

PHP and MongoDB
Web Development
Beginner's Guide

Combine the power of PHP and MongoDB to build
dynamic web 2.0 applications

Rubayeet Islam

 BIRMINGHAM - MUMBAI

PHP and MongoDB Web Development
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2011

Production Reference: 1181111

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-362-3

www.packtpub.com

Cover Image by Charwak A (charwak86@gmail.com)

Credits

Author

Rubayeet Islam

Reviewers

Sam Millman

Sigert de Vries

Nurul Ferdous

Vidyasagar N V

Acquisition Editor

Usha Iyer

Development Editor

Susmita Panda

Technical Editors

Joyslita D'Souza

Veronica Fernandes

Lubna Shaikh

Copy Editor

Laxmi Subramanian

Project Coordinator

Kushal Bhardwaj

Proofreader

Matthew Humphries

Indexer

Tejal Daruwale

Graphics

Valentina D'silva

Production Coordinator

Prachali Bhiwandkar

Cover Work

Prachali Bhiwandkar

About the Author

Rubayeet Islam is a Software Developer with over 4 years of experience in large-scale
web application development on open source technology stacks (LAMP, Python/Django,
Ruby on Rails). He is currently involved in developing cloud-based distributed software that
use MongoDB as their analytics and metadata backend. He has also spoken in seminars
to promote the use of MongoDB and NoSQL databases in general. He graduated from the
University of Dhaka with a B.S. in Computer Science and Engineering.

I thank the Almighty for giving me such a blessed life and my parents for
letting me follow my passion. My friend and colleague, Nurul Ferdous, for
inspiring me to be an author in the first place. Finally, the amazing people
at Packt – Usha Iyer, Kushal Bhardwaj, Priya Mukherji, and Susmita Panda,
without your help and guidance this book would not have been possible
to write.

About the Reviewers

Sam Millman, after achieving a B.Sc. in Computing from the University of Plymouth,
immediately moved to advance his knowledge within Web development, specifically PHP. He
is a fully self-taught professional Web Developer and IT Administrator working for a company
in the south of England.

He first started to show an interest in MongoDB when he went in search of something
new to learn. Now he is an active user of the MongoDB Google User Group and is about to
release a new site written in PHP with MongoDB as the primary data store.

Sigert de Vries (1983) is a professional Web Developer working in The Netherlands. He has
worked in several companies as a System Administrator and Web Developer. He is a specialist
in high performance websites and is an open source enthusiast. With his communicative
skills, he translates advanced technical issues to "normal" human language.

Sigert is currently working at Worldticketshop.com, helping them to be one of the largest
ticket marketplaces in Europe. Within the company, there's plenty of room to use NoSQL
solutions such as MongoDB.

I would like to thank Packt publishing for asking me to review this book, it
has been a pleasure!

Vidyasagar N V was interested in Computer Science since an early age. Some of his serious
work in computers and computer networks began during his high school days. Later, he went
to the prestigious Institute Of Technology, Banaras Hindu University for his B.Tech. He has
been working as a Software Developer and Data Expert, developing and building scalable
systems. He has worked with a variety of 2nd, 3rd, and 4th generation languages. He has
worked with flat files, indexed files, hierarchical databases, network databases, relational
databases, NoSQL databases, Hadoop, and related technologies. Currently, he is working
as a Senior Developer at Ziva Software Pvt. Ltd., developing big database-structured data-
extraction techniques for the Web and local information. He enjoys producing high-quality
software, web-based solutions, and designing secure and scalable data systems.

I would like to thank my parents, Mr. N Srinivasa Rao and Mrs.Latha Rao,
and my family who supported and backed me throughout my life. My
friends for being friends, and all those people willing to donate their time,
effort, and expertise by participating in open source software projects.
Thank you Packt Publishing for selecting me as one of the technical
reviewers on this wonderful book. It is my honor to be a part of this book.
You can contact me at vidyasagar1729@gmail.com.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt

•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1

Chapter 1: Getting Started with MongoDB	 7
The NoSQL movement	 8

Types of NoSQL databases	 8
MongoDB – A document-based NoSQL database	 9

Why MongoDB?	 9
Who is using MongoDB?	 9
MongoDB concepts—Databases, collections, and documents	 10

Anatomy of document	 10
BSON—The data exchange format for MongoDB	 11
Similarity with relational databases	 11

Downloading, installing, and running MongoDB	 12
System requirements	 12

Time for action – downloading and running MongoDB on Windows	 13
Installing the 64-bit version	 14

Time for action – downloading and running MongoDB on Linux	 15
Installing MongoDB on OS X	 17
Configuring MongoDB	 17

Command-line parameters	 17
File-based configuration	 18

Stopping MongoDB	 18
Hitting Control + C	 18
From the mongo shell	 19
Sending INT or TERM signal in UNIX	 19

Creating databases, collections, and documents	 19
Time for Action – creating databases, collections, and documents	 19
Installing the PHP driver for MongoDB	 21
Time for Action – installing PHP driver for MongoDB on Windows	 21

Installing the PHP-MongoDB driver on Unix	 23

Table of Contents

[ii]

Connecting to the MongoDB server from PHP	 23
Creating a PHP-Mongo connection	 23

Time for action – creating a connection to the MongoDB server from PHP	 24
Configuring the PHP-MongoDB connection	 26
Specifying timeout for the connection attempt	 26

Summary	 27

Chapter 2: Building your First MongoDB Powered Web App	 29
A MongoDB powered blog	 30
Have the MongoDB server running	 30
Inserting documents in MongoDB	 30
Time for action – building the Blog Post Creator	 30

Creating databases and collections implicitly	 35
Performing 'safe' inserts	 35

Benefits of safe inserts	 36

Specifying a timeout on insert	 36
Setting the user generated _id	 37
The MongoDate object	 37

Querying documents in a collection	 38
Time for action – retrieving articles from a database	 38

The Mongo Query Language	 42
The MongoCursor object	 42
Conditional Queries	 44

Doing advanced queries in MongoDB	 45
Time for action – building the Blog Dashboard	 45

Returning a subset of fields	 49
Sorting the query results	 49
Using count, skip, and limit	 49
Performing range queries on dates	 50

Updating documents in MongoDB	 51
Time for action – building the Blog Editor	 51

Optional arguments to the update method	 55
Performing 'upsert'	 55
Using update versus using save	 56
Using modifier operations	 56

Setting with $set	 56
Incrementing with $inc	 57
Deleting fields with $unset	 57
Renaming fields with $rename	 57

Deleting documents in MongoDB	 58
Time for action – deleting blog posts	 58

Optional arguments to remove	 63

Table of Contents

[iii]

Managing relationships between documents	 63
Embedded documents	 64
Referenced documents	 64

Time for action – posting comments to blog posts	 64
Embedded versus referenced – Which one to use?	 69

Querying embedded objects	 69

Summary	 71

Chapter 3: Building a Session Manager	 73
Understanding HTTP sessions	 74
Understanding PHP native session handling	 74
Time for action – testing native PHP session handling	 74

Limitations of native PHP session handling	 78
Implementing session handling with MongoDB	 78

Extending session handling with session_set_save_handler	 78
The SessionManager class	 79

Time for action – building the SessionManager class	 79
How the SessionManager works	 83

The constructor	 83
The open and close methods	 84
The read method	 84
The write method	 84
The destroy method	 84
The gc method	 85

Putting the SessionManager in action	 85
Time for action – putting SessionManager into action	 86
Building the user authentication module	 88
Time for action – building the User class	 89
Creating the login, logout, and user profile page	 92
Time for action – creating the login, logout, and profile page	 93
Using good session practices	 99

Setting low expiry times of session cookies	 99
Using session timeouts	 100
Setting proper domains for session cookies	 100
Checking for browser consistency	 100

Summary	 101

Chapter 4: Aggregation Queries	 103
Generating sample data	 104
Time for action – generating sample data	 104
Understanding MapReduce	 107

Visualizing MapReduce	 108
Performing MapReduce in MongoDB	 109

Table of Contents

[iv]

Time for action – counting the number of articles for each author	 110
Defining the Map function	 111
Defining the Reduce function	 112
Applying the Map and Reduce	 112
Viewing the results	 113
Performing MapReduce on a subset of the collection	 114
Concurrency	 114

Performing MongoDB MapReduce within PHP	 114
Time for action – creating a tag cloud	 115
Performing aggregation using group()	 120
Time for action – calculating the average rating per author	 121

Grouping by custom keys	 124
MapReduce versus group()	 124

Listing distinct values for a field	 125
Time for action – listing distinct categories of articles	 125

Using distinct() in mongo shell	 127
Counting documents with count()	 127
Summary	 128

Chapter 5: Web Analytics using MongoDB	 129
Why MongoDB is a good choice as a web analytics backend	 130
Logging with MongoDB	 131
Time for action – logging page visits with MongoDB	 131

Capped collections	 134
Sorting in natural order	 135
Updating and deleting documents in a capped collection	 135
Specifying the size of a regular collection	 135
Convert a regular collection to a capped one	 136

Extracting analytics data with MapReduce	 136
Time for action – finding total views and average response time per blog post	 137

The map, reduce, and finalize functions	 140
Displaying the result	 140

Running MapReduce in real time versus running it in the background	 141

Real-time analytics using MongoDB	 141
Time for action – building a real-time page visit counter	 141
Summary	 146

Chapter 6: Using MongoDB with Relational Databases	 147
The motivation behind using MongoDB and an RDBMS together	 148

Potential use cases	 148
Defining the relational model	 149
Time for action – creating the database in MySQL	 150

Table of Contents

[v]

Caching aggregation results in MongoDB	 153
Time for action – storing the daily sales history of products in MongoDB	 153
Benefits of caching queries in MongoDB	 160

Storing results of expensive JOINs	 160
Using MongoDB for data archiving	 160
Time for action – archiving old sales records in MongoDB	 161

Challenges in archiving and migration	 163
Dealing with foreign key constraints	 163
Preserving data types	 163

Storing metadata in MongoDB	 164
Time for action – using MongoDB to store customer metadata	 164
Problems with using MongoDB and RDBMS together	 173
Summary	 173

Chapter 7: Handling Large Files with GridFS	 175
What is GridFS?	 175

The rationale of GridFS	 176
The specification	 176
Advantages over the filesystem	 177

Storing files in GridFS	 178
Time for action – uploading images to GridFS	 178

Looking under the hood	 181
Serving files from GridFS	 182
Time for action – serving images from GridFS	 183

Updating metdata of a file	 186
Deleting files	 186

Reading files in chunks	 187
Time for action – reading images in chunks	 187
When should you not use GridFS	 189
Summary	 190

Chapter 8: Building Location-aware Web Applications with
MongoDB and PHP	 191

A geolocation primer	 192
Methods to determine location	 192

Detecting the location of a web page visitor	 193
The W3C Geolocation API	 193

Browsers that support geolocation	 194

Time for action – detecting location with W3C API	 194
The Geolocation object	 198

The getCurrentPosition() method	 198

Drawing the map using the Google Maps API	 199

Table of Contents

[vi]

Geospatial indexing	 200
Time for action – creating geospatial indexes	 201

Geospatial indexing – Important things to know	 202
Performing location queries	 203
Time for action – finding restaurants near your location	 203

The geoNear() command	 208
Bounded queries	 210

Geospatial haystack indexing	 210
Time for action – finding nearby restaurants that serve burgers	 211
Summary	 215

Chapter 9: Improving Security and Performance	 217
Enhancing query performance using indexes	 217
Time for action – creating an index on a MongoDB collection	 218

The _id index	 221
Unique indexes	 221
Compound keys indexes	 222
Indexing embedded document fields	 223
Indexing array fields	 224
Deleting indexes	 224
When indexing cannot be used	 224
Indexing guidelines	 225

Choose the keys wisely	 225
Keep an eye on the index size	 225
Avoid using low-selectivity single key indexes	 225
Be aware of indexing costs	 226
On a live database, run indexing in the background	 226

Optimizing queries	 227
Explaining queries using explain()	 227

Optimization rules	 228

Using hint()	 228
Profiling queries	 229

Understanding the output	 229
Optimization rules	 230

Securing MongoDB	 230
Time for action – adding user authentication in MongoDB	 230

Creating an admin user	 232
Creating regular user	 233
Viewing, changing, and deleting user accounts	 233
User authentication through PHP driver	 234
Filtering user input	 235
Running MongoDB server in a secure environment	 235

Table of Contents

[vii]

Ensuring data durability	 236
Journaling	 236

Performance	 237
Using fsync	 237

Replication	 238
Summary	 239

Chapter 10: Easy MongoDB Administration with RockMongo
and phpMoAdmin	 241

Administering MongoDB with RockMongo	 242
Time for action – installing RockMongo on your computer	 242

Exploring data with RockMongo	 244
Querying	 245
Updating, deleting, and creating documents	 245

Importing and exporting data	 247
Viewing stats	 248
Miscellaneous	 248

Using phpMoAdmin to administer MongoDB	 249
Time for action – installing phpMoAdmin on your computer	 249

Viewing databases and collections	 250
Querying documents	 251
Saving and deleting objects	 252
Importing and exporting data	 252
Viewing stats	 253
Other features	 253

RockMongo versus phpMoAdmin	 254
The verdict	 255

Summary	 256

Pop Quiz Answers	 257
Chapter 1, Getting Started with MongoDB	 257
Chapter 2, Building your First MongoDB Powered Web App	 257
Chapter 3, Building a Session Manager	 258
Chapter 4, Aggregation Queries	 258
Chapter 5, Web Analytics using MongoDB	 258
Chapter 7, Handling Large Files with GridFS	 259
Chapter 8, Building Location-aware Web Applications with MongoDB and PHP	 259
Chapter 9, Improving Security and Performance	 259

Index	 237

Preface
MongoDB is an open source, non-relational database system designed to meet the needs
of modern Web 2.0 applications. It is currently being used by some of the most popular
websites in the world. This book introduces MongoDB to the web developer who has some
background building web applications using PHP. This book teaches what MongoDB is, how
it is different from relational database management systems, and when and why developers
should use it instead of a relational database for storing data.

You will learn how to build PHP applications that use MongoDB as the data backend; solve
common problems, such as HTTP session handling, user authentication, and so on.

You will also learn to solve interesting problems with MongoDB, such as web analytics with
MapReduce, storing large files in GridFS, and building location-aware applications using
Geospatial indexing.

Finally, you will learn how to optimize MongoDB to boost performance, improve security,
and ensure data durability. The book will demonstrate the use of some handy GUI tools
that makes database management easier.

What this book covers
Chapter 1, Getting Started with MongoDB introduces the underlying concepts of MongoDB,
provides a step-by-step guide on how to install and run a MongoDB server on a computer,
and make PHP and MongoDB talk to each other.

Chapter 2, Building your First MongoDB Powered Web App shows you how to build a simple
blogging web application using PHP and MongoDB. Through the examples in this chapter,
you will learn how to create/read/update/delete data in MongoDB using PHP.

Chapter 3, Building a Session Manager shows you how PHP and MongoDB can be used to
handle HTTP sessions. You will build a stand-alone session manager module and learn how
to perform user authentication/authorization using the module.

Preface

[2]

Chapter 4, Aggregation Queries introduces MapReduce, a powerful functional programming
paradigm and shows you how it can be used to perform aggregation queries in MongoDB.

Chapter 5, Web Analytics using MongoDB shows you how you can store website traffic data
in MongoDB in real time and use MapReduce to extract important analytics.

Chapter 6, Using MongoDB with Relational Databases explores use cases where MongoDB
can be used alongside a relational database. You will learn how to archive data in MongoDB,
use it for caching expensive query results, and store non-structured metadata about different
objects in the domain.

Chapter 7, Handling Large Files with GridFS introduces GridFS, a specification in MongoDB
that allows us to store large files in the database.

Chapter 8, Building Location-aware Web Applications with MongoDB and PHP, uses
PHP, HTML5, JavaScript, and the Geospatial Indexing feature of MongoDB to build a web
application that helps you find restaurants close to your current location.

Chapter 9, Improving Security and Performance shows you how to boost query performance
using indexes, use built-in tools for analyzing and fine-tuning queries, improve database
security, and ensure data durability.

Chapter 10, Easy MongoDB Administration with RockMongo and phpMoAdmin demonstrates
the use of a couple of PHP-based GUI tools for managing MongoDB server—RockMongo and
phpMoAdmin.

What you need for this book
Apache web server (or IIS if you are on Windows) running PHP 5.2.6 or higher.

A web browser that supports the W3C Geolocation API (Internet Explorer 9.0+, Google
Chrome 5.0+, Firefox 3.5+ or Safari 5.0+).

Chapter 6, Using MongoDB with Relational Databases requires that you have MySQL
installed on your machine.

Who this book is for
This book assumes that you have some background in web application development using
PHP, HTML, and CSS. Some of the chapters require that you know JavaScript and are familiar
with AJAX. Having a working knowledge of using a relational database system, such as
MySQL will help you grasp some of the concepts quicker, but it is not strictly mandatory.
No prior knowledge of MongoDB is required.

Preface

[3]

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you have
learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The value for the first field, _id, is
autogenerated."

A block of code is set as follows:

try {
 $mongo = new Mongo($options=array('timeout'=> 100))
} catch(MongoConnectionException $e) {
 die("Failed to connect to database ".$e->getMessage());
}

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

{
 _id : ObjectId("4dcd2abe5981aec801010000"),
 title : "The only perfect site is hind-site",
 content : "Loren ipsum dolor sit amet…",
 saved_at : ISODate('2011-05-16T18:42:57.949Z'),
 author_id : ObjectId("4dd491695072aefc456c9aca")
}

Any command-line input or output is written as follows:

>db.movies.find({"genre":"sci-fi"})

{ "_id" : ObjectId("4db439153ec7b6fd1c9093ec"), "name" : "Source Code",
"genre" : "sci-fi", "year" : 2011 }

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on the Delete link on
any one article."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started with MongoDB

We are about to begin our journey in PHP and MongoDB web development.
Since you picked up this book, I assume you have some background building
web apps using PHP, and you are interested in learning to develop PHP
applications with MongoDB as data backend. In case you have never heard
of MongoDB before, it is an open source, document-oriented database that
supports the concept of flexible schema. In this chapter, we will learn what
MongoDB is, and what do we gain from using MongoDB instead of trusted
old SQL databases. We will start by learning briefly about the NoSQL
databases (a set of database technologies that are considered alternative
to RDBM systems), the basics of MongoDB, and what distinguishes it from
relational databases. Then we will move on to installing and running
MongoDB and hooking it up with PHP.

To sum it up, in this chapter we will:

•	 Learn about the NoSQL movement

•	 Learn the basic concepts behind MongoDB

•	 Learn how to download, install, and run MongoDB on a computer

•	 Learn to use the mongo Interactive Shell

•	 Learn how to make PHP and MongoDB talk to each other

So let's get on with it...

Getting Started with MongoDB

[8]

The NoSQL movement
You probably have heard about NoSQL before. You may have seen it in the RSS feed
headlines of your favorite tech blogs, or you overheard a conversation between developers
in your favorite restaurant during lunch. NoSQL (elaborated "Not only SQL"), is a data storage
technology. It is a term used to collectively identify a number of database systems, which
are fundamentally different from relational databases. NoSQL databases are increasingly
being used in web 2.0 applications, social networking sites where the data is mostly user
generated. Because of their diverse nature, it is difficult to map user-generated content to a
relational data model, the schema has to be kept as flexible as possible to reflect the changes
in the content. As the popularity of such a website grows, so does the amount of data and
the read-write operations on the data. With a relational database system, dealing with
these problems is very hard. The developers of the application and administrators of the
database have to deal with the added complexity of scaling the database operations, while
keeping its performance optimum. This is why popular websites—Facebook, Twitter to name
a few—have adopted NoSQL databases to store part or all of their data. These database
systems have been developed (in many cases built from scratch by developers of the web
applications in question!) with the goal of addressing such problems, and therefore are more
suitable for such use cases. They are open source, freely available on the Internet, and their
use is increasingly gaining momentum in consumer and enterprise applications.

Types of NoSQL databases
The NoSQL databases currently being used can be grouped into four broad categories:

•	 Key-value data stores: Data is stored as key-value pairs. Values are retrieved by keys.
Redis, Dynomite, and Voldemort are examples of such databases.

•	 Column-based databases: These databases organize the data in tables, similar to an
RDBMS, however, they store the content by columns instead of rows. They are good
for data warehousing applications. Examples of column-based databases are Hbase,
Cassandra, Hypertable, and so on.

•	 Document-based databases: Data is stored and organized as a collection of
documents. The documents are flexible; each document can have any number of
fields. Apache CouchDB and MongoDB are prominent document databases.

•	 Graph-based data-stores: These databases apply the computer science graph theory
for storing and retrieving data. They focus on interconnectivity of different parts
of data. Units of data are visualized as nodes and relationships among them are
defined by edges connecting the nodes. Neo4j is an example of such a database.

Chapter 1

[9]

MongoDB – A document-based NoSQL database
MongoDB falls into the group of document-oriented NoSQL databases. It is developed and
maintained by 10gen (http://www.10gen.com). It is an open source database, written in
the programming language C. The source code is licensed under AGPL and freely available at
GitHub, anyone can download it from the repo https://github.com/mongodb/mongo
and customize it to suit his/her needs. It is increasingly being used as a data storage layer in
different kinds of applications, both web-based and nonweb-based.

Why MongoDB?
Features that make learning and using MongoDB a win, include:

•	 Easy to learn, at least easier than learning other NoSQL systems, if I dare say.
Column-oriented or graph-based databases introduce radical ideas that many
developers struggle to grasp. However, there is a lot of similarity in the basic
concepts of MongoDB and a relational database. Developers coming from an RDBMS
background, find little trouble adapting to MongoDB.

•	 It implements the idea of flexible schema. You don't have to define the structure
of the data before you start storing it, which makes it very suitable for storing non-
structured data.

•	 It is highly scalable. It comes with great features to help keep performance
optimum, while the size and traffic of data grows, with little or no change in the
application layer.

It is free, it can be downloaded and used without charge. It has excellent documentation and
an active and co-operative online community who participate in mailing lists, forums, and
IRC chat rooms.

Who is using MongoDB?
Let's take a look at some real world use cases of MongoDB:

•	 Craigslist: Craigslist is the world's most popular website for featuring free classified
advertisements. It uses MongoDB to archive billions of records. They had been
using a MySQL based solution for achieving that. Replacing them with MongoDB has
allowed them to add schema changes without delay, and scale much more easily.

•	 Foursquare: Foursquare is a popular location-based social networking application. It
stores the geographical location of interesting venues (restaurants, cafes, and so on)
and records when users visit these venues. It uses MongoDB for storing venue and
user information.

Getting Started with MongoDB

[10]

•	 CERN: The renowned particle physics laboratory based in Geneva, uses MongoDB
as an aggregation cache for its Large Hadron Collider experiment. The results for
expensive aggregation queries, performed on massive amounts of data, are stored
in MongoDB for future use.

MongoDB concepts—Databases, collections, and documents
A MongoDB server hosts a number of databases. The databases act as containers of data
and they are independent of each other. A MongoDB database contains one or more
collections. For example, a database for a blogging application named myblogsite may
typically have the collections articles, authors, comments, categories, and so on.

A collection is a set of documents. It is logically analogous to the concept of a table in a
relational database. But unlike tables, you don't have to define the structure of the data
that is going to be stored in the collection beforehand.

A document stored in a collection is a unit of data. A document contains a set of fields or
key-value pairs. The keys are strings, the values can be of various types: strings, integers,
floats, timestamps, and so on. You can even store a document as the value of a field in
another document.

Anatomy of document
Let's take a closer look at a MongoDB document. The following is an example of a document
that stores certain information about a user in a web application:

{
 _id : ObjectId("4db31fa0ba3aba54146d851a")
 username : "joegunchy"
 email : "joe@mysite.org"
 age : 26
 is_admin : true
 created : "Sun Apr 24 2011 01:52:58 GMT+0700 (BDST)"
}

The previous document has six fields. If you have some JavaScript experience, you would
recognize the structure as JSON or JavaScript Object Notation. The value for the first field,
_id, is autogenerated. MongoDB automatically generates an ObjectId for each document
you create in a collection and assigns it as _id for that document. This is also unique; that
means no two documents in the same collection will have the same values for ID, just like a
primary key of a table in a relational database. The next two fields, username and email
are strings, age is an integer, and is_admin is boolean. Finally, created is a JavaScript
DateTime object, represented as a string.

Chapter 1

[11]

BSON—The data exchange format for MongoDB
We have already seen that the structure of a document imitates a JSON object. When you
store this document in the database, it is serialized into a special binary encoded format,
known as BSON, short for binary JSON. BSON is the default data exchange format for
MongoDB. The key advantage of BSON is that it is more efficient than conventional formats
such as XML and JSON, both in terms of memory consumption and processing time. Also,
BSON supports all the data types supported by JSON (string, integer, double, Boolean, array,
object, null) plus some special data types such as regular expression, object ID, date, binary
data, and code. Programming languages such as PHP, Python, Java, and so on have libraries
that manage conversion of language-specific data structures (for example, the associative
array in PHP) to and from BSON. This enables the languages to easily communicate with
MongoDB and manipulate the data in it.

If you are interested to learn more about BSON format, you may try
visiting http://bsonspec.org/.

Similarity with relational databases
Developers with a background on working with relational database systems will quickly
recognize the similarities between the logical abstractions of the relational data model and
the Mongo data model. The next figure compares components of a relational data model
with those of the Mongo data model:

RDBMS MongoDB

Database Database

Table

Row

Column

Collection

Document

Field

Getting Started with MongoDB

[12]

The next figure shows how a single row of a hypothetical table named users is mapped into
a document in a collection:

Also just like columns of a RDBMS table, fields of a collection can be indexed, although
implementations of indexing are different.

So much for the similarities: now let's talk briefly about the differences. The key thing that
distinguishes MongoDB from a relational model is the absence of relationship constraints.
There are no foreign keys in a collection and as a result there are no JOIN queries. Constraint
management is typically handled in the application layer. Also, because of its flexible schema
property, there is no expensive ALTER TABLE statement in MongoDB.

Downloading, installing, and running MongoDB
We are done with the theoretical part, at least for now. It is time for us to download, install,
and start playing with MongoDB on the computer.

System requirements
MongoDB supports a wide variety of platforms. It can run on Windows (XP, Vista, and 7),
various flavors of Linux (Debian/Ubuntu, Fedora, CentOS, and so on), and OS X running on
Intel-based Macs. In this section, we are going to see step-by-step instructions for having a
MongoDB system up and running in a computer, running on Windows, Linux, or OS X.

Chapter 1

[13]

Time for action – downloading and running MongoDB on
Windows

We are going to learn how to download, install, and run MongoDB on a computer running
on Windows:

1.	 Head on over to the downloads page on the MongoDB official website,
http://www.mongodb.org/downloads.

2.	 Click on the download link for the latest stable release under Windows 32-bit.
This will start downloading a ZIP archive:

3.	 Once the download is finished, move the ZIP archive to the C:\ drive and extract
it. Rename the extracted folder (mongodb-win32-i386-x.y.z where x.y.z is
the version number) to mongodb.

4.	 Create the folder C:\data\db. Open a CMD prompt window, and enter the
following commands:

C:\> cd \mongodb\bin

C:\mongodb\bin> mongod

Getting Started with MongoDB

[14]

5.	 Open another CMD prompt window and enter the following commands:

C:\> cd \mongodb\bin

C:\mongodb\bin> mongo

6.	 Type show dbs into the shell and hit Enter.

What just happened?
In steps 1 to 3, we downloaded and extracted a ZIP archive that contains binary files
for running MongoDB on Windows, moved and extracted it under the C:\ drive, and
renamed the folder to mongodb for convenience. In step 4, we created the data directory
(C:\data\db). This is the location where MongoDB will store its data files. In step 5, we
execute the C:\mongodb\bin\mongod.exe program in the CMD prompt to launch the
MongoDB server; this is the server that hosts multiple databases (you can also do this
by double-clicking on the file in Windows Explorer). In step 6, after the server program is
booted up, we invoke the C:\mongodb\bin\mongo.exe program to start the mongo
interactive shell, which is a command-line interface to the MongoDB server:

C:\mongodb\bin\mongo

MongoDB shell version: 1.8.1

connection to test

type "help" for help

>

Once the shell has started, we issue the command show dbs to list all the pre-loaded
databases in the server:

>show dbs

admin (empty)

local (empty)

>

Installing the 64-bit version
The documentation at the MongoDB website recommends that you run the 64-bit version of
the system. This is because the 32-bit version cannot store more than 2 gigabytes of data. If
you think it is likely that the data in your database will exceed the 2 GB limit, then you should
obviously download and install the 64-bit version instead. You will also need an operating
system that supports running applications in the 64-bit mode. For the purpose of the
practical examples shown in this book, we are just fine with the 32-bit version, you should
not worry about that too much.

