

This page intentionally left blank

ANDY HARRIS

PHP 5/MySQL
Programming

© 2004 by Thomson Course Technology PTR. All rights reserved. No
part of this book may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, record-
ing, or by any information storage or retrieval system without written
permission from Thomson Course Technology PTR, except for the
inclusion of brief quotations in a review.

The Thomson Course Technology PTR logo and related trade dress are
trademarks of Thomson Course Technology PTR and may not be used
without written permission.

Microsoft, Windows, Internet Explorer, Notepad, VBScript, ActiveX,
and FrontPage are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.
Netscape is a registered trademark of Netscape Communications Cor-
poration in the U.S. and other countries.

PHP 5 is copyright © 2001-2004 The PHP Group. MySQL is a registered
trademark of MySQL AB in the United States, the European Union and
other countries.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software
support. Please contact the appropriate software manufacturer’s
technical support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted through-
out this book to distinguish proprietary trademarks from descriptive
terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Thomson
Course Technology PTR from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our
sources, Thomson Course Technology PTR, or others, the Publisher
does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the
results obtained from use of such information. Readers should be par-
ticularly aware of the fact that the Internet is an ever-changing entity.
Some facts may have changed since this book went to press.

Educational facilities, companies, and organizations interested in mul-
tiple copies or licensing of this book should contact the publisher for
quantity discount information. Training manuals, CD-ROMs, and por-
tions of this book are also available individually or can be tailored for
specific needs.

ISBN: 1-59200-494-6
Library of Congress Catalog Card Number: 2004108011
Printed in the United States of America
04 05 06 07 08 BH 10 9 8 7 6 5 4 3 2 1

Thomson Course Technology PTR,
a division of Thomson Course Technology

25 Thomson Place
Boston, MA 02210

http://www.courseptr.com

SVP, Thomson Course

Technology PTR:

Andy Shafran

Publisher:

Stacy L. Hiquet

Senior Marketing Manager:

Sarah O’Donnell

Marketiing Manager:

Heather Hurley

Manager of Editorial Services:

Heather Talbot

Acquisitions Editor:

Mitzi Koontz

Senior Editor:

Mark Garvey

Associate Marketting Managers:

Kristin Eisenzopf and

Sarah Dubois

Project Editor:

Scott Harris/Argosy Publishing

Technical Reviewer:

Arlie Hartman

Thomson Course Technology

PTR Market Coordinaator:

Amanda Weaver

Copy Editor:

Tonya Cupp

Interior Layout Tech:

Shawn Morningstar

Cover Designer:

Mike Tanamachi

CD-ROM Producer:

Arlie Hartman

Indexer:

Maureen Shepherd

Proofreadeer:

Jan Cocker

To Heather, Elizabeth, Matthew, and Jacob,
and to all those who have called me Teacher.

irst I thank Him from whom all flows.

Heather, you always work harder on these books than I do. Thank you
for your love and your support. Thank you Elizabeth, Matthew, and
Jacob for understanding why Daddy was typing all the time.

Thanks to the Open Source community for creating great free software like PHP
and MySQL. Also, thanks to the phpMyAdmin team and the SQLite team for
developing such terrific software and making it freely available.

Thank you, Stacy Hiquet, for your continued support and encouragement on this
and other projects.

Thanks, Scott Harris. You did a great job of juggling all those balls around.

Thanks to Tonya Cupp for drastically improving the readability of the manuscript.

Arlie Hartman, thank you for technical editing and for putting together the CD-ROM.

Thanks to J. Wynia (www.phpgeek.com) for technical editing. Thanks also to Jason
for use of PHPTriad on the CD-ROM.

Special thanks to those who worked on the first edition. Your hard work is the
foundation for something even better.

Thank you to the many members of the Premier/Course team who worked on
this book.

A huge thanks goes to my CSCI N399 and N452 Server-Side Web Development
classes and the many people who sent in comments and advice from the first edi-
tion. Thank you for being patient with my manuscript, for helping me spot many
errors, and for providing invaluable advice. I learned as much from you as you
did from me.

Acknowledgments

F

ndy Harris began his teaching career as a high-school special education
teacher. During that time, he taught himself enough computing to do
part-time computer consulting and database work. He began teaching
computing at the university level in the late 1980s as a part-time job.

Since 1995 he has been a full-time lecturer in the Computer Science Department
of Indiana University/Purdue University–Indianapolis, where he manages the
Streaming Media Lab and teaches classes in several programming languages. His
primary interests are PHP, Java, Microsoft languages, Perl, JavaScript, Web Data,
virtual reality, portable devices, and streaming media. He has written numerous
books on these and other technology topics.

About the Author

A

This page intentionally left blank

Contents at a
Glance

Introduction . xxi

Chapter 1: Exploring the PHP Environment1

Chapter 2: Using Variables and Input 21

Chapter 3: Controlling Your Code with
Conditions and Functions55

Chapter 4: Loops and Arrays .95

Chapter 5: Better Arrays and String Handling 133

Chapter 6: Working with Files 181

Chapter 7: Writing Programs with Objects 229

Chapter 8: XML and Content Management Systems . .271

Chapter 9: Using MySQL to Create Databases 299

Chapter 10: Connecting to Databases within PHP 335

Chapter 11: Data Normalization 359

Chapter 12: Building a Three-Tiered Data Application . .383

Appendix A: Reviewing HTML and
Cascading Style Sheets on cd

Appendix B: Using SQLite as an
Alternative Data Source on cd

Index .429

Introduction . xxi

Chapter 1: Exploring the PHP Environment 1

Introducing the Tip of the Day Program. 2
Programming on the Web Server . 3
Installing PHP and Apache. 4

Using an Existing Server . 4
Installing Your Own Development Environment 5

Installing Apache . 6
Installing Apache Files . 7
Testing Your Server. 7
Starting Apache as a Service . 8
Configuring Apache . 9
Running Your Local Server . 9

Installing PHP . 10
Downloading the PHP Program . 10
Telling Apache about PHP . 11

Adding PHP to Your Pages . 12
Adding PHP Commands to an HTML Page 12
Examining the Results . 13

Configuring Your Version of PHP . 15
Safe Mode . 15
Register Globals . 15
Windows Extensions. 16

Creating the Tip of the Day Program 18
Summary. 19

Chapter 2: Using Variables and Input 21

Introducing the Story Program . 22
Using Variables in Your Scripts. 23

Introducing the Hi Jacob Program 23
Creating a String Variable . 25
Printing a Variable’s Value . 26
Using the Semicolon to End a Line. 27

Contents

Using Variables for More-Complex Pages 28
Building the Row Your Boat Page 28
Creating Multi-Line Strings . 29

Working with Numeric Variables . 30
Making the ThreePlusFive Program 30
Assigning Numeric Values . 32
Using Mathematical Operators . 32

Creating a Form to Ask a Question. 33
Building an HTML Page with a Form 34
Setting the Action Attribute to a Script File 35
Writing a Script to Retrieve the Data. 35

Sending Data without a Form . 36
Understanding the get Method . 36
Using a URL to Embed Form Data 38
Working with Multiple Field Queries. 40

Reading Input from Other Form Elements. 40
Introducing the borderMaker Program 40
Building the borderMaker.html Page 41
Reading the Form Elements. 43

Returning to the Story Program . 46
Designing the Story . 46
Building the HTML Page. 48
Checking the Form . 51
Building the Final Story . 53

Summary. 54

Chapter 3: Controlling Your Code with
Conditions and Functions55

Examining the Petals Around the Rose Game 56
Creating a Random Number . 56

Viewing the Roll Em Program . 57
Printing a Corresponding Image . 58

Using the if Statement to Control Program Flow 58
Introducing the Ace Program. 59
Creating a Condition . 60
Exploring Comparison Operators 62
Creating an if Statement. 62

Working with Negative Results . 63
Demonstrating the Ace or Not Program. 64
Using the else Clause . 65

xi

C
o

n
te

n
ts

Working with Multiple Values . 66
Writing the Binary Dice Program. 66
Using Multiple else if Clauses . 68

Using the switch Structure to Simplify Programming 69
Building the Switch Dice Program 69
Using the switch Structure. 71

Combining a Form and Its Results . 71
Responding to Checkboxes . 74
Using Functions to Encapsulate Parts of the Program 77

Examining the This Old Man Program 77
Creating New Functions . 79

Using Parameters and Function Values 80
Examining the Param.php Program 80
Looking at Encapsulation in the Main Code Body. 82
Returning a Value: The chorus() Function 83
Accepting a Parameter in the verse() Function 84

Managing Variable Scope . 85
Looking at the Scope Demo. 86

Returning to the Petals Game . 88
Starting HTML . 88
Main Body Code . 89
The printGreeting() Function . 89
The printDice() Function . 90
The showDie() Function . 91
The calcNumPetals Function . 92
The printForm() Function . 93
The Ending HTML Code . 94

Summary. 94

Chapter 4: Loops and Arrays95

Introducing the Poker Dice Program 96
Counting with the for Loop . 96

Initializing a Sentry Variable. 98
Setting a Condition to Finish the Loop 99
Changing the Sentry Variable . 99
Building the Loop . 100

Modifying the for Loop . 100
Counting by Fives . 100
Counting Backwards . 102

Using a while Loop. 103

xii

C
o

n
te

n
t s

Repeating Code with a while Loop 103
Recognizing Endless Loops . 105
Building a Well-Behaved Loop. 106

Working with Basic Arrays . 107
Generating a Basic Array . 109
Using a Loop to Examine an Array’s Contents 109
Using the array() Function to Preload an Array 110
Detecting the Size of an Array . 110

Improving This Old Man with Arrays and Loops 111
Building the Place Array. 113
Writing Out the Lyrics . 113

Keeping Persistent Data. 114
Counting with Form Fields. 114
Storing Data in the Text Box . 116
Using a Hidden Field for Persistence 117

Writing the Poker Dice Program . 117
Setting Up the HTML . 117
Building the Main Code Body . 118
Making the rollDice() Function. 119
Creating the evaluate() Function 123
Printing the Results. 129

Summary. 130

Chapter 5: Better Arrays and String Handling . .133

Introducing the Word Search Program Creator. 134
Using the foreach Loop to Work with an Array. 135

Introducing the foreach.php Program. 136
Creating an Associative Array. 137

Examining the assoc.php Program 138
Building an Associative Array . 138
Building an Associative Array

with the array() Function . 139
Using foreach with Associative Arrays 140

Using Built-In Associative Arrays . 141
Introducing the formReader.php Program 141
Reading the $_REQUEST Array . 141

Creating a Multidimensional Array. 144
Building the HTML for the Basic

Multidimensional Array . 146
Responding to the Distance Query 147

xiii

C
o

n
te

n
ts

Making a Two-Dimensional Associative Array 150
Building the HTML for the Associative Array. 150
Responding to the Query . 151
Building the Two-Dimensional Associative Array 153
Getting Data from the Two-Dimensional

Associative Array . 154
Manipulating String Values . 154

Demonstrating String Manipulation with
the Pig Latin Translator . 154

Building the Form . 157
Using the split() Function to Break a

String into an Array . 157
Trimming a String with rtrim(). 157
Finding a Substring with substr() 158
Using strstr() to Search for One

String Inside Another . 158
Using the Concatenation Operator 159
Finishing the Pig Latin Program 159
Translating Between Characters and ASCII Values 159

Returning to the Word Search Creator. 160
Getting the Puzzle Data from the User 160
Setting Up the Response Page . 161
Working with the Empty Data Set 162
Building the Program’s Main Logic 163
Parsing the Word List . 164
Clearing the Board . 165
Filling the Board . 166
Adding a Word . 168
Making a Puzzle Board . 174
Adding the Foil Letters . 175
Printing the Puzzle. 176
Printing the Answer Key. 178

Summary. 179

Chapter 6: Working with Files181

Previewing the Quiz Machine . 182
Entering the Quiz Machine System 182
Editing a Quiz . 182
Taking a Quiz . 183
Seeing the Results . 184

xiv

C
o

n
te

n
t s

Viewing the Quiz Log . 185
Saving a File to the File System . 185

Introducing the saveSonnet.php Program 185
Opening a File with fopen() . 187
Creating a File Handle. 187
Examining File Access Modifiers. 188
Writing to a File . 189
Closing a File . 189

Loading a File from the Drive System 189
Introducing the loadSonnet.php Program 189
Beautifying Output with CSS . 191
Using the “r” Access Modifier. 191
Checking for the End of the File with feof() 191
Reading Data from the File with fgets() 192

Reading a File into an Array . 192
Introducing the cartoonifier.php Program 192
Loading the File into an Array with file() 193
Using str_replace() to Modify File Contents 194

Working with Directory Information 194
Introducing the imageIndex.php Program 194
Creating a Directory Handle with openDir() 196
Getting a List of Files with readdir() 196
Selecting Particular Files with preg_grep(). 197
Using Basic Regular Expressions 197
Storing the Output . 199

Working with Formatted Text . 200
Introducing the mailMerge.php Program 200
Determining a Data Format . 201
Examining the mailMerge.php Code. 201
Loading Data with the file() Command. 202
Splitting a Line into an Array and to Scalar Values 203

Creating the QuizMachine.php Program 203
Building the QuizMachine.php Control Page 204
Editing a Test . 212
Writing the Test . 215
Taking a Quiz . 220
Grading the Quiz . 222
Viewing the Log . 225

Summary. 226

xv

C
o

n
te

n
ts

Chapter 7: Writing Programs with Objects 229

Introducing the SuperHTML Object 230
Building a Simple Document with SuperHTML 230
Working with the Title Property . 233
Adding Text and Tags with SuperHTML 235
Creating Lists the SuperHTML Way 237
Making Tables with SuperHTML 239
Creating Super Forms. 241

Understanding OOP . 248
Objects Overview . 248
Creating a Basic Object. 249
Adding Methods to a Class . 253
Inheriting from a Parent Class . 257

Building the SuperHTML Class . 260
Setting Up the File . 260
Creating the Constructor . 261
Manipulating Properties . 261
Adding Text . 261
Building the Top of the Page . 262
Creating the Bottom of the Page 263
Adding Headers and Generic Tags 263
Creating Lists from Arrays . 264
Creating Tables from 2-Dimension Arrays 265
Creating Tables One Row at a Time 266
Building Basic Form Objects . 267
Building Select Objects. 268
Responding to Form Input . 268

Summary. 269

Chapter 8: XML and Content
Management Systems 271

Introducing XCMS . 272
Understanding Content Management Systems 273

Working with PHP-Nuke . 274
Installing PHP-Nuke. 276
Customizing PHP-Nuke. 277

Introducing simpleCMS . 278
Viewing Pages from a User’s Perspective 279
Examining the PHP Code . 280
Viewing the CSS . 281

xvi

C
o

n
te

n
t s

Inspecting the Menu System . 283
Improving the CMS with XML. 285

Introducing XML . 285
Examining main.xml. 287
Simplifying the Menu Pages . 288

Introducing XML Parsers . 288
Working with Simple XML . 289
Working with the simpleXML API 289
Manipulating More-Complex XML

with the simpleXML API. 293
Returning to XCMS . 296

Extracting Data from the XML File 297
Summary. 298

Chapter 9: Using MySQL to Create Databases . .299

Introducing the Adventure Generator Program 300
Using a Database Management System 302
Working with MySQL . 303

Installing MySQL. 303
Using the MySQL Executable . 304

Creating a Database . 305
Creating a Table. 306
Inserting Values . 311
Selecting Results . 312

Writing a Script to Build a Table . 313
Creating Comments in SQL . 314
Dropping a Table . 314
Running a Script with SOURCE . 314

Working with a Database via phpMyAdmin 315
Connecting to a Server . 316
Creating and Modifying a Table. 317
Editing Table Data . 318
Exporting a Table . 319

Creating More-Powerful Queries . 322
Limiting Columns . 324
Limiting Rows with the WHERE Clause 325
Changing Data with the UPDATE Statement 327

Returning to the Adventure Game . 328
Designing the Data Structure. 328

Summary. 334

xvii

C
o

n
te

n
ts

Chapter 10: Connecting to Databases
within PHP .335

Connecting to the Hero Database . 336
Getting a Connection . 338
Choosing a Database . 339
Creating a Query . 339
Getting Field Names . 340
Parsing the Result Set. 341

Returning to the Adventure Game Program 342
Connecting to the Adventure Database 342
Displaying One Segment . 343
Viewing and Selecting Records . 348
Editing the Record. 350
Committing Changes to the Database 355

Summary. 356

Chapter 11: Data Normalization 359

Introducing the spy Database . 360
The badSpy Database . 361

Inconsistent Data Problems . 361
Problem with the Operation Information 362
Problems with Listed Fields . 362

Designing a Better Data Structure . 363
Defining Rules for a Good Data Design 363
Normalizing Your Data . 363
Defining Relationship Types . 366

Building Your Data Tables . 367
Setting Up the System . 368
Creating the agent Table . 369
Building the operation Table . 371
Using a Join to Connect Tables . 373
Creating Useful Joins . 373
Examining a Join without a WHERE Clause. 374
Adding a WHERE Clause to Make a Proper Join 374
Adding a Condition to a Joined Query 375

Building a Link Table for Many-to-Many Relationships . . . 376
Enhancing the ER Diagram . 376
Creating the specialty Table . 377

xviii

C
o

n
te

n
t s

Interpreting the agent_specialty Table with a Query . . . 378
Creating Queries That Use Link Tables 379

Summary. 380

Chapter 12: Building a Three-Tiered
Data Application 383

Introducing the SpyMaster Program 384
Viewing the Main Screen . 384
Viewing the Results of a Query . 384
Viewing Table Data . 386
Editing a Record . 387
Confirming the Record Update . 387
Deleting a Record . 387
Adding a Record . 389
Processing the Add . 389

Building the Design of the SpyMaster System 389
Creating a State Diagram . 390
Designing the System. 392
Building a Library of Functions . 392

Writing the Non-Library Code . 393
Preparing the Database . 394
Examining the spyMaster.php Program 394
Building the viewQuery.php Program. 399
Viewing the editTable.php Program 401
Viewing the editRecord.php Program. 402
Viewing the updateRecord.php Program 402
Viewing the deleteRecord.php Program. 404
Viewing the addRecord.php Program. 404
Viewing the processAdd.php Program 405

Creating the spyLib Library Module 406
Setting a CSS Style. 406
Setting Systemwide Variables . 407
Connecting to the Database. 408
Creating a Quick List from a Query 408
Building an HTML Table from a Query 409
Building an HTML Table for Editing an SQL Table. 410
Creating a Generic Form to Edit a Record 413
Building a Smarter Edit Form . 415
Determining the Field Type . 418

xix

C
o

n
te

n
ts

Working with the Primary Key. 419
Recognizing Foreign Keys . 419
Building the Foreign Key List Box 420
Working with Regular Fields . 420
Committing a Record Update . 420
Deleting a Record . 422
Adding a Record . 422
Processing an Added Record. 425
Building a List Box from a Field 426
Creating a Button That Returns

Users to the Main Page . 427
Summary. 427

Appendix A: Reviewing HTML and
Cascading Style Sheets on cd

Appendix B: Using SQLite as an
Alternative Data Source on cd

Index .429

xx

C
o

n
te

n
t s

omputer programming has often been seen as a difficult and arcane
skill. Programming languages are difficult and complicated, out of the
typical person’s reach. However, the advent of the World Wide Web has
changed that to some extent. It’s reasonably easy to build and post a

Web page for the entire world to see. The language of the Web is reasonably simple,
and numerous applications are available to assist in the preparation of static
pages. At some point, every Web author begins to dream of pages that actually do
something useful. The simple HTML language that builds a page offers the tan-
talizing ability to build forms, but no way to work with the information that
users type into these forms.

Often, a developer has a database or some other dynamic information they wish
to somehow attach to a Web page. Even languages such as JavaScript are not sat-
isfying in these cases. The CGI interface was designed as an early solution to this
problem, but CGI itself can be confusing and the languages used with CGI (espe-
cially Perl) are very powerful, but confusing to beginners.

PHP is an amazing language. It is meant to work with Web servers, where it can
do the critical work of file management and database access. It is reasonably easy
to learn and understand, and can be embedded into Web pages. It is as powerful
as more-difficult languages, with a number of impressive extensions that add
new features to the language.

In this book, I teach you how to write computer programs. I do not expect you to
have any previous programming experience. You learn to program using the PHP
language. Although PHP itself is a very specialized language (designed to enhance
Web pages), the concepts you learn through this language can be extended to a
number of other programming environments.

Whenever possible, I use games as example programs. Each chapter begins by
demonstrating a simple game or diversion. I show you all the skills you need to write
that game through a series of simple example programs. At the end of the chapter I
show the game again, this time by looking at the code, which at that point you will
understand. Games are motivating and often present special challenges to the pro-
grammer. The concepts presented are just as applicable in real-world applications.

Introduction

C

xxii

In
tr

o
d

u
c
ti

o
n

This second edition adds new features and includes updates from the previous
edition of the book. Specifically, it includes new chapters on object-oriented
programming (OOP) and XML, as well as examples on using PHP to create content
management systems. I’ve updated the code to reflect improvements in PHP 5.0,
including the improved object model and XML tools, and the new SQLite data
access tools.

Programming is not a skill you can learn simply by reading about it. You have to
write code to really understand what’s going on. I encourage you to play along at
home. Look at the code on the accompanying CD. Run the programs yourself. Try
to modify the code and see how it works. Make new variations of the programs
to suit your own needs.

W
eb pages are interesting, but on their own they are simply documents. You

can use PHP to add code to your Web pages so they can do more. A scripting

language like PHP can convert your Web site from static document to an

interactive application. In this chapter you learn how to add basic PHP functionality to

your Web pages. You also learn how to do these things:

• Download and install Apache

• Download and install PHP

• Configure Apache to recognize PHP 5.0

• Configure PHP to run extensions used in this book (including MySQL and XML)

• Ensure PHP is on your system

• Run a basic diagnostic check of your PHP installation

• Add PHP code to a Web page

Exploring
the PHP

Environment

1
C H A P T E R

Introducing the Tip of the Day Program

Your first program probably won’t win any Web awards, but it takes you beyond
what you can do with regular HTML. Figure 1.1 illustrates the Tip of the Day page,
which offers friendly, helpful advice.

You could write this kind of page without using a technology like PHP, but the
program is a little more sophisticated than it might look on the surface. The tip
isn’t actually embedded in the Web page at all, but it is stored in a completely
separate file. The program integrates this separate file into the HTML page. The
page owner can change the tip of the day very easily by editing the text file that
contains the tips.

2

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 1.1

The tip of the day
might look simple,

but it is a
technological

marvel. It features
HTML, cascading
style sheets, and

PHP code.

IN THE REAL WORLD

The Tip of the Day page illustrates one of the hottest concepts in Web program-

ming today: the content management system. This kind of structure allows

programmers to design a Web site’s general layout, but isolates the contents

from the page design. The page owners (who might not know how to modify a

Web page directly) can easily change a text file without risk of exposing the

code that holds the site together. You’ll learn how to build a full-blown content

management system in chapter 8, “XML and Content Management Systems.”

You should begin by reviewing your HTML skills. Soon enough, you’re going to be
writing programs that write Web pages, so you need to be very secure with your
HTML coding. If you usually write all your Web pages with a plain text editor, you
should be fine. If you tend to rely on higher-end tools like Microsoft FrontPage or
Macromedia Dreamweaver, you should put those tools aside for a while and
make sure you can write solid HTML by hand. You should know how to build stan-
dard Web pages using modern standards (HTML 4.0 or XHTML), including form
elements and cascading style sheets (CSS). If you need a refresher, please see
Appendix A, which is stored on the CD that accompanies this book.

Programming on the Web Server

The Internet is all about various computers communicating with each other. The
prevailing model of the Internet is the notion of clients and servers. You can
understand this better by imagining a drive-through restaurant. As you drive to
the little speaker, a barely intelligible voice asks for your order. You ask for your
cholestoburger supreme and the teenager packages your food. You drive up,
exchange money for the meal, and drive away. Meanwhile, the teenager waits for
another customer to appear. The Internet works much like this model. Large per-
manent computers called Web servers host Web pages and other information.
They are much like the drive-through restaurant. Users drive up to the Web
server using a Web browser. The data is exchanged and the user can read the
information on the Web browser.

What’s interesting about this model is the interaction doesn’t have to stop there.
Since the client (user’s) machine is a computer, it can be given instructions. Com-
monly, the JavaScript language stores special instructions in a Web page. These
instructions (like the HTML code itself) don’t mean anything on the server. Once
the page gets to the client machine, the browser interprets the HTML code and
any other JavaScript instructions.

While much of the work is passed to the client, there are some disadvantages to
this client-side approach. Programs designed to work inside a Web browser are
usually greatly restricted in the kinds of things they can do. A client-side Web
program usually cannot access the user’s printer or disk drives. This limitation
alone prevents such programs from doing much of the most useful work of the
Internet, such as database connectivity and user tracking.

3

C
h

a
p

te
r

1
E
x

p
l o

r
in

g
t h

e
P

H
P

E
n

v
ir

o
n

m
e
n

t

The server is also a computer; it’s possible to write programs designed to operate on
the server rather than the client. This arrangement has a number of advantages:

• Server-side programs run on powerful Web server computers.

• The server can freely work with files and databases.

• The code returned to the user is plain HTML, which can be displayed on
any Web browser.

Installing PHP and Apache

PHP is only interesting when it runs on a computer configured as a Web server.
One way or another, you need access to a computer with at least three compo-
nents on it: PHP, a Web server (such as Apache or Microsoft IIS), and some sort of
database management system (usually MySQL).

Using an Existing Server

If you’re lucky, you already may have access to a Web server that has PHP and
some other useful programs installed. Once you start building professional Web
sites, investigate using a commercial Web server so you don’t have to deal with
the headaches of server administration and security yourself (unless, of course,
you really like that kind of thing). The advantage of using a prebuilt server is pri-
marily avoiding the entire messy process of setting up your own server. The dis-
advantage is you’re stuck with the configuration that your server administrator
decides upon.

Ultimately, you need to have access to some sort of Web server so people can see
your programs. It might make sense to do all your programming directly on the
server you’ll use to disseminate your work. If you already have a Web site stored
on a server, check to see if your server offers PHP support. A surprising number
of services offer PHP/MySQL support for little or no extra money.

There are some free PHP servers around, but they don’t tend to stay up for long
and they usually have some sort of advertisements or other strings attached. Still,
it’s possible to find a free host that will support PHP. To find a suitable hosting
service, do a Google search on free PHP hosting. You have many choices if you’re
willing to pay a monthly fee for service. With a little digging, you can easily find
full-featured services for less than $10 a month. If you want to be able to do all
the projects in this book, look for a server that supports PHP 5.0 and MySQL. It is
also useful if the service supports phpMyAdmin, a database management system
described in chapter 9, “Using MySQL to Create Databases.”

4

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Installing Your Own Development Environment

Even if you have access to an online Web server, you may want to build a practice
server for development. This approach has many advantages:

• You can control exactly how the server you install is configured. You can
tune it so all the options you want are turned on, and things you don’t
need are disabled. (I describe how to do this later in this chapter in the
section called “Telling Apache about PHP.”)

• You can test your programs without exposing them to the entire world.
When you install a local server, you usually do not expose it to anyone but
yourself. That way people won’t snoop around your work until you’re
ready to expose it.

• It’s easier to configure development environments to work with local
servers than to work with remote ones.

• You don’t have to be connected to the Web while you work. This is especially
important if you don’t have a high-speed connection.

However, installing a Web server (and its related programs) is not as simple as
installing commercial applications. There are a lot of variables and many things
that can go wrong. However, with patience, you should be able to do it.

You need several components to build your own PHP development system. PHP
development is often done with either a system called LAMP (Linux, Apache,
MySQL, and PHP) or WAMP (Windows, Apache, MySQL, and PHP).

If you’re running Linux, there’s a good chance everything is already installed
on your system and you need only configure and turn things on. For that reason, I’m
presuming for this discussion that you’re working on a Windows XP system.
Please look at the various Help documents that come with the software compo-
nents for assistance installing with other operating systems.

To get your system up and running, you need the following components.

A Web Server

The Web server is software that allows a computer to host Web pages. The most
popular Web server as of this writing is Apache, an open-source offering which
runs on Windows, Linux, and just about every other operating system. The Web
server lets you write and test programs running from your local computer exactly
the same way they will be seen on the Internet.

TRICK

5

C
h

a
p

te
r

1
E
x

p
l o

r
in

g
t h

e
P

H
P

E
n

v
ir

o
n

m
e
n

t

The PHP Environment

The PHP environment is a series of programs and library files. These programs
are unusual because the user never runs them directly. Instead, a user requests a
PHP program from a Web server and the server calls upon PHP to process the
instructions in the file. PHP then returns HTML code, which the user sees in the
browser. This book was written using PHP 5.0, although most of the code works
well on earlier versions of PHP.

A Database Environment

Interacting with databases is one of PHP’s most powerful uses. For that reason,
you need at least one database engine installed with your system. For this book,
you use MySQL and SQLite. I cover the installation and use of these packages
more fully in chapter 9, because you won’t need them until then.

An Editor

Have some sort of editor to manipulate your code. You can use Notepad, but you
probably want something more substantial. A number of freeware and commer-
cial PHP editors are available. For this book, I used emacs (a powerful UNIX-based
text editor that can be somewhat mystifying for beginners) and Maguma Studio.
The latter is a commercial editor with a very impressive free version.

Installing Apache

According to the industry-standard Netcraft (www.netcraft.com) survey, 67 per-
cent of the world’s servers are running Apache as of March 2004. You might
already have Microsoft’s Internet Information Server (IIS) installed on your
machine. If so, you can use it, but you have to read the documentation to see how
to make sure IIS communicates with PHP. (The installation notes that come with
PHP explain how to run PHP on an IIS Web server.)

I know of several people who have had good luck running PHP on the IIS server,
but I’ve had problems. Things got especially messy when I tried to run both IIS and
Apache on the same system. IIS would tend to shut down Apache with little warn-
ing. If there’s not an urgent need to run IIS, I’d stick with Apache on my PHP server.
In my office, we actually run PHP on a Linux server and run IIS with .NET on its
own Windows-based server.

The Apache Web server is extremely stable and relatively easy to use once it’s
installed. The code for this book was tested on Apache 1.3.23, 1.3.29, and 2.0.

TRAP

6

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Installing Apache Files

Apache is available on the CD that accompanies this book. You can also go directly
to the Apache Web site to load a more recent version or get installation help.

Install Apache to your system as the first step of building your WAMP develop-
ment environment. If you have any trouble, read the excellent documentation at
http://httpd.apache.org/docs/windows.html.

When prompted for a domain name, use localhost for a local installation. This
allows access to this practice server from your local machine only. Once you
know things are working well, you can enter a different domain name.

Testing Your Server

Now see if Apache is installed correctly.

1. Use a file manager to look for the Apache directory.

2. Find a program called apache.exe.

If you don’t find it there, look in the bin directory.

3. Run apache.exe.

A DOS window starts.

While configuring your system, do not close this DOS window! If you do, Apache
will close down and work incorrectly. After testing this console version of
Apache, you run it as a service, which runs in the background. (I’ll explain that
shortly.) If you’ve installed Apache 2.0, it automatically installs as a service.

4. Fire up your Web browser and type in one of the following URLs:
http://localhost/ or http://127.0.0.1/.

Apache doesn’t show you much when it’s running, but it adds a powerful
new capacity to your computer. The 127.0.0.1 address actually works better
for me, because IE sometimes “helpfully” takes me to a search engine
when I type in localhost. Either address indicates the main page of the
machine you’re currently on. If you’ve turned Apache on correctly, you
should see a page that looks something like Figure 1.2.

When Apache is up and running, you can reach it through the localhost address.
Of course, if your computer has a domain name registered and if you’ve turned
off any firewalls, others can reach it as well.

TRAP

TRICK

7

C
h

a
p

te
r

1
E
x

p
l o

r
in

g
t h

e
P

H
P

E
n

v
ir

o
n

m
e
n

t

While you’re getting started, I recommend not allowing external access.

To make a new home page for your computer, look for a directory called htdocs
under your Apache installation.

Apache is configured to automatically display a file called index.html if the file
exists. On live servers, I usually have an index.html page so the user gets a nice
HTML page when she goes to a particular directory. However, for my own devel-
opment server, I usually take out the index page so I can see a directory listing and
navigate the htdocs directory through the server.

Starting Apache as a Service

You can run Apache as an executable program, but it’s preferable to start it as a
service. Services are background processes that automatically restart whenever
the computer is restarted. Services don’t usually have a graphic interface, but
they sometimes have icons in the task bar.

To run Apache as a service, activate services from the control panel (on my
machine the path is Control Panel/Administrative Tools/Services). Figure 1.3

TRICK

TRAP

8

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 1.2

The default page
for Apache proves

a local server is
running.

9

C
h

a
p

te
r

1
E
x

p
l o

r
in

g
t h

e
P

H
P

E
n

v
ir

o
n

m
e
n

t

shows the services control panel. Use this panel to turn your various services on
or off. Note that if you change your server’s configuration, you must turn it off,
then back on before your server recognizes the changes.

The newest versions of Apache seem to launch themselves as services automati-
cally. If this happens, great. Don’t worry about the DOS window I mentioned; it
won’t be there. The most important thing is whether you get a page when your
browser is pointed at localhost. If so, you have a functioning Web server.

Configuring Apache

Apache is configured through a series of heavily commented text files. Look in
the conf directory of your Apache directory for a file called httpd.conf. This is the
main configuration file for Apache. You shouldn’t have to change this file much,
but this is the file to modify if you want, for example, to add a domain name.

After installing PHP, change httpd.conf to tell Apache where it can find PHP. Stay
tuned—I show you how to do that once PHP is installed.

Running Your Local Server

The Apache directory has an htdocs subdirectory. Any files you want displayed on
your local server must be in this directory or its subdirectories.

TRICK

FIGURE 1.3

This control panel
starts and stops

Apache.

10

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

You might normally double-click a file in your file manager to display it in a browser,
or you may drag it to the browser from your file-management system. This works
for plain HTML files, but it bypasses the local server. That means PHP programs
will not work correctly. PHP code must be called through a formal http call, even
if it’s localhost. All PHP code will be in an htdocs directory’s subdirectory,
unless you specifically indicate in your httpd.conf file that you want another
directory to be accessible to your Web server.

Installing PHP

The PHP environment is a series of programs and library files. These programs are
unusual because the user never runs them directly. Instead, a user requests a PHP
program from a Web server and the server calls upon PHP to process the instruc-
tions in the file. PHP then returns HTML code, which the user sees in the browser.

Downloading the PHP Program

The examples in this book use PHP 5.0, which is available on the accompanying
CD. You can also go to http://www.php.net to get the PHP Windows binaries. You
can install PHP wherever you wish, but I installed it to an Apache subdirectory so
all my PHP programs are in proximity.

1. See install.txt in the PHP directory. This is a very important document.
Be sure to look at it carefully and follow its instructions.

2. Find the numerous .dll files in the PHP directory.

3. Make sure the .dll files are in the same directory as PHP.exe.

When you tell Apache how to find PHP, it will also find these important
files.

TRAP

IS THIS APPROPRIATE FOR BEGINNERS?

To tell you the truth, I think installation of Apache, PHP, and MySQL is a big

headache. It isn’t easy to get right. It’s best if you can find a way to skip all this

stuff and begin programming on a working server. If you cannot rely on some-

body else to set up the server for you, the rest of the chapter will guide you

through the process. I’m sorry that you have to start with a really messy

process. Even if you have access to a server that supports PHP, it’s not a bad idea

to look through the rest of this chapter. You need to know how to check the con-

figuration as well as how to change it (if you’re allowed).

4. Find a file called php.ini-recommended.

5. Copy it to your C:\windows directory.

6. Rename the new file php.ini.

Later on you edit this file to configure Apache, but you need to install PHP first.

The install.txt document suggests the php.ini file goes in C:\winnt. I
found that worked fine with PHP version 4, but version 5 requires the file to be in
C:\windows (at least, that was the case on my machine). If your configurations
are not taking hold, check this file’s location. You should also be able to put the
file in your Apache directory—but if you do, that’s the only version you should
have. If you get strange behavior, check to see that you don’t have an extra copy of
php.ini floating around somewhere.

Later in this chapter, I show you how to change this file so the programs contained
in this book run without problems. For now, though, be sure that PHP is running.

Telling Apache about PHP

1. Open the Apache configuration file in your text editor.

Remember, this file is called httpd.conf and it’s probably in the conf
directory of your Apache installation.

2. Find a section containing a series of loadmodule directives.

If you’re using PHP version 5, you must specifically tell Apache where to
find it.

3. After all the other loadmodule commands, add the following code:

LoadModule php5_module c:/apache/php5apache.dll

4. Modify the code so it points to wherever the php5apache.dll file was
installed in your system.

5. Scroll down until you see a series of AddModule commands.

6. Add the following code to httpd.conf to add the module:

AddModule mod_php5.c

7. Add the following line to the end of the file:

AddType application/x-httpd-php .php

8. Save httpd.conf and restart Apache to ensure the changes are permanent.

TRAP

11

C
h

a
p

te
r

1
E
x

p
l o

r
in

g
t h

e
P

H
P

E
n

v
ir

o
n

m
e
n

t

12

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Adding PHP to Your Pages

Now that you’ve got PHP installed, it’s time to add some code.

See that PHP is installed and run a quick diagnostic check to see how it is con-
figured. You should do this whether you’re installing your own Web server or
using an existing server for your programs.

The easiest way to determine if PHP exists on your server is this: Write a simple
PHP program and see if it works. Here’s a very simple PHP program that greets the
user and displays all kinds of useful information about the development system.

Adding PHP Commands to an HTML Page

<html>

<head>

<title>Hello in PHP</title>

</head>

<body>

<h1>Hello in PHP</h1>

<?

print “Hello, world!”;

phpInfo();

?>

</body>

</html>

Since this is the first PHP code you’ve seen in this book, I need to go over some
basic concepts.

A page written in PHP begins much like an ordinary HTML page. Both are writ-
ten with a plain text editor and stored on a Web server. What makes a PHP pro-
gram different is the embedded <script> elements. When the user requests a
PHP page, the server examines the page and executes any script elements before
sending the resulting HTML to the user.

The <? ?> sequence is the easiest way to indicate PHP code, but it isn’t always
the best way. You can also indicate PHP code with a longer version, like this:
<?php ?>. This version works better when your code is interpreted as XML. You
can also specify your code with normal HTML tags much like JavaScript:
<script language = “php”></script>. Some PHP servers are configured
to prefer one type of script tag over another so you may need to be flexible.
However, all these variations work in exactly the same way.

TRICK

A PHP program looks a lot like a typical HTML page. The difference is the special
<? ?> tag, which specifies the existence of PHP code. Any code inside the tag is
read by the PHP interpreter and then converted into HTML code. The code written
between the <? and ?> symbols is PHP code. I added two commands to the page.
Look at the output of the program shown in Figure 1.4. You might be surprised.

Examining the Results

This page has three distinct types of text.

• Hello in PHP is ordinary HTML. I wrote it just like a regular HTML page,
and it was displayed just like regular HTML.

• Hello, world! was written by the PHP program embedded in the page.

• The rest of the page is a bit mysterious. It contains a lot of information
about the particular PHP engine being used. It actually stretches on for
several pages. The phpInfo() command generated all that code. This
command displays information about the PHP installation.

It isn’t that important to understand all the information displayed by the
phpInfo() command. It’s much more critical to appreciate that when the user
requests the hello.html Web page, the text is first run through the PHP inter-
preter. This program scans for any PHP commands, executes them, and prints
HTML code in place of the original commands. All the PHP code is gone by the
time a page gets to the user.

13

C
h

a
p

te
r

1
E
x

p
l o

r
in

g
t h

e
P

H
P

E
n

v
ir

o
n

m
e
n

t

FIGURE 1.4

The page mixes
HTML with some

other things.

For proof of this, point your browser at hello.php and view the source code. It
looks something like this:

<html>

<head>

<title>Hello in PHP</title>

</head>

<body>

<h1>Hello in PHP</h1>

Hello, world!<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>

<html>

<head><style type=”text/css”><!—

a { text-decoration: none; }

a:hover { text-decoration: underline; }

h1 { font-family: arial, helvetica, sans-serif; font-size: 18pt; font-

weight: bold;}

h2 { font-family: arial, helvetica, sans-serif; font-size: 14pt; font-

weight: bold;}

body, td { font-family: arial, helvetica, sans-serif; font-size: 10pt; }

th { font-family: arial, helvetica, sans-serif; font-size: 11pt; font-weight:

bold; }

//—></style>

<title>phpinfo()</title></head><body><table border=”0” cellpadding=”3”

cellspacing=”1” width=”600” bgcolor=”#000000” align=”center”>

<tr valign=”middle” bgcolor=”#9999cc”><td align=”left”>

<img src=”/phab/ph01/hello.php?=PHPE9568F34-

D428-11d2-A769-00AA001ACF42” border=0 align=”right” alt=”PHP Logo”>

<h1>PHP Version 4.2.1</h1>

Note that I showed only a small part of the code generated by the phpInfo() com-
mand. Also, note that the code details might be different when you run the pro-
gram on your own machine. The key point is that the PHP code that writes Hello,
World! (print “Hello, World!”) is replaced with the actual text Hello, World!
More significantly, a huge amount of HTML code replaces the very simple
phpInfo() command.

A small amount of PHP code can very efficiently generate large and complex
HTML documents. This is one significant advantage of PHP. Also, by the time the
document gets to the Web browser, it’s plain-vanilla HTML code, which can be

14

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

read easily by any browser. These two features are important benefits of server-
side programming in general, and of PHP programming in particular.

As you progress through this book, you learn about many more commands for
producing interesting HTML, but the basic concept is always the same. Your PHP
program is simply an HTML page that contains special PHP markup. The PHP
code is examined by a special program on the server. The results are embedded
into the Web page before it is sent to the user.

Configuring Your Version of PHP

If you’re running your own server, you probably want to tweak your version of
PHP so it works cleanly. I have a number of suggestions for configuration that
provide a relatively friendly environment for beginning programs. In particular,
think about the following elements.

Safe Mode

This mode is a master setting that allows you to choose between ease of program-
ming and server safety. For beginners, I recommend setting safe-mode to OFF
while working on your own Web server. As you move to a production server, you
will usually have safe mode set to ON, which requires you to be a little more care-
ful about some elements. (However, most of these are advanced settings you won’t
need to worry about yet. The most important reason to have safe mode off right
now is to allow access to the register_globals directive that is described next.)

Register Globals

The register_globals parameter determines whether PHP automatically trans-
fers information from web forms to your program. (It’s okay if that doesn’t mean
much to you yet.) This feature is useful for beginning programmers, but can be
a security risk.

As you get more comfortable (after chapter 5, when I show you some alternatives
to register_globals) you can turn off this variable to protect your code from
some potential problems. To change this variable’s value, simply type on or off as
the value for register globals. As with any change to php.ini, restart your Web
server to ensure the changes have taken hold.

Search in php.ini for a line that looks like this:

register_globals = On

15

C
h

a
p

te
r

1
E
x

p
l o

r
in

g
t h

e
P

H
P

E
n

v
ir

o
n

m
e
n

t

Windows Extensions

PHP comes with a number of extensions that allow you to modify its behavior.
You can add functionality to your copy of PHP by adding new modules. To find
the part of php.ini that describes these extensions, look for windows extensions
in the php.ini file.

You’ll see some code that looks like this:

;Windows Extensions

;extension=php_bz2.dll

;extension=php_ctype.dll

;extension=php_cpdf.dll

;extension=php_curl.dll

;extension=php_cybercash.dll

;extension=php_db.dll

;extension=php_dba.dll

;extension=php_dbase.dll

;extension=php_dbx.dll

;extension=php_domxml.dll

;extension=php_dotnet.dll

;extension=php_exif.dll

;extension=php_fbsql.dll

;extension=php_fdf.dll

;extension=php_filepro.dll

;extension=php_gd.dll

;extension=php_gettext.dll

;extension=php_hyperwave.dll

;extension=php_iconv.dll

;extension=php_ifx.dll

;extension=php_iisfunc.dll

;extension=php_imap.dll

;extension=php_ingres.dll

;extension=php_interbase.dll

;extension=php_java.dll

;extension=php_ldap.dll

;extension=php_mbstring.dll

;extension=php_mcrypt.dll

;extension=php_mhash.dll

;extension=php_mssql.dll

16

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

;extension=php_oci8.dll

;extension=php_openssl.dll

;extension=php_oracle.dll

;extension=php_pdf.dll

;extension=php_pgsql.dll

;extension=php_printer.dll

;extension=php_sablot.dll

;extension=php_shmop.dll

;extension=php_snmp.dll

;extension=php_sockets.dll

;extension=php_sybase_ct.dll

;extension=php_xslt.dll

;extension=php_yaz.dll

;extension=php_zlib.dll

;;;;; I added gd2 extension

extension=php_gd2.dll

;;; I added ming support

extension=php_ming.dll

;;;;;I added mysql extension

extension=php_mysql.dll

The php.ini file that comes with PHP 5.0 has a note that says mySQL support
is built in. I found this was not the case in my installation. Run the phpInfo()
command (in the Hello.php program described earlier, for example) to see
exactly which extensions are active in your installation. If you don’t see an exten-
sion that you need, you can add it yourself.

Most of the extensions begin with a semicolon. This character acts like a com-
ment character and causes the line to be ignored. To add a particular extension,
simply eliminate the semicolon at the beginning of the line. I usually put a com-
ment in the code to remind myself that I added this extension.

I added the php_mysql.dll extension. This allows support for the MySQL database
language used in the second half of this book. Add support for that library by
removing the semicolon characters from the beginning of the mysql line.

TRAP

17

C
h

a
p

te
r

1
E
x

p
l o

r
in

g
t h

e
P

H
P

E
n

v
ir

o
n

m
e
n

t

18

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

You can determine whether PHP added support for MySQL by looking again
at the results of the phpInfo() function. If exposing the php_mysql.dll
extension didn’t work on its own, you may have to locate the libmysql.dll file
and move it to the C:\Windows directory.

I also added support for two graphics libraries that I occasionally use. The gd2
library allows me to build and modify graphics, and ming allows me to create
Flash movies. Don’t worry about exposing these files until you’re comfortable
with basic PHP programming. However, when you’re ready, it’s really nice to
know that you can easily add to the PHP features by supporting new modules.

Some of the documentation that came with version 5.0 of PHP indicated that
MySQL support is built in and doesn’t need to be added through the configuration
file. (In fact, this information is inside the configuration file as a comment.)
When I ran phpInfo(), I found that MySQL support was not built in, so I added it
through the extension command. The sad truth is you can’t always trust the docu-
mentation.

Take a look at the extension_dir variable in php.ini to see where PHP expects to
find all your extension files. Any .dll file in that directory can be an extension.
You can also download new extensions and install them when you are ready to
expand PHP’s capabilities.

Because of space limitations, I was unable to include information on graphics pro-
gramming in PHP in this book. However, you can always check on my PHP Web
site (http://shelob.cs.iupui.edu:18011/n342) for examples and tutorials on these
techniques.

Creating the Tip of the Day Program

Way back at the beginning of this chapter, I promised that you would be able to
write the featured Tip of the Day program. This program requires HTML, CSS, and
one line of PHP code. The code shows a reasonably basic page:

<html>

<head>

<title>Tip of the day</title>

</head>

<body>

<center>

TRICK

TRAP

TRICK

<h1>Tip of the day</h1>

<div style = “border-color:green; border-style:groove; border-width:2px”>

<?

readfile(“tips.txt”);

?>

</div>

</center>

</body>

</html>

The page is basic HTML. It contains one div element with a custom style setting
up a border around the day’s tip. Inside the div element, I added PHP code with
the <? and ?> devices. This code calls one PHP function called readFile(). The
readFile() command takes as an argument the name of some file. It reads that
file’s contents and displays them on the page as if it were HTML. As soon as that
line of code stops executing (the text in the tips.txt file has been printed to the
Web browser), the ?> symbol indicates that the PHP coding is finished and the
rest of the page will be typical HTML.

Summary

You’ve already come a very long way. You’ve learned or reviewed all the main
HTML objects. You installed a Web server on your computer. You added PHP. You
changed the Apache configuration to recognize PHP. You saw how PHP code can
be integrated into an HTML document. You learned how to change the configu-
ration file for PHP to incorporate various extensions. Finally, you created your
first page, which includes all these elements. You should be proud of your
efforts already. In the next chapter you more fully explore the relationship
between PHP and HTML and learn how to use variables and input to make your
pages do interesting things.

19

C
h

a
p

te
r

1
E
x

p
l o

r
in

g
t h

e
P

H
P

E
n

v
ir

o
n

m
e
n

t

20

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r CHALLENGES

1. Create a Web-based version of your resume, incorporating headings, lists,

and varying text styles.

2. Modify one of your existing pages so it incorporates CSS styles.

3. Install a practice configuration of Apache, PHP, and MySQL (or some other

package).

4. Build a page that calls the phpInfo() command and run it from your Web

server. Ensure that you have a reasonably recent version of PHP installed on

the server.

I
n chapter 1, “Exploring the PHP Environment,” you learn the foundations of

all PHP programming. If you have your environment installed, you’re ready to

write some PHP programs. Computer programs are ultimately about data.

In this chapter you begin looking at the way programs store and manipulate data in

variables. Specifically, you learn how to:

• Create a variable in PHP

• Recognize the main types of variables

• Name variables appropriately

• Output the values of variables in your scripts

• Perform basic operations on variables

• Read variables from an HTML form

Using Variables
and Input

2
C H A P T E R

Introducing the Story Program

By the end of this chapter you’ll be able to write the program, called Story, featured
in Figures 2.1 and 2.2.

The program asks the user to enter some values into an HTML form and then uses
those values to build a custom version of a classic nursery rhyme. The Story
program works like most server-side programs. It has two distinctive parts: a form
for user input, and a PHP program to read the input and produce some type of
feedback. First, the user enters information into a plain HTML form and hits the
submit button. The PHP program doesn’t execute until after the user has submitted
a form. The program takes the information from the form and does something
to it. Usually, the PHP program returns an HTML page to the user.

22

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 2.1

The program
begins by asking
the user to enter

some information.

Using Variables in Your Scripts

The most important new idea in this chapter is the notion of a variable. A variable
is a container for holding information in the computer’s memory. To make things
easier for the programmer, every variable has a name. You can store information
in and get information out of a variable.

Introducing the Hi Jacob Program

The program featured in Figure 2.3 uses a variable, although you might not be
able to tell simply by looking at the output.

You can’t really see anything special about this program from the Web page itself
(even if you look at the HTML source). To see what’s new, look at the hiJacob.php
source code.

<html>

<head>

<title>Hi Jacob</title>

</head>

<body>

<h1>Hi Jacob</h1>

23

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

FIGURE 2.2

I hate it when the
warthog’s in the

kohlrabi.

<h3>Demonstrates using a variable</h3>

<?

$userName = “Jacob”;

print “Hi, $userName”;

?>

</body>

</html>

In regular HTML and JavaScript programming, you can use the Web browser’s
view source command to examine your program code. For server-side lan-
guages, this is not sufficient; the view source document has no PHP at all.
Remember that the actual program code never gets to your Web browser. Instead,
the program is executed on the server and the program results are sent to the
browser as ordinary HTML. Be looking at the actual PHP source code on the server
when examining these programs. On a related note, you cannot simply use your
browser’s File menu to load a PHP page. Instead, run it through a server.

TRAP

24

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 2.3

The word Jacob
is stored in a

variable in
this page.

The helloJacob page is mainly HTML with a small patch of PHP code in it. That
code does a lot of very important work.

Creating a String Variable

The line $userName = “Jacob”; does two major things. First, it creates a variable
named $userName. Second, it will assign the value “Jacob” to the variable. In PHP,
all variables begin with a dollar sign to distinguish them from other program ele-
ments. The variable’s name is significant.

Naming Your Variables

As a programmer, you frequently get to name things. Experienced programmers
have learned some tricks about naming variables and other elements.

• Make the name descriptive. It’s much easier to figure out what $userName
means than something like $myVariable or $r. When possible, make sure
your variable names describe the kind of information they contain.

• Use an appropriate length. Your variable name should be long enough to
be descriptive, but not so long that it becomes tedious to type.

• Don’t use spaces. Most languages (including PHP) don’t allow spaces in
variable names.

• Don’t use symbols. Most of the special characters such as #, *, and /
already have meaning in programming languages. Of course, every vari-
able in PHP begins with the $ character, but otherwise you should avoid
using punctuation. One exception to this rule is the underscore (_)
character, which is allowed in most languages, including PHP.

• Be careful about case. PHP is a case-sensitive language, which means that it
considers $userName, $USERNAME, and $UserName to be three different variables.
The convention in PHP is to use all lowercase except when separating
words. (Note the uppercase N in $userName.) This is a good convention to
follow, and it’s the one I use throughout this book.

• Watch your spelling! Every time you refer to a variable, PHP checks to see
if that variable already exists somewhere in your program. If so, it uses
that variable. If not, it quietly makes a new variable for you. PHP will not
catch a misspelling. Instead, it makes a whole new variable, and your
program probably won’t work correctly.

25

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

26

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Assigning a Value to a Variable

The equals sign (=) is special in PHP. It does not mean equals (at least in the pre-
sent context). The equals sign is used for assignment. If you read the equals sign
as the word gets, you are closer to the meaning PHP uses for this symbol. For
example, look at this line of code:

$userName = “Jacob”

It should be read as The variable $userName gets the value Jacob.

Usually when you create a variable in PHP, you also assign some value to it.
Assignment flows from right to left.

The $userName variable has been assigned the value Jacob. Computers are picky
about what type of information goes into a variable, but PHP automates this
process for you by determining the data type of a variable based on its context.
Still, it’s important to recognize that Jacob is a text value, because text is stored
and processed a little bit differently in computer memory than numeric data.

Computer programmers almost never refer to text as text. Instead, they prefer the
more esoteric term string. The word string actually has a somewhat poetic origin,
because the underlying mechanism for storing text in a computer’s memory
reminded early programmers of making a chain of beads on a string.

Printing a Variable’s Value

The next line of code prints a message to the screen. You can print any text to the
screen you wish. Text (also called string data) is usually encased in quotation
marks. If you wish to print the value of a variable, simply place the variable name
in the text you want printed. Examine the following line:

print “Hi, $userName”;

It actually produces this output:

Hi, Jacob

It produces this because when the server encounters the variable $userName, it’s
replaced with that variable’s value, which is Jacob. The PHP program output is
sent directly to the Web browser, so you can even include HTML tags in your out-
put, simply by including them inside the quotation marks.

The ability to print the value of a variable inside other text is called string inter-
polation. That’s not critical to know, but it could be useful information on a trivia
show or something.

TRICK

TRICK

27

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

Using the Semicolon to End a Line

PHP is a more formal language than HTML and, like most programming lan-
guages, has some strict rules about the syntax used when writing. Each unique
instruction is expected to end with a semicolon. If you look at the complete code
for the helloJacob program, you see that each line of PHP code ends with said
semicolon. If you forget to do this, you get an error that looks like the one in
Figure 2.4.

An instruction sometimes is longer than a single line on the editor. The semicolon
goes at the end of the instruction, which often (but not always) corresponds with
the end of the line. You’ll see an example of this shortly as you build long string
variables. In general, though, you end each line with a semicolon.

Don’t panic if you get an error message or two. Errors are a completely normal part
of programming. Even experienced programmers expect to see many error mes-
sages while building and testing programs.

Usually the resulting error code gives you important clues about what went
wrong. Make sure you look carefully at whatever line of code is reported.
Although the error isn’t always on that line, you can often get a hint. In many cases
(particularly a missing semicolon), a syntax error indicates an error on the line
that actually follows the real problem. If you get a syntax error on line 14, and the
problem is a missing semicolon, the problem line is actually line 13.

HINT

HINT

FIGURE 2.4

This error occurs if
you go sans

semicolon to the
end of every line.

Using Variables for
More-Complex Pages

While the Hello Jacob program was interesting, there is no real advantage to
using a variable. Check out another use for variables.

Building the Row Your Boat Page

Figure 2.5 shows the Row Your Boat page.

I chose this song in particular because it repeats the same verse three times. If
you look at the original code for the rowBoat.php program, you see I used a trick
to save some typing:

<html>

<head>

<title>Row Your Boat</title>

</head>

<body>

<h1>Row Your Boat</h1>

<h3>Demonstrates use of long variables</h3>

<?

$verse = <<<HERE

28

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 2.5

This program
shows the words
to a popular song.

They sure
repeat a lot.

Row, Row, Row, your boat

Gently Down the stream

Merrily, Merrily, Merrily, Merrily

Life is but a dream!

HERE;

print “<h3>Verse 1:</h3>”;

print $verse;

print “<h3>Verse 2:</h3>”;

print $verse;

print “<h3>Verse 3:</h3>”;

print $verse;

?>

</body>

</html>

Creating Multi-Line Strings

You find yourself wanting to print several lines of HTML code at once. It can be
very tedious to use quotation marks to indicate such strings (especially because
HTML also often uses the quotation mark symbol). PHP provides a special quoting
mechanism, which is perfect for this type of situation. The following line begins
assigning a value to the $verse variable:

$verse = <<<HERE

The <<<HERE segment indicates this is a special multi-line string that ends with
the symbol HERE. You can use any phrase you wish, but I generally use the word
HERE because I think of the three less-than symbols as up to. In other words, you
can think of the following as meaning verse gets everything up to HERE.

$verse = <<<HERE

You can also think of <<<HERE as a special quote sign, which is ended with the
value HERE.

You can write any amount of text between <<<HERE and HERE. You can put vari-
ables inside the special text and PHP replaces the variable with its value, just like
in ordinary (quoted) strings. The ending phrase (HERE) must be on a line by itself,
and there must be no leading spaces in front of it.

29

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

You might wonder why the $verse = <<<HERE line doesn’t have a semicolon
after it. Although this is one line in the editor, it begins a multi-line structure.
Technically, everything from that line to the end of the HERE; line is part of the
same logical line, even though the code takes up several lines in the editor.
Everything between <<<HERE and HERE is a string value.

The semicolon doesn’t have any special meaning inside a string. At a minimum,
you should know that a line beginning a multi-line quote doesn’t need a semi-
colon, but the line at the end of the quote does.

Once the multi-line string is built, it is very easy to use. It’s actually harder to
write the captions for the three verses than the verses themselves. The print
statement simply places the value of the $verse variable in the appropriate spots
of the output HTML.

Working with Numeric Variables

Computers ultimately store information in on/off impulses. You can convert
these very simple data values into a number of more convenient kinds of infor-
mation. The PHP language makes most of this invisible to you, but it’s important
to know that memory handles string (text) differently than it does numeric
values, and that there are two main types of numeric values, integers, and floating-
point real numbers.

Making the ThreePlusFive Program

As an example of how PHP works with numbers, consider the ThreePlusFive.php
program illustrated in Figure 2.6.

All the work in the ThreePlusFive program is done with two variables called $x
and $y. (I know, I recommended that you assign variables longer, descriptive
names, but these variables are commonly used in arithmetic problems, so these
very short variable names are okay in this instance.) The code for the program
looks like this:

<html>

<head>

<title>Three Plus Five</title>

</head>

<body>

<h1>Three Plus Five</h1>

<h3>Demonstrates use of numeric variables</h3>

TRAP

30

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

<?

$x = 3;

$y = 5;

print “$x + $y = “;

print $x + $y;

print “

”;

print “$x - $y = “;

print $x - $y;

print “

”;

print “$x * $y = “;

print $x * $y;

print “

”;

print “$x / $y = “;

print $x / $y;

print “

”;

?>

</body>

</html>

31

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

FIGURE 2.6

This program does
basic math on

variables
containing the
values 3 and 5.

32

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Assigning Numeric Values

You create a numeric variable like any other variable in PHP: Simply assign a value
to a variable. Notice that numeric values do not require quotation marks. I created
variables called $x and $y and assigned appropriate values to these variables.

Using Mathematical Operators

For each calculation, I want to print the problem as well as its solution. This line
prints out the values of the $x and $y variables with the plus sign between them:

print “$x + $y = “;

In this particular case (since $x is 3 and $y is 5), it prints out this literal value:

3 + 5 =

Because the plus and the equals signs are inside quotation marks, they are
treated as ordinary text elements. PHP doesn’t do any calculation (such as addi-
tion or assignment) with them.

The next line does not contain any quotation marks:

print $x + $y;

It calculates the value of $x + $y and prints the result (8) to the Web page.

IN THE REAL WORLD

Numbers without any decimal point are called integers and numbers with dec-

imal values are called real numbers. Computers store these two types differ-

ently, and this distinction sometimes leads to problems. PHP does its best to

shield you from this type of issue.

For example, since the values 3 and 5 are both integers, the results of the addi-

tion, subtraction, and multiplication problems are also guaranteed to be inte-

gers. However, the quotient of two integers is often a real number. Many

languages would either refuse to solve this problem or give an incomplete result.

They might say that 3 / 5 = 0 rather than 0.6. PHP tries to convert things to

the appropriate type whenever possible, and it usually does a pretty good job.

You sometimes need to control this behavior, however. The setType() function

lets you force a particular variable into a particular type. You can look up the

details in the online Help for PHP (included in the CD that accompanies this book).

Most of the math symbols you are familiar with also work with numeric variables.
The plus sign (+) is used for addition, the minus sign (-) indicates subtraction, the
asterisk (*) multiples, and the forward slash (/) divides. The remainder of the pro-
gram illustrates how PHP does subtraction, multiplication, and division.

Creating a Form to Ask a Question

It’s very typical for PHP programs to be made of two or more separate documents.
An ordinary HTML page contains a form, which the user fills out. When the user
presses the submit button, the information in all the form elements is sent to a
program specified by a special attribute of the form. This program processes the
information from the form and returns a result, which looks to the user like an
ordinary Web page. To illustrate, look at the whatsName.html page illustrated in
Figure 2.7.

The whatsName.html page does not contain any PHP at all. It’s simply an HTML
page with a form on it. When the user clicks the Submit Query button, the page
sends the value in the text area to a PHP program called hiUser.php. Figure 2.8
shows what happens when the hiUser.php program runs.

It’s important to recognize that two different pages are involved in the transac-
tion. In this section you learn how to link an HTML page to a particular script and
how to write a script that expects certain form information.

33

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

FIGURE 2.7

This ordinary
HTML page

contains a form.

Building an HTML Page with a Form

Forms are very useful when you want to get information from the user. To illus-
trate how this is done, look at the whatsName.html code:

<html>

<head>

<title>What’s your name?</title>

</head>

<body>

<h1>What’s your name?</h1>

<h3>Writing a form for user input</h3>

<form method = “post”

action = “hiUser.php”>

Please type your name:

<input type = “text”

name = “userName”

value = “”>

<input type = “submit”>

</form>

</body>

</html>

34

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 2.8

The resulting
page uses the
value from the

original HTML form.

There is only one element of this page that may not be familiar to you. Take a
careful look at the form tag. It contains two new attributes. action is one of those
attributes. The other, method, indicates how the data is sent to the browser.

get and post are the two primary methods. post is the most powerful and flexible,
so it is the one I use most often in this book. However, you see some interesting
ways to use get later in this chapter in “Sending Data without a Form.”

Setting the Action Attribute to a Script File

The other attribute of the form tag is the action attribute. It determines the URL of
a program, designed to read the page and respond with another page. The URL
can be an absolute reference (which begins with http:// and contains the entire
domain name of the response program), or a relative reference (meaning the pro-
gram is in the same directory as the original Web page).

The whatsName.html page contains a form with its action attribute set to
hiUser.php. Whenever the user clicks the submit button, the values of all the fields
(only one in this case) are packed up and sent to a program called hiUser.php,
which is expected to be in the same directory as the original whatsName.html page.

Writing a Script to Retrieve the Data

The code for hiUser.php is specially built. The form that called the hiUser.php
code is expected to have an element called userName. Take a look at the code for
hiUser.php and see what I mean.

35

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

IN THE REAL WORLD

Some PHP servers have turned off the ability to automatically create a variable

from a form. You might be able to convince your server administrator to turn on

register_globals in the PHP.INI file. If not, here’s a workaround: If your form

has a field called userName, add this code to the beginning of the program that

needs the value of that field:

$userName = $_REQUEST[“userName”];

Repeat this code for every variable you wish to pull from the original form.

For a complete explanation of this code, skip to chapter 5, “Better Arrays and

String Handling.” In that chapter you also find a routine for automatically

extracting all a form’s fields, even if you don’t know the field names.

36

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

<html>

<head>

<title>Hi User</title>

</head>

<body>

<h1>Hi User</h1>

<h3>PHP program that receives a value from “whatsName”</h3>

<?

print “<h3>Hi there, $userName!</h3>”;

?>

</body>

</html>

Like many PHP pages, hiUser.php is mainly HTML. The only thing that’s different
is the one print statement, which statement incorporates the variable $userName.
The puzzling thing: no other mention of the variable anywhere in the code.

When a user submits a form to a PHP program, the PHP processor automatically
creates a variable with the same name as every form element on the original
HTML page. Since the whatsName.html page has a form element called userName,
any PHP program that whatsName.html activates automatically has access to a vari-
able called $userName. The value of that variable is whatever the user has entered
into the field before pressing the submit button.

Sending Data without a Form

It can be very handy to send data to a server-side program without using a form.
This little-known trick can really enhance your Web pages without requiring a
lick of PHP programming. The Link Demo page (linkDemo.html) shown in Figures
2.9 and 2.10 illustrate this phenomenon.

Understanding the get Method

All the links in the linkDemo.html page use a similar trick. As you recall from
earlier in the chapter, form data can be sent to a program through two different
methods. The post method is the technique usually in your forms, but you’ve
been using the get method all along, because normal HTML requests actually are
get requests. The interesting thing is that you can send form data to any program
that knows how to read get requests by embedding the request in your URL.

As an experiment, switch the method attribute of whatsName.html so the form
looks like this:

<form method = “get”

action = “hiUser.php”>

37

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

FIGURE 2.9

The links on this
page appear

ordinary, but they
are unusually

powerful.

FIGURE 2.10

When I clicked the
Hi Elizabeth
link, I was taken
to the hiUser

program with the
value Elizabeth
automatically sent

to the program!

Run the page again. It works the same as before, but the URL of the resulting
page looks like this (presuming you said the user’s name is Andy):

http://127.0.0.1/phab/ph02/hiUser.php?userName=Andy

The get method stashes all the form information into the URL using a special
code. If you go back to the whatsName page and put in Andy Harris, you get a
slightly different result:

http://127.0.0.1/phab/ph02/hiUser.php?userName=Andy+Harris

The space between Andy and Harris was converted to a plus sign because space
characters cause a lot of confusion. When form data is transmitted, it often
undergoes a number of similar transformations. All the translation is automatic
in PHP programming, so you don’t have to worry about it.

Using a URL to Embed Form Data

If you understand how embedded data in a URL works, you can use a similar tech-
nique to harness any server-side program on the Internet (presuming it’s set up
to take get method data). When I examined the URLs of Google searches, I could
see my search data in a field named q (for query, I suppose). I took a gamble that
all the other fields would have default values, and wrote a hyperlink that incor-
porates a query. My link looked like this:

Google search for “php”

Whenever the user clicks this link, it sets up a get method query to Google’s
search program. The result is a nifty Google search. One fun thing you might
want to do is figure out how to set up canned versions of your most common
queries in various search engines, so you can get updated results with one click.
Figure 2.11 illustrates what happens when the user clicks the Google search for
“php” link in the linkDemo page.

