of object-oriented (OO)
languages. It allows us to create new classes from existing ones, exploiting
behavior that is already defined and adjusting it as necessary. The term
“inheritance” is appropriate because the data members and methods of the
original class become part of the newly created class. However, as with genetic
inheritance, the child may be similar to the parent in some respects but
different in others.

Because a child class is derived from a parent class, it is also referred to as
a derived class, and its parent is called the base class. Parent classes are also some-
times referred to as superclasses and derived classes as subclasses.

OOPHP_02.book Page 76 Friday, May 5, 2006 2:25 PM

Improvement Through Inher i tance 77

The Exception Class

The first step in inheriting from a class is to understand the structure of the
parent class. For example, Listing 10-1 lists all the data members and meth-
ods of the Exception class.

protected $message;
protected $code;
protected $file;
protected $line;
private $string;
private $trace;
public function __construct($message = null, $code = 0);
public function __toString();
final public function getCode();
final public function getMessage();
final public function getFile();
final public function getLine();
final public function getTrace();
final public function getTraceAsString();
final private __clone();

Listing 10-1: Data members and methods of the Exception class

You’ll notice some unfamiliar keywords (such as protected and final) as
well as a couple of unfamiliar methods that begin with a double underscore
(magic methods). We’ll discuss each of these in turn.

protected

You should now have a good understanding of the keywords private and
public as applied to data members or methods (if not, see Chapter 4).
However, one additional piece of information about access modifiers not
mentioned so far is that private methods or data members are not inherited
by a derived class.

In some cases though, you may want new classes to inherit private data
members. To do this, you use the access modifier, protected, in place of private.
A protected data member, like a private data member, cannot be directly
accessed outside its class, but it can be inherited and directly accessed by a
derived class. In the specific case in question, any class derived from Exception
will have direct access to $message, $code, $file, and $line, but no direct access
to $string or $trace. This means that the following assignment is allowed from
within a class derived from Exception:

$this->message = 'New Error';

and this is disallowed:

$this->string = 'Any string';

OOPHP_02.book Page 77 Friday, May 5, 2006 2:25 PM

78 Chapter 10

In addition to restricting access and controlling the way that a client
programmer can use a class, the keywords private, protected, and public play
a role in inheritance. Protected methods and data members are inherited
by a derived class, but restricted access is preserved.

final

The keyword final also has meaning only in the context of inheritance.
When a method is defined as final, no derived class can change it.

With non-final methods, a derived class can always redeclare the function
and have it do something different. A class derived from the Exception class
cannot create a new getCode method. On the other hand, there are no
restrictions on creating a derived method called __toString.

NOTE From the point of view of the class originator, the keyword final is a way of ensuring
that certain elements of a class are not changed. Additionally, when final is applied to
a class as a whole, nothing in that class can be changed.

More Magic Methods

The Exception class contains two new magic methods. We’ll discuss each in turn.

__toString

If the __toString method of a class is defined, it is invoked automatically when-
ever that class is displayed. For example, suppose you create an instance of
the Exception class and want to echo it to the screen like so:

$e = new Exception();
echo $e;

The expected result when echoing a simple variable to the screen is
obvious. For example, if the variable is an integer with the value of 5, you
expect 5 to appear on the screen. However, if you echo an instance variable
to the screen, and the __toString method is not defined, you’ll see something
like Object id#3. Because objects are composite, that is, they are made up of a
number of data members and methods, it is not readily apparent what the
string representation of an object should be.

The __toString method was introduced to control what happens when a
class is displayed. It allows you to define a more meaningful string represen-
tation of your class. It is called “magic” because it is invoked in the background
whenever an instance variable is the object of the print or echo functions. In
the example code snippet above, when $e is output to the screen, an implicit
call is made to the __toString method.

A __toString method can be a convenient way of looking at the properties
of an object in much the same way that the print_r function displays all the
keys and values of an array. (We’ll examine this method again later in this
chapter when we discuss the MySQLException class in connection with catching
exceptions.)

OOPHP_02.book Page 78 Friday, May 5, 2006 2:25 PM

Improvement Through Inher i tance 79

__clone

The __clone method is a bit more problematic than __toString. Whereas
__toString allows you to adjust the behavior of an object when it is displayed,
__clone is invoked when you copy your object using the clone operator. This
operator (new to PHP 5) allows you to create a copy of an object rather than
just a reference to it. (For those of you familiar with other OO languages, this
magic method acts like a copy constructor.)

You should generally implement the __clone method for any class
that is an aggregate object. An aggregate object is an object that has at
least one data member that is itself an object. For example, if both Player
and Team are objects and Team contains Players, then Team is an aggregate
object.

NOTE See Chapter 13 for a more detailed description of the __clone method and the clone
operator and for a more extensive treatment of aggregate classes.

Replacing Errors with Exceptions

Before you create your derived class, let’s look at the code that the
MySQLException class will replace. The MySQLConnect class constructor
provides a good example of how your exception class will be used.

Recall that your main goal when creating your own exception class is to rid
your code of messy error trapping procedures. You’ve achieved this to some
extent simply by incorporating error trapping into class methods, but you
can reap further benefits.

In Listing 10-2, exceptions will replace the code that currently calls the die
function. In the first case you � terminate the program because mysql_connect
cannot create a connection, whether because of an incorrect host, username,
or password, or perhaps because the MySQL server is down. In any case, a look
at the built-in error messages will help identify the problem and whether or
not it is within your control.

function __construct($hostname, $username, $password){
 if(MySQLConnect::$instances == 0){
 $this->connection = mysql_connect($hostname, $username, $password) or
 �die(mysql_error(). " Error no: ".mysql_errno());
 MySQLConnect::$instances = 0;
 }else{
 $msg = "Close the existing instance of the ".
 "MySQLConnect class.";
 �die($msg);
 }
}

Listing 10-2: Code of MySQLConnect class constructor that calls the die function

OOPHP_02.book Page 79 Friday, May 5, 2006 2:25 PM

80 Chapter 10

In the second case � execution is deliberately terminated because your
class is being misused. You don’t want a client programmer to attempt to open
two connections simultaneously because one is all that’s required. Here, you
have two different kinds of errors, one of indeterminate cause and the other
an instance of class misuse.

NOTE Recall that because PHP is not a compiled language there is no such thing as a compile-
time error. By creating your own exception class you partially remedy this situation by
creating messages that indicate class misuse.

The MySQLException Class

You can improve the functionality of a class when using inheritance by adding
new methods or changing inherited ones. Changing inherited methods of a
class is called overriding. In this particular case, the number of changes you can
make to existing methods by overriding them is severely limited because, as
you saw in Listing 10-1, there are only two non-final methods of the Exception
class: the constructor and the __toString method. Let’s change both of these
methods (see Listing 10-3).

class MySQLException �extends Exception{
 //no new data members
 public function __construct($message, $errorno){
 //check for programmer error
 if($errorno >= 5000){
 $message = __CLASS__ ." type. Improper class usage. ". $message;
 }else{
 $message = __CLASS__ . " - ". $message;
 }
 //call the Exception constructor
 parent::__construct($message, $errorno);
 }
 //override __toString
 public function __toString(){
 return ("Error: $this->code - $this->message");
 }
}

Listing 10-3: Code to create the MySQLException class

To inherit from an existing class and add its functionality to a newly
created class, use � the keyword extends and the parent class name. Since
Exception is a built-in class, there’s no need to explicitly include any files.
The keyword extends is all that’s needed in order to give our newly created
class immediate access to all the public and protected methods and data mem-
bers of its parent. This is a very succinct and elegant way of reusing code.

OOPHP_02.book Page 80 Friday, May 5, 2006 2:25 PM

Improvement Through Inher i tance 81

Overridden Methods

Listing 10-3 shows all the code required to create a class derived from
Exception. There are only two methods and both are overridden parent
class methods.

But let’s take a more detailed look, beginning with the constructor. Note
how it checks the value of the error number. This test is designed to separate
errors attributable to the programmer from all other errors.

We’ve chosen the range 5,000 and greater because this range is not used
by built-in MySQL errors. The message associated with programmer errors
indicates misuse of the class, and differentiating client programmer errors
from other errors makes it easier to use the database classes.

For clarity, the error message includes the class name, which we avoid
hard-coding by using the constant __CLASS__. After identifying the type of
error, the Exception class constructor is called using the scope resolution
operator and the keyword parent. (You encountered similar syntax when you
referenced a static variable in Chapter 9.) This is the syntax for calling any
parent method from within a derived class, and one of the few cases where
it’s necessary to invoke a magic method directly.

As you can see, there is no need to hard-code the parent class name
because all constructors are invoked by calling __construct—the very reason
for introducing a magic construction method in PHP 5.

NOTE If a derived class overrides a parent constructor, there is no implicit call to the parent.
The call must be made explicitly, as in Listing 10-3.

The __toString method defined in Listing 10-3 replaces the __toString
method inherited from the parent class. As a result, a MySQLException echoed
to the screen shows only the error number and the associated message, which
is much less informative than the __toString method of the parent class
(which traces the error and shows its line number). This makes for more
secure production code because it reduces the information associated with
an exception, but it also makes development of applications more difficult.
(You may want to comment out this code while debugging an application.
By so doing, you revert to the more informative method of the parent.)

Changes to the MySQLConnect Class

The changes required so that the MySQLConnect class can use MySQLException
objects are minimal. Of course the MySQLConnect class needs to know about
this derived exception class, but this is easily accomplished with the following
statement:

require 'MySQLException.php';

OOPHP_02.book Page 81 Friday, May 5, 2006 2:25 PM

82 Chapter 10

Next, you need an error code number that is greater than or equal to
5,000 (that is, outside the range used by MySQL). Then define a constant
class value using the keyword const and give this constant a name using
uppercase letters (per convention). The const keyword performs the same
task for OOP as the define function does for procedural programming—it
declares a variable that cannot be changed. Constant data members do not
use access modifiers, so they are effectively public.

const ONLY_ONE_INSTANCE_ALLOWED = 5000;

The only other changes involve the constructor, as shown in Listing 10-4.

public function __construct($hostname, $username, $password){
 if(MySQLConnect::$instances == 0){
 if(!$this->connection = mysql_connect($hostname, $username,$password)){
 �throw new MySQLException(mysql_error(), �mysql_errno());
 }
 MySQLConnect::$instances = 1;
 }else{
 $msg = "Close the existing instance of the ".
 "MySQLConnect class.";
 throw new MySQLException(�$msg, self::ONLY_ONE_INSTANCE_ALLOWED);
 }
}

Listing 10-4: Changes to the MySQLConnect constructor

Compare Listing 10-4 with Listing 10-2. Notice that the calls to the die func-
tion have been removed, and an exception has been constructed in their place.
The new keyword throw (�) is used exclusively with exceptions. It hands off the
exception to be dealt with elsewhere (as you’ll see in the following section).

The first MySQLException is constructed using � the built-in MySQL error
number and message. In the second case � an appropriate message is created
and the class constant, ONLY_ONE_INSTANCE_ALLOWED, is passed to the constructor.
(Notice the syntax for referencing a class constant using the scope resolution
operator and the keyword self; this is exactly the same way that a static vari-
able is referenced.)

Prodding Your Class into Action

If you force an exception by attempting to create a second connection without
closing the first one, you see this message:

Error: 5000 – MySQLException type. Improper class usage. Close the existing
instance of the MySQLConnect class.

This tells you the class the exception belongs to, that the error results
from misuse of the class, and how to rectify the error.

Changes to the MySQLResultSet class are identical to the changes shown
above. Constant data members with values greater than 5,000 are added to the

OOPHP_02.book Page 82 Friday, May 5, 2006 2:25 PM

Improvement Through Inher i tance 83

class in order to identify class usage errors, but otherwise existing error num-
bers and messages are used. (We won’t deal with the details here; to view those
changes, download the files associated with this chapter.)

NOTE Were you to develop the MySQL classes further, you might end up with an unwieldy number
of constants. In that case it would make sense to remove constant data members from
their respective classes and store them in a file associated with the MySQLException class,
or perhaps define them all in the MySQLConnect class, thereby avoiding possible numbering
conflicts.

Catching Exceptions

You have now finished all the changes in your database classes that relate to
exceptions. All you need to do now is to see how exceptions are caught by
enclosing your code within a try block.

A try block is a programming structure that is used to enclose code that
may cause errors. It is always followed by a catch block. An error, or more
properly speaking an exception, that occurs within the try is thrown and
handled by the catch. This is why a try/catch block is said to handle exceptions.

However, there are important differences between error trapping and
exception handling. The argument to a catch clause is always an object. Any
Exception that occurs within the scope of the try block will look for a catch
that has a matching Exception type as its argument.

NOTE The identification of the object type in a catch block is called type hinting. We’ll discuss
this in greater detail in Chapter 11.

You should begin the try block immediately before the first line of code
that might throw an exception (namely, where we create a connection object).
Then enclose every subsequent line of code within the try block, except
for the catch blocks. The code is otherwise identical to that in the page.php
file, included with the file downloads for Chapter 9; only the relevant parts
are reproduced in Listing 10-5.

try{
 $con = new MySQLConnect($hostname, $username, $password);
 //all remaining code
 ...
}
catch(MySQLException $e){
 echo $e;
 exit();
}
catch(Exception $e){
 echo $e;
 exit();
}

Listing 10-5: The try block and catch blocks, showing how exceptions are caught

OOPHP_02.book Page 83 Friday, May 5, 2006 2:25 PM

84 Chapter 10

You follow the try block with two catch blocks: one to catch the
MySQLException class and the other to catch the parent class, Exception. Any
code that throws an exception will be caught by one of the catch blocks.

A thrown exception looks for the first matching exception type in the
following catch blocks. When it finds a match, it executes the code within that
block. It ignores all other catch blocks (unless it is re-thrown). For example, if
a MySQLException is thrown in the try block of Listing 10-5, it will be caught by
the first catch, and the code in the second catch won’t execute.

The order of the catch blocks is the inverse order of inheritance: The
child class must precede its parent. Should the catch block for a parent class
precede the child class, the exception will always be caught by the parent,
and the child catch will be unreachable.

When using typical procedural error handling, you must check for errors
immediately following the code that may cause problems. As you can see in
Listing 10-5, an Exception may be caught many lines away from where the
problem occurs, which is an advantage because it makes for more readable
and maintainable code.

Implementing an Interface

Inheriting from an existing class is a very powerful tool in the OO program-
mer’s arsenal. However, it’s not always the appropriate one to use, because
PHP doesn’t allow a class to have more than one parent class.

This generally seems to be a good thing; it avoids the complexity that can
be introduced with multiple inheritance. However, suppose that you had cre-
ated a more abstract database result set class and derived your MySQLResultSet
from it. With single inheritance it would be impossible for your class to also
inherit from any other class.

For this reason PHP allows multiple inheritance, but only for interfaces.
As you saw in Chapter 2, an interface is a class with no data members that
declares but does not define methods (something that is left to the derived
class). An interface acts like a skeleton, and the implementing class provides
the body. Although a class can have only one parent class, it can implement
any number of interfaces.

D E A L I N G W I T H E X C E P T I O N S

Your catch blocks in Listing 10-5 simply output the error number and message and
end the application; there’s no need to recover from these exceptions or take any
other action. But this isn’t always the case. For example, suppose you create an
application that allows users to create their own SQL statements to query a data-
base. When errors in syntax occur it would make sense to display the error message
and reload the web page rather than simply exit the application. There are some
notable differences between error handling in PHP and other languages. For instance,
PHP doesn’t require that exceptions to be caught and does not support a finally
block.

OOPHP_02.book Page 84 Friday, May 5, 2006 2:25 PM

Improvement Through Inher i tance 85

Listing 10-6 shows the code for the interface we wish to use to improve
the MySQLResultSet class: the Iterator.

interface Iterator{
 public function current();
 public function key();
 public function next();
 public function rewind();
 public function valid();
}

Listing 10-6: Methods of the Iterator interface

Note that instead of beginning with the keyword class, Iterator begins
with interface, but otherwise it looks like a class. Notice too that method
names have access modifiers and that the method declarations are followed
by semicolons. There are no braces following the method names because
there is no implementation—which is precisely what makes an interface an
interface. The interface is a skeleton; an implementing class must flesh it out.

Learning About the Iterator Interface
Here’s a brief description of each method in the Iterator interface:

A bit more can be gleaned from watching an iterator in action. For exam-
ple, the code shown in Listing 10-7 traverses an iterable object using all of the
methods in the Iterator interface.

$iterator->rewind();
while($iterator->valid()){
 echo $iterator->key();
 print_r($iterator->current());
 $iterator->next();
}

Listing 10-7: Using the methods in the Iterator interface to traverse an iterable object

You begin by calling the rewind method to ensure that you are at the start
of the result set. The call to valid controls the while loop so that it continues
only as long as there is another record to retrieve. In our implementation,
the key returned by the key method will be a number; it is displayed here
simply for demonstration purposes. The method current returns the record
that the result set currently points to. Finally, a call to next advances the record
pointer.

current Returns the current element
key Returns the key of the current element
next Moves forward to the next element
rewind Rewinds the iterator to the first element
valid Checks to see if there is a current element after calls to rewind

or next

OOPHP_02.book Page 85 Friday, May 5, 2006 2:25 PM

86 Chapter 10

You’ve probably used foreach loops in many different circumstances
(most likely with arrays), but you may not have given much thought to what
goes on in the background. Listing 10-7 shows what happens in a foreach
loop. At the start of the loop an implicit call is made to the rewind method,
ensuring that you are at the beginning and that the first record is ready to be
displayed. If there is a valid record you can enter the loop with the record
pointer pointing to the current row. The record pointer is then advanced—
by making an implicit call to next—and the process is repeated until the end
of the record set is reached.

Implementation

To implement an interface, you need to indicate inheritance in your class def-
inition. When inheriting from a class you use the keyword extends, but when
inheriting from an interface you use implements. Your class definition now reads

class MySQLResultSet implements Iterator

Implementing an interface also requires that all methods be defined.
In this particular case you must add the five methods of an iterator, as well

as the new data members currentrow, valid, and key, to your existing class. The
currentrow member will hold the value(s) of the current row. The member valid
is a Boolean that indicates whether there is a current row. The member key
simply functions as an array subscript.

Five New Methods

The first three methods that your new class MySQLResultSet inherits from the
Iterator interface are straightforward accessor methods that return the value
of the newly added data members, like so:

public function current (){
 return $this->currentrow;
}
public function key (){
 return $this->key;
}

I T E R A T O R M E T H O D S

We’ll seldom use the iterator methods directly. We’re implementing this interface so
that we can use a MySQLResultSet within a foreach loop. In a sense, these methods
are magic because they are invoked in the background by the foreach construct in
much the same way that the __toString method of the MySQLException class is invoked
when a MySQLException object is displayed. Any object used within a foreach loop
must devise its own implementation of the iterator methods. The implementation will
differ depending upon the nature of the object—an iterator that traverses file directories
will differ significantly from a result set iterator, for example, but all objects that
implement a specific interface will exhibit common behaviors. The point of an
interface is that it guarantees the existence of specific methods without specifying
what exactly these methods should do.

OOPHP_02.book Page 86 Friday, May 5, 2006 2:25 PM

Improvement Through Inher i tance 87

public function valid (){
 return $this->valid;
}

The method current returns the value of the current record if there is
one; key returns its array subscript; and valid returns true unless the record
pointer is positioned at the end of the record set. The more interesting meth-
ods, however, are next and rewind. First, let’s look at the next method:

public function next (){
 if($this->currentrow = �mysql_fetch_array($this->result)){
 $this->valid = true;
 $this->key++;
 }else{
 $this->valid = false;
 }
}

In this code, you see that next attempts to retrieve the next row from � the
result set, and then resets the data members valid and key accordingly.

As you would expect, rewind resets the record pointer to the beginning of
the result set after first checking that the number of rows is greater than 0.
This method must also maintain the valid and key data members. The data
member valid indicates whether there is a current row, and key is reset to 0.

Here’s the rewind method:

public function rewind (){
 if(mysql_num_rows($this->result) > 0){
 if(�mysql_data_seek($this->result, 0)){
 $this->valid = true;
 $this->key = 0;
 $this->currentrow = mysql_fetch_array($this->result);
 }
 }else{
 $this->valid = false;
 }
}

This method works because your result set is buffered; it was created using
the function mysql_query. Because a buffered result set stores all rows in mem-
ory, � the record pointer can be repositioned.

NOTE An unbuffered result set uses a forward-only cursor, so it cannot use the mysql_data_seek
function. Unbuffered result sets are discussed in both Chapter 15 and Chapter 16.

What to Do with Flightless Birds

Flightless birds such as the emu and the ostrich are unquestionably birds,
but they lack one defining characteristic of birds—flight. Like flightless birds,
unbuffered result sets lack one characteristic of an iterator. Unbuffered result
sets are unquestionably iterable, but they cannot be rewound.

OOPHP_02.book Page 87 Friday, May 5, 2006 2:25 PM

88 Chapter 10

When I introduced interfaces I defined them as classes that have meth-
ods but no body for those methods. A class that implements an interface
must provide the body for every method of the interface. What, then, do you
do with an unbuffered result set and the rewind method?

Just as flightless birds simply don’t fly, an unbuffered result set can define
a rewind method that does nothing.

NOTE The problem of unwanted methods of an interface is not peculiar to PHP. Other OO
languages such as Java circumvent this problem by using “adapter” classes that provide
an empty implementation of unwanted methods and only require that desired methods
be defined.

Leaving a Method Undefined

If you implement an interface but don’t define all of its methods, you’ll receive
a fatal error message. For example, if you try to use the MySQLResultSet class
without defining the key method, you’ll see a fatal error like this:

Class MySQLResultSet contains 1 abstract methods and must therefore be
declared abstract (Iterator::key)

Not the error you would expect, perhaps, but an error nonetheless, and
an informative one at that. As you can see, even though you haven’t imple-
mented the key method, it hasn’t gone away because it is inherited from the
Iterator interface. (The key method is considered abstract because it has no
implementation.)

There are two ways to eliminate this error message. The obvious one, of
course, is to define the key method. However, you could also create error-free
code by adding the modifier abstract to your class by changing the declara-
tion class MySQLResultSet to abstract class MySQLResultSet.

You’ve just created your first abstract class, which is a class with one or
more methods that lack an implementation. A purely abstract class is one in
which all methods lack an implementation, as with all methods in an inter-
face. The only difference between a purely abstract class and an interface is
that it is defined as a class rather than as an interface.

NOTE You cannot create an instance of an abstract class; you must inherit from it and
implement the abstract method(s), as with an interface. You’ll learn about abstract
classes in the next chapter.

Implementation and Access

By removing the key method and forcing an error we learned a few more
things about OOP. Let’s see what we can learn by changing the access modifier
of the rewind method from public to private. Do this and preview the class in
your browser. You should see this fatal error:

Access level to MySQLResultSet::rewind() must be public (as in class Iterator)

OOPHP_02.book Page 88 Friday, May 5, 2006 2:25 PM

Improvement Through Inher i tance 89

Not only must you implement all the methods of the Iterator interface,
you cannot make access to those methods more restrictive. If you think about it
this makes good sense. The foreach construct needs a public rewind method—
it would not have access to a private rewind method.

However, you can make access less restrictive because doing so will not
interfere with the way other classes expect your implementation to behave.
For example, you could make protected methods public. (This rule applies in
all cases of inheritance, not just to interfaces.)

Iterating Through a MySQLResultSet
In Chapter 9 you traversed your result set using a while loop and the getRow
method like so:

while($row = $rs->getRow()){
 echo $row[0]." - ".$row[1];
 echo "
\n";
}

Because you’ve implemented the Iterator interface you can traverse your
result set using a foreach loop. The while loop above is now replaced by this:

foreach($rs as $row){
 echo $row[0]." - ".$row[1];
 echo "
\n";
}

As you can see, it is more difficult to implement the Iterator interface than
it is to create a method suitable for use in a while loop. Although this may seem
like a lot of pain for no gain, there are advantages to this approach. For exam-
ple, we can iterate through a record set a number of times, by simply starting
another foreach loop. The record pointer will be reset in the background with-
out any action on your part. Had you used your original code, you would have
had to write a rewind method and explicitly call it before repeating a while loop.

NOTE Learning about the Iterator interface is time well spent as a number of built-in classes
and interfaces inherit from this interface. For example, there is a DirectoryIterator class—
a versatile replacement for the DirectoryItems class you developed in the early chapters.

Where to Go from Here

In this chapter we’ve improved on our original database classes by creating
our own exception class. This, in turn, allowed us to take a completely OO
approach to handling exceptions rather than simply trapping errors and
terminating the application. We added the ability to use a MySQLResultSet in
a foreach loop by implementing the Iterator interface, and we explored the
concept of inheritance both for classes and for interfaces.