Chapter 1

[15]

Time for action – downloading and running MongoDB on Linux
Now, we are going to learn how to download and run the MongoDB server on a Linux box:

1.	 Fire up the terminal program. Type in the following command and hit Enter

wget http://fastdl.mongodb.org/linux/mongodb-linux-i686-1.8.3.tgz
> mongo.tgz

2.	 Extract the downloaded archive by using the following command:

tar xzf mongo.tgz

3.	 Rename the extracted directory by using the following command:

mv mongodb-linux-i686-1.8.3 mongodb

4.	 Create the data directory /data/db by using the following command:

sudo mkdir –p /data/db

sudo chown `id -u` /data/db

5.	 Startup the server by running the following command:

./mongodb/bin/mongod

6.	 Open another tab in the terminal and run the next command:

./mongodb/bin/mongo

7.	 Type show dbs into the shell and hit Enter.

What just happened?
In step 1, we downloaded the latest stable release of MongoDB 32-bit version for Linux using
the wget program, and stored it as a GZIP tarball named mongo.tgz on your machine.

Getting Started with MongoDB

[16]

At the time of this writing, the latest production release for MongoDB
is 1.8.3. So when you try this, if a newer production release is available,
you should download that version instead.

In steps 2 and 3, we extracted the tarball and renamed the extracted directory to mongodb
for convenience. In step 4, we created the data directory /data/db for MongoDB, and gave
it permission to read from and write to that directory. In step 5, we startup the MongoDB
server by executing the mongodb/bin/mongod script.

In step 6, after we have successfully launched the server, we start the mongo interactive shell:

$./mongodb/bin/mongo

MongoDB shell version: 1.8.1

url: test

connection to test

type "help" for help

>

Once the shell has started, we issue the command show dbs to list all the pre-loaded
databases in the server:

>show dbs

local (empty)

admin (empty)

>

The databases listed here are special databases pre-built within the server. They are used
for administration and authentication purposes. We do not need to concern ourselves with
them right now.

Installing MongoDB using package managers

You can use the package manager of your Linux distribution (apt
for Debian/Ubuntu, yum for Fedora/CentOS) to install MongoDB.
To get distro-specific instructions, Ubuntu/Debian users should
visit http://www.mongodb.org/display/DOCS/
Ubuntu+and+Debian+packages. Users of CentOS and Fedora
should visit http://www.mongodb.org/display/DOCS/
CentOS+and+Fedora+Packages. The advantage of using
a package manager, other than being able to install with fewer
commands, is that you can launch the Mongo server and the client
just by typing mongod and mongo respectively in the shell.

Chapter 1

[17]

Installing MongoDB on OS X
The instructions for installing MongoDB on an OS X powered Mac machine are the same
as those for Linux. You have to download the OS X specific binaries for Mongo (available at
http://www.mongodb.org/downloads), and follow the same steps to execute them.

Alternatively, if you have package managers installed on your OS X (Homebrew or MacPorts),
you can use them to install MongoDB.

To install MongoDB with HomeBrew use the following command:

$ brew update

$ brew install mongodb

To use MacPorts to install MongoDB use the following command:

$ sudo port install mongodb

Configuring MongoDB
When we launched the mongod program, it booted up with some default configuration
settings, such as the path to the data directory (C:\data\db on Windows or /data/db
on Unix). In real world deployments, we want to be able to specify these settings ourselves.
There are two ways to achieve that. We can either modify them by supplying command-line
parameters to the mongod program at invocation, or by using file-based configurations.

Command-line parameters
We can override the default MongoDB settings by passing command-line parameters to the
mongod program. For example, the next command tells MongoDB to use C:\mongodb_
data as data directory by sending it as a --dbpath argument:

C:\>mongodb\bin\mongod --dbpath C:\mongodb_data

The following table lists some useful command-line parameters and their functions:

Parameter What it does

--dbpath Path to the directory for storing data files.

--bind_ip IP address that the mongod server will listen on, default is 127.0.0.1.

--port Port address that mongod will listen on, default is 27017.

--logpath Full file path to the log file where the MongoDB messages will be written.
By default all messages are written to standard output.

--logappend Setting this option to true appends the messages at the end of the log
file. Setting it to false overwrites the log.

Getting Started with MongoDB

[18]

We can see the full list of command-line options by running mongod with the--help option:

C:\>mongodb\bin\mongod –-help

File-based configuration
An alternative to sending all those command-line parameters to mongod manually is to put
the required configuration settings in a file and then pass the path of the file as a--config
option. For example, consider the following sample configuration file:

dbpath = D:\mongodb_data
logpath = D:\mongodb.log
logappend = true

We store this file to a location, say C:\mongodb.conf. Now, to start MongoDB with the
these settings, we have to enter the next command in the CMD prompt:

C:\>mongodb\bin\mongod --config C:\mongodb.conf

mongod will be loaded with these configuration settings. Note that file-based parameters are
the same as those for command-line options.

If you are on a Linux machine, and you have installed Mongo using a
package manager, such a configuration file may already exist in your
system, typically at the location /etc/mongo.conf. You can modify
that file to boot Mongo server with the configuration of your choice.

Have a go hero – configure MongoDB to run with non-default settings
Start MongoDB with the following settings, using a file-based configuration:

•	 Default data directory at /usr/bin/mongo.

•	 Default port address at 8888.

•	 Messages will be logged at /var/logs/mongodb.log. The log file should be
overwritten over time.

Stopping MongoDB
There are several ways you can shutdown a running MongoDB server.

Hitting Control + C
In the terminal window (or CMD prompt window in case you are on Windows) running the
mongod process, hit Ctrl + C. This will signal the server to do a clean shutdown, flush, and
close its data files.

Chapter 1

[19]

From the mongo shell
From the mongo interactive shell, you can issue a shutdownServer() command, causing
mongod to terminate:

>use admin

switched to db admin

>db.shutdownServer()

Sending INT or TERM signal in UNIX
In Linux/OS X, you can send a kill -2 <PID> signal to the process running mongod, which
will cause the server to shutdown cleanly. You can get the PID by running the following
command:

ps –aef | grep mongod

Creating databases, collections, and documents
Now that you have MongoDB up and running on your computer, it is time for us to create
some databases, collections, and documents.

Time for Action – creating databases, collections, and documents
The next example will demonstrate how to create a database, and insert a document in a
collection using the mongo shell program:

1.	 In the mongo shell, enter the following command:

>use myfirstdb

2.	 When the prompt returns, enter the following commands to create documents in a
collection named movies:

>db.movies.insert({name:"Source Code", genre:"sci-fi", year:2011})

>db.movies.insert({name:"The Dark Knight", genre:"action",
year:2008})

>db.movies.insert({name:"Megamind", genre:"animation", year:2010})

>db.movies.insert({name:"Paranormal Activity", genre:"horror",
year:2009})

>db.movies.insert({name:"Hangover", genre:"comedy", year:2010})

3.	 The following command returns all documents from the movies collection:

>db.movies.find()

Getting Started with MongoDB

[20]

What just happened?
In step 1, we applied the use myfirstdb command to switch to a new database namespace.
Any collection/document we create now is going to be stored under this database. Next we
create a collection named movies and insert some documents in it:

>db.movies.insert({name:"Source Code",genre:"sci-fi",year:2011})

The db part of the command always refers to the current database, which is "myfirstdb"
in this case. The next part is the name of the collection (movies), if it does not already exist
in the database, it gets created automatically when you invoke the insert() method on
it. The argument to insert is a JSON object, a set of key-value pairs. After invoking the first
insert, the database myfirstdb comes into physical existence. You can look into the data
directory at this point, where you will find the files myfirstdb.0, myfirstdb.1, and so
on that are storing the data for this database.

The find() command, invoked on the collection, returns all the documents in it:

>db.movies.find()

{ "_id" : ObjectId("4db439153ec7b6fd1c9093ec"), "name" : "Source Code",
"genre" : "sci-fi", "year" : 2011 }

{ "_id" : ObjectId("4db439df3ec7b6fd1c9093ed"), "name" : "The Dark
Knight", "genre" : "action", "year" : 2008 }

{ "_id" : ObjectId("4db439f33ec7b6fd1c9093ee"), "name" : "Megamind",
"genre" : "animation", "year" : 2010 }

{ "_id" : ObjectId("4db439f33ec7b6fd1c9093ef"), "name" : "Paranormal
Activity", "genre" : "horror", "year" : 2009 }

{ "_id" : ObjectId("4db439f43ec7b6fd1c9093f0"), "name" : "Hangover",
"genre" : "comedy", "year" : 2010 }

Pop quiz – configuring MongoDB
1.	 What is the default port address of MongoDB?

a.	 27107

b.	 27017

c.	 27170

Chapter 1

[21]

2.	 How does a new database get created in MongoDB?

a.	 By the command create database <databasename>

b.	 By the command use <databasename>

c.	 By doing use <databasename> first and then doing
db.<collectionname>.insert(<jsondocument>)

Installing the PHP driver for MongoDB
To make PHP talk to the MongoDB server, we are going to need the PHP-MongoDB driver. It is
a PHP extension library that manages connection to the MongoDB server and enables you to
perform all kinds of operations on a database through PHP. Since you are a PHP programmer, I
am going to assume you already have a functional PHP environment installed on your machine,
running on top of an Apache web server. The driver officially supports PHP versions 5.1, 5.2,
and 5.3. So if you are using an older version of PHP, I suggest you upgrade it.

Time for Action – installing PHP driver for MongoDB on Windows
Let's try installing the driver on a Windows machine running PHP 5.2 on Apache:

1.	 Download the ZIP archive http://downloads.mongodb.org/mongo-latest-
php5.2vc6ts.zip on your machine and extract it.

2.	 Copy the php_mongo.dll file from the extracted folder to the PHP extension
directory; this is usually the folder name ext inside your PHP installation.

3.	 Open the php.ini file inside your PHP installation and add the following line:

extension=php_mongo.dll

4.	 Save the file and close it. Restart the Apache web server.

5.	 Open up your text editor and add the following code to a new file:

<?php
phpinfo();

6.	 Save the file as phpinfo.php inside the DocumentRoot of the Apache web server
(the htdocs folder).

Getting Started with MongoDB

[22]

7.	 Execute the phpinfo.php script in your browser
(http://localhost/phpinfo.php). Scroll down to find the
section mongo to see all the MongoDB driver-specific information.

Congratulations! You have successfully installed the PHP driver for MongoDB.

What just happened?
In step 1, we download the ZIP file containing the DLL file php_mongo.dll for
the PHP-MongoDB driver for PHP 5.2 (for the PHP 5.3 specific version, download
http://downloads.mongodb.org/mongo-latest-php5.3vc6ts.zip instead).
In step 2, we copy the php_mongo.dll file to the PHP extensions directory. If the
installation directory of PHP on your machine is C:\php, the extension directory should
be C:\php\ext. Then we edit the php.ini file (located under C:\php as well) to add
the line extension=php_mongo.dll to it and restart Apache for the changes to take
effect. Next we create and execute a one-line PHP script to invoke the phpinfo()
method. If we are able to see the MongoDB driver specific information in the phpinfo()
output, listed under section mongo, this means the driver was installed without a glitch.

If you are running PHP on IIS, you should download the
thread-safe VC9 version of the driver instead. Get it from the URL
http://downloads.mongodb.org/mongo-latest-
php5.3vc9ts.zip.

Chapter 1

[23]

Installing the PHP-MongoDB driver on Unix
In a Unix-based system, the PHP driver for MongoDB can be installed using the pecl (PECL -
PHP Extension Community Islam) program. You need to have it installed on your machine,
which can be done by using the following command:

sudo pecl install mongo

When the installation is finished, edit the php.ini file (usually found at /etc/php.ini) to
add the line:

extension=mongo.so

and then restart Apache.

In case you don't have pecl installed on your machine, you can download the driver source
code from GitHub, build it, and install it manually:

$ tar zxvf mongodb-mongdb-php-driver-<commit_id>.tar.gz

$ cd mongodb-mongodb-php-driver-<commit_id>

$ phpize

$./configure

$ sudo make install

Check out the Mongo driver installation page http://www.php.net/manual/en/mongo.
installation.php on the PHP official website to get operating system specific detailed
information.

Connecting to the MongoDB server from PHP
In this section, we will learn how to use the API provided by the PHP-MongoDB driver to
create a connection to the Mongo server from a PHP script.

Creating a PHP-Mongo connection
Let's write a very simple PHP program that creates a connection to the MongoDB server
and shows all the available databases on that server.

Getting Started with MongoDB

[24]

Time for action – creating a connection to the MongoDB server
from PHP

1.	 Open up your text editor and add the following code in a new file:

<?php
 try{
 $mongo = new Mongo(); //create a connection to MongoDB
 $databases = $mongo->listDBs(); //List all databases
 echo '<pre>';
 print_r($databases);
 $mongo->close();
 } catch(MongoConnectionException $e) {
 //handle connection error
 die($e->getMessage());
 }

2.	 Save the file as test_connection.php under the DocumentRoot of your
web server.

3.	 Open up your browser, and execute the script by going to the location
http://localhost/test_connection.php:

Chapter 1

[25]

What just happened?
We just wrote a simple PHP program to test if the PHP-MongoDB driver we installed works
correctly. The program does two simple things. First, it creates a connection to the Mongo
server, then it lists all the databases in the server.

Let's examine the code. We created a connection from PHP to MongoDB by instantiating a
Mongo object:

try{
 $mongo = new Mongo();
 ……………………………………………………
} catch(MongoConnectionException $e) {
 die($e->getMessage());
}

We instantiated the object within a try/catch block to handle the exception named
MongoConnectionException in case PHP fails to connect. Once the connection was
made, we invoked the listDBs() method on the Mongo object. It returned an associative
array, containing three fields. The first field—databases—is an array of associative arrays,
each one corresponding to a database in the server, giving us the name of the database, its
size in bytes, and a flag specifying if the database is empty or not.

Array
(
 [databases] => Array
 (
 [0] => Array
 (
 [name] => myfirstdb
 [sizeOnDisk] => 67108864
 [empty] =>
)
 [1] => Array
 (
 [name] => adming
 [sizeOnDisk] => 1
 [empty] => 1
)

)
 [totalSize] => 67108864
 [ok] => 1
)

The totalSize field corresponds to the total size of data in the server (in bytes) and the ok
flag specifies if the method ran successfully. Finally, we closed the connection by invoking the
close() method on the Mongo object.

Getting Started with MongoDB

[26]

Configuring the PHP-MongoDB connection
When no parameter is passed to the constructor of the Mongo class, it connects to the
Mongo server running on localhost, on port 27107 (or whatever value is specified for
mongo.default_host and mongo.default_port in php.ini). If we want to connect
to a server running on a different host and/or port, we can pass the connection string
(mongodb://<hostname>:<port_number>) as the $server parameter to the Mongo
constructor. For example, to connect to a Mongo server listening on port 8888, we will type
the following command:

$mongo = new Mongo($server="mongodb://localhost:8888");

Specifying timeout for the connection attempt
We can specify for how long (in milliseconds) the driver should attempt to connect to the
MongoDB server:

try {
 $mongo = new Mongo($options=array('timeout'=> 100))
} catch(MongoConnectionException $e) {
 die("Failed to connect to database ".$e->getMessage());
}

We supplied an array {'timeout' => 100} as the $option argument to the Mongo
constructor. In case PHP fails to connect within 100 milliseconds, it will throw an exception
named MongoConnectionException.

Have a go hero – connect to a MongoDB server on a networked computer
Suppose your computer is connected to a local area network. There is another computer in
the network, running on the IP address 192.168.1.101. It is hosting a MongoDB server that
is listening on port 8000. Write a PHP script that connects to that MongoDB server, in under
one second, and lists all the databases hosted there.

Chapter 1

[27]

Summary
We covered a lot of things in this chapter.

Specifically, we covered:

•	 What the NoSQL movement is

•	 What MongoDB is, what is it good for, and who is using it

•	 The MongoDB data model (databases, collections, and documents)

•	 How to install and run MongoDB on a computer

•	 How to create databases, collections, and documents using the mongo
interactive shell.

•	 How to install the MongoDB-PHP driver on a computer

•	 How to create a connection to MongoDB from PHP

We also discussed how to configure the MongoDB server using command-line parameters
or configuration files.

By now you should have a PHP-MongoDB development environment up and running on
your system. In the next chapter, we will learn to create a simple web application using
MongoDB as data backend.

2
Building your First MongoDB

Powered Web App

We know what MongoDB is, and what it is good for. We also have a PHP and
MongoDB development environment set up. It is time for us to dive into some
coding. In this chapter, we are going to build a very simple web application
using PHP and HTML/CSS, with MongoDB as the data store. Through the
practical examples of building components of this web app, we are going to
learn how we store, retrieve, and manipulate data in Mongo.

In this chapter, we will learn how to use PHP to:

•	 Connect to a MongoDB database

•	 Save documents in a collection

•	 Querying documents in a collection

•	 Performing range queries

•	 Sorting documents

•	 Updating a document

•	 Deleting one or more documents from a collection

•	 Embedded and referenced documents

Building your First MongoDB Powered Web App

[30]

A MongoDB powered blog
For our first MongoDB powered web application, we are going to build a very simple
blogging website. The reason I chose to build a blog as our first example application is
because it is a CRUD (Create, Read, Update, Delete) application and it is very suitable in our
case to ease into PHP and MongoDB web development. We will build plain user interfaces
using HTML/CSS with simple textboxes and buttons. A MongoDB database will store all the
content. PHP will take care of moving the data back and forth between the frontend and the
database. By building tools to create/read/update/delete articles in the blog site, we will
learn how to save, read, or remove documents in MongoDB.

Have the MongoDB server running
Since we are going to store data in MongoDB with PHP in the next examples, you should
have the mongod process up and running on your machine. Take a look at the tutorials in
Chapter 1, Getting Started with MongoDB to see how to run the MongoDB server. It is also
a good idea to have the MongoDB interactive shell client (mongo) running as well, you may
need it to explore the data in collections.

Inserting documents in MongoDB
In Chapter 1, Getting Started with MongoDB we learned how to insert documents to a
collection on the fly, using the insert()method in the mongo interactive shell. In this section,
we are going to do the same thing, but we are going to use PHP to achieve it. So as the first
part of the blog site, we are going to build the blog post creator. It displays a web interface
where a user can enter the title and contents of his blog post and save it to MongoDB.

Time for action – building the Blog Post Creator
Although it sounds fancy, Blog Post Creator is just a webpage that shows a form where the
user can type in the text of his/her article, and then save it by submitting the form:

1.	 Open up your text editor. Put the following code in a new file:

<?php
 $action = (!empty($_POST['btn_submit']) &&
 ($_POST['btn_submit'] === 'Save')) ? 'save_article'
 : 'show_form';
 switch($action){
 case 'save_article':
 try {
 $connection = new Mongo();

Chapter 2

[31]

 $database = $connection->selectDB('myblogsite');
 $collection = $database->
 selectCollection('articles');
 $article = array{
 'title' => $_POST['title'],
 'content' => $_POST['content'],
 'saved_at' => new MongoDate()
 };
 $collection->insert($article);
 } catch(MongoConnectionException $e) {
 die("Failed to connect to database ".
 $e->getMessage());
 }
 catch(MongoException $e) {
 die('Failed to insert data '.$e->getMessage());
 }
 break;
 case 'show_form':
 default:
 }
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="style.css"/>
 <title>Blog Post Creator</title>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1>Blog Post Creator</h1>
 <?php if ($action === 'show_form'): ?>
 <form action="<?php echo $_SERVER['PHP_SELF'];?>"
 method="post">
 <h3>Title</h3>
 <p>
 <input type="text" name="title" id="title/">
 </p>
 <h3>Content</h3>
 <textarea name="content" rows="20"></textarea>
 <p>

Building your First MongoDB Powered Web App

[32]

 <input type="submit" name="btn_submit"
 value="Save"/>
 </p>
 </form>
 <?php else: ?>
 <p>
 Article saved. _id:<?php echo $article['_id'];?>.

 Write another one?
 </p>
 <?php endif;?>
 </div>
 </div>
 </body>
</html>

2.	 Save the file as blogpost.php.

3.	 Open another new file in your text editor and put the following CSS rules in it:

body {
 background-color: #e1ddd9;
 font-size: 12px;
 font-family: Verdana, Arial, Helvetica, SunSans-Regular,
 Sans-Serif;
 color:#564b47;
 padding:20px;
 margin:0px;
 text-align: center;
}
div#contentarea {
 text-align: left;
 vertical-align: middle;
 margin: 0px auto;
 padding: 0px;
 width: 550px;
 background-color: #ffffff;
 border: 1px #564b47;
}
div#innercontentarea{ padding: 10px 50px; }
div#innercontentarea form input[type=text]{ width: 435px; }
div#innercontentarea form textarea[name=content] { width: 435px; }

4.	 Save the file as style.css.

Chapter 2

[33]

5.	 Open blogpost.php in your browser. Type in some arbitrary text in the title
and content field, and click on the Save button:

6.	 If the blog has been saved successfully, the page reloads with a message Article
saved. The hyperlink on the page takes you back to the form so you can write
more blog posts:

Building your First MongoDB Powered Web App

[34]

What just happened?
We just built the Blog Post Creator! We wrote a PHP script blogpost.php that conditionally
either shows an HTML form where the user can write the title/content of a new blog post,
or it saves the user-submitted data to MongoDB. By default the script displays the following
HTML form:

<form action="blogpost.php" method="post">
	 <h3>Title</h3>
 <p><input type="text" name="title" id="title/"></p>
 <h3>Content</h3>
 <textarea name="content" rows="20"></textarea>
 <p><input type="submit" name="btn_submit" value="Save"/></p>
</form>

We also created a CSS file named styles.css to apply styling rules to the HTML output.

When the user clicks the Save button after writing, the following portion of the code gets
executed, which connects to MongoDB and selects a database and a collection where the
data will be stored:

$connection = new Mongo();
$database = $connection->selectDB('myblogsite');
$collection = $database->selectCollection('articles');

In the first line of the previous code, PHP connects to the MongoDB server by instantiating
a Mongo object. Next, the selectDB() method is invoked on the Mongo object, with an
argument myblogsite. This enables us to select a database named myblogsite on the
MongoDB server. The selectDB() method returns a MongoDB object, which represents
the database. Next we invoked the selectCollection() method on the MongoDB object,
passing the name of the collection we want to select as the argument (articles), which in
turn returns a MongoCollection object. This object represents the collection where we
will store the data.

We construct an array with the user-submitted data, and pass this array as an argument to
the insert() method of the MongoCollection object:

$article = array();
$article['title'] = $_POST['title'];
$article['content'] = $_POST['content'];
………………………………………………………………………………………………………
$collection->insert($article);

The insert() method stores the data in the collection. The $article array automatically
receives a field named _id, which is the autogenerated unique ObjectId of the inserted
BSON document.

Chapter 2

[35]

Creating databases and collections implicitly
Did you notice that we selected a database and a collection that did not even exist in
Mongo? This is one of the convenient features of MongoDB, we do not have to run any
CREATE DATABASE or CREATE TABLE statement beforehand, as we would have to do
in MySQL or any other relational database. The database and collection namespaces get
created on the fly, and we can go ahead and start saving objects. So selectDB() either
selects an existing database or creates it implicitly if it is not there. The same thing goes
for selectCollection().

Shortcut approach for selecting database/collection

We can select a collection by doing this as well
$connection = new Mongo();
$collection = $connection->myblogsite->articles;

The second assignment of the previous code performs the
same operation as calling selectDB('myblogsite') and
selectCollection('articles') sequentially. This is a shortcut
approach for selecting databases and collections.

Performing 'safe' inserts
An important thing that you must know about MongoDB is that when you invoke an
insert() method, the program control does not wait for the response from the MongoDB
database. That is, it just signals MongoDB to insert the document, and then immediately
moves on to execute the next statement in the code. The actual insert and pooling of
connection is taken care of by MongoDB itself. This is an asynchronous approach for inserting
documents in MongoDB and it is the default behavior. If we want to change this—that is, we
want to wait for the response of the database—we need to send an optional safe=true
argument to the insert() method (by default this is set to false):

try {
 $status = $connection->insert(array('title' => 'Blog Title',
 'content' => 'Blog Content'),
 array('safe' => True));
 echo "Insert operation complete";
} catch (MongoCursorException $e) {
 die("Insert failed ".$e->getMessage());
}

Building your First MongoDB Powered Web App

[36]

In the previous code snippet, the program will wait for the MongoDB database to respond
to the insert command, before executing the echo statement in the next line. In case the
insert command does not succeed, a MongoCursorException will be thrown. Also the
insert() method returns an array when in safe mode (as opposed to returning a Boolean
value in regular mode) that contains information about the status of the insert.

Benefits of safe inserts
Using safe inserts comes in handy in any of the following situations:

•	 Using safe mode guards us against all kinds of user level errors during inserts. For
example, if we try to insert a document with a non-unique _id, a safe insert will
raise an exception.

•	 MongoDB may also run out of disk space when inserting documents. Safe inserts
check against such potential pitfalls.

•	 In a multi-server setup, that is, when the data is being stored on multiple machines
(a replica set), using safe inserts ensures that the data is written on at least one
machine.

However, this does not mean we should use safe inserts in all scenarios in a real-world
application. Safe inserts incur extra overhead, so they will not be as fast as the regular ones.
We should identify the use cases where we are more concerned about the safety of the data
rather than speed, and use safe inserts on those cases only.

Specifying a timeout on insert
When doing a 'safe' insert, we can supply an optional timeout parameter, which specifies
how long (in milliseconds) the program will wait for a database response when doing an
insert:

try {
 $collection->insert($document, array('safe' => True,
 'timeout' => True));
} catch (MongoCursorTimeoutException $e) {
 die('Insert timeout expired '.$e->getMessage());
}

In case the database fails to insert the document within the specified timeout period, the
PHP runtime throws a MongoCursorTimeoutException.

Chapter 2

[37]

Setting the user generated _id
Although MongoDB assigns a unique _id to a document upon insertion, we can set the
_id field of the document explicitly by ourselves. This is useful for situations when we
want to give each document a unique identifier derived from our own rule. For example,
the following code block creates a hash of the current Unix timestamp appended with the
$username string and sets it as the _id of a document:

$username = 'Joe';
try{
 $document = array('_id' => hash('sha1', $username.time()),
 'user' => $username,
 'visited' => 'homepage.php');
 $collection->insert($document, array('safe' => True));
} catch(MongoCursorException $e) {
 die('Failed to insert '.$e->getMessage());
}

When setting the _id in this way, we should always do a 'safe' insert. This ensures
when there is more than one document in the collection with the same _id, a
MongoCursorException is thrown while doing the insert.

The MongoDate object
You may have noticed that we added an extra field named saved_at to the article when we
inserted it. The value of saved_at is a MongoDate object, which represents the ISODate
data type in BSON. When instantiated, a MongoDate gives the current Unix timestamp.
We can use the built-in strtotime() function in PHP to instantiate MongoDate objects
that represent any date/time information we want to store in MongoDB, and the date()
function to print the timestamp in a human-readable format.

$timestamp = new MongoDate(strtotime('2011-05-21 12:00:00'));
print date('g:i a, F j', $timestamp->sec); //prints 12 pm, May 21

Have a go hero – allow storing tags for an article
Modify the HTML in the blogpost.php script to show a text field labeled tags, where
the user will type in one or more tags for an article he creates. The tags will be comma
separated. Modify the PHP code to store the user-submitted tags in an array field named
tags of the article document being inserted.

Building your First MongoDB Powered Web App

[38]

Querying documents in a collection
We have learned how to store data in MongoDB. It is time that we learn about how to
retrieve them. In Chapter 1, Getting Started with MongoDB we invoked the find() method
on a collection to get all the documents in that collection. We did that using the mongo
interactive shell, this time we will do that programmatically using PHP. Also, we are going to
learn how we can specify query parameters in MongoDB.