Figure 2.12 shows the results of this slightly more complex search.

<a href =

“http://www.google.com/search?q=programming for the absolute beginner”>

Google search for “programming absolute beginner”

This approach has a down side. The program owner can change the program with-
out telling you, and your link will no longer work correctly. Most Web programmers
assume that their programs are called only by the forms they originally built.

TRAP

38

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

The other thing to consider is that people can do this with your programs. Just
because you intend for your program to be called only by a form, doesn’t mean
that’s how it always works. Such is the vibrant nature of the free-form Internet.

39

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

FIGURE 2.11

The link runs a
search on

www.google.com
for the term php.

FIGURE 2.12

The Google
search for

programming
absolute

beginner shows
some really

intriguing book
offerings!

40

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Working with Multiple Field Queries

As one more practical example, the code for the National Weather Service link
looks like this:

<a href =

“http://www.crh.noaa.gov/data/forecasts/INZ039.php?warncounty=INC057&city=

Noblesville”>

National Weather Service Forecast

for Noblesville, Indiana.

While this link looks a little more complex, it doesn’t require any special knowl-
edge. I simply searched the National Weather Service Web site until I found the
automatically generated page for my hometown. When I looked at the URL that
resulted, I was pleased (but not surprised) to see that the page was generated by
a PHP script. (Note the .php extension in the URL.) I copied the link from my
browser and incorporated it into linkDemo.html. The weather page is automati-
cally created by a PHP program based on two inputs (the county and city names).
Any time I want to see the local weather, I can recall the same query even though
the request doesn’t come directly from the National Weather Service. This is a
really easy way to customize your Web page.

I’ve never actually seen the program, but I know the PHP program requires two
fields because I looked carefully at the URL. The part that says warncounty=INCO57
indicates the state and county (at least that’s a reasonable guess), and the
city=Noblesville indicates the city within the county. When a form has two or
more input elements, the ampersand (&) attaches them, as you can see in the
National Weather Service example.

Reading Input from
Other Form Elements

A PHP program can read the input from any type of HTML form element. In all
cases, the name attribute of the HTML form object becomes a variable name in
PHP. In general, the PHP variable value comes from the value property of the
form object.

Introducing the borderMaker Program

To examine most of the various form elements, I built a simple page to demon-
strate various attributes of cascading style sheet (CSS) borders. The HTML program
is shown in Figure 2.13.

Building the borderMaker.html Page

The borderMaker.html page contains a very typical form with most of the major
input elements in it. The code for this form is as such:

<html>

<head>

<title>Font Choices</title>

</head>

<body>

<center>

<h1>Font Choices</h1>

<h3>Demonstrates how to read HTML form elements</h3>

<form method = “post”

action = “borderMaker.php”>

<h3>Text to modify</h3>

<textarea name = “basicText”

rows = “10”

cols = “40”>

Four score and seven years ago our fathers brought forth on this

41

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

FIGURE 2.13

The borderMaker
HTML page uses
a text area, two
list boxes, and
a select group.

continent a new nation, conceived in liberty and dedicated to the

proposition that all men are created equal. Now we are engaged in a

great civil war, testing whether that nation or any nation so

conceived and so dedicated can long endure.

</textarea>

<table border = 2>

<tr>

<td><h3>Border style</h3></td>

<td colspan = 2><h3>Border Size</h3></td>

</tr>

<tr>

<td>

<select name = borderStyle>

<option value = “ridge”>ridge</option>

<option value = “groove”>groove</option>

<option value = “double”>double</option>

<option value = “inset”>inset</option>

<option value = “outset”>outset</option>

</select>

</td>

<td>

<select size = 5

name = borderSize>

<option value = “1”>1</option>

<option value = “2”>2</option>

<option value = “3”>3</option>

<option value = “5”>5</option>

<option value = “10”>10</option>

</select>

</td>

<td>

<input type = “radio”

name = “sizeType”

value = “px”>pixels

<input type = “radio”

name = “sizeType”

42

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

43

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

value = “pt”>points

<input type = “radio”

name = “sizeType”

value = “cm”>centimeters

<input type = “radio”

name = “sizeType”

value = “in”>inches

</td>

</tr>

</table>

<input type = “submit”

value = “show me”>

</form>

</center>

</body>

</html>

The borderMaker.html page is designed to interact with a PHP program called
borderMaker.php, as you can see by inspection of the action attribute. Note that I
added a value attribute for each option element, and the radio buttons all have
the same name but different values. The value attribute becomes very important
when your program is destined to be read by a program. Finally, the submit button
is critical, because nothing interesting happens until the user submits the form.

I didn’t include checkboxes in this particular example. I show you how check-
boxes work in chapter 3, “Controlling Your Code with Conditions and Functions,”
because you need conditional statements to work with them. Conditional state-
ments allow your programs to make choices.

Reading the Form Elements

The borderMaker.php program expects input from borderMaker.html. When the
user submits the HTML form, the PHP program produces results like those shown
in Figure 2.14.

In general, it doesn’t matter what type of element you use on an HTML form. The PHP
interpreter simply looks at each element’s name and value. By the time the informa-
tion gets to the server, it doesn’t matter what type of input element was used. PHP

TRICK

automatically creates a variable corresponding to each form element. The value of
that variable is the value of the element. The code used in borderMaker.php illustrates:

<html>

<head>

<title>Your Output</title>

</head>

<body>

<h1>Your Output</h1>

<center>

<?

$theStyle = <<<HERE

“border-width:$borderSize$sizeType;

border-style:$borderStyle;

border-color:green”

HERE;

print “<div style = $theStyle>”;

print $basicText;

print “”;

?>

</center>

44

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 2.14

The
borderMaker.php

code reacts to
all the various
input elements

on the form.

</body>

</html>

In the case of text boxes and text areas, the user types in the value directly. In
borderMaker.html, there is a text area called basicText. The PHP interpreter cre-
ates a variable called $basicText. Anything typed into that text box (as a default
the first few lines of the Gettysburg Address) becomes the value of the $basicText
variable.

Reading Select Elements

Recall that both drop-down lists and list boxes are created with the select object.
That object has a name attribute. Each of the possible choices in the list box is an
option object. Each option object has a value attribute.

The name of the select object becomes the variable name. For example, border-
Maker.html has two select objects: borderSize and borderStyle. The PHP program
can expect to find two corresponding variables: $borderSize and $borderStyle.
Because the user has nowhere to type a value into a select object, the values it
can return must be encoded into the structure of the form itself. The value of
whichever option the user selected is sent to the PHP program as the value of the
corresponding variable. For example, if the user chose groove as the border style,
the $borderStyle variable has the value groove in it.

You can have multiple selections enabled in a list box. In that case, the variable
contains a list of responses. While managing this list is not difficult, it is a topic
for another chapter (chapter 4, “Loops and Arrays,” to be specific). For now,
concentrate on the singular list box style.

TRAP

45

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

IN THE REAL WORLD

The options’ value doesn’t necessarily have to be what the user sees on the

form. This “hidden value” is handy if you want to show the user one thing but

send something else to the server. For example, you might want to let the user

choose from several colors. In this case, you might want to create a list box that

shows the user several color names, but the value property corresponding to

each of the option objects might have the actual hexadecimal values. Similar

tricks are used in online shopping environments, where you might let the user

choose an item by its name but the value associated with that item might be its

catalog number, which is easier to work with in a database environment.

Reading Radio Groups

CSS allows the developer to indicate sizes with a variety of measurements. This is an
ideal place for a group of radio buttons because only one unit of measure is appro-
priate at a time. Even though there are four different radio buttons on the
borderDemo.html page with the name sizeType, the PHP program will only see one
$sizeType variable. The value associated with whichever option is selected will
become the value of the $sizeType variable. Note that like option elements, it is pos-
sible for the value of a radio button to be different than the text displayed beside it.

Returning to the Story Program

The Story program introduced at the beginning of this chapter is an opportunity
to bring together all the new elements you learned. The program doesn’t intro-
duce anything new, but it helps you see a larger context.

Designing the Story

Even though this is not an especially difficult program to write, you run into prob-
lems if you simply open your text editor and start blasting away. It really pays to plan
ahead. The most important thinking happens before you write a single line of code.

46

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

DECIDING ON A FORM ELEMENT

You might wonder if all these form elements are necessary, since they all boil

down to a name and value by the time they get to the PHP interpreter. The var-

ious kinds of user interface elements do make a difference in a few ways:

• It’s easier (for many users) to use a mouse than to type. Whenever possible,

it is nice to add lists, checks, and options so the user can navigate your

forms more quickly. Typing is often much slower than the kinds of input

afforded by the other elements.

• Interface elements (especially the drop-down list box) are extremely effi-

cient in terms of screen space. You can pack a lot of choices on a small

screen by using drop-downs effectively. While you might not think space is

an issue, take a look at how many people are now surfing the Web with

PDAs and cell phones.

• Your life as a programmer is much easier if you can predict what the user

will send. When users type things, they make spelling and grammar mis-

takes, use odd abbreviations, and are just unpredictable. If you limit choices

whenever possible, you are less likely to frustrate users.

In this situation, start by thinking about your story. You can write your own story
or modify some existing text for humorous effect. I raided a nursery rhyme book
for my story. Regardless of how you come up with a story, have it in place before
you start writing code. I wrote the original unmodified version of “Little Boy Blue”
in my text editor first so I could admire its artistic genius—and then mangle it
beyond recognition.

As you look over the original prose, look for key words you can take out, and try
to find a description that hints at the original word without giving anything
away. For example, I printed my story, circled the word blue in the original poem,
and wrote color on another piece of paper. Keep doing this until you’ve found
several words you can take out of the original story. You should have a document
with a bunch of holes in it, and a list of hints. Mine looked like Figure 2.15.

47

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

FIGURE 2.15

I thought through
the story and the
word list before

writing any code.

IN THE REAL WORLD

Figure 2.15 shows the plan written as a Word document. Although things are

sometimes done this way…(especially in a professional programming environ-

ment), I really wrote the plan on paper. I reproduced it in a cleaner format

because you don’t deserve to be subjected to my handwriting.

I usually plan my programs on paper, chalkboard, or dry erase board. I avoid

planning programs on the computer, because it’s too tempting to start program-

ming immediately. It’s important to make your plan describe what you wish to do in

English before you worry about how you’ll implement the plan. Most beginners (and

a lot of pros) start programming way too early, and get stuck as a result. You see,

throughout the rest of this chapter, how this plan evolves into a working program.

Building the HTML Page

With the basic outline from Figure 2.15, it becomes clear how the Story program
should be created. It should have two parts. The first is an HTML page that
prompts the user for all the various words. Here’s the code for my version:

<html>

<head>

<title>Story</title>

</head>

<body>

<h1>Story</h1>

<h3>Please fill in the blanks below, and I’ll tell

you a story</h3>

<form method = “post”

action = “story.php”>

<table border = 1>

<tr>

<th>Color:</th>

<th>

<input type = “text”

name = “color”

value = “”>

</th>

</tr>

<tr>

<th>Musical Instrument</th>

<th>

<input type = “text”

name = “instrument”

value = “”>

</th>

</tr>

<tr>

<th>Animal</th>

<th>

<input type = “text”

name = “anim1”

48

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

value = “”>

</th>

</tr>

<tr>

<th>Another animal</th>

<th>

<input type = “text”

name = “anim2”

value = “”>

</th>

</tr>

<tr>

<th>Yet another animal!</th>

<th>

<input type = “text”

name = “anim3”

value = “”>

</th>

</tr>

<tr>

<th>Place</th>

<th>

<input type = “text”

name = “place”

value = “”>

</th>

</tr>

<tr>

<th>Vegetable</th>

<th>

<input type = “text”

name = “vegetable”

value = “”>

</th>

</tr>

49

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

50

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

<tr>

<th>A structure</th>

<th>

<input type = “text”

name = “structure”

value = “”>

</th>

</tr>

<tr>

<th>An action</th>

<th>

<select name = “action”>

<option value = “fast asleep”>fast asleep</option>

<option value = “drinking cappuccino”>drinking cappuccino</option>

<option value = “wandering around aimlessly”>wandering around

aimlessly</option>

<option value = “doing nothing in particular”>doing nothing in

particular</option>

</select>

</th>

</tr>

<tr>

<td colspan = 2>

<center>

<input type = “submit”

value = “tell me the story”>

</center>

</td>

</tr>

</table>

</form>

</body>

</html>

There’s nothing terribly exciting about the HTML. In fact, since I had the plan, I
knew exactly what kinds of things I was asking for and created form elements to ask
each question. I used a list box for the last question so I could put in some interest-
ing suggestions. Note that I changed the order a little bit just to throw the user off.

51

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

Check a few things when you’re writing a page that connects to a script:

• Make sure you’ve added an action attribute.

• Ensure you’ve got the correct action attribute in the form tag.

• Make sure each form element has an appropriate name attribute.

• If you have radio or option objects, make sure each one has an appropriate
value.

• Be sure there is a submit button somewhere in your form.

• Don’t forget to end your form tag. Your browser may work fine if you forget
to include </form>, but you don’t know how the users’ browsers will act.

Checking the Form

I actually wrote two different scripts to read this form. The first one simply
checks each element to make sure it received the value I expected. Here’s the first
program, called storySimple.php:

<html>

<head>

<title>Little Boy Who?</title>

</head>

<body>

<h1>Little Boy Who?</h1>

<h3>Values from the story page</h3>

<table border = 1>

<tr>

<th>Variable</th>

<th>Value</th>

</tr>

<tr>

<th>color</th>

<td><? print $color ?></td>

</tr>

<tr>

<th>instrument</th>

<td><? print $instrument ?></td>

</tr>

<tr>

<th>anim1</th>

<td><? print $anim1 ?></td>

</tr>

<tr>

<th>anim2</th>

<td><? print $anim2 ?></td>

</tr>

<tr>

<th>anim3</th>

<td><? print $anim3 ?></td>

</tr>

<tr>

<th>place</th>

<td><? print $place ?></td>

</tr>

<tr>

<th>vegetable</th>

<td><? print $vegetable ?></td>

</tr>

<tr>

<th>structure</th>

<td><? print $structure ?></td>

</tr>

<tr>

<th>action</th>

<td><? print $action ?></td>

</tr>

</table>

<form>

</html>

52

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

I made this program as simple as possible, because I didn’t expect to need it for
long. It’s simply a table with the name of each variable and its associated value.
I did it this way to ensure that I get all the variables exactly the way I want them.
There’s no point in building the story if you don’t have the variables working.

Building the Final Story

The story itself is very simple to build if you’ve planned and ensured that the vari-
ables are working right. All I had to do was write out the story as it was written
in the plan, with the variables incorporated in the appropriate places. Here’s the
code for the finished story.php page:

<html>

<head>

<title>Little Boy Who?</title>

</head>

<body>

<center>

<h1>Little Boy Who?</h1>

<?

print <<<HERE

<h3>

Little Boy $color, come blow your $instrument!

The $anim1’s in the $place, the $anim2’s in the $vegetable.

Where’s the boy that looks after the $anim3?

He’s under the $structure, $action.

</h3>

HERE;

?>

</center>

</body>

</html>

It might astonish you that the final program is quite a bit simpler than the test
program. Neither is very complicated, but once you have created the story, set up

53

C
h

a
p

te
r
 2

 U
s

in
g

V
a

r
ia

b
l e

s
a

n
d

I n
p

u
t

the variables, and ensured that all the variables are sent correctly, the story pro-
gram itself turns out to be almost trivial. Most of the story.php code is plain
HTML. The only part that’s in PHP is one long print statement, which uses the
print <<<HERE syntax to print a long line of HTML text with PHP variables embed-
ded inside. The story itself is this long concatenated text.

Summary

In this chapter you learn some incredibly important concepts: what variables are,
and how to create them in PHP; how to connect a form to a PHP program with
modifications to the form’s method and action attributes; and how to write nor-
mal links to send values to server-side scripts. You built programs that respond
to various kinds of input elements, including drop-down lists, radio buttons, and
list boxes. You went through the process of writing a program from beginning to
end, including the critical planning stage, creating a form for user input, and
using that input to generate interesting output.

54

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

CHALLENGES

1. Write a Web page that asks the user for his first and last name and then

uses a PHP script to write a form letter to that person. Inform the user he

might be a millionaire.

2. Write a custom Web page that uses embedded data tricks to generate

custom links for your favorite Web searches, local news and weather, and

other elements of interest to you.

3. Write your own story game. Find or write some text to modify, create an

appropriate input form, and output the story with a PHP script.

3

M
ost of the really interesting things you can do with a computer involve letting

it make decisions. Actually, the computer only appears able to decide things.

The programmer generates code that tells the computer exactly what to

do in different circumstances. In this chapter, you learn how to control the flow of a

program; specifically, how to:

• Create a random integer

• Use the if structure to change the program’s behavior

• Write conditions to evaluate variables

• Work with the else clause to provide instructions when a condition is not met

• Use the switch statement to work with multiple choices

• Build functions to better manage code

• Write programs that can create their own forms

Controlling Your
Code with

Conditions and
Functions

C H A P T E R

Examining the Petals Around the Rose
Game

The Petals Around the Rose game, featured in Figure 3.1, illustrates all the new
skills you learn in this chapter.

The premise of the Petals game is very simple. The computer rolls a set of five
dice and asks the user to guess the number of petals around the rose. The user
enters a number and presses the button. The computer indicates whether this
value is correct, and provides a new set of dice. Once the user understands the
secret, it’s a very easy game, but it can take a long time to figure out how it works.
Try the game before you know how it’s done.

Creating a Random Number

The dice game, like many other games, relies on random number generation to
make things interesting. Most programming languages have at least one way to cre-
ate random numbers. PHP’s rand function makes it easy to create random numbers.

56

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 3.1

This is a new twist
on an old dice

puzzle.

Viewing the Roll Em Program

The Roll Em program shown in Figure 3.2 demonstrates how the rand function can
generate virtual dice.

The code for the Roll Em program shows how easy random number generation is:

<html>

<head>

<title>Roll Em!</title>

</head>

<body>

<h1>Roll Em!</h1>

<h3>Demonstrates rolling a die</h3>

<?

$roll = rand(1,6);

print “You rolled a $roll”;

print “
”;

print “”;

?>

Refresh this page in the browser to roll another die.

</body>

</html>

57

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

FIGURE 3.2

The die roll is
randomly

generated by PHP

58

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

The rand function generates a random number between 1 and 6 (inclusive) and
stores the resulting value in the $roll variable. The rand function expects two
parameters: The first value is the lowest number and the second value represents
the highest number.

Since I want to replicate an ordinary six-sided die, I told the rand function to
return a value between 1 and 6. Since I knew that rand would return a value, I
assigned that resulting value to the variable $roll. By the time the following line
has finished executing, the $roll variable has a random value in it:

$roll = rand(1,6);

The lowest possible value is 1, the highest possible value is 6, and the value will
not have a decimal part. (In other words, it will never be 1.5.)

If you’re coming from another programming language, you might be surprised at the
way random numbers are generated in PHP. Most languages allow you to create a
random floating-point value between 0 and 1, and then requires you to transform
that value to whatever range you wish. PHP allows—in fact, requires—you to
create random integers within a range, which is usually what you want anyway. If
you really want a value between 0 and 1, you can generate a random number
between 0 and 1000 and then divide that value by 1000.

Printing a Corresponding Image

Notice the sneaky way I used variable interpolation in the preceding code. I care-
fully named my first image die1.jpg, the second die2.jpg, and so on. When I was
ready to print an image to the screen, I used an ordinary HTML image tag with
the source set to die$roll.jpg. If $roll is 3, the image shows die3.jpg.

Variable interpolation can be a wonderful trick if you know how the filenames
are structured. You might recall from chapter 2, “Using Variables and Input,”
that interpolation is the technique that allows you to embed a variable in a
quoted string by simply using its name.

Using the if Statement to Control
Program Flow

One of the most interesting things computers do is appear to make decisions. The
decision-making ability is an illusion. The programmer stores very specific
instructions inside a computer, and it acts on those instructions. The simplest
form of this behavior is a structure called the if statement.

TRICK

Introducing the Ace Program

You can improve the Roll Em program with an if structure. Enter the Ace pro-
gram. Figure 3.3 shows the program when the program rolls any value except 1.

However, this program does something exciting (okay, moderately exciting), when
it rolls a 1, as you can see from Figure 3.4.

59

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

FIGURE 3.3

When the roll is not
a 1, nothing
interesting
happens.

IN THE REAL WORLD

The dice games in this chapter demonstrate the power of graphical images to

make your programs more interesting and fun. You can get graphics for your

programs a number of ways. The easiest is to find an existing image on the

Web. Although this is technically very simple, many of the images on the Web

are owned by somebody. Respect the intellectual property rights of the original

owners. Get permission for any images you use.

Another alternative is to create the graphics yourself. Even if you don’t have any

artistic talent at all, modern software and technology make it quite easy to

generate passable graphics. You can do a lot with a digital camera and a free-

ware graphics editor. Even if you hire a professional artist to do graphics for your

program, you might still need to be able to sketch what you are looking for. This

book’s CD has a couple of very powerful freeware image-editing programs.

Creating a Condition

On the surface, the behavior of the Ace program is very straightforward: It does
something interesting only if the die roll is 1, and it doesn’t do that interesting
thing in any other case. While it is a simple idea, the implications are profound.
The same simple mechanism in the Ace program is the foundation of all compli-
cated computer behavior, from flight simulators to heart monitors. Take a look
at the code for the Ace program and see if you can spot the new element:

<html>

<head>

<title>Ace!</title>

</head>

<body>

<h1>Ace!</h1>

<h3>Demonstrates if statement</h3>

<?

$roll = rand(1,6);

print “You rolled a $roll”;

if ($roll = = 1){

print “<h1>That’s an ace!!!!!</h1>”;

} // end if

60

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 3.4

When a 1 appears,
the user is treated

to a lavish
multimedia display.

print “
”;

print “”;

?>

Refresh this page in the browser to roll another die.

</body>

</html>

The secret to this program is the segment that looks like this:

if ($roll = = 1){

print “<h1>That’s an ace!!!!!</h1>”;

} // end if

The line that prints “That’s an ace!!!!!” doesn’t happen every time the program
is run. It only happens if a certain condition is true. The if statement sets up a
condition for evaluation. In this case, the condition is read $roll is equal to 1. If
that condition is true, all the code between the left brace ({) and the right brace (})
evaluates. If the condition is not true, the code between the braces is skipped
altogether.

A condition can be thought of as an expression that can be evaluated as true or
false. Any expression that can return a true or false value can be used as a con-
dition. Most conditions look much like the one in the Ace program. This condi-
tion checks the variable $roll to see if it is equal to the value 1.

Note that equality is indicated by two equals signs (= =).

This is important, because computer programs are not nearly as flexible as
humans. We humans often use the same symbol for different purposes. While
computer languages can do this, it often leads to problems. The single equals
sign is reserved for assignment. You should read this line as x gets five, indicat-
ing that the value 5 is being assigned to the variable $x:

$x = 5;

This code fragment should be read as x is equal to five, as it is testing equality.

$x = = 5;

It is essentially asking whether x is equal to 5. A condition such as $x = = 5 does
not stand on its own. Instead, it is used inside some sort of other structure, such
as an if statement.

61

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

62

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Operator Description

== equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

!= not equal to

TABLE 3.1 COMPARISON OPERATORS

Exploring Comparison Operators

Equality (= =) is not the only type of comparison PHP allows. You can compare a
variable and a value or two variables using a number of comparison operators.
Table 3.1 describes comparison operators.

These comparison operators work on any type of data, although the results
might be a little strange when you use these mathematical operators on non-
numeric data. For example, if you have a condition like the following, you get the
result true:

“a” < “b”

You get that result because alphabetically, the letter a is earlier than b, so it has
a “smaller” value.

Creating an if Statement

An if statement begins with the keyword if followed by a condition inside paren-
theses. After the parenthesis is a left brace: {. You can put as many lines of code
between the left brace and right brace as you wish. Any code between the braces
is executed only if the condition is true. If the condition is false, program control
flows to the next line after the right brace.

It is not necessary to put a semicolon on a line ending with a brace. It is custom-
ary to indent all the code between the left and right braces.

Do not put a semicolon at the end of the if line. The following code prints
“we must be near a black hole.”

if (“day” = = “night”) ; {

print “we must be near a black hole”;

} // end if

When the processor sees the semicolon following (“day” = = “night”), it
thinks there is no code to evaluate if the condition is true. The condition is effec-
tively ignored. Essentially, the braces indicate that an entire group of lines are to
be treated as one structure, and that structure is part of the current logical line.

Working with Negative Results

The Ace program shows how to write code that handles a condition. Much of the
time, you want the program to do one thing if the condition is true, and some-
thing else if it’s false. Most languages include a special variant of the if statement
to handle exactly this type of contingency.

TRAP

63

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

CODE STYLE

The PHP processor ignores the spaces and carriage returns in your PHP code, so

you might wonder if it matters to pay such attention to how code is indented,

where the braces go, and so on. While the PHP processor doesn’t care how you

format your code, human readers do. Programmers have passionate arguments

about how you should format your code.

If writing code with a group (for instance, in a large project or for a class), you

are usually given a style guide you are expected to follow. When working on your

own, the specific style you adopt is not as important as being consistent in your

coding. The particular stylistic conventions I adopted for this book are reason-

ably common, relatively readable, and easily adapted to a number of languages.

If you don’t have your own programming style, the one in this book is a good

starting place. However, if your team leader or teacher requires another style,

adapt to it. Regardless of the specific style guidelines you use, it makes lots of

sense to indent your code, place comments liberally throughout your program,

and use whitespace to make your programs easier to read and debug.

Demonstrating the Ace or Not Program

The Ace or Not program is built from the Ace program, but it has an important
difference, as you can see from Figures 3.5 and 3.6.

64

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 3.5

If the program rolls
a 1, it still hollers
out “That’s an
ace!!!!!”

FIGURE 3.6

If the program rolls
anything but a 1, it
still has a message

for the user.

The program does one thing when the condition is true and something else
when the condition is false.

Using the else Clause

The code for the Ace or Not program shows how the else clause can allow for
multiple behaviors based on different conditions:

<html>

<head>

<title>Ace or Not</title>

</head>

<body>

<h1>Ace or Not</h1>

<h3>Demonstrates if statement with else clause</h3>

<?

$roll = rand(1,6);

print “You rolled a $roll”;

print “
”;

if ($roll = = 1){

print “<h1>That’s an ace!!!!!</h1>”;

} else {

print “That’s not an ace...”;

} // end if

print “
”;

print “”;

?>

Refresh this page in the browser to roll another die.

</body>

</html>

The interesting part of this code comes near the if statement:

if ($roll = = 1){

print “<h1>That’s an ace!!!!!</h1>”;

} else {

print “That’s not an ace...”;

} // end if

65

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

If the condition $roll = = 1 is true, the program prints “That’s an ace!!!!!.” If
the condition is not true, the code between else and the end of the if structure
is executed instead.

Notice the structure and indentation. One chunk of code (between the condition
and the else statement, encased in braces) occurs if the condition is true. If the
condition is false, the code between else and the end of the if structure (also in
braces) is executed. You can put as much code as you wish in either segment.
Only one of the segments runs (based on the condition), but you are guaranteed
that one will execute.

Working with Multiple Values

Often you find yourself working with more complex data. For example, you
might want to respond differently to each of the six possible die rolls. The Binary
Dice program illustrated in Figures 3.7 and 3.8 demonstrates just such a situation
by showing the base two representation of the die roll.

Writing the Binary Dice Program

The Binary Dice program has a slightly more complex if structure than the others,
because the binary value should be different for each of six possible outcomes.

66

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 3.7

The roll is a 5, and
the program

shows the binary
representation
of that value.

67

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

<html>

<head>

<title>Binary Dice</title>

</head>

<body>

<h1>Binary Dice</h1>

<h3>Demonstrates multiple if structure</h3>

<?

$roll = rand(1,6);

print “You rolled a $roll”;

print “
”;

if ($roll = = 1){

$binValue = “001”;

} else if ($roll = = 2){

$binValue = “010”;

} else if ($roll = = 3){

$binValue = “011”;

} else if ($roll = = 4){

$binValue = “100”;

} else if ($roll = = 5){

$binValue = “101”;

FIGURE 3.8

After rolling again,
the program reports

the binary
representation
of the new roll.

68

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

} else if ($roll = = 6){

$binValue = “110”;

} else {

print “I don’t know that one...”;

} // end if

print “
”;

print “”;

print “
”;

print “In binary, that’s $binValue”;

print “
”;

print “
”;

print “
”;

?>

Refresh this page in the browser to roll another die.

</body>

</html>

Using Multiple else if Clauses

The Binary Dice program has only one if structure, but that structure has mul-
tiple else clauses. The first condition simply checks to see if $roll is equal to 1. If
it is, the appropriate code runs, assigning the binary representation of 1 to the
$binValue variable. If the first condition is false, the program looks at all the suc-
cessive if else clauses until it finds a condition that evaluates to TRUE. If none of
the conditions are true, the code in the else clause is executed.

You may be surprised that I even put an else clause in this code. Since you know
the value of $roll must be between 1 and 6 and you checked each of those val-
ues, the program should never need to evaluate the else clause. Things in pro-
gramming don’t always work out the way you expect, so it’s a great idea to have
some code in an else clause even if you don’t expect to ever need it. It’s much bet-
ter to get a message from your program explaining that something unexpected
occurred than to have your program blow up inexplicably while your users are
using it.

The indentation for a multiple-condition if statement is useful so you can tell
which parts of the code are part of the if structure, and which parts are meant
to be executed if a particular condition turns out to be true.

TRICK

Using the switch Structure to Simplify
Programming

The situation in the Binary Dice program happens often enough that another
structure is designed for when you are comparing one variable to a number of
possible values. The Switch Dice program in Figure 3.9 looks identical to the
Binary Dice program as far as the user is concerned, except Switch Dice shows
the roll’s Roman numeral representation.

While the outward appearance of the last two programs is extremely similar, the
underlying code is changed to illustrate a very handy device called the switch
structure. This device begins by defining an expression, and then defines a series
of branches based on the value of that expression.

Building the Switch Dice Program

The Switch Dice program code looks different than the Binary Dice code, but the
results are the same:

<html>

<head>

<title>Switch Dice</title>

</head>

<body>

69

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

FIGURE 3.9

This version shows
a die roll in Roman

numerals.

<h1>SwitchDice</h1>

<h3>Demonstrates switch structure</h3>

<?

$roll = rand(1,6);

print “You rolled a $roll”;

print “
”;

switch ($roll){

case 1:

$romValue = “I”;

break;

case 2:

$romValue = “II”;

break;

case 3:

$romValue = “III”;

break;

case 4:

$romValue = “IV”;

break;

case 5:

$romValue = “V”;

break;

case 6:

$romValue = “VI”;

break;

default:

print “This is an illegal die!”;

} // end switch

print “
”;

print “”;

print “
”;

print “In Roman numerals, that’s $romValue”;

print “
”;

print “
”;

print “
”;

70

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

?>

Refresh this page in the browser to roll another die.

</body>

</html>

Using the switch Structure

The switch structure is optimal for when you have one variable to compare
against a number of possible values. Use the switch keyword followed, in paren-
theses, by the name of the variable you wish to evaluate. A set of braces indicates
that the next block of code focuses on evaluating this variable’s possible values.

For each possible value, use the case statement, followed by the value, followed
by a colon. End each case with a break statement, which indicates the program
should stop thinking about this particular case and get ready for the next one.

The use of the break statement is probably the trickiest part of using the switch
statement—especially if you are familiar with a language such as Visual Basic,
which does not require such a construct. It’s important to add the break statement
to the end of each case, or the program flow simply “falls through” to the next pos-
sible value, even if that value would not otherwise evaluate to true. As a beginner,
you should always place the break statement at the end of each case.

The last case, which works just like the else clause of the multi-value if state-
ment, is called default. It defines code to execute if none of the other cases is
active; it’s smart to test for a default case even if you think it is impossible for the
computer to get to this default option. Crazy things happen. It’s good to be pre-
pared for them.

Combining a Form and Its Results

Most of your PHP programs up to now have had two distinct files. An HTML file
has a form, which calls a PHP program. It can be tedious to keep track of two sep-
arate files. Use the if statement to combine both functions into one page.

The Hi User program shown in Figures 3.10 and 3.11 looks much like its counter-
part in chapter 2, “Using Variables and Input,” but it has an important difference.
Rather than being an HTML page and a separate PHP program, the entire program
resides in one file on the server.

TRAP

71

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

The code for the new version of hiUser shows how to achieve this trick:

<html>

<head>

<title>Hi User</title>

</head>

72

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 3.10

The HTML page is
actually produced

through the “Hi
User” PHP code.

FIGURE 3.11

The result is
produced by

exactly the same
“Hi User”program.

<body>

<h1>Hi User</h1>

<?

if (empty($userName)){

print <<<HERE

<form>

Please enter your name:

<input type = “text”

name = “userName”>

<input type = “submit”>

</form>

HERE;

} else {

print “<h3>Hi there, $userName!</h3>”;

} //end

?>

</body>

</html>

This program begins by looking for the existence of a variable called $userName.
There is no $userName variable the first time the program is called, because the
program was not called from a form. The empty() function returns the value true
if the specified variable is empty; it returns false if it has a value. If $userName does
not exist, empty($userName) evaluates as true. The condition (empty($userName)) is
generally true if this is the first time this page has been called. If it’s true, the
program should generate a form so the user can enter her name. If the condition
is false, that means somehow the user has entered a name (presumably through
the form) so the program greets the user with that name.

The key idea here is that the program runs more than once. When the user first
links to hiUser.php, the program creates a form. The user enters a value on the
form, and presses the submit button. This causes exactly the same program to be
run again on the server. This time, though, the $userName variable is not empty, so
rather than generating a form, the program uses the variable’s value in a greeting.

Server-side programming frequently works in this way. It isn’t uncommon for a
user to call the same program many times in succession as part of solving a par-
ticular problem. You often use branching structures such as the if and switch
statements to direct the program flow based on the user’s current state of activity.

73

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

Responding to Checkboxes

Now that you know how to use the if structure and the empty function, you can
work with checkboxes. Take a look at the following HTML code:

<html>

<head>

<title>Checkbox Demo</title>

</head>

<body>

<h1>Checkbox Demo</h1>

<h3>Demonstrates checkboxes</h3>

<form action =”checkDemo.php”>

<h3>What would you like with your order?</h3>

<input type =”checkbox”

name =”chkFries”

value =”1.00”>Fries

<input type =”checkbox”

name =”chkSoda”

value =”.85”>Soda

<input type =”checkbox”

name =”chkShake”

value =”1.30”>Shake

<input type =”checkbox”

name =”chkKetchup”

value =”.05”>Ketchup

<input type =”submit”>

</form>

</body>

</html>

74

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

75

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

This code generates the printout shown in Figure 3.12.

When the user submits this form, it calls checkDemo.php, which looks like Figure
3.13.

FIGURE 3.12

This page has
a series of

checkboxes.

FIGURE 3.13

Notice that
checkbox variables

have a value or
don’t exist.

Checkboxes are a little different from other form elements, which consistently
return a name/value pair. Checkboxes also have a name and a value, but the
checkbox variable is sent to the server only if the box has been checked. As an
example, compare Figures 3.12 and 3.13. You can see that only two of the check-
boxes were selected. These checkboxes report values. If a checkbox isn’t selected,
its name and value are not reported to the program.

Take a look at the code for the checkDemo.php program to see how this works:

<html>

<head>

<title>Checkbox Demo</title>

</head>

<body>

<h3>Demonstrates reading checkboxes</h3>

<?

print <<<HERE

chkFries: $chkFries

chkSoda: $chkSoda

chkShake: $chkShake

chkKetchup: $chkKetchup

<hr>

HERE;

$total = 0;

if (!empty($chkFries)){

print (“You chose Fries
 \n”);

$total = $total + $chkFries;

} // end if

if (!empty($chkSoda)){

print (“You chose Soda
 \n”);

$total = $total + $chkSoda;

} // end if

if (!empty($chkShake)){

76

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

77

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

print (“You chose Shake
 \n”);

$total = $total + $chkShake;

} // end if

if (!empty($chkKetchup)){

print (“You chose Ketchup
 \n”);

$total = $total + $chkKetchup;

} // end if

print “The total cost is \$$total \n”;

?>

</body>

</html>

The first part of the program simply prints out the expected variables. As you can
see, if the checkbox has not been selected, the associated variable is never created.
You can use the empty() function to determine if a checkbox has been checked. If
the variable is empty, the corresponding checkbox was not checked. I used the
negation operator (!) to check for the existence of a variable. The condition
(!empty($chkFries)) is true if chkFries was selected, and false otherwise. I tallied
the values associated with all the selected checkboxes to get a grand total.

Using Functions to Encapsulate
Parts of the Program

It hasn’t taken long for your programs to get complex. As soon as the code gets a
little bit larger than a screen in your editor, it gets much harder to track. Pro-
grammers like to break up code into smaller segments called functions to help
keep everything straight. A function is like a miniature program. It is designed
to do one job well. Look at Figure 3.14 for an example.

Examining the This Old Man Program

Song lyrics often have a very repetitive nature. The “This Old Man” song shown
in Figure 3.14 is a good example. Each verse is different, but the chorus is always
the same. You write each verse when you write the lyrics to such a song, but only
write the chorus once. After that, you simply write “chorus.” This works very
much like functions in programming language. The code for the This Old Man
program illustrates:

<html>

<head>

<title>This Old Man</title>

</head>

<body>

<h1>This Old Man</h1>

<h3>Demonstrates use of functions</h3>

<?

verse1();

chorus();

verse2();

chorus();

function verse1(){

print <<<HERE

This old man, he played 1

He played knick-knack on my thumb

HERE;

} // end verse1

function verse2(){

print <<<HERE

78

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 3.14

This song has a
straightforward
pattern: verse,
chorus, verse,

chorus.

This old man, he played 2

He played knick-knack on my shoe

HERE;

} // end verse1

function chorus(){

print <<<HERE

...with a knick-knack

paddy-whack

give a dog a bone

this old man came rolling home

HERE;

} // end chorus

?>

</body>

</html>

Careful examination of this code shows how it works. The main part of the pro-
gram is extremely simple:

verse1();

chorus();

verse2();

chorus();

Creating New Functions

The This Old Man code appears to have some new PHP functions. I called the
verse1() function, then the chorus() function, and so on. These new functions
weren’t shipped with PHP. Instead, I made them as part of the page. You can take
a set of instructions and store them with a name. This essentially builds a new
temporary command in PHP, so you can combine simple commands to do complex
things.

Building a function is simple. Use the keyword function followed by the func-
tion’s name and a set of parentheses. Keep the parentheses empty for now; you
learn how to use this feature in the next section. Use a pair of braces ({}) to com-
bine a series of code lines into one function. Don’t forget the right brace (}) to
end the function definition. It’s smart to indent everything between the begin-
ning and end of a function.

79

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

80

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

When you look at my code, you note there’s one line I never indent: the HERE token
used for multi-line strings. The word HERE acts like a closing quotation mark and
must be all the way to the left side of the screen, so it can’t be indented.

You can use any function name you like. Careful, though: If you try to define
a function that already exists, you’re bound to get confused. PHP has a large number
of functions already built in. If you’re having strange problems with a function,
look at the Help to see if that function already exists.

The chorus() function is especially handy in this program because it can be
reused. It isn’t necessary to rewrite the code for the chorus each time, when you
can simply call a function instead.

Using Parameters and Function Values

Functions are meant to be self-contained. This is good because the entire program
can be too complex to understand. If you break the complex program into smaller
functions, each function can be set up to work independently. When you work
inside a function, you don’t have to worry about anything outside the function. If
you create a variable inside a function, that variable dies as soon as you leave the
function. This prevents many errors that can otherwise creep into your code.

The bad side of functions being so self-contained is evident when you want them
to work with data from the outside. You can accomplish this a couple of ways.

• Send a parameter to a function, which allows you to determine one or
more values sent to the function as it starts.

• Give a function a return value.

The param program shown in Figure 3.15 illustrates another form of the “This Old
Man” song. Although again the user might be unaware, some important differences
exist between this more sophisticated program and the first This Old Man program.

Examining the Param.php Program

Notice that the output of Figure 3.15 is longer than that of 3.14, but the code that
generates this longer output is shorter.

<html>

<head>

<title>Param Old Man</title>

</head>

TRAP

TRICK

81

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

<body>

<h1>Param Old Man </h1>

<h3>Demonstrates use of function parameters</h3>

<?

print verse(1);

print chorus();

print verse(2);

print chorus();

print verse(3);

print chorus();

print verse(4);

print chorus();

function verse($stanza){

switch ($stanza){

case 1:

$place = “thumb”;

break;

case 2:

$place = “shoe”;

break;

FIGURE 3.15

While the output
looks similar to
Figure 3.14, the
program that

produced this page
is much more

efficient.

case 3:

$place = “knee”;

break;

case 4:

$place = “door”;

break;

default:

$place = “I don’t know where”;

} // end switch

$output = <<<HERE

This old man, he played $stanza

He played knick-knack on my $place

HERE;

return $output;

} // end verse

function chorus(){

$output = <<<HERE

...with a knick-knack

paddy-whack

give a dog a bone

this old man came rolling home

HERE;

return $output;

} // end chorus

?>

</body>

</html>

Looking at Encapsulation in the Main Code Body

This code features a number of improvements over the previous version. First
look at the main body of the code, which looks like this:

print verse(1);

print chorus();

print verse(2);

print chorus();

82

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

print verse(3);

print chorus();

print verse(4);

print chorus();

The program is to print the first verse, then the chorus, then the second verse,
then the chorus, and so on. The details of how all these things are to be gener-
ated is left to the individual functions. This is an example of encapsulation.
Encapsulation is good, because it allows you to think about problems in multiple
levels. At the highest level, you’re interested in the main ideas (print the verses
and chorus) but you’re not so concerned about the exact details. You use the
same technique when you talk about your day: “I drove to work, had some meet-
ings, went to lunch, and taught a class.” You don’t usually describe each detail of
each task. Each major task can be broken down into its component tasks later. (If
somebody asks, you could really describe the meeting: “I got some coffee,
appeared to be taking notes furiously on my PDA, got a new high score on Solitaire
while appearing to take notes, scribbled on the agenda, and dozed off during a
presentation.”)

Returning a Value: The chorus() Function

Another interesting thing about the code’s main section code is the use of the
print() function. In the last program, I simply said chorus() and the program
printed the verse. In this program, I did it a little differently. The chorus() func-
tion doesn’t actually print anything to the screen. Instead, it creates the chorus
as a big string and sends that value back to the program, which can do whatever
it wants with it.

This behavior isn’t new to you. Think about the rand() function. It always returns
a value to the program. The functions in this program work the same way. Take
another look at the chorus() function to see what I mean:

function chorus(){

$output = <<<HERE

...with a knick-knack

paddy-whack

give a dog a bone

this old man came rolling home

HERE;

return $output;

} // end chorus

83

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

I began the function by creating a new variable called $output. You can create
variables inside functions by mentioning them, just like you can in the main part
of the program. However, a variable created inside a function loses its meaning
as soon as the function is finished. This is good, because it means the variables
inside a function belong only to that function. You don’t have to worry about
whether the variable already exists somewhere else in your program. You also
don’t have to worry about all the various things that can go wrong if you mis-
takenly modify an existing variable. I assigned a long string (the actual chorus of
the song) to the $output variable with the <<<HERE construct.

The last line of the function uses the return statement to send the value of $out-
put back to the program. Any function can end with a return statement. What-
ever value follows the keyword return is passed to the program. This is one way
your functions can communicate to the main program.

Accepting a Parameter in the verse() Function

The most efficient part of the newer This Old Man program is the verse() func-
tion. Rather than having a different function for each verse, I wrote one function
that can work for all the verses. After careful analysis of the song, I noticed that
each verse is remarkably similar to the others. The only thing that differentiates
each verse is what the old man played (which is always the verse number) and
where he played it (which is something rhyming with the verse number). If I can
indicate which verse to play, it should be easy enough to produce the correct verse.

Notice that when the main body calls the verse() function, it always indicates a
verse number in parentheses. For example, it makes a reference to verse(1) and
verse(3). These commands both call the verse function, but they send different
values (1 and 3) to the function. Take another look at the code for the verse()
function to see how the function responds to these inputs:

function verse($stanza){

switch ($stanza){

case 1:

$place = “thumb”;

break;

case 2:

$place = “shoe”;

break;

case 3:

$place = “knee”;

break;

84

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

85

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

case 4:

$place = “door”;

break;

default:

$place = “I don’t know where”;

} // end switch

$output = <<<HERE

This old man, he played $stanza

He played knick-knack on my $place

HERE;

return $output;

} // end verse

In this function, I indicated $stanza as a parameter in the function definition. A
parameter is simply a variable associated with the function. If you create a function
with a parameter, you are required to supply some sort of value whenever you call
the function. The parameter variable automatically receives the value from the main
body. For example, if the program says verse(1), the verse function is called and the
$stanza variable contains the value 1. I then used a switch statement to populate the
$place variable based on the value of $stanza. Finally, I created the $output variable
using the $stanza and $place variables and returned the value of $output.

You can create functions with multiple parameters. Simply declare several
variables inside the parentheses of the function definition, and be sure to call the
function with the appropriate number of arguments. Make sure to separate para-
meters with commas.

Managing Variable Scope

You have learned some ways to have your main program share variable informa-
tion with your functions. In addition to parameter passing, sometimes you want
your functions to have access to variables created in the main program. This is
especially true because all the variables automatically created by PHP (such as
those coming from forms) are generated at the main level. You must tell PHP

TRICK

IN THE REAL WORLD

If you’re an experienced programmer, you probably know other ways to make

this code even more efficient. You return to this program as you learn about

loops and arrays in the coming chapters.

when you want a function to use a variable created at the main level. These program-
level variables are also called global variables.

If you’ve programmed in another language, you’re bound to get confused by the way
PHP handles global variables. In most languages, any variable created at the main
level is automatically available to every function. In PHP, you must explicitly
request that a variable be global inside a function. If you don’t do this, a new local
variable with the same name (and no value) is created at the function level.

Looking at the Scope Demo

To illustrate the notion of global variables, take a look at the Scope Demo, shown
in Figure 3.16.

Take a look at the code for the Scope Demo and see how it works:

<html>

<head>

<title>Scope Demo</title>

</head>

<body>

<h1>Scope Demo</h1>

<h3>Demonstrates variable scope</h3>

TRAP

86

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 3.16

Variable $a keeps
its value inside a
function, but $b

does not.

87

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

<?

$a = “I have a value”;

$b = “I have a value”;

print <<<HERE

outside the function,

\$a is “$a”, and

\$b is “$b”

HERE;

myFunction();

function myFunction(){

//make $a global, but not $b

global $a;

print <<<HERE

inside the function,

\$a is “$a”, and

\$b is “$b”

HERE;

} // end myFunction

?>

</body>

</html>

I created two variables for this demonstration: $a and $b. I gave them both the
value I have a value. As a test, I printed out the values for both $a and $b.

Notice the trick I used to make the actual dollar sign show up in the quotation
marks. When PHP sees a dollar sign inside quotation marks, it usually expects to
be working with a variable. Sometimes (as in this case) you really want to print a
dollar sign. You can precede a dollar sign with a backslash to have the sign
appear. So, print $a prints the value of the variable $a, but print \$a prints
the value “$a”.

TRICK

Returning to the Petals Game

At the beginning of this chapter I show you the Petals Around the Rose game.
This game uses all the skills you have learned so far, including the new concepts
from this chapter. If you haven’t already done so, play the game now so you can
see how it works.

Here’s the basic plan of the Petals game: Each time the page is drawn, it randomly
generates five dice and calculates the correct number of petals based on a super-
secret formula. The page includes a form that has a text area called guess for the
user to enter the answer. The form also includes a hidden field called numPetals,
which tells the program what the correct answer was.

The Petals game doesn’t introduce anything new, but it’s a little longer than any
of the other programs you’ve seen so far. I introduce the code in smaller chunks.
All the code is shown in order, but not in one long code sample. Look on the CD
for the program in its entirety.

Starting HTML

Like most PHP programs, the Petals game uses some HTML to set everything up.
The HTML is pretty basic because PHP code creates most of the interesting HTML.

<HTML>

<head>

<title>Petals Around the Rose</title>

88

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

CAN’T THE PROGRAM REMEMBER THE RIGHT ANSWER?

Since the program generated the correct answer in the first place, you might be

surprised to learn that the right answer must be hidden in the Web page and

then retrieved by the same program that generated it. Each contact between

the client and the server is completely new.

When the user first plays the game, the page is sent to the browser and the con-

nection is completely severed until the user hits the submit button. When the

user submits the form, the Petals program starts over again. It’s possible the

user plays the game right before he goes to bed, then leaves the page on the

computer overnight. Meanwhile, a hundred other people might use the pro-

gram. For now, use hidden data to help keep track of the user’s situation. Later

in this book you learn some other clever methods for keeping track of the users’

situations.

</head>

<body bgcolor = “tan”>

<center>

<h1>Petals Around the Rose</h1>

I decided on a tan background with a whimsical font. This should give the program
a light feel.

Main Body Code

The main PHP code segment has three main jobs: print a greeting, print the dice,
and print the form for the next turn. These jobs are (appropriately enough)
stored in three different functions. One goal of encapsulation is to make the
main code body as clean as possible. This goal is achieved in the Petals game.

<?

printGreeting();

printDice();

printForm();

All the real work is passed off to the various functions, which are described
shortly. Even before you see the functions themselves, you have a good idea what
each function does and a good sense of the program’s overall flow. Encapsulat-
ing your code and naming your functions well makes your code much easier to
read and repair.

The printGreeting() Function

The printGreeting() function prints one of three possible greetings to the user.
If the user has never called this program before, the program should provide a
welcome. If the user has been here before, she has guessed the number of petals.
That guess might be correct (in which case a congratulatory message is appro-
priate) or incorrect, requiring information about what the correct answer was.
The printGreeting() function uses a switch statement to handle the various
options.

function printGreeting(){

global $guess, $numPetals;

if (empty($guess)){

print “<h3>Welcome to Petals Around the Rose</h3>”;

89

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

} else if ($guess = = $numPetals){

print “<h3>You Got It!</h3>”;

} else {

print <<<HERE

<h3>from last try: </h3>

you guessed: $guess

-and the correct answer was: $numPetals petals around the rose

HERE;

} // end if

} // end printGreeting

This function refers to both the $guess and $numPetals variables, which are auto-
matically created. You can use one global statement to make more than one vari-
able global by separating the variables with commas.

The $guess variable is empty if this is the first time the user has come to the pro-
gram. If $guess is empty, I print a welcoming greeting. The user has guessed cor-
rectly if $guess is equal to $numPetals, so I print an appropriate congratulations. If
neither of these conditions is true (which is most of the time), the function prints
out a slightly more complex string indicating the user’s last guess and the correct
answer. This should give the user enough information to finally solve the riddle.

The else if structure turns out to be the easiest option for handling the three
possible conditions I want to check.

The printDice() Function

After the program prints a greeting, it does the important business of generating
the random dice. It’s relatively easy to generate random dice, as you saw earlier
in this chapter. However, I also wanted to be efficient and calculate the correct
number of petals. To make the printDice() function more efficient, it calls some
other custom functions.

function printDice(){

global $numPetals;

print “<h3>New Roll:</h3>”;

$numPetals = 0;

90

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

91

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

$die1 = rand(1,6);

$die2 = rand(1,6);

$die3 = rand(1,6);

$die4 = rand(1,6);

$die5 = rand(1,6);

showDie($die1);

showDie($die2);

showDie($die3);

showDie($die4);

showDie($die5);

print “
”;

calcNumPetals($die1);

calcNumPetals($die2);

calcNumPetals($die3);

calcNumPetals($die4);

calcNumPetals($die5);

} // end printDice

The printDice() function is very concerned with the $numPetals variable, but
doesn’t need access to $guess. It requests access to $numPetals from the main pro-
gram. After printing out the “New Roll” message, it resets $numPetals to 0. The
value of $numPetals is recalculated each time the dice are rolled.

I got new dice values by calling the rand(1, 6) function six times. I stored each
result in a different variable, named $die1 to $die6. To print out an appropriate
graphic for each die, I called the showDie() function. I printed out a line break,
then called the calcNumPetals() function once for each die.

The showDie() Function

The showDie() function is used to simplify repetitive code. It accepts a die value
as a parameter and generates the appropriate HTML code for drawing a die with
the corresponding number of dots.

function showDie($value){

print <<<HERE

<img src = “die$value.jpg”

height = 100

width = 100>

HERE;

} // end showDie

One advantage of using functions for repetitive HTML code is the ease with which
you can modify large sections of code. For example, if you wish to change image
sizes, change the img tag in this one function. All six die images are changed.

The calcNumPetals Function

The printDice() function also calls calcNumPetals() once for each die. This func-
tion receives a die value as a parameter. It also references the $numPetals global
variable. The function uses a switch statement to determine how much to add to
$numPetals based on the current die’s value.

Here’s the trick: The center dot of the die is the rose. Any dots around the center
dot are the petals. The value 1 has a rose but no petals; 2, 4, and 6 have petals, but
no rose; 3 has two petals; 5 has four. If the die roll is 3, $numPetals should be
increased by 2; if the roll is 5, $numPetals should be increased by 4.

function calcNumPetals($value){

global $numPetals;

switch ($value) {

case 3:

$numPetals + = 2;

break;

case 5:

$numPetals + = 4;

break;

} // end switch

} // end calcNumPetals

The + = code is a shorthand notation. The line shown here

$numPetals + = 2;

is exactly equivalent to this line:

$numPetals = $numPetals + 2;

TRICK

92

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

The first style is much shorter and easier to type, so it’s the form most programmers
prefer.

The printForm() Function

The purpose of the printForm() function is to print the form at the bottom of the
HTML page. This form is pretty straightforward except for the need to place the
hidden field for $numPetals.

function printForm(){

global $numPetals;

print <<<HERE

<h3>How many petals around the rose?</h3>

<form method = “post”>

<input type = “text”

name = “guess”

value = “0”>

<input type = “hidden”

name = “numPetals”

value = “$numPetals”>

<input type = “submit”>

</form>

<a href = “petalHelp.html”

target = “helpPage”>

give me a hint

HERE;

} // end printForm

This code places the form on the page. I could have done most of the form in plain
HTML without needing PHP for anything but the hidden field. However, when I
start using PHP, I like to have much of my code in PHP. It helps me see the flow of
things more clearly (print greeting, print dice, and print form, for example).

93

C
h

a
p

t e
r

3
 C

o
n

tr
o

l li n
g

Y
o

u
r

C
o

d
e

w
i th

C
o

n
d

it io
n

s
a

n
d

F
u

n
c
t io

n
s

94

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

The Ending HTML Code

The final set of HTML code closes everything up. It completes the PHP segment,
the font, the centered text, the body, and finally, the HTML itself.

?>

</center>

</body>

</html>

Summary

You learn a lot in this chapter. You learned several kinds of branching structures,
including the if clause, else statements, and the switch structure. You know how
to write functions, which make your programs much more efficient and easier
to read. You know how to pass parameters to functions and return values from
them. You can access global variables from inside functions. You put all these
things together to make an interesting game. You should be very proud! In the
next chapter you learn how to use looping structures to make your programs
even more powerful.

CHALLENGES

1. Write a program that generates 4-, 10-, or 20-sided dice.

2. Write a program that lets the user choose how many sides a die has and

print a random roll with the appropriate maximum values. (Don’t worry

about using images to display the dice.)

3. Write a Loaded Dice program that half the time generates the value 1 and

half the time generates some other value.

4. Modify the story game from chapter 2, “Using Variables and Input,” so the

form and the program are one file.

5. Create a Web page generator. Make a form for the page caption, background

color, font color, and text body. Use this form to generate an HTML page.

Loops and
Arrays

4
C H A P T E R

Y
ou know all a program’s basic parts, but your programs can be much easier

to write and more efficient when you know some other things. In this chapter

you learn about two very important tools, arrays and looping structures.

Arrays are special variables that form lists. Looping structures repeat certain code

segments. As you might expect, arrays and loops often work together. You learn how

to use these new elements to make more interesting programs. Specifically, you do

these things:

• Use the for loop to build basic counting structures

• Modify the for loop for different kinds of counting

• Use a while loop for more flexible looping

• Identify the keys to successful loops

• Create basic arrays

• Write programs that use arrays and loops

• Store information in hidden fields

Introducing the Poker Dice Program

The main program for this chapter is a simplified dice game. In this game, you
are given $100 of virtual money. On each turn, you bet two dollars. The computer
rolls five dice. You can elect to keep each die or roll it again. On the second roll,
the computer checks for various combinations. You can earn money back for
rolling pairs, triples, four or five of a kind, and straights (five numbers in a row).
Figures 4.1 and 4.2 illustrate the game in action.

The basic concepts of this game are much like the ones you use in other chapters’
programs. Keeping track of all five dice can get complicated, so this program uses
arrays and loops to manage all the information.

Counting with the for Loop

You might want the computer to repeat some sort of action multiple times.
Good thing computers excel at repetitive behavior. For example, take a look at
the simpleFor.php program shown in Figure 4.3.

96

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 4.1

After the first roll,
you can keep some

of the dice by
selecting the
checkboxes
underneath

each die.

While the output of the simpleFor.php program doesn’t look all that interesting,
it has a unique characteristic. It has only one print statement in the entire pro-
gram, which is executed 10 different times. Take a look at the source code to see
how it works:

<html>

97

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

FIGURE 4.2

The player has
earned back some
money with a full

house!

FIGURE 4.3

This program
counts from zero to
one using only one
print statement.

<head>

<title>

A simple For Loop

</title>

</head>

<body>

<h1>A simple for loop</h1>

<?

for ($i = 0; $i < 10; $i++){

print “$i
\n”;

} // end for loop

?>

</body>

</html>

Each number is printed in the line that looks like this:

print “$i
\n”;

This line can print only one value, but it happens 10 times. The key to this behav-
ior is the for statement. The for structure has three main parts: a variable decla-
ration, a condition, and an increment statement.

The \n character signifies a newline or carriage return. This means that the program’s
HTML source code places each number on a separate line. The
 tag ensures
that the HTML output also places each number on its own line. While carriage
returns in the HTML source don’t have much to do with how the output looks,
I like my programs’ code to be written as carefully as the stuff I build by hand.

Initializing a Sentry Variable

for loops usually involve an integer (non-decimal) variable. Sometimes the key vari-
able in a loop is referred to as a sentry variable, because it acts like a gatekeeper to
the loop. The first part of a for loop definition is a line of code that identifies and
initializes the sentry variable to some starting value. In the simple for loop demo,
the initialization segment looks like this:

TRICK

98

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

99

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

$i = 0;

It specifies that the sentry variable be called $i and its starting value be 0.

Computer programs frequently begin counting with zero, so I initialized $i to 0
as well.

Although the $i = 0; segment looks like (and is) a complete line of code, it is
usually placed on the same line as the other parts of the for loop construct.

Setting a Condition to Finish the Loop

Getting a computer to repeat behavior is the easy part. The harder task comes
when trying to get the computer to stop correctly. The second part of the for loop
construct is a condition. When this condition is evaluated as TRUE, the loop should
continue. The loop should exit as soon as the condition is evaluated to FALSE. In
this case, I set the condition as $i < 10. This means that as long as the variable $i
has a value less than 10, the loop continues. As soon as the program detects that
$i has a value equal to or larger than 10, the loop exits. Usually a for loop’s con-
dition checks the sentry variable against some terminal or ending value.

Changing the Sentry Variable

The final critical element of a for loop is some mechanism for changing the
value of the sentry variable. At some point the value of $i must become 10 or

TRICK

IN THE REAL WORLD

You might wonder why the sentry variable is called $i. Like most variables,

it’s best if sentry variables have a name that suits their purpose. Sometimes,

however, a for loop sentry is simply an integer and doesn’t have any other mean-

ing. In those situations, an old programming tradition is often called into play.

In the Fortran language (one of the earliest common programming languages),

all integer variables had to begin with the letters i, j, and a few other characters.

Fortran programmers would commonly use i as the name of generic sentry

variables. Even though most modern programmers have never written a line of

Fortran code, the tradition remains. It’s amazing how much folklore exists in

such a relatively new activity as computer programming.

100

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

larger or the loop continues forever. In the basicLoop program, the part of the for
structure that makes this happen looks like $i++. The notation $i++ is just like
saying add one to $i or $i = $i + 1. The ++ symbol is called an increment opera-
tor because it provides an easy way to increment (add 1) to a variable.

Building the Loop

Once you’ve set up the parts of the for statement, the loop itself is easy to use.
Place braces ({}) around your code and indent all code that’s inside the loop. You
can have as many lines of code as you wish inside a loop, including branching
statements and other loops.

The sentry variable has special behavior inside the loop. It begins with the initial
value. Each time the loop repeats, it is changed as specified in the for structure,
and the interpreter checks the condition to ensure that it’s still true. If so, the
code in the loop occurs again.

In the case of the basicArray program, $i begins as 0. The first time the print
statement occurs, it prints 0 because that is the current value of $i. When the
interpreter reaches the right brace that ends the loop, it increments $i by 1 (fol-
lowing the $i++ directive in the for structure) and checks the condition ($i < 10).

Because 0 is less than 10, the condition is true and the code inside the loop occurs
again. Eventually, the value of $i becomes 10, so the condition ($i < 10) is no
longer true. Program control then reverts to the next line of code after the end
of the loop, which ends the program.

Modifying the for Loop

Once you understand for loop structure basics, you can modify it in a couple of
interesting ways. You can build a loop that counts by fives or that counts backwards.

Counting by Fives

The countByFive.php program shown in Figure 4.4 illustrates a program that
counts by fives.

The program is very much like the basicArray program, but with a couple of twists.

<html>

<head>

<title>

Counting By Fives

</title>

</head>

<body>

<h1>Counting By Fives</h1>

<?

for ($i = 5; $i <= 50; $i+= 5){

print “$i
\n”;

} // end for loop

?>

</body>

</html>

The only thing I changed was the various parameters in the for statement. Since
it seems silly to start counting at 0, I set the initial value of $i to 5. I decided to
stop when $i reached 50 (after 10 iterations). Each time through the loop, $i is
incremented by five.

101

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

FIGURE 4.4

This program uses
a for loop to
count by five.

102

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

The += syntax in the following code increments a variable:

$i += 5;

The above is the same thing as this:

$i = $i + 5;

Counting Backwards

It is fairly simple to modify a for loop so it counts backwards. Figure 4.5 illus-
trates this feat.

Once again, the basic structure is just like the basic for loop program, but chang-
ing the for structure parameters alters the program’s behavior. The code for this
program shows how it is done:

<html>

<head>

<title>

Counting Backwards

</title>

</head>

<body>

FIGURE 4.5

This program
counts backwards
from 10 to 1 using

a for loop.

<h1>Counting Backwards</h1>

<?

for ($i = 10; $i > 0; $i—){

print “$i
\n”;

} // end for loop

?>

</body>

</html>

If you understand how for loops work, the changes all make sense. I’m counting
backwards this time, so $i begins with a large value (in this case 10). The condi-
tion for continuing the loop is now $i > 0, which means the loop continues as
long as $i is greater than 0. The loop ends as soon as $i is 0 or less.

Note that rather than adding a value to $i, this time I decrement by 1 each time
through the loop. If you’re counting backwards, be very careful that the sentry
variable has a mechanism for getting smaller. Otherwise the loop never ends.
Recall that $i++ adds 1 to $i; $i— subtracts 1 from $i.

Using a while Loop

PHP, like most languages, provides another kind of looping structure even more
flexible than the for loop. You can use the while loop when you know how many
times something will happen. Figure 4.6 shows how a while loop can work much
like a for loop.

Repeating Code with a while Loop

The code for the while.php program is much like the for loop example, but you
can see that the while loop is a little bit simpler:

<html>

<head>

<title>

A simple While Loop

</title>

103

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

</head>

<body>

<h1>A simple while loop</h1>

<?

$i = 1;

while ($i <= 10){

print “$i
\n”;

$i++;

} // end while

?>

</body>

</html>

The while loop requires only one parameter, which is a condition. The loop con-
tinues as long as the condition is evaluated as TRUE. As soon as the condition is
evaluated as FALSE, the loop exits.

104

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 4.6

Although this
program’s output

looks a lot like the
basic for loop,

it uses a different
construct to
achieve the
same result.

This particular program starts by initializing the variable $i, then checking to
see if it’s greater than or equal to 10 in the while statement. Inside the loop body,
the program prints the current value of $i and increments $i.

Recognizing Endless Loops

The flexibility of the while construct gives it power, but with that power comes
potential for problems. while loops are easy to build, but a loop that works
improperly can cause a lot of trouble. It’s possible that the code in the loop will
never execute at all. Even worse, you might have some sort of logical error that
causes the loop to continue indefinitely. As an example, look at the badWhile.php
code:

<html>

<head>

<title>

A bad While Loop

</title>

</head>

<body>

<h1>A bad while loop</h1>

<?

$i = 1;

while ($i <= 10){

print “$i
\n”;

$j++;

} // end while

?>

</body>

</html>

105

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

The badWhile.php program shows what happens when you have an endless
loop in your code. If you run this program, it may temporarily slow down your Web
server. Be sure your server is configured to stop a PHP process when the user
presses the stop button on the browser. (This is a default setting on most PHP
installations.)

The badWhile.php program has a subtle but deadly error. Look carefully at the
source code and see if you can spot it. The code is just like the first while pro-
gram, except instead of incrementing $i, I incremented $j. The variable $j has
nothing to do with $i and $i never changes. The loop keeps going on forever,
because it cannot end until $i is greater than or equal to 10, which never hap-
pens. This program is an example of the classic endless loop. Every programmer
alive has written them accidentally, and you will too.

Usually the culprit of an endless loop is a sloppy variable name, spelling, or
capitalization. If you use a variable like $myCounter as the sentry variable
but then increment $MyCounter, PHP tracks two entirely different variables. Your
program won’t work correctly. This is another reason to be consistent
on your variable naming and capitalization conventions.

Building a Well-Behaved Loop

Fortunately, you have guidelines for building a loop that behaves as you wish.
Even better, you’ve already learned most of the important ideas, because these
fundamental concepts are built into the for loop’s structure. When you write a
while loop, you are responsible for these three things:

• Creating a sentry variable

• Building a condition

• Ensuring the loop can exit

I discuss each of these ideas in the following sections.

Creating and Initializing a Sentry Variable

If your loop is based on a variable’s value (there are alternatives), make sure you
do these three things:

• Identify that variable.

• Ensure that variable has appropriate scope.

• Make sure that variable has a reasonable starting value.

TRICK

TRAP

106

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

You might also check that value to ensure the loop runs at least one time (at least
if that’s your intent). Creating a variable is much like the initialization stage of a
for construct.

Building a Condition to Continue the Loop

Your condition usually compares a variable and a value. Make sure you have a
condition that can be met and be broken. The hard part is ensuring that the pro-
gram gets out of the loop at the correct time. This condition is much like the con-
dition in the for loop.

Ensuring the Loop Can Exit

There must be some trigger that changes the sentry variable so the loop can exit.
This code must exist inside the code body. Be sure it is possible for the sentry vari-
able to achieve the value necessary to exit the loop by making the condition false.

