

Object-Oriented Programming
with PHP5

Learn to leverage PHP5's OOP features to write
manageable applications with ease

Hasin Hayder

 BIRMINGHAM - MUMBAI

Object-Oriented Programming with PHP5

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2007

Production Reference: 1031207

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-56-1

www.packtpub.com

Cover Image by Karl Moore (karl.moore@ukonline.co.uk)

Credits

Author

Hasin Hayder

Reviewers

Kalpesh Barot

Murshed Ahmed Khan

Development Editor

Nanda Padmanabhan

Assistant Development Editor

Rashmi Phadnis

Technical Editor

Divya Menon

Editorial Team leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Indexer

Monica Ajmera

Proofreader

Damian Carvill

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

Hasin Hayder is a Zend Certified Engineer and open-source enthusiast from
Bangladesh. Besides his regular job as Technical Director at Trippert Labs
(www.trippert.com), he is often found developing localized Bangla applications and
blogging at http://hasin.wordpress.com. He lives in Bangladesh with his wife
Ayesha, son Afif and plenty of toys around!

About the Reviewers

Kalpesh Barot has about 4 years of experience in the world of PHP. He has
extensively worked on small and large scale social networking websites developed
in PHP. He has been involved in varied projects, from planning and developing web
sites to creating custom modules on big social networking websites.

Kalpesh received a Masters degree in Enterprise software Engineering from the
University of Greenwich, UK in 2004. There he learned the theory behind his
computer experience and became a much more efficient computer programmer.

Kalpesh has worked actively in the IT sector since his freshman year at university.
He has been a PHP developer since then and has developed his skills in this field.

Through his increasing responsibilities, he has learned to prioritize needs and wants,
and applies this ability to his projects.

I would like to thank my wife Bansari for her consistent support.

Murshed Ahmmad Khan is a young web developer who believes that nothing is
impossible in the arena of programming. With his extensive 5 years work experience
in web & system level programming he wants to create cool, applicable and useful
systems for many people throughout the web.

He graduated (B.Sc. in CSE) from Rajshahi University of Engineering & Technology
(RUET) Rajshahi, Bangladesh, in Computer Science & Engineering (CSE).

Murshed Ahmmad Khan worked on BangladeshInfo.com
(http://www.bangladeshinfo.com), and Global Online Services Limited
(http://www.global.com.bd) gaining an immense reputation. BangladeshInfo.com
& Global Online Services Limited are both a concern of Texas Group Bangladesh and
a renowned IT firm in the local market for corporate and multinational companies.

He also worked in THPB (The Hunger Project, Bangladesh -
http://www.thp.org) and SHUJAN (SHUJAN is a citizen movements to
achieve good governance) as a lead developer for developing various e-governance
sites for increasing the accountability of the candidates of national elections.
From SHUJAN (http://www.shujan.org) he also developed the country's first
ever online.

Table of Contents
Introduction	 1
Chapter 1: OOP vs. Procedural Programming	 5

Introduction to PHP	 6
A Little History of OOP in PHP	 6
Procedural vs. OO Coding Style 	 7
Benefits of OOP 	 8
Dissection of an Object	 9
Difference of OOP in PHP4 and PHP5	 11
Some Basic OO Terms	 12
General Coding Conventions 	 13
Summary	 14

Chapter 2: Kick-Starting OOP	 15
Let's Bake Some Objects	 15

Accessing Properties and Methods from Inside the Class	 17
Using an Object	 17
Modifiers	 18
Constructors and Destructors	 20
Class Constants	 22
Extending a Class [Inheritance]	 24

Overriding Methods	 26
Preventing from Overriding 	 26
Preventing from Extending	 26

Polymorphism	 27
Interface	 28
Abstract Class	 30
Static Method and Properties	 32

Table of Contents

[ii]

Accessor Methods	 34
Using Magic Methods to Set/Get Class Properties	 36
Magic Methods for Overloading Class Methods	 37
Visually Representing a Class	 38
Summary	 39

Chapter 3: More OOP	 41
Class Information Functions	 41

Checking if a Class Already Exists	 41
Finding Currently Loaded Classes	 42
Finding out if Methods and Properties Exists	 42
Checking the Type of Class	 42
Finding Out the Class Name 	 43

Exception Handling	 44
Collecting all PHP Errors as Exception	 48

Iterators	 49
ArrayObject	 51
Array to Object	 52
Accessing Objects in Array Style	 53
Serialization	 54

Magic Methods in Serialization	 55
Object Cloning	 58
Autoloading Classes or Classes on Demand	 59
Method Chaining	 59
Life Cycle of an Object in PHP and Object Caching	 61
Summary	 62

Chapter 4: Design Patterns	 63
You Might have Done this Before…	 63
Strategy Pattern	 64
Factory Pattern	 66
Abstract Factory	 69
Adapter Pattern	 71
Singleton Pattern	 75
Iterator Pattern 	 77
Observer Pattern	 80
Proxy Pattern or Lazy Loading	 82
Decorator Pattern	 84
Active Record Pattern	 88
Facade Pattern	 88
Summary	 91

Table of Contents

[iii]

Chapter 5: Reflection and Unit Testing	 93
Reflection 	 93

ReflectionClass 	 94
ReflectionMethod	 99
ReflectionParameter	 102
ReflectionProperty	 104
Unit Testing	 106

Benefits of Unit Testing	 107
A small Introduction to Vulnerable Bugs	 107
Preparing for Unit Testing	 109
Starting Unit Testing	 109
Testing an Email Validator Object	 112
Unit Testing for Everyday Script	 116
Test Driven Development	 120

Writing Multiple Assertions	 125
PHPUnit API	 126

Summary	 136
Chapter 6: Standard PHP Library	 137

Available Objects in SPL	 137
ArrayObject	 138
ArrayIterator	 143
DirectoryIterator	 145
RecursiveDirectoryIterator	 149
RecursiveIteratorIterator	 150
AppendIterator	 150
FilterIterator	 152
LimitIterator	 154
NoRewindIterator	 154
SeekableIterator	 155
RecursiveIterator	 156
SPLFileObject	 158
SPLFileInfo	 159
SPLObjectStorage	 161
Summary	 163

Chapter 7: Database in an OOP Way	 165
Introduction to MySQLi	 165

Connecting to MySQL in an OO Way	 166
Selecting Data in an OO Way	 166
Updating Data in an OO Way	 167

Table of Contents

[iv]

Prepared Statements	 167
Basic Prepared Statements	 168
Prepared Statements with Variables	 169

Using BLOB with Prepared Statements	 170
Executing Stored Procedure with MySQLi and PHP	 171

PDO	 172
DSN Settings for Different Databases Engines	 174
Using Prepared Statements with PDO	 175
Calling Stored Procedures	 176
Other Interesting Functions	 177

Introduction to Data Abstraction Layers	 178
ADOdb	 178

Installing ADOdb	 178
Connecting to Different Databases	 179
Basic Database Operations using ADOdb	 183
Inserting, Deleting, and Updating Records	 184
Executing Prepared Statements	 184

MDB2	 185
Installing MDB2	 185
Connecting to Database	 186
Executing Prepared Statements	 187

Introduction to ActiveRecord	 188
Creating a New Record via ActiveRecord	 189
Selecting and Updating Data	 189

Summary	 190
Chapter 8: Cooking XML with OOP	 191

Formation of XML	 191
Introduction to SimpleXML	 192

Parsing Documents	 193
Accessing Attributes	 194
Parsing Flickr Feeds using SimpleXML	 194
Managing CDATA Sections using SimpleXML	 197
XPath	 198
DOM API	 200

Modifying Existing Documents	 202
Other Useful Functions	 202
Summary	 203

Chapter 9: Building Better with MVC	 205
What is MVC?	 205
Planning for the Project	 206
Designing the Bootstrap File	 206

Table of Contents

[�]

Adding Database Support	 224
Drivers	 227

Building Applications over our Framework	 237
Authentication Controller	 238

Summary	 245
Index	 247

Introduction
Object-oriented programming is largely about the ability to hide what's not important
to the user and to highlight what is. PHP 5 offers standardized means for specifying
the variety of property scopes typically offered by full-featured OO languages.

What This Book Covers
Chapter 1 introduces object-oriented programming and how it fits for PHP. Some
benefits of functional programming over procedural programming are highlighted.

In Chapter 2 you learn to create objects and define their properties and methods.
Details of classes, properties, and methods follow, along with the scope of methods.
This chapter shows you the benefits of using interfaces and a few other basic OOP
features in PHP to kick start your journey through OOPing in PHP.

Now that you have got your basics done for OOP in PHP, Chapter 3 helps you to
strengthen your base. It helps you to deal with more details and some advanced
features. For example, you learn about class information functions, which allows
you to investigate details of any class. This chapter takes you through some handy
object-oriented information functions, exception handling, iterators, and storing
objects using serialization.

In Chapter 4 you learn some of the Design Patterns and how to implement them in
PHP. These are an essential part of OOP and make your code more effective, more
efficient, and easier to maintain. Sometimes we implement these design patterns
in our code without knowing that these solutions are defined by design patterns.
Proper usage of the correct pattern can make your code perform better; similarly
using them improperly could make your code slower and less efficient.

Introduction

[�]

Chapter 5 focuses on two very important features of object-oriented programming
in PHP, reflection and unit testing. PHP5 replaces many old APIs with smarter new
ones. One of these is the Reflection API, with which you can reverse or engineer
any class or object to figure out its properties and methods. You can invoke those
methods dynamically and more. Unit testing is an essential part of good, stable, and
manageable application design. We focus on one very popular package, PHPUnit,
which is a port of JUnit to PHP. If you follow the guidelines provided in this chapter
you will be able to design your own unit tests successfully.

Some built-in objects and interfaces in PHP make life much easier for PHP
developers. In Chapter 6 you will learn about the huge object repository named the
Standard PHP Library or SPL.

Chapter 7: In this chapter we discuss the improved MySQL API known as MySQLi
and take a basic look at PHP Data Objects (PDO), adoDB, and PEAR::MDB2. We
take a look at the Active Record pattern in PHP using adoDB’s active record library
and the Object-Relational Mapping (ORM) pattern using Propel. We focus on
some specific topics that are interesting for PHP developers doing database access
the OO way.

In Chapter 8, you learn to process XML with PHP. You get to know about different
APIs like the SimpleXML API to read XML and the DOMDocument object to parse
and create XML documents.

Chapter 9: In Chapter 4 you learned how design patterns can simplify your daily
life in programming by providing you with a common approach for solving
problems. One of the most used design patterns for application architecture is
Model-View-Controller (MVC). In this chapter we discuss the basic structure of
MVC frameworks and then introduce you to some of these popular frameworks.
Frameworks play a very important role in Rapid Development of PHP applications.
You will learn how to build a framework in this chapter, which will also help you to
understand object loading, data abstraction layers, and the importance of separation
and finally you get a closer look at how applications are done.

Who is This Book for
From beginners to intermediate users of PHP5

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Introduction

[�]

There are three styles for code. Code words in text are shown as follows: "�������� In some
cases you may need to investigate which classes are in the current scope. You can do
it easily with get_declared_classes() function��."

A block of code will be set as follows:

<?
class ParentClass
{
}

class ChildClass extends ParentClass
{
}

$cc = new ChildClass();
if (is_a($cc,"ChildClass")) echo "It’s a ChildClass Type Object";
echo "\n";
if (is_a($cc,"ParentClass")) echo "It’s also a ParentClass Type
Object";

?>

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"�� If you place the server in your web server (here localhost) document, root in a
folder named proxy and then access the client, you will get the following output:

March, 28 2007 16:13:20".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

Introduction

[�]

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/2561_Code.zip, and select this book
from the list of titles to download any example code or extra resources for this book.
The files available for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

This book is dedicated to
my Son

Afif—The Little Einstein

OOP vs. Procedural
Programming

PHP is one of the most popular scripting languages of the last couple of years. Almost
60% of web servers are running on Apache with PHP. It is so popular that millions of
websites and web applications are developed every month using PHP. PHP started its
journey as a simple replacement for Perl, and in a few years it became tremendously
popular and powerful. The language itself is closely similar to ANSI C.

One of the reasons why PHP became so popular is its short learning curve. Learning
PHP is not a big job, especially if you are familiar with the syntax of Java or C.
As writing PHP scripts is easy, anyone can write PHP code without following
conventions and mixing presentation layers with business logics (which is one of
the main reasons why there are large amounts of unmanageable projects floating
around). Because there are no strict coding conventions followed in PHP, over the
years as a project gets bigger, it can turn into an unmanageable demon.

OOP or Object Oriented Programming is a good programming practise to create
manageable projects more easily. Procedural programming means writing code
without objects. Procedural programming consists of codes with or without routines.
OOP enlightens any language for better coding, for best performance and for
writing very big projects without worrying a lot about managing them. OOP gives
you facilities to create reusable objects that you or other developers can use in their
projects without reinventing them again and again. OOP removes the hassles and
difficulties of writing and managing big applications.

In this book we are going to discuss how you can achieve maximum benefits using
OOP with PHP, using step-by-step instructions, real life examples how OOP helps
you to write effective code, how to improve your coding style, and how to reuse
them over time. This book won't work as a reference for PHP language; we will just
cover OOP features of PHP and not the basics of general PHP. If you are looking for
a good reference book, consult the PHP manual at first and then you can study Core
PHP Programming, a very good book written by Leon Atkinson�.

OOP vs. Procedural Programming

[10]

Introduction to PHP
This section is not for you if you are already a PHP developer, but for those who are
new to PHP and starting with this book. Though I said at the very beginning that I
assume you will have some pre development experience in PHP while reading this
book, but if you are a total fresher and want to learn OOP with this book, this section
may be worth recalling the basic PHP language features. If you are already familiar
enough, don't skip this section as we have other topics to discuss here.

So you may ask where is the introduction to PHP, I am not seeing any code here!
Well, you don't need to. The best resource on the internet is for free. Please go to
http://www.php.net and download the manual and read the basic chapters. For
a detailed learning of PHP, you can study the book Learning PHP5 written by
David Sklar.

Ready, Set, Go
In this book, we are using PHP5.1.2 for our examples but for almost 99% of cases it
will run with PHP version 5x. We have MySQL 5 in our machine and Apache 2
as our web server. If you aren't familiar with configuring all these in your machine,
you can download pre configured WAMP or LAMP distributions like XAMPP
(http://apachefriends.org) or Apache2Triad (http://www.apache2triad.net).
You will find corresponding documentation for installation and customization on
each of these product's website.

A Little History of OOP in PHP
When PHP was developed, it did not implement OO features in itself. After PHP/FI,
when Zeev, Rasmus, and Andy rewrote the core and released PHP3, very basic OO
features were introduced. When PHP4 was released, OO features got matured with
huge performance improvement. But the PHP team rewrote the core engine again
to introduce completely new object models and released PHP5. Now there are two
versions of PHP being developed. Don't get confused by comparing PHP versions
with other languages. PHP5 doesn't mean it is the latest PHP version. As I said a
while ago, PHP4 and PHP5 are being released actively (though there will be no more
releases of PHP4 after December 2007). Between these two, PHP5 implements almost
complete OO features while PHP4 doesn't. At the time of writing this book the latest
version of these two streams are PHP5.2 and PHP4.4.

Chapter 1

[11]

Procedural vs. OO Coding Style
PHP allows you to write code in two flavours, one is procedural and the other
is object oriented. You can even write procedural code in PHP5 and it will run
without any problems. If you are not clear about procedural and object oriented
programming, then we will have a look at these two different coding styles. The
following two examples are not fully running examples rather a pseudo code:

<?
$user_input = $_POST[‘field‘];
$filtered_content = filter($user_input); //user input filtering
mysql_connect("dbhost","dbuser","dbpassword"); //database
mysql_select_db("dbname");
$sql = "some query";
$result = mysql_query($sql);
while ($data = mysql_fetch_assoc())
{
 process ($data);
}
process_user_input($filtered_content);
?>

You will notice using a lot of inline processing either directly or via using functions.
It may stand as an example of typical procedural operation. Let's see how it looks
after converting it to OOP:

<?
$input_filter = new filter();
$input_filter->filter_user_input(); //filter the user inputs
$db = new dal("mysql"); //data access layer
$db->connect($dbconfig);//we wre using mysql
$result = $db->execute($sql);
ReportGenerator::makereport($result); //process data
$model = new Postmodel($filter->get_filtered_content());
$model->insert();
?>

Now if you take a look into these two code snippets, you will find that the latter
one is much more readable. Well, you can make the first one more readable by
introducing some more functions into it, but how many functions are you ready
to search into when you use them? The latter snippet is better organized because
you know which object is handling which process. If you write big applications in
procedural style, it will be almost impossible to manage after a few versions. Of
course you can implement strict coding conventions, but it is agreed by millions
of developers that it won't give you the ultimate manageability and usability if it's
procedural unless you do it in OO style. Almost all big applications are written using
the object oriented approach.

OOP vs. Procedural Programming

[12]

Benefits of OOP
OOP is invented to make the developer's life easier. Using OOP you can split
your problems into smaller problems that are comparatively easy to comprehend.
The main goal of OOP is: everything you want to do, do it via objects. Objects are
basically small discrete pieces of code which, can incorporate data and behaviors
together. In an application all these objects are connected to each other, they share
data among them and solve problems.

OOP can be considered better from many aspects, especially when you consider
the development time and maintenance overhead. The main benefits of OOP can be
considered as follows:

Reusability: An object is an entity which has bundles of properties and
methods and can interact with other objects. An object can be sufficient or it
may have dependencies over other objects. But an object is usually developed
to solve a specific set of problems. So when other developers suffer from the
same set of problems, they can just incorporate your class to their project and
use it without affecting their existing workflow. It prevents from DRY, which
means Don't Repeat Yourself. In functional or modular programming, reusing
is possible but complex.
Refactoring: When you need to refactor your projects, OOP gives
you the maximum benefit because all objects are small entities and
contain its properties and methods as a part of itself. So refactoring is
comparatively easier.
Extensible: If you need to add features to your project, you can achieve best
results from OOP. One of the core OOP features is extensibility. You can
refactor your object to add the feature. While doing it, you can still maintain
backward compatibility of this object so that it works fine with an old code
base. Or you can extend the object and create a totally new object that retains
all the necessary properties and methods of the parent object from which it
has been derived, and then expose new features. This is termed "inheritance"
and is a very important feature of OOP.
Maintenance: Object oriented code is easier to maintain because it follows
somewhat strict coding conventions and is written in a self explanatory
format. For example, when a developer extends it, refactors it, or debugs
it, they can easily find out the inner coding structure and maintain the
code time after time. Moreover, whenever there is a team development
environment in your project, OOP could be the best solution because you can
distribute your code after splitting it into small parts. These small parts could
be developed as a separate object, so developers can develop them almost
independently. Finally, it will be very easy to merge the code.

•

•

•

•

Chapter 1

[13]

Efficiency: The concept of object oriented programming is actually
developed for better efficiency and ease of development process. Several
design patterns are developed to create better and efficient code. Moreover
in OOP, you can think of your solution in a much better approach than
procedural programming. Because you first split your problem into a small
set of problems and then find solutions for each of them, the big problem is
solved automatically.

Dissection of an Object
So what is an object? Well, it's nothing but a piece of code with a bunch of properties
and methods. So is it similar to an array, as arrays can store data identified by
properties (well, they are called keys)? Objects are much more than arrays because
they contain some methods inside them. They can either hide them or expose them,
which are not possible in arrays. The object is somewhat comparable with a data
structure, data structure, and can incorporate a lot of other objects in itself and either
creates a tight coupling among them or a loose one. And object can incorporate a lot
of other object in itself and either creates a tight coupling among them or a loose one.
We will learn more about loose coupling and tight coupling later in this book and
understand how they will be useful for us.

Let's see the code of an object in PHP. The following object is a very simple
object which can send email to a bunch of users. In PHP5, objects are a lot more
different than an object in PHP4. We will not discuss the details of it, this is just an
introductory object to see how the objects are written in PHP.

<?
//class.emailer.php
class emailer
{
 private $sender;
 private $recipients;
 private $subject;
 private $body;

 function __construct($sender)
 {
 $this->sender = $sender;
 $this->recipients = array();
 }

 public function addRecipients($recipient)
 {
 array_push($this->recipients, $recipient);
 }

•

OOP vs. Procedural Programming

[14]

 public function setSubject($subject)
 {
 $this->subject = $subject;
 }

 public function setBody($body)
 {
 $this->body = $body;
 }

 public function sendEmail()
 {
 foreach ($this->recipients as $recipient)
 {
 $result = mail($recipient, $this->subject, $this->body,
 "From: {$this->sender}\r\n");
 if ($result) echo "Mail successfully sent to
 {$recipient}
";
 }
 }
}
?>

The above object contains four private properties and three accessor methods and
finally one more method to dispose the email to recipients. So how we are going to
use it in our PHP code? Let's see below:

<?
$emailer = new emailer("hasin@pageflakes.com"); //construcion
$emailer->addRecipients("hasin@somewherein.net"); //accessing methods
// and passing some data
$emailer->setSubject("Just a Test");
$emailer->setBody("Hi Hasin, How are you?");
$emailer->sendEmail();
?>

I am sure that the above code snippet is much more self explanatory and readable.
If you follow proper conventions, you can make your code easy to manage and
maintain. Wordpress developers use a motto on their site www.wordpress.org
which is "Coding is poetry". Coding is exactly a poem; if you just know how to
write it.

Chapter 1

[15]

Difference of OOP in PHP4 and PHP5
Objects in PHP5 differ a lot from objects in PHP4. OOP became matured enough in
true sense from PHP5. OOP was introduced since PHP3 but that was just an illusion
for real object oriented programming. In PHP4 you can create objects but you can't
feel the real flavour of an object there. In PHP4 it was almost a poor object model.

One of the main differences of OOP in PHP4 is that everything is open; no
restrictions about the usage of methods or properties. You can't use public, private,
and protected modifiers for your methods. In PHP4 developers usually declare
private methods with a double underscore. But it doesn't mean that declaring a
method in that format actually prevents you from accessing that method outside the
class. It's just a discipline followed.

In PHP4 you can find interfaces but no abstract or final keyword. An interface is a
piece of code that any object can implement and that means the object must have all
the methods declared in the interface. It strictly checks that you must implement all
the functions in it. In the interface you can only declare the name and the access type
of any method. An abstract class is where some methods may have some body too.
Then any object can extend that abstract class and extend all these methods defined
in that abstract class. A final class is an object which you are not allowed to extend.
In PHP5 you can use all of these.

In PHP4 there are no multiple inheritances for interfaces. That means an interface
can extend only one interface. But in PHP5 multiple inheritance is supported via
implementing multiple interfaces together.

In PHP4, almost everything is static. That means if you declare any method in the
class, you can call it directly without creating an instance of it. For example the
following piece of code is valid in PHP4:

<?
class Abc
{
 var $ab;

 function abc()
 {
 $this->ab = 7;
 }
 function echosomething()
 {
 echo $this->ab;
 }
}

echo abc::echosomething();
?>

OOP vs. Procedural Programming

[16]

However it is not valid in PHP5 because the method echosomething() uses $this
keyword which is not available in a static call.

There is no class-based constant in PHP4. There is no static property in objects in
PHP4, and there is no destructor in PHP4 objects.

Whenever an object is copied, it is a shallow copy of that object. But in PHP5 shallow
copy is possible only using the clone keyword.

There is no exception object in PHP4. But in PHP5 exception management is a great
added feature.

There were some functions to investigate methods and properties of a class in
PHP4, but in PHP5 beside those functions, a powerful set of API (Reflection API) is
introduced for this purpose.

Method overloading via magic methods like __get() and __set() are available in
PHP5. There are also��� lots of built-in objects to make your life easier.

But most of all, there is a huge performance improvement in PHP5 for OOP.

Some Basic OO Terms
Some of the basic object-oriented terms are as follows:

Class: A class is a template for an object. A class contains the code which defines
how an object will behave and interact either with each other, or with it. Every time
you create an object in PHP, you are actually developing the class. So sometimes in
this book we will name an object as class, as they are both synonymous.

Property: A property is a container inside the class which can retain some
information. Unlike other languages, PHP doesn't check the type of property
variable. A property could be accessible only in class itself, by its subclass, or by
everyone. In essence, a property is a variable which is declared inside the class itself,
but not inside any function in that class.

Method: Methods are functions inside a class. Like properties, methods can also be
accessible by those three types of users.

Encapsulation: Encapsulation is the mechanism that binds together code and the
data it manipulates, and keeps both safe from outside interference and misuse.
The wrapping up of data and methods into a single unit (called class) is known as
encapsulation��� . The benefit of encapsulating is that it performs the task inside without
making you worry.

Chapter 1

[17]

Polymorphism: Objects could be of any type. A discrete object can have discrete
properties and methods which work separately to other objects. However a set
of objects could be derived from a parent object and retain some properties of the
parent class. This process is called polymorphism. An object could be morphed into
several other objects retaining some of its behaviour.

Inheritance: The key process of deriving a new object by extending another object
is called inheritance. When you inherit an object from another object, the subclass
(which inherits) derives all the properties and methods of the superclass (which is
inherited). A subclass can then process each method of superclass anyway (which is
called overriding).

Coupling: Coupling is the behaviour of how classes are dependent on each other.
Loosely coupled architecture is much more reusable than tightly coupled objects. In
the next chapter we will learn details about coupling. Coupling is a very important
concern for designing better objects.

Design Patterns: First invented by the "Gang of Four", design patterns are just tricks
in object oriented programming to solve similar sets of problems with a smarter
approach. Using design patterns (DP) can increase the performance of your whole
application with minimal code written by developers. Sometimes it is not possible
to design optimized solutions without using DP. But unnecessary and unplanned
use of DP can also degrade the performance of your application. We have a chapter
devoted for design patterns in this book.

Subclass:� A very common term in OOP, and we use this term throughout this book.
When an object is derived from another object, the derived one is called the subclass
of which it is derived from.

Superclass: A class is superclass to an object if that object is derived from it. To
keep it simple, when you extend an object, the object which you are extending is the
superclass of a newly extended object.

Instance: Whenever you create an object by calling its constructor, it will be called
an instance. To simplify this, whenever you write some thing like this $var = new
Object(); you actually create an instance of object class.

General Coding Conventions
We will be following some conventions in our codes throughout the book. Not being
too strict, these conventions will help you to maintain your application at a large
extent. Also, it will increase the maintainability of your code. It will also help you to
write efficient code by avoiding duplicity and redundant objects. Last but not least, it
will make your code much more readable.

OOP vs. Procedural Programming

[18]

In a single php file, we never write more than one class at a time. Out of the
scope of that class, we will not write any procedural code.
We will save any class with a proper naming convention. For example we
will save the file where we place the Emailer class introduced earlier in this
chapter as class.emailer.php. What benefits can you achieve using this
naming convention? Well, without going inside that file, you are now at least
confirmed that this file contains a class named "Emailer".
Never mix the case in filenames. It creates ugly application structure. Go
ahead with all small letters.
Like classes, we will save any interface as interface.name.php,���������� Abstract
class as abstract.name.php,�������������������� and Final class as final.name.php.
We will always use Camel case while naming our classes. And that means
the first letters of the major part is always a capital letter and the rest are
small letter. For example a class named "arrayobject" will be more readable if
we write ArrayObject.
While writing the name of properties or class variables, we will follow the
same convention.
While writing the name of a method, we will start with a small letter and
then the rest are camel case. For example, a method to send an email could be
named as sendEmail.
Well, there is no more conventions used in this book.

Summary
In this chapter we learned about the object oriented programming and how it fits
in with PHP. We have also learned some benefits over procedural and functional
programming. However, we haven't gone through the details of OO language
in PHP. In the next chapter we will learn more about objects and their methods
and attributes, specifically creating objects, extending its features, and interacting
between them. So, let our journey begin, Happy OOPing with PHP.

•

•

•

•

•

•

•

•

Kick-Starting OOP
In this chapter we will learn how to create objects, define their attributes (or
properties) and methods. Objects in PHP are always created using a "class" keyword.
In this chapter we will learn the details of classes, properties, and methods. We
will also learn the scope of methods and about modifiers and the benefits of using
interfaces This chapter will also introduce us to other basic OOP features in PHP. As
a whole, this chapter is one of the better resources for you to kick-start OOP in PHP.

Let's Bake Some Objects
As I said before, you can create an object in PHP using the class keyword. A class
consists of some properties and methods, either public or private. Let's take the
Emailer class that we have seen in our first chapter. We will discuss here what it
actually does:

<?
//class.emailer.php
class Emailer
{
 private $sender;
 private $recipients;
 private $subject;
 private $body;

 function __construct($sender)
 {
 $this->sender = $sender;
 $this->recipients = array();
 }

 public function addRecipients($recipient)
 {

Kick-Starting OOP

[20]

 array_push($this->recipients, $recipient);
 }

 public function setSubject($subject)
 {
 $this->subject = $subject;
 }

 public function setBody($body)
 {
 $this->body = $body;
 }

 public function sendEmail()
 {
 foreach ($this->recipients as $recipient)
 {
 $result = mail($recipient, $this->subject, $this->body,
 "From: {$this->sender}\r\n");
 if ($result) echo "Mail successfully sent to {$recipient}
";
 }
 }
}
?>

In this code, we started with class Emailer, which means that the name of our class
is Emailer. While naming a class, follow the same naming convention as variables,
i.e. you can't start with a numeric letter, etc.

After that we declared the properties of this class. There are four properties here,
namely, $sender, $recipient, $subject, and $body. Please note that we declare
each of them with a keyword private. A private property means that this property
can only be accessed internally from this class. Properties are nothing but variables
inside a class.

If you remember what a method is, it is just a function inside the class. In this
class there are five functions, __construct(), addRecipient(), setSubject(),
setBody(), and sendEmail(). Please note that the last four methods are declared
public. That means when someone instantiates this object, they can access
these methods.

The __construct() is a special method inside a class which is called constructor
method. Whenever a new object is created from this class, this method will execute
automatically. So if we have to perform some preliminary tasks in our object while
initiating it, we will do from this constructor method. For example, in the constructor
method of this Emailer class we just set the $recipients as a blank array and we
also set the sender name.

Chapter 2

[21]

Accessing Properties and Methods from
Inside the Class
Are you wondering how a function can access the class properties from inside its
content? Let's see using the following code:

 public function setBody($body)
 {
 $this->body = $body;
 }

There is a private property named $body inside our class, and if we want to access
it from within the function, we must refer to it with $this. $this means a reference
to current instance of this object. So we can access the body property with
$this->body. Please note that we have to access the properties (i.e class variables)
of a class using a "->" following the instance.

Similarly, like properties, we can access any member method from inside another
member method in this format. For example, we can evoke setSubject method as
$this->setSubject().

Please note that $this keyword is only valid inside the scope of a method,
as long as it is not declared as static. You can not use $this keyword
from outside the class. We will learn about this "static", "private", "public"
keywords more in the Modifiers section later this chapter.

Using an Object
Let's use the newly created Emailer object from inside our PHP code. We must note
some things before using an object. You must initiate an object before using it. After
initiating, you can access all its public properties and methods using "�������������� ->"����������� after the
instance. Let's see using the following code:

<?
$emailerobject = new Emailer("hasin@pageflakes.com");
$emailerobject->addRecipients("hasin@somewherein.net");
$emailerobject->setSubject("Just a Test");
$emailerobject->setBody("Hi Hasin, How are you?");
$emailerobject->sendEmail();
?>

Kick-Starting OOP

[22]

In the above code piece, we first created an instance of Emailer class to a variable
name $emailerobject in the first line. Here, there is something important to note:
We are supplying a sender address while instantiating this:

$emailerobject = new Emailer("hasin@pageflakes.com");

Remember we had a constructor method in our class as __construct($sender).
When initiating an object, we said that the constructor method is called
automatically. So while initiating this Emailer class we must supply the proper
arguments as declared in the constructor method. For example the following code
will create a warning:

<?
$emailer = new emailer();
?>

When you execute the above code, it shows the warning as follows:

Warning: Missing argument 1 for emailer::__construct(),
called in C:\OOP with PHP5\Codes\ch1\class.emailer.php on line 42
and defined in C:\OOP with PHP5\Codes\ch1\class.emailer.php
on line 9

See the difference? If your class had no constructor method or a constructor with no
arguments, you can instantiate it with the above code.

Modifiers
You have seen that we used some keywords like private or public in our class. So
what are these and why do we need to use them? Well, these keywords are called
modifier and introduced in PHP5. They were not available in PHP4. These keywords
help you to define how these variables and properties will be accessed by the user of
this class. Let's see what these modifiers actually do.

Private: Properties or methods declared as private are not allowed to be called
from outside the class. However any method inside the same class can access them
without a problem. In our Emailer class we have all these properties declared as
private, so if we execute the following code we will find an error.

<?
include_once("class.emailer.php");
$emobject = new Emailer("hasin@somewherein.net");
$emobject->subject = "Hello world";
?>

Chapter 2

[23]

The above code upon execution gives a fatal error as shown below:

Fatal error: Cannot access private property emailer::$subject
 in C:\OOP with PHP5\Codes\ch1\class.emailer.php on line
43</>

That means you can't access any private property or method from outside the class.

Public: Any property or method which is not explicitly declared as private or
protected is a public method. You can access a public method from inside or outside
the class.

Protected: This is another modifier which has a special meaning in OOP. If any
property or method is declared as protected, you can only access the method from its
subclass. We will learn details about subclass later in this chapter. But to see how a
protected method or property actually works, we'll use the following example:

To start, let's open class.emailer.php file (the Emailer class) and change the
declaration of the $sender variable. Make it as follows:

protected $sender

Now create another file name class.extendedemailer.php with the
following code:

<?
class ExtendedEmailer extends emailer
{
function __construct(){}
 public function setSender($sender)
 {
 $this->sender = $sender;
 }
}
?>

Now use this object like this:

<?
include_once("class.emailer.php");
include_once("class.extendedemailer.php");
$xemailer = new ExtendedEmailer();
$xemailer->setSender("hasin@pageflakes.com");
$xemailer���->addRecipients("hasin@somewherein.net");
$xemailer���������������������������� ->setSubject("Just a Test");
$�� xemailer������������������������������������ ->setBody("Hi Hasin, How are you?");
$xemailer��������������->sendEmail();
?>

Kick-Starting OOP

[24]

Now if you look carefully at the code of the ExtendedEmailer class, you will find
that we accessed the $sender property of its parent (which is actually Emailer class).
We have been able to access that property only because it was declared as protected.
One more benefit we get here, is that the property $sender is still inaccessible
directly from outside the scope of these two classes. That means if we execute the
following code, it will generate a fatal error.

<?
include_once("class.emailer.php");
include_once("class.extendedemailer.php");
$xemailer = new ExtendedEmailer();
$xemailer->sender = "hasin@pageflakes.com";
?>

Upon execution, it gives the following error:

Fatal error: Cannot access protected property
extendedEmailer::$sender in C:\OOP with
PHP5\Codes\ch1\test.php on line 5

Constructors and Destructors
We discussed earlier in this chapter about the constructor method. A constructor
method is the method that executes automatically while creating instances of the
class. In PHP5, there are two ways you can write a constructor method inside a
class. The first one is to create a method with the name __construct() inside the
class. The second is to create a method naming exactly the same as class name. For
example if your class name is Emailer, the name of the constructor method will be
Emailer(). Let's take a look at the following class which calculates the factorial of
any number:

<?
//class.factorial.php
class factorial
{
 private $result = 1;// you can initialize directly outside
 private $number;
 function __construct($number)
 {
 $this->number = $number;
 for($i=2; $i<=$number; $i++)
 {
 $this->result *= $i;
 }
 }

Chapter 2

[25]

 public function showResult()
 {
 echo "Factorial of {$this->number} is {$this->result}. ";
 }
}
?>

In the code above, we used __construct() as our constructor function. The
behaviour will be same if you rename the __construct() function as factorial().

Now, you may ask if a class can have constructors in both styles? This means a
function named __construct() and a function named the same as class name. So
which constructor will execute, or will they both execute? This is a good question.
Actually there is no chance of executing both. If there is a constructor in both styles,
PHP5 will give preference to the __construct() function and the other one will be
ignored. Let's take a look using the following example

<?
//class.factorial.php
class Factorial
{
 private $result = 1;
 private $number;

 function __construct($number)
 {
 $this->number = $number;
 for($i=2; $i<=$number; $i++)
 {
 $this->result*=$i;
 }
 echo "__construct() executed. ";
 }

 function factorial($number)
 {
 $this->number = $number;
 for($i=2; $i<=$number; $i++)
 {
 $this->result*=$i;
 }
 echo "factorial() executed. ";
 }

 public function showResult()
 {
 echo "Factorial of {$this->number} is {$this->result}. ";
 }
}
?>

Kick-Starting OOP

[26]

Now if you use this class as shown below:

<?
include_once("class.factorial.php");
$fact = new Factorial(5);
$fact->showResult();
?>

You will find that the output is:

__construct() executed. Factorial of 5 is 120

Similar to the constructor method, there is a destructor method which actually works
upon destroying an object. You can explicitly create a destructor method by naming
it __destruct(). This method will be invoked automatically by PHP at the end of
the execution of your script. To test this, let's add the following code in our
factorial class:

function __destruct()
{
 echo " Object Destroyed.";
}

Now execute the usage script again, you will see the following output this time:

__construct() executed. Factorial of 5 is 120. Object Destroyed.

Class Constants
Hopefully, you will already know that you can create constants in your PHP scripts
using the define keyword to define (constant name, constant value). But to create
constants in the class you have to use the const keyword. These constants actually
work like static variables, the only difference is that they are read-only. Let's see how
we can create constants and use them:

<?
class WordCounter
{
 const ASC=1; //you need not use $ sign before Constants
 const DESC=2;
 private $words;

 function __construct($filename)
 {
 $file_content = file_get_contents($filename);
 $this->words =
 (array_count_values(str_word_count(strtolower
 ($file_content),1)));

Chapter 2

[27]

 }

 public function count($order)
 {
 if ($order==self::ASC)
 asort($this->words);
 else if($order==self::DESC)
 arsort($this->words);

 foreach ($this->words as $key=>$val)
 echo $key ." = ". $val."
";
 }
}
?>

This WordCounter class counts the frequency of words in any given file. Here we
define two constant names ASC and DESC whose values are 1 and 2 respectively.
To access these constants from within the class, we reference them with the self
keyword. Please note that we are accessing them with the :: operator, not a ->
operator, because these constants act like a static member.