Time for action – retrieving articles from a database
In this example, we are going to build the home page of our blog site, which will show the
title and the content excerpt of every article stored in the database. Clicking on an article will
take us to another page where we can see the full content of the article. Let's get to it:

1.	 Open up the text editor and create a new file named blogs.php. Put the following
code in that file:

<?php
 try {
 $connection = new Mongo();
 $database = $connection->selectDB('myblogsite');
 $collection = $database->selectCollection('articles');
 } catch(MongoConnectionException $e) {
 die("Failed to connect to database ".$e->getMessage());
 }
 $cursor = $collection->find();
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="style.css" />
 <title>My Blog Site</title>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1>My Blogs</h1>
 <?php while ($cursor->hasNext()):
 $article = $cursor->getNext(); ?>
 <h2><?php echo $article['title']; ?></h2>

Chapter 2

[39]

 <p>
 <?php echo substr($article['content'], 0,
 200).'...'; ?>
 </p>
 <a href="blog.php?id=<?php echo $article['_id'];
 ?>">Read more
 <?php endwhile; ?>
 </div>
 </div>
 </body>
</html>

2.	 Create another file named blog.php with the following code:

<?php
 $id = $_GET['id'];
 try {
 $connection = new Mongo();
 $database = $connection->selectDB('myblogsite');
 $collection = $database->selectCollection('articles');
 } catch(MongoConnectionException $e) {
 die("Failed to connect to database ".$e->getMessage());
 }
 $article = $collection->findOne(array('_id' =>
 new MongoId($id)));
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="style.css" />
 <title>My Blog Site</title>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1>My Blogs</h1>
 <h2><?php echo $article['title']; ?></h2>
 <p><?php echo $article['content']; ?></p>
 </div>
 </div>
 </body>
</html>

Building your First MongoDB Powered Web App

[40]

3.	 Open your browser and navigate to the blogs.php file. It lists all the current
articles in your blog:

4.	 Click on the Read more link of the first article on the list. It executes the blog.php
script and displays the full content of the first blog post:

Chapter 2

[41]

What just happened?
Let's go through the code we wrote in step 1. In the first block of code, we connect to the
database and select the collection that we wish to query on. Nothing new there. Then we
invoke the find() method on the collection to retrieve all documents currently in that
collection:

$cursor = $collection->find();

The find() method returns a MongoCursor object, an object that we can use to iterate
through the results of a database query. In the HTML portion of the code, we iterate the
MongoCursor object to fetch each article one by one and display its title and first 200
characters of its content:

<?php while ($cursor->hasNext()):
 $article = $cursor->getNext(); ?>
 <h2><?php echo $article['title']; ?></h2>
 <p><?php echo substr($article['content'], 0, 200).'...'; ?></p>
 <a href="blog.php?id=<?php echo $article['_id']; ?>">Read more
<?php endwhile; ?>

When we click on the Read more link, it takes us to the blog.php file which we wrote in
step 2. This file receives the _id of the article as an HTTP GET parameter. We invoke the
findOne() method on the articles collection, sending the _id value as a parameter to
the method. The findOne() method is used to retrieve a single document, unlike find()
which we use to retrieve a cursor of a set of documents that we can iterate over:

$id = $_GET['id'];
………………………………………………
$article = $collection->findOne(array('_id'=>
 new MongoId($id)));

This basically tells MongoDB to return the document that has the same _id as the specified
value. This is similar to doing SELECT * FROM articles WHERE id = <somevalue> in SQL.
The find() method returns a MongoCursor object. We call the getNext() method on it
to get the first (in this case, the only) document in the query result. Finally, we display the
title and content of the retrieved document using HTML markup.

Building your First MongoDB Powered Web App

[42]

The Mongo Query Language
Data is retrieved from MongoDB using the Mongo Query Language. Queries are expressed
as JSON objects (or BSON objects to be more correct), which are passed as arguments to the
find() method. For example, the next query applied in mongo shell, gets all documents
from a collection named movies that have their genre fields set to 'sci-fi':

>db.movies.find({"genre":"sci-fi"})

{ "_id" : ObjectId("4db439153ec7b6fd1c9093ec"), "name" : "Source Code",
"genre" : "sci-fi", "year" : 2011 }

To do the same thing in PHP, we invoke find()on the MongoCollection object
representing the movies collection. The query is expressed as an associative array:

//get all movies where genre == sci-fi
$moviesCollection->find(array("genre" : "sci-fi"));

We can also specify multiple query parameters:

//get all movies where genre is comedy and year is 2011
$moviesCollection->find(array('genre' => 'comedy', 'year' => 2011));

When we don't pass any query arguments to find(), it gets an empty array by default (an
empty JSON object in MongoDB) and matches all documents in the collection:

//get ALL movies
$moviesCollection->find();

We could have also done $moviesCollection->find(array()), this also returns all
documents (find() receives an empty array as a default parameter).

The MongoCursor object
A query in MongoDB, performed with find(), returns a cursor. We can iterate over this
cursor to retrieve all the documents matched by the query. In PHP, the return value of the
find() method is a MongoCursor object. In the following code snippet, we get all movies
of the action genre and iterate over them in a while loop:

$cursor = $movieCollection->find(array('genre' => 'action'));
while ($cursor->hasNext()) {
 $movie = $cursor->getNext();
 //do something with $movie
 …………………………………………….
}

Chapter 2

[43]

The hasNext() checks whether or not there are any more objects in the cursor. getNext()
returns the next object pointed by the cursor, and then advances the cursor. The documents
do not get loaded into memory unless we invoke either getNext() or hasNext() on the
cursor, this is good for keeping the memory usage low.

We can do this in a foreach loop as well:

$cursor = $movieCollection->find(array('genre' => 'action'));
if ($cursor->count() === 0) {
 foreach ($cursor as $movie) {
 //do something with $movie
 }
}

The count() method of the MongoCursor returns the number of objects in the cursor. We
check if this number is zero (which means no matching results found), so that we can just
skip the execution of the foreach section.

Returning documents in an array

We can use the built-in iterator_to_array() function in PHP to
change the cursor returned by the query into an array. The array contains
all the objects in the cursor, and we can access them or iterate over them
the same way we do with a regular array in PHP. Programmers who find
the cursor approach a little too difficult prefer this trick.

$cursor = $movieCollection->find({'genre': 'action'});
$array = iterator_to_array($cursor);
if (!empty($array)) {
 foreach($array as $item){

 //do something with $item

 …………………………………………..

 }

}

However, there is a downside of using iterator_to_array(). If the
size of the data returned is very large, let's say 1 GB, using iterator_
to_array() may lead to a major performance decrease, as PHP will
try to load the entire data into memory. So you should avoid using this
approach unless you are sure that the dataset is reasonably small.

Building your First MongoDB Powered Web App

[44]

Conditional Queries
In addition to doing queries based on equality, we can also do conditional queries in
MongoDB using the conditional operators ($gt/$gte, $lt/$lte, $ne, and so on) of the
Mongo query language. The next few lines of code demonstrate the uses of such operators:

//get all items with field 'x' greater than 100
$collection->find(array('x' => array('$gt' => 100)));

//get all items with field 'x' lower than 100
$collection->find(array('x' => array('$lt' => 100)));

//get all items with field 'x' greater than or equal to 100
$collection->find(array('x' => array('$gte' => 100)));

//get all items with field 'x' lower than or equal to 100
$collection->find(array('x' => array('$lte' => 100)));

//get all items with field 'x' between 100 and 200
$collection->find(array('x' => array('$gte' => 100, '$lte' => 200)));

//get all items with field 'x' not equal to 100
$collection->find(array('x' => array('$ne' => 100)));

Important! When using the MongoDB conditional query operators in PHP (or any special
operator that has $ as a prefix), we must use the operator within single quotes (') and not
double quotes ("). If we do use double quotes, we need to escape it since PHP treats $
prefixed strings within double quotes as variables:

//Using single quotes (') is ok.
$collection->find(array('x' => array('$gt' => 100)));
//$ is escaped within double quotes (")
$collection->find(array('x' => array("\$gt" => 100)));
//this will cause an error
$collection->find(array('x' => array("$gt" => 100)));

Visit http://www.mongodb.org/display/DOCS/
Advanced+Queries#AdvancedQueries-ConditionalOperators to learn some more
of these conditional operators in Mongo.

Chapter 2

[45]

Pop Quiz – what does this query do?
1.	 What does the following query do?

$movies->find(array('genre' => 'comedy',
 'year' => array('$gt' => 2009, '$lt' => 2011)));

a.	 Gets all movies released after the year 2009

b.	 Gets all movies released after the year 2009 and before the year 2011

c.	 All of the above

d.	 None of the above

Doing advanced queries in MongoDB
We have got the basics of querying MongoDB, so now we are going to move into a little
more advanced stuff, such as sorting and limiting query results, returning a subset of fields,
querying over a range of dates, and so on. We will use these concepts to build a page that
will show a paginated list of blog posts in the database. The page will show the most recently
saved articles first and we will be able to browse through all the articles using a pair of
navigation links. We will call this page the "Blog Dashboard".

Time for action – building the Blog Dashboard
In this example, we are going to build the Blog Dashboard, a page that lists most recently
saved articles first, showing five articles at a time. The user is able to browse through all
articles using the navigation links at the bottom of the list. For now we will not implement
any functionality in the dashboard other than viewing each article. Moving forward in this
chapter, we will use this page as our codebase to build on top of as we learn more advanced
MongoDB topics:

1.	 Create a new file named dashboard.php in your text editor, and add the following
PHP, HTML/CSS code there:

<?php
 try	 {
 $mongodb = new Mongo();
 $articleCollection = $mongodb->myblogsite->articles;
 } catch (MongoConnectionException $e) {
 die('Failed to connect to MongoDB '.$e->getMessage());
 }
 $currentPage = (isset($_GET['page'])) ? (int) $_GET['page']
 : 1;

Building your First MongoDB Powered Web App

[46]

 $articlesPerPage = 5;
 $skip = ($currentPage - 1) * $articlesPerPage;
 $cursor = $articleCollection->find(array(),array('title',
 'saved_at'));
 $totalArticles = $cursor->count();
 $totalPages = (int) ceil($totalArticles / $articlesPerPage);
 $cursor->sort(array('saved_at'=>-1))->skip($skip)
 ->limit($articlesPerPage);
?>
<html>
 <head>
 <title>Dashboard</title>
 <link rel="stylesheet" href="style.css"/>	
 <style type="text/css" media="screen">
 body { font-size: 13px; }
 div#contentarea { width : 650px; }
 </style>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1>Dashboard</h1>
 <table class="articles" cellspacing="0"
 cellpadding="0">
 <thead>
 <tr>
 <th width="55%">Title</th>
 <th width="27%">Created at</th>
 <th width="*">Action</th>
 </tr>
 </thead>
 <tbody>
 <?php while($cursor->hasNext()):
 $article = $cursor->getNext();?>
 <tr>
 <td>
 <?php echo substr($article['title'], 0, 35)
 . '...'; ?>
 </td>
 <td>
 <?php print date('g:i a, F j',
 $article[saved_at']->sec);?>
 </td>
 <td class="url">
 <a href="blog.php?id=<?php echo

Chapter 2

[47]

 $article['_id'];	 ?>">View

 </td>
 </tr>
 <?php endwhile;?>
 </tbody>
 </table>
 </div>
 <div id="navigation">
 <div class="prev">
 <?php if($currentPage !== 1): ?>
 <a href="<?php echo
 $_SERVER['PHP_SELF'].'?page='.($currentPage - 1);
 ?>">Previous
 <?php endif; ?>
 </div>
 <div class="page-number">
 <?php echo $currentPage; ?>
 </div>
 <div class="next">
 <?php if($currentPage !== $totalPages): ?>
 <a href="<?php echo
 $_SERVER['PHP_SELF'].'?page='.($currentPage + 1);
 ?>">Next
 <?php endif; ?>
 </div>
 <br class="clear"/>
 </div>
 </div>
 </body>
</html>

2.	 Open style.css and add the following CSS rules to it:

table.articles {
 width: 100%;
 line-height: 1;
 text-align: left;
}
table.articles th{
 border-bottom: 1px solid #ccc;
 padding: 8px 0;
 font-weight: bold;
}
table.articles td {

Building your First MongoDB Powered Web App

[48]

 border-bottom: 1px solid #eee;
 padding: 6px 0;
}
div#navigation {
 margin: 0px 150px;
 padding: 5px 90px;
 text-align:center;
}
div#navigation div.prev { display:block; float:left; width:40%; }
div#navigation div.page-number { float:left; width:20%; }
div#navigation div.next { float:right; width:40%; }
.clear { clear: both; }

3.	 Open your browser and go to the dashboard.php page. Use the Previous/Next
links to browse through the articles in the database. Click on the View link next to
an article to view its full content:

What just happened?
We wrote a new PHP program dashboard.php that implements the Blog Dashboard.
We added some new styling rules in the style.css file for this new page. We executed
dashboard.php in the browser and used the links at the bottom to navigate through all the
blog posts in the database. In the next few sections, we are going to dig deeper into the code
and learn advanced query features in Mongo.

Chapter 2

[49]

Returning a subset of fields
In this example, we sent a second optional argument to find(), an array containing names
of fields that we want to see in the retrieved documents:

$cursor = $articleCollection->find(array(),
 array('title' => 1, 'saved_at' => 1);

The first argument is an empty array, so the query matches all documents in the articles
collection. The second argument tells MongoDB to only fetch the values for title and the
saved_at fields of each document. This is useful in situations when we are only interested
in some specific fields instead of all of them. For example, the next argument returns the
username and e-mail for a user with a specific user ID:

//SELECT username, email FROM users WHERE user_id = 1;
$users->find(array('user_id' => 1), array('username', 'id'));

Sorting the query results
The sort() method invoked on the MongoCursor object sorts the query results based on
the value of a specified field. Sorting order can be both ascending and descending. In our
example, we sorted the articles on their create dates in descending order:

$cursor->sort(array('saved_at' => -1)) //-1 means descending order

To reverse the sorting order, we would do the following:

$cursor->sort(array('saved_at' => 1)) //1 means ascending order

We can also sort on multiple fields, even with different sort orders:

//sort on field 'x' in ascending order and on 'y' in descending order

$cursor->sort(array('x' = > 1, 'y' => -1));

Using count, skip, and limit
Calling count() on a MongoCursor object returns the number of items in the cursor:

$cursor = $articleCollection->find(); //gets all articles
$cursor->count(); //returns number of articles retrieved

Building your First MongoDB Powered Web App

[50]

skip() lets you skip a number of results in a cursor. It needs an integer as an argument,
which is the number of results to skip:

//get all articles
$cursor = $articleCollection->find();
//skip the first five articles in the cursor
$cursor->skip(5);
//start iterating from the sixth article in the result set
while($cursor->hasNext()) {
 $cursor->getNext();
 ………………………………………………………
}

Finally, limit() enables us to limit the number of results returned:

$cursor = $articlesCollection->find();
$cursor->limit(10); //get first 10 documents from the result set

We can chain all these methods together to achieve the combined effect. The next statement
gets documents from the database sorted on saved_at in descending order, skips the first
five documents in the result set and fetches the next five:

$cursor->sort(array('saved_at' => -1))->skip(5)->limit(5);

Performing range queries on dates
We know PHP stores date and time information in MongoDB as MongoDate objects. Let's
take a look at how we can perform range queries on MongoDate fields using the conditional
operators we have seen earlier in this chapter.

The next query returns all articles from the database that have been created within the
last week:

$lastweek = new MongoDate(strtotime('-1 week'));
$cursor = $articleCollection->find(array('saved_at' =>
 array('$gt' => $lastweek)));

We can also specify two specific end points in date range queries:

$start = new MongoDate(strtotime('2011-05-01 00:00:00'));
$end = new MongoDate(strtotime('2011-05-31 23:59:59'));
$articleCollection->find(array('saved_at'=>
 array('$gte' => $start,
 '$lte' => $end)));

Chapter 2

[51]

Have a go hero – rewrite blogs.php
Rewrite the blog homepage script, blogs.php, to achieve the following changes:

•	 The page should show the most recently saved articles at the top

•	 Instead of showing all articles, only show the 10 most recent articles at the top

•	 Enable pagination on the homepage so that users can browse the older articles

Updating documents in MongoDB
We have covered creation and retrieval of documents in MongoDB. It is time that we learn
how we can update a document.

Updates are performed by the update() method of the MongoCollection object. This is
how the method signature looks:

public bool MongoCollection::update ($criteria, $newobj, $options)

$criteria is an array that specifies the document that is going to be updated. The
database is queried with $criteria to select the document intended to be updated.

$newobj is the document (represented as an array) that is going to replace the old
document.

$options specifies optional arguments to update(). We will talk about what options are
available later.

In this next section, we are going to see this method in action by building a module to edit
existing blog posts in the database.

Time for action – building the Blog Editor
We are now going to build the Blog Editor, a page that loads an article, specified by the _id,
from the database into an HTML form. The user changes the title and/or the content of the
article, hits save, and the article gets updated with the modified content.

1.	 Create a new PHP file named edit.php. Add the following code to the file:

<?php
 $action = (!empty($_POST['btn_submit']) &&
 ($_POST['btn_submit'] === 'Save')) ? 'save_article'
 : 'show_form';
 $id = $_REQUEST['id'];

Building your First MongoDB Powered Web App

[52]

 try {
 $mongodb = new Mongo();
 $articleCollection = $mongodb->myblogsite->articles;
 } catch (MongoConnectionException $e) {
 die('Failed to connect to MongoDB '.$e->getMessage());
 }
 switch($action){
 case 'save_article':
 $article = array();
 $article['title'] = $_POST['title'];
 $article['content'] = $_POST['content'];
 $article[saved_at] = new MongoDate();
 $articleCollection->update(array('_id' => new
 MongoId($id)),
 $article);
 break;
 case 'show_form':
 default:
 $article = $articleCollection->findOne(array('_id' =>
 new MongoId($id)));
 }
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="style.css" />
 <title>Blog Post Editor</title>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1>Blog Post Creator</h1>
 <?php if ($action === 'show_form'): ?>
 <form action="<?php echo $_SERVER['PHP_SELF'];?>"
 method="post">
 <h3>Title</h3>
 <p><input type="text" name="title" id="title"
 value="<?php echo $article['title']; ?>"/></p>

Chapter 2

[53]

 <h3>Content</h3>
 <textarea name="content" rows="20">
 <?php echo $article['content']; ?>
 </textarea>
 <input type="hidden" name="id" value="<?php echo
 $article['_id'];?>" />
 <p>
 <input type="submit" name="btn_submit"
 value="Save"/>
 </p>
 </form>
 <?php else: ?>
 <p>
 Article saved. _id: <?php echo $id;?>.
 <a href="blog.php?id=<?php echo $id;?>">
 Read it.

 </p>
 <?php endif;?>
 </div>
 </div>
 </body>
</html>

2.	 Open the dashboard.php file in your text editor, and change the following HTML
markup:

<td>
 <a href="blog.php?id=<?php echo $article['_id'];?>">View
</td>

To this:

<td>
 <a href="blog.php?id=<?php echo $article['_id'];?>">View
 | <a href="edit.php?id=<?php echo $article['_id'];?>">Edit
</td>

3.	 Open the dashboard.php file in the browser. Click on the Edit link on any
one article.

Building your First MongoDB Powered Web App

[54]

4.	 Change Title/Content of the article loaded in the form on the edit.php page. Click
on the Save button when done:

What just happened?
We created a new PHP file, edit.php that receives an article _id via the HTTP GET
parameter and loads it into an HTML form. We modified the code in the dashboard.php file
to add an Edit link for each article. Clicking on this link takes us to the edit.php page, where
we can change the Title/Content of the article and click on Save. The article is saved to the
database with the changed values and the saved_at field is set to the time of update.

Chapter 2

[55]

Let's take a closer look at the code. We sent the article ID as the $criteria parameter
for the update() method. We constructed an array from the user-submitted data (Title/
Content) and passed it as the second argument to update(). The saved_at field is reset to
the current time:

$article = array();
$article['title'] = $_POST['title'];
$article['content'] = $_POST['content'];
$article['saved_at'] = new MongoDate();
$articleCollection->update(array('_id' => new MongoId($id)),
 $article);

Optional arguments to the update method
Let's take a look at some of the optional parameters we can send to the update() method:

•	 safe: This is the same as doing a 'safe' insert. When set to True, the PHP-
MongoDB driver waits for the database response for the update operation. Default
is false:

$collection->update($criteria, $newobj, array('safe' => True));

•	 multiple: Even if we get more than one document matched by the criteria,
update() updates just one of them. Setting multiple to True switches this
default behavior that is, all matched documents are updated:

$collection->update($criteria, $newobj, array('multiple' =>
 True));

•	 timeout: Specifies a timeout (in milliseconds) on the update operation. Must be
used along with the safe parameter:

//100 milliseconds timeout on the update operation
$collection->update($criteria, $newobj, array('safe => True,
 'timeout' => 100));

Performing 'upsert'
MongoDB allows us to perform an interesting operation named Upsert. Upsert is short for
"Update if exists, INSERT otherwise". That means if the document we are looking to update
does not actually exist in the database, MongoDB is going to create the document with
the given values instead. This is achieved by setting an optional upsert flag to True in the
update() method.

Building your First MongoDB Powered Web App

[56]

Take the following code for example, it looks up the user with the e-mail ID alice@
wonderland.com and sets her first name and last name. If the user does not exist in the
database, it is going to create the user with the given values (both with the e-mail and the
first and last names).

$users->update(array('email' => 'alice@wonderland.com'),
 array('firstname' => 'Alice', 'lastname'=> 'Liddell'),
 array('upsert' => True));

Using update versus using save
An alternate approach for updating documents in MongoDB is using the save() method on
a MongoCollection object:

$collection->save($document);

The difference between update() and save() is that when using save(), if the
document does not exist in the database it gets created. This is almost the same as doing
upsert=True in update(). This way save() can be used instead of insert() as well:

$document = array('name' => 'Adam Smith', 'age' => 27);
$collection->save($document); //inserts the object
$document['age'] = 31;
$collection->save($document); //updates the object

Using modifier operations
Using modifiers enables us to update documents efficiently and conveniently. Instead of
replacing the whole document, modifiers change only part of the document, leaving the
other parts intact. Such atomic operations have the advantage of saving data with less
latency in querying and returning the documents. To use these modifiers, we have to specify
the operators marked by the $ prefix. Let's take a look at some of the important modifiers.

Setting with $set
$set allows us to set the value of a particular field of a document. For example, if we just
wanted to change the title of an article in our blog editor, we would do the following:

$articles->update(array('_id' => MongoId('4dcd2abe5981')),
 array('$set' => array('title' => 'New
 Title')));

The previous code sets the title of the article with the ID '4dcd2abe5981', to 'New Title'.
The other fields are unchanged.

Chapter 2

[57]

Incrementing with $inc
$inc lets us increment the value of a field by a specified number. For example, let's
assume we are keeping track of how many times an article gets modified in our blog by a
field named update_count, and we need to increase its value by 1 each time an article
content gets modified:

$articles->update(array('_id' => MongoId('4dcd2abe5981')),
 array('$set' => array('content' => 'New Content'),
 '$inc' => array('update_count' => 1)));

The previous code snippet changes the content of the article with the ID '4dcd2abe5981',
and increases its update_count value by 1. Incase the update_count field did not exist
in the document, using $inc will add this field and set its value to 1.

Deleting fields with $unset
$unset is just the opposite of $set. We can use it to remove a field from a document:

$articles->update(array('_id' => MongoId('4dcd2abe5981')),
 array('$unset' => array('title' => True)));

The previous statement removes the title field from an article object.

Renaming fields with $rename
Another handy modifier operator is $rename, which can be used to change the name of a
field in a document:

$articles->update(array(),
 array('$rename' => array('saved_at' =>
 'created_at')),
 array('multiple' => True));

The previous statement renames the saved_at field for all documents in an articles
collection to created_at.

Have a go hero – merge Blog editor and creator into a single module
We created blogpost.php for inserting articles and edit.php for updating articles. Your
homework is to develop a new module that does the job of both these modules. Here is how
the new module will work:

1.	 By default, the page will show an HTML form where the user can type in the title
and content of a blog post.

2.	 If the page receives the ID of an article as GET parameter, it will load the title and
the content of the article in the HTML form.

Building your First MongoDB Powered Web App

[58]

3.	 When the user clicks on the Save button in the form, the article is saved in the
database. In case of a new article, the article is inserted. Otherwise the article is
updated. (Hint: use the save() method, or the upsert feature.)

4.	 When an article is updated, only the title and content of the article should be
updated, rather than replacing the entire article object. Also, assign a new field
called modified_at to record the last time the article was updated.

You get bonus points for handling errors gracefully!

Deleting documents in MongoDB
We are down to the last letter of CRUD, the DELETE operation. We will learn how to delete
documents from a collection in MongoDB.

Time for action – deleting blog posts
We will modify the code of the Blog Dashboard once again to add a Delete link to each
article displayed. Clicking on this link will display a JavaScript confirmation box, and clicking
on Yes on that box will delete the article and reload the page:

1.	 Open up dashboard.php in your editor. Delete the old code in that file, and add
the following code to it:

<?php
 try{
 $mongodb = new Mongo();
 $articleCollection = $mongodb->myblogsite->articles;
 } catch (MongoConnectionException $e) {
 die('Failed to connect to MongoDB '.$e->getMessage());
 }
 $currentPage = (isset($_GET['page'])) ? (int) $_GET['page']
 : 1;
 $articlesPerPage = 5; //number of articles to show per page
 $skip = ($currentPage - 1) * $articlesPerPage;
 $cursor = $articleCollection->find(array(),
 $fields=array('title',
 'saved_at'));
 $totalArticles = $cursor->count();
 $totalPages = (int) ceil($totalArticles / $articlesPerPage);
 $cursor->sort(array('created_at' => -1))->skip($skip)
 ->limit($articlesPerPage);
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

Chapter 2

[59]

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Dashboard</title>
 <link rel="stylesheet" href="style.css"/>
 <style type="text/css" media="screen">
 body { font-size: 13px; }
 div#contentarea { width : 650px; }
 </style>
 <script type="text/javascript" charset="utf-8">
 function confirmDelete(articleId) {
 var deleteArticle = confirm('Are you sure you want to
 delete this article?');
 if(deleteArticle){
 window.location.href = 'delete.php?id='+articleId;
 }
 return;
 }
 </script>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1>Dashboard</h1>
 <table class="articles" cellspacing="0" cellpadding="0">
 <thead>
 <tr>
 <th width="50%">Title</th>
 <th width="24%">Saved at</th>
 <th width="*">Action</th>
 </tr>
 </thead>
 <tbody>
 <?php while($cursor->hasNext()):
 $article = $cursor->getNext();?>
 <tr>
 <td>
 <?php echo substr($article['title'], 0, 35) .
 '...'; ?>
 </td>
 <td>
 <?php print date('g:i a, F j',
 $article['saved_at']->sec);?>
 </td>
 <td>
 <a href="blog.php?id=<?php $article['_id'];?>">

Building your First MongoDB Powered Web App

[60]

 View

 | <a href="edit.php?id=<?php $article['_
 id'];?>">
 Edit

 | <a href="#" onclick="confirmDelete('<?php echo
 $article['_id']; ?>')">
 Delete

 </td>
 </tr>
 <?php endwhile;?>
 </tbody>
 </table>
 </div>
 <div id="navigation">
 <div class="prev">
 <?php if($currentPage !== 1): ?>
 <a href="<?php $_SERVER['PHP_SELF'].'?page='.
 ($currentPage - 1); ?>">
 Previous
 <?php endif; ?>
 </div>
 <div class="page-number">
 <?php echo $currentPage; ?>
 </div>
 <div class="next">
 <?php if($currentPage !== $totalPages): ?>
 <a href="<?php echo
 $_SERVER['PHP_SELF'].'?page='.($currentPage + 1);
 ?>">
 Next

 <?php endif; ?>
 </div>
 <br class="clear"/>
 </div>
 </div>
 </body>
</html>

Chapter 2

[61]

2.	 Create another PHP script named delete.php. Put the following code in it:

<?php
 $id = $_GET['id'];
 try{

 $mongodb = new Mongo();
 $articleCollection = $mongodb->myblogsite->articles;
 } catch (MongoConnectionException $e) {
 die('Failed to connect to MongoDB '.$e->getMessage());
 }
 $articleCollection->remove(array('_id' => new MongoId($id)));
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="style.css"/>
 <title>Blog Post Creator</title>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1>Blog Post Creator</h1>
 <p>Article deleted. _id: <?php echo $id;?>.
 Go back to dashboard?
 </p>
 </div>
 </div>
 </body>
</html>

Building your First MongoDB Powered Web App

[62]

3.	 Run dashboard.php in the browser. Click on the Delete link on any one article.
Click OK on the confirmation dialogue box to delete the article:

What just happened?
We edited the dashboard page HTML to display a Delete link in each row. We added some
JavaScript code to the page so that when we click the delete link, a pop-up box asks for
confirmation. Clicking OK takes us to the page delete.php, which deletes the article and
shows us a confirmation message.