We’ve spent a lot of time creating database classes because they are
useful tools for making websites dynamic. In the next chapter, we’re going
to take a detailed look at some of the concepts introduced here. After that
we’ll take a look at other ways to add content to a website dynamically.

OOPHP_02.book Page 89 Friday, May 5, 2006 2:25 PM

11
A D V A N C E D O B J E C T - O R I E N T E D

P R O G R A M M I N G C O N C E P T S

The previous two chapters introduced a
number of new object-oriented program-

ming (OOP) concepts. In the interest of
clarity, some topics were discussed in depth and

others glossed over. While the content of those chapters
is still fresh in your mind, let’s return to some of the
topics that were only touched upon briefly, namely
abstract classes, the use of the static keyword, and the
implications of type hinting.

Abstract Classes

In Chapter 10 we saw that if a derived class does not implement all the
methods of an interface, then it must be declared abstract. Let’s push this
concept to the extreme and see what a completely abstract class might look
like. Listing 11-1 shows the definition of such a class.

OOPHP_02.book Page 91 Friday, May 5, 2006 2:25 PM

92 Chapter 11

�abstract class Bird{
 protected $plumage;
 protected $migratory;
 abstract public function __construct();
 abstract public function fly();
 abstract public function sing();
 abstract public function eat();
 abstract public function setPlumage($plumage);
 abstract public function getPlumage();
 abstract public function setMigratory($migratory);
 abstract public function getMigratory();
}

Listing 11-1: The definition of the abstract class Bird

As we saw in Chapter 10, any class that contains abstract methods must
include � the keyword abstract in its class declaration. That class may have
any number of data members and any number of methods with or without
an implementation. However, if a method lacks an implementation it must
also be declared abstract.

The class in Listing 11-1 has data members declared as protected, making
them available to derived classes. This class could be termed a pure abstract
class because all of its methods are abstract. Note that all the methods of
this class are declared public. Let’s see why that is so.

Private Methods Can’t Be Abstract
Methods identified as abstract cannot be private; they must be either public
or protected. The reason is that an abstract private method is a contradic-
tion in terms. Because an abstract class has undefined methods it cannot be
instantiated (it only exists to be the parent of a derived class). A class with
abstract private methods could never be implemented because private meth-
ods cannot be inherited. The same reasoning would apply to a final abstract
method.

NOTE Recall that a final method cannot be changed in a derived class. An abstract method
cannot be final because it must be overridden—i.e., changed.

How does a pure abstract class, with no defined methods, differ from an
interface? An interface may not have data members or a constructor. (This
may change in future versions of PHP. There is some discussion of allowing
interfaces to have constructors.) In order to turn the Bird class, shown in
Listing 11-1, into an interface you would have to replace the keywords
abstract class with interface and remove $plumage, $migratory, and the
constructor. Although interface methods are effectively abstract, you still
need to remove the abstract descriptor for each method.

Interface or Pure Abstract Class?

You now know the syntactic differences between interfaces and pure abstract
classes, but when should you use one rather than the other? In general, it’s
probably better to use an interface than a pure abstract class because of the

OOPHP_02.book Page 92 Friday, May 5, 2006 2:25 PM

Advanced Objec t -Oriented Programming Concep ts 93

flexibility of interfaces. PHP doesn’t allow multiple inheritance for classes;
a child class may have only one parent class. However, you can implement
any number of interfaces.

It makes more sense to use abstract classes when there is a mix of concrete
and abstract methods. You can provide an implementation where identical,
derived class behavior is expected, and you can provide an abstract method
where behavior will differ. You could, of course, ignore methods for which
you expect the behavior of derived classes to diverge, but by declaring a
method abstract you ensure that it will be implemented in any derived
class. You’ll see how this can be used to your advantage in the following
discussion of polymorphism.

Polymorphism

In Chapter 10 you created a MySQLException class by inheriting from Exception.
Type hinting allowed you to easily distinguish different kinds of exceptions
and made it possible to have more than one catch block. However, when
using type hinting, you also had to order the catch blocks carefully to make
sure that the child preceded the parent. Specifically, MySQLException had to
precede Exception because a catch block that catches the Exception class will
also catch any derived class. Because it is derived from Exception, MySQLException
can be caught by an Exception catch block. A parent class can stand in for its
children, but a child cannot stand in for its parent. (This may look like a draw-
back, but you’ll soon see how it can be used to advantage.)

Controlling How Functions Are Used

Type hinting can give a programmer more control over the way that a func-
tion is used. Suppose you derive a Canary class and a Lark class from the Bird
class shown in Listing 11-1. You could pass either a canary or a lark to the
function in Listing 11-2.

function doSomething(Bird $b){
 //do something
 $b->sing();
 //do something else
}

Listing 11-2: A function that uses type hinting to specify a Bird object

Even though the Bird class is an abstract class that cannot be instantiated,
you can use it to type hint the argument to this function in exactly the same
way that catch blocks are type hinted.

In Listing 11-2, type hinting prohibits passing anything but a bird to the
function—passing any other object or a primitive will result in an error. In
this way, a programmer can restrict the way that a function is used. With
properly ordered catch blocks you used type hinting to catch specific kinds of
exceptions. The doSomething function does the converse; it catches any kind of
Bird. The ability to pass any kind of Bird to this function without knowing the

OOPHP_02.book Page 93 Friday, May 5, 2006 2:25 PM

94 Chapter 11

specific kind beforehand, with the expectation that it will behave as it is
supposed to behave, is known as polymorphism. The parent takes on the
characteristics of the child.

As you are aware, PHP is a weakly-typed language. In the strictest sense,
polymorphism requires a strongly-typed language such as Java or C++. In
these languages, whenever a variable is declared or used as a function
parameter, it is declared as a specific data type. In PHP, type hinting a
parameter doesn’t define the data type but merely filters for acceptable
types. In terms of the code in Listing 11-2, Bird doesn’t define the type of $b;
it simply blocks out all other types. If this is the case, then $b is a variable like
any other PHP variable, of no specific type. It is a variant that becomes a type
through assignment. You don’t in fact have a Bird class with the capability
of performing the methods of whatever child class is passed. You have only
the child class itself. Hence it is disputable whether PHP in fact supports
polymorphism.

Regardless of whether PHP is truly polymorphic, the combination of
type hinting and abstract methods is a powerful tool. The former guaran-
tees a certain kind of object, and the latter guarantees the implementation
of particular methods. For these reasons you can be sure that any object
passed to the doSomething function will implement the sing method. The
declaration of an abstract sing method ensures that you can’t have a bird
that doesn’t sing and the type hint ensures that only a bird may be passed
to this function.

NOTE Type hinting is optional in all situations except catch blocks. A variable’s data type in
a catch must be specified, and it must be an Exception or a class derived from Exception.
Type hinting applies to objects only (although as of PHP 5.1, arrays can also be type
hinted). Type-hinted code is also self-documenting because it makes the programmer’s
intentions explicit. (We’ll discuss this topic in greater detail in Chapter 14.)

Static Classes

In Chapter 9, you used a static data member to allow only one instance
of the MySQL database class. Whenever an attempt was made to create
an instance of this class, you were able to test the value of the $instances
variable to ensure that no other instances existed. This test works because
a variable declared as static is available to all instances of a class (or in this
case, would-be instances).

Static Math Classes

The ability to create classes that are entirely static allows us to encapsulate a
set of related unchanging data members and methods. Mathematics is an
ideal candidate for this kind of class because constants, such as pi and the
way of calculating the absolute value of a number, do not change. Listing 11-3
shows what a piece of the static Math class might look like.

OOPHP_02.book Page 94 Friday, May 5, 2006 2:25 PM

Advanced Objec t -Oriented Programming Concep ts 95

final class Math{
 const PI = M_PI;
 static public function abs($num){
 return abs($num);
 }
 static public function sqrt($num){
 return sqrt($num);
 }
}
echo Math::PI;
echo '
';
echo Math::abs(-4.15);
echo '
';
echo Math::sqrt(9);

Listing 11-3: A portion of the code for a static Math class

So far you have only seen the keyword final applied to methods. When
used as a class modifier, it defines a class that cannot be the parent of any
other class. A well-defined Math class should have no need of subclasses—it
should not need to be extended and none of its methods overridden. The
keyword final ensures this.

The Math class contains mathematical constants and performs mathe-
matical functions. The constant data member PI can be displayed by using
the class name and the scope resolution operator. Static methods are called
in a similar fashion. The use of the class name and the scope resolution
operator rather than the arrow operator indicates that the properties or
methods belong to the class as a whole and not to any specific instance.
Therefore, it is illegal to reference the pseudo-variable $this from within a
static method because $this refers to the current instance. A static method,
by definition, is not tied to any specific instance.

NOTE Unlike some other OO languages, PHP does not allow the keyword static to be applied
to a class as a whole. For example, attempting to declare final static class Math will
result in an error. Therefore, when I speak of a static class in PHP, I am using the
term loosely. I really mean a class that has only static methods.

Instances of Static Classes

Because the keyword static cannot be applied to a class, you can create an
instance of a class even if that class has only static data members. For exam-
ple, you can create an instance of the Math class from Listing 11-3:

$m = new Math();
echo $m->sqrt(9);

Although this coding style is not recommended, an instance of the Math
class will be created, and no error or notice will occur when you call the static
method sqrt against this instance.

OOPHP_02.book Page 95 Friday, May 5, 2006 2:25 PM

96 Chapter 11

NOTE This will offend OO purists, because static methods belong to the class as a whole and
should not be called against instances. However, changes are afoot for PHP when it
comes to calling dynamic methods statically—“We will make calling a dynamic function
with the static call syntax E_FATAL.”1

Preventing Instantiation of a Static Class
It is quite easy to prevent your Math class from being instantiated. Simply add
a constructor like the following:

public function __construct(){
 throw new Exception("Static class - instances not allowed.");
}

This constructor will throw an exception if there is an attempt to create
an instance of the Math class.

We could go on to create a complete Math class by adding all the appro-
priate methods, mostly wrapper methods for existing PHP functions, as we
did for the absolute value function and the square root function shown in
Listing 11-3. All in all, we can create a reasonable facsimile of a static class.

It makes sense to create a static Math class for an entirely OO language
such as Java (after all, there’s no procedural way, in this case, of calling
mathematical functions), but the need to create static classes in a hybrid
language such as PHP is questionable. In this case the static methods of a
static Math class provide the equivalent of global functions that already exist in
the PHP function library.

Although the value of static classes may be moot, you’ll see shortly that
static methods can be very useful.

Design Patterns

Originally, design patterns were templates used for solving common archi-
tectural problems, but they have also been applied to computer programming.
Patterns are somewhat akin to abstract classes or interfaces, but are even less
specific, providing only a general description of a solution.

The Singleton Pattern
One well-known and well-documented design pattern is the singleton pattern,
a pattern that ideally suits the database class you created in Chapters 9 and 10.
As the name implies, this pattern is used where only one instance of a class is
wanted.

Your implementation of the MySQLConnect class uses a static variable
and throws an exception if there is an attempt to construct more than one
instance of the class. A more conventional implementation of the singleton
pattern might use a private constructor and a static method to return a class

1 PHP Developers Meeting, minutes (Paris, November 11–12, 2005), available at www.php.net/
~derick/meeting-notes.html. (Accessed April 4, 2006.)

OOPHP_02.book Page 96 Friday, May 5, 2006 2:25 PM

Advanced Objec t -Oriented Programming Concep ts 97

instance. Let’s revise the MySQLConnect class to highlight the usefulness of static
methods. (I’ll outline only the major changes here; download the code if you
want to see them all.)

To begin with, the static data member designed to keep track of the
number of instances becomes a static data member for holding a reference
to the class instance.

private static $instance = NULL;

The constructor still creates a connection, but the access modifier
is changed from public to private and the test for existing instances is
removed.

private function __construct($hostname, $username, $password){
 if(!$this->connection = mysql_connect($hostname, $username, $password)){
 throw new MySQLException(mysql_error(), mysql_errno());
 }
}

Because the constructor has been declared as private, you can only invoke
it from within the class. This may seem like an impossibility (how do you get
inside a class that you can’t create?), but a static method provides the means,
as shown in Listing 11-4.

static public function getInstance($hostname, $username, $password){
 //instance must be static in order to be referenced here
 if(self�::$instance == NULL){
 self::$instance = new MySQLConnect�($hostname, $username, $password);
 return self::$instance;
 }else{
 $msg = "Close the existing instance of the ".
 "MySQLConnect class.";
 throw new MySQLException($msg, self::ONLY_ONE_INSTANCE_ALLOWED);
 }
}

Listing 11-4: Static method for returning an instance

In order to reference � the instance handle inside a static method, the
handle itself must be static. If no instance exists, the constructor � is called
and the returned object is copied into the static class variable $instance.
The getInstance method then returns a reference to this static data member.

Now, instead of directly creating an instance of the MySQLConnect class by
calling the constructor, you invoke the static getInstance method to perform
that task for you.

$instance = MySQLConnect::getInstance('localhost', 'user', 'password');

OOPHP_02.book Page 97 Friday, May 5, 2006 2:25 PM

98 Chapter 11

It was noted earlier that static methods can only reference static data
members. Conversely, static methods are prohibited from referencing regular
data members. This makes sense when you remember that regular data mem-
bers belong to and are created when objects are instantiated. By definition a
static method does not require an object, so those non-static data members
don’t exist. Likewise, as you saw earlier, a static method cannot use the pseudo-
variable $this, since $this refers to the current instance.

NOTE A singleton class should also disallow clones. You’ll see how this is done in Chapter 13.

Which Implementation?

This revised MySQLConnect class has exactly the same functionality as the ori-
ginal. Apart from the way an instance is created, there is no other change
to the interface of the MySQLConnect class. However, having a copy of the lone
instance stored in a static class variable allows you to return that instance
instead of throwing an exception, should an attempt be made to create a
second instance. This is exactly what some implementations of a singleton
database class do, but it is not always the desired behavior. What if the user
wants to connect to a different server? For this reason, in the section “Making
Other Connections” on page 68, we chose to force the user to close the
current connection before creating a new one.

The coding style of the original implementation may be more direct and
more readily understood, but having a reference to the class instance could
prove useful in some circumstances. If the getInstance method receives a
request to connect to the same host with the same username, why not return
the current instance rather than throwing an exception?

Which version is preferable? It’s up to you to decide.

Where to Go from Here

The keywords abstract and static and the ability to type hint add powerful
capabilities that didn’t exist prior to PHP 5. Creating abstract methods
enforces specific kinds of behavior, and static methods and data members
make the implementation of a singleton pattern both easy and effective.
Type hinting makes the developer’s intentions clear and programmatically
enforces them.

These capabilities are not just syntactic icing on top of a procedural
language; they are a robust implementation of a fully OO language. PHP
may be unable to create a true static class, and whether it is truly polymorphic
is debatable, but the issue for PHP is always functionality rather than language
purity. There is no doubt that it does not suffer in this respect.

To this point we have created our own classes from scratch or inherited
from existing ones defined in the Standard PHP Library (Iterator and
Exception). PHP 5 includes many other classes besides those defined in the
SPL. In the next chapter we’ll use two of them, SimpleXMLElement and SOAPClient.

OOPHP_02.book Page 98 Friday, May 5, 2006 2:25 PM

12
K E E P I N G I T F R E S H

There’s nothing quite like the excitement
of discovering a new and interesting web-

site. But this enthusiasm can quickly wane if,
after a few visits, the content of the site hasn’t

changed at all. The primary way of adding new content
to a website is by using dynamic, database-driven pages.
That’s why we’ve spent so much time discussing MySQL (and will later spend
some time on SQLite). Another ideal way of keeping a site current and inter-
esting is by using Rich Site Summary (RSS) feeds. RSS is a file format for web
syndication that is widely used by various newsgroups but more commonly
encountered in the form of a blog. An RSS file is an Extensible Markup
Language (XML) formatted file that can be read using the SimpleXML
extension to PHP 5. All you need in order to read an RSS feed is a little
knowledge of how an RSS file is structured and an understanding of object-
oriented programming (OOP). You’ll be surprised at just how easy it is once
you’ve grasped a few basics of XML.

OOPHP_02.book Page 99 Friday, May 5, 2006 2:25 PM

100 Chap te r 12

The downside to having a large website with numerous pages is that it
can be difficult for casual web surfers to find what they’re looking for. For this
reason I will also show you how to create a site-specific search. I’ll do this
using the Google Application Programming Interface (API) and the Simple
Object Access Protocol (SOAP) extension to PHP. The Google API will
allow us to tap into Google’s search capabilities programmatically using the
SOAP web service protocol. This protocol uses XML files over HTTP, so some
familiarity with XML is required. If you don’t know anything about XML,
don’t worry. You’ll learn enough to get you started, and besides, you already
know HTML so you’re well on your way to understanding XML.

In this chapter you’ll also have the opportunity to see how asynchronous
JavaScript and XML (AJAX) can work in unison with PHP. We’ll use AJAX to
insert the Google search results, thus avoiding having to refresh the entire
page. In situations where a page reload is overkill, using AJAX can greatly
simplify the user interface to a website (though, of course, improper use can
do the exact opposite).

The object-oriented (OO) programmer is ideally placed to program
using SimpleXML and SOAP because, as you’ll see, both extensions are
entirely object-oriented. Like it or not, knowledge of OOP is a requirement
for taking full advantage of these and many other extensions to PHP.

SimpleXML

In PHP 5 all XML support is now provided by the libxml2 XML toolkit. By
default PHP 5 supports SimpleXML, but if libxml2 is not installed on your
machine or the version number is lower than 2.5.10, go to www.xmlsoft.org
and download the latest version. (You can use the PHP function phpinfo to
check which version of libxml is running on your server.) Without going into
too many details, suffice it to say that support for XML has been brought into
line with the standards defined by the World Wide Web Consortium (W3C).
Unified treatment of XML under libxml2 makes for a more efficient and
more easily maintained implementation of XML support.

Support for XML is much improved in PHP 5, in terms of both perfor-
mance and functionality. The SimpleXML extension makes full use of the
libxml2 toolkit to provide easy access to XML, and as a quick way of converting
XML documents to PHP data types.

XML

Since an RSS document is an XML document, you need some understanding
of the basics of XML if you want to be able to read a feed. XML is a markup
language that is similar in many ways to HTML—this should come as no sur-
prise given that both HTML and XML have a common heritage in Standard
Generalized Markup Language (SGML). As a web developer, even if you
have never seen an XML file before, it will look familiar, especially if you are
coding to the XHTML standard. XML makes use of tags or elements enclosed
by angle brackets. Just as in HTML, a closing tag is differentiated from an
opening tag by preceding the element name with a forward slash. Also like

OOPHP_02.book Page 100 Friday, May 5, 2006 2:25 PM

Keeping I t F resh 101

HTML, tags can have attributes. The major difference between XML tags
and HTML tags is that HTML tags are predefined; in XML you can define
your own tags. It is this capability that puts the “extensible” in XML. The best
way to understand XML is by examining an XML document. Before doing
so, let me say a few words about RSS documents.

RSS

Unfortunately there are numerous versions of RSS. Let’s take a pragmatic
approach and ignore the details of RSS’s tortuous history. With something
new it’s always best to start with a simple example, and the simplest version
of RSS is version 0.91. This version has officially been declared obsolete, but
it is still widely used, and knowledge of its structure provides a firm basis for
migrating to version 2.0, so your efforts will not be wasted. I’ll show you an
example of a version 0.91 RSS file—in fact, it is the very RSS feed that we are
going to use to display news items in a web page.

Structure of an RSS File

As we have done earlier with our own code, let’s walk through the RSS code,
commenting where appropriate.

The very first component of an XML file is the version declaration. This
declaration shows a version number and, like the following example, may also
contain information about character encoding.

<?xml version="1.0" encoding="iso-8859-1"?>

After the XML version declaration, the next line of code begins the very
first element of the document. The name of this element defines the type of
XML document. For this reason, this element is known as the document element
or root element. Not surprisingly, our document type is RSS. This opening ele-
ment defines the RSS version number and has a matching closing tag that
terminates the document in much the same way that <html> and </html> open
and close a web page.

<rss version="0.91">

A properly formatted RSS document requires a single channel element.
This element will contain metadata about the feed as well as the actual data
that makes up the feed. A channel element has three required sub-elements:
a title, a link, and a description. In our code we will extract the channel title
element to form a header for our web page.

 <channel>
 <title>About Classical Music</title>
 <link>http://classicalmusic.about.com/</link>
 <description>Get the latest headlines from the About.com Classical Music
Guide Site.</description>

OOPHP_02.book Page 101 Friday, May 5, 2006 2:25 PM

102 Chap te r 12

The language, pubDate, and image sub-elements all contain optional meta-
data about the channel.

 <language>en-us</language>
 <pubDate>Sun, 19 March 2006 21:25:29 -0500</pubDate>
 

The item element that follows is what we are really interested in. The three
required elements of an item are the ones that appear here: the title, link,
and description. This is the part of the RSS feed that will form the content of
our web page. We’ll create an HTML anchor tag using the title and link ele-
ments, and follow this with the description.

 <item>
 <title>And the Oscar goes to...</title>
 <link>http://classicalmusic.about.com/b/a/249503.htm</link>
 <description>Find out who won this year's Oscar for Best Music...
 </description>
 </item>

Only one item is shown here, but any number may appear. It is common
to find about 20 items in a typical RSS feed.

</channel>
</rss>

Termination of the channel element is followed by the termination of the
rss element. These tags are properly nested one within the other, and each
tag has a matching end tag, so we may say that this XML document is well-
formed.

Reading the Feed

In order to read this feed we’ll pass its URI to the simplexml_load_file func-
tion and create a SimpleXMLElement object. This object has four built-in methods
and as many properties or data members as its XML source file.

<?php
//point to an xml file
$feed = "http://z.about.com/6/g/classicalmusic/b/index.xml";
//create object of SimpleXMLElement class
$sxml = simplexml_load_file($feed);

We can use the attributes method to extract the RSS version number
from the root element.

OOPHP_02.book Page 102 Friday, May 5, 2006 2:25 PM

Keeping I t F resh 103

foreach ($sxml->attributes() as $key => $value){
 echo "RSS $key $value";
}

The channel title can be referenced in an OO fashion as a nested prop-
erty. Please note, however, that we cannot reference $sxml->channel->title
from within quotation marks because it is a complex expression. Alternate
syntax using curly braces is shown in the comment below.

echo "<h2>" . $sxml->channel->title . "</h2>\n";
//below won't work
//echo "<h2>$sxml->channel->title</h2>\n";
//may use the syntax below
//echo "<h2>{$sxml->channel->title}</h2>\n";echo "<p>\n";

As you might expect, a SimpleXMLElement supports iteration.

//iterate through items as though an array
foreach ($sxml->channel->item as $item){
 $strtemp = "link\">".
 "$item->title $item->description

\n";
 echo $strtemp;
}
?>
</p>

I told you it was going to be easy, but I’ll bet you didn’t expect so few
lines of code. With only a basic understanding of the structure of an RSS file
we were able to embed an RSS feed into a web page.

The SimpleXML extension excels in circumstances such as this where the
file structure is known beforehand. We know we are dealing with an RSS file,
and we know that if the file is well-formed it must contain certain elements.
On the other hand, if we don’t know the file format we’re dealing with, the
SimpleXML extension won’t be able to do the job. A SimpleXMLElement cannot
query an XML file in order to determine its structure. Living up to its name,
SimpleXML is the easiest XML extension to use. For more complex interac-
tions with XML files you’ll have to use the Document Object Model (DOM)
or the Simple API for XML (SAX) extensions. In any case, by providing the
SimpleXML extension, PHP 5 has stayed true to its origins and provided an
easy way to perform what might otherwise be a fairly complex task.

Site-Specific Search

In this portion of the chapter we are going to use the Google API and the
SOAP extension to create a site-specific search engine. Instead of creating
our own index, we’ll use the one created by Google. We’ll access it via the
SOAP protocol. Obviously, this kind of search engine can only be imple-
mented for a site that has been indexed by Google.

OOPHP_02.book Page 103 Friday, May 5, 2006 2:25 PM

104 Chap te r 12

Google API

API stands for Application Programming Interface—and is the means for
tapping into the Google search engine and performing searches program-
matically. You’ll need a license key in order to use the Google API, so go
to www.google.com/apis and create a Google account. This license key will
allow you to initiate up to 1,000 programmatic searches per day. Depending
on the nature of your website, this should be more than adequate. As a gen-
eral rule, if you are getting fewer than 5,000 visits per day then you are unlikely
to exceed this number of searches.

When you get your license key, you should also download the API devel-
oper’s kit. We won’t be using it here, but you might want to take a look at it.
This kit contains the XML description of the search service in the Web Service
Definition Language (WSDL) file and a copy of the file APIs_Reference.html.
If you plan to make extensive use of the Google API, then the information in
the reference file is invaluable. Among other things, it shows the legal values
for a language-specific search, and it details some of the API’s limitations.
For instance, unlike a search initiated at Google’s site, the maximum number
of words an API query may contain is 10.