Finally to use this class, let's create a snippet as shown below. In this snippet we are
also accessing those constants:

<?
include_once("class.wordcounter.php");
$wc = new WordCounter("words.txt");
$wc->count(WordCounter::DESC);
?>

Please note that we are accessing the class constants from outside the class by
following the :: operator right after the class name, not after the instance of the class.
Now let's test the script, please create a file named words.txt with the following
content in the same directory where you placed the above script:

words.txt
Wordpress is an open source blogging engine. If you are not familiar
 with blogging, it is something like keeping a diary on the web.
A blog stands for web log. Wordpress is totally free and
released under the GPL.

Now, if you execute the usage script, this time, you will see the following output.

is = 3
a = 2
blogging = 2
web = 2
wordpress = 2

Kick-Starting OOP

[28]

stands = 1
blog = 1
in = 1
diary = 1
for = 1
free = 1
under = 1
gpl = 1
released = 1
and = 1
totally = 1
log = 1
something = 1
if = 1
you = 1
engine = 1
source = 1
an= 1
open = 1
are = 1
not = 1
ï = 1
like = 1
it = 1
with = 1
familiar = 1
keeping = 1

Nice utility, what do you think?

Extending a Class [Inheritance]
One of the greatest features in OOP is that you can extend a class and create a
completely new object. The new object can retain all the functionality of the parent
object from which it is extended or can override. The new object can also introduce
some features. Let's extend our Emailer class and override the sendEmail function
so that it can send HTML mails.

<?
class HtmlEmailer extends emailer
{
 public function sendHTMLEmail()
 {
 foreach ($this->recipients as $recipient)

Chapter 2

[29]

 {
 $headers = 'MIME-Version: 1.0' . "\r\n";
 $headers .= 'Content-type: text/html; charset=iso-8859-1' .
 "\r\n";
 $headers .= 'From: {$this->sender}' . "\r\n";
 $result = mail($recipient, $this->subject, $this->body,
 $headers);
 if ($result) echo "HTML Mail successfully sent to
 {$recipient}
";
 }
 }
}
?>

As this class extends the Emailer class and introduces a new function,
sendHTMLEmail(), you can still have all the methods from its parent. That means
the following code is fully valid:

<?
include_once("class.htmlemailer.php");
$hm = new HtmlEmailer();
//.... do other things
$hm->sendEmail();
$hm->sendHTMLEmail();
?>

If you want to access any method of the parent class (or you may say superclass)
from which it is derived, you can call using the parent keyword. For example, if you
want to access a method named sayHello, you should write parent::sayHello();

Please note that we didn't write any function named sendEmail() in HtmlEmailer
class, but that method is working from its parent, Emailer class.

In the above example, HtmlEmailer is a subclass of Emailer class and
Emailer class is a superclass of HtmlEmailer. You must remember that
if the subclass has no constructor in it, the constructor from superclass
will be invoked. At the time of writing this book, there is no support for
multiple inheritances at class level. This means you can't extend more
than one class at a time. However multiple inheritance is supported in
interfaces. An interface can extend an arbitrary number of other interfaces
at a time.

Kick-Starting OOP

[30]

Overriding Methods
In an extended object you can override any method (either declared as protected or
public) and perform anything as you wish. So how can you override any method?
Simply create a function with the same name that you want to override. For example,
if you create a function name sendEmail in HtmlEmailer class, it will override the
sendEmail() method of its parent, Emailer class. If you declare any variable in
subclass which is also available in superclass, then when you access that variable, the
one from subclass will be accessed.

Preventing from Overriding
If you declare any method as a final method, it can't be overridden in any of its
subclass. So if you don't want someone to override your class methods, declare it as
final. Let's take a look at the following example:

<?
class SuperClass
{
 public final function someMethod()
 {
 //..something here
 }
}

class SubClass extends SuperClass
{
 public function someMethod()
 {
 //..something here again, but it wont run
 }
}
?>

If you execute the above code, it will generate a fatal error because class SubClass
tried to override a method in SuperClass which was declared as final.

Preventing from Extending
Similar to a final method, you can declare a class as final, which will prevent anyone
from extending it. So if you declare any class, as shown in following example, it is no
more extensible.

<?
final class aclass
{

Chapter 2

[31]

}

class bclass extends aclass
{
}
?>

If you execute the code above, it will trigger the following error:

Fatal error: Class bclass may not inherit from final class
(aclass) in C:\OOP with PHP5\Codes\ch1\class.aclass.php on
line 8

Polymorphism
As we explained before, polymorphism is the process of creating several objects from
specific base classes. For example, take a look at the following case in point. We need
the three classes that we created earlier in this chapter, Emailer, ExtendedEmailer
and HtmlEmailer. Let's take a look at the following code.

<?
include("class.emailer.php");
include("class.extendedemailer.php");
include("class.htmlemailer.php");

$emailer = new Emailer("hasin@somewherein.net");
$extendedemailer = new ExtendedEmailer();
$htmlemailer = new HtmlEmailer("hasin@somewherein.net");
if ($extendedemailer instanceof emailer)
echo "Extended Emailer is Derived from Emailer.
";
if ($htmlemailer instanceof emailer)
echo "HTML Emailer is also Derived from Emailer.
";
if ($emailer instanceof htmlEmailer)
echo "Emailer is Derived from HTMLEmailer.
";
if ($htmlemailer instanceof extendedEmailer)
echo "HTML Emailer is Derived from Emailer.
";
?>

If you execute the script above, you will find the following output:

Extended Emailer is Derived from Emailer.
HTML Emailer is also Derived from Emailer.

Kick-Starting OOP

[32]

This is an example of polymorphism.

You can always check if a class is derived from another class by using the
instanceof operator.

Interface
Interface is an empty class which contains only the declaration of methods. So any
class which implements this interface must contain the declared functions in it. So,
interface is nothing but a strict ruling, which helps to extend any class and strictly
implement all methods defined in interface. A class can use any interface by using
the implements keyword. Please note that in interface you can only declare
methods, but you cannot write their body. That means the body of all methods
must remain blank.

So why is an interface necessary, you might ask? One of the reasons is it implies
strict rules while creating a class. For example, we know that we need to create some
driver classes in our application, which can handle DB operations. For MySQL, there
will be one class, for PostgreSQL there will be another, For SQLite, another one and
so forth. Now your developer team has three developers, who will separately create
these three classes.

Now how will it be if each of them implements their own style in their own classes?
The developers who are going to use those driver classes will have to check how
they define their methods and following that, the way they have to write their code,
which is too boring and hard to maintain. So if you define that, all driver class must
have two methods named connect() and execute(). Now developers need not
worry while changing the driver, because they know that all these classes have
the same method definition. Interface helps in this scenario. Let's create the
interface here:

<?
//interface.dbdriver.php
interface DBDriver
{
 public function connect();
 public function execute($sql);
}
?>

Chapter 2

[33]

Did you notice that the functions are empty in an interface? Now let's create our
MySQLDriver class, which implements this interface:

<?
//class.mysqldriver.php
include("interface.dbdriver.php");
class MySQLDriver implements DBDriver
{

}
?>

Now if you execute the code above, it will give the following error because
MySQLDriver class has no connect() and execute() function as defined in the
interface. Let's run the code and read the error:

Fatal error: Class MySQLDriver contains 2 abstract methods
and must therefore be declared abstract or implement the remaining
methods (DBDriver::connect, DBDriver::execute) in C:\OOP with
PHP5\Codes\ch1\class.mysqldriver.php on line 5

Well, now we have to add those two methods in our MySQLDriver class. Let's see the
code below:

<?
include("interface.dbdriver.php");
class MySQLDriver implements DBDriver
{
 public function connect()
 {
 //connect to database
 }
 public function execute()
 {
 //execute the query and output result
 }
}
?>

If we run the code now, we get the following error message again:

Fatal error: Declaration of MySQLDriver::execute() must be
compatible with that of DBDriver::execute() in C:\OOP with
PHP5\Codes\ch1\class.mysqldriver.php on line 3

Kick-Starting OOP

[34]

The error message is saying that our execute() method is not compatible with the
execute() method structure that was defined in the interface. If you now take a look
at the interface, you will find that execute() method should have one argument. So
that means whenever we implement an interface in our class, every method structure
must exactly be the same as defined in the interface. Let's rewrite our MySQLDriver
class as follows:

<?
include("interface.dbdriver.php");
class MySQLDriver implements DBDriver
{
 public function connect()
 {
 //connect to database
 }
 public function execute($query)
 {
 //execute the query and output result
 }
}
?>

Abstract Class
An abstract class is almost the same as interface, except that now the methods can
contain body. An abstract class must also be "extended", not "implemented". So if
the extended classes have some methods with common functionalities, then you can
define those functions in an abstract class. Let's see the example below:

<?
//abstract.reportgenerator.php
abstract class ReportGenerator
{
 public function generateReport($resultArray)
 {
 //write code to process the multidimensional result array and
 //generate HTML Report
 }
}
?>

Chapter 2

[35]

In our abstract class we have a method named generateReport, which takes a
multidimensional array as argument and then generates an HTML report using it.
Now, why did we put this method in an abstract class? Because generating a report
will be a common function to all DB Drivers and it doesn't affect the code because it
is taking only one array as an argument, not anything relevant to DB itself. Now we
can use this abstract class in our MySQLDriver class as shown below. Please note that
all the code to generate the report is already written, so we need not write code for
that method in our driver class again as we did for interfaces.

<?
include("interface.dbdriver.php");
include("abstract.reportgenerator.php");
class MySQLDriver extends ReportGenerator implements DBDriver
{
 public function connect()
 {
 //connect to database
 }
 public function execute($query)
 {
 //execute the query and output result
 }
 //� ��� You need not declare or write the generateReport method here
 //again as it is extended from the abstract class directly."
}
?>

Please note that we can use the abstract class and implement an interface
concurrently as shown in the above example.

You cannot declare an abstract class as final, because abstract class means
it has to be extended and final class means it can't be extended. So it's
totally meaningless to use these two keywords together. PHP won't allow
you to use them together.

Similar to declaring a class as abstract, you can also declare any method as abstract.
When a method is declared as abstract, it means that the subclass must override that
method. An abstract method should not contain any body where it is defined. An
abstract method can be declared as shown here:

abstract public function connectDB();

Kick-Starting OOP

[36]

Static Method and Properties
A static keyword is very important in object oriented programming. Static
methods and properties play a vital role in application design and also in design
patterns. So what are static methods and properties?

You have already seen that to access any method or attribute in a class you must
create an instance (i.e. using new keyword, like $object = new emailer()), otherwise
you can't access them. But there is a difference�� ��������������������������������������� for static methods and properties. You
can access a static method or property directly without creating any instance of that
class. ��� A static member is like a global member for that class and all instances of that
class��� . Also, static properties persist the last state of what it was assigned, which is
very useful in some cases.

You might ask why someone uses a static method. Well, most of the static methods
are similar to utility methods. They perform a very specific task, or return a specific
object (static properties and methods are used significantly in design patterns, we
will learn that later). So declaring a new object every time for those works might be
considered resource extensive. Let's see an example of static methods.

Consider that in our application we keep support for all three databases, MySQL,
PostgreSQL, and SQLite. Now we need to use one particular driver at a time. For
that, we are designing a DBManager class, which can instantiate any driver on
demand and return that to us.

<?
//class.dbmanager.php
class DBManager
{
 public static function getMySQLDriver()
 {
 //instantiate a new MySQL Driver object and return
 }

 public static function getPostgreSQLDriver()
 {
 //instantiate a new PostgreSQL Driver object and return
 }

 public static function getSQLiteDriver()
 {
 //instantiate a new MySQL Driver object and return
 }
}
?>

Chapter 2

[37]

How do we use this class? You can access any static property using a :: operator
and not using the -> operator. Let's see the example below:

<?
//test.dbmanager.php
include_once("class.dbmanager.php");
$dbdriver = DBManager::getMySQLDriver();
//now process db operation with this $dbdriver object
?>

Notice that we didn't create any instance of DBManager object like
$dbmanager = new DBManager(). Rather we directly access one of its methods
using the :: operator.

So how does this benefit us? Well, we just need a driver object, so no need to create a
new DBManager object and commit it to memory as long as our scripts are executing.
Static methods usually perform a specific task and finish it.

Here are some important things to note. You can't use $this pseudo object inside
a static method. As the class is not instantiated, $this doesn't exist inside a static
method. You should rather use the self keyword.

Let's take a look at the following example. It shows how a static property
actually works:

<?
//class.statictester.php
class StaticTester
{
 private static $id=0;

 function __construct()
 {
 self::$id +=1;
 }

 public static function checkIdFromStaticMehod()
 {
 echo "Current Id From Static Method is ".self::$id."\n";
 }

 public function checkIdFromNonStaticMethod()
 {
 echo "Current Id From Non Static Method is ".self::$id."\n";
 }
}

$st1 = new StaticTester();
StaticTester::checkIdFromStaticMehod();

Kick-Starting OOP

[38]

$st2 = new StaticTester();
$st1->checkIdFromNonStaticMethod(); ����������������������������� //returns the val of $id as 2
$st1->checkIdFromStaticMehod();
$st2->checkIdFromNonStaticMethod();
$st3 = new StaticTester();
StaticTester::checkIdFromStaticMehod();
?>

You will see the output is as follows:

Current Id From Static Method is 1
Current Id From Non Static Method is 2
Current Id From Static Method is 2
Current Id From Non Static Method is 2
Current Id From Static Method is 3

Whenever we create a new instance, it affects all the instances as the variable is
declared as static. Using this special facility, a special design pattern "Singleton"
works perfectly in PHP.

Caution: Using Static Members
Static members make object oriented much like old procedural
programming; without creating instances, you can directly call any
function, like the old days. That's why we use static method with caution.
Excessive static methods make no use at all. Unless you have any specific
purpose, don't use static members.

Accessor Methods
Accessor methods are simply methods that are solely devoted to get and set the
value of any class properties. It's a good practice to access class properties using
accessor methods instead of directly setting or getting their value. Though accessor
methods are the same as other methods, there are some conventions writing them.

There are two types of accessor methods. One is called getter, whose purpose is
returning value of any class property. The other is setter that sets a value into a class
property. Let's see how to write the getter and setter methods for class properties:

<?
class Student
{
 private $name;
 private $roll;

Chapter 2

[39]

 public function setName($name)
 {
 $this->name= $name;
 }
 public function setRoll($roll)
 {
 $this->roll =$roll;
 }

 public function getName()
 {
 return $this->name;
 }
 public function getRoll()
 {
 return $this->roll;
 }
}
?>

In the above example there are two getter methods and two setter methods. There
is a convention in writing accessor methods. A setter method should start with
set and the property name with the first character capitalized. A getter method
should start with get followed by the variable name with the first letter capitalized.
That means if we have a property named email,����������������������������������� the getter method should be named
as getEmail and the setter method should be named as setEmail. That's it.

So you might ask why someone does these extra jobs, when they can easily set these
variables as public and leave everything else as is. Aren't all these the same? Well,
no. Using accessor methods, you get some extra benefits. You will have full control
while setting or retrieving the value of any property. "So what?" You might ask. Let's
use a scenario where you need to filter users' input and set into properties. In this
case, a setter can help you to filter the input before setting them into work.

Does this mean we have to write 100 getter and setter methods if my class
contains 100 properties? You ask as good question. PHP is kind enough to relieve
you from this boredom. How? Let us see the next section where we discuss using
magic methods for setting and getting property values dynamically. Those methods
will reduce the stress up to 90%. Don't you believe me? Let's see.

Kick-Starting OOP

[40]

Using Magic Methods to Set/Get Class
Properties
We discussed in the previous section that writing accessor method for a number
of properties will be a real nightmare. To avoid that boredom, you can use magic
methods. This process is called property overloading.

PHP5 introduced some magic methods in classes to reduce the pain of OOP in some
cases. Two of those magic methods are introduced to set and get dynamic property
values in a class. These two magic methods are named as __get() and __set(). Let
us see how to use them:

<?
//class.student.php
class Student
{
 private $properties = array();
 function __get($property)
 {
 return $this->properties[$property];
 }

 function __set($property, $value)
 {
 $this->properties[$property]="AutoSet {$property} as: ".$value;
 }

}
?>

Now let us see the code in action. Use the class above with the following script:

<?
$st = new Student();
$st->name = "Afif";
$st->roll=16;
echo $st->name."\n";
echo $st->roll;
?>

When you execute the preceding code, PHP recognizes immediately that no property
named name or roll exists in the class. Since the named property doesn't exist,
the __set() method is called, which then assigns the value to the newly-created
property of the class, allowing you to see the following output:

AutoSet name as: Afif
AutoSet roll as: 16

Chapter 2

[41]

Seems quite interesting, huh? Using magic methods you still have full control over
setting and retrieving property values in classes. However, you have one limitation
if you use magic methods. While using reflection API, you can't investigate class
properties (we will discuss about reflection API in a later chapter). Moreover, your
class lost the "readability" and "maintainability" quite a lot. Why? See the code of
previous Student class and new Student class and you will understand that
for yourself.

Magic Methods for Overloading Class
Methods
Like overloading, and using the accessor methods, there are magic methods
to overload any method call in a class. If you are still not familiar with method
overloading, then this is a process of accessing any method that doesn't even exist in
the class. Sounds funny, right? Let's take a closer look.

There is a magic method, which helps to overload any method call in PHP5 class
context. The name of that magic method is __call(). This allows you to provide
actions or return values when undefined methods are called on an object. It can be
used to simulate method overloading, or even to provide smooth error handling
when an undefined method is called on an object. __call takes two arguments: the
name of the method and an array of the arguments passed to the undefined method.

For example see the code below:

<?
class Overloader
{
 function __call($method, $arguments)
 {
 echo "You called a method named {$method} with the following
 arguments
";
 print_r($arguments);
 echo "
";
 }
}

$ol = new Overloader();
$ol->access(2,3,4);
$ol->notAnyMethod("boo");
?>

Kick-Starting OOP

[42]

If you see the code above, then you will see that there is no method called access
and notAnyMethod. So therefore, it should raise an error, right? However, the
method overloader still helps you to call any non existing method. If you execute the
code above, you will get the following output.

You called a method named access with the following arguments
Array
(
 [0] => 2
 [1] => 3
 [2] => 4
)

You called a method named notAnyMethod with the following arguments
Array
(
 [0] => boo
)

That means you will get all arguments as an array. There are many more magic
methods, which you will learn step-by-step in this book.

Visually Representing a Class
In OOP, sometimes you have to visually represent your class. Let's learn how to
visually represent a class. For this, we will use our Emailer class this time.

class Emailer

_construct($sender)
addRecipients($resc)
setSubject($subject)
setBody($body)
sendEmail()

$sender
$recipient
$subject
$body

In this graphical representation, there are three sections. At the top most section
a class name should be written. In the second section all methods with or without
parameters are written. And in the third box all the properties are written. That's it!

Chapter 2

[43]

Summary
In this chapter we have learned how to create objects and interact between them.
PHP5 brings amazing improvements in object models when compared to PHP4.
Zend Engine 2, which is at the core of PHP5, is also very efficient in handling these
features with great performance optimization.

In the next chapter we will go through more details and the core features of OOP
in PHP. But before starting next chapter, please practice everything discussed here,
otherwise you may get confused in some topics. Practice them as much as you can,
try to refactor all your previous code in OOP. The more you practice, the more
efficient you become.

More OOP
The previous chapter creates a basis for us to kick-start OOP with PHP. This chapter
will deal with some advanced features in more detail. For example, we will learn
about class information functions by which we can investigate details about any
class. We will then learn about some handy object-oriented information functions
and also one of the great new features in PHP5, which is exception handling.

This chapter will also introduce us to the Iterators for easier array access. To store
any object for later use, we need to use a special feature in OOP which is called
serialization, we will also learn about this here. As a whole this chapter will
strengthen your base in OOP.

Class Information Functions
If you want to investigate and gather more information regarding any class, these
functions will be your light in the dark. These functions can retrieve almost any
information regarding a class. But there is an improved version of these functions
and is introduced as a totally new set of API in PHP5. That API is called reflection.
We will learn about reflection API in Chapter 5.

Checking if a Class Already Exists
When you need to check if any class already exists in the current scope, you can use
a function named class_exists(). Have a look at the following example:

<?
include_once("../ch2/class.emailer.php");
echo class_exists("Emailer");
//returns true otherwise false if doesn't exist
?>

More OOP

[46]

The best way to use the class_exists() function is to first check if a class is already
available. You can then create an instance of that class if it is available. This will
make your code much more stable.

<?
include_once("../ch2/class.emailer.php");
if(class_exists("Emailer"))
{
 $emailer = new Emailer("hasin@pageflakes.com");
}
else
{
 die("A necessary class is not found");
}
?>

Finding Currently Loaded Classes
In some cases you may need to investigate which classes are loaded in the current
scope. You can do it pretty fine with the get_declared_classes() function. This
function will return an array with currently available classes.

<?
include_once("../ch2/class.emailer.php");
print_r(get_declared_classes());
?>

You will see a list of currently available classes on the screen.

Finding out if Methods and Properties Exists
To find out if a property and/or a method is available inside the class, you can
use the method_exists() and property_exists() functions. Please note, these
functions will return true only if the properties and methods are defined in
public scope.

Checking the Type of Class
There is a function called is_a() that you can use to check the type of class. Take a
look at the following example:

<?
class ParentClass
{

Chapter 3

[47]

}

class ChildClass extends ParentClass
{
}

$cc = new ChildClass();
if (is_a($cc,"ChildClass")) echo "It's a ChildClass Type Object";
echo "\n";
if (is_a($cc,"ParentClass")) echo "It's also a ParentClass Type
Object";

?>

You will find the output as follows:

Its a ChildClass Type Object
Its also a ParentClass Type Object

Finding Out the Class Name
In the previous example we checked the class if it's a type of a known one. What if
we need to get the original name of the class itself? No worry, we have the
get_class() function to help us.

<?
class ParentClass
{
}
class ChildClass extends ParentClass
{	
}
$cc = new ChildClass();
echo get_class($cc)
?>

As an output, you should get ChildClass. Now take a look at the following
example, which "brjann" enlisted as unexpected behaviour in the PHP manual user
note section.

<?
class ParentClass
{
 public function getClass()
{
 echo get_class(); //using "no $this"
 }
}
class Child extends ParentClass
{

More OOP

[48]

}
$obj = new Child();
$obj->getClass(); //outputs "ParentClass"
?>

If you run this code, you will see ParentClass as the output. But why? You are
calling the method for a Child. Is it unexpected? Well, no. Take a serious look at
the code. Though the Child extended the ParentClass object, it didn't override the
method getClass(). So the method is still running under a ParentClass scope.
That's why it returns the result ParentClass.

So what actually happened to the following piece of code? Why is it returning Child?

<?
class ParentClass {
 public function getClass(){
 echo get_class($this); //using "$this"
 }
}
class Child extends ParentClass {
}
$obj = new Child();
$obj->getClass(); //outputs "child"
?>

In the ParentClass object, the get_class() function returns $this object, which
clearly holds a reference of Child class. That's why you are getting Child as
your output.

Exception Handling
One of the most improved features in PHP5 is that you can now use exceptions, like
other OOP languages out there. PHP5 introduces these exception objects to simplify
your error management.

Let's see how these exceptions occur and how to handle them. Take a look at the
following class, which simply connects to a PostgreSQL server. In the case of failing
to connect to the server, let's see what it usually returns:

<?
//class.db.php
class db
{
 function connect()
 {

Chapter 3

[49]

 pg_connect("somehost","username","password");
 }
}

$db = new db();
$db->connect();
?>

The output is the following.

Warning: pg_connect() [
function.pg-connect]: Unable to connect to PostgreSQL
server: could not translate host name "somehost" to address:
Unknown host in C:\OOP with PHP5\Codes\ch3\exception1.php
on line 6

How are you going to handle it in PHP4? Generally, by using something similar to
the following shown below:

<?
//class.db.php
error_reporting(E_ALL - E_WARNING);
class db
{
 function connect()
 {
 if (!pg_connect("somehost","username","password")) return false;
 }
}

$db = new db();

if (!$db->connect()) echo "Falied to connect to PostgreSQL Server";
?>

Now let's see how we can solve it with exception.

<?
//class.db.php
error_reporting(E_ALL - E_WARNING);
class db
{
 function connect()
 {
 if (!pg_connect("host=localhost password=pass user=username
 dbname=db")) throw new Exception("Cannot connect
 to the database");
 }

More OOP

[50]

}

$db = new db();
try {
 $db->connect();
}
catch (Exception $e)
{
 print_r($e);
}

?>

The output will be something like this:

Exception Object
(
 [message:protected] => Cannot connect to the database
 [string:private] =>
 [code:protected] => 0
 [file:protected] => C:\OOP with PHP5\Codes\ch3\exception1.php
 [line:protected] => 8
 [trace:private] => Array
 (
 [0] => Array
 (
 [file] => C:\OOP with PHP5\Codes\ch3\exception1.php
 [line] => 14
 [function] => connect
 [class] => db
 [type] => ->
 [args] => Array
 (
)

)

 [1] => Array
 (
 [file] => C:\Program Files\Zend\ZendStudio-
 5.2.0\bin\php5\dummy.php
 [line] => 1
 [args] => Array
 (
 [0] => C:\OOP with PHP5\Codes\ch3\exception1.php
)

 [function] => include
)

)

)

Chapter 3

[51]

So you get a lot of things in this exception class. You can catch all the errors using
this try-catch block. You can use try-catch inside another try-catch block. Take a look
at the following example. Here we developed two of our own exception objects to
make the error handling more structured.

<?
include_once("PGSQLConnectionException.class.php");
include_once("PGSQLQueryException.class.php");
error_reporting(0);
class DAL
{
 public $connection;
 public $result;
 public function connect($ConnectionString)
 {
 $this->connection = pg_connect($ConnectionString);

 if ($this->connection==false)
 {
 throw new PGSQLConnectionException($this->connection);
 }
 }

 public function execute($query)
 {
 $this->result = pg_query($this->connection,$query);

 if (!is_resource($this->result))
 {
 throw new PGSQLQueryException($this->connection);
 }

 //else do the necessary works
 }
}

$db = new DAL();
try{
 $db->connect("dbname=golpo user=postgres2");
 try{
 $db->execute("select * from abc");
 }
 catch (Exception $queryexception)
 {
 echo $queryexception->getMessage();
 }
}
catch(Exception $connectionexception)
{
 echo $connectionexception->getMessage();
}
?>

More OOP

[52]

Now, if the code cannot connect to DB, it catches the error and displays that
Sorry, couldn't connect to PostgreSQL server: message. If the connection is
successful but the problem is in the query, it will display the proper information.
If you check the code, then you will find that for a connection failure we throw
a PGSQLConnectionException object, and for a query failure we just throw a
PGSQLQueryException object. We can custom develop these objects by extending
the core Exception class of PHP5. Let's take a look at the code. The first one is the
PGSQLConnectionException class.

<?
Class PGSQLConnectionException extends Exception
{

 public function __construct()
 { $message = "Sorry, couldn't connect to postgresql server:";
 parent::__construct($message, 0000);
 }
}
?>

And here comes PGSQLQueryException class

<?
Class PGSQLQueryException extends Exception
{
 public function __construct($connection)
 {
 parent::__construct(pg_last_error($connection),0);
 }
}
?>

That's it!

Collecting all PHP Errors as Exception
If you want to collect all PHP errors (except the FATAL errors) as exception, you can
use the following code:

<?php
function exceptions_error_handler($severity, $message,
 $filename, $lineno) {
 throw new ErrorException($message, 0, $severity,
 $filename, $lineno);
 }
set_error_handler('exceptions_error_handler');
?>

Chapter 3

[53]

The credit of the above code piece goes to fjoggen@gmail.com, which I collected
from the PHP manual user notes.

Iterators
An Iterator is a new command introduced in PHP5 to help traversing through any
object. Check out the following example to understand what Iterators are actually
used for. In PHP4 you could iterate through an array as shown in the following
example, using foreach statement:

<?
foreach($anyarray as $key=>$val)
{
 //do something
}
?>

You could also perform a foreach ��� operation over an object, let's take a look at the
following example.

<?
class EmailValidator
{
 public $emails;
 public $validemails;
}
$ev = new EmailValidator();
foreach($ev as $key=>$val)
{
 echo $key."
";
}
?>

This code will output the following:

emails
validemails

Please note that it can only iterate through the public properties. But what if we
want just the valid email addresses as the output? Well, in PHP5 that's possible by
implementing the Iterator and IteratorAggregator interface. Let us see using the
following example. In this example, we create a QueryIterator, which can iterate
through a valid PostgreSQL query result and returns one row per Iteration.

<?
class QueryIterator implements Iterator
{
 private $result;

More OOP

[54]

 private $connection;
 private $data;
 private $key=0;
 private $valid;

 function __construct($dbname, $user, $password)
 {
 $this->connection = pg_connect("dbname={$dbname} user={$user}");
 }

 public function exceute($query)
 {
 $this->result = pg_query($this->connection,$query);
 if (pg_num_rows($this->result)>0)
 $this->next();
 }

 public function rewind() {}

 public function current() {
 return $this->data;
 }

 public function key() {
 return $this->key;
 }

 public function next() {
 if ($this->data = pg_fetch_assoc($this->result))
 {
 $this->valid = true;
 $this->key+=1;
 }
 else
 $this->valid = false;
 }

 public function valid() {
 return $this->valid;
 }
}
?>

Let's see the code in action.

<?
$qi= new QueryIterator("golpo","postgres2","");
$qi->exceute("select name, email from users");
while ($qi->valid())
{

Chapter 3

[55]

 print_r($qi->current());
 $qi->next();
}
?>

For example, if there are two records in our table users, you will get the following
output:

Array
(
 [name] => Afif
 [email] => mayflower@phpxperts.net
)
Array
(
 [name] => Ayesha
 [email] => florence@phpxperts.net
)

Quite handy, don't you think?

ArrayObject
Another useful object introduced in PHP5 is ArrayObject that wraps the regular
PHP array and gives it an OO flavor. You can programmatically access the array
in an OO style. You can create an ArrayObject object by simply passing to
ArrayObject constructor. ArrayObject has the following useful methods:

append()

This method can add any value at the end of the collection.

getIterator()

This method simply creates an Iterator object and return so that you can perform
iteration using an Iterator style. This is a very useful method for getting an Iterator
object from any array.

offsetExists()

This method can determine whether the specified offset exists in the collection.

offsetGet()

This method returns the value for specified offset.

More OOP

[56]

offsetSet()

Like offsetGet(), this method can set any value to the specified index().

offsetUnset()

This method can unset the element at specified index.

Let us see some examples of ArrayObject:

<?
$users = new ArrayObject(array("hasin"=>"hasin@pageflakes.com",
 "afif"=>"mayflower@phpxperts.net",
 "ayesha"=>"florence@pageflakes.net"));
$iterator = $users->getIterator();
while ($iterator->valid())
{
 echo "{$iterator->key()}'s Email address is
 {$iterator->current()}\n";
 $iterator->next();
}
?>

Array to Object
We can access any array element by its key, for example $array[$key]. However,
what if we want to access it like this, $array->key style? It's very easy and we can
do it by extending ArrayObject. Let's see using the following example.

<?
class ArrayToObject extends ArrayObject
{
 public function __get($key)
 {
 return $this[$key];
 }
 public function __set($key,$val)
 {
 $this[$key] = $val;
 }
}
?>

Now let's see it in action:

<?
$users = new ArrayToObject(array("hasin"=>"hasin@pageflakes.com",
 "afif"=>"mayflower@phpxperts.net",

Chapter 3

[57]

 "ayesha"=>"florence@pageflakes.net"));

echo $users->afif;
?>

It will output the email address associated with the key afif, as follows:

mayflower@phpxperts.net

This example may come in handy if you want to convert the array of any known
format into an object.

Accessing Objects in Array Style
In the previous section we learned how to access any array in OO style. What if we
want to access any object in array style? Well, PHP provides that facility too. All you
have to do is implement ArrayAccess interface in your class.

ArrayAccess interface has four methods, which you must implement in the class.
The methods are offsetExists(), offsetGet(), offsetSet(), offsetUnset().
Let's create a sample class implementing ArrayAccess interface.

<?php
class users implements ArrayAccess
{
 private $users;
 public function __construct()
{
 $this->users = array();
 }
 public function offsetExists($key)
{
 return isset($this->users[$key]);
 }
 public function offsetGet($key)
{
 return $this->users[$key];
 }
 public function offsetSet($key, $value)
{
 $this->users[$key] = $value;
 }
 public function offsetUnset($key)
{
 unset($this->users[$key]);
 }

More OOP

[58]

}

$users = new users();
$users['afif']="mayflower@phpxperts.net";
$users['hasin']="hasin@pageflakes.com";
$users['ayesha']="florence@phpxperts.net";

echo $users['afif']
?>

The output will be mayflower@phpxperts.net.

Serialization
So far we have learned how we can create objects and manipulate them. Now what
happens if you need to save any state of the object and retrieve it later exactly in that
form? In PHP, you can achieve this functionality by serialization.

Serialization is a process of persisting the state of an object in any location, either
physical files or in variables. To retrieve the state of that object, another process
is used which is called "unserialization". You can serialize any object using
serialize() function. Let's see how we can serialize an object:

<?
class SampleObject
{
 public $var1;
 private $var2;
 protected $var3;
 static $var4;

 public function __construct()
 {
 $this->var1 = "Value One";
 $this->var2 = "Value Two";
 $this->var3 = "Value Three";
 SampleObject::$var4 = "Value Four";
 }

}

$so = new SampleObject();
$serializedso =serialize($so);
file_put_contents("text.txt",$serializedso);
echo $serializedso;
?>

Chapter 3

[59]

The script will output a string, which PHP understands how to unserialize.

Now it's time to retrieve our serialized object and convert into a usable PHP object.
Please bear in mind that the class file you are unserializng must be loaded first.

<?
include_once("class.sampleobject.php");
$serializedcontent = file_get_contents("text.txt");
$unserializedcontent = unserialize($serializedcontent);
print_r($unserializedcontent);
?>

What do you think the output will be? Take a look:

SampleObject Object
(
 [var1] => Value One
 [var2:private] => Value Two
 [var3:protected] => Value Three
)

It's now a regular PHP object; the same as it was just before serializing. Please note
that all variables keep their values, which were set before serializing, except the static
one. You cannot save the state of a static variable by serializing.

What if we didn't include the class file by include_once before unserializing? Let's
just comment out the first line, which includes the class file and then run the example
code. You will get the following output:

__PHP_Incomplete_Class Object
(
 [__PHP_Incomplete_Class_Name] => SampleObject
 [var1] => Value One
 [var2:private] => Value Two
 [var3:protected] => Value Three
)

At this point, you can't use it as the object again.

Magic Methods in Serialization
Do you remember we overloaded properties and methods using some magic
methods like __get, __set, and __call? For serialization, you are allowed to use
some magic methods to hook into the process of serialization. PHP5 provides two
magic methods for this purpose named __sleep and __awake. These methods give
some control over the whole process.

More OOP

[60]

Let's develop all the static variables of a process using these magic methods, which
we generally won't be able to do without a hack. Normally it's not possible to
serialize the values of any static variables and return the object in same state with
that static variable. However, we can make it happen, let's see the following code.

<?
class SampleObject
{
 public $var1;
 private $var2;
 protected $var3;
 public static $var4;

 private $staticvars = array();

 public function __construct()
 {
 $this->var1 = "Value One";
 $this->var2 = "Value Two";
 $this->var3 = "Value Three";
 SampleObject::$var4 = "Value Four";
 }

 public function __sleep()
 {

 $vars = get_class_vars(get_class($this));
 foreach($vars as $key=>$val)
 {
 if (!empty($val))
 $this->staticvars[$key]=$val;
 }
 return array_keys(get_object_vars($this));
 }

 public function __wakeup()
 {
 foreach ($this->staticvars as $key=>$val){
 $prop = new ReflectionProperty(get_class($this), $key);
 $prop->setValue(get_class($this), $val);
 }
 $this->staticvars=array();
 }

}
?>

Chapter 3

[61]

What happens if we serialize the object, write it into the file and then later retrieve
the state? You will find the static value still persists the last value assigned to it.

Let's discuss the code for a second. The __sleep function performs all the necessary
operations. It searches for public properties with values and stores the variable's
name when it finds one into a private variable staticvars. Later when someone
tries to unserialize the object, it retrieves each value from the staticvars and writes
it to the property itself. Pretty handy, don't you agree?

You will notice that we haven't used a hack, with the exception of the theoretical
capability of the __sleep() and __wakeup() functions. So what are these two
functions useful for? Where can we use them in practice? This is actually fairly
simple. For example, if your class has any resource object associated with it (a live
DB connection, a reference of an open file) in sleep function you can properly close
them as they are no longer usable when someone unserializes it. Please remember
that in an unserialized state someone may still use those resource pointers. So in the
__wakeup() function you can open those DB connections, or file pointers, to give it
an exact shape as it was before. Let us see using the following example:

<?
class ResourceObject
{
 private $resource;
 private $dsn;
 public function __construct($dsn)
 {
 $this->dsn = $dsn;
 $this->resource = pg_connect($this->dsn);
 }

 public function __sleep()
 {
 pg_close($this->resource);
 return array_keys(get_object_vars($this));
 }

 public function __wakeup()
 {
 $this->resource = pg_connect($this->dsn);
 }
}
?>

More OOP

[62]

This object, when being serialized, will free the memory that was consumed by
$resource. Later, when it will be unserialized, it will open the connection again
using the DSN string. So now, after unserialization, everything is as it was before.
That's the clue!

Object Cloning
PHP5 introduces a new approach while copying objects from one into another,
which is quite different to PHP4. In PHP4 when you copy an object to another, it
performs a deep copy. This means it just makes a completely new object, which
retains the properties of the object being copied. However, changing anything in the
new object will not affect the main object.