In the delete.php script, we used the remove() method to delete an article from the
database. The remove() method takes an array as its parameter, which it uses to query the
document it is going to delete. If multiple documents match the query, all of them are deleted.

//delete document(s) from the movies collection where genre is drama
$movies->remove(array('genre' => 'drama'));

If no query argument is passed, remove() will delete all documents
in the collection.

Chapter 2

[63]

Optional arguments to remove
remove() has the following optional arguments:

•	 safe: Performs 'safe' delete that is, when set to True, the program control waits for
the database response for the delete operation. Default is false:

$collection->remove(array('username' => 'joe'),
 array('safe' => True))

•	 timeout: Specify a timeout in milliseconds for the delete operation. It can only be
used when doing safe delete:

$collection->remove(array('userid' => 267),
 array('safe' => True, 'timeout' => 200));

•	 justOne: When set to True, remove() will delete only one document matched by
the query, instead of all of them:

//remove just one movie with genre = drama
$movies->remove(array('genre' =>'drama'),
 array('justOne' => True));

Managing relationships between documents
When building an application, we have to map the real-world objects into a data model that
fits the use case scenarios of the application. These real-world objects are related to each other
to some degree. A typical blog application, for example, will have articles written by authors,
comments posted to articles, categories created by authors and assigned to articles, and so on.
We know from our discussion in Chapter 1, Getting Started with MongoDB that MongoDB (and
NoSQL databases in general) is non-relational by nature; there are no FOREIGN KEYs or JOINs.
Then how do we simulate the relation between two documents in MongoDB?

There are two ways we can do that, embedding a document within the other document, or
creating a reference from one document to the other.

Building your First MongoDB Powered Web App

[64]

Embedded documents
In this approach, the top-level document contains the related document in itself. For
example, an author document may have an address document embedded in it:

{
 "_id" : ObjectId("4dd491695072aefc456c9aca"),
 "username" : "alphareplicant",
 "email" : "roybatty@androids.org",
 "fullname" : "Roy Batty",
 "joined_at" : ISODate("2011-05-19T03:41:29.703Z"),
 "address" : {
 "street" : "13 Tannhauser Gate",
 "city" : "Caprica",
 "state" : "CC",
 "zipcode" : 512
 },
}

Referenced documents
A document may also have a reference to another document. For example, an article
document may refer to an author document by storing the ID of the author as a field:

{
 _id : ObjectId("4dcd2abe5981aec801010000"),
 title : "The only perfect site is hind-site",
 content : "Loren ipsum dolor sit amet…",
 saved_at : ISODate('2011-05-16T18:42:57.949Z'),
 author_id : ObjectId("4dd491695072aefc456c9aca")
}

Referential integrity of such documents is handled at the application level, rather than at
the database level. That means you have to write code to handle the relationship between
such objects.

Time for action – posting comments to blog posts
We are going to modify blog.php so that readers can post comments on an article. The
reader will enter his name, e-mail address, and the comment in a form right below the
article. We are also going to create a new PHP script, comment.php, that receives the user-
submitted comment, saves it in the database, and redirects to the original blog post where
the user can see his own submitted comment:

Chapter 2

[65]

1.	 Open blog.php in your text editor and replace the existing code in it with the
following:

<?php
 $id = $_GET['id'];
 try {
 $connection = new Mongo();
 $database = $connection->selectDB('myblogsite');
 $collection = $database->selectCollection('articles');
 } catch(MongoConnectionException $e) {
 die("Failed to connect to database ".$e->getMessage());
 }
 $article = $collection->findOne(array('_id' =>
 new MongoId($id)));
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="style.css" />
 <title>My Blog Site</title>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1><?php echo $article['title']; ?></h1>
 <p><?php echo $article['content']; ?></p>
 <div id="comment-section">
 <h3>Comments</h3>
 <?php if (!empty($article['comments'])): ?>
 <h3>Comments</h3>
 <?php foreach($article['comments'] as $comment):
 echo $comment['name'].' says...';?>
 <p><?php echo $comment['comment']; ?></p>

 <?php echo date('g:i a, F j', $comment['posted_at']->
 sec); ?>

 <?php endforeach;
 endif;?>
 <h3>Post your comment</h3>
 <form action="comment.php" method="post">

Building your First MongoDB Powered Web App

[66]

 Name
 <input type="text" name="commenter_name"
 class="comment-input"/>

 Email
 <input type="text" name="commenter_email"
 class="comment-input"/>

 <textarea name="comment"
 rows="5"></textarea>

 <input type="hidden" name="article_id"
 value="<?php echo $article['_id']; ?>"/>
 <input type="submit" name="btn_submit" value="Save"/>
 </form>
 </div>
 </div>
 </div>
 </body>
</html>

2.	 Add the following style rules to style.css:

div#comment-section { border-top: 1px solid #ccc; }
div#comment-section form input.comment-input{ width: 200px; }
div#comment-section form textarea[name=comment] { width: 255px; }
span.input-label { font-weight:bold; padding-right:10px; }

3.	 Create a new file named comment.php, add the following code in it:

<?php
 $id = $_POST['article_id'];
 try {
 $mongodb = new Mongo();
 $collection = $mongodb->myblogsite->articles;
 } catch (MongoConnectionException $e) {
 die('Failed to connect to MongoDB '.$e->getMessage());
 }
 $article = $collection->findOne(array('_id' => MongoId($id)));
 $comment = array(
 'name' => $_POST['commenter_name'],
 'email' => $_POST['commenter_email'],
 'comment' => $_POST['comment'],
 'posted_at' => new MongoDate()
);
 $collection->update(array('_id' => new MongoId($id)),
 array('$push' => array('comments' => $comments)));
 header('Location: blog.php?id='.$id);

Chapter 2

[67]

4.	 Navigate to blogs.php in your browser, click on the Read More link of the top
article to read its full content in the blog.php page.

5.	 Once the page loads, enter an arbitrary Name and Email in the input boxes under
the comments section, put some text in the textarea box as well. Then click on the
Save button and the page will reload with the comment you just posted:

What just happened?
We modified the code in the blog.php script to load the comments posted on an article,
just underneath the content area, and show an HTML form where the reader can post
comments:

<div id="comment-section">
 <?php if (!empty($article['comments'])):
 <h3>Comments</h3>
 foreach($article['comments'] as $comment):
 echo $comment['name'].' says...';?>
 <p><?php echo $comment['comment']; ?></p>

 <?php echo date('g:i a, F j', $comment['posted_at']->sec); ?>

 <?php endforeach;

Building your First MongoDB Powered Web App

[68]

 endif;?>
 <h3>Post your comment</h3>
 <form action="comment.php" method="post">
 Name
 <input type="text" name="commentor_name" class="comment-
 input"/>

 Email
 <input type="text" name="commentor_email" class="comment-
 input"/>

 <textarea name="comment" rows="5"></textarea>

 <input type="hidden" name="article_id" value="<?php echo
 $article['_id']; ?>"/>
 <input type="submit" name="btn_submit" value="Save"/>
 </form>
</div>

The action of the form is comment.php, the script that stores the user-submitted comment
to MongoDB. Comments for an article are stored in an array field of the document named
comments. Each element of comments is an embedded document that contains several
fields: name and e-mail of the commenter, the actual comment, and a timestamp. We
construct an object with the user-submitted data and put a timestamp in it:

$comment = array(
 'name' => $_POST['commenter_name'],
 'email' => $_POST['commenter_email'],
 'comment' => $_POST['comment'],
 'posted_at' => new MongoDate()
);

We push this object to the comments field using the $push modifier:

$collection->update(array('_id' => new MongoId($id)),
 array('$push' => array('comments' =>
 $comments)));

Chapter 2

[69]

Embedded versus referenced – Which one to use?
When designing the data model of your application in MongoDB, you will be faced with
a choice of using either the embedded or referenced approach for creating relationship
between two different objects. Here are some general rules that you can follow:

•	 Each top-level object in the data model should have a collection of its own. In a blog,
the articles and the authors are two top-level objects and so each of them should be
stored in a separate collection. They will be related to each other by reference.

•	 If the relation between two objects is such that one contains the other, the latter
should be embedded in the former. For example, an article may contain one or more
comments by embedding them in itself.

Embedding gets preference

In MongoDB, embedding documents is preferable to referencing. This is
because embedded objects are more efficient in terms of performance.
The documents share disk space. Also, embedded documents are
loaded to memory when you load their container documents, whereas
to get a referenced document you have to hit the database again. So
embedded documents tend to be a little faster. But this does not mean
you should always go for embedded objects! When designing the data
model, embedding should be the first choice, but if you see a reason
that it should not be embedded, you must reference it.

Querying embedded objects
MongoDB allows you to reach into an object and query the embedded documents. There are
two ways to do that. Before we learn about them, let's assume that we have the following
documents in a collection named users:

{
 name : "Gordon Freeman",
 address : {
 city : "Springfield",
 state : "Florida"
 }
}

Building your First MongoDB Powered Web App

[70]

{
 name : "Lara Croft",
 address : {
 city : "Miami",
 state: "Florida"
 }
}

Now, if we need to get all users from Springfield, Florida; we will query the collection
as follows:

$users->find(array('address' => array('city' => 'Springfield',
 'state' => 'Florida'))) ;

This will get us the user Gordon Freeman. This approach is called querying by subobjects.
But this has a limitation, the subobjects have to match exactly with the embedded objects.
For example, the following query will not return anything:

$users->find(array('address' => array('state' => 'Florida'))) ;

The previous query is looking for address documents with only one field (state), and
therefore, will not match any of the documents in the collection. To get around these, we
have to use the next query:

$users->find(array('address.state' => 'Florida'));

This will get us both Gordon Freeman and Lara Croft. This is called a dot notation query.
It uses the dot (.) operator to conveniently look into embedded objects and query by their
field values. We can rewrite the first query using dot notation as follows:

$users->find(array('address.city' => 'Springfield',
 'address.state' => 'Florida'));

Have a go hero – get comments by username
Write a MongoDB query to get all comments posted by a user named Bob.

Chapter 2

[71]

Summary
It is time to wrap up this rather lengthy chapter. Let's take a look at what we covered. In
this chapter, we built a very simple blogging application using MongoDB as the database.
Through the practical example we learned how to:

•	 Insert documents into MongoDB

•	 Perform safe inserts with timeout

•	 Query documents with Mongo query language

•	 Retrieve and iterate over queried documents using cursors

•	 Update documents in MongoDB

•	 Performing 'upsert' operation

•	 Performing atomic update with $set, $unset, $inc, and so on

•	 Delete documents in MongoDB

•	 Querying embedded documents

We also learned about referenced and embedded objects, their use cases, and relative
advantages over each other. In the next chapter, we will use these concepts to build
something more practical and reusable. Stay tuned!

3
Building a Session Manager

In the previous chapter, we learned how to use PHP to store and retrieve data
to and from a MongoDB database and built a very basic web application while
we were at it. This time we will use that knowledge to build something more
practical. We are going to build a session manager in PHP, a module that will
handle the HTTP session of a visitor in a website, using MongoDB for storing the
session data. Why a session manager? Because it is one of those components
that you are going to need when building a user facing web application;
implementing basic but important functionalities such as signing in a user
(authentication), tracking his/her activities, authorizing his/her actions, and
logging him/her out. We will use object-oriented programming principles for
building the module, so that it can be used in any web application with little or
no change. We will also build a separate module for user authentication, which
will be used by the session manager for logging a user in.

So to sum it up, in this chapter we will:

•	 Learn the basics of HTTP sessions

•	 Learn how PHP handles sessions

•	 Build the session manager, a module that handles sessions using MongoDB

•	 Build a user authentication module

•	 Learn how to log in and log out a user using the user authentication module

•	 Learn best practices for securing a user session

Building a Session Manager

[74]

Understanding HTTP sessions
Before we start building the session manager, let's get the basics of HTTP sessions right. So
what is a session? By design, HTTP is stateless. You make a request to a web server, it replies
to you with a response, and then it forgets about the request. It has no memory of what
requests it served you earlier. But this stateless nature of HTTP goes against the notion of
interactive web applications. These applications need to keep track of users' activities on the
website. They need to know who the user is, if the user is allowed to see a webpage, where
the user has been before coming to this page. On an e-commerce site, for example, the user
has to follow a step-by-step (or page-by-page to be more precise) process to log out of his/
her account. How does a web application running on top of a stateless protocol implement
persistence of user state? The answer is a session. By definition, a session is a series of HTTP
requests, performed consecutively by a user from a single client to a certain web application.
The first request made by the user initiates the session, subsequent requests to the server
are considered as part of the session. The underlying logic of session handling is simple. The
application generates a session identifier, a value that is unique for each user. If there are 100
users making requests to the application at the same time, each of them is given a unique
session ID. The application uses the session ID to identify a user and preserve his/her state in
between requests.

Understanding PHP native session handling
Nowadays, most of us are doing web development using MVC web frameworks, built and
open sourced by other developers. These frameworks have, among other things, their own
modules for handling sessions. They take care of all the magic behind session handling and
expose a simple API to the developers. This surely comes in handy; after all, the goal of
such frameworks is to make us more productive by taking care of the low level plumbing.
However, this makes some of us never really understand how session handling works under
the hood. Since we are going to implement our own session handler, we should at least have
an idea how PHP handles sessions.

Time for action – testing native PHP session handling
In the next example, we are going to see how we can use the built-in mechanisms in PHP for
handling sessions.

1.	 Open up your text editor and put the following code in a new file:

<?php
 session_start();
 //Generate a random number
 $random_number = rand();

Chapter 3

[75]

 //Put the number into session
 $_SESSION['random_number'] = $random_number;
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="style.css" />
 <title>Understanding PHP sessions...Page 1</title>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h2>Understanding PHP sessions...Page 1</h2>
 <p>Random number generated

 <?php echo $_SESSION['random_number']; ?>

 </p>
 <p>PHP session id

 <?php echo session_id(); ?>

 </p>
 Go to next page
 </div>
 </div>
 </body>
</html>

Save the file as basic_session1.php.

2.	 Create another file named basic_session2.php. Put the following code in it:

<?php
 session_start();
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="style.css" />

Building a Session Manager

[76]

 <title>Understanding PHP sessions...Page 2</title>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h2>Understanding PHP sessions...Page 2</h2>
 <p>My Favorite movie is

 <?php echo $_SESSION['random_number]; ?>

 </p>
 <p>PHP session id

 <?php echo session_id(); ?>

 </p>
 </div>
 </div>
 </body>

</html>

3.	 Open basic_session1.php in the browser. Note the random number displayed
on the page:

4.	 Navigate to basic_session2.php by clicking on the Go to next page link. It
should show the same number:

Chapter 3

[77]

What just happened?
We just implemented session handling with built-in PHP functions. We created two pages. In
the first page we put some data into the session. We navigated to the second page and read
the same piece of data from the session to verify if it is the same.

In PHP, a session is initiated by calling the built-in session_start() method. Calling this
method causes PHP to give the client a unique session ID (unless the client is already in
session, in that case it retrieves the current session ID). The session ID is a 32-character
string. You can get the value of this string by calling the session_id() function.

session_start() must send session data to the web browser
via HTTP headers. This is why calling session_start() in a PHP
script must precede any HTML output, echo statements, calls to
var_dump() or print_r() or even whitespaces. Otherwise you
would get a "Header already sent" error.

PHP uses file-based session handling by default. When a new session is initiated, PHP creates
a text file, typically under the /tmp directory on the server (or whatever filepath is set as
the value of session.save_path in the php.ini configuration). The name of the file is
prefixed with sess_, followed by the value of the session ID. For example, if the session in
the previous example was 54305ebe20f19907658d2bd0991628c3, the name of the file
would be sess_54305ebe20f19907658d2bd0991628c3. Whatever data we put into the
$_SESSION super global array, it is going to be serialized and stored in this file. If you open
it up in a text editor after running the previous example, its content should look similar to
the following:

random_number|i:23353609;

At the same time, PHP issues a cookie named PHPSESSID to the browser. The content of
this cookie is the value of the session ID. In the subsequent HTTP requests, PHP checks the
value of this cookie, then checks the stored session files for a match, and identifies the user's
session. The data in the session file is de-serialized and put back into the global $_SESSION
array. The PHPSESSID cookie obviously doesn't live forever. The lifetime of this cookie is
defined by the session.cookie_lifetime setting in php.ini. When the cookie expires
the (browser deletes the cookie if it is past expiration time), the session is terminated. Calling
session_start() at this point will initiate a new session.

A session can also be actively terminated by the server by calling
session_destroy().

Building a Session Manager

[78]

Limitations of native PHP session handling
Although simple and effective, the native session handling in PHP is not suitable for large-
scale web applications. Suppose you deploy your application to multiple web servers with a
load balancer in front of them routing the traffic. The servers will have to share the session
directory on a networked filesystemand the extra overhead will slow down your application.
Also, file-based session handling has critical security concerns when the website is deployed
on a shared hosting environment. A malicious user on that system can easily view the session
files under the /tmp directory and may attempt to hijack the session.

Implementing session handling with MongoDB
In this section, we are going to learn how we can extend the session handling mechanism
of PHP to use a MongoDB database for managing sessions instead of using the filesystem.
Before we delve into implementation, we are going to briefly cover the basics, mainly the
session_set_save_handler() function.

Extending session handling with session_set_save_handler
The session_set_save_handler() function allows us to define our own functions for
storing and retrieving session data. The function takes six arguments, each one being the
name of a callback function. This is what the method signature looks like:

bool session_set_save_handler(callback $open, callback $close,
 callback $read, callback $write,
 callback $destroy, callback $gc)

Let's see what each of these callback functions do:

•	 open(): This method is called whenever a session is initiated with session_
start(). It takes two arguments, the path to where the session will be stored
and the name of the session cookie. It returns TRUE to indicate successful initiation
of a session.

•	 close(): This is called at the successful end of a PHP script using session handling.
This also needs to return TRUE.

•	 read(): This method is called whenever we are trying to retrieve a variable from
the $_SESSION super global array. It takes the session ID as an argument and
returns a string value of the $_SESSION variable.

•	 write(): This function is executed whenever we are trying to add or change
something in $_SESSION. This takes the session ID and the serialized representation
of the data to be stored in $_SESSION as its two arguments.

Chapter 3

[79]

•	 destroy(): This is called whenever we are trying to terminate a session by calling
the built-in session_destroy() method. It takes the session ID as its only
parameter and returns TRUE upon success.

•	 gc(): This function is executed by the PHP session garbage collector. It takes the
maximum lifetime of session cookies as its argument, and removes any session
older than the specified lifetime. It also returns TRUE on success. The session.gc_
probability setting in php.ini specifies the probability of the session garbage
collector running.

The SessionManager class
We are going to build the SessionManager class, a module that uses a collection in a
MongoDB database for storing/retrieving/handling sessions. We will register the instance
level methods of this class with session_set_save_handler() as callback functions for
handling sessions. We will build the class with the following design goals in mind:

•	 The session created by this class will have a 1 hour lifespan (it can be changed by
configuring the class level constants).

•	 The session will have a timeout of 10 minutes. That is, the session will expire before
its expiration time if the user in that session is inactive for more than 10 minutes
(also configurable).

•	 The session data will be serialized into a field of the document in the collection
representing the session.

Time for action – building the SessionManager class
Now that we have covered enough of the basics, it is time that we finally get into coding the
SessionManager class.

1.	 Create a new file named dbconnection.php. Add the following code to that file:

<?php
 class DBConnection
 {
 const HOST = 'localhost';
 const PORT = 27017;
 const DBNAME = 'myblogsite';
 private static $instance;
 public $connection;
 public $database;
 private function __construct()
 {

Building a Session Manager

[80]

 $connectionString = sprintf('mongodb://%s:%d',
 DBConnection::HOST,
 DBConnection::PORT);
 try {
 $this->connection = new Mongo($connectionString);
 $this->database = $this->connection->
 selectDB(DBConnection::DBNAME);
 } catch (MongoConnectionException $e) {
 throw $e;
 }
 }
 static public function instantiate()
 {
 if (!isset(self::$instance)) {
 $class = __CLASS__;
 self::$instance = new $class;
 }
 return self::$instance;
 }
 public function getCollection($name)
 {
 return $this->database->selectCollection($name);
 }
 }

2.	 Create another PHP script named session.php. Put the following code in it:

<?php
 require_once('dbconnection.php');
 class SessionManager{
 //name of collection where sessions will be stored
 const COLLECTION = 'sessions';
 //Expire session after 10 mins in inactivity
 const SESSION_TIMEOUT = 600;
 //Expire session after 1 hour
 const SESSION_LIFESPAN = 3600;
 //name of the session cookie
 const SESSION_NAME = 'mongosessid';
 const SESSION_COOKIE_PATH = '/';
 //Should be the domain name of you web app, for example
 //mywebapp.com. DO NOT use empty string unless you are
 //running on a local environment.
 const SESSION_COOKIE_DOMAIN = '';
 private $_mongo;
 private $_collection;

Chapter 3

[81]

 //represents the current session
 private $_currentSession;
 public function __construct()
 {
 $this->_mongo = DBConnection::instantiate();
 $this->_collection = $this->_mongo->
 getCollection(SessionManager::COLLECTION);
 session_set_save_handler(
 array(&$this, 'open'),
 array(&$this, 'close'),
 array(&$this, 'read'),
 array(&$this, 'write'),
 array(&$this, 'destroy'),
 array(&$this, 'gc')
);
 //Set session garbage collection period
 ini_set('session.gc_maxlifetime',
 SessionManager::SESSION_LIFESPAN);
 //set session cookie configurations
 session_set_cookie_params(
 SessionManager::SESSION_LIFESPAN,
 SessionManager::SESSION_COOKIE_PATH,
 SessionManager::SESSION_COOKIE_DOMAIN
);
 //Replace 'PHPSESSID' with 'mongosessid' as the
 //session name
 session_name(SessionManager::SESSION_NAME);
 session_cache_limiter('nocache');
 //start the session
 session_start();
 }
 public function open($path, $name)
 {
 return true;
 }
 public function close()
 {
 return true;
 }
 public function read($sessionId)
 {
 $query = array(
 'session_id' => $sessionId,
 'timedout_at' => array('$gte' => time()),

Building a Session Manager

[82]

 'expired_at' => array('$gte' => time() –
 SessionManager::SESSION_LIFESPAN)
);
 $result = $this->_collection->findOne($query);
 $this->_currentSession = $result;
 if(!isset($result['data']))	{
 return '';
 }
 return $result['data'];
 }
 public function write($sessionId, $data)
 {
 $expired_at = time() + self::SESSION_TIMEOUT;
 $new_obj = array(
 'data' => $data,
 'timedout_at' =>
 time() + self::SESSION_TIMEOUT,
 'expired_at' =>
 (empty($this->_currentSession)) ?
 time()+ SessionManager::SESSION_LIFESPAN
 : $this->_currentSession['expired_at']
);
 $query = array('session_id' => $sessionId);
 $this->_collection->update(
 $query,
 array('$set' => $new_obj),
 array('upsert' => True)
);
 return True;
 }
 public function destroy($sessionId)
 {
 $this->_collection->remove(array('session_id' =>
 $sessionId));
 return True;
 }
 public function gc()
 {
 $query = array('expired_at' => array('$lt' => time()));
 $this->_collection->remove($query);
 return True;
 }
 public function __destruct()
 {

Chapter 3

[83]

 session_write_close();
 }
 }
 //initiate the session
 $session = new SessionManager();

What just happened?
In step 1, we created a class DBConnection that handles the connection with the MongoDB
database. In our earlier examples in the previous chapters, we repeated the same code
block connecting to MongoDB and selecting a database/collection in multiple files. This
time we decided to get a little organized, and put all connection handling logic inside the
DBConnection class for the purpose of code reuse. Calling the initialize() static
method on this class returns an instance of it, we can then select a collection by invoking the
getCollection() method on this instance.

$mongo = DBConnection::instantiate();
$collection = $mongo->getCollection('sessions');

The DBConnection class implements the Singleton design pattern.
This design pattern ensures that there is only a single connection open
to MongoDB, within the context of a single HTTP request. To learn
more about Singleton and other such patterns, visit this page from the
PHP online manual: http://php.net/manual/en/language.
oop5.patterns.php.

In step 2, we built the SessionManager class. The class is contained in the session.php
script. At the end of the script, we initiate a session by instantiating a SessionManager
object. If we need to start a session in a PHP page, all we have to do is to require/include the
session.php script in that page. We'll watch the SessionManager in action soon, for now
let's look closer into the different methods of this class.

How the SessionManager works
Let's dig deeper into the SessionManger code to see how it implements session handling.

The constructor
The constructor for the class (the __construct() method) opens a connection to MongoDB
as well as initializes important session configurations, such as session lifespan, name of the
session cookie, path and domain for the cookie, and so on. Most importantly, it calls the
session_set_save_handler() method to register its own public methods as callbacks for
session handling. Finally, it initiates the session by calling the session_start() method.

Building a Session Manager

[84]

The open and close methods
Since we don't need to do anything with these methods, we do nothing other than
returning TRUE from them.

The read method
The read() method receives the session ID as its parameter. It queries the collection for
a document with the session ID whose expiration timestamp is set to future, and which is
going to time out in the future. If it finds such a document, it returns the value of the data
field for this document.

$query = array(
 'session_id' => $sessionId,
 'timedout_at' => array('$gte' => time()),
 'expired_at' => array('$gte' => time())
);
$result = $this->_collection->findOne($query);
return $result['data'];

Note that this method does not do any of the serialization/de-serialization of the data.
This is handled by PHP itself.

The write method
The write() method receives the session ID and the session data as its arguments. It
looks up the collection for a document with the session ID, overwrites the data if it finds
one, and resets its timedout_at timestamp to 10 minutes into the future (the default
session timeout is set to 10 minutes). In case it doesn't find such a document, it inserts one
(remember upsert?).

$new_obj = array('data' => $data,
 'timedout_at' => time() + self::SESSION_TIMEOUT,
 'expired_at' => (empty($this->_currentSession))
 ? time()+ SessionManager::SESSION_LIFESPAN
 : $this->_currentSession['expired_at']
);
$query = array('session_id' => $sessionId);
$this->_collection->update($query,
 array('$set' => $new_obj),
 array('upsert' => True)
);

The destroy method
The destroy() method receives the session ID as a parameter. When it is called, it removes
the document from the collection with the specified session ID.

Chapter 3

[85]

The gc method
Finally, the garbage collector method (gc()) removes any document in the collection that
was created more than an hour ago.

Influencing the session garbage collector

The session garbage collection process in PHP executes the gc() method
to clear out old sessions. You can influence the execution of this garbage
collector by changing the runtime configurations in PHP. The session.
gc_maxlifetime specifies the number of seconds after which a
session is considered as garbage. The session.gc_probability and
session.gc_divisor settings define the probability of an expired
session being cleaned by the garbage collector. If the value of session.
gc_probability is 1 and the value of session.gc_divisor is
set to 100, then there is 1 percent chance (1/100 = 0.01) that the garbage
collector will run on each session initialization. You can use the ini_
set() built-in function to change these values at runtime.

Pop quiz – what does session_destroy() do?
Which session handling callback method gets called when we call the session_destory()
method in our code?

a.	 close()

b.	 destroy()

c.	 gc()

Putting the SessionManager in action
Now that we have the SessionManager class, it is time that we put it into action. We are
going to implement the same use case we did with the native PHP session handling earlier in
this chapter. This time we are going to use the SessionManager for storing and retrieving
data to and from the session.

Building a Session Manager

[86]

 Time for action – putting SessionManager into action
We are going to repeat the example of testing native PHP session handling, with a twist. The
SessionManager will be used for handling the session.