Working with Basic Arrays

Programming is about the combination of control structures (like loops) and
data structures (like variables). You know the very powerful looping structures.
Now it’s time to look at a data structure that works naturally with loops.

Arrays are special variables made to hold lists of information. PHP makes it quite
easy to work with arrays. Look at Figure 4.7, whose basicArray.php program
demonstrates two arrays.

107

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

FIGURE 4.7

The information
displayed on this
page is stored in

two array variables.

First look over the entire program, then see how it does its work.

<html>

<head>

<title>

Basic Array

</title>

</head>

<body>

<h1>Basic Array</h1>

<?

//simply assign values to array

$camelPop[1] = “Somalia”;

$camelPop[2] = “Sudan”;

$camelPop[3] = “Mauritania”;

$camelPop[4] = “Pakistan”;

$camelPop[5] = “India”;

//output array values

print “<h3>Top Camel Populations in the World</h3>\n”;

for ($i = 1; $i <= 5; $i++){

print “$i: $camelPop[$i]
\n”;

} // end for loop

print “<i>Source:

Food and Agriculture Organization of the United Nations</i>\n”;

//use array function to load up array

$binary = array(“000”, “001”, “010”, “011”);

print “<h3>Binary numbers</h3>\n”;

for ($i = 0; $i < count($binary); $i++){

print “$i: $binary[$i]
\n”;

} // end for loop

?>

</body>

</html>

108

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Generating a Basic Array

Look at the lines that describe $camelPop:

//simply assign values to array

$camelPop[1] = “Somalia”;

$camelPop[2] = “Sudan”;

$camelPop[3] = “Mauritania”;

$camelPop[4] = “Pakistan”;

$camelPop[5] = “India”;

The $camelPop variable is a variable meant to hold the five countries with the
largest camel populations in the world. (If this array stuff isn’t working for you,
at least you’ve learned something in this chapter!) Since $camelPop is going to
hold the names of five different countries, it makes sense that this is an array
(computer geek lingo for list) rather than an ordinary variable.

The only thing different about $camelPop and all the other variables you’ve
worked with so far is $camelPop can have multiple values. To tell these values
apart, use a numeric index in square brackets.

Apparently the boxer George Foreman has several sons also named George. I’ve
often wondered what Mrs. Foreman does when she wants somebody to take out
the trash. I suspect she has assigned a number to each George, so there is no
ambiguity. This is exactly how arrays work. Each element has the same name, but
a different numerical index so you can tell them apart.

Many languages require you to explicitly create array variables, but PHP is very
easygoing in this regard. Simply assign a value to a variable with an index in
square brackets and you’ve created an array.

Even though PHP is good natured about letting you create an array variable on-
the-fly, you might get a warning about this behavior on those Web servers that
have error reporting set to E_ALL. If that’s the case, you can create an empty array
with the array() function described in the following sections and then add
values to it.

Using a Loop to Examine an Array’s Contents

Arrays go naturally with for loops. Very often when you have an array variable,
you step through all of its values and do something to each one. In this example,
I want to print the index and the corresponding country’s name. Here’s the for
loop that performs this task:

TRICK

TRICK

109

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

//output array values

print “<h3>Top Camel Populations in the World</h3>\n”;

for ($i = 1; $i <= 5; $i++){

print “$i: $camelPop[$i]
\n”;

} // end for loop

Because I know the array indices will vary between 1 and 5, I set up my loop so the
value of $i will go from 1 to 5. Inside the loop, I simply print the index ($i) and the
corresponding country ($camelPop[$i]). The first time through the loop, $i is 1, so
$camelPop[$i] is $camelPop[1], which is Somalia. Each time through the loop, the
value of $i is incremented, so eventually every array element is displayed.

The advantage of combining loops and arrays is convenience. If you want to do
something with each element of an array, you only have to write the code one time,
then put that code inside a loop. This is especially powerful when you start
designing programs that work with large amounts of data. If, for example, I want
to list the camel population of every country in the UN database rather than
simply the top five countries, all I have to do is make a bigger array and modify the
for loop.

Using the array() Function to Preload an Array

Often you start out knowing exactly which values you want placed in an array.
PHP provides a shortcut for loading an array with a set of values.

//use array function to load up array

$binary = array(“000”, “001”, “010”, “011”);

In this example, I create an array of the first four binary digits (starting at zero).
The array keyword can assign a list of values to an array. Note that when you use
this technique, the indices of the elements are created for you.

Most computer languages automatically begin counting things with zero rather
than one (the way humans tend to count). This can cause confusion. When PHP
builds an array for you, the first index is 0 automatically, not 1.

Detecting the Size of an Array

Arrays are meant to add flexibility to your code. You don’t actually need to know
how many elements are in an array, because PHP provides a function called
count(), which can determine how many elements an array has. In the following
code, I use the count() function to determine the array size:

TRAP

TRICK

110

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

111

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

print “<h3>Binary numbers</h3>\n”;

for ($i = 0; $i < count($binary); $i++){

print “$i: $binary[$i]
\n”;

} // end for loop

Note that my loop sentry goes from 0 to 1 less than the number of elements in
the array. If you have four elements in an array and the array begins with 0, the
largest index is 3. This is a standard way of looping through an array.

Since it is so common to step through arrays, PHP provides another kind of loop
that makes this even easier. You get a chance to see that looping structure in
chapter 5, “Better Arrays and String Handling.” For now, understand how an
ordinary for loop is used with an array.

Improving This Old Man
with Arrays and Loops

The basicArray.php program shows how to build arrays, but it doesn’t illustrate
the power of arrays and loops working together. To see how these features can
help you, revisit an old friend from chapter 3, “Controlling Your Code with
Conditions and Functions.” The version of the This Old Man program featured in
Figure 4.8 looks a lot like it did in chapter 3, but the code has quite a bit more
compact.

TRICK

FIGURE 4.8

The Fancy Old
Man program uses
a more compact
structure than

This Old Man.

The improvements in this version are only apparent when you look under the hood:

<html>

<head>

<title>

Fancy Old Man

</title>

</head>

<body>

<h1>This Old Man with Arrays</h1>

<pre>

<?

$place = array(

“”,

“on my thumb”,

“on my shoe”,

“on my knee”,

“on a door”);

//print out song

for ($verse = 1; $verse <= 4; $verse++){

print <<<HERE

This old man, He played $verse

He played knick-knack $place[$verse]

...with a knick, knack, paddy-whack

give a dog a bone

This old man came rolling home

HERE;

} // end for loop

?>

</pre>

</body>

</html>

This improved version takes advantage of the fact that the only things that
change from verse to verse is the verse number and the place where the old man
plays paddy-whack (whatever that means). Organizing the places into an array
greatly simplify writing out the song lyrics.

112

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Building the Place Array

I notice that each place is a string value associated with some number. I use the
array() directive to preload the $place array with appropriate values. Zero has no
corresponding place, so I simply left the 0 element blank.

$place = array(

“”,

“on my thumb”,

“on my shoe”,

“on my knee”,

“on a door”);

Like most places in PHP, carriage returns don’t matter when you’re writing the
source code. I put each place on a separate line, just because it looked neater that
way.

Writing Out the Lyrics

The song itself is incredibly repetitive. Each verse is identical except for the verse
number and place. For each verse, the value of the $verse variable is the current
verse number. The corresponding place is stored in $place[$verse]. A large print
statement in a for loop prints the entire code.

//print out song

for ($verse = 1; $verse <= 4; $verse++){

print <<<HERE

This old man, He played $verse

He played knick-knack $place[$verse]

...with a knick, knack, paddy-whack

give a dog a bone

This old man came rolling home

HERE;

} // end for loop

The Fancy Old Man program illustrates very nicely the tradeoff associated with
using arrays. Creating a program that uses arrays correctly often takes a little more
planning than using control structures alone (as in This Old Man). However, the
extra work up front pays off because the program is easier to modify and extend.

113

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

114

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Keeping Persistent Data

Most traditional kinds of programming presume that the user and the program
are engaging in a continual dialog. A program begins running, might ask the
user some questions, responds to these inputs, and continues interacting with
the user until he indicates an interest in leaving the program.

Programs written on a Web server are different. The PHP programs you are writ-
ing have an incredibly short life span. When the user makes a request to your PHP
program through a Web browser, the server runs the PHP interpreter (the pro-
gram that converts your PHP code into the underlying machine language your
server understands). The result of the program is a Web page that is sent back to
the user’s browser. Once your program sends a page to the user, the PHP program
shuts down because its work is done. Web servers do not maintain contact with
the browser after sending a page. Each request from the user is seen as an
entirely new transaction.

The Poker Dice program at the beginning of this chapter appears to interact with
the user indefinitely. Actually, the same program is being called repeatedly. The
program acts differently in different circumstances. Somehow it needs to keep
track of what state it’s currently in.

Counting with Form Fields

You can store information a couple of ways, including files, XML, and databases.
The second half of this book details these important ideas. The easiest approach
to achieving data permanence is to hide the data in the user’s page. To illustrate,
take a look at Figures 4.9 and 4.10.

IN THE REAL WORLD

The underlying Web protocol (HTTP) that Web servers use does not keep con-

nections open any longer than necessary. This behavior is referred to as being a

stateless protocol. Imagine if your program were kept running as long as any-

body anywhere on the Web were looking at it. What if a person fired up your

program and went to bed? Your Web server would have to maintain a connec-

tion to that page all night. Also remember that your program might be called by

thousands of people all at the same time.

It can be very hard on your server to have all these concurrent connections open.

Having stateless behavior improves your Web server’s performance, but that per-

formance comes at a cost. Essentially, your programs have complete amnesia

every time they run. You need a mechanism for determining the current state.

Each time you click the Persistence program’s submit button, the counters incre-
ment by one. The program behavior appears to contradict the basic nature of
server-side programs because it seems to remember the previous counter value.
In fact, if two users were accessing the Persistence program at the same time,
each would count correctly. Look at the source code to see how it works:

115

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

FIGURE 4.9

The program has
two counters that
read 1 when the
program is run
the first time.

FIGURE 4.10

Both values are
incremented after
the user clicks the
submit button.

<html>

<head>

<title>

persistence demo

</title>

</head>

<body>

<h1>Persistence Demo</h1>

<form>

<?

//increment the counters

$txtBoxCounter++;

$hdnCounter++;

print <<<HERE

<input type = “text”

name = “txtBoxCounter”

value = “$txtBoxCounter”>

<input type = “hidden”

name = “hdnCounter”

value = “$hdnCounter”>

<h3>The hidden value is $hdnCounter</h3>

<input type = “submit”

value = “click to increment counters”>

HERE;

?>

</form>

</body>

</html>

Storing Data in the Text Box

The program has two variables: $txtBoxCounter and $hdnCounter. For now, con-
centrate on $txtBoxCounter, which is related to the text box. When the program

116

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

begins, it grabs the value of $txtBoxCounter (if it exists) and adds one to it. When
the program prints the text box, it automatically places the $txtBoxCounter value
in the text box.

Since the form has no action attribute defined, the program automatically calls
itself when the user clicks the submit button. This time, $txtBoxCounter has a
value (1). When the program runs again, it increments $txtBoxCounter and stores
the new value (now 2) in the text box. Each time the program runs, it stores in
the text box the value it needs on the next run.

Using a Hidden Field for Persistence

The text box is convenient for this example because you can see it, but using a
text box this way in real programs causes serious problems. Text boxes are
editable by the user, which means she could insert any kind of information and
really mess up your day.

Hidden form fields are the unsung heroes of server-side programming. Look at
$hdnCounter in the source code. This hidden field also has a counter, but the user
never sees it. However, the value of the $hdnCounter variable is sent to the PHP
program indicated by the form’s action attribute. That program can do anything
with the attribute, including printing it in the HTML code body.

Very often when you want to track information between pages, you store the
information in hidden fields on the user’s page.

The hidden fields technique shown here works fine for storing small amounts of
information, but it is very inefficient and insecure when you are working with
more serious forms of data.

Writing the Poker Dice Program

It’s time to take another look at the Poker Dice program that made its debut at the
beginning of this chapter. As usual, this program doesn’t do anything you haven’t
already learned. It is a little more complex than the trivial sample programs I show
you in this chapter, but it’s surprisingly compact considering how much it does. It
won’t surprise you that arrays and loops are the secret to this program’s success.

Setting Up the HTML

As always, a basic HTML page serves as the foundation for the PHP program. I add
a simple style sheet to this page to make tan characters on a green background.

TRAP

117

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

<html>

<head>

<title>poker dice</title>

<style type = “text/css”>

body {

background: green;

color: tan;

}

</style>

</head>

<body>

<center>

<h1>Poker Dice</h1>

<form>

<?

Building the Main Code Body

The Poker Dice program is long enough to merit functions. I broke it into smaller
segments here, but you may want to look at its entirety, which is on the CD that
accompanies this book.

The main part of the code sets up the general program flow. Most of the work is
done in other functions called from this main area.

//check to see if this is first time here

if (empty($cash)){

$cash = 100;

} // end if

rollDice();

if ($secondRoll = = TRUE){

print “<h2>Second roll</h2>\n”;

$secondRoll = FALSE;

evaluate();

} else {

118

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

print “<h2>First roll</h2>\n”;

$secondRoll = TRUE;

} // end if

printStuff();

The first order of business: See if this is the first time the user has come to this
page. It’s important to understand how timing works in this program. The user
thinks he is playing the same game for several turns, but the entire program runs
again each time he rolls the dice. The program has different behavior based on
which form elements (if any) have values. If the user has never been to the page
before, the value for the $cash variable is null. The first if statement checks this
condition. If the $cash variable has not yet been created, the user gets a starting
value of $100. (I wish real casinos worked like this.)

The program then calls the rollDice() function, which is described momentar-
ily. This function rolls the dice and prints them to the screen.

If you look carefully at the program as it is running, you see it runs in two dif-
ferent modes. Each turn consists of two possible rolls. On the first roll, the user
is given the ability to save a roll with a checkbox. No scoring is performed. The
second roll has no checkboxes (because the user needs to start with all fresh dice
on the next turn). The program tracks the player’s score by adding money for var-
ious combinations.

The $secondRoll variable keeps track of whether the user is on the second roll. I
gave it the value TRUE when the user is on the second roll and FALSE when on the
first roll. If $secondRoll is TRUE, the program calls the evaluate() function, which
tallies any losses or winnings. Regardless, I inform the user which roll it is and
change the value of $secondRoll to reflect what should happen the next time this
program is called (which happens when the user clicks the submit button).

Making the rollDice() Function

The job of the rollDice() function is, well, to roll the dice. It’s a somewhat long
function, so I print it for you here and explain it in smaller chunks. Essentially, this
function builds an HTML table based on five die rolls. It determines if the user kept
any previous dice and rolls a new die only if she did not keep it. If it is the first roll,
the program prints a checkbox, which allows the user to select a die to keep.

function rollDice(){

global $die, $secondRoll, $keepIt;

119

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

print “<table border = 1><td><tr>”;

for ($i = 0; $i < 5; $i++){

if ($keepIt[$i] = = “”){

$die[$i] = rand(1, 6);

} else {

$die[$i] = $keepIt[$i];

} // end if

$theFile = “die” . $die[$i] . “.jpg”;

//print out dice images

print <<<HERE

<td>

<img src = “$theFile”

height = 50

width = 50>

HERE;

//print out a checkbox on first roll only

if ($secondRoll = = FALSE){

print <<<HERE

<input type = “checkbox”

name = “keepIt[$i]”

value = $die[$i]>

</td>

HERE;

} // end if

} // end for loop

//print out submit button and end of table

print <<<HERE

</tr></td>

<tr>

<td colspan = “5”>

<center>

<input type = “submit”

value = “roll again”>

</center>

120

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

</td>

</tr>

</table>

HERE;

} // end rollDice

The checkboxes that appear sometimes are special. The general strategy for them
is this: If it’s the first turn, I print a checkbox under each die. All the checkboxes
are called keepIt and all have an index. When PHP sees these variables with the
same name but different indices, it automatically creates an array.

Recall from chapter 2, “Using Variables and Input,” that PHP checkboxes are a little
different than some of the other form elements. They only send a value if they
are checked. Any checkbox the user does not check is not passed to the program.
Any selected checkbox’s value is passed to the program.

Rolling the Dice if Necessary

The program uses two arrays to keep track of the dice. The $die array stores the
current values of all the dice. The $keepIt array contains no values unless the
user has checked the corresponding checkbox (which only happens on the first
roll, because the checkboxes are not printed on the second roll).

if ($keepIt[$i] = = “”){

$die[$i] = rand(1, 6);

} else {

$die[$i] = $keepIt[$i];

} // end if

$theFile = “die” . $die[$i] . “.jpg”;

The program rolls a new value for each die if the user did not choose to keep it.
If the user did choose to keep a die, the corresponding value of the $keepIt array
is non-null, and this new value is transferred to the appropriate element in the
$die array.

Printing the Table Contents

Print the image corresponding to each die after the function has determined a
value for each (by copying from $keepIt or rolling a new value as appropriate).

//print out dice images

print <<<HERE

121

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

<td>

<img src = “$theFile”

height = 50

width = 50>

HERE;

//print out a checkbox on first roll only

if ($secondRoll = = FALSE){

print <<<HERE

<input type = “checkbox”

name = “keepIt[$i]”

value = $die[$i]>

</td>

HERE;

} // end if

If it’s the first roll, the function also prints out the keepIt checkbox correspond-
ing to this die. Note how the checkbox name corresponds to the die name.
(Remember, the value $i is translated to a number before the HTML page is
printed.) The value of the current die is stored as the value of the keepIt checkbox.

It can be hard to see how all this works together. It might help to run the program
a couple of times and look carefully at the HTML source that’s being generated. To
fully understand a PHP program, you can’t always look at it on the surface. You
may need to see the HTML elements that are hidden from the user.

Printing the End of the Table

After the loop that rolls and prints the dice, it’s a simple matter to print the
submit button and the end of table HTML.

//print out submit button and end of table

print <<<HERE

</tr></td>

<tr>

<td colspan = “5”>

<center>

<input type = “submit”

value = “roll again”>

</center>

TRICK

122

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

</td>

</tr>

</table>

HERE;

Because the form specifies no action, PHP defaults to the same page that contains
the form. Programs that repeatedly call themselves benefit from this option.

Creating the evaluate() Function

The evaluate() function’s purpose is to examine the $die array and see if the user
has achieved patterns worthy of reward. Again, I print the entire function here
and show some highlights after.

function evaluate(){

global $die, $cash;

//set up payoff

$payoff = 0;

//subtract some money for this roll

$cash -= 2;

//count the dice

$numVals = array(6);

for ($theVal = 1; $theVal <= 6; $theVal++){

for ($dieNum = 0; $dieNum < 5; $dieNum++){

if ($die[$dieNum] = = $theVal){

$numVals[$theVal]++;

} // end if

} // end dieNum for loop

} // end theVal for loop

//print out results

// for ($i = 1; $i <= 6; $i++){

// print “$i: $numVals[$i]
\n”;

// } // end for loop

//count how many pairs, threes, fours, fives

$numPairs = 0;

$numThrees = 0;

123

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

$numFours = 0;

$numFives = 0;

for ($i = 1; $i <= 6; $i++){

switch ($numVals[$i]){

case 2:

$numPairs++;

break;

case 3:

$numThrees++;

break;

case 4:

$numFours++;

break;

case 5:

$numFives++;

break;

} // end switch

} // end for loop

//check for two pairs

if ($numPairs = = 2){

print “You have two pairs!
\n”;

$payoff = 1;

} // end if

//check for three of a kind and full house

if ($numThrees = = 1){

if ($numPairs = = 1){

//three of a kind and a pair is a full house

print “You have a full house!
\n”;

$payoff = 5;

} else {

print “You have three of a kind!
\n”;

$payoff = 2;

} // end ‘pair’ if

} // end ‘three’ if

//check for four of a kind

if ($numFours = = 1){

124

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

print “You have four of a kind!
\n”;

$payoff = 5;

} // end if

//check for five of a kind

if ($numFives = = 1){

print “You got five of a kind!
\n”;

$payoff = 10;

} // end if

//check for flushes

if (($numVals[1] = = 1)

&& ($numVals[2] = = 1)

&& ($numVals[3] = = 1)

&& ($numVals[4] = = 1)

&& ($numVals[5] = = 1)){

print “You have a flush!
\n”;

$payoff = 10;

} // end if

if (($numVals[2] = = 1)

&& ($numVals[3] = = 1)

&& ($numVals[4] = = 1)

&& ($numVals[5] = = 1)

&& ($numVals[6] = = 1)){

print “You have a flush!
\n”;

$payoff = 10;

} // end if

print “You bet 2
\n”;

print “Payoff is $payoff
\n”;

$cash += $payoff;

} // end evaluate

The evaluate() function’s general strategy is to subtract $2 for the player’s bet
each time. (Change this to make the game easier or harder.) I create a new array
called $numVals, which tracks how many times each possible value appears. Ana-
lyzing the $numVals array is an easier way to track the various scoring combina-
tions than looking directly at the $die array. The rest of the function checks each
of the possible scoring combinations and calculates an appropriate payoff.

125

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

Counting the Dice Values

When you think about the various scoring combinations in this game, it’s impor-
tant to know how many of each value the user rolled. The user gets points for
pairs, three-, four-, and five of a kind, and straights (five values in a row). I made
a new array called $numVals, which has six elements. $numVals[1] contains the
number of ones the user rolled. $numVals[2] shows how many twos, and so on.

//count the dice

for ($theVal = 1; $theVal <= 6; $theVal++){

for ($dieNum = 0; $dieNum < 5; $dieNum++){

if ($die[$dieNum] = = $theVal){

$numVals[$theVal]++;

} // end if

} // end dieNum for loop

} // end theVal for loop

//print out results

// for ($i = 1; $i <= 6; $i++){

// print “$i: $numVals[$i]
\n”;

// } // end for loop

To build the $numVals array, I stepped through each possible value (1 through 6)
with a for loop. I used another for loop to look at each die and determine if it
showed the appropriate value. (In other words, I checked for 1s the first time
through the outer loop, then 2s, then 3s, and so on.) If I found the current value,
I incremented $numVals[$theVal] appropriately.

Notice the lines at the end of this segment that are commented out. Moving on
with the scorekeeping code if the $numVals array did not work as expected was
moot, so I put in a quick loop that tells me how many of each value the program
found. This ensures my program works properly before I add functionality.

It’s smart to periodically check your work and make sure that things are working
as you expected. When I determined things were working correctly, I placed com-
ments in front of each line to temporarily turn the debugging code off. Doing
this removes the code, but it remains if something goes wrong and I need to look
at the $numVals array again.

Counting Pairs, Twos, Threes, Fours, and Fives

The $numVals array has most of the information I need, but it’s not quite in the
right format. The user earns cash for pairs and for three-, four-, and five of a kind.

126

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

To check for these conditions, I use some other variables and another loop to
look at $numVals.

//count how many pairs, threes, fours, fives

$numPairs = 0;

$numThrees = 0;

$numFours = 0;

$numFives = 0;

for ($i = 1; $i <= 6; $i++){

switch ($numVals[$i]){

case 2:

$numPairs++;

break;

case 3:

$numThrees++;

break;

case 4:

$numFours++;

break;

case 5:

$numFives++;

break;

} // end switch

} // end for loop

First I created variables to track pairs, and three-, four-, and five of a kind. I ini-
tialized all these variables to 0. I then stepped through the $numVals array to see
how many of each value occurred. If, for example, the user rolled 1, 1, 5, 5, 5,
$numVals[1] equals 2 and $numVals[5] equals 3.

After the switch statement executes, $numPairs equals 1 and $numThrees equals 1.
All the other $num variables still contain 0. Creating these variables makes it easy
to determine which scoring situations (if any) have occurred.

Looking for Two Pairs

All the work setting up the scoring variables pays off, because it’s now very easy
to determine when a scoring condition has occurred. I award the user $1 for two
pairs (and nothing for one pair). If the value of $numPairs is 2, the user has gotten
two pairs; the $payoff variable is given the value 1.

127

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

128

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

//check for two pairs

if ($numPairs = = 2){

print “You have two pairs!
\n”;

$payoff = 1;

} // end if

Of course, you’re welcome to change the payoffs. As it stands, this game is incred-
ibly generous, but that makes it fun for the user.

Looking for Three of a Kind and a Full House

I combine the checks for three of a kind and full house (which is three of a kind
and a pair). The code first checks for three of a kind by looking at $numThrees. If
the user has three of a kind, it then checks for a pair. If both these conditions are
true, it’s a full house and the user is rewarded appropriately. If there isn’t a pair,
the user gets a meager reward for the three of a kind.

//check for three of a kind and full house

if ($numThrees = = 1){

if ($numPairs = = 1){

//three of a kind and a pair is a full house

print “You have a full house!
\n”;

$payoff = 5;

} else {

print “You have three of a kind!
\n”;

$payoff = 2;

} // end ‘pair’ if

} // end ‘three’ if

Checking for Four of a Kind and Five of a Kind

Checking for four- and five of a kind is trivial. Looking at the appropriate vari-
ables is the only necessity.

//check for four of a kind

if ($numFours = = 1){

print “You have four of a kind!
\n”;

$payoff = 5;

} // end if

//check for five of a kind

if ($numFives = = 1){

print “You got five of a kind!
\n”;

$payoff = 10;

} // end if

Checking for Straights

Straights are a little trickier, because two are possible. The player could have the
values 1-5 or 2-6. To check these situations, I used two compound conditions. A
compound condition is made of a number of ordinary conditions combined with
special logical operators. Look at the straight-checking code to see an example:

//check for straights

if (($numVals[1] = = 1)

&& ($numVals[2] = = 1)

&& ($numVals[3] = = 1)

&& ($numVals[4] = = 1)

&& ($numVals[5] = = 1)){

print “You have a straight!
\n”;

$payoff = 10;

} // end if

if (($numVals[2] = = 1)

&& ($numVals[3] = = 1)

&& ($numVals[4] = = 1)

&& ($numVals[5] = = 1)

&& ($numVals[6] = = 1)){

print “You have a straight!
\n”;

$payoff = 10;

Notice how each if statement has a condition made of several subconditions
joined by the && operator? The && operator is called a Boolean and operator. You
can read it as and. The condition is evaluated to TRUE only if all the subconditions
are true.

The two conditions are similar to each other, simply checking the two possible
straight situations.

Printing the Results

The program’s last function prints variable information to the user. The $cash
value describes the user’s current wealth. Two hidden elements store informa-
tion the program needs on the next run. The secondRoll element contains a TRUE

129

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

or FALSE value indicating whether the next run should be considered the second
roll. The cash element describes how much cash should be attributed to the
player on the next turn.

function printStuff(){

global $cash, $secondRoll;

print “Cash: $cash\n”;

//store variables in hidden fields

print <<<HERE

<input type = “hidden”

name = “secondRoll”

value = “$secondRoll”>

<input type = “hidden”

name = “cash”

value = “$cash”>

HERE;

} // end printStuff

?>

</form>

</html>

Summary

You are rounding out your basic training as a programmer, adding rudimentary
looping behavior to your bag of tricks. Your programs can repeat based on con-
ditions you establish. You know how to build for loops that work forwards, back-
wards, and by skipping values. You also know how to create while loops. You
know the guidelines for creating a well-behaved loop and how to form arrays
manually and with the array() directive. Stepping through all elements of an
array using a loop is possible, and your program can keep track of persistent vari-
ables by storing them in form fields in your output pages. You put all these skills
together to build an interesting game. In chapter 5 you extend your ability to
work with arrays and loops by building more-powerful arrays and using special-
ized looping structures.

130

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

131

C
h

a
p

te
r
 4

 L
o

o
p

s
a

n
d

A
r
r
a

y
s

CHALLENGES

1. Modify the Poker Dice game in some way. Add a custom background,

change the die images, or modify the payoffs to balance the game to your

liking.

2. Write the classic I’m Thinking of a Number game. Have the computer ran-

domly generate a number and let the user guess its value. Tell the user if he

is too high, too low, or correct. When he guesses correctly, tell how many

turns it took. No arrays are necessary for this game, but you must store

values in hidden form elements.

3. Write I’m Thinking of a Number in reverse. This time the user generates

a random number between 1 and 100 and the computer guesses the number.

Let the user choose from too high, too low, or correct. Your algorithm

should always be able to guess the number in seven turns or fewer.

4. Write a program that deals a random poker hand. Use playing card images

from http://waste.org/~oxymoron/cards/ or another source. Your program

does not need to score the hand. It simply needs to deal out a hand of five

random cards. Use an array to handle the deck.

This page intentionally left blank

I
n this chapter you learn some important skills that improve your work with

data. You learn about some more-sophisticated ways to work with arrays

and how to manage text information with more flair. Specifically, you learn

how to do these things:

• Manage arrays with the foreach loop

• Create and use associative arrays

• Extract useful information from some of PHP’s built-in arrays

• Build basic two-dimensional arrays

• Build two-dimensional associative arrays

• Break a string into smaller segments

• Search for one string inside another

Better Arrays
and String
Handling

5
C H A P T E R

Introducing the Word
Search Program Creator

By the end of this chapter you can create a fun program that generates word
search puzzles. The user enters a series of words into a list box, as shown in
Figure 5.1.

The program then tries to generate a word search based on the user’s word list.
(It isn’t always possible, but the program can usually generate a puzzle.) One pos-
sible solution for the word list shown in Figure 5. 1 is demonstrated in Figure 5.2.

If desired, the program can also generate an answer key based on the puzzle. This
capability is shown in Figure 5.3.

The secret to the word find game (and indeed most computer programs) is the way
the data is handled. Once I determined a good scheme for working with the data
in the program, the actual programming wasn’t too tough.

134

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 5.1

The user enters a
list of words and a
size for the finished

puzzle.

Using the foreach Loop
to Work with an Array

As I mention in chapter 4, “Loops and Arrays,” for loops and arrays are natural
companions. In fact, PHP supplies a special kind of loop called the foreach loop
that makes it even easier to step through each array element.

135

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

FIGURE 5.2

This puzzle
contains all the

words in the list.

FIGURE 5.3

Here’s the answer
key for the puzzle.

Introducing the foreach.php Program

The program shown in Figure 5.4 illustrates how the foreach loop works.

The HTML page is generated by surprisingly simple code:

<html>

<head>

<title>Foreach Demo</title>

</head>

<body>

<?

$list = array(“alpha”, “beta”, “gamma”, “delta”, “epsilon”);

print “\n”;

foreach ($list as $value){

print “ $value\n”;

} // end foreach

print “\n”;

?>

</body>

</html>

136

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 5.4

Although it looks
just like normal

HTML, this page
was created with

an array and a
foreach loop.

All the values in the list are created in the $list variable using the array function.

The foreach loop works a lot like a for loop, except it is a bit simpler. The first
parameter of the foreach construct is an array—in this case, $list. The keyword
as indicates the name of a variable that holds each value in turn. In this case, the
foreach loop steps through the $list array as many times as necessary. Each time
through the loop, the function populates the $value variable with the current
member of the $list array. In essence, this foreach loop works just like the fol-
lowing traditional for loop:

foreach ($list as $value){

print “ $value\n”;

} // end foreach

Here’s your traditional for loop:

for ($i = 0; $i < length($list); $i++);

$value = $list[$i];

print “ $value\n”;

} // end for loop

The main difference between a foreach loop and a for loop is the presence of
the index variable ($i in this example). If you’re using a foreach loop and need
to know the current element’s index, use the key() function.

The foreach loop can be an extremely handy shortcut for stepping through each
value of an array. Since this is a common task, knowing how to use the foreach
loop is an important skill. As you learn some other kinds of arrays, you see how
to modify the foreach loop to handle these other array styles.

Creating an Associative Array

PHP is known for its extremely flexible arrays. You can easily generate a number
of interesting and useful array types in addition to the ordinary arrays you’ve
already made. One of the handiest types is called an associative array.

While it sounds complicated, an associative array is much like a normal array.
While regular arrays rely on numeric indices, an associative array has a string
index. Figure 5.5 shows a page created with two associative arrays.

TRICK

137

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

138

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Examining the assoc.php Program

Imagine that you want to store a list of capital cities. You could certainly store the
cities in an array. However, if your main interest is in the relationship between a
state and its capital, it could be difficult to maintain the relationship using
arrays. In this particular instance, it would be nice if you could use the name of
the state as the array index (the element’s number, or position, within the array)
rather than a number.

Building an Associative Array

Here is the code from assoc.php, which generates the array of state capitals:

$stateCap[“Alaska”] = “Juneau”;

$stateCap[“Indiana”] = “Indianapolis”;

$stateCap[“Michigan”] = “Lansing”;

The associative array is just like a normal array, except the index values are
strings. Note that the indices must be inside quotation marks. Once you have cre-
ated an associative array, it is used much like a normal array.

print “Alaska: “;

print $stateCap[“Alaska”];

print “

”;

FIGURE 5.5

This page uses
associative arrays
to relate countries
and states to their

capital cities.

Once again, the array’s index is a quoted string. The associative form is terrific
for data like this. In essence, it lets you “look up” the capital city if you know the
state name.

Building an Associative Array
with the array() Function

If you know the values you want in your array, you can use the array() function to
build an associative array. However, building associative arrays requires a slightly
different syntax than the garden variety arrays you encountered in Chapter 4.

139

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

IN DIZZY-ARRAY

If all this associative array talk is making you dizzy, don’t panic. It’s just a new

name for something you’re very familiar with. Think about the way HTML attrib-

utes work. Each tag has a number of attributes that you can use in any order.

For example, a standard button might look like this:

<input type = “button”

value = “Save the world.”>

This button has two attributes. Each attribute is made up of a name/value pair.

The keywords type and value are names (or indices, or keys, depending on how

you want to think of it) and the terms button and Save the world. are the

values associated with those names. Cascading style sheets (CSS) use a different

syntax for exactly the same idea. The CSS element indicates a series of modifi-

cations to the paragraph tag:

p {background-color:red;

color:yellow;

font-size:14pt}

While the syntax is different, the same pattern applies. The critical part of a CSS

definition is a list of name/value pairs.

Associative arrays naturally pop up in one more place. As information comes

into your program from an HTML form, it comes in as an associative array. The

name of each element becomes an index, and the value of that form element is

translated to the value of the array element. Later in this chapter you see how

to take advantage of this.

An associative array is simply a data structure used when the name/value rela-

tionship is the easiest way to work with some kind of data.

140

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

I build the $worldCap array using the array() syntax:

$worldCap = array(

“Albania”=>”Tirana”,

“Japan”=>”Tokyo”,

“United States”=>”Washington DC”

);

The array() function requires the data when you are building an ordinary array,
but doesn’t require specified indices. The function automatically generates each
element’s index by grabbing the next available integer. In an associative array,
you are responsible for providing both the data and the index.

The general format for this assignment uses a special kind of assignment opera-
tor. The => operator indicates that an element holds some kind of value. I gener-
ally read it as holds, so you can say Japan holds Tokyo. In other words, “Japan” =>
“Tokyo” indicates that PHP should generate an array element with the index
“Japan” and store the value “Tokyo” in that element. You can access the value of
this array just like any other associative array:

print “Japan: “;

print $worldCap[“Japan”];

print “

”;

Using foreach with Associative Arrays

The foreach loop is just as useful with associative arrays as it is with vanilla
arrays. However, it uses a slightly different syntax. Take a look at this code from
the assoc.php page:

foreach ($worldCap as $country => $capital){

print “$country: $capital
\n”;

} // end foreach

A foreach loop for a regular array uses only one variable because the index can
be easily calculated. In an associative array, each element in the array has a
unique index and value. The associative form of the foreach loop takes this into
account by indicating two variables. The first variable holds the index. The sec-
ond variable refers to the value associated with that index. Inside the loop, you
can refer to the current index and value using whatever variable names you des-
ignated in the foreach structure.

Each time through the loop, you are given a name/value pair. In this example, the
name is stored in the variable $country, because all the indices in this array are

names of countries. Each time through the loop, $country has a different value.
In each iteration, the value of the $capital variable contains the array value cor-
responding to the current value of $country.

Unlike traditional arrays, you cannot rely on associative arrays to return in any
particular order when you use a foreach loop to access array elements. If you
need elements to show up in a particular order, call them explicitly.

Using Built-In Associative Arrays

Associative arrays are extremely handy because they reflect a kind of informa-
tion storage very frequently used. In fact, you’ve been using associative arrays in
disguise ever since chapter 2, “Using Variables and Input.” Whenever your PHP
program receives data from a form, that data is actually stored in a number of
associative arrays for you. A variable was automatically created for you by PHP for
each form element.

However, you can’t always rely on that particular bit of magic. Increasingly,
server administrators are turning off this automatic variable creation for secu-
rity reasons. In fact, the default setup for PHP is now to have this behavior (with
the odd name render_globals) turned off.

It’s handy to know how PHP gets data from the form as a good example of asso-
ciative arrays. It’s also useful because you may need to know how to get form data
without the variables being created explicitly for you.

Introducing the formReader.php Program

The formReader.php program is actually one of the first PHP programs I ever
wrote, and it’s one I use frequently. It’s very handy, because it can take the input
from any HTML form and report the names and values of each of the form ele-
ments on the page. To illustrate, Figure 5.6 shows a typical Web page with a form.

When the user clicks the Submit Query button, formReader responds with some
basic diagnostics, as you can see from Figure 5.7.

Reading the $_REQUEST Array

The formReader.php program does its work by taking advantage of an associative
array built into PHP. Until now, you’ve simply relied on PHP to create a variable
for you based on the input elements of whatever form calls your program. This

TRAP

141

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

142

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

automatic variable creation is called register_globals. While this is an
extremely convenient feature, it can be dangerous, so some administrators turn
it off. Even when register_globals is active, it can be useful to know other ways
of accessing the information that comes from the form.

FIGURE 5.6

This form, which
has three basic
fields, calls the

formReader.php
program.

FIGURE 5.7

The
formReader.php

program
determines each

field and its value.

All the fields sent to your program are automatically stored in a special associa-
tive array called $_REQUEST. Each field name on the original form becomes a key,
and the value of that field becomes the value associated with that key. If you have
a form with a field called userName, you can get the value of the field by calling
$_REQUEST[“userName”].

The $_REQUEST array is also useful because you can use a foreach loop to quickly
determine the names and values of all form elements known to the program. The
formReader.php program source code illustrates how this is done:

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>

<html>

<head>

<title>Form Reader</title>

</head>

<body>

<h1>Form Reader</h1>

<h3>Here are the fields I found on the form</h3>

<?

print <<<HERE

<table border = 1>

<tr>

<th>Field</th>

<th>Value</th>

</tr>

HERE;

foreach ($_REQUEST as $field => $value){

print <<<HERE

<tr>

<td>$field</td>

<td>$value</td>

</tr>

HERE;

} // end foreach

print “</table>\n”;

?>

</body>

</html>

143

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

Note how I stepped through the $_REQUEST array. Each time through the foreach
loop, the current field name is stored in the $field variable and the value of that
field is stored in $value.

I use this script when I’m debugging my programs. If I’m not getting the form
elements I expected from a form, I put a foreach $_REQUEST loop in at the top
of my program to make sure I know exactly what’s being sent to the program. Often
this type of procedure can help you find misspellings or other bugs.

Creating a Multidimensional Array

Arrays are very useful structures for storing various kinds of data into the com-
puter’s memory. Normal arrays are much like lists. Associative arrays are like
name/value pairs. A third special type, a multidimensional array, acts much like
table data. For instance, imagine you were trying to write a program to help users
determine the distance between major cities. You might start on paper with a
table like Table 5.1.

TRICK

144

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Indianapolis New York Tokyo London

Indianapolis 0 648 6476 4000

New York 648 0 6760 3470

Tokyo 6476 6760 0 5956

London 4000 3470 5956 0

TABLE 5.1 DISTANCES BETWEEN MAJOR CIT IES

IN THE REAL WORLD

PHP provides some other variables related to $_REQUEST. The $HTTP_POST_VARS
array holds all the names and values sent through a POST request, and

$HTTP_GET_VARS array holds names and values sent through a get request. You

can use this feature to make your code more secure. If you create variables only

from the $HTTP_POST_VARS array, for example, all input sent via the get method

are ignored. This makes it harder for users to forge data by putting field names

in the browser’s address bar. Of course, a clever user can still write a form that

contains bogus fields, so you always have to be a little suspicious whenever you

get any data from the user.

It’s reasonably common to work with this sort of tabular data in a computer pro-
gram. PHP (and most languages) provides a special type of array to assist in work-
ing with this kind of information. The basicMultiArray program featured in
Figures 5.8 and 5.9 illustrates how a program can encapsulate a table.

145

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

FIGURE 5.8

The user can
choose origin and
destination cities

from select groups.

FIGURE 5.9

The program looks
up the distance

between the cities
and returns an

appropriate value.

Building the HTML for the Basic
Multidimensional Array

Using a two-dimensional array is pretty easy if you plan well. I first wrote out my
table on paper. (Actually, I have a write-on, wipe-off board in my office for exactly
this kind of situation.) I assigned a numeric value to each city:

Indianapolis = 0

New York = 1

Tokyo = 2

London = 3

This makes it easier to track the cities later on.

The HTML code builds the two select boxes and a submit button in a form.

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>

<html>

<head>

<title>Basic multi-dimensional array</title>

</head>

<body>

<h1>Basic 2D Array</h1>

<form action = basicMultiArray.php>

<table border = 1>

<tr>

<th>First city</th>

<th>Second city</th>

<tr>

<!— note each option value is numeric —>

<tr>

<td>

<select name = “cityA”>

<option value = 0>Indianapolis</option>

<option value = 1>New York</option>

<option value = 2>Tokyo</option>

<option value = 3>London</option>

</select>

</td>

146

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

<td>

<select name = “cityB”>

<option value = 0>Indianapolis</option>

<option value = 1>New York</option>

<option value = 2>Tokyo</option>

<option value = 3>London</option>

</select>

</td>

</tr>

<tr>

<td colspan = 2>

<input type = “submit”

value = “calculate distance”>

</td>

</tr>

</table>

</body>

</html>

Recall that when the user submits this form, it sends two variables. The cityA
variable contains the value property associated with whatever city the user
selected; cityB likewise contains the value of the currently selected destination
city. I carefully set up the value properties so they coordinate with each city’s
numeric index. If the user chooses New York as the origin city, the value of $cityA
is 1, because I decided that New York would be represented by the value 1. I’m giv-
ing numeric values because the information is all stored in arrays, and normal
arrays take numeric indices. (In the next section I show you how to do the same
thing with associative arrays.)

Responding to the Distance Query

The PHP code that determines the distance between cities is actually quite simple
once the arrays are in place:

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>

<html>

<head>

<title>Distance calculator</title>

</head>

<body>

147

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

<?

$city = array (

“Indianapolis”,

“New York”,

“Tokyo”,

“London”

);

$distance = array (

array (0, 648, 6476, 4000),

array (648, 0, 6760, 3470),

array (6476, 6760, 0, 5956),

array (4000, 3470, 5956, 0)

);

$result = $distance[$cityA][$cityB];

print “<h3>The distance between “;

print “$city[$cityA] and $city[$cityB]”;

print “ is $result miles.</h3>”;

?>

</body>

</html>

Storing City Names in the $city Array

I have two arrays in this program, $city and $distance. The $city array is a com-
pletely normal array of string values. It contains a list of city names. I set up the
array so the numeric values I assigned to the city would correspond to the index
in this array. Remember that array indices usually start with 0, so Indianapolis is
0, New York is 1, and so on.

The user won’t care that Indianapolis is city 0, so the $city array assigns names
to the various cities. If the user chose city 0 (Indianapolis) for the $cityA field, I
can refer to the name of that city as $city[$cityA] because $cityA contains the
value 0 and $city[0] is Indianapolis.

Storing Distances in the $distance Array

The distances don’t fit into a regular list, because it requires two values to deter-
mine a distance. You must know from which city you are coming and going to

148

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

calculate a distance. These two values correspond to rows and columns in the
original table. Look again at the code that generates the $distance array:

$distance = array (

array (0, 648, 6476, 4000),

array (648, 0, 6760, 3470),

array (6476, 6760, 0, 5956),

array (4000, 3470, 5956, 0)

);

The $distance array is actually an array full of other arrays! Each of the inner
arrays corresponds to distance from a certain destination city. For example, since
Indianapolis is city 0, the first (zeroth?) inner array refers to the distance between
Indy and the other cities. If it helps, you can think of each inner array as a row
of a table, and the table as an array of rows.

It might sound complicated to build a two-dimensional array, but it is more nat-
ural than you may think. If you compare the original data in Table 5.1 with the
code that creates the two-dimensional array, you see that all the numbers are in
the right place.

No need to stop at two dimensions. It’s possible to build arrays with three, four, or
any other number of dimensions. However, it becomes difficult to visualize how
the data works with these complex arrays. Generally, one and two dimensions are
as complex as ordinary arrays should get. For more complex data types, look
toward file-manipulation tools and relational data structures, which you learn
throughout the rest of this book.

Getting Data from the $distance Array

Once data is stored in a two-dimensional array, it is reasonably easy to retrieve.
To look up information in a table, you need to know the row and column.
A two-dimensional array requires two indices—one for the row and one for the
column.

To find the distance from Tokyo (city number 2) to New York (city number 1), sim-
ply refer to $distance[2][1]. The code for the program gets the index values from
the form:

$result = $distance[$cityA][$cityB];

This value is stored in the variable $result and then sent to the user.

TRICK

149

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

Making a Two-Dimensional
Associative Array

You can also create two-dimensional associative arrays. It takes a little more work
to set it up, but can be worth it because the name/value relationship eliminates
the need to track numeric identifiers for each element. Another version of the
multiArray program illustrates how to use associative arrays to generate the same
city-distance program.

Since this program looks exactly like the basicMultiArray program to the user,
I am not showing the screen shots. All of this program’s interesting features are in
the source code.

Building the HTML for the Associative Array

The HTML page for this program’s associative version is much like the indexed
version, except for one major difference. See if you can spot the difference in the
source code:

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>

<html>

<head>

<title>2D Array</title>

</head>

<body>

<h1>2D Array</h1>

<form action = multiArray.php>

<table border = 1>

<tr>

<th>First city</th>

<th>Second city</th>

<tr>

<!— note each option value is a string —>

<tr>

<td>

<select name = “cityA”>

<option value = “Indianapolis”>Indianapolis</option>

<option value = “New York”>New York</option>

TRICK

150

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

<option value = “Tokyo”>Tokyo</option>

<option value = “London”>London</option>

</select>

</td>

<td>

<select name = “cityB”>

<option value = “Indianapolis”>Indianapolis</option>

<option value = “New York”>New York</option>

<option value = “Tokyo”>Tokyo</option>

<option value = “London”>London</option>

</select>

</td>

</tr>

<tr>

<td colspan = 2>

<input type = “submit”

value = “calculate distance”>

</td>

</tr>

</table>

</body>

</html>

The only difference between this HTML page and the last one is the value prop-
erties of the select objects. In this case, the distance array is an associative array,
so it does not have numeric indices. Since the indices can be text based, I send
the actual city name as the value for $cityA and $cityB.

Responding to the Query

The code for the associative response is interesting, because it spends a lot of
effort to build the fancy associative array. Once the array is created, it’s very easy
to work with.

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>

<html>

<head>

<title>Distance Calculator</title>

151

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

</head>

<body>

<h1>Distance Calculator</h1>

<?

//create arrays

$indy = array (

“Indianapolis” => 0,

“New York” => 648,

“Tokyo” => 6476,

“London” => 4000

);

$ny = array (

“Indianapolis” =>648,

“New York” => 0,

“Tokyo” => 6760,

“London” => 3470

);

$tokyo = array (

“Indianapolis” => 6476,

“New York” => 6760,

“Tokyo” => 0,

“London” => 5956

);

$london = array (

“Indianapolis” => 4000,

“New York” => 3470,

“Tokyo” => 5956,

“London” => 0

);

//set up master array

$distance = array (

“Indianapolis” => $indy,

“New York” => $ny,

“Tokyo” => $tokyo,

“London” => $london

);

152

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

153

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

$result = $distance[$cityA][$cityB];

print “<h3>The distance between $cityA and $cityB is $result miles.</h3>”;

?>

</body>

</html>

Building the Two-Dimensional Associative Array

The basic approach to building a two-dimensional array is the same whether it’s
a normal array or uses associative indexing. Essentially, you create each row as an
array and then build an array of the existing arrays. In the traditional array, the
indices were automatically created. The development of an associative array is a
little more complex, because you need to specify the key for each value. As an
example, look at the code used to generate the $indy array:

$indy = array (

“Indianapolis” => 0,

“New York” => 648,

“Tokyo” => 6476,

“London” => 4000

);

Inside the array, I used city names as indices. The value for each index refers to
the distance from the current city (Indianapolis) to the particular destination.
The distance from Indianapolis to Indianapolis is 0, and the distance from Indy
to New York is 648, and so on.

I created an associative array for each city and put those associative arrays
together in a kind of mega-associative array:

//set up master array

$distance = array (

“Indianapolis” => $indy,

“New York” => $ny,

“Tokyo” => $tokyo,

“London” => $london

);

This new array is also an associative array, but each of its indices refers to an array
of distances.

Getting Data from the
Two-Dimensional Associative Array

Once the two-dimensional array is constructed, it’s extremely easy to use. The
city names themselves are used as indices, so there’s no need for a separate array
to hold city names. The data can be output in two lines of code:

$result = $distance[$cityA][$cityB];

print “<h3>The distance between $cityA and $cityB is $result miles.</h3>”;

You can combine associative and normal arrays. It is possible to have a list of
associative arrays and put them together in a normal array, or vice versa. PHP’s
array-handling capabilities allow for a phenomenal level of control over your data
structures.

Manipulating String Values

The Word Search program featured at the beginning of this chapter uses arrays to
do some of its magic, but arrays alone are insufficient for handling the tasks
needed for this program. The Word Search program takes advantage of a number
of special string manipulation functions to work extensively with text values.
PHP has a huge number of string functions that give you an incredible ability to
fold, spindle, and mutilate string values.

Demonstrating String Manipulation
with the Pig Latin Translator

As a context for describing string manipulation functions, consider the program
featured in Figures 5.10 and 5.11. This program allows the user to enter a phrase
into a text box and converts the phrase into a bogus form of Latin.

If you’re not familiar with pig Latin, it’s a silly kid’s game. Essentially, you take the
first letter of each word, move it to the end of the word, and add ay. If the word
begins with a vowel, simply end the word with way.

The pigify program uses a number of string functions to manipulate the text:

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>

<html>

<head>

<title>Pig Latin Generator</title>

</head>

TRICK

TRICK

154

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

<body>

<h1>Pig Latin Generator</h1>

<?

if ($inputString == NULL){

print <<<HERE

155

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

FIGURE 5.10

The pigify
program lets the

user type some text
into a text area.

FIGURE 5.11

The program
translates immortal

prose into
incredible silliness.

<form>

<textarea name = “inputString”

rows = 20

cols = 40></textarea>

<input type = “submit”

value = “pigify”>

</form>

HERE;

} else {

//there is a value, so we’ll deal with it

//break phrase into array

$words = split(“ “, $inputString);

foreach ($words as $theWord){

$theWord = rtrim($theWord);

$firstLetter = substr($theWord, 0, 1);

$restOfWord = substr($theWord, 1, strlen($theWord));

//print “$firstLetter) $restOfWord
 \n”;

if (strstr(“aeiouAEIOU”, $firstLetter)){

//it’s a vowel

$newWord = $theWord . “way”;

} else {

//it’s a consonant

$newWord = $restOfWord . $firstLetter . “ay”;

} // end if

$newPhrase = $newPhrase . $newWord . “ “;

} // end foreach

print $newPhrase;

} // end if

?>

</body>

</html>

156

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Building the Form

This program uses a PHP page to create an input form and to respond directly to
the input. It begins by looking for the existence of the $inputString variable. This
variable does not exist the first time the user gets to the page. In this situation, the
program builds the appropriate HTML page and awaits user input. The program
runs again after the user hits the submit button, but this time the $inputString
variable has a value. The rest of the program uses string manipulation functions to
create a pig Latin version of the input string.

Using the split() Function to
Break a String into an Array

One of the first tasks for pigify is to break the entire string that comes from the
user into individual words. PHP provides a couple of interesting functions for this
purpose. The split() function takes a string and breaks it into an array based on
some sort of delimiter, or separator character. The split() function takes two argu-
ments. The first argument is a delimiter and the second is a string to break up.

I want each word to be a different element in the array, so I use space (“ “) as a
delimiter. The following line takes the $inputString variable and breaks it into an
array called $words. Each word is a new array element.

$words = split(“ “, $inputString);

Once the $word array is constructed, I stepped through it with a foreach loop. I
stored each word temporarily in $theWord inside the array.

Trimming a String with rtrim()

Sometimes when you split a string into an array, each array element still has the
split character at the end. In the pig Latin game, there is a space at the end of
each word, which can cause some problems later. PHP provides a function called
rtrim() which automatically removes spaces, tabs, newlines, and other white-
space from the end of a string. I used the rtrim() function to clean off any trail-
ing spaces from the split() operation and returned the results to $theWord.

$theWord = rtrim($theWord);

In addition to rtrim(), PHP has ltrim(), which trims excess whitespace from
the beginning of a string and trim(), which cleans up both ends of a string. Also,
there’s a variation of the trim commands that allows you to specify exactly which
characters are removed.

TRICK

157

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

Finding a Substring with substr()

The algorithm’s behavior depends on the first character of each word. I need to
know all the rest of the word without the first character. The substr() function
is useful for getting part of a string. It requires three parameters.

• The string you want to get a piece from

• Which character you want to begin with (starting with 0 as usual)

• How many characters you want to extract

I got the first letter of the word with this line:

$firstLetter = substr($theWord, 0, 1);

It gets one letter from $theWord starting at the beginning of the word (position 0).
I stored that value in the $firstLetter variable.

It’s not much more complicated to get the rest of the word:

$restOfWord = substr($theWord, 1, strlen($theWord) -1);

Once again, I need to extract values from $theWord. This time I begin at character
1 (which humans would refer to as the second character). I don’t know directly
how many characters to get, but I can calculate it. I should grab one less charac-
ter than the total number of characters in the word. The strlen() function is per-
fect for this operation, because it returns the number of characters in any string.
I can calculate the number of letters I need with strlen($theWord) – 1. This new
decapitated word is stored in the $restOfWord variable.

Using strstr() to Search for
One String Inside Another

The next task is to determine if the first character of the word is a vowel. You can
take a number of approaches to this problem, but perhaps the easiest is a search-
ing function. I created a string with all the vowels (“aeiouAEIOU”) and then I
searched for the existence of the $firstLetter variable in the vowel string.

The strstr() function is perfect for this task. It takes two parameters: the string
you are looking for (given the adorable name haystack in the online documenta-
tion) and the string you are searching in (the needle).

To search for the value of the $firstLetter variable in the string constant
“aeiouAEIOU”, I used the following line:

if (strstr(“aeiouAEIOU”, $firstLetter)){

158

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

The strstr() function returns the value FALSE if the needle was not found in the
haystack. If the needle was found, it returns the position of the needle in the
haystack parameter. In this case, I’m really concerned only whether $firstLetter
is found in the list of variables. If so, it’s a vowel, which changes the way I modify
the word.

Using the Concatenation Operator

Most of the time in PHP you can use string interpolation to combine string val-
ues. However, sometimes you need a formal operation to combine strings. The
process of combining two strings is called concatenation. (I love it when simple
ideas have complicated names.) The period (.) is PHP’s concatenation operator.

If a word in pig Latin begins with a vowel, it should end with the string “way”.
I used string concatenation to make this work:

$newWord = $theWord . “way”;

When the word begins with a consonant, the formula for creating the new word
is slightly more complicated, but is still performed with string concatenation:

$newWord = $restOfWord . $firstLetter . “ay”;

Recent testing has shown that the concatenation method of building strings is
dramatically faster than interpolation. If speed is an issue, you might want to use
string concatenation rather than string interpolation.

Finishing the Pig Latin Program

Once I created the new word, I added it and a trailing space to the $newPhrase
variable. When the foreach loop has finished executing, $newPhrase contains the
pig Latin translation of the original phrase.

Translating Between Characters and ASCII Values

Although it isn’t necessary in the pig Latin program, the Word Search program
requires the ability to randomly generate a character. I do this by randomly gen-
erating an ASCII value and translating that number to the appropriate character.
(ASCII is the code used to store characters as binary numbers in the computer’s
memory.) The ord() function is useful in this situation. The uppercase letters are
represented in ASCII by numbers between 65 and 90.

TRICK

159

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

To get a random uppercase letter, I can use the following code:

$theNumber = random(65, 90);

$theLetter = ord($theNumber);

Returning to the Word Search Creator

The Word Search program is stored in three files. First, the user enters a word
list and puzzle information into an HTML page. This page calls the main
wordFind.php program, which analyzes the word list, creates the puzzle, and
prints it out. Finally, the user has the opportunity to print an answer key, which
is created by a simple PHP program.

Getting the Puzzle Data from the User

The wordFind.html page is the user’s entry point into the word find system. This
page is a standard HTML form with a number of basic elements:

<html>

<head>

<title>Word Puzzle Maker</title>

</head>

<body>

<center>

<h1>Word Puzzle Maker</h1>

<form action = “wordFind.php”

method = “post”>

<h3>Puzzle Name</h3>

<input type = “text”

name = “name”

value = “My Word Find”>

height: <input type = “text”

name = “height”

value = “10”

size = “5”>

width: <input type = “text”

name = “width”

value = “10”

size = “5”>

160

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

<h3>Word List</h3>

<textarea rows=10 cols=60 name = “wordList”></textarea>

Please enter one word per row, no spaces

<input type=”submit” value=”make puzzle”>

</form>

</center>

</body>

</html>

The form’s action property points to the wordFind.php program, which is the pri-
mary program in the system. I used the post method to send data to the program
because I expect to send large strings to the program. The get method allows only
small amounts of data to be sent to the server.

The form features basic text boxes for the puzzle name, height, and width. This
data determines how the puzzle is built. The wordList text area is expected to
house a list of words, which create the puzzle.

Setting Up the Response Page

The bulk of the work in the wordFind system happens in the wordFind.php page.
This program has a small amount of HTML to set the stage, but the vast bulk of
this file is made up of PHP code.

<html>

<head>

<title>

Word Find

</title>

</head>

<body>

<?

// word Find

// by Andy Harris, 2003

// for PHP/MySQL programming for the Absolute Beginner

// Generates a word search puzzle based on a word list

// entered by user. User can also specify the size of

// the puzzle and print out an answer key if desired

161

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

Notice the comments at the beginning of the code. Since this program’s code is
a little more involved than most of the programs you have seen in this book, I
decided to comment it more carefully. My comments here basically lay out the
plan for this program.

It’s a really good idea to add comments to your programs so you can more easily
determine what they do. You’ll be amazed how little you understand your own
code after you’ve been away from it for a couple of days. Good comments can
make it much easier to maintain your code, and make it easier for others to fix
and improve your programs later.

Working with the Empty Data Set

For testing purposes, I wrote the Word Search PHP page before I worried about the
HTML. For that reason, I simply added default values for a word list and for the
other main variables that determine the board’s layout (height, width, and
name). In a production version of the program, I don’t expect the PHP code to
ever be called without an HTML page, but I left the default values in place so you
could see how they work.

if ($wordList = = NULL){

//make default puzzle

$word = array(

“ANDY”,

“HEATHER”,

“LIZ”,

“MATT”,

“JACOB”

);

$boardData = array(

width => 10,

height => 10,

name => “Generic Puzzle”

);

This code builds two arrays, which define the entire program. The $word array
holds the list of words to hide in the puzzle, and $boardData is an associative
array holding critical information about how the board is to be created.

Of course, I don’t expect to use these values, because this program usually is
called from an HTML form, which generates the values. The next section of code
fills up these variables if the program is called from the appropriate form.

162

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Building the Program’s Main Logic

The main logic for the program begins by retrieving the word list and puzzle
parameters from the user’s form. Then it tries to convert the list into an array.
This type of text analysis is sometimes called parsing.

The program then repeatedly tries to build the board until it succeeds. Once the
program has successfully created the board, it creates an answer key and adds
the random letters with the addFoils() function. Finally, the program prints the
completed puzzle.

} else {

//get puzzle data from HTML form

$boardData = array(

width => $width,

height => $height,

name => $name

);

//try to get a word list from user input

if (parseList() = = TRUE){

$legalBoard = FALSE;

//keep trying to build a board until you get a legal result

while ($legalBoard = = FALSE){

clearBoard();

$legalBoard = fillBoard();

} // end while

//make the answer key

$key = $board;

$keyPuzzle = makeBoard($key);

//make the final puzzle

addFoils();

$puzzle = makeBoard($board);

//print out the result page

printPuzzle();

} // end parsed list if

} // end word list exists if

163

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

You should be able to tell the general program flow even if you don’t understand
exactly how things happen. The main section of a well-defined program should give
you a bird’s eye view of the action. Most of the details are delegated to functions.

Most of the remaining chapter is devoted to explaining how these functions
work. Try to make sure you’ve got the basic gist of the program’s flow; then you
see how all of it is done.

Parsing the Word List

One important early task involves analyzing the word list that comes from the
user. The word list comes as one long string separated by newline (\n) characters.
The parseList() function converts this string into an array of words. It has some
other important functions too, including converting each word to uppercase,
checking for words that do not fit in the designated puzzle size, and removing
unneeded carriage returns.

function parseList(){

//gets word list, creates array of words from it

//or return false if impossible

global $word, $wordList, $boardData;

$itWorked = TRUE;

//convert word list entirely to upper case

$wordList = strtoupper($wordList);

//split word list into array

$word = split(“\n”, $wordList);

foreach ($word as $currentWord){

//take out trailing newline characters

$currentWord = rtrim($currentWord);

//stop if any words are too long to fit in puzzle

if ((strLen($currentWord) > $boardData[“width”]) &&

(strLen($currentWord) > $boardData[“height”])){

print “$currentWord is too long for puzzle”;

$itWorked = FALSE;

} // end if

} // end foreach

return $itWorked;

} // end parseList

164

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

165

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

The first thing I did was use the strtoupper() function to convert the entire word
list into uppercase letters. Word search puzzles always seem to use capital letters,
so I decided to convert everything to that format.

The long string of characters with newlines is not a useful format here, so I con-
verted the long string into an array called $word. The split() function works per-
fectly for this task. I split on the string “\n”. This is the newline character, so it
should convert each line of the text area into an element of the new $word array.

The next task was to analyze each word in the array with a foreach loop. When I
tested this part of the program, it became clear that sometimes the trailing new-
line character was still there, so I used the rtrim() function to trim off any
unnecessary trailing whitespace.

It is impossible to create the puzzle if the user enters a word larger than the
height or width of the puzzle board, so I check for this situation by comparing
the length of each word to the board’s height and width. Note that if the word is
too long, I simply set the value of the $itWorked variable to FALSE.

Earlier in this function, I initialized the value of $itWorked to TRUE. By the time
the function is finished, $itWorked still contains the value TRUE if all the words
were small enough to fit in the puzzle. If any of the words were too large, the
value of $itWorked is FALSE and the program stops.

Clearing the Board

Word Search uses a crude but effective technique to generate legal game boards
(boards which contain all the words in the list). It creates random boards repeat-
edly until it finds one that is legal. While this may seem like a wasteful approach,
it is much easier to program than many more sophisticated methods and pro-
duces remarkably good results for simple problems.

IN THE REAL WORLD

Although this program does use a brute force approach to find a good solution,

you see a number of ways the code is optimized to make a good solution more

likely. One example of this is the way the program stops if one of the words is

too long to fit in the puzzle. This prevents a long processing time while the pro-

gram tries to fit a word in the puzzle when it cannot be done. A number of other

places in the code do some work to steer the algorithm toward good solutions

and away from pitfalls. Because of these efforts, you find that the program is

actually pretty good at finding word search puzzles unless there are too many

words or the game board is too small.

The game board is often re-created several times during one program execution.
I needed a function that could initialize the game board or reset it easily. The
game board is stored in a two-dimensional array called $board. When the board
is “empty,” each cell contains the period (.) character. I chose this convention
because it gives me something visible in each cell and provides a character that
represents an empty cell. The clearBoard() function sets or resets the $board
array so that every cell contains a period.

function clearBoard(){

//initialize board with a . in each cell

global $board, $boardData;

for ($row = 0; $row < $boardData[“height”]; $row++){

for ($col = 0; $col < $boardData[“width”]; $col++){

$board[$row][$col] = “.”;

} // end col for loop

} // end row for loop

} // end clearBoard

This code is the classic nested for loop so common to two-dimensional arrays. Note
that I used for loops rather than foreach loops because I was interested in the loop
indices. The outer for loop steps through the rows. Inside each row loop, another
loop steps through each column. I assigned the value “.” to the $board array at the
current $row and $col locations. Eventually, “.” is in every cell in the array.

I determined the size of the for loops by referring to the $boardData associative
array. Although I could have done this a number of ways, I chose the associative
array for several reasons. The most important is clarity. It’s easy for me to see by
this structure that I’m working with the height and width related to board data.
Another advantage in this context is convenience. Since the height, width, and
board name are stored in the $boardData array, I could make a global reference
to the $boardData variable and all its values would come along. It’s like having
three variables for the price of one.

Filling the Board

Of course, the purpose of clearing the board is to fill it in with the words from
the word list. This happens in two stages: filling the board, and adding the words.
The fillBoard() function controls the entire process of filling up the whole
board, but the details of adding each word to the board are relegated to the
addWord() function (which you see next).

TRICK

166

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

The board is only complete if each word is added correctly. Each word is added only
if each of its letters is added without problems. The program calls fillBoard() as
often as necessary to get a correct solution. Each time fillBoard() runs, it may
call addWord() as many times as necessary until each word is added. The addWord()
function in turn keeps track of whether it is able to successfully add each char-
acter to the board.

The general fillBoard() function plan is to generate a random direction for each
word and then tell the addWord() function to place the specified word in the spec-
ified direction on the board.

The looping structure for the fillBoard() function is a little unique, because the
loop could exit two ways. If any of the words cannot be placed in the requested
manner, the puzzle generation stops immediately and the function returns the
value FALSE. However, if the entire word list is successfully placed on the game
board, the function should stop looping, but report the value TRUE.

You can achieve this effect a number of ways, but I prefer often to use a special
Boolean variable for this purpose. Boolean variables are variables meant to contain
only the values TRUE and FALSE. Of course, PHP is pretty easygoing about variable
types, but you can make a variable act like a Boolean simply by assigning it only
the values TRUE or FALSE. In the fillBoard() function, look at how the $keepGoing
variable is used. It is initialized to TRUE, and the function’s main loop keeps run-
ning as long as this is the case.