PHP5 is different from this in the way it makes a shallow copy when you copy
an object from one to another. To clearly understand the situation, you need to
understand the following code.

<?
$sample1 = new StdClass();
$sample1->name = "Hasin";
$sample2 = $sample1;
$sample2->name = "Afif";
echo $sample1->name;
?>

If you run the above code in PHP5 can you guess what will you get as the result?
Hasin or Afif? Surprisingly, the output is Afif. As I mentioned earlier, PHP5
performs a shallow copy while copying an object; $sample2 is just a reference to
$sample1. So whenever you perform any change to $sample1 object or $sample2
object, it will affect both.

In PHP4 it works differently; it will output Hasin, as both are different from
each other.

If you want to perform the same in PHP5, you have to use the clone keyword. Let's
take a look at the following example

<?
$sample1 = new stdClass();
$sample1->name = "Hasin";
$sample2 =clone $sample1;
$sample2->name = "Afif";
echo $sample1->name;
?>

The output now would be Hasin.

Chapter 3

[63]

Autoloading Classes or Classes on
Demand
While working with big projects, another very good practice is loading classes only
when you need it. That means you shouldn't over consume the memory by loading
unnecessary classes all the time.

In our examples, you have seen that we include the original class file before making
them available in our script. Unless you include the class file, you can't create an
instance of it. PHP5 introduces a feature to auto load your class files so that you
don't have to bother to include them manually. Usually, this feature is helpful in big
applications where you have to deal with lots of classes and don't want to bother to
call include all the time. Take a look at the following example:

<?
function __autoload($class)
{
 include_once("class.{$class}.php");
}

$s = new Emailer("hasin@somewherein.net");
?>

When you execute the script shown above, note that we didn't include any class file
for the Emailer class. Because of this __autoload() function, PHP5 will auto load
a file named class.emailer.php in the current directory. So you need not worry
about including the class yourself.

Method Chaining
Method chaining is another process introduced in PHP5 by which you can directly
access the methods and attributes of an object when it is returned by any function. It
is something like the following:

$SomeObject->getObjectOne()->getObjectTwo()->callMethodOfObjectTwo();

The above code means that $someObject class has a method named
getObjectOne() which returns an object named $objectOne. This $objectOne has
another method named getObjectTwo() which returns an object whose method is
called by the final call.

So who is going to use such things? Let's take a look at the following code; it makes
you understand beautifully how a method chain can be used in real life:

$dbManager->select("id","email")->from("user")->where("id=1")
 ->limit(1)->result();

More OOP

[64]

Do you find the above code meaningful and readable? The code returns a row from
the user table containing the ID and email where the value of ID is equal to 1. Have
you ever wondered how to design such a DB manager object? Let's take a look at this
great example below:

<?
class DBManager
{
 private $selectables = array();
 private $table;
 private $whereClause;
 private $limit;
 public function select()
 {
 $this->selectables=func_get_args();
 return $this;
 }
 public function from($table)
 {
 $this->table = $table;
 return $this;
 }
 public function where($clause)
 {
 $this->whereClause = $clause;
 return $this;
 }
 public function limit($limit)
 {
 $this->limit = $limit;
 return $this;
 }
 public function result()
 {
 $query = "SELECT ".join(",",$this->selectables)." FROM
 {$this->table}";
 if (!empty($this->whereClause))
 $query .= " WHERE {$this->whereClause}";
 if (!empty($this->limit))
 $query .= " LIMIT {$this->limit}";	
 echo "The generated Query is : \n".$query;
 }
}
$db= new DBManager();
$db->select("id","name")->from("users")->where("id=1")->
 limit(1)->result();
?>

Chapter 3

[65]

The output is:

The generated Query is :
SELECT id,name FROM users WHERE id=1 LIMIT 1

The class automatically builds the query. So how does this work? Well, in PHP5 you
can return objects; so using this feature we return the object on each method that
we want to be part of the chain. Now, it's just a matter of a few minutes to execute
that query and return the result. Surprising, you can also execute the following code
which generates the same result:

$db->from("users")->select("id","name")->limit(1)->where("id=1")
 ->result();

This is the beauty of PHP5; it's amazingly powerful.

Life Cycle of an Object in PHP and Object
Caching
If you are interested in understanding the lifecycle of an object, then an object is live
until the script ends. As soon as the script finishes executing, any object instantiated
by this script also dies. Unlike web tier in Java, there is no global or application-level
scope in PHP. So you cannot persist the object normally. If you want to persist an
object, you can serialize it and later unserialize it when necessary. Manually handling
this serialization and unserialization process may seem boring sometimes. It would
really be nice to store the object somewhere and retrieve it later (well, the same as
serialization/unserialization process, but with more flexibly).

There is some object caching technology available for PHP, which is very efficient
indeed. The most successful among them is memcached. PHP has an extension to
memcached API, which is available to download from PECL. Memcached runs as
a standalone server and caches objects directly into memory. Memcached server
listens in a port. PHP memcached API understands how to talk to the memcached
server, hence it saves and retrieves an object with its help. In this section we will
demonstrate how to work with memcached, but we will not go into too much detail.

You can download the memcached server from http://danga.com/memcached. If
you are using Linux you have to compile it by your own. With some distro you will
find the memcached package. You will find a win32 binary version of memcached 1.2.1
server from http://jehiah.cz/projects/memcached-win32/ ������������������� which is developed
by kronuz (kronuz@users.sourceforge.net). After getting the executable, give the
following command in the console. It will start the memcached server.

memcached –d install

More OOP

[66]

This will install memcached as a service.

memcached –d start

This will start the daemon/service.

Now it's time to store some objects into the memcached server and retrieve it.

<?
$memcache = new Memcache;

$memcache->connect('localhost', 11211) or die ("Could not connect");

$tmp_object = new stdClass;
$tmp_object->str_attr = 'test';
$tmp_object->int_attr = 12364;

$memcache->set('obj', $tmp_object, false, 60*5) or die ("Failed to
save data at the server");
?>

When you execute the code above, the memcache server saves the object
$tmp_object against the key obj for five minutes. After five minutes this object
will not exist. By this time, if you need to restore that object, you can execute the
following code:

<?
$memcache = new Memcache;
$memcache->connect('localhost', 11211) or die ("Could not connect");

$newobj = $memcache->get('obj');
?>

That's it. Memcache is so popular that it has Perl, Python, Ruby, Java, and Dot Net,
and C port.

Summary
In this chapter we learned how to use some advanced OOP concepts in PHP. We
learned how to retrieve information from any object, and learned about ArrayAccess,
ArrayObject, Iterators, and some other native objects which simplifies the life of a
developer. Another very important thing we learned from this chapter is
Exception Handling.

In next chapter we will learn about design patterns and how to use them in PHP.
Untill then, happy exploring…

Design Patterns
Object oriented programming was basically introduced to ease the development
process as well as reduce the time of development by reducing amounts of code. If
properly planned and designed, OOP can increase the performance of the program
to a great extent. One of those magical performance cum code reduction issues is
"Design Pattern" which was introduced by Eric Gamma and his three other friends
in the book Design Patterns in 1972. Because of four authors, the book was introduced
as written by Gang of Four or simply Goff. In that legendary book, Gang of Four
introduced several patterns to minimize the amount of code as well as to introduce
effective coding practice. In this chapter we will learn some of those patterns to
implement in PHP.

You Might have Done this Before…
While coding, many of us use these patterns without being aware that these
techniques are actually known as patterns. Even in my early coding life, I used some
coding techniques, which I later found out to be similar to some patterns. So don't
be afraid about using patterns. They are daily coding tricks, which you may have
always performed, but you may not have known.

While developing software, some problems are addressed on a regular basis. Almost
every software development faces some of these problems. These problems are
termed "design patterns" and are given some common solutions. So knowing design
patterns saves a lot of time for developers in software development. Let's have a
closer look at design patterns.

Design Patterns

[68]

Strategy Pattern
One of the common problems we face whilst programming, is that we have to
make decisions on different strategies. Strategy pattern is a common pattern helps
us make decisions on different cases, more easily. To understand this better, let us
use a scenario that you're developing a notifier program. This notifier program will
check the given options for a user. A user may want to be notified in many ways, like
email, SMS, or fax. Your program has to check the available options to contact
that user and then make a decision upon that. This case can easily be solved by
Strategy pattern:

Context

Strategy

SMS NotifierEmail Notifier Fax Notifier

In the above pattern we are using three classes called SMSNotifier, EmailNotifier,
and FaxNotifier. All these classes implement the Notifier interface, which has a
method named notify. Each of these classes implement that method on their own.

Let's create the interface first.

<?
//interface.Notifier.php
interface notifier
{
 public function notify();
}
?>

Now we will create different types of notifiers.

class.emailnotifier.php
<?
include_once("interface.notifier.php");
class EmailNotifier implements notifier
{
 public function notify()
 {
 //do something to notify the user by Email
 }
}
?>

Chapter 4

[69]

class.faxnotifier.php
<?
include_once("notifier.php");
class FaxNotifier implements notifier
{
 public function notify()
 {
 //do something to notify the user by Fax
 }
}
?>
class.smsnotifier.php
<?
include_once("notifier.php");
class SMSNotifier implements notifier
{
 public function notify()
 {
 //do something to notify the user by SMS
 }
}
?>

Now we will use this code:

<?
include_once("EmailNotifier.php");
include_once("FaxNotifier.php");
include_once("SMSNotifier.php");

/**
 * Let's create a mock object User which we assume has a method named
 * getNotifier(). This method returns either "sms" or "fax" or "email"
 */

$user = new User();
$notifier = $user->getNotifier();
switch ($notifier)
{
 case "email":
 $objNotifier = new EmailNotifier();
 break;
 case "sms":
 $objNotifier = new SMSNotifier();
 break;
 case "fax":
 $objNotifier = new FaxNotifier();

Design Patterns

[70]

 break;
}

$objNotifier->notify();
?>

I'm sure you'll agree that this is pretty simple. I am also sure that you have already
used such solutions in your existing codes on more than one occasion

Factory Pattern
Another common design pattern is factory pattern. The main goal of this pattern is
delivering an object by hiding all the complexities behind it. This may sound cryptic,
so let's look at it using a real life scenario.

You are doing a project that works on a very complex system. For this example, you
are creating an online document repository, which saves documents in temporary
storage. For this you need support for PostgreSQL, MySQL, Oracle, and SQLite
because users may deploy your application using any of these. So you create an
object, which connects to MySQL and perform the necessary tasks. Your MySQL
object is:

<?
class MySQLManager
{
 public function setHost($host)
 {
 //set db host
 }
 public function setDB($db)
 {
 //set db name
 }
 public function setUserName($user)
 {
 //set user name
 }
 public function setPassword($pwd)
 {
 //set password
 }
 public function connect()
 {
 //now connect
 }
}
s

?>

Chapter 4

[71]

Well, now you use this class like this:

<?
$MM = new MySQLManager();
$MM->setHost("host");
$MM->setDB("db");
$MM->setUserName("user");
$MM->setPassword("pwd");
$MM->connect();
?>

You can now see that before you started using your class, you needed to do a lot of
things. Your PostgreSQL class also looks similar:

<?
class PostgreSQLManager
{
 public function setHost($host)
 {
 //set db host
 }
 public function setDB($db)
 {
 //set db name
 }
 public function setUserName($user)
 {
 //set user name
 }
 public function setPassword($pwd)
 {
 //set password
 }
 public function connect()
 {
 //now connect
 }
}
?>

And usage is also the same:

<?
$PM = new PostgreSQLManager();
$PM->setHost("host");
$PM->setDB("db");

Design Patterns

[72]

$PM->setUserName("user");
$PM->setPassword("pwd");
$PM->connect();
?>

But now usage could be a bit difficult when you merge them together:

<?
 If ($dbtype=="mysql")
 //use mysql class
 Else if ($dbtype=="postgresql")
 //use postgresql class
?>

Shortly after this you will find that as more database engines are added, the core
code changes significantly and you have to hard code all these things in core classes.
However, a very good practice of programming is loose coupling. Here you make a
separate class called DBManager, which will perform all these things from a central
place. Let's make it:

<?
class DBManager
{
 public static function setDriver($driver)
 {
 $this->driver = $driver;
 //set the driver
 }

 public static function connect()
 {
 if ($this->driver=="mysql")
 {
 $MM = new MySQLManager();
 $MM->setHost("host");
 $MM->setDB("db");
 $MM->setUserName("user");
 $MM->setPassword("pwd");
 $this->connection = $MM->connect();
 }
 else if($this->driver=="pgsql")
 {
 $PM = new PostgreSQLManager();
 $PM->setHost("host");
 $PM->setDB("db");
 $PM->setUserName("user");

Chapter 4

[73]

 $PM->setPassword("pwd");
 $this->connection= $PM->connect();
 }
 }
}
?>

Context

Concrete product

Factory

Database driver

Now you can use it from a single place called DBManager. This makes the thing a
whole lot easier than before.

<?
$DM = new DBManager();
$DM->setDriver("mysql");
$DM->connect("host","user","db","pwd");
?>

This is the real life example of a Factory design pattern. The DBManager now works
as a Factory, which encapsulates all the complexities behind the scene and delivers
two products. Factory simplifies programming by encapsulating the difficulties
inside it.

Abstract Factory
Abstract Factory is almost similar to Factory, the only difference is that all your
concrete objects must extend a common abstract class. You may ask what is the
benefit of doing so is. Well, as long as concrete objects are derived from a
known abstract object, programming is simplified because they all come in the
same standard.

Design Patterns

[74]

Let's have a look at the previous example. We first create an abstract class and then
extend that object to develop all concrete driver classes.

<?
abstract class DBDriver
{
 public function connect();
 public function executeQuery();
 public function insert_id();
 public function setHost($host)
 {
 //set db host
 }
 public function setDB($db)
 {
 //set db name
 }
 public function setUserName($user)
 {
 //set user name
 }
 public function setPassword($pwd)
 {
 //set password
 }
 //.....
}
?>

Now our MySQL will be derived from it:

<?
class MySQLManager extends DBDriver
{
 public function connect()
 {
 //implement own connection procedures
 }
 public function executeQuery()
 {
 //execute mysql query and return result
 }
 public function insertId()
 {
 //find the latest inserted id
 }
}
?>

Chapter 4

[75]

Context

Concrete product

Abstract
Database driver

Factory

Database driver Database driver

Later we will use this MySQLManager class as usual in our DBManager. One major
benefit is that we define all the necessary functions in a single place, which is present
in all derived classes with the same standard. We can also encapsulate common
functions/procedures in the abstract class.

Adapter Pattern
Another interesting problem in OOP is solved by a design pattern named ���������Adapter��.
So what is an Adapter pattern and what type of problems does it solve?

Adapter is actually an object that acts like an adapter in real life, in that it converts
one thing to another. Using Adapter you can convert electric sources from higher to
lower volts. Similarly in OOP, using Adapter pattern, one object can fit for the same
methods of another object.

Let us discuss patterns in real life coding in more detail. Suppose you develop an
online document repository, which exports written documents to popular online
file storage services. You have developed one wrapper, which can store and retrieve
documents from Writely using their native API. Well, soon after Google acquired
Writely, you find that they are temporarily shut down and you have to use Google
docs as the base of that repository. Now what will you do? You find open source
solutions to use with Google docs but unfortunately you find that the methods of
that Google doc object differ from the Writely object.

Design Patterns

[76]

This is a very common scenario and it happens when classes are developed by
different developers. You want to use this Google docs object but you don't want to
change your core code, because then you will have to change it a lot then. On top of
this there are chances that the code may break after these core changes.

In this scenario an Adapter pattern comes to save your life. You develop a common
interface which a Writely object implements. Now all you have to do is develop
another wrapper class, which implements the same interface that was implemented
by Google Docs. So what will our wrapper class do? It wraps all the methods of
Google docs class into those available in the interface. After successfully wrapping
everything, you can use this object straight in your code. You may need to change a
line or two, but the rest of the core code remains unchanged.

That's what's great about using Adapter pattern. You can keep your core code
unchanged even when the code of third-party dependencies and external API
changes. Let us have a closer look at it:

GoogleDoc
Adapter Writely

Doc ManagerContext

Here comes our first version of a Writely object:

<?
class Writely implements DocManager()
{
 public function authenticate($user, $pwd)
 {
 //authenticate using Writely authentication scheme
 }

 public function getDocuments($folderid)
 {
 //get documents available in a folder
 }

 public function getDocumentsByType($folderid, $type)
 {
 //get documents of specific type from a folder
 }

Chapter 4

[77]

 public function getFolders($folderid=null)
 {
 //get all folders under a specific folder
 }

 public function saveDocuments($document)
 {
 //save the document
 }
}
?>

Here is the DocManager interface:

<?
interface DocManager
{
 public function authenticate($user, $pwd);
 public function getDocuments($folderid);
 public function getDocumentsByType($folderid, $type);
 public function getFolders($folderid=null);
 public function saveDocument($document);
}
?>

Now the GoogleDoc object looks like something below:

<?
class GoogleDocs
{
 public function authenticateByClientLogin()
 {
 //authenticate using Writely authentication scheme
 }

 public function setUser()
 {
 //set user
 }

 public function setPassword()
 {
 //set password
 }

 public function getAllDocuments()
 {
 //get documents available in a folder
 }

Design Patterns

[78]

 public function getRecentDocuments()
 {

 }

 public function getDocument()
 {

 }
}
?>

So how does it fit with our existing code?

To make it compatible with our existing code, we need to develop the wrapper
object, which implements the same DocManager interface but uses the GoogleDoc
object to perform the actual work.

<?php
Class GoogleDocsAdapter implements DocManager
{
 private $GD;

 public function __construct()
 {
 $this->GD = new GoogleDocs();
 }

 public function authenticate($user, $pwd)
 {
 $this->GD->setUser($user);
 $this->GD->setPwd($pwd);
 $this->GD->authenticateByClientLogin();
 }

 public function getDocuments($folderid)
 {
 return $this->GD->getAllDocuments();
 }

 public function getDocumentsByType($folderid, $type)
 {
 //get documents using GoogleDocs object and return only
 // which match the type
 }

 public function getFolders($folderid=null)
 {
 //for example there is no folder in GoogleDocs, so
 //return anything.

Chapter 4

[79]

 }

 public function saveDocument($document)
 {
 //save the document using GoogleDocs object
 }
}
?>

Now we will just instantiate an instance of GoogleDocsAdapter and then use that
instance in our core code. As it implements the same interface, there is no need to
change the core code.

However, there's one more thing to note: what about the missing functions? For
example your WritelyDocs object supports the getFolders() method, which is
of no use in GoogleDocs. You must implement those methods more carefully. For
example, if your core code requires some folder ID returned by this method, in
GoogleDocsAdapter you can generate a random folder ID and return them (which
has no use in GoogleDocsAdapter). So your core code won't break at all.

Singleton Pattern
One of the most used design patterns is Singleton. This pattern solves a very
significant problem in object oriented programming and saves the lives of millions of
programmers in practical programming.

The main purpose of the Singleton pattern is to deliver a single instance of object no
matter how many times you instantiate it. That is, if an object is instantiated once,
using the Singleton pattern you can deliver only that instance when you require
it again in your code. This saves memory consumption by preventing the creation
of multiple instances of an object. Thus Singleton pattern is used to improve the
performance of your application.

GoogleDoc
Adapter Writely

Doc ManagerContext

Design Patterns

[80]

Let's take the MySQLManager class, which we created in the previous example. Now
we are adding a single instance feature using Singleton pattern.

<?
class MySQLManager
{
 private static $instance;

 public function __construct()
 {
 if (!self::$instance)
 {
 self::$instance = $this;
 echo "New Instance\n";
 return self::$instance;
 }
 else
 {
 echo "Old Instance\n";
 return self::$instance;
 }
 }
//keep other methods same
}
?>

Now let us see how it actually works. If you execute the following script, you will be
surprised to see the result.

<?
$a = new MYSQLManager();
$b = new MYSQLManager();
$c = new MYSQLManager();
$d = new MYSQLManager();
$e = new MYSQLManager();
?>

The output is:

New Instance
Old Instance
Old Instance
Old Instance
Old Instance

Chapter 4

[81]

Strange, isn't it? The MySQLManager class creates only a single instance at the very
first call, after that it is using the same old object instead of creating a new object all
the time. Let us see how we achieve it.

private static $instance;

Our class has a static variable named $instance. At the constructor we check if the
static variable actually contains anything. If it is empty, we instantiate the object
itself and set the instance in this static variable. As it is static, it will remain available
throughout the execution of this script.

Let us get back to the constructor. At the second call, we just check if the $instance
variable contains anything. We find that the $instance variable is actually
containing an instance of this object, and it is still preserved because it is a static
variable. So in the second call, we actually return the instance of this object, which
was created by the previous call.

Singleton is a very important pattern and you should understand properly what it
actually does. You can optimize your application and increase its performance using
this pattern properly.

Iterator Pattern
Iterator is a common pattern, which helps you to manipulate a collection more easily.
Almost every language has built-in support of Iterators. Even PHP5 has a built-in
Iterator objects. Iterators are very useful to provide an easy interface to manipulate a
collection sequentially.

Let us consider this scenario when the Iterator pattern can save the life if a developer
is in complex applications. Let us imagine you are creating a blog, where users write
their daily web logs. How can you display the different posts, one by one?

In the following example you pass all the post_id made by an author in your
template and the template designer writes the following code to display it properly
in the template:

<?
$posts = getAllPosts(); //example function return all post ids of this
author
for($i = 0; $i<count($posts); $i++)
{
 $title = getPostTitle($post[$i]);
 echo $title;
 $author = getPostAuthor($post[$i]);

Design Patterns

[82]

 $content = parseBBCode(getPostContent($post[$i]));
 echo "Content";
 $comments = getAllComments($post[$i]);
 for ($j=0; $j<count($comments); $j++)
 {
 $commentAuthor = getCommentAuthor($comments[$j]);
 echo $commentAuthor;
 $comment = getCommentContent($comments[$j]);
 echo $comment;
 }
}
?>

In this example we do everything in the template; we fetch all post ids, then get
authors, comments, content, and display it. We also fetch the comments list in the
template code. The whole code is too hazy to read and manage and may crash
successively at any core changes. But just think, if we turn the comments into a
collection of comment object for that post and all the posts into a collection of post
object for easier accessing, it will remove the burden of template designing as well as
create manageable code.

Let us implement Iterator pattern for our comments and posts and see how effectively
it turns your code into a readable piece of poem. After all, coding is poetry.

To use iteration effectively in PHP5 we can use Iterator interface. The interface is
shown below:

<?
interface Iterator
{
 function rewind();

 function current();

 function key();

 function next();

 function valid();
}
?>

The rewind() function of Iterator sets the index to the start of collection. The
Current() returns the current object. key() function returns the current key. The
Function next() returns if there are more object ahead in the current loop counter.
If the return is yes, this function returns true, otherwise it returns false. The valid()
function returns the current object if it has any value in it. Let us create an Iterator for
our post object.

Chapter 4

[83]

We will create a function named getAllPosts() that will return all posts from
the DB. All these posts are returned as a Post object, which has methods like
getAuthor(), getTitle(), getDate(), getComments(),������������������������� etc. Now we will create
the Iterator:

<?php
class Posts implements Iterator
{
 private $posts = array();

 public function __construct($posts)
 {
 if (is_array($posts)) {
 $this->posts = $posts;
 }
 }

 public function rewind() {
 reset($this->posts);
 }

 public function current() {
 return current($this->posts);
 }

 public function key() {
 return key($this->var);
 }

 public function next() {
 return next($this->var);
 }

 public function valid() {
 return ($this->current() !== false);
 }
}
?>

Now let's use the Iterator we just created.

<?
$blogposts = getAllPosts();
$posts = new Posts($posts);
foreach ($posts as $post)
{
 echo $post->getTitle();
 echo $post->getAuthor();
 echo $post->getDate();
 echo $post->getContent();
 $comments = new Comments($post->getComments());
 //another Iterator for comments, code is same as Posts

Design Patterns

[84]

 foreach ($comments as $comment)
 {
 echo $comment->getAuthor();
 echo $comment->getContent();
 }
}
?>

The code becomes much readable and maintainable now.

In PHP array, object implements this Iterator interface by default.
But of course you can implement it to add many more user-defined
functionalities to ease your development cycle.

Observer Pattern
You might wonder how these events actually work and how they are raised. Well, if
you are familiar with the Observer pattern, you can create event driven applications
easier than ever.

An Observer pattern solves a common problem in OOP. For example, if you want
some objects to be notified automatically when something happens (an event raised),
you can solve that problem with this pattern. Let us take a closer look.

An Observer pattern consists of two types of objects; one is an observable object,
which is observed by observer object. When the state of an observable object
changes, it notifies all observers registered with it.

So where can it be used? Actually it is being used everywhere. Think about a logging
application, which can log errors in different ways when an error occurs. Think
about a messenger application, which pops up when the latest message arrives.
Think about a web bulletin board where the latest messages display automatically
whenever a new message is posted. Well, there are thousands more. Let us
implement this pattern.

Observer::notify ()

Email Notifier

For each
observer

IM Notifier

Observable

Chapter 4

[85]

Our entire observer objects implement observer interface as shown below:

<?
interface observer
{
 public function notify();
}
?>

Now some observer objects, which we will notify when the state of an observable
object changes:

<?
class YMNotifier implements observer
{
 public function notify()
 {
 //send alerts using YM
 echo "Notifying via YM\n";
 }
};
?>

Another notifier:

<?
class EmailNotifier implements observer
{
 public function notify()
 {
 //send alerts using Email
 echo "Notifying via Email\n";
 }
};
?>

Now we need to create our observer.

<?
class observable
{
 private $observers = array();
 public function register($object)
 {
 if ($object instanceof observer)
 $this->observers[] =$object;
 else
 echo "The object must implement observer interface\n";
 }

Design Patterns

[86]

 public function stateChange()
 {
 foreach ($this->observers as $observer)
 {
 $observer->notify();
 }
 }
}
?>

Now let us use it:

<?
$postmonitor = new observable();
$ym = new YMNotifier();
$em = new EmailNotifier();
$s= new stdClass();
$postmonitor->register($ym);
$postmonitor->register($em);
$postmonitor->register($s);
$postmonitor->stateChange();
?>

The output is as follows:

The object must implement observer interface
Notifying via YM
Notifying via Email

Proxy Pattern or Lazy Loading
Another very important programming practice in OOP is lazy loading and loose
coupling. The main idea is to decrease the concrete dependency among objects while
coding. What is the benefit of such programming? One simple answer—it always
increases the portability of your code.

Using the Proxy pattern you can create a local version of a remote object. It provides
a common API for accessing methods of a remote object without knowing the things
behind the scene. The best example of a Proxy pattern could be the XML RPC and
SOAP client and server for PHP.

Let's take a look at the following code. Here we are creating a class, which can access
any method of a remotely created object. The methods of a remote object are exposed
via the XML RPC server and then they are accessed via XML RPC clients.

Chapter 4

[87]

Context

Remote Object

Local Object

Proxy

If you are wondering how it works, you will find that almost every blog engine
supports three popular blogging API: i.e. Blogger, MetaWebLog, and MovableType.
Using these methods you can remotely manage your blog. Which methods are
supported, will depend on the blog engine.

We will use Incutio PHP XML-RPC library to create a sample server and client object.
Let us create a server first. You can download the XML-RPC Library from here:
http://scripts.incutio.com/xmlrpc/IXR_Library.inc.php.txt

We are creating a time server from which we can get Greenwich Mean Time (GMT):

<?php

include('IXR_Library.inc.php');

function gmtTime() {
 return gmdate("F, d Y H:i:s");
}

$server = new IXR_Server(array(
 'time.getGMTTime' => 'gmtTime',
));

?>

Well very simple. We just create some methods and then map them to the XML RPC
server. Now let us see how we can code for clients:

<?
include('IXR_Library.inc.php');
$client = new IXR_Client('http://localhost/proxy/server.php');

if (!$client->query('time.getGMTTime'))
{
 die('Something went wrong - '.$client->getErrorCode().' :
 '.$client->getErrorMessage());
}

echo ($client->getResponse());
?>

Design Patterns

[88]

If you place the server in your web server (here localhost) document, the root in a
folder named proxy and then access the client, you will get the following output:

March, 28 2007 16:13:20

That's it! This is how Proxy pattern works and gives interface to remote objects for
local applications.

Decorator Pattern
Decorator pattern is an important problem-solving approach introduced by GoF
in their legendary design pattern book. Using this pattern you can add additional
functionalities in an existing object without extending an object. So you might ask
what is the benefit of adding additional functionalities without inheritance.

Well, there certainly are some benefits. To extend an object, sometimes you need
to know many inner things of that class. Sometimes it's not possible to extend
the class without rewriting the existing functionalities. If you want to add the
same functionalities to many types of objects, it is much better to add them using
Decorator pattern instead of extending all of them individually. Otherwise it might
lead you to a horrible maintenance nightmare.

Decorator

php BB

Post

Emoticon

Visualizer

Visualizer

Let us go for a common scenario. For example, imagine that you are building a blog
or message board where all your posts and comments come as separate post and
comment objects. Both of these objects have a common method getContents()
which returns the filtered content of that post or comment.

Now your manager is asking to add functionalities to parse emoticon and BBCode of
those posts and comments. The core code is complex and you don't want to touch it
anymore. Here Decorator pattern comes to save your life.

Chapter 4

[89]

Let us see our Post and Comment object first.

<?
class Post
{
 private $title;
 private $content;
 //additional properties

 public function filter()
 {
 //do necessary processing
 $this->content = $filtered_content;
 $this->title = $filtered_title;
 }

 public function getContent()
 {
 return $this->content;
 }

 //additional methods
}
?>
<?
class Comment
{
 private $date;
 private $content;
 //additional properties

 public function filter()
 {
 //do necessary processing
 $this->content = $filtered_content;
 }

 public function getContent()
 {
 return $this->content;
 }

 //additional methods
}
?>

Design Patterns

[90]

Now we create two Decorator objects, which can parse the BBCode and
Emoticon respectively:

<?
class BBCodeParser
{
 private $post;
 public function __construct($object)
 {
 $this->post = $object;
 }

 public function getContent()
 {
 //parse bbcode
 $post->filter();
 $content = $this->parseBBCode($post->getContent());
 return $content;
 }

 private function parseBBCode($content)
 {
 //process BB code in the content and return it
 }
}
?>

And here comes the emoticon parser:

<?
class EmoticonParser
{
 private $post;
 public function __construct($object)
 {
 $this->post = $object;
 }

 public function getContent()
 {
 //parse bbcode
 $post->filter();
 $content = $this->parseEmoticon($post->getContent());
 return $content;
 }

 private function parseEmoticon($content)
 {

Chapter 4

[91]

 //process Emoticon code in the content and return it
 }

}
?>

These Decorator objects just add the BBCode and EmoticonCode parsing capability
to the existing objects without touching them.

Let us see how we can use that:

<?
$post = new Post();//set the properties of the post object
$comment = new Comment();//set the properties of the comment object

$post->filter();
$comment->filter();

if ($BBCodeEnabled==false && $EmoticonEnabled==false)
{
 $PostContent = $post->getContent();
 $CommentContent = $comment->getContent();
}
elseif ($BBCodeEnabled==true && $EmoticonEnabled==false)
{
 $bb = new BBCodeParser($post);//passing a post object to
 //BBCodeParser
 $PostContent = $bb->getContent();

 $bb = new BBCodeParser($comment);//passing a comment object to
 //BBCodeParser

 $CommentContent = $bb->getContent();
}

elseif ($BBCodeEnabled==true && $EmoticonEnabled==false)
{
 $em = new EmoticonParser($post);
 $PostContent = $bb->getContent();

 $em = new EmoticonParser($comment);
 $CommentContent = $bb->getContent();
}
?>

This is how you can add additional functionalities to existing objects without even
touching them. However, you saw that BBCodeParser and EmoticonParser accept
any object, which means that if you supply an object, which doesn't have any
method named getContent(), the code will crash. So you can implement a common
interface in those objects, which you might want to decorate. Also in the Decorator
object you can accept only those objects, which implement that or those interfaces.

Design Patterns

[92]

Active Record Pattern
This is another very important design pattern to simplify database manipulation. We
will learn more about this pattern in Chapter 7.

Facade Pattern
So far we have learned many common problem-solving approaches using design
patterns in OOP. Here comes another interesting pattern, which we often use
unintentionally in our code without knowing that it is also a pattern. Let us learn
about this common pattern named Facade pattern.

Facade provides a common interface to many objects. In other words, it just
simplifies the programming providing a necessary interface, which actually uses
a lot of other objects behind the scenes. Thus it minimizes the learning curve for
developers. When a new developer joins the team, he suddenly gets introduced to
a lot of objects with tons of methods and properties, among which he might need a
few to accomplish his work. So why bother spending time learning them all? This
is where Facade helps developers and saves a lot of their time. Let's look at some
examples to understand it more clearly.

Suppose you are creating an apartment rental system, where you have three objects
in your repository. One object performs the geocoding with the help of online
geocoding services. Another object locates that place using a map service. Finally,
another service searches all the apartments for sale in that area.

Now you want to create an easier interface over these three so that any future
developer can work with your library instead of studying them all together. The
following picture shows us the code structure before there is a Facade:

Client A

Geo Locator Apartment
Finder

Google
Map

Client B

Chapter 4

[93]

Here is the code structure after using Facade:

Client A Client B

Facade

Apartment
FinderGeo Locator Google

Map

Now let us take a look at the code:

<?
class ApartmentFinder
{

 public function locateApartments($place)
 {
 //use the web service and locate all apartments suitable
 //search name
 //now return them all in an array
 return $apartmentsArray();
 }
}
?>

<?
class GeoLocator
{
 public function getLocations($place)
 {
 //use public geo coding service like yahoo and get the
 //lattitude and
 //longitude of that place

 return array("lat"=>$lattitude, "lng"=>$longitude);
 }
}
?>

<?
class GoogleMap
{

Design Patterns

[94]

 public function initialize()
 {
 //do initialize

 }

 public function drawLocations($locations /* array */)
 {
 //locate all the points using Google Map Locator
 }

 public function dispatch($divid)
 {
 //draw the map with in a div with the div id
 }
}
?>

These are our concrete classes. Now you want to develop a Facade using all of them
and provide an easier interface for developers. See how easy it makes combining
three of them:

<?
class Facade
{

 public function findApartments($place, $divid)
 {
 $AF = new ApartmentFinder();
 $GL =new GeoLocator();
 $GM = new GoogleMap();

 $apartments = $AF->locateApartments($place);
 foreach ($apartments as $apartment)
 {
 $locations[] = $GL->getLocations($apartment);
 }

 $GM->initialize();
 $GM->drawLocations($locations);
 $GM->dispatch($divid);
 }

}
?>

Chapter 4

[95]

Anyone can now use the service of all three classes using only one single
interface Facade:

<?
$F = new Facade();
$F->findApartments("London, Greater London","mapdiv");
?>

As I said before, in object oriented programming we have done this type of job
several times in our times in our project, however we might not have known that the
technique is defined as a design pattern named Facade.

Summary
Design patterns are an essential part of OOP. It makes your code more effective,
better performing, and easier to maintain. Sometimes we implement these design
patterns in our code without knowing that these solutions are defined as design
patterns. There are many design patterns as well, which we cannot cover in this
book, because it would then simply be a book on just design patterns. However, if
you are interested in learning other design patterns, you can read Head First Design
Patterns published by O'reilly and Design Patterns Explained by Addison-Wesley.

Don't think that you have to implement design pattern in your code. Use them only
when you need them. Proper usage of correct patterns can make your code perform
better; similarly using them improperly could make your code slow and
less efficient.

In the next chapter we will learn about another important section of OOP in PHP.
That is Unit testing and Reflections. Until then, keep playing with the patterns and
explore them.

Reflection and Unit Testing
PHP5 brings in many new flavors compared to PHP4. It replaces many old APIs with
smarter, new ones. One of them is Reflection API. Using this cool set of API, you can
reverse engineer any class or object to figure out its properties and methods. You can
invoke those methods dynamically and do some more. In this chapter we will learn
in more detail about reflections and use of each of these functions.

Another very important part of software development is building test suits for
automated testing of your piece of work. This is to ensure it's working correctly and
after any changes it maintains backward compatibility. To ease the process for PHP
developers, there are a lot of testing tools available on the market. Among them
are some very popular tools like PHPUnit. In this chapter we will learn about unit
testing with PHP.

Reflection
Reflection API provides some functionality to find out what is inside an object or a
class at runtime. Besides that, reflection API lets you invoke dynamically any
method or property of any object. Let's get our hands dirty with reflection. There
are numerous objects introduced in reflection API. Among them, the following
are important:

class Reflection { }
interface Reflector { }
class ReflectionException extends Exception { }
class ReflectionFunction implements Reflector { }
class ReflectionParameter implements Reflector { }
class ReflectionMethod extends ReflectionFunction { }
class ReflectionClass implements Reflector { }
class ReflectionObject extends ReflectionClass { }
class ReflectionProperty implements Reflector { }
class ReflectionExtension implements Reflector { }

Reflection and Unit Testing

[98]

Let us go and play with ReflectionClass first.