1.	 Create a new PHP script in your text editor with the following code:

<?php
 //Session started by requiring the script
 require('session.php');
 //Generate a random number
 $random_number = rand();
 //Put the number into session
 $_SESSION['random_number'] = $random_number;
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="style.css" />
 <title>Using the SessionManager...Page 1</title>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h2>Using the SessionManager...Page 1</h2>
 <p>Random number generated

 <?php echo $_SESSION['random_number']; ?>

 </p>
 <p>PHP session id

 <?php echo session_id(); ?>

 </p>
 Go to next page
 </div>
 </div>
 </body>
</html>

Save the file as mongo_session1.php.

Chapter 3

[87]

2.	 Create another file named mongo_session2.php and put the following code in it:

<?php
 //Session started by requiring the script
 require('session.php');
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="style.css" />
 <title>Using the SessionManager...Page 1</title>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h2>Using the SessionManager...Page 2</h2>
 <p>The random number generated in previous page is still

 <?php echo $_SESSION['random_number']; ?>

 </p>
 <p>PHP session id

 <?php echo session_id(); ?>

 </p>
 </div>
 </div>
 </body>
</html>

3.	 Open mongo_session1.php in your browser. Note the random number shown in
the page:

Building a Session Manager

[88]

4.	 Click on the Go to next page link at the bottom to navigate to mongo_session2.
php. Verify if it shows the same random number:

What just happened?
We repeated the example of testing PHP sessions with the SessionManager. The first script
we created, mongo_session1.php initiates a session by requiring the session.php script
(a SessionManager object is instantiated in this script). It puts a random number in the
session. When we navigate to mongo_session2.php, PHP treats it as the same session. We
read the random number from the session and display it on the screen.

If at this point you query the collection used for storing the session (the collection is named
sessions, you can change it by changing the COLLECTION constant of SessionManager) in
mongo shell, you would see the document that represents this session.

>db.sessions.findOne({'session_id':'71ce0c6f71b358cb204cb518c9948b5d'})

{

 "_id" : ObjectId("4dea21fa170b7b0b58fd0bf7"),

 "created_at" : 1307189754,

 "data" : "random_number|i:392780258;",

 "expired_at" : 1307190759,

 "session_id" : "71ce0c6f71b358cb204cb518c9948b5d"

}

Notice the data field of the document. It has been serialized by PHP to store the random
number value.

Building the user authentication module
It is time to put the SessionManager to some real use and implement user authentication
and authorization logic to it. In this section, we are going to build a class that represents a
user in the web application. This class can be used to log a user in (authentication), enable
him/her to view pages that he/she is allowed to see (authorization), and log him/her out
when he/she wishes.

Chapter 3

[89]

Time for action – building the User class
In this example, we are going to build the User class. An instance of this class will represent a
user in the system. Before we do that, we are going to generate some dummy user accounts
in the system by running a PHP script to insert some data into a collection named users.

1.	 Open your text editor and put the following code in a new file:

<?php
 require('dbconnection.php');
 $mongo = DBConnection::instantiate();
 $collection = $mongo->getCollection('users');
 $users = array(
 array(
 'name' => 'Luke Skywalker',
 'username' => 'jedimaster23',
 'password' => md5('usetheforce'),
 'birthday' => new MongoDate(
 strtotime('1971-09-29 00:00:00')),
 'address' => array(
 'town' => 'Mos Eisley',
 'planet' => 'Tatooine'
)
),
 array(
 'name' => 'Leia Organa',
 'username' => 'princessleia',
 'password' => md5('eviltween'),
 'birthday' => new MongoDate
 (strtotime('1976-10-21 00:00:00')),
 'address' => array(
 'town' => 'Aldera',
 'planet' => 'Alderaan'
)
),
 array(
 'name' => 'Chewbacca',
 'username' => 'chewiethegreat',
 'password' => md5('loudgrowl'),
 'birthday' => new MongoDate
 (strtotime('1974-05-19 00:00:00')),
 'address' => array(
 'town' => 'Kachiro',

Building a Session Manager

[90]

 'planet' => 'Kashyyk'
)
)
);

 foreach($users as $user)
 {
 try{
 $collection->insert($user);
 } catch (MongoCursorException $e) {
 die($e->getMessage());
 }
 }

 echo 'Users created successfully';

Save the file as create_users.php.

2.	 Run the create_users.php script to generate the dummy user data.

3.	 Create a new file named user.php. Put the following code in the file and save it:

<?php
 require_once('dbconnection.php');
 require_once('session.php');
 class User
 {
 const COLLECTION = 'users';
 private $_mongo;
 private $_collection;
 private $_user;
 public function __construct()
 {
 $this->_mongo = DBConnection::instantiate();
 $this->_collection = $this->_mongo->
 getCollection(User::COLLECTION);
 if ($this->isLoggedIn()) $this->_loadData();
 }
 public function isLoggedIn()
 {
 return isset($_SESSION['user_id']);
 }
 public function authenticate($username, $password)

Chapter 3

[91]

 {
 $query = array(
 'username' => $username,
 'password' => md5($password)
);
 $this->_user = $this->_collection->findOne($query);
 if (empty($this->_user)) return False;
 $_SESSION['user_id'] = (string) $this->_user['_id'];
 return True;
 }
 public function logout()
 {
 unset($_SESSION['user_id']);
 }
 public function __get($attr)
 {
 if (empty($this->_user))
 return Null;
 switch($attr) {
 case 'address':
 $address = $this->_user['address'];
 return sprintf('Town: %s, Planet: %s', $address['town'],
 $address['planet']);
 case 'town':
 return $this->_user['address']['town'];
 case 'planet':
 return $this->_user['address']['planet'];
 case 'password':
 return NULL;
 default:
 return (isset($this->_user[$attr])) ?
 $this->_user[$attr] : NULL;
 }
 }
 private function _loadData()
 {
 $id = new MongoId($_SESSION['user_id']);
 $this->_user = $this->_collection->findOne(array('_id'
 => $id));
 }
 }

Building a Session Manager

[92]

What just happened?
In steps 1 and 2, we created and executed a script called create_users.php for generating
some dummy users in the database. This will come in handy when we test the User class
later on. Next we created the user.php script that contains the User class.

Let's walk through the code of User. In the constructor of this class, we obtain a database
connection and select the appropriate collection. These objects are stored in private member
variables of the class. The authenticate() method of the class is used to authenticate
a valid user. The method receives the username and password as its arguments. It queries
the database with the username and MD5 hash of the password. If a matching document
is found, the ObjectId of the document is casted to string and stored in $_SESSION as
user_id. The method returns TRUE to indicate that the user is successfully authenticated.
Otherwise the method returns FALSE.

 $query = array(
 'username' => $username,
 'password' => md5($password)
);
 $this->_user = $this->_collection->findOne($query);
 $_SESSION['user_id'] = (string) $this->_user['_id'];

The isLoggedIn() method checks whether the user is already logged in by simply
checking the existence of user_id in $_SESSION. The logout() method terminates the
authenticated session by unsetting the user_id field.

If the user is logged in; the _loadData() private method is called within the constructor
to query the database with the ID and populate the values of user attributes. Finally, the
__get() magic method is used to read the attributes (name, address, birth date, and so on.)
of a User object.

Creating the login, logout, and user profile page
In this section, we are going to put the User class into use and develop the pages for logging
the user in, viewing his/her profile, and logging him/her out. These pages implement some
of the essential use cases of a web application. Implementing these use cases allows us to
achieve state persistence on the application, something we have been talking about since
the beginning of this chapter.

Chapter 3

[93]

Time for action – creating the login, logout, and profile page
The login page will show a form where the user can type in the username and password. If
he/she is authenticated, he/she will be redirected to his/her profile page. The profile page
will show his/her basic information and can only be accessed when he/she is logged in. The
user can log out by clicking on the link on the profile page.

1.	 Create a new file named login.php with the following code:

<?php
 $action = (!empty($_POST['login']) &&
 ($_POST['login'] === 'Log in')) ? 'login'
 : 'show_form';
 switch($action)
 {
 case 'login':
 require('session.php');
 require('user.php');
 $user = new User();
 $username = $_POST['username'];
 $password = $_POST['password'];
 if ($user->authenticate($username, $password)) {
 header('location: profile.php');
 exit;
 } else {
 $errorMessage = "Username/password did not match.";
 break;
 }
 case 'show_form':
 default:
 $errorMessage = NULL;
 }
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="style.css" />
 <title>User Login</title>
 </head>
 <body>

Building a Session Manager

[94]

 <div id="contentarea">
 <div id="innercontentarea">
 <h1>Log in here</h1>
 <div id="login-box">
 <div class="inner">
 <form id="login" action="login.php" method="post"
 accept-charset="utf-8">

 <?php if(isset($errorMessage)): ?>
 <?php echo $errorMessage; ?>
 <?php endif ?>

 <label>Username </label>
 <input class="textbox" tabindex="1"
 type="text" name="username"
 autocomplete="off"/>

 <label>Password </label>
 <input class="textbox" tabindex="2"
 type="password" name="password"/>

 <input id="login-submit" name="login"
 tabindex="3" type="submit"
 value="Log in" />

 <li class="clear">

 </form>
 </div>
 </div>
 </div>
 </div>
 </body>
</html>

2.	 Create a PHP script named profile.php and put the following code in it:

<?php
 require('session.php');
 require('user.php');
 $user = new User();
 if (!$user->isLoggedIn()){
 header('location: login.php');
 exit;

Chapter 3

[95]

 }
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="style.css" />
 <title>Welcome <?php echo $user->username; ?></title>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 Log out
 <h1>Hello <?php echo $user->username; ?></h1>
 <ul class="profile-list">

 Username

 <?php echo $user->username; ?>

 <div class="clear"> </div>

 Name

 <?php echo $user->name; ?>

 <div class="clear"> </div>

 Birthday

 <?php echo date('j F, Y',$user->birthday->sec); ?>

 <div class="clear"> </div>

 Address

 <?php echo $user->address; ?>

Building a Session Manager

[96]

 <div class="clear"> </div>

 </div>
 </div>
 </body>
</html>

3.	 Create another PHP script named logout.php and add the following code to it:

<?php
 require_once('session.php');
 require_once('user.php');
 $user = new User();
 $user->logout();
 header('location: login.php');
 exit;

4.	 Open the style.css file and add the following CSS rules to it:

div#login-box{
 margin: 50px auto 250px auto;
 border: 1px solid #ddd;
 width: 305px;
}
div#login-box div.inner{ padding: 10px; }
form#login ul { list-style: none; }
form#login ul li { margin: 10px 0; }
form#login ul li label {
 float: left;
 padding: 6px 0 0 0;
 width: 70px;
 display: block;
 font-size:12px;
 line-height: 1;
}
form#login ul li input.textbox {
 font-size:13px;
 font-weight: normal;
 width: 147px;
}
form#login ul li input#login-submit {
 margin: 0px 0 0 70px;
 float:right;	
}

Chapter 3

[97]

ul.profile-list {
 margin:15px 0 0 0;
 list-style: none;	
 font-family: Arial, sans-serif;
 font-size: 13px;	
}
ul.profile-list li {
 padding:0 0 12px 0;
}
ul.profile-list span.field{
 display: block;
 float:left;	
 margin: 3px 10px 0 0;
 width: 110px;
}
ul.profile-list span.value{
 float:left;	
 padding: 3px 7px;
 width: 210px;
 background:#f7f5ed;
 color:#666;	
}

5.	 Open login.php in the browser, type in the username jedimaster23 and the
password usetheforce in the appropriate input boxes. Hit the Log in button:

Building a Session Manager

[98]

6.	 Once successfully logged in, you will be redirected to the profile page:

7.	 Click on the Log out link at the top right corner to log out. You will be redirected to
the login.php page again.

What just happened?
We created a page login.php that shows a login form by default. When a user enters
the correct username and password into the form, it authenticates him/her by using the
authenticate() method of the User object and redirects to the profile page.

$user = new User();
$username = $_POST['username'];
$password = $_POST['password'];
if ($user->authenticate($username, $password)) {
 header('location: profile.php');
 exit;
}

The profile page checks whether the user is indeed logged in, if not it redirects him/her to
the login page. Otherwise it displays the user profile information.

$user = new User();
if (!$user->isLoggedIn()){
 header('location: login.php');
 exit;
}

Chapter 3

[99]

When the user clicks Log out in the top right corner of the profile page, the user is logged
out and redirected to the login page again.

$user = new User();
$user->logout();
header('location: login.php');
exit;

Have a go hero – implement user authentication in the blogging web app
Now that we have the modules for handling sessions and user authentication, your task is
to plug them into the blogging application we built in the previous chapter to implement
authentication and authorization. Here are the specifications:

•	 Each document in the article collection must have a field author_id that references
the _id of a user document. This will let us know who is the author of an article.

•	 Only logged in users are allowed to write articles.

•	 When the logged in user navigates to the dashboard, he/she should only see the
articles written by him/her.

•	 A user can edit or delete an article only if he/she is the writer of that article.

Using good session practices
We will end this chapter by discussing some techniques to make user sessions in a web
application more secure. Web application security is a broad and complicated topic, and
beyond the scope of this book. There are numerous books and articles written on web
security, which you should read. We will look at some practices that we can adopt at the
application level to minimize the risk of user sessions being compromised.

Setting low expiry times of session cookies
Each session cookie issued by the application should have a low expiry time. Keeping the expiry
time too long increases the risk of the session being compromised. However, when setting
this value, you should be mindful about the activity of users on your website. If you make the
expiry time too short, your users will be irritated, as they will be logged out while they are
doing something important on your application. You can set the expiry time by either using
the session_set_cookie_params() function or by changing the session.cookie_
lifetime configuration through ini_set(). Note that this doesn't guarantee preventing
session hijacking through cookies (nothing actually guarantees, it only reduces the chance!).
You might want to consider encrypting your session cookies when sending them over HTTP.

Building a Session Manager

[100]

Using session timeouts
Session timeouts should not be confused with session expiry time. This is the maximum
amount of time a user is allowed to stay inactive on the website, after which the application
will revoke the user's session and he/she will be asked to log in again. This is an effective
way to reduce the window of opportunity for a malicious user to hijack his/her session
(it also prevents the user's session from being physically stolen when he/she is away
from his/her computer for too long, while logged into the website). Session timeouts are
implemented as application logic. In the SessionManager class, we set a 10 minutes
timeout value for the user.

Setting proper domains for session cookies
Each cookie set by the application has a domain attribute that specifies which website or
websites are allowed to read that cookie. If the domain is set to example.com only, then only
the application running on http://example.com will be able to read it. The domain can be set to
example.com to allow all subdomains of example.com to use that cookie (both x.example.com
and y.example.com will be able to read it). When setting the session cookie, make sure to set
the domain name of the cookie to the domain name of your website (either using session_
set_cookie_params() or setting session.cookie_domain through ini_set()).

We deliberately set the cookie domain to an empty string in the
SessionManager (which allows any site to read from that cookie!) to
make it work on a local machine. When you use this in a real world setting,
make sure you change this to the domain name of your application.

Checking for browser consistency
When a web browser makes a request to the server, it sends out a User Agent string in the
HTTP header, which identifies the name, manufacturer, and version of that browser and
operating system it is running on. The session handling code of a web application can log the
User Agent string at the initiation of the session, and verify against it at subsequent session
requests. This is not a bulletproof idea to prevent session hijacking, since the User Agent is
not unique to a computer. Nonetheless, this reduces the risk as we are making things harder
for the hijacker.

Have a go hero – store and verify User Agent in SessionManager
Modify the SessionManager to store the User Agent of an HTTP request when a user logs
in. When the user makes subsequent requests to the application, check the User Agent
of each request against the stored value to verify if it is the same user. Deny access to
authorized pages (and log him/her out) when a mismatch is found.

Chapter 3

[101]

Summary
Let's take a look at what we covered in this chapter. We learned:

•	 How web applications achieve state persistence by sessions

•	 How native session handling in PHP works

•	 How to use MongoDB for storing sessions

•	 How to implement user authentication/authorization using MongoDB
as the session storage

•	 How we can improve session security

In the next chapter, we will learn how to aggregate queries on a MongoDB database.

4
Aggregation Queries

In this chapter, we will focus on learning how to perform aggregation queries
in MongoDB. In Chapter 2, Building your First MongoDB Powered Web App,
we learned how to query a collection using the find() method. Aggregation
queries are different from the queries we have done so far. These queries
perform certain computations/calculations on the documents and the result
of the computation is sent back to the user. For instance, grouping the
documents on the value of a certain field and counting their values is a kind of
aggregation operation. If you have experience with SQL, aggregation queries
are the ones that use COUNT/SUM/AVG/GROUP BY statements. MongoDB uses
MapReduce, a functional programming paradigm to perform aggregation and
batch processing of data. In this chapter, we are going to familiarize ourselves
with the concepts of MapReduce. We will learn how to perform MapReduce
queries both in the mongo shell and in PHP. We will also learn to use utility
functions (group(), distinct(), count(), and so on) in MongoDB that
are used for aggregation.

So, in this chapter we will:

•	 Learn about MapReduce

•	 Learn how to do MapReduce in mongo shell

•	 Learn how to perform MapReduce in PHP

•	 Learn about the group() function

•	 Learn to use the distinct() function

•	 Learn about the count() function

Aggregation Queries

[104]

Generating sample data
Before we start learning about aggregation in MongoDB, we are going to need some sample
data in the first place to perform aggregation on. We will populate a collection with some
dummy data. Each document in the collection will have the following fields:

•	 title: A string, represents the title of the article

•	 description: Content of the article, also a string

•	 author: A string representing the name of the author

•	 category: Category of the article

•	 rating: An integer between 1 and 10

•	 tags: An array, contains between 1 to 5 distinct tags of the article

•	 published_at: A timestamp

A sample document from the collection will look similar to the following:

{
 "_id" : ObjectId("4dfb49545981ae0a02680700"),
 "title" : "Programmers will act rational when all other
 possibilities have been exhausted.",
 "author" : "Spock",
 "category" : "Programming",
 "rating" : 6,
 "tags" : ["security", "code","howto"],
 "published_at" : ISODate("2011-06-13T12:32:20Z")
}

Time for action – generating sample data
We are going to write a PHP script that will generate the sample data in a collection named
sample_articles. We will execute the script in the command line and query the collection
in mongo shell to verify the generated data:

1.	 Fire up your text editor and create a PHP script named generate_data.php with
the following code in it:

<?php
 require('dbconnection.php');
 $titles = array(
 'Nature always sides with the hidden flaw',
 'Adding manpower to a late software project makes it later.',
 'Research supports a specific theory depending on the amount
 of funds dedicated to it.',

Chapter 4

[105]

 'Always draw your curves, then plot your reading.',
 'Software bugs are hard to detect by anybody except may be
 the end user.',);
 $authors = array('Luke Skywalker', 'Leia Organa', 'Han Solo',
 'Darth Vader', 'Spock', 'James Kirk',
 'Hikaru Sulu', 'Nyota Uhura');
 $description = "Lorem ipsum dolor sit amet, consectetur
 adipisicing elit, sed do eiusmod tempor incididunt ut labore
 et dolore magna aliqua. ".
 "Ut enim ad minim veniam, quis nostrud exercitation ullamco
 laboris nisi ut aliquip ex ea commodo consequat. ";
 $categories = array('Electronics', 'Mathematics', 'Programming',
 'Data Structures', 'Algorithms',
 'Computer Networking');
 $tags = array('programming', 'testing', 'webdesign', 'tutorial',
 'howto', 'version-control', 'nosql', 'algorithms',
 'engineering', 'software', 'hardware', 'security');
 function getRandomArrayItem($array)
 {
 $length = count($array);
 $randomIndex = mt_rand (0, $length - 1);
 return $array[$randomIndex];
 }
 function getRandomTimestamp()
 {
 $randomDigit = mt_rand (0, 6) * -1;
 return strtotime($randomDigit . ' day');
 }
 function createDoc()
 {
 global $titles, $authors, $categories, $tags;
 $title = getRandomArrayItem($titles);
 $author = getRandomArrayItem($authors);
 $category = getRandomArrayItem($categories);
 $articleTags = array();
 $numOfTags = rand(1,5);
 for ($j = 0; $j < $numOfTags; $j++){
 $tag = getRandomArrayItem($tags);
 if(!in_array($tag, $articleTags)){
 array_push($articleTags, $tag);
 }
 }
 $rating = mt_rand(1, 10);
 $publishedAt = new MongoDate(getRandomTimestamp());
 return array('title' => $title,

Aggregation Queries

[106]

 'author' => $author,
 'category' => $category,
 'tags' => $articleTags,
 'rating' => $rating,
 'published_at' => $publishedAt);
 }
 $mongo = DBConnection::instantiate();
 $collection = $mongo->getCollection('sample_articles');
 echo "Generating sample data...
";
 for ($i = 0; $i < 1000; $i++)
 {
 $document = createDoc();
 $collection->insert($document);
 }
 echo "Finished!";

2.	 Execute the generate_data.php script in your browser (you may also run it
from the command line).

3.	 Start up the mongo shell. Enter the following commands to view the data generated
by the PHP script:

> use myblogsite
switched to db myblogsite
> db.sample_articles.find()

Chapter 4

[107]

What just happened?
We just created and executed a PHP script that inserts 1000 dummy articles in a collection
named sample_articles. The script uses the DBConnection class that we created in
the previous chapter to connect to MongoDB and select the myblogsite database. The script
contains some arrays that hold the dummy data for the article objects (titles, author names,
categories, tags, and so on). The script loops 1000 times and within each loop it randomly
picks an item from each of those arrays, constructs a document with those items, and inserts
the document in the sample_articles collection.

If you want to generate this data in a separate database, just change the DBNAME
constant in the DBConnection class in the dbconnnection.php file.

Understanding MapReduce
MapReduce is a design pattern for data processing. The idea behind MapReduce is simple.
A large task is broken down into smaller subtasks. Each subtask is performed independently.
The results of all these subtasks are then combined to produce the final result. It should be
obvious that MapReduce has two principal phases:

•	 The map phase: Breakdown the task into smaller subtasks and execute them to
produce intermediate results

•	 The reduce phase: Combine the intermediate results and produce the final output

If you have done functional programming in the past, the idea should not be new to you. In
the paradigm of functional programming, map() takes an array as an input and performs
an operation on each element on the array. reduce()takes the result array of map() as
its input and combines all the elements in that array into a single element by performing
some operation. To elaborate the idea, consider the array of integers [1, 2, 3, 4, 5]. We have
to find the sum of the squares of all these numbers. map() takes this array and applies the
function f(x) = x2 on each integer in the array and produces the output [1, 4, 9, 16, 25].
Now, reduce() takes this output array, sums all the numbers in it, and outputs the number
55 (1+4+9+16+25 = 55).

Aggregation Queries

[108]

The Internet search giant Google, took this simple idea and applied it into distributed
computing systems. In the year 2004, Google published a paper that demonstrated how the
MapReduce model could be used to process large datasets concurrently in a large cluster
of machines. One machine in the cluster assumes the role of a master node; it partitions
the input into smaller subtasks and distributes them among multiple worker nodes. The
workers run in parallel to process the subtasks and return the results back to the master. The
master combines the results and produces the final output. By dividing the tasks between
multiple workers, we gain speed and scalability (add more workers when the problem gets
bigger). Google's proposed programming model was soon adopted by other companies and
developers, and they rolled out their own frameworks that implement MapReduce. (Apache
Hadoop is perhaps the most prominent of them). NoSQL databases started using this model
for running batch processing tasks and aggregation queries at scale.

Visualizing MapReduce
The next figure illustrates how MapReduce solves a hypothetical problem of counting
occurrences of each word in a stream of text inputs:

The MAP steps take each line of text as input and output the word count for each line. The
REDUCE steps iteratively combines the word count and eventually produces the final word
count for all lines in the text.

Chapter 4

[109]

Further reading on MapReduce

Kristina Chodorow, core developer of the MongoDB project,
wrote an interesting blog post explaining MapReduce, which is
available at http://www.snailinaturtleneck.com/
blog/2010/03/15/mapreduce-the-fanfiction/

Oren Eini's blog has a nice visual explanation of MapReduce available
at http://ayende.com/blog/4435/map-reduce-a-
visual-explanation

The original publication on MapReduce by Google is avaliable at
http://labs.google.com/papers/mapreduce.html

Pop Quiz – MapReduce basics
1.	 The concept MapReduce has been derived from which programming paradigm?

a.	 Object-oriented programming

b.	 Functional Programming

c.	 Aspect-oriented programming

d.	 Procedural programming

2.	 When running a MapReduce job in a distributed environment that is on a cluster
of machines, which of the following task a master node is supposed to do?

a.	 Distribute the tasks among worker nodes

b.	 Monitor progress of the job

c.	 Combine the results of all worker nodes

d.	 both a. and c.

Performing MapReduce in MongoDB
In this section, we are going to learn how we can use MapReduce over MongoDB to perform
aggregation queries. We are going to define the map and reduce functions in JavaScript in
the mongo interactive shell. Then we will apply these functions over the sample data we
generated earlier in the chapter.

Aggregation Queries

[110]

Time for action – counting the number of articles for each
author

In this example, we are going to use MapReduce to find out how many articles there are
in the database per author. The output of this operation will be a collection of documents,
where each document will contain an author name and the number of articles written by
the author.

1.	 Fire up the mongo shell and switch to the myblogsite database:

$./mongodb/bin/mongo
MongoDB shell version: 1.8.1
connecting to: test
>use myblogsite
switched to db myblogsite
>

2.	 Define the map function using the following command in the shell:

>var map = function() { emit(this.author, 1); }

3.	 Now, define the reduce function:

> var reduce = function(key, values) {

...var count = 0;

...for (var i = 0; i < values.length; i++){

... count += values[i];

... }

... return count;

... };

>

4.	 Apply the MapReduce operation on the sample_articles collection using the
next command:

> db.runCommand({

... mapreduce: 'sample_articles',

... map: map,

... reduce: reduce,

... out: 'articles_per_author'

... })

{

 "result" : "articles_per_author",

Chapter 4

[111]

 "timeMillis" : 70,

 "counts" : {

 "input" : 1000,

 "emit" : 1000,

 "output" : 8

 },

 "ok" : 1

}

5.	 Enter the next command to view the result of the MapReduce operation:

> db.articles_per_author.find()

 { "_id" : "Darth Vader", "value" : 126 }

 { "_id" : "Han Solo", "value" : 130 }

 { "_id" : "Hikaru Sulu", "value" : 119 }

 { "_id" : "James Kirk", "value" : 115 }

 { "_id" : "Leia Organa", "value" : 134 }

 { "_id" : "Luke Skywalker", "value" : 132 }

 { "_id" : "Nyota Uhura", "value" : 127 }

 { "_id" : "Spock", "value" : 117 }

>

What just happened?
We just used MapReduce to perform an aggregation operation. We defined the map and the
reduce functions within the mongo shell, and produced a new collection named articles_
per_author that holds the result of the aggregation, that is, the number of articles written
by each author. This is similar to executing the query SELECT COUNT(id) IN sample_
articles GROUP BY author in SQL. In the following sections, we will see how MapReduce
works in MongoDB.

Defining the Map function
The map function takes the documents in the collection and produces a new set of key/
value pairs. In this example, the map function that we defined processes each document
in the collection, and produces a key/value pair where the key is the author name for the
document and value is an array containing the integer 1. We assigned the function to a
variable named map:

var map = function() { emit(this.author, 1); }

Aggregation Queries

[112]

Each time map encounters a document with the same key (author name), it simply adds a
1 in the values array. This is being handled by calling emit() inside the map function. The
output of map looks like this:

{
 "Luke Skywalker" : [1],
 "Spock" : [1],
 "Han Solo" : [1, 1, 1],
 "James Kirk" : [1, 1],
 …………………
}

Defining the Reduce function
The key/value pairs emitted by the map function are fed into the reduce function. Reduce
takes each author and sums up the 1s in the values array to produce the total count:

//receives arguments like this reduce('Han Solo', [1, 1, 1,…])
var reduce = function(key, values) {
 var count = 0;
 for (var i = 0; i < values.length; i++){
 count += values[i];
 }
 return count;
}

In the previous code snippet, the reduce function is defined and assigned to a JavaScript
variable named reduce.