However, the two conditions that can cause the loop to exit—the addWord() func-
tion failed to place a word correctly, or the entire word list has been exhausted—
cause the $keepGoing variable to become FALSE. When this happens, the loop stops
and the function shortly exits.

function fillBoard(){

//fill board with list by calling addWord() for each word

//or return false if failed

global $word;

$direction = array(“N”, “S”, “E”, “W”);

$itWorked = TRUE;

$counter = 0;

$keepGoing = TRUE;

while($keepGoing){

$dir = rand(0, 3);

$result = addWord($word[$counter], $direction[$dir]);

if ($result = = FALSE){

167

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

//print “failed to place $word[$counter]”;

$keepGoing = FALSE;

$itWorked = FALSE;

} // end if

$counter++;

if ($counter >= count($word)){

$keepGoing = FALSE;

} // end if

} // end while

return $itWorked;

} // end fillBoard

The function begins by defining an array for directions. At this point, I decided
only to support placing words in the four cardinal directions, although it would
be easy enough to add diagonals. (Hey, that sounds like a dandy end-of-chapter
exercise!) The $direction array holds the initials of the four directions I have
decided to support at this time. The $itWorked variable is a Boolean which reports
whether the board has been successfully filled. It is initialized to TRUE. If the
addWord() function fails to place a word, the $itWorked value is changed to FALSE.

The $counter variable counts which word I’m currently trying to place. I incre-
ment the value of $counter each time through the loop. When $counter is larger
than the $word array, the function has successfully added every word and can exit
triumphantly.

To choose a direction, I simply created a random value between 0 and 3 and
referred to the associated value of the $direction array.

The last line of the function returns the value of $itWorked. The fillBoard() func-
tion is called by the main program until it succeeds. This success or failure is
reported to the main program by returning the value of $itWorked.

Adding a Word

The fillBoard() function handles the global process of adding the word list to
the game board, but addWord() adds each word to the board. This function
expects two parameters: the word and a direction.

The function cleans up the word and renders slightly different service based on
which direction the word is placed. It places each letter of the word in an appro-
priate cell while preventing it from being placed outside the game board’s
boundary. It also checks to make sure that the cell does not currently house some

168

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

other letter from another word (unless that letter happens to be the one the func-
tion is already trying to place). The function may look long and complex at first,
but when you look at it more closely you find it’s extremely repetitive.

function addWord($theWord, $dir){

//attempt to add a word to the board or return false if failed

global $board, $boardData;

//remove trailing characters if necessary

$theWord = rtrim($theWord);

$itWorked = TRUE;

switch ($dir){

case “E”:

//col from 0 to board width - word width

//row from 0 to board height

$newCol = rand(0, $boardData[“width”] - 1 - strlen($theWord));

$newRow = rand(0, $boardData[“height”]-1);

for ($i = 0; $i < strlen($theWord); $i++){

//new character same row, initial column + $i

$boardLetter = $board[$newRow][$newCol + $i];

$wordLetter = substr($theWord, $i, 1);

//check for legal values in current space on board

if (($boardLetter == $wordLetter) ||

($boardLetter == “.”)){

$board[$newRow][$newCol + $i] = $wordLetter;

} else {

$itWorked = FALSE;

} // end if

} // end for loop

break;

case “W”:

//col from word width to board width

//row from 0 to board height

$newCol = rand(strlen($theWord), $boardData[“width”] -1);

$newRow = rand(0, $boardData[“height”]-1);

//print “west:\tRow: $newRow\tCol: $newCol
\n”;

169

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

for ($i = 0; $i < strlen($theWord); $i++){

//check for a legal move

$boardLetter = $board[$newRow][$newCol - $i];

$wordLetter = substr($theWord, $i, 1);

if (($boardLetter == wordLetter) ||

($boardLetter == “.”)){

$board[$newRow][$newCol - $i] = $wordLetter;

} else {

$itWorked = FALSE;

} // end if

} // end for loop

break;

case “S”:

//col from 0 to board width

//row from 0 to board height - word length

$newCol = rand(0, $boardData[“width”] -1);

$newRow = rand(0, $boardData[“height”]-1 - strlen($theWord));

//print “south:\tRow: $newRow\tCol: $newCol
\n”;

for ($i = 0; $i < strlen($theWord); $i++){

//check for a legal move

$boardLetter = $board[$newRow + $i][$newCol];

$wordLetter = substr($theWord, $i, 1);

if (($boardLetter == $wordLetter) ||

($boardLetter == “.”)){

$board[$newRow + $i][$newCol] = $wordLetter;

} else {

$itWorked = FALSE;

} // end if

} // end for loop

break;

case “N”:

//col from 0 to board width

//row from word length to board height

$newCol = rand(0, $boardData[“width”] -1);

$newRow = rand(strlen($theWord), $boardData[“height”]-1);

for ($i = 0; $i < strlen($theWord); $i++){

170

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

171

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

//check for a legal move

$boardLetter = $board[$newRow - $i][$newCol];

$wordLetter = substr($theWord, $i, 1);

if (($boardLetter == $wordLetter) ||

($boardLetter == “.”)){

$board[$newRow - $i][$newCol] = $wordLetter;

} else {

$itWorked = FALSE;

} // end if

} // end for loop

break;

} // end switch

return $itWorked;

} // end addWord

The addWord() function’s main focus is a switch structure based on the word direc-
tion. The code inside the switch branches are similar in their general approach.

Closely Examining the East Code

It’s customary in Western languages to write from left to right, so the code for E,
which indicates write towards the East, is probably the most natural to understand.
I explain how that code works and then show you how the other directions differ.

Here’s the code fragment that attempts to write a word in the Easterly direction:

case “E”:

//col from 0 to board width - word width

//row from 0 to board height

$newCol = rand(0,

$boardData[“width”] - 1 - strlen($theWord));

$newRow = rand(0, $boardData[“height”]-1);

for ($i = 0; $i < strlen($theWord); $i++){

//new character same row, initial column + $i

$boardLetter = $board[$newRow][$newCol + $i];

$wordLetter = substr($theWord, $i, 1);

//check for legal values in current space on board

if (($boardLetter = = $wordLetter) ||

($boardLetter == “.”)){

$board[$newRow][$newCol + $i] = $wordLetter;

} else {

$itWorked = FALSE;

} // end if

} // end for loop

break;

Determining Starting Values for the Characters

Essentially, the code steps through the word one letter at a time, placing each let-
ter in the next cell to the right. I could have chosen any random cell and checked
to see when the code got outside the board range, but this would have involved
some complicated and clunky code.

A more elegant solution is to carefully determine what the range of appropriate
starting cells are and choose cells within that range. For example, if I’m placing
the word elephant (with eight letters) from left to right in a puzzle with a width
of 10, zero and one are the only legal columns. (Remember, computers usually
start counting at zero.) If I place elephant in the same puzzle but from right to
left, the last two columns (eight and nine) are the only legal options. Once I rec-
ognized this fact, I had to figure out how to encode this idea so it could work
with any size words in any size puzzle.

I need a random value for the row and column to figure out where to place each
word. However, that random value must be within an appropriate range based on
the word length and board width. By trial and error and some sketches on a white
board, I determined that $boardData[“width”] – 1 is the largest column in the game
board and that strlen($theWord) is the length of the current word in characters.

If I subtract the word length from the board width, I get the largest legal starting
value for a left-to-right placement. That’s how I got this slightly scary formula:

172

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

IN THE REAL WORLD

By far the most critical part of this code is the comments at the beginning. Even

though I’m a reasonably experienced programmer, it’s easy to get confused

when you start solving problems of any reasonable complexity. Just to remind

myself, I placed these comments to explain exactly what the parameters of this

chunk of code are.

I referred to these comments many times while I was writing and debugging the

code. If I hadn’t given myself clear guidance on what I was trying to do, I would

have gotten so lost I probably wouldn’t have been able to write the program.

173

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

$boardData[“width”] – 1 – strlen($theWord)

The smallest legal starting value for this kind of placement is 0, because column
zero always works when you’re going right-to-left and the word is the same size
or smaller than the puzzle (which has been established). Row number doesn’t
matter in an Eastward placement, because any row in the puzzle is legal—all letters
are placed on the same row.

Once I know the word’s largest and smallest legal starting places, I can randomly
generate that starting point knowing that the entire word can be placed there
legally as long as it doesn’t overlap any other.

I used a for loop to pull one character at a time using the substr() function. The
for loop counter ($i) is used to determine the starting character of the substring,
which is always one character long. Each character is placed at the same row as
the starting character, but at a column offset by the position in the word. Revisit
the elephant example: If the starting position chosen is column one, the charac-
ter E is placed in column one, because E is at the 0th position in the word ele-
phant, and 1 + 0 = 1. When the counter ($i) gets to the letter L, it has the value 1,
so it is placed in column two, and so on.

If the formula for choosing the starting place and the plan for placing subse-
quent letters in place work correctly, you cannot add a letter outside the puzzle
board. However, another bad thing could happen if a character from a previously
placed word is in a cell that the current word wants. The code checks the current
cell on the game board to see its current status. If the cell contains the value “.”,
it is empty and the new character can be freely placed there. If the cell contains
the value that the current word wants to place in the cell, the program can like-
wise continue without interruption. However, if the cell contains any other char-
acter, the loop must exit and the program must reset the board and try again. Do
this by setting the $itWorked value to FALSE.

Printing in the Other Directions

Once you understand how to print words when the direction is East, you see that
the other directions are similar. However, I need to figure out each direction’s
appropriate starting values and what cell to place each letter in. Table 5.2 sum-
marizes these values.

A little explanation of Table 5.2 is in order. Within the table, I identified the min-
imum and maximum column for each direction, as well as the minimum and
maximum row. This was easiest to figure out by writing some examples on graph
paper. The placement of each letter is based on the starting row and column,

with i standing for the position of the current letter within the word. In direc-
tion W, I put the letter at position 2 of my word into the randomly chosen start-
ing row, but at the starting column minus 2. This prints the letters from right to
left. Work out the other examples on graph paper so you can see how they work.

Making a Puzzle Board

By the time the fillBoard() function has finished calling addWord() to add all the
words, the answer key is complete. Each word is in place and any cell that does
not contain one of the words still has a period. The main program copies the
current $board variable over to the $key array. The answer key is now ready to be
formatted into a form the user can use.

174

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

E W S N

min Col 0 word width 0 0
max Col board width – 1 board width – 1 board width – 1 board width – 1

– word width
min Row 0 0 0 word width
max Row board height – 1 board height – 1 board height – 1 board height – 1

– word width
letter col start + i start – i start start
letter row start start start + i start – i

TABLE 5.2 SUMMARY OF PLACEMENT DATA

IN THE REAL WORLD

This is exactly where computer programming becomes mystical for most people.

Up to now you’ve probably been following, but this business of placing the char-

acters has a lot of math in it, and you didn’t get to see me struggle with it. It might

look to you as if I just knew what the right formulas were. I didn’t. I had to think

about it carefully without the computer turned on. I got out a white board (my

favorite programming tool) and some graph paper and tried to figure out what

I meant mathematically when I said write the characters from bottom to top.

This is hard, but you can do it. The main thing to remember? Turn off the com-

puter. Get some paper and figure out what it is you’re trying to tell the computer

to do. Then you can start writing code. You may get it wrong (at least I did). But

if you’ve written down your strategy, you can compare what you expected to

happen with what did happen, and likely solve even this kind of somewhat math-

ematical problem.

However, rather than writing one function to print the answer key and another to
print the finished puzzle, I wrote one function that takes the array as a parameter
and creates a long string of HTML code placing that puzzle in a table.

function makeBoard($theBoard){

//given a board array, return an HTML table based on the array

global $boardData;

$puzzle = “”;

$puzzle .= “<table border = 0>\n”;

for ($row = 0; $row < $boardData[“height”]; $row++){

$puzzle .= “<tr>\n”;

for ($col = 0; $col < $boardData[“width”]; $col++){

$puzzle .= “ <td width = 15>{$theBoard[$row][$col]}</td>\n”;

} // end col for loop

$puzzle .= “</tr>\n”;

} // end row for loop

$puzzle .= “</table>\n”;

return $puzzle;

} // end printBoard;

Most of the function deals with creating an HTML table, which is stored in the
variable $puzzle. Each puzzle row begins by building an HTML <tr> tag and creates
a <td></td> pair for each table element.

Sometimes PHP has trouble correctly interpolating two-dimensional arrays.
If you find an array is not being correctly interpolated, try two things:

• Surround the array reference in braces as I did in the code in makeBoard()

• Forego interpolation and use concatenation instead. For example, you could
have built each cell with the following code:

$puzzle .= “<td> width = 15>” . $theBoard[$row][$col] . “</td>\n”;

Adding the Foil Letters

The puzzle itself can be easily derived from the answer key. Once the words in the
list are in place, all it takes to generate a puzzle is replacing the periods with
some other random letters. I call these other characters foil letters because it is
their job to foil the user. This is actually quite easy compared to the process of
adding the words.

function addFoils(){

//add random dummy characters to board

global $board, $boardData;

TRAP

175

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

for ($row = 0; $row < $boardData[“height”]; $row++){

for ($col = 0; $col < $boardData[“width”]; $col++){

if ($board[$row][$col] == “.”){

$newLetter = rand(65, 90);

$board[$row][$col] = chr($newLetter);

} // end if

} // end col for loop

} // end row for loop

} // end addFoils

The function uses the standard pair of nested loops to cycle through each cell in
the array. For each cell that contains a period, the function generates a random
number between 65 and 90. These numbers correspond to the ASCII numeric
codes for the capital letters. I used the chr() function to retrieve the letter that
corresponds to that number and stored the new random letter in the array.

Printing the Puzzle

The last step in the main program is to print results to the user. So far, all the work
has been done behind the scenes. Now it is necessary to produce an HTML page
with the results. The printPuzzle() function performs this duty. The printBoard()
function has already formatted the actual puzzle and answer key tables as HTML.
The puzzle HTML is stored in the $puzzle variable, and the answer key is stored
in $keyPuzzle.

function printPuzzle(){

//print out page to user with puzzle on it

global $puzzle, $word, $keyPuzzle, $boardData;

//print puzzle itself

print <<<HERE

<center>

<h1>{$boardData[“name”]}</h1>

$puzzle

<h3>Word List</h3>

<table border = 0>

HERE;

//print word list

foreach ($word as $theWord){

176

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

print “<tr><td>$theWord</td></tr>\n”;

} // end foreach

print “</table>\n”;

$puzzleName = $boardData[“name”];

//print form for requesting answer key.

//send answer key to that form (sneaky!)

print <<<HERE

<form action = “wordFindKey.php”

method = “post”>

<input type = “hidden”

name = “key”

value = “$keyPuzzle”>

<input type = “hidden”

name = “puzzleName”

value = “$puzzleName”>

<input type = “submit”

value = “show answer key”>

</form>

</center>

HERE;

?>

</body>

</html>

} // end printPuzzle

This function mainly deals with printing standard HTML from variables that
have been created during the program’s run. The name of the puzzle is stored in
$boardData[“name”]. The puzzle itself is simply the value of the $puzzle variable.
I printed the word list by a foreach loop creating a list from the $word array.

The trickiest part of the code is working with the answer key. It is easy enough to
print the answer key directly on the same HTML page. In fact, this is exactly what
I did as I was testing the program. However, the puzzle won’t be much fun if the
answer is right there, so I allowed the user to press a button to get the answer key.
The key is related only to the currently generated puzzle. If the same word list
were sent to the Word Search program again, it would likely produce a different
puzzle with a different answer.

177

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

The secret is to store the current answer key in a hidden form element and pass
this element to another program. I created a form with two hidden fields.
I stored the name of the puzzle in a field called puzzleName and the entire HTML
of the answer key in a field called key. When the user presses the submit key, it
calls wordFindKey.

Printing the Answer Key

The wordFindKey program is very simplistic, because all the work of generating
the answer key was done by the Word Search program. wordFindKey has only to
retrieve the puzzle name and answer key from form variables and print them
out. Since the key has even been formatted as a table, the wordFindKey program
needn’t do any heavy lifting.

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>

<html>

<head>

<title>Word Find Answer Key</title>

</head>

<body>

<?

//answer key for word find

//called from wordFind.php

178

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

IN THE REAL WORLD

Passing the answer key to another program is a kind of dirty trick. It works for

a couple of reasons. First, since the key field is hidden and the form sends data

through the post method, the user is unlikely to know that the answer to the puz-

zle is literally under his nose. Since I expect this program mainly to be used by

teachers who would print the puzzle anyway, this is fine. Even without the

secrecy concerns, it is necessary to pass the key data by post because it is

longer than the 256 characters allowed by the get method.

Sending the HTML-formatted answer key to the next program made the second

program quite simple, but there is another advantage to this approach: It is dif-

ficult to send entire arrays through form variables. However, by creating the

HTML table, all the array data was reduced to one string value, which can be

passed to another program through a form.

print <<<HERE

<center>

<h1>$puzzleName Answer key</h1>

$key

</center>

HERE;

?>

</body>

</html>

Summary

In this chapter you see how important it is to put together data in meaningful
ways. You look at a number of more powerful arrays and tools to manipulate
them. You learn how to use the foreach loop to look at each element of an array
in turn. You can use string indices to generate associative arrays and make two-
dimensional arrays using both numeric and string indices. You learn how to do
several kinds of string-manipulation tricks, including searching for one string
inside another, extracting substrings, and splitting a string into an array. You put
all these skills together in an interesting and detailed application. You should be
proud of your efforts.

179

C
h

a
p

te
r

5
B

e
tt e

r
A

r
r
a

y
s

a
n

d
S

tr
in

g
H

a
n

d
l in

g

CHALLENGES

1. Add the ability to use diagonals in your puzzles. (Hint: You need only combine

the formulas I established. You don’t need any new ones.)

2. Create a game of Battle Ship for two players on the same computer. The

game prints a grid. (Preset the fleet locations to make it easier.) Let the user

choose a location on the grid via a checkbox. Report the result of his firing

back and then give the screen to the second user.

3. Write a version of Conway’s Life. This program simulates cellular life on a

grid with three simple rules.

a. Each cell with exactly three neighbors becomes or remains alive.

b. Each cell currently alive with exactly two neighbors remains alive.

c. All other cells die off.

4. Randomly generate the first cell and let the user press a button to generate

the next generation.

This page intentionally left blank

A
s your experience in programming grows, the relative importance of data

becomes increasingly apparent. You began your understanding of data with

simple variables, but learned how simple and more complex arrays can

make your programs more flexible and more powerful. However, data stored in the

computer’s memory is transient, especially in the server environment. It is often

necessary to store information in a form that is more permanent than the constructs

you have learned so far. PHP provides a number of powerful functions for working

with text files. With these skills, you create extremely useful programs. Specifically,

you learn how to:

• Open files for read, write, and append access

• Use file handles to manipulate text files

• Write data to a text file

• Read data from a text file

• Open an entire file into an array

• Modify text data on-the-fly

• Get information about all the files in a particular directory

• Get a subset of files based on filenames

Working with
Files

6
C H A P T E R

182

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Previewing the Quiz Machine

This chapter’s main program is a fun and powerful tool that you can use in many
different ways. It is not simply one program, but a system of programs that work
together to let you automatically create, administer, and grade multiple-choice
quizzes.

Entering the Quiz Machine System

Figure 6.1 shows the system’s main page. The user needs a password to take a test
and an administrator password to edit a test. In this case, I entered the adminis-
trative password (it’s absolute—like in Absolute Beginner’s Guide) into the appro-
priate password box, and I’m going to edit the Monty Python quiz.

I refer to the quiz machine as a system rather than a program because it uses a
number of programs intended to work together.

Editing a Quiz

The screen shown in Figure 6.2 appears when the user has the correct password.
You can see the requested quiz in a special format on the screen.

The quiz administrator can edit the quiz. Each quiz has a name, instructor e-mail
address, and password. Each question is stored in a single line with the question,
four possible answers, and the correct answer separated by colon (:) characters.

TRICK

IN THE REAL WORLD

It is reasonably easy to build an HTML page that presents a quiz and a PHP

program to grade only that quiz. However, if you want several quizzes, it might

be worth the investment in time and energy to build a system that can automate

the creation and administration of quizzes. The real power of programming

comes into play not just when you solve one immediate problem, but when you

can produce a solution that can be applied to an entire range of related problems.

The quiz machine is an example of exactly such a system. It takes a little more

effort to build, but the effort really pays off when you have a system to reuse.

Taking a Quiz

Users with knowledge of the appropriate password can take any of the quizzes
known to the system. If a user chooses to take the Monty Python quiz, the screen
shown in Figure 6.3 appears.

183

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

FIGURE 6.1

The user is an
administrator

preparing to edit
a quiz.

FIGURE 6.2

The user has
chosen to edit the
Monty Python quiz.

Seeing the Results

When the user takes a quiz, the user’s responses are sent to a program that
grades the quiz and provides immediate feedback, as shown in Figure 6.4.

184

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 6.3

The user is taking
the Monty Python

quiz. If you want to
become a serious
programmer, you
should probably

rent this movie. It’s
part of the culture.

FIGURE 6.4

The grading
program provides

immediate
feedback and

stores the
information in a file
so the administrator

can see it later.

Viewing the Quiz Log

The system keeps a log file for each quiz so the administrator can see each per-
son’s score. Figure 6.5 shows how people have done on the Monty Python quiz.

Although the resulting log looks very simplistic, it is generated in a format that
can easily be imported into most gradebook programs and spreadsheets. This is
very handy if you use the quiz in a classroom setting.

Saving a File to the File System

Your PHP programs can access the server’s file system to store and retrieve infor-
mation. Your programs can create new files, add data to files, and read information
from the files. You start by writing a program that creates a file and adds data to it.

Introducing the saveSonnet.php Program

The saveSonnet.php program shown in the following code opens a file on the
server and writes one of Shakespeare’s sonnets to that file on the server.

Normally I show you a screen shot of every program, but that isn’t useful since this
particular program doesn’t display anything on the screen. The next couple of pro-
grams read this file and display it onscreen. You see what they look like when the
time comes.

TRICK

185

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

FIGURE 6.5

The log retrieval
program presents
an activity log for

each quiz.

<head>

<title>SaveSonnet</title>

</head>

<body>

<?

$sonnet76 = <<<HERE

Sonnet # 76, William Shakespeare

Why is my verse so barren of new pride,

So far from variation or quick change?

Why with the time do I not glance aside

To new-found methods, and to compounds strange?

Why write I still all one, ever the same,

And keep invention in a noted weed,

That every word doth almost tell my name,

Showing their birth, and where they did proceed?

O! know sweet love I always write of you,

And you and love are still my argument;

So all my best is dressing old words new,

Spending again what is already spent:

For as the sun is daily new and old,

So is my love still telling what is told.

HERE;

$fp = fopen(“sonnet76.txt”, “w”);

fputs($fp, $sonnet76);

fclose($fp);

?>

</body>

</html>

Most of the code stores the contents of Shakespeare’s 76th sonnet to a variable
called $sonnet76. The remaining three lines save the data in the variable to a text
file.

186

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Opening a File with fopen()

The fopen() command opens a file. Note that you can create files on the Web
server only—you cannot directly create a file on the client machine, because you
do not have access to that machine’s file system. (If you did, any server-side pro-
gram would be able to create viruses with extreme ease.) However, as a server-side
programmer, you already have the ability to create files on the server. The pro-
grams you are writing are files. Your programs can write files as if they are you.

The ownership of files created by your PHP programs can be a little more compli-
cated, depending on your operating system, server, and PHP configurations.
Generally, any file that your program creates is owned by a special user called
PHP or by the account you were in when you wrote the program. This makes a big
difference in an operating system like UNIX, where file ownership is a major part
of the security mechanism. The best way to discover how this works is to write a
program that creates a file and then look at that file’s properties.

The filename is the first parameter of the fopen() function. This filename can
include directory information or it can be a relative reference starting from the
current file’s location.

Always test your programs, especially if they use a relative reference for a file-
name. It’s possible that your current directory is not the default directory. Also, the
filename is based on the actual file server system, rather than the file’s URL.

You can create a file anywhere on the server to which you have access. Your files
can be in the parts of your directory system open to the Web server (usually sub-
directories of public_html or htdocs). Sometimes, though, you might not want
your files to be directly accessible to users by typing a URL. You can control access
to these files as follows:

• Place them outside the public HTML space.

• Set permissions so they can be read by you (and programs you create) but
not by anyone else.

Creating a File Handle

When you create a file with the fopen() command, the function returns an inte-
ger called a file handle (sometimes also called a file pointer). This special number
refers to the file in subsequent commands. You aren’t usually concerned about
this handle’s actual value, but need to store it in a variable (I usually use $fp) so
your other file-access commands know which file to work with.

TRAP

TRAP

187

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

188

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Examining File Access Modifiers

The final parameter in the fopen() command is an access modifier. PHP supports
a number of access modifiers, which determine how your program interacts with
the file. Files are usually opened for these modes: reading, writing, or appending.
Read mode opens a file for input, so your program can read information from the
file. You cannot write data to a file that is opened in read mode. Write mode
allows you to open a file for output access. If the file does not exist, PHP auto-
matically creates it for you. Append mode allows you to write to a file without
destroying the current contents. When you write to a file in append mode, all
new data is added to the end of the file.

You can use a file for random access, which allows a file to be open simultane-
ously for input and output, but such files are often not needed in PHP. The rela-
tional database techniques provide the same capability with more flexibility and
a lot less work. However, the other forms of file access (read, write, and output)
are extremely useful, because they provide easy access to the file information.

Modifier Type Description

“r” Read-only Program can read from the file

“w” Write Writes to the file, overwriting it if it already exists

“a” Append Writes to the end of the file

“r+” “w+” Read and write Random access. Read or write to a specified part of the file

TABLE 6.1 F ILE ACCESS MODIF IERS

Be very careful about opening a file in write mode. If you open an already existing
file for write access, PHP creates a new file and overwrites and destroys the
old file’s contents.

TRAP

IN THE REAL WORLD

The “r+” and “w+” modifiers are used for another form of file access, called ran-

dom access, which allows simultaneous reading and writing to the same file.

While this is a very useful tool, I won’t spend a lot of time on it in this book. The

sequential-access methods in this chapter are fine for simple file storage problems;

the XML and relational database functions in the remainder of this book aren’t any

more difficult than the random access model and provide far more power.

Writing to a File

The saveSonnet program opens the sonnet76.txt file for write access. If there were
already a file in the current directory, it is destroyed. The $fp variable stores the
file pointer for the text file. Once this is done, you can use the fputs() function
to actually write data to the file.

You might be noticing a trend here. Most of the file access functions begin with the
letter f: fopen(), fclose(), fputs(), fgets(), feof(). This convention is
inherited from the C language. It can help you remember that a particular function
works with files. Of course, every statement in PHP that begins with f isn’t
necessarily a file function (foreach is a good example), but most function names
in PHP that begin with f are file-handling commands.

The fputs() function requires two parameters. The first is a file pointer, which
tells PHP where to write the data. The second parameter is the text to write out
to the file.

Closing a File

The fclose() function tells the system that your program is done working with
the file and should close it.

Drive systems are much slower than computer memory and take a long time
to spool up to speed. For that reason, when a program encounters an fputs()
command, it doesn’t always immediately save the data to a file on the disk.
Instead, it adds the data to a special buffer and writes the data only when a suffi-
cient amount is on the buffer or the program encounters an fclose() command.
This is why it’s important to close your files. If the program ends without encoun-
tering an fclose() statement, PHP is supposed to automatically close the file for
you, but what’s supposed to happen and what actually happens are often two very
different things.

Loading a File from the Drive System

You can retrieve information from the file system. If you open a file with the “r”
access modifier, you can read information from the file.

Introducing the loadSonnet.php Program

The loadSonnet.php program, shown in Figure 6.6 loads the sonnet saved by
saveSonnet.php and displays it as befits the work of the Bard.

TRICK

TRICK

189

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

The code for the loadSonnet program follows:

<html>

<head>

<title>LoadSonnet</title>

<style type = “text/css”>

body{

background-color:darkred;

color:white;

font-family:’Brush Script MT’, script;

font-size:20pt

}

</style>

</head>

<body>

<?

$fp = fopen(“sonnet76.txt”, “r”);

//first line is title

$line = fgets($fp);

print “<center><h1>$line</h1></center>\n”;

print “<center>\n”;

190

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 6.6

The file has been
loaded from the

drive system and
prettied up a bit

with some
cascading style

sheets (CSS) tricks.

//print rest of sonnet

while (!feof($fp)){

$line = fgets($fp);

print “$line
\n”;

} // end while

print “</center>\n”;

fclose($fp);

?>

</body>

</html>

Beautifying Output with CSS

CSS styles are the best way to improve text appearance. By setting up a simple
style sheet, I very quickly improve the sonnet’s appearance without changing the
text. Notice especially how I indicated multiple fonts in case my preferred font
was not installed on the user’s system.

Using the “r” Access Modifier

To read from a file, you must get a file pointer by opening that file for “r” access.
If the file does not exist, you get the result FALSE rather than a file pointer.

You can open files anywhere on the Internet for read access. If you supply a
URL as a filename you can read the URL as if it were a local file. However, you can-
not open URL files for output.

I opened sonnet76.txt with the fopen() command using the “r” access modifier
and again copied the resulting integer to the $fp file pointer variable.

Checking for the End of the File with feof()

When you are reading data from a file, your program doesn’t generally know the
file length. The fgets() command, which gets data from a file, reads one line of
the file at a time. Since you can’t be sure how many lines are in a file until you
read it, PHP provides a special function called feof(), which stands for file end
of file (apparently named by the Department of Redundancy Department).

TRICK

191

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

This function returns the value FALSE if any more lines of data are left in the file.
It returns TRUE when the program is at the end of the data file. Most of the time
when you read file data, you use a while loop that continues as long as feof() is
not true. The easiest way to set up this loop is with a statement like this:

while (!feof($fp)){

The feof() function requires a file pointer as its sole parameter.

Reading Data from the File with fgets()

The fgets() function gets one line of data from the file, returns that value as a
string, and moves a special pointer to the next line of the file. Usually this func-
tion is called inside a loop that continues until feof() is TRUE.

Reading a File into an Array

It is often useful to work with a file by loading it into an array in memory. Fre-
quently you find yourself doing some operation on each array line. PHP provides
a couple of features that simplify this type of operation. The cartoonifier.php
program demonstrates one way of manipulating an entire file without using a
file pointer.

Introducing the cartoonifier.php Program

The cartoonifier.php program illustrated in Figure 6.7 is a truly serious and
weighty use of advanced server technology.

This program loads the entire sonnet into an array, steps through each line, and con-
verts it to a unique cartoon dialect by performing a search and replace operation.

<html>

<head>

<title>Cartoonify</title>

</head>

<body>

<?

$fileName = “sonnet76.txt”;

$sonnet = file($fileName);

$output = “”;

192

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

foreach ($sonnet as $currentLine){

$currentLine = str_replace(“r”, “w”, $currentLine);

$currentLine = str_replace(“l”, “w”, $currentLine);

$output .= rtrim($currentLine) . “
\n”;

} // end foreach

$output .= “You wascally wabbit!
\n”;

print $output;

?>

</body>

</html>

Loading the File into an Array with file()

Some shortcut file-handling tricks do not require you to create a file pointer. You
might recall the readFile() command from chapter 1, “Exploring the PHP Envi-
ronment.” That file simply reads a file and echoes it to the output. The file()
command is similar, because it does not require a file pointer. It opens a file for
input and returns an array, with each file line occupying one array element. This
can make file work easy, because you can use a foreach loop to step through each
line and perform modifications.

193

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

FIGURE 6.7

The
cartoonifier.php

program shows
what would happen

if Shakespeare
were a cartoon

character.

194

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Reading a file into an array is attractive because it’s easy; you can quickly work
with the file once it’s in memory. The problem comes when working with very
large files. The computer’s memory is finite and large files can cause problems.
For larger data files, try a one-line-at-a-time approach using the fgets() function
inside a loop.

Using str_replace() to Modify File Contents

Inside the foreach loop, it’s a simple matter to convert all occurrences of “r” and
“l” to the letter “w” with the str_replace() function. The resulting string is
added to the $output variable, which is ultimately printed to the screen.

Working with Directory Information

When you are working with file systems, you often need to work with the direc-
tory structure that contains the files. PHP contains several commands that assist
in directory manipulation.

Introducing the imageIndex.php Program

The imageIndex.php program featured in Figure 6.8 is a simple utility that gener-
ates an index of all jpg and gif image files in a particular directory.

Anytime the user clicks a thumbnail, a full version of the image is displayed. The
techniques that display the images can be used to get selected file sets from any
directory. The imageIndex.php program automatically generates a thumbnail
page based on all the image files in a particular directory.

<html>

<head>

<title>imageIndex</title>

</head>

TRAP

IN THE REAL WORLD

This particular application is silly and pointless, but the ability to replace all

occurrences of one string with another in a text file is useful in a variety of cir-

cumstances. For example, you could replace every occurrence of the left brace

(<) character in an HTML document with the < sequence. This results in a

source code listing that’s directly viewable on the browser. You might use such

technology for form letters, taking information in a text template and replacing

it with values pulled from the user or another file.

<body>

<?

// image index

// generates an index file containing all images in a particular directory

//point to whatever directory you wish to index.

//index will be written to this directory as imageIndex.html

$dirName = “C:\csci\mm”;

$dp = opendir($dirName);

chdir($dirName);

//add all files in directory to $theFiles array

while ($currentFile !== false){

$currentFile = readDir($dp);

$theFiles[] = $currentFile;

} // end while

//extract gif and jpg images

$imageFiles = preg_grep(“/jpg$|gif$/”, $theFiles);

$output = “”;

foreach ($imageFiles as $currentFile){

$output .= <<<HERE

195

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

FIGURE 6.8

imageIndex.php
automatically
created this
HTML file.

<img src = “$currentFile”

height = 50

width = 50>

HERE;

} // end foreach

//save the index to the local file system

$fp = fopen(“imageIndex.html”, “w”);

fputs ($fp, $output);

fclose($fp);

//readFile(“imageIndex.html”);

print “image index\n”;

?>

</body>

</html>

Creating a Directory Handle with openDir()

Of course, directory operations focus on a particular directory. It’s smart to store
a directory name in a variable for easy changing, as directory conventions change
when you migrate your programs to different systems. In the imageIndex pro-
gram, I stored the target directory in a variable called $dirName. You can store the
directory as a relative reference (in which case it is located in reference to the cur-
rent program’s directory) or absolute (in the current file system).

Getting a List of Files with readdir()

The readdir() function reads a file from a valid directory pointer. Each time you
call the readdir() function, it returns the name of the next file it finds, until no
files are left. When the function has run out of files, it returns the value FALSE.

I find it useful to store all the directory files in an array, so I usually loop like this:

while ($currentFile != = FALSE){

$currentFile = readDir($dp);

$theFiles[] = $currentFile;

} // end while

196

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

This loop keeps going until the $currentFile variable is FALSE, which happens
when no files are left in the directory. Each time through the loop, it uses the
readdir() function to load a new value into $currentFile, then adds the value of
$currentFile to the $theFiles array. When I assign a value to an array without
specifying the index, the item is simply placed at the next available index value.
Loading an array in PHP is easy this way.

The special !== operator is a little different than the comparison operators you have
seen before. Here it prevents a very specific type of error. It’s possible that the user
might have a file actually called “false” in the directory. If that’s the case, the more
normal condition $currentFile != false would give a strange result, because
PHP could confuse a file named “false” with the actual literal value false. The
!== operator specifies a comparison between actual objects rather than values, and
it works correctly in this particular odd circumstance.

Selecting Particular Files with preg_grep()

Once all the files from a particular directory are stored in an array, you often
want to work with a subset of those files. In this particular case, I’m interested
in graphic files, which end with the characters gif or jpg.

The oddly named preg_grep() function is perfect. It borrows some clever ideas
from UNIX shells and the Perl programming language. grep is the name of a
UNIX command that filters files according to a pattern. preg indicates that this
form of grep uses Perl-style regular expressions. Regardless of the funny name,
the function is very handy. If you look back at the code in imageIndex.php, you
see this line:

$imageFiles = preg_grep(“/jpg$|gif$/”, $theFiles);

This code selects all the files that end with jpg or gif and copies them to another
array called $imageFiles.

Using Basic Regular Expressions

While it’s possible to use string-manipulation functions to determine which files
to copy to the new array, you might want to work with string data in a more
detailed way. In this particular situation, I want all the files with gif or jpg in
them. Comparing for two possible values with normal string manipulations isn’t
easy. Also, I didn’t want any filename containing these two values, but only
those filenames that end with gif or jpg. Regular expressions are a special con-
vention often used to handle exactly this kind of situation, and much more.

TRICK

197

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

198

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Table 6.2 summarizes the main regular expression elements.

Operator Description Sample Pattern Matches Doesn’t match

. any character . e \n
but newline

^ beginning of string ^a apple banana

$ end of string a$ banana apple

[characters] any characters [abcABC] a d
in braces

[char range] describe range [a-zA-z] r 9
of characters

\d any digit \d\d\d-\d\d\d\d 123-4567 the-thing

\b word boundary \bthe\b the theater

+ one or more \d+ 1234 text
occurrences of
preceding character

* zero or more [a-zA-z]\d*
occurrences of
preceding character

{digit} repeat preceding \d{3}-\d{4} 123-4567 999-99-9999
character that
many times

| or operator apple|banana apple, banana peach

(pattern segment) store results in (^.).*/1$ gig, blab any other word
pattern memory (any word
returned with that starts
numeric code and ends

with same letter)

TABLE 6.2 SUMMARY OF BASIC REGULAR

EXPRESSION OPERATORS

Note that square braces can contain either characters or a range of characters as
indicated in the examples.

To illustrate, I explain how the “/jpg$|gif$/” expression works. The expression
“/jpg$|gif$/” matches on any string that ends with jpg or gif.

• Slashes usually mark the beginning and end of regular expressions. The
first and last characters of the expression are these slashes.

TRICK

• The pipe (|) character indicates or, so I’m looking for jpg or gif.

• The dollar sign ($) indicates the end of a string in the context of regular
expressions, so jpg$ only matches on the value jpg if it’s at the end of a
string.

Regular expressions are extremely powerful if a bit cryptic. PHP supports a num-
ber of special functions that use regular expressions in addition to preg_grep.
Look in the online Help under “Regular Expression Functions—Perl compatible”
for a list of these functions as well as details on how regular expressions work in
PHP. If you find regular expressions baffling, you can usually find a string-
manipulation function (or two) that does the same general job.

Storing the Output

Once the $imageFiles array is completed, the program uses the data to build an
HTML index of all images and stores that data to a file. Since it’s been a bit since
you’ve seen that code, I reproduce a piece of it here:

foreach ($imageFiles as $currentFile){

$output .= <<<HERE

<img src = “$currentFile”

height = 50

width = 50>

HERE;

} // end foreach

//save the index to the local file system

$fp = fopen(“imageIndex.html”, “w”);

fputs ($fp, $output);

fclose($fp);

print “image index\n”;

I use a foreach loop to step through each $imageFiles array element. I add the
HTML to generate a thumbnail version of each image to a variable called $output.
Finally, I open a file called imageIndex.html in the current directory for writing,
put the value of $output to the file, and closed the file handle. Finally, I add a link
to the file.

199

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

200

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

You might be tempted to use a readFile() command to immediately view the
contents of the file. I was. This may not work correctly, because the Web browser
assumes the imageList.php directory is the current directory. Inside the pro-
gram, I changed to another directory within the local file system, but the Web
browser has no way of knowing that. The HTML was full of broken links when
I did a readFile(), because all the relative links in the HTML page pointed
towards files in another directory. When I add a link to the page instead, the Web
browser itself can find all the images, because it’s sent to the correct directory.

Working with Formatted Text

Text files are easy to work with, but they are extremely unstructured. Sometimes
you might want to impose a bit of formatting on a text file to work with data. You
learn some more formal data management skills in the next couple of chapters,
but with a few simple tricks you can do quite a lot with plain text files.

Introducing the mailMerge.php Program

To illustrate how to use text files for basic data storage, I created a simple mail-
merge program. The results are shown in Figure 6.9.

You can see that the same letter was used repeatedly, each time with a different
name and e-mail address. The name and e-mail information was pulled from a file.

HINT

FIGURE 6.9

The program
creates several

form letters from
a list of names and
e-mail addresses.

Determining a Data Format

The data file (shown in Figure 6.10) for this program is simply a file created in
Notepad. Each line consists of a name and an e-mail address, separated by a tab
character.

This particular format (one line per record, tab-separated fields) is called a tab-
delimited file. Because you can easily create a tab-delimited file in a text editor,
spreadsheet, or any other kind of program, such files are popular. It’s also quite
easy to use another character as a separator. Spreadsheet programs often save in
a comma-delimited format (CSV for comma-separated values) but string data does
not work well in this format because it might already have embedded commas.

Examining the mailMerge.php Code

The basic strategy for the mailMerge.php program is very simple. Take a look at the
code and you might be surprised:

<html>

<head>

<title>Mailing List</title>

</head>

<body>

<form>

TRICK

201

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

FIGURE 6.10

The data file for this
program was

created in Notepad.

<?

//Simple Mail merge

//presumes tab-delimited file called maillist.dat

$theData = file(“maillist.dat”);

foreach($theData as $line){

$line = rtrim($line);

print “<h3>$line</h3>”;

list($name, $email) = split(“\t”, $line);

print “Name: $name”;

$message = <<<HERE

TO: $email:

Dear $name:

Thanks for being a part of the spam afficionado forum. You asked to

be notified whenever a new recipe was posted. Be sure to check our Web

site for the delicious ‘spam flambe with white sauce and cherries’ recipe.

Sincerely,

Sam Spam,

Host of Spam Afficionados.

HERE;

print “<pre>$message</pre>”;

} // end foreach

?>

</body>

</html>

Loading Data with the file() Command

The first step is loading the data into the form. Instead of using the file pointer
technique, I use a special shortcut. The file() command takes a filename and
automatically loads that file into an array. Each line of the file becomes an

202

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

203

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

element of the array. This is especially useful when your text file contains data,
because each line in my data file represents one individual’s data.

The file() command is so easy you might be tempted to use it all the time. The
command loads the entire file into memory, so you should only use it for
relatively small files. When you use the fgets() technique, you only need one
line from the file in memory at a time, so the fgets() method can be effectively
used on any size file without affecting performance. Using file() on a very large
file can be extremely slow.

Splitting a Line into an Array and to Scalar Values

You might recall the split() function from chapter 5, “Better Arrays and String
Handling.” This function separates string elements based on some delimiter.
I use the split() function inside a foreach loop to break each line into its con-
stituent values.

However, I really don’t want an array in this situation. Instead, I want the first
value on the line to be read into the $name variable, and the second value stored
in $email. The list() function allows you to take an array and distribute its con-
tents into scalar (non-array) variables. In this particular situation, I never stored
the results of the split() function in an array at all, but immediately listed the
contents into the appropriate scalar variables. Once the data is in the variables,
you can easily interpolate it into a mail-merge message.

The next obvious step for this program is to automatically send each message as
an e-mail. PHP provides a function called mail(), which makes it quite easy to
add this functionality. However, the function is dependent on how the server is set
up and doesn’t work with equal reliability on every server.

Also, there are good and not-so-good reasons to send e-mail through a program.
It’s completely legitimate to send e-mails to people when they request it or to have
a program send you e-mails when certain things happen. For example, my own
more secure version of the tester program sends an e-mail when conditions indi-
cate potential cheating. A program that sends unsolicited e-mail to people is rude
and causes bad feelings about your site.

Creating the QuizMachine.php Program

The quiz tool from the beginning of this chapter is an entire system of programs
designed to work together—in this case, five different programs. Each quiz is
stored in two separate files, which the programs automatically generate. Figure
6.11 illustrates how the various programs fit together.

TRAP

TRAP

The QuizMachine.php program is the entry point to the system for both the test
administrator and the quiz taker. The program essentially consists of three forms
that allow access to the other parts of the program. To ensure a minimal level of
security, all other programs in the system require password access.

The QuizMachine.php program primarily serves as a gateway to the other parts of
the system. If the user has administrative access (determined by a password), he
can select an exam and call the editQuiz.php page. This page loads the quiz’s
actual master file (if it already exists) or sets up a prototype quiz and places
the quiz data in a Web page as a simple editor. The editQuiz program calls the
writeQuiz.php program, which takes the results of the editQuiz form and writes
it to a master test file and an HTML page.

If the user wants to take a quiz, the system moves to the takeQuiz.php page, which
checks the user’s password and presents the quiz if authorized. When the user
indicates he is finished, the gradeQuiz.php program grades the quiz and stores
the result in a text file.

Finally, the administrator can examine the log files resulting from any of the
quizzes by indicating a quiz from the quizMachine page. The showLog.php program
displays the appropriate log file.

Building the QuizMachine.php Control Page

The heart of the quiz system is the QuizMachine.php page. The user directly enters
this page only. All the other parts are called from this page or from one of the
pages it calls. This page acts as a control panel. It consists of three parts, which
correspond to the three primary jobs this system can do: writing or editing

204

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 6.11

This diagram
illustrates a user’s
movement through

the Quiz
Machine system.

quizzes, taking quizzes, and analyzing quiz results. In each of these cases, the user
has a particular quiz in mind, so the control panel automatically provides a list of
appropriate files in each segment. Also, each of these tasks requires a password.

The main part of the QuizMachine.php program simply sets up the opening HTML
and calls a series of functions, which do all the real work:

<html>

<head>

<title>Quiz Machine</title>

</head>

<body>

<center>

<h1>Quiz Machine</h1>

<?

getFiles();

showTest();

showEdit();

showLog();

The program calls getFiles() first. This function examines a directory and gets a
list of the files in that directory. This list of filenames is used in the other func-
tions. The next three functions generate HTML forms. Each form contains a select
list that is dynamically generated from the file list. The button corresponding to
each form submits the form to the appropriate PHP page.

Make another version of this main page for the people who will take your test. On
the new page, you don’t even show the administrative options. It’s very easy to
make such a page. Simply copy the QuizMachine.php program to another file
and remove the calls to the showEdit() and showLog() functions.

Getting the File List

Since most of the code in the QuizMachine program works with a list of files, the
getFiles() function shown below is charged with that important task.

function getFiles(){

//get list of all files for use in other routines

global $dirPtr, $theFiles;

TRICK

205

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

chdir(“.”);

$dirPtr = openDir(“.”);

$currentFile = readDir($dirPtr);

while ($currentFile !== false){

$theFiles[] = $currentFile;

$currentFile = readDir($dirPtr);

} // end while

} // end getFiles

The first thing this function does is change the file system so it points at the cur-
rent directory, then the program sets up a pointer variable to that directory.

The directory that holds the PHP programs is open for anybody to see. You might
not want your test files to be so conspicuous. To simplify this example, I kept all
the test files in the same directory as the program itself, but you can keep the data
files in a different directory. You might store all the data files in a part of your
directory that is unavailable to the Web (away from your public_html structure,
for instance) so that people can’t see the answer key by browsing to it. If you do
this, change each directory reference throughout the system.

I then created an array called theFiles, which holds every filename in the direc-
tory. The theFiles variable is global, so it is shared with the program and other
functions that declare a reference to it.

Showing the Take a Test List

Most of your users don’t create or edit quizzes. Instead, they take them. To take a
test, the user must choose a test and enter the password associated with it. To
simplify choosing a test, the showTest() function grabs all the HTML files in the
quiz directory and places them in a select list. The password goes in an ordinary
password field. The code in showTest() creates a form that calls the takeQuiz.php
program when it is submitted:

function showTest(){

//print a list of tests for user to take

global $theFiles;

print <<<HERE

<form action = “takeQuiz.php”

method = “post”>

TRAP

206

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

<table border = 1

width = 400>

<tr>

<td colspan = 2><center>

<h3>Take a quiz</h3>

</td>

</tr>

<tr>

<td>Quiz Password</td>

<td>

<input type = “password”

name = “password”>

</td>

</tr>

<tr>

<td>Quiz</td>

<td>

<select name = “takeFile”>

HERE;

//select only quiz html files

$testFiles = preg_grep(“/html$/”, $theFiles);

foreach ($testFiles as $myFile){

$fileBase = substr($myFile, 0, strlen($myFile) - 5);

print “ <option value = $fileBase>$fileBase</option>\n”;

} // end foreach

print <<<HERE

</select>

</td>

</tr>

<tr>

<td colspan = 2><center>

<input type = “submit”

value = “go”>

207

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

</center></td>

</tr>

</table>

</form>

HERE;

} // end showTest

Although the code is long, almost all of it is pure HTML. The PHP part selects HTML
files and places them in the select group. This code fragment uses the preg_grep()
to select filenames ending in HTML and creates an option tag for that file.

Note that I stripped out the .html part of the filename because I won’t need it.
It would complicate some of the code coming up in the takeQuiz program.

Showing the Edit List

The showEdit() function works a lot like showTest(), listing the system’s master
files. Although it is often exactly the same as the list of tests, it won’t always be
the same; some master files may not have been made into HTML files.

function showEdit(){

// let user select a master file to edit

global $theFiles;

//get only quiz master files

$testFiles = preg_grep(“/mas$/”, $theFiles);

//edit a quiz

print <<<HERE

<form action = “editQuiz.php”

method = “post”>

<table border = 1

width = 400>

<tr>

<td colspan = 2><center>

<h3>Edit a quiz</h3>

</center></td>

</tr>

208

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

<tr>

<td>Administrative Password</td>

<td>

<input type = “password”

name = “password”

value = “”>

</td>

</tr>

<tr>

<td>Quiz</td>

<td>

<select name = “editFile”>

<option value = “new”>new quiz</option>

HERE;

foreach ($testFiles as $myFile){

$fileBase = substr($myFile, 0, strlen($myFile) - 4);

print “ <option value = $myFile>$fileBase</option>\n”;

} // end foreach

print <<<HERE

</select>

</td>

</tr>

<tr>

<td colspan = 2><center>

<input type = “submit”

value = “go”>

</center></td>

</tr>

</table>

</form>

HERE;

} // end showEdit

209

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

The showEdit() function is just like showQuiz() but the form points to the
editQuiz.php program and the file list is based on those files ending in mas.

There’s one other subtle but important difference: Look at the code for the select
element and see a new quiz option. If the user chooses this option, the editQuiz()
function won’t try to load a quiz file into memory, but sets up for a new quiz
instead.

Showing the Log List

The last segment is meant for the quiz administrator. It allows the user with
administrator access to view the log of any system quiz. This log shows who has
taken the test, where and when she took it, and her score. When the user clicks
the submit button associated with this part of the page, the showLog.php program
takes over.

function showLog(){

//let user choose from a list of log files

global $theFiles;

print <<<HERE

<form action = “showLog.php”

method = “post”>

<table border = 1

width = 400>

<tr>

<td colspan = 2><center>

<h3>Show a log file</h3>

</td>

</tr>

<tr>

<td>Administrative Password</td>

<td>

<input type = “password”

name = “password”

value = “”>

</td>

</tr>

210

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

211

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

<tr>

<td>Quiz</td>

<td>

<select name = “logFile”>

HERE;

//select only log files

$logFiles = preg_grep(“/log$/”, $theFiles);

foreach ($logFiles as $myFile){

$fileBase = substr($myFile, 0, strlen($myFile) - 4);

print “ <option value = $myFile>$fileBase</option>\n”;

} // end foreach

print <<<HERE

</select>

</td>

</tr>

<tr>

<td colspan = 2><center>

<input type = “submit”

value = “go”>

</td>

</tr>

</table>

</form>

HERE;

} // end showLog

?>

</center>

</body>

</html>

I decided that all log files would end with .log, so the program can easily get a
list of log files to place in the select group.

212

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Editing a Test

For simplicity’s sake I decided on a very simple test format. The first three lines
of the test file contain the test’s name, the instructor’s e-mail address, and the
test’s password. The test data itself follows. Each problem takes up one line
(although it can wrap freely—a line is defined by a carriage return character). The
problem has a question followed by four possible answers and the correct answer.
A colon separates each element.

The editQuiz.php program assists the user in creating and editing quizzes. It’s a
simple program, because the real work happens after the user edits and presses
the submit button.

Getting Existing Test Data

The first chore of the editQuiz program is determining which quiz the user is
requesting. Remember that the value new indicates that the user wants to build
a new test; that value is treated specially. Any other value is the foundation of a
test filename, so I open the appropriate master file and load its values into the
appropriate form elements:

<html>

<head>

<title>Quiz Builder</title>

</head>

<body>

<?

if ($password != “absolute”){

print <<<HERE

IN THE REAL WORLD

You think question formatting has too many rules? I agree. This is a limitation

of the sequential-file access technique that’s storing the data. In chapters 8-12,

you learn ways that aren’t quite so picky. However, this is a relatively easy way

to store your data, so I wrote the program to assist the process as much as is

practical. You generally want to write your program so the user never has to

know the underlying data structure.

Invalid Password!

HERE;

} else {

//check to see if user has chosen a form to edit

if ($editFile == “new”){

//if it’s a new file, put in some dummy values

$quizName = “sample test”;

$quizEmail = “root@localhost”;

$quizData = “q:a:b:c:d:correct”;

$quizPwd = “php”;

} else {

//open up the file and get the data from it

$fp = fopen($editFile, “r”);

$quizName = fgets($fp);

$quizEmail = fgets($fp);

$quizPwd = fgets($fp);

while (!feof($fp)){

$quizData .= fgets($fp);

} // end while

fclose($fp);

} // end ‘new form’ if

I decided to code the value absolute (from the name of this book series) as an
administrative password. Each test has its own password and the administrative
functions (like editing a quiz) have their own passwords. If the password field has
any other value besides my chosen password, the program indicates a problem
and refuses to move forward.

An administrative password keeps casual snoops out of your system, but it’s
nowhere near bullet-proof security. This system is not appropriate for situations
where you must absolutely secure the tests.

Once you know the user is authorized to edit tests, determine if it’s a new or
existing quiz. If the quiz is new, I simply add sample data to the variables, which
are used for the upcoming form. If the user wants to see an existing test, I open
the file for read access and grab the first three lines, which correspond to the
$quizName, $quizEmail, and $quizPwd fields. A foreach loop loads the rest of the file
into the $quizData variable.

TRAP

213

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

You might wonder why the quiz needs a password field if it took a password to
get to this form. The quiz system has multiple levels of security. Anybody can get
to the quizBuilder.php page. However, to move to one of the other pages, the
user must have the right kind of password. Only an administrator should go to the
editPage and showLog programs, so these programs require special adminis-
trative password access. Each quiz also has an associated password. The quiz
master file stores the password so you can associate a different password for
each quiz. In this way, the users authorized to take one test won’t take other tests
(and confuse your log files).

Printing the Form

Once the variables are loaded with appropriate values, it’s a simple matter to
print an HTML form and let the user edit the quiz. The form is almost all pure
HTML with the quiz variables interpolated into the appropriate places:

print <<<HERE

<form action = “writeQuiz.php”

method = “post”>

<table border = 1>

<tr>

<th>Quiz Name</th>

<td>

<input type = “text”

name = “quizName”

value = “$quizName”>

</td>

</tr>

<tr>

<th>Instructor email</th>

<td>

<input type = “text”

name = “quizEmail”

value = “$quizEmail”>

</td>

</tr>

TRICK

214

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

<tr>

<th>Password</th>

<td>

<input type = “text”

name = “quizPwd”

value = “$quizPwd”>

<tr>

<td rowspan = 1

colspan = 2>

<textarea name = “quizData”

rows = 20

cols = 60>

$quizData</textarea>

</td>

</tr>

<tr>

<td colspan = 2><center>

<input type = “submit”

value = “make the quiz”>

</center></td>

</tr>

</table>

</form>

HERE;

} // end if

?>

</body>

</html>

Writing the Test

The administrator has finished editing a quiz file. Now what? That quiz file must be
stored to the file system and an HTML page generated for the quiz. The writeQuiz.php
program performs these duties.

215

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

Setting Up the Main Logic

Creating two files is your first job. The quiz name can be the filename’s foundation,
but many file systems choke at spaces within filenames. I use the str_replace()
function to replace all spaces in $quizName to underscore characters (_). Then I cre-
ate a filename ending in .mas for the master file and another filename ending in
.html for the actual quiz.

To create the HTML file, I open it for write output. Then I use the buildHTML()
function (described shortly) to build the HTML code, write that code to the HTML
file, and close the file. The master file is built pretty much the same way, except
it calls the buildMas() function to create the appropriate text for the file.

<html>

<head>

<title>Write Quiz</title>

</head>

<body>

<?

//given a quiz file from editQuiz,

//generates a master file and an HTML file for the quiz

//open the output file

$fileBase = str_replace(“ “, “_”, $quizName);

$htmlFile = $fileBase . “.html”;

$masFile = $fileBase . “.mas”;

$htfp = fopen($htmlFile, “w”);

$htData = buildHTML();

fputs($htfp, $htData);

fclose($htfp);

$msfp = fopen($masFile, “w”);

$msData = buildMas();

fputs($msfp, $msData);

fclose($msfp);

//preview the actual master file

print <<<HERE

<pre>

$msData

</pre>

HERE;

216

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

To make sure things are going well, I add a check to the end of the page that
prints out the master file’s actual contents. This program’s output lets the
administrator see that the test is working correctly. The administrator can take
the test and submit it to the grading program from this page. If there is a prob-
lem, it’s convenient to have the actual contents of the .mas file visible on the
page. Of course, the final HTML page does not contain this data, because it holds
the answers.

Building the Master File

The master file routine is very straightforward:

function buildMas(){

//builds the master file

global $quizName, $quizEmail, $quizPwd, $quizData;

$msData = $quizName . “\n”;

$msData .= $quizEmail . “\n”;

$msData .= $quizPwd . “\n”;

$msData .= $quizData;

return $msData;

} // end buildMas

The critical part is remembering the file structure rules, so any program that
reads this file doesn’t get confused. The elements come in this order:

• Quiz name

• A newline character

• The $quizEmail variable

• The $quizPwd variable

• All $quizData (usually several lines)

Note that the function doesn’t actually store the data to the file, but returns it to
the main program. This allows me to write the data to both the file and to the page.

Building the HTML File

The function that creates the HTML is a little more involved, but is manageable.
The basic strategy is this: Build an HTML form containing all the questions. For
each line of the master file, build a radio group. Place the question and all the
possible answers in a set of nested elements. At the end of the page, there
should be one submit button. When the user clicks the submit button, the system
calls the gradeQuiz.php page, which evaluates the user’s responses.

217

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

function buildHTML(){

global $quizName, $quizData;

$htData = <<<HERE

<html>

<head>

<title>$quizName</title>

</head>

<body>

HERE;

//get the quiz data

$problems = split(“\n”, $quizData);

$htData .= <<<HERE

<center>

<h1>$quizName</h1>

</center>

<form action = “gradeQuiz.php”

method = “post”>

Name

<input type = “text”

name = “student”>

HERE;

$questionNumber = 1;

foreach ($problems as $currentProblem){

list($question, $answerA, $answerB, $answerC, $answerD, $correct) =

split (“:”, $currentProblem);

$htData .= <<<HERE

$question

<ol type = “A”>

<input type = “radio”

name = “quest[$questionNumber]”

218

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

value = “A”>

$answerA

<input type = “radio”

name = “quest[$questionNumber]”

value = “B”>

$answerB

<input type = “radio”

name = “quest[$questionNumber]”

value = “C”>

$answerC

<input type = “radio”

name = “quest[$questionNumber]”

value = “D”>

$answerD

HERE;

$questionNumber++;

} // end foreach

$htData .= <<<HERE

<input type = “hidden”

name = “quizName”

value = “$quizName”>

<input type = “submit”

value = “submit quiz”>

219

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

</form>

HERE;

print $htData;

return $htData;

} // end buildHTML

?>

</body>

</html>

Most of the critical information this function needs is stored in $quizData. Each
line of $quizData stores one question, so I use a split() function to break $quizData
into an array called $problems. A foreach loop steps through each problem. Each
problem contains a list of values, which is separated into a series of scalar vari-
ables with the combination of split() and list().

Within the foreach loop, I also add the HTML code necessary to print the current
question’s information. Take a careful look at the code for the radio buttons.
Recall from your HTML experience or Appendix A that radio buttons that operate
as a group should all have the same name. I did this by calling them all
quest[$questionNumber]. The $questionNumber variable contains the current ques-
tion number, and this value is interpolated before the HTML code is written.
Question number 1 has four different radio buttons called quest[1]. The gradeQuiz
program sees this as an array called $quest.

At the end of the HTML, I add the quiz name (as a hidden field) and the submit
button.

Taking a Quiz

The point of all this work is to have a set of quizzes your users can take, so it’s
good to have a program to present the quizzes. Actually, since the quizzes are
saved as HTML pages, you could simply provide a link to a quiz and be done with
it, but I wanted a little more security. I wanted the ability to store my quiz files
outside the normal public_html file space and to have basic password protection
so people don’t take a quiz until I know it’s ready. (I don’t release the password
until I’m ready for people to take the quiz.) Also, I can easily turn “off” a quiz by
simply changing its password.

The takeQuiz page’s only real job is to check the user’s password against the indi-
cated test’s password and allow access to the quiz if appropriate.

220

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

<?

//takeQuiz.php

//given a quiz file, prints out that quiz

//get the password from the file

$masterFile = $takeFile . “.mas”;

$fp = fopen($masterFile, “r”);

//the password is the third line, so get the first two lines, but ignore them

$dummy = fgets($fp);

$dummy = fgets($fp);

$magicWord = fgets($fp);

$magicWord = rtrim($magicWord);

fclose($fp);

if ($password == $magicWord){

$htmlFile = $takeFile . “.html”;

//print out the page if the user got the password right

readFile($htmlFile);

} else {

print <<<HERE

<font color = “red”

size = +3>

Incorrect Password.

You must have a password in order to take this quiz

HERE;

} // end if

?>

The password associated with a test is stored in the test file, so once I know which
test the user wants to take, I can open that file and extract the password. The
password is stored in the file’s third line. The only way to get to it with a sequen-
tial access file is to load the first two lines into a dummy variable and then load
the password into a variable called $magicWord. If the user indicates a password
that matches $magicWord, I use the readFile() function to send the contents of
the quiz HTML page to the browser. If not, I send a message indicating the pass-
word was incorrect.

221

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

This is a dandy place to set up a little more security. I keep a log file of every
access in a production version of this system, so I know if somebody has been try-
ing to get at my system 1,000 times from the same machine within a second
(a sure sign of some kind of automated attack) or other mischief. I can also check
to see that later on when a page has been submitted, it comes from the same com-
puter that requested the file in the first place. I can also check the request and
submission times to reject quizzes that have been out longer than my time limit.

Grading the Quiz

One advantage of this kind of system is the potential for instantaneous feedback
for the user. As soon as the user clicks the submit button, the gradeQuiz.php pro-
gram automatically grades the quiz and stores a results log for the administrator.

Opening the Files

The gradeQuiz program, like all the programs in this system, relies on files to do
all its important work. In this case, the program uses the master file to get the
answer key for the quiz and writes to a log file.

<?

print <<<HERE

<html>

<head>

<title>Grade for $quizName, $student</title>

</head>

<body>

</body>

<h1>Grade for $quizName, $student</h1>

HERE;

//open up the correct master file for reading

$fileBase = str_replace(“ “, “_”, $quizName);

$masFile = $fileBase . “.mas”;

$msfp = fopen($masFile, “r”);

$logFile = $fileBase . “.log”;

TRICK

222

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

//the first three lines are name, instructor’s email, and password

$quizName = fgets($msfp);

$quizEmail = fgets($msfp);

$quizPwd = fgets($msfp);

The master file is opened with read access. The first three lines are unimportant,
but I must read them to get to the quiz data.

Creating an Answer Key

I start by generating an answer key from the master file, stepping through each
question in the file and extracting all the normal variables from it (although I’m
interested only in the $correct variable). I then store the $correct value in an
array called $key. At the end of this loop, the $key array holds the correct answer
for each quiz question.

//step through the questions building an answer key

$numCorrect = 0;

$questionNumber = 1;

while (!feof($msfp)){

$currentProblem = fgets($msfp);

list($question, $answerA, $answerB, $answerC, $answerD, $correct) =

split (“:”, $currentProblem);

$key[$questionNumber] = $correct;

$questionNumber++;

} // end while

fclose($msfp);

Checking the User’s Response

The user’s responses come from the HTML form as an array called $quest. The cor-
rect answers are in an array called $key. To grade the test, I step through both
arrays at the same time, comparing the user’s response with the correct
response. Each time these values are the same, the user has gotten an answer cor-
rect. The user was incorrect when the values are different or there was a problem
with the test itself; don’t discount that as a possibility. Unfortunately, you can’t
do much about that, because the test author is responsible for making sure the
test is correct. Still, you might be able to improve the situation somewhat by pro-
viding a better editor that ensures the test is in the right format and each ques-
tion has an answer registered with it.

223

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

//Check each answer from user

for ($questionNumber = 1; $questionNumber <= count($quest);

$questionNumber++){

$guess = $quest[$questionNumber];

$correct = $key[$questionNumber];

$correct = rtrim($correct);

if ($guess == $correct){

//user got it right

$numCorrect++;

print “problem # $questionNumber was correct
\n”;

} else {

print “problem # $questionNumber was

incorrect
\n”;

} // end if

} // end for

I give a certain amount of feedback, telling whether the question was correct, but
I decide not to display the right answer. You might give the user more or less
information, depending on how you’re using the quiz program.

Reporting the Results to Screen and Log File

After checking each answer, the program reports the results to the user as a raw
score and a percentage. The program also opens a log file for append access and
adds the current data to it. Append access is just like write access, but rather
than overwriting an existing file, it adds any new data to the end of it.

print “you got $numCorrect right
\n”;

$percentage = ($numCorrect /count($quest)) * 100;

print “for $percentage percent
\n”;

$today = date (“F j, Y, g:i a”);

//print “Date: $today
\n”;

$location = getenv(“REMOTE_ADDR”);

//print “Location: $location
\n”;

//add results to log file

$lgfp = fopen($logFile, “a”);

$logLine = $student . “\t”;

$logLine .= $today . “\t”;

$logLine .= $location . “\t”;

$logLine .= $numCorrect . “\t”;

224

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

$logLine .= $percentage . “\n”;

fputs($lgfp, $logLine);

fclose($lgfp);

?>

</html>

I add a few more elements to the log file that might be useful to a test adminis-
trator. Of course, I add the student’s name and current date. I also added a loca-
tion variable, which uses the $REMOTE_ADDR environment variable to indicate
which machine the user was on when she submitted the exam. This can be use-
ful because it can alert you to certain kinds of hacking. (A person taking the same
quiz several times on the same machine but with a different name, for example.)
The gradeQuiz program adds the number correct and the percentage to the log
file as well, then closes the file.

Notice that the data in the log file is delimited with tab characters. This is done
so an analysis program could easily work with the file using the split command.
Also, most spreadsheet programs can read a tab-delimited file, so the log file is
easily imported into a spreadsheet for further analysis.

Look at the PHP online Help for the date functions to see all the ways you can dis-
play the current date.

You can really improve the logging functionality if you want to do some in-depth
test analysis. For example, store each user’s response to each question in the quiz.
This gives you a database of performance on every question, so you could easily
determine which questions are causing difficulty.

Viewing the Log

The showLog.php program is actually very similar to the takeQuiz program. It
checks the password to ensure the user has administrator access, then opens the
log using the file() function. It prints the file results inside a <pre></pre> pair,
so the tab characters are preserved.

<?

//showLog.php

//shows a log file

TRICK

TRICK

225

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

//requires admin password

if ($password == “absolute”){

$lines = file($logFile);

print “<pre>\n”;

foreach ($lines as $theLine){

print $theLine;

} // end foreach

print “</pre>\n”;

} else {

print <<<HERE

<font color = “red”

size = +2>

You must have the appropriate password to view this log

HERE;

} // end if

?>

Improve this program by writing the data into an HTML table. However, not all
spreadsheets can easily work with HTML table data, so I prefer the tab format. It
isn’t difficult to add data analysis to the log viewer, including mean scores, stan-
dard deviation, and suggested curve values.