ReflectionClass
This is one of the major core classes in reflection API. This class helps you to reverse
engineer any object in the broad sense. The structure of this class is shown here:

<?php
class ReflectionClass implements Reflector
{
 final private __clone()
 public object __construct(string name)
 public string __toString()
 public static string export(mixed class, bool return)
 public string getName()
 public bool isInternal()
 public bool isUserDefined()
 public bool isInstantiable()
 public bool hasConstant(string name)
 public bool hasMethod(string name)
 public bool hasProperty(string name)
 public string getFileName()
 public int getStartLine()
 public int getEndLine()
 public string getDocComment()
 public ReflectionMethod getConstructor()
 public ReflectionMethod getMethod(string name)
 public ReflectionMethod[] getMethods()
 public ReflectionProperty getProperty(string name)
 public ReflectionProperty[] getProperties()
 public array getConstants()
 public mixed getConstant(string name)
 public ReflectionClass[] getInterfaces()
 public bool isInterface()
 public bool isAbstract()
 public bool isFinal()
 public int getModifiers()
 public bool isInstance(stdclass object)
 public stdclass newInstance(mixed args)
 public stdclass newInstanceArgs(array args)
 public ReflectionClass getParentClass()
 public bool isSubclassOf(ReflectionClass class)
 public array getStaticProperties()
 public mixed getStaticPropertyValue(string name [, mixed default])

Chapter 5

[99]

 public void setStaticPropertyValue(string name, mixed value)
 public array getDefaultProperties()
 public bool isIterateable()
 public bool implementsInterface(string name)
 public ReflectionExtension getExtension()
 public string getExtensionName()
}
?>

Let's discuss how this class actually works. First we will find their methods
and purpose:

export() ��� method dumps the internal structure of any object, which is almost
similar to var_dump function.
getName() ��� function returns the internal name of an object, hence the
class name.
isInternal() �� returns true if the class is a built-in object inside PHP5.
isUserDefined() ������������������� is the opposite of isInternal() method. It just returns
whether the object is defined by the user.
getFileName() �� function returns the PHP script file name where the class
is written.
getStartLine() ��� returns at which line the code of that class begins in the
script file.
getDocComment() is another interesting function which returns the class
level document for that object. We will demonstrate it in examples later in
this chapter.
getConstructor() returns��� the reference of the constructor of the object as a
ReflectionMethod object.
getMethod() ��� function returns the address of any method passed to it as a
string. The returned object is a ReflectionMethod �������object.
getMethods() ��� returns an array of all the methods in the object. In that array
every method is returned as ReflectionMethod ��������object.
getProperty() �� function returns a reference to any property in that object, as
a ReflectionProperty �������object.
getConstants() ��� returns an array of constants in that object.
getConstant() �� returns the value of any particular constant.
If you want a reference to the interfaces that a class implemented (if any), you
can use getInterfaces() �� function which, returns an array of interfaces as
ReflectionClass object.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Reflection and Unit Testing

[100]

The getModifiers() �� method returns the list of modifiers relevant to that
class. For example, it could be public, private, protected, abstract, static,
or final.
newInstance() function returns a new instance of that class and returns it
as a regular object (which is actually stdClas; stdClass is the base class of
every PHP object).
You want a reference to the parent class of any class? You can use
getParentClass() ������������������������ method to get that as a ReflectionClass object.
Another cool function of ReflectionClass() ������������������������������� is that it can tell from which
extension a class has been originated. For example, ArrayObject ��������� class is
originated from SPL class. You have to use getExtensionName() ���������function
for that.

Let's write some code now. We will see these functions in real life code. Here, I am
showing a fantastic example taken from the PHP Manual.

<?php
interface NSerializable
{
 // ...
}
class Object
{
 // ...
}
/**
* A counter class
*/
class Counter extends Object implements NSerializable
{
 const START = 0;
 private static $c = Counter::START;
 /**
 * Invoke counter
 *
 * @access public
 * @return int
 */
 public function count()
 {
 return self::$c++;
 }
}

// Create an instance of the ReflectionClass class

•

•

•

•

Chapter 5

[101]

$class = new ReflectionClass('Counter');

// Print out basic information
printf(
 "===> The %s%s%s %s '%s' [extends %s]\n" .
 " declared in %s\n" .
 " lines %d to %d\n" .
 " having the modifiers %d [%s]\n",
 $class->isInternal() ? 'internal' : 'user-defined',
 $class->isAbstract() ? ' abstract' : '',
 $class->isFinal() ? ' final' : '',
 $class->isInterface() ? 'interface' : 'class',
 $class->getName(),
 var_export($class->getParentClass(), 1),
 $class->getFileName(),
 $class->getStartLine(),
 $class->getEndline(),
 $class->getModifiers(),
 implode(' ', Reflection::getModifierNames(
 $class->getModifiers()))
);

// Print documentation comment
printf("---> Documentation:\n %s\n",
 var_export($class->getDocComment(), 1));

// Print which interfaces are implemented by this class
printf("---> Implements:\n %s\n",
 var_export($class->getInterfaces(), 1));

// Print class constants
printf("---> Constants: %s\n",
 var_export($class->getConstants(), 1));

// Print class properties
printf("---> Properties: %s\n",
 var_export($class->getProperties(), 1));

// Print class methods
printf("---> Methods: %s\n",
 var_export($class->getMethods(), 1));

// If this class is instantiable, create an instance
if ($class->isInstantiable())
{
 $counter = $class->newInstance();

 echo '---> $counter is instance? ';
 echo $class->isInstance($counter) ? 'yes' : 'no';

 echo "\n---> new Object() is instance? ";
 echo $class->isInstance(new Object()) ? 'yes' : 'no';
}
?>

Reflection and Unit Testing

[102]

Now save the above code in a file named class.counter.php. When you run the
above code, you will get the following output:

X-Powered-By: PHP/5.1.1

Content-type: text/html

===> The user-defined class 'Counter' [extends ReflectionClass::__set_state(array(

 'name' => 'Object',

))]

 declared in PHPDocument2

 lines 15 to 29

 having the modifiers 0 []

---> Documentation:

 '/**

* A counter class

*/'

---> Implements:

 array (

 0 =>

 ReflectionClass::__set_state(array(

 'name' => 'NSerializable',

)),

)

---> Constants: array (

 'START' => 0,

)

---> Properties: array (

 0 =>

Chapter 5

[103]

 ReflectionProperty::__set_state(array(

 'name' => 'c',

 'class' => 'Counter',

)),

)

---> Methods: array (

 0 =>

 ReflectionMethod::__set_state(array(

 'name' => 'count',

 'class' => 'Counter',

)),

)

---> $counter is instance? yes

---> new Object() is instance? No

ReflectionMethod
This is the class used to investigate any method of the class and then invoke it. Let us
see the structure of this class:

<?php
class ReflectionMethod extends ReflectionFunction
{
 public __construct(mixed class, string name)
 public string __toString()
 public static string export(mixed class, string name, bool return)
 public mixed invoke(stdclass object, mixed args)
 public mixed invokeArgs(stdclass object, array args)
 public bool isFinal()
 public bool isAbstract()
 public bool isPublic()
 public bool isPrivate()
 public bool isProtected()
 public bool isStatic()

Reflection and Unit Testing

[104]

 public bool isConstructor()
 public bool isDestructor()
 public int getModifiers()
 public ReflectionClass getDeclaringClass()

 // Inherited from ReflectionFunction
 final private __clone()
 public string getName()
 public bool isInternal()
 public bool isUserDefined()
 public string getFileName()
 public int getStartLine()
 public int getEndLine()
 public string getDocComment()
 public array getStaticVariables()
 public bool returnsReference()
 public ReflectionParameter[] getParameters()
 public int getNumberOfParameters()
 public int getNumberOfRequiredParameters()
}
?>

The most important methods of this class are getNumberOfParamaters,
getNumberOfRequiredParameters, getParameters, and invoke. The first three of
these are self explanatory; let's look at the fourth one which is invoked. This is a nice
example taken from the PHP Manual:

<?php
class Counter
{
 private static $c = 0;

 /**
 * Increment counter
 *
 * @final
 * @static
 * @access public
 * @return int
 */
 final public static function increment()
 {
 return ++self::$c;
 }
}

Chapter 5

[105]

// Create an instance of the Reflection_Method class
$method = new ReflectionMethod('Counter', 'increment');

// Print out basic information
printf(
 "===> The %s%s%s%s%s%s%s method '%s' (which is %s)\n" .
 " declared in %s\n" .
 " lines %d to %d\n" .
 " having the modifiers %d[%s]\n",
 $method->isInternal() ? 'internal' : 'user-defined',
 $method->isAbstract() ? ' abstract' : '',
 $method->isFinal() ? ' final' : '',
 $method->isPublic() ? ' public' : '',
 $method->isPrivate() ? ' private' : '',
 $method->isProtected() ? ' protected' : '',
 $method->isStatic() ? ' static' : '',
 $method->getName(),
 $method->isConstructor() ? 'the constructor' :
 'a regular method',
 $method->getFileName(),
 $method->getStartLine(),
 $method->getEndline(),
 $method->getModifiers(),
 implode(' ', Reflection::getModifierNames(
 $method->getModifiers()))
);

// Print documentation comment
printf("---> Documentation:\n %s\n",
 var_export($method->getDocComment(), 1));

// Print static variables if existant
if ($statics= $method->getStaticVariables()) {
 printf("---> Static variables: %s\n", var_export($statics, 1));
}

// Invoke the method
printf("---> Invokation results in: ");
var_dump($method->invoke(NULL));
?>

When executed, this code will give the following output:

===> The user-defined final public static method 'increment' (which is
a regular method)
 declared in PHPDocument1
 lines 14 to 17
 having the modifiers 261[final public static]

Reflection and Unit Testing

[106]

---> Documentation:
 '/**
 * Increment counter
 *
 * @final
 * @static
 * @access public
 * @return int
 */'
---> Invokation results in: int(1)

ReflectionParameter
Another very important object in�������������������������� the reflection family is ReflectionParameter.
Using��� this class you can analyze parameters of any method and take action
accordingly. ��� Let�� us take a look at the object ����������structure:

<?php
class ReflectionParameter implements Reflector
{
 final private __clone()
 public object __construct(string name)
 public string __toString()
 public static string export(mixed function, mixed parameter,
 bool return)
 public string getName()
 public bool isPassedByReference()
 public ReflectionFunction getDeclaringFunction()
 public ReflectionClass getDeclaringClass()
 public ReflectionClass getClass()
 public bool isArray()
 public bool allowsNull()
 public bool isPassedByReference()
 public bool getPosition()
 public bool isOptional()
 public bool isDefaultValueAvailable()
 public mixed getDefaultValue()
}
?>

Chapter 5

[107]

To make things easier, have a look at the following example to see how this
thing works.

<?php
function foo($a, $b, $c) { }
function bar(Exception $a, &$b, $c) { }
function baz(ReflectionFunction $a, $b = 1, $c = null) { }
function abc() { }
// Create an instance of Reflection_Function with the
// parameter given from the command line.
$reflect = new ReflectionFunction("baz");
echo $reflect;
foreach ($reflect->getParameters() as $i => $param)
{
 printf(
 "-- Parameter #%d: %s {\n".
 " Class: %s\n".
 " Allows NULL: %s\n".
 " Passed to by reference: %s\n".
 " Is optional?: %s\n".
 "}\n",
 $i,
 $param->getName(),
 var_export($param->getClass(), 1),
 var_export($param->allowsNull(), 1),
 var_export($param->isPassedByReference(), 1),
 $param->isOptional() ? 'yes' : 'no'
);
}
?>

If you run the above code snippet, you will get the following output:

Function [<user> <visibility error> function baz]
{
 @@ C:\OOP with PHP5\Codes\ch5\test.php 4 - 4
 - Parameters [3]
 {
 Parameter #0 [<required> ReflectionFunction &$a]
 Parameter #1 [<optional> $b = 1]
 Parameter #2 [<optional> $c = NULL]
 }
}
-- Parameter #0: a
{
 Class: ReflectionClass::__set_state(array(
 'name' => 'ReflectionFunction',
))
 Allows NULL: false

Reflection and Unit Testing

[108]

 Passed to by reference: true
 Is optional?: no
}
-- Parameter #1: b
{
 Class: NULL
 Allows NULL: true
 Passed to by reference: false
 Is optional?: yes
}
-- Parameter #2: c
{
 Class: NULL
 Allows NULL: true
 Passed to by reference: false
 Is optional?: yes
}

ReflectionProperty
This is the last one under the reflection family that we are going to discuss here. This
class helps you to investigate class properties and reverse engineer them. This class
has the following structure:

<?php
class ReflectionProperty implements Reflector
{
 final private __clone()
 public __construct(mixed class, string name)
 public string __toString()
 public static string export(mixed class, string name, bool return)
 public string getName()
 public bool isPublic()
 public bool isPrivate()
 public bool isProtected()
 public bool isStatic()
 public bool isDefault()
 public int getModifiers()
 public mixed getValue(stdclass object)
 public void setValue(stdclass object, mixed value)
 public ReflectionClass getDeclaringClass()
 public string getDocComment()
}
?>

Chapter 5

[109]

Here is an example taken directly from the PHP Manual, that helps describe how it
actually works.

<?php
class String
{
 public $length = 5;
}

// Create an instance of the ReflectionProperty class
$prop = new ReflectionProperty('String', 'length');

// Print out basic information
printf(
 "===> The%s%s%s%s property '%s' (which was %s)\n" .
 " having the modifiers %s\n",
 $prop->isPublic() ? ' public' : '',
 $prop->isPrivate() ? ' private' : '',
 $prop->isProtected() ? ' protected' : '',
 $prop->isStatic() ? ' static' : '',
 $prop->getName(),
 $prop->isDefault() ? 'declared at compile-time' :
 'created at run-time',
 var_export(Reflection::getModifierNames(
 $prop->getModifiers()), 1)
);

// Create an instance of String
$obj= new String();

// Get current value
printf("---> Value is: ");
var_dump($prop->getValue($obj));

// Change value
$prop->setValue($obj, 10);
printf("---> Setting value to 10, new value is: ");
var_dump($prop->getValue($obj));

// Dump object
var_dump($obj);
?>

The code produces the following output upon execution. This code inspects a
property with the help of ReflectionProperty and displays the following output:

===> The public property 'length' (which was declared at compile-time)
 having the modifiers array (
 0 => 'public',
)

Reflection and Unit Testing

[110]

---> Value is: int(5)
---> Setting value to 10, new value is: int(10)
object(String)#2 (1) {
 ["length"]=>
 int(10)
}

We will see some more uses of Reflection API in later chapters, when we will learn
build an MVC framework.

Unit Testing
Another very important part of programming is unit testing, by which you can test
pieces of code, whether it works perfectly or not. You can write test cases against
any version of your code to check if your code works after refactoring. Unit testing
ensures the workability of the code and helps to pin-point the problem when it
occurs. When you code your application, unit tests works as your skeleton.
Unit testing is a mandatory part of programming for programmers of every
language. There are unit testing packages available for almost all major
programming languages.

As with every other programming language, there is one package for Java that
is considered as a standard model for every other unit testing package for other
languages. This package is called as JUnit which is for Java developers. The standard
and testing style maintained in JUnit is usually followed in many other unit testing
packages. So JUnit has become a defacto in the unit testing area. The port of JUnit
for PHP developers is known as PHPUnit, which was developed by Sebastian
Bergmann. PHPUnit is a very popular unit testing package.

One of the main reasons for writing unit tests is that you cannot figure out all the
bugs if you just write your code and deploy your application. There might be small
bugs that might crash your application violently by returning a non relevant value.
Don't overlook these small scenarios. There might be cases when you wouldn't
imagine one of your codes returning an extremely odd result. Unit testing helps you
by writing different test cases. Unit testing is not a thing which needs a lot of time to
write, however the outcome is amazing.

In the following section we will learn the basics of unit testing, and get our hands
dirty writing successful unit tests.

Chapter 5

[111]

Benefits of Unit Testing
Unit testing has a lot of benefits, some of them are that it:

Ensures the consistency of your application.
Ensures the workability of your complete application after any kind
of refactoring.
Checks the redundancy and removes them from your code.
Designs good API.
Easily figures out where the problem is.
Speeds up the debugging process if anything goes wrong; as you know
particularly where the bug resides.
Minimizes the effort of documentation by providing working examples of
your API.
Helps to do a regression test so that no regression occurs again.

A small Introduction to Vulnerable Bugs
Bugs can be of different types. Some bugs could just bother your users, some bug
stops the functionality, and some bug vulnerability corrupts your resources. Let
us consider the following example. You have written a function which takes two
parameters and updates the database accordingly. The first parameter is the name of
the field and the second parameter is the value of that field by which it should locate
the data and then update them. Now let us design it:

function selectUser($field, $condition)
{
 if (!empty($condition))
 {
 $query = "{$field}= '{$condition}'";
 }
 else
 $query = "{$field}";

 echo "select * from users where {$query}";

 $result = mysql_query("select * from users where {$query}");
 $results = array();
 while ($data = mysql_fetch_array($result))
 {
 $results[] = $data;
 }
 return $results;
}

•

•

•

•

•

•

•

•

Reflection and Unit Testing

[112]

Now when you call it like this, it shows a specific data:

print_r(selectUser("id","1");

The output is:

(
 [0] => Array
 (
 [0] => 1
 [id] => 1
 [1] => afif
 [name] => afif
 [2] => 47bce5c74f589f4867dbd57e9ca9f808
 [pass] => 47bce5c74f589f4867dbd57e9ca9f808
)
)

But when you call it like this:

print_r(selectUser("id",$_SESSION['id']);

It displays the following:

(
 [0] => Array
 (
 [0] => 1
 [id] => 1
 [1] => afif
 [name] => afif
 [2] => 47bce5c74f589f4867dbd57e9ca9f808
 [pass] => 47bce5c74f589f4867dbd57e9ca9f808
)
 1] => Array
 (
 [0] => 2
 [id] => 2
 [1] => 4b8ed057e4f0960d8413e37060d4c175
 [name] => 4b8ed057e4f0960d8413e37060d4c175
 [2] => 74b87337454200d4d33f80c4663dc5e5
 [pass] => 74b87337454200d4d33f80c4663dc5e5
)
)

This is not a correct output; and as it is happening in runtime if it was update instead
of a select query, your whole data may get corrupt. So how can you ensure that the
output is always a valid one? Well, we will do that easily with unit testing later in
this chapter.

Chapter 5

[113]

Preparing for Unit Testing
To write successful unit test for PHP applications using PHPUnit, you need to
download the package, configure it, and then do some small tasks before actually
being able to execute your tests.

You can either run PHPUnit tests from the command line or from inside your script.
For now we will run our tests from within our script, but in later sections, we will
learn how to run unit tests from command line.

To start, download the package from http://www.phpunit.de ����������������������� and extract it in your
include��� path. If you are not sure what is your ����������������������������������� include���������������������������� path you can get that from
include_path ����������������� settings in your php.ini. ������������������������������������� Or you can execute the following PHP
script to display the output:

<?
echo get_include_path()
?>

Now extract the PHPUnit archive and place the PHPUnit folder in a folder, which
is in your include ��� path��� . This PHPUnit folder contains two other folders named
PHPUnit and PHPUnit2.

You are done as soon as you place the folders in your ������������������������������ include����������������������� path directories. Now
we are ready to go.

Starting Unit Testing
A unit test is actually a collection of different tests against your code. It is not a big
job to write unit tests using PHPUnit. All you have to do is simply follow a set of
conventions. Let's take a look at the following example, where you create a string
manipulator class, which returns the number of words available in a string.

<?
//class.wordcount.php
class wordcount
{
 public function countWords($sentence)
 {
 return count(split(" ",$sentence));
 }
}
?>

Reflection and Unit Testing

[114]

Now we will write a unit test for this class. We have to extend the
PHPUnit_Framework_TestCase to write any unit test. And we have to use
PHPUnit_Framework_TestSuite to create the test suite, which actually holds a
collection of tests. Then we will use PHPUnit_TextUI_TestRunner to run the tests
from the suite and print the result.

<?
//class.testwordcount.php
require_once "PHPUnit/Framework/TestCase.php";
require_once "class.wordcount.php";

class TestWordCount extends PHPUnit_Framework_TestCase
{
 public function testCountWords()
 {
 $Wc = new WordCount();
 $TestSentence = "my name is afif";
 $WordCount = $Wc->countWords($TestSentence);
 $this->assertEquals(4,$WordCount);
 }
}
?>

Running the test:

<?
//testsuite.wordcount.php
require_once 'PHPUnit/TextUI/TestRunner.php';
require_once "PHPUnit/Framework/TestSuite.php";
require_once "class.testwordcount.php";

$suite = new PHPUnit_Framework_TestSuite();
$suite->addTestSuite("TestWordCount");
PHPUnit_TextUI_TestRunner::run($suite);
?>

Now if you run the code in testsuite.wordcount.php you will get the
following output:

PHPUnit 3.0.5 by Sebastian Bergmann.
Time: 00:00
OK (1 test)

That means our test has passed and our word-counter function works perfectly,
however, we will write some more test cases for that function.

Chapter 5

[115]

Let us add this new test case in our class.testwordcount.php:

public function testCountWordsWithSpaces()
{
 $wc= new WordCount();
 $testSentence = "my name is Anonymous ";
 $wordCount = $Wc->countWords($testSentence);
 $this->assertEquals(4,$wordCount);		
}

Now if we run our test suite we will get the following result:

PHPUnit 3.0.5 by Sebastian Bergmann.

.F

Time: 00:00

There was 1 failure:

1) testCountWordsWithSpaces(TestWordCount)
Failed asserting that <integer:5> is equal to <integer:4>.
C:\OOP with PHP5\Codes\ch5\UnitTest\FirstTest.php:34
C:\OOP with PHP5\Codes\ch5\UnitTest\FirstTest.php:40
C:\Program Files\Zend\ZendStudio-5.2.0\bin\php5\dummy.php:1

FAILURES!
Tests: 2, Failures: 1.

Here, we found that our foolproof word-count function fails. So what was our test
input? We just add more spaces in our test parameter my name is afif, and then
our function fails. This is because it splits the sentence with white space and returns
the number of split parts. As there are more white spaces, so our function fails
gracefully. That's a pretty nice test case; we found that our function might fail in real
life if we release our code with this version of word counter. PHPUnit has become
useful for us already. Now we will solve our function so that it returns the
correct result if our sentence contains more white spaces. We change our
class.wordcount.php to this new one:

class WordCount
{
 public function countWords($sentence)
 {
 $newsentence = preg_replace("~\s+~"," ",$sentence);
 return count(split(" ",$newsentence));
 }
}

Reflection and Unit Testing

[116]

Now if we run our test suite, it will give the following output.

PHPUnit 3.0.5 by Sebastian Bergmann.
..
Time: 00:00
OK (2 tests)

However we want more proof that our function will work better in the wild.
So we are writing another test case. Let's add this new test case in our
class.testwordcount.php:

public function testCountWordsWithNewLine()
{
 $Wc = new WordCount();
 $TestSentence = "my name is \n\r Anonymous";
 $WordCount = $Wc->countWords($TestSentence);
 $this->assertEquals(4,$WordCount);
}

And let's run the suit again. What is the result now?

PHPUnit 3.0.5 by Sebastian Bergmann.
...
Time: 00:00
OK (3 tests)

That's pretty satisfying. All our tests are running ok. The function is now a good one.

This is how unit test can help us in real life.

Testing an Email Validator Object
Now, let's repeat the steps again. This time we will write unit tests for our brand new
Emailvalidator class which our developer said is a good one. Let's take a look at
our validator function first:

//class.emailvalidator.php
class EmailValidator
{
 public function validateEmail($email)
 {
 $pattern = "/[A-z0-9]{1,64}@[A-z0-9]+\.[A-z0-9]{2,3}/";
 preg_match($pattern, $email,$matches);
 return (strlen($matches[0])==strlen($email)?true:false);
 }
}
?>

Chapter 5

[117]

And here comes our test case:

class TestEmailValidator extends PHPUnit_Framework_TestCase
{
 private $Ev;
 protected function setup()
 {
 $this->Ev = new EmailValidator();
 }

 protected function tearDown()
 {
 unset($this->Ev);
 }

 public function testSimpleEmail()
 {
 $result = $this->Ev->validateEmail("has.in@somewherein.net");
 $this->assertTrue($result);
 }
}

Now you have to write the test suit and run:

$suite = new PHPUnit_Framework_TestSuite();
$suite->addTestSuite("TestEmailValidator");
PHPUnit_TextUI_TestRunner::run($suite);

You will get the following output when you run this test suite:

PHPUnit 3.0.5 by Sebastian Bergmann.

...

Time: 00:00

OK (1 test)

Now try harder; try to break your code. Try all the possible cases that may occur in
an email and try as many as you can. We are going to add more test cases:

class TestEmailValidator extends PHPUnit_Framework_TestCase
{
 private $Ev;
 protected function setUp()
 {
 $this->Ev = new EmailValidator();
 }

 protected function tearDown()
 {

Reflection and Unit Testing

[118]

 unset($this->Ev);
 }

 public function testSimpleEmail()
 {
 $result = $this->Ev->validateEmail("hasin@somewherein.net");
 $this->assertTrue($result);
 }

 public function testEmailWithDotInName()
 {
 $result = $this->Ev->validateEmail("has.in@somewherein.net");
 $this->assertTrue($result);
 }

 public function testEmailWithComma()
 {
 $result = $this->Ev->validateEmail("has,in@somewherein.net");
 $this->assertFalse($result);
 }

 public function testEmailWithSpace()
 {
 $result = $this->Ev->validateEmail("has in@somewherein.net");
 $this->assertTrue($result);
 }

 public function testEmailLengthMoreThan64Char()
 {
 $result =
 $this->Ev->validateEmail(str_repeat("h",67)."@somewherein.net");
 $this->assertFalse($result);
 }

 public function testEmailWithInValidCharacters()
 {
 $result = $this->Ev->validateEmail("has#in@somewherein.net");
 $this->assertFalse($result);
 }

 public function testEmailWithNoDomain()
 {
 $result = $this->Ev->validateEmail("hasin@");
 $this->assertFalse($result);
 }

 public function testEmailWithInvalidDomain()
 {
 $result =
 $this->Ev->validateEmail("hasin@somewherein.comnetorg");
 $this->assertFalse($result);
 }
}

Chapter 5

[119]

When you run the test suite, you will get the following result:

PHPUnit 3.0.5 by Sebastian Bergmann.

.F.F....

Time: 00:00

There were 1 failures:

1) testEmailWithDotInName(TestEmailValidator)
Failed asserting that <boolean:false> is identical to <boolean:true>.
C:\OOP with PHP5\Codes\ch5\UnitTest\EmailValidatorTest.php:40
C:\OOP with PHP5\Codes\ch5\UnitTest\EmailValidatorTest.php:83
C:\Program Files\Zend\ZendStudio-5.2.0\bin\php5\dummy.php:1

FAILURES!
Tests: 8, Failures: 1.

So our email validator fails! If you look at the result you will see that it fails with
testEmailWithDotInName. Therefore, we have to change the regular expression
pattern we used and allow . in the name.

Let's redesign the validator as show here:

class EmailValidator
{
 public function validateEmail($email)
 {

 $pattern = "/[A-z0-9\.]{1,64}@[A-z0-9]+\.[A-z0-9]{2,3}/";
 preg_match($pattern, $email,$matches);
 return (strlen($matches[0])==strlen($email)?true:false);
 }
}

Now if you run your test suites again, you will see the following output:

PHPUnit 3.0.5 by Sebastian Bergmann.

........

Time: 00:00

OK (8 tests)

Our test passes.

So what is the benefit? Time after time, when you need to add new validation rules
to your regular expression, this unit test will help to do the regression test so that the
same fault never occurs again.

That's the beauty of Unit Testing.

Reflection and Unit Testing

[120]

You will find two functions named setUp() ����and tearDown()
in the above example. setUp() �������������������������������������� is used for setting up everything for
the test; you can use it to connect to DB, to open a file or something
similar. tearDown() �� is for cleaning. It is called when the script
finishes executing.

Unit Testing for Everyday Script
Alongside these unit tests for functions and small classes, you will need to write unit
tests for a final result achieved by different functions. However, as specific you go
with your unit tests, the better outcome you can expect. Do also remember that of the
many unit tests you write, only few of them are actually useful.

Now we will discuss how to test routines that works with a database. Let us create a
small class which inserts, finds and updates the record, which we will write unit tests
for. Here comes our small class, which directly interacts with a table named users in
our database.

<?
class DB
{
 private $connection;

 public function __construct()
 {
 $this->connection = mysql_connect("localhost","root","root1234");
 mysql_select_db("test",$this->connection);
 }
 public function insertData($data)
 {
 $fields = join(array_keys($data),",");
 $values = "'".join(array_values($data),",")."'";

 $query = "INSERT INTO users({$fields}) values({$values})";
 return mysql_query($query, $this->connection);
 }

 public function deleteData($id)
 {
 $query = "delete from users where id={$id}";
 return mysql_query($query, $this->connection);
 }

 public function updateData($id, $data)
 {
 $queryparts = array();
 foreach ($data as $key=>$value)

Chapter 5

[121]

 {
 $queryparts[] = "{$key} = '{$value}'";
 }

 $query = "UPDATE users SET ".join($queryparts,",")."
 WHERE id='{$id}'";
 return mysql_query($query, $this->connection);
 }
}
?>

We need to test all the public methods in this class to ensure they are working
properly. So here come our test cases.

<?
require_once "PHPUnit/Framework/TestCase.php";

class DBTester extends PHPUnit_Framework_TestCase
{
 private $connection;
 private $Db;

 protected function setup()
 {
 $this->Db = new DB();

 $this->connection = mysql_connect("localhost","root","root1234");
 mysql_select_db("abcd",$this->connection);
 }

 protected function tearDown()
 {
 mysql_close($this->connection);
 }

 public function testValidInsert()
 {
 $data = array("name"=>"afif","pass"=>md5("hello world"));
 mysql_query("delete from users");

 $result = $this->Db->insertData($data);
 $this->assertNotNull($result);

 $affected_rows = mysql_affected_rows($this->connection);
 $this->assertEquals(1, $affected_rows);
 }

 public function testInvalidInsert()
 {
 $data = array("names"=>"afif","passwords"=>md5("hello world"));
 mysql_query("delete from users");

 $result = $this->Db->insertData($data);

Reflection and Unit Testing

[122]

 $this->assertNotNull($result);

 $affected_rows = mysql_affected_rows($this->connection);
 $this->assertEquals(-1, $affected_rows);
 }

 public function testUpdate()
 {
 $data = array("name"=>"afif","pass"=>md5("hello world"));
 mysql_query("truncate table users");

 $this->Db->insertData($data);

 $data = array("name"=>"afif2","pass"=>md5("hello world"));
 $result = $this->Db->updateData(1, $data);
 $this->assertNotNull($result);

 $affected_rows = mysql_affected_rows($this->connection);
 $this->assertEquals(1, $affected_rows);
 }

 public function testDelete()
 {
 $data = array("name"=>"afif","pass"=>md5("hello world"));
mysql_query("truncate table users");

 $this->Db->insertData($data);
 $result = $this->Db->deleteData(1);
 $this->assertNotNull($result);

 $affected_rows = mysql_affected_rows($this->connection);
 $this->assertEquals(1, $affected_rows);

 }
}
?>

The test suite is like this:

<?
require_once 'PHPUnit/TextUI/TestRunner.php';
require_once "PHPUnit/Framework/TestSuite.php";
$suite = new PHPUnit_Framework_TestSuite();
$suite->addTestSuite("DBTester");
PHPUnit_TextUI_TestRunner::run($suite);

?>

Chapter 5

[123]

So what result will you get?

PHPUnit 3.0.5 by Sebastian Bergmann.

....

Time: 00:00

OK (4 tests)

However, these are basic functionality tests. We must make more versatile tests and
find out how our objects may fail. Let's add two more tests as shown below:

public function testInvalidUpdate()
 {
 $data = array("name"=>"afif","pass"=>md5("hello world"));
 mysql_query("truncate table users");

 $this->Db->insertData($data);

 $data = array("name"=>"afif2","pass"=>md5("hello world"));
 $result = $this->Db->updateData(2, $data);

 $affected_rows = mysql_affected_rows($this->connection);
 $this->assertEquals(0, $affected_rows);
}

 public function testInvalidDelete()
 {
 $data = array("name"=>"afif","pass"=>md5("hello world"));
 mysql_query("truncate table users");

 $this->Db->insertData($data);
 $result = $this->Db->deleteData("*");
 $this->assertNotNull($result);

 $affected_rows = mysql_affected_rows($this->connection);
 $this->assertEquals(-1, $affected_rows);

}

Now if you run the test suite you will get the following result:

PHPUnit 3.0.5 by Sebastian Bergmann.

......

Time: 00:00

OK (6 tests)

Our DB code is looking hard to break.

In real life unit testing, you need to think beyond how you can break your own code.
If you can write unit tests that break your existing code, that's better.

Reflection and Unit Testing

[124]

Test Driven Development
Now it's time to go further into unit testing. You may ask when you need to write
unit tests before coding for applications: during time of development, or after
finishing coding? Well, developers from different corners have different things to
say, however it is found to be more useful to write the test first and then go for a real
application. This is called Test Driven Development or TDD in short. TDD helps
you to design better API for your application.

You may ask how to write tests when you don't have any real code, and which
things to test? You don't need real objects for TDD. Just imagine some mock
objects, which have just the functions. You will use those functions with the
imaginary result. You can also write incomplete tests, which means a test with blank
body. At your own convenience, you can write you can write the content of the test.
Let's see the following example to understand how unit testing before real code
actually fits in project development.

PHPUnit provides you a lot of useful API for test-first programming such as
markTestSkipped() and markTestIncomplete(). We will use these two methods to
mark some of our tests, which are not implemented. Let us design a small feedback
manager which can accept user's feedback and mail them to you. So what could be
the useful features of a feedback manager? I would suggest the following:

It can render a feedback form.
It will handle user's input and properly filter it.
It will have a spam prevention functionality.
It will prevent any automated feedback submitted by bots or spammers.
It will render a confirmation after submission of feedback, mailing it
to owner.

Let's create some blank unit tests for this. Here comes our test case, before we have
the real code:

<?
class FeedbackTester extends PHPUnit_Framework_TestCase
{
 public function testUsersEmail()
 {
 $this->markTestIncomplete();
 }
 public function testInvalidDomain()
 {
 $this->markTestIncomplete();
 }

•

•

•

•

•

Chapter 5

[125]

 public function testCaptchaGenerator()
 {
 $this->markTestIncomplete();
 }
 public function testCaptchaChecker()
 {
 $this->markTestIncomplete();
 }
 public function testFormRenderer()
 {
 $this->markTestIncomplete();
 }
 public function testFormHandler()
 {
 $this->markTestIncomplete();
 }
 public function testValidUserName()
 {
 $this->markTestIncomplete();
 }
 public function testValidSubject()
 {
 $this->markTestIncomplete();
 }
 public function testValidContent()
 {
 $this->markTestIncomplete();
 }
 public function testFeedbackSender()
 {
 $this->markTestIncomplete();
 }
 public function testConfirmer()
 {
 $this->markTestIncomplete();
 }
}
?>

This is good; we have now created 11 blank tests. Now if you run this test case using
test suite, you will get the following result:

PHPUnit 3.0.5 by Sebastian Bergmann.

IIIIIIIIIII

Time: 00:00

OK, but incomplete or skipped tests!
Tests: 11, Incomplete: 11.

Reflection and Unit Testing

[126]

PHPUnit successfully figured out that all our tests are marked as incomplete.
Now let's think again. If you generate an InputValidator �������������� object, which
validates user input and filters all malicious data from it, then we may have only
one test case, testValidInput() ��������������������� instead of all these testValidUserName(),
testValidSubject(), testValidContent(). �������������������������������������� So we can skip those tests. Now let's
create the new test routine testValidInput() and mark it as incomplete:

public function testValidInput()
{
 $this->markTestIncomplete();
}

What will we do with those three tests that we plan to skip? We will not delete them
but mark them as skipped. Modify the line $this->markTestIncomplete() ���to
$this->markTestSkipped(). ������������ For example:

public function testValidUserName()
{
 $this->markTestSkipped();
}

Now if you run your test suite again you will get the following result:

PHPUnit 3.0.5 by Sebastian Bergmann.

IIIIIISSSIII

Time: 00:00

OK, but incomplete or skipped tests!
Tests: 12, Incomplete: 9, Skipped: 3.

PHPUnit is showing that it skipped three tests.

To keep our discussion short and focussed, we will now implement only one test from
these nine. We will test that the feedback form renderer is actually working fine.

Now here is our revised test routine testFormRenderer() ������������������ in our test case.

public function testFormRenderer(){

 $testResult = true;

 $message = "";
 $Fm= new FeedbackManager();
 ob_start();
 $Fm->renderFeedbackForm();
 $output = ob_get_clean();

 if (strpos($output, "name='email'")===false && $testResult==true)
 list($testResult, $message) = array(false,
 "Email field is not present");

Chapter 5

[127]

 if (strpos($output, "name='username'")===false &&
 $testResult==true)
 list($testResult, $message) = array(false,
 "Username is field not present");

 if (strpos($output, "name='subject'")===false && $testResult==true)
 list($testResult, $message) = array(false,
 "Subject field is not present");

 if (strpos($output, "name='message'")===false && $testResult==true)
 list($testResult, $message) = array(false,
 "Message field is not present");

 $this->assertTrue($testResult, $message);
 //$this->markTestIncomplete();
}

It clearly states that in our feedback manager there must be a method named
renderFeedbackForm() ��� and in the generated output there must be four input
fields namely, email,subject,username and message. Now let's create our
FeedBackManager ���������������� object. Here is FeedBackManager ������������������������������� with a single method to render
a feedback form:

class FeedBackManager
<?
{

 public function renderFeedbackForm()
 {
 $form = <<< END
 <form method=POST action="">
 Name:

 <input type='text' name='username'>

 Email:

 <input type='text' name='email'>

 Subject:

 <input type='text' name='subject'>

 <input type='submit' value='submit>	
 </form>
 END;
 echo $form;
 }
}
?>

Reflection and Unit Testing

[128]

Now if you run the unit test suite you will get the following result:

PHPUnit 3.0.5 by Sebastian Bergmann.

IIIIFISSSIII

Time: 00:00

There was 1 failure:

1) testFormRenderer(FeedbackTester)
Message field is not present
Failed asserting that <boolean:false> is identical to <boolean:true>.
C:\OOP with PHP5\Codes\ch5\UnitTest\BlankTest.php:52
C:\OOP with PHP5\Codes\ch5\UnitTest\BlankTest.php:104
C:\Program Files\Zend\ZendStudio-5.2.0\bin\php5\dummy.php:1

FAILURES!
Tests: 12, Failures: 1, Incomplete: 8, Skipped: 3.

Our form renderer failed. Why? Take a look at the output that comes from PHPUnit.
It says Message field is not present. Oh! We forgot to place a textarea object
named message. Let's revise our renderFeedbackForm() method and correct it.

class FeedBackManager
{

 public function renderFeedbackForm()
 {
 $form = <<< END
 <form method=POST action="">
 Name:

 <input type='text' name='username'>

 Email:

 <input type='text' name='email'>

 Subject:

 <input type='text' name='subject'>

 Message:

 <textarea name='message'></textarea>

 <input type='submit' value='submit>	
 </form>
END;
 echo $form;
 }
}

Chapter 5

[129]

We have added the message field. Now let's run the suite again. You will get the
following output:

PHPUnit 3.0.5 by Sebastian Bergmann.