Applying the Map and Reduce
When we are done defining the map and reduce functions, we have to apply them on the
collection to produce the output. This is done by invoking the runCommand() method in
mongo shell:

> db.runCommand({

... mapreduce: 'sample_articles',

... map: map,

... reduce: reduce,

... out: 'articles_per_author'

... })

Chapter 4

[113]

The runCommand() method takes the following arguments:

•	 mapreduce: The name of the collection on which the MapReduce is going
to be performed.

•	 map: The reference to the user-defined map function.

•	 reduce: Reference to the user-defined reduce function.

•	 out: Name of the collection where the result of the operation is going to be
stored. If the collection does not exist, it gets created. If it does exist, the contents
of this collection will be replaced with the documents produced by the operation
(default behavior).

After we apply this command in the shell, we can see the following output on the screen that
gives us some of the statistics of the MapReduce operation:

{

 "result" 		 : "articles_per_author",

 "timeMillis" 	 : 43,

 "counts" 		 : {

 "input" 	 : 1000,

 "emit" 	 : 1000,

 "output" : 8

 },

 "ok" : 1

}

The result field shows the name of the collection where the aggregation results are stored.
timeMillis shows the number of milliseconds it took to compute the results. The input,
emit, and output fields of count respectively, show how many documents have been fed
into the map function, how many have been emitted, and how many have been produced as
output. ok simply signals that the operation was completed successfully.

Viewing the results
Finally, we can view the results of the aggregation by invoking the find() command on the
newly created collection:

> db.articles_per_author.find()

{ "_id" : "Darth Vader", "value" : 126 }

{ "_id" : "Han Solo", "value" : 130 }

{ "_id" : "Hikaru Sulu", "value" : 119 }

The collection contains documents that have author names as their _ids and the value
fields contain the number of articles for the particular author.

Aggregation Queries

[114]

Performing MapReduce on a subset of the collection
It is also possible to specify a query parameter in the runCommand() so that MapReduce
will be applied only on the documents in the collection that match the query. For example, if
we wanted the article count per author only for the article in the 'Programming' category,
we could do the following:

> db.runCommand({

... mapreduce: 'sample_articles',

... query: {category: 'Programming'},

... map: map,

... reduce: reduce,

... out: 'articles_per_author'

... })

Visit http://www.mongodb.org/display/DOCS/MapReduce
on the MongoDB documentation website to see more optional
arguments for MapReduce.

Concurrency
Although the idea behind MapReduce is to achieve concurrency by distributing jobs among
multiple machines/processes, as of this writing the MapReduce jobs running on a MongoDB
server are single threaded. This is because of the limitations imposed by current JavaScript
engines. The developers at 10gen are looking for alternative ways to achieve parallelism of
MapReduce jobs.

Concurrency can be achieved by sharding the database. Sharding is the process
of partitioning the data into multiple nodes, and is performed when the volume
of data becomes too large to be handled in a single machine. This is an advanced
topic and not covered in this book. If you are interested you can visit the page
for sharding in the MongoDB online documentation available at http://www.
mongodb.org/display/DOCS/Sharding+Introduction.

Performing MongoDB MapReduce within PHP
Now that we are familiar with the concept of MapReduce and have learned how to do it in
the MongoDB shell, we are going to see how to perform a MapReduce operation from a PHP
program, using the API exposed by the PHP-MongoDB driver.

Chapter 4

[115]

Time for action – creating a tag cloud
In this example, we will run a MapReduce job that counts the frequency of tags in our
sample collection. We will perform the operation within a PHP script and use the result to
build a tag cloud using CSS and HTML:

1.	 Create a new script named tagcloud.php using your text editor and put the
following code in it:

<?php
 require('dbconnection.php');
 $mongo = DBConnection::instantiate();
 //get an instance of MongoDB object
 $db = $mongo->database;
 //define the map function
 $map = new MongoCode("function() {".
 "for (i = 0; i < this.tags.length; i++) {".
 "emit(this.tags[i], 1);".
 "}".
 "}");
 //define the reduce function
 $reduce = new MongoCode("function(key, values) {".
 "var count = 0;".
 "for (var i = 0; i < values.length; i++){".
 "count += values[i];".
 "}".
 "return count;".
 "}");
 //Run the map and reduce functions, store results in a
 collection
 //named tagcount
 $command = array(
 'mapreduce' => 'sample_articles',
 'map' => $map,
 'reduce' => $reduce,
 'out' => 'tagcount'
);
 $db->command($command);
 //load all the tags in an array, sorted by frequenct
 $tags = iterator_to_array($db->selectCollection('tagcount')
 ->find()
 ->sort(array('value' => -1)));
 //custom function for finding the tag with the highest frequency
 function getBiggestTag($tags)

Aggregation Queries

[116]

 {
 //reset the array to the first element
 reset($tags);
 //get the first key of the associative array
 $firstKey = key($tags);

 //return the value of the first tag document
 return (int)$tags[$firstKey]['value'];
 }
 $biggestTag = getBiggestTag($tags);
 //compare each tag with the biggest one and assign a weight
 foreach($tags as &$tag) {
 $weight = floor(($tag['value'] / $biggestTag) * 100);
 switch($weight){
 case ($weight < 10):
 $tag['class'] = 'class1';
 break;
 case (10 <= $weight && $weight < 20):
 $tag['class'] = 'class2';
 break;
 case (20 <= $weight && $weight < 30):
 $tag['class'] = 'class3';
 break;
 case (30 <= $weight && $weight < 40):
 $tag['class'] = 'class4';
 break;
 case (40 <= $weight && $weight < 50):
 $tag['class'] = 'class5';
 break;
 case (50 <= $weight && $weight < 60):
 $tag['class'] = 'class6';
 break;
 case (70 <= $weight && $weight < 80):
 $tag['class'] = 'class7';
 break;
 case (80 <= $weight && $weight < 90):
 $tag['class'] = 'class8';
 break;
 case ($weight >= 90):
 $tag['class'] = 'class9';
 break;
 }
 }
?>

Chapter 4

[117]

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="style.css" />
 <title>Tag Cloud</title>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1>Tag Cloud</h1>
 <ul id="tagcloud">
 <?php foreach($tags as $tag): ?>

 <a href="#" class="<?php echo $tag['class'];?>">
 <?php echo $tag['_id']; ?>

 <?php endforeach;?>

 </div>
 </div>
 </body>
</html>

2.	 Create a CSS file named style.css and put the following styling rules in it:

body {
 background-color: #e1ddd9;
 font-size: 12px;
 font-family: Verdana, Arial, Helvetica, SunSans-Regular,
 Sans-Serif;
 color:#564b47;
 padding:20px;
 margin:0px;
 text-align: center;
}
div#contentarea {
 text-align: left;
 vertical-align: middle;
 margin: 0px auto;
 padding: 0px;
 width: 550px;
 background-color: #ffffff;
 border: 1px #564b47;

Aggregation Queries

[118]

}
div#innercontentarea{ padding: 10px 50px; }
ul#tagcloud { padding: 2px; line-height: 3em;
 text-align: center; margin: 0;}
ul#tagcloud li { display: inline; }
ul#tagcloud a { padding: 0px; }
//css classes for tags in increasing order of font-weight
ul#tagcloud a.class1 { font-size: 0.7em; font-weight: 100; }
ul#tagcloud a.class2 { font-size: 0.8em; font-weight: 200; }
ul#tagcloud a.class3 { font-size: 0.9em; font-weight: 300; }
ul#tagcloud a.class4 { font-size: 1.0em; font-weight: 400; }
ul#tagcloud a.class5 { font-size: 1.2em; font-weight: 500; }
ul#tagcloud a.class6 { font-size: 1.4em; font-weight: 600; }
ul#tagcloud a.class7 { font-size: 1.6em; font-weight: 700; }
ul#tagcloud a.class8 { font-size: 1.8em; font-weight: 800; }
ul#tagcloud a.class9 { font-size: 2.2em; font-weight: 900; }
ul#tagcloud a.class10 { font-size: 2.5em; font-weight: 900; }

3.	 Run tagcloud.php in the browser to generate the Tag Cloud:

Chapter 4

[119]

What just happened?
We just performed a MapReduce operation using the PHP driver for MongoDB and produced
a tag cloud using the result. First, we initiated a connection to the MongoDB server using
the DBConnection class and got the reference to a MongoDB object that represents the
myblogsite database in the server. Next, we defined the map and the reduce functions using
MongoCode objects. A MongoCode object represents JavaScript code that can be executed
on the server. It takes valid JavaScript code as a string parameter to the a constructor. So we
wrote the JavaScript map and reduce functions as strings and passed them as constructor
to a couple of MongoCode objects. For each tag in the tags array of each document,
map() emits the tag and an array of 1s (a 1 is appended each time the tag is encountered).
reduce() sums up the 1s and outputs the total count for the tag.

Next, we invoked the command() method on the MongoDB object. This method is similar to
the db.runCommand() method in mongo shell. The result of the aggregation is written to a
collection named tagcount (as specified by the out option). The next statement fetches all
the documents in the newly created collection and loads them into an array:

$tags = iterator_to_array($db->selectCollection('tagcount')->find());

Next, we constructed the logic for building the tag cloud. We defined CSS classes with
increasing font sizes and weights:

ul#tagcloud a.class1 { font-size: 0.7em; font-weight: 100; }
ul#tagcloud a.class10 { font-size: 2.5em; font-weight: 900; }

We found the tag with the highest frequency, and got its value. Based on this value, we
assigned a relative weight to each tag in the result set. Next, we assigned a CSS class to each
tag depending on its relative weight:

function getBiggestTag($tags)
{
 reset($tags);
 $firstKey = key($tags);
 return (int)$tags[$firstKey]['value'];
}
$biggestTag = getBiggestTag($tags);
foreach($tags as &$tag) {
 $weight = floor(($tag['value'] / $biggestTag) * 100);
 switch($weight){
 case ($weight < 10):
 $tag['class'] = 'class1';

Aggregation Queries

[120]

 break;
 ……
 case ($weight >= 90):
 $tag['class'] = 'class9';
 break;
 }
}

Finally, we rendered the tag cloud using HTML and CSS.

Have a go hero – repeat the earlier example with PHP
Repeat the example of grouping the articles by author name. But this time, perform the
MapReduce within a PHP program. Display an HTML table that shows the article count for
each author.

Performing aggregation using group()
Besides MapReduce, aggregation in MongoDB can also be performed using the group()
method on a collection. group() can be viewed as a short-circuit approach for doing
MapReduce. It is easier to learn and use (easier because it is a lot similar to using GROUP BY
in SQL). The group() method takes the following parameters:

•	 key: Specifies the key or set of keys by which the documents will be grouped.

•	 initial: The base aggregator counter, specifies initial values before aggregation.

•	 reduce: A reduce that aggregates the documents. It takes two arguments, the
current document being iterated over, and the aggregation counter.

In addition to these, group() can also receive the following optional arguments:

•	 cond: A query object. Only the documents matching this query will be used in
grouping.

•	 finalize: A function that runs on each item in the result set (before returning the
item). It can either modify or replace the returning item.

In the next section, we are going to learn how we can use the group() method to aggregate
objects in a collection.

Chapter 4

[121]

Time for action – calculating the average rating per author
In this example, we are going to calculate the average rating each author received for his
or her articles—published within the last 24 hours—using the group() method. We are
going to execute this method within a PHP program. The program will output a HTML table,
displaying the total number of articles and average rating for each author:

1.	 Open up your text editor and create a new PHP script named avg_rating.php.
Put the following code in it:

<?php
 require('dbconnection.php');
 $mongo = DBConnection::instantiate();
 $collection = $mongo->getCollection('sample_articles');
 $key = array('author' => 1);
 //set both the aggregation counter and total rating to zero
 $initial = array('count' => 0, 'total_rating' => 0);
 //reduce function, increases counter by 1 and adds up the
 ratings
 $reduce = "function(obj, counter) { counter.count++;".
 "counter.total_rating += obj.rating;}";
 //finalize function, finds the average rating
 $finalize = "function(counter) { counter.avg_rating ="
 .."Math.round(counter.total_rating /counter.count);}";
 //query condition, selects the documents created over last 24
 //hours for running the group()
 $condition = array('published_at' => array('$gte' =>
 new MongoDate(strtotime('-1 day'))));
 $result = $collection->group($key,
 $initial,
 new MongoCode($reduce),
 array(
 'finalize' =>
 new MongoCode($finalize),
 'condition' => $condition
)
);
?>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Author Rating</title>
 <link rel="stylesheet" href="style.css"/>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1>Authors' Ratings</h1>

Aggregation Queries

[122]

 <table class="table-list" cellspacing="0"
 cellpadding="0">
 <thead>
 <tr>
 <th width="50%">Author</th>
 <th width="24%">Articles</th>
 <th width="*">Average Rating</th>
 </tr>
 </thead>
 <tbody>
 <?php foreach($result['retval'] as $obj): ?>
 <tr>
 <td><?php echo $obj['author']; ?></td>
 <td><?php echo $obj['count']; ?></td>
 <td>
 <?php echo $obj['avg_rating']; ?>
 </td>
 <tr>
 <?php endforeach; ?>
 </tbody>
 </table>
 </div>
 </div>
 </body>
</html>

2.	 Open the style.css file and add the following CSS rules to it:

table.table-list {
 width: 100%;
 line-height: 1;
 text-align: left;
}
table.table-list th{
 border-bottom: 1px solid #ccc;
 padding: 8px 0;
 font-weight: bold;
}
table.table-list td {
 border-bottom: 1px solid #eee;
 padding: 6px 0;
}

Chapter 4

[123]

3.	 Open the avg_rating.php file in the browser to view the average rating
per author:

What just happened?
We wrote and executed a PHP program that performs aggregation using group(). The
script invoked the group() method on the MongoCollection object that represents
the sample_articles collection. Let's examine the parameters sent to this method.

We supplied array('author' => 1) as the key parameter to group articles by
author names.

We initialized an aggregation counter that has two fields, count and total_rating,
both set to zero. $reduce iterates through the document, increments the count field of
the aggregation counter by 1, and adds the rating of the current document to the total_
rating field of the counter. $finalize calculates the average rating by dividing the total
rating with the counter and rounding off the quotient. The $condition argument selects
the articles that have been published within the last 24 hours to run the group operation on.

We passed all these parameters to the group() method on the MongoCollection object,
which returns the result in an array:

$result = $collection->group($key, $initial, new MongoCode($reduce),
 array(
 'finalize' =>
 new MongoCode($finalize),
 'condition' => $condition
)
);

The result of aggregation is contained in the retval field of $result. We iterated through
this field to display the result in an HTML table.

Aggregation Queries

[124]

Grouping by custom keys
We can also group documents based on a user-defined key by passing a JavaScript function
as the key parameter to group(). The function needs to return an object based on some
predefined rule. For example, suppose we want to group the articles based on the length of
their title. Any article having less than 6 words in the title will be considered small, articles
having between 6 to 10 words will be considered medium, all the other articles will be
considered large. The following would be the key parameter to group():

$key = new MongoCode("function(article) {".
 "len = article.title.split(' ').length;".
 "if(len < 6) {".
 "return {short:true};".
 "} else if(6 <= len && len < 10) {".
 "return {medium:true};".
 "}".
 "else return {large:true};}"
);

MapReduce versus group()
The obvious question that arises at this point is whether we should use group() or
MapReduce for aggregation purposes. group() has its obvious perks; for programmers new
to MongoDB and the concept of MapReduce, it is easier to understand and use. However,
it is not without its limitations. group() returns the result in a single BSON object, and
therefore has to be very small (less than 16 MB). It cannot be applied on a key having more
than 10,000 distinct values. Also, using the group() method blocks the entire database (you
cannot read/write anything while group() is running). For these reasons, when aggregating
over a large dataset, MapReduce is the preferred option. Use group() when you are certain
of no performance deficits.

Jamund Ferguson has an interesting blog post comparing the performance
of group() and MapReduce in MongoDB. It is worth reading and is
available at http://j-query.blogspot.com/2011/06/mongodb-
performance-group-vs-find-vs.html.

Have a go hero – find the maximum and minimum rating for each author
Use the group() method to find the maximum and minimum rating each author received
for the articles.

Chapter 4

[125]

Pop quiz – limitation of group()
1.	 Which of the following is a limitation of the group() command for running

aggregation queries in MongoDB

a.	 If the key used for grouping has more than 10,000 distinct values, group()
cannot be applied.

b.	 Result of group has to be less than 16 MB in size.

c.	 group() is a blocking operation.

d.	 All of the above.

Listing distinct values for a field
In this section, we will learn to use the distinct() method of MongoDB, which lists the
distinct values for a specified field of the documents in a collection.

Time for action – listing distinct categories of articles
In this example, we will list the distinct categories of the article objects in the
sample_articles collection by invoking the distinct() method from a PHP program:

1.	 Create a new PHP script named distinct.php and put the following code in it:

<?php
 require('dbconnection.php');
 $mongo = DBConnection::instantiate();
 //get an instance of MongoDB object
 $db = $mongo->database;
 $result = $db->command(array('distinct' => 'sample_articles',
 'key' => 'category'));
?>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Categories</title>
 <link rel="stylesheet" href="style.css"/>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1>Distinct Categories</h1>

Aggregation Queries

[126]

 <?php foreach($result['values'] as $value): ?>
 <?php echo $value; ?>
 <?php endforeach; ?>

 </div>
 </div>
 </body>
</html>

2.	 Execute the distinct.php script in your browser:

What just happened?
We wrote a PHP script that lists all the distinct values for the category field of each article
document. We invoke the command() method, passing in the appropriate collection and
field names:

$result = $db->command(array(
 'distinct' => 'sample_articles',
 'key' => 'category'));

The distinct values for category are contained in the values field of the returned
array $result. Next, we simply rendered an HTML unordered list to display all the
distinct categories.

Chapter 4

[127]

Using distinct() in mongo shell
If we want to run distinct() from the mongo shell, we can invoke the method on a collection,
passing the key as an argument. The following command gives us all the distinct values of the
category field in the sample_article collection:

> db.sample_articles.distinct('category')

[

 "Programming",

 "Data Structures",

 "Mathematics",

 "Operating System",

 ………………………………..

]

>

Counting documents with count()
We will end this chapter by examining the method count(), which is used to count the
number of objects in a collection. count() takes a document selector as parameter and
returns the number of documents matching the selector:

<?php
 require('dbconnection.php');
 $mongo = DBConnection::instantiate();
 $collection = $mongo->getCollection('sample_articles');
 //get the number of articles written by Spock
 $collection->count(array('author' => 'Spock'));

If no argument is passed, count() returns the total number of documents in the collection:

//returns total number of articles in collection
$collection->count();

Aggregation Queries

[128]

Summary
Let's take a look at what we covered in this chapter:

•	 We learned about MapReduce

•	 We learned how to do aggregation queries in MongoDB using MapReduce

•	 We learned how we can perform MapReduce queries in PHP

•	 We covered how we can do aggregation using group().

•	 We discussed advantages and disadvantages of using group() versus
using MapReduce.

•	 We learned about the discount() and count() methods.

In the next chapter, we will put our newly learned skills into work and use them to solve
real-world data processing problems. Keep reading!

5
Web Analytics using MongoDB

In this chapter, we are going to explore and experiment with an interesting
use case of MongoDB: storing website analytics. There are certain features
of MongoDB (which we will discuss in this chapter) that make it an excellent
choice as a backend for storing web traffic data. We can use MapReduce to
process and analyze the data, measure key metrics, and generate reports. We
are going to learn how to do all that by adding analytics features into the blog
application that we built in Chapter 2, Building your First MongoDB Powered
Web App. We will build a logger in PHP that stores HTTP request data. Then
we will use MapReduce to process the data and expose certain statistics in a
web dashboard. Finally, we will learn how we can leverage the upsert and $inc
feature of MongoDB to store page visit counts in real time.

So to sum it up, in this chapter we will:

•	 Discuss why MongoDB is a good choice for storing web analytics

•	 Learn how to implement logging using PHP and MongoDB

•	 Use MapReduce to analyze the logged data

•	 Implement real-time analytics using 'upsert' and '$inc'

Web Analytics using MongoDB

[130]

Why MongoDB is a good choice as a web analytics
backend
MongoDB is good for storing and processing large datasets in general. Web analytics is one
example of such a large data problem. Let's take a look at some of its features that make it a
good choice for this purpose:

•	 MongoDB is well suited to handle large volumes of data. In situations where
traditional relational database systems are too expensive in terms of system
resources (because of the large volume of the data), MongoDB might prove to be
a better alternative. The scalability features of MongoDB (replication, sharding,
replica sets, and so on) aid in performing optimally as the size of data and number
of operations on it continue to grow. A high traffic website can use it to store all the
user activity on the site, so they can be processed and analyzed in the background.

•	 MongoDB supports asynchronous inserts. This means that your application code,
whether it is PHP, C, or the JavaScript interface of the mongo shell, asks MongoDB
to insert a document and moves on to the next instruction without waiting for the
server to respond. This makes it an excellent tool for logging. For example, your
web application can process an HTTP request, save various aspects of the request
(such as time of request, user agent string, and so on) in the database, and then
generate the output. Since the insertion is asynchronous, the output generation is
not delayed.

•	 MapReduce may be considered as another useful feature from this perspective.
You may find it confusing at first (I did!), but once you wrap your head around the
concept, you will realize this is a powerful and flexible tool for data processing. You
can run MapReduce on your analytics data and generate reports that may give clues
on how to better optimize the website or how to improve its usability.

The Flexible schema feature of MongoDB makes it an excellent choice for web analytics
storage. It is difficult to define a data structure for analytics data beforehand, because often
we do not know what are the most important pieces of information we would have to store.
Also, if we decide to store any additional information (or decide not to store any existing
information going forward) the flexibility of the schema makes it very easy to introduce the
required changes to the data structure.

Chapter 5

[131]

Logging with MongoDB
Perhaps the most basic requirement of web analytics is to log visits to different pages in
a web application. In this section, we are going to learn how we can implement a logger
module that will log user requests to a web app in a MongoDB collection. Primarily, we are
interested in the following aspects of an HTTP request:

•	 The page being visited

•	 The time of visit

•	 The IP address of the user

•	 The user agent string of the browser

•	 The query parameters (if any)

•	 The time taken to generate a response, in milliseconds

Time for action – logging page visits with MongoDB
We are going to implement user request logging in the blog web app that we created in
Chapter 2, Building your First MongoDB Powered Web App. We will build a Logger class that
will handle logging. We will modify the blog.php file, the script used for viewing individual
blog posts, to log page views through the logger module:

1.	 Open up your text editor and create a new file named log.php. Add the following
code to it:

<?php
 require_once('dbconnection.php');
 define('LOGNAME', 'access_log');
 class Logger
 {
 private $_dbconnection;
 private $_db;
 public function __construct()
 {
 $this->_dbconnection = DBConnection::instantiate();
 //obtain a reference to the collection where the data
 //will be logged
 $this->_collection = $this->_dbconnection
 ->getCollection(LOGNAME);
 }
 public function logRequest($data = array())
 {
 $request = array();
 //obtain HTTP request information by accessing $_SERVER

Web Analytics using MongoDB

[132]

 $request['page'] = $_SERVER['SCRIPT_NAME'];
 $request[viewed_at'] =
 new MongoDate($_SERVER['REQUEST_TIME']);
 $request['ip_address'] = $_SERVER['REMOTE_ADDR'];
 $request['user_agent'] = $_SERVER['HTTP_USER_AGENT'];
 //split the query string and store HTTP
 //parameters/values in an array
 if (!empty($_SERVER['QUERY_STRING'])){
 $params = array();
 foreach(explode('&', $_SERVER['QUERY_STRING']) as
 $parameter) {
 list($key, $value) = explode('=', $parameter);
 $params[$key] = $value;
 }
 $request['query_params'] = $params;
 }
 //add addtional log data, if any
 if (!empty($data)) {
 $request = array_merge($request, $data);
 }
 $this->_collection->insert($request);
 }
 }

2.	 Open the blog.php file and add the following lines at the beginning:

require('log.php');
$start = microtime();

Add the following code at the end of the blog.php file

$end = microtime();
$data = array('response_time_ms' => ($end - $start) * 1000);
$logger = new Logger();
$logger->logRequest($data);

3.	 Start the mongo interactive shell. Switch to the myblogsite database and create a
collection named access_log by entering the following commands:

./mongodb/bin/mongo

MongoDB shell version: 1.8.1

connecting to: test

> use myblogsite

switched to db myblogsite

> db.createCollection('access_log',{capped:true, size:100000})

{ "ok" : 1 }

Chapter 5

[133]

4.	 Open the blogs.php page in a browser. Click on Read more a few times to view
blog posts:

5.	 Open the mongo shell again. View the documents in the access_log collection by
entering the following commands:

$./mongodb/bin/mongo

MongoDB shell version: 1.8.1

connecting to: test

> use myblogsite

switched to db myblogsite

> db.access_log.find()

The following screenshot shows the output:

Web Analytics using MongoDB

[134]

What just happened?
We implemented user request logging by creating a collection in MongoDB and inserting
the HTTP request data into this collection. First we started the mongo shell and created a
capped collection named access_log in the mongo interactive shell. A capped collection is
a collection for which we can specify the maximum size (or the maximum number of objects
it can store) and it will always maintain this size:

>db.createCollection('access_log', {capped: true, size:100000})

{ "ok" : 1 }

We will cover capped collection in detail shortly. Now, let's dig deeper into the code of log.
php. This file contains a class named Logger that handles the request logging logic. In the
constructor of the class, we created a connection to the MongoDB server and obtained a
reference to the access_log collection. The logRequest() method obtains the HTTP
request information we are interested in by accessing the $_SERVER super global array. It
also splits the query string and stores the parameters and their values in an array. Finally, it
merges the data with any additional data received as arguments and inserts it in the capped
collection.

Next, we edited the blog.php script so that it loads log.php at runtime. We added timers
at the start and end of this script so we can measure the time taken to render the page. At
the end of the script, we instantiated Logger and called logRequest() on it, passing the
response time taken as an optional argument:

$data = array('response_time_ms' => ($end - $start) * 1000);
$logger = new Logger();
$logger->logRequest($data);

We visited some of the blog posts on the site in the browser and switched to the mongo shell
once again. We invoked find() on access_log to see the data logged by the Logger class.

Capped collections
A capped collection is just like any other collection in MongoDB, except that if we specify
the size of the collection in bytes, it will maintain this size by itself. That means when
this collection grows larger than the specified size, it replaces the oldest documents (the
documents that were inserted first) automatically with new ones.

A capped collection is created explicitly by calling createCollection(), unlike regular
collections which are created implicitly. A second parameter has to be passed to this method
specifying that this is a capped collection and the size of the collection in bytes.

//create a capped collection of 1000000 bytes named access_log

>db.createCollection('access_log', {capped:true, size: 100000})

Chapter 5

[135]

This command will create the collection and pre-allocate the specified size on the disk. We
can also specify the maximum number of objects to be stored in a capped collection (this
must be accompanied by the size parameter):

//cap the number of documents to 1000

>db.createCollection('capped_coll',{capped:true, size:10000, max: 1000})

Sorting in natural order
Another notable feature of a capped collection is that it implements natural ordering.
Natural ordering is the database's native approach of ordering documents in a collection.
When we query a collection, without specifying to sort on a certain field, we will get the
documents in the order they were inserted. In a regular collection, this is not guaranteed
to happen because as we update the documents, their sizes change and they are moved
around to fit into the collection. A capped collection on the other hand guarantees that the
documents are returned in the order of their insertion:

//this will return the oldest documents first

db.access_log.find()

You can also reverse the order by sending in the {$natural : -1} parameter to sort():

//this will return the newest documents first

db.access_log.find().sort({$natural : -1})

This natural ordering behavior, coupled with the fixed size property makes capped collection
an ideal logging backend (the order of items is preserved and the log is not allowed to grow
beyond a specific size).

Updating and deleting documents in a capped collection
We can update documents in a capped collection the same way we update documents for a
regular collection. But there is a catch; the document being updated is not allowed to grow
in size (otherwise capped collection could not guarantee natural ordering). Also, we cannot
delete documents from a capped collection. We can however use drop() to delete the
collection entirely.

Specifying the size of a regular collection
It is possible to pre-allocate disk space for a collection that is not capped. We have to use the
createCollection() method for it:

>db.createCollection('noncapped_coll', {size : 100000})

{ "ok" : 1 }

Web Analytics using MongoDB

[136]

Convert a regular collection to a capped one
We can also turn a regular collection into a capped collection by using the following
command:

>db.runCommand({'convertToCapped': 'regular_coll', size : 1000000})

{ "ok" : 1 }

This converts a non-capped collection named regular_coll into a capped collection.