Summary

This chapter explores the use of sequential files as a data storage and retrieval
mechanism. You learned how to open files in read, write, and append modes and
you know how file pointers refer to a file. You wrote data to a file and loaded data
from a file with appropriate functions. You learned how to load an entire file
into an array. You can examine a directory and determine which files are in the
directory. You learned how to use basic regular expressions in the preg_greq()
function to display a subset of files in the directory. Finally, you put all this
together in a multi-program system that allows multiple levels of access to an
interesting data set. You should be proud.

226

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

227

C
h

a
p

te
r

6
W

o
r
k

in
g

w
it h

F
il e

s

CHALLENGES

1. Improve the quiz program in one of the ways I suggested throughout the

chapter: Add the ability to e-mail test results, put in some test scores analysis,

improve the quiz editing page, or try something of your own.

2. A couple of values in this system should be global among each of the PHP

programs. The root directory of the files and the administrative password

are obvious candidates. Write a program that stores these values in an .ini
file and modify the quiz programs to get these values from that file when

needed.

3. Create a source code viewer. Given a filename, the program should read in

the file and convert each instance of < into <. Save this new file to

another name. This allows you to show your source code to others.

4. Create a simple guest book. Let the user enter information into a form, and

add her comment to the bottom of the page when she clicks the submit
button. You can use one or two files for this.

This page intentionally left blank

Writing
Programs with

Objects

7
C H A P T E R

O
bject-oriented programming (sometimes abbreviated as OOP) is an important

development in programming languages. Some languages such as Java

are entirely object oriented and require an intimate understanding of the

object-oriented paradigm. PHP, in keeping with its easygoing nature, supports a form

of object-oriented programming, but does not require it. In this chapter you learn what

objects are and how to build them in PHP. Specifically, you learn how to:

• Use a custom class to build enhanced Web pages

• Design a basic class of your own

• Build an instance of a class

• Leverage inheritance, encapsulation, and polymorphism

• Create properties and methods in your classes

230

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Introducing the SuperHTML Object

Back when I used to program in Perl (before PHP existed), I really liked a feature
called cgi.pm. This was a module that simplified server-based programming. One
of my favorite things about the module was the way it allowed you to quickly
build Web pages with function calls. Once I understood how to use cgi.pm, I was
creating Web pages with unbelievable speed and ease. PHP doesn’t have this fea-
ture built in, so I decided to make a similar object myself using the object-oriented
paradigm. Throughout this chapter you see the object being used, then you’ll
learn how to build it and modify it for your own purposes.

As you look at the SuperHTML object, you should think of it at two levels:

• First, ignore the inner workings of the object and learn how to use it.
There’s a lot to this class, and it has a lot of potential to improve your PHP
programming.

• Second, examine how it was built. This comes after you’ve played with the
object for a while. There’s no doubt you’ll have some ideas on how to
improve it. Once you understand how objects work in PHP, you’ll be able
to build even more-powerful objects on your own.

Building a Simple Document with SuperHTML

The SuperHTML object is a special type of entity that allows you to automatically
create and modify a Web page. It can be tricky to understand what an object is,
so I’ll start by just showing you how it works. Take a look at Figure 7.1 to see a
simple HTML page.

What makes this document interesting is the way it was built. The source code
for BasicSuper.php is different from any other code you’ve seen so far.

<?

include “SuperHTMLDef.php”;

$s = new SuperHTML(“Basic Super Page”);

$s->buildTop();

$s->buildBottom();

print $s->getPage();

?>

Including a File

The first thing this code does is import another file. The include statement
retrieves data from another file and interprets it as HTML code. In this case, I’m
including a file called SuperHTMLDef.php. That file contains the definition for the
SuperHTML object.

One of the joys of OOP is using an object without understanding exactly how it
works. Rest assured you’ll see the code in the file soon enough. For now be sure
you understand how to access code in another program.

If you are having trouble with the include command, check the value of
open_basedir in php.ini. (The easiest way to do this is to run a program with the
phpInfo() command in it.) The open_basedir variable is set to null by default,
which means PHP can load files from anywhere in the server’s file system, but
your administrator may have this access limited. You may need to reset this value
on the server or bribe your server administrator to get this value changed. They
(administrators, not servers) generally respond well to Twinkies.

Creating an Instance of the SuperHTML Object

The next line creates a new variable called $s:

$s = new SuperHTML(“Basic Super Page”);

TRAP

231

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

FIGURE 7.1

The basic
SuperHTML page
looks like a normal

HTML page to
the user.

This variable contains an object. Objects are complex variable types that can con-
tain both variables and code. The SuperHTML object is a custom object I invented
that describes a fancy kind of Web page. Since it’s an object, it has certain charac-
teristics, called properties, and it has certain behaviors, called methods. By invok-
ing the object’s methods, you can do some really neat things without a lot of work.
Most of the properties are hidden in this particular example, but they’re still there.
Notice that when I created $s, I indicated a name for the page: Basic Super Page.
That name will be used to form the title of the page as well as a caption.

No doubt you recall my advice to use descriptive names for things. You might be
composing an angry e-mail to me now about the variable called $s: That’s clearly
not a descriptive name. However, I’m following a convention that’s reasonably
common among object-oriented programmers. When I have one particular object
that I’m going to use a lot, I give it a one-character name to keep the typing simple.
If that bothers you, the global search and replace feature of your favorite text
editor is a reasonable option.

Building the Web Page

The Web page shown in Figure 7.1 has all the normal accoutrements, like <head>
and <body> tags, a <title>, and even a headline in <h1> format. However, you can
see that the code doesn’t directly include any of these elements. Instead, it has
two lines of PHP that both invoke the $s object.

$s->buildTop();

$s->buildBottom();

Both buildTop() and buildBottom() are considered methods, which are simply func-
tions associated with a particular object type. In effect, because $s is a SuperHTML
object, it knows how to build the top and bottom of the Web page. The buildTop()
method generates the following HTML code automatically:

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>

<html>

<head>

<title>Basic Super Page</title>

</head>

<body>

<center>

<h1>Basic Super Page</h1>

</center>

TRICK

232

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

233

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

It’s not that amazing that the function can generate all that HTML code; the code
is fairly predictable. What’s neat is the way the SuperHTML object knew what its
title and headline should be. The phrase Basic Super Page is the string that
initializes the SuperHTML object. The buildBottom() method is even easier than
buildTop(), because it simply adds some boilerplate page-ending code:

</body>

</html>

Writing Out the Page

The buildTop() and buildBottom() directives feel a lot like function calls, because
they are very similar to the functions you’ve already created and used many
times. However, these functions are designed to work within the context of a par-
ticular object. A function attached to an object is referred to as a method of the
object. A cow object might have moo() and giveMilk() methods.

The syntax for referring to methods in PHP is with the arrow syntax (->). There isn’t
one key to indicate this operator. It is the combination of the dash and the greater-
than symbol.

Note that neither buildTop() nor buildBottom() actually write any code to the
screen. Instead, they prepare the page as a long string property inside the object.
SuperHTML has a method called getPage() that returns the actual HTML code for
the page. The programmer can then save the code to a file, print it out, or what-
ever. In this case, the following line simply prints out the results of the getPage()
method:

print $s->getPage();

Working with the Title Property

It’s possible to designate a title when you create a SuperHTML object, but what if
you want to change the title later? Objects can store code in methods, and they
can also store data in properties. A property is like a variable attached to a par-
ticular object. The SuperHTML object has a title property. The cow object might have
a breed property and an age property. The Properties.php page featured in Figure
7.2 illustrates this feature.

The Property.php program begins exactly like the Basic Super page you saw ear-
lier. I even created the $s variable with the same initial value (Basic Super Page).

HINT

When I created the SuperHTML object, the title property was automatically set to
Basic Super Page. It’s possible to directly change the title, like this:

$s ->title = “new title”;

As you see when you look at the SuperHTML code itself, this approach can cause
some problems. It’s generally better to use special methods to get information to
and from properties. Take a look at the following code for Property.php and you’ll
see a better way to change a property value.

<?

include “SuperHTMLDef.php”;

$s = new SuperHTML(“Basic Super Page”);

$s->setTitle(“I changed this”);

$s->buildTop();

print “The title is now “ . $s->getTitle();

$s->buildBottom();

print $s->getPage();

?>

The $s->setTitle() method allows me to add a new value to a property. The
$s->getTitle() method gets a value from a property. These special methods are
usually called access methods because they allow access to properties. I’ll explain
more about access methods later in this chapter when you start building your
own object.

234

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 7.2

I created this page
with one title

and then changed
the title.

235

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

Adding Text and Tags with SuperHTML

The SuperHTML object makes it easy to build a basic HTML framework, but you
always need other kinds of tags. SuperHTML has some general methods for adding
various kinds of tags and text to a document. Figure 7.3 illustrates a page using
these features.

One of the primary features of SuperHTML is the way it separates the creation of a
Web page from its display. You want to be able to easily generate a page and then
display it onscreen, write it to a file, or do whatever else you want with it. For
that reason, you won’t simply print things out. Instead, you’ll keep adding stuff
to the SuperHTML object and then print the whole thing out when you’re done.

That means you need some mechanism for adding things to the page. The SuperHTML
object contains more than 25 methods for adding various kinds of objects to the
document. (Don’t panic. Most of them are really very simple.) Two methods in par-
ticular are extremely useful. Look at the code for AddText.php and see what I mean.

FIGURE 7.3

This page includes
some text and

HTML tags.

IN THE REAL WORLD

If you’ve programmed in languages like Visual Basic, C#, or Java, you might

argue that you have directly accessed properties without using these access

methods. The truth is, access methods in these languages are usually behind

the scenes. When you assign a value to an object property, the appropriate

access method is automatically implemented.

236

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

<?

include “SuperHTMLDef.php”;

$s = new SuperHTML(“Adding Text and Tags”);

$s->buildTop();

$s->addText(“This is ordinary text added to the document”);

$s->addText(“<div>You can also add HTML code <hr> like the HR above</div>”);

$s->h3(“Use h1-h6 methods to add headings”);

$s->tag(“i”, “this line is italicized”);

$s->buildBottom();

print $s->getPage();

?>

The addText() method expects a string as its only parameter. It then adds that
text to the document in memory. As you can see, the text can even contain HTML
data. You can also pass multi-line strings or text with interpolated variables.

The addText() method is really the only method you need in order to build the
page in memory. However, the point of the SuperHTML object is to make page devel-
opment faster and easier. I actually use the addText() method when I need to add
actual text to a page or when I need a tag I haven’t yet implemented in SuperHTML.

Look at the following line:

$s->h3(“Use h1-h6 methods to add headings”);

This code accepts a string as a parameter, then surrounds the text with <h3></h3>
tags and writes it to the document in memory. Of course, there are similar methods
for h1 through h6. You could expect similar methods for all the basic HTML tags.

I didn’t create shortcuts for all the HTML tags, for two reasons. One reason is once
you see the mechanism for creating a new tag method, you can modify SuperHTML
very easily to have methods for all your favorite tags. The other reason I didn’t
make shortcuts for all the tags is the very special method described in the fol-
lowing line:

$s->tag(“i”, “this line is italicized”);

The tag() method is a workhorse. It expects two parameters. The first is the tag
you wish to implement (without the angle braces). In this case I want to italicize,
so I’m implementing the i tag. The second parameter is the text you want sent

to the document. After this function is completed, the document has the following
text added to the end:

<i>this line is italicized</i>

If you look at the HTML source code for AddText.php, you see that’s exactly what
happened.

The great thing about the tag() method is its flexibility. It can surround any text
with any tag.

Creating Lists the SuperHTML Way

Even if you only use the addText() and tag() methods, you can create some really
nice, flexible Web pages. However, this object’s real power comes with some spe-
cialized methods that solve specific display problems. When you think about it,
a lot of PHP constructs have natural companions in the HTML world. For exam-
ple, if you have an array of data in PHP, you frequently want to display it in some
form of HTML list. Figure 7.4 demonstrates a page with a number of lists, all auto-
matically generated from arrays.

You’ve probably already written code to generate an HTML list from an array.
Although it’s not difficult, it can be tedious. It’d be great if you could just hand
off that functionality and not worry about it when you’ve got other problems to
solve. The SuperHTML object has exactly that capability. The code list.php illus-
trates a number of ways to do this.

237

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

FIGURE 7.4

These HTML lists
were created

automatically from
arrays.

<?

include “SuperHTMLDef.php”;

$s = new SuperHTML(“Creating Lists”);

$s->buildTop();

$myArray =array(“alpha”, “beta”, “gamma”, “delta”);

$s->h3(“build an ordered list”);

$s->buildList($myArray, “ol”);

$s->h3(“unordered lists are the default”);

$s->buildList(array(“alpha”, “beta”, “gamma”, “delta”));

$s->h3(“specify list type”);

$s->buildList($myArray, “ol type = ‘a’”);

$s->buildBottom();

print $s->getPage();

?>

Building a Basic List

I started the list.php code by creating an array called (cleverly enough) $myArray.
The buildList() method requires two parameters, an array, and a list type. Then
I invoke the function:

$s->buildList($myArray, “ol”);

The SuperHTML object responds by adding the following code to its internal repre-
sentation of the page:

alpha

beta

gamma

delta

As you can see, each array item is enclosed in tags, and the entire array
is encased in an set with appropriate indentation. You’ll be much more
willing to use arrays when you have an easy tool like this to display them.

238

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

239

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

Building an Ad Hoc List

Of course you don’t always want an ordered list. The next call to the buildList()
method is different from the first version in two ways:

$s->buildList(array(“alpha”, “beta”, “gamma”, “delta”));

• First, I built this one on-the-fly rather than using a predefined array. This
is useful when you want to build a list quickly but don’t already have an
array. Just put the list values in an ad hoc array before sending the array
to the buildList() method.

• Second, this call is different because of the lack of a list type. If I don’t
indicate what type of list I want, SuperHTML is smart enough to guess and
put a legal value in for me. This behavior is a good example of a principle
called polymorphism, where an object can act differently in different situ-
ations. (Of course the formal definition is a little more profound than
that, but this is good enough for now.) You can probably guess that the
default list type is unordered.

Building More-Specialized Lists

The buildList() method has one more trick up its sleeve. If you look back at the
third list on the HTML output, it is written with a specific list type (<ol type = ‘a’>
). I included the list attributes in the list type parameter, like this:

$s->buildList($myArray, “ol type = ‘a’”);

You can specify the list type complete with attributes for more flexible lists.

Making Tables with SuperHTML

All the SuperHTML features you’ve seen up to now are pretty handy, but the main
thing I wanted was easy work with tables. You’ll frequently find yourself out-
putting data in tables, and it can be confusing to switch from PHP to HTML syn-
tax (especially when you add SQL to the mix, because then you’re thinking in
three very different languages at once). I wanted some features that easily let you
build HTML tables from PHP data structures. Figure 7.5 shows a program with
this capability.

The basic plan for building tables with SuperHTML is similar to the approach for
making lists. However, tables are based on data structures more complex than
lists, as you can see when you peruse the code.

<?

include “SuperHTMLDef.php”;

$s = new SuperHTML(“Creating Tables”);

$s->buildTop();

$s->h3(“build table from 2d array”);

$myArray = array(

array(“English”, “Spanish”, “Japanese”),

array(“One”, “Uno”, “Ichi”),

array(“Two”, “Dos”, “Nii”),

array(“Three”, “Tres”, “San”)

);

$s->buildTable($myArray);

$s->h3(“build table row-by-row”);

$s->startTable(3);

$s->tRow(array(“English”, “Greek”), “th”);

$s->tRow(array(“a”, “alpha”));

$s->tRow(array(“b”, “beta”));

$s->endTable();

$s->buildBottom();

print $s->getPage();

?>

240

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 7.5

These tables were
made automatically
by the SuperHTML

object.

241

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

Creating a Basic Table

Early in this chapter I mentioned that PHP arrays and HTML lists are natural com-
panions. Each row of an HTML table can be seen as a PHP array, and a table can be
seen as an array of rows. An array of arrays is a two-dimension array. It shouldn’t
surprise you that building a table from a two-dimension array is easy. After I created
an array called $myArray, turning it into a table with one line of code was trivial:

$s->buildTable($myArray);

Creating a More-Complex Table

The buildTable() method is really easy, but it isn’t flexible enough for all needs.
Frequently (especially in database applications) I want to build the top of the
table, a header row, a series of rows in a loop, and then close off the table.
I decided to add a more powerful suite of table-creation methods. These make it
possible to make more-sophisticated tables, like the second one on Table.php.

The following code builds a table line-by-line:

$s->startTable(3);

$s->tRow(array(“English”, “Greek”), “th”);

$s->tRow(array(“a”, “alpha”));

$s->tRow(array(“b”, “beta”));

$s->endTable();

The startTable() method creates the code that begins the table definition. The
parameter indicates the table’s border width. If you don’t indicate a border
width, it defaults to 1. (Gosh, polymorphism is wonderful!) It won’t surprise you
that the end of the table is indicated by the endTable() method.

The cool part of this approach is the tRow() method, which makes up the table
body. This method can accept one or two parameters. The first parameter is an
array of values that populates the row. Of course this can be an array variable or
created on-the-fly (as in this example). The second tRow() parameter is cell type.
The default type is td, but you can specify th if you want a header row. (I explain
in the form.phpprogram coming up next how to make a column of headers.) Call
the tRow() method once for each table row. In an actual program, this frequently
happens inside some sort of loop.

Creating Super Forms

The SuperHTML object is useful, but if it is really going to be helpful it must easily
build form elements such as textboxes and submit buttons. Most of these objects

are reasonably easy to build, but I’ve always found dropdown menus (HTML select
objects) tedious to program. The SuperHTML object has a powerful, flexible, and
easy approach to building various form elements. The page featured in Figure 7.6
was produced using some special object features.

The form program code looks a little more involved than some other examples,
but it’s not any more difficult than anything you’ve already seen. First I give you
the code in full, and then I break it apart and show you the features.

<?

include “SuperHTMLDef.php”;

$s = new SuperHTML(“Working with Forms”);

$s->buildTop();

$s->h3(“form elements”);

$s->addText(“<form> \n”);

$s->textbox(“userName”, “Joe”);

$s->h3(“create select object from associative array”);

242

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 7.6

Forms are no
problem for
SuperHTML.

$numArray = array(

“1”=>”ichii”,

“2”=>”nii”,

“3”=>”san”,

“4”=>”shi”

);

$s->select(“options”, $numArray);

$s->h3(“make form elements inside a table!”);

$myArray = array(

array($s->gTag(“b”,”name”), $s->gTextbox(“name”)),

array($s->gAddText(“address”), $s->gTextbox(“address”)),

array($s->gAddText(“phone”), $s->gTextbox(“phone”)),

array($s->gAddText(“favorite number”), $s->gSelect(“number”, $numArray))

);

$s->buildTable($myArray);

$s->submit();

$s->addText(“</form> \n”);

$s->h3(“results from previous form (if any)”);

$s->formResults();

$s->buildBottom();

print $s->getPage();

?>

Building a Simple Form and Adding a Text Box

The following code snippet builds the most basic SuperHTML form:

$s->addText(“<form>”);

$s->textbox(“userName”, “Joe”);

$s->submit();

$s->addText(“</form>”);

I used the addText() method to provide the basic form tags and then created a
textbox and submit button using the SuperHTML object’s special methods.

243

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

You might be surprised that I don’t have special methods to begin and end the form.
They would be easy, but I felt they wouldn’t simplify things much, so I just used the
addText() method to add form tags. (Of course you are free to add these methods
yourself if you wish. The SuperHTML project is designed as a framework only, and
I’m eager to see people add new functionality to it.)

The textbox() method can take one or two parameters. The first parameter is the
name of the resulting <input> element. The second (optional) parameter is the ele-
ment’s default value. If you do not specify a value, it is left blank.

Of course, the submit button resolves to almost the same kind of HTML code, and
it works very much like the textbox. However, if you leave off the submit method’s
second parameter, your HTML code will show the typical Submit Query caption.

Building Drop-Down Menus

There are a number of times you’ll want the user to choose input from a limited
number of options. Often, the value you want to send to the next program isn’t
exactly what the user sees. The appropriate HTML device for this situation is the
<select> element with a bunch of <option> objects inside. If you try to map the
select and option combination to a PHP structure, the most obvious comparison is
an associative array as you used in chapter 5, “Better Arrays and String Handling.”
Take a look at the following code fragment to see how this works.

$numArray = array(

“1”=>”ichii”,

“2”=>”nii”,

“3”=>”san”,

“4”=>”shi”

);

$s->select(“options”, $numArray);

I created an associative array using numbers as indices and the Japanese names
for the numerals as the values.

Once I had created the array, it was easy to create a select object with the cleverly
named select() method. The two parameters are the name of the resulting select
object and the array. This code produces the following HTML:

<select name = “options” >

<option value = “1”>ichii</option>

<option value = “2”>nii</option>

HINT

244

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

<option value = “3”>san</option>

<option value = “4”>shi</option>

</select>

Building Form Elements Inside a Table

It’s important to have professional-looking documents. Most programmers place
all form elements inside a table. The SuperHTML object makes this relatively easy
to do, using the buildTable() method described previously in this chapter. How-
ever, there’s one new twist. Take a look at the code and see if you can spot it.

$myArray = array(

array($s->gTag(“b”,”name”), $s->gTextbox(“name”)),

array(“address”, $s->gTextbox(“address”)),

array(“phone”, $s->gTextbox(“phone”)),

array(“favorite number”, $s->gSelect(“number”, $numArray))

);

$s->buildTable($myArray);

The $myArray variable is a big array that controls the eventual table. Each row con-
sists of two columns. The first column is a label specifying the type of data being
collected; the second column is some sort of form element.

Here’s the twist: Although the methods used inside the array look familiar, every
single one is new! Recall that all the methods for building a page in SuperHTML work
by adding content directly to some variable in memory. This is done to make the
program more flexible, so it can be used both to print a result and save it to a file.

When I’m building the array, I don’t want to actually add anything to the HTML
document. Instead, I want to receive the results of the function so I can add it to
my array. I then add the entire array to the page using the buildTable() method.
Most SuperHTML methods have a get variant, preceded with g. For example, recall
that $s->tag(“b”,“name”) produces the code name and immediately adds
that code to the internal HTML document. The g variant of the same command
(following) produces exactly the same code but does not add it to the internal
representation:

$s->gTag(“b”, “name”);

Instead, it returns the value so you can do whatever you want with it. In this case,
I simply want to add the code to my table as a pseudo-heading. (In fact I could do
any kind of HTML here, including Cascading Style Sheets magic to get exactly the
look I want.)

245

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

All other elements in the table are either plain text (the other labels) or other
calls to get versions of methods in the SuperHTML object. After describing all the
information in a two-dimension array, it’s very easy to add it to the internal doc-
ument using the buildTable() method.

Although it may seem tedious to build a two-dimension array, consider the com-
plexity of the output that is produced by this function:

<table border = 1>

<tr>

<td>

name

</td>

<td><input type = “text”

name = “name”

value = “” />

</td>

</tr>

<tr>

<td>address</td>

<td><input type = “text”

name = “address”

value = “” />

</td>

</tr>

<tr>

<td>phone</td>

<td><input type = “text”

name = “phone”

value = “” />

</td>

</tr>

<tr>

<td>favorite number</td>

<td><select name = “number” >

<option value = “1”>ichii</option>

<option value = “2”>nii</option>

<option value = “3”>san</option>

<option value = “4”>shi</option> </select>

</td>

246

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

</tr>

</table>

I think the version written with SuperHTML is quite a bit easier to understand and
maintain. I like that most of the details are hidden away in the object definition.

Viewing Form Results

Usually when I build a PHP page that responds to a form, I begin by retrieving the
names and values of all the fields that come from the form. This is useful because
often I make mistakes in my field names or forget exactly what I’m expecting the
form to send. It would be nice to have a really easy way to do this. Of course,
SuperHTML has this feature built in. If you fill in the form elements in Forms.php
and click the submit button, you get another version of Forms.php, but this one
also includes form data, as shown in Figure 7.7.

The code that produces these results is quite simple:

$s->formResults();

If there was no previous form, formResults() returns an empty string. If the page
has been called from a form, the resulting code looks something like this:

<table border = “1”>

<tr>

<td>userName</td>

247

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

FIGURE 7.7

After submitting
Forms.php, the

second call to
Forms.php returns a
table of field names

and values.

<td>Joe</td>

</tr>

<tr>

<td>options</td>

<td>1</td>

</tr>

<tr>

<td>name</td>

<td>Jonathon</td>

</tr>

<tr>

<td>address</td>

<td>123 W 4th St</td>

</tr>

<tr>

<td>phone</td>

<td>999-9999</td>

</tr>

<tr>

<td>number</td>

<td>3</td>

</tr>

</table>

</body>

</html>

Understanding OOP

The SuperHTML project uses many OOP features to do its work. Before digging into
the innards of SuperHTML itself, it makes sense to think more about what objects
are and how to create them in PHP.

Objects Overview

As you’ve seen, objects have properties, which are characteristics of the object,
and methods, which are things the object can do.

In addition to supporting properties and methods, a properly designed object
should reflect certain values of the object-oriented paradigm.

248

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

249

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

Many discussions of OOP indicate that objects also have events. An event is some
sort of stimulus the object can respond to. Events are indeed important in OOP, but
they are not often used in PHP programming, because events are meant to capture
things that happen in real time. PHP programs rarely involve real-time interaction
with the user, so events are not as critical in PHP objects as they are in other
languages.

Encapsulation

An object can be seen as some data (the properties) and some code (the methods)
for working with that data. Alternatively, you could see an object as a series of
methods and the data that supports these methods. Regardless, you can use an
object without knowing exactly how it is constructed. This principle of encapsu-
lation is well supported by PHP. You take advantage of encapsulation when you
build ordinary functions. Objects take the notion of encapsulation one step fur-
ther by grouping together code and data.

Inheritance

Inheritance is the idea that an object can be inherited from another object. Imag-
ine if you had to build a police car. You could build a factory that begins with
sheet metal and other raw materials, or you could start with a more typical car
and simply add the features that make it a police car. Inheritance involves taking
an existing type of object and adding new features to create a new object type.
PHP supports at least one kind of inheritance, as you see later in this chapter.

Polymorphism

You’ve encountered polymorphism in the SuperHTML description. Polymorphism
involves an object’s ability to act somewhat differently under different circum-
stances. Specifically, it is often used to handle unexpected or missing data. PHP
supports some types of polymorphism, but to be honest this is more a factor of
the permissive and loose variable typing of PHP than any particular object-
oriented design consideration.

Creating a Basic Object

One of the easiest ways to understand something is to look at an example. Begin
by looking at the basic critter in Figure 7.8.

TRICK

Of course you won’t see anything special if you look at the HTML output or the
Critter.html HTML source code. The interesting work was done in the php code:

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>

<html>

<head>

<title>Critter</title>

</head>

<body>

<?

// BASIC OOP DEMO

//define the critter class

class Critter{

var $name;

} // end Critter class

//make an instance of the critter

$theCritter = new Critter();

//assign a value to the name property

$theCritter->name = “Andrew”;

250

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 7.8

The Critter is a
simplistic animal,
but it is a simple

example of object-
oriented design.

//return the value of the name property

print “My name is “;

print $theCritter->name;

?>

</body>

</html>

Defining the SimpleCritter Class

The SimpleCritter program works in classic object-oriented style. First it defines
what a critter is and then it creates an instance of that design. Consider this part
of the code:

//define the critter class

class Critter{

var $name;

} // end Critter class

The class keyword indicates that I am defining a class. A class is a design or tem-
plate for something. A recipe is a good example of a class. You wouldn’t actually
eat the index card with the cookie recipe on it, but you use that recipe to create
cookies, which you can eat. The recipe is the class and cookies are instances of
that class. (Great. Now I’m hungry.)

When I defined the Critter class, I was defining what a critter would be like (the
recipe), but I haven’t made one yet (the cookie). My Critter class is extremely
simple. Right now it only has one property, which is the variable $name. Class def-
initions get a lot more complicated, but this is a good start.

Note the use of the var keyword to specify an instance variable. You don’t have to
use the var keyword when you create ordinary variables in PHP (and almost
nobody does). The var keyword is necessary in a class definition, or the variable
will not be interpreted correctly.

Creating an Instance of the Critter Class

Once you’ve defined a class, you want to have an instance or two of that class.
One of the great things about objects is how easily you can make multiple
instances of some class. However, for this example you just make one instance.
The code that creates an instance looks like this:

$theCritter = new Critter();

TRAP

251

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

252

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

I created a new variable called $theCritter and used the new keyword to indicate
I wanted to instantiate some sort of object. Of course, I made an instance of the
Critter class.

It’s traditional to begin class names with uppercase letters and instances
(like most other variables) in lowercase letters. I follow that convention through
this book, so $theCritter is an instance and Critter is a class. In PHP, it’s
also easy to see that Critter isn’t a variable because it doesn’t begin with a
dollar sign.

Working with an Object’s Properties

Once you have an instance of an object, you can manipulate the properties of
that instance. The $theCritter variable is an instance of the Critter class, so I can
assign a value to the name property of $theCritter.

//assign a value to the name property

$theCritter->name = “Andrew”;

Notice a couple of things about this:

• You can attach values to instances of a class, not to the class itself.

• Look carefully at the syntax for assigning a value to the name property.
The variable you are dealing with is $theCritter. The name property is
kind of like a subvariable of $theCritter. Use the instance->property
syntax to refer to an object’s property.

It’s actually considered dangerous to directly access a property as I’m doing in this
example. However, I do it here for the sake of clarity. As soon as I show you how
to create a method, you’ll build access methods. That way you don’t have to directly
access properties.

Retrieving Properties from a Class

The basic syntax for retrieving a property value from a class is much like adding
a property.

//return the value of the name property

print “My name is “;

print $theCritter->name;

Again, note the syntax: $theCritter is the variable and name is its property.

TRAP

TRICK

Adding Methods to a Class

To make a class really interesting, it needs to have some sort of behavior as well
as data. This is where methods come in. I’ll improve on the simple Critter class
so it has methods with which to manipulate the name property. Here’s the new
code, found in methods.php:

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>

<html>

<head>

<title>Critter</title>

</head>

<body>

<?

// Adding methods

//define the critter class

class Critter{

var $name;

function __construct($handle = “anonymous”){

$this->name = $handle;

} // end constructor

function setName($newName){

$this->name = $newName;

} // end setName

function getName(){

return $this->name;

} // end getName

} // end Critter class

//make an instance of the critter

$theCritter = new Critter();

//print original name

print “Initial name: “ . $theCritter->getName() . “
\n”;

253

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

print “Changing name...
\n”;

$theCritter->setName(“Melville”);

print “New name: “ . $theCritter->getName() . “
\n”;

?>

</body>

</html>

This code produces the output indicated in Figure 7.9.

The basic technique for creating methods is to build a function within the con-
text of a class definition. That function then becomes a method of the class.

Building a Constructor

The first function defined in most classes is called the constructor. Constructors
are special methods used to build an object. Any code you want to occur when
the object first appears should go in the constructor. Most often you use the con-
structor to initialize your properties, so I do that for the Critter class:

function __construct($handle = “anonymous”){

$this->name = $handle;

} // end constructor

To specify that a function is a class constructor, it should be called __construct.
(That’s construct preceded by two underscores.)

254

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 7.9

This Critter can
change his name

on-the-fly.

The __construct name for constructors was added in PHP 5.0. If you have an
earlier version of PHP, the constructor will have the same name as the class, but
is still a function defined within the class.

The constructor is often used to initialize properties—in this case the name property.
Notice that the constructor accepts a parameter. If you want to make a parameter
optional in any PHP function, assign a default value to the parameter, as I have
done here. This is a sneaky way that PHP achieves polymorphism.

Creating a Property Setter

The setName() method is an example of a property access method that allows you
to change a property through a method. The code for setName() is pretty clean:

function setName($newName){

$this->name = $newName;

} // end setName

Setter methods usually begin with set and they always accept a parameter. The
parameter is the value the user wants to change. Inside the method, I modify the
actual instance variable associated with the name property. Access methods are
useful because I can do a number of things to test the information before I make
any property changes. For example, if I decided that all my critter names should
be fewer than five characters, I could modify setName() to enforce that rule.

function setName($newName){

if(strlen($newName) > 5){

$newName = substr($newName, 0, 5);

} // end if

$this->name = $newName;

} // end setName

This is a trivial example, but access methods can do a lot to prevent certain kinds
of problems. For example, if your program is expecting numeric input and gets a
string instead, your access method can quietly (or not-so-quietly, if you wish)
change the value to something legal without the program crashing. Use of access
methods can be a splendid way to add polymorphism to your classes. If you are
using a class that has access methods, you should always use them rather than
directly modifying a property. If you directly modify a property, you are circum-
venting the safety net provided by the access method.

TRAP

255

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

Building a Getter Method to Retrieve Property Values

It’s also good to have methods that return property values. These methods are
called getter methods, and they are usually very straightforward, such as this one:

function getName(){

return $this->name;

} // end getName

The getName() method simply returns the value of the appropriate property. This is
useful because you might have different ways of returning the same value. Some-
times you might have a getter for a property that doesn’t actually exist! For exam-
ple, if you were creating a circle class, it might have setRadius(), getRadius(),
getArea(), and getCircumference() methods. The user should be able to read and
write the circle’s radius and should be able to read the circumference and area.
These values aren’t actually stored in the class, because they are derived from the
radius. The programmer using the class doesn’t have to know or care about this,
but simply knows that some properties are read/write and some are read only.

Using Access Methods to Manipulate Properties

With getter and setter methods in place, it’s easy to manipulate an object’s prop-
erties.

//make an instance of the critter

$theCritter = new Critter();

//print original name

print “Initial name: “ . $theCritter->getName() . “
\n”;

print “Changing name...
\n”;

$theCritter->setName(“Melville”);

print “New name: “ . $theCritter->getName() . “
\n”;

Anytime I want to change the name, I invoke the setName() method. To retrieve
the name, I use the getName() method.

Note that the terms get and set make sense in the context of the programmer using
the class, not the programmer designing the class. The target audience for most
objects is programmers rather than the general public. You’re writing code to
make a programmer’s job easier.

TRICK

256

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Inheriting from a Parent Class

You’ve seen encapsulation and polymorphism. The third pillar of OOP is a con-
cept called inheritance.

Inheritance is used to build on previous work and add new features to it. It is
used to build common functionality and at the same time allow variation. In
writing a game using Critters, for example, I define all the characteristics com-
mon to everything in the base Critter class and then add a bunch of subclasses
for the various types. These subclasses incorporate additions or deviations from
the basic behavior. Think again of the police car I mentioned earlier in this chap-
ter. The car is a base class while a police car is an extension of the base class.

I’ll take the Critter definition and put it in its own file, like this:

<?

// Critter definition

//define the critter class

class Critter{

var $name;

function __construct($handle = “anonymous”){

$this->setname($handle);

} // end constructor

function setName($newName){

$this->name = $newName;

} // end setName

function getName(){

return $this->name;

} // end getName

} // end Critter class

?>

Notice there’s no HTML and no code that uses the class. This file simply contains
the definition for the class inside the normal php tags. Once I’ve got the class def-
inition safely stored in a file, I can reuse it easily. I made one minor but useful

257

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

change in the Critter class definition: Notice that the constructor no longer sets
the name property directly, but uses the setName method instead. This is useful
in a moment.

The Inherit.php program adds some new features to the basic Critter class:

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>

<html>

<head>

<title>Glitter Critter</title>

</head>

<body>

<?

// Incorporating Inheritance

//pull up the Critter class

include “critter.php”;

//create new Glitter Critter based on Critter

class GlitterCritter extends Critter{

//add one method

function glow(){

print $this->name . “ gently shimmers...
 \n”;

} // end glow

//override the setName method

function setName($newName){

$this->name = “Glittery “ . $newName;

} // end setName

} // end GC class def

//make an instance of the new critter

$theCritter = new GlitterCritter(“Gloria”);

//GC has no constructor, so it ‘borrows’ from its parent

print “Critter name: “ . $theCritter->getName() . “
\n”;

258

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

//invoke new glow method

$theCritter->glow();

?>

</body>

</html>

The program begins by including the previously designed Critter class. I could
now make instances of that class, but I have something sneakier in mind. I want to
make a new type of Critter that knows how to glow. I’ll call it the GlitterCritter.
(I also wrote prototypes for the HitterCritter, BitterCritter, and SpitterCritter,
but I decided not to include them in the book.)

I defined the GlitterCritter just like any other class, except for the extends keyword:

class GlitterCritter extends Critter{

Unless I indicate otherwise, the GlitterCritter will act just like an ordinary
Critter. It automatically inherits all properties, methods, and even the con-
structor from the parent class. I added two methods to the class. One brand new
method is called glow(). The original Critter class doesn’t have a glow() method.
The other method is called setName(). The original Critter class has a setName()
method as well.

When you run the program, you see a page like Figure 7.10.

259

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

FIGURE 7.10

The Glitter
Critter has some

new tricks and
borrows others

from the ordinary
Critter.

Since GlitterCritter is based on Critter and I’m making an instance of
GlitterCritter, the default behavior of $theCritter is just like an ordinary Critter.
Glitter-Critter doesn’t have a constructor, so it uses the constructor from Critter.
When I added the glow() method, the GlitterCritter was able to do something its
parent could not. When I created a new method that had the same name as a
method in the parent class, the new method overrode the original method, chang-
ing the behavior. Note that I didn’t change the constructor at all, but since the con-
structor calls the addName() method, GlitterCritter names all begin with Glittery.

Building the SuperHTML Class
Now that you understand something about object-oriented methodology, you
can look at the innards of the SuperHTML. Although the class has a lot of code,
everything is made up of very simple code elements. The object-oriented nature
of the class is what gives it its real power. As you look through the code, I give
suggestions on areas you could improve the code or ways to extend the class.

Setting Up the File
The class file is meant to be included in other programs, so I stripped it of all
unnecessary HTML and PHP code. The only thing in the file is the class definition.

<?

//SuperHTML Class Def

class SuperHTML{

//properties

var $title;

var $thePage;

You might be surprised that the entire SuperHTML class has only two properties.
It could have a lot more, but I didn’t need them to get the basic functionality I
wanted. The title property holds the page title, which appears as both the title
and a level-one headline. The thePage property is special, because it is a string
variable that contains all the code for the resulting HTML output.

260

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

IN THE REAL WORLD

Entire books have been written about OOP. This chapter means to whet your

appetite for the power and flexibility this programming style offers. I encourage

you to read more about OOP and to investigate languages that support the par-

adigm more completely than does PHP.

Creating the Constructor

You might expect a complex object to have an involved constructor, but it isn’t
necessarily so.

function __construct($tTitle = “Super HTML”){

//constructor

$this->SetTitle($tTitle);

} // end constructor

The constructor copies a temporary title value over to the title property using
the currently undefined setTitle() method.

Manipulating Properties

You would expect to find access methods for the properties, and SuperHTML has a
few. There is a setTitle(), a getTitle(), and a getPage() method. However, there’s
no explicit setPage() method because I intend for the programmer to build the
page incrementally through all the other methods.

function getTitle(){

return $this->title;

} // end getTitle

function setTitle($tTitle){

$this->title = $tTitle;

} // end setTitle

function getPage(){

return $this->thePage;

} // end getPage

Each of these methods is simplistic. You could improve them by checking for pos-
sible illegal values or adding default values.

Adding Text

The SuperHTML program doesn’t print anything. All it ever does is create a big
string (thePage) and allow a programmer to retrieve that page.

The addText() function adds to the end of $thePage whatever input is fed it, along
with a trailing newline character. Like most of the functions in the class, a g ver-
sion returns the value with a newline but doesn’t write anything to $thePage.

261

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

The gAddText() method isn’t necessary, but I included it for completeness.

function addText($content){

//given any text (including HTML markup)

//adds the text to the page

$this->thePage .= $content;

$this->thePage .= “\n”;

} // end addText

function gAddText($content){

//given any text (including HTML markup)

//returns the text

$temp= $content;

$temp .= “\n”;

return $temp;

} // end addText

Building the Top of the Page

The top of almost every Web page I make is nearly identical, so I wanted a func-
tion to automatically build that stuff for me. The buildTop() method takes a
multi-line string of all my favorite page-beginning code and adds it to the page
using the addText() method.

function buildTop(){

$temp = <<<HERE

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>

<html>

<head>

<title>$this->title</title>

</head>

<body>

<center>

<h1>$this->title</h1>

</center>

HERE;

$this->addText($temp);

} // end buildTop;

If you want a different beginning code (a particular CSS style, for example), you
can override my buildTop() with one that includes your own code.

262

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Creating the Bottom of the Page

The bottom of the page is very easy. I just built some standard page-ending HTML
and added it to thePage.

function buildBottom(){

//builds the bottom of a generic web page

$temp = <<<HERE

</body>

</html>

HERE;

$this->addText($temp);

} // end buildBottom;

Adding Headers and Generic Tags

The tag() method is very useful, because it allows you to surround any text with
any HTML tag (or even an XML tag) you wish. The gTag function is similar, but
doesn’t store anything to $thePage. To simplify my coding, I wrote gTag() first.
This method creates a temporary variable containing the tag name and contents,
nicely formatted. (One of the things I didn’t like about cgi.pm is how horrible the
resulting HTML code looked. I want code produced by my programs to look as
good as code produced directly by me.)

The tag() method calls gTag() and adds the results with addText(). If I make a
change to the gTag() function, I won’t have to remember to make the same
change in tag(). It’s good to avoid rewriting code when you can.

//general tag functions

function gTag($tagName, $contents){

//given any tag, surrounds contents with tag

//improve so tag can have attributes

//returns tag but does not add it to page

$temp = “<$tagName>\n”;

$temp .= “ “ . $contents . “\n”;

$temp .= “</$tagName>\n”;

return $temp;

} // end tag

function tag($tagName, $contents){

//given any tag, surrounds contents with tag

263

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

//improve so tag can have attributes

$temp = $this->gTag($tagName, $contents);

$this->addText($temp);

} // end tag

//header functions

function h1($stuff){

$this->tag(“h1”, $stuff);

} // end h1

function h2($stuff){

$this->tag(“h2”, $stuff);

} // end h2

function h3($stuff){

$this->tag(“h3”, $stuff);

} // end h3

function h4($stuff){

$this->tag(“h4”, $stuff);

} // end h4

function h5($stuff){

$this->tag(“h5”, $stuff);

} // end h5

function h6($stuff){

$this->tag(“h6”, $stuff);

} // end h6

The h1() through h6() methods are all wrappers around the tag() method that
simply provide shortcuts for these very common HTML tags. Of course you could
add shortcuts for all your other favorite tags.

Creating Lists from Arrays

I like the list methods because they really clean up my code. The buildList()
methods require two parameters. The first is an array, which contains all the ele-
ments in the eventual list. The second parameter is the list type, without the
angle braces. The list type defaults to ul, but it could also be ol or dl.

264

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

The method uses a foreach() loop to step through each element in the array and
then adds an pair around the element. As usual, the function’s g ver-
sion returns this value to the programmer, and the other version adds it to
$thePage.

function gBuildList($theArray, $type = “ul”){

//given an array of values, builds a list based on that array

$temp= “<$type> \n”;

foreach ($theArray as $value){

$temp .= “ $value \n”;

} // end foreach

$temp .= “</$type> \n”;

return $temp;

} // end gBuildList

function buildList($theArray, $type = “ul”){

$temp = $this->gBuildList($theArray, $type);

$this->addText($temp);

} // end buildList

Creating Tables from 2-Dimension Arrays

The buildTable() methods work much like the buildList() methods. The
gBuildTable() code begins by printing the table header. It then creates a foreach
loop to handle the rows. Inside the loop it adds the <tr> tag and then opens a
second loop to handle the data array representing each of the row’s cells. This
data is encased in <td></td> tags and added to the temporary variable. At the end
of the cell loop it is the end of a table row, so the </tr> tag is added to the tem-
porary variable. By the time both loops are finished, the function has provided
an HTML table with decent formatting.

function gBuildTable($theArray){

//given a 2D array, builds an HTML table based on that array

$table = “<table border = 1> \n”;

foreach ($theArray as $row){

$table .= “<tr> \n”;

foreach ($row as $cell){

$table .= “ <td>$cell</td> \n”;

} // end foreach

$table .= “</tr> \n”;

} // end foreach

265

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

$table .= “</table> \n”;

return $table;

} // end gBuildTable

function buildTable($theArray){

$temp = $this->gBuildTable($theArray);

$this->addText($temp);

} // end buildTable

You might improve this code to allow variables including a table caption, border
size, style sheet, and whether the first row or column should be treated as table
headers.

Creating Tables One Row at a Time

The other set of table functions allows you to build a table one row at a time. The
startTable() method begins the table. The $tRow() method builds a table row
from an array and accepts a rowType parameter. EndTable() builds the end-of-table
code.

function startTable($border = “1”){

$this->thePage .= “<table border = \”$border\”>\n”;

} // end startTable

function tRow ($rowData, $rowType = “td”){

//expects an array in rowdata, prints a row of th values

$this->thePage .= “<tr> \n”;

foreach ($rowData as $cell){

$this->thePage .= “ <$rowType>$cell</$rowType> \n”;

} // end foreach

$this->thePage .= “</tr> \n”;

} // end thRow

function endTable(){

$this->thePage .= “</table> \n”;

} // end endTable

To be honest, I find the 2D array approach in buildTable() a lot more flexible and
powerful than this technique, but I kept it in so you could see an alternative.

266

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

267

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

Building Basic Form Objects

The basic form-element methods involve no fancy programming. I added the text
that should be printed and allowed appropriate parameters so the user could cus-
tomize the form objects as needed.

function gTextbox($name, $value = “”){

// returns but does not print

// an input type = text element

// used if you want to place form elements in a table

$temp .= <<<HERE

<input type = “text”

name = “$name”

value = “$value” />

HERE;

return $temp;

} // end textBox

function textbox($name, $value = “”){

$this->addText($this->gTextbox($name, $value));

} // end textBox

function gSubmit($value = “Submit Query”){

// returns but does not print

// an input type = submit element

// used if you want to place form elements in a table

$temp .= <<<HERE

<input type = “submit”

value = “$value” />

HERE;

return $temp;

} // end submit

function submit($value = “Submit Query”){

$this->addText($this->gSubmit($value));

} // end submit

You might want to add some similar functions for creating passwords, hidden
fields, and text areas.

Building Select Objects

The select object is derived from an associative array. It expects a name for the
entire structure and an associative array. For each element in the associative
array, the index is translated to the value property of an option object. Also, the
value of the array element becomes the text visible to the user.

function gSelect($name, $listVals){

//given an associative array,

//prints an HTML select object

//Each element has the appropriate

//value and displays the associated name

$temp = “”;

$temp .= “<select name = \”$name\” >\n”;

foreach ($listVals as $val => $desc){

$temp .= “ <option value = \”$val\”>$desc</option> \n”;

} // end foreach

$temp .= “</select> \n”;

return $temp;

} // end gSelect

function select($name, $listVals){

$this->addText($this->gSelect($name, $listVals));

} // end buildSelect

Responding to Form Input

One more SuperHTML object method quickly produces a name/value pair for each
element in the $_REQUEST array. In effect, this returns any form variables and
their associated values.

function formResults(){

//returns the names and values of all form elements

//in an HTML table

$this->startTable();

foreach ($_REQUEST as $name => $value){

$this->tRow(array($name,$value));

} // end foreach

$this->endTable();

} // end formResults

268

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

} // end class def

?>

Summary

This chapter introduced to the basic concepts of object-oriented programming.
You saw that objects incorporate properties and methods. You learned how
objects implement inheritance, polymorphism, and encapsulation. You experi-
mented with the SuperHTML class and learned how to expand it when creating
your own useful and powerful object classes.

269

C
h

a
p

te
r
 7

 W
r
it in

g
P

r
o

g
r
a

m
s

w
it h

O
b

j e
c
ts

CHALLENGES

1. Rewrite one of your earlier programs using the SuperHTML object.

2. Add support for more HTML tags in the SuperHTML class.

3. Create an extension of SuperHTML that has a custom header reflecting the

way you begin your Web pages.

4. Add support for checkboxes and radio buttons.

5. Improve the buildTable() method so it automatically makes the first row

or column a parameter-based header.

6. Rewrite an earlier program with custom objects.

This page intentionally left blank

T
he Web has been changing since its inception. Two particular advances

are especially important for PHP programmers to understand. The first is the

concept of a content management system (CMS). This is a type of application

that simplifies the creation and manipulation of complex Web sites. XML is a data

management technique often used in CMS applications as well as other kinds of

programming. PHP is an ideal language for implementing XML and CMS solutions.

In this chapter you explore these exciting topics. You also do these things:

• Explore some common CMSs in popular use

• Build a basic CMS system using only one PHP program

• Examine XML as a data storage scheme

• Implement the simpleXML Application Programming Interface (API)

for working with XML

• Create a more sophisticated CMS using XML

XML and Content
Management

Systems

8
C H A P T E R

Introducing XCMS

You examine three different forms of CMS here. First, you look at a powerful CMS
system called PHPNuke. Then you build a basic CMS using ordinary PHP. Finally
you learn how to incorporate the power of XML to build the foundation of a pow-
erful and flexible CMS engine.

You begin by installing and modifying an existing system to create a custom,
high-end Web site like the one featured in Figure 8.1.

Because PHP-Nuke requires a functioning MySQL server, I did not include this
particular example on the CD. PHP-Nuke is on this book’s CD, however, so use it
to build sites just like this one.

A CMS site can be extremely powerful, but you may not want all of the features
of a high-end package like PHP-Nuke. On the other hand, you may wish to “roll
your own” CMS. This type of program is very easy to build once you understand
the basic concepts. By the end of the chapter you can build a site much like the
one displayed in Figure 8.2.

TRAP

272

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 8.1

You can develop
this fancy page

with a minimum of
PHP programming.

You also learn how to build an even more powerful CMS using a cool technology
called XML. I won’t give you a screenshot of that program though, because to the
user it looks just like the simple CMS described in Figure 8.2.

Understanding Content
Management Systems

When the Web began, it was conceived as a web of interconnected documents. The
ability to link any document to any other was powerful. However, as developers began
utilizing the Web, the freeform nature of the Internet sometimes caused headaches.
In particular, it became somewhat challenging to manage a large system of related
pages, to customize content for individual users, and to maintain consistency in a
Web site that might contain hundreds or thousands of documents. Also, the nature
of the Web began to change. Instead of simply being a repository of documents, the
Web has become a series of interconnected applications. Much of the Web’s content is
no longer stored in HTML pages, but is created dynamically by programs such as PHP.

CMS has become a popular solution for creating a dynamic Web site that connects
many HTML pages and serves them up in a flexible, efficient manner. (Flexibility
in this context means the site owner has a lot of options for determining the lay-
out and content of the page.) A number of very popular free and commercial
CMSs are based on PHP. CMSs frequently include such features like these:

• User management. Users can log into the system. A CMS often has multiple
user-access levels so some can add content and others can view content.

273

C
h

a
p

te
r

8
X

M
L

a
n

d
C

o
n

t e
n

t
M

a
n

a
g

e
m

e
n

t
S

y
s

te
m

s

FIGURE 8.2

This CMS is much
simpler but still

profoundly
powerful.

• Separation of content into blocks. Content can be grouped into semantic
blocks based on its meaning. For example, rather than having arbitrary
Web pages as the basic unit, you can organize news stories, Web links, and
other elements into HTML pages.

• Isolation of layout from content. A CMS usually separates the system
content from the layout. This is done for a number of reasons:

• The appearance of the entire site should be uniform, even if many people
contribute content.

• Content developers shouldn’t have to worry about formatting or how to
write HTML code.

• The layout should be adaptable to handle new designs or technologies.

• User-contributed coontent. Many CMSs include the ability to support online
forums and message boards. In addition, you can often grant write access
so users can add content to your site. For example, if you’re running a site
for a church, you might allow the children’s pastor to directly add content
to appropriate parts. You could control access, so people cannot access
parts they should not change. You can even allow public access through
message forums or automated content management based on individual
user preferences.

Working with PHP-Nuke

PHP-Nuke is one of the most popular open-source CMSs. It uses PHP and MySQL
to dynamically generate a Web portal (portal is another term for a customized
system meant to be run as the starting place of a Web site). When you get used to
PHP-Nuke you notice how many sites run this system or a variant of it. Figure 8.3
illustrates a version of my Web site using PHP-Nuke.

PHP-Nuke is an extremely capable CMS system. It supports all the features listed
earlier, plus many more. If I log in as the administrator, I get a different display,
giving me the opportunity to modify all kinds of options in the site, as shown in
Figure 8.4.

Any user with appropriate access (determined by the administrator) can alter
content by adding news items, surveys, links, and other elements. Additionally,
authorized users can change the site’s overall appearance by choosing a new
theme, which could include new colors, fonts, icons, and layout. Figure 8.5
demonstrates the main page using a different theme.

274

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Of course, the real fun comes when you create your own themes or add new mod-
ules. Modifying PHP-Nuke is surprisingly simple once you understand the file
structure. First things first: Install the system.

275

C
h

a
p

te
r

8
X

M
L

a
n

d
C

o
n

t e
n

t
M

a
n

a
g

e
m

e
n

t
S

y
s

te
m

s

FIGURE 8.3

I built this
professional-

looking Web page
without writing a
single line of PHP

code. Thanks,
PHP-Nuke.

FIGURE 8.4

The administrator
can change much

of the system’s
functionality
without any

programming.

Installing PHP-Nuke

A copy of PHP-Nuke is included on the CD that accompanies this book. You might
also go directly to the PHP-Nuke Web page (http://phpnuke.org) and ensure you
have the latest version of the software. PHP-Nuke is written entirely in PHP and
MySQL, so it doesn’t matter which operating system you use.

Be sure to install the files in a subdirectory of your Web server’s document root
(usually htdocs).

PHP-Nuke relies heavily on a series of MySQL tables. (My installation has 92 tables
devoted to PHP-Nuke.) Fortunately, you don’t have to install these tables by hand.
All the necessary code is in an MySQL script called nuke.sql and is included with
PHP-Nuke. Use the MySQL console or phpMyAdmin to run the SQL script. You
learn more about how to use these tools in chapter 9, “Using MySQL to Create
Databases.” For now, you can simply follow the instructions in the readme file
that accompanies PHP-Nuke.

You might have to edit the SQL script to change the username, add your own pass-
word, or create data tables according to some other scheme. As usual, work with
a copy just in case something goes wrong.

Read the installation instructions that come with PHP-Nuke; they explain how to
set up and test your system.

TRAP

TRAP

276

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 8.5

The content is the
same, but this new

theme uses
different colors
and graphics.

Customizing PHP-Nuke

PHP-Nuke installs with a large number of themes and a huge number of options.
Play around with your site quite a bit to get everything working the way you
want. You’ll still probably make a few changes. As a minimum, you might want
to replace some stock images or buttons with custom images. The easiest way to
do this is to modify an existing theme:

1. Log in as the administrator by going to the admin.php page in your system.

2. Find the preferences option on this site.

3. Browse through the themes until you find one you want to use as your
starting point.

4. Go to your file manager and find the appropriate theme’s folder.

5. In the default installation, look at your PHP-Nuke subdirectory; find the
themes under html/themes/.

Each theme has its own subdirectory.

6. Duplicate the directory of the theme you want to work with and rename
the folder to make the new theme.

7. Go to the theme folder and open theme.php.

8. Search and replace any references to the old theme name with your new
theme.

Now you can edit any of the HTML files or images in the theme directory to cus-
tomize your theme. For example, the blocks.html page controls how a section of
the menu on the left side of the screen looks. If you load blocks.html by itself, it
might look like Figure 8.6.

If you look at the code for block.html, it might look like this:

<table border=”0” cellpadding=”3” cellspacing=”0” bgcolor=”#FFFF00”

width=”100%”><tr><td align=”left”>

$title

</td></tr></table>

<table border=”0” cellpadding=”0” cellspacing=”0” bgcolor=”#ffffff”

width=”140”>

<tr valign=”top”><td bgcolor=”#ffffff”>

$content

</td></tr></table>

277

C
h

a
p

te
r

8
X

M
L

a
n

d
C

o
n

t e
n

t
M

a
n

a
g

e
m

e
n

t
S

y
s

te
m

s

Your code might vary from what you see here, because each theme has a different
code fragment for each type of element. The actual details don’t matter as much as
the general concept.

The notable thing about the code fragment is the lack of any actual content. This
is the CMS system hallmark. Rather than displaying any actual values, the code
fragments in a theme describe how to display a certain type of text. Notice the
placeholders $title and $content. These are, of course, PHP variables that the
actual title and content elements will replace.

You can modify any of the HTML theme pages as long as you don’t change the
name of any of those pages. Likewise, you can replace all of the graphics with
your own, but don’t use different names, because the system cannot find them
otherwise. Begin with simple changes like color changes and new graphics; get
more sophisticated as you begin to understand the file structure.

Introducing simpleCMS

PHP-Nuke is incredibly powerful, but it’s overkill for many personal Web sites. It
was originally designed to be used as a news site, so it’s heavily oriented toward
news delivery and online forums. The incredible power of the PHP-Nuke system
(and others like it) can also make them very intimidating for new programmers.
(Also, I don’t love the coding style used to present the resulting pages. PHP-Nuke
relies heavily on HTML tables as a formatting tool rather than the positionable
CSS elements I prefer.)

TRAP

278

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 8.6

This is the
standard look of

block.html in the
Odyssey theme.

I wanted to create a lightweight content management system that provided
many of the core features a more complex system provides, but be easier to build
and maintain. I actually created two related CMSs, which I describe in the rest of
this chapter.

The simpleCMS system is easy to use and modify and adds tremendous flexibility
to your Web system. You don’t need to learn a single new command in PHP or
HTML, but you do need to rethink what a Web page is.

Viewing Pages from a User’s Perspective

A CMS system is designed to be changed, so although I can show an example of a
site using the system, the actual possibilities are much larger than a particular fig-
ure will show. Still, Figure 8.7 illustrates how my Web page looks using simpleCMS.

This page has a couple of interesting features. It follows a fairly standard design,
with three primary segments of the page. A standard banner goes across the top
of the page. This banner remains the same even when other parts of the page
change. A list of links, which acts as a menu, occupies the left side. You can use
multiple menus to support a complex Web hierarchy. The page’s main section
contains dynamic content. This part of the page will change frequently. When it
changes, however, the other parts of the page will not. The HTML code for the
page is combined from three different HTML pages and one CSS style. One (sur-
prisingly simple) PHP script controls all the action.

279

C
h

a
p

te
r

8
X

M
L

a
n

d
C

o
n

t e
n

t
M

a
n

a
g

e
m

e
n

t
S

y
s

te
m

s

FIGURE 8.7

My main page,
simpleCMS-style.

Examining the PHP Code

Look at the source code for simpleCMS, which is extraordinarily simple:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2 Final//EN”>

<?

//Simple CMS

//Extremely Simple CMS system

//Andy Harris for PHP/MySQL Adv. Beg 2nd Ed.

if (empty($menu)){

$menu = “menu.html”;

} // end if

if (empty($content)){

$content = “default.html”;

} // end if

include (“menuLeft.css”);

include (“top.html”);

print “ \n”;

include ($menu);

print “ \n”;

print “ \n”;

include ($content);

280

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r COULDN’T I GET THE SAME EFFECT WITH FRAMES?

HTML frames were originally designed to allow the same sort of functionality,

but frames have proven to be extremely frustrating both for users and develop-

ers. It’s reasonably easy to create a frame-based Web site, but much harder to

build such a site that behaves well. If you’ve traversed the Web for any time,

you’ve bumped into those frames within frames that eventually eat your entire

screen away. The Back button acts unpredictably inside a frame context, and it’s

difficult to maintain a consistent style across multiple frames. While simpleCMS
looks like a frameset, it’s actually all one HTML file generated from a number of

smaller files.

print “ \n”;

?>

</body>

</html>

The code expects two parameters. These parameters are both URLs for HTML files
that are displayed by the system. A default value is supplied if either parameter
is blank. The core of the program is a series of include statements, which loads
and displays a file.

The simpleCMS system relies heavily on CSS features including positionable
elements and style classes. If you’re rusty on these techniques, look through
appendix A, “Reviewing HTML and Cascading Style Sheets.”

• The first include loads a CSS style sheet.

• The next include loads a page called Top.html. This page (if it exists)
appears as a banner across the top of the screen. It is shown for every page
in the system.

• The other include statements load and display the requested files inside
special CSS span elements. If the CSS defines a span class called menuPanel,
the $menu page contents are shown according to that style.

• Likewise, the $content variable displays according to an item style, if one
is defined.

By creating these elements as positionable style sheet elements, it’s possible to
control where you place objects in addition to any other display specifics.

Recall that the div and span tags are special HTML tags that are extremely
useful for CSS applications. If you need a refresher on these tags or on CSS, refer
to appendix A.

Viewing the CSS

In a CMS, it’s critical that content and layout remain separate. I’m using CSS as
my primary layout management tool. At a minimum, I need to define styles for
the menu and content area, because the PHP code is placing text in these ele-
ments. You can add any other CSS elements you want.

TRAP

TRICK

281

C
h

a
p

te
r

8
X

M
L

a
n

d
C

o
n

t e
n

t
M

a
n

a
g

e
m

e
n

t
S

y
s

te
m

s

Here’s the basic CSS I used:

<!—

this style places a menu on the left and an item section in

the center. Intended for use with CMS demos for

PHP/MySql for the Abs. Beg, Andy Harris

—>

<style type = “text/css”>

body {

background-image: url(“binaryBG.gif”)

}

h1 {

color: #0000FF;

font-family: “Comic Sans MS”;

text-align: center

}

span.menuPanel {

position: absolute;

left: 1%;

width: 15%;

background-color: #CCCCFF

}

span.item {

position: absolute;

left: 17%;

width: 80%;

background-color: #CCCCFF

}

I defined the background style for all pages created by this system. I also built two
span tag subclasses. You may recall that span is useful for CSS because it doesn’t
carry any formatting baggage. The span.menuPanel class is defined as a position-
able element near the left border that stretches 15 percent of the browser width.
The element’s top and height are not defined. This means the element is placed
immediately below whatever HTML tag was previously displayed, but all span
contents are formatted to fit within the 15-percent limit. I intend for this section
of the Web page to be filled with a list of links to serve as a menu.

282

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

(Of course, the menu can be much more sophisticated, but it’s good to start
slowly. In the next section you look at the sneaky (but not difficult) way the menu
HTML is coded.)

I kept the code very simple, but of course you can (and should) improve it how-
ever you wish. Add background graphics, borders, or improved text. Put the
menu across the right or top.

It’s important that I used percentage measurements in this element, because
I don’t know the user’s screen resolution. By indicating position and width in per-
centages, I have a style that works well regardless of the browser size.

The item class is the other important CSS element in this code sample. It’s
another specialized span dedicated to placing the Web page’s main content. The
item class works well with the menuPanel class. It is placed a little to the right of
the menu panel and takes up most of the remaining screen space. Once again,
the actual style is quite simplistic and you probably want to spruce it up.

Inspecting the Menu System

The real key to the simpleCMS is the way it’s used. Each page that the user sees is
a combination of three different HTML pages: a banner, menu, and content page.
The simpleCMS.php program puts these three elements together according to a

TRICK

283

C
h

a
p

te
r

8
X

M
L

a
n

d
C

o
n

t e
n

t
M

a
n

a
g

e
m

e
n

t
S

y
s

te
m

s

IN THE REAL WORLD

What about browsers that don’t support CSS? Some would argue that a table-

based approach to layout (as PHP-Nuke and many other CMS tools use) would

work across more browsers than this CSS-centric approach. While it’s true

some older browsers support tables but not CSS, tables have their own prob-

lems as page layout tools.

Tables were never really designed for that purpose, so to get a layout exactly

like you want, you often have to build a Byzantine complex of tables nested

within tables, with all sorts of odd colspan tricks and invisible borders.

The positionable CSS elements were invented partially to provide a simpler,

more uniform solution to page layout headaches. The browsers that don’t sup-

port CSS still display everything encoded in a CSS-augmented page. The CSS

won’t take effect, but all the other HTML code will work and the user can use

the page.

specific style sheet. For this example, presume that the CSS style and banner
remain the same for every system-displayed page. (This is usually the behavior
you want.)

You never directly link to any of the pages in your system. Instead, you link to the
simpleCMS.php program and pass the content file (and menu file, if you wish) you
want displayed. Recall that simpleCMS requires two parameters. Most PHP pro-
grams get their parameters from HTML forms, but you may remember from chap-
ter 2, “Using Variables and Input,” that parameters can be sent through the URL
via the GET protocol. You can make any page display as an element of your CMS
by calling it as a parameter.

To clarify, take a look at the menu.html code:

<h3>Main Menu</h3>

main

classes

links

software

media

Notice the trick? The first link refers to a page called default.html. Rather than
directly linking to default.html, I linked to simpleCMS and passed the value
default.html as the content parameter. When simpleCMS runs, it places the
default banner (top.html) and the default menu (menu.html), but places the con-
tents of default.html in the new page’s item area. I didn’t send a menu parame-
ter, but I could have, and it would have placed some other page in the menu area.

In short, you can place any page in the menu area by assigning its URL to the
menu parameter; you can assign any page to the item area by assigning its value
to the content parameter. Any page you want displayed using the CMS must be

284

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

called through a link to the CMS program, which pastes together all the other
pages. You can place any HTML into any of the segments, but your menu usually
goes in the menu area and is usually written only with links running back
through the CMS.

You can create a reasonably sophisticated multilevel CMS with only this very
basic program by experimenting with different menus, CSS styles, and banners.

You might wonder why I didn’t show you the source code for the CMS top and con-
tent areas. There’s nothing at all unusual about these pages, so I didn’t think it was
necessary. Generally, you write the top to be banner-like (very simple, designed to
cover the entire width of the page, but just a short height). The pages you want to
display in a CMS don’t need header areas, titles, or page-level CSS definitions,
because many are ignored in this multipage document. The CMS dictates these
meanings for the entire composite page.

Improving the CMS with XML

Although the simpleCMS presented earlier is extremely powerful, it is limited to
only two parameters. It would be great if you could control even more informa-
tion on every pass through the CMS. It also would be nice to determine the page
title, CSS style, top area, menu page, and body on every pass through the system.
However, the GET method approach used in simpleCMS quickly becomes cumber-
some when you’re sending more than one or two parameters.

The GET method allows limited amounts of data to be passed. The URLS get
tedious when you have that much information to send. Most CMSs use an alter-
native method of storing the information about intended page values. A lot of
CMSs (like PHP-Nuke) use the full power of relational databases. This is a wonder-
ful way to go, but it can be somewhat involved for a basic demonstration. There
is a more-powerful alternative than basic parameter passing, although it’s not
quite as intimidating as a relational data structure.

Introducing XML

eXtensible Markup Language, or XML, has become a major topic of conversation
in the software industry in the last few years. It isn’t just a language, but a flex-
ible and sensible alternative for manipulating data. It’s really a language for
describing languages.

XML feels a lot like HTML (because they’re related) but it’s quite a bit more flexi-
ble. In a nutshell, XML allows you to use HTML-style syntax to describe anything.