IIII.ISSSIII

Time: 00:00

OK, but incomplete or skipped tests!
Tests: 12, Incomplete: 8, Skipped: 3.

Great! Our test has passed. That means our rendered form is potentially error free.

This is the style of Test Driven Development. You have to foresee your application
code before it is actually written. Using TDD helps you to design good API
and good code.

Writing Multiple Assertions
Don't write multiple assertions under one test. Split it as shown in the example
above. To clarify, the following example is a bad example of a unit test.

public function testFormRenderer(){

 $testResult = true;

 $message = "";
 $Fm = new FeedBackManager();
 ob_start();
 $Fm->renderFeedbackForm();
 $output = ob_get_clean();

 $testResult = strpos($output, "name='email'");
 $this->assertEquals(true, $testResult,
 "Email field is not present");

 $testResult = strpos($output, "name='username'");
 $this->assertEquals(true, $testResult,
 "Username field is not present");

 $testResult = strpos($output, "name='subject'");
 $this->assertEquals(true, $testResult,
 "Subject field is not present");

 $testResult = strpos($output, "name='message'");
 $this->assertEquals(true, $testResult,
 "Message field is not present");
}

This code will run, but multiple assertions in a single routine are prohibited and are
against good application design.

Reflection and Unit Testing

[130]

PHPUnit API
There are several types of asserting API provided by PHPUnit. In our examples
we used ones like assertTrue(), assertEquals(), assertFalse(), and
assertNotNull(). However, there are dozens more. The function names are self
explanatory. The following table is taken from the book PHPUnit Pocket Guide
written by Sebastian Bergmann himself and published by O'Reilly. The book is made
free by O'Reilly and Sebastian Bergmann under the Creative Commons License.
The latest version of this book is currently available at http://www.phpunit.de/
pocket_guide/3.0/en/index.html.

The following table shows all the assert functions possible with PHPUnit:

Assertion Meaning

void assertTrue(bool $condition) Reports an error if $condition is
FALSE.

void assertTrue(bool $condition, string
$message)

Reports an error identified by
$message if $condition is FALSE.

void assertFalse(bool $condition) Reports an error if $condition is
TRUE.

void assertFalse(bool $condition,
string $message)

Reports an error identified by
$message if $condition is TRUE.

void assertNull(mixed $variable) Reports an error if $variable is not
NULL.

void assertNull(mixed $variable,
string $message)

Reports an error identified by
$message if $variable is not NULL.

void assertNotNull(mixed $variable) Reports an error if $variable is
NULL.

void assertNotNull(mixed $variable,
string $message)

Reports an error identified by
$message if $variable is NULL.

void assertSame(object $expected,
object $actual)

Reports an error if the two variables
$expected and $actual do not
reference the same object.

void assertSame(object $expected,
object $actual, string $message)

Reports an error identified by
$message if the two variables
$expected and $actual do not
reference the same object.

void assertSame(mixed $expected, mixed
$actual)

Reports an error if the two variables
$expected and $actual do not have
the same type and value.

Chapter 5

[131]

Assertion Meaning

void assertSame(mixed $expected, mixed
$actual, string $message)

Reports an error identified by
$message if the two variables
$expected and $actual do not have
the same type and value.

void assertNotSame(object $expected,
object $actual)

Reports an error if the two variables
$expected and $actual reference
the same object.

void assertNotSame(object $expected,
object $actual, string $message)

Reports an error identified by
$message if the two variables
$expected and $actual reference
the same object.

void assertNotSame(mixed $expected,
mixed $actual)

Reports an error if the two variables
$expected and $actual have the
same type and value.

void assertNotSame(mixed $expected,
mixed $actual, string $message)

Reports an error identified by
$message if the two variables
$expected and $actual have the
same type and value.

void assertAttributeSame(object
$expected, string $actualAttributeName,
object $actualObject)

Reports an error if $actualObject-
>actualAttributeName and $actual
do not reference the same object. The
visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeSame(object
$expected, string $actualAttributeName,
object $actualObject, string $message)

Reports an error identified by
$message if $actualObject-
>actualAttributeName and $actual
do not reference the same object. The
visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeSame(mixed
$expected, string $actualAttributeName,
object $actualObject)

Reports an error if $actualObject-
>actualAttributeName and $actual
do not have the same type and value.
The visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

Reflection and Unit Testing

[132]

Assertion Meaning

void assertAttributeSame(mixed
$expected, string $actualAttributeName,
object $actualObject, string $message)

Reports an error identified by
$message if $actualObject-
>actualAttributeName and $actual
do not have the same type and value.
The visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeNotSame(object
$expected, string $actualAttributeName,
object $actualObject)

Reports an error if $actualObject-
>actualAttributeName and
$actual reference the same object.
The visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeNotSame(object
$expected, string $actualAttributeName,
object $actualObject, string $message)

Reports an error identified by
$message if $actualObject-
>actualAttributeName and
$actual reference the same object.
The visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeNotSame(mixed
$expected, string $actualAttributeName,
object $actualObject)

Reports an error if $actualObject-
>actualAttributeName and $actual
have the same type and value. The
visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeNotSame(mixed
$expected, string $actualAttributeName,
object $actualObject, string $message)

Reports an error identified by
$message if $actualObject-
>actualAttributeName
and $actual have the same
type and value. The visibility
of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertEquals(array $expected,
array $actual)

Reports an error if the two arrays
$expected and $actual are not
equal.

Chapter 5

[133]

Assertion Meaning

void assertEquals(array $expected,
array $actual, string $message)

Reports an error identified by
$message if the two arrays
$expected and $actual are not
equal.

void assertNotEquals(array $expected,
array $actual)

Reports an error if the two arrays
$expected and $actual are equal.

void assertNotEquals(array $expected,
array $actual, string $message)

Reports an error identified by
$message if the two arrays
$expected and $actual are equal.

void assertEquals(float $expected,
float $actual, '', float $delta = 0)

Reports an error if the two floats
$expected and $actual are not
within $delta of each other.

void assertEquals(float $expected,
float $actual, string $message, float
$delta = 0)

Reports an error identified by
$message if the two floats
$expected and $actual are not
within $delta of each other.

void assertNotEquals(float $expected,
float $actual, '', float $delta = 0)

Reports an error if the two floats
$expected and $actual are within
$delta of each other.

void assertNotEquals(float $expected,
float $actual, string $message, float
$delta = 0)

Reports an error identified by
$message if the two floats
$expected and $actual are within
$delta of each other.

void assertEquals(string $expected,
string $actual)

Reports an error if the two strings
$expected and $actual are not
equal. The error is reported as the
delta between the two strings.

void assertEquals(string $expected,
string $actual, string $message)

Reports an error identified by
$message if the two strings
$expected and $actual are not
equal. The error is reported as the
delta between the two strings.

void assertNotEquals(string $expected,
string $actual)

Reports an error if the two strings
$expected and $actual are equal.

void assertNotEquals(string $expected,
string $actual, string $message)

Reports an error identified by
$message if the two strings
$expected and $actual are equal.

Reflection and Unit Testing

[134]

Assertion Meaning

void assertEquals(mixed $expected,
mixed $actual)

Reports an error if the two variables
$expected and $actual are not
equal.

void assertEquals(mixed $expected,
mixed $actual, string $message)

Reports an error identified by
$message if the two variables
$expected and $actual are not equal.

void assertNotEquals(mixed $expected,
mixed $actual)

Reports an error if the two variables
$expected and $actual are equal.

void assertNotEquals(mixed $expected,
mixed $actual, string $message)

Reports an error identified by
$message if the two variables
$expected and $actual are equal.

void assertAttributeEquals(array
$expected, string $actualAttributeName,
object $actualObject)

Reports an error if the two arrays
$expected and $actualObject-
>actualAttributeName
are not equal. The visibility
of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeEquals(array
$expected, string $actualAttributeName,
object $actualObject, string $message)

Reports an error identified by
$message if the two arrays
$expected and $actualObject-
>actualAttributeName
are not equal. The visibility
of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeNotEquals(array
$expected, string $actualAttributeName,
object $actualObject)

Reports an error if the two arrays
$expected and $actualObject-
>actualAttributeName are equal.
The visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeNotEquals(array
$expected, string $actualAttributeName,
object $actualObject, string $message)

Reports an error identified by
$message if the two arrays
$expected and $actualObject-
>actualAttributeName are equal.
The visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

Chapter 5

[135]

Assertion Meaning

void assertAttributeEquals(float
$expected, string $actualAttributeName,
object $actualObject, '', float $delta
= 0)

Reports an error if the two floats
$expected and $actualObject-
>actualAttributeName are not
within $delta of each other. The
visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeEquals(float
$expected, string $actualAttributeName,
object $actualObject, string $message,
float $delta = 0)

Reports an error identified by
$message if the two floats
$expected and $actualObject-
>actualAttributeName are not
within $delta of each other. The
visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeNotEquals(float
$expected, string $actualAttributeName,
object $actualObject, '', float $delta
= 0)

Reports an error if the two floats
$expected and $actualObject-
>actualAttributeName are
within $delta of each other. The
visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeNotEquals(float
$expected, string $actualAttributeName,
object $actualObject, string $message,
float $delta = 0)

Reports an error identified by
$message if the two floats
$expected and $actualObject-
>actualAttributeName are
within $delta of each other. The
visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeEquals(string
$expected, string $actualAttributeName,
object $actualObject)

Reports an error if the two strings
$expected and $actualObject-
>actualAttributeName are not
equal. The error is reported as the
delta between the two strings. The
visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

Reflection and Unit Testing

[136]

Assertion Meaning

void assertAttributeEquals(string
$expected, string $actualAttributeName,
object $actualObject, string $message)

Reports an error identified by
$message if the two strings
$expected and $actualObject-
>actualAttributeName are not
equal. The error is reported as the
delta between the two strings. The
visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeNotEquals(string
$expected, string $actualAttributeName,
object $actualObject)

Reports an error if the two strings
$expected and $actualObject-
>actualAttributeName are equal.
The visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeNotEquals(string
$expected, string $actualAttributeName,
object $actualObject, string $message)

Reports an error identified by
$message if the two strings
$expected and $actualObject-
>actualAttributeName are equal.
The visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeEquals(mixed
$expected, string $actualAttributeName,
object $actualObject)

Reports an error if the two variables
$expected and $actualObject-
>actualAttributeName
are not equal. The visibility
of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeEquals(mixed
$expected, string $actualAttributeName,
object $actualObject, string $message)

Reports an error identified by
$message if the two variables
$expected and $actualObject-
>actualAttributeName
are not equal. The visibility
of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

Chapter 5

[137]

Assertion Meaning

void assertAttributeNotEquals(mixed
$expected, string $actualAttributeName,
object $actualObject)

Reports an error if the two variables
$expected and $actualObject-
>actualAttributeName are equal.
The visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeNotEquals(mixed
$expected, string $actualAttributeName,
object $actualObject, string $message)

Reports an error identified by
$message if the two variables
$expected and $actualObject-
>actualAttributeName are equal.
The visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertContains(mixed $needle,
array $expected)

Reports an error if $needle is not an
element of $expected.

void assertContains(mixed $needle,
array $expected, string $message)

Reports an error identified by
$message if $needle is not an
element of $expected.

void assertNotContains(mixed $needle,
array $expected)

Reports an error if $needle is an
element of $expected.

void assertNotContains(mixed $needle,
array $expected, string $message)

Reports an error identified by
$message if $needle is an element of
$expected.

void assertContains(mixed $needle,
Iterator $expected)

Reports an error if $needle is not an
element of $expected.

void assertContains(mixed $needle,
Iterator $expected, string $message)

Reports an error identified by
$message if $needle is not an
element of $expected.

void assertNotContains(mixed $needle,
Iterator $expected)

Reports an error if $needle is an
element of $expected.

void assertNotContains(mixed $needle,
Iterator $expected, string $message)

Reports an error identified by
$message if $needle is an element of
$expected.

void assertContains(string $needle,
string $expected)

Reports an error if $needle is not a
substring of $expected.

void assertContains(string $needle,
string $expected, string $message)

Reports an error identified by
$message if $needle is not a
substring of $expected.

Reflection and Unit Testing

[138]

Assertion Meaning
void assertNotContains(string $needle,
string $expected)

Reports an error if $needle is a
substring of $expected.

void assertNotContains(string $needle,
string $expected, string $message)

Reports an error identified by
$message if $needle is a substring
of $expected.

void assertAttributeContains(mixed
$needle, string $actualAttributeName,
object $actualObject)

Reports an error if $needle is not
an element of $actualObject-
>actualAttributeName which can
be an array, a string, or an object that
implements the Iterator interface.
The visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeContains(mixed
$needle, string $actualAttributeName,
object $actualObject, string $message)

Reports an error identified by
$message if $needle is not an
element of $actualObject-
>actualAttributeName which can
be an array, a string, or an object that
implements the Iterator interface.
The visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeNotContains(mixed
$needle, string $actualAttributeName,
object $actualObject)

Reports an error if $needle is
an element of $actualObject-
>actualAttributeName which can
be an array, a string, or an object that
implements the Iterator interface.
The visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

void assertAttributeNotContains(mixed
$needle, string $actualAttributeName,
object $actualObject, string $message)

Reports an error identified by
$message if $needle is an
element of $actualObject-
>actualAttributeName which can
be an array, a string, or an object that
implements the Iterator interface.
The visibility of the $actualObject-
>actualAttributeName attribute
may be public, protected, or private.

Chapter 5

[139]

Assertion Meaning

void assertRegExp(string $pattern,
string $string)

Reports an error if $string does
not match the regular expression
$pattern.

void assertRegExp(string $pattern,
string $string, string $message)

Reports an error identified by
$message if $string does not match
the regular expression $pattern.

void assertNotRegExp(string $pattern,
string $string)

Reports an error if $string matches
the regular expression $pattern.

void assertNotRegExp(string $pattern,
string $string, string $message)

Reports an error identified by
$message if $string matches the
regular expression $pattern.

void assertType(string $expected, mixed
$actual)

Reports an error if the variable
$actual is not of type $expected..

void assertType(string $expected, mixed
$actual, string $message)

Reports an error identified by
$message if the variable $actual is
not of type $expected.

void assertNotType(string $expected,
mixed $actual)

Reports an error if the variable
$actual is of type $expected.

void assertNotType(string $expected,
mixed $actual, string $message)

Reports an error identified by
$message if the variable $actual is
of type $expected.

void assertFileExists(string $filename)Reports an error if the file specified
by $filename does not exist.

void assertFileExists(string $filename,
string $message)

Reports an error identified by
$message if the file specified by
$filename does not exist.

void assertFileNotExists(string
$filename)

Reports an error if the file specified
by $filename exists.

void assertFileNotExists(string
$filename, string $message)

Reports an error identified by
$message if the file specified by
$filename exists.

void assertObjectHasAttribute(string
$attributeName, object $object)

Reports an error if $object-
>attributeName does not exist.

void assertObjectHasAttribute(string
$attributeName, object $object, string
$message)

Reports an error identified
by $message if $object-
>attributeName does not exist.

Reflection and Unit Testing

[140]

Assertion Meaning
void assertObjectNotHasAttribute(strin
g $attributeName, object $object)

Reports an error if $object-
>attributeName exists.

void assertObjectNotHasAttribute(strin
g $attributeName, object $object,
string $message)

Reports an error if $object-
>attributeName exists.

Summary
This chapter focuses on two very important features of object oriented programming
in PHP. One is reflection, which is a part of all major programming languages
like Java, Ruby, and Python. The second one is unit testing, which is an essential
part of good, stable, and manageable application design. We focused on one very
popular package, which is a port of JUnit in PHP, named PHPUnit. If you follow
the guideline provided in this chapter you will be able to design your unit tests
successfully.

In the next chapter, we will learn about some built-in objects in PHP which will make
your life much easier than usual. We will learn about the huge object repository
called Standard PHP Library or SPL. Before that, enjoy the debugging by writing
your own unit tests.

Standard PHP Library
PHP5 made a developer's life a lot easier than before by introducing a number of
built-in objects. These objects simplify tasks and saves countless sleepless nights
for a lot of coders like me. Standard PHP Library (SPL) ���������������������������� is a set of objects for PHP
developers introduced in PHP5. They come with a lot of interfaces and objects to
simplify your coding. In this chapter we will go through some of them and show you
their use.

Available Objects in SPL
You can find out the available objects in SPL by executing the following code.

<?php
// a simple foreach() to traverse the SPL class names
foreach(spl_classes() as $key=>$value)
 {
 echo $value."\n";
 }
?>

The result will show you all the available classes in your current PHP install:

AppendIterator
ArrayIterator
ArrayObject
BadFunctionCallException
BadMethodCallException
CachingIterator
Countable
DirectoryIterator
DomainException
EmptyIterator
FilterIterator

Standard PHP Library

[142]

InfiniteIterator
InvalidArgumentException
IteratorIterator
LengthException
LimitIterator
LogicException
NoRewindIterator
OuterIterator
OutOfBoundsException
OutOfRangeException
OverflowException
ParentIterator
RangeException
RecursiveArrayIterator
RecursiveCachingIterator
RecursiveDirectoryIterator
RecursiveFilterIterator
RecursiveIterator
RecursiveIteratorIterator
RuntimeException
SeekableIterator
SimpleXMLIterator
SplFileObject
SplObjectStorage
SplObserver
SplSubject
UnderflowException
UnexpectedValueException

ArrayObject
This is a fantastic object introduced in SPL to simplify array operation and to
enrich the normal PHP array. You can use ArrayObject as a simple array however
internally you can enhance it and add new functionalities gradually. In this section
we will see the properties and methods supported by this object. Also, we will
design an enhanced ArrayObject for easier array access.

Here are the public members of this class:

__construct ($array, $flags=0, $iterator_class="ArrayIterator")
append ($value)
asort ()
count ()

•

•

•

•

Chapter 6

[143]

exchangeArray ($array)
getArrayCopy ()
getFlags ()
getIterator ()
getIteratorClass ()
ksort ()
natcasesort ()
natsort ()
offsetExists ($index)
offsetGet ($index)
offsetSet ($index, $newval)
offsetUnset ($index)
setFlags ($flags)
setIteratorClass ($itertor_class)
uasort (mixed cmp_function)
uksort (mixed cmp_function)

Many of these functions are also available for array operation. Here is a brief
introduction about some functions, which are differentl to those from array functions:

Function Feature

exchangeArray($array) This function replaces the internal array of an
ArrayObject with the new one and returns the old one.

getArrayCopy() This function returns a copy of the internal array from
inside this ArrayObject.

getIteratorClass()
This function returns the name of the Iterator class. If
you don't explicitly set any other Iterator class for this
object, you will always get ArrayIterator as the result.

setIteratorClass()

Using this function you can set any Iterator class as the
Iterator for array object. However there is one limitation;
is one limitation; this Iterator class must extend the
arrayIterator ������class.

setFlags()

This function sets some bitwise flags to ArrayObject.
Flags are 0 or 1. 0, which means properties of the object
have their normal functionality when accessed as list
(var_dump, foreach, etc.) and 1 means array indices
can be accessed as properties in read/write.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Standard PHP Library

[144]

In the interesting example shown below, we are extending ArrayObject and
creating a more flexible ExtendedArrayObject for prototype like functionality. The
extended array provides easier traversing through the collection. Let's have a look:

<?
class ExtendedArrayObject extends ArrayObject {

 private $_array;
 public function __construct()
 {
 if (is_array(func_get_arg(0)))
 $this->_array = func_get_arg(0);
 else
 $this->_array = func_get_args();
 parent::__construct($this->_array);
 }

 public function each($callback)
 {
 $iterator = $this->getIterator();

 while($iterator->valid())
 {
 $callback($iterator->current());
 $iterator->next();
 }

 }

 public function without()
 {
 $args = func_get_args();
 return array_values(array_diff($this->_array,$args));
 }

 public function first()
 {
 return $this->_array[0];
 }

 public function indexOf($value)
 {
 return array_search($value,$this->_array);
 }

 public function inspect()
 {
 echo "<pre>".print_r($this->_array, true)."</pre>";
 }

 public function last()
 {

Chapter 6

[145]

 return $this->_array[count($this->_array)-1];
 }

 public function reverse($applyToSelf=false)
 {
 if (!$applyToSelf)
 return array_reverse($this->_array);
 else
 {
 $_array = array_reverse($this->_array);
 $this->_array = $_array;
 parent::__construct($this->_array);
 return $this->_array;
 }
 }

 public function shift()
 {
 $_element = array_shift($this->_array);
 parent::__construct($this->_array);
 return $_element;
 }

 public function pop()
 {
 $_element = array_pop($this->_array);
 parent::__construct($this->_array);
 return $_element;
 }
}
?>

If you want to see how to use it, here it goes:

<?
include_once("ExtendedArrayObject.class.php");

function speak($value)
{
 echo $value;

}

$newArray = new ExtendedArrayObject(array(1,2,3,4,5,6));

/* or you can use this */

$newArray = new ExtendedArrayObject(1,2,3,4,5,6);

$newArray->each(speak); //pass callback for loop
print_r($newArray->without(2,3,4)); //subtract
$newArray->inspect(); //display the array in a nice manner

Standard PHP Library

[146]

echo $newArray->indexOf(5); //position by value
print_r($newArray->reverse()); //reverse the array
print_r($newArray->reverse(true)); /*for changing array itself*/

echo $newArray->shift();//shifts the first value of the array
 //and returns it
echo $newArray->pop();// pops out the last value of array
echo $newArray->last();
echo $newArray->first(); //the first element
?>

The result looks like this:

123456
Array
(
 [0] => 1
 [1] => 5
 [2] => 6
)
Array
(
 [0] => 1
 [1] => 2
 [2] => 3
 [3] => 4
 [4] => 5
 [5] => 6
)
4
Array
(
 [0] => 6
 [1] => 5
 [2] => 4
 [3] => 3
 [4] => 2
 [5] => 1
)
Array
(
 [0] => 6
 [1] => 5
 [2] => 4
 [3] => 3
 [4] => 2
 [5] => 1
)
6125

Chapter 6

[147]

ArrayIterator
ArrayIterator is used to iterate over the elements of an array. In SPL, ArrayObject
has a built-in Iterator, which you can access using getIterator function. You can
use this object to iterate over any collection. Let's take a look at the example here:

<?php
$fruits = array(
 "apple" => "yummy",
 "orange" => "ah ya, nice",
 "grape" => "wow, I love it!",
 "plum" => "nah, not me"
);

$obj = new ArrayObject($fruits);

$it = $obj->getIterator();

// How many items are we iterating over?
echo "Iterating over: " . $obj->count() . " values\n";

// Iterate over the values in the ArrayObject:
while($it->valid())
{
 echo $it->key() . "=" . $it->current() . "\n";
 $it->next();
}

?>

This will output the following:

Iterating over: 4 values
apple=yummy
orange=ah ya, nice
grape=wow, I love it!
plum=nah, not me

However, an Iterator also implements the IteratorAggregator interface so you can
even use them in the foreach() ������loop.

<?php

$fruits = array(
 "apple" => "yummy",
 "orange" => "ah ya, nice",
 "grape" => "wow, I love it!",
 "plum" => "nah, not me"
);

$obj = new ArrayObject($fruits);

Standard PHP Library

[148]

$it = $obj->getIterator();

// How many items are we iterating over?
echo "Iterating over: " . $obj->count() . " values\n";

// Iterate over the values in the ArrayObject:
foreach ($it as $key=>$val)
echo $key.":".$val."\n";
?>

You will get the same output as the previous one.

If you want to implement Iterator to your own collection, collection, I
recommend you take a look at Chapter 3. If you want to know how to implement
IteratorAggregator, here is an example for you:

<?php

class MyArray implements IteratorAggregate
{

 private $arr;

 public function __construct()
 {
 $this->arr = array();
 }

 public function add($key, $value)
 {
 if($this->check($key, $value))
 {
 $this->arr[$key] = $value;
 }
 }

 private function check($key, $value)
 {
 if($key == $value)
 {
 return false;
 }
 return true;
 }

 public function getIterator()
 {
 return new ArrayIterator($this->arr);
 }
}
?>

Chapter 6

[149]

Please note that if key and value are the same, it will not return that value while
iterating. You can use it like this:

<?php

$obj = new MyArray();
$obj->add("redhat","www.redhat.com");
$obj->add("php", "php");
$it = $obj->getIterator();
while($it->valid())
{
 echo $it->key() . "=" . $it->current() . "\n";
 $it->next();
}
?>

The output is:
redhat=www.redhat.com

DirectoryIterator
Another very interesting class introduced in PHP5 is DirectoryIterator. This
object can iterate through the items present in a directory (well, those nothing but
files) and you can retrieve different attributes of that file using this object.

In the PHP Manual this object is not well documented. So if you want to know
the structure of this object and supported methods and properties, you can use
ReflectionClass for that. Remember the ReflectionClass we used in the
previous chapter? Let's take a look at the following example:

<?php
ReflectionClass::export(DirectoryIterator);
?>

The result is:
Class [<internal:SPL> <iterateable> class DirectoryIterator
 implements Iterator, Traversable]
{
 - Constants [0] { }
 - Static properties [0] { }
 - Static methods [0] { }
 - Properties [0] { }
 - Methods [27]
{
 Method [<internal> <ctor> public method __construct]
{

 - Parameters [1]
{

Standard PHP Library

[150]

 Parameter #0 [<required> $path]
 }
 }
 Method [<internal> public method rewind] { }
 Method [<internal> public method valid] { }
 Method [<internal> public method key] { }
 Method [<internal> public method current] { }
 Method [<internal> public method next] { }
 Method [<internal> public method getPath] { }
 Method [<internal> public method getFilename] { }
 Method [<internal> public method getPathname] { }
 Method [<internal> public method getPerms] { }
 Method [<internal> public method getInode] { }
 Method [<internal> public method getSize] { }
 Method [<internal> public method getOwner] { }
 Method [<internal> public method getGroup] { }
 Method [<internal> public method getATime] { }
 Method [<internal> public method getMTime] { }
 Method [<internal> public method getCTime] { }
 Method [<internal> public method getType] { }
 Method [<internal> public method isWritable] { }
 Method [<internal> public method isReadable] { }
 Method [<internal> public method isExecutable] { }
 Method [<internal> public method isFile] { }
 Method [<internal> public method isDir] { }
 Method [<internal> public method isLink] { }
 Method [<internal> public method isDot] { }
 Method [<internal> public method openFile]
 {
 - Parameters [3] {
 Parameter #0 [<optional> $open_mode]
 Parameter #1 [<optional> $use_include_path]
 Parameter #2 [<optional> $context]
 }
 }
 Method [<internal> public method __toString] { }
 }
}

We have a handful of useful methods here. Let's make use of them. In the following
example we will just create a directory crawler, which will display all files and
directories in a specific drive. Take a look at one of my directories on the C drive
called spket:

Chapter 6

[151]

Now, if you run the following code, you will get the list of files and directories
inside it:

<?
$DI = new DirectoryIterator("c:/spket");
foreach ($DI as $file) {
 echo $file."\n";
}
?>

The output is:

.

..
plugins
features
readme
.eclipseproduct
epl-v10.html
notice.html
startup.jar
configuration
spket.exe
spket.ini

Standard PHP Library

[152]

But the output doesn't make any sense. Can you detect which are the directories and
which are the files? It's very difficult, so let's make the result useful for us.

<?
$DI = new DirectoryIterator("c:/spket");
$directories = array();
$files = array();
foreach ($DI as $file) {
 $filename = $file->getFilename();
 if ($file->isDir()){
 if(strpos($filename,".")===false)
 $directories[] = $filename;
 }
 else
 $files[] = $filename;
}
echo "Directories\n";
print_r($directories);
echo "\nFiles\n";
print_r($files);
?>

The output is:

Directories
Array
(
 [1] => plugins
 [2] => features
 [3] => readme
 [4] => configuration
)

Files
Array
(
 [0] => .eclipseproduct
 [1] => epl-v10.html
 [2] => notice.html
 [3] => startup.jar
 [4] => spket.exe
 [5] => spket.ini
)

Chapter 6

[153]

You may ask at this point, if there is a shortcut link, how you can detect it. Simple,
just use the $file->isLink() function to detect if that file is a shortcut.

Let's take a look at other useful methods of the DirectoryIterator �������object:

Methods Feature

getPathname() Returns the absolute path name (with file name) of this file.

getSize() Returns size of file in number of bytes.

getOwner() Returns the owner ID.

getATime() Returns the last access time in timestamp.

getMTime() Returns the modification time in timestamp.

getCTime() Returns the creation time in timestamp.

getType() Returns either "file", "dir", or "link".

Other methods are quite self explanatory, so we are not covering them here. One
more thing to remember however, is getInode(), getOwner(), and getGroup() will
return 0 in win32 machines.

RecursiveDirectoryIterator
So what is this object? Remember our previous example? We got a list of directories
and files only. However, what if we want to get a list of all directories inside that
directory without implementing the recursion? Then RecursiveDirectoryIterator
is here to save your life.

The recursive directory Iterator can be used to great effect with
RecursiveIeratorIterator to implement the recursion. Let's take a look at the
following example, it traverses through all the directories under a directory (no
matter how nested it is):

<?php
// Create the new iterator:
$it = new RecursiveIteratorIterator(new RecursiveDirectoryIterator(
 'c:/spket'));
foreach($it as $key=>$file)
{
 echo $key."=>".$file."\n";
}

?>

Standard PHP Library

[154]

The output is like this one:

c:/spket/epl-v10.html=>epl-v10.html
c:/spket/notice.html=>notice.html
c:/spket/startup.jar=>startup.jar
c:/spket/configuration/config.ini=>config.ini
c:/spket/configuration/org.eclipse.osgi/.manager/
 .fileTableLock=>.fileTableLock
c:/spket/configuration/org.eclipse.osgi/.manager/
 .fileTable.4=>.fileTable.4
c:/spket/configuration/org.eclipse.osgi/.manager/
 .fileTable.5=>.fileTable.5
c:/spket/configuration/org.eclipse.osgi/bundles/4/1/.cp/
 swt-win32-3236.dll=>swt-win32-3236.dll
c:/spket/configuration/org.eclipse.osgi/bundles/4/1/.cp/
 swt-gdip-win32-3236.dll=>swt-gdip-win32-3236.dll
c:/spket/configuration/org.eclipse.osgi/bundles/48/1/.cp/os/win32/
 x86/localfile_1_0_0.dll=>localfile_1_0_0.dll
c:/spket/configuration/org.eclipse.osgi/bundles/69/1/.cp/os/win32/
 x86/monitor.dll=>monitor.dll
c:/spket/spket.exe=>spket.exe
c:/spket/spket.ini=>spket.ini
………

I can hear you asking yourself: 'why are these useless files printed here?' Just take a
look at directory structure and see how it retrieves the entire file name with their
path as key.

RecursiveIteratorIterator
To recursively iterate over a collection, you can make take advantage of
this object introduced in SPL. Let's take a look at the following example to
understand how effectively it can be used in your everyday programming. In the
previous sections and also in the coming sections we see many examples using
RecursiveIteratorIterator; so we are not giving any more examples in
this section.

AppendIterator
If you want to use a collection of Iterators to iterate through, then this could be your
life saver. This object saves all the Iterators in a collection and iterates through all of
them at once.

Chapter 6

[155]

Let's take a look at the following example of append Iterator, where we traverse
through a collection of Iterators and then minimize the code:

<?
class Post
{
 public $id;
 public $title;

 function __construct($title, $id)
 {
 $this->title = $title;
 $this->id = $id;
 }
}

class Comment{
 public $content;
 public $post_id;

 function __construct($content, $post_id)
 {
 $this->content = $content;
 $this->post_id = $post_id;
 }
}

$posts = new ArrayObject();
$comments = new ArrayObject();

$posts->append(new post("Post 1",1));
$posts->append(new post("Post 2",2));

$comments->append(new Comment("comment 1",1));
$comments->append(new Comment("comment 2",1));
$comments->append(new Comment("comment 3",2));
$comments->append(new Comment("comment 4",2));

$a = new AppendIterator();
$a->append($posts->getIterator());
$a->append($comments->getIterator());

//print_r($a->getInnerIterator());

foreach ($a as $key=>$val)
{
 if ($val instanceof post)
 echo "title = {$val->title}\n";
 else if ($val instanceof Comment)
 echo "content = {$val->content}\n";

}
?>

Standard PHP Library

[156]

And here comes the output:

title = Post 1
title = Post 2
content = comment 1
content = comment 2
content = comment 3
content = comment 4

FilterIterator
As its name suggests, this Iterator helps you to filter out the result through iteration
so that you get only the results you require. This Iterator is very useful for iteration
with filtering,

FilterIterator exposes two extra methods over a regular Iterator. One is accept()
which is called every time in internal iteration and is your key point to perform the
filter. The second one is getInnerIterator(), which returns the current Iterator
inside this FilterIterator.�

In this example we use FilterIterator to filter out data while traversing through
a collection.

<?php
class GenderFilter extends FilterIterator
{
 private $GenderFilter;

 public function __construct(Iterator $it, $gender="F")
 {
 parent::__construct($it);
 $this->GenderFilter = $gender;
 }

 //your key point to implement filter
 public function accept()
 {
 $person = $this->getInnerIterator()->current();

 if($person['sex'] == $this->GenderFilter)
 {
 return TRUE;
 }
 return FALSE;
 }
}

$arr = array(

Chapter 6

[157]

 array("name"=>"John Abraham", "sex"=>"M", "age"=>27),
 array("name"=>"Lily Bernard", "sex"=>"F", "age"=>37),
 array("name"=>"Ayesha Siddika", "sex"=>"F", "age"=>26),
 array("name"=>"Afif", "sex"=>"M", "age"=>2)
);

$persons = new ArrayObject($arr);

$iterator = new GenderFilter($persons->getIterator());
foreach($iterator as $person)
{
 echo $person['name'] . "\n";
}

echo str_repeat("-",30)."\n";

$persons = new ArrayObject($arr);

$iterator = new GenderFilter($persons->getIterator() ,"M");
foreach($iterator as $person)
{
 echo $person['name'] . "\n";
}

?>

If you run the code, you will get the following result:

Lily Bernard
Ayesha Siddika

John Abraham
Afif

I'm sure you will agree that this is quite interesting, however did you get the catch?
This is filtered by the following entry point:

public function accept()
 {
 $person = $this->getInnerIterator()->current();
 if($person['sex'] == $this->GenderFilter)
 {
 return TRUE;
 }
 return FALSE;
 }
}

Standard PHP Library

[158]

LimitIterator
What if you want to define the start point from where your iteration will start
and also define the times you want to iterate? This is made possible using
LimitIterator.

LimitIterator takes three parameters while constructing. The first one is a regular
Iterator, the second one is the starting offset, and the third one is the number of times
that it will iterate. Take a look at the following example:

<?
$arr = array(
 array("name"=>"John Abraham", "sex"=>"M", "age"=>27),
 array("name"=>"Lily Bernard", "sex"=>"F", "age"=>37),
 array("name"=>"Ayesha Siddika", "sex"=>"F", "age"=>26),
 array("name"=>"Afif", "sex"=>"M", "age"=>2)
);

$persons = new ArrayObject($arr);

$LI = new LimitIterator($persons->getIterator(),1,2);
foreach ($LI as $person) {
 echo $person['name']."\n";
}
?>

And the output is:

Lily Bernard
Ayesha Siddika

NoRewindIterator
This is another Iterator in which you can't invoke the rewind method. That means it
is a forward-only Iterator, which can read a collection only once. Take a look at the
structure; if you execute the following code you will get the methods supported by
this Iterator:

<?
print_r(get_class_methods(NoRewindIterator));
 ��� //you can also use refelection API as before to see the methods.
?>

Chapter 6

[159]

The output would be the methods, as seen below:

Array
(
 [0] => __construct
 [1] => rewind
 [2] => valid
 [3] => key
 [4] => current
 [5] => next
 [6] => getInnerIterator
)

Surprisingly, it has no rewind method, but you can see it, can't you? Well, that
method has no implementation, it is empty. It is there as it implements the Iterator
interface, but there is no implementation of that function, so you can't rewind.

<?
$arr = array(
 array("name"=>"John Abraham", "sex"=>"M", "age"=>27),
 array("name"=>"Lily Bernard", "sex"=>"F", "age"=>37),
 array("name"=>"Ayesha Siddika", "sex"=>"F", "age"=>26),
 array("name"=>"Afif", "sex"=>"M", "age"=>2)
);

$persons = new ArrayObject($arr);

$LI = new NoRewindIterator($persons->getIterator());
foreach ($LI as $person) {
 echo $person['name']."\n";

 $LI->rewind();
}
?>

If the rewind() method works, this code will be an endless loop. But in practical, it
displays the output as shown below:

John Abraham
Lily Bernard
Ayesha Siddika
Afif

SeekableIterator
This is an interface introduced in SPL, which many Iterator classes actually
implement internally. If this interface is implemented, you can perform seek()
operation inside this array.

Standard PHP Library

[160]

Let's take a look at the following example where we implement SeekableIterator
to provide a searching facility over a collection:

<?
$arr = array(
 array("name"=>"John Abraham", "sex"=>"M", "age"=>27),
 array("name"=>"Lily Bernard", "sex"=>"F", "age"=>37),
 array("name"=>"Ayesha Siddika", "sex"=>"F", "age"=>26),
 array("name"=>"Afif", "sex"=>"M", "age"=>2)
);

$persons = new ArrayObject($arr);

$it = $persons->getIterator();
$it->seek(2);

while ($it->valid())
{
 print_r($it->current());
 $it->next();
}
?>

The output is:

Array
(
 [name] => Ayesha Siddika
 [sex] => F
 [age] => 26
)
Array
(
 [name] => Afif
 [sex] => M
 [age] => 2
)

RecursiveIterator
This is another interface introduced by SPL for easy recursion over nested collections.
By implementing this interface and using it with RecursiveIteratorIterator,����� you
can easily traverse through nested collections.