AJAX

This is not the place for a tutorial on AJAX (and besides, I’m not the person to
deliver such a tutorial) so we’re going to make things easy on ourselves by using
the prototype JavaScript framework found at http://prototype.conio.net. With
this library you can be up and running quickly with AJAX.

You’ll find a link to the prototype library on the companion website or
you can go directly to the URL referenced above. In any case, you’ll need the
prototype.js file to run the code presented in this part of the chapter.

Installing SOAP

SOAP is not installed by default. This extension is only available if PHP
has been configured with --enable-soap. (If you are running PHP under
Windows, make sure you have a copy of the file php_soap.dll, add the line
extension = php_soap.dll to your php.ini file, and restart your web server.)

If configuring PHP with support for SOAP is not within your control, you
can implement something very similar to what we are doing here by using
the NuSOAP classes that you’ll find at http://sourceforge.net/projects/nusoap.
Even if you do have SOAP enabled, it is worth becoming familiar with
NuSOAP not only to appreciate some well-crafted OO code, but also to
realize just how much work this extension saves you. There are more than
5,000 lines of code in the nusoap.php file. It’s going to take us fewer than 50
lines of code to initiate our Google search. Furthermore, the SOAP client
we create, since it’s using a built-in class, will run appreciably faster than
one created using NuSOAP. (The NuSOAP classes are also useful if you
need SOAP support under PHP 4.)

OOPHP_02.book Page 104 Friday, May 5, 2006 2:25 PM

Keeping I t F resh 105

The SOAP Extension

You may think that the SOAP extension is best left to the large shops doing
enterprise programming—well, think again. Although the “simple” in SOAP
is not quite as simple as the “simple” in SimpleXML, the PHP implementation
of SOAP is not difficult to use, at least where the SOAP client is concerned.
Other objects associated with the SOAP protocol—the SOAP server in par-
ticular—are more challenging. However, once you understand how to use a
SOAP client, you won’t find implementing the server intimidating.

In cases where a WSDL file exists—and that is the case with the Google
API—we don’t really need to know much about a SOAP client beyond how to
construct one because the SOAP protocol is a way of executing remote proce-
dure calls using a locally created object. For this reason, knowing the methods
of the service we are using is paramount.

A SOAP Client

To make use of a web service, we need to create a SOAP client. The first step
in creating a client for the Google API is reading the WSDL description of
the service found at http://api.google.com/GoogleSearch.wsdl. SOAP allows
us to create a client object using the information in this file. We will then
invoke the doGoogleSearch method of this object. Let’s step through the code
in our usual fashion beginning with the file dosearch.php. This is the file that
actually does the search before handing the results over to an AJAX call.

The first step is to retrieve the search criterion variable.

<?php
$criterion = �@htmlentities($_GET["criterion"], ENT_NOQUOTES);
if(strpos($criterion, "\"")){
 $criterion = stripslashes($criterion);
 echo "$criterion"."</p><hr style=\"border:1px dotted black\" />";
}else{
 echo "\"$criterion\".</p><hr style=\"border:1px dotted black\" />";
}
echo "$criterion</p><hr style=\"border:1px dotted black\" />
";

Wrapping the retrieved variable in a call to � htmlentities is not strictly
necessary since we’re passing it on to the Google API and it will doubtless be
filtered there. However, filtering input is essential for security and a good
habit to cultivate.

Make It Site-Specific

A Google search can be restricted to a specific website in exactly the same
way that this is done when searching manually using a browser—you simply
add site: followed by the domain you wish to search to the existing criterion.
Our example code searches the No Starch Press site, but substitute your own
values for the bolded text.

OOPHP_02.book Page 105 Friday, May 5, 2006 2:25 PM

106 Chap te r 12

//put your site here
$query = $criterion . " site:www.yoursite.com";
//your Google key goes here
$key = "your_google_key";

In this particular case we are only interested in the top few results of
our search. However, if you look closely at the code, you’ll quickly see how we
could use a page navigator and show all the results over a number of differ-
ent web pages. We have a $start variable that can be used to adjust the offset
at which to begin our search. Also, as you’ll soon see, we can determine the
total number of results that our search returns.

$maxresults = 10;
$start = 0;

A SoapClient Object

Creating a SOAP client may throw an exception, so we enclose our code within
a try block.

try{
 $client = new SoapClient("http://api.google.com/GoogleSearch.wsdl");

When creating a SoapClient object, we pass in the WSDL URL. There is also
an elective second argument to the constructor that configures the options of
the SoapClient object. However, this argument is usually only necessary when
no WSDL file is provided. Creating a SoapClient object returns a reference to
GoogleSearchService. We can then call the doGoogleSearch method of this service.
Our code contains a comment that details the parameters and the return type
of this method.

 /*
 doGoogleSearchResponse doGoogleSearch (string key, string q, int
 start, int maxResults, boolean filter, string restrict, boolean
 safeSearch, string lr, string ie, string oe)
 */
 $results = $client->doGoogleSearch($key, $query, $start, $maxresults,
false, '', false, '', '', '');

This method is invoked, as is any method, by using an object instance
and the arrow operator. The purpose of each argument to the doGoogleSearch
method is readily apparent except for the final three. You can restrict the
search to a specific language by passing in a language name as the third-to-last
parameter. The final two parameters indicate input and output character set
encoding. They can be ignored; use of these arguments has been deprecated.

OOPHP_02.book Page 106 Friday, May 5, 2006 2:25 PM

Keeping I t F resh 107

The doGoogleSearch method returns a GoogleSearchResult made up of the
following elements:

 /*
 GoogleSearchResults are made up of
 documentFiltering, searchComments, estimatedTotalResultsCount,
 estimateIsExact, resultElements, searchQuery, startIndex,
 endIndex, searchTips, directoryCategories, searchTime
 */

Getting the Results

We are only interested in three of the properties of the GoogleSearchResult:
the time our search took, how many results are returned, and the results
themselves.

 $searchtime = $results->searchTime;
 $total = $results->estimatedTotalResultsCount;
 if($total > 0){

The results are encapsulated in the resultElements property.

 //retrieve the array of result elements
 $re = $results->resultElements;

ResultElements have the following characteristics:

 /*
 ResultElements are made up of summary, URL, snippet,
 title, cachedSize, relatedInformationPresent,
 hostName, directoryCategory, directoryTitle
 */

We iterate through the ResultElements returned and display the URL as a
hyperlink along with the snippet of text that surrounds the search results.

 foreach ($re as $key => $value){
 $strtemp = "URL\"> ".
 " $value->URL $value->snippet

\n";
 echo $strtemp;
 }
 echo "<hr style=\"border:1px dotted black\" />";
 echo "
Search time: $searchtime seconds.";
 }else{
 echo "

Nothing found.";
 }
}

OOPHP_02.book Page 107 Friday, May 5, 2006 2:25 PM

108 Chap te r 12

Our call to the Google API is enclosed within a try block so there must
be a corresponding catch. A SOAPFault is another object in the SOAP
extension. It functions exactly like an exception.

catch (SOAPFault $exception){
 echo $exception;
}
?>

Testing the Functionality

View the dosearch.php page in a browser, add the query string ?criterion=linux
to the URL, and the SoapClient will return a result from Google’s API. You
should get site-specific search results that look something like those shown in
Figure 12-1.

Figure 12-1: Search results

There are hyperlinks to the pages where the search criterion was found,
along with snippets of text surrounding this criterion. Within the snippet of
text the criterion is bolded.

As already mentioned, this is not the solution for a high-traffic site where
many searches will be initiated. Nor is it a solution for a newly posted site. Until
a site is indexed by Google, no search results will be returned. Likewise, recent
changes to a site will not be found until the Googlebot visits and registers
them. However, these limitations are a small price to pay for such an easy way
to implement a site-specific search capability.

OOPHP_02.book Page 108 Friday, May 5, 2006 2:25 PM

Keeping I t F resh 109

Viewing the Results Using AJAX

Viewing the results in a browser confirms that the code we have written thus
far is functional. We’re now ready to invoke this script from another page
(search.html) using AJAX. The HTML code to do this is quite simple:

 Search the No Starch Press site:

<�input type="text" id="criterion" style="width:150px" />

<�input class="subbutton" style="margin-top:5px;width:60px;" type="button"
value="Submit" onclick="javascript:call_server();" />
<h2>Search Results</h2>
<�div id="searchresults" style="width:650px; display: block;">
Enter a criterion.
</div>

 There’s � a textbox for input and � a submit button that, when clicked,
invokes the JavaScript function, call_server. The results of our search will be
displayed in � the div with the id searchresults.

To see how this is done, let’s have a look at the JavaScript code:

<script type="text/javascript" language="javascript" src=
�"scripts/prototype.js">
</script>
<script type="text/javascript" >
/***/
// Use prototype.js and copy result into div
/***/
function call_server(){
 var obj = �$('criterion');
 if(�not_blank(obj)){
 �$('searchresults').innerHTML = "Working...";
 var url = �'dosearch.php';
 var pars = �'criterion='+ obj.value;
 new �Ajax.Updater('searchresults', url,
 {
 method: 'get',
 parameters: pars,
 �onFailure: report_error
 });
 }
}

We must first include � the prototype.js file because we want to use the
Ajax.Updater object contained in that file. This file also gives us the capability
of simplifying JavaScript syntax. The reference to � criterion using the $()
syntax is an easy substitute for the document.getElementById DOM function.
The if statement invokes a JavaScript function � to check that there is text
in the criterion textbox. If so, the text in � the searchresults div is over-
written using the innerHTML property, indicating to the user that a search is
in progress. The URL that performs the search is identified (�), as is �
the search criterion. These variables are passed to the constructor of � an

OOPHP_02.book Page 109 Friday, May 5, 2006 2:25 PM

110 Chap te r 12

Ajax.Updater, as is � the name of the function to be invoked upon failure.
The Ajax.Updater class handles all the tricky code related to creating an
XMLHttpRequest and also handles copying the results back into the searchresults
div. All you have to do is point it to the right server-side script.

There are a number of other Ajax classes in the prototype.js file and
the $() syntax is just one of a number of helpful utility functions. The com-
panion website has a link to a tutorial on using prototype.js should you wish
to investigate further.

Complex Tasks Made Easy

I’ve detailed just one of the services you can access using SOAP. Go to
www.xmethods.net to get an idea of just how many services are available.
Services range from the very useful—email address verifiers—to the relatively
arcane—Icelandic TV station listings. You’ll be surprised at the number and
variety of services that can be implemented just as easily as a Google search.

In this chapter you’ve seen how easy it is to create a SOAP client using PHP.
We quickly got up and running with AJAX, thanks to the prototype.js frame-
work, and you’ve seen that PHP and AJAX can work well together. Reading
a news feed was simpler still. These are all tasks that rely heavily on XML, but
minimal knowledge of this technology was required because PHP does a good
job of hiding the messy details.

Would You Want to Do It Procedurally?

Knowledge of OOP is a requirement for anything beyond trivial use of the
SimpleXML and SOAP extensions to PHP. OOP is not only a necessity in
order to take full advantage of PHP, but it is by far the easiest way to read a
feed or use SOAP. A procedural approach to either of the tasks presented in
this chapter is not really feasible. Any attempt would unquestionably be
much more difficult and require many, many more lines of code. Using
built-in objects hides the complexity of implementing web services and
makes their implementation much easier for the developer.

OOPHP_02.book Page 110 Friday, May 5, 2006 2:25 PM

13
M O R E M A G I C M E T H O D S

So far we have come across the magic meth-
ods __construct, __destruct, and __toString,

and have discussed them in detail. The
remaining magic methods are __autoload,

__call, __clone, __get, __set, __sleep, __wakeup, __unset,
and __isset.1 As you might expect, they only make sense
in the context of object-oriented programming (OOP).

The syntactic element common to all magic methods is that they begin
with a double underscore. They are all also usually invoked indirectly rather
than directly. As we have seen, the __construct method of a class is invoked
when we use the new operator and a class name. If we have a class called MyClass
that defines a constructor, the statement $m = new MyClass(); indirectly calls
the __construct method of this class.

However, the fact that all magic methods are called indirectly masks
important differences between them. Having a uniform constructor for every
class yields benefits when a parent constructor needs to be called, but there is

1 There is also a magic method_set_state, invoked by a call to the var_dump function. At
this point there is minimal documentation regarding this method. For more information see
http://php.net/var_export.

OOPHP_02.book Page 111 Friday, May 5, 2006 2:25 PM

112 Chap te r 13

no intrinsic need for this method to be magic. For example, in Java, construc-
tors bear the name of the class with no serious negative consequences. On the
other hand, destructors are a necessity and would seem to have to be magic.
They are not invoked by any action of the developer, but automatically when
an object goes out of scope. Then there’s the __toString method, which is called
implicitly whenever an object is displayed using print or echo—a convenience
method more than anything else. In any case, the point is that the reasons for
providing magic methods are various and in each case worth examining.

In this chapter we will look at those magic methods that we haven’t yet
discussed. Related and complementary methods will be discussed together.

__get and __set
To set the context for this discussion, remember that we spent some time
discussing accessor, or set and get methods, in Chapter 6. There I argued
that instance variables should be made private and only retrieved or changed
through accessor methods. Doing otherwise violates the object-oriented (OO)
principle of data hiding (or encapsulation if you prefer) and leaves instance
variables exposed to inadvertent changes.

PHP 5 introduces magic set and get methods for undefined instance vari-
ables. Let’s see what this means by looking at an example. Suppose you have a
class, Person, devoid of any data members or methods, defined as follows:

class Person{
}

PHP allows you to do the following:

$p = new Person();
$p->name = "Fred";
$p->street = "36 Springdale Blvd";

Even though name and street data members have not been declared within
the Person class, you can assign them values and, once assigned, you can retrieve
those values. This is what is meant by undefined instance variables. You can cre-
ate magic set and get methods to handle any undefined instance variables by
making the following changes to the Person class, as shown in Listing 13-1.

class Person{
 protected �$datamembers = array();
 public function �__set($variable, $value){
 //perhaps check value passed in
 $this->datamembers[$variable] = $value;
 }
 public function __get($variable){
 return $this->datamembers[$variable];
 }
}
$p = new Person();
$p->�name = "Fred";

Listing 13-1: Defining magic set and get methods

OOPHP_02.book Page 112 Friday, May 5, 2006 2:25 PM

More Magic Methods 113

You add � an array to your class and use it to capture any undeclared
instance variables. With these revisions, assigning a value to an undeclared
data member called � name invokes � the __set method in the background,
and an array element with the key name will be assigned a value of “Fred.” In a
similar fashion the __get method will retrieve name.

Is It Worth It?

Magic set and get methods are introduced as a convenience, but it is certainly
questionable whether they are worth the effort. Encouraging the use of
undefined data members can easily lead to difficulties when debugging. For
instance, if you want to change the value of the name data member of your
Person class instance, but misspell it, PHP will quietly create another instance
variable. Setting a nonexistent data member produces no error or warning,
so your spelling error will be difficult to catch. On the other hand, attempting
to use an undefined method produces a fatal error. For this reason, declaring
data members to be private (or protected), and ensuring that they are only
accessible through declared accessor methods, eliminates the danger of
accidentally creating a new unwanted data member. Using declared data
members means fewer debugging problems.

Undeclared data members also seem contrary to the principles of OOP.
Although you might argue that encapsulation has been preserved because
undeclared data members are only accessed indirectly through the magic
methods, the real point of accessor methods is to control how instance
variables are changed or retrieved. The comment inside the __set method
(//perhaps check value passed in) in Listing 13-1 suggests that such controls
could be implemented, but in order to do so you would need to know the vari-
able names beforehand—an impossibility given that they are undeclared.
Why not just set up properly declared data members?

Allowing undeclared data members also undermines another basic con-
cept of OOP, namely inheritance. It’s hard to see how a derived class might
inherit undeclared instance variables.

One might argue, though, that these magic methods make PHP easier to
use and this convenience offsets any of the disadvantages. After all, the original
and continuing impetus behind PHP is to simplify web development. Allowing
undeclared data members in PHP 5 is perhaps a necessary evil because doing
so keeps backward compatibility with PHP 4. While it’s easy to criticize magic
set and get methods, in Chapter 16, when discussing the PDORow class, you’ll see
that these methods can come in very handy.

__isset and __unset
PHP 5.1.0 introduces the magic methods __isset and __unset. These methods
are called indirectly by the built-in PHP functions isset and unset. The need
for these magic methods results directly from the existence of magic set and
get methods for undeclared data members. The magic method __isset will
be called whenever isset is used with an undeclared data member.

OOPHP_02.book Page 113 Friday, May 5, 2006 2:25 PM

114 Chap te r 13

Suppose you want to determine whether the name variable of your Person
instance in Listing 13-1 has been set. If you execute the code isset($t->name);,
the return value will be false. To properly check whether an undeclared data
member has been set, you need to define an __isset method. Redo the code
for the Person class to incorporate a magic __isset method (see Listing 13-2).

class Person{
 protected $datamembers = array();
 private $declaredvar = 1;
 public function __set($variable, $value){
 //perhaps check value passed in
 $this->datamembers[$variable] = $value;
 }
 public function __get($variable){
 return $this->datamembers[$variable];
 }
 function __isset($name){
 return isset($this->datamembers[$name]);
 }
 function getDeclaredVariable(){
 return $this->declaredvar;
 }
}
$p = new Person();
$p->name = 'Fred';
echo '$name: '. isset($p->�name). '
';//returns true
$temp = $p->getDeclaredVariable();
echo '$declaredvar: '. isset(�$temp). '
';//returns true
true
true

Listing 13-2: The Person class with a magic __isset method

Calling isset against the undeclared data member � name will return
true because an implicit call is made to the __isset method. Testing whether
� a declared data member is set will also return true, but no call, implicit
or otherwise, is made to __isset. We haven’t provided an __unset method,
but by looking at the __isset method you can easily see how an undeclared
variable might be unset.

You have __isset and __unset methods only because there are magic
set and get methods. All in all, in most situations, it seems simpler to forget
about using undeclared data members, and thereby do away with the need
for magic set and get methods and their companion __isset and __unset
methods.

__call
The magic method __call is to undeclared methods what __get and __set are
to undeclared data members. This is another magic method provided as a con-
venience. At first, it is a little difficult to imagine what an undeclared method
might be and what use it might have. Well, here’s one way that this method

OOPHP_02.book Page 114 Friday, May 5, 2006 2:25 PM

More Magic Methods 115

can prove useful. Suppose you wanted to add to the functionality of the
MySQLResultSet class defined in Chapters 9 and 10, so as to retrieve the
current system status in this fashion:

//assume $rs is an instance of MySQLResultSet
$rs->stat();

You could just create a wrapper method for the existing MySQL function,
mysql_stat, as you did when creating other methods of this class. For example,
the existing getInsertId method simply encloses a call to mysql_insert_id.
You could do exactly the same thing with mysql_stat. However, the more
versatile option is to add a __call method similar to the following code:

public function __call($name, $args){
 $name = "mysql_". $name(;
 if(function_exists($name)){
 return call_user_func_array($name, $args);
 }
}

When you call the stat method against a MySQLResultSet object, the method
name, stat, is passed to the __call method where mysql_ is prepended. The
mysql_stat method is then invoked by the call_user_func_array function. Not
only can you call the mysql_stat function, but once __call is defined you can
call any MySQL function against a MySQLResultSet class instance by simply using
the function name, minus the leading mysql_, and supplying any required
arguments. This magic method does away with the need for writing wrapper
methods for existing MySQL function, and allows them to be “inherited.” If
you’re already familiar with the MySQL function names it also makes for easy
use of the class.

However, this magic method is not quite as convenient as it might seem
at first glance. Functions such as mysql_fetch_array that require that a result
set resource be passed even though the class is itself a result set resource make
nonsense of the whole notion of an object—why should an object need to
pass a copy of itself in order to make a method call? On the other hand,
this is an easy and natural way to incorporate functions such as mysql_stat
and mysql_errno that don’t require any arguments, or functions such as
mysql_escape_string that require primitive data types as arguments. If properly
used, this convenience method seems much more defensible than the __set
and __get methods.

__autoload

The __autoload function is a convenience that allows you to use classes without
having to explicitly write code to include them. It’s a bit different from other
magic methods because it is not incorporated into a class definition. It is
simply included in your code like any other procedural function.

OOPHP_02.book Page 115 Friday, May 5, 2006 2:25 PM

116 Chap te r 13

Normally, to use classes you would include them in the following way:

require 'MySQLResultSet.php';
require 'MySQLConnect.php';
require 'PageNavigator.php';
require 'DirectoryItems.php';
require 'Documenter.php';

These five lines of code can be replaced with the following:

function __autoload($class) {
 require $class '.php';
}

The __autoload function will be invoked whenever there is an attempt to
use a class that has not been explicitly included. The class name will be passed
to this magic function, and the class can then be included by creating the
filename that holds the class definition. Of course, to use __autoload as coded
above, the class definition file will have to be in the current directory or in
the include path.

Using __autoload is especially convenient when your code includes numer-
ous class files. There is no performance penalty to pay—in fact, there may be
performance improvements if not all classes are used all the time. Use of the
__autoload function also has the beneficial side effect of requiring strict naming
conventions for files that hold class definitions. You can see from the previous
code listing that the naming conventions used in this book (i.e., combining
the class name and the extension .php to form the filename) will work fine
with __autoload.

__sleep and __wakeup

These magic methods have been available since PHP 4 and are invoked by
the variable handling functions serialize and unserialize. They control how
an object is represented so that it can be stored and recreated. The way that
you store or communicate an integer is fairly trivial, but objects are more com-
plex than primitive data types. Just as the __toString method controls how an
object is displayed to the screen, __sleep controls how an object will be stored.
This magic method is invoked indirectly whenever a call to the serialize
function is made. Cleanup operations such as closing a database connection
can be performed within the __sleep method before an object is serialized.

Conversely, __wakeup is invoked by unserialize and restores the object.

__clone

Like the constructor, __clone is invoked by a PHP operator, in this case clone.
This is a new operator introduced with PHP 5. To see why it is necessary, we
need to take a look at how objects are copied in PHP 4.

OOPHP_02.book Page 116 Friday, May 5, 2006 2:25 PM

More Magic Methods 117

In PHP 4 objects are copied in exactly the same way that regular variables
are copied. To illustrate, let’s reuse the Person class shown in Listing 13-1 (see
Listing 13-3).

$x = 3;
$y = $x;
$y = 4;
echo $x. '
';
echo $y. '
';
$obj1 = new Person();
$obj1->name = 'Waldo';
$obj2 �= $obj1;
$obj2->name = 'Tom';
echo $obj1->name. '
';
echo $obj2->name;

Listing 13-3: Using the assignment operator under PHP 4

If the code in Listing 13-3 is run under PHP 4, the output will be as
follows:

3
4
Waldo
Tom

The assignment of $obj1 to $obj2 (�) creates a separate copy of a Person
just as the assignment of $x to $y creates a separate integer container. Chang-
ing the name attribute of $obj2 does not affect $obj1 in any way, just as changing
the value of $y doesn’t affect $x.

In PHP 5, the assignment operator behaves differently when it is used
with objects. When run under PHP 5, the output of the code in Listing 13-3 is
the following:

3
4
Tom
Tom

For both objects the name attribute is now Tom.

Where’s Waldo?
In PHP 5, the assignment of one object to another creates a reference rather
than a copy. This means that $obj2 is not an independent object but another
means of referring to $obj1. Any changes to $obj2 will also change $obj1. Using
the assignment operator with objects under PHP 5 is equivalent to assigning
by reference under PHP 4. (You may recall our use of the assignment by ref-
erence operator in Chapter 4.)

OOPHP_02.book Page 117 Friday, May 5, 2006 2:25 PM

118 Chap te r 13

In other words, in PHP 5

//PHP 5
$obj2 = $obj1;

achieves the same result as

//PHP 4
$obj2 =& $obj1;

The same logic applies when an object is passed to a function. This is not
surprising, because there is an implicit assignment when passing a variable to
a function. Under PHP 4, when objects are passed to functions, the default is
to pass them by value, creating a copy in exactly the same way as with any primi-
tive variable. This behavior was changed in PHP 5 because of the inefficiencies
associated with passing by value. Why pass by value and use up memory when,
in most cases, all that’s wanted is a reference? To summarize, in PHP 5, when
an object is passed to a function or when one object is assigned to another,
it is assigned by reference. However, there are some situations where you do
want to create a copy of an object and not just another reference to the same
object. Hence the need to introduce the clone operator.