TRICK

285

C
h

a
p

te
r

8
X

M
L

a
n

d
C

o
n

t e
n

t
M

a
n

a
g

e
m

e
n

t
S

y
s

te
m

s

For example, if you want to talk about pets, you could use the following code:

<?xml version=”1.0” encoding=”utf-8” ?>

<pets>

<cat>

<name>Lucy</name>

<color>tabby</color>

<breed>shorthair</breed>

</cat>

<dog name = “Muchacha”

color = “brown”

breed = “mutt” />

</pets>

As you look at this fragment of (entirely fictional) XML code, you see an unmis-
takable resemblance to HTML. XML uses many conventions that are familiar to
HTML developers, including nested and closing tags and attributes. The most sig-
nificant difference is the tags themselves. HTML tags are specifically about Web
page markup, but XML tags can describe anything. As long as you have (or can
write) a program to interpret the XML code, you can use HTML-like code to
describe the information.

Working with XML

XML has a number of data-management tool advantages. XML files can be stored
and manipulated as string data and ordinary text files. This makes it easy to
duplicate data and move it around the Internet. XML data is somewhat self-
documenting. You can look at XML data in a text editor and have a good idea
what it means. This would be impossible if the data were stored in a database
table or proprietary format. Most languages have features that allow you to eas-
ily extract data from an XML document even if you don’t know exactly how the
document is formatted.

Understanding XML Rules

XML is very similar to HTML, but it is not quite as forgiving on syntax. Remember
these rules when creating an XML document:

• XML is case sensitive. Most tags use lowercase or camelCase (just like PHP).
<pet> and <PET> are two different tags.

286

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

• All attributes must be encased in quotation marks. In HTML, quotation
marks are always optional. In XML, almost all attribute values should
be quoted. For example, <dog name = muchacha> is not legal in XML.
The appropriate expression is <dog name = “muchacha”>.

• All tags require an ending tag. HTML is pretty forgiving about whether
you include ending tags. XML is much more strict. Every tag must have
an ending tag or indicate with a trailing slash that it doesn’t have an end.
In the earlier example, <cat> has an ending </cat> tag. I defined dog to
encase all its data in attributes rather than subtags, so it doesn’t have an
explicit ending tag. Notice how the dog tag ends with a slash (/>) to indi-
cate it has no end tag.

Examining main.xml

The second CMS system in this chapter uses XML files to store page information.
To see why this could be useful, take a look at the XML file that describes my
main page in the new XML-based content management system (XCMS):

<?xml version=”1.0” encoding=”utf-8”?>

<cpage>

<title>Andy’s main Page</title>

<css>menuLeft.css</css>

<top>top.html</top>

<menu>menuX.html</menu>

<content>http://www.cs.iupui.edu/~aharris/default</content>

</cpage>

The entire document is stored in a <cpage></cpage> element. cpage represents a
CMS page. Inside the page are five parameters. Each page has a title as well as
URLs to a CSS style, top page, menu page, and content page. The XML succinctly
describes all the data necessary to build a page in my CMS. I build such an XML
page for every page I want displayed in my system. It is actually pretty easy
because most of the pages are the same except for the content.

It would be even easier in a real-world application, because I would probably
build an editor to create the XML pages automatically. That way the user would
never have to know he was building XML. Sounds like another great end-of-chapter
project!

TRICK

287

C
h

a
p

te
r

8
X

M
L

a
n

d
C

o
n

t e
n

t
M

a
n

a
g

e
m

e
n

t
S

y
s

te
m

s

Simplifying the Menu Pages

The menu page isn’t as complicated when all the data is stored in the XML pages.
Each call to the system requires only one parameter: the name of the XML file
containing all the layout instructions. Here’s the menu page after changing it to
work with the XML files:

<h3>Main Menu</h3>

<!— menu page modified for XML version of CMS —>

main

classes

links

software

media

This menu calls the XML version of the CMS code (XCMS.php) and sends to it the
XML filename that describes each page to be created. Of course, you must exam-
ine how the XML data is manipulated in that program. Start, though, with a sim-
pler program that looks at XML data.

Introducing XML Parsers

A program that reads and interprets XML data is usually called an XML parser.
PHP 5 actually ships with three different XML parsers. I focus on the one that’s
easiest to use. It’s called the simpleXML API and comes standard with PHP 5. An
API is an application programming interface—an extension that adds function-
ality to a language.

288

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

289

C
h

a
p

te
r

8
X

M
L

a
n

d
C

o
n

t e
n

t
M

a
n

a
g

e
m

e
n

t
S

y
s

te
m

s

If you’re using another version of PHP, you can either try loading the simpleXML
API as an add-on or work with another XML parser. The DOM (Document Object
Model) parser, if it’s enabled, works much like simpleXML. Older versions of PHP
include a parser based on SAX (Simple API for XML). This is also relatively easy
to use, but uses a completely different model for file manipulation. Still, with care-
ful reading of the online Help, you can figure it out: The concepts remain the same.
If you can use simpleXML, it’s a great place to start, because it’s a very easy entry
into the world of XML programming.

Working with Simple XML

The simpleXML model is well named, because it’s remarkably simple to use once
you understand how it sees data. XML data can be thought of as a hierarchy tree
(much like the directory structure on your hard drive). Each element (except the
root) has exactly one parent, and each element has the capacity to have a num-
ber of children. The simpleXML model treats the entire XML document as a special
object called an XML node. Table 8.1 illustrates the main methods of the
simplexml_element object.

These various elements manipulate an XML file to maneuver the various file
elements.

Working with the simpleXML API

Take a look at the XMLDemo program featured in Figure 8.8, which illustrates the
simpleXML API.

The HTML output isn’t remarkable, but the source code that generates the page
is interesting in a number of ways.

TRAP

Method Returns

->asXML() An XML string containing the contents of the node

->attributes() An associative array of the node’s attributes

->children() An array of simplexml_element nodes

->xpath() An array of simplexml_elements addressed by the path

TABLE 8.1 METHODS OF THE SIMPLEXML OBJECT

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>

<html>

<head>

<title>XML Demo</title>

</head>

<body>

<h1>XML Demo</h1>

<?

//load up main.xml and examine it

$xml = simplexml_load_file(“main.xml”);

print “<h3>original XML</h3> \n”;

$xmlText = $xml->asXML();

$xmlText = htmlentities($xmlText);

print “<pre>$xmlText</pre> \n”;

print “<h3>extract a named element</h3> \n”;

print $xml->title;

print “
”;

290

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 8.8

This program
analyzes an XML

data file from
my content

management
system.

print “<h3>Extract as an array</h3> \n”;

foreach ($xml->children() as $name => $value){

print “$name: $value
 \n”;

} // end foreach

?>

</body>

</html>

Creating a simpleXML Object

The first significant line of code uses the simplexml_load_file() command to
load an XML document into memory. This command loads a document and cre-
ates an instance of the simpleXML object. All your other work with simpleXML
involves using the simpleXML object’s methods.

You can also create an XML object from a string using simplexml_load_string().
This might be useful if you want to build an XML file from within your code.

The XML object is stored in the aptly named $xml variable. I can then extract data
easily from XML.

Viewing the XML Code

It might be useful to look at the actual XML code as you explore the code, so I
reproduced it on the page. simpleXML does not keep the data in its plain text for-
mat, but converts it into a special data structure so it is easier to use. If you do
want to see it as text-based XML, you can use the asXML() method to produce the
XML code used to show part of the document. Note that you can use asXML() on
the entire XML object or on specific subsets of it. This can be handy when you
need to debug XML code. XML code does not display well in an HTML page, so
I used PHP’s built-in htmlentities() function to convert all HTML/XML characters
to their appropriate HTML entity tags, then displayed the entire XML document
inside a <pre></pre> set.

Accessing XML Nodes Directly

If you know the names of various tags in your document, you can access elements
directly. For example, the following line pulls the title element from the main page:

print $xml->title;

TRICK

291

C
h

a
p

te
r

8
X

M
L

a
n

d
C

o
n

t e
n

t
M

a
n

a
g

e
m

e
n

t
S

y
s

te
m

s

Note that the top-level tag set in my document (<cpage></cpage>) is automatically
copied over to the $xml variable. Since title is a cpage subtag, the value of title is
returned.

The node of an XML element can be seen as a string or an object. This can cause
confusion, because PHP won’t always treat a value extracted from XML exactly
like you expect.

The title element is actually not a string variable, but another simpleXML
object. You can use all the simpleXML methods on this object just as you do the
main one. In this case, I simply wanted to print the text associated with title.
simpleXML usually (but not always) correctly converts simpleXML elements
to strings. In some cases (particularly when you want to use the results of a
simpleXML query as part of an assignment or condition) you may need to force
PHP to treat the element as string data.

For example, the following condition does not work as expected:

if ($xml->title == “main”){

It won’t work because main is a string value and $xml->title is an object. They
may appear to human readers to have the same value, but since they have differ-
ent internal representations, PHP won’t always recognize them as the same thing
without minor coercion. You can use a technique called type casting to resolve
this problem.

if ((string)$xml->title == “main”){

This version of the code forces the value from $xml->title into a string repre-
sentation so it can be compared correctly.

Using a foreach Loop on a Node

Much of the time you work with XML through various looping structures. Since
XML code consists of name-value structures, it won’t surprise you to find asso-
ciative arrays especially helpful. The following code steps through a simple XML
file and extracts the name and value of every tag evident from the top layer.

print “<h3>Extract as an array</h3> \n”;

foreach ($xml->children() as $name => $value){

print “$name: $value
 \n”;

} // end foreach

The reference to $xml->children() is a call to the $xml simpleXML object’s children()
method. This method returns an array of all the nodes belonging to $xml. Each of
the elements in the array is a new simpleXML object with all the same methods
as $xml. Since the children() method returns an array of values, I can use the
foreach loop to conveniently step through each element of the array. Using

TRAP

292

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

the foreach loop’s associative variant (described in chapter 5, “Better Arrays and
String Handling”) allows access to the document’s name/value pairs.

Each time through the loop, the current tag is stored in $name and its associated
value is stored in $value. This allows me to rapidly print all the data in the XML
element according to whatever format I wish.

Manipulating More-Complex XML
with the simpleXML API

The features demonstrated in the XMLdemo are enough for working with the
extremely simple XML variant used in the XCMS system, but you will want to
work with more-complex XML files with multiple tags. As an example, consider
the following code, which could be used in an XML-enabled form of the quiz pro-
gram featured in chapter 6, “Working with Files.”

<?xml version=”1.0” encoding=”utf-8”?>

<test>

<problem type=”mc”>

<question>What is your name?</question>

<answerA>Roger the Shrubber</answerA>

<answerB>Galahad the pure</answerB>

<answerC>Arthur, King of the Britons</answerC>

<answerD>Brave Sir Robin</answerD>

<correct>C</correct>

</problem>

<problem type=”mc”>

<question>What is your quest?</question>

<answerA>I seek the holy grail</answerA>

<answerB>I’m looking for a swallow</answerB>

<answerC>I’m pining for the Fjords</answerC>

<answerD>I want to be a lumberjack!</answerD>

<correct>A</correct>

</problem>

<problem type=”mc”>

<question>What is your favorite color?</question>

<answerA>Red</answerA>

<answerB>Green</answerB>

<answerC>Orange</answerC>

<answerD>Yellow. No, Blue!</answerD>

<correct>D</correct>

293

C
h

a
p

te
r

8
X

M
L

a
n

d
C

o
n

t e
n

t
M

a
n

a
g

e
m

e
n

t
S

y
s

te
m

s

</problem>

<problem type=”mc”>

<question>What is your command?</question>

<answerA>I’m not to leave the room until you come and get him</answerA>

<answerB>I’m going with you</answerB>

<answerC>I’m not to let him enter the room</answerC>

<answerD>It seems daft to be guarding a guard!</answerD>

<correct>A</correct>

</problem>

</test>

This code is a little more typical of most XML data because it has multiple levels
of encoding. The entire document can be seen as an array of problem nodes, and
each problem node can be viewed as a set of answers and the correct answer. The
simpleXML API can handle these more-complex documents with ease, as shown in
Figure 8.9.

When the XML code is a little more complex, you may need to carefully examine
the raw XML code to best interpret it. Once I recognized that the document is
essentially an array of problems, the XML interpretation became relatively easy:

<!doctype html public “-//W3C//DTD HTML 4.0 //EN”>

<html>

<head>

294

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 8.9

The
quizreader.php
program reads an

XML file and
formats it in HTML.

<title>Quiz Reader</title>

</head>

<body>

<?

//quiz reader

//demonstrates working with more complex XML files

//load up a quiz file

$xml = simplexml_load_file(“python.xml”);

//step through quiz as associative array

foreach ($xml->children() as $problem){

//print each question as an ordered list.

print <<<HERE

<h3>$problem->question</h3>

<ol type = “A”>

$problem->answerA

$problem->answerB

$problem->answerC

$problem->answerD

HERE;

} // end foreach

//directly accessing a node:

print $xml->problem[0]->question;

?>

</body>

</html>

This procedure can be done in a number of steps:

1. Load the quiz as XML data.

2. Use a foreach loop to examine each element of the xml’s children() array
as an individual problem. In this example, the $problem variable doesn’t
contain simple string data, but another node with its own elements.

3. Inside the loop, use tag references to indicate the elements of the problem
you wish to display. (Note that I chose not to display each question’s answer,
but I could have if I wished.)

295

C
h

a
p

te
r

8
X

M
L

a
n

d
C

o
n

t e
n

t
M

a
n

a
g

e
m

e
n

t
S

y
s

te
m

s

296

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

If you want to display a particular element’s value, do so using array-style syntax.
This line refers to problem number 0:

print $xml->problem[0]->question;

It then looks for a subelement of a problem called question and displays that
value. If you are working with an extremely complicated XML document, you can
use structures like this to map directly to a particular element. Essentially, the
simpleXML system lets you think of an XML document as a set of nested arrays. This
allows you access to a potentially complex document in whatever detail you wish.

Returning to XCMS

With all this XML knowledge, you’re ready to refit the CMS introduced earlier in
this chapter with an XML structure. My basic plan for the XCMS is to allow more
parameters for each page. The original CMS (without XML) allows two parameters.
The parameters are added directly to URLs with the post method. This quickly
becomes unwieldy. By switching to an XML format, I can place all the parameters

IN THE REAL WORLD

You might want to use XML data in these main instances:

• You want a better organizational scheme for your information but don’t want

to deal with a formal database system. In this case you can create your own

XML language and build programs that work with the data. This is the use

of XML described in this chapter.

• You have XML data formatted in a predefined XML structure that you want

to manipulate. There are XML standards published for describing everything

from virtual reality scenes and molecular models to multimedia slideshows.

You can use the features of simpleXML (or one of PHP’s other XML parsers) to

manipulate this existing data and create your own program for interpreting

it. Of course, HTML is rapidly becoming a subset of XML (in fact, the XHTML

standard is simply HTML following stricter XML standards), so you can use

XML tricks to load and manage an HTML file. This might be useful for extract-

ing a Web page’s links or examining a Web page’s images.

• You need a stand-in for relational data. Most database management systems

allow you import and export data in XML format. XML can be a terrific way

to send complex data, such as database query results or complete data

tables, to remote programs. Often programmers write client-side code in a

language such as JavaScript or Flash and use a server-side program to send

query results to the client as XML data.

necessary for displaying a page into an XML document, then have my CMS pro-
gram extract that data from the document.

Extracting Data from the XML File

The XCMS program relies on repeated calls to the same program to generate the page
data. The XCMS program is much like simpleCMS except—rather than pulling para-
meters directly from the URL—XCMS takes an XML filename as its single parameter
and extracts all the necessary information from that file.

<?

//XCMS

//XML-Based Simple CMS system

//Andy Harris for PHP/MySQL Adv. Beg 2nd Ed.

// NOTE: Requires simpleXML extensions in PHP 5.0!

//get an XML file or load a default

if (empty($theXML)){

$theXML = “main.xml”;

} // end if

//Open up XML file

$xml = simplexml_load_file($theXML);

if (!$xml){

print (“there was a problem opening the XML”);

} else {

include ($xml->css);

include($xml->top);

print “ \n”;

include ($xml->menu);

print “ \n”;

print “ \n”;

include ($xml->content);

print “ \n”;

} // end if

?>

297

C
h

a
p

te
r

8
X

M
L

a
n

d
C

o
n

t e
n

t
M

a
n

a
g

e
m

e
n

t
S

y
s

te
m

s

298

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

The first step is determining if an XML file has been sent through the $theXML
parameter. If not, a default value of main.xml is defined. This, of course, presumes
that a copy of main.xml is available and properly formatted. If the program is
called with some other XML file as its parameter, that file is interpreted again.

I then attempt to open the XML file. If the simplexml_load_file command is
unsuccessful, it returns the value FALSE. The program reports this failure if it
occurs. If it does not fail, the program creates a page based on the parameters
indicated in this file. I expect a page with five parameters (top, css, title, menu,
and content), but I could easily modify the program to accept as many parame-
ters as you wish. I ignored the title parameter in this particular program version
because I have the page title already stored in top.html.

The program includes all the files indicated in the XML code, incorporating them
in CSS styles when appropriate.

Summary

Content management systems can help automate your Web site’s creation. CMS
tools allow you to build powerful multipart Web documents, combining pages
with a single style and layout. You learned how to install and customize the pop-
ular PHP-Nuke CMS. You also learned how to build a very basic CMS of your own
using GET parameters to customize your page. You learned about XML and how to
use the simpleXML tools to parse any XML files you encounter. Finally, you learned
how to combine your newfound XML skills with CMS to build an XML-aware CMS.

CHALLENGES

1. Install and configure PHP-Nuke or another CMS on your system.

2. Create a custom theme by analyzing and modifying an existing theme.

3. Modify simpleCMS with your own layout, images, and banner files.

4. Create an editor that allows the user to build XML pages for XCMS.

5. Write an XCMS module that allows authorized users to add new content

(a news or guest book, for example).

W
hen you begin programming in PHP, you start with very simple variables.

Soon you learned how to do more interesting things with arrays and asso-

ciative arrays. You added the power of files to gain tremendous new skills.

Now you learn how relational databases can be used to manage data. In this chapter

you discover how to build a basic database and how to hook it up to your PHP

programs. Specifically, you learn:

• How to start the MySQL executable

• How to build basic databases

• The essential data definition SQL statements

• How to return a basic SQL query

• How to use phpMyAdmin to manage your databases

• How to incorporate databases into PHP programs

Using MySQL
to Create

Databases

9
C H A P T E R

Introducing the Adventure
Generator Program

Databases are a serious tool but they can be fun, too. The program shown in Fig-
ures 9.1 through 9.4 shows how a database can be used to fuel an adventure game
generator. The adventure generator is a system that allows users to create and
play simple multiple-choice adventures. This style of game consists of several
nodes. Each node describes some sort of decision. In each case, the user can
choose from up to three options. The user’s choice leads to a new decision. If the
user makes a sequence of correct choices, he wins the game.

This program is interesting as a game, but the really exciting part is how the user
can modify this game. A user can use the same system to create and modify
adventures. Figure 9.3 shows the data behind the Enigma game. Note that you
can edit any node by clicking the appropriate button from this screen.

If the user chooses to edit a segment, the page shown in Figure 9.4 appears.

300

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 9.1

The user can
choose an option.
I’m hopping onto

that sub...

As you can see, the data structure is the most important element of this game.
You already know some ways to work with data, but this chapter introduces the
notion of relational database management systems (RDBMS). An RDBMS is a sys-
tem that helps programmers work with data. The adventure generator program
uses a database to store and manipulate all the data.

301

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

FIGURE 9.2

Maybe the
warehouse would
have been a better

choice after all.

FIGURE 9.3

This page provides
information about
each segment in

the game, including
links to directly edit

each segment.

Using a Database Management System

Data is such an important part of modern programming that entire program-
ming languages are devoted to manipulating databases. The primary standard
for database languages is Structured Query Language (SQL). SQL is a standardized
language for creating databases, storing information in databases, and retrieving
information from databases. Special applications and programming environ-
ments specialize in interpreting SQL data and acting on it.

Often a programmer begins by creating a data structure in SQL, and then writes
a program in some other language (such as PHP) to allow access to that data. The
PHP program can then formulate data requests or updates, which are passed on
to the SQL interpreter. This approach has a couple of advantages:

• Once you learn SQL, you can apply it easily to a new programming
language.

• You can easily add multiple interfaces to an existing data set because
many programming languages have ways to access an SQL interpreter.
Many relational database management systems are available, but the
MySQL environment is especially well suited to working with PHP.

302

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 9.4

From this screen it
is possible to

change everything
about a node. All

the nodes that have
been created so far

are available as
new locations.

The basic concepts of SQL remain the same no matter what type of database you
are working on. Most of the SQL commands described in this chapter work with-
out modification in Microsoft Access, Microsoft SQL Server, and Oracle, as well
as a number of other RDBMS packages.

I begin this chapter by explaining how to create a simple database in MySQL. You
can work with this package a number of ways, but start by writing a script that
builds a database in a text file. I use the SQL language, which is different in syn-
tax and style from PHP. I show you how to use some visual tools to help work with
databases and how to use the SQLite data library built into PHP 5. In chapter 10,
“Connecting to Databases within PHP,” I show you how to contact and manipu-
late your MySQL database from within PHP.

Working with MySQL

There are a number of RDBMS packages available. These programs vary in power,
flexibility, and price. However, they all work in essentially the same way. Most
examples in this book use the MySQL database.

• It is a very powerful program in its own right. It handles a large subset of
the functionality of the most expensive and powerful database packages.

• It uses a standard form of the well-known SQL data language.

• It is released under an open-source license.

• It works on many operating systems and with many languages.

• It works very quickly and works well even with large data sets.

• PHP ships with a number of functions designed to support MySQL
databases.

Installing MySQL

If PHP is already on your Web server, chances are that MySQL is there as well.
Many installation packages install both MySQL and PHP on your system. If you do
not control the Web server directly, you might need to convince your server
administrator to install MySQL. A version of the MySQL binary is available on the
CD that accompanies this book.

HINT

303

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

304

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Earlier versions of PHP had built-in MySQL support. The beta version of PHP 5 that
I used for this book requires some minor configuration before it will use the
MySQL functions. Run the phpInfo() command you learned in chapter 1,
“Exploring the PHP Environment,” to see how your server is configured. If
phpInfo() does not indicate support for MySQL, modify your PHP.INI file. Add or
uncomment the following line in the Dynamic Extensions section of PHP.INI to
enable MySQL support if it is not currently turned on:

extension=php_mysql.dll

If you cannot get MySQL running on your server, use the new SQLite extensions
built into PHP 5. Appendix B (on this book’s CD) describes how to use SQLite,
which is another database program installed as the default. The two packages
have some differences, but the main ideas remain the same. If you end up using
SQLite, read this chapter to get the main ideas and then read appendix B to see
how SQLite is different from MySQL. I included SQLite versions of every database
in the book on the CD for your reference.

Using the MySQL Executable

MySQL is actually a number of programs. It has a server component that is always
running, as well as a number of utility programs. The MySQL command line con-
sole shown in Figure 9.5 is a basic program run from the command line. It isn’t
a very pretty program, but it provides powerful access to the database engine.

TRAP

FIGURE 9.5

The MySQL
program connects

to a database.

You can use MySQL a number of ways, but the basic procedure involves connect-
ing to a MySQL server, choosing a database, and then using the SQL language to
control the database by creating tables, viewing data, and so on.

The MySQL.exe console shipped with MySQL is the most basic way to work with
the MySQL database. Although it won’t win any user interface awards, the pro-
gram offers low-level access to the database. This interface is important to learn,
however, because it is very much like the way your programs will interface with
the database system.

If you’re running your own Web server, you must run the MySQL server before you
can run the client. Under Windows, run the WinMySQLAdmin tool to start
the MySQL server. This automatically starts the MySQL server and sets up your
system so that MySQL is run as a service when your computer is booted (much like
Apache). Turn off the MySQL server in the Control Panel’s Services section or with
the MySQL tool menu that appears in the system tray.

Creating a Database

Databases are described by a very specific organization scheme. To illustrate data-
base concepts, I create and view a simple phone list. The phone list’s basic struc-
ture is in Table 9.1.

The phone list shows a very typical data table. Database people like to give special
names to the parts of the database.

• Each row of the table is called a record. Records describe discrete
(individually defined) entities.

• The list of records is called a table.

• Each record in a table has the same elements, which are called fields
or columns.

Every record in the table has the same field definitions, but records can have dif-
ferent values in the fields. The fields in a table are defined in specific ways.

TRAP

305

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

id firstName lastName e-mail phone

0 Andy Harris aharris@cs.iupui.edu 123-4567

1 Joe Slow jslow@myPlace.net 987-6543

TABLE 9.1 PHONE LIST SUMMARY

306

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Because of the way database tables are stored in files, the computer must always
know how much room to allocate for each field. Therefore, each field’s size and
type is important. This particular database is defined with five fields. The id field
is an integer. All the other fields contain string (text) data.

Creating a Table

Of course, to use a database system, you need to learn how to build a table.

RDBMS programs use a language called SQL to create and manipulate databases.
SQL is pretty easy to understand, compared to full-blown programming lan-
guages. You can usually guess what’s going on even without a lot of knowledge.
As an example, look at the following SQL code:

USE chapter9;

CREATE TABLE phoneList (

id INT PRIMARY KEY,

firstName VARCHAR(15),

lastName VARCHAR (15),

email VARCHAR(20),

phone VARCHAR(15)

);

DESCRIBE phoneList;

This code is an SQL script. It’s like a PHP program in that it is a set of instructions
for the computer. However, the PHP interpreter doesn’t directly interact with the
SQL language. Instead, these commands are sent to another program. As a PHP
programmer, you will write code that sends commands to a database language.
Just as your PHP code often writes code in HTML format for the browser to inter-
pret, you’ll write SQL code for the MySQL interpreter to use.

When this code is sent to an SQL-compliant database program (such as MySQL),
it creates the database structure shown in Table 9.1.

Using a Database

You may have several database projects working in the same relational database
system. In my case, each chapter has its own database. Sometimes your system
administrator will assign a database to you. In any case, you will probably need
to invoke that database with the USE command.

SQL syntax is not exactly like that of PHP. SQL has a different culture, and it makes
sense to respect the way SQL code has historically been written. SQL is generally
not case-sensitive, but most SQL coders put all SQL commands in all uppercase
letters. Also, you usually end each line with a semicolon when a bunch of SQL
commands are placed in a file (as this code is).

If you don’t already have a database to USE, you can make one with the CREATE
command. For example, use these commands to create a database called
myStuff:

CREATE DATABASE myStuff;

USE myStuff;

Creating a Table

To create a table, you must indicate the table name as well as each field. For each
field, list what type of data is held in the field, and (for text data) the field’s char-
acters length. As an example, the following code creates the phoneList table:

TRICK

TRICK

307

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

SQL ADVANTAGES

Databases have been an important part of programming since the beginning,

but the process of working with data has evolved. The advent of a common lan-

guage that can be used in many applications was a very important step. SQL is a

fourth-generation language. In general, these languages are designed to solve

a particular type of problem. Some fourth-generation languages (like SQL)

aren’t full-blown programming languages, because they don’t support data

structures like branches and loops.

Still, these languages can serve a purpose. SQL is handy because it’s widely

supported. The SQL commands you learn in this chapter apply to most modern

database programs with little to no modification. You can take the script in

MySQL and send the same code to an Oracle or MS SQL Server database (two

other very common choices), and all three data programs build the same data-

base. If you upgrade to a more powerful data package, you can use your existing

scripts to manipulate the data. If you’re working with SQLite, your SQL com-

mands will be almost identical to the commands used in MySQL.

Programming in traditional languages is perhaps the most powerful reason

to have a scripting language with which to control databases. You can write a

program in any language (like PHP, for example) that generates SQL code. You

can then use that code to manipulate the database. This allows you to have

complete flexibility, and lets your program act as the database interface.

CREATE TABLE phoneList (

id INT PRIMARY KEY,

firstName VARCHAR(15),

lastName VARCHAR (15),

email VARCHAR(20),

phone VARCHAR(15)

);

You can think of fields as being much like variables, but while PHP is easy-going
about what type of data is in a variable, SQL is very picky about the type of data
in fields. In order to create an efficient database, MySQL needs to know exactly
how many bytes of memory to set aside for every single field in the database. It
does this primarily by requiring the database designer to specify the type and
size of every field in each table. Table 9.2 lists a few of the primary data types sup-
ported by MySQL.

While the data types listed in Table 9.2 are by far the most commonly used, MySQL
supports many others. Look in the online Help that ships with MySQL if you need a
more specific data type. Other databases have a very similar list of data types.

You might notice that it is unnecessary to specify the length of numeric types
(although you can determine a maximum size for numeric types as well as the
number of digits you want stored in float and double fields). The storage require-
ments for numeric fields are based on the field type itself.

TRICK

308

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Data Type Description

INT Standard integer +/– 2 billion (roughly)

BIGINT Big integer +/– 9 x 10 ^18th

FLOAT Floating-point decimal number 38 digits

DOUBLE Double-precision floating-point 308 digits

CHAR(n) Text with n digits; if actual value is less than n, field is padded with trailing
spaces

VARCHAR(n) Text with n digits; trailing spaces are automatically culled

DATE Date in YYYY-MM-DD format

TIME Time in HH:MM:SS format

YEAR Year in YYYY format

TABLE 9.2 COMMON DATA TYPES IN MYSQL

Working with String Data in MySQL

Text values are usually stored in VARCHAR fields. These fields must include the
number of characters allocated for the field. Both CHAR and VARCHAR fields have
fixed lengths. The primary difference between them is what happens when the
field contains a value shorter than the specified length.

Assume you declared a CHAR field to have a length of 10 with the following SQL
segment:

firstName VARCHAR(10);

Later you store the value ‘Andy’ into the field. The field actually contains
‘Andy ’. (That is, Andy followed by six spaces.) CHAR fields pad any remaining
characters with spaces. The VARCHAR field type removes any padded spaces. The
VARCHAR field type is the one you use most often to store string data.

Finishing the CREATE TABLE Statement

Once you understand field data types, the CREATE TABLE syntax makes a lot of
sense. Only a few more details to understand:

• Use a pair of parentheses to indicate the field list once you specify CREATE
TABLE.

309

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

DETERMINING THE LENGTH OF A VARCHAR FIELD

Data design is both a science and an art. Determining the appropriate length for

your text fields is one of the oldest problems in data.

If you don’t allocate enough room for your text data, you can cause a lot of prob-

lems for your users. I once taught a course called CLT SD WEB PRG because the

database that held the course names didn’t have enough room for the actual

course name (Client-Side Web Programming). My students renamed it the Buy

a Vowel course.

However, you can’t make every text field a thousand characters long, either,

because it would waste system resources. If you have a field that will usually con-

tain only five characters and you allocate one hundred characters, the drive still

requires room for the extra 95 characters. If your database has thousands of

entries, this can be a substantial cost in drive space. In a distributed environment,

you have to wait for those unnecessary spaces to come across limited bandwidth.

It takes experimentation and practice to determine the appropriate width for

your string fields. Test your application with real users so you can be sure

you’ve made the right decision.

• Name each field and follow it with its type (and length, if it’s a CHAR or
VARCHAR).

• Separate the fields with commas.

• Put each field on its own line and indent the field definitions. You don’t
have to, but I prefer to, because these practices make the code much easier
to read and debug.

Creating a Primary Key

You might be curious about the very first field in the phone list database. Just to
refresh your memory, the line that defines that field looks like this:

id INT PRIMARY KEY,

Most database tables have some sort of field that holds a numeric value. This spe-
cial field is called the primary key.

You can enter the code presented so far directly into the MySQL program. You can
see the code and its results in Figure 9.6.

Using the DESCRIBE Command to Check a Table’s Structure

Checking the structure of a table can be helpful, especially if somebody else cre-
ated it or you don’t remember exactly its field types or sizes. The DESCRIBE com-
mand lets you view a table structure.

310

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

IN THE REAL WORLD

A simple database could theoretically go without a primary key, but such fields

are so important to more sophisticated databases that you might as well start

putting them in. It’s traditional to put a primary key in every table.

In chapter 11, “Data Normalization,” you learn more about the relational data

model. In that discussion you learn how keys build powerful databases and

more about creating proper primary keys. In fact, the adventure program you’ve

already seen heavily relies on a key field even though there’s only one table in

the database.

Inserting Values

Once you’ve created a table, you can begin adding data to it. The INSERT com-
mand is the primary tool for adding records.

INSERT INTO phoneList

VALUES (

0, ‘Andy’, ‘Harris’, ‘aharris@cs.iupui.edu’, ‘123-4567’

);

The INSERT statement allows you to add a record into a database. The values must
be listed in exactly the same order the fields were defined. Each value is sepa-
rated by a comma, and all VARCHAR and CHAR values must be enclosed in single quo-
tation marks.

If you have a large amount of data to load, you can use the LOAD DATA command.
This command accepts a tab-delimited text file with one row per record and
fields separated by tabs. It then loads that entire file into the database. This is
often the fastest way to load a database with test data. The following line loads
data from a file called addresses.txt into the phoneList table:

LOAD DATA LOCAL INFILE “addresses.txt” INTO TABLE phoneList;

Figure 9.7 shows the MySQL tool after I have added one record to the table.

311

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

FIGURE 9.6

This is the MySQL
command-line tool
after I created the
phoneList table.

Selecting Results

Of course, you want to see the results of all your table-building activities. If you
want to see the data in a table, you can use the SELECT command. This is perhaps
the most powerful command in SQL, but its basic use is quite simple. Use this
command to see all of the data in the phoneList table:

SELECT * FROM phoneList

This command grabs all fields of all records of the phoneList database and dis-
plays them in table format.

Figure 9.8 shows what happens after I add a SELECT statement to get the results.

312

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r IN THE REAL WORLD

As you are building a database, populate the database with test values. Don’t

use actual data at this point, because your database will not work correctly until

you’ve messed with it for some time. However, your test values should be

reflective of the kinds of data your database will house. This helps you spot cer-

tain problems like fields that are too small or missing.

FIGURE 9.7

MySQL tells you the
operation

succeeded, but you
don’t get a lot more

information.

Writing a Script to Build a Table

It is very important to understand how to create tables by hand in SQL, because
your programs have to do this same work. However, it’s very tedious to write your
SQL code in the MySQL window directly. When you create real data applications,
you often have to build and rebuild your data tables several times before you are
satisfied with them, and this would be awkward in the command-line interface.
Also, as you are writing programs that work with your database, you will likely
make mistakes that corrupt the original data.

It’s good to have a script ready for easily rebuilding the database with test data.
Most programmers create a script of SQL commands with a text editor (use the
same editor in which you write your PHP code) and use the SOURCE command to
load that code. Here is an SQL script for creating the phoneList database:

build phone list

for mySQL

USE chapter9;

DROP TABLE IF EXISTS phoneList;

CREATE TABLE phoneList (

id INT PRIMARY KEY,

firstName VARCHAR(15),

lastName VARCHAR (15),

313

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

FIGURE 9.8

The result of the
SELECT statement
is a table, just like
the original plan.

email VARCHAR(20),

phone VARCHAR(15)

);

INSERT INTO phoneList

VALUES (

0, ‘Andy’, ‘Harris’, ‘aharris@cs.iupui.edu’, ‘123-4567’

);

SELECT * FROM phoneList;

This code isn’t exactly like what I used in the interactive session, because the new
code shows a few more features that are especially handy when you create SQL
code in a script.

Creating Comments in SQL

SQL is actually a language. Although it isn’t technically a programming lan-
guage, it has many of the same features. Like PHP and other languages, SQL sup-
ports several types of comment characters. The # sign is often used to signify a
comment in SQL. Comments are especially important when you save a group of
SQL commands in a file for later reuse. These comments can help you remember
what type of database you were trying to build. It’s critical to put basic comments
in your scripts.

Dropping a Table

It may seem strange to talk about deleting a table from a database before you’ve
built one, but often (as in this case) a database is created using a script. Before
you create a new table, you should check to see if it already exists. If it does exist,
delete it with the DROP command. The following command does exactly that:

DROP TABLE IF EXISTS phoneList;

If the phoneList table currently exists, it is deleted to avoid confusion.

Running a Script with SOURCE

You can create an SQL script with any text editor. It is common to save SQL scripts
with the .sql extension. Inside MySQL, you can use the SOURCE command to load
and execute a script file. Figure 9.9 shows MySQL after I run the buildPhonelist.sql
script.

314

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

In Windows I often drag a file from a directory view into a command-line program
like MySQL. Windows copies the entire filename over, but it includes double quo-
tation marks, which causes problems for the MySQL interpreter. If you drag a
filename into MySQL, edit out the quotation marks.

Working with a Database
via phpMyAdmin

It’s critical to understand the SQL language, but sometimes you may want an
alternative way to build and view your databases. The command line is func-
tional, but it can be tedious to use. If you are running a Web server, you can use
an excellent front end called phpMyAdmin. This freeware program makes it
much easier to create, modify, and manipulate databases.

TRAP

315

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

FIGURE 9.9

The SOURCE
command allows

you to read in SQL
instructions
from a file.

IN THE REAL WORLD

The phpMyAdmin interface is so cool that you’ll be tempted to use it all the

time. That’s fine, but be sure you understand the underlying SQL code—your

PHP programs have to work with plain-text SQL commands. It’s fine to use a

front-end tool while building and manipulating your data, but your users won’t

use this program. Your application is the user’s interface to your database, so

you must be able to do all commands in plain text from within PHP. I use

phpMyAdmin, but I also make sure I always look at the code it produces so I can

write it myself.

316

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

phpMyAdmin basically adds the visual editing tools of a program like Microsoft
Access to the MySQL environment. It also adds some wonderful tools for adding
records, viewing your data structure, exporting data to useful formats, and
experimenting with data structures. The program is written in PHP, so install it
to your server’s HTML document path (usually htdocs if you’re using the Apache
server).

Some of the more advanced phpMyAdmin features—including the ability to
automate relationships and create PDF diagrams of your data structures—require
table installation and some other special configuration. If your server administrator
has not enabled these features, consult an excellent tutorial at http://www.
garvinhicking.de/tops/texte/mimetutorial.

Connecting to a Server

MySQL is a client/server application. The MySQL server usually runs on the Web
server where your PHP programs reside. You can connect a MySQL client such as
phpMyAdmin to any MySQL server. Figure 9.10 shows a connection to the local
MySQL connection.

It’s important to recognize that you can connect to any data server you have per-
mission to use. This data server doesn’t need to be on the same physical machine
you are using. This is useful if you want to use phpMyAdmin to view data on a

TRICK

FIGURE 9.10

The main
phpMyAdmin

screen lets you
choose a database
in the left frame or

perform
administrative tasks
in the main frame.

remote Web server you are maintaining, for example. However, many remote
Web servers are not configured to accept this kind of access, so you should know
how to work with the plain MySQL console.

The first time you run phpMyAdmin, it will probably ask for some login information.
This data is stored so you don’t have to remember it every time. However, if you
want to change your login or experiment with some other phpMyAdmin features,
edit the config.inc.php file installed in the main phpMyAdmin folder.

Creating and Modifying a Table

phpMyAdmin provides visual tools to help you create and modify your tables. The
phone list is way too mundane for my tastes, so I’ll build a new table to illustrate
phpMyAdmin features. This new table contains a number of randomly generated
super heroes. Select a table from the left frame and use the Create New Table sec-
tion of the resulting page to build a new table. Figure 9.11 shows the dialog box
used to create a table or alter its structure.

With phpMyAdmin you can choose variable types from a drop-down list; many
field properties are available as checkboxes. It’s critical that you choose a variable
type (and a field length in case of character fields). When you finish creating or
modifying the table, the proper SQL code is generated and executed for you.

TRICK

317

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

FIGURE 9.11

It’s easy to create a
table and modify its

structure with
phpMyAdmin.

318

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Check this site out sometime when you’re bored: http://home.hiwaay.net/~lkseitz/
comics/herogen/. Special thanks to Lee Seitz and his hysterical Super-Hero
generator.

Editing Table Data

You can use phpMyAdmin to browse your table in a format much like a spread-
sheet. Figure 9.12 illustrates this capability.

Follow these steps to edit a table in phpMyAdmin:

1. Select the table from the table list on the left side of the SQL screen. The
table appears in a spreadsheet-like format in the main part of the screen.
You can edit the contents of the table in this window.

2. Edit or delete a record by clicking the appropriate icon displayed near the
record.

3. Add a row by clicking the corresponding link near the bottom of the table.

4. Leave the cell you edited or press the Enter key. Any changes you make on
the table data are automatically converted into the appropriate SQL code.

TRICK

FIGURE 9.12

Use the Browse tab
to view table data.

Exporting a Table

Some of phpMyAdmin’s most interesting features involve exporting table infor-
mation. You can generate a number of data formats. The Export tab looks like the
page in Figure 9.13.

You might prefer to have your results saved in some sort of delimited format such
as those discussed in chapter 6, “Working with Files.” You can easily generate
such a format by choosing the Comma-Separated Value (CSV) option and select-
ing your delimiters. This is a good choice in these situations:

• You want your data to be readable by a spreadsheet.

• You are writing a program that can handle such a format but cannot
directly access databases.

The Excel CSV format configures the data so an Excel spreadsheet can read it eas-
ily. The ordinary CSV format allows you to modify your output with a number of
options. Figure 9.14 illustrates the CSV version of the hero data set.

Once you’ve created your data file, either save it using the appropriate link or
copy and paste it to a spreadsheet. Most spreadsheet programs can read various
forms of CSV data with minimal configuration. Figure 9.15 demonstrates the file
as seen by Microsoft Excel.

319

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

FIGURE 9.13

The Export Result
Set dialog box

allows you to save
table data in a

number of formats.

You can also set up an XML file to hold the data. As you recall from chapter 8,
“XML and Content Management Systems,” XML is much like HTML and describes
the information in a self-documenting form, as you can see in Figure 9.16.

320

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 9.14

You can print CSV
summaries of your

data results.

FIGURE 9.15

I set up the data
as a tab delimited

file and read it
into Excel.

You might use the XML feature to store a database as an XML file and then have a
program read that file using XML techniques. This is a good way to work with
a database even when the program can’t directly deal with the database server.

One last very useful export option: the SQL format. You can use this tool to auto-
matically generate an SQL script for creating and populating a table. The SQL
formatting utility is useful if you use the visual tools for creating and editing a
table, but then want to re-create the table through a script. The dialog box shown
in Figure 9.17 illustrates this tool’s various options.

You can specify whether the resulting script generates the table structure alone
or adds the data. You can also specify whether the resulting script contains code
to select a database, drop the specified table if it already exists, and the filename
of the resulting script. Figure 9.18 shows the code that might result from an SQL
export of the hero table.

The ability to automatically generate SQL scripts is incredibly powerful. It can be
a great timesaver and you can learn a lot by examining the scripts written with
such a feature. However, you are still the programmer and are responsible for code
in your projects—even if you didn’t write it directly. You must understand what the
generated code does. Most of the code so far is stuff I’ve already described, but
you may have to look up advanced features. As I’ve said: Know how to do this stuff
by hand.

TRAP

TRICK

321

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

FIGURE 9.16

The XML form of
the data generates
HTML-like tags to

describe the fields.

Creating More-Powerful Queries

So far, the tables you’ve created haven’t been any more powerful than HTML
tables and they’re a lot more trouble. The excitement of databases comes when
you use the information to solve problems. Ironically, the most important part of
database work isn’t usually getting the data, but filtering the data in order to
solve some sort of problem.

322

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 9.17

From this screen
you can generate

code that
manufactures
replicas of any

database created
or viewed with
phpMyAdmin.

FIGURE 9.18

This code can be
run on any MySQL
server to make a
copy of the hero

database.

You might want to get a listing of all heroes in your database whose last name
begins with an E, or perhaps somebody parked a Yak Dirigible in your parking
space and need to know who the driver is. You may also want your list sorted by
special power or list only vehicles. All these (admittedly contrived) examples
involve grabbing a subset of the original data. The SELECT statement is the SQL
workhorse.

1. Click the SQL tab to get a query screen in phpMyAdmin.

2. Type in a query.

3. Click the Go button to see the query results.

You’ve seen the simplest form of this command getting all the data in a table,
like this:

SELECT * FROM hero;

Figure 9.19 shows this form of the SELECT statement operating on the hero table.

phpMyAdmin is a wonderful tool for experimenting with SELECT statements
because you can write the actual SQL by hand and see immediate results in a very
clean format. If you don’t want to (or cannot) use phpMyAdmin, do the same exper-
iments directly in MySQL. It will work, but the results are formatted as text and not
always as easy to see.

TRICK

323

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

FIGURE 9.19

The SELECT query
is in the top section
and the results are
shown underneath.

The SELECT statement is extremely powerful because it can grab a subset of data
that can return only the requested fields and records. This process of asking ques-
tions of the database is commonly called a query. Note that phpMyAdmin some-
times adds elements to the query (notably the limit information). This increases
the query’s efficiency, but doesn’t substantially change the query.

Limiting Columns

You might not want all of the fields in a table. For example, you might just want
a list of the name and weapon of everyone on your list. You can specify this by
using the following SELECT statement, which is illustrated in Figure 9.20:

SELECT name, weapon

FROM hero;

This may seem like a silly capability for such a simple database as the hero list.
However, but you often run into extremely complicated tables with many fields
and need to filter only a few fields. For example, I use a database to track student
advisees. Each student’s information contains lots of data, but I might just want
a list of names and e-mail addresses. The ability to isolate the fields I need is one
way to get useful information from a database.

The results of a query look a lot like a new table. You can think of a query result
as a temporary table.

324

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 9.20

This query returns
only the names
and weapons.

Limiting Rows with the WHERE Clause

In addition to limiting the columns returned in a query, you may be interested
in limiting the number of rows. For example, you might run across an evil villain
who can only be defeated by a laser pointer. The query shown in Figure 9.21 illus-
trates a query that solves exactly this dilemma.

This code returns only the rows matching a specific condition:

SELECT *

FROM hero

WHERE weapon = ‘Laser Pointer’;

Adding a Condition with a WHERE Clause

A WHERE statement in a query specifies which row(s) you want to see. This clause
allows you to specify a condition. The database manager checks every record in
the table. If the condition is TRUE for that record, it is included in the result set.
The conditions in a WHERE clause are similar to those in PHP code, but they are not
exactly the same. Use these symbols in SQL:

• For equality use the single equal sign (=).

• Encase text elements in single quotation marks (‘).

• Use <, >, and <= or >= and != conditions to limit your search.

325

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

FIGURE 9.21

If you know how to
set up the query,
you can get very
specific results.
In this case, the

query selects only
those heroes with

a laser pointer.

Comparison operators are easy to understand for numeric data, such as integers
and real numbers. It’s not quite so obvious how a language will treat text compar-
isons. SQL has developed some standard rules, but each implementation might be
somewhat different. SQL generally works in a case-insensitive way, so Yak-Bot
would match yak-bot or yAK-bOT. Also, the < and > operators refer to alphabetic
order, so the following selects all the records where the hero’s name starts with
A, B, or C.

SELECT *

FROM hero

WHERE name < ‘D’;

Using the LIKE Clause for Partial Matches

Often you do not know the exact value of a field you are trying to match. The LIKE
clause allows you to specify partial matches. For example, which heroes have
some sort of super power? This query returns each hero whose power begins with
the value Super:

SELECT *

FROM hero

WHERE power LIKE ‘Super%’;

The percent sign (%) can be a wild card, which indicates any character, any num-
ber of times. You can use a variation of the LIKE clause to find information about
all heroes with a transportation scheme that starts with the letter B:

SELECT name, transportation

FROM hero

WHERE transportation LIKE ‘B%’;

You can also use the underscore character (_) to specify one character.

The simple wildcard character support in SQL is sufficient for many purposes.
If you like regular expressions, you can use the REGEXP clause to specify whether
a field matches a regular expression. This is a very powerful tool, but it is an
extension to the SQL standard. It works fine in MySQL, but it is not supported in all
SQL databases.

Generating Multiple Conditions

You can combine conditions with AND, OR, and NOT keywords for more-complex
expressions. For example, the following code selects those heroes whose trans-
portation starts with B and who have a power with super in its name.

TRICK

TRICK

326

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

SELECT *

FROM hero

WHERE transportation LIKE ‘B%’

AND power LIKE ‘%super%’;

Creating compound expressions is very useful as you build more-complex data-
bases with multiple tables.

Sorting Results with the ORDER BY Clause

One more nifty SELECT statement feature is the ability to sort results by any field.
Figures 9.22 and 9.23 illustrate how the ORDER BY clause can determine how tables
are sorted.

The ORDER BY clause allows you to determine how the data is sorted. You can spec-
ify any field you wish as the sorting field. As you can see in Figure 9.23, the DESC
clause specifies that data should be sorted in descending order.

Changing Data with the UPDATE Statement

You can use SQL to modify the data in a database. The key to this behavior is the
UPDATE statement. An example helps it make sense:

UPDATE hero

SET power = ‘Super Electric Toe’

WHERE name = ‘Lightning Guardian’;

327

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

FIGURE 9.22

This query shows
the entire database

sorted by the
weapon name.

This code upgrades Lightning Guardian’s power to the Super Electric Toe (which
is presumably a lot better than the ordinary Electric Toe).

Generally, you should update only one record at a time. You can use a WHERE
clause to select which record in the table is updated.

Returning to the Adventure Game

The adventure game featured at the beginning of this chapter uses a combina-
tion of MySQL and PHP code. You learn more about the PHP part in chapter 10,
“Connecting to Databases within PHP.” For now you have enough information to
start building the data structure that forms the core of the game.

Designing the Data Structure

The adventure game is entirely about data and has an incredibly repetitive struc-
ture. The same code operates over and over, but on different parts of the database.
I started the program by sketching out the primary play screen and thinking
about what data elements I needed for each screen. I ended up building a table
like Table 9.3.

You can see that I simplified the game so that each choice boils down to seven
elements. Each node (or decision point) consists of an id (or room number), a
room name, and a description of the current circumstances. Each node also has

328

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 9.23

This query sorts
by the power in

descending
(reverse

alphabetical) order.

329

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

id name description north east south west

0 -nothing- You cannot go that way! 1 0 0 0

1 start over You are at a submarine yard, 0 3 0 2
looking for the famous Enigma
code machine

2 sub deck As you step on the submarine 15 15 15 15
deck, a guard approaches you.
Your only choice is to jump off
the sub before you are caught.

3 warehouse You wait inside the warehouse. 0 4 5 0
You see a doorway to the east
and a box to the south.

4 doorway You walked right into a group 0 19 0 15
of guards. It does not look good...

5 box You crawl inside the box and wait. 6 0 0 7
Suddenly, you feel the box being
picked up and carried across
the wharf!

6 wait ..You wait until the box settles in 8 0 9 0
a dark space. You can move
forward or aft...

7 jump out You decide to jump out of the box, 15 19 15 15
but you are cornered at the end
of the wharf.

8 forward As you move forward, two rough 15 15 15 15
sailors grab you and hurl you out
of the conning tower.

9 aft In a darkened room, you see the 13 11 10 12
Enigma device. How will you get it
out of the sub?

10 signal on You use the Enigma device to send 14 0 0 0
Enigma a signal. Allied forces recognize

your signal and surround the ship
when it surfaces.

11 shoot your A gunfight on a submerged sub 19 0 0 0
way out is a bad idea...

12 wait with You wait, but the sailors discover 15 0 0 0
Enigma that Enigma is missing and scour

the sub for it. You are discovered
and cast out in the torpedo tube.

TABLE 9.3 DATA STRUCTURE OF

ENIGMA ADVENTURE

330

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

id name description north east south west

13 replace You put the Enigma back in place 19 0 0 0
Enigma and wait patiently, but you never
and wait get another chance. You are

discovered when the sub pulls in
to harbor.

14 Win Congratulations! You have captured 1 0 0 0
the device and shortened the war!

15 Water You are in the water. The sub 19 0 0 0
moves away. It looks bad...

16 0 0 0 0

17 0 0 0 0

18 0 0 0 0

19 Game Over The game is over. You lose. 1 0 0 0

TABLE 9.3 DATA STRUCTURE OF

ENIGMA ADVENTURE (CONTINUED)

pointers that describe what happens when the user chooses to go in various
directions from that node. For example, if the user is in the warehouse (node 3)
and chooses to go east, he goes to node 4, which represents the doorway. Going
south from node 3 takes the user to node 5, which is the box. The data structure
represents all the places the user can go in this game. I chose to think of winning
and losing as nodes, so everything in the game can be encapsulated in the table.

It’s critical to understand that creating the table on paper is the first step. Once
you’ve decided what kind of data your program needs, you can think about how
to put that data together. Choosing a database gives me an incredible amount of
control and makes it pretty easy to work with the data. Perhaps the most amaz-
ing thing is that this program can handle an entirely different game simply by
changing the database. I don’t have to change a single line of code to make the
game entirely different. All I have to do is point to a different database or change
the database.

Once I decided on the data structure, I built an SQL script to create the first draft
of the database. That script is shown here:

build Adventure SQL File

for MySQL

Andy Harris

DROP TABLE IF EXISTS adventure;

CREATE TABLE ADVENTURE (

id int PRIMARY KEY,

name varchar(20),

description varchar(200),

north int,

east int,

south int,

west int

);

INSERT INTO adventure values(

0, ‘lost’, ‘You cannot go that way!’,

1, 0, 0, 0

);

INSERT INTO adventure values(

1, ‘start’, ‘You are at a submarine yard, looking for the famous Enigma

code machine’,

0, 3, 0, 2

);

INSERT INTO adventure values(

2, ‘sub deck’, ‘As you step on the submarine deck, a guard approaches

you. Your only choice is to jump off the sub before you are caught.’,

15, 15, 15, 15

);

INSERT INTO adventure values(

3, ‘warehouse’, ‘You wait inside the warehouse. You see a doorway to the

east and a box to the south.’,

0, 4, 5, 0

);

INSERT INTO adventure values(

4, ‘doorway’, ‘You walked right into a group of guards. It does not look

good...’, 0, 19, 0, 15

);

331

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

INSERT INTO adventure values(

5, ‘box’, ‘You crawl inside the box and wait. Suddenly, you feel the box

being picked up and carried across the wharf!’, 6, 0, 0, 7

);

INSERT INTO adventure values(

6, ‘wait’, ‘..You wait until the box settles in a dark space. You can

move forward or aft...’, 8, 0, 9, 0

);

INSERT INTO adventure values(

7, ‘jump out’, ‘You decide to jump out of the box, but you are cornered

at the end of the wharf.’, 15, 19, 15, 15

);

INSERT INTO adventure values(

8, ‘forward’, ‘As you move forward, two rough sailors grab you and hurl

you out of the conning tower.’, 15, 15, 15, 15

);

INSERT INTO adventure values(

9, ‘aft’, ‘In a darkened room, you see the Enigma device. How will you

get it out of the sub?’, 13, 11, 10, 12

);

INSERT INTO adventure values(

10, ‘signal on Enigma’, ‘You use the Enigma device to send a signal.

Allied forces recognize your signal and surround the ship when it

surfaces’, 14, 0, 0, 0

);

INSERT INTO adventure values(

11, ‘shoot your way out’, ‘A gunfight on a submerged sub is a bad

idea...’, 19, 0, 0, 0

);

INSERT INTO adventure values(

12, ‘wait with Enigma’, ’You wait, but the sailors discover that Enigma

is missing and scour the sub for it. You are discovered and cast out in

the torpedo tube.’, 15, 0, 0, 0

);

332

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

INSERT INTO adventure values(

13, ‘replace Enigma and wait’,’You put the Enigma back in place and wait

patiently, but you never get another chance. You are discovered when the

sub pulls in to harbor.’, 19, 0, 0, 0

);

INSERT INTO adventure values(

14, ‘Win’, ‘Congratulations! You have captured the device and shortened

the war!’, 1, 0, 0, 0

);

INSERT INTO adventure values(

15, ‘Water’, ‘You are in the water. The sub moves away. It looks

bad...’, 19, 0, 0, 0

);

INSERT INTO adventure values(

16,’’,’’, 0, 0, 0, 0

);

INSERT INTO adventure values(

17,’’,’’, 0, 0, 0, 0

);

INSERT INTO adventure values(

18,’’,’’, 0, 0, 0, 0

);

INSERT INTO adventure values(

19, ‘Game Over’ ,’The game is over. You lose.’, 1, 0, 0, 0

);

SELECT id, name, north, east, south, west FROM adventure;

SELECT id, description FROM adventure;

I wrote this code by hand, but I could have designed it with phpMyAdmin just as
easily. Note that I created the table, inserted values, and wrote a couple of SELECT
statements to check the values. I like to have a script for creating a database even
if I built it in a tool like phpMyAdmin, because I managed to mess up this data-
base several times as I was writing the code for this chapter. It is very handy to
have a script that instantly rebuilds the database without any tears.

333

C
h

a
p

te
r

9
U

s
i n

g
M

y
S

Q
L

t o
C

r
e
a

t e
D

a
t a

b
a

s
e
s

Summary

Although you didn’t write any PHP in this chapter, you did learn how to create a
basic data structure using the SQL language. You learned how to work with the
MySQL console to create and use databases and how to return data from your
database using the SELECT statement. You know how to modify the SELECT state-
ment to get more-specific results. You know how phpMyAdmin can simplify the
creation and manipulation of MySQL databases. You built a data structure for an
adventure game.

334

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

CHALLENGES

1. Design a database. Start with something simple like a phone list.

2. Create your database in SQL.

3. Write a batch program to create and populate your database.

4. Use phpMyAdmin to manipulate your database and view its results in

other formats.

5. Read appendix B to see how SQLite is like (and unlike) MySQL. Make

a basic table using SQLite.

A
fter all this talk of databases, you might be eager to connect a database to

your PHP programs. PHP is well known for its seamless database integration,

especially with MySQL. It’s actually quite easy to connect to a MySQL

database from within PHP. Once you’ve established the connection, you can send

SQL commands to the database and receive the results as data you can use in your

PHP program.

By the end of this chapter you will have built the adventure game featured at the

beginning of chapter 9, “Using MySQL to Create Databases.” As you see, the pro-

gramming isn’t very hard if the data is designed well. Specifically, you learn how to:

• Get a connection to a MySQL database from within PHP.

• Use a particular database.

• Send a query to the database.

• Parse the query results.

• Check for data errors.

• Build HTML output from data results.

Connecting to
Databases
within PHP

10
C H A P T E R

Connecting to the Hero Database

To show how database connection works, I build a simple PHP program that
returns all the values in the Hero database you created in chapter 9. Figure 10.1
illustrates the Show Hero PHP program.

I decided to go back to this simpler database rather than the more complex adven-
ture game. When you’re learning new concepts, it’s best to work with the simplest
environment at first and then move to more complex situations. The adventure
database has a lot of information in it, and the way the records point to each other
is complicated. With a simpler database I was sure I understood the basics of data
connection before working with a production database that is bound to have com-
plexities of its own.

This is the code that generates this page:

<body>

<h1>Show Heros</h1>

HINT

336

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 10.1

This HTML table is
generated by a PHP

program reading
the database.

<?

//make the database connection

$conn = mysql_connect(“localhost”, “”, “”);

mysql_select_db(“chapter7”, $conn);

//create a query

$sql = “SELECT * FROM hero”;

$result = mysql_query($sql, $conn);

print “<table border = 1>\n”;

//get field names

print “<tr>\n”;

while ($field = mysql_fetch_field($result)){

print “ <th>$field->name</th>\n”;

} // end while

print “</tr>\n\n”;

//get row data as an associative array

while ($row = mysql_fetch_assoc($result)){

print “<tr>\n”;

//look at each field

foreach ($row as $col=>$val){

print “ <td>$val</td>\n”;

} // end foreach

print “</tr>\n\n”;

}// end while

print “</table>\n”;

?>

</body>

</html>

Glance over the code and you see it’s mostly familiar except for a few new functions
that begin with mysql_. These functions allow access to MySQL databases. If you
look through the PHP documentation you see very similar functions for several
other types of databases, including Oracle, Informix, mSQL, and ODBC. You’ll
find the process for connecting to and using other databases is pretty much the
same no matter which database you’re using.

337

C
h

a
p

te
r

1
0

C
o

n
n

e
c

t in
g

t o
D

a
t a

b
a

s
e
s

w
i th

in
P

H
P

338

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

This chapter details the process of connecting to an MySQL database. If you’re
using SQLite instead, please see appendix B on the CD for how to modify this
chapter’s code to work with that alternate database. The concepts remain exactly
the same, but some details change.

Getting a Connection

The first job is to get a connection between your PHP program and your MySQL
server. You can connect to any server you have permission to use. The mysql_connect
function arranges the communication link between MySQL and PHP. Here’s the
connect statement from the showHero program:

$conn = mysql_connect(“localhost”, “”, “”);

The mysql_connect() function requires three parameters:

• Server name. The server name is the name or URL of the MySQL server you
wish to connect to. (This is localhost if your PHP and MySQL servers reside
on the same machine, which is frequently the case.)

• Username. The username in MySQL. Most database packages have user
accounts.

• Password. The password associated with the MySQL user, identified by
username.

You will probably have to change the username and password fields if you are run-
ning this code on a server somewhere. I used default values that work fine on an
isolated test server, but you must change to your username and password if you try
this code on a production server.

You can use the same username and password you use to log into MySQL, and
your program will have all the same access you do. Of course, you may want
more-restricted access for your programs. Create a special account, which has
only the appropriate permissions, for program users.

The mysql_connect() function returns an integer referring to the database con-
nection. You can think of this identifier much like the file pointers you learned
in chapter 6, “Working with Files.” The data connection should be stored in a
variable—I usually use something like $conn—because many of the other database
functions need to access the connection.

TRAP

HINT

Choosing a Database

A data connection can have a number of databases connected to it. The
mysql_set_db() function lets you choose a database. The mysql_set_db() function
works just like the USE command inside SQL. The mysql_set_db() function requires
the database name and a data connection. This function returns the value FALSE
if it is unable to connect to the specified database.

Creating a Query

Creating a query is very easy. The relevant code from showHero.php is reproduced
here:

//create a query

$sql = “SELECT * FROM hero”;

$result = mysql_query($sql, $conn);

Begin by placing SQL code inside a variable.

SQL commands entered into the SQL console or SQLyog require a semicolon.
When your PHP program sends a command to the DBMS, the semicolon is added
automatically, so you should not end your SQL commands with semicolons.
Of course, you assign these commands within a line of PHP code, which has its
own semicolon. (Sheesh!)

The mysql_query() function allows you to pass an SQL command through a con-
nection to a database. You can send any SQL command to the database with
mysql_query(), including table creation statements, updates, and queries. The
database returns a special element called a result set. If the SQL command was a
query, the result variable holds a pointer to the data, which is taken apart in the

TRAP

339

C
h

a
p

te
r

1
0

C
o

n
n

e
c

t in
g

t o
D

a
t a

b
a

s
e
s

w
i th

in
P

H
P

IN THE REAL WORLD

Database security is an important and challenging issue. You can do a few easy

things to protect your data from most hackers. The first thing is to obscure your

username and password information whenever you publish your code. I removed

my username and password from the code shown here. In a practice environment

you can leave these values blank, but ensure you don’t have wide-open code

that allows access to your data. If you need to post your code (for example, in a

class situation), be sure to change the password to something besides your real

password.

340

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

next step. If it’s a data definition command (the commands used to create and
modify tables) the result object usually contains the string related to the opera-
tion’s success or failure.

Getting Field Names

I am printing the data in an HTML table. I could create the table headings by
hand, because I know what all the fields are, but it’s better to get the field infor-
mation directly from the query. You won’t always know which fields are being
returned by a particular query. The next chunk of code manages this task:

print “<table border = 1>\n”;

//get field names

print “<tr>\n”;

while ($field = mysql_fetch_field($result)){

print “ <th>$field->name</th>\n”;

} // end while

print “</tr>\n\n”;

The mysql_fetch_field() function expects a query result as its one parameter. It
then fetches the next field and stores it in the $field variable. If no fields are left
in the result, the function returns the value FALSE. This allows the field function
to also be used as a conditional statement.

The $field variable is actually an object. You built a custom object in chapter 7,
“Writing Programs with Objects.” The $field object in this case is much like an
associative array. It has a number of properties (which can be thought of as field
attributes). The field object has a number of attributes, listed in Table 10.1.

Property Attribute

max_length Field length; especially important in VARCHAR fields

Name The field name

primary_key TRUE if the field is a primary key

Table Name of table this field belongs to

Type This field’s datatype

TABLE 10.1 COMMONLY USED FIELD

OBJECT PROPERTIES

By far the most common use of the field object is determining the names of all
the fields in a query. The other attributes can be useful in certain situations. You
can see the complete list of attributes in MySQL Help that shipped with your copy
of MySQL or online at http://www.mysql.com.

You use object-oriented syntax to refer to an object’s properties. Notice that I
printed $field->name to the HTML table. This syntax simply refers to the name prop-
erty of the field object. For now it’s reasonably accurate to think of it as a fancy
associative array.

Parsing the Result Set

The rest of the code examines the result set. Refresh your memory:

//get row data as an associative array

while ($row = mysql_fetch_assoc($result)){

print “<tr>\n”;

//look at each field

foreach ($row as $col=>$val){

print “ <td>$val</td>\n”;

} // end foreach

print “</tr>\n\n”;

}// end while

The mysql_fetch_assoc() function fetches the next row from a result set. It
requires a result pointer as its parameter, and it returns an associative array.

A number of related functions are available for pulling a row from a result
set. mysql_fetch_object() stores a row as an object, much like the
mysql_fetch_fields() function does. The mysql_fetch_array() function
fetches an array that can be treated as a normal array, an associative array, or
both. I tend to use mysql_fetch_assoc() because I think it’s the most straight-
forward approach for those unfamiliar with object-oriented syntax. Of course, you
should feel free to investigate these other functions and use them if they make
more sense to you.

If no rows are left in the result set, mysql_fetch_assoc() returns the value FALSE.
The mysql_fetch_assoc() function call is often used as a condition in a while loop
(as I did here to fetch each row in a result set). Each row represents a row of the
eventual HTML table, so I print the HTML code to start a new row inside the while
loop.

HINT

341

C
h

a
p

te
r

1
0

C
o

n
n

e
c

t in
g

t o
D

a
t a

b
a

s
e
s

w
i th

in
P

H
P

Once you’ve gotten a row, it’s stored as an associative array. You can manipulate
this array using a standard foreach loop. I assigned each element to $col and $val
variables. I actually don’t need $col in this case, but it can be handy to have.
Inside the foreach loop I placed code to print the current field in a table cell.

Returning to the Adventure
Game Program

At the end of chapter 9 you create a database for the adventure game. Now that
you know how to connect a PHP program to a MySQL database, you’re ready to
begin writing the game itself.

Connecting to the Adventure Database

Once I built the database, the first PHP program I wrote was the simplest possible
connection to the database. I wanted to ensure I got all the data correctly. Here’s
the code for that program:

<html>

<head>

<title>Show Adventure</title>

</head>

<body>

<?

$conn = mysql_connect(“localhost”, “”, “”);

mysql_select_db(“chapter7”, $conn);

$sql = “SELECT * FROM adventure”;

$result = mysql_query($sql);

while ($row = mysql_fetch_assoc($result)){

foreach($row as $key=>$value){

print “$key: $value
\n”;

} // end foreach

print “<hr>\n”;

} // end while

?>

</body>

</html>

342

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

This simple program established the connection and ensured that everything was
stored as I expected. Whenever I write a data program, I usually write something
like this that quickly steps through my data to ensure everything is working cor-
rectly. There’s no point in moving on until you know you have the basic connection.