Chapter 6

[161]

If you implement RecursiveIterator, you have to apply two methods, one is
hasChildren(), ��� which must determine whether the current object is an array or
not (and that means if it has children or not) and the second one is getChildren(),
which must return an instance of the same class over the collection. That's it. To
understand the bigger picture, take a look at the following example:

<?
$arr = array(
 "john"=>array("name"=>"John Abraham", "sex"=>"M", "age"=>27),
 "lily"=>array("name"=>"Lily Bernard", "sex"=>"F", "age"=>37),
 "ayesha"=>array("name"=>"Ayesha Siddika", "sex"=>"F", "age"=>26),
 "afif"=>array("name"=>"Afif", "sex"=>"M", "age"=>2)
);

class MyRecursiveIterator extends ArrayIterator implements
 RecursiveIterator
{
 public function hasChildren()
 {
 return is_array($this->current());
 }

 public function getChildren()
 {
 return new MyRecursiveIterator($this->current());
 }
}

$persons = new ArrayObject($arr);
$MRI = new RecursiveIteratorIterator(new MyRecursiveIterator($persons
));
foreach ($MRI as $key=>$person)
echo $key." : ".$person."\n";
?>

The output is:

name : John Abraham
sex : M
age : 27
name : Lily Bernard
sex : F
age : 37
name : Ayesha Siddika
sex : F
age : 26
name : Afif
sex : M
age : 2

Standard PHP Library

[162]

SPLFileObject
This is another fantastic object introduced in SPL for basic file operations. You can
iterate through the content of the file in a more elegant way using this object. In
SPLFileObject,������������������������������������� the following methods are supported:

Array
(
 [0] => __construct
 [1] => getFilename
 [2] => rewind
 [3] => eof
 [4] => valid
 [5] => fgets
 [6] => fgetcsv
 [7] => flock
 [8] => fflush
 [9] => ftell
 [10] => fseek
 [11] => fgetc
 [12] => fpassthru
 [13] => fgetss
 [14] => fscanf
 [15] => fwrite
 [16] => fstat
 [17] => ftruncate
 [18] => current
 [19] => key
 [20] => next
 [21] => setFlags
 [22] => getFlags
 [23] => setMaxLineLen
 [24] => getMaxLineLen
 [25] => hasChildren
 [26] => getChildren
 [27] => seek
 [28] => getCurrentLine
 [29] => __toString
)

If you carefully look into it, you will find that general file functions in PHP are
implemented in this object, which gives you more flexibility to work with.

Chapter 6

[163]

In the following example we will discuss how to use SPLFileObject:

<?
$file = new SplFileObject("c:\\lines.txt");

foreach($file as $line) {
 echo $line;
}

?>

Therefore, it works in the same was as an Iterator, you can rewind, seek, and perform
other general tasks. There are also some interesting functions like getMaxLineLen,
fstat, hasChildren, getChildren etc.

Using SPLFileObject you can retrieve remote files too.

SPLFileInfo
This is another object introduced by SPL, which helps you to retrieve file information
of any specific file. Let's have a look at the structure first:

Array
(
 [0] => __construct
 [1] => getPath
 [2] => getFilename
 [3] => getPathname
 [4] => getPerms
 [5] => getInode
 [6] => getSize
 [7] => getOwner
 [8] => getGroup
 [9] => getATime
 [10] => getMTime
 [11] => getCTime
 [12] => getType
 [13] => isWritable
 [14] => isReadable
 [15] => isExecutable
 [16] => isFile
 [17] => isDir
 [18] => isLink
 [19] => getFileInfo
 [20] => getPathInfo
 [21] => openFile

Standard PHP Library

[164]

 [22] => setFileClass
 [23] => setInfoClass
 [24] => __toString
)

You can use SPLFileInfo to open any file. However, what is more interesting is that
it supports overloading the opening of a file. You can supply your open file manager
class to it and it will be invoked while opening a file.

Let's take a look at the following example.

<?php

class CustomFO extends SplFileObject
{
 private $i=1;
 public function current()
 {

 return $this->i++ . ": " .
 htmlspecialchars($this->getCurrentLine())."";
 }
}
$SFI= new SplFileInfo("splfileinfo2.php");

$SFI->setFileClass("CustomFO");
$file = $SFI->openFile();
echo "<pre>";
foreach($file as $line)
{
 echo $line;
}

?>

This example will output the following:

1:
2: <?php
3:
4: class CustomFO extends SplFileObject
 {
5: private $i=1;
6: public function current()
 {
7:
8: return $this->i++ . ": " .
 htmlspecialchars($this->getCurrentLine())."";
9: }

Chapter 6

[165]

10: }
11: $SFI= new SplFileInfo("splfileinfo2.php");
12:
13: $SFI->setFileClass("CustomFO");
14: $file = $SFI->openFile();
15: echo "<pre>";
16: foreach($file as $line)
 {
17: 	 echo $line;
18: }
19:
20: ?>
21:
22:

SPLObjectStorage
Beside Directory, File Objects and Iterators, SPL also introduced another cool
object which can store any object inside it with special facilities. This object is called
SPLObjectStorage. We will understand this using the example later on in this chapter.

SPLObjectStorage can store any object in it. When you change the main object, the
object that is stored inside the SPLObjectStorage will also be changed. If you try to
add a specific object more than once, it won't add actually. You can also delete the
object from the storage any time.

Besides this, SPLObjectStorage provides the facility to iterate through a collection
of stored objects. Let's take a look at the following example, which demonstrates the
use of SPLObjectStorage:

<?
$os = new SplObjectStorage();

$person = new stdClass();// a standard object
$person->name = "Its not a name";
$person->age = "100";

$os->attach($person); //attached in the storage

foreach ($os as $object)
{
 print_r($object);
 echo "\n";
}

$person->name = "New Name"; //change the name

echo str_repeat("-",30)."\n"; //just a format code

Standard PHP Library

[166]

foreach ($os as $object)
{
 print_r($object); //you see that it changes the original object
 echo "\n";
}

$person2 = new stdClass();
$person2->name = "Another Person";
$person2->age = "80";

$os->attach($person2);

echo str_repeat("-",30)."\n";

foreach ($os as $object)
{
 print_r($object);
 echo "\n";
}

echo "\n".$os->contains($person);//seek

$os->rewind();
echo "\n".$os->current()->name;

$os->detach($person); //remove the object from collection

echo "\n".str_repeat("-",30)."\n";

foreach ($os as $object)
{
 print_r($object);
 echo "\n";
}

?>

The output is as follows:

stdClass Object
(
 [name] => It's not a name
 [age] => 100
)

stdClass Object
(
 [name] => New Name
 [age] => 100
)

stdClass Object

Chapter 6

[167]

(
 [name] => New Name
 [age] => 100
)

stdClass Object
(
 [name] => Another Person
 [age] => 80
)

1
New Name

stdClass Object
(
 [name] => Another Person
 [age] => 80
)

Summary
After introducing PHP5 to the world, the PHP team introduced the strong object
oriented programming in PHP to PHP developers. PHP5 comes with a lot of handy
built-in objects amongst which SPL is a fantastic one. It eases programming for many
tasks, which were once quite tough. So SPL introduced many objects that we have
just discussed and learned how to use. As the PHP manual doesn't have updated
and detailed information on all of these classes, you can count this chapter as a good
reference for programming with SPL objects.

Database in an OOP Way
Besides regular improvements in the OOP, PHP5 also introduces many new libraries
to seamlessly work with database in an OOP way. These libraries provide you with
improved performance, sometimes improved security features, and of course a
whole lot of methods to interact with new features provided by the database server.

In this chapter we will discuss MySQL improved API, which is known as MySQLi.
Take a look at basic PDO (well, not detailed because PDO is so huge that it is
possible to write a whole book just on it), ADOdb, and PEAR::MDB2. In the mean
time we will also take a look at Active Record pattern in PHP using ADOdb's active.
One thing to note here is that we are not focusing on how to do general database
manipulations. We will only focus on some specific topics which are interesting for
PHP developers who are doing database programming in an OO way.

Introduction to MySQLi
MySQLi is an improved extension introduced in PHP5 to work with advanced
MySQL features like prepared statements and stored procedures. From a
performance point of view, MySQLi is much better than a MySQL extension. Also
this extension offers completely object oriented interfaces to work with a MySQL
database which was not available before PHP5. But keep in mind that if your MySQL
version is at least 4.1.3 or above, you will get it working.

So what are the major improvements? Let's have a look first:

Improved performance over MySQL extensions
Flexible OO and Non OO interface
Advantage over new MySQL objects

•

•

•

Database in an OOP Way

[170]

Ability to create compressed connections
Ability to connect over SSL
Support for Prepared Statements
Support for Stored Procedure (SP)
Support for better replication and transaction

We will look into some of these features in the following examples. But of course we
are not going for anything introductory to MySQL, because that is out of scope for
this book. We will just show you how to use OO interface using MySQLi and how to
use some of these advanced features.

Connecting to MySQL in an OO Way
Remember those old days when you had to use procedural function call to
connect to MySQL, even from your objects. Those days are over. Now you can take
advantage of complete OO interface of MySQLi to talk to MySQL (well, there are a
few procedural methods, but overall it's completely OO). Take a look at the
following example:

<?
$mysqli = new mysqli("localhost", "user", "password", "dbname");
if (mysqli_connect_errno()) {
 echo("Failed to connect, the error message is : ".
 mysqli_connect_error());
 exit();
}
?>

If the connection fails, you may get an error message like this:

Failed to connect, the error message is : Access denied for user
 'my_user'@'localhost' (using password: YES)

Selecting Data in an OO Way
Let's see how to select data from a table in an OO way using MySQLi API.

<?php
$mysqli = new mysqli("localhost", "un" "pwd", "db");
if (mysqli_connect_errno()) {
 echo("Failed to connect, the error message is : ".
 mysqli_connect_error());
 exit();

•

•

•

•

•

Chapter 7

[171]

}
/* close connection */
$result = $�������������������������������������� mysqli�������������������������������� ->query("select * from users");
while ($data = $result->fetch_object())
{
 echo $data->name." : '".$data->pass."' \n";
}
?>

The output is as following:

robin : 'no password'
tipu : 'bolajabena'

Please note that it is not good practice to store users' passwords in
plain text in your database without encrypting them in some way. The
best way is to store just the hash of their passwords using some hash
routines like md5()

Updating Data in an OO Way
There is no special deal with it. You can update your data as you previously did
with MySQL extension. But for the sake of OO style, we are showing an example of
how you can do that with mysqli_query() function as shown in the above example.
Instantiate an instance of MySQLi object and then run the query.

Prepared Statements
Here we are in a really interesting section which has been introduced for the first
time in PHP OO using MySQLi extension. The prepared statements are introduced
in MySQL 5.0 versions (dynamic SQL) for better security and flexibility. It has a great
performance boost over the regular one.

So what is actually a prepared statement? A prepared statement is nothing but
a regular query that is pre-compiled by the MySQL sever that could be invoked
later. Prepared statements reduce the chances of SQL injection and offers greater
performance over the general non-prepared queries, as it need not perform different
compilation steps at the run time.(It is already compiled, remember?)

The following are advantages of using prepared statements:

Better Performance
Prevention of SQL injection
Saving memory while handling blobs

•
•
•

Database in an OOP Way

[172]

But there are drawbacks too!

There is no performance boost if you use prepared statements for a
single call.
There is no query cache for using prepared statements.
Chance of memory leak if statements are not closed explicitly.
Not all statements can be used as a prepared statement.

Prepared statements can accept parameters at run time in the same order you
specify them whilst preparing the query. In this section we will learn about creating
prepared statements, passing values to them, and fetching results.

Basic Prepared Statements
Let's prepare a statement using PHP's native MySQLi extension. In the following
example we will make a prepared statement, execute it, and fetch the result from it:

<?
$mysqli = new mysqli("localhost", "un" "pwd", "db");
if (mysqli_connect_errno()) {
 echo("Failed to connect, the error message is : ".
 mysqli_connect_error());
 exit();
}
$stmt = $mysqli ->prepare("select name, pass from users
 order by name");

$stmt->execute();
//$name=null;
$stmt->bind_result($name, $pass);

while ($stmt->fetch())
{
 echo $name."
";
}
?>

So what did we actually do in the above example?

1.	 We prepared the statement using the following code:
 $stmt = $mysqli->prepare("select name, pass from users order
 by name");

•

•

•

•

Chapter 7

[173]

2.	 Then we executed it:
	 $stmt->execute();

3.	 Then we bound two variables with it, as there are two variables in our query:
	 $stmt->bind_result($name, $pass);

4.	 Finally we fetched the result using:
	 $stmt->fetch()

Whenever we called fetch(), the bound variables are populated with values. So we
can now use them.

Prepared Statements with Variables
The advantage of prepared statements is that you can use variables with queries.
First you can prepare the query by placing a ? sign at the appropriate place, and then
you can pass the value after preparing it. Let's have a look at the following example:

<?
$mysqli = new mysqli("localhost", "un" "pwd", "db");
if (mysqli_connect_errno()) {
 echo("Failed to connect, the error message is : ".
 mysqli_connect_error());
 exit();
}
$stmt = $mysqli->prepare("select name, pass from users
 where name=?");
$stmt->bind_param("s",$name); //binding name as string
$name = "tipu";
$stmt->execute();
$name=null;
$stmt->bind_result($name, $pass);

while ($r = $stmt->fetch())
{
 echo $pass."
";
}
?>

Here we prepare the query "select name, pass from users where name=?"
where the name is definitely a string type value. As we bind parameters in the
previous example for the result using bind_results(), here we have to bind
parameters using bind_params() function. Besides that, we need to supply the data
type of the parameters bound.

Database in an OOP Way

[174]

MySQL prepared statements support four types of parameters:

i, means the corresponding variable has type integer
d, means the corresponding variable has type double
s, means the corresponding variable has type string
b, means the corresponding variable is a blob and will be sent in packets

As our parameter is a string, we used the following line to bind the parameter:

$stmt->bind_param("s",$name);

After binding the variable, now we set the value to $name and call the execute()
function�� . After that we fetch the values as before.

Using BLOB with Prepared Statements
Prepared statements support handling BLOB or Binary Large Objects efficiently. If
you manage BLOB with prepared statements, it will save you from greater memory
consumption by sending the data as packets. Let's see how we can store BLOB (in
this case, an image file).

Prepared statements support sending data in chunks using the send_long_data()
function. In the following example we will store the image using this function,
though you can send them as usual, unless your data exceeds the limit defined by
the max_allowed_packet ������������������������������ MySQL configuration variable.

<?
$mysqli = new mysqli("localhost", "un" "pwd", "db");
if (mysqli_connect_errno()) {
 echo("Failed to connect, the error message is : ".
 mysqli_connect_error());
 exit();
}
$stmt = $mysqli->prepare("insert into images value(NULL,?)");
$stmt->bind_param("b",$image);
$image = file_get_contents("signature.jpg");//fetching content of
//a file
$stmt->send_long_data(0,$image);
$stmt->execute();
?>

•

•

•

•

Chapter 7

[175]

Our table schema is as shown below:

CREATE TABLE 'images' (
 'id' int(11) NOT NULL auto_increment,
 'image' mediumblob,
 PRIMARY KEY ('id')
) ENGINE=MyISAM;

We choose medium BLOB as our data type because blob can store only 65KB of data,
where as medium BLOB can store more than 16MB, and long blob can store more
than 4GB data in it.

Now we will restore this BLOB data using the image again in prepared statement:

<?
$mysqli = new mysqli("localhost", "username", "password", "test");
if (mysqli_connect_errno()) {
 echo("Failed to connect, the error message is : ".
 mysqli_connect_error());
 exit();
}
$stmt = $mysqli->prepare("select image from images where id=?");
$stmt->bind_param("i",$id);
$id = $_GET['id'];
$stmt->execute();
$image=NULL;
$stmt->bind_result($image);
$stmt->fetch();
header("Content-type: image/jpeg");
echo $image;
?>

Executing Stored Procedure with MySQLi and
PHP
Stored procedure is another new addition to MySQL 5 which reduces the need for
client‑side queries to a great extent. Using MySQLi extension, you can execute stored
procedures in MySQL. We are not going to discuss stored procedures as that is out
of scope for this book. There are several articles available in the Internet that will
help you in writing stored procedures in MySQL. You can read this awesome one
for getting a basic idea about advanced MySQL features: http://dev.mysql.com/
tech-resources/articles/mysql-storedprocedures.pdf

Database in an OOP Way

[176]

Let's create a small stored procedure and run it using PHP. This stored procedure
can take an input and insert that record in a table:

DELIMITER $$;

DROP PROCEDURE IF EXISTS 'test'.'sp_create_user'$$

CREATE PROCEDURE 'sp_create_user'(IN uname VARCHAR(50))
BEGIN
INSERT INTO users(id,name) VALUES (null, uname);
END$$

DELIMITER ;$$

If you run this stored procedure in your database (using MySQL query builder or
anything) the sp_create_user procedure will be created.

You can manually execute any stored, procedure from MySQL client
using "Execute" command. For example to execute the above stored
procedure you have to use call sp_create_user('username').

Now we will run this stored procedure using PHP code. Let's see.

<?
$mysqli = new mysqli("localhost", "username", "password", "test");
if (mysqli_connect_errno()) {
 echo("Failed to connect, the error message is : ".
 mysqli_connect_error());
 exit();
}

$mysqli->query("call sp_create_user('hasin')");
?>

That's it!

PDO
Another new extension added in PHP 5.1 for managing databases is PDO (although
PDO was available with PHP 5.0 as a PECL Extension). This comes with a set of
drivers for working with different database engines. PDO stands for PHP Data
Objects. It is developed to provide a lightweight interface for different database
engines. And one of the very good features of PDO is that it works like a Data Access
Layer so that you can use the same function names for all database engines.

Chapter 7

[177]

You can connect to different databases using DSN (Data Source Name) strings. In the
following example we will connect to a MySQL databases and retrieve some data.

<?php
$dsn = 'mysql:dbname=test;host=localhost;';
$user = 'user';
$password = 'password';

try {
 $pdo = new PDO($dsn, $user, $password);
}
catch (PDOException $e)
{
 echo 'Connection failed: ' . $e->getMessage();
}

$result = $pdo->query("select * from users");
foreach ($result as $row)
echo $row['name'];

?>

That's fairly hassle free, right? It just connects to MySQL server with the DSN
(here it connects to test database) and then executes the query. And Finally we
display the result.

So what would this be like if we connected to a SQLite database?

<?php
$dsn = 'sqlite:abcd.db';

try
{
 $pdo = new PDO($dsn);
 $pdo->exec("CREATE TABLE users (id int, name VARCHAR)");
 $pdo->exec("DELETE FROM users");
 $pdo->exec("INSERT INTO users (name) VALUES('afif')");
 $pdo->exec("INSERT INTO users (name) VALUES('tipu')");
 $pdo->exec("INSERT INTO users (name) VALUES('robin')");
}
catch (PDOException $e) {
 echo 'Connection failed: ' . $e->getMessage();
}

$result = $pdo->query("select * from users");
foreach ($result as $row)
echo $row['name'];

?>

See there is no change in the code except the DSN.

Database in an OOP Way

[178]

You can also create a SQLite database in memory and perform the operation there.
Let's see the following code:

<?php
$dsn = 'sqlite::memory:';

try {
 $pdo = new PDO($dsn);
 $pdo->exec("CREATE TABLE users (id int, name VARCHAR)");
 $pdo->exec("DELETE FROM users");
 $pdo->exec("INSERT INTO users (name) VALUES('afif')");
 $pdo->exec("INSERT INTO users (name) VALUES('tipu')");
 $pdo->exec("INSERT INTO users (name) VALUES('robin')");
}
catch (PDOException $e)
{
 echo 'Connection failed: ' . $e->getMessage();
}

$result = $pdo->query("select * from users");
foreach ($result as $row)
echo $row['name'];

?>

We just changed the DSN here.

DSN Settings for Different Databases Engines
Let us take a look at the DSN settings for different database engines to connect
with PDO. Supported database drivers are as shown below:

PDO_DBLIB for FreeTDS/Microsoft SQL Server/Sybase
PDO_FIREBIRD for Firebird/Interbase 6
PDO_INFORMIX for IBM Informix Dynamic Server
PDO_MYSQL for MySQL 3.x/4.x/5.x
PDO_OCI for Oracle Call Interface
PDO_ODBC for ODBC v3 (IBM DB2, unixODBC and win32 ODBC)
PDO_PGSQL for PostgreSQL
PDO_SQLITE for SQLite 3 and SQLite 2

•

•

•

•

•

•

•

•

Chapter 7

[179]

Let's have a look at these sample driver-specific DSN settings:

mssql:host=localhost;dbname=testdb
sybase:host=localhost;dbname=testdb
dblib:host=localhost;dbname=testdb
firebird:User=john;Password=mypass;Database=DATABASE.GDE;
 DataSource=localhost;Port=3050
informix:host=host.domain.com; service=9800;database=common_db;
 server=ids_server; protocol=onsoctcp;EnableScrollableCursors=1

mysql:host=localhost;port=3307;dbname=testdb
mysql:unix_socket=/tmp/mysql.sock;dbname=testdb

oci:mydb
oci:dbname=//localhost:1521/mydb

odbc:testdb
odbc:DRIVER={IBM DB2 ODBC
 DRIVER};HOSTNAME=localhost;PORT=50000;DATABASE=SAMPLE;PROTOCOL=TCPIP;
 UID=db2inst1;PWD=ibmdb2;
odbc:Driver={Microsoft Access Driver
 (*.mdb)};Dbq=C:\\db.mdb;Uid=Admin

pgsql:dbname=example;user=nobody;password=change_me;host=localhost;
 port=5432

sqlite:/opt/databases/mydb.sq3
sqlite::memory:
sqlite2:/opt/databases/mydb.sq2
sqlite2::memory:

Using Prepared Statements with PDO
Using PDO you can run prepared statements against your database. The benefits are
the same as before. It increases the performance for multiple calls by parsing and
caching the server-side query and it also eliminates the chance of SQL injection.

PDO prepared statements can take named variables, unlike what we've seen in the
examples of MySQLi.

Let's take a look at the following example to understand this:

<?php
$dsn = 'mysql:dbname=test;host=localhost;';
$user = 'username';
$password = 'password';

try {
 $pdo = new PDO($dsn, $user, $password);

Database in an OOP Way

[180]

} catch (PDOException $e)
{
 echo 'Connection failed: ' . $e->getMessage();
}

$stmt = $pdo->prepare("select id from users where name=:name");
$name = "tipu";
$stmt->bindParam(":name",$name, PDO::PARAM_STR);
$stmt->execute();

$stmt->bindColumn("id",$id);
$stmt->fetch();
echo $id;
?>

But you can also run the example like this:

<?php
$dsn = 'mysql:dbname=test;host=localhost;';
$user = 'username';
$password = 'password';

try {
 $pdo = new PDO($dsn, $user, $password);
}
catch (PDOException $e)
{
 echo 'Connection failed: ' . $e->getMessage();
}

$stmt = $pdo->prepare("select id from users where name=?");
$name = "tipu";
$stmt->bindParam(1,$name, PDO::PARAM_STR);
$stmt->execute();

$stmt->bindColumn("id",$id);
$stmt->fetch();
echo $id;
?>

Instead of calling bindParam(), you can use bindValues() like the following one:

$stmt->bindValue(1,"tipu", PDO::PARAM_STR);

Calling Stored Procedures
PDO provides an easy way to call stored procedures. All you have to do is run
"CALL SPNAME(PARAMS)" via exec() method:

$pdo->exec("CALL sp_create_user('david')");

Chapter 7

[181]

Other Interesting Functions
There are several other interesting functions available in PDO. For example, take a
look at the list below:

fetchAll()

fetchColumn()

rowCount()

setFetchMode()

The fetchAll() function can fetch all records from a result set. Let's have a look at
the following example:

$stmt = $pdo->prepare("select * from users");
$stmt->execute();
echo "<pre>";
print_r($stmt->fetchAll());
echo "</pre>";

The fetchColumn() function helps to select data from any specific column after
executing the statement. Let's take a look:

$stmt = $pdo->prepare("select * from users");
$stmt->execute();
while ($name = $stmt->fetchColumn(1))
{
 echo $name."
";
}

rowCount() returns the number of affected rows after performing any UPDATE or
DELETE query. But you must remember that it returns the number of affected rows
by the latest executed query.

$stmt = $pdo->prepare("DELETE from users WHERE name='Anonymous'");
$stmt->execute();
echo $stmt->rowCount();

setFetchMode() helps you to set the fetch mode of PDO prepared statements. The
available values are:

PDO::FETCH_NUM: Fetch results as a numerically indexed array
PDO::FETCH_ASSOC: Fetch rows as index by column names as keys
PDO::FETCH_BOTH: Fetch as both of the above
PDO::FETCH_OBJ: Fetch the rows as objects where column names are set
as properties.

•

•

•

•

•

•

•

•

Database in an OOP Way

[182]

Introduction to Data Abstraction Layers
Data Abstraction Layers (DALs) are developed to provide unified interfaces to work
with every database engine. It provides similar API to work with every database
engine independently. As the function names are similar for all platforms, they are
easier to work with, easier to remember, and of course make your code portable. To
make you understand the necessity of DAL, let me explain a common scenario.

Suppose Team Y gets a big project. Their client says that they will use MySQL. So
team Y develops the application and when the time comes to deliver, the client
requests the team to give support for PostgreSQL. They will pay for this change but
they require the change early.

Team Y had designed the application using all native MySQL functions. So what will
Team Y do? Will they rewrite everything to give support for PostgreSQL? Well, that
is the only way they have to. But what will happen if they need to give support for
MSSQL in the near future? Another rewrite? Can you imagine the cost of refactoring
each and every time?

To save from these disasters, here comes the need for DAL where the code will
remain the same and it could be changed to support any DB at any time without any
major change.

There are many popular libraries to implement DAL for PHP. To name some of
those, ADOdb and PEAR::MDB2 are very popular. PEAR::DB was very popular
but its development has been discontinued (http://blog.agoraproduction.com/
index.php?/archives/42-PEARDB-is-DEPRECATED,-GOT-IT.html#extended).

In this section we will discuss PEAR::MDB2 and ADOdb. We will see the
basic database operations using it and learn how to install these libraries for
working around.

ADOdb
ADOdb is a nice and popular data abstraction layer developed by John Lim and
released under LGPL. This is one of the very best data abstraction layers for PHP.
You can get the latest version of ADOdb from http://adodb.sourceforge.net.

Installing ADOdb
There is no install of ADodb as such. It is a set of classes and regular scripts. So all
you have to do is just extract the archive in a location from where you can include
the script. Let's take a look at the following image to understand the directory
structure after extracting:

Chapter 7

[183]

Connecting to Different Databases
Like PDO, you can connect to different database drivers using ADOdb. DSN is
different from PDO. Let's take a look at the supported database list and their DSN
strings.

ADOdb supports a common DSN format, like this:

$driver://$username:$password@hostname/$database?options[=value]

So what are the available drivers supported by ADOdb? Let's take a look below. This
is a list taken from the ADOdb manual for your understanding:

Name Tested Database Prerequisites Operating
Systems

access B Microsoft Access/Jet. You need to create
an ODBC DSN.

ODBC Windows
only

ado B Generic ADO, not tuned for specific
databases. Allows DSN-less connections.
For best performance, use an OLEDB
provider. This is the base class for all
ado drivers.
You can set $db->codePage before
connecting.

ADO or
OLEDB
provider

Windows
only

ado_access B Microsoft Access/Jet using ADO.
Allows DSN‑less connections. For best
performance, use an OLEDB provider.

ADO or
OLEDB
provider

Windows
only

Database in an OOP Way

[184]

Name Tested Database Prerequisites Operating
Systems

ado_mssql B Microsoft SQL Server using ADO.
Allows DSN-less connections. For best
performance, use an OLEDB provider.

ADO or
OLEDB
provider

Windows
only

db2 C Uses PHP's db2-specific extension for
better performance.

DB2 CLI/
ODBC interface

Unix and
Windows.
Requires
IBM DB2
Universal
Database
client

odbc_db2 C Connects to DB2 using generic ODBC
extension.

DB2 CLI/
ODBC interface

Unix and
Windows.
Unix install
hints. I have
had reports
that the
$host and
$database
params
have to be
reversed in
Connect()
when using
the CLI
interface

vfp A Microsoft Visual FoxPro. You need to
create an ODBC DSN.

ODBC Windows
only

fbsql C FrontBase. ? Unix and
Windows

ibase B Interbase 6 or earlier. Some users report
you might need to use this
$db->PConnect('localhost:c:/
ibase/employee.gdb', "sysdba",
"masterkey") to connect. Lacks
Affected_Rows currently.
You can set $db->role, $db->dialect,
$db->buffers and $db->charSet
before connecting.

Interbase client Unix and
Windows

firebird B Firebird version of interbase. Interbase client Unix and
Windows

borland_
ibase

C Borland version of Interbase 6.5 or later.
Very sad that the forks differ.

Interbase client Unix and
Windows

Chapter 7

[185]

Name Tested Database Prerequisites Operating
Systems

informix C Generic informix driver. Use this if you are
using Informix 7.3 or later.

Informix client Unix and
Windows

informix72 C Informix databases before Informix 7.3
that do no support SELECT FIRST.

Informix client Unix and
Windows

ldap C LDAP driver. See this example for usage
information.

LDAP
extension

?

mssql A Microsoft SQL Server 7 and later. Works
with Microsoft SQL Server 2000 also. Note
that date formating is problematic with
this driver. For example, the PHP MSSQL
extension does not return the seconds for
datetime!

Mssql client Unix and
Windows.
Unix install
howto and
another one.

mssqlpo A Portable mssql driver. Identical to
above mssql driver, except that '||', the
concatenation operator, is converted to '+'.
Useful for porting scripts from most other
sql variants that use ||.

Mssql client Unix and
Windows.
Unix install
howto.

mysql A MySQL without transaction support. You
can also set $db->clientFlags before
connecting.

MySQL client Unix and
Windows

mysqli B Supports the newer PHP5 MySQL API. MySQL 4.1+
client

Unix and
Windows

mysqlt or
maxsql

A MySQL with transaction support. We
recommend using || as the concat
operator for best portability. This can be
done by running MySQL using:
mysqld --ansi or mysqld --sql-
mode=PIPES_AS_CONCAT

MySQL client Unix and
Windows

oci8 A Oracle 8/9. Has more functionality than
oracle driver (eg. Affected_Rows).
You might have to putenv('ORACLE_
HOME=...') before Connect/PConnect.
There are 2 ways of connecting: with
server IP and service name:
PConnect('serverip:1521','scott
','tiger','service')
or using an entry in TNSNAMES.ORA or
ONAMES or HOSTNAMES:
PConnect(false, 'scott',
'tiger', $oraname).
Since 2.31, we support Oracle REF cursor
variables directly (see ExecuteCursor).

Oracle client Unix and
Windows

Database in an OOP Way

[186]

Name Tested Database Prerequisites Operating
Systems

oci805 C Supports reduced Oracle functionality
for Oracle 8.0.5. SelectLimit is not as
efficient as in the oci8 or oci8po drivers.

Oracle client Unix and
Windows

oci8po A Oracle 8/9 portable driver. This is nearly
identical with the oci8 driver except (a)
bind variables in Prepare() use the ?
convention, instead of :bindvar, (b)
field names use the more common PHP
convention of lowercase names.

Use this driver if porting from other
databases is important. Otherwise the oci8
driver offers better performance.

Oracle client Unix and
Windows

odbc A Generic ODBC, not tuned for specific
databases. To connect, use
PConnect('DSN','user','pwd').
This is the base class for all ODBC derived
drivers.

ODBC Unix and
Windows.
Unix hints

odbc_mssql A Uses ODBC to connect to MSSQL ODBC Unix and
Windows

odbc_oracle C Uses ODBC to connect to Oracle ODBC Unix and
Windows

odbtp B Generic odbtp driver. Odbtp is a software
for accessing Windows ODBC data sources
from other operating systems.

odbtp Unix and
Windows

odbtp_
unicode

C Odtbp with unicode support odbtp Unix and
Windows

oracle C Implements old Oracle 7 client API.
Use oci8 driver if possible for better
performance.

Oracle client Unix and
Windows

netezza C Netezza driver. Netezza is based on
PostGREs code-base.

? ?

pdo C Generic PDO driver for PHP5. PDO extension
and database
specific drivers

Unix and
Windows

postgres A Generic PostgreSQL driver. Currently
identical to postgres7 driver.

PostgreSQL
client

Unix and
Windows

postgres64 A For PostgreSQL 6.4 and earlier which does
not support LIMIT internally.

PostgreSQL
client

Unix and
Windows

postgres7 A PostgreSQL which supports LIMIT and
other version 7 functionality.

PostgreSQL
client

Unix and
Windows

Chapter 7

[187]

Name Tested Database Prerequisites Operating
Systems

postgres8 A Currently identical to postgres7. PostgreSQL
client

Unix and
Windows

sapdb C SAP DB. Should work reliably as based on
ODBC driver.

SAP ODBC
client

?

sqlanywhere C Sybase SQL Anywhere. Should work
reliably as based on ODBC driver.

SQL
Anywhere
ODBC client

?

sqlite B SQLite. - Unix and
Windows

sqlitepo B Portable SQLite driver. This is because
assoc mode does not work like other
drivers in SQLite. Namely, when selecting
(joining) multiple tables, the table names
are included in the assoc keys in the
"sqlite" driver.

In "sqlitepo" driver, the table names are
stripped from the returned column names.
When this results in a conflict, the first
field get preference.

- Unix and
Windows

sybase C Sybase. Sybase client Unix and
Windows

Basic Database Operations using ADOdb
Remember the directory structure that saw minutes ago? Now we are going to make
use of those scripts. In this section we will learn basic database operation using
ADOdb. Let's connect to MySQL and perform a basic operation:

<?
include("adodb/adodb.inc.php");
$dsn = 'mysql://username:password@localhost/test?persist';
$conn = ADONewConnection($dsn);
$conn->setFetchMode(ADODB_FETCH_ASSOC);
$recordSet = $conn->Execute('select * from users');
if (!$recordSet)
print $conn->ErrorMsg(); //if any error is there
else
while (!$recordSet->EOF) {
 echo $recordSet->fields['name'].'
';
 $recordSet->MoveNext();
}
?>

Database in an OOP Way

[188]

Let's see an alternate connection example:

<?
include("adodb/adodb.inc.php");
$conn =ADONewConnection('mysql');//just the RDBMS type
$conn->connect("localhost","username","password","test");
//here comes the credentials
?>

Inserting, Deleting, and Updating Records
You can execute any SQL statement using execute() method of ADONewConnection
or ADOConnection object. So nothing is new here. But let's see how can we insert/
delete/update some records and track the success or failure.

<?
include("adodb/adodb.inc.php");
$conn =ADONewConnection('mysql');
$conn->connect("localhost","user","password","test");
$conn->setFetchMode(ADODB_FETCH_ASSOC);
$res = $conn->execute("insert into users(name) values('test')");
echo $conn->Affected_Rows();
?>

So, Affected_Rows gives you the result for these scenarios.

Insert Id
If you are looking to find the latest inserted ID, you can use the
Insert_Id() function.

Executing Prepared Statements
ADOdb provides easy API to create and execute prepared statements. Let's take a
look at the following example to understand how that works:

<?
include("adodb/adodb.inc.php");
$conn =ADONewConnection('mysql');
$conn->connect("localhost","user","password","test") ;
$conn->setFetchMode(ADODB_FETCH_ASSOC);
$stmt = $conn->Prepare('insert into users(name) values (?)');

$conn->Execute($stmt,array((string) "afif"));

echo $conn->Affected_Rows();
?>

Chapter 7

[189]

You can retrieve records in the same way.

MDB2
MDB2 is another popular data abstraction library developed under PEAR by
combining the best features of PEAR::DB and Metabase. It provides very consistent
API, improved performance, and solid development platform over DB and MDB.
MDB2 comes with an excellent set of documentation. In this chapter we surely
cannot cover all the features supported by MDB2 but we will go through the basic
features to make you understand how it works.

Installing MDB2
Installing MDB2 requires a working version of PEAR. So to work with MDB2 you
must have PEAR installed and functioning in your machine. If you don't have PEAR
installed, the following tip will be helpful for you.

Installing PEAR
Go to http://pear.php.net/go-pear ��������������������� and save the page as go-
pear.php in your hard drive. Now apply the command php /path/
to/go-pear.php in your shell or command prompt and follow the
instructions there. If it asks whether you want to install MDB2, say 'Yes'.
Also say Yes, if it wants to modify your php.ini file. Don't worry, it will
just add entries to make PEAR available in your current include path, and
all other settings will remain the same as before. So you are done.

If you have PEAR I installed but not MDB2, then you can install it in a second. Open
your shell or command prompt and apply the following commands:

pear install MDB2

pear install MDB2_Driver_$driver

Where $driver could be anything like SQLite, PgSQL, MySQL, MYSQLi, oci8,
MSSQL, and ibase. So for example, to install MySQL driver you have to apply
the command:

pear install MDB2_Driver_�����mysql

That's it. You are done.

Database in an OOP Way

[190]

Connecting to Database
Using MDB2 you can connect to different database engines. MDB2 also has a
formatted DSN string to connect. The format of that DSN is as shown:

phptype(dbsyntax)://username:password@protocol+hostspec/database?
 option=value

But there are some variations in this DSN. These are listed here:

phptype://username:password@protocol+hostspec:110//usr/db_file.db
phptype://username:password@hostspec/database
phptype://username:password@hostspec
phptype://username@hostspec
phptype://hostspec/database
phptype://hostspec
phptype:///database
phptype:///database?option=value&anotheroption=anothervalue

The supported drivers (PHPtype) are shown here:

fbsql -> FrontBase
ibase -> InterBase / Firebird (requires PHP 5)
mssql -> Microsoft SQL Server (NOT for Sybase. Compile PHP --with-
 mssql)
mysql -> MySQL
mysqli -> MySQL (supports new authentication protocol) (requires
 PHP 5)
oci8 -> Oracle 7/8/9/10
pgsql -> PostgreSQL
querysim -> QuerySim
sqlite -> SQLite 2

Now let's connect to MySQL:

<?php
set_include_path(get_include_path().";".
 "C:/Program Files/PHP/pear;");
require_once 'MDB2.php';

$dsn = 'mysql://user:password@localhost/test';
$options = array('persistent' => true
);

$mdb2 = MDB2::factory($dsn, $options);
if (PEAR::isError($mdb2)) {
 die($mdb2->getMessage());

Chapter 7

[191]

}

// ...