NOTE If you are porting PHP 4 code to a server running PHP 5, you can remove all those
ungainly ampersands associated with passing an object by reference or assigning it by
reference.

clone

To understand the clone operator, let’s use the Person class again, adding a
few more lines of code to Listing 13-3 to create the code in Listing 13-4.

if ($obj1 === $obj2)�{
 echo '$obj2 equals $obj1.
';
}
$obj3 = �clone $obj1;
echo 'After cloning ';
if ($obj1 === $obj3){
 //this code will execute
 echo '$obj3 equals $obj1.
';
}else{
 echo '$obj3 does not equal $obj1.
';
}
$obj3->name = �'Waldo';
echo 'Here\'s '. $obj1->name. '.
';
echo 'Here\'s '. $obj3->name. '.
';
$obj2 equals $obj1
After cloning $obj3 does not equal $obj1.
�Here's Tom.
Here's Waldo.

Listing 13-4: Finding Waldo

OOPHP_02.book Page 118 Friday, May 5, 2006 2:25 PM

More Magic Methods 119

Remember that in Listing 13-3 $obj1 was assigned to $obj2, so the identity
test conducted here shows � that they are equal. This is because $obj2 is a
reference to $obj1. After $obj1 � is cloned to create $obj3 in Listing 13-4, the
test for identity produces a negative result.

The name attribute of your newly cloned object � is changed, and � the
output shows that this change does not affect the original object. In PHP 5,
cloning an object makes a copy of an object just as the assignment operator
does in PHP 4.

You may have supposed that in our search for Waldo we lost sight of
our ultimate goal. Not true. Now that you understand the clone operator,
you can make sense of the __clone method. It is invoked in the background
when an object is cloned. It allows you to fine-tune what happens when an
object is copied. This is best demonstrated using an aggregate class as an
example.

Aggregate Classes

An aggregate class is any class that includes a data member that is itself an
object. Let’s quickly create a Team class as an example. This class has as a
data member, an array of objects called players. The class definitions for the
Player class and the Team class are shown in Listing 13-5.

class Player{
 private $name;
 private $position;
 public function __construct($name){
 $this->name = $name;
 }
 public function getName(){
 return $this->name;
 }
 public function setPosition($position){
 $this->position = $position;
 }
}
class Team{
 private $players = array();
 private $name;
 public function __construct($name){
 $this->name = $name;
 }
 public function addPlayer(Player $p){
 $this->players[] = $p;
 }
 public function getPlayers(){
 return $this->players;
 }
 public function getName(){
 return $this->name;
 }

OOPHP_02.book Page 119 Friday, May 5, 2006 2:25 PM

120 Chap te r 13

 public function setName($name){
 $this->name = $name;
 }
}

Listing 13-5: The Team aggregate class

Let’s create a player, add him to a team, and see what happens when you
clone that object (see Listing 13-6).

$rovers = new Team('Rovers');
$roy = new Player('Roy');
$roy->setPosition('striker');
$rovers->addPlayer($roy);
$reserves = clone $rovers;
$reserves->setName('Reserves');
//changes both with __clone undefined
�$roy->setPosition('midfielder');
echo $rovers->getName(). ' ';
print_r($rovers->getPlayers());
echo '

';
echo $reserves->getName(). ' ';
print_r($reserves->getPlayers());

Listing 13-6: Cloning an aggregate object

Setting � a player’s position after the clone operation changes the value of
position for the player in both objects. Outputting the players array proves
this—Roy’s position is the same for both objects (see Listing 13-7).

Rovers Array ([0] => Player Object ([name:private] => Roy [position:private]
=> midfielder))
Reserves Array ([0] => Player Object ([name:private] => Roy
[position:private] => midfielder))

Listing 13-7: Undesired result of cloning

Because player is an object, the default behavior when making a copy is
to create a reference rather than an independent object. For this reason, any
change to an existing player affects the players array for both Team instances.
This is known as a shallow copy and in most cases doesn’t yield the desired
result. The magic clone method was introduced in order to deal with situa-
tions such as this. Let’s add a __clone method to the Team class so that each
team has a separate array of players. The code to do this is as follows:

public function __clone(){
 $newarray = array();
 foreach ($this->players as $p){
 $newarray[] = �clone $p;
 }
 $this->players = $newarray;
}

OOPHP_02.book Page 120 Friday, May 5, 2006 2:25 PM

More Magic Methods 121

While looping through the array of players � each individual player
is cloned and added to a new array. Doing this creates a separate array for the
cloned team. After making these changes, running the code in Listing 13-6
now yields this output:

Rovers Array ([0] => Player Object ([name:private] => Roy [position:private]
=> �midfielder))
Reserves Array ([0] => Player Object ([name:private] => Roy
[position:private] => �striker))

Changing a player originally added to the $rovers has no effect on the
player array in � the cloned $reserves object. This is the result you want. The
magic clone method allows you to define what happens when an object is
cloned. Using the terminology of other OO languages, the __clone method is
a copy constructor. It’s up to the developer to decide what’s appropriate for
any particular class, but as a general rule, a __clone method should always
be defined for aggregate classes for the exact reasons shown in the sample
code—normally the same variable isn’t shared among different instances
of a class. (That’s what static data members are for.)

A Get Method for Object Data Members of an Aggregate Class
When I first introduced accessor methods in Chapter 5, I noted that one of
the advantages of a get method over direct access to a public data member
was that accessor methods return a copy rather than an original. This is not
true when the data members are themselves objects—by default objects are
returned by reference. In the interests of data protection, it is usually better
to return a copy using the clone operator. With this in mind, let’s rewrite the
getPlayers method originally shown in Listing 13-5, shown here in Listing 13-8.

public function getPlayers(){
 $arraycopy = array();
 foreach ($this->players as $p){
 $arraycopy[] = clone $p;
 }
 return $arraycopy;
}

Listing 13-8: Returning a copy of an object

The array returned by this version of the getPlayers method is only a copy
so changes made to it will have no effect on the data member, $players. If you
need to make changes to the players array a set method will have to be written.
Doing so is a fairly straightforward matter so I’ll leave that up to you.

The fact that objects are passed by reference also has implications for
how objects are added to an aggregate class. For instance, consider the player
Roy who is added to the team Rovers in Listing 13-6. Any changes made to the
variable $roy will change the first element of the $players array in the $rovers
object. This may or may not be what’s wanted. If not, then players should be
cloned before being added to the players array.

OOPHP_02.book Page 121 Friday, May 5, 2006 2:25 PM

122 Chap te r 13

The addPlayer method of the Team class could be rewritten as:

public function addPlayer(Player $p){
 $newplayer = clone $p;
 $this->players[] = $newplayer;
}

The Team class now has complete control over any player added. This will
doubtless be the implementation preferred by any Team manager.

NOTE The fact that PHP 5 returns a reference to an object rather than a copy may have
serious implications for aggregate objects written under PHP 4 and running under
PHP 5. Objects formerly returned by value will now be returned by reference, breaking
encapsulation.

No Clones Allowed

As you saw when we discussed the singleton class in Chapter 11, in some cases
it may make sense to disallow copies altogether. This can be done by imple-
menting code such as the following:

public final function __clone(){
throw new Exception('No clones allowed!');

}

Making this method final ensures that this behavior can’t be overridden
in derived classes, and making it public displays a clear error message when
there is an attempt at cloning. Making the __clone method private would
also disallow cloning but displays a less explicit message: Access level must
be public.

A Note About Overloading

On the PHP website the __set, __get, and __call methods are referred to as
overloaded methods. Within the context of OOP, an overloaded method is one
that has the same name as another method of the same class but differs in
the number or type of arguments—methods with the same name but a differ-
ent “signature.” Because PHP is a typeless language and doesn’t really care
how many arguments are passed, this kind of overloading is an impossibility.
In PHP, overloading usually refers to methods that perform a variety of differ-
ent tasks.

Languages such as C++ also support something called operator overloads.
For example, a programmer can define what the “greater than” operator
means when two objects of the same class are compared. Support for such
features has been described as “syntactic sugar” because, most of the time,
operator overloads are not strictly necessary—the same effect could be

OOPHP_02.book Page 122 Friday, May 5, 2006 2:25 PM

More Magic Methods 123

achieved by writing a method rather than overloading an operator. How-
ever, operator overloads can be convenient and intuitive. It makes more
sense to write:

if($obj1 > $obj2)

than

if($obj1->isGreaterThan($obj2))

The __toString method, while it is not an operator overload, offers a con-
venience similar to that of an operator overload. It is certainly nice to be able
to control what is displayed to the screen when an object is echoed.

PHP supports operator overloading for clone and, as you have seen, this
is not syntactic sugar but a matter of necessity. The same can be said of the
__sleep and __wakeup methods because, as with destructors, the circumstances
under which these methods are invoked aren’t always under the direct control
of the developer.

All other magic methods are there for convenience so would perhaps
qualify as “syntactic sugar.” I won’t repeat the opinions expressed earlier
about __set and __get or press the point. After all, PHP places a high premium
on user convenience, aiming to get the job done quickly and easily. Undoubt-
edly, this is the reason for its success. If PHP’s aim was language purity, OO or
otherwise, it probably wouldn’t still be with us.

OOPHP_02.book Page 123 Friday, May 5, 2006 2:25 PM

14
C R E A T I N G D O C U M E N T A T I O N

U S I N G T H E R E F L E C T I O N
C L A S S E S

In Chapter 4, I introduced a simple class
called DirectoryItems. You may remember

what it does, but you probably can’t remem-
ber the specific methods. With a user-defined class,

looking up forgotten methods usually means rooting
through the class definition file. This can take a long time, especially for
large classes. For an internal class you can go to http://php.net to look up
the information you need. But there are more than 100 internal classes and
interfaces, and their documentation is scattered throughout the PHP site.
Wouldn’t it be useful to have a central repository of documentation for all
classes?

Finding documentation is one problem, but the quality of documentation
is another, equally important, problem. Most developers know the value of
accurately commented code, but when you are in the middle of coding, the
meaning of your code always seems crystal clear, so comments appear super-
fluous. Besides, there’s always the ultimate excuse for the absence of internal
documentation—you want to keep file size small to reduce download time.

OOPHP_02.book Page 125 Friday, May 5, 2006 2:25 PM

126 Chap te r 14

This is often the situation with internal documentation, but external
documentation fares no better. It doesn’t make sense to write it as you go
because things always change, but, by the time you’ve finished coding, docu-
mentation is the furthest thing from your mind. You’re ready to move on to
something else.

This chapter offers a solution to the two problems of ready availability
and quality of documentation. We’re going to create a documentation class
derived from a new set of classes introduced in PHP 5, the reflection group.
You’ll learn how to generate documentation dynamically that will fully
describe methods and data members and that will incorporate properly
formatted internal comments for user-defined classes.

What Are the Reflection Classes?

In Chapter 10, before implementing the Iterator interface, you had to under-
stand its methods. To create a class that will do your documenting for you,
you need to become familiar with the reflection classes. This group of classes was
created for the express purpose of introspecting other classes. These classes
make it possible to examine the properties of other classes by retrieving meta-
data about classes; you can even use them to examine the reflection classes
themselves.

Reflection provides information about the modifiers of a class or
interface—whether that class is final or static, for example. It can also reveal
all the methods and data members of a class and all the modifiers applied to
them. Parameters passed to methods can also be introspected and the names
of variables exposed. Through reflection it is possible to automate the docu-
mentation of built-in classes or user-defined classes. It turns out that the
central repository of information about classes was right in front of us all
the time. PHP can tell us all about itself through the mirror of the reflection
classes.

The Reflection Group of Classes

The reflection group of classes or Application Programming Interface (API)
is made up of a number of different classes and one interface, shown here:

class Reflection
interface Reflector
class ReflectionException extends Exception
class ReflectionFunction implements Reflector
class ReflectionParameter implements Reflector
class ReflectionMethod extends ReflectionFunction
class ReflectionClass implements Reflector
class ReflectionObject extends ReflectionClass
class ReflectionProperty implements Reflector
class ReflectionExtension implements Reflector

OOPHP_02.book Page 126 Friday, May 5, 2006 2:25 PM

Creat ing Documenta ti on Us ing the Ref lect ion Classes 127

We won’t be concerned with every class in the reflection API, but a gen-
eral overview will help put things in perspective. Looking at this list, you may
suppose that the Reflection class is the parent class of all the reflection classes,
but there is actually no class ancestor common to all reflection classes. On the
other hand, the Reflector interface is shared by all classes except Reflection and
ReflectionException. As far as class hierarchies are concerned, ReflectionMethod
extends ReflectionFunction, ReflectionObject extends ReflectionClass, and
ReflectionException extends Exception.

Our concern is with objects, so we won’t spend any time on the method
ReflectionFunction. ReflectionObject shares all the methods of ReflectionClass;
the only difference between these classes is that ReflectionObject takes a class
instance rather than a class name as a parameter—using an instance, you can
introspect a class without knowing anything about it, even its name. The class
ReflectionException is derived from Exception, a class we’ve already examined.

We’re principally interested in Reflection, ReflectionClass, ReflectionMethod,
ReflectionParameter, and ReflectionProperty.

The Reflection Class

The Reflection class has two static methods: export and getModifierNames. We’ll
discuss getModifierNames later in this chapter, but let’s take a look at the export
method—a quick way to introspect a class—to get a taste of what Reflection
can tell us. Reflection requires a ReflectionClass object as the parameter to the
export method. Let’s use the SOAPFault class as an example, since we recently
encountered it in Chapter 12. The export method is static. As you’ll recall from
Chapter 11, static methods are invoked by using the class name and the scope
resolution operator. Here’s the code to export this class:

Reflection::export(new ReflectionClass('SOAPFault'));

In this example, a class name is passed to the ReflectionClass constructor,
and the resultant object is the argument to the export method of the Reflection
class. The output of the export method is shown in Listing 14-1.

 Class [<internal:soap> class SoapFault extends �Exception] {
 - Constants [0] {
 }
 - Static properties [0] {
 }
 - Static methods [0] {
 }
 - �Properties [4] {
 Property [<default> protected $message]
 Property [<default> protected $code]
 Property [<default> protected $file]
 Property [<default> protected $line]
 }

OOPHP_02.book Page 127 Friday, May 5, 2006 2:25 PM

128 Chap te r 14

 - �Methods [9] {
 Method [<internal> <ctor> public method __construct] {
 }
 Method [<internal> public method __toString] {
 }
 Method [<internal> final private method __clone] {
 }
 Method [<internal> final public method getMessage] {
 }
 Method [<internal> final public method getCode] {
 }
 Method [<internal> final public method getFile] {
 }
 Method [<internal> final public method getLine] {
 }
 Method [<internal> final public method getTrace] {
 }
 Method [<internal> final public method getTraceAsString] {
 }
 }
}

Listing 14-1: Exporting SOAPFault

The export method gives a quick overview of a class. As you can see,
SOAPFault extends � the Exception class and possesses all � the properties of
Exception. Its methods are � Exception class methods. This is exactly the sort
of thing we want the reflection classes to do for us.

The ReflectionClass Class

The export method is quick and easy; but what if you want more information
in a user-friendly format? The place to begin is with the ReflectionClass class,
which you’ll extend to create a Documenter class.

NOTE There are nearly 40 methods of ReflectionClass. Often, the methods’ names clearly indi-
cate their purpose. For instance, isInterface determines whether you are introspecting a
class or an interface. We will only examine those methods that are of particular interest.

Methods of ReflectionClass

The getMethods and getProperties methods play an important role in class
documentation. Invoking getMethods returns an array of ReflectionMethod
objects. Invoking getProperties returns an array of ReflectionProperty objects.
These methods and the objects returned make it possible to fully describe a
class’s methods and data members.

You will recall that I promised we’d use internal comments when
documenting a class. If internal comments are properly formatted, the
getDocComment method of ReflectionClass can be used to incorporate
them directly into your documentation.

OOPHP_02.book Page 128 Friday, May 5, 2006 2:25 PM

Creat ing Documenta ti on Us ing the Ref lect ion Classes 129

Fortunately, ReflectionMethod and ReflectionProperty also have
getDocComment methods, so method-level and data member–level
comments can also be included.

NOTE Those of you familiar with PEAR (PHP Extension and Application Repository) and
phpDocumentor or the Java utility Javadoc will already know the proper format for
internal comments.

ReflectionMethod and ReflectionParameter

ReflectionMethod objects contain all the information you need to fully describe
a method. By using this object you can document the modifiers of a method;
you can use its getParameters method to return an array of ReflectionParameter
objects, which is essential for describing a method’s parameters.

A ReflectionParameter object will give you the number of parameters, their
names, and any default values. You can even determine whether a parameter
is a specific type of object if it is type hinted—yet another good reason to use
type hinting.

There is one respect in which you might find the ReflectionMethod class
wanting, however. Sometimes it’s important to know what a method returns;
for example, when using the getMethods method, it is essential to know that an
array of ReflectionMethod objects is returned. Since you can type hint parameters
and retrieve this information it would be nice to do the same with returned
values. However, because PHP is a weakly-typed language, it’s not surprising
that this capability is not supported, so be sure to document return types in
your comments where appropriate.

NOTE Type hinting return values is planned for PHP 6, so perhaps we can expect support for
this capability in future versions of the reflection classes.

ReflectionProperty

The getProperties method of ReflectionClass is similar to the getMethods
method. It returns an array of ReflectionProperty objects that can be queried
in much the same way as ReflectionMethod objects. (Determining whether
default values exist for data members poses some challenges; more about
this shortly.)

Built-in Functions

We’ve looked at the principal classes and methods of the reflection classes,
but there are some built-in PHP functions that can also be helpful when
documenting classes. Most of the functions in the Class/Object group have
been effectively, if not explicitly, deprecated in PHP 5 precisely because
there are now reflection classes that do a superior job. However, a number
of functions, such as get_declared_classes and is_object, continue to be
useful.

OOPHP_02.book Page 129 Friday, May 5, 2006 2:25 PM

130 Chap te r 14

What Format Do You Want?

One of the major reasons for documenting classes is to make them easier
for a client programmer to use. Because the client programmer is primarily
interested in the public methods of a class (he wants to know how to use the
class, not how it works), you should sort methods and data members by
visibility, giving priority to those with public visibility.

If you have ever used a plain text editor to write code you know that syntax
highlighting greatly improves readability. For this reason, the ability to change
the appearance of keywords is also a desirable characteristic to incorporate
into your class.

You’ve been acquainted with the capabilities of various reflection classes,
and now have a fair idea of what kind of off-the-shelf functionality is available
as well as what you will have to customize. You’re in a good position to begin
extending ReflectionClass.

The Documenter Class

We won’t be looking at each and every line of code in this class, but to help
put the following comments in context you might want to download the code
now. The export method of Reflection gave us a rough idea of the kind of
information we would like to see (refer to Listing 14-1). Now let’s discuss the
Documenter class in terms of how class information will be displayed.

Describing the Documenter Class

At the very minimum you need basic information about a class. The
getFullDescription method combines existing ReflectionClass methods
to create a string that matches the actual class declaration.

public function getFullDescription(){
 $description = "";
 if($this->isFinal()){
 $description = "final ";
 }
 if($this->isAbstract()){
 $description = "abstract ";
 }
 if($this->isInterface()){
 $description .= "interface ";
 }else{
 $description .= "class ";
 }
 $description .= $this->name . " ";
 if($this->getParentClass()){
 $name = $this->getParentClass()->getName();
 $description .= "extends $name ";
 }

OOPHP_02.book Page 130 Friday, May 5, 2006 2:25 PM

Creat ing Documenta ti on Us ing the Ref lect ion Classes 131

 $interfaces = $this->�getInterfaces();
 $number = count($interfaces);
 if($number > 0){
 $counter = 0;
 $description .= "implements ";
 foreach($interfaces as $i){
 $description .= $i->getName();
 $counter ++;
 if($counter != $number){
 $description .= ", ";
 }
 }
 }
 return $description;
}

This code calls a number of self-explanatory, inherited methods to build
a class description. The only slight complication is that, because a class can
implement more than one interface, � the getInterfaces method returns an
array, and so requires a foreach loop. When applied to the SoapFault class, the
following string is returned by the getFullDescription method:

class SoapFault extends Exception

SoapFault is correctly identified as a class rather than an interface, it is
neither final nor abstract, and its derivation from Exception is documented.
This is exactly the same description that you saw in Listing 14-1 when you
exported this class.

Describing Methods and Data Members

Since methods are more important than data members, let’s next deal with
how to adapt the reflection classes to document methods. Calling the getMethods
method of the ReflectionClass class creates an array of ReflectionMethod objects.
The visibility of each method can then be determined by the isPublic,
isProtected, or isPrivate methods of the ReflectionMethod class.

However, you want to display methods sorted by visibility—basically, you
want a getPublicMethods method and an identical method for displaying
private and protected methods. In order to be able to retrieve an array of
ReflectionMethod objects sorted by visibility, you are going to loop through all
the methods in a class and create separate arrays of each type. Let’s see how
this is done.

private function createMethodArrays(){
 $methods = $this->getMethods();
 //ReflectionMethod array returned
 foreach($methods as $m){
 $name = $m->getName();
 if($m->isPublic()){
 $this->publicmethods[$name] = $m;
 }

OOPHP_02.book Page 131 Friday, May 5, 2006 2:25 PM

132 Chap te r 14

 if($m->isProtected()){
 $this->protectedmethods[$name] = $m;
 }
 if($m->isPrivate()){
 $this->privatemethods[$name] = $m;
 }
 }
}

Again, the code is quite simple. An array of all methods of a class is
retrieved using the inherited ReflectionClass method getMethods, and
each ReflectionMethod object is stored in the appropriate associative array,
using the method name as the array key.

Each array is a private variable with a public accessor method—the
prescribed way for retrieving data members. For example, to examine the
public methods of a class, you simply call getPublicMethods, which will return
the array populated by createMethodArrays.

Data member arrays are created in exactly the same fashion. Your class has
a createDataMemberArrays that uses the getProperties method inherited from the
ReflectionClass to create an array of ReflectionProperty objects. You then query
each ReflectionProperty object to create arrays of public, private, and protected
data members. These arrays can, in turn, be retrieved using accessor methods.

The Constructor

The createDataMemberArrays method and the companion method for creating
an array of methods are both private and called from within the constructor of
the Documenter class.

public function __construct($name){
 parent::__construct($name);
 $this->createDataMemberArrays();
 $this->createMethodArrays();
}

Placement of the call to the parent constructor is noteworthy. Because
createDataMemberArrays and createMethodArrays both invoke methods of the
parent class, it is essential that the call to the parent constructor occur first.
Doing otherwise results in calling methods on a not-yet-existent object.

Method and Data Member Modifiers

It is essential to know the access modifiers for methods and data members
of a class. Both the ReflectionMethod and the ReflectionParameter classes have
a getModifiers method that returns an integer with bit fields set to flag the
different access modifiers. Your Documenter class has its own getModifiers
method that converts these flags to their string equivalents using the static
getModifierNames method of the Reflection class.

OOPHP_02.book Page 132 Friday, May 5, 2006 2:25 PM

Creat ing Documenta ti on Us ing the Ref lect ion Classes 133

public function getModifiers($r){
 if($r �instanceof ReflectionMethod ||
 $r �instanceof ReflectionProperty){
 $arr = �Reflection::getModifierNames($r->getModifiers());
 $description = implode(" ", $arr);
 }else{
 $msg = "Must be ReflectionMethod or ReflectionProperty";
 throw new ReflectionException($msg);
 }
 return $description;
}

You want to ensure that only ReflectionMethod objects or ReflectionProperty
objects are passed into this method so you use the operator, � instanceof. This
operator was introduced with PHP 5 and replaces the now-deprecated func-
tion is_a. This operator allows you to restrict use of your method to classes
that support the getModifiers method and to throw a ReflectionException if
the wrong type of object is passed in.

When you pass the return value of getModifiers to � the static method
of the Reflection class, getModifierNames, a string array of all the modifiers is
returned. A series of calls to isPublic, isStatic, and like methods would achieve
the same result, but using getModifierNames is by far the most succinct way of
getting the string values of method and data member modifiers.

As an interesting aside, when introspecting the methods of a built-in inter-
face, the modifiers are always public and abstract. In Chapter 11 you saw that
PHP prohibits the use of the modifier abstract when defining the methods of
a user-defined interface, despite the fact that the methods of an interface must
in fact be abstract.

N O C O M M O N A N CE S T O R

You might think that ReflectionMethod and ReflectionProperty objects each have a
getModifiers method because they share a common interface, Reflector, and, con-
sequently, you could type hint the parameter to this method to check for an instance
of this particular interface only. However, you would be mistaken. There are only
two methods of the Reflector interface: export and __toString. As far as a common
class heritage is concerned, ReflectionMethod derives from ReflectionFunction and
ReflectionProperty has no parent class. So there is no common parentage. That
said, the fact remains that checking for an instance of the Reflector class would achieve
essentially the same result as checking for ReflectionFunction and ReflectionProperty—
but for the wrong reasons. It is only fortuitous that both classes have a getModifiers
method. Another way to screen for the correct class would be to introspect the variable
$r to determine whether it has a getModifiers method.