I did not give you a screenshot of this program because it isn’t very pretty, but I
did include it on the CD-ROM so you can run it yourself. The point here is to start
small and then turn your basic program into something more sophisticated one
step at a time.

Displaying One Segment

The actual gameplay consists of repeated calls to the showSegment.php program.
This program takes a segment ID as its one input and then uses that data to build
a page based on that database’s record. The only surprise is how simple the code
is for this program.

<html>

<head>

<title>Show Segment</title>

<style type = “text/css”>

body {

color:red

}

td {

color: white;

background-color: blue;

width: 20%;

height: 3em;

font-size: 20pt

}

</style>

</head>

<body>

<?

if (empty($room)){

$room = 1;

} // end if

//connect to database

$conn = mysql_connect(“localhost”, “”, “”);

343

C
h

a
p

te
r

1
0

C
o

n
n

e
c

t in
g

t o
D

a
t a

b
a

s
e
s

w
i th

in
P

H
P

$select = mysql_select_db(“chapter7”, $conn);

$sql = “SELECT * FROM adventure WHERE id = ‘$room’”;

$result = mysql_query($sql);

$mainRow = mysql_fetch_assoc($result);

$theText = $mainRow[“description”];

$northButton = buildButton(“north”);

$eastButton = buildButton(“east”);

$westButton = buildButton(“west”);

$southButton = buildButton(“south”);

$roomName = $mainRow[“name”];

print <<<HERE

<center><h1>$roomName</h1></center>

<form method = “post”>

<table border = 1>

<tr>

<td></td>

<td>$northButton</td>

<td></td>

</tr>

<tr>

<td>$eastButton</td>

<td>$theText</td>

<td>$westButton</td>

</tr>

<tr>

<td></td>

<td>$southButton</td>

<td></td>

</tr>

</table>

<center>

<input type = “submit”

value = “go”>

</center>

</form>

344

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

HERE;

function buildButton($dir){

//builds a button for the specified direction

global $mainRow, $conn;

$newID = $mainRow[$dir];

//print “newID is $newID”;

$query = “SELECT name FROM adventure WHERE id = $newID”;

$result = mysql_query($query, $conn);

$row = mysql_fetch_assoc($result);

$roomName = $row[“name”];

$buttonText = <<< HERE

<input type = “radio”

name = “room”

value = “$newID”>$roomName

HERE;

return $buttonText;

} // end build button

?>

</body>

</html>

Creating a CSS Style

I began the HTML with a cascading style sheet (CSS) style. My program is visually
unappealing, but placing a CSS style here is the answer to my visual design dis-
ability. All I need to do is get somebody with an actual sense of style to clean up
my CSS and I have a good-looking page.

Making the Data Connection

As usual, the program begins with some housekeeping. If the user hasn’t specif-
ically chosen a segment number, the program placed him in room number one,
which is designated as the starting room. If the user doesn’t specify a value, the
default action is a program crash, because it won’t know in what room to place
the user. I added a default so if this happens, the program assumes it’s a new
adventure and starts at the beginning.

345

C
h

a
p

te
r

1
0

C
o

n
n

e
c

t in
g

t o
D

a
t a

b
a

s
e
s

w
i th

in
P

H
P

if (empty($room)){

$room = 1;

} // end if

//connect to database

$conn = mysql_connect(“localhost”, “”, “”);

$select = mysql_select_db(“chapter7”, $conn);

$sql = “SELECT * FROM adventure WHERE id = ‘$room’”;

$result = mysql_query($sql);

$mainRow = mysql_fetch_assoc($result);

$theText = $mainRow[“description”];

I then make an ordinary connection to the database and choose the record per-
taining to the current room number. That query is stored in the $mainRow variable
as an associative array.

Generating Variables for the Code

Most of the program writes the HTML for the current record to the screen. To
make things simple, I create some variables for anything that might be tricky.

$theText = $mainRow[“description”];

$roomName = $mainRow[“name”];

$northButton = buildButton(“north”);

$eastButton = buildButton(“east”);

$westButton = buildButton(“west”);

$southButton = buildButton(“south”);

I stored the description field of the current row into a variable named $theText. I
made a similar variable for the room name.

The button variables are a little different. I decided to create an HTML option but-
ton to represent each of the places the user could go. I use a custom function
called buildButton() to make each button.

346

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

IN THE REAL WORLD

It isn’t strictly necessary to store the description field in a variable, but I inter-

polate this value into HTML code. I’ve found that interpolating associative array

values can be a little tricky. In general, I like to copy an associative value to some

temporary variable if I’m going to interpolate it. It’s just a lot easier that way.

Writing the buildButton() Function

The procedure for building the buttons was repetitive enough to warrant a func-
tion. Each button is a radio button corresponding to a direction. The radio button
will have a value that comes from the corresponding direction value from the cur-
rent record. If the north field of the current record is 12 (meaning if the user goes
North load the data in record 12), the radio button’s value should be 12.

The trickier thing is getting the appropriate label. The next room’s ID is all that’s
stored in the current record. If you want to display the room’s name, you must
make another query to the database. That’s exactly what the buildButton() func-
tion does:

function buildButton($dir){

//builds a button for the specified direction

global $mainRow, $conn;

$newID = $mainRow[$dir];

//print “newID is $newID”;

$query = “SELECT name FROM adventure WHERE id = $newID”;

$result = mysql_query($query, $conn);

$row = mysql_fetch_assoc($result);

$roomName = $row[“name”];

$buttonText = <<< HERE

<input type = “radio”

name = “room”

value = “$newID”>$roomName

HERE;

return $buttonText;

} // end build button

The function follows these steps:

1. Borrows the $mainRow array (which holds the value of the main record this
page is about) and the data connection in $conn.

2. Pulls the ID for this button from the $mainRow array and stores it in a local
variable. The buildButton() function requires a direction name sent as a
parameter. This direction should be the field name for one of the direction
fields.

347

C
h

a
p

te
r

1
0

C
o

n
n

e
c

t in
g

t o
D

a
t a

b
a

s
e
s

w
i th

in
P

H
P

3. Repeats the query creation process, building a query that requests only
the row associated with the new ID.

4. Pulls the room name from that array. Once that’s done, it’s easy to build
the radio button text. The radio button is called room, so the next time
this program is called, the $room variable corresponds to the user-selected
radio button.

Finishing the HTML

All that’s left is adding a Submit button to the form and closing the form and
HTML. The amazing thing is, that’s all you need. This code alone is enough to let
the user play this game. It takes some effort to set up the data structure, but then
all you do is provide a link to the first record (by calling showSegment.php without
any parameters). The program will keep calling itself.

Viewing and Selecting Records

I suppose you could stop there, because the game is working, but the really great
thing about this structure is how flexible it is. It doesn’t take much more work
to create an editor that lets you add and modify records.

This actually requires a couple of PHP programs. The first, shown in Figure 10.2,
prints out a summary of the entire game and allows the user to edit any node.

348

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 10.2

The
listSegments.php
program lists all the
data and allows the

user to choose a
record for editing.

The code for the listSegments.php program is actually quite similar to the
showAdventure.php program you saw before. It’s simply cleaned up a bit to put the
data in tables and has a form to call an editor when the user selects a record to
modify.

<html>

<head>

<title>List Segments</title>

<style type = “text/css”>

body {

color:red

}

td, th {

color: white;

background-color: blue;

}

</style>

</head>

<body>

<?

$conn = mysql_connect(“localhost”, “”, “”);

$select = mysql_select_db(“chapter7”, $conn);

$sql = “SELECT * FROM adventure”;

$result = mysql_query($sql);

print <<<HERE

<form action = “editSegment.php”

method = “post”>

HERE;

while ($row = mysql_fetch_assoc($result)){

print “<table border = 1 width = 80%>\n”;

foreach($row as $key=>$value){

//print “$key: $value
\n”;

$roomNum = $row[“id”];

print <<<HERE

<tr>

<th width = 10%>$key</th>

<td>$value</td>

</tr>

349

C
h

a
p

te
r

1
0

C
o

n
n

e
c

t in
g

t o
D

a
t a

b
a

s
e
s

w
i th

in
P

H
P

HERE;

} // end foreach

print <<<HERE

<tr>

<td colspan = 2><center>

<input type = “radio”

name = “room”

value = “$roomNum”>

Edit this room

<input type = “submit”

value = “go”>

</center></td>

</tr>

</table>

HERE;

} // end while

?>

<center>

<input type = “submit”

value = “edit indicated room”>

</center>

</form>

</body>

</html>

The entire program is contained in a form, which calls editSegment.php when
activated. The program opens a data connection and pulls all elements from the
database. It builds an HTML table for each record. Each table contains a radio but-
ton called room, with the value of the current room number. Each table also has
a copy of the Submit button so the user doesn’t have to scroll all the way to the
bottom of the page to submit the form.

Editing the Record

When the user has chosen a record from listSegments.php, the editSegment.php
program (shown in Figure 10.3) swings into action.

350

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

It’s important to understand that the editSegment program doesn’t actually
change the record in the database. Instead, it pulls up a form containing the
requested record’s current values and allows the user to determine the new values.
The editSegment page is another form. When the user submits this form, control
is passed to one more program, which actually modifies the database. The code
for editSegment is very similar to the code that displays a segment in play mode.
The primary difference is that all the record data goes into editable fields.

Take a careful look at how the game developer can select a room to go into for
each position. A drop-down menu shows all the existing room names. This device
allows the game developer to work directly with room names even though the
database will be much more concerned with room numbers.

<html>

<head>

<title>Edit Segment</title>

<style type = “text/css”>

body {

color:red

}

td {

color: white;

background-color: blue;

351

C
h

a
p

te
r

1
0

C
o

n
n

e
c

t in
g

t o
D

a
t a

b
a

s
e
s

w
i th

in
P

H
P

FIGURE 10.3

The
editSegment.php

program displays
data from a

requested record
and lets the

user manipulate
that data.

width: 20%;

height: 5em;

text-align: center;

}

</style>

</head>

<body>

<?

if (empty($room)){

$room = 0;

} // end if

//connect to database

$conn = mysql_connect(“localhost”, “”, “”);

$select = mysql_select_db(“chapter7”, $conn);

$sql = “SELECT * FROM adventure WHERE id = ‘$room’”;

$result = mysql_query($sql);

$mainRow = mysql_fetch_assoc($result);

$theText = $mainRow[“description”];

$roomName = $mainRow[“name”];

$northList = makeList(“north”, $mainRow[“north”]);

$westList = makeList(“west”, $mainRow[“west”]);

$eastList = makeList(“east”, $mainRow[“east”]);

$southList = makeList(“south”, $mainRow[“south”]);

$roomNum = $mainRow[“id”];

print <<<HERE

<form action = “saveRoom.php”

method = “post”>

<table border = 1>

<tr>

<td colspan = 3>

Room # $roomNum:

<input type = “text”

name = “name”

value = “$roomName”>

<input type = “hidden”

name = “id”

352

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

value = “$roomNum”>

</td>

</tr>

<tr>

<td></td>

<td>$northList</td>

<td></td>

</tr>

<tr>

<td>$westList</td>

<td>

<textarea rows = 5 cols = 30 name = “description”>$theText</textarea>

</td>

<td>$eastList</td>

</tr>

<tr>

<td></td>

<td>$southList</td>

<td></td>

</tr>

<tr>

<td colspan = 3>

<input type = “submit”

value = “save this room”>

</td>

</table>

</form>

HERE;

function makeList($dir, $current){

//make a list of all the places in the system

353

C
h

a
p

te
r

1
0

C
o

n
n

e
c

t in
g

t o
D

a
t a

b
a

s
e
s

w
i th

in
P

H
P

global $conn;

$listCode = “<select name = $dir>\n”;

$sql = “SELECT id, name FROM adventure”;

$result = mysql_query($sql);

$rowNum = 0;

while ($row = mysql_fetch_assoc($result)){

$id = $row[“id”];

$placeName = $row[“name”];

$listCode .= “ <option value = $id\n”;

//select this option if it’s the one indicated

if ($rowNum == $current){

$listCode .= “ selected\n”;

} // end if

$listCode .= “>$placeName</option>\n”;

$rowNum++;

} // end while

return $listCode;

} // end makeList

?>

</body>

</html>

Generating Variables

After the standard database connection, the code creates a number of variables.
Some of these variables ($theText, $roomName, and $roomNum) are simplifications of
the associative array. Another set of variables are the result of the makeList()
function. This function’s job is to return an HTML list box containing the room
names of every segment in the database. The list box is set up so that whatever
room number is associated with the indicated field is the default.

Printing the HTML Code

The central part of the program consists of a large print statement that develops
the HTML code. The code in this case is a large table enclosed in a form. Every field
in the record has a form element associated with it. When the user submits this
form, it should have all the data necessary to update a record in the database.

354

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

The one element the user should not be able to directly edit is the room number.
This is stored in a hidden field. The directional room numbers are encoded in the
list boxes. All other data is in appropriately named text boxes.

Creating the List Boxes

The list boxes require a little bit of thought to construct.

The makeList() function expects two parameters. The $dir parameter holds the
direction field name of the current list box. The $current parameter holds infor-
mation about which room is currently selected for this particular field of the cur-
rent record. The data connection handler $conn is the only global variable. The
variable $listCode holds the actual HTML code of the list box returned to the
main program.

The function makes a query to the database to request all the room names. Each
name is added to the list box code at the appropriate time with the correspond-
ing numeric value. Whenever the record number corresponds to the current
value of the record, HTML code specifies that this should be the selected item in
the list box.

Committing Changes to the Database

One more program is necessary. The editSegment.php program allows the user to
edit the data. When finished he submits the form, which calls the saveRoom.php
program. I won’t repeat the screen shot for this program, because the visuals are
unimportant. However, this program actually updates the database with what-
ever values the user has chosen.

<head>

<title>SaveRoom.php</title>

</head>

<body>

<?

//Once a room has been edited by editSegment, this program

//updates the database accordingly.

//connect to database

$conn = mysql_connect(“localhost”, “”, “”);

$select = mysql_select_db(“chapter7”, $conn);

355

C
h

a
p

te
r

1
0

C
o

n
n

e
c

t in
g

t o
D

a
t a

b
a

s
e
s

w
i th

in
P

H
P

$sql = <<<HERE

UPDATE adventure

SET

name = ‘$name’,

description = ‘$description’,

north = $north,

east = $east,

south = $south,

west = $west

WHERE

id = $id

HERE;

//print $sql;

$result = mysql_query($sql);

if ($result){

print “<h3>$name room updated successfully</h3>\n”;

print “view the rooms\n”;

} else {

print “<h3>There was a problem with the database</h3>\n”;

} // end if

?>

</body>

</html>

This program begins with standard data connections. It then constructs an
UPDATE SQL statement. The statement is quite simple, because all the work is done
in the previous program. I then simply applied the query to the database and
checked the result. An UPDATE statement won’t return a recordset like a SELECT
statement. Instead, it will return the value FALSE if it was unable to process the
command. If the update request was successful, I let the user know and provide
a link to the listSegments program. If there was a problem, I provide some (not
very helpful) feedback to the user.

Summary

In this chapter you begin using external programs to manage data. You learn how
MySQL can interpret basic SQL statements for defining and manipulating data.

356

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

You create a database directly in the MySQL console, and you also learn how to
build and manipulate databases with SQLyog. You combine these skills to create
an interesting and expandable game.

357

C
h

a
p

te
r

1
0

C
o

n
n

e
c

t in
g

t o
D

a
t a

b
a

s
e
s

w
i th

in
P

H
P

CHALLENGES

1. Add a new room command to the adventure generator. Hint: Think about

how I created a new test in the quiz machine program from chapter 6.

2. Write PHP programs to view, add, and edit records in the phone list.

3. Write a program that asks a user’s name and searches the database for

that user.

4. Create a front end for another simple database.

This page intentionally left blank

I
n chapters 9 and 10 you learn how to create a basic database and connect

it to a PHP program. PHP and MySQL are wonderful for working with basic

databases. However, most real-world problems involve data that is too

complex to fit in one table. Database designers have developed some standard tech-

niques for handling complex data that reduce redundancy, improve efficiency, and

provide flexibility. In this chapter you learn how to use the relational model to build

complex databases involving multiple entities. Specifically, you learn:

• How the relational model works.

• How to build use-case models for predicting data usage.

• How to construct entity-relationship diagrams to model your data.

• How to build multi-table databases.

• How joins are used to connect tables.

• How to build a link table to model many-to-many relationships.

• How to optimize your table design for later programming.

Data
Normalization

11
C H A P T E R

360

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Introducing the spy Database

In this chapter you build a database to manage your international spy ring. (You
do have an international spy ring, don’t you?) Saving the world is a complicated
task, so you’ll need a database to keep track of all your agents. Secret agents are
assigned to various operations around the globe, and certain agents have certain
skills. The examples in this chapter will take you through the construction of
such a database. You’ll see how to construct the database in MySQL. In chapter
12, “Building a Three-Tiered Data Application” you use this database to make a
really powerful spymaster application in PHP.

The spy database reflects a few facts about my spy organization (called the Pan-
theon of Humanitarian Performance, or PHP).

• Each agent has a code name.

• Each agent can have any number of skills.

• More than one agent can have the same skill.

• Each agent is assigned to one operation at a time.

• More than one agent can be assigned to one operation.

• A spy’s location is determined by the operation.

• Each operation has only one location.

This list of rules helps explain some characteristics of the data. In database par-
lance, they are called business rules. I need to design the database so these rules
are enforced.

IN THE REAL WORLD

I set up this particular set of rules in a somewhat arbitrary way because they

help make my database as simple as possible while still illustrating most of the

main problems encountered in data design. Usually you don’t get to make up

business rules. Instead, you learn them by talking to those who use the data

every day.

The badSpy Database

As you learned in chapter 9, “Using MySQL to Create Databases,” it isn’t difficult
to build a data table, especially if you have a tool like phpMyAdmin. Figure 11.1
illustrates the schema of my first pass at the spy database.

At first glance, the badSpy database design seems like it ought to work, but prob-
lems crop up as soon as you begin adding data to the table. Figure 11.2 shows the
results of the badSpy data after I started entering information about some of my
field agents.

Inconsistent Data Problems

Gold Elbow’s record indicates that Operation Dancing Elephant is about infil-
trating a suspicious zoo. Falcon’s record indicates that the same operation is
about infiltrating a suspicious circus. For the purpose of this example, I’m
expecting that an assignment has only one description, so one of these descrip-
tions is wrong. There’s no way to know whether it’s a zoo or a circus by looking
at the data in the table, so both records are suspect. Likewise, it’s hard to tell if
Operation Enduring Angst takes place in Lower Volta or Lower Votla, because the
two records that describe this mission have different spellings.

The circus/zoo inconsistency and the Volta/Votla problem share a common cause.
In both cases the data-entry person (probably a low-ranking civil servant, because

361

C
h

a
p

te
r

1
1
 D

a
t a

N
o

r
m

a
li z

a
ti o

n

FIGURE 11.1

The badSpy
database schema
looks reasonable

enough.

international spy masters are far too busy to do their own data entry) had to type
the same data into the database multiple times. This kind of inconsistency
causes all kinds of problems. Different people choose different abbreviations. You
may see multiple spellings of the same term. Some people simply do not enter
data if it’s too difficult. When this happens, you cannot rely on the data. (Is it a
zoo or a circus?) You also can’t search the data with confidence. (I’ll miss Black-
ford if I look for all operatives in Lower Volta, because he’s listed as being in
Lower Votla.) If you look carefully, you notice that I misspelled “sabotage.” It will
be very difficult to find everywhere this word is misspelled and fix them all.

Problem with the Operation Information

There’s another problem with this database. If for some reason Agent Rahab were
dropped from the database (maybe she was a double agent all along), the infor-
mation regarding Operation Raging Dandelion would be deleted along with her
record, because the only place it is stored is as a part of her record. The opera-
tion’s data somehow needs to be stored separately from the agent data.

Problems with Listed Fields

The specialty field brings its own troubles to the database. This field can contain
more than one entity, because spies should be able to do more than one thing.

362

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 11.2

The badSpy
database after
I added a few

agents.

(My favorite combination is explosives and flower arranging.) Fields with lists in
them can be problematic.

• It’s much harder to figure out what size to make a field that may contain
several entities. If your most talented spy has 10 different skills, you need
enough room to store all 10 skills in every spy’s record.

• Searching on fields that contain lists of data can be difficult.

You might be tempted to insert several different skill fields (maybe a skill1, skill2,
and skill3 field, for example), but this doesn’t completely solve the problem. It is
better to have a more flexible system that can accommodate any number of skills.
The flat file system in this badSpy database is not capable of that kind of versatility.

Designing a Better Data Structure

The spy master database isn’t complicated, but the badSpy database shows a num-
ber of ways even a simple database can go wrong. This database is being used to
save the free world, so it deserves a little more thought. Fortunately, data devel-
opers have come up with a number of ways to think about data structure.

It is usually best to back away from the computer and think carefully about how
data is used before you write a single line of code.

Defining Rules for a Good Data Design

Data developers have come up with a list of rules for creating well-behaved
databases:

• Break your data into multiple tables.

• Make no field with a list of entries.

• Do not duplicate data.

• Make each table describe only one entity.

• Create a single primary key field for each table.

A database that follows all these rules will avoid most of the problems evident in
the badSpy database. Fortunately, there are some well-known procedures for
improving a database so it can follow all these rules.

Normalizing Your Data

Data programmers try to prevent the problems evident in the badSpy database
through a process called data normalization. The basic concept of normalization

363

C
h

a
p

te
r

1
1
 D

a
t a

N
o

r
m

a
li z

a
ti o

n

364

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Agent ID Name Assignment Description Location

1 Rahab Raging Dandelion Plant Crabgrass Sudan

2 Gold Elbow Dancing Elephant Infiltrate suspicious zoo London

3 Falcon Dancing Elephant Infiltrate suspicious circus London

TABLE 11.1 AGENT TABLE IN 1NF

Specialty ID Name

1 electronics

2 counterintelligence

3 sabotage

TABLE 11.2 SPECIALTY TABLE IN 1NF

is to break down a database into a series of tables. If each of these tables is
designed correctly, the database is less likely to have the sorts of problems
described so far. Entire books have been written about data normalization, but
the process breaks down into three major steps, called normal forms.

First Normal Form: Eliminate Listed Fields

The goal of the first normal form (sometimes abbreviated 1NF) is to eliminate rep-
etition in the database. The primary culprit in the badSpy database is the specialty
field. Having two different tables, one for agents and another for specialties, is
one solution.

Data designers seem to play a one-string banjo. The solution to almost every data
design problem is to create another table. As you see, there is quite an art form to
what should be in that new table.

The two tables would look somewhat like those shown in Tables 11.1 and 11.2.

Note that I did not include all data in these example tables, but just enough to
give you a sense of how these tables would be organized. Also, you learn later in
this chapter a good way to reconnect these tables.

TRICK

Second Normal Form: Eliminate Redundancies

Once all your tables are in the first normal form, the next step is to deal with all
the potential redundancy issues. These mainly occur because data is entered
more than one time. To fix this, you need to (you guessed it) build new tables. The
agent table could be further improved by moving all data about operations to
another table. Figure 11.3 shows a special diagram called an Entity Relationship
diagram, which illustrates the relationships between these tables.

An Entity Relationship diagram (ER diagram) reveals the relationships between
data elements. In this situation, I thought carefully about the data in the spy
database. As I thought about the data, three distinct entities emerged. By sepa-
rating the operation data from the agent data, I have removed redundancy: The
user enters operational data only one time. This eliminates several of the prob-
lems in the original database. It also fixes the situation where an operation’s
data was lost because a spy turned out to be a double agent. (I’m still bitter about
that defection.)

Third Normal Form: Ensure Functional Dependency

The third normal form concentrates on the elements associated with each entity.
For a table to be in the third normal form, that table must have a single primary
key and every field in the table must relate only to that key. For example, the
description field is a description of the operation, not the agent, so it belongs in
the operation table.

In the third phase of normalization you look through each piece of table data
and ensure that it directly relates to the table in which it’s placed. If not, either
move it to a more appropriate table or build a new table for it.

365

C
h

a
p

te
r

1
1
 D

a
t a

N
o

r
m

a
li z

a
ti o

nFIGURE 11.3

A basic entity-
relationship

diagram for the
spy database.

Defining Relationship Types

The easiest way to normalize your databases is with a stylized view of them such
as the ER diagram. ER diagrams are commonly used as a data-design tool. Take
another look at the ER diagram for the spy database in Figure 11.4.

This diagram illustrates the three entities in the spy database (at least up to now)
and the relationships between them. Each entity is enclosed in a rectangle, and
the lines between each represent the relationships between the entities. Take a
careful look at the relationship lines. They have crow’s feet on them to indicate
some special relationship characteristics. There are essentially three kinds of
relationships (at least in this overview of data modeling).

Recognizing One-to-One Relationships

One-to-one relationships happen when each instance of entity A has exactly one
instance of entity B. A one-to-one entity is described as a simple line between two
entities with no special symbols on either end.

366

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r IN THE REAL WORLD

You might notice that my database fell into third normal form automatically

when I put it in second normal form. This is not unusual for very small data-

bases, but rare with the large complex databases used to describe real-world

enterprises. Even if your database seems to be in the third normal form already,

go through each field to see if it relates directly to its table.

FIGURE 11.4

The entity-
relationship

diagram for the
spy database.

One-to-one relationships are rare, because if the two entities are that closely
related, usually they can be combined into one table without any penalty. The spy
ER diagram in Figure 11.4 has no one-to-one relationships.

Describing Many-to-One Relationships

One-to-many (and many-to-one) relationships happen when one entity can con-
tain more than one instance of the other. For example, each operation can have
many spies, but in this example each agent can only be assigned to one mission
at a time. Thus the agent-to-operation relationship is considered a many-to-one
relationship, because a spy can have only one operation, but one operation can
relate to many agents. In this version of ER notation, I’m using crow’s feet to indi-
cate the many sides of the relationship.

There are actually several different kinds of one-to-many relationships, each with
a different use and symbol. For this overview I treat them all the same and use the
generic crow’s feet symbol. When you start writing more-involved databases,
investigate data diagramming more closely by looking into books on data normal-
ization and software engineering. Likewise, data normalization is a far more
involved topic than the brief discussion in this introductory book.

Recognizing Many-to-Many Relationships

The final type of relationship shown in the spy ER diagram is a many-to-many
relationship. This type of relationship occurs when each entity can have many
instances of the other. Agents and skills have this type of relationship, because
one agent can have any number of skills, and each skill can be used by any num-
ber of agents. A many-to-many relationship is usually shown by crow’s feet on
each end of the connecting line.

It’s important to generate an ER diagram of your data including the relationship
types, because different strategies for each type of relationship creation exist.
These strategies emerge as I build the SQL for the improved spy database.

Building Your Data Tables

After designing the data according to the rules of normalization, you are ready
to build sample data tables in SQL. It pays to build your tables carefully to avoid
problems. I prefer to build all my tables in an SQL script so I can easily rebuild
my database if (okay, when) my programs mess up the data structure. Besides,
enemy agents are always lurking about preparing to sabotage my operations.

TRICK

TRICK

367

C
h

a
p

te
r

1
1
 D

a
t a

N
o

r
m

a
li z

a
ti o

n

I also add plenty of sample data in the script. You don’t want to work with actual
data early on, because you are guaranteed to mess up somewhere during the
process. However, it is a good idea to work with sample data that is a copied sub-
set of the actual data. Your sample data should anticipate some of the anomalies
that might occur in actual data. (For example, what if a person doesn’t have a
middle name?)

My entire script for the spy database is available on the book’s CD as
buildSpy.sql. All SQL code fragments shown in the rest of this chapter come from
that file and use the MySQL syntax. If you can’t use MySQL or want to try an alter-
native, check out appendix B for information on SQLite, an intriguing alternative
to MySQL. SQLite scripts and database files for all the database examples in the
book are packaged on the CD that accompanies this book.

Setting Up the System

I began my SQL script with some comments that describe the database and a few
design decisions I made when building the database:

######################################

buildSpy.sql

builds and populates all databases for spy examples

uses mysql - should adapt easily to other rdbms

by Andy Harris for PHP/MySQL for Abs. Beg

######################################

368

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r IN THE REAL WORLD

Professional programmers often use expensive software tools to help build data

diagrams, but you don’t need anything more than paper and pencil to draw ER

figures. I do my best data design with a partner drawing on a white board. I like

to talk through designs out loud and look at them in a large format. Once I’ve

got a sense of the design, I usually use a vector-based drawing program to pro-

duce a more formal version of the diagram.

This type of drawing tool is useful because it allows you to connect elements

together, already has the crow’s feet lines available, and allows you to move ele-

ments around without disrupting the lines between them. Dia is an excellent

open-source program for drawing all kinds of diagrams. I used it to produce all the

ER figures in this chapter. A copy of Dia is on the CD that accompanies this book.

######################################

conventions

######################################

primary key = table name . ID

primary key always first field

all primary keys autonumbered

all field names camel-cased

only link tables use underscore

foreign keys indicated although mySQL does not enforce

every table used as foreign reference has a name field

######################################

######################################

#housekeeping

######################################

use chapter11;

DROP TABLE IF EXISTS badSpy;

DROP TABLE IF EXISTS agent;

DROP TABLE IF EXISTS operation;

DROP TABLE IF EXISTS specialty;

DROP TABLE IF EXISTS agent_specialty;

DROP TABLE IF EXISTS spyFirst;

Notice that I specified a series of conventions. These self-imposed rules help
make my database easier to manage. Some of the rules might not make sense yet
(because I haven’t identified what a foreign key is, for instance), but the impor-
tant thing is that I have clearly identified some rules that help later on.

The code then specifies the chapter11 database and deletes all tables if they
already existed. This behavior ensures that I start with a fresh version of the data.

Creating the agent Table

The normalized agent table is quite simple. The actual table is shown in Table 11.3.

The only data remaining in the agent table is the agent’s name and a numerical
field for the operation. The operationID field is used as the glue that holds
together the agent and operation tables.

I’ve added a few things to improve the SQL code that creates the agent table.

369

C
h

a
p

te
r

1
1
 D

a
t a

N
o

r
m

a
li z

a
ti o

n

370

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Agent ID Name Operation ID

1 Bond 1

2 Falcon 1

3 Cardinal 2

4 Blackford 2

TABLE 11.3 THE AGENT TABLE

These improvements enhance the behavior of the agent table, and simplify the
table tremendously.

CREATE TABLE agent (

agentID int(11) NOT NULL AUTO_INCREMENT,

name varchar(50) default NULL,

operationID int(11) default NULL,

PRIMARY KEY (agentID),

FOREIGN KEY (operationID) REFERENCES operation (operationID)

);

Recall that the first field in a table is usually called the primary key. Primary keys
must be unique and each record must have one.

• I named each primary key according to a special convention. Primary key
names always begin with the table name and end with ID. I added this
convention because it makes things easier when I write programs to work
with this data.

• The NOT NULL modifier ensures that all records of this table must have a
primary key.

• The AUTO_INCREMENT identifier is a special tool that allows MySQL to pick
a new value for this field if no value is specified. This will ensure that all
entries are unique.

• I added an indicator at the end of the CREATE TABLE statement to indicate
that agentID is the primary key of the agent table.

Not all databases use the AUTO_INCREMENT feature the same way as MySQL, but
most offer an alternative. You might need to look up some other way to automati-
cally generate key fields if you aren’t using MySQL. Check the Help system for
whatever DBMS you’re using to learn any specific quirks.

TRAP

371

C
h

a
p

te
r

1
1
 D

a
t a

N
o

r
m

a
li z

a
ti o

n

Creating a Reference to the operation Table

Take a careful look at the operationID field. This field contains an integer, which
refers to a particular operation. I also added an indicator specifying operationID
as a foreign key reference to the operation table. The operationID field in the
agent table contains a reference to the primary key of the operation table. This
type of field is referred to as a foreign key.

Some DBMS systems require you to specify primary and foreign keys. MySQL cur-
rently does not require this, but it’s a good idea to do so anyway for two reasons.
First, it’s likely that future versions of MySQL will require these statements,
because they improve a database’s reliability. Second, it’s good to specify in the
code when you want a field to have a special purpose, even if the DBMS doesn’t
do anything with that information.

Inserting a Value into the agent Table

The INSERT statements for the agent table have one new trick made possible by
the primary key’s AUTO_INCREMENT designation.

INSERT INTO agent VALUES(

null, ‘Bond’, 1

);

The primary key is initialized with the value null. This might be surprising
because primary keys are explicitly designed to never contain a null value. Since
the agentID field is set to AUTO_INCREMENT, the null value is automatically replaced
with an unused integer. This trick ensures that each primary key value is unique.

Building the operation Table

The new operation table contains information referring to an operation.

TRICK

Operation ID Name Description Location

1 Dancing Elephant Infiltrate suspicious zoo London

2 Enduring Angst Make bad guys feel really guilty Lower Volta

3 Furious Dandelion Plant crabgrass in enemy lawns East Java

TABLE 11.4 THE OPERATION TABLE

Each operation gets its own record in the operation table. All the data corre-
sponding to an operation is stored in the operation record. Each operation’s data
is stored only one time. This has a number of positive effects:

• It’s necessary to enter operation data only once per operation, saving time
on data entry.

• Since there’s no repeated data, you won’t have data inconsistency prob-
lems (like the circus/zoo problem).

• The new database requires less space, because there’s no repeated data.

• The operation is not necessarily tied to an agent, so you won’t accidentally
delete all references to an operation by deleting the only agent assigned to
that mission. (Remember, this could happen with the original data design.)

• If you need to update operation data, you don’t need to go through every
agent to figure out who was assigned to that operation. (Again, you would
have had to do this with the old database design.)

The SQL used to create the operation table is much like that used for the agent table:

CREATE TABLE operation (

operationID int(11) NOT NULL AUTO_INCREMENT,

name varchar(50) default NULL,

description varchar(50) default NULL,

location varchar(50) default NULL,

PRIMARY KEY (`OperationID`)

);

INSERT INTO operation VALUES(

null, ‘Dancing Elephant’,

‘Infiltrate suspicious zoo’, ‘London’

);

As you can see, the operation table conforms to the rules of normalization, and
it also is much like the agent table. Notice that I’m being very careful about how
I name things. SQL is (theoretically) case-insensitive, but I’ve found that this is
not always true. (I have found this especially in MySQL, where the Windows ver-
sions appear unconcerned about case, but UNIX versions treat operationID and
OperationID as different field names.) I specified that all field names will use
camel-case (just like you’ve been doing with your PHP variables). I also named the
key field according to my own formula (table name followed by ID).

372

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Using a Join to Connect Tables

The only downside to disconnecting the data tables is the necessity to rejoin the
data when needed. The user doesn’t care that the operation and the agent are in
different tables, but he will want the data to look as if they were on the same
table. The secret to reattaching tables is a tool called the inner join. Take a look
at the following SELECT statement in SQL:

SELECT agent.name AS agent, operation.name AS operation

FROM agent, operation

WHERE agent.operationID = operation.operationID

ORDER BY agent.name;

At first glance this looks like an ordinary query, but it is a little different. It joins
data from two different tables. Table 11.5 illustrates the results of this query.

Creating Useful Joins

An SQL query can pull data from more than one table. To do this, follow a few
basic rules.

• Specify the field names more formally if necessary. Notice that the SELECT
statement specifies agent.name rather than simply name. This is necessary
because both tables contain a field called name. Using the table.field
syntax is much like using a person’s first and last name. It’s not necessary
if there’s no chance of confusion, but in a larger environment the more
complete naming scheme can avoid confusion.

• Use the AS clause to clarify your output. This provides an alias for the
column and provides a nicer output.

373

C
h

a
p

te
r

1
1
 D

a
t a

N
o

r
m

a
li z

a
ti o

n

Agent Operation

Blackford Enduring Angst

Bond Dancing Elephant

Cardinal Enduring Angst

Falcon Dancing Elephant

Rahab Furious Dandelion

TABLE 11.5 COMBINING TWO TABLES

• Modify the FROM clause so it indicates both of the tables you’re pulling
data from. The FROM clause up to now has only specified one table.
In this example, it’s necessary to specify that data will be coming from
two different tables.

• Indicate how the tables will be connected using a modification of the
WHERE clause.

Examining a Join without a WHERE Clause

The WHERE clause helps clarify the relationship between two tables. As an expla-
nation, consider the following query:

SELECT

agent.name AS ‘agent’,

agent.operationID as ‘agent opID’,

operation.operationID as ‘op opID’,

operation.name AS ‘operation’

FROM agent, operation

ORDER BY agent.name;

This query is much like the earlier query, except it includes the operationID field
from each table and it omits the WHERE clause. You might be surprised by the
results, which are shown in Table 11.6.

The results of this query are called a Cartesian join, which shows all possible
combinations of agent and operation. Of course, you don’t really want all the
combinations—only those combinations where the two tables indicate the same
operation ID.

Adding a WHERE Clause to Make a Proper Join

Without a WHERE clause, all possible combinations are returned. The only concern-
worthy records are those where the operationID fields in the agent and operation
tables have the same value. The WHERE clause returns only these values joined by
a common operation ID.

The secret to making this work is the operationID fields in the two tables. You’ve
already learned that each table should have a primary key. The primary key field
is used to uniquely identify each database record. In the agents table, agentID is
the primary key. In operations, operationID is the primary key. (You might note
my unimaginative but very useful naming convention here.)

374

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

I was able to take all data that refers to the operation out of the agent table by
replacing those fields with a field that points to the operations table’s primary
key. A field that references the primary key of another table is called a foreign
key. Primary and foreign keys cement the relationships between tables.

Adding a Condition to a Joined Query

Of course, you can still use the WHERE clause to limit which records are shown. Use
the AND structure to build compound conditions. For example, this code returns the
code name and operation name of every agent whose code name begins with B:

SELECT

agent.name AS ‘agent’,

375

C
h

a
p

te
r

1
1
 D

a
t a

N
o

r
m

a
li z

a
ti o

n

Agent Agent Op ID Op Op ID Operation

Blackford 1 1 Dancing Elephant

Blackford 1 2 Enduring Angst

Blackford 1 3 Furious Dandelion

Bond 1 1 Dancing Elephant

Bond 1 2 Enduring Angst

Bond 1 3 Furious Dandelion

Cardinal 2 2 Enduring Angst

Cardinal 2 3 Furious Dandelion

Cardinal 2 1 Dancing Elephant

Falcon 1 1 Dancing Elephant

Falcon 1 2 Enduring Angst

Falcon 1 3 Furious Dandelion

Rahab 3 1 Dancing Elephant

Rahab 3 2 Enduring Angst

Rahab 3 3 Furious Dandelion

Op = operation

TABLE 11.6 JOINING AGENT AND OPERATION

WITHOUT A WHERE CLAUSE

376

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

operation.name AS operation

FROM agent, operation

WHERE agent.operationID = operation.operationID

AND agent.name LIKE ‘B%’;

Building a Link Table for
Many-to-Many Relationships

Once you’ve created an ER diagram, you can create new tables to handle all the
one-to-many relationships. It’s a little less obvious what to do with many-to-many
relationships such as the link between agents and skills. Recall that each agent
can have many skills, and several agents can use each skill. The best way to han-
dle this kind of situation is to build a special kind of table.

Enhancing the ER Diagram

Figure 11.5 shows a new version of the ER diagram that eliminates all many-many
relationships.

The ER diagram in Figure 11.5 improves on the earlier version shown in Figure
11.4 in a number of ways.

• I added (PK) to the end of every primary key.

• I added (FK) to the end of every foreign key.

THE TRUTH ABOUT INNER JOINS

You should know that the syntax I provided here is a convenient shortcut sup-

ported by most DBMS systems. The inner join’s formal syntax looks like this:

SELECT agent.name, operation.name

FROM

agent INNER JOIN operation

ON agent.OperationID = operation.OperationID

ORDER BY agent.name;

Many data programmers prefer to think of the join as part of the WHERE clause

and use the WHERE syntax. A few SQL databases (notably many offerings from

Microsoft) do not allow the WHERE syntax for inner joins and require the INNER
JOIN to be specified as part of the FROM clause. When you use this INNER JOIN
syntax, the ON clause indicates how the tables will be joined.

• The placements of the lines in the diagram are now much more important.
I now draw a line only between a foreign key reference and the correspond-
ing primary key in the other table. Every relationship should go between a
foreign key reference in one table and a primary key in the other.

• The other main improvement is the addition of the agent_specialty table.
This table is interesting because it contains nothing but primary and for-
eign keys. Each entry in this table represents one link between the agent
and specialty tables. All the actual data referring to the agent or specialty
are encoded in other tables. This arrangement provides a great deal of
flexibility.

Most tables in a relational database are about entities in the data set, but link
tables are about relationships between entities.

Creating the specialty Table

The specialty table is simple, as shown in Table 11.7.

As you can see, there is nothing in the specialty table that connects it directly
with any particular agent. Likewise, you find no references to specialties in the
agent table. The complex relationship between these two tables is handled by the
new agent_specialty table.

This is called a link table because it manages relationships between other tables.
Table 11.8 shows a sample set of data in the agent_specialty table.

TRICK

377

C
h

a
p

te
r

1
1
 D

a
t a

N
o

r
m

a
li z

a
ti o

n

FIGURE 11.5

This newer ER
diagram includes
a special table to
handle the many-
many relationship

Interpreting the agent_specialty
Table with a Query

Of course, the agent_specialty table is not directly useful to the user, because it
contains nothing but foreign key references. You can translate the data to some-
thing more meaningful with an SQL statement:

SELECT agent_specialtyID,

agent.name AS ‘agent’,

specialty.name AS ‘specialty’

FROM agent_specialty,

agent,

specialty

378

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Specialty ID Name

0 Electronics

1 Counterintelligence

2 Sabotage

3 Doily Design

4 Explosives

5 Flower Arranging

TABLE 11.7 THE SPECIALTY TABLE

Agent Specialty ID Agent ID Specialty ID

1 1 2

2 1 3

3 2 1

4 2 6

5 3 2

6 4 4

7 4 5

TABLE 11.8 THE AGENT_SPECIALTY TABLE

WHERE agent.agentID = agent_specialty.agentID

AND specialty.specialtyID = agent_specialty.specialtyID;

It requires two comparisons to join the three tables. It is necessary to forge the
relationship between agent and agent_specialty by common agentID values. It’s
also necessary to secure the bond between specialty and agent_specialty by
comparing the specialtyID fields. The results of such a query show that the cor-
rect relationships have indeed been joined, as you can see in Table 11.9.

The link table provides the linkage between tables that have many-to-many
relationships. Each time you want a new relationship between an agent and a
specialty, you add a new record to the agent_specialty table.

Creating Queries That Use Link Tables

Whenever you want to know about the relationships between agents and special-
ties, the data is available in the agent_specialty table. For example, if you need to
know which agents know flower arranging, you can use the following query:

SELECT

agent.name

FROM

agent,

specialty,

agent_specialty

WHERE agent.agentID = agent_specialty.agentID

AND agent_specialty.specialtyID = specialty.specialtyID

AND specialty.name = ‘Flower Arranging’;

379

C
h

a
p

te
r

1
1
 D

a
t a

N
o

r
m

a
li z

a
ti o

n

Agent Specialty ID Agent Specialty

1 Bond Sabotage

2 Bond Doily Design

3 Falcon Counterintelligence

5 Cardinal Sabotage

6 Blackford Explosives

7 Blackford Flower Arranging

TABLE 11.9 QUERY INTERPRETATION OF

AGENT_SPECIALTY TABLE

380

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

This query looks a little scary, but it really isn’t bad. This query requires data from
three different tables. The output needs the name from the agent table. I don’t
want to remember what specialty number is associated with Flower Arranging, so
I let the query look that up from the specialty table. Since I need to know which
agent is associated with a particular specialty, I use the agent_specialty table to
link up the other two tables. The WHERE clause simply provides the joins.

The following phrase cements the relationship between agents and agent_specialty:

agents.agentID = agent_specialty.agentID

Likewise, the following ensures the connection between specialties and
agent_specialty:

agent_specialty.specialtyID = specialties.specialtyID

The last part of the WHERE clause is the actual conditional part of the query that
only returns records where the specialty is flower arranging. (You know, flower
arrangement can be a deadly art in the hands of a skilled practitioner.)

It might be helpful to imagine the ER diagram when building queries. If two
tables have lines between them, use a WHERE clause to represent each line. To repli-
cate a one-to-many join (with one line and two tables) you need one WHERE line to
handle the connection. If creating a many-to-many join with a link table, you
need a compound condition to handle connecting each table to the link table.
You can then add any other conditions that help you narrow the query.

Summary

In this chapter you move beyond programming to an understanding of data, the
real fuel of modern applications. You learn how to take a poorly designed table
and convert it into a series of well-organized tables that can avoid a lot of data
problems. You learn about three stages of normalization and how to build an
Entity Relationship diagram. You can recognize three kinds of relationships
between entities and build normalized tables in SQL, including pointers for pri-
mary and foreign keys. You can connect normalized tables with INNER JOIN SQL
statements. You know how to simulate a many-to-many relationship by building
a link table. The civilized world is safer for your efforts.

381

C
h

a
p

te
r

1
1
 D

a
t a

N
o

r
m

a
li z

a
ti o

n

CHALLENGES

1. Locate ER diagrams for data you work with every day. (Check with your

company’s Information Technology department, for example.) Examine

these documents and see if you can make sense of them.

2. Examine a database you use regularly. Determine if it follows the require-

ments stated in this chapter for a well-designed data structure. If not,

explain what might be wrong with the data structure and how it could be

corrected.

3. Diagram an improved data structure for the database you examined in

Question 2. Create the required tables in SQL and populate them with sam-

ple data.

4. Design a database for data you use every day. (Be warned, most data prob-

lems are a lot more complex than they first appear.) Create a data diagram;

then build the tables and populate with sample data.

This page intentionally left blank

T
his book begins by looking at HTML pages, which are essentially static

documents. It then reveals how to generate dynamic pages with the

powerful PHP language. The last few chapters show how to use a database

management system such as MySQL to build powerful data structures. This chapter

ties together the PHP programming and data programming aspects to build a full-blown

data-management system for the spy database. The system you learn can easily be

expanded to any kind of data project you can think of, including e-commerce

applications. Specifically, you learn how to:

• Design a moderate-to-large data application

• Build a library of reusable data functions

• Optimize functions for use across data sets

• Include library files in your programs

There isn’t really much new PHP or MySQL code to learn in this chapter. The focus is

on building a larger project with minimum effort.

Building a
Three-Tiered

Data Application

12
C H A P T E R

384

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Introducing the SpyMaster Program

The SpyMaster program is a suite of PHP programs that allows access to the spy
database created in chapter 11, “Data Normalization.” While the database cre-
ated in that chapter is flexible and powerful, it is not easy to use unless you know
SQL. Even if your users do understand SQL, you don’t want them to have direct
control of a database, because too many things can go wrong.

You need to build some sort of front-end application to the database. In essence,
this system has three levels.

• The client computer handles communication with the user.

• The database server (MySQL) manages the data.

• The PHP program acts as interpreter between the client and database.
PHP provides the bridge between the client’s HTML language and the
database’s SQL language.

This kind of arrangement is frequently called a three-tier architecture. As you
examine the SpyMaster program throughout this chapter, you learn some of the
advantages of this particular approach.

Viewing the Main Screen

Start by looking at the program from the user’s point of view as shown in Figure 12.1.

The main page has two sections. The first is a series of data requests. Each of
these requests maps to a query.

Viewing the Results of a Query

When the user selects a query and presses the Submit button, a screen like the
one in Figure 12.2 appears.

The queries are all prebuilt, which means the user cannot make a mistake by
typing in inappropriate SQL code. It also limits the usefulness of the database.
Fortunately, you can add new queries.

385

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

FIGURE 12.1

The entry point to
the SpyMaster

database is clean
and simple.

FIGURE 12.2

The results of the
query are viewed in

an HTML table.

Viewing Table Data

The other part of the main screen (shown again in Figure 12.3) allows the user to
directly manipulate data in the tables. Since this is a more powerful (and thus dan-
gerous) enterprise, access to this part of the system is controlled by a password.

As an example, by selecting the agent table I see a screen like Figure 12.4.

386

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 12.3

From the main
screen you can
also access the
table data with

a password.

FIGURE 12.4

The editTable
screen displays all

the information
in a table.

387

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

From this screen, the user can see all the data in the chosen table. The page also
gives the user links to add, edit, or delete records from the table.

Editing a Record

If the user chooses to edit a record, a screen similar to Figure 12.5 appears.

The Edit Record page has some important features. First, the user cannot directly
change the primary key. If she could do so, it would have profound destabilizing
consequences on the database. Also note the way the operationID field is pre-
sented. The field itself is a primary key with an integer value, but it would be very
difficult for a user to directly manipulate the integer values. Instead, the pro-
gram provides a drop-down list of operations. When the user chooses from this
list, the appropriate numerical index is sent to the next page.

Confirming the Record Update

When the user clicks the button, a new screen appears and announces the suc-
cessful update as in Figure 12.6.

Deleting a Record

The user can also choose to delete a record from the Edit Table page. This action
results in the basic screen shown in Figure 12.7.

FIGURE 12.5

The user is editing
a record in the
agent table.

388

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 12.6

The user can
see the newly

updated record.

FIGURE 12.7

It’s very easy to
delete a record.

You can tell from this example why it’s so important to have a script for generating
sample data. I had to delete and modify records several times when I was testing
the system. After each test I easily restored the database to a stable condition by
reloading the buildSpy.sql file with the MySQL SOURCE command.

TRICK

Adding a Record

Adding a record to the table is a multistep process, much like editing a record.
The first page (shown in Figure 12.8) allows you to enter data in all the appropri-
ate fields.

Like the Edit Record screen, the Add Record page does not allow the user to
directly enter a primary key. This page also automatically generates drop-down
SELECT boxes for foreign key fields like operationID.

Processing the Add

When the user chooses to process the add, another page confirms the add (or
describes the failure, if it cannot add the record). This confirmation page is
shown in Figure 12.9.

Building the Design of
the SpyMaster System

It can be intimidating to think of all the operations in the SpyMaster system. The
program has a lot of functionality. It could be overwhelming to start coding this
system without some sort of strategic plan.

389

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

FIGURE 12.8

The add screen
includes list boxes

for foreign key
references.

390

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Creating a State Diagram

Complex programming problems have many approaches. For this particular
problem I decided to concentrate on the flow of data through a series of mod-
ules. Figure 12.10 shows my overall strategy.

The illustration in Figure 12.10 is sometimes called a state diagram. This kind of
illustration identifies what particular problems need to be solved and indicates
modules that might be able to solve these problems.

FIGURE 12.9

The user has
successfully

added an agent.

FIGURE 12.10

A state diagram of
the SpyMaster

system.

I began the process by thinking about everything that a data-management system
should be able to do. Each major idea is broken into a module. A module often
represents a single screen. A PHP program often (although not always) supports
each model.

The View Query Module

Obviously, users should be able to get queries from the database. This is one of
the most common tasks of the system. I decided that the View Query module
should be able to view any query sent to it and display an appropriate result.

The Edit Table Module

The other primary task in a data system is data definition, which includes adding
new records, deleting records, and updating information. This kind of activity
can be destructive, so it should be controlled using some kind of access system.
All data definition is based on the database’s underlying table structure, so it is
important to allow the three main kinds of data definition (editing, deletion, and
updating) on each table.

The Edit Table module provides the interface to these behaviors. It shows all the
current records in a table and lets the user edit or delete any particular record.
It also has a button that allows the user to add a new record to this table. It’s
important to see that Edit Table doesn’t actually cause anything to change in the
database. Instead, it serves as a gateway to several other editing modules.

The Edit Record and Update Record Modules

If you look back at the state diagram, you see the Edit Table module leading to
three other modules. The Edit Record module shows one record and allows the
user to edit the data in the record. However, the database isn’t actually updated
until the user submits changes, so editing a record is a two-step process. After the
user determines changes in the Edit Record module, program control moves on
to the Update Record module, which actually processes the request and makes
the change to the database.

The Add Record and Process Add Modules

Adding a record is similar to editing, as it requires two passes. The first module
(Add Record) generates a form that allows the user to input the new record details.
Once the user has determined the record data, the Process Add module creates
and implements the SQL necessary to incorporate the new record in the table.

391

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

The Delete Record Module

Deleting a record is a simple process. There’s no need for any other user input, so
it requires only one module to process a deletion request.

Designing the System

The state diagram is very helpful, because it allows you to see an overview of the
entire process. More planning is still necessary, however, because the basic state
diagram leaves a lot of questions unanswered. For example:

• Will the Edit Table module have to be repeated for each table?

• If so, will I also need copies of all other editing modules?

• Can I automate the process?

• What if the underlying data structure is changed?

• What if I want to apply a similar structure to another database?

• How can I allow queries to be added to the system?

It is tempting to write a system specifically to manage the spy database. The advan-
tage of such a system is that it will know exactly how to handle issues relevant to
the spy system. For example, operationID is a foreign key reference in the agent
table, so it should be selected by a drop-down list whenever possible. If you build
a specific module to handle editing the agent table, you can make this happen.

However, this process quickly becomes unwieldy if you have several tables. It is
better to have a smart procedure that can build an edit screen for any table in the
database. It would be even better if your program could automatically detect for-
eign key fields and produce the appropriate user-interface element (an HTML
SELECT clause) when needed. In fact, you could build an entire library of generic
routines that could work with any database. That’s exactly the approach I chose.

Building a Library of Functions

Although the SpyMaster system is the largest example in this book, most of it is
surprisingly simple. The system’s centerpiece is a file called spyLib.php. This file
is not meant to run in the user’s browser at all. Instead, it contains a library of
functions that simplify coding of any database. I stored as much of the PHP code
as I could in this library. All the other PHP programs in the system make use of
the various functions in the library. This approach has a number of advantages:

• The overall code size is smaller since code does not need to be
repeated.

392

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

• If I want to improve a module, I do it once in the library rather than in
several places.

• It is extremely simple to modify the code library so it works with another
database.

• The details of each particular module are hidden in a separate library so
I can focus on the bigger picture when writing each PHP page.

• The routines can be reused to work with any table in the database.

• The routines can automatically adjust to changes in the data structure.

• The library can be readily reused for another project.

Figure 12.11 shows a more detailed state diagram.

When you begin looking at actual code, you’ll see most of the PHP programs are
extremely simple. They usually just collect data for a library function, send pro-
gram control off to that function, and then print any output produced by the
function.

Writing the Non-Library Code

I begin here by describing all the parts of this project except the library. The
library module is driven by the needs of the other PHP programs, so it makes
sense to look at the other programs first.

393

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

FIGURE 12.11

This state diagram
illustrates the
relationship

between PHP
programs and

functions in the
spyLib code

library.

Preparing the Database

The database for this segment is almost the same as the one used in chapter 11,
“Data Normalization.” I added one table to store queries. All other tables are the
same as those in chapter 11. The SQL script that creates this new version of the spy
database is available on the CD as buildSpy.sql.

Note I have modified the database slightly from chapter 11, because the new ver-
sion includes several queries as part of the data! In order to make the program
reasonably secure, I don’t want typical users to be able to make queries. I also
don’t want users to be limited to the few queries I thought of when building this
system. One solution is to store a set of queries in the database and let appropri-
ate users modify the queries. I called my new table the storedQuery table. It can
be manipulated in the system just like the other tables, so a user with password
access can add, edit, and delete queries. Here is the additional code used to build
the storedQuery table:

######################################

build storedQuery table

######################################

CREATE TABLE storedQuery (

storedQueryID int(11) NOT NULL AUTO_INCREMENT,

description varchar(30),

text varchar(255),

PRIMARY KEY (storedQueryID)

);

INSERT INTO storedQuery VALUES (

null,

‘agent info’,

‘SELECT * FROM agent’

);

The storedQuery table has three fields. The description field holds a short English
description of each query. The text field holds the query’s actual SQL code.

Examining the spyMaster.php Program

The sypMaster.php program is the entry point into the system. All access to the
system comes from this page. It has two main parts. One handles queries from
ordinary users, and the other allows more sophisticated access by authorized

394

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

users. Each segment encapsulates an HTML form that sends a request to a par-
ticular PHP program. The first segment has a small amount of PHP code that sets
up the query list box.

Proper SQL syntax is extremely important when you store SQL syntax inside an
SQL database as I’m doing here. It’s especially important to keep track of single
and double quotation marks. To include the single quotation marks that some
queries require, precede the mark with a backslash character. For example,
assume I want to store the following query:

SELECT * FROM agent WHERE agent.name = ‘Bond’

I would actually store this text instead:

SELECT * FROM agent WHERE agent.name = \‘Bond\’

This is necessary for storing the single quotation mark characters. Otherwise they
are interpreted incorrectly.

In SQLite, the syntax is two single quotation marks together. The SQLite version of
the query text reads like this:

SELECT * FROM agent WHERE agent.name = ‘’Bond’’

Creating the Query Form

<html>

<head>

<title>Spy Master Main Page</title>

<?

include “spyLib.php”;

?>

</head>

<body>

<form action = “viewQuery.php”

method = “post”>

<table border = 1

width = 200>

<tr>

<td><center><h2>View Data</h2></center></td>

</tr>

<tr>

<td><center>

<select name = “theQuery” size = 10>

TRAP

395

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

<?

//get queries from storedQuery table

$dbConn = connectToSpy();

$query = “SELECT * from storedQuery”;

$result = mysql_query($query, $dbConn);

while($row = mysql_fetch_assoc($result)){

$currentQuery = $row[‘text’];

$theDescription = $row[‘description’];

print <<<HERE

<option value = “$currentQuery”>$theDescription</option>

HERE;

} // end while

?>

</select>

</center>

</tr>

<tr>

<td><center>

<input type = “submit”

value = “execute request” >

</center></td>

</tr>

</table>

</form>

Most of the code is ordinary HTML. The HTML code establishes a form that calls
viewQuery.php when the user presses the Submit button. I added some PHP code
that generates a special input box based on the entries in the storedQuery table.

Including the spyLib Library

The first thing to notice is the include() statement. This command allows you to
import another file. PHP reads that file and interprets it as HTML. An included
file can contain HTML, cascading style sheets (CSS), or PHP code. Most of the func-
tionality for the spy data program is stored in the spyLib.php library program.

396

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

All the other PHP programs in the system begin by including spyLib.php. Once
this is done, every function in the library can be accessed as if it were a locally
defined function. This provides tremendous power and flexibility to a program-
ming system.

Connecting to the spy Database

The utility of the spyLib library becomes immediately apparent as I connect to
the spy database. Rather than worrying about exactly what database I’m con-
necting to, I simply defer to the connectToSpy() function in spyLib(). In the cur-
rent code I don’t need to worry about the details of connecting to the database.
With a library I can write the connecting code one time and reuse that function
as needed.

Notice the connectToSpy() function returns a data connection pointer I can use
for other database activities.

There’s another advantage to using a library when connecting to a database. It’s
likely that if you move this code to another system you’ll have a different way to
log in to the data server. If the code for connecting to the server is centralized,
it only needs to be changed in one place when you want to update the code.
This is far more efficient than searching through dozens of programs to find every
reference to the mysql_connect() function. Also, if you want to convert the
MySQL-based code in this book to SQLite or another database system, you only
have to change the connectToSpy() function. That’s pretty cool, huh?

Retrieving the Queries

I decided to encode a series of prepackaged queries into a table. (I explain more
about my reasons for this in the section on the viewQuery program.) The main
form must present a list of query descriptions and let the user select one of these
queries. I use an SQL SELECT statement to extract everything from the storedQuery
table. I then use the description and text fields from storedQuery to build a
multiline list box.

Creating the Edit Table Form

The second half of the spyMaster program presents all the tables in the database
and allows the user to choose a table for later editing. Most of the functionality in
the system comes through this section. Surprisingly, there is no PHP code at all in
this particular part of the page. An HTML form sends the user to the editTable.php
program.

TRICK

397

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

<hr>

<form action = “editTable.php”

method = “post”>

<table border = 1>

<tr>

<td colspan = 2><center>

<h2>Edit / Delete table data</h2>

</center></td>

</tr>

<tr>

<td>Password:</td>

<td>

<input type = “password”

name = “pwd”

value = “absolute”>

</td>

</tr>

<tr>

<td colspan = 2><center>

<select name = “tableName”

size = 5>

<option value = “agent”>agents</option>

<option value = “specialty”>specialties</option>

<option value = “operation”>operations</option>

<option value = “agent_specialty”>agent_specialty</option>

<option value = “storedQuery”>storedQuery</option>

</select>

</center></td>

</tr>

<tr>

<td colspan = 2><center>

<input type = “submit”

value = “edit table”>

</center></td>

</tr>

</table>

398

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

</form>

</body>

</html>

To make debugging easier, I preloaded the password field with the appropriate
password. In a production environment, you should, of course, leave the password
field blank so the user cannot get into the system without the password.

Building the viewQuery.php Program

When the user chooses a query, program control is sent to the viewQuery.php
program. This program does surprisingly little on its own:

<html>

<head>

<title>View Query</title>

</head>

<body>

<center>

<h2>Query Results</h2>

</center>

<?

include “spyLib.php”;

$dbConn = connectToSpy();

//take out escape characters...

$theQuery = str_replace(“\’”, “‘“, $theQuery);

print qToTable($theQuery);

print mainButton();

?>

</body>

</html>

TRICK

399

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

Once viewQuery.php connects to the library, it uses functions in the library to con-
nect to the database and print desired results. The qToTable() function does most
of the actual work, taking whatever query is passed to it and generating a table
with add, delete, and edit buttons.

The str_replace() function is necessary because SQL queries contain single quo-
tation mark (‘) characters. When I store a query as a VARCHAR entity, the single quo-
tation marks embedded in the query cause problems. The normal solution to this
problem is to use a backslash, which indicates that the mark should not be imme-
diately interpreted, but should be considered a part of the data. The problem with
this is the backslash is still in the string when I try to execute the query. The
str_replace() function replaces all instances of \’ with a simple single quote (‘).

Note that the qToTable() function doesn’t actually print anything to the screen.
All it does is build a complex string of HTML code. The viewQuery.php program
prints the code to the screen.

If you are using a library, it’s best if the library code does not print anything directly
to the screen. Instead, it should return a value to whatever program called it. This
allows multiple uses for the data. For example, if the qToTable() function printed
directly to the screen, you could not use it to generate a file. Since the library code
returns a value but doesn’t actually do anything with that value, the code that calls
the function has the freedom to use the results in multiple ways.

TRICK

400

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

WHY STORE QUERIES IN THE DATABASE?

You might wonder why I chose to store queries in the database. After all, I could

have let the user type in a query directly or provided some form that allows the

user to search for certain values. Either of these approaches has advantages, but

they also pose some risks. It’s very dangerous to allow direct access to your data

from a Web form. Malicious users can introduce Trojan horse commands that

snoop on your data, change data, or even delete information from the database.

I sometimes build a form that has enough information to create an SQL query and

then build that query in a client-side form. (Sounds like a good end-of-chapter

exercise, right?) In this case, I stored queries in another table. People with

administrative access can add new queries to the database, but ordinary users

do not. I preloaded the storedQuery database with a number of useful queries,

then added the capacity to add new queries whenever the situation demands it.

Drawbacks remain (primarily that ordinary users cannot build custom queries),

but it is far more secure than a system that builds a query based on user input.

The mainButton() function produces a simple HTML form that directs the user
back to the spyMaster.php page. Even though the code for this is relatively simple,
it is repeated so often that it makes sense to store it in a function rather than
copying and pasting it in every page of the system.

Viewing the editTable.php Program

The editTable.php follows a familiar pattern. It has a small amount of PHP code,
but most of the real work is sent off to a library function. This module’s main job
is to check for an administrative password. If the user does not have the appro-
priate password, further access to the system is blocked. If the user does have the
correct password, the very powerful tToEdit() function provides access to the
add, edit, and delete functions.

<html>

<head>

<title>Edit table</title>

</head>

<body>

<h2>Edit Table</h2>

<?

include “spyLib.php”;

//check password

if ($pwd == $adminPassword){

$dbConn = connectToSpy();

print tToEdit(“$tableName”);

} else {

print “<h3>You must have administrative access to proceed</h3>\n”;

} // end if

print mainButton();

?>

</body>

</html>

The $pwd value comes from a field in the spyMaster.php page. The $adminPassword
value is stored in spyLibrary.php. (The default admin password is absolute, but
you can change it to whatever you want by editing spyLib.php.)

401

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

Viewing the editRecord.php Program

The editRecord.php program is called from a form generated by editTable.php.
(Actually, the tToEdit() function generates the form, but tToEdit() is called from
editTable.php.) This program expects variables called $tableName, $keyName, and
$keyVal. These variables, automatically provided by tToEdit(), help editRecord
build a query that returns whatever record the user selects. (You can read ahead
to the description of tToEdit() for details on how this works.)

<html>

<head>

<title>Edit Record</title>

</head>

<body>

<h1>Edit Record</h1>

<?

// expects $tableName, $keyName, $keyVal

include “spyLib.php”;

$dbConn = connectToSpy();

$query = “SELECT * FROM $tableName WHERE $keyName = $keyVal”;

print smartRToEdit($query);

print mainButton();

?>

</body>

</html>

The editRecord.php program prints the results of the smartRToEdit() library func-
tion. This function takes the single-record query and prints HTML code that lets
the user appropriately update the record.

Viewing the updateRecord.php Program

The smartRToEdit() function calls another PHP program called updateRecord.php.
This program calls a library function that actually commits the user’s changes to
the database.

402

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

<html>

<head>

<title>Update Record</title>

</head>

<body>

<h2>Update Record</h2>

<?

include “spyLib.php”;

$dbConn = connectToSpy();

$fieldNames = “”;

$fieldValues = “”;

foreach ($_REQUEST as $fieldName => $value){

if ($fieldName == “tableName”){

$theTable = $value;

} else {

$fields[] = $fieldName;

$values[] = $value;

} // end if

} // end foreach

print updateRec($theTable, $fields, $values);

print mainButton();

?>

</body>

</html>

It is more convenient for the updateRec() function if the field names and values
are sent as arrays. Therefore, the PHP code in updateRecord.php converts the
$_REQUEST array to an array of fields and another array of values. These two arrays
are passed to the updateRec() function, which processes them.

403

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

Viewing the deleteRecord.php Program

The deleteRecord.php program acts in a now-familiar manner. It mainly serves as
a wrapper for a function in the spyLib library. In this particular case, the pro-
gram simply sends the name of the current table, the name of the key field, and
the value of the current record’s key to the delRec() function. That function
deletes the record and returns a message regarding the success or failure of the
operation.

<html>

<head>

<title>Delete Record</title>

</head>

<body>

<h2>Delete Record</h2>

<?

include “spyLib.php”;

$dbConn = connectToSpy();

print delRec($tableName, $keyName, $keyVal);

print mainButton();

?>

</body>

</html>

Viewing the addRecord.php Program

Adding a record, which requires two distinctive steps, is actually much like edit-
ing a record. The addRecord.php program calls the tToAdd() function, which
builds a form allowing the user to add data to whichever table is currently
selected. It isn’t necessary to send any information except the name of the table
to this function, because tToAdd() automatically generates the key value.