$result = $mdb2->query("select * from users");

while ($row = $result->fetchRow(MDB2_FETCHMODE_ASSOC))
{
	 echo $row['name']."\n";
}

$mdb2->disconnect();
?>

Executing Prepared Statements
You can execute prepared statements using MDB2 easily. MDB2 provides flexible
API for creating and executing prepared statements. In the following example we
will execute two types of prepared statements. One which will just execute some
insert/update/delete queries, and another which will return some data as output.

<?php
set_include_path(get_include_path().";".
 "C:/Program Files/PHP/pear;");
require_once 'MDB2.php';
$dsn = 'mysql://user:password@localhost/test';
$options = array('persistent' => true
);
$mdb2 = MDB2::factory($dsn, $options);
if (PEAR::isError($mdb2)) {
 die($mdb2->getMessage());
}
$stmt = $mdb2->Prepare("insert into users(name)
 values(?)",array("text"),MDB2_PREPARE_MANIP);
//for DML statements, we should use MDB2_PREPARE_MANIP and For
//Reading we should use MDB2_PREPARE_RESULT
echo $stmt->execute("Mohiuddin");

$stmt = $mdb2->Prepare("select name from users where
 id=?",array("integer"),array("text"));
$result = $stmt->execute(11);
if (PEAR::isError($result))
echo $result->getMessage();
while ($row = $result->fetchRow())
{
 echo $row[0];
}
?>

Database in an OOP Way

[192]

Now what if we want to insert in multiple fields? Well for example, if we have
another field like "age" in our table, we need to pass data like this:

$stmt = $mdb2->Prepare("insert into users(name,age)
 values(?)",array("text","integer"),MDB2_PREPARE_MANIP);
echo $stmt->execute("Mohiuddin",2);

Or:

$stmt = $mdb2->Prepare("insert into users(name,age)
 values(?)",array("text","integer"),MDB2_PREPARE_MANIP);
echo $stmt->execute(array("Mohiuddin",2));

So we can also insert multiple rows at once using executeMultiple() method:

$stmt = $mdb2->Prepare("insert into users(name,age) values(?)",
 array("text","integer"),MDB2_PREPARE_MANIP);
echo $stmt->executeMultiple(array(array("Mohiuddin",2),
 array("another",3));

That's it.

Introduction to ActiveRecord
ActiveRecord is a design pattern created to solve the data accessing problem in a
fairly readable manner. Using ActiveRecord design pattern you can manipulate data
like a charm. In this section we will go through the basic features of an ActiveRecord
implementation in PHP.

Let's see how ActiveRecord actually works. For this, we will use ADOdb's active
record implementation. Adodb provides a class named Adodb_Active_Record
devoted to it.

Let's create a table in our database with the following structure:

CREATE TABLE 'users' (
 'id' int(11) NOT NULL auto_increment,
 'name' varchar(250),
 'pass' varchar(32),
 PRIMARY KEY ('id')
) ENGINE=MyISAM;

Chapter 7

[193]

Creating a New Record via ActiveRecord
Now we will create a new user in this table. Have a look at the following code:

<?
include("adodb/adodb.inc.php");
include('adodb/adodb-active-record.inc.php');
$conn =ADONewConnection('mysql');
$conn->connect("localhost","user","password","test") ;

ADODB_Active_Record::setDatabaseAdapter($conn);
class User extends ADODB_Active_Record {}
$user = new User();//a dynamic model to access the user table
$user->name = "Packt";
$user->pass = "Hello";
$user->save();//calling save() will internally save this
 //record in table
?>

ActiveRecord exposes a separate object for every table in your database by which you
can perform different operations. Let's take a look at how we can select some data.

Selecting and Updating Data
We can load and change any record using ActiveRecord easily. Let's have a look at
the following example:

<?
include("adodb/adodb.inc.php");
include('adodb/adodb-active-record.inc.php');
$conn =ADONewConnection('mysql');
$conn->connect("localhost","user","password","test") ;

ADODB_Active_Record::setDatabaseAdapter($conn);
class User extends ADODB_Active_Record {}
$user = new User();
$user->load("id=10");//load the record where the id is 10
echo $user->name;
$user->name= "Afif Mohiuddin";//now update
$user->save();//and save the previously loaded record
?>

So that's fairly easy. When you call the load() method with any expression, the
record will be loaded into the object itself. Then you can make any change and finally
save it. ActiveRecord is extremely charming to work with.

Database in an OOP Way

[194]

Summary
You finished reading a chapter devoted for total DB access using the OOP way.
There are lot other interesting projects like Propel (http://propel.phpdb.org/
trac/) as Object Relational Mapping library for PHP developers, Creole
(http://creole.phpdb.org/trac/) as a DAL, ActiveRecord library from
CodeIgniter framework (http://www.codeigniter.com), and many more. You
have got a large number of resources available to manipulate database using PHP5
and OO style.

In the next chapter we will learn about using XML in PHP. You will be surprised
to find that you can use plain XML files as a lightweight alternative of regular
heavyweight database engines. Until then, happy coding.

Cooking XML with OOP
XML (Extensible Markup Language) is a very important format for storing
multi‑purpose data. It is also known as universal data format, as you can represent
anything and visualize the data properly with the help of a renderer. One of the
biggest advantages of XML is that it can be converted from one form of data into
another easily with the help of XSLT. Also, XML data is highly readable.

One of the great blessings of PHP5 is its excellent support to manipulate XML. PHP5
comes bundled with new XML extensions for processing XML easily. You have a
whole new SimpleXML API to read XML documents in a pure object-oriented way.
Also, you have the DOMDocument object to parse and create XML documents. In
this chapter we will learn these APIs and learn how to successfully process XML
with PHP.

Formation of XML
Let us look at the structure of a common XML document in case you are totally new
to XML. If you are already familiar with XML, which we greatly recommend for this
chapter, then it is not a section for you.

Let's look at the following example, which represents a set of emails:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<emails>
 <email>
 <from>nowhere@notadomain.tld</from>
 <to>unknown@unknown.tld</to>
 <subject>there is no subject</subject>
 <body>is it a body? oh ya</body>
 </email>
</emails>

Cooking XML with OOP

[196]

So you see that XML documents do have a small declaration at the top which details
the character set of the document. This is useful if you are storing Unicode texts. In
XML, you must close the tags as you start it. (XML is strict than HTML, you must
follow the conventions.)

Let's look at another example where there are some special symbols in the data:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<emails>
 <email>
 <from>nowhere@notadomain.tld</from>
 <to>unknown@unknown.tld</to>
 <subject>there is no subject</subject>
 <body><![CDATA[is it a body? oh ya, with some texts
 & symbols]]></body>
 </email>
</emails>

This means you have to enclose all the strings containing special characters
with CDATA.

Again, each entity may have some attributes with it. For example consider the
following XML where we describe the properties of a student:

<student age= "17" class= "11" title= "Mr.">Ozniak</student>

In the above example, there are three attributes to this student tag—age, class,����� and
title. Using PHP we can easily manipulate them too. In the coming sections we will
learn how to parse XML documents, or how to create XML documents on the fly.

Introduction to SimpleXML
In PHP4 there were two ways to parse XML documents, and these are also available
in PHP5. One is parsing documents via SAX (which is a standard) and another one is
DOM. But it takes quite a long time to parse XML documents using SAX and it also
needs quite a long time for you to write the code.

In PHP5 a new API has been introduced to easily parse XML documents. This was
named SimpleXML API. Using SimpleXML API you can turn your XML documents
into an array. Each node will be converted to an accessible form for easy parsing.

Chapter 8

[197]

Parsing Documents
In this section we will learn how to parse basic XML documents using SimpleXML.
Let's take a breath and start.

<?
$str = <<< END
<emails>
 <email>
 <from>nowhere@notadomain.tld</from>
 <to>unknown@unknown.tld</to>
 <subject>there is no subject</subject>
 <body><![CDATA[is it a body? oh ya, with some texts &
 symbols]]></body>
 </email>
</emails>
END;
$sxml = simplexml_load_string($str);
print_r($sxml);
?>

The output is like this:

SimpleXMLElement Object
(
 [email] => SimpleXMLElement Object
 (
 [from] => nowhere@notadomain.tld
 [to] => unknown@unknown.tld
 [subject] => there is no subject
 [body] => SimpleXMLElement Object
 (
)

)

)

So now you can ask how to access each of these properties individually. You can
access each of them like an object. For example, $sxml->email[0] returns the first
email object. To access the from element under this email, you can use the following
code like:

echo $sxml->email[0]->from

Cooking XML with OOP

[198]

So, each object, unless available more than once, can be accessed just by its name.
Otherwise you have to access them like a collection. For example, if you have
multiple elements, you can access each of them using a foreach loop:

foreach ($sxml->email as $email)
echo $email->from;

Accessing Attributes
As we saw in the previous example, XML nodes may have attributes. Remember the
example document with class, age, and title? Now you can easily access these
attributes using SimpleXML API. Let's see the following example:

<?
$str = <<< END
<emails>
 <email type="mime">
 <from>nowhere@notadomain.tld</from>
 <to>unknown@unknown.tld</to>
 <subject>there is no subject</subject>
 <body><![CDATA[is it a body? oh ya, with some texts &
 symbols]]></body>
 </email>
</emails>
END;
$sxml = simplexml_load_string($str);
foreach ($sxml->email as $email)
echo $email['type'];

?>

This will display the text mime in the output window. So if you look carefully, you
will understand that each node is accessible like properties of an object, and all
attributes are accessed like keys of an array. SimpleXML makes XML parsing
really fun.

Parsing Flickr Feeds using SimpleXML
How about adding some milk and sugar to your coffee? So far we have learned what
SimpleXML API is and how to make use of it. It would be much better if we could
see a practical example. In this example we will parse the Flickr feeds and display
the pictures. Sounds cool? Let's do it.

If you are interested what the Flickr public photo feed looks like, here is the content.
The feed data is collected from http://www.flickr.com/services/feeds/photos_
public.gne:

Chapter 8

[199]

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<feed xmlns="http://www.w3.org/2005/Atom"
 xmlns:dc="http://purl.org/dc/elements/1.1/" >
 <title>Everyone's photos</title>
 <link rel="self"
 href="http://www.flickr.com/services/feeds/photos_public.gne" />
 <link rel="alternate" type="text/html"
 href="http://www.flickr.com/photos/"/>
 <id>tag:flickr.com,2005:/photos/public</id>
 <icon>http://www.flickr.com/images/buddyicon.jpg</icon>
 <subtitle></subtitle>
 <updated>2007-07-18T12:44:52Z</updated>
 <generator uri="http://www.flickr.com/">Flickr</generator>
 <entry>
 <title>A-lounge 9.07_6</title>
 <link rel="alternate" type="text/html"
 href="http://www.flickr.com/photos/dimitranova/845455130/"/>
 <id>tag:flickr.com,2005:/photo/845455130</id>
 <published>2007-07-18T12:44:52Z</published>
 <updated>2007-07-18T12:44:52Z</updated>
 <dc:date.Taken>2007-07-09T14:22:55-08:00</dc:date.Taken>
 <content type="html"><p><a
 href="http://www.flickr.com/people/dimitranova/"
 >Dimitranova posted a photo:</p>
 <p><a
 href="http://www.flickr.com/photos/dimitranova/845455130/
 " title="A-lounge 9.07_6"><img src="
 http://farm2.static.flickr.com/1285/845455130_dce61d101f_m.jpg
 " width="180" height="240" alt="
 A-lounge 9.07_6" /></p>
</content>
 <author>
 <name>Dimitranova</name>
 <uri>http://www.flickr.com/people/dimitranova/</uri>
 </author>
 <link rel="license" type="text/html" href="deed.en-us" />
 <link rel="enclosure" type="image/jpeg"
 href="http://farm2.static.flickr.com/1285/
 845455130_7ef3a3415d_o.jpg" />
 </entry>
 <entry>
 <title>DSC00375</title>
 <link rel="alternate" type="text/html"
 href="http://www.flickr.com/photos/53395103@N00/845454986/"/>
 <id>tag:flickr.com,2005:/photo/845454986</id>
 <published>2007-07-18T12:44:50Z</published>
 ...
 </entry>
</feed>

Cooking XML with OOP

[200]

Now we will extract the description from each entry and display it. Let's have
some fun:

<?
$content =
 file_get_contents(
 "http://www.flickr.com/services/feeds/photos_public.gne ���");
$sx = simplexml_load_string($content);
foreach ($sx->entry as $entry)
{
 echo "link['href']}'>".$entry->title."
";
 echo $entry->content."
";
}
?>

This will create the following output. See, how easy SimpleXML is? The output of the
above script is shown below:

Chapter 8

[201]

Managing CDATA Sections using SimpleXML
As we said before, some symbols can't appear directly as a value of any node unless
you enclose them using CDATA tag. For example, take a look at following example:

<?
$str = <<<EOT
<data>
 <content>text & images </content>

</data>

EOT;
$s = simplexml_load_string($str);
?>

This will generate the following error:

Warning: simplexml_load_string()
 [
 function.simplexml-load-string]:
 Entity: line 2: parser error : xmlParseEntityRef:
 no name in C:\OOP with PHP5\Codes\ch8\cdata.php
 on line 10

Warning: simplexml_load_string()
 [
 function.simplexml-load-string]:
 <content>text & images </content>
 in C:\OOP with PHP5\Codes\ch8\cdata.php
 on line 10

Warning: simplexml_load_string()
 [
 function.simplexml-load-string]:
 ^ in C:\OOP with PHP5\Codes\ch8\cdata.php
 on line 10

To avoid this problem we have to enclose using a CDATA tag. Let's rewrite it like this:

<data>
 <content><![CDATA[text & images]]></content>
</data>

Cooking XML with OOP

[202]

Now it will work perfectly. And you don't have to do any extra work for managing
this CDATA section.

<?
$str = <<<EOT
<data>
 <content><![CDATA[text & images]]></content>
</data>
EOT;
$s = simplexml_load_string($str);
echo $s->content;//print "text & images"
?>

However, prior to PHP5.1, you had to load this section as shown below:

$s = simplexml_load_string($str,null,LIBXML_NOCDATA);

XPath
Another nice addition in SimpleXML is that you can query using XPath. So what
is XPath? It's an expression language that helps you to locate specific nodes using
formatted input. In this section we will learn how to locate a specific part of our XML
documents using SimpleXML and Xpath. Let's have a look at the following XML:

<?xml version="1.0" encoding="utf-8"?>
<roles>
 <task type="analysis">
 <state name="new">
 <assigned to="cto">
 <action newstate="clarify" assignedto="pm">
 <notify>pm</notify>
 <notify>cto</notify>
 </action>
 </assigned>
 </state>
 <state name="clarify">
 <assigned to="pm">
 <action newstate="clarified" assignedto="pm">
 <notify>cto</notify>
 </action>
 </assigned>
 </state>
 </task>
</roles>

Chapter 8

[203]

This document simply states the workflow of an analysis task and then tells it what
to do at which state. So now you want to search what to do when the task type is
analysis and assigned to cto and current state is new. SimpleXML makes it really
easy. Let's take a look at the following code:

<?
$str = <<< EOT
<roles>
 <task type="analysis">
 <state name="new">
 <assigned to="cto">
 <action newstate="clarify" assignedto="pm">
 <notify>pm</notify>
 <notify>cto</notify>
 </action>
 </assigned>
 </state>
 <state name="clarify">
 <assigned to="pm">
 <action newstate="clarified" assignedto="pm">
 <notify>cto</notify>
 </action>
 </assigned>
 </state>
 </task>
</roles>
EOT;

$s = simplexml_load_string($str);
$node = $s->xpath("//task[@type='analysis']/state[@name='new']
 /assigned[@to='cto']");
echo $node[0]->action[0]['newstate']."\n";
echo $node[0]->action[0]->notify[0];
?>

This will echo the following:

clarify
pm

Cooking XML with OOP

[204]

However there is something to remember while writing XPath. When your XPath is
followed by / then it means that you should keep the exact sequence of your XML
document. For example:

echo count($s->xpath("//state"));

This will output 2.

//state means take the state node from anywhere in the document. Now if you
specify task//state,��� it will return all states from under all tasks. For example the
following code will output 3 and 3:

echo count($s->xpath("//notify"));
echo count($s->xpath("task//notify"));

Now what if you want to find notify just under state,����������� following assigned,�
following action? Your XPath query should be //state/assigned/action/notify.

But if you want that, it should be exactly under the task node which is just under the
root node, it should be /task/state/assigned/action/notify.

If you need to match any attribute then match it ���as [@AttributeName1='value'] [@
AttributeName2='value']. If you see the following XPath, it will be clear to you:

//task[@type='analysis']/state[@name='new']/assigned[@to='cto']

DOM API
SimpleXML in PHP is used to parse the document however it cannot create any XML
document. For creating XML documents on the fly you have to use DOM API that
comes bundled with PHP 5. Using DOM API you can also create page-scrapping
tools fairly easily.

In this section we will learn how to create XML documents using DOM API, and
then we will learn how to parse existing documents and modify them.

In the following example we will create just a basic HTML file:

<?
 $doc = new DOMDocument("1.0","UTF-8");
 $html = $doc->createElement("html");
 $body = $doc->createElement("body");
 $h1 = $doc->createElement("h1","OOP with PHP");
 $body->appendChild($h1);
 $html->appendChild($body);
 $doc->appendChild($html);
 echo $doc->saveHTML();
?>

Chapter 8

[205]

This will produce the following code:

<html>
 <body>
 <h1>OOP with PHP</h1>
 </body>
</html>

That's fairly easy, right?

Let's do some more:

<?
 $doc = new DOMDocument("1.0","UTF-8");
 $html = $doc->createElement("html");
 $body = $doc->createElement("body");
 $h1 = $doc->createElement("h1","OOP with PHP");
 $h1->setAttribute("id","firsth1");
 $p = $doc->createElement("p");
 $p->appendChild($doc->createTextNode("Hi - how about some text?"));
 $body->appendChild($h1);
 $body->appendChild($p);
 $html->appendChild($body);
 $doc->appendChild($html);

 echo $doc->saveHTML();
?>

This will produce the following code.

<html><body>
 <h1 id="firsth1">OOP with PHP</h1>
 <p>Hi - how about some text?</p>
</body></html>

So you can save this XML generated by the DOM engine using the following code
entered into a file in your file system:

file_put_contents("c:/abc.xml", $doc->saveHTML());

Cooking XML with OOP

[206]

Modifying Existing Documents
DOM API helps to create XML document easily as well as provide easy access to
load and modify existing documents. With the following XML we will load the
file we just created a few minutes ago and then we will change the header test of the
first h1 object:

<?php

 $uri = 'c:/abc.xml';
 $document = new DOMDocument();
 $document->loadHTMLFile($uri);// load the content of this URL as HTML
 $h1s = $document->getElementsByTagName("h1");//find all h1 elements
 $newText = $document->createElement("h1","New Heading");//created a
 //new h1 element
 $h1s->item(0)->parentNode->insertBefore($newText,
 $h1s->item(0));//insert before the existing h1 element
 $h1s->item(0)->parentNode->removeChild($h1s->item(1));//remove the
 //old h1 element
 echo $document->saveHTML();//display the content as HTML

?>

The output is shown below:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC-html40/loose.dtd">
 <html><body>
 <h1>New Heading</h1>

 <p>Hi - how about some text?</p>
</body></html>

Other Useful Functions
There are some other useful functions in the DOM library. We are not going to
discuss them in depth, however they are included in this section for a one
line overview.

DomNode->setAttribute(): �������������������������������������� Helps to set the attribute of any node
DomNode->hasChildNodes(): ��� Returns true if a DOM node has a child node
DomNode->replaceChild(): �� Replaces any child node with another one
DomNode->cloneNode(): ��������������������������������������� Creates a deep copy of the current code

•

•

•

•

Chapter 8

[207]

Summary
XML API in PHP5 plays a very important role in web application development, most
notably the new SimpleXML API, which simplifies parsing with ease. Today XML is
one of the most used data formats for almost all big applications. Therefore getting
familiar with XML APIs and relevant technologies will definitely help you to design
robust XML‑based applications more easily.

In the next chapter we will learn about MVC architecture and build a slick MVC
framework on our own.

Building Better with MVC
In chapter 4 we learned how design patterns can simplify your daily programming
life by providing you with common approaches for solving problems. One of the
popular design patterns used for application architecture is Model-View-Controller,
which is also known as MVC. In RAD (Rapid Application Development) for PHP,
MVC frameworks play a vital role. These days several MVC frameworks have
gained public interest and many of them are enterprise-ready. For example, symfony
framework has been used in developing Yahoo bookmarks, ����������������� CakePHP���������� is being
developed in refactoring Mambo, ��� CodeIgniter���������������������������������� is used by many big applications
showcased on their site. Also there are popular MVC frameworks
like �� Zend Framework,��� which is used by IBM and also used to develop the Magento
open-source ecommerce solution.

Therefore, nowadays, writing code from scratch and fine tuning it is obsolete, and if
you are doing this, you should really avoid it. In this chapter, we will discuss the
basic structure of MVC frameworks and then introduce you to some of these
popular frameworks.

What is MVC?
As the name implies, MVC consists of three components. The first one is Model, the
second one is View, and the third one is Controller. This doesn't make any sense
if we just list the names. To begin with, Model is an object, which interacts with a
database. All business logics are usually written inside the model. A controller is a
piece of code, which takes user inputs and based on that initializes models and other
objects, and finally invokes all of them. Finally, the View is a component, which
displays the result generated by controller with the help of model.

So for good practice, you should never implement any business logic in view or
controller. Similarly, you should never process the output results in a model. And
you should never produce any output directly from controller (instead use the view).

Building Better with MVC

[210]

In the following sections we will be creating a very small MVC.

Planning for the Project
For successfully developing any application you must have a clear target. Whenever
the architecture of an application is robust, stable, and foolproof, you will get a
huge number of users using your application. The MVC framework we are going to
develop in this chapter will serve the following issues successfully:

Small footprint
Easy loading of components, libraries, helpers, and models
Nice and flexible syntax for developing view
Excellent support with popular database servers
Will not be resource extensive
Easy to use
Easy to integrate with other component frameworks like Pear,
ezComponents, and so on.
Support for caching
Layout support like RubyOnRails for easy design of your web application
A native gzip compressor for JavaScript
Ajax support

Designing the Bootstrap File
The bootstrap is a file, which just prepares the environment for successful execution
and integration of controllers, models, and views. Basically a bootstrap file initializes
the environment, the router, the object loader, and passes all the input parameters to
the controller. We will design the bootstrap file, which will receive all the parameters
of a successful request URL with the help of mod_rewrite.

mod_rewrite is an apache module, which helps to redirect a request
defined by a pattern (regular expression) to another request URL. It is
an essential module for almost every web application designed. If you
are interested in studying more on it, you can go to: http://httpd.
apache.org/docs/2.0/mod/mod_rewrite.html

•

•

•

•

•

•

•

•

•

•

•

Chapter 9

[211]

To enable mod_rewrite you can follow the following details. Firstly, open httpd.
conf and add the following lines:

LoadModule rewrite_module modules/mod_rewrite.so
<Directory />
 Options FollowSymLinks
 AllowOverride None
 Order deny,allow
 Deny from all
 Satisfy all
</Directory>

We have to place the following code in an .htaccess file and place it inside our
application root.

RewriteEngine on
RewriteCond $1 !^(index\.php|images|robots\.txt)
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)$ index.php?$1

This code will just redirect every request to index.php, which will be our bootstrap
file. This bootstrap file will receive any requested URL and then split it into different
parts like controller, action and parameters. For example, the format will be
http://our_application/controller/action/param/param..../param. ����The
bootstrap will analyze the URL with the help of a router and then with the help of
dispatcher it will invoke controller and action with all the parameters.

Here is the code of our bootstrap file (index.php):

<?
include("core/ini.php");
initializer::initialize();
$router = loader::load("router");
dispatcher::dispatch($router);
?>

In the above code you see that there is an object called loader. The main purpose
of this is to load objects for us, but via the Singleton pattern. This will help us to
minimize the load. Using this loader we will load an object named router. There is
also an object called dispatcher, which will finally dispatch the web request with
the help of router.

Building Better with MVC

[212]

Let's check the code of core/ini.php, which is a helper to help easy inclusion of
class files from different directories.

<?
set_include_path(get_include_path().PATH_SEPARATOR."core/main");
function __autoload($object)
{
 require_once("{$object}.php");
}
?>

Here goes the initializer file (core/main/initializer.php):

<?
class initializer
{
 public static function initialize()
 {
 set_include_path(get_include_path().PATH_SEPARATOR."core/main");
 set_include_path(get_include_path().PATH_SEPARATOR.
 "core/main/cache");
 set_include_path(get_include_path().PATH_SEPARATOR."core/helpers");
 set_include_path(get_include_path().PATH_SEPARATOR.
 "core/libraries");
 //set_include_path(get_include_path().PATH_SEPARATOR.
 "app/controllers");
 set_include_path(get_include_path().PATH_SEPARATOR."app/models");
 set_include_path(get_include_path().PATH_SEPARATOR."app/views");
//include_once("core/config/config.php");
 }
}
?>

If you take a look at the code of the initializer file, you will find that it actually
just extends the include path.

Here is the code of our loader file (core/main/loader.php), which will load
different components via the Singleton pattern.

<?
class loader
{
 private static $loaded = array();
 public static function load($object)
 {
 $valid = array("library",

Chapter 9

[213]

 "view",
 "model",
 "helper",
 "router",
 "config",
 "hook",
 "cache",
 "db");

 if (!in_array($object,$valid))
 {

 $config = self::load("config");
 if ("on"==$config->debug)
 {
 base::backtrace();
 }
throw new Exception("Not a valid object '{$object}' to load");
 }

 if (empty(self::$loaded[$object])){
 self::$loaded[$object]= new $object();
 }
 return self::$loaded[$object];

 }

}
?>

Loader uses another config file (core/main/config.php), which actually loads
different configs from under config/configs.php file:

<?
class config
{
 private $config;
 function __construct()
 {
 global $configs;
 include_once("core/config/configs.php");
 include_once("app/config/configs.php");
 $this->config = $configs;
 }

 private function __get($var)
 {
 return $this->config[$var];
 }
}
?>

Building Better with MVC

[214]

If you wonder how our configs.php ������������������������� will look, here it goes:

<?
$configs['debug']="on";
$configs['base_url']="http://localhost/orchid";
$configs['global_profile']=true;
$configs['allowed_url_chars'] = "/[^A-z0-9\/\^]/";
$configs['default_controller']="welcome";
?>

Well, if you look at the code of loader.php there is a section like this:

$config = self::load("config");
 if ("on"==$config->debug)
 {
 base::backtrace();
 }

So $config->debug actually returns the value of $configs['debug'] with the help
of __get() magic method in config.php.

In loader there is a method named base::backtrace().� base is a static object
declared in core/libraries/base.php. It contains some useful functions to use
throughout the framework. This is in core/libraries/base.php:

<?
class base{
 public static function pr($array)
 {
 echo "<pre>";
 print_r($array);
 echo "</pre>";
 }
 public static function backtrace()
 {
 echo "<pre>";
 debug_print_backtrace();
 echo "</pre>";
 }
 public static function basePath()
 {
 return getcwd();
 }
 public static function baseUrl()
 {
 $conf = loader::load("config");
 return $conf->base_url;
 }
?>

Chapter 9

[215]

Therefore base::backtrace() actually prints debug_backtrace for easy
tracing exceptions.

So far we haven't seen the code of router.php and dispatcher.php. Router
and dispatcher are the main part of the whole application. Here is the code of
router.php (core/main/router.php):

<?
class router
{
 private $route;
 private $controller;
 private $action;
 private $params;
 public function __construct()
 {
 if(file_exists("app/config/routes.php")){
 require_once("app/config/routes.php");
 }

 $path = array_keys($_GET);
 $config = loader::load("config");
 if (!isset($path[0]))
 {
 $default_controller = $config->default_controller;
 if (!empty($default_controller))
 $path[0] = $default_controller;
 else
 $path[0] = "index";
 }
 $route= $path[0];

 $sanitzing_pattern = $config->allowed_url_chars;
 $route = preg_replace($sanitzing_pattern, "", $route);
 $route = str_replace("^","",$route);
 $this->route = $route;

 $routeParts = split("/",$route);
 $this->controller=$routeParts[0];
 $this->action=isset($routeParts[1])? $routeParts[1]:"base";
 array_shift($routeParts);
 array_shift($routeParts);
 $this->params=$routeParts;

 /* match user defined routing pattern */
 if (isset($routes)){
 foreach ($routes as $_route)
 {
 $_pattern = "~{$_route[0]}~";

Building Better with MVC

[216]

 $_destination = $_route[1];
 if (preg_match($_pattern,$route))
 {
 $newrouteparts = split("/",$_destination);
 $this->controller = $newrouteparts[0];
 $this->action = $newrouteparts[1];
 }
 }
 }
 }

 public function getAction()
 {
 if (empty($this->action)) $this->action="main";
 return $this->action;
 }

 public function getController()
 {
 return $this->controller;
 }

 public function getParams()
 {
 return $this->params;
 }

}
?>

What router actually does is find the controller, action, and parameters from a
request URL. If the controller name is not found, it uses the default controller name
and if default controller name is not found in config file, it will use index as the
default controller.

Before proceeding to dispatcher, we must look at the view engine, which will be
used for template engine, so that anyone from controller can set variables like this
$this->view->set(varname, value).��� After that, anyone can access the variable as
$varname in our view file.

So here comes the view engine (core/main/view.php):

<?
class view
{
 private $vars=array();
 private $template;

 public function set($key, $value)

Chapter 9

[217]

 {
 $this->vars[$key]=$value;
 }

 public function getVars(&$controller=null)
 {
 if (!empty($controller)) $this->vars['app']=$controller;
 return $this->vars;
 }

 public function setTemplate($template)
 {
 $this->template = $template;
 }

 public function getTemplate($controller=null)
 {
 if (empty($this->template)) return $controller;
 return $this->template;
 }

 private function __get($var)
 {
 return loader::load($var);
 }
}
?>

Here comes the dispatcher, the core part of our framework
(core/main/dispatcher.php):

<?
class dispatcher
{
 public static function dispatch($router)
 {
 global $app;
 //$cache = loader::load("cache");
 ob_start();
 $config = loader::load("config");

 if ($config->global_profile) $start = microtime(true);

 $controller = $router->getController();

 $action = $router->getAction();

 $params = $router->getParams();

 if (count($params)>1){

 if ("unittest"==$params[count($params)-1] ||

 '1'==$_POST['unittest'])unittest::setUp();

Building Better with MVC

[218]

 }

 $controllerfile = "app/controllers/{$controller}.php";

 if (file_exists($controllerfile)){

 require_once($controllerfile);

 $app = new $controller();

 $app->use_layout = true;

 $app->setParams($params);

 $app->$action();

 unittest::tearDown();

 ob_end_clean();

 //manage view
 ob_start();

 $view = loader::load("view");
 $viewvars = $view->getVars($app);

 $uselayout = $config->use_layout;

 if (!$app->use_layout) $uselayout=false;

 $template = $view->getTemplate($action);

 base::_loadTemplate($controller, $template,

 $viewvars, $uselayout);

 if (isset($start))
 echo "<p>Total time for dispatching is :
 ".(microtime(true)-$start)." seconds.</p>";
 $output = ob_get_clean();

 //$cache->set("abcde",array
 ("content"=>base64_encode($output)));
 echo $output;
 }
 else
 throw new Exception("Controller not found");
 }
}
?>

Here's what dispatcher mainly does (as seen from the highlighted section of the
above code). It takes a router object as parameter then finds controller, action, and
parameters from router. If the controller file is available, it loads that and then
initializes the controller. After initializing, it just accesses the action.

Chapter 9

[219]

After that, dispatcher initializes the current view object using loader. As it is coming
via Singleton, all variables set to it are still in scope. Dispatcher then passes the view
template file, variables to a function named _loadTemplate in base.

So what is the purpose of $uselayout? It just indicates whether a layout file should
be appended to our template. This is more fun when we see it in practice.

Here is the base::_loadTemplate() function:

 public static function _loadTemplate($controller, $template,
 $vars, $uselayout=false)
 {
 extract($vars);
 if ($uselayout)
 ob_start();
 $templatefile ="app/views/{$controller}/{$template}.php";
 if (file_exists($templatefile)){
 include_once($templatefile);
 }
 else
 {
 throw new Exception("View '{$template}.php' is not found in
 views/{$controller} directory.");
 }

 if ($uselayout) {
 $layoutdata = ob_get_clean();
 $layoutfilelocal = "app/views/{$controller}/{$controller}.php";
 $layoutfileglobal = "app/views/layouts/{$controller}.php";
				
 if (file_exists($layoutfilelocal))
 include_once($layoutfilelocal);
 else
 include_once($layoutfileglobal);
 }
 }

Building Better with MVC

[220]

If you are confused about placing these files, here is the directory structure to help
you understand:

Why are there other files like jsm.php, benchmark.php, unittest.php, helper.php,
model.php, library.php, cache.php, and db.php?

These files will help us for the following sections:
jsm.php:��� Helps to load JavaScript with automatic gzip compression
db.php: For connecting to different database
library.php: Helps to load library files
unittest.php: Will help to automate unit testing
model.php:��� Will help to load models for database access

•
•

•

•

•

•

Chapter 9

[221]

Now let's see what our model and library are doing.

Here comes core/main/model.php:

<?
class model
{
 private $loaded = array();
 private function __get($model)
 {
 $model .="model";
 $modelfile = "app/models/{$model}.php";

 $config = loader::load("config");

 if (file_exists($modelfile))
 {
 include_once($modelfile);
 if (empty($this->loaded[$model]))
 {
 $this->loaded[$model]=new $model();
 }
 $modelobj = $this->loaded[$model];
 if ($config->auto_model_association)
 {
 $this->associate($modelobj, $_REQUEST); //auto association
 }
 return $modelobj;
 }
 else
 {
 throw new Exception("Model {$model} is not found");
 }
 }

 private function associate(&$obj, $array)
 {
 foreach ($array as $key=>$value)
 {
 if (property_exists($obj, $key))
 {
 $obj->$key = $value;
 }
 }
 }
}
?>

Building Better with MVC

[222]

Whenever a form is submitted, we want to populate any model right after
initializing it. Therefore, we have kept a configuration variable named auto_model_
association for it. If you set it to true, models will be automatically associated.

Here comes the library loader (core/main/library.php):

<?
class library{
 private $loaded = array();
 private function __get($lib)
 {
 if (empty($this->loaded[$lib]))
 {
 $libnamecore = "core/libraries/{$lib}.php";
 $libnameapp = "app/libraries/{$lib}.php";
 if (file_exists($libnamecore))
 {
 require_once($libnamecore);
 $this->loaded[$lib]=new $lib();
 }
 else if(file_exists($libnameapp))
 {
 require_once($libnameapp);
 $this->loaded[$lib]=new $lib();
 }
 else
 {
 throw new Exception("Library {$lib} not found.");
 }
 }
 return $this->loaded[$lib];
 }
}
?>

library.php helps only to load libraries via a Singleton.

Now we will see the JavaScript loader, which by default delivers each library with
gzip compression. These days every browser supports gzip compression for faster
loading of any object. We are also distributing distributing our framework with
built-in support for prototype, jQuery and script.aculo.us.

Chapter 9

[223]

Here is core/libraries/jsm.php:

<?
/**
 * Javascript Manager
 *
 */
class jsm
{
 function loadPrototype()
 {
 $base = base::baseUrl();
 echo "<script type='text/javascript'
 src='{$base}/core/js/gzip.php?js=prototypec.js'>\n";
 }
 function loadScriptaculous()
 {
 $base = base::baseUrl();
 echo "<script type='text/javascript'
 src='{$base}/core/js/gzip.php?js=scriptaculousc.js'>\n";
 }
 function loadProtaculous()
 {
 $base = base::baseUrl();
 echo "<script type='text/javascript'
 src='{$base}/core/js/gzip.php?js=prototypec.js'>\n";
 echo "<script type='text/javascript'
 src='{$base}/core/js/gzip.php?js=scriptaculousc.js'>\n";
 }
 function loadJquery()
 {
 $base = base::baseUrl();
 echo "<script type='text/javascript'
 src='{$base}/core/js/gzip.php?js=jqueryc.js'>\n";
 }
 /**
 * app specific libraries
 *
 * @param string $filename
 */
 function loadScript($filename)
 {
 $base = base::baseUrl();
 $script = $base."/app/js/{$filename}.js";
 echo "<script type='text/javascript'
 src='{$base}/core/js/gzip.php?js={$script}'>\n";
 }
}
?>

Building Better with MVC

[224]

If you take a look at the code you will find that it loads every JavaScript file via
gzip.php, �� which is actually responsible for compressing the content. So here is the
code of gzip.php (core/js/gzip.php):

<?php
 ob_start("ob_gzhandler");
 header("Content-type: text/javascript; charset: UTF-8");
 header("Cache-Control: must-revalidate");
 $offset = 60 * 60 * 24 * 3;
 $ExpStr = "Expires: " .
 gmdate("D, d M Y H:i:s", time() + $offset) . " GMT";
 header($ExpStr);
 $js = $_GET['js'];
 if (in_array($js,
 array("prototypec.js","scriptaculousc.js","jqueryc.js")))
 include(urldecode($_GET['js']));
?>

If you have other libraries to load, you can modify this library and add them in the
following line.

if (in_array($js,
 array("prototypec.js","scriptaculousc.js","jqueryc.js")))

Lastly, we have another file, which helps us writing a unit test during the developing
of our application. unittest.php is responsible for that and there is also a Boolean
configuration flag for this:� unit_test_enabled.