OOPHP_02.book Page 133 Friday, May 5, 2006 2:25 PM

134 Chap te r 14

Using the Documenter Class

That completes the description of the Documenter class. We will now use it in
a web page to display information about all internal and user-defined classes.
We’ll create a sidebar of links to all existing classes and interfaces, and display
detailed information in the main portion of the page. Again, we won’t discuss
every line of code, only those lines that are of special interest.

Creating a Sidebar of Classes and Interfaces
Let’s create a sidebar that will display the names of all PHP classes as
hyperlinks—fulfilling the promise of a central repository of information
about all classes. Clicking a hyperlink will display documentation for this
class in the main portion of your web page. The code to do this follows:

�include 'MySQLResultSet.php';
include 'MySQLConnect.php';
include 'Documenter.php';
include 'PageNavigator.php';
$arr = �get_declared_classes();
natcasesort($arr);
$classname = �@$_GET["class"];
if(!isset($classname)){
 $classname = current($arr);
}
echo "<h4 style=\"background-color:#fff;\">Classes</h4>";
foreach($arr as $key => $value){
 echo "".
 "$value
";
}

In addition to built-in classes, any user-defined classes that have been
loaded using � an include or require statement will be retrieved when you call
� the get_declared_classes function. If no � variable named class has been
passed to this page, then $classname will default to the name of the first class in
the array of declared classes. This $classname variable contains the class name
that will be passed to the constructor of the Documenter class. Information about
the specified class will be displayed in the center of the page. A foreach loop
creates the list of hyperlinks to all available classes by creating � a query string
that includes the class name.

Your sidebar also displays links to all the declared interfaces. The code to
do this is identical to the code to retrieve classes except that it calls the func-
tion get_declared_interfaces instead of get_declared_classes. Therefore this
code will not be reproduced here.

Formatting Detailed Documentation

The MySQLException class is a derived class that has a variety of methods (see Fig-
ure 14-1), so use it as an example of how we would like the class documentation
to look.

OOPHP_02.book Page 134 Friday, May 5, 2006 2:25 PM

Creat ing Documenta ti on Us ing the Ref lect ion Classes 135

Figure 14-1: Documentation format

Let’s proceed by relating the code to this output. The web page that
displays your documentation first creates an instance of the Documenter class:

�try{
 $class = new Documenter($classname);
 echo "<h2>Name: ". $class->�getName() . "</h2>\n";
 $today = �date("M-d-Y");
 echo "<p> Date: $today
";
 echo "PHP version: ". phpversion() . "
";
 echo "Type: ". $class->�getClassType() . "

\n";
 echo "". $class->�getFullDescription().
 "

\n";
 echo $class->�getDocComment() . "</p>\n";
 ...
}

Because creating an instance may throw a ReflectionException, you enclose
your call to the constructor within � a try block. You need to know which
class we are documenting, so you display the class name by calling � the
inherited method getName. Knowing when documentation was created is

OOPHP_02.book Page 135 Friday, May 5, 2006 2:25 PM

136 Chap te r 14

important, so you display the date using � the date function. Likewise with
the PHP version number. Since you are mixing built-in and user-defined
classes, specifying � the class type will reduce confusion.

As you saw earlier in this chapter, � the full class description identifies
whether you are dealing with a class or an interface, and also details the class
parentage. Because internal comments within the class file have been properly
formatted, you can extract them using � the getDocComment method. When this
method is called against an instance of a class, it retrieves the comment that
immediately precedes the class definition. Let’s see how that’s done.

Formatting Comments for the Documenter

The getDocComment method is fussy about what it will retrieve, so let’s look at
the format of the comments within an existing user-defined class. We’ll con-
tinue using the MySQLException class as an example.

/** For use with MySQLConnection and MySQLResultSet classes */
class MySQLException extends Exception
{ ... }

A class-related, internal comment must meet the following conditions
for the getDocComment method to work:

� It must immediately precede the class definition statement.

� It may run to any number of lines but must begin with a forward slash,
followed by two asterisks, followed by white space, and be terminated by
an asterisk and forward slash—in other words, exactly the format required
by Javadoc.

The ReflectionFunction, ReflectionMethod, and ReflectionObject classes also
support a getDocComment method. (As of PHP 5.1, the ReflectionProperty class
also supports this method.) Exactly the same formatting rules apply. Again,
internal comments must immediately precede what they document.

As you can see in Figure 14-1, the internal comments documenting the
constructor are displayed immediately after the class description—as prom-
ised, the Documenter class incorporates internal comments. Unfortunately,
getDocComment only applies to user-defined classes and user-defined methods
or data members; comments cannot be extracted for internal classes.

Documenting Methods

As shown in Figure 14-1, method documentation is displayed immediately after
the class description and comments. With a view to the client programmer,
public methods are displayed immediately after the class name and descrip-
tion, followed by protected methods, and finally private methods. Because
the MySQLException class has no protected methods, none are shown.

OOPHP_02.book Page 136 Friday, May 5, 2006 2:25 PM

Creat ing Documenta ti on Us ing the Ref lect ion Classes 137

Methods of all levels of visibility are passed to the show_methods function to
handle the details of displaying method descriptions. Here is the prototype
for this function:

function show_methods(Documenter $d, $type, $arr)

One of the parameters of this function is an object. In PHP 4 you would
want to ensure that this object was passed by reference by preceding the
variable with & (an ampersand). As discussed in Chapter 13 in the section
“__clone” on page 116, in PHP 5 all objects are automatically passed by
reference, so there is no need to do this. This parameter is also type hinted,
disallowing anything other than a Documenter object.

To summarize, this function displays the variable names of method
parameters, type hints, and default values where applicable. Syntax high-
lighting has been used for the keywords describing each method—you can
quickly see in Figure 14-1 that the getMessage method of the MySQLException
class is both final and public. User-defined methods are flagged as such, and
any internal comments are displayed.

NOTE If you are running PHP 5.1 or higher, you can type hint the array passed
to show_methods by changing the function prototype to read function
show_methods(Documenter $d, $type, array $arr).

Data Members

Data members are handled in much the same way as methods. Those with
the least restrictive visibility are presented first. Again, keywords are high-
lighted. Even default values assigned to data members can be retrieved.
Somewhat surprisingly, this is done using the getDefaultProperties method
of ReflectionClass rather than by using a ReflectionProperty class method.
As with methods, all modifiers are shown. The value of constants is retrieved
using the ReflectionClass method getConstants.

Reflecting

The reflection classes make it easy to generate documentation for both
internal and user-defined classes. Documentation can be created directly
from the class files themselves, so any changes to the class are immediately
reflected in the documentation—much easier than separately maintaining
both code and documentation. Descriptions of methods and hints about class
usage are invaluable not only for the client programmer but also for the class
originator, especially when a few months have lapsed between creation of a
class and its subsequent use. Class documentation can effortlessly incorporate
internal comments as long as you simply pay a little attention to their format
during coding.

OOPHP_02.book Page 137 Friday, May 5, 2006 2:25 PM

15
E X T E N D I N G S Q L I T E

SQLite comes packaged with PHP 5. It has
advanced capabilities and a built-in object-

oriented (OO) interface. Examining the
classes and methods of SQLite is the ostensible

reason for including this chapter—but that’s not the
only reason. SQLite is a great addition to PHP, but
because MySQL is so entrenched, programmers tend
to ignore SQLite.

Don’t let the “Lite” in SQLite lead you to underestimate the capabilities
of this database. Because it is bundled with PHP, there is no external server
to worry about—think of it as “Lite” in the sense of “no extra baggage.” In
some situations it is the ideal database to use. Its advanced features can help
simplify your code and create an application that outperforms other solutions.

In this chapter, we will develop a link management application using a
class derived from the SQLite database class. A minimum of PHP version
5.0.5 is a requirement. (Prior to this version the SQLite database class is
declared as final, so it cannot be extended.)

OOPHP_02.book Page 139 Friday, May 5, 2006 2:25 PM

140 Chap te r 15

Brief Overview

Relevant sections of code will be reproduced here, but, as usual, the entire
application is available for download on the companion website. The front
end for this application will display alphabetically ordered website links, as
shown in Figure 15-1.

Figure 15-1: Resource links

An alphabetic navigation bar of hyperlinks will make any specific link
easily accessible. Recently added links will be highlighted, making the list
even more useful to regular visitors.

A submission form will allow visitors to suggest additional links. These
links will not appear on the site until they have been reviewed. There will be
a back end to review and maintain links.

Directory Structure

Because of the number of files in the download for this chapter, it’s helpful
to make a few comments about the way the files are organized. Download
and decompress the files to follow along.

The front-end capabilities of this application are accessible from the links
in the index.php file in the top level directory and the back end is found using
the index.php file in the linkmanagement directory. On a production server the
linkmanagement directory would be password protected but for ease of use that
hasn’t been done here.

For reasons of version compatibility, the database file itself is not included
with the downloads. It should be installed in the dbdir directory. Version 2.8.17
of SQLite was used to test this application (but if you are already up and run-
ning with another version of SQLite you shouldn’t run into any problems).
Install the database from the db_install_script.php file (also included in the
dbdir directory). Instructions on how to do this will follow shortly.

OOPHP_02.book Page 140 Friday, May 5, 2006 2:25 PM

Ex tending SQL ite 141

How It’s Done

In this application we take advantage of some of SQLite’s advanced capa-
bilities. Both triggers and views will be used. A trigger, code that executes in
response to an add, edit, or delete event, will be used to mimic a datestamp
field—records will be automatically stamped whenever they are added or
changed.

Views are a convenient way of storing queries and can replace tables in
the FROM clause of a SELECT statement. They can also be used with triggers so
that “updating” a view updates the associated table.

No database used in conjunction with PHP can escape comparison to
MySQL. Where appropriate, I will point out differences in SQL syntax
between SQLite and MySQL. Likewise, SQLite has a variety of different query
methods. These will also be contrasted with MySQL functions.

As you have seen, throwing exceptions rather than trapping errors
makes for cleaner code. SQLite has a built-in OO interface, and there is an
SQLiteException class. However, only the SQLite database constructor throws
exceptions. By extending the SQLite database class, we can override the query
methods so that a failed query also throws an exception. This derived class will
also include data verification methods that make use of metadata extracted
from the database. This will be done by querying the sqlite_master table and
through the use of pragmas. A pragma modifies the way the SQLite library
works but can also be used to query the database structure. We’re only inter-
ested in the second use.

A limited number of functions are available for use with SQLite’s dialect
of SQL. You’ll see how this shortcoming can be overcome by creating user-
defined functions (UDFs).

Getting Started

SQLite comes bundled with PHP 5, so all you have to do to install the database
is run the db_install_script.php file.

However, if you do things this way you’ll have to write code just to view
your data or to examine the structure of your database. You might want to
download the command-line version of SQLite instead. PHP 5, depending
upon the subversion number, comes with SQLite versions 2.8.11 through
2.8.17. To find out which version is running on your system, display the
results of the PHP function phpinfo in your browser and search for SQLite.
For convenience, you might want to install the binary of sqlite in the same
directory as your database.

Creating a database is as simple as typing the name of the SQLite
executable file at the command line followed by the database name—for
example, sqlite resources.sqlite. Doing so will run sqlite and create or
open an existing database of the specified name. You can now create a
table using SQL from the command line. However, let me make one more
suggestion. At some point you will want to dump your database, and if you
have created it from the command line the output won’t be very readable.

OOPHP_02.book Page 141 Friday, May 5, 2006 2:25 PM

142 Chap te r 15

If you use a text editor to format your CREATE TABLE statement and then
redirect this file to the database, the results will be much more acceptable.
Do this whenever you create tables, views, or triggers.

NOTE Precompiled binaries for most operating systems are available at the SQLite download
page (http://sqlite.org/download.html). For compatibility reasons it is important to get
the command-line version number that matches the version incorporated into PHP. At the
SQLite site you may have difficulty finding older versions. If there is no link to the
version you require, enter the URL http://sqlite.org, followed by the version number
you require, into the address bar of your browser—for example, http://www.sqlite.org/
sqlite-2_8_16.zip. You might get away with using a slightly higher or lower version
number, but version 3 databases are an entirely different format from version 2, so do
not attempt to use the version 3 command-line tool with a version 2 database.

The database used in this application is called resources.sqlite and is
stored in a subdirectory named dbdir. If you haven’t already created it using
the db_install_script.php file, you can do so by redirecting the dump.sql file
from the command line in the following way:

sqlite resources.sqlite < dump.sql

A database dump is formatted as a transaction, so, if this command
worked properly, you’ve already used one of SQLite’s advanced features.

You can test that the database has been installed by executing a SELECT
statement. Typing SELECT * FROM tblresources; should display all the records
in the resources table.

Creating a Table

The SQL used to create the tblresources table in our database is shown in
Listing 15-1.

CREATE TABLE tblresources(
 id INTEGER PRIMARY KEY,
 url VARCHAR(255) NOT NULL UNIQUE default '',
 email VARCHAR(70) NOT NULL default '',
 precedingcopy VARCHAR(100) NOT NULL default '',
 linktext VARCHAR(255) NOT NULL default '',
 followingcopy VARCHAR(255) NOT NULL default '',
 target VARCHAR(35) default '_blank',
 category VARCHAR(100) NOT NULL default '',
 theirlinkpage VARCHAR(100) default NULL,
 whenaltered TIMESTAMP default '0000-00-00',
 reviewed BOOLEAN default 0,
 whenadded DATE default '2006-05-05');

Listing 15-1: Creating a table

OOPHP_02.book Page 142 Friday, May 5, 2006 2:25 PM

Ex tending SQL ite 143

Let’s have a look at the details.
To create a table with an autonumber field named id, the data type INTEGER

is used in conjunction with PRIMARY KEY. This is equivalent to identifying a field
as INTEGER auto_increment PRIMARY KEY in MySQL. In SQLite this field definition
is the one exception to the rule that SQLite fields are typeless—otherwise all
fields are strings. Creating fields as types other than string helps document
the data types you are expecting but will not restrict the value entered. You can
put a string into a float type field and a float into a Boolean. Further, specify-
ing the length of a VARCHAR type field will not truncate data that exceeds the
defined length. Any length of string can be entered into any field. Otherwise,
the syntax for creating a table functions exactly as you might expect.

The field names used in creating this table are self-documenting, but a
few comments are in order. A resource won’t be displayed until the reviewed
field is set to true. The field with the data type TIMESTAMP whenaltered will be
maintained using a trigger as will the whenadded field.

Views

Views are stored SELECT queries. If you repeatedly use the same query, it is
worthwhile creating it as a view.

To make resource links easily accessible, let’s order them alphabetically
and create hyperlinks to each letter of the alphabet. With this in mind, take a
look at the alphabet view shown in Listing 15-2.

CREATE VIEW alphabet AS
 SELECT DISTINCT UPPER(SUBSTR(linktext,1,1)) AS letter
 FROM tblresources
 WHERE reviewed = 1
 ORDER BY letter;
CREATE VIEW specific_link AS
 SELECT id, url,
 (precedingcopy || ' ' || linktext || ' ' || followingcopy)
 AS copy
 FROM tblresources;

Listing 15-2: Views

The alphabet view creates a row of links as pictured at the top of
Figure 15-1.

Rather than repeat the SQL statement that makes up the alphabet view,
we can instead simply SELECT * FROM alphabet using the name of the view in the
FROM clause.

The second view, specific_link, also shown in Listing 15-2, demonstrates
how a view can be “updated” when used in conjunction with a trigger. We will
return to this view in the following discussion about triggers, but do note the
use of || as the string concatenation operator.

As you can see, SQLite defines its own string manipulation functions. For a
complete list of functions and operators, see www.sqlite.org/lang_expr.html.

OOPHP_02.book Page 143 Friday, May 5, 2006 2:25 PM

144 Chap te r 15

Triggers

For those programmers who pride themselves on their laziness, triggers are a
wonderful thing. By creating a trigger you can get maximum effect with mini-
mum effort.

Triggers are activated by an INSERT, DELETE, or UPDATE SQL statement. They
are often used to maintain referential integrity and avoid orphaned records—
for example, deleting an invoice might well trigger deletion of all related
invoice items. We’re going to create three triggers for our application: one
to mimic a timestamp field, another to show the advantages of laziness, and
finally a trigger to demonstrate how a view can be “updated.”

The timestamp triggers are shown in Listing 15-3. They are activated
whenever a record in the tblresources table is added or updated.

CREATE TRIGGER insert_resources AFTER INSERT ON tblresources
BEGIN
 UPDATE tblresources SET whenaltered = DATETIME('NOW','LOCALTIME')
 WHERE id = new.id;
END;
CREATE TRIGGER update_resources AFTER UPDATE ON tblresources
BEGIN
 UPDATE tblresources SET whenaltered = DATETIME('NOW','LOCALTIME')
 WHERE id = new.id;
END;
CREATE TRIGGER add_date AFTER INSERT ON tblresources
BEGIN
 UPDATE tblresources SET whenadded = DATE('NOW','LOCALTIME')
 WHERE id = new.id;
END;
CREATE TRIGGER delete_link INSTEAD OF DELETE ON specific_link
FOR EACH ROW
BEGIN
 DELETE FROM tblresources
 WHERE id = old.id;
END;

Listing 15-3: Triggers

There is no need to remember to update the whenaltered field each time
a change is made to a record—the insert_resources and update_resources
triggers will do this for you. The current date and time will be added in the
background. Effectively, this field will now function like a MYSQL TIMESTAMP
field.

Likewise with the add_date trigger, also shown in Listing 15-3. We want to
highlight new links. This trigger makes it possible to capture the date a link
is added. By using a trigger we don’t have to worry about forgetting to main-
tain this field, and we don’t have to write additional code each time a record
is added.

OOPHP_02.book Page 144 Friday, May 5, 2006 2:25 PM

Ex tending SQL ite 145

Creating a trigger on a view is a convenient way of performing an “update”
against a view. By themselves, views are not updatable. If you attempt to delete
from a view that has no associated trigger, you’ll get a warning like the
following:

Warning: SQLiteDatabase::query() [function.query]: cannot
modify specific_link because it is a view...

We solved this problem in the trigger we created on the view specific_link
shown in Listing 15-3. Because we used an INSTEAD OF clause, any attempt to
delete from this view instead removes the appropriate record from the
table, tblresources.

In this trigger we have specified FOR EACH ROW. Doing so is optional.
A FOR EACH STATEMENT clause also exists but is not yet supported.

The WHERE clause of a trigger is somewhat intuitive but may cause some
confusion. Using new.id to specify a newly inserted record and old.id for a
deleted record clearly makes sense. Either old or new may be used when a
record is updated.

Using triggers is very convenient, although the same effect could be
achieved programmatically. But because triggers are embedded in the data-
base, they are activated even when you make changes from the command
line. Triggers help maintain the integrity of your database when it is modified
outside of your application. Laziness has its rewards.

PHP Implementation of SQLite

For the most part, the OO methods of SQLite are exactly the same as the
procedural functions. The only difference is that the leading sqlite is
dropped and the studly caps naming convention is used in place of under-
scores (although some methods added in version 5.1 don’t quite follow this
rule). Method parameters are the same as those used with the procedural
functions, except that there is no need to pass a resource handle since the
object itself is the handle. A few functions are only available in a procedural
form; these will be mentioned where appropriate.

There are three built-in, ready-to-use SQLite objects: an SQLite database,
a buffered result set, and an unbuffered result set. All three classes will be used
in this chapter, but the focus will be on the database class.

Extending SQLiteDatabase

One of the nice things about object-oriented programming (OOP) is excep-
tion handling. Procedural error trapping is not only tedious, it clutters up
your code and can make it unreadable. Taking an OO approach and using
exception handling sounds like the ideal solution—until you realize that the
database constructor is the only method of all the SQLite classes that throws

OOPHP_02.book Page 145 Friday, May 5, 2006 2:25 PM

146 Chap te r 15

an exception. If you want to check for errors when creating result sets, you
are stuck using procedural code. It looks like we’re right back where we
started.

We’ll next discuss how this can be fixed.

Override the Query Methods

The simple solution to this problem is inheritance. On the surface, this
would seem fairly straightforward: Create a class that extends SQLiteDatabase
and override all the query methods. If errors arise within those overridden
methods, simply throw an exception. In this way, the messy details of error
trapping can be buried inside the class file and a single catch block can handle
all errors. The first five methods in the class definition file shown in Listing 15-4
do exactly this.

//
//public functions related to queries
/**
Override function
*/
 public function query($strsql, $type = SQLITE_BOTH, &$err_msg = ''){
 //SQLiteResult query (string query [, int result_type [, string &error_msg]])
 if (false === $result = parent::query($strsql, $type, $err_msg)){
 //no sql details with last error
 throw new SQLiteException (sqlite_error_string($this->lastError()));
 }
 return $result;
 }
//
/**
Override function
*/
 public function unbufferedQuery($strsql, $type = SQLITE_BOTH, &$err_msg = ''){
 //SQLiteUnbuffered unbufferedQuery (string query [, int result_type [, string
&error_msg]])
 if (false === $result = parent::unbufferedQuery($strsql, $type, $err_msg)){
 throw new SQLiteException (sqlite_error_string($this->lastError()));
 }
 return $result;
 }
//
/**
Override function
*/
 public function singleQuery($strsql, $first_column = true, $bin_decode = false){
 //array sqlite_single_query (resource db, string query [, bool first_row_only [, bool
decode_binary]])
 if (false === $result = parent::singleQuery($strsql, $first_column, $bin_decode)){
 throw new SQLiteException (sqlite_error_string($this->lastError()));
 }
 return $result;
 }

OOPHP_02.book Page 146 Friday, May 5, 2006 2:25 PM

Ex tending SQL ite 147

//
/**
Override function
*/
 public function queryExec($strsql, &$err_msg = ''){
 //bool queryExec (string query [, string &error_msg])
 if (!parent::queryExec($strsql, $err_msg)){
 throw new SQLiteException (sqlite_error_string($this->lastError()));
 }
 return true;
 }
//
/**
Override function
*/
 public function arrayQuery($strsql, $type = SQLITE_BOTH, $bin_decode = false){
 //array arrayQuery (string query [, int result_type [, bool decode_binary]])
 if (false === $result = parent::arrayQuery($strsql, $type, $bin_decode)){
 throw new SQLiteException (sqlite_error_string($this->lastError()));
 }
 return $result;
 }
//

Listing 15-4: Extending the SQLiteDatabase class

In each case, the query method of the parent class, SQLiteDatabase, is
redefined to include a test of the return value.

Error Messages

The comment immediately inside each method definition shows the method
prototype as defined on the PHP site. This is especially useful because it shows
the type of object returned. Some of the base class methods take an optional
string reference argument (&$error_msg).

NOTE In versions of PHP prior to 5.1, passing in this string reference results in this warning:
SQLiteDatabase::query() expects at most 2 parameters, 3 given.

The reason a third parameter is necessary is explained as follows (from
http://php.net/sqlite_query):

... [$error_msg] will be filled if an error occurs.

This is especially important because SQL syntax errors can’t be
fetched using the [sqlite_last_error()] function.

Quite true. The sqlite_last_error function returns an uninformative
message: SQL logic error or missing database. Our code doesn’t make use
of this error message but this isn’t an insurmountable problem. A more
specific error message would certainly help in the debugging process, how-
ever. Fortunately, if you have warnings turned on while you are developing,

OOPHP_02.book Page 147 Friday, May 5, 2006 2:25 PM

148 Chap te r 15

you will get something more meaningful. Forcing a warning by referencing a
nonexistent table results in the following, more specific, output:

Warning: SQLiteDatabase::query()[function.query]: no such
 table: tblnonexistent...

Query Methods
Look again at Listing 15-4. It includes the five methods for creating result
sets. The buffered and unbuffered methods are fairly self-explanatory—you
are probably quite familiar with the equivalent MySQL functions. However,
MySQL (prior to the MySQL improved extension) has nothing to match the
singleQuery, queryExec, or arrayQuery methods. Let’s look at these methods in
more detail.

The singleQuery method is a recent addition, and the PHP site warns that
it is not currently documented. Let’s carry on regardless because this method
looks especially useful for those situations where a query returns only one
row—when using the COUNT function to return the number of records in a
table, for example. Here’s one view of how this method ought to behave: This
method returns only one record, and no result set is created. If the second
argument is false, the value returned is an array of the first row. If the sec-
ond argument is true, then only the first column of the first row is returned,
and it is returned as a scalar value.

This speculation may make the best sense of how this method ought to
work, but it doesn’t describe what actually happens. In fact, this method only
ever returns the first column and any number of rows. If the second argument
is false, then an array is returned; if the second argument is true and only one
row is returned, a scalar is returned. On the PHP site, this second argument
is identified as bool first_row_only and the return type is identified as an array.
It looks like the return type should be mixed. In any case, this method doesn’t
yet work the way it ought to. We were warned.