Pop quiz – capped collection
1.	 Which of the following is a false statement?

a.	 A capped collection cannot grow beyond the specified size

b.	 Documents in a capped collection cannot be modified

c.	 Documents in a capped collection are stored in order of insertion

2.	 What happens when a capped collection exceeds its pre-allocated size when
we are inserting new documents into it?

a.	 We get an error saying the collection has reached its limit

b.	 MongoDB shuffles the allocated disk space to make room for the
new documents

c.	 The newly inserted objects automatically replace the oldest ones in
the collection

3.	 Sorting by natural order means:

a.	 The documents that were created last will be returned first
(Last in First Out)

b.	 The documents that were inserted first will be returned first
(First in First Out)

c.	 None of the above

Extracting analytics data with MapReduce
The log contains raw data about page visits, but we need to extract some meaningful
information out of it. For example, it might be useful to know how many times a page has
been viewed over a certain time period, or what is the average response time for a page.
It is possible to do so by applying MapReduce on the log. In the next example, we are going
to do just that.

Chapter 5

[137]

Time for action – finding total views and average response time
per blog post

In this example, we will write a PHP program where we will define the map and reduce
functions to determine the number of visits per blog post over the last seven days and the
average response time for rendering it. We will display the result in an HTML table:

1.	 Create a new PHP script named page_views.php. Add the following code to it:

<?php
 require 'dbconnection.php';
 $dbConnection = DBConnection::instantiate();
 $db = $dbConnection->database;
 /* The map function, emits a counter and response_time_ms of
 each document */
 $map = "function() { emit(this.query_params.id, {count: 1,".
 "resp_time: this.response_time_ms}) }";
 // the reduce function, sums up the counters and response times
 $reduce = "function(key, values) { ".
 "var total_count = 0;".
 "var total_resp_time = 0;".
 "values.forEach(function(doc) {".
 "total_count += doc.count;".
 "total_resp_time += doc.resp_time;".
 "});".
 "return {count: total_count, resp_time:".
 "total_resp_time};".
 "}";
 /*finalize – finds average response time by dividing total
 response time by total sum of counters */
 $finalize = "function(key, doc) {".
 "doc.avg_resp_time = doc.resp_time / doc.count;".
 "return doc;".
 "}";
 $db->command(array(
 'mapreduce' => 'access_log',
 'map' => new MongoCode($map),
 'reduce' => new MongoCode($reduce),
 'query' => array('page' => '/blog.php',
 'viewed_at' => array('$gt' =>
 new MongoDate(strtotime('-7 days')))),
 'finalize' => new MongoCode($finalize),

Web Analytics using MongoDB

[138]

 'out' => 'page_views_last_week'
)
);
 $results = $dbConnection->getCollection('page_views_last_week')
 ->find();
 function getArticleTitle($id)
 {
 global $dbConnection;
 $article = $dbConnection->getCollection('articles')
 ->findOne(array('_id' => new MongoId($id)));
 return $article['title'];
 }
?>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Most viewed articles (Last 7 days)</title>
 <link rel="stylesheet" href="style.css"/>
 <style type="text/css" media="screen">
 body { font-size: 13px; }
 div#contentarea { width : 680px; }
 </style>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1>Most viewed articles (Last 7 days)</h1>
 <table class="articles" cellspacing="0"
 cellpadding="0">
 <thead>
 <tr>
 <th width="50%">Article</th>
 <th width="25%">Page views</th>
 <th width="*">Avg response time</th>
 </tr>
 </thead>
 <tbody>
 <?php foreach($results->sort(array('value.count'
 => -1))
 as $result): ?>
 <tr>
 <td><?php echo getArticleTitle($result['_id']);
 ?></td>

Chapter 5

[139]

 <td><?php echo $result['value']['count']; ?></td>
 <td>
 <?php echo sprintf('%f ms',
 $result['value']['avg_resp_time']); ?>
 </td>
 </tr>
 <?php endforeach; ?>
 </tbody>
 </table>
 </div>
 </div>
 </body>
</html>

2.	 Execute the newly created page_views.php script in the browser to see the
analytics data:

Web Analytics using MongoDB

[140]

What just happened?
We just ran a MapReduce operation on the access_log collection and displayed the
extracted information in an HTML table. We wrote the map, reduce, and finalize functions
in JavaScript and supplied them as arguments to the command() method of the MongoDB
object that represents the myblogsite database. We also supplied query arguments to
limit the operation to the blog.php pages, viewed over the last seven days.

The map, reduce, and finalize functions
Let's look closely at the map, reduce, and finalize functions we used. The map function
emits the id field in the query_param embedded document of each document in
access_log. It also emits an object containing a counter and the value of the response_
time_ms field of the document. The reduce function sums up the counter and response
time values. The finalize function determines average response time by dividing the sum
of response times by the sum of counters.

Displaying the result
The result of the MapReduce operation is stored in a collection named page_views_last_
week. Each document of this collection has the blog ID in its _id field, and the counter and
average response time in its values field:

> db.page_views_last_week.find()

{ "_id" : "4dc828a75981ae0e02000000", "value" : { "count" : 14, "resp_
time" : 38.1, "avg_resp_time" : 2.7214285714285715 } }

{ "_id" : "4dc828c85981ae1002010000", "value" : { "count" : 21, "resp_
time" : 60.5, "avg_resp_time" : 2.880952380952381 } }

{ "_id" : "4dc828e95981ae0f02000000", "value" : { "count" : 15, "resp_
time" : 43.4, "avg_resp_time" : 2.893333333333333 } }

………………..

In the page_views.php script, we wrote a custom function to fetch the blog title by _id
from the articles collection. Then we sorted the articles by their page views (sorting on the
values.count field) in descending order, and render an HTML table with their values.

Chapter 5

[141]

Running MapReduce in real time versus running it in the background
It is not generally a good idea to calculate analytics using such MapReduce in real time,
especially if you are running a website that enjoys heavy user traffic. The log will be very large
and, constantly growing, so running MapReduce on it would take time (MapReduce jobs are
known to be consistent and continuous, but their speed depends on several factors). If we
ran the page view calculation job like we did in our example, it will take a long time to load
the page. Rather, you should run processes in the background (running a cron job, maybe
every night) that execute the MapReduce jobs, stores the results in a collection, and have the
analytics page simply read from that collection. This way we can keep the performance at an
optimum level, although we will sacrifice real-time page view counts. But there is another way
we can obtain page view stats in real time. We are going to learn about that in the next section.

Have a go hero – find out usage share of browsers for the site
Using MapReduce, find out the usage share of different browsers used by the visitors of your
blog. Group the log data by different values of user agent strings and express the proportion
of each browser as a percentage. There are bonus points available if you can display the
result in a graphical manner (using a pie chart or a bar chart!).

Real-time analytics using MongoDB
In this section, we are going to build another analytics tool with MongoDB that keeps count
of how many times a page has been viewed and displays in an HTML dashboard, in real
time. Although it is possible to do that using the logger we built earlier in this chapter and
MapReduce, this is not a very scalable solution as we discussed earlier. So we are going to
take an alternative approach, by making use of upsert and the $inc modifier.

Time for action – building a real-time page visit counter
We will modify the logger to add a new method that keeps track of how many times a blog
post has been viewed daily. The method will store this information in a new collection,
whose schema is designed to fit this new use case. We will modify the blog.php file to call
that method after rendering the page. We will display this information in an HTML table on a
different page.

1.	 Open the log.php file and add the following method in the Logger class:

public function updateVisitCounter($articleId)
{
 $articleVistiCounterDaily = $this->_dbconnection
 ->getCollection('article_visit_counter_daily');
 $criteria = array(

Web Analytics using MongoDB

[142]

 'article_id' => new MongoId($articleId),
 'request_date' =>
 new MongoDate(strtotime('today'))
);
 $newobj = array('$inc' => array('count' => 1));
 $articleVistiCounterDaily->update($criteria,
 $newobj,
 array('upsert' => True));
}

2.	 Open the blog.php file and add the following code at the end of the file:

$logger->updateVisitCounter($id);

3.	 Create a new PHP script named blogreader_bot.php and add the following code
to it:

<?php
 require 'dbconnection.php';
 $mongo = DBConnection::instantiate();
 $articles = $mongo->getCollection('articles');
 $articleIds = array();
 foreach($articles->find(array(), array('_id' => TRUE)) as
 $article){
 array_push($articleIds, (string)$article['_id']);
 }
 function getRandomArrayItem($array)
 {
 $length = count($array);
 $randomIndex = mt_rand(0, $length - 1);
 return $array[$randomIndex];
 }
 echo 'Simulating blog post reading...';
 while(1) {
 $id = getRandomArrayItem($articleIds);
 //change the value of $url accordingly on your machine	
 $url =
 sprintf('http://localhost:8888/
 mongodb/chapter5/blog.php?id=%s'	 , $id);
 $curlHandle = curl_init();
 curl_setopt($curlHandle, CURLOPT_URL, $url);
 curl_setopt($curlHandle, CURLOPT_HEADER, false);
 curl_setopt($curlHandle, CURLOPT_RETURNTRANSFER, true);
 curl_exec($curlHandle);
 curl_close($curlHandle);
 }

Chapter 5

[143]

4.	 Create another PHP script named realtime_pageviews.php and add the
following code to it:

<?php
 require 'dbconnection.php';
 $dbConnection = DBConnection::instantiate();
 $collection = $dbConnection
 ->getCollection('article_visit_counter_daily');
 function getArticleTitle($id)
 {
 global $dbConnection;
 $article = $dbConnection->getCollection('articles')
 ->findOne(array('_id' => new MongoId($id)));
 return $article['title'];
 }
 $objects = $collection->find(array('request_date' =>
 new MongoDate(strtotime('today'))));
?>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Daily Page views (in realtime)</title>
 <link rel="stylesheet" href="style.css"/>
 <style type="text/css" media="screen">
 body { font-size: 13px; }
 div#contentarea { width : 680px; }
 </style>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1>Daily Page views (in realtime)</h1>
 <table class="articles" cellspacing="0"
 cellpadding="0">
 <thead>
 <tr>
 <th>Article</th>
 <th>Viewed</th>
 </tr>
 </thead>
 <tbody>
 <?php foreach($objects->sort(array('count' => -1))
 as $obj): ?>
 <tr>
 <td>
 <?php
 echo getArticleTitle((string)
 $obj['article_id']); ?>
 </td>
 <td><?php echo $obj['count']; ?></td>
 </tr>

Web Analytics using MongoDB

[144]

 <?php endforeach; ?>
 </tbody>
 </table>
 </div>
 </div>
 </body>
 <script type="text/javascript">
 var REFRESH_PERIOD = 5000; //refresh every 5 seconds.
 var t = setInterval("location.reload(true);",
 REFRESH_PERIOD);
 </script>
</html>

5.	 Open the terminal (the command prompt if you are running on Windows) and
execute the blogreader_bot.php file in the command line:

$ php blogreader_bot.php
Simulating blog post reading…

6.	 While the blogreader_bot.php script is running, open the realtime_
pageviews.php page in the browser. Notice the numbers under the Viewed
column change as the page periodically refreshes itself every five seconds:

Chapter 5

[145]

What just happened?
That was quite a big example! Let's go through the steps to see what we did. First we
added a method updateVisitCounter() to the existing Logger class. As the name
suggests, this method keeps count of how many times a blog has been viewed today. It
queries the article_visit_counter_daily collection with an article_id (received
as its argument) and the date of request (today's date by default). If it finds a document, it
increases the count field by 1; otherwise it inserts such a document with the count field
set to 1 (we use the upsert and $inc features of MongoDB to achieve this).

Next, we modified blog.php again to call updateVisitCounter() at the end of
the script.

Then we wrote a command-line PHP script blogreader_bot.php that simulates blog post
visits. It runs in an indefinite loop, randomly picks an article from the articles collection, and
'views' the article using the PHP cURL library. You can also run this script in your browser if
you don't have PHP CLI installed on your machine.

If you have not worked with PHP and cURL before, check out
this page in the PHP online documentation http://bd.php.
net/manual/en/book.curl.php.

Next, we wrote another PHP program named realtime_pageviews.php that loads the
data from the article_visit_counter_daily and displays page views per article in
an HTML table. The page has a JavaScript code that automatically refreshes itself every five
seconds.

<script type="text/javascript">
 var REFRESH_PERIOD = 5000; //refresh every 5 seconds.
 var t = setInterval("location.reload(true);", REFRESH_PERIOD);
</script>

We executed the blogreader_bot.php script in the command line to simulate page visits.
We ran the realtime_pageviews.php file in the browser and watched the numbers
changing when the page refreshed every five seconds.

Create indexes on the look up fields

One way the solution mentioned earlier can be improved is by creating
indexes on the fields that are being queried (the article_id and
the request_date fields). This will make document look up much
faster. We will cover the benefits of indexing and how to create them
later in this book.

Web Analytics using MongoDB

[146]

Have a go hero – get unique page visits in real time
Your task is to modify the previous code to count unique visits to a blog post in real time.
The general idea is that when a user views a blog post for the first time, the counter for that
article will increase by one. His subsequent visits to the same blog post will not affect the
counter (at least for that day). Avoid using MapReduce as we have learned that they are
not great in real-time scenarios. There are several ways you can detect a unique visitor to a
page. You can check the user's browser (the user agent string) and IP address, although this
is not a viable solution in all situations (two users using the same browser and platform on
a proxy server will have the same IP address, and therefore will be mistakenly identified as
one visitor). You can put a cookie in the user's browser when he visits the site, and read the
cookie value to identify whether the user's visit is unique or not.

Summary
Let's take a look what we covered in this chapter:

•	 We learned what makes MongoDB a good analytics tool

•	 We learned how we can use MongoDB for logging page visits

•	 We learned how to use MapReduce to extract analytics information from raw data

•	 We learned how to implement real-time analytics using 'upsert' and '$inc'

We also covered asynchronous inserts and capped collections in MongoDB.

In the next chapter, we will learn how MongoDB and a relational database system can be
used together to build a robust and elegant data backend.

6
Using MongoDB with

Relational Databases

We have covered different aspects of MongoDB in the previous chapters,
hopefully enough to make you feel confident of building your own web
applications on top of it. In this chapter, we are going to discuss an interesting
concept: using MongoDB and a relational database system together. We are
going to examine a fictional project that is built around a relational database,
and identify use cases for which MongoDB is a better fit. The practical
examples in this chapter will demonstrate how we can use MongoDB along
with a relational database for data archiving, storing aggregation results,
caching JOIN queries, and so on. Lastly, we will discuss some of the challenges
of working with such a hybrid data model. We will be using MySQL as the
RDBMS in the examples, but the concepts should apply to any other relational
database.

In this chapter, we shall:

•	 Learn about the use cases where we can use MongoDB with a relational
database system

•	 Learn how we can archive data in an RDBMS to MongoDB

•	 Learn to use MongoDB as a storage for expensive aggregation queries

•	 Learn how we can use MongoDB for storing entity metadata

•	 Discuss the challenges for using an RDBMS and MongoDB together

Using MongoDB with Relational Databases

[148]

The motivation behind using MongoDB and an RDBMS
together
Relational databases have been around for decades. Programmers have built countless
applications, web-based or otherwise, on top of such databases. If the domain of the problem
is relational, then using an RDBMS is an obvious choice. The real-world entities are mapped
into tables, and the relationships among the entities are maintained using more tables (or
foreign key constraints). But there could be some parts of the problem domain where using
a relational data model will not be the best approach, and perhaps we may need a data store
that supports a flexible schema. In such scenarios, we could use a document-oriented data
storage solution such as MongoDB. The application code will have separate modules for
accessing and manipulating the data of the RDBMS and that of MongoDB.

Potential use cases
Let's look at some potential use cases where we can employ MongoDB alongside a relational
database system:

•	 Storing results of aggregation queries: The results of expensive aggregation queries
(COUNT, GROUP BY, and so on) can be stored in a MongoDB database. This allows
the application to quickly get the result from MongoDB without having to perform
the same query again, until the result becomes stale (at which point the query will
be performed and the result will be stored again). Since the schema of a MongoDB
collection is flexible, we don't need to know anything about the structure of the
result data beforehand. The rows returned by the aggregation query could be stored
as BSON documents.

•	 Data archiving: As the volume of data grows, queries and other operations on a
relational table increasingly take more time. One solution to this problem is to
partition the data into two tables: an Online table, which contains the working
dataset, and an Archival table that holds the old data. The size of the online table
will remain more or less the same, but the archival table will grow larger. The
drawback of this approach is that when the schema of the online table changes, we
will have to apply the same changes to the archive table. This will be a very slow
operation because of the volume of the data. Also, if we drop one or more columns
in the online table, we will have to drop those columns in the archive tables too,
thus losing the old data that might have been valuable. To get around this problem,
we could use a MongoDB collection as the archive. Because of its flexible schema,
we won't have to do anything if the structures of the old and the new tables differ.

Chapter 6

[149]

•	 Logging: We can apply MongoDB for logging events in an application. We can use a
relational database for the same purpose, but the INSERT operations on the log
table will incur an extra overhead that will make the application response slower.
We can also try simple file-based logging, but in that case, we would have to write
our own, regular-expression-powered log parsing code to analyze the log data and
extract information out of it. The asynchronous insert feature and the Mongo query
language (and MapReduce) makes MongoDB a better choice for logging. We have
learned how to log HTTP requests in MongoDB in Chapter 5, Web Analytics using
MongoDB, so we won't go into much detail about it here.

•	 Storing entity metadata: The application that you built maps the entities of the
domain into tables. The entities could be physical, real-world objects (users,
products, and so on), or they could be something virtual (blog posts, categories, and
tags). You determine what pieces of information you need to store for each of these
entities, and then you design the database schema and define the table structures.
But let's assume that we need to store some additional of information for some of
these entities. We don't know what kind of information we need to store, and they
vary from one entity to another (even though both entities are of the same type).
To illustrate this, consider a table called Player, where we store specific data for all
kinds of sportsmen such as tennis players, golfers, and race-car drivers. At some
point, we realize that we need to store the key achievements of these players as
well. We need to store how many PGA championships Tiger Woods has won, and
how many times Roger Federar has lifted the Wimbledon cup. You can imagine
how difficult it is to map all this data to a relational structure. We could instead put
the metadata for the player in a MongoBD document, along with the primary key
of the player. When we need to access it, we could just query the collection with
the primary key and have the document loaded. (We could store the metadata in a
serialized form in a table, but in that case, we would not be able to run any queries
on the metadata.)

In the next sections, we will learn how to implement these use cases.

Defining the relational model
To demonstrate how MongoDB and RDBMS can work together, we are going to design the
schema of the database for a fictional company named Acme Corp (the fans of the Looney
Tunes cartoon series might be familiar with their products!). For the sake of simplicity, we
will limit the tables of the database to three:

•	 products: This table lists all the products manufactured by Acme Corp.

•	 customers: This table contains a list of all the individuals who purchased Acme
Corp products.

•	 sales: This table contains a record of each sales transaction of Acme Corp products.

Using MongoDB with Relational Databases

[150]

The following diagram shows the schema diagram of the database:

As shown in the diagram, the product_id field of sales is a foreign key referencing the
primary key of products, and the customer_id references the primary key of customers.

Time for action – creating the database in MySQL
We are going to implement the database schema that we defined in the previous section.
I have chosen MySQL as the RDBMS to use in this chapter. I am assuming you have some
experience working with MySQL and have both the server and client installed and running
on your machine.

1.	 Open your text editor and put the following SQL code in a new text file:

CREATE DATABASE `acmeproducts`;
USE acmeproducts;
CREATE TABLE `customers` (
 `id` int(11) NOT NULL auto_increment,
 `first_name` varchar(256) NOT NULL,
 `last_name` varchar(256) NOT NULL,
 `email_address` varchar(256) NOT NULL,
 `date_of_birth` datetime default NULL,
 `created_at` timestamp NOT NULL default CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`),

Chapter 6

[151]

 UNIQUE KEY `email_address` (`email_address`)
) ENGINE=InnoDB;
CREATE TABLE `products` (
 `id` int(11) NOT NULL auto_increment,
 `name` varchar(256) NOT NULL,
 `unit_price` double NOT NULL,
 `created_at` timestamp NOT NULL default CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`),
 UNIQUE KEY `name` (`name`)
) ENGINE=InnoDB;
CREATE TABLE `sales` (
 `id` int(11) NOT NULL auto_increment,
 `product_id` int(11) NOT NULL,
 `customer_id` int(11) NOT NULL,
 `units_sold` int(11) NOT NULL,
 `time_of_sales` timestamp NOT NULL default
 CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`),
 KEY `sales_ibfk_1` (`product_id`),
 KEY `sales_ibfk_2` (`customer_id`)
) ENGINE=InnoDB;
ALTER TABLE `sales`
 ADD CONSTRAINT `sales_ibfk_1` FOREIGN KEY (`product_id`)
 REFERENCES `products` (`id`),
 ADD CONSTRAINT `sales_ibfk_2` FOREIGN KEY (`customer_id`)
 REFERENCES `customers` (`id`);

Save the file as acmeproducts.sql.

Using MongoDB with Relational Databases

[152]

2.	 Launch the Terminal (command prompt in Windows) and run the following
command to execute the SQL in acmeproducts.sql file, and create the database
and tables. Enter your MySQL user password when prompted.

mysql –uXYZ –p –v < /path/to/acmeproducts.sql

(Replace XYZ with your MySQL username and /path/to with the actual file path
to acmeproducts.sql). The output is as shown in the following screenshot:

What just happened?
The steps are pretty much self-explanatory in the previous example. We wrote the SQL
command for creating a database named acmeproducts, defined the products,
customers, and sales tables for this database, and added the foreign key constraints.
Then we ran the command line MySQL client to execute the SQL code in the file, and created
the database and tables.

Generate sample data

You should insert some sample data into these tables before continuing
as we will need them for future examples. You can use a GUI interface
with MySQL, such as phpMyAdmin for convenience, or write a PHP
script to perform a batch insert of some randomly generated data.

Chapter 6

[153]

Caching aggregation results in MongoDB
We are going to see how we can use MongoDB as a cache for aggregation queries. We are
going to run aggregation operations on the database, which we defined in the previous
section, store the result in MongoDB, and serve them to the user when he queries it.

Time for action – storing the daily sales history of products in
MongoDB

In this example, we will run a SUM…GROUP BY query in the sales table to find out how many
units are sold for each product, per day. We will store the result in a MongoDB collection.
Then we will build a page where the user can enter the date and view the sales data by
querying the collection.

1.	 Create a PHP script name mysql.php and put the following code in it:

<?php
 define('MYSQL_HOST', 'localhost');
 define('MYSQL_PORT', 3306);
 define('MYSQL_USER', 'XYZ');
 define('MYSQL_PASSWD', '123123');
 define('MYSQL_DBNAME', 'acmeproducts');
 //function for connecting to MySQL
 function getMySQLConnection(){
 $mysqli = new mysqli(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWD,
 MYSQL_DBNAME, MYSQL_PORT);
 if (mysqli_connect_error()) {
 die(sprintf('Error connecting to MySQL. Error No: %d,'.
 'Error: %s', mysqli_connect_errno(),
 mysqli_connect_error()));
 }
 return $mysqli;
 }

2.	 Open the dbconnection.php file and change the value of the DBNAME constant of
the DBConnection class to acmeproducts_mongo.

const DBNAME = 'acmeproducts_mongo'.

3.	 Create a PHP file named aggregates.php, and put the following code in it:

<?php
 require 'mysql.php';
 require 'dbconnection.php';
 //query MySQL database to get daily sales data

Using MongoDB with Relational Databases

[154]

 $query = 'SELECT name, DATE(time_of_sales) as date_of_sales,'.
 'SUM(units_sold) as total_units_sold '.
 'FROM sales s INNER JOIN products p ON'.
 '(p.id = s.product_id) '.
 'GROUP BY product_id, DATE(time_of_sales)';
 $mysql = getMySQLConnection();
 $result = $mysql->query($query);
 if($result === False){
 die(sprintf("Error executing query %s" % $mysql->error));
 }
 $salesByDate = array();
 //create documents with the query result
 while($row = $result->fetch_assoc()) {
 $date = $row['date_of_sales'];
 $product = $row['name'];
 $totalSold = $row['total_units_sold'];
 $salesPerProduct = (isset($salesByDate[$date])) ?
 $salesByDate[$date] : array();
 $salesPerProduct[$product] = $totalSold;
 $salesByDate[$date] = $salesPerProduct;
}
$result->free();
$mysql->close();
//store the query result into a MongoDB collection
$mongodb = DBConnection::instantiate();
$collection = $mongodb->getCollection('daily_sales');
foreach($salesByDate as $date => $sales) {
 $document = array(
 'sales_date' => new MongoDate(strtotime($date)),
 'items' => array()
);
 foreach($sales as $product => $unitsSold) {
 $document['items'][$product] = $unitsSold;
 }
 $collection->insert($document);
}

4.	 Execute the aggregates.php script in the command-line (or in the browser) to run
the aggregation, and store the result in MongoDB.

Chapter 6

[155]

5.	 Create another PHP script named daily_sales.php, and add the following code
to it:

<?php
 require 'dbconnection.php';
 $action = (isset($_POST['action'])) ? $_POST['action']
 : 'default';
 //function for validating the input date
 function validateInput() {
 if (empty($_POST['year']) || empty($_POST['month']) ||
 empty($_POST['day'])) {
 return False;
 }
 $timestamp = strtotime($_POST['year'].'-'.$_POST['month'].
 '-'.$_POST['day']);
 if (!is_numeric($timestamp)) {
 return False;
 }
 return checkdate(date('m', $timestamp),
 date('d', $timestamp),
 date('Y', $timestamp)
);
 }
 switch($action) {
 case 'Show':
 if(validateInput() === True) {
 $inputValidated = True;
 //query MongoDB collection to get sales data for
 //user-supplied date
 $date = sprintf('%d-%d-%d', $_POST['year'],
 $_POST['month'],
 $_POST['day']);
 $mongodate = new MongoDate(strtotime($date));
 $mongodb = DBConnection::instantiate();
 $collection = $mongodb->getCollection('daily_sales');
 $doc = $collection->findOne(array('sales_date' =>
 $mongodate));
 }
 else {
 $inputValidated = False;
 }
 break;
 default:
 }
?>

Using MongoDB with Relational Databases

[156]

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Acme Corp | Daily Sales</title>
 <link rel="stylesheet" href="style.css"/>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1>Daily Sales of Acme Products</h1>
 <form action="<? echo $_SERVER['PHP_SELF']; ?>"
 method="post">
 Enter Date (YYYY-MM-DD)
 <input type="text" name="year" size=4/> -
 <input type="text" name="month" size=2/> -
 <input type="text" name="day" size=2/>
 <input type="submit" name="action"
 value="Show"/>
 </form>
 <?php if($action === 'Show'):
 if ($inputValidated === True):?>
 <h3>
 <?php echo date('F j, Y', $mongodate->sec) ?>
 </h3>
 <?php if (!empty($doc)):?>
 <table class="table-list" cellspacing="0"
 cellpadding="0">
 <thead>
 <tr>
 <th width="50%">Item</th>
 <th width="25%"> </th>
 <th width="*">Units Sold</th>
 </tr>
 </thead>
 <tbody>
 <?php foreach($doc['items'] as $item =>
 $unitsSold): ?>
 <tr>
 <td><?php echo $item; ?></td>
 <td> </td>
 <td><?php echo $unitsSold; ?></td>
 </tr>
 <?php endforeach;?>
 </tbody>
 </table>
 <?php else:

Chapter 6

[157]

 echo "<p> No sales record found.</p>";
 endif;
 else:
 echo "<h3>Invalid input. Try again.</h3>";
 endif;
 endif; ?>
 </div>
 </div>
 </body>
</html>

6.	 Load the daily_sales.php page in the browser.

7.	 Enter a valid date in the input fields and click on the Show button. The page will
reload with the data.

Using MongoDB with Relational Databases

[158]

What just happened
Let's go through the steps of the last example and see what we did. First, we created a PHP
script named mysql.php that houses a function we can use (and reuse) for connecting to
the MySQL acmeproducts database on the machine. Next, we edited the dbconnection.
php file to change the DBNAME constant of the DBConnection class. We will use this class
to connect to a new Mongo database named acmeproducts_mongo. We created a PHP
script named aggregates.php that runs the following aggregation query on the MySQL
database. The result of the script is organized into a data structure similar to the following:

Array
(
 [2011-07-09] => Array
 (
 [Star Wars Lightsaber] => 23
 [Starfleet Cadet Uniform] => 39
 [Rubber Boomerang] => 9
 [Blunt Edge Shuriken] => 3
 [Einstein Bobblehead] => 26
 [Harry Potter Magic Wand] => 9
 [Millennium Falcon RC Copter] => 5
 [Darth Vader Suit] => 15
 [LOTR Ring of Power] => 37
 [Solar Powered Toy Car] => 53
)
 [2011-07-10] => Array
 (
 [Star Wars Lightsaber] => 65
 [Starfleet Cadet Uniform] => 134
 [Rubber Boomerang] => 95
 [Blunt Edge Shuriken] => 114
 [Einstein Bobblehead] => 65
 [Harry Potter Magic Wand] => 84
 [Millennium Falcon RC Copter] => 64
 [Darth Vader Suit] => 97
 [LOTR Ring of Power] => 71
 [Solar Powered Toy Car] => 73
)
)

Chapter 6

[159]

The next few lines of code in the file save this data structure into a MongoDB collection
named daily_sales. If we query the collection in mongo shell at this point, we will see
something similar to the following:

> use acmeproducts_mongo

switched to db acmeproducts_mongo

> db.daily_sales.findOne()

{

 "_id" : ObjectId("4e20429a5981aec215000000"),

 "sales_date" : ISODate("2011-07-08T00:00:00Z"),

 "items" : {

 "Star Wars Lightsaber" : "18",

 "Starfleet Cadet Uniform" : "29",

 "Rubber Boomerang" : "34",

 "Blunt Edge Shuriken" : "68",

 "Einstein Bobblehead" : "41",

 "Harry Potter Magic Wand" : "42",

 "Millennium Falcon RC Copter" : "40",

 "Darth Vader Suit" : "43",

 "LOTR Ring of Power" : "18",

 "Solar Powered Toy Car" : "59"

 }

}

As you can see, each document of the collection stores a date in the sales_date field, and
the items field stores the name of the product and the number of units of that product sold
on that date.