<html>

<head>

<title>Add a Record</title>

</head>

<body>

<h2>Add Record</h2>

<?

404

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

include “spyLib.php”;

$dbConn = connectToSpy();

print tToAdd($tableName);

print mainButton();

?>

</body>

</html>

Viewing the processAdd.php Program

The tToAdd() function called by the addRecord.php program doesn’t actually add a
record. Instead, it places an HTML form on the screen that allows the user to enter
the data for a new record. When the user submits this form, he is passed to the
processAdd.php program, which calls procAdd() in the library code. The procAdd()
function generates the appropriate SQL code to add the new record to the table.
In order to do this, procAdd() needs to know the field names and values. The names
and values are passed to the function in arrays just like in updateRecord.php.

<html>

<head>

<title>Process Add</title>

</head>

<body>

<h2>Process Add</h2>

<?

include “spyLib.php”;

$dbConn = connectToSpy();

$fieldNames = “”;

$fieldValues = “”;

foreach ($_REQUEST as $fieldName => $value){

if ($fieldName == “tableName”){

$theTable = $value;

} else {

$fields[] = $fieldName;

405

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

406

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

$values[] = $value;

} // end if

} // end foreach

print procAdd($theTable, $fields, $values);

print mainButton();

?>

</body>

</html>

Creating the spyLib Library Module

Although I have described several PHP programs in this chapter, most of them
are simple. The spyLib library code does most of the heavy lifting. Having a
library like spyLib makes data programming pretty easy, because you don’t have
to know all the spyLib details to make it work. All you need is a basic under-
standing of the functions in the library, what each function expects as input, and
what it will produce as output.

Although this library has a good amount of code (over 500 lines, in fact), there are
no new concepts in the library code. It’s worth looking carefully at this code
because it can give you a good idea of how to create your own libraries. You also find
there’s no better way to understand the library than to dig around under the hood.

Setting a CSS Style

Some of the simplest elements can have profound effects. One example of this
maxim is the storage of a CSS style in the library code. Each program in the system
operates using the style specified in the library. This means you can easily change
the look and feel of the entire system by manipulating one <style></style>
block.

<style type = “text/css”>

body{

background-color: black;

color: white;

text-align:center

}

</style>

When you include a file, it is interpreted as HTML, not PHP. This means you can
place any HTML code in an include file and it is automatically inserted in your
output wherever the include function occurred. I took advantage of this fact to
include a CSS block in the library. If you want PHP code in your library file,
surround your code with PHP tags (<? ?>) in the library file.

Setting Systemwide Variables

Another huge advantage of a library file is the ability to set and use variables that
have meaning throughout the entire system. Since each PHP program in the sys-
tem includes the library, all have access to any variables declared in the library
file’s main section. Of course, you need to use the global keyword to access a
global variable from within a function.

<?

//spyLib.php

//holds utilities for spy database

//variables

$userName = “”;

$password = “”;

$serverName = “localhost”;

$dbName = “chapter12”;

$dbConn = “”;

$adminPassword = “absolute”;

$mainProgram = “spyMaster.php”;

I stored a few key data points in the systemwide variables. The $userName, $password,
and $serverName variables set up the data connection. I did this because I expect
people to reuse my library for their own databases. They definitely need to
change this information to connect to their own copy of MySQL. It’s much safer
for them to change this data in variables than in actual program code. If you’re
writing code for reuse, consider moving anything the code adopter might change
into variables.

The $adminPassword variable holds the password used to edit data in the system.
Again, I want anybody reusing this library (including me) to change this value
without having to dig through the code.

The $mainProgram variable holds the URL of the “control pad” program of the sys-
tem. In the spy system, I want to provide access to spyMaster.php in every screen.

HINT

407

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

The mainButton() function uses the value of $mainProgram to build a link back to
the primary screen in every other document produced by the system.

Connecting to the Database

The connectToSpy() function is fundamental to the spy system. It uses system-
level variables to generate a database connection. It returns an error message if
it is unable to connect to the database. The mysql_error() function prints an SQL
error message if the data connection was unsuccessful. This information may not
be helpful to the end user, but it might give you some insight as you are debug-
ging the system.

function connectToSpy(){

//connects to the spy DB

global $serverName, $userName, $password;

$dbConn = mysql_connect($serverName, $userName, $password);

if (!$dbConn){

print “<h3>problem connecting to database...</h3>\n”;

} // end if

$select = mysql_select_db(“chapter12”);

if (!$select){

print mysql_error() . “
\n”;

} // end if

return $dbConn;

} // end connectToSpy

The connectToSpy() function returns a connection to the database that is subse-
quently used in the many queries passed to the database throughout the system’s
life span.

Creating a Quick List from a Query

I created a few functions in the spyMaster library that didn’t get used in the pro-
ject’s final version. The qToList() function is a good example. This program takes
any SQL query and returns a simply formatted HTML segment describing the
data. I find this format useful when debugging because no complex formatting
gets in the way.

function qToList($query){

//given a query, makes a quick list of data

global $dbConn;

408

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

$output = “”;

$result = mysql_query($query, $dbConn);

//print “dbConn is $dbConn
”;

//print “result is $result
”;

while ($row = mysql_fetch_assoc($result)){

foreach ($row as $col=>$val){

$output .= “$col: $val
\n”;

} // end foreach

$output .= “<hr>\n” ;

} // end while

return $output;

} // end qToList

Building an HTML Table from a Query

The qToTable() function is a little more powerful than qToList(). It can build
an HTML table from any valid SQL SELECT statement. The code uses the
mysql_fetch_field() function to determine field names from the query result. It
also steps through each row of the result, printing an HTML row corresponding
to the record.

function qToTable($query){

//given a query, automatically creates an HTML table output

global $dbConn;

$output = “”;

$result = mysql_query($query, $dbConn);

$output .= “<table border = 1>\n”;

//get column headings

//get field names

$output .= “<tr>\n”;

while ($field = mysql_fetch_field($result)){

$output .= “ <th>$field->name</th>\n”;

} // end while

$output .= “</tr>\n\n”;

//get row data as an associative array

while ($row = mysql_fetch_assoc($result)){

409

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

$output .= “<tr>\n”;

//look at each field

foreach ($row as $col=>$val){

$output .= “ <td>$val</td>\n”;

} // end foreach

$output .= “</tr>\n\n”;

}// end while

$output .= “</table>\n”;

return $output;

} // end qToTable

The viewQuery.php program calls the qToTable() function, but it could be used
anytime you want an SQL query formatted as an HTML table (which turns out to
be quite often).

Building an HTML Table for Editing an SQL Table

If the user has appropriate access, she should be allowed to add, edit, or delete
records in any table of the database. While qToTable() is suitable for viewing the
results of any SQL query, it does not provide these features. The tToEdit() function
is based on qToTable() with a few differences:

• tToEdit() does not accept a query, but the name of a table. You cannot
edit joined queries directly, only tables, so this limitation is sensible.
tToEdit() creates a query that returns all records in the specified table.

• In addition to printing the table data, tToEdit() adds two forms to each
record.

• One form contains all the data needed by the editRecord.php program
to begin the record-editing process.

• The other form added to each record sends all data necessary for
deleting a record and calls the deleteRecord.php program.

One more form at the bottom of the HTML table allows the user to add a record
to this table. This form contains information that the addRecord.php program
needs.

function tToEdit($tableName){

//given a table name, generates HTML table including

//add, delete and edit buttons

global $dbConn;

410

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

$output = “”;

$query = “SELECT * FROM $tableName”;

$result = mysql_query($query, $dbConn);

$output .= “<table border = 1>\n”;

//get column headings

//get field names

$output .= “<tr>\n”;

while ($field = mysql_fetch_field($result)){

$output .= “ <th>$field->name</th>\n”;

} // end while

//get name of index field (presuming it’s first field)

$keyField = mysql_fetch_field($result, 0);

$keyName = $keyField->name;

//add empty columns for add, edit, and delete

$output .= “<th></th><th></th>\n”;

$output .= “</tr>\n\n”;

//get row data as an associative array

while ($row = mysql_fetch_assoc($result)){

$output .= “<tr>\n”;

//look at each field

foreach ($row as $col=>$val){

$output .= “ <td>$val</td>\n”;

} // end foreach

//build little forms for add, delete and edit

//delete = DELETE FROM <table> WHERE <key> = <keyval>

$keyVal = $row[“$keyName”];

$output .= <<< HERE

<td>

<form action = “deleteRecord.php”>

<input type = “hidden”

name = “tableName”

value = “$tableName”>

411

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

<input type= “hidden”

name = “keyName”

value = “$keyName”>

<input type = “hidden”

name = “keyVal”

value = “$keyVal”>

<input type = “submit”

value = “delete”></form>

</td>

HERE;

//update: won’t update yet, but set up edit form

$output .= <<< HERE

<td>

<form action = “editRecord.php”

method = “post”>

<input type = “hidden”

name = “tableName”

value = “$tableName”>

<input type= “hidden”

name = “keyName”

value = “$keyName”>

<input type = “hidden”

name = “keyVal”

value = “$keyVal”>

<input type = “submit”

value = “edit”></form>

</td>

HERE;

$output .= “</tr>\n\n”;

}// end while

//add = INSERT INTO <table> {values}

//set up insert form send table name

$keyVal = $row[“$keyName”];

$output .= <<< HERE

412

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

<td colspan = “5”>

<center>

<form action = “addRecord.php”>

<input type = “hidden”

name = “tableName”

value = “$tableName”>

<input type = “submit”

value = “add a record”></form>

</center>

</td>

HERE;

$output .= “</table>\n”;

return $output;

} // end tToEdit

Look carefully at the forms for editing and deleting records. These forms contain
hidden fields with the table name, key field name, and record number. This
information will be used by subsequent functions to build a query specific to the
record associated with that particular table row.

Creating a Generic Form to Edit a Record

The table created in tToEdit() calls a program called editRecord.php. This pro-
gram accepts a one-record query. It prints out an HTML table based on the results
of that query. The output of rToEdit() is shown in Figure 12.12.

The rToEdit function produces a very simple HTML table. Every field has a corre-
sponding textbox. The advantage of this approach is that it works with any table.
However, the use of this form is quite risky.

• The user should not be allowed to change the primary key, because that
would edit some other record, which could have disastrous results.

• The operationID field is a foreign key reference. The only valid entries to
this field are integers corresponding to records in the operation table.
There’s no way for the user to know what operation a particular integer is
related to. Worse, she could enter any number (or any text) into the field.
The results would be unpredictable, but almost certainly bad.

I fix these defects in the smartRToEdit() function coming up next, but begin by
studying this simpler function, because smartRToEdit() is built on rToEdit().

413

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

function rToEdit ($query){

//given a one-record query, creates a form to edit that record

//works on any table, but allows direct editing of keys

//use smartRToEdit instead if you can

global $dbConn;

$output = “”;

$result = mysql_query($query, $dbConn);

$row = mysql_fetch_assoc($result);

//get table name from field object

$fieldObj = mysql_fetch_field($result, 0);

$tableName = $fieldObj->table;

$output .= <<< HERE

<form action = “updateRecord.php”

method = “post”>

<input type = “hidden”

name = “tableName”

value = “$tableName”>

<table border = 1>

414

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 12.12

The rToEdit
function is simple

but produces
dangerous output.

HERE;

foreach ($row as $col=>$val){

$output .= <<<HERE

<tr>

<th>$col</th>

<td>

<input type = “text”

name = “$col”

value = “$val”>

</td>

</tr>

HERE;

} // end foreach

$output .= <<< HERE

<tr>

<td colspan = 2>

<center>

<input type = “submit”

value = “update this record”>

</center>

</td>

</tr>

</table>

HERE;

return $output;

} // end rToEdit

Building a Smarter Edit Form

The smartRToEdit() function builds on the basic design of rToEdit() but com-
pensates for a couple of major flaws in the rToEdit() design. Take a look at the
smarter code:

function smartRToEdit ($query){

//given a one-record query, creates a form to edit that record

//Doesn’t let user edit first (primary key) field

//generates dropdown list for foreign keys

//MUCH safer than ordinary rToEdit function

415

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

// —restrictions on table design—

//foreign keys MUST be named tableID where ‘table’ is table name

// (because mySQL doesn’t recognize foreign key indicators)

// I also expect a ‘name’ field in any table used as a foreign key

// (for same reason)

global $dbConn;

$output = “”;

$result = mysql_query($query, $dbConn);

$row = mysql_fetch_assoc($result);

//get table name from field object

$fieldObj = mysql_fetch_field($result, 0);

$tableName = $fieldObj->table;

$output .= <<< HERE

<form action = “updateRecord.php”

method = “post”>

<input type = “hidden”

name = “tableName”

value = “$tableName”>

<table border = 1>

HERE;

$fieldNum = 0;

foreach ($row as $col=>$val){

if ($fieldNum == 0){

//it’s primary key. don’t make textbox,

//but store value in hidden field instead

//user shouldn’t be able to edit primary keys

$output .= <<<HERE

<tr>

<th>$col</th>

<td>$val

<input type = “hidden”

name = “$col”

value = “$val”>

</td>

</tr>

416

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

HERE;

} else if (preg_match(“/(.*)ID$/”, $col, $match)) {

//it’s a foreign key reference

// get table name (match[1])

//create a listbox based on table name and its name field

$valList = fieldToList($match[1],$col, $fieldNum, “name”);

$output .= <<<HERE

<tr>

<th>$col</th>

<td>$valList</td>

</tr>

HERE;

} else {

$output .= <<<HERE

<tr>

<th>$col</th>

<td>

<input type = “text”

name = “$col”

value = “$val”>

</td>

</tr>

HERE;

} // end if

$fieldNum++;

} // end foreach

$output .= <<< HERE

<tr>

<td colspan = 2>

<center>

<input type = “submit”

value = “update this record”>

</center>

</td>

</tr>

</table>

417

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

</form>

HERE;

return $output;

} // end smartRToEdit

What makes this function smart is its ability to examine each field in the record
and make a guess about what sort of field it is. Figure 12.13 shows the result of
the smartRToEdit() program so you can compare it to the not-so-clever function
in Figure 12.12.

Determining the Field Type

As far as this function is concerned, three field types in a record need to be han-
dled differently.

• Primary key. If a field is the primary key, its value needs to be passed on to
the next program, but the user should not be able to edit it.

• Foreign key. If a field is a foreign key reference to another table, the user
should only be able to indirectly edit the value. The best approach is to
have a drop-down list box that shows values the user will recognize. Each
of these values corresponds to a key in that secondary record. For example,
in Figure 12.13 there is a list box for the operationID field. The operationID
field is a foreign key reference in the agent table. The ordinary rToEdit()

418

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

FIGURE 12.13

The smarter
function prevents

the user from
editing the primary
key and provides a
drop-down list for

all foreign key
references.

function allows the user to type any index number into the textbox with-
out any real indication what data correlates to that index. This version
builds a drop-down list showing operation names. The key value associated
with those names is stored in the value attribute of each option. (Details
to follow in the fieldToList() function.) The user doesn’t have to know
anything about foreign key references or relational structures—he simply
chooses an operation from a list. That list is dynamically generated each
time the user chooses to add a record, so it always reflects all the opera-
tions in the agency.

• Neither a primary nor secondary key. In this case, I print a simple textbox
so the user can input the value of the field. In all cases, the output will
reflect the current value of the field.

Working with the Primary Key

The primary key value is much more important to the program than it is to the
user. I decided to display it, but not to make it editable in any way. Primary keys
should not be edited, but changed only by adding or deleting records.

I relied upon some conventions to determine whether a field is a primary key. I
assumed that the first field of the record (field number 0) is the primary key. This
is a very common convention, but not universal. Since I created the data design in
this case, I can be sure that the number 0 field in every table is the primary key.
For that field, I simply printed the field name and value in an ordinary HTML table
row. I added the key’s value in a hidden field so the next program has access to it.

Recognizing Foreign Keys

Unfortunately, there is no way (at least in MySQL or SQLite) to determine if a field
is a foreign key reference. I had to rely on a naming convention to make sure my
program recognizes a field as a foreign key reference. I decided that all foreign
key fields in my database will have the foreign table’s name followed by the value
ID. For example, a foreign key reference to the operation table will always be
called operationID in my database.

This is a smart convention to follow anyway, as it makes your field names easy to
remember. It becomes critical in smartRToEdit() because it’s the only way to tell
whether a field is a foreign key reference. I used an else if clause to check the
name of any field that is not the primary key (which was checked in the if
clause). The preg_match() function lets me use a powerful regular expression
match to determine the field’s name.

419

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

I used this statement to determine whether a field is a foreign key:

} else if (preg_match(“/(.*)ID$/”, $col, $match)) {

It uses a simple but powerful regular expression: /(.*)ID$/. This expression
looks for any line that ends with ID. (Recall that the $ indicates the end of a
string.) The .* indicates any number of characters. The parentheses around .* tell
PHP to store all the characters before ID into a special array, called $match.
Since there’s only one pattern to match in this expression, all the
characters before ID contain the table name. So, this regular expression takes the
name of a field and determines if it ends with ID. If so, the beginning part
of the field name (everything but ID) is stored to $match[1]. If $col contains
operationID, this line returns TRUE (because operationID ends with ID) and
the table name (operation) is stored in $match[1].

Building the Foreign Key List Box

If a field is a foreign key reference, it is necessary to build a list box containing
some sort of meaningful value the user can read. Since I need this capability in
a couple of places (and smartRToEdit() is already pretty complex), I build a new
function called fieldToList(). This function (explained in detail later in the
“Building a List Box from a Field” section of this chapter) builds a drop-down
HTML list based on a table and field name. Rather than worrying about the
details of the fieldToList() function here, I simply figured out what parameters
it would need and printed that function’s results.

Working with Regular Fields

Any field that is not a primary or foreign key is handled by the else clause, which
prints out an rToEdit()-style textbox for user input. This textbox handles all
fields that allow ordinary user input, but will not trap for certain errors (such as
string data being placed in numeric fields or data longer than the underlying
field accepts). These would be good code improvement. If the data designer did
not name foreign key references according to my convention, those fields are still
editable with a textbox, but the errors that could happen with rToEdit() are
worth concern.

Committing a Record Update

The end result of either rToEdit() or smartRToEdit() is an HTML form containing
a table name and a bunch of field names and values. The updateRecord.php takes

TRICK

420

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

these values and converts them into arrays before calling the updateRec() func-
tion. It’s much easier to work with the fields and values as arrays than in the
somewhat amorphous context they embody after smartRToEdit() or rToEdit().

function updateRec($tableName, $fields, $vals){

//expects name of a record, fields array values array

//updates database with new values

global $dbConn;

$output = “”;

$keyName = $fields[0];

$keyVal = $vals[0];

$query = “”;

$query .= “UPDATE $tableName SET \n”;

for ($i = 1; $i < count($fields); $i++){

$query .= $fields[$i];

$query .= “ = ‘“;

$query .= $vals[$i];

$query .= “‘,\n”;

} // end for loop

//remove last comma from output

$query = substr($query, 0, strlen($query) - 2);

$query .= “\nWHERE $keyName = ‘$keyVal’”;

$result = mysql_query($query, $dbConn);

if ($result){

$query = “SELECT * FROM $tableName WHERE $keyName = ‘$keyVal’”;

$output .= “<h3>update successful</h3>\n”;

$output .= “new value of record:
”;

$output .= qToTable($query);

} else {

$output .= “<h3>there was a problem...</h3><pre>$query</pre>\n”;

} // end if

return $output;

} // end updateRec

421

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

The primary job of updateRec() is to build an SQL UPDATE statement based on the
parameters passed to it. It is expecting a table name, an array containing field
names, and another array containing field values. The UPDATE statement is pri-
marily a list of field names and values, which can be easily obtained with a for
loop stepping through the $fields and $vals arrays.

Once the query has been created, it is submitted to the database. The success or
failure of the update is reported back to the user.

Deleting a Record

Deleting a record is actually pretty easy compared to adding or updating. All
that’s necessary is the table name, key field name, and key field value. The
deleteRec() function accepts these parameters and uses them to build an SQL
DELETE statement. As usual, the success or failure of the operation is returned as
part of the output string.

function delRec ($table, $keyName, $keyVal){

//deletes $keyVal record from $table

global $dbConn;

$output = “”;

$query = “DELETE from $table WHERE $keyName = ‘$keyVal’”;

print “query is $query
\n”;

$result = mysql_query($query, $dbConn);

if ($result){

$output = “<h3>Record successfully deleted</h3>\n”;

} else {

$output = “<h3>Error deleting record</h3>\n”;

} //end if

return $output;

} // end delRec

Adding a Record

Adding a new record is much like editing a record. It is a two-step process. The
first screen builds a page in which you can add a record. I used techniques from
the smartRToEdit() function to ensure the primary and foreign key references are
edited appropriately.

function tToAdd($tableName){

//given table name, generates HTML form to add an entry to the

//table. Works like smartRToEdit in recognizing foreign keys

422

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

global $dbConn;

$output = “”;

//process a query just to get field names

$query = “SELECT * FROM $tableName”;

$result = mysql_query($query, $dbConn);

$output .= <<<HERE

<form action = “processAdd.php”

method = “post”>

<table border = “1”>

<tr>

<th>Field</th>

<th>Value</th>

</tr>

HERE;

$fieldNum = 0;

while ($theField = mysql_fetch_field($result)){

$fieldName = $theField->name;

if ($fieldNum == 0){

//it’s the primary key field. It’ll be autoNumber

$output .= <<<HERE

<tr>

<td>$fieldName</td>

<td>AUTONUMBER

<input type = “hidden”

name = “$fieldName”

value = “null”>

</td>

</tr>

HERE;

} else if (preg_match(“/(.*)ID$/”, $fieldName, $match)) {

//it’s a foreign key reference. Use fieldToList to get

//a select object for this field

$valList = fieldToList($match[1],$fieldName, 0, “name”);

$output .= <<<HERE

423

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

<tr>

<td>$fieldName</td>

<td>$valList</td>

</tr>

HERE;

} else {

//it’s an ordinary field. Print a text box

$output .= <<<HERE

<tr>

<td>$fieldName</td>

<td><input type = “text”

name = “$fieldName”

value = “”>

</td>

</tr>

HERE;

} // end if

$fieldNum++;

} // end while

$output .= <<<HERE

<tr>

<td colspan = 2>

<input type = “hidden”

name = “tableName”

value = “$tableName”>

<input type = “submit”

value = “add record”>

</td>

</tr>

</table>

</form>

HERE;

return $output;

} // end tToAdd

424

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

The INSERT statement that this function creates uses NULL as the primary key
value, because all tables in the system are set to AUTO_INCREMENT. I used the same
regular expression trick as in smartRToEdit() to recognize foreign key references.
If they exist, I built a drop-down list with fieldToList() to display all possible val-
ues for that field and send an appropriate key. Any field not recognized as a
primary or foreign key will have an ordinary textbox.

Processing an Added Record

The tToAdd() function sends its results to processAdd.php, which reorganizes the
data much like updateRecord.php. The field names and values are converted to
arrays, which are passed to the procAdd() function.

function procAdd($tableName, $fields, $vals){

//generates INSERT query, applies to database

global $dbConn;

$output = “”;

$query = “INSERT into $tableName VALUES (“;

foreach ($vals as $theValue){

$query .= “‘$theValue’, “;

} // end foreach

//trim off trailing space and comma

$query = substr($query, 0, strlen($query) - 2);

$query .= “)”;

$output = “query is $query
\n”;

$result = mysql_query($query, $dbConn);

if ($result){

$output .= “<h3>Record added</h3>\n”;

} else {

$output .= “<h3>There was an error</h3>\n”;

} // end if

return $output;

} // end procAdd

The main job of procAdd() is to build an SQL INSERT statement using the results
of tToAdd(). This insert is passed to the database and the user receives a report
about the insertion attempt’s outcome.

425

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

Building a List Box from a Field

Both smartRToEdit() and tToAdd() need drop-down HTML lists following a specific
pattern. In both cases, I needed to build a list that allows the user to select a key
value based on some other field in the record. This list should be set so any value
in the list can be indicated as the currently selected value. The fieldToList()
function takes four parameters and uses them to build exactly such a list.

function fieldToList($tableName, $keyName, $keyVal, $fieldName){

//given table and field, generates an HTML select structure

//named $keyName. values will be key field of table, but

//text will come from the $fieldName value.

//keyVal indicates which element is currently selected

global $dbConn;

$output = “”;

$query = “SELECT $keyName, $fieldName FROM $tableName”;

$result = mysql_query($query, $dbConn);

$output .= “<select name = $keyName>\n”;

$recNum = 1;

while ($row = mysql_fetch_assoc($result)){

$theIndex = $row[“$keyName”];

$theValue = $row[“$fieldName”];

$output .= <<<HERE

right now, theIndex is $theIndex and keyVal is $keyVal

<option value = “$theIndex”

HERE;

//make it currently selected item

if ($theIndex == $keyVal){

$output .= “ selected”;

} // end if

$output .= “>$theValue</option>\n”;

$recNum++;

} // end while

$output .= “</select>\n”;

return $output;

} // end fieldToList

The fieldToList() function begins by generating a query that returns all records
in the foreign table. I build an HTML SELECT object based on the results of this
query. As I step through all records, I see if the current record corresponds to the
$keyVal parameter. If so, that element is selected in the HTML.

426

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r

Creating a Button That
Returns Users to the Main Page

To simplify navigation, I added a button at the end of each PHP program that
returns the user to the program’s primary page. The mainButton() program cre-
ates a very simple form calling whatever program is named in the $mainProgram
variable, which is indicated at the top of the library.

function mainButton(){

// creates a button to return to the main program

global $mainProgram;

$output .= <<<HERE

<form action = “$mainProgram”

method = “get”>

<input type = “submit”

value = “return to main screen”>

</form>

HERE;

return $output;

} // end mainButton

Summary

The details of the SpyMaster system can be dizzying, but the overall effect is a flex-
ible design that you can easily update and modify. This system can accept modi-
fications to the underlying database and can be adapted to an entirely different
data set with relatively little effort.

Although you didn’t learn any new PHP syntax in this chapter, you saw an exam-
ple of coding for reuse and flexibility. You learned how to use include files to sim-
plify coding of complex systems and how to build a library file with utility
routines. You learned how to write code that can be adapted to multiple data sets
and code that prevents certain kinds of user errors. You learned how to build pro-
grams that help tie together relational data structures. The things you have
learned in this chapter form the foundation of all data-enabled Web programming,
which in turn form the backbone of e-commerce and content-management systems.

427

C
h

a
p

te
r
 1

2
B

u
i ld

in
g

a
T
h

r
e

e
-T

ie
r
e
d

D
a

t a
A

p
p

li c
a

ti o
n

428

P
H

P
5
/M

y
S

Q
L

P
r
o

g
r
a

m
m

in
g

f o
r

th
e

A
b

s
o

l u
t e

B
e
g

in
n

e
r CHALLENGES

1. Add a module that lets the user interactively query the database. Begin

with a page that allows the user to type in an agent’s name and returns data

based on that agent.

2. Once the basic functionality of an agent search program is done, add check-

boxes that allow certain agent aspects (operation and skills) to be displayed.

3. Build programs that allow searching on other aspects of the data, including

skills and operations.

4. Modify the SpyMaster database to support another data set or SQLite.

Symbols
* asterisk, 33, 420
{} braces, 62, 66, 71, 79, 100, 198
| pipeline, 198, 199
/ forward slash, 33, 420
\ backward slash, 98, 198
: line separation character,, 182
; line termination character, 27, 62
; beginning extension character, 17
; if statement character, 62, 63
; insiide string character, 30
$ end string indicator, 199, 420
$i sentry variable, 99, 100, 103, 137
$ variable naming character, 106, 198, 199
+ increment operator, 33, 198
++ increment operator, 100
– minus sign, 33
= assignment operator, 26, 32
!= = comparison operator, 197
= = comparison operator, 62
>= comparison operator, 62
<= comparison operator, 62
!= comparisonn operator, 62
. concatenation operator, 159
. regular expression operator, 198
–> arrow syntax, 233, 234
< ? ?> scriipt tag, 12–13, 98, 238, 265
^ regular expression operator, 198

A
access methods, 234, 252, 256
access modifiers, 188
Ace or Not program, 64–66
action attributes, 35
addFoils() function, 163, 175–176
adding PHP commands, 12–15
add record module, 391, 422–425
addText() function, 235–237, 261–262
addWord() function, 168–174
ad hoc list, 239
admiinistrative password, 213–214
Adventure Generator program

committing changes, 355–356
connections, 342–343

data structure, 328–333
editing records, 350–355
overview, 300–302
segment display, 343–348
viewing records, 348–350

AND structure, 375–376
answer key

creating, 223
passing, 178
puzzle, 177–179

Apache
configuring, 9
overview, 5, 6–7
running, 9–10
starting as service, 8–9
testing server, 7–8

append access, 224–225
application programming interface (API),

289–291, 293–296
array() function, 110, 139–140
arrays, 95. See also loops; variables

associative, 137
array() function, 139–140
building, 137–140
built-in, 141–144
foreach loops, 140–141
forms, 141–144
two-dimensional, 150–154

combining with loops, 109–113
generating, 109
multidimensional. See also databases; tables

building, 144–147
distance query responses, 147–149

preloading, 110
size detection, 110–111
structure, 107–108
foreach loops, 135–137
list creation, 264–265
reading files

Cartoonifier program, 192–193
loading file, 193–194
modifying file, 194

splitting line into, 203
table creation, 265–266
two-dimensional, 241

Index

arrow syntax (–>), 233, 234
AS clause, 373
asking questions, 33–36
assignment operator (=), 26, 32
associative arrays

array() function, 139–140
building, 137–140
built-in

$_request array, 141–144
formReader program, 141

foreach loops, 140–141
forms

debugging, 144
reading, 141–144

two-dimensional
building, 150–151, 153
getting data, 154
queries, 151–153

assterisk (*), 33, 420
AUTO_INCREMENT identifier, 370

B
background style, 282–283
Bad While program, 105–106
blocks page, 277–278
Boolean variables, 167
Border Maker program

building, 41–43
form elements, 43–45
overview, 40–41
radio groups, 46
select elements, 45

botttom of Web page, 263
braces ({})

function definition, 79
if statements, 62, 66
for loops, 100
regular expression operators, 198
switch structure, 71

break statement, 71
browsers, 283
buildBottom() function, 232–233, 263
buildButton() function, 347–348
buildHTML() function, 216–220
buildList() function, 238–239, 264–265
buildTable() function, 239–241, 245–247, 265–266
buildTop() functionn, 232–233, 262
business rules, 360

C
calcNumPetals function, 92–93

carriage return, 98
Cartoonifier program, 192–193
cascading style sheets (CSSs)

associate arrays, 139
attributes, 40–41
database connection, 345
library module, 406–407
text appearance, 191
viewing, 281–283

caase sensitivity, 25, 286
case statement, 71
character translation, 159–160
checkboxes, 74–77, 122
chorus() function, 83–84
city namees, 148
class keywords, 251, 252
clearBoard() function, 166
client-side programs, 3
closing files, 189
code body

encapsulation, 82–83
Poker Dice program, 118–119

coloon (:), 182
columns, database, 305 324
comma-delimited format, 201
comma-separated value (CSV), 201, 319
comment characters, 314
comparison operators, 62, 197
concatenation operator, 159
conditions

Ace program, 60–61
adding, 325–326
spy database, 375–376
multiple, 326–327

configuring PHP
register globals, 15
safe mode, 15
Windows extensions, 16–18

connectToSpy() ffunction, 397, 408
constructors, 254–255, 261
content management system (CMS)

features, 273–274
overview, 3, 271–273
PHP-Nuke

customizing, 277–278
installing, 276
working with, 274–276

simple
examining code, 280–281
menu system, 283–285
viewing CSS, 281–283
viewing pages, 279–280

430

I n
d

e
x

XML, 285–286
data extraction, 297–298
main page, 287
menu pages, 288
more-complex, 293–296
parsers, 288–289
rules, 286–287
simple, 289
simple API, 289–293
working with, 286

control panel, Apache, 8–9
count() function

backwards, 102–103
by fives, 100–102
form fields, 114–116
overview, 110–111
Poker Dice program, 126–129

critter class, 250–252, 257–260

D
database environment

requirements, 6
SpyMaster, 394–395

database management system. See relational
database management system (RDBMS)

data definition, 340, 391
data extraction, 297–298
data normalization

concept, 363–364
first normal form, 364
second normal form, 365
third normal form, 365–366

debugging forms, 144
default case, switch sttructure, 71
delete record module, 392, 404, 422
DELETE statement, 422
DESCRIBE statement, 310
description field, 346
developpment environment, 5–6
dice games

Ace, 59–61
Ace or Not, 64–66
Binary Dice, 66–68
Petals, 88–94
Poker Dice, 96, 114
Roll Em, 57–58
Switch Dice, 69–71

directory handles, 196
directory information

directory handles, 196
file lists, 196–197
file selection, 197
imageIndex program, 194–196

output storage, 199–200
regular expressions, 197–199

distance queries, 147–149
divvision symbol (/), 32
div tag, 281
dollar signs, 87
drop-down menus

library module, 426
phpMyAdmin, 317
SuperHTML, 244–245

E
East code, 171–173
editors, 6
editQuiz program, 210, 212–215
edit record module, 391, 402

generic form, 410–413
smarter form, 415–418

editSegment program, 350–354
edit table moduule, 391, 397–399, 401, 410–413
else clause

Ace or Not program, 65–66
multiple, 68

embedded form data, 38–40
empty function, 77
encapsulation

main code body, 82–83
object-oriented programming (OOP), 249
This Old Man program, 77–80

enclosure, lists, 238, 265
ending llines character (;), 27, 62
ending strings character ($), 199, 420
endless loops, 105–106
endTable() function, 241, 266
entity-rellationship (ER) diagram, 366, 376–377
equals sign (=), 26, 32
error messages, 27
evaluate() function, 123–129
events, object, 249
exiting loops, 99, 107
eXtensible Markup Language (XML), 271

data extraction, 297–298
introduction, 285–287
main page, 287
menu pages, 288
more-complex model, 293–296
parsers, 288–289
simple model, 289–293
table creation, 320–321

extensions
PHP, 304
Windows, 16–18

extraction, data, 297–298

431

In
d

e
x

F
Fancy Old Man program, 111–113
fclose() function, 189
feof() function, 189, 191–192
fgets() function, 189, 192, 194, 203
field queries, 40
fieelds, database, 305, 308, 309

getting names, 340–341
library module, 418–419
listed, 362–363
naming, 373

fieldToList() function, 426
file() function, 193–194, 202–203
file handles (pointers), 187
filename, 187
fiile ownership, 187
file pointers. See file handles
file systems

closing file, 189
file access modifiers, 188
file handle, 187
opening file, 187
saveSonnet program, 185–186
writing to file, 189

fillBoard() function, 166–168
finishing loops, 99, 107
first normal form, 364
five of a kind, 128–129
foil lletters, 175–176
fopen() function, 187, 189
foreach loops

associative arrays, 140–141
database storage, 342
loading files, 193
modifying files, 194
splitting function, 203
storing output, 199–200
versus for loops, 137
with arrays, 135–137
XML, 292–293

foreign key, 371, 377, 418, 419–420
foreign key list box, 420
for loops

counting with, 96–98
building loop, 100
finishing conditions, 99
sentry variable changes, 99–100
sentry variable initialization, 98–99

examining array’s contents, 109–111
modifying

counting backwards, 102–103
counting by fives, 100–102

versus foreach loops, 137
Word Search program, 166

form fields
counting with, 114–116
hidden, 117

form input response, 268
form objects, 267
formResults() function, 247–248, 268
forms

borderMaker program, 40–46
building HTML page, 34–35
checking, story program, 51–53
combining with results, 71–73
creating, 33–34
library module

generic, 413–415
smarter edit, 415–418

setting action attribute, 35
superHTML, 241–248

drop-down menus, 244–245
tables, 245–247
text boxes, 243–244
viewing results, 247–248

writing data-retrieval script, 35–36
forward slash (//), 33, 420
four of a kind, 128–129
fourth-generation languages, 307
fputs() function, 189
frames, HTML, 280
free PHP hostinng, 4
FROM clause, 374
full house, 128
functional dependency, 365–366

G
gAddText() function, 262
get field names, 340–341
getFiles() function, 205–206
get method, 36–38, 284
getName() function, 256
getPage() function, 233, 261
getter methods, 256
get variant, buildTable() function, 245
global keywords, 407
global variaables, 86
gradeQuiz program, 222–223, 225
graphics, dice games, 58–59
greater than symbol (>), 62
gTextBox() function, 267

432

I n
d

e
x

H
headers, 264
HERE token, 80
hidden form fields, 45, 117
Hi Jacob program, 23–25
Hi User program, 71–73
htdocs directory, 8, 276
httdocs subdirectory, 9–10
HTML (hypertext markup language)

associative arrays, 150–151
forms, 33–36
library module, 409–413
multidimensional arrays, 146–147
Petals program, 88–89, 94
Poker Dice program, 117–118
story program, 48–51
quiz program, 216–220

HTTP (hypertext transfer protocol), 114

I
if else clauses, 68
if statements

Ace program, 59–61
combining form and results, 71–73
comparison operators, 62
creating, 62–63
multiple-condition, 68

imageIndex program, 194–196
images, printing, 58–59
include command, 231, 281, 396–397
inconsistent data, 361–362
indenting lines, 80
index.html page, 8
inheritance, 249, 257–260
inner joins, 376
inserting table values, 311–312
installation

Apache, 6–10
development environment, 5–6
MySQL, 303–304
PHP, 10–11
PHP-Nuke, 276
using existing server, 4

instructions (syntax), 27
integers, 32
Internet Information Server (IIS), 6
interpolaation

speed, 159
troubleshooting, 175
variable, 58

interpreters, 114
item class, 283

J
joins

conditions, 375–376
creating, 373–374
using, 373
WHERE clause, 374–375

L
LAMP (Linux, Apache, MySQL, and PHP), 5
less than symbol (<), 62
library module

connection, 408
creating

CSS style, 406–407
variables, 407–408

field types, 418–419
foreign keys, 419–420
forms

generic edit record, 314–415
smarter edit record, 415–418

HTML tables, 409–413
list boxes, 426
mainButton program, 427
overview, 392–393, 396–397
primary key, 419
quick lists, 408–409
records

addition, 422–425
deletion, 422
processing, 425
updates, 420–422

regular fields, 420
LIKE clause, 326
line separation character (:), 182
line termination character (;), 27
link tables, 376–380
list boxes

adventure game, 355
library module, 426
multiple selection, 45

listed fieelds, 362–363
list() function, 203
lists

creating, 264–265
superHTML, 237–239

ad hoc, 239
basic, 238
specialized, 239

listSegments program, 348–350
loading files, (CSS), 191–192
loadSonnet program, 189–192

433

In
d

e
x

localhost address, 7
log files

quiz results, 224–225
viewing, 225–226

logic building, Word Search, 163–164
looping structures, 95

combining with arrays, 111–113
examining array’s contents, 109–110
fillBoard() function, 167, 167–168
for loops

counting with, 96–100
examining array’s contents, 109–111
modifying, 100–103
versus foreach loops, 137
Word Search program, 166

foreach loops
associative arrays, 140–141
database storage, 342
loading files, 193
modifying files, 194
splitting function, 203
storing output, 199–200
versus for loops, 137
with arrays, 135–137
XML, 292–293

while loops
building, 106–107
endless loops, 105–106
repeating code, 103–105

M
mail() function, 203
mailMerge program, 200–203
mainButton() function, 401, 408, 427
many-to-many relationships, 367, 376–380
many-to-oone relationships, 367
master files, quiz program, 217
mathematical operators, 32–33
menu system

simpleCMS, 283–285
XML, 288

methods, object, 233, 234, 248
adding to class, 253–254

access methods, 256
constructor, 254–255
getter methods, 256
setter methods, 255

minus sign (-), 32
modifying files, 194
multidimensional arrays

building, 144–147

distance queries, 147–149
city names, 148
distances, 148–149

multi-line strings, 29–30
multiple ffield queries, 40
multiple values, 66–68
multiplication symbol (*), 32
mysql_fetch functions, 340–341

N
naming

class keyword, 252
files, 187
functions, 80
string variables, 25

negative results, 63
Ace or Not program, 64
else clause, 65–66

netcraft survey, 6
newline, 98
normalization. See data normalization
notepad, 6
numeric variables

mathetical operators, 32–33
ThreePlusFive program, 30–32

O
object-oriented programming (OOP). See also

superHTML object
adding methods to class, 253–254

access methods, 256
building constructor, 254–255
getter method, 256
property setter, 255

creating basic object, 249–251
critter class, 251–252
properties, 252

inheritance, 249, 257–260
overview, 230, 248–249

encapsulation, 249
inheritance, 249
polymorphism, 249

one-to-one relationships, 366–367
openDir() function, 196
opening files, 187
ORDER BY clause, 327
ord() functtion, 159–160
output storage, 199–200
ownership, file, 187

434

I n
d

e
x

P
pairs, counting, 126–128
parameters

accepting in verse() function, 84–85
sending to functions, 80–82

param.php program, 80–82
parsers

result sets, 341–342
word lists, 163, 164–165
XML, 288–289

passwords
database connection, 338
PHPNuke, 276
quiz program, 213–214, 221–222

pattern segment expression operator, 198
persistence program, 114

form fields, 114–116
hidden fields, 117
text boxes, 116–117

Petals Around the Rose game, 56, 88
calcNumPetals function, 92–93
ending HTML code, 94
main body code, 89
printDice() function, 90–91
printForm() function, 93
printGreeting() function, 89–90
showDie() function, 91–92
starting HTML, 88–89

phpInfo() function, 304
phpMyAdmin intterface

connecting to server, 316–317
creating tables, 317–318
editing tables, 318
exporting tables, 319–322
functions, 315–316

PHP-Nuke
customizing, 277–278
installing, 276
working with, 274–276

Pig Latin translator, 154–159
pipeline (|), 199
plus sign (+), 32
pointer, directory, 196–197, 206
Pokerr Dice game, 96, 114

evaluate() function, 123–129
main code body, 118–119
printing results, 129–130
rollDice() function, 119–123
setting up HTML, 117–118

polymorphism, 249, 255
portal, Web, 274
post method, 35, 36, 178
preg_grep() function, 197, 208

preg_match() function, 419, 420
primary key, 310, 370, 377, 418, 419
printDice() function, 90–91
printForm() function, 93
print() function, 83
printGreeting() ffunction, 89–90
printing

adventure game code, 354–355
answer key, 178–179
East code, 171–173
other directions, 173–174
Poker Dice program, 121–123, 129–130
puzzle, 176–178
quiz form, 214–215
variable’s value, 26

printPuzzle() function, 176–178
procAdd() function, 405
process add module, 391, 405–406, 425
properties, object, 248, 252
property program, 233–235
puzzle board

adding foil letters, 175–176
making, 174–175
printing, 176–179

Q
qToList() function, 408–409
qToTable() function, 400, 410
query creation, MySQL, 339–340
query form, spyMaster, 395–397, 399–401
quick lissts, 408–409
quiz

editing, 182
log, 185
results, 184
taking, 183–184

quizMachine program, 182–183
building, 203–211

edit list, 208–210
getting file list, 205–206
log list, 210–211
take a test list, 206–208

editing test
getting test data, 212–214
HTML file, 217–220
main logic, 216–217
master file, 217
printing form, 214–215
writing test, 215

grading quiz, 222–225
taking quiz, 220–222
viewing log, 225–226

quotation marks, 287

435

In
d

e
x

R
r+ file access modifier, 188, 191
radio groups, 46
random access modifiers, 188
random numbers

creating, 56
printing corresponding image, 58–59
Roll Em program, 57–58

readdir() function, 196–197
readFile() function, 193, 200, 221
reading form elements, 43–46
reading files into arrays

Cartoonifier program, 192–193
loading file, 193–194
modifying file, 194

read mode, 188
real numbbers, 32
records, database, 305
redundancy, 365
register globals, 15, 142–143
regular expressions, 197–199, 420
regular fields, librrary module, 420
relational database management system

(RDBMS), 301
Adventure Generator, 300–302, 328–333

committing changes, 355–356
connections, 342–343
editing records, 350–355
segment display, 343–348
viewing records, 348–350

choosing database, 339
creating database, 305–312

creating tables, 306–311
inserting values, 311–312
selecting results, 312–313

creating queries, 322–328, 339–340
limiting columns, 324–327
UPDATE statement, 327–328

database connection, 336–339
field names, 340–341
MySQL

installing, 303–304
using executable, 304–305

phpMyAdmin program, 315–322
connecting to server, 316–317
creating tables, 317–318
editing table data, 318
exporting tables, 319–322

result sets, 341–342
using, 302–303
writing scripts, 313–315

relationship types, 366–367
repetittion, character, 198

result sets, 339, 341–342
returning values, 83–84
rollDice() function, 119–123
roll Em program, 57–58
row limittation, tables, 325–327
Row Your Boat page, 28–29
rToEdit() function, 413–415

S
safe mode, 15
saveRoom program, 355–356
saveSonnet program, 185–186
scalar values, 203
scope, variable, 85–87
scripts

building tables, 313–315
for data retrieval, 35–36
exporting tables, 321–322
setting action attributes to, 35
spy database, 368–369
tags execution, 12–13

secoond normal form, 365
security passwords, 213–214, 221–222
SELECT command, 312–313, 323–324, 397, 409
select elements, reading, 45
select() function,, 244–245, 268
select objects, building, 268
semicolon (;)

beginning extensions, 17
ending lines, 27, 62
if statements, 62, 63
inside strings, 30

sending data without forms
embedding data, 38–39
get method, 36–38
multiple field queries, 40

sentry variables
behavior, 100, 103
changing, 99–100
for loop, 98–99
while loop, 106–107

serverss
connections, 316–317
functions, 5
names, 338
programming on, 3–4
testing, 7–8

server-side programs, 3, 4, 230
setName() function, 255, 256
setter methods, 255
setTitle() function, 261
showDie() funnction, 91–92
showEdit() function, 208–210

436

I n
d

e
x

showLog() function, 210–211
showLog program, 225–226
showSegment program, 343–348
showTest() function, 206–208
simpleCritter claass, 251
size detection, arrays, 110–111
slashes

backward, 98
forward, 32
regular expression operator, 198

smartToEdit() function, 402, 413, 415–418, 419, 426
SOURCE command, 313, 314–315
span tag, 281, 282
split()) function, 157, 165, 203, 225
spy database, 360

building tables, 367–368
creating tables, 368–371
operation table, 371–373
setting up, 368–369

connecting tables, 373–376
data design, 363
data normalization, 363–366
inconsistent data, 361–362
link tables, 376–380
listed fields, 362–363
operation information, 362
relationship types, 366–367
specialty table, 377–379
spyMaster program, 384–389, 395–399

startTable() function, 241, 266
state diagram, 390–392
stateless protocol, 114
storage ooutput, 199–200
story program, 22

building, 48–51
checking form, 51–53
designing, 46–47
finishing, 53–54

straights, 129
string data (text), 26
string interpolation, 26
string variables

character translation, 159–160
concatenation operator, 159
creating

assigning value, 26
naming, 25

finding substrings, 158
forms, 157
Pig Latin translator, 154–159
regular expressions, 197–199
searching, 158–159
split() function, 157

This Old Man program, 113
trimming, 157
VARCHAR fields, 309

str_replace() function, 194, 216, 400
strstr() function, 158–159
strtoupper() function, 165
structured query language ((SQL), 302–303, 307

exporting tables, 321–322
substr() function, 158
substrings, 158
subtraction symbol, 32
superHTML

adding text, 261–262
bottom of page, 263
creating constructor, 261
headers, 264
manipulating properties, 261
setting up file, 260
tags, 263–264
top of page, 262

superHTML object
adding text and tags, 235–237
building document, 230–233

including file, 231
variables, 231–232
Web page, 232–233

creating forms, 241–248
adding text box, 243–244
drop-down menus, 244–245
elements inside table, 245–247
viewing results, 247–248

creating lists, 237–239
ad hoc, 239
basic, 238
specialized, 239

making tables, 239–241
title property, 233–235

Switch Dice program
building, 69–71
switch structure, 69–71, 73

T
tab-delimited file, 201
tables

creating
from arrays, 265–266
one row at a time, 266

database, 305
creating, 306–311
deleting, 314
inserting values, 311–312
selecting results, 312–313
using scripts, 313–315

437

In
d

e
x

tables (continued)

data normalization, 363–366
limiting

columns, 324–325
rows, 325–327

phpMyAdmin
creating, 317–318
editing data, 318
exporting data, 319–322

SELECT command, 312–313, 323–324
spy database, 367–372
superHTML, 239–241, 245–248
UPDATE command, 327–328

tag() function, 236–237, 263–264
tags

adding, 236–237, 263–264
div and span, 281, 282
XML, 291–292

takeQuiz program, 220–222
testing servers, 7–8
test values, 312
text

adding, 235–237
printing, 26

text box
building, 267
data storage, 116–117
superHTML, 243–244

textbox() function, 243–244, 267
text files

determining format, 201
examining code, 201–202
loading data, 202–203
mailMerge program, 200–203
splitting function, 3
thePage property, 260, 261–262

third normal form, 365–366
This Old Man program

combining arrays and loops, 111–113
creating functions, 79–80
examining, 77–79
param program, 80–82

three of a kind, 128
tip of the day, 2–3, 18–19
title property, 233–235, 260, 261
top of Web page, 262
tracking user’s situation, 88
trimming strings, 157
tRow() ffunction, 241
tToAdd() function, 404–405, 422, 425, 426
tToEdit() function, 401, 402, 410–413, 413–415
two-dimensional arrays, 241, 265–266

U
update record module, 391, 402–403, 420–422
UPDATE statement, 327–328, 356, 422
URLs, 38–40
user-contributed content, 274
username, database, 338
useer’s perspective, 279–280
user’s response, 223–224
user’s situation, tracking, 88

V
value, variables

assigning, 26, 32
borderMaker program, 43
multiple

binary dice program, 66–68
else if clauses, 68
working with, 66

VARCHAR fields, 309, 400
variables

$list, 137
creating inside functions, 84
database connection, 346, 354
defined, 23
global, 86
Hi Jacob program, 23–25
interpolation, 58
library module, 407–408
managing scope, 85–87
multi-line, creating, 29–30
naming conventions, 106, 198, 199
numeric

assigning values, 32
mathematical operators, 32–33
ThreePlusFive program, 30–32
types, 30

printing value, 26
Row Your Boat page, 28–29
string, 25–26
superHTML object, 231–232
using semicolons, 27
value

assigning, 26, 32
borderMaker program, 43
multiple, 66–68

var keyword, 251
view query module, 391, 399–401
view source command, 24

438

I n
d

e
x

W
w+ file access modifier, 188
WAMP (Windows, Apache, MySQL, and PHP), 5
Web servers

connections, 316–317
functions, 5
programming on, 3–4
testing, 7–8

WHERE clause, 325–326, 374–375
whille loops

building
continue conditions, 107
exit condition, 107
sentry variable, 106–107

endless loops, 105–106
repeating code, 103–105

wordFindKey program, 178–179
word find program, 160–161
word search program, 134–135, 154

adding foil letters, 175–176
adding words, 168–174

character values, 172–173
East code, 171–172
printing, 173–174

building main logic, 163–164
character generation, 159–160
clearing board, 165–166
empty data sets, 162
filing board, 166–168
getting puzzle data, 160–161
making puzzle board, 174–175
parsing word list, 164–165
printing

answer key, 178–179
puzzle, 176–178

response page setup, 161–162
write access, 188, 189
writeQuiz program, 215–220

X
XML (eXtensible Markup Language), 271

data extraction, 297–298
introduction, 285–287
main page, 287
menu pages, 288
more-complex model, 293–296
parsers, 288–289
simple model, 289–293
table creation, 320–321

439

In
d

e
x

Let’s face it.
C++, ASP, and Java can

be a little intimidating.

But now they don’t have

to be. The for the absolute

beginner series gives you

a fun, non-intimidating

introduction to the world

of programming. Each

book in this series teaches a

specific programming language using simple

game programming as a teaching aid. If you

are new to programming, want to learn, and

want to have fun, then Premier Press’s
for the absolute beginner series is just what

you’ve been waiting for!

ASP Programming
for the Absolute Beginner
ISBN 0-7615-3620-5

C Programming
for the Absolute Beginner
ISBN 1-931841-52-7

C++® Programming
for the Absolute Beginner
ISBN 0-7615-3523-3

Java™ Programming
for the Absolute Beginner
ISBN 0-7615-3522-5

Microsoft® Access VBA Programming
for the Absolute Beginner
ISBN 1-59200-039-8

Microsoft® Visual Basic.NET
Programming for the Absolute Beginner
ISBN 1-59200-002-9

Palm™ Programming
for the Absolute Beginner
ISBN 0-7615-3524-1

Python Programming
for the Absolute Beginner
ISBN 1-59200-073-8

Microsoft® WSH and VBScript
Programming for the Absolute Beginner
ISBN 1-59200-072-X

Microsoft® Windows® Shell Script
Programming for the Absolute Beginner
ISBN 1-59200-085-1

Professional ■ Trade ■ Reference

Call 1.800.354.9706 to order
Order online at www.courseptr.com

Call 1.800.354.9706 to order
Order online at www.courseptr.com

Check out the Beginning series from Course PTR—full of tips and
techniques for the game developers of tomorrow! Perfect your
programming skills and create eye-catching art for your games to
keep players coming back for more.

Check out advanced books and the full Game Development series at

WWW.COURSEPTR.COM/GAMEDEV

Beginning C++
Game Programming

ISBN: 1-59200-205-6
$29.99

Beginning DirectX 9
ISBN: 1-59200-349-4

$29.99

Beginning OpenGL
Game Programming

ISBN: 1-59200-369-9
$29.99

PHP
Game Programming

ISBN: 1-59200-153-X
$39.99

RISE TO THE TOP OF YOUR
GAME WITH COURSE PTR!

Professional ■ Trade ■ Reference

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms and
conditions. If, upon reading the following license agreement and notice of limited
warranty, you cannot agree to the terms and conditions set forth, return the unused
book with unopened disc to the place where you purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software
disc. You are licensed to copy the software onto a single computer for use by a single user
and to a backup disc. You may not reproduce, make copies, or distribute copies or rent or
lease the software in whole or in part, except with written permission of the copyright
holder(s). You may transfer the enclosed disc only together with this license, and only if
you destroy all other copies of the software and the transferee agrees to the terms of the
license. You may not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Thomson Course Technology PTR to be free of physical
defects in materials and workmanship for a period of sixty (60) days from end user’s purchase
of the book/disc combination. During the sixty-day term of the limited warranty, Thomson
Course Technology PTR will provide a replacement disc upon the return of a defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST ENTIRELY
OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL THOMSON COURSE
TECHNOLOGY PTR OR THE AUTHOR BE LIABLE FOR ANY OTHER DAMAGES, INCLUDING
LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNCTIONAL CHARACTERISTICS OF THE
HARDWARE OR OPERATING SYSTEM, DELETERIOUS INTERACTION WITH OTHER SOFTWARE,
OR ANY OTHER SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE,
EVEN IF THOMSON COURSE TECHNOLOGY PTR AND/OR THE AUTHOR HAS PREVIOUSLY
BEEN NOTIFIED THAT THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
THOMSON COURSE TECHNOLOGY PTR AND THE AUTHOR SPECIFICALLY DISCLAIM ANY
AND ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF
MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR FREEDOM FROM
ERRORS. SOME STATES DO NOT ALLOW FOR EXCLUSION OF IMPLIED WARRANTIES OR
LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS
MIGHT NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of Massachusetts without regard to
choice of law principles. The United Convention of Contracts for the International Sale of
Goods is specifically disclaimed. This Agreement constitutes the entire agreement between
you and Thomson Course Technology PTR regarding use of the software.

	Contents
	Introduction
	Chapter 1: Exploring the PHP Environment
	Introducing the Tip of the Day Program
	Programming on the Web Server
	Installing PHP and Apache
	Using an Existing Server
	Installing Your Own Development Environment

	Installing Apache
	Installing Apache Files
	Testing Your Server
	Starting Apache as a Service
	Configuring Apache
	Running Your Local Server

	Installing PHP
	Downloading the PHP Program
	Telling Apache about PHP

	Adding PHP to Your Pages
	Adding PHP Commands to an HTML Page
	Examining the Results

	Configuring Your Version of PHP
	Safe Mode
	Register Globals
	Windows Extensions

	Creating the Tip of the Day Program
	Summary

	Chapter 2: Using Variables and Input
	Introducing the Story Program
	Using Variables in Your Scripts
	Introducing the Hi Jacob Program
	Creating a String Variable
	Printing a Variable's Value
	Using the Semicolon to End a Line

	Using Variables for More-Complex Pages
	Building the Row Your Boat Page
	Creating Multi-Line Strings

	Working with Numeric Variables
	Making the ThreePlusFive Program
	Assigning Numeric Values
	Using Mathematical Operators

	Creating a Form to Ask a Question
	Building an HTML Page with a Form
	Setting the Action Attribute to a Script File
	Writing a Script to Retrieve the Data

	Sending Data without a Form
	Understanding the get Method
	Using a URL to Embed Form Data
	Working with Multiple Field Queries

	Reading Input from Other Form Elements
	Introducing the borderMaker Program
	Building the borderMaker.html Page
	Reading the Form Elements

	Returning to the Story Program
	Designing the Story
	Building the HTML Page
	Checking the Form
	Building the Final Story

	Summary

	Chapter 3: Controlling Your Code with Conditions and Functions
	Examining the Petals Around the Rose Game
	Creating a Random Number
	Viewing the Roll Em Program
	Printing a Corresponding Image

	Using the if Statement to Control Program Flow
	Introducing the Ace Program
	Creating a Condition
	Exploring Comparison Operators
	Creating an if Statement

	Working with Negative Results
	Demonstrating the Ace or Not Program
	Using the else Clause

	Working with Multiple Values
	Writing the Binary Dice Program
	Using Multiple else if Clauses

	Using the switch Structure to Simplify Programming
	Building the Switch Dice Program
	Using the switch Structure

	Combining a Form and Its Results
	Responding to Checkboxes
	Using Functions to Encapsulate Parts of the Program
	Examining the This Old Man Program
	Creating New Functions

	Using Parameters and Function Values
	Examining the Param.php Program
	Looking at Encapsulation in the Main Code Body
	Returning a Value: The chorus() Function
	Accepting a Parameter in the verse() Function

	Managing Variable Scope
	Looking at the Scope Demo

	Returning to the Petals Game
	Starting HTML
	Main Body Code
	The printGreeting() Function
	The printDice() Function
	The showDie() Function
	The calcNumPetals Function
	The printForm() Function
	The Ending HTML Code

	Summary

	Chapter 4: Loops and Arrays
	Introducing the Poker Dice Program
	Counting with the for Loop
	Initializing a Sentry Variable
	Setting a Condition to Finish the Loop
	Changing the Sentry Variable
	Building the Loop

	Modifying the for Loop
	Counting by Fives
	Counting Backwards

	Using a while Loop
	Repeating Code with a while Loop
	Recognizing Endless Loops
	Building a Well-Behaved Loop

	Working with Basic Arrays
	Generating a Basic Array
	Using a Loop to Examine an Array's Contents
	Using the array() Function to Preload an Array
	Detecting the Size of an Array

	Improving This Old Man with Arrays and Loops
	Building the Place Array
	Writing Out the Lyrics

	Keeping Persistent Data
	Counting with Form Fields
	Storing Data in the Text Box
	Using a Hidden Field for Persistence

	Writing the Poker Dice Program
	Setting Up the HTML
	Building the Main Code Body
	Making the rollDice() Function
	Creating the evaluate() Function
	Printing the Results

	Summary

	Chapter 5: Better Arrays and String Handling
	Introducing the Word Search Program Creator
	Using the foreach Loop to Work with an Array
	Introducing the foreach.php Program

	Creating an Associative Array
	Examining the assoc.php Program
	Building an Associative Array
	Building an Associative Array with the array() Function
	Using foreach with Associative Arrays

	Using Built-In Associative Arrays
	Introducing the formReader.php Program
	Reading the $_REQUEST Array

	Creating a Multidimensional Array
	Building the HTML for the Basic Multidimensional Array
	Responding to the Distance Query

	Making a Two-Dimensional Associative Array
	Building the HTML for the Associative Array
	Responding to the Query
	Building the Two-Dimensional Associative Array
	Getting Data from the Two-Dimensional Associative Array

	Manipulating String Values
	Demonstrating String Manipulation with the Pig Latin Translator
	Building the Form
	Using the split() Function to Break a String into an Array
	Trimming a String with rtrim()
	Finding a Substring with substr()
	Using strstr() to Search for One String Inside Another
	Using the Concatenation Operator
	Finishing the Pig Latin Program
	Translating Between Characters and ASCII Values

	Returning to the Word Search Creator
	Getting the Puzzle Data from the User
	Setting Up the Response Page
	Working with the Empty Data Set
	Building the Program's Main Logic
	Parsing the Word List
	Clearing the Board
	Filling the Board
	Adding a Word
	Making a Puzzle Board
	Adding the Foil Letters
	Printing the Puzzle
	Printing the Answer Key

	Summary

	Chapter 6: Working with Files
	Previewing the Quiz Machine
	Entering the Quiz Machine System
	Editing a Quiz
	Taking a Quiz
	Seeing the Results

	Viewing the Quiz Log
	Saving a File to the File System
	Introducing the saveSonnet.php Program
	Opening a File with fopen()
	Creating a File Handle
	Examining File Access Modifiers
	Writing to a File
	Closing a File

	Loading a File from the Drive System
	Introducing the loadSonnet.php Program
	Beautifying Output with CSS
	Using the "r" Access Modifier
	Checking for the End of the File with feof()
	Reading Data from the File with fgets()

	Reading a File into an Array
	Introducing the cartoonifier.php Program
	Loading the File into an Array with file()
	Using str_replace() to Modify File Contents

	Working with Directory Information
	Introducing the imageIndex.php Program
	Creating a Directory Handle with openDir()
	Getting a List of Files with readdir()
	Selecting Particular Files with preg_grep()
	Using Basic Regular Expressions
	Storing the Output

	Working with Formatted Text
	Introducing the mailMerge.php Program
	Determining a Data Format
	Examining the mailMerge.php Code
	Loading Data with the file() Command
	Splitting a Line into an Array and to Scalar Values

	Creating the QuizMachine.php Program
	Building the QuizMachine.php Control Page
	Editing a Test
	Writing the Test
	Taking a Quiz
	Grading the Quiz
	Viewing the Log

	Summary

	Chapter 7: Writing Programs with Objects
	Introducing the SuperHTML Object
	Building a Simple Document with SuperHTML
	Working with the Title Property
	Adding Text and Tags with SuperHTML
	Creating Lists the SuperHTML Way
	Making Tables with SuperHTML
	Creating Super Forms

	Understanding OOP
	Objects Overview
	Creating a Basic Object
	Adding Methods to a Class
	Inheriting from a Parent Class

	Building the SuperHTML Class
	Setting Up the File
	Creating the Constructor
	Manipulating Properties
	Adding Text
	Building the Top of the Page
	Creating the Bottom of the Page
	Adding Headers and Generic Tags
	Creating Lists from Arrays
	Creating Tables from 2-Dimension Arrays
	Creating Tables One Row at a Time
	Building Basic Form Objects
	Building Select Objects
	Responding to Form Input

	Summary

	Chapter 8: XML and Content Management Systems
	Introducing XCMS
	Understanding Content Management Systems
	Working with PHP-Nuke
	Installing PHP-Nuke
	Customizing PHP-Nuke

	Introducing simpleCMS
	Viewing Pages from a User's Perspective
	Examining the PHP Code
	Viewing the CSS
	Inspecting the Menu System

	Improving the CMS with XML
	Introducing XML
	Examining main.xml
	Simplifying the Menu Pages

	Introducing XML Parsers
	Working with Simple XML
	Working with the simpleXML API
	Manipulating More-Complex XML with the simpleXML API

	Returning to XCMS
	Extracting Data from the XML File

	Summary

	Chapter 9: Using MySQL to Create Databases
	Introducing the Adventure Generator Program
	Using a Database Management System
	Working with MySQL
	Installing MySQL
	Using the MySQL Executable

	Creating a Database
	Creating a Table
	Inserting Values
	Selecting Results

	Writing a Script to Build a Table
	Creating Comments in SQL
	Dropping a Table
	Running a Script with SOURCE

	Working with a Database via phpMyAdmin
	Connecting to a Server
	Creating and Modifying a Table
	Editing Table Data
	Exporting a Table

	Creating More-Powerful Queries
	Limiting Columns
	Limiting Rows with the WHERE Clause
	Changing Data with the UPDATE Statement

	Returning to the Adventure Game
	Designing the Data Structure

	Summary

	Chapter 10: Connecting to Databases within PHP
	Connecting to the Hero Database
	Getting a Connection
	Choosing a Database
	Creating a Query
	Getting Field Names
	Parsing the Result Set

	Returning to the Adventure Game Program
	Connecting to the Adventure Database
	Displaying One Segment
	Viewing and Selecting Records
	Editing the Record
	Committing Changes to the Database

	Summary

	Chapter 11: Data Normalization
	Introducing the spy Database
	The badSpy Database
	Inconsistent Data Problems
	Problem with the Operation Information
	Problems with Listed Fields

	Designing a Better Data Structure
	Defining Rules for a Good Data Design
	Normalizing Your Data
	Defining Relationship Types

	Building Your Data Tables
	Setting Up the System
	Creating the agent Table
	Building the operation Table
	Using a Join to Connect Tables
	Creating Useful Joins
	Examining a Join without a WHERE Clause
	Adding a WHERE Clause to Make a Proper Join
	Adding a Condition to a Joined Query

	Building a Link Table for Many-to-Many Relationships
	Enhancing the ER Diagram
	Creating the specialty Table
	Interpreting the agent_specialty Table with a Query
	Creating Queries That Use Link Tables

	Summary

	Chapter 12: Building a Three-Tiered Data Application
	Introducing the SpyMaster Program
	Viewing the Main Screen
	Viewing the Results of a Query
	Viewing Table Data
	Editing a Record
	Confirming the Record Update
	Deleting a Record
	Adding a Record
	Processing the Add

	Building the Design of the SpyMaster System
	Creating a State Diagram
	Designing the System
	Building a Library of Functions

	Writing the Non-Library Code
	Preparing the Database
	Examining the spyMaster.php Program
	Building the viewQuery.php Program
	Viewing the editTable.php Program
	Viewing the editRecord.php Program
	Viewing the updateRecord.php Program
	Viewing the deleteRecord.php Program
	Viewing the addRecord.php Program
	Viewing the processAdd.php Program

	Creating the spyLib Library Module
	Setting a CSS Style
	Setting Systemwide Variables
	Connecting to the Database
	Creating a Quick List from a Query
	Building an HTML Table from a Query
	Building an HTML Table for Editing an SQL Table
	Creating a Generic Form to Edit a Record
	Building a Smarter Edit Form
	Determining the Field Type
	Working with the Primary Key
	Recognizing Foreign Keys
	Building the Foreign Key List Box
	Working with Regular Fields
	Committing a Record Update
	Deleting a Record
	Adding a Record
	Processing an Added Record
	Building a List Box from a Field
	Creating a Button That Returns Users to the Main Page

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