There is no requirement that you use the singleQuery method instead
of query. As with MySQL, you can always create a result set and then use the
appropriate fetch function to retrieve the value of the first row or a specific
field. But why return an object or an array when all that’s needed is the value
of one column? You may use the singleQuery method for any kind of query—
data manipulation or otherwise—but it was designed specifically for situa-
tions where a single value or single column is returned, and is presumably
optimized for this situation.

As you can see, there is also an arrayQuery method. Like the singleQuery
method, this method allows us to directly copy results into an array, bypassing
the intermediate step of creating a result set. This method is best used when
a limited number of records are returned.

MySQL versions prior to 4.1 have no equivalent to the queryExec method of
SQLite because queryExec is specifically designed for use with multiple queries.
Multiple, semicolon-separated queries may be passed as a single query string to
queryExec. (The install script uses this method to create the tables, triggers, and
views and to insert records into the tblresources table.) This method gives
significant performance improvements over repeated querying and performs

OOPHP_02.book Page 148 Friday, May 5, 2006 2:25 PM

Ex tending SQL ite 149

the same job as the MySQL-improved (the mysqli functions added to PHP 5 to
support MySQL 4.1) method, mysqli_multi_query. If you like, you can of course
use this method to execute a single query.

query

Use of this method to create an SQLiteResult object is shown in Listing 15-5.

$db = new SQLiteDatabasePlus('resources.sqlite');
//alphabet view
$strsql = "SELECT * FROM alphabet";
//use buffered result set to get number of rows
$result = $db->query($strsql);
//create alphabet here
if($result->numRows() > 0){
 echo get_alphabet($result);
}

Listing 15-5: query method returns a buffered result set

Remember, an SQLiteResult is buffered so you can use the numRows method
with this result set. It is also iterable, so this result set may be used in a foreach
loop. In this, SQLite differs from MySQL. Because SQLiteResult implements
Iterator, all the iterator methods are present—rewind, next, valid, and current.
These methods can be used directly, but their real purpose is to allow an
SQLite result set to be used in a foreach loop in exactly the same way that you
might use an array. (As you might expect, the rewind method can’t be applied
to an unbuffered result set.) Only this method and the unbuffered query
method return a result set object.

unbufferedQuery

There is no need to buffer the result set returned in Listing 15-6.

try{
$db = new SQLiteDatabasePlus('../dbdir/resources.sqlite');
$type="Edit";
//retrieve from db
$strsql = "SELECT * FROM tblresources ".

"WHERE id = '$id'";
//get recordset as row
$result = $db->unbufferedQuery($strsql);
$row = $result->fetch();
//can't use below because returns first column only
//$row = $db->singleQuery($strsql, false);
// assume vars same as fields
while(list($var, $val)=each($row)) {

$$var=$val;
}

}catch(SQLiteException $e){
//debug msg
echo $e->getMessage();

}
}

Listing 15-6: The unbufferedQuery method

OOPHP_02.book Page 149 Friday, May 5, 2006 2:25 PM

150 Chap te r 15

This listing shows an unbuffered query. In this case, a functional
singleQuery method would be preferable because we know that only one
record will be returned. However, given the problems with singleQuery, we
use the unbufferedQuery method of an SQLiteDatabase object to create a result
set object and then use the fetch method to copy the first row into an array.

arrayQuery

The PHP site warns against using the arrayQuery method with queries that
return more than 45 records (a somewhat arbitrary number perhaps, but
this method stores results in memory so returning a large number of records
can exhaust memory). We’ve used this method in Listing 15-7.

 $db = new SQLiteDatabasePlus('../dbdir/resources.sqlite');
 $db->createFunction('class_id','set_class_id',0);
 $sql = "SELECT id, url, email, ".
 "(precedingcopy || ' ' || linktext || ' ' || followingcopy) ".
 "AS copy, linktext, reviewed, class_id() AS classid ".
 "FROM tblresources ".
 "ORDER BY id DESC ".
 "LIMIT $recordoffset,". PERPAGE;
 //use arrayQuery
 $resultarray = $db->arrayQuery($sql);
...

Listing 15-7: Using arrayQuery

As you can see, we know exactly how many records are returned because
our SQL has a LIMIT clause. Again, this method allows us to bypass creation of
a result set.

singleQuery

The code below uses the singleQuery method and does exactly what we
need—it returns a single scalar value rather than a result set or an array.

$totalrecords = $db->singleQuery('Select COUNT(*) FROM
 tblresources', true);

queryExec

This method is commonly used to process a transaction. Use the command-
line command .dump to dump your database or view the file dump.sql. You’ll
see that it is formatted as a transaction. You can recreate an entire database
by passing this listing as a string to the queryExec method, as we have done
with the install script, db_install_script.php.

The ability to perform multiple queries using one string does raise
security issues. When using this query method, it is especially important to
filter data in order to avoid a possible SQL injection attack. For more details,
see php|architect’s Guide to PHP Security.1

1 Ilia Alshanetsky, php|architect’s Guide to PHP Security (Marco Tabini & Associates, Inc., 2005), 73.

OOPHP_02.book Page 150 Friday, May 5, 2006 2:25 PM

Ex tending SQL ite 151

Utility Methods
By overriding all the query methods of the SQLiteDatabase class we ensure that
any failed query throws an exception. This done, we needn’t worry about error
trapping whenever we perform a query. The remaining methods of our derived
class are utility methods aimed at helping verify data posted from a form.
These methods give us an opportunity to explore some of the ways to retrieve
metadata from an SQLite database. Find those methods in Listing 15-8.

/**
 Get all table names in database
*/
 public function getTableNames(){
 if (!isset($this->tablenames)){
 $this->setTablenames();
 }
 return $this->tablenames;
 }
///
/**
 Retrieve field names/types for specified table
*/
 public function getFields($tablename){
 if (!isset($this->tablenames)){
 $this->setTablenames();
 }
 if (!in_array($tablename, $this->tablenames)){
 throw new SQLiteException("Table $tablename not in database.");
 }
 $fieldnames = array();
 $sql = "PRAGMA table_info('$tablename')";
 $result = $this->unbufferedQuery($sql);
 //no error - bad pragma ignored
 //get name and data type as defined upon creation
 foreach ($result as $row){
 $fieldnames[$row['name']] = $row['type'];
 }
 return $fieldnames;
 }
//
//private methods
/**
 private method - initializes table names array
*/
 private function �setTableNames(){
 $sql = "SELECT name ".
 "FROM sqlite_master ".
 "WHERE type = 'table' ".
 "OR type = 'view'";
 $result = $this->unbufferedQuery($sql);
 foreach ($result as $row){
 $this->tablenames[] = $row['name'];
 }
 }

Listing 15-8: Metadata methods

OOPHP_02.book Page 151 Friday, May 5, 2006 2:25 PM

152 Chap te r 15

The two methods that make use of metadata are setTableNames and
getFieldNames. Let’s examine � the method setTableNames in Listing 15-8. This
method makes use of the table sqlite_master—a table that defines the schema
for the database. By querying sqlite_master, we can retrieve the names of all
the tables and views in the database. The type field defines the kind of
resource, in our case a table or view. This method retrieves the names of all
the tables and views and stores them in an array.

Ideally, this method would be called once from the constructor, but
the constructor for an SQLite database is declared final, so it may not be
overridden.

Pragmas perform a variety of functions in SQLite. One of those func-
tions is to provide information about the database schema—about indices,
foreign keys, and tables.

Running the pragma table_info returns a result set that contains the
column name and data type. The data type returned is the data type used
when the table was created. This may seem pointless—since, excepting one
case, all fields are strings—but this information could be used to assist data
validation. For example, with access to a data type description, we could
programmatically enforce which values are allowed for which fields. Notice
that the pragma table_info can also be used with views. However, when used
with views, all field types default to numeric.

A word of warning about pragmas: They fail quietly, issuing no warning or
error, and there is no guarantee of forward compatibility with newer versions
of SQLite.

Getting Metadata

Metadata methods allow us to discover field names at runtime. This is useful
when we want to match posted values to the appropriate field in a table. Fig-
ure 15-2 shows the form that we will use to post data to the database.

Figure 15-2: Submission form

OOPHP_02.book Page 152 Friday, May 5, 2006 2:25 PM

Ex tending SQL ite 153

There’s nothing unusual or particularly instructive about this form. How-
ever, each control bears the name of its database counterpart. This practice
facilitates processing of submitted forms because we can easily match field
names with their appropriate values.

Using Metadata

The utility methods that make use of metadata are found in Listing 15-9:

/**
 Return clean posted data - check variable names same as field
 names
*/
 public function �cleanData($post, $tablename){
 if (!isset($this->tablenames)){
 $this->setTablenames();
 }
 �$this->matchNames($post, $tablename);
 //if on remove slashes
 if(get_magic_quotes_gpc()){
 foreach ($post as $key=>$value){
 $post[$key]=stripslashes($value);
 }
 }
 foreach ($post as $key=>$value){
 $post[$key] = htmlentities(sqlite_escape_string($value));
 }
 return $post;
 }
//
/**

Ensure posted form names match table field names
*/

public function matchNames($post, $tablename){
 //check is set
 if (!isset($this->tablenames)){
 $this->setTablenames();
 }
 if (count($post) == 0){
 throw new SQLiteException("Array not set.");
 }
 $fields = $this->getFields($tablename);
 foreach ($post as $name=>$value){
 if (!array_key_exists($name, $fields)){
 $message = "No matching column for $name in table
$tablename.";
 throw new SQLiteException($message);
 }
 }
 }

Listing 15-9: Utility methods

OOPHP_02.book Page 153 Friday, May 5, 2006 2:25 PM

154 Chap te r 15

As you can see in Listing 15-9, � the cleanData method verifies that the
keys of the posted array match table field names by calling � the matchNames
method. It throws an exception if they don’t. However, it also removes slashes
if magic quotes are on. If you regularly use MySQL with magic quotes on,
escaping data may be something you never give much thought to. However,
unlike MySQL, SQLite does not escape characters by using a backslash; you
must use the sqlite_escape_string function instead. There is no OO method
for doing this.

There is no requirement to call the cleanData method, and there may be
situations where its use is not appropriate—perhaps where security is a prime
concern, so naming form controls with table field names is not advisable. How-
ever, it is a convenient way of confirming that the right value is assigned to
the right field.

User-Defined Functions

One of the requirements of our application is to highlight recently added
links. We are going to achieve this effect by using a different CSS class for
links that have been added within the last two weeks. Subtracting the value
stored in the whenadded field from the current date will determine the links
that satisfy this criterion. Were we to attempt this task using MySQL, we could
add the following to a SELECT statement:

IF(whenadded > SUBDATE(CURDATE(),INTERVAL '14' DAY), 'new',
 'old') AS cssclass

This would create a field aliased as cssclass that has a value of either new
or old. This field identifies the class of the anchor tag in order to change its
appearance using CSS. It’s much tidier to perform this operation using SQL
rather than by manipulating the whenadded field from PHP each time we
retrieve a row.

But SQLite has no date subtraction function. In fact, the SQLite site
doesn’t document any date functions whatsoever. Does this mean that we are
stuck retrieving the whenadded field from the database and then performing the
date operations using PHP? Well, yes and no. SQLite allows for user-defined
functions (UDFs). Let’s take a look at how this works.

The first thing to do is create a function in PHP to subtract dates—not a
terribly difficult task. See the function check_when_added in Listing 15-10 for
the implementation.

function check_when_added($whenadded){
 //less than 2 weeks old
 $type = 'old';
 // use date_default_timezone_set if available
 $diff = floor(abs(strtotime('now') - strtotime($whenadded))/86400);
 if($diff < 15){
 $type = 'new';
 }

OOPHP_02.book Page 154 Friday, May 5, 2006 2:25 PM

Ex tending SQL ite 155

 return $type;
}
...
 //register function
 $db->�createFunction('cssclass','check_when_added',1);
 $strsql ="SELECT url, precedingcopy, linktext, followingcopy, ".
 "UPPER(SUBSTR(linktext,1,1)) AS letter, ".
 "cssclass(whenadded) AS type, target ".
 "FROM tblresources ".
 "WHERE reviewed = 1 ".
 "ORDER BY letter ";
 $result = $db->query($strsql);
...

Listing 15-10: A user-defined function

Also shown in Listing 15-10 is � the createFunction method of an SQLite-
Database, which is used to make check_when_added available from SQLite.
Calling this function is as simple as adding the expression cssclass(whenadded)
AS type to our SELECT statement. Doing this means that the result set will
contain a field called type with either a value of new or no value at all. We
can use this value as the class identifier for each resource anchor tag. The
new anchors can be highlighted by assigning them different CSS display
characteristics.

The back end of our application also makes use of a UDF; improved
readability is the motivation behind its creation.

The set_class_id function in Listing 15-11 (�) shows how the mod
operator can be used in a UDF to return alternate values. When this value is
used as the id attribute for a tr tag, text can be alternately shaded and
unshaded by setting the style characteristics for table rows with the id set to
shaded. Again, it is much tidier to return a value in our result set rather than
to perform this operation from PHP. Once you are familiar with UDFs you’ll
see more and more opportunities for using them. Be careful. Using them
can become addictive.

//add function to SQLite
function �set_class_id(){
 static $x = 0;
 $class = 'unshaded';
 if(($x % 2) == 0){
 $class = "shaded";
 }
 $x++;
 return $class;
}
...
$db = new SQLiteDatabasePlus('../dbdir/resources.sqlite');
$db->createFunction('class_id','set_class_id',0);

Listing 15-11: UDF shades alternate rows

OOPHP_02.book Page 155 Friday, May 5, 2006 2:25 PM

156 Chap te r 15

You can’t permanently add a UDF to a database, but the ability to create
them certainly compensates for the limited number of functions in SQLite,
especially those related to date manipulation. In fact, in my view, this way of
subtracting dates is much easier to implement because it doesn’t involve
looking up or remembering the quirky syntax of functions such as the MySQL
SUBDATE function referenced earlier. However, UDFs lack the performance
benefits of built-in functions.

Uses and Limitations of SQLite

No database can be all things to all people. SQLite supports any number of
simultaneous readers, but a write operation locks the entire database. Version 3
offers some improvement in this respect, but SQLite is still best used in appli-
cations with infrequent database updates, like the one described here.

Of course, if access control is important, then SQLite is not the appropri-
ate tool. Because GRANT and REVOKE are not implemented, there can be no
database-enforced user restrictions.

However, even a relatively modest application can make use of the
advanced capabilities of SQLite. With the application discussed in this
chapter, we haven’t had to sacrifice anything by using SQLite rather than
MySQL. Unavailability of a timestamp field is remedied by use of a trigger.
A UDF makes up for SQLite’s lack of date manipulation functions. In fact,
overall, we achieve better performance because there is no overhead incurred
by a database server, and maintenance is reduced through the use of triggers.

Not only has using SQLite simplified our code through the use of views,
triggers, and UDFs, as well as by extending the OO interface, but it also makes
for cleaner code through its more varied ways of querying a database. In these
or similar circumstances, SQLite is definitely a superior choice.

OOPHP_02.book Page 156 Friday, May 5, 2006 2:25 PM

16
U S I N G P D O

Databases are important to any dynamic
website. That’s why we’ve had a lot to say

about them in this book (too much, some
of you may be thinking). However, PHP Data

Objects (PDO) can’t be ignored because they are
packaged with PHP version 5.1 and higher, and they
are “something many of the PHP dev team would like
to see as the recommended API for database work.”1

PDO is a data-access abstraction layer that aims for uniform access to any
database. That’s a pretty good reason for looking at PDO, but what interests
us in particular is that the PDO interface is entirely object-oriented (OO).
It makes extensive use of the OO improvements to PHP 5. In fact, it cannot
be run on lower versions of PHP.

Drivers are available for all the major databases supported by PHP—
Oracle, Microsoft SQL Server, PostgreSQL, ODBC, SQLite, and all versions
of MySQL up to version 5. So, if you use a variety of different databases, PDO

1 www.zend.com/zend/week/week207.php#Heading6. (Accessed April 14, 2006.)

OOPHP_02.book Page 157 Friday, May 5, 2006 2:25 PM

158 Chap te r 16

is especially worth investigating. However, even if you use only one database,
PDO can be helpful for switching between versions. Be warned, though, that it
is still early days for PDO, and some of the drivers may lack some functionality.

Pros and Cons

The promise of database abstraction is the ability to access any database
using identical methods. This gives developers the flexibility to change the
back-end database with minimal impact on code. Another advantage of an
API such as PDO is a reduced learning curve. Instead of having to learn the
specifics of each different database, you can learn one interface and use it
with any database. Lastly, with an API you may be able to use features not
available to the native database—prepared statements, for example—but
more about that later.

On the negative side, a data-access abstraction layer may adversely affect
performance and may deprive you of the ability to use non-standard features
natively supported by specific databases. It may also introduce an unwanted
degree of complexity into your code.

The best way to make a decision about the suitability of PDO is to try it.
Converting the SQLite application created in Chapter 15 is a good way to do
this. Our SQLite application makes use of a limited number of the features
of PDO, so we’ll also look at some of PDO’s additional capabilities. We won’t
look at every detail, but this chapter will show you enough to allow you to make
an informed decision.

NOTE If you are running PHP 5.0.x you can install PDO using PEAR. See the PHP site
for instructions. If you install the latest version of PDO you will be able to use SQLite
version 3.

Converting the SQLite Application

The very first thing to realize is that we cannot use our derived class
SQLiteDatabasePlus with PDO because the PDO driver for SQLite doesn’t
know anything about our derived class. We could, of course, extend the PDO
class to incorporate the methods we added to our SQLiteDatabasePlus class,
but doing so is contrary to the whole purpose of a database abstraction layer.
Taking that route would be an implicit admission of defeat right from the
start—there wouldn’t be one interface for all databases, but instead any
number of derived interfaces.

Code Changes

As usual, a complete version of the code discussed in this application is avail-
able from the book’s website. The directory structure for the files accompa-
nying this chapter is the same as those for Chapter 15, so you shouldn’t have
trouble finding your way around. Also, as usual, I won’t reproduce all the code
in this chapter, only relevant sections. We’ll start by looking at the constructor.

OOPHP_02.book Page 158 Friday, May 5, 2006 2:25 PM

Using PDO 159

NOTE The application we developed in Chapter 15 uses version 2 of SQLite. Take this oppor-
tunity to upgrade to SQLite version 3, since PHP 5.1 supports this version. It’s appre-
ciably faster than version 2 and handles concurrency better. However, the database format
has changed; versions 2 and 3 are incompatible. This is only a minor inconvenience.
If you want to get off to a quick start, install the database by running the db_install
_script.php file found in the dbdir directory. This will create an SQLite version 3
database for you. Otherwise, you may download the command-line version of SQLite 3
from the SQLite website, and then see the section “Getting Started” on page 141 for
details about using a database dump to install a database. The PDO driver for SQLite
version 2 doesn’t support the sqliteCreateFunction method, so upgrading is required if
you want to use this method. Matching the version of the command-line tool with the
version of SQLite supported by PHP is equally important in this chapter, because of
version incompatibilities. For example, a database created at the command line using
SQLite version 3.5.5 will not work properly with the current SQLite PDO driver.

Constructing a PDO Object

When constructing a PDO database or connection object, a Data Source
Name (DSN) is passed as a parameter. A DSN is made up of a driver name,
followed by a colon, followed by database-specific syntax. Here’s how to
create a connection to an SQLite database:

 $pdo = new PDO('sqlite:resources.sqlite');

A PDO object is constructed in the same way as an SQLiteDatabase object
except that the driver name must precede the path to the database and be
separated from it by a colon.

The createFunction Method

You may recall that one of the deficiencies of SQLite was the lack of built-in
functions, especially with respect to date manipulation. We were able to over-
come this deficiency by adding functions to SQLite using the createFunction
method. Fortunately for us, the developers of PDO have seen fit to incorporate
this capability by including the SQLite-specific method sqliteCreateFunction.
This saves us some work but also reduces the “abstractness” of the PDO layer—
but more about this later.

Exceptions

In Chapter 15 we extended the SQLiteDatabase class in order to throw an
exception if a query failed. For that reason we overrode the five existing
query methods. The same effect can be achieved with PDO by using only
one line of code:

 $pdo->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

Calling setAttribute against a PDO database connection in this way
causes any failed attempt at querying the database to throw a PDOException.
This is a very succinct way of dealing with one of the shortcomings of the

OOPHP_02.book Page 159 Friday, May 5, 2006 2:25 PM

160 Chap te r 16

SQLite classes. We quickly reap all the benefits of throwing exceptions
without having to extend the SQLite database class.

Methods of SQLiteDatabasePlus
Because a PDO connection can be configured to throw exceptions, we don’t
need the query methods of our derived class SQLiteDatabasePlus. However,
the utility methods we added are another matter. The only way to use these
methods is to rewrite them as functions. They convert fairly readily, and the
metadata queries they employ work as before. The only real difference is that
as functions they are not quite as convenient to use. I won’t reproduce them
here, but they can be found in the dbfunctions.inc file included in this chap-
ter’s downloads.

Escaping Input
The cleanData utility method of our derived class incorporated the
sqlite_escape_string function to escape input before insertion into the
database. The equivalent PDO method is quote. Be aware that this method
not only escapes single quotation marks, but also encloses the item quoted
within quotation marks. If you need to manipulate data prior to inserting it,
quote should only be called immediately prior to insertion. For portability
reasons, the PHP site recommends using prepare rather than quote. We’ll
investigate this method more fully when we discuss statements, in the section
“Additional Capabilities of PDO” on page 161.

Query Methods
One of the attractions of SQLite is its variety of query methods. If you need
a quick refresher, see the section “Query Methods” on page 148. In this
section we’re going to compare SQLite’s query methods to what’s available
using PDO.

The difference between the object models of SQLite and PDO makes a
direct comparison a bit awkward. Principally, querying a PDO connection
returns a statement object, and this statement effectively becomes a result
set once it is executed. As already mentioned, we’ll cover statements in the
section “Additional Capabilities of PDO” on page 161, but for the moment
we can treat them as identical to result sets.

The five query methods of SQLite are singleQuery, execQuery, arrayQuery,
query, and unbufferedQuery. We’ll discuss each SQLite query method in turn.

The singleQuery method returns a single column as an array, bypassing
the need to create a result set. To mimic it we would use a PDO query to return
a statement and then call fetchColumn against this statement. The fetchColumn
method can return any column in the current row.

The execQuery method of an SQLite result set can execute multiple,
semicolon-separated queries. PDO can easily mimic this behavior—in fact
this is something that statements excel at.

As you might expect, returning an array in the fashion of arrayQuery is also
easily handled by PDO by calling the fetchAll method against a statement.

The two remaining query methods of SQLite, query and unbufferedQuery,
return SQLiteResult and SQLiteUnbuffered objects, respectively. PDO statements
are comparable to unbuffered result sets rather than buffered ones, so the

OOPHP_02.book Page 160 Friday, May 5, 2006 2:25 PM

Using PDO 161

unbuffered behavior is easily reproduced. Our SQLite application uses
buffered result sets in cases where we need to know that there are records
returned or where the specific number of records is required. To buffer
records using PDO you can use the fetchAll method of a statement to return
an array. A record count can be obtained by using the count function on
the returned array. Alternately, calling the function empty on the statement
returned by a query will determine whether there is at least one record.

In general, when querying the database, it looks like some efficiencies
have been lost. What is a single process using SQLite becomes a two-step
process with PDO. Using two methods instead of one can make code more
complicated. However, as we’ll soon see, there are some important advantages
to the PDO methods, and in some cases this two-step process can be simplified.

Additional Capabilities of PDO

Converting one application certainly doesn’t tell the whole story about PDO,
so let’s have a look at some of the other capabilities of PDO. There are three
PDO classes: PDO; the database or connection class, PDOStatement; and PDORow.
By far the most interesting and unfamiliar class is the statement class, and
this is where we’ll concentrate our attention. We’ll briefly discuss PDORow when
we come to the fetchObject method of the statement class.

The PDO Class
So far in this book we’ve created our own connection class and used the
SQLiteDatabase class—classes that have many similarities to PDO. With this
experience, I needn’t say a lot about the PDO class.

I’ve already mentioned the quote, setAttribute, and query methods of the
PDO class. For databases such as SQLite that support transactions, this class
also has methods to begin, commit, or roll back transactions.

The most important method, however, is prepare. This method is similar
to the query method in that it also returns a PDOStatement. The major differ-
ence is that query is typically used for SQL statements that are issued once
and prepare for queries that will be issued a number of times.

PDOStatement
In the conversion of our application from SQLite to PDO, in some cases the
difference between a result set and a statement isn’t apparent at all. For
example, the snippet of SQLite code to display all the resources in our data-
base (from the file getresources.php) is shown in Listing 16-1.