Here is core/main/unittest.php:

<?
class unittest
{
 private static $results = array();
 private static $testmode = false;

 public static function setUp()
 {
 $config = loader::load("config");
 if ($config->unit_test_enabled){
 self::$results = array();
 self::$testmode = true;
 }
 }

 public static function tearDown()
 {

Chapter 9

[225]

 if (self::$testmode)
 {
 self::printTestResult();
 self::$results = array();
 self::$testmode = false;
 die();
 }
 }

 public static function printTestResult()
 {
 foreach (self::$results as $result)
 {
 echo $result."<hr/>";
 }
 }

 public static function assertTrue($object)
 {
 if (!self::$testmode) return 0;
 if (true==$object) $result = "passed";
 self::saveResult(true, $object, $result);
 }

 public static function assertEqual($object, $constant)
 {
 if (!self::$testmode) return 0;
 if ($object==$constant)
 {
 $result = 1;
 }
 self::saveResult($constant, $object, $result);
 }

 private static function getTrace()
 {
 $result = debug_backtrace();
 $cnt = count($result);
 $callerfile = $result[2]['file'];
 $callermethod = $result[3]['function'];
 $callerline = $result[2]['line'];
 return array($callermethod, $callerline, $callerfile);
 }

 private static function saveResult($expected, $actual,
 $result=false)
 {
 if (empty($actual)) $actual = "null/false";

 if ("failed"==$result || empty($result))

Building Better with MVC

[226]

 $result = "failed";
 else
 $result = "passed";

 $trace = self::getTrace();
 $finalresult = "Test {$result} in Method:
 {$trace[0]}. Line:
 {$trace[1]}. File:
 {$trace[2]}.
 Expected:
 {$expected}, Actual:
 {$actual}. ";
 self::$results[] = $finalresult;
 }

 public static function assertArrayHasKey($key, array $array,
 $message = '')
 {
 if (!self::$testmode) return 0;
 if (array_key_exists($key, $array))
 {
 $result = 1;
 self::saveResult("Array has a key named '{$key}'",
 "Array has a key named '{$key}'", $result);
 return ;
 }
 self::saveResult("Array has a key named '{$key}'",
 "Array has not a key named '{$key}'", $result);
 }

 public static function assertArrayNotHasKey($key, array $array,
 $message = '')
 {
 if (!self::$testmode) return 0;
 if (!array_key_exists($key, $array))
 {
 $result = 1;
 self::saveResult("Array has not a key named '{$key}'",
 "Array has not a key named '{$key}'", $result);
 return ;
 }
 self::saveResult("Array has not a key named '{$key}'",
 "Array has a key named '{$key}'", $result);

 }
 public static function assertContains($needle, $haystack,
 $message = '')
 {

Chapter 9

[227]

 if (!self::$testmode) return 0;
 if (in_array($needle,$haystack))
 {
 $result = 1;
 self::saveResult("Array has a needle named '{$needle}'",
 "Array has a needle named '{$needle}'", $result);
 return ;
 }
 self::saveResult("Array has a needle named '{$needle}'",
 "Array has not a needle named '{$needle}'", $result);

 }
}
?>

We must keep a built-in support for benchmarking our code to help profiling.
Therefore, we have benchmark.php (core/main/benchmark.php) which performs it:

<?
class benchmark
{
 private $times = array();
 private $keys = array();

 public function setMarker($key=null)
 {
 $this->keys[] = $key;
 $this->times[] = microtime(true);
 }

 public function initiate()
 {
 $this->keys= array();
 $this->times= array();
 }

 public function printReport()
 {
 $cnt = count($this->times);
 $result = "";
 for ($i=1; $i<$cnt; $i++)
 {
 $key1 = $this->keys[$i-1];
 $key2 = $this->keys[$i];
 $seconds = $this->times[$i]-$this->times[$i-1];
 $result .= "For step '{$key1}' to '{$key2}' : {$seconds}
 seconds.</br>";
 }

Building Better with MVC

[228]

 $total = $this->times[$i-1]-$this->times[0];
 $result .= "Total time : {$total} seconds.</br>";
 echo $result;
 }
}
?>

Adding Database Support
Our framework must have a data abstraction layer to facilitate database operations
painlessly. We are going to provide support to three popular databases: SQLite,
PostgreSQL, and MySQL. Here is the code of our data abstraction layer in
core/main/db.php:

<?
include_once("dbdrivers/abstract.dbdriver.php");
class db
{
 private $dbengine;
 private $state = "development";

 public function __construct()
 {
 $config = loader::load("config");
 $dbengineinfo = $config->db;
 if (!$dbengineinfo['usedb']==false)
 {
 $driver = $dbengineinfo[$this->state]['dbtype'].'driver';
 include_once("dbdrivers/{$driver}.php");
 $dbengine = new $driver($dbengineinfo[$this->state]);
 $this->dbengine = $dbengine;
 }
 }

 public function setDbState($state)
 {
 //must be 'development'/'production'/'test' or whatever
 if (empty($this->dbengine)) return 0;
 $config = loader::load("config");
 $dbengineinfo = $config->db;
 if (isset($dbengineinfo[$state]))
 {
 $this->state = $state;
 }
 else

Chapter 9

[229]

 {
 throw new Exception("No such state in config filed called
 ['db']['{$state}']");
 }
 }

 private function __call($method, $args)
 {
 if (empty($this->dbengine)) return 0;
 if (!method_exists($this, $method))
 return call_user_func_array(array($this->dbengine,
 $method),$args);
 }

 /*private function __get($property)
 {
 if (property_exists($this->dbengine,$property))
 return $this->dbengine->$property;
 }*/
}
?>

It uses an abstract driver object to ensure the extensibility and consistency of the
driver objects. In the future, if any third-party developer wants to introduce new
drivers he must extend it in core/main/dbdrivers/abstract.dbdriver.php:

<?
define ("FETCH_ASSOC",1);
define ("FETCH_ROW",2);
define ("FETCH_BOTH",3);
define ("FETCH_OBJECT",3);

abstract class abstractdbdriver
{
 protected $connection;
 protected $results = array();
 protected $lasthash = "";

 public function count()
 {
 return 0;
 }

 public function execute($sql)
 {
 return false;
 }

 private function prepQuery($sql)

Building Better with MVC

[230]

 {
 return $sql;
 }

 public function escape($sql)
 {
 return $sql;
 }

 public function affectedRows()
 {
 return 0;
 }

 public function insertId()
 {
 return 0;
 }

 public function transBegin()
 {
 return false;
 }

 public function transCommit()
 {
 return false;	
 }

 public function transRollback()
 {
 return false;
 }

 public function getRow($fetchmode = FETCH_ASSOC)
 {
 return array();
 }

 public function getRowAt($offset=null,$fetchmode = FETCH_ASSOC)
 {
 return array();
 }

 public function rewind()
 {
 return false;
 }

 public function getRows($start, $count, $fetchmode = FETCH_ASSOC)
 {
 return array();
 }
}
?>

Chapter 9

[231]

Drivers
Now here comes the trickiest part; the drivers. Let's take a look at SQLite driver file
core/main/dbdrivers/sqlitedriver.php:

<?
class sqlitedriver extends abstractdbdriver
{
 public function __construct($dbinfo)
 {
 if (isset($dbinfo['dbname']))
 {
 if (!$dbinfo['persistent'])
 $this->connection =
 sqlite_open($dbinfo['dbname'],0666,$errormessage);
 else
 $this->connection =
 sqlite_popen($dbinfo['dbname'],0666,$errormessage);
 if (!$this->connection)
 {
 throw new Exception($errormessage);
 }
 }
 else
 throw new Exception("You must supply database name for a
 successful connection");

 }

 public function count()
 {
 $lastresult = $this->results[$this->lasthash];
 //print_r($this->results);
 $count = sqlite_num_rows($lastresult);
 if (!$count) $count = 0;
 return $count;
 }

 public function execute($sql)
 {

 $sql = $this->prepQuery($sql);
 $parts = split(" ",trim($sql));
 $type = strtolower($parts[0]);
 $hash = md5($sql);
 $this->lasthash = $hash;

 if ("select"==$type)
 {

Building Better with MVC

[232]

 if (isset($this->results[$hash]))
 {
 if (is_resource($this->results[$hash]))
 return $this->results[$hash];
 }
 }
 else if("update"==$type || "delete"==$type)
 {
 $this->results = array(); //clear the result cache
 }
 $this->results[$hash] = sqlite_query($sql,$this->connection);
 }

 private function prepQuery($sql)
 {
 return $sql;
 }

 public function escape($sql)
 {
 if (function_exists('sqlite_escape_string'))
 {
 return sqlite_escape_string($sql);
 }
 else
 {
 return addslashes($sql);
 }
 }

 public function affectedRows()
 {
 return sqlite_changes($this->connection);
 }

 public function insertId()
 {
 return @sqlite_last_insert_rowid($this->connection);
 }

 public function transBegin()
 {
 $this->execute('BEGIN TRANSACTION');
 }

 public function transCommit()
 {
 $this->execute('COMMIT');
 }

Chapter 9

[233]

 public function transRollback()
 {
 $this->execute('COMMIT');
 }

 public function getRow($fetchmode = FETCH_ASSOC)
 {
 $lastresult = $this->results[$this->lasthash];
 if (FETCH_ASSOC == $fetchmode)
 $row = sqlite_fetch_array($lastresult,SQLITE_ASSOC);
 elseif (FETCH_ROW == $fetchmode)
 $row = sqlite_fetch_array($lastresult, SQLITE_NUM);
 elseif (FETCH_OBJECT == $fetchmode)
 $row = sqlite_fetch_object($lastresult);
 else
 $row = sqlite_fetch_array($lastresult,SQLITE_BOTH);
 return $row;
 }

 public function getRowAt($offset=null,$fetchmode = FETCH_ASSOC)
 {
 $lastresult = $this->results[$this->lasthash];
 if (!empty($offset))
 {
 sqlite_seek($lastresult, $offset);
 }
 return $this->getRow($fetchmode);
 }

 public function rewind()
 {
 $lastresult = $this->results[$this->lasthash];
 sqlite_rewind($lastresult);
 }

 public function getRows($start, $count, $fetchmode = FETCH_ASSOC)
 {
 $lastresult = $this->results[$this->lasthash];
 sqlite_seek($lastresult, $start);
 $rows = array();
 for ($i=$start; $i<=($start+$count); $i++)
 {
 $rows[] = $this->getRow($fetchmode);
 }
 return $rows;
 }
}
?>

Building Better with MVC

[234]

If you take a look at the code, you will find that we just implemented all the
functions described in abstractdbdriver object in abstractdbdriver.php.

Here comes the driver file for MySQL, core/main/dbdrivers/mysqldriver.php:

<?
class mysqldriver extends abstractdbdriver
{
 public function __construct($dbinfo)
 {
 if (!empty($dbinfo['dbname']))
 {
 if ($dbinfo['persistent'])
 $this->connection =
 mysql_pconnect($dbinfo['dbhost'],$dbinfo['dbuser'],
 $dbinfo['dbpwd']);
 else
 $this->connection =
 mysql_connect($dbinfo['dbhost'],$dbinfo['dbuser'],
 $dbinfo['dbpwd']);
 mysql_select_db($dbinfo['dbname'],$this->connection);
 }
 else
 throw new Exception("You must supply username, password,
 hostname and database name for connecting to mysql");
 }

 public function execute($sql)
 {
 $sql = $this->prepQuery($sql);
 $parts = split(" ",trim($sql));
 $type = strtolower($parts[0]);
 $hash = md5($sql);
 $this->lasthash = $hash;

 if ("select"==$type)
 {
 if (isset($this->results[$hash]))
 {
 if (is_resource($this->results[$hash]))
 return $this->results[$hash];
 }
 }
 else if("update"==$type || "delete"==$type)
 {
 $this->results = array(); //clear the result cache

Chapter 9

[235]

 }
 $this->results[$hash] = mysql_query($sql,$this->connection);

 }

 public function count()
 {
 //print_r($this);
 $lastresult = $this->results[$this->lasthash];
 //print_r($this->results);
 $count = mysql_num_rows($lastresult);
 if (!$count) $count = 0;
 return $count;
 }

 private function prepQuery($sql)
 {
 // "DELETE FROM TABLE" returns 0 affected rows.
 // This hack modifies the query so that
 // it returns the number of affected rows
 if (preg_match('/^\s*DELETE\s+FROM\s+(\S+)\s*$/i', $sql))
 {
 $sql = preg_replace("/^\s*DELETE\s+FROM\s+(\S+)\s*$/",
 "DELETE FROM \\1 WHERE 1=1", $sql);
 }

 return $sql;
 }

 public function escape($sql)
 {
 if (function_exists('mysql_real_escape_string'))
 {
 return mysql_real_escape_string($sql, $this->conn_id);
 }
 elseif (function_exists('mysql_escape_string'))
 {
 return mysql_escape_string($sql);
 }
 else
 {
 return addslashes($sql);
 }
 }
 public function affectedRows()
 {
 return @mysql_affected_rows($this->connection);
 }

Building Better with MVC

[236]

 public function insertId()
 {
 return @mysql_insert_id($this->connection);
 }

 public function transBegin()
 {
 $this->execute('SET AUTOCOMMIT=0');
 $this->execute('START TRANSACTION'); // can also be BEGIN or
 // BEGIN WORK
 return TRUE;
 }

 public function transCommit()
 {
 $this->execute('COMMIT');
 $this->execute('SET AUTOCOMMIT=1');
 return TRUE;
 }

 public function transRollback()
 {
 $this->execute('ROLLBACK');
 $this->execute('SET AUTOCOMMIT=1');
 return TRUE;
 }

 public function getRow($fetchmode = FETCH_ASSOC)
 {

 $lastresult = $this->results[$this->lasthash];
 if (FETCH_ASSOC == $fetchmode)
 $row = mysql_fetch_assoc($lastresult);
 elseif (FETCH_ROW == $fetchmode)
 $row = mysql_fetch_row($lastresult);
 elseif (FETCH_OBJECT == $fetchmode)
 $row = mysql_fetch_object($lastresult);
 else
 $row = mysql_fetch_array($lastresult,MYSQL_BOTH);
 return $row;
 }

 public function getRowAt($offset=null,$fetchmode = FETCH_ASSOC)
 {
 $lastresult = $this->results[$this->lasthash];
 if (!empty($offset))
 {
 mysql_data_seek($lastresult, $offset);
 }

Chapter 9

[237]

 return $this->getRow($fetchmode);
 }

 public function rewind()
 {
 $lastresult = $this->results[$this->lasthash];
 mysql_data_seek($lastresult, 0);
 }

 public function getRows($start, $count, $fetchmode = FETCH_ASSOC)
 {
 $lastresult = $this->results[$this->lasthash];
 mysql_data_seek($lastresult, $start);
 $rows = array();
 for ($i=$start; $i<=($start+$count); $i++)
 {
 $rows[] = $this->getRow($fetchmode);
 }
 return $rows;
 }

 function __destruct(){
 foreach ($this->results as $result)
 {
 @mysql_free_result($result);
 }
 }

}
?>

And finally, here comes the PostgreSQL driver, core/main/dbdrivers/
postgresql.php:

<?
class pgsqldriver extends abstractdbdriver
{

 public function __construct($dbinfo)
 {
 if (!empty($dbinfo['dbname']))
 {
 if ($dbinfo['persistent'])
 $this->connection = pg_pconnect("host={$dbinfo['dbname']}
 port=5432 dbname={$dbinfo['dbname']} user={$dbinfo['$dbuser']}
 password={$dbinfo['dbpwd']}");
 else
 $this->connection = pg_connect("host={$dbinfo['dbname']}
 port=5432 dbname={$dbinfo['dbname']} user={$dbinfo['$dbuser']}

Building Better with MVC

[238]

 password={$dbinfo['dbpwd']}");
 }
 else
 throw new Exception("You must supply username, password,
 hostname and database name for connecting to postgresql");
 }

 public function execute($sql)
 {
 $sql = $this->prepQuery($sql);
 $parts = split(" ",trim($sql));
 $type = strtolower($parts[0]);
 $hash = md5($sql);
 $this->lasthash = $hash;

 if ("select"==$type)
 {
 if (isset($this->results[$hash]))
 {
 if (is_resource($this->results[$hash]))
 return $this->results[$hash];
 }
 }
 else if("update"==$type || "delete"==$type)
 {
 $this->results = array(); //clear the result cache
 }
 $this->results[$hash] = pg_query($this->connection,$sql);
 }

 public function count()
 {
 //print_r($this);
 $lastresult = $this->results[$this->lasthash];
 //print_r($this->results);
 $count = pg_num_rows($lastresult);
 if (!$count) $count = 0;
 return $count;
 }

 private function prepQuery($sql)
 {
 // "DELETE FROM TABLE" returns 0 affected rows this hack modifies
 // the query so that it returns the number of affected rows
 if (preg_match('/^\s*DELETE\s+FROM\s+(\S+)\s*$/i', $sql))
 {
 $sql = preg_replace("/^\s*DELETE\s+FROM\s+(\S+)\s*$/",

Chapter 9

[239]

 "DELETE FROM \\1 WHERE 1=1", $sql);
 }

 return $sql;
 }

 public function escape($sql)
 {
 if (function_exists('pg_escape_string'))
 {
 return pg_escape_string($sql);
 }
 else
 {
 return addslashes($sql);
 }
 }

 public function affectedRows()
 {
 return @pg_affected_rows($this->connection);
 }

 public function insertId($table=null, $column=null)
 {
 $_temp = $this->lasthash;
 $lastresult = $this->results[$this->lasthash];
 $this->execute("SELECT version() AS ver");

 $row = $this->getRow();
 $v = $row['server'];

 $table = func_num_args() > 0 ? func_get_arg(0) : null;
 $column = func_num_args() > 1 ? func_get_arg(1) : null;

 if ($table == null && $v >= '8.1')
 {
 $sql='SELECT LASTVAL() as ins_id';
 }
 elseif ($table != null && $column != null && $v >= '8.0')
 {
 $sql = sprintf("SELECT pg_get_serial_sequence('%s','%s') as
 seq", $table, $column);
 $this->execte($sql);
 $row = $this->getRow();
 $sql = sprintf("SELECT CURRVAL('%s') as ins_id", $row['seq']);
 }
 elseif ($table != null)
 {
 // seq_name passed in table parameter

Building Better with MVC

[240]

 $sql = sprintf("SELECT CURRVAL('%s') as ins_id", $table);
 }
 else
 {
 return pg_last_oid($lastresult);
 }
 $this->execute($sql);
 $row = $this->getRow();
 $this->lasthash = $_temp;
 return $row['ins_id'];
 }

 public function transBegin()
 {
 return @pg_exec($this->connection, "BEGIN");
 return TRUE;
 }

 public function transCommit()
 {
 return @pg_exec($this->connection, "COMMIT");
 return TRUE;
 }

 public function transRollback()
 {
 return @pg_exec($this->connection, "ROLLBACK");
 return TRUE;
 }

 public function getRow($fetchmode = FETCH_ASSOC)
 {

 $lastresult = $this->results[$this->lasthash];
 if (FETCH_ASSOC == $fetchmode)
 $row = pg_fetch_assoc($lastresult);
 elseif (FETCH_ROW == $fetchmode)
 $row = pg_fetch_row($lastresult);
 elseif (FETCH_OBJECT == $fetchmode)
 $row = pg_fetch_object($lastresult);
 else
 $row = pg_fetch_array($lastresult,PGSQL_BOTH);
 return $row;
 }

 public function getRowAt($offset=null,$fetchmode = FETCH_ASSOC)
 {
 $lastresult = $this->results[$this->lasthash];
 if (!empty($offset))

Chapter 9

[241]

 {
 pg_result_seek($lastresult, $offset);
 }
 return $this->getRow($fetchmode);
 }

 public function rewind()
 {
 $lastresult = $this->results[$this->lasthash];
 pg_result_seek($lastresult, 0);
 }

 public function getRows($start, $count, $fetchmode = FETCH_ASSOC)
 {
 $lastresult = $this->results[$this->lasthash];
 $rows = array();
 for ($i=$start; $i<=($start+$count); $i++)
 {
 $rows[] = $this->getRowAt($i,$fetchmode);
 }
 return $rows;
 }

 function __destruct(){
 foreach ($this->results as $result)
 {
 @pg_free_result($result);
 }
 }

}
?>

Now our framework is done. In the coming sections, we will see how to build
applications over this framework.

Building Applications over our
Framework
Now is the colourful moment. So far, we have done so many things to ease
developing applications over our framework. So now in this section we will develop
a basic blog application and discuss how to take advantage of our framework.

For those unfamiliar with Blogs, they are simply web-based publishing systems,
where people are allowed to write anything and publish it. In this application we will
allow users to write articles, display them, and also allow users to publish comments.

Building Better with MVC

[242]

Let's create a MySQL database named packtblog with three tables; Users, Posts,
and Comments. Here is the database schema:

Table: Posts
+---------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------+--------------+------+-----+---------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
title	varchar(250)	YES		NULL	
content	text	YES		NULL	
user_id	int(11)	YES		NULL	
date	int(11)	YES		NULL	
+---------+--------------+------+-----+---------+----------------+

Table: Comments
+---------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------+--------------+------+-----+---------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
post_id	int(11)	YES		NULL	
content	text	YES		NULL	
date	int(11)	YES		NULL	
author	varchar(250)	YES		NULL	
+---------+--------------+------+-----+---------+----------------+

Table: Users
+----------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------+--------------+------+-----+---------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
name	varchar(100)	YES		NULL	
fullname	varchar(250)	YES		NULL	
email	varchar(250)	YES		NULL	
password	varchar(32)	YES		NULL	
+----------+--------------+------+-----+---------+----------------+

Authentication Controller
Let's design our main controller with users who, will be able to register, or log into,
their system. The code in the app/controllers/auth.php file is as follows:

<?
session_start();
class auth extends controller

Chapter 9

[243]

{
 public $use_layout = false;
 function base()
 {

 }

 public function login()
 {
 //$this->redirect("auth");
 $this->view->set("message","");
 if(!empty($_SESSION['userid']))
 {
 $this->redirect("blog","display");
 }
 else if (!empty($_POST))
 {
 $user = $this->model->user;
 $userdata = $user->find(array("name"=>$user->name,
 "password"=>md5($user->password)));
 if (!$userdata)
 {
 //not found
 $this->view->set("message","Wrong username and password");
 }
 else
 {
 $_SESSION['userid']=$userdata['id'];
 $this->redirect("blog","display");
 }
 }
 }

 public function register()
 {
 if(!empty($_POST)){
 $user = $this->model->user;
 if (!$user->find(array("name"=>$user->name))){
 $user->password = md5($user->password);
 $user->insert();
 }
 }
 }
}
?>

Building Better with MVC

[244]

Here are the views for authentication controller:

app/views/auth/base.php
<h1>
 Please <a href='<?=$base_url?>/auth/login'>login or
 <a href='<?=$base_url?>/auth/register'>register
</h1>

This will display the following screen:

app/views/auth/login.php
<h1>Please login</h1>
<?=$message;?>

<form method="POST">
 Username:

 <input type="text" name="name"/>

 Password:

 <input type="password" name="password" />

 <input type="submit" name="Submit" value="Login" />
</form>

This will display the following screen:

app/views/auth/register.php
<h1>Please register your account</h1>

<form method="POST">
 Your username:

 <input type="text" name="name" />

 Password:

 <input type="password" name="password" />

Chapter 9

[245]

 Fullname:

 <input type="text" name="fullname" />

 Email:

 <input type="text" name="email" />

 <input type="submit" name="submit" value="Register"/>
</form>

This will display the following screen:

Now comes the controller which will handle the blog operations

The code in the app/controllers/blog.php is as follows:

<?
session_start();
class blog extends controller
{
 public function display()
 {
 $user = $_SESSION['userid'];
 $posts = $this->model->post->find(array("user_id"=>$user),10);
		

 if(!$posts)
 {
 $this->redirect("blog","write");
 }
 else
 {
 foreach ($posts as &$post)
 {
 $post['comments']=$this->model->comment->find
 (array("post_id"=>$post['id']));
 }
 $this->view->set("posts",$posts);

Building Better with MVC

[246]

 }
 }
	

 public function post()
 {
 $postid= $this->params['0'];
 if (count($_POST)>1)
 {
 $comment = $this->model->comment;
 $comment->date = time();
 $comment->post_id = $postid;
 $comment->insert();
 }
	

 $post = $this->model->post->find(array("id"=>$postid));
 if (!empty($postid))
 {
 $post[0]['comments'] = $this->model->comment->find
 (array("post_id"=>$postid),100);
 }
	

 $this->view->set("message","");
 $this->view->set("post",$post[0]);
 //die($postid);
		
 }
	

 public function write()
 {
 $this->view->set("color","green");
 if (!empty($_POST))
 {
 $post = $this->model->post;
 $post->user_id=$_SESSION['userid'];
 $post->date = time();
 $post->insert();
 $this->view->set("color","green");
 $this->view->set("message","Successfully saved
 your blog post");
 }
 }
}
?>

Chapter 9

[247]

And here are the views of our blog controller:

app/views/blog/display.php
<?
foreach ($posts as $post)
{
 echo "<div id='post{$post['id']}' >";
 echo "
 {$post['title']}
";
 echo "<p>".nl2br($post['content'])."</p>";
 echo "Number of comments: ".(count($post['comments']));
 echo "</div>";
}
?>

app/views/blog/post.php
<?
 echo "<div id='post{$post['id']}' >";
 echo "
 {$post['title']}
";
 echo "<p>".nl2br($post['content'])."</p>";
 echo "Number of comments: ".(count($post['comments']));
 echo "</div>";
 foreach ($post['comments'] as $comment)
 {
 echo "<div style='padding:10px;margin-top:10px;
 border:1px solid #cfcfcf;'>";
 $time = date("Y-m-d",$comment['date']);
 echo "Posted by {$comment['author']} at {$time}:
";
 echo "{$comment['content']}";
 echo "</div>";
 }

?>
<h2>Post a new comment</h2>
<?=$message;?>

<form method="POST">
 Name:

 <input type="text" name="author"/>

 Comment:

 <textarea rows="5" cols="60" name="content" ></textarea>

 <input type="submit" />
</form>

Building Better with MVC

[248]

app/views/blog/write.php
<h1>Write a new blog post</h1>
<font color="<?=$color;?>"><?=$message;?>

<form method="POST">
 Title:

 <input type="text" name="title"/>

 Content:

 <textarea rows="5" cols="60" name="content" ></textarea>

 <input type="submit" value="save" />
</form>

This will display the following form:

And last but not the least here comes the config file. Place it in
app/config/configs.php or core/config/configs.php:

<?
$configs['use_layout']=false;
$configs['unit_test_enabled']=true;
$configs['default_controller']="welcome";
$configs['global_profile']=true;

/* DB */
$configs['db']['usedb']="mysql";

$configs['db']['development']['dbname']="packtblog";
$configs['db']['development']['dbhost']="localhost";
$configs['db']['development']['dbuser']="root";
$configs['db']['development']['dbpwd']="root1234";
$configs['db']['development']['persistent']=true;
$configs['db']['development']['dbtype']="mysql";
?>

Chapter 9

[249]

Summary
In the rapid development of PHP applications, frameworks play a very important
role. That is why today there are so many enterprise-level frameworks in the market
and you have so many choices. We have learnt how to build a framework in this
chapter which will also help to understand object loading, data abstraction layers,
and the importance of separation. Finally, we took a closer look at how applications
are done.

Index
A
abstract class 30, 31
Abstract Factory

about 69
example 70, 71

ActiveRecord, design pattern
about 188
data, selecting 189
data, updating 189
new record, creating 189

ActiveRecord pattern 88
Adapter pattern

about 71
example 73-75

ADOdb
about 178
database, connecting to 179-183
database operations 183
installing 178
prepared statements, executing 184
records, deleting 184
records, inserting 184
records, updating 184

AppendIterator
about 150
example 151, 152

ArrayAccess
about 53
methods 53

ArrayIterator
about 143
example 143, 145

ArrayObject
about 51, 138
example 140, 142

functions 139
public members 138, 139

Array to Object
about 52
extending 52

B
Binary Large Objects 170
BLOB 170

C
class, extending

about 12
extending, preventing from 26
overriding, preventing from 26

class information functions
about 41
class existence, checking 41
class name, finding 43, 44
currently loaded classes, finding 42
methods existence, checking 42
properties existence, checking 42
type of class, checking 42

constructor 20-22
coupling 13

D
Data Abstraction Layers 178
Decorator pattern

about 84
example 84, 86

design patterns
about 13, 63
Abstract Factory 69

[252]

Active Record pattern 88
Adapter pattern 71
Decorator pattern 84
Facade pattern 88
Factory pattern 66
Iterator pattern 77
Observer pattern 80
Singleton pattern 75
Strategy pattern 64

destructor 20-22
DirectoryIterator

about 145
example 145-148
methods 149

DOM API, SimpleXML API
about 200
existing documents, modifying 202
functions 202
XML documents, creating 200, 202

E
encapsulation 12
exception handling

about 44-48
PHP errors collecting, as exception 48, 49

Extensible Markup Language. See XML

F
Facade pattern

about 88
example 88-91

factory pattern
about 66
example 66-69

FilterIterator
about 152
example 152, 153

framework 205

I
inheritance 13
instance 13
interface 28-30

Iterator pattern
about 77
creating 79
example 77
implementing 78
using 79

iterators 49, 50

J
JUnit 106

L
LimitIterator

about 154
example 154

M
MDB2

about 185
database, connecting to 186, 187
installing 185
prepared statements, executing 187, 188

memcached
about 61, 62
installing 62

method chaining 59-61
methods 12
Model View Controller. See MVC
modifiers 18-20
MVC

about 205
applications building, over framework

237, 238
Authentication Controller 238-244
bootstrap file, designing 206-224
creating 206
database drivers 227-237
database support, adding 224-226
project, planning 206

MySQLi
about 165
data selecting, in OO way 166, 167
data updating, in OO way 167
prepared statements 167

[253]

N
NoRewindIterator

about 154
example 155

O
object 9
object, PHP

properties, accessing 17
methods, accessing 17

object, SPL
AppendIterator 150
ArrayIterator 143
ArrayObject 138
DirectoryIterator 145
FilterIterator 152
LimitIterator 154
NoRewindIterator 154
RecursiveDirectoryIterator 149
RecursiveIterator 156
RecursiveIteratorIterator 150
SeekableIterator 155
SPLFileInfo 159
SPLFileObject 158
SPLObjectStorage 161

object caching 61
Object Cloning 58
Object Oriented. See OO
Object Oriented Programming. See OOP
Observer pattern

about 80
implementing 81
types 80
using 82

OO
basic terms 12, 13
OO coding style versus procedural 7

OOP
about 5
benefits 8, 9
coding conventions 13, 14
design patterns 63
differences, PHP4 and PHP5 11, 12

OOP in PHP
abstract class 30, 31

abstract class, declaring 31
accessor methods 34
accessor methods, types 34
class, extending 24, 25
class, representing 38
class constants 22
class constants, creating 22
class constants, using 23, 24
class properties setting, magic methods

used 36
constructors 20-22
design patterns 63
destructors 20-22
getter, accessor methods 35
history 6
inheritance 24
interface 28-30
modifiers 18-20
object, coding 9, 10
object, using 17, 18
overloading class methods, magic methods

for 37
polymorphism 27
properties 32-34
reflection API 93
setter, accessor methods 35
SPL objects 137
static method 32-34
unit test 106

P
PDO

about 172
DSN settings 174
functions 177
prepared statements, using with 175, 176
stored procedures, calling 176

PHP
about 6
ArrayObject 51
Autoloading classes 59
built in objects 137
differences 11, 12
exception handling 44-48
history 5
iterators 49, 50

[254]

memcached 61
method chaining 59, 61
MySQLi 165
object, creating 15, 16
Object Cloning 58
object lifecycle 61
PDO 172
procedural versus OO coding style 7
XML API 191

PHP Data Objects 172
PHPUnit 106
PHPUnit API 126

assert functions 126
polymorphism 13
prepared statements, MySQLi

about 167
advantages 167
BLOB, using 170, 171
disadvantages 168
example 168, 169
Stored procedure, executing 171
Stored procedure executing, with PHP 172
with variables 169, 170

property 12
Proxy pattern

example 82, 83

R
RAD 205
Rapid Application Development 205
RecursiveDirectoryIterator

about 149
example 149, 150

RecursiveIterator
about 156
example 157

RecursiveIteratorIterator 150
reflection API

about 93
objects 93
ReflectionClass 94
ReflectionMethod 99
ReflectionParameter 102
ReflectionProperty 104

ReflectionClass
about 94

methods 95, 96
methods, example 96-99
purpose 95, 96
structure 94, 95

ReflectionMethod
about 99
methods 100
methods, example 100-102
structure 99, 100

ReflectionParameter
about 102
example 103, 104
structure 102

ReflectionProperty
about 104
example 105, 106
structure 104

S
SeekableIterator

about 155
example 156

Serialization
about 54, 55
magic methods 55, 58
methods 55

SimpleXML API
about 192
attributes, accessing 194
CDATA Sections, managing 197
documents, parsing 193
DOM API 200
Flickr feeds, parsing 194-196
XPath 198-200

Singleton pattern
about 75, 77
purpose 75
single instance feature, adding 76

SPL
objects 137

SPLFileInfo
about 159
example 160, 161
structure 159, 160

SPLFileObject
about 158

[255]

example 159
methods 158

SPLObjectStorage
about 161
example 161-163

Standard PHP Library. See SPL
Strategy pattern

about 64
example 64, 65, 66
notifier, creating 64

subclass 13
superclass 13

T
TDD. See Test Driven Development
Test Driven Development

about 120
example 120-125

U
unit test

about 106
benefits 107
bugs 107, 108

Email Validator Object, testing 112-115
for routines 117-119
multiple assertions, writing 125
package, JUnit 106
preparing for 109
starting 109-112
Test Driven Development 120

X
XML

about 191
advantages 191
document structure 191, 192
DOMDocument 191
SimpleXML API 192

	Object-Oriented Programming with PHP5
	Table of Contents
	Introduction
	Chapter 1: OOP vs. Procedural Programming
	Introduction to PHP
	A Little History of OOP in PHP
	Procedural vs. OO Coding Style
	Benefits of OOP
	Dissection of an Object
	Difference of OOP in PHP4 and PHP5
	Some Basic OO Terms
	General Coding Conventions
	Summary

	Chapter 2: Kick-Starting OOP
	Let's Bake Some Objects
	Accessing Properties and Methods from Inside the Class

	Using an Object
	Modifiers
	Constructors and Destructors
	Class Constants
	Extending a Class [Inheritance]
	Overriding Methods
	Preventing from Overriding
	Preventing from Extending

	Polymorphism
	Interface
	Abstract Class
	Static Method and Properties
	Accessor Methods
	Using Magic Methods to Set/Get Class Properties
	Magic Methods for Overloading Class Methods
	Visually Representing a Class
	Summary

	Chapter 3: More OOP
	Class Information Functions
	Checking if a Class Already Exists
	Finding Currently Loaded Classes
	Finding out if Methods and Properties Exists
	Checking the Type of Class
	Finding Out the Class Name

	Exception Handling
	Collecting all PHP Errors as Exception

	Iterators
	ArrayObject
	Array to Object
	Accessing Objects in Array Style
	Serialization
	Magic Methods in Serialization

	Object Cloning
	Autoloading Classes or Classes on Demand
	Method Chaining
	Life Cycle of an Object in PHP and Object Caching
	Summary

	Chapter 4: Design Patterns
	You Might have Done this Before…
	Strategy Pattern
	Factory Pattern
	Abstract Factory
	Adapter Pattern
	Singleton Pattern
	Iterator Pattern
	Observer Pattern
	Proxy Pattern or Lazy Loading
	Decorator Pattern
	Active Record Pattern
	Facade Pattern
	Summary

	Chapter 5: Reflection and Unit Testing
	Reflection
	ReflectionClass

	ReflectionMethod
	ReflectionParameter
	ReflectionProperty
	Unit Testing
	Benefits of Unit Testing
	A small Introduction to Vulnerable Bugs
	Preparing for Unit Testing
	Starting Unit Testing
	Testing an Email Validator Object
	Unit Testing for Everyday Script
	Test Driven Development
	Writing Multiple Assertions

	PHPUnit API

	Summary

	Chapter 6: Standard PHP Library
	Available Objects in SPL
	ArrayObject
	ArrayIterator
	DirectoryIterator
	RecursiveDirectoryIterator
	RecursiveIteratorIterator
	AppendIterator
	FilterIterator
	LimitIterator
	NoRewindIterator
	SeekableIterator
	RecursiveIterator
	SPLFileObject
	SPLFileInfo
	SPLObjectStorage
	Summary

	Chapter 7: Database in an OOP Way
	Introduction to MySQLi
	Connecting to MySQL in an OO Way
	Selecting Data in an OO Way
	Updating Data in an OO Way
	Prepared Statements
	Basic Prepared Statements
	Prepared Statements with Variables

	Using BLOB with Prepared Statements
	Executing Stored Procedure with MySQLi and PHP

	PDO
	DSN Settings for Different Databases Engines
	Using Prepared Statements with PDO
	Calling Stored Procedures
	Other Interesting Functions

	Introduction to Data Abstraction Layers
	ADOdb
	Installing ADOdb
	Connecting to Different Databases
	Basic Database Operations using ADOdb
	Inserting, Deleting, and Updating Records
	Executing Prepared Statements

	MDB2
	Installing MDB2
	Connecting to Database
	Executing Prepared Statements

	Introduction to ActiveRecord
	Creating a New Record via ActiveRecord
	Selecting and Updating Data

	Summary

	Chapter 8: Cooking XML with OOP
	Formation of XML
	Introduction to SimpleXML
	Parsing Documents
	Accessing Attributes
	Parsing Flickr Feeds using SimpleXML
	Managing CDATA Sections using SimpleXML
	XPath
	DOM API

	Modifying Existing Documents
	Other Useful Functions
	Summary

	Chapter 9: Building Better with MVC
	What is MVC?
	Planning for the Project
	Designing the Bootstrap File
	Adding Database Support
	Drivers

	Building Applications over our Framework
	Authentication Controller

	Summary

	Index