 $result = $db->query($strsql);
 if(!empty($result)){
 $previous = "";
 foreach ($result as $row){
 foreach ($row as $key => $value){
 ...

Listing 16-1: Displaying resources

OOPHP_02.book Page 161 Friday, May 5, 2006 2:25 PM

162 Chap te r 16

The equivalent PDO code is identical. In one case, the variable $db
represents an SQLiteDatabasePlus, and in the other it represents a PDO. Like-
wise the $result variable is an SQLiteResult or a PDOStatement. Because result
sets and statements are both iterable, they can be used in the same way
within foreach loops. In this case, using PDO takes no more steps than using
SQLite directly.

This similarity between a result set and a statement makes it easy to start
using statements, but it also masks important differences. These differences
are more apparent when the prepare method is used.

prepare

Instead of using the query method to create a PDOStatement object, the code
$result = $db->query($strsql); in Listing 16-1 can be changed to the following:

 $result = $db->prepare($strsql);
 $result->execute();

I have already hinted at one of the advantages of using prepare instead of
query. Any variables used in the parameter to the prepare method will auto-
matically be quoted. This is an easier and more portable way of escaping
quotes than using the quote method. If used exclusively, you needn’t worry
about forgetting to quote an SQL statement. This is a security advantage that
will protect against SQL injection attacks.

This is one way in which a statement is superior to a result set, but it is
not the most important difference. Statements are more commonly used to
insert multiple records into a database, and they do this more efficiently than
a series of individual SQL statements. This is what is referred to as a prepared
statement.

Prepared Statements

There are a number of ways that statements can be used with both input and
output parameters. We’ll content ourselves with one example of a prepared
statement used to make multiple inserts. The SQLite application in Chapter 15
has no need for multiple inserts, so we’ll create a simple new example.

Suppose you have an ecommerce application. The inventory numbers
for various purchased items are stored in an array. Here’s how we can update
our database using a prepared statement:

//$pdo is an instance of a PDO connection
$orderid = "200";
$array_skus = array(1345, 2899, 6502);
$strsql = "INSERT INTO tblorderitems (orderid, inventorynumber) ".
 " Values ($orderid, �?) ";
$stmt = $pdo->prepare($strsql);
$stmt->�bindParam(1, $number);
foreach ($array_skus as $number){
 $stmt->�execute();
}

OOPHP_02.book Page 162 Friday, May 5, 2006 2:25 PM

Using PDO 163

This is a fairly simple example of a prepared statement, but it will give
you an understanding of how statements work. A replaceable parameter (�)
is indicated by a question mark, this parameter � is bound to the variable
$number, and each iteration of the foreach loop � executes the query, inserting
a different value.

Using statements is much more efficient than separately querying the
database. The performance improvements are due to the fact that after a
parameterized query is first executed, for each subsequent query, only the
bound data needs to be passed.

Remember, there’s no such thing as a prepared statement in SQLite.
The developers of PDO thought it important to support this feature for all
databases regardless of native support. Using PDO is a good way to familiar-
ize yourself with statements and makes it easy to switch to a database that
supports this capability.

Fetching Objects

For an OO programmer, the ability to retrieve rows as objects is important.
PDO has a number of ways of doing this. An easy way of doing this is to create
an instance of the PDORow class in the following way:

$stmt = $pdo->query("SELECT * FROM tblresources", PDO::FETCH_LAZY);
$pdorow = $stmt->fetch();

There is also a fetchObject method that can be used to create an instance
of a specific class. Supposing we have defined a class called RowInfo, creating
an instance of that class is done in this way:

$row = $stmt->fetchObject('RowInfo');

This method is perhaps the simplest way to create an object. You can use
it with an existing class or, if you don’t specify a class, it will create an instance
of stdClass, the generic object class.

What these various ways of creating objects have in common is that
they instantiate an object, creating data members from the columns of the
current row.

PDOStatement also has a method, getColumnMeta, to dynamically retrieve
metadata about the current query. By using this method in conjunction with
one of the create object methods and adding a magic get method to the class
you’re instantiating, it is easy to retrieve the data members of any object cre-
ated from any query without knowing the structure of that query beforehand.2
Perhaps our criticisms of magic set and get methods in Chapter 13 were a
little harsh.

NOTE SQLite has a procedural version of fetchObject that returns a stdClass object. It is
documented as a result set method but not yet implemented.

2 You could, of course, query the sqlite_master table for this information, but the PDO method
provides a database-independent way of doing this.

OOPHP_02.book Page 163 Friday, May 5, 2006 2:25 PM

164 Chap te r 16

Assessment

We’ve touched on a number of the capabilities of PDO. We’ve used some
of them in our application, but not all of them. This is by no means a
definitive overview of PDO, but we certainly have enough information to
make a judgment about the utility of this data-access abstraction layer.

Our application behaves exactly as it did without PDO. We haven’t had to
sacrifice any functionality and some things were much easier to implement—
catching exceptions, for example. All our queries, triggers, and views work in
exactly the same way. One minor inconvenience was converting the utility
methods of our derived class, but we were able to implement them proce-
durally without loss of functionality. The object model of PDO is perhaps a
little more difficult, but along with this we’ve gained the ability to use pre-
pared statements should we need them. No question—PDO works well with
SQLite.

But what if we decided to use a MySQL back-end instead? How many
changes would we have to make? Beyond changing the driver, the most obvious
change would be removal of the SQLite-specific function sqliteCreateFunction.
As noted in Chapter 15, this could be replaced by the MySQL function SUBDATE.
Likewise, any other operators or functions not used by MySQL would have to
be changed.

Another option would be to use standard SQL wherever possible. The
date manipulation functions could be ignored, and this task performed from
within PHP. That’s a choice each developer will have to make for themselves,
but I expect most won’t quickly give up on hard-won knowledge about specific
SQL dialects.

Is It the Holy Grail?

One very legitimate concern might be voiced over the inclusion of the
SQLite-specific method sqliteCreateFunction, and this is certainly not the only
database-specific capability provided by PDO.3 Doesn’t providing database-
specific functionality do exactly what we refrained from doing at the start—
namely, extending the PDO class?

The short answer is, unquestionably, yes. But the whole notion of a
perfect database abstraction layer is a Holy Grail—glimpsed here and there
but never grasped. Providing some database-specific functionality is a sensible
compromise and an impetus to use PDO. As always with PHP, utility and not
purity of concept is paramount. The important thing to note is that each
developer can make their own decision about an acceptable level of database
abstraction by incorporating database-specific methods and database-specific
SQL or not as the case may be. However, in one respect there’s no choice at
all: If you choose to use PDO, you must take an OO approach.

3 The constant PDO::MYSQL_ATTR_USE_BUFFERED_QUERY can be used to create a buffered result set
with a MySQL database. Using fetchAll is the more abstract or database-neutral approach.

OOPHP_02.book Page 164 Friday, May 5, 2006 2:25 PM

A
S E T T I N G U P P H P 5

All recent major Linux distributions (SUSE, Fedora,
Mandriva, and Debian among them) come with support
for PHP 5. If your distribution doesn’t support version 5,
the easiest solution is to locate and install an updated
Red Hat Package Manager (RPM). Otherwise, you will
need to download the PHP source code and configure and install PHP your-
self. (If you want to install PHP as a static module, you will also have to down-
load the source code for Apache.) Instructions for compiling PHP are readily
available at http://php.net, but taking this route requires familiarity with
working from the command line in Linux.

PHP 5 also runs under Windows using Internet Information Server (IIS)
or Apache Web Server. Although Windows does not come with built-in support
for PHP, installing PHP is a relatively easy task. The Windows PHP installer
will get you up and running in minutes, but it is not meant for a production
server—it’s better to perform a manual installation. Comprehensive instruc-
tions for doing this are provided at http://php.net/install, but here’s a brief
overview of the process.

OOPHP_02.book Page 165 Friday, May 5, 2006 2:25 PM

166 Appendix A

Download the Windows binary from the PHP website, and install it to a
directory on your hard drive. If you are using IIS, find the web server config-
uration window and map the .php file extension to the location of the php
program.

For Apache Web Server 2, you will need to make the following changes
to the httpd.conf file:

LoadModule php5_module "c:/php-5.1/php5apache2.dll"

If you are running version 1.3 of Apache, use the php5apache.dll file.
You will also have to add an application type to your configuration

file. The example below will process files with the extensions .php or .inc
as PHP files.

AddType application/x-httpd-php .php .inc

Comprehensive instructions for installing and configuring Apache under
Windows can be found at http://httpd.apache.org/docs/2.0/platform/
windows.html, but, again, the process is fairly straightforward.

The code contained in this book should run equally well regardless of
which combination of operating system and web server you choose.

php.ini Settings

The php.ini file controls configuration settings for PHP and is typically found
in the c:\windows directory on Windows systems and in the /etc directory on
Linux systems. When installing PHP 5 it is best to use the example php.ini file
with the default settings. This section deals with changes that affect OOP.
(For an overview of all the changes, see http://php.net/install.)

There is only one new configuration setting that relates directly to changes
made to the object model in PHP 5. Specifically, showing the default setting,
this is:

zend.ze1_compatibility_mode = Off

If you change this setting to On, objects will be copied by value in the
manner of PHP 4. (See the section “__clone” on page 116 for more details
about how objects are copied.) This option is provided in order to facilitate
migration from PHP 4 to PHP 5. It should be used for this purpose only, as it
is unlikely to be supported in any upcoming versions of PHP.

Another setting that has some bearing on changes made to the object
model in PHP 5 is

allow_call_time_pass_reference = Off

OOPHP_02.book Page 166 Friday, May 5, 2006 2:25 PM

Se tt i ng Up PHP 5 167

This setting controls whether a warning is issued when a variable is
passed by reference when making a function call. With this setting off,
calling a function in the following way will issue a warning and will not pass
$some_variable by reference:

some_function(&$some_variable);

The recommended way of passing a variable by reference is by declaring
the parameter as a reference in the function definition, like so:

function some_function (&$some_variable) {
 ...
}

If you do this, then there is no need to use an ampersand when passing a
variable to some_function. (If you are upgrading PHP 4 code that passes objects
at call time by reference, you can remove ampersands entirely. You will recall
that in PHP 5 objects are automatically passed by reference, so there is no
need for an ampersand at call time or in the function definition.) It is a
good idea to upgrade your code to pass by reference in the recommended
manner because call-time pass by reference is unlikely to be supported in
future versions of PHP.

E_STRICT

A new error level, E_STRICT, has been introduced and is especially useful in
the context of OOP. If you set error reporting to this value, a warning will be
issued when deprecated functions or coding styles are used. Error level E_ALL
does not encompass E_STRICT, so include this error level explicitly in the
php.ini file in the following way:

error_reporting = E_ALL|E_STRICT

To see how this setting can be useful, suppose, in the style of PHP 4, that
you do the following:

$obj1 =& new Person();

With error reporting set to E_STRICT and display_errors set to on, you’ll
receive the message:

Strict Standards: Assigning the return value of new by reference is
deprecated...

OOPHP_02.book Page 167 Friday, May 5, 2006 2:25 PM

168 Appendix A

Other actions also raise a warning when error reporting is set to E_STRICT:

� Use of is_a instead of instanceof.

� Invoking a non-static function statically (this error is soon to be E_FATAL).
However, calling a static method against an instance variable does not
raise a warning.

� Use of var instead of public, private, or protected (prior to version 5.1.3).

� Changing the number of parameters or the type hint when overriding a
method in a derived class.

Making sure that your code follows strict standards can help ensure that
it is forward compatible especially with respect to calling dynamic methods
statically.

Don’t Escape Twice

There’s a final setting that has some bearing on OOP.
It’s worthwhile noting that the default setting for magic quotes is

magic_quotes_gpc = Off

As you have seen, methods such as the prepare method of the PDO class
automatically escape database queries. So, if magic quotes are turned on,
you can easily corrupt data by escaping it twice. Use care if you change
this setting.

OOPHP_02.book Page 168 Friday, May 5, 2006 2:25 PM

B
C O N V E R S I O N T A B L E :

P H P 4 A N D P H P 5

PHP 5 PHP 4 Notes

Access Modifiers

public var All instance variables and methods
are public under PHP 4. In PHP 4
var is used for data members only;
methods have no access modifiers.

private var

protected var

Prefixes

parent:: parent::

ClassName:: ClassName:: Used for referencing constants
or static data members or
methods from inside the class
or externally (substituting
ClassName as appropriate).

self:: N/A Used as ClassName:: but only
internally.

(continued)

OOPHP_02.book Page 169 Friday, May 5, 2006 2:25 PM

170 Appendix B

Other Keywords

abstract N/A Use empty methods for a reasonable
imitation.

class class

extends extends

interface N/A

implements N/A

final N/A

static N/A In PHP 4 you can mimic static methods
using the class name and the scope
resolution operator.

const N/A

try and catch N/A There is no Exception class in PHP 4,
so there are no try blocks.

function function Methods are defined using the
function keyword.

Magic Methods

__construct class name In PHP 5 you may still use the class
name, but for reasons of forward
compatibility it is better to use the
magic method.

__destruct N/A In PHP 4 you can use
register_shutdown_function()
to mimic a destructor.

__toString N/A In PHP 4 you can create a function
to do the equivalent, but it will not be
invoked magically by print or echo.

__sleep and __wakeup __sleep and __wakeup

__set, __get and __call N/A

__isset and __unset N/A

__clone N/A

__autoload N/A

PHP 5 PHP 4 Notes

(continued)

OOPHP_02.book Page 170 Friday, May 5, 2006 2:25 PM

Conve rs ion Table: PHP 4 and PHP 5 171

Operators

function foo($variable) function foo(&$variable) Note that this example shows a
function declaration, not a function
call. Passing objects by reference
explicitly is recommended in PHP 4,
but not required in PHP 5 because
objects are automatically passed by
reference. In PHP 5, you only ever
need use a reference as a parameter
with non-objects.

foo(&$var); Deprecated. Call-time pass by reference is
deprecated in PHP 5. For more
information see Appendix A. Use a
reference in the function definition
when passing non-objects (not
required for objects, as noted
above).

= =& In PHP 5 assignment of objects
is equivalent to assignment by
reference under PHP 4.

$obj = new ClassName(); $obj =& new ClassName(); In PHP 5 new automatically returns a
reference. PHP 4 style is deprecated.

clone = In PHP 4 assignment clones an object.

instanceof is_a is_a is the only function of the
Class/Object functions that has
been deprecated (as of PHP 5).

Other Changes of Interest

get_class,
get_class_methods, and
get_parent_class

get_class,
get_class_methods, and
get_parent_class

In PHP 5 these methods return a
case-sensitive result.

functionName(ObjectType $o) N/A In PHP 5 you may type hint object
parameters to functions. As of PHP
5.1 you may also type hint arrays.
Type hinting return values of functions
or methods is also planned. This will,
of course, only apply to objects.

PHP 5 PHP 4 Notes

OOPHP_02.book Page 171 Friday, May 5, 2006 2:25 PM

G L O S S A R Y

A

abstract method A method that is declared but not defined. Any class that
contains an abstract method must use this keyword in the class definition. All
of the methods of an interface are abstract. A class that has only abstract
methods is a pure abstract class.

accessor method A public method used to retrieve or change data mem-
bers. Accessor methods are also called get and set methods. (It is considered
good programming practice to make data members private and alter or
retrieve them only through accessor methods.)

aggregate class A class having at least one data member that is itself an
object

application programming interface (API) The public face of a class

Asynchronous JavaScript and XML (AJAX) A web development technique
that incorporates JavaScript, XML, and other tools; typically entails use of the
JavaScript DOM object XMLHttpElement to communicate with the server
and refresh web page elements without reloading the entire page

OOPHP_02.book Page 173 Friday, May 5, 2006 2:25 PM

174 Glossary

B

backward compatibility A characteristic of a version of a programming
language or application that allows it to work with previous versions or files
created using previous versions

base class A class from which other classes are derived; also called a parent
class or superclass

C

call time The time at which a function or method is invoked

Cascading Style Sheets (CSS) A web design technique that separates the
content and presentation of a web page. Style sheets are cascading because
they can be applied from an external file, within the style section of a web
page, or inline, and each lower level overrides any style characteristics
defined previously.

child class See derived class.

class A complex data type that typically includes both data members and
methods; the most fundamental element of OOP

class variable A static data member belonging to the class as a whole and
not to any specific instance

client programmer The user of a class rather than the creator or originator
of a class; sometimes referred to as a user programmer

const A keyword, new to PHP 5, used to define constant class data

constructor A special function called when objects are created. In PHP 4
the constructor uses the class name. This style of constructor still works in
PHP 5, but the recommended practice is to define the method __construct.

D

data hiding The ability to restrict and control access to data members; also
called data protection

data member A variable declared within a class but outside any method;
also called a property or instance variable

Data Source Name (DSN) The specification of the driver and resources
necessary to create a PHP Data Object

deprecated No longer recommended usage, obsolete; for example,
“The is_a function is deprecated as of PHP 5.” (The deprecated entity will
eventually be extinct from the language.)

design pattern A general description of a solution to a design problem;
somewhat akin to an abstract class or interface, but even less specific

OOPHP_02.book Page 174 Friday, May 5, 2006 2:25 PM

Glossary 175

destructor The opposite of a constructor, invoked automatically whenever
an object goes out of scope; usually ensures that any resources, such as file
handles, are properly disposed of

derived class Any class that has a base or parent class; also called a child class
or subclass

Document Object Model (DOM) The representation of an HTML or XML
document in object-oriented fashion

E

encapsulation A process that allows implementation details irrelevant to a
client programmer to be kept private and not exposed as public methods or
public data members; related to data hiding but more comprehensive

extends The keyword used when inheriting from a class; for example, class
Canary extends Bird

Extensible HyperText Markup Language (XHTML) See XHTML.

Extensible Markup Language (XML) See XML.

F

final A modifier applied to methods or classes that restricts inheritance; a
final class cannot be extended, and a final method cannot be overridden

forward compatibility Writing code with future upgrades to the language
in mind; for example, avoiding the use of deprecated coding styles

G

garbage collection Automatic memory management that removes
references to resources that are no longer used

H

HTML (HyperText Markup Language) A simple markup language derived
from SGML and used to create web pages

I

implements The keyword that replaces extends when inheriting an interface
rather than a class

inheritance The ability of an OO language to pass the methods and data
members of an existing class on to a new class

instance A specific occurrence of a class; creation of a class object is
referred to as instantiation

interface 1. A keyword in PHP indicating a class that declares methods but
does not define them. PHP allows multiple interfaces to be inherited. 2. The
public methods of a class.

OOPHP_02.book Page 175 Friday, May 5, 2006 2:25 PM

176 Glossary

Iterator An interface, built in to PHP 5, that allows objects to be traversed

J

Javadoc format A format for internal comments; the getDocComment method
of the reflection classes can extract comments formatted in this way

M

magic method A method that begins with a double underscore and is
usually invoked indirectly. __sleep and __wakeup are magic methods in
PHP 4. A number of magic methods are new to PHP 5, most importantly
the __construct and __clone methods.

metadata Data that describes other data; for example, information about
the structure of a database

method A function defined within the scope of a class

Multipurpose Internet Mail Extensions (MIME) The standard Internet
email format, but more broadly, a content type specification such as
“image/jpeg”

N

name/value pair The format for a query string passed to a web page; any
query string is composed of one or more name/value pairs. Access is pro-
vided by the global arrays $_POST or $_GET, with the name functioning as the
array key.

overloaded A characteristic of a method; describes the ability to behave
differently when supplied with different parameters. In PHP, this term is
usually applied to the __call, __set, and __get methods, in the sense that one
method may handle a number of different methods or properties. (Because
PHP is a weakly-typed language, you cannot have an overloaded method as
understood in some other OO languages—namely, one method name but
different method signatures.)

override The act of redefining the method of a parent class in a child class

P

parent class See base class.

PHP Data Object (PDO) A group of classes that provides a data-access
abstraction layer, included by default with PHP version 5.1 and higher;
drivers are available for databases commonly used with PHP

PHP Extension and Application Repository (PEAR) A library of open-
source code, organized into packages that are easily installed using the PEAR
installer

OOPHP_02.book Page 176 Friday, May 5, 2006 2:25 PM

Glossary 177

polymorphism Properly speaking, the ability to copy a child object into a
variable of the parent type and still invoke the methods of the child against
that parent object; used somewhat loosely when applied to PHP

private A keyword used to modify the methods or data members of a class;
private elements can only be accessed from within the class or indirectly
through accessor methods and cannot be inherited

procedural A type of computer language that makes extensive use of
procedures or function calls; for example, the C language is a procedural
language, while PHP can be used procedurally or in an object-oriented
fashion

property Synonymous with instance variable or data member

protected A keyword that can be applied to methods or data members.
Like the private elements of a class, protected elements may not be accessed
outside the class; unlike private elements, protected elements are inherited
by derived classes.

prototype The declaration of a function prior to defining it (some lan-
guages, but not PHP, require this); can be applied to the declaration of a
method, especially with regard to interfaces

public A keyword that modifies the methods or data members of a class;
public methods of a class, sometimes referred to as a class’s interface, can be
invoked against an instance of the class, and are inherited by derived classes

Q

query string One or more name/value pairs passed to a web page as part of
the URL

R

RSS (Really Simple Syndication or Rich Site Summary) Often referred to as
a news feed; conforms to a specific XML format

S

scope The context within which a variable can be accessed. A variable
defined within a method may be referenced only within that method,
whereas the scope of an instance variable is the entire class.

scope resolution operator The operator ::, used in conjunction with the
class name when referencing constants or static methods

shallow copy A copy of an object that is not independent of the original.
When copying aggregate objects, special care must be taken to avoid creating
a shallow copy.

signature A unique property of a function or method, consisting of the
function or method name and the number and data type of its parameters;

OOPHP_02.book Page 177 Friday, May 5, 2006 2:25 PM

178 Glossary

used loosely when applied to PHP. In strongly-typed languages, methods can
have the same name as long as the number or type of parameters differ and
they have unique signatures.

Standard Generalized Markup Language (SGML) An international
standard for representing documents; both HTML and XML are derived
from SGML

Standard PHP Library (SPL) A collection of classes built in to PHP

static A modifier applied to a class method or variable that allows access to
that element without having to create an instance of the class; static variables
or methods are common to all instances of a class

studly caps A naming convention in which each appended word of a
compound name is capitalized; sometimes referred to as CamelCase. Class
names use upper CamelCase (as in DirectoryItem) and methods use lower
CamelCase (as in getName).

T

type hinting The ability to restrict the kind of object passed to a function or
method by preceding a parameter name with an object type in the function
or method definition; arrays may also be type hinted as of PHP 5.1

W

weakly-typed Used to describe a language, like PHP, in which data type
identification is not required when declaring a variable

Web Services Definition Language (WSDL) An XML format that describes
a web service

World Wide Web Consortium (W3C) The organization responsible for
developing standards for the World Wide Web

wrapper method A method that simply encloses an existing function call

X

XHTML (eXtensible HyperText Markup Language) An XML-compliant
form of HTML

XML (eXtensible Markup Language) A markup language, like HTML,
derived from SGML; XML-compliant documents must meet stricter
requirements than HTML documents

Z

Zend engine The scripting engine that underlies PHP; it was entirely
rewritten for PHP 5 in order to support the improved OO capabilities

OOPHP_02.book Page 178 Friday, May 5, 2006 2:25 PM

I N D E X

Special Characters
$_SERVER global variable, 44, 62
$this. See pseudo-variable $this

A
abs function, 95
abstract class, 88, 91–92
abstract keyword, 88, 92, 169
abstract method, 88, 92–93

of an interface, 133
must be public, 92

access modifiers, 7, 9, 12, 26–31
as internal documentation, 27
as language constraints, 6
protected, 77
as self-documenting, 7

accessor methods, 16, 27, 112,
113, 121

superiority of, 43
active. See anchor pseudo-classes
adapter class, 88
aggregate

class, 79, 119–120
object, cloning, 120

AJAX (Asynchronous JavaScript
and XML), 100, 104, 105,
109–110

Ajax.Updater object, 109–110
allow_call_time_pass_reference, 166
anchor pseudo-classes, 59
Apache web server, 18

configuring, 165–166
directive, LoadModule, 166
mod_rewrite, 49

array
array-related functions, 20
associative, 29, 31
initializing data member as, 37

array_key_exists function, 153
array_slice function, 58
arrayQuery, SQLiteDatabase method,

149, 150
arrow operator, 22
assignment by reference

operator, 22
assignment operator, 14–15, 171

under PHP 4, 117, 171
under PHP 5, 117, 125, 171

associative array, 29, 31
asterisks, used to format internal

comments, 136
Asynchronous JavaScript and XML

(AJAX). See AJAX
attribute of an object, 17
auto_increment, attribute in MySQL,

70, 143
__autoload, magic method,

115–116, 170
autonumber field, in SQLite, 143

B

backward compatibility, 12,
14–15, 28

base class, 8, 76
behavior

adding to a class, 23
of objects, 6, 7, 8

bindParam, PDOStatement method, 162

OOPHP_02.book Page 179 Friday, May 5, 2006 2:25 PM

180 INDEX

blueprint, class as, 22
braces, used for defining a class, 19
buffered result set, 87, 145, 148, 149
built-in classes, 12–14

naming conventions, 19

C

C++, 4, 5, 20, 94
__call, magic method, 114–115

used with MySQL class, 115
call_user_func_array function, 115
call-time pass by reference, 166,

167, 170
calling an object method, 22
Cascading Style Sheet (CSS).

See CSS
catch block, 13

order of blocks, 84
catch keyword, 83, 170
catching exceptions, 76, 78, 83–84
channel

element of an RSS document,
101–103

sub-elements, 101, 102
character encoding, 101, 106
characteristics of a class, 6
child class, 8, 76, 84
class

as blueprint, 6
characteristics of, 6
concept of, 6
constants. See constant data

members
creators, 27
definition file, 115

including, 22
definition of, 6
instance of, 23
method, declaration of, 20
names, avoiding hard-coding, 28
naming conventions, 19
as template, 6, 7, 9, 22
as user-defined data type, 6

__CLASS__ constant, 80, 81
class keyword, 19, 170
Class/Object functions, 129, 171

cleanData, SQLiteDatabasePlus
method, 154

client programmer, 27, 50, 70
concerned with public

methods, 30
__clone, magic method, 79, 116,

121, 170
clone operator, 79, 116,

118–122, 170
close, MySQLConnect method, 68
command-line version of SQLite,

141, 142
comments, formatting for the

Documenter class, 136
compile-time error, 80
complex expression, 103
connecting to different database

servers, 68
connection error messages, 68
const keyword, 82, 170
constant data members, 80, 82
constants, 60
__construct, Documenter class

method, 132
__construct, magic method, 28, 37,

111, 170
constructor, 19, 20, 28–31

default values, 30, 39, 40
different ways of calling, 39, 40
initializing data members, 19
magic method, 31
methods called from, 40–41
returning object from, 28
for SQLiteDatabase, 141, 146
using class name, 22, 29

convenience methods, 112,
115, 123

copy
by cloning, 118
constructor, 79, 121
of data member, 27

copying objects, 14
count function, 73
COUNT, aggregate SQL function, 70,

148, 150
createDataMemberArrays, Documenter

class method, 132

OOPHP_02.book Page 180 Friday, May 5, 2006 2:25 PM

INDEX 181

createFunction, SQLiteDatabase
method, 155–156

supported under PDO, 159
createMethodArrays, Documenter class

method, 131, 132
CSS (Cascading Style Sheet), 58–60,

154, 155
class name, 50
and configuring HTML

components, 48
and reusability, 57, 58
used to configure components,

54, 56
current, iterator method, 86

D

data
hiding, 112
integrity, 26, 28, 43
members, 19

direct access to, 27
protection, 12, 42

Data Source Name (DSN). See DSN
data type after assignment, 94
database

abstraction, 157, 158, 159, 164
classes, 13
connection, reusing, 68
queries, 63

DATE, SQL function, 144
date function, 135, 136
date_default_timezone_set

function, 154
datestamp field, mimicking, 141
debugging

the ThumbnailImage class, 45
and undefined data

members, 113
default

parameter, used with the
constructor, 30

values
for data members upon

declaration, 38
and order of method parame-

ters to PageNavigator, 73
define function, 60

deprecated
coding styles, 167
functions, 129, 133

derived class, 8, 9, 76, 77
design patterns, 96
__destruct, magic method, 41,

111, 170
destructor, 41

freeing resources, 41
magic method, 41

die function, 19, 20, 22
replaced, 79, 82

direct access to data members, 26
DirectoryItems method getArraySlice,

58, 62, 64
DirectoryIterator class, 89
displaying objects, using

__toString, 78
document element of an

RSS file, 101
Document Object Model (DOM).

See DOM
documentation

of built-in classes, 126
external, 126
internal, 126

Documenter class
formatting comments for, 136
methods

__construct, 132
createDataMemberArrays, 132
createMethodArrays, 131, 132
getConstants, 137
getDocComment, 128, 135, 136
getFullDescription, 130,

131, 135
getName, 135
getPublicMethods, 131, 132

DOM (Document Object
Model), 103

rewritten, 13
double underscore, to denote

magic method, 28
DSN (Data Source Name), for an

SQLite database, 159
dynamic method calling

statically, 96

OOPHP_02.book Page 181 Friday, May 5, 2006 2:25 PM

182 INDEX

E
Eckel, Bruce, 27
empty function, 161
encapsulation, 12, 19, 112, 113, 122
erratic behavior of a class, 52
error

handling. See error trapping
message with the ThumbnailImage

class, 45
trapping, 13, 75–76, 79, 83

error reporting level
E_ALL, 167
E_ALL|E_STRICT, 167
E_FATAL, 168
E_STRICT, 14, 18

when using PHP 4 coding
style, 18, 168

escaping
database queries, 168
input, with PDO, 160, 162
SQLite queries, 153, 154

exception(s)
re-throwing, 84
throwing. See throw keyword

Exception class, 12–13, 76–77, 78,
80, 81

Exception methods
__toString, 77, 78
getCode, 77, 78
getFile, 77
getLine, 77
getMessage, 77
getTrace, 77
getTraceAsString, 77

execute, PDOStatement method, 162
executing multiple queries, 149
export, Reflection method, 127–128,

130, 131, 133
extends keyword, 80
eXtensible Markup Language

(XML). See XML

F

fetch

PDOStatement method, 163
SQLiteResult method, 150

fetchAll, PDOStatement method, 160,
161, 164

fetchColumn, PDOStatement
method, 160

fetchObject, PDOStatement method,
161, 163

final

__clone method, 122
and class originator, 78
and inheritance, 78

final class can't be extended, 95
final keyword, 78, 170
finally block, not implemented

in PHP, 84
floor function, 154
foreach loop, traversing an array,

76, 86
forward compatibility, 168, 170
forward-only

cursor, 87
result set, 87

FOUND_ROWS, MySQL function, 70
function

consistency of naming
conventions, 15

library, 6
prototype, 8
signature, 8

function keyword, 20, 170

G
garbage collection, 41
generic object class. See stdClass
__get, magic method, 112–114, 115,

122, 123
get and set methods, 43
get method with an aggregate

class, 121
get_class function, 14, 171
get_class_methods function, 14, 171
get_declared_classes function,

129, 134
get_declared_interfaces

function, 134
get_magic_quotes_gpc function, 153
get_parent_class function, 14, 171

OOPHP_02.book Page 182 Friday, May 5, 2006 2:25 PM

INDEX 183

getArraySlice, DirectoryItems
method, 58, 70, 72

getCode, Exception method 77, 78
getColumnMeta, PDOStatement

method, 163
getConstants, ReflectionClass

method, 137
getDefaultProperties, ReflectionClass

method, 137
getDocComment, Documenter class

method, 128, 135, 136
getElementById JavaScript

function, 109
getFile, Exception method, 77
getFullDescription, Documenter class

method, 130, 131, 135
getLine, Exception method, 77
getMessage, Exception method, 77
getMethods, ReflectionClass method,

128, 129, 131, 132
getModifierNames, Reflection method,

127, 132, 133
getModifiers, ReflectionMethod

method, 132, 133
getName, Documenter class method, 135
getNavigator, PageNavigator

method, 54
getParameters, ReflectionMethod

method, 129
getProperties, ReflectionClass

method, 128
getPublicMethods, Documenter method,

131, 132
getRow MySQLResultSet method, 72

replaced by Iterator, 89
getTrace, Exception method, 77
getTraceAsString, Exception

method, 77
getUnlimitedNumberRows,

MySQLResultSet method,
70, 73

global variable $_SERVER, 62
Google API, 100, 103, 104, 105, 108

developer's kit, 104
doGoogleSearch, 105, 106, 107
ResultElements array, 107

Google
query string, 58
searches, 47–49, 56

Googlebot, 108
GoogleSearchResult, 107
GoogleSearchService, 106
Gosling, James, 2

H

handling exceptions, 83
helper method, 40
hover. See anchor pseudo-classes
.htaccess file, 18
HTML-encoded links, 54
htmlentities function, 105, 153
httpd.conf file, 166

I
identity operator, 119
IIS (Internet Information Server),

165, 166
image function library, 36
image_type_to_mime_type function, 38
imagecreatefrom group of

functions, 38
implementing an interface, 84–88
implements keyword, 86
implode function, 133
in_array function, 151
information hiding, 12
inheritance, 6–8

and classes, 77, 78
important concept of OOP, 74
and interfaces, 84, 86

initializing data members
with constant values, 37
to document the data type, 37

innerHTML property, 109
instance(s)

creating, 21–22
defined, 6
limiting the number, 68
variable declaration, 19

instanceof operator, 14, 133,
168, 171

OOPHP_02.book Page 183 Friday, May 5, 2006 2:25 PM

184 INDEX

interface(s)
as abstract class, 9
built-in, 12, 14
defined, 7
different from abstract class, 92
method and access modifiers, 88
and multiple inheritance, 8
synonym for public methods, 26

interface keyword, 85
internal behavior of a class, 26,

27, 30
internal comments, 136, 137
Internet Information Server (IIS).

See IIS
is_a function, 14, 133, 168, 171
is_object function, 129
__isset, magic method, 113,

114, 170
isset function, 113, 114, 151
Iterator interface, 9, 14, 85–86

and arrays, 76
and SQLite result sets, 149

iterator methods
current, 85, 86, 87
key, 85, 86, 87, 88
next, 86, 87, 88
rewind, 85, 86, 87, 88, 89
valid, 85, 86, 87

J
Java, 2, 4, 5, 11, 27, 41, 76, 88

and constructors, 112
Javadoc utility, 129, 136
naming conventions, 19
and PHP, 4
as strongly-typed language, 94

JavaScript, 100–104, 109

K
key, iterator method, 85, 86, 87, 88
keywords

abstract, 88, 92, 169
catch, 83, 170
class, 19, 170
const, 82, 170
extends, 80, 170
final, 78, 170

function, 20, 170
implements, 86, 170
interface, 85, 170
parent, 169
private, 169
protected, 77–78, 169
public, 169
self, 67, 82, 169
static, 67, 170
throw, 82
try, 83
var

and PHP 4, 19
replaced in PHP 5, 26

L

large software shops, 3
Lerdorf, Rasmus, 4
libxml2, 13, 100
LIMIT clause and SQL, 72
link. See anchor pseudo-classes
Linux distributions supporting

PHP 5, 165
local variables, distinguishing from

instance variables, 30

M
magic methods, 14, 28, 170

__autoload, 115–116, 170
__call, 114–115

used with MySQL class, 115
__clone, 79, 116, 117,

119–121, 170
__construct, 28, 111, 170
__destruct, 111, 170
__get, 112–114, 115, 122, 123, 170
__isset, 113, 114, 170
__set, 112–114, 115, 122, 123, 170
__set_state, 111
__sleep, 116, 170
__toString, 78, 112, 116, 123, 170

invoked by echo or print, 78
__unset, 113, 114, 170
__wakeup, 116, 170
and PDORow, 163
used with MySQL class, 115

magic quotes, 154

OOPHP_02.book Page 184 Friday, May 5, 2006 2:25 PM

INDEX 185

magic_quotes_gpc function, 168
matchNames, SQLiteDatabasePlus

method, 153–154
metadata, 101, 102, 151–153

queries, 160, 163
using the Reflection class to

retrieve, 126
method(s)

calling, 23
signature, 122
terminology for functions of a

class, 20
migrating from PHP 4 to

PHP 5, 166
MIME type, 37
mod_rewrite. See Apache web server
multiple inheritance, 3, 8, 84
MySQL

auto_increment

database classes, 65–74
functions

FOUND_ROWS, 70
SUBDATE, 154, 156, 164

option, SQL_CALC_FOUND_ROWS, 70
MySQL improved. See mysqli
mysql_connect function, 66, 67, 68,

79, 82
mysql_data_seek function, 70, 87
mysql_errno function, 79, 115
mysql_escape_string function, 115
mysql_fetch_array function, 72,

87, 115
mysql_insert_id function, 115
mysql_query function, 66, 87
mysql_select_db function, 66
mysql_stat function, 115
MySQLConnect class, 66–69

private constructor, 97
MySQLConnect methods

close, 68
static getInstance method, 97, 98

MySQLException class, 80–81
mysqli, 13, 149
MySQLResultSet class, 69–70
MySQLResultSet methods

getRow, 72
replaced, 89

getUnlimitedNumberRows, 70, 73

N
name/value pairs, 50, 51, 60, 63,

71, 73
natcasesort function, 134
next, iterator method, 85, 86, 87
numeric array, 29, 31
NuSOAP, 13, 104

O
object(s)

attribute of, 17
copying, 14
definition, 6
displaying, using __toString, 78
returned by reference, 121
reusability of, 7–8, 63, 74

object method, calling, 22
OOP (object-oriented

programming)
assumptions of, 7
as collaborative endeavor, 7
different from procedural

programming, 3–4, 7
and maintenance, 2

operators
arrow, 22
assignment, 14–15

under PHP 4, 117, 170
under PHP 5, 117, 170

assignment by reference, 22
clone, 116, 118–121, 123, 170
identity, 119
instanceof, 14, 171, 133, 168
overloaded, 122, 123
reference, 15

orphaned records, preventing, 144
overloaded

method, 122, 123
operator, 122, 123

overriding
defined, 80
parent class methods, 80, 81

P
PageNavigator class

inactive links, 50
inactive spans, 53

OOPHP_02.book Page 185 Friday, May 5, 2006 2:25 PM

186 INDEX

PageNavigator class, continued
offset parameter, 60, 63
passing additional parameters,

50, 55, 71, 73
robustness, 63

PageNavigator method,
getNavigator, 54

paging through records, 70
parent

class, 8, 77
constructor

invoking, 80, 81
placement of call to, 132

parent keyword, 81, 169
pass by reference, 14, 118, 121,

137, 170
call-time, 166–167
recommended way to, 167

pass by value, 15, 118
PDO (PHP Data Object), 13,

157, 159
constants

ERRMODE_EXCEPTION, 159
FETCH_LAZY, 163
MYSQL_ATTR_USE_BUFFERED_QUERY,

164
creating buffered result set, 161
drivers, 157, 158
installing, 158
SQLite-specific method, 159, 164
and throwing exceptions, 159, 160
and triggers, 164
and views, 164

PDO methods
prepare, 162
query, 160, 161, 162
quote, 160
setAttribute, 159, 161
sqliteCreateFunction, 159, 164

PDOException, 159
PDORow, 113, 161, 163
PDOStatement class, and multiple

inserts, 162
PDOStatement methods

bindParam, 162
execute, 162
fetch, 163
fetchAll, 160, 161, 164

fetchColumn, 160
fetchObject, 161, 163
getColumnMeta, 163
prepare, 160, 161–162

and portability, 160
PEAR (PHP Extension and Applica-

tion Repository), 129, 158
Person class, 112, 113, 114, 117, 118
PHP

culture, 4
as hybrid language, 3, 12
installing, 166
as non-compiled language, 27
as scripting language, 2
as typeless language, 122
as web development language, 11

PHP 4
porting code from, 118
syntax, 12, 16

PHP 5
adoption of, 16
Linux distributions

supporting, 165
object model, 3
running under Windows,

165, 166
PHP Data Object (PDO). See PDO
PHP Extension and Application

Repository (PEAR). See
PEAR

php.ini file, 15, 104
settings, 166, 167

php_soap.dll, 104
php5apache.dll, 166
phpBB, 15
phpDocumentor class, 129
phpinfo function, 100, 141
Plato, 21
polymorphism, 93
pragma

defined, 141
failing, 152
and metadata, 152
table_info, 151, 152

prefixes, 169
prepare, PDOStatement method, 160,

161–162
and portability, 160

OOPHP_02.book Page 186 Friday, May 5, 2006 2:25 PM

INDEX 187

prepared statement, 13
binding parameters, 162
replaceable parameter, 163

primitive data types, 6
print or echo invokes __toString, 78
print_r function, 78, 120
private

access protecting data
integrity, 26

data members, accessing, 27
method, 39–40

as internal behavior of a
class, 39

private keyword, 26, 169
procedural programming, 3, 4, 23
properties of an object, 19
protected keyword, 77–78, 169
prototype JavaScript library, 104,

109, 110
pseudo-variable $this, 20

not used with static variable, 67
public access modifier, 28
public keyword, 169
public method, 27
pure abstract class, 92

Q
query string used with

ThumbnailImage class, 45
query

PDO method, 160, 161, 162
SQLiteDatabase method, 148, 149

queryExec, SQLiteDatabase
method, 150

quote, PDO method, 160

R
read-only data members, 42
readability, improving, 59
records, paging through, 70
reference

avoid when cloning, 121
operator, 15
return by, 28

Reflection class, 14, 127–128
Reflection methods

export, 127–128, 130, 131, 133
getModifierNames, 127, 132

ReflectionClass methods
getConstants, 137
getDefaultProperties, 137
getMethods, 128, 129, 131, 132
getProperties, 128

ReflectionException class, 126, 127,
133, 135

ReflectionFunction class, 126, 127,
133, 136

ReflectionMethod class, 126, 127, 128,
129, 131, 132, 133, 136

ReflectionMethod methods
getModifiers, 132, 133
getParameters, 129

ReflectionObject class, 126, 127, 136
ReflectionParameter class, 126, 127,

129, 132
ReflectionProperty class, 126, 127,

128, 129, 133, 136, 137
Reflector interface, 126, 127, 133
register_shutdown_function

function, 170
remote procedure calls, 105
result set, as dependent object,

68–69
reusability

of connection resources, 68
of objects, 63, 74

rewind, iterator method, 85, 86,
87, 88

Rich Site Summary (RSS). See RSS
root element. See document ele-

ment of an RSS file
RSS

document element, 100–101
feed, 4, 13, 101
file format, 99
structure, 101–102
version declaration, 101

S
schema, and sqlite_master table, 152
scope resolution operator

with a constant, 82
replaces arrow operator, 67
and static class, 95

scripting language as glue, 2
self keyword, 67, 82, 169

OOPHP_02.book Page 187 Friday, May 5, 2006 2:25 PM

188 INDEX

serialize function, 116
server resources, 63
__set, magic method, 112–114, 115,

122, 123
__set_state, magic method, 111
setAttribute, PDO method, 159, 161
setTableNames, SQLiteDatabasePlus

method, 152
SGML (Standardized General

Markup Language), 100
shallow copy, 120
show_methods function, 137
Simple Object Access Protocol

(SOAP). See SOAP
simplexml_load_file function, 102
SimpleXMLElement, 4, 13, 102–103
single inheritance, 8, 11
singleQuery, SQLiteDatabase method,

148, 149, 150
mixed return type, 148

singleton class
and cloning, 122
disallowing copies, 98

singleton pattern, 96, 98
site-specific search, 103, 105, 108
__sleep, magic method, 116, 170
SOAP (Simple Object Access

Protocol), 13, 100, 103,
104, 105

SOAPClient class, 3, 13, 106, 108
SOAPFault class, 108, 127–128, 131
software shops, large, 3
SPL (Standard PHP Library), 12, 76
SQL

injection attack, 151, 162
statement, 70, 71, 72, 73

SQLite, 13
access control, 156
binary, 142
command-line, 141–142, 159
compared to MySQL, 141, 148,

149, 154, 156
and concurrency, 159
and data types, 143
database

extracting metadata, 141,
151–153

format, 159

installing, 140, 142
locking, 156

documenting data types, 143
dumping a database, 140,

141, 142
field types, 143
functions and operators, 143
sqlite_master table, 141, 152, 163
string concatenation

operator, 143
support for transactions, 161
version compatibility, 140, 142

sqlite_escape_string function,
154, 160

sqlite_last_error function, 147
sqliteCreateFunction, PDO method,

159, 164
SQLiteDatabase

class as final, 139
error messages, 147–148
executing multiple queries, 149
overriding query methods,

146–150
query methods, 160

SQLiteDatabase methods
arrayQuery, 149, 150
constructor, 141, 145, 152
createFunction, 155–156

supported under PDO, 159
query, 149
queryExec, 149, 150
singleQuery, 148, 149, 150

mixed return type, 148
and string reference argument,

147–148
unbufferedQuery, 149–150

SQLiteDatabasePlus, converting util-
ity methods, 160, 164

SQLiteDatabasePlus methods
cleanData, 154
matchNames, 153, 154
setTableNames, 152

SQLiteException, 141
SQLiteResult, 149, 160, 162
SQLiteResult method, fetch, 150
SQLiteUnbuffered, 160
sqrt function, 95
src attribute of img tag, 22, 44

OOPHP_02.book Page 188 Friday, May 5, 2006 2:25 PM

INDEX 189

Standard PHP Library (SPL).
See SPL

Standardized General Markup Lan-
guage (SGML). See SGML

statement, superior to a result
set, 163

static
data members, 67, 97, 98
method, 67

calling, 95, 96
and pseudo-variable $this, 95

variables, referencing, 67
static keyword, 67, 170
stdClass, 163
string concatenation operator in

SQLite, 143
strtotime function, 154
struct, C data type, 19
studly caps, 19, 20, 145
subclass, 76
SUBDATE, MySQL function, 154,

156, 164
subtracting dates, 155, 156
superclass, 76
Suraski, Zeev, 11
syntactic sugar, 122, 123
syntax highlighting, 137
systems analysis, 18

T
throw keyword, 82
thumbnail images, 36–39

quality of, 43
ThumbnailImage class, 37–45

debugging, 45
query string used with, 45

__toString, magic method, 77–78,
80–81, 112, 116, 123, 170

used to display objects, 78
traversing a result set, 72
trigger, 141–142, 143, 144–145, 156

definition, 141
and referential integrity, 144
updating, 141

try

block, 83
keyword, 83

type in Visual Basic, 19
type hinting, 129, 133, 137, 168, 171

arrays, 94, 137, 171
exceptions, 83, 93, 94
and order of catch blocks, 93, 94
parameters, 129
and polymorphism, 94
return values, 129

U

UDF (User Defined Function), 141,
155–156

unbuffered result set, 87–88,
149–150

unbufferedQuery, SQLiteDatabase
method, 149–150

undefined instance variables,
112–113

unserialize function, 116
__unset, magic method, 113,

114, 170
unset function, 33, 113
unsetting a connection, 68
upgrading

to PHP 5, 14–16, 18, 167
to SQLite 3, 159

URL-encoded, 51
User Defined Function (UDF).

See UDF
user programmer. See client

programmer
user-defined classes, 125, 126, 133,

134, 136, 137

V
valid, iterator method, 85, 86, 87
var keyword

and PHP 4, 19
replaced in PHP 5, 26

variant data type, 94
view, 141, 142, 143

field types, 152
updating, 141, 143, 144, 145

visibility
of instance variables, 19
sorting by, 130, 131

visited. See anchor pseudo-classes

OOPHP_02.book Page 189 Friday, May 5, 2006 2:25 PM

190 INDEX

W
W3C (World Wide Web

Consortium), 100
__wakeup, magic method, 116, 170
warnings, for deprecated functions,

14, 15
web developers, 1, 3, 4
web hosting, 16
Web Service Definition Language

(WSDL). See WSDL
web services, 13, 104, 105, 110
well-formed XML document, 102
World Wide Web Consortium

(W3C). See W3C

wrapper method, 20–21, 67, 70, 115
WSDL (Web Services Definition

Language), 104, 105, 106

X

XHTML, 100
XML (eXtensible Markup

Language), 13, 99–101
XML toolkit, 13, 100

Z
Zend engine, 15
zend.ze1_compatibility_mode, 166

OOPHP_02.book Page 190 Friday, May 5, 2006 2:25 PM

	Object-Oriented PHP: Concepts, Techniques, and Code
	Contents
	Introduction
	Chapter 1: What a Tangled Web We Weave
	Chapter 2: Basics of Object-Oriented Programming
	Chapter 3: Object-Oriented Features New to PHP 5
	Chapter 4: Show a Little Class
	Chapter 5: Mod UR Class
	Chapter 6: The ThumbnailImage Class
	Chapter 7: Building the PageNavigator Class
	Chapter 8: Using the PageNavigator Class
	Chapter 9: Database Classes
	Chapter 10: Improvement Through Inheritance
	Chapter 11: Advanced Object-Oriented Programming Concepts
	Chapter 12: Keeping It Fresh
	Chapter 13: More Magic Methods
	Chapter 14: Creating Documentation Using the Reflection Classes
	Chapter 15: Extending SQLite
	Chapter 16: Using PDO
	Appendix A: Setting Up PHP 5
	Appendix B: Conversion Table: PHP 4 and PHP 5
	Glossary
	Index