Finally, we created a PHP page where the user can supply the date in the input field. The
PHP code runs a query on the sales_date field of the daily_sales collection with it. The
contents of the items field of the retrieved document are displayed in an HTML table.

Using MongoDB with Relational Databases

[160]

Benefits of caching queries in MongoDB
The real benefit of using this technique becomes apparent when we try this on a table with a
large number of rows. If we had to perform queries on it in real-time, triggered by a user who
wants to see the result in a webpage, he would have to wait for a long time for the page to
load, because such queries will obviously take a long time to complete on a massive table. Also,
the database server will experience a heavy load when more than one user is running such
queries multiple times. Rather, we should have a background process (cron job in UNIX terms)
that kicks off automatically at the end of the day (or when the web traffic is at its least), runs
the query, and stores the result in MongoDB so that it can be served to the user promptly.

Storing results of expensive JOINs
We can also use MongoDB to store results of JOIN queries among very large tables.
Obviously, if the data in the tables participating in the JOIN changes, the result cache
becomes stale. We can have an automated background process that frequently updates
the cache. The frequency of the cache update would depend on the pattern of read-write
operations on the joined tables.

Have a go hero – replacing Views with MongoDB
I am going to put forward an idea as food for thought. Is it feasible to use MongoDB instead
of Views? Views are like virtual tables, they are stored queries that produce results when
invoked. What do we gain if we use a MongoDB collection for storing such results instead
of views? What are the disadvantages? Can you draw them out from both database and
application points of view?

Using MongoDB for data archiving
We discussed the benefits of using MongoDB for archiving data from a relational table. Now
we are going to see it in action. We will use a MongoDB collection to archive the old sales
records of the fictional Acme Corp database. We will consider all sales records that are older
than one month as eligible for archiving.

Chapter 6

[161]

Time for action – archiving old sales records in MongoDB
In this example, we will write and execute a PHP script that queries all the sales records that
are older than one month, migrate them to a MongoDB collection, and have them removed
from the sales table.

1.	 Open up the text editor, create a new file and put the following code in it:

<?php
 require 'mysql.php';
 require 'dbconnection.php';
 $cutoffDate = date('Y-m-d', strtotime('-30 day'));
 $mysql = getMySQLConnection();
 //get all the sales records older than one month
 $query = sprintf("SELECT * FROM sales WHERE".
 "DATE(time_of_sales) < '%s'", $cutoffDate);
 printf("Fetching old data from MySQL...\n");
 $result = $mysql->query($query);
 if($result === False) {
 die(sprintf("Error executing query %s" % $mysql->error));
 }
 printf("Migrating to MongoDB...\n");
 $mongo = DBConnection::instantiate();
 $collection = $mongo->getCollection('sales_archive');
 while($record = $result->fetch_assoc()) {
 try{
 $collection->insert($record);
 } catch(MongoCursorException $e) {
 die("Migration Failed ".$e->getMessage());
 }
 }
 printf("\tDone. %d records migrated.\n", $result->num_rows);
 $result->free();
 printf("Deleting old data from MySQL...\n");
 $query = sprintf("DELETE FROM sales WHERE
 DATE(time_of_sales)". "< '%s'", $cutoffDate);
 $status = $mysql->query($query);
 if($status === False) {
 die(sprintf("Error executing query %s" % $mysql->error));
 }
 $mysql->close();
 printf("Archiving complete.\n");

Save the file as archive_sales_data.php.

Using MongoDB with Relational Databases

[162]

2.	 Run the archive_sales_data.php script in the command-line (or in the browser,
in case you don't have PHP CLI installed).

$ php archive_sales_data.php

Fetching old data from MySQL...

Migrating to MongoDB...

Done. 12547 records migrated.

Deleting old data from MySQL...

Archiving complete.

3.	 Launch the mongo shell and query the sales_archive collection of the
acmeproducts_mongo database to view all the archived data.

>use acmeproducts_mongo

switched to db acmeproducts_mongo

>db.sales_archive.find()

What just happened?
We created a script that archives all sales records older than one month to a MongoDB
collection named sales_archive. First we query the sales table in the acmeproducts
database to retrieve all records with time_of_sales older than one month. Next, we
migrate all the retrieved records to MongoDB.

$mongo = DBConnection::instantiate();
$collection = $mongo->getCollection('sales_archive');
while($record = $result->fetch_assoc()) {
 try{

Chapter 6

[163]

 $collection->insert($record, array('safe' => True));
 } catch(MongoCursorException $e) {
 die("Migration Failed ".$e->getMessage());
 }
}

Notice how we turned on safe insert flag to ensure the insertion operation completes
successfully (and terminate the script if it doesn't). Finally, when the migration is complete
we delete the old data from the MySQL table.

Having indexes on the fields used for searching old records speeds
up the process. You can learn about MySQL indexing from this page
http://dev.mysql.com/doc/refman/5.0/en/mysql-
indexes.html.

Challenges in archiving and migration
Our migration example was pretty simple. We fetched a row from a MySQL table, formed a
document with the data and inserted it in a MongoDB collection. But in real-world use cases,
RDBMS to MongoDB migration will not always be this simple. Let's see what challenges we
might face when we try to migrate and archive relational data in MonogDB.

Dealing with foreign key constraints
There might be situations where we would have to migrate data from multiple tables related
to each other by foreign keys. In such cases, we can either have a separate collection for
archiving each of the tables, and use application code to maintain relationships among the
documents (referenced objects), or we could archive the records of the principle table in a
single collection and store the related records as embedded documents in the documents
of that collection. The best course of action should be chosen after considering the data
model and application needs (such as the referenced versus embedded objects argument
in Chapter 2, Building your First MongoDB Powered WebApp). In either case, we should be
careful while deleting old data from the tables, so that data integrity is preserved. We may
have to migrate and drop data from the RDBMS in a particular order. Having ON DELETE
CASCADE turned on also helps.

Preserving data types
Also, in some cases you may need to preserve the data type when you migrate from MySQL
to MongoDB. In our example, all data is stored as strings in the MongoDB database. In
your code, you will have to define a map between the MySQL and BSON data types. During
migration, check the MySQL data type of individual items (use mysqli_result::fetch_
field() for this purpose) and typecast them appropriately before insertion.

Using MongoDB with Relational Databases

[164]

Storing metadata in MongoDB
Earlier in this chapter, we discussed how MongoDB could be used as flexible storage for storing
information about different entities that are difficult to map into relational tables. We are going
to try it out in this section. The marketing department of the fictional Acme Corp wishes to
collect some personal details of their customers (the ones the customer would willingly give
to them of course! Acme Corp is not evil!). The details vary from one customer to another,
and they are of different data types, such as strings, numbers, dates, arrays, objects and so
on. These details will be stored in MongoDB. We will also need to store something in the
documents that relates the row in the MySQL table to the metadata document.

Time for action – using MongoDB to store customer metadata
In this example, we will create a class named Customer. An instance of this class will
represent a single row in the customers table of the database. The class will also have
methods that store and retrieve the metadata of the customer.

1.	 Open a new file in your text editor and put the following code in it:

<?php
 require 'mysql.php';
 require 'dbconnection.php';
 class Customer{
 private $_mysql;
 private $_mongodb;
 private $_collection;
 private $_table;
 private $_id;
 private $_email;
 private $_dateOfBirth;
 private $_createdAt;
 public function __construct($id = null){
 $this->_mysql = getMySQLConnection();
 $this->_mongodb = DBConnection::instantiate();
 $this->_collection = $this->_mongodb
 ->getCollection('customer_metadata');
 $this->_table = 'customers';
 if(isset($id)) {
 $this->_id = $id;
 $this->_load();
 }
 }
 private function _load(){

Chapter 6

[165]

 $query = sprintf("SELECT * FROM %s WHERE id = %d",
 $this->_table, $this->_id);
 $result = $this->_mysql->query($query);
 if($result === False) {
 throw new Exception('Error loading data: '
 .$this->_mysql->error);
 }
 elseif($result->num_rows === 0) {
 throw new Exception('No customer found with id '.
 $this->id);
 $this->__destruct();
 }
 else{
 $obj = $result->fetch_object();
 $this->_email = $obj->email_address;
 $this->_dateOfBirth = $obj->date_of_birth;
 $this->_createdAt = $obj->created_at;
 $result->free();
 }
 return;
 }
 public function __get($name){
 switch($name) {
 case 'id':
 return $this->_id;
 case 'email';
 return $this->_email;
 case 'dateOfBirth':
 return $this->_dateOfBirth;
 case 'createdAt':
 return $this->_createdAt;
 default:
 throw new Exception('Trying to access undefined'.
 'property '.$name);
 }
 }
 public function __set($name, $value){
 switch($name) {
 case 'email':
 if(filter_var($value, FILTER_VALIDATE_EMAIL) === False){
 throw new Exception('Trying to set invalid' .'email');
 return;
 }
 $this->_email = $value;

Using MongoDB with Relational Databases

[166]

 break;
 case 'dateOfBirth':
 $timestamp = strtotime($value);
 if(is_numeric($timestamp) === False){
 throw new Exception('Trying to set invalid' .'date of
 birth. '. 'Expected format Y-m-d');
 return;
 }
 elseif($timestamp > time()){
 throw new Exception('Trying to set future'. 'date as
 birth date.');
 return;
 }
 elseif (checkdate(date('m', $timestamp),
 date('d', $timestamp),
 date('Y', $timestamp)) === False) {
 throw new Exception('Trying to set invalid' .'date of
 birth.');
 return;
 }
 $this->_dateOfBirth = date('Y-m-d H:i:s', $timestamp);
 break;
 default:
 throw new Exception('Trying to set'.
 'undefined/restricted property '.$name);
 }
 }
 public function save(){
 if(isset($this->_id)) {
 $query = sprintf("UPDATE %s SET ". "email_address='%s',".
 " date_of_birth='%s' WHERE id = %d", $this->_table,
 $this->_email,
 $this->_dateOfBirth,
 $this->_id);
 }
 else {
 $query = sprintf("INSERT INTO %s (". " email_address,".
 " date_of_birth) VALUES(" ."'%s', '%s')",
 $this->_table,
 $this->_email,
 $this->_dateOfBirth
);
 }
 $status = $this->_mysql->query($query);

Chapter 6

[167]

 if ($status === False) {
 throw new Exception('Failed to save customer to'. 'MySQL
 database '.$this->_mysql->error);
 }
 elseif(!isset($this->_id)) {
 $this->_id = $this->_mysql->insert_id;
 }
 return $status;
 }
 public function delete() {
 if(!isset($this->_id)){
 return;
 }
 $query = sprintf("DELETE FROM %s WHERE id = %d",
 $this->_table, $this->_id);
 $status = $this->_mysql->query($query);
 if ($status === False) {
 throw new Exception('Failed to delete customer from'.
 'MySQL database '.$this->_mysql->error);
 }
 else{
 unset($this->_id);
 }
 return $status;
 }
 public function getMetaData(){
 if(!isset($this->_id)) {
 return;
 }
 $metadata = $this->_collection->findOne(array
 ('customer_id' => $this->_id));
 if ($metadata === NULL) {
 return array();
 }
 //remove _id and customer_id to avoid conflict during
 //future updates.
 unset($metadata['_id']);
 unset($metadata['customer_id']);
 return $metadata;
 }
 public function setMetaData($metadata){
 if(!isset($this->_id)) {
 throw new Exception('Cannot store metadata before'.'saving
 the object in MySQL');
 }

Using MongoDB with Relational Databases

[168]

 $metadata['customer_id'] = $this->_id;
 foreach($metadata as $key => $value) {
 if ($key === '_id') {
 unset($metadata[$key]);
 }
 elseif ((strpos($key, '$') !== FALSE) ||
 (strpos($key, '.') !== FALSE)) {
 unset($metadata[$key]);
 }
 }
 $currentMetaData = $this->getMetaData();
 $metadata = array_merge($currentMetaData, $metadata);
 $this->_collection->update(array('customer_id' =>
 $this->_id), $metadata, array('upsert' => True));
 }
 public function __destruct(){
 $this->_mysql->close();
 $this->_mongodb->connection->close();
 }
 }

Save the file as customer.php.

2.	 Create another file called save_metadata.php, and put the following code in it:

<?php
 require 'customer.php';
 printf("Saving new customer object...\n");
 $customer = new Customer();
 $customer->email = 'joegunchy42@example.com';
 $customer->dateOfBirth = '1982-04-07';
 $status = $customer->save();
 printf("\tDone. ID %d\n", $customer->id);
 printf("Saving Metadata....\n");
 $metadata = array(
 'Middle Name' => 'The Gun',
 'Social Networking' => array(
 'Twitter Handle' => '@joegunchytw',
 'Facebook Username' => 'joegunchyfb'
),
 'Has a Blog?' => True
);
 $customer->setMetaData($metadata);
 printf("\tDone\n");
 printf("Loading metadata...\n");

Chapter 6

[169]

 print_r($customer->getMetaData());
 printf("Updating metadata...\n");
 $metadata = array(
 'Marriage Anniversary' => new MongoDate(strtotime
 ('10 September 2005')),
 'Number of Kids' => 3,
 'Favorite TV Shows' => array(
 'The Big Bang Theory',
 'Star Trek Next Generation'
)
);
 print_r($customer->setMetaData($metadata));
 printf("\tDone.\n");
 printf("Reloading metadata...\n");
 print_r($customer->getMetaData());

3.	 Run the save_metadata.php file from the command line:

$ php save_metadata.php

Saving new customer object...

Done. ID 13

Saving Metadata....

Done

Loading metadata...

Array

(

 [Middle Name] => The Gun

 [Social Networking] => Array

 (

 [Twitter Handle] => @joegunchytw

 [Facebook Username] => joegunchyfb

)

 [Has a Blog?] => 1

)

Updating metadata...

Done.

Reloading metadata...

Array

(

 [Middle Name] => The Gun

 [Social Networking] => Array

Using MongoDB with Relational Databases

[170]

 (

 [Twitter Handle] => @joegunchytw

 [Facebook Username] => joegunchyfb

)

 [Has a Blog?] => 1

 [Marriage Anniversary] => MongoDate Object

 (

 [sec] => 1126306800

 [usec] => 0

)

 [Number of Kids] => 3

 [Favorite TV Shows] => Array

 (

 [0] => The Big Bang Theory

 [1] => Star Trek Next Generation

)

)

What just happened?
In this example, we created a PHP class named Customer that represents a customer in the
application. The class implements an object oriented design pattern named ActiveRecord
(http://en.wikipedia.org/wiki/Active_record_pattern). In this pattern, each
instance of the class represents a row in a certain database table. The class provides an
interface to perform select/insert/update/delete operations on the row (collectively
knows as CRUD operations), and also applies the business logic (data validation and the like).

If the constructor of the class is supplied with an ID, it loads the corresponding row from the
database and populates the instance variables.

The magic method _get() offers an interface to read the values of some of the instance
variables. The _set() method, on the other hand, allows to set the instance variables. It also
performs validation of certain fields before setting them (e-mail, date of birth, and so on).

The save() method saves the object in the database. It either performs an insert or an
update on the table (depending on whether the ID is supplied to the constructor), with the
values of the instance variables. delete() simply deletes the record from the database.

Now, let's turn our attention to the really important methods of the class. The first is
getMetadata(), which retrieves the document containing metadata of the Customer object
from the customer_metadata collection. Each document contains a field named customer_
id that holds the value of the ID field from the customers table in MySQL. The method queries
the collection with this field and returns the metadata document, if it finds any.

Chapter 6

[171]

public function getMetaData(){
 if(!isset($this->_id)) {
 return;
}
$metadata = $this->_collection->findOne(
 array('customer_id' => $this->_id));
 if ($metadata === NULL) {
 return array();
 }
 unset($metadata['_id']);
 unset($metadata['customer_id']
);
return $metadata;
}

Before returning the document, _id and customer_id fields are removed to avoid conflict
during future updates of the metadata.

The setMetadata() method, as its name implies, stores the metadata for a customer. It
ignores any field named _id to avoid conflict with the existing _id of the document. It also
ignores any field that contains the characters "$" and ".", because these characters are used
as query operators in MongoDB. It merges the metadata with the existing ones and performs
an 'upsert' in the collection.

public function setMetaData($metadata){
 if(!isset($this->_id)) {
 throw new Exception('Cannot store metadata before saving the'.
 'object in MySQL');
 }
 $metadata['customer_id'] = $this->_id;
 foreach($metadata as $key => $value) {
 if ($key === '_id') {
 unset($metadata[$key]);
 }
 elseif ((strpos($key, '$') !== FALSE) ||
 (strpos($key, '.') !== FALSE)) {
 unset($metadata[$key]);
 }
 }
 $currentMetaData = $this->getMetaData();
 $metadata = array_merge($currentMetaData, $metadata);
 $this->_collection->update(array('customer_id' => $this->_id),
 $metadata, array('upsert' => True));
}

Using MongoDB with Relational Databases

[172]

To test out the class, we wrote a simple script where we created a Customer object and
saved it in the database. After that we used setMetadata() to store some personal details
of the customer, and getMetadata() to read them back.

$metadata = array(
 'Middle Name' => 'The Gun',
 'Social Networking' => array(
 'Twitter Handle' => '@joegunchytw',
 'Facebook Username' => 'joegunchyfb'
),
 'Has a Blog?' => True
);
$customer->setMetaData($metadata);
print_r($customer->getMetaData());

At this point, you can query the collection in mongo shell with the customer_id to see the
actual document.

> db.customer_metadata.findOne({customer_id:13})

{

 "_id" : ObjectId("4e21cc5e98d9701b770f2722"),

 "Middle Name" : "The Gun",

 "Social Networking" : {

 "Twitter Handle" : "@joegunchytw",

 "Facebook Username" : "joegunchyfb"

 },

 "Has a Blog?" : true,

 "Marriage Anniversary" : ISODate("2005-09-10T00:00:00Z"),

 "Number of Kids" : 3,

 "Favorite TV Shows" : [

 "The Big Bang Theory",

 "Star Trek Next Generation"

],

 "customer_id" : 13

}

Chapter 6

[173]

Problems with using MongoDB and RDBMS together
Before you start building your next web application, powered by a hybrid data backend of
MongoDB and MySQL (or any other relational database), you should consider some of the
problems you might face.

•	 Data consistency: If you use MongoDB as a cache-tier on top of a relational
database, you will need to keep it consistent with the changes in the underlying
data. You can run background processes that are fired at a certain time, and update
the stale data in MongoDB. A more elegant solution would be to define callback
methods in the data access layer, which will automatically update the MongoDB
data every time you insert/update/delete something in the tables.

•	 Complexity of the software architecture: From the application developer's point
of view, having both MongoDB and an RDBMS as the data backends increases the
complexity of the code. This is because he now has to provide and support two
separate data access layers, one for the MongoDB database and the other for the
relational one.

•	 Cost of supporting an additional component: If you add MongoDB to your existing
technology stack, you now have a new component to support. The DBA has an
additional task of keeping an eye on it, monitoring its performance. The system
administrator needs to monitor how much system resources (CPU, memory, and disk
space) it is taking up, and whether he would have to allocate new resources for it.

If you think you can handle all these challenges effectively, you should go ahead. Otherwise, try
to solve the problem using your existing software stack. Alternatively, if the cost is reasonable
(in terms of developer time), consider migrating the whole application to MongoDB.

Summary
Let's take a look at what we covered in this chapter:

•	 We discussed the possible use cases where we can use MongoDB and an RDBMS
together as data backend in an application

•	 We learned how to use MongoDB as a query cache for storing and serving results of
expensive SQL queries

•	 We learned how we can migrate data from an RDBMS to MongoDB, so the latter can
be used as a data archive

•	 We saw how MongoDB can be used for storing metadata of different entities in the
application

We also discussed some potential problems that a developer might face if he decides to
adopt such a hybrid data backend solution. In the next chapter, we are going to focus on an
interesting feature of MongoDB, which is GridFS. Keep reading!

7
Handling Large Files with GridFS

So far in this book we have dealt with data that is mostly textual. But Web 2.0
hardly contains itself within text data. Now we are using web applications to do
things that we probably did not think of doing while the World Wide Web was
being conceived. For example, watching blockbuster movies, listening to top
charted music, uploading and sharing high-resolution pictures snapped with
our digital cameras, and all using our web browsers! Where does MongoDB
fit in all of this? Is it capable of handling large amounts of binary data? The
answer in short, is yes. And in this chapter, we are going to learn how. Mainly
we are going to tinker with GridFS, which enables MongoDB to store large files.

So we are going to learn:

•	 What GridFS is

•	 Advantages of using GridFS

•	 How to use PHP to upload files to GridFS

•	 How to serve files from GridFS

•	 When not to use GridFS and why

What is GridFS?
GridFS is MongoDB's solution for storing binary data in the database. It is a specification
for handling large files in MongoDB. When I say specification, I mean it is not a feature of
MongoDB itself; there is no code in MongoDB that implements it. GridFS just specifies how
large files are to be handled in the database, and the language drivers (PHP, Python, Ruby,
and so on) implement this specification and expose an API to the user of that driver (that's
you) so you can use it to store/retrieve large files in MongoDB.

Handling Large Files with GridFS

[176]

The rationale of GridFS
By design, a MongoDB document (a BSON object) cannot be larger than 16 megabytes. This
is to keep performance at an optimum level. If there are documents larger than 16 MB, they
are going to take up a lot of memory when you query them. GridFS specifies a mechanism
for dividing a large file among multiple documents. The language driver that implements it,
for example, the PHP driver, takes care of the splitting of the stored files (or merging the split
chunks when files are to be retrieved) under the hood. The developer using the driver does
not need to know of such internal details. This way GridFS allows the developer to store and
manipulate files in a transparent and efficient way.

The specification
Let's learn about the GridFS specification briefly. GridFS stores a file in two separate
collections: files and chunks. The basic idea is for every file to be stored in GridFS, files
will have exactly one document that will contain the filename, size, time of upload, and
any other metadata set by the user. The contents of the file will be stored in one or more
documents in chunks (in the PHP implementation, each chunk stores up to 256 kilobytes of
data). The next diagram illustrates the specification:

The previous diagram shows how an image file of 512 KB is stored in GridFS. The document in
files contains the filename, size, time when the file was uploaded, and so on. The file is split
into two 256 KB chunks, each chunk referring to the document in files with its files_id field.

To learn more about the specification visit the page in MongoDB online
documentation available at http://www.mongodb.org/display/
DOCS/GridFS+Specification.

Chapter 7

[177]

Advantages over the filesystem
The obvious question that pops into mind is "What do I gain from using GridFS instead of the
trusted old filesystem?". Here are some reasons that might convince you:

•	 With GridFS we could store millions of files under one (logical) directory. Traditional
filesystems will not allow us to do so (even if they do, it will be at the cost of a
serious performance decrease).

•	 In a distributed environment, where multiple machines have to access the files,
GridFS is a much better choice than having a networked/distributed filesystem. The
built-in replication schemes of MongoDB can be used to replicate and sync the files
on multiple machines.

•	 If you have taken measures for backing up your MongoDB data, it will work for
backing up the files stored in GridFS as well. You do not have to design a separate
system for backing up your filesystem.

•	 You can store whatever metadata you consider important along with the file itself.
For example, if your site allows users to upload photos/videos, you can also store
any comments, likes, or ratings along with the file.

•	 Since files are stored in chunks, you can access random parts of a large file.
Traditional tools that implement this feature on the filesystems are not very good.

Relational database systems facilitate file storing as well. MySQL has
a data type named BLOB (Very Large Objects) for storing large files in
database. But it is known to perform poorly, in terms of speed, disk
space, and memory consumption.

Pop quiz – what is the maximum size of BSON objects?
1.	 What is the maximum allowed size of BSON objects (MongoDB documents)?

a.	 4 MB

b.	 16 MB

c.	 32 MB

2.	 If a 20 MB file is stored in GridFS, how many chunks will it be split into?

a.	 40

b.	 60

c.	 80

Handling Large Files with GridFS

[178]

Storing files in GridFS
Now that we have learned about GridFS, it is time to see it in action. For our first practical
example of using GridFS, we will learn how we can store files to it using PHP. We will also
look under the hood and see how the file is actually being stored.

Time for action – uploading images to GridFS
We are going to build a simple image uploader with PHP that will store images uploaded by
the user to GridFS. Let's start:

1.	 Open your text editor and put the following code in a new file:

<?php
 require 'dbconnection.php';
 $action = (isset($_POST['upload']) &&
 $_POST['upload'] === 'Upload') ? 'upload' : 'view';
 switch($action) {
 case 'upload':
 //check file upload success
 if($_FILES['image']['error'] !== 0) {
 die('Error uploading file. Error code '.
 $_FILES['image']['error']);
 }
 //connect to MongoDB sevrer
 $mongo = DBConnection::instantiate();
 //get a MongoGridFS instance
 $gridFS = $mongo->database->getGridFS();
 $filename = $_FILES['image']['name'];
 $filetype = $_FILES['image']['type'];
 $tmpfilepath = $_FILES['image']['tmp_name'];
 $caption = $_POST['caption'];
 //storing the uploaded file
 $id = $gridFS->storeFile($tmpfilepath,
 array('filename' => $filename,
 'filetype' => $filetype,
 'caption' => $caption));
 break;
 default:
 }
?>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;

Chapter 7

[179]

 charset=utf-8"/>
 <link rel="stylesheet" type="text/css"
 href="styles.css"/>
 <title>Upload Files</title>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1>Upload Image</h1>
 <?php if($action === 'upload'): ?>
 <h3>File Uploaded. Id <?php echo $id; ?>
 <a href="<?php echo $_SERVER['PHP_SELF']; ?>">
 Upload another?

 </h3>
 <?php else: ?>
 <form
 action="<?php echo $_SERVER['PHP_SELF']; ?>"
 method="post"
 accept-charset="utf-8"
 enctype="multipart/form-data">
 <h3>Enter Caption
 <input type="text" name="caption"/>
 <h3/>
 <p>
 <input type="file" name="image" />
 </p>
 <p>
 <input type="submit" value="Upload"
 name="upload"/>
 </p>
 </form>
 <?php endif; ?>
 </div>
 </div>
 </body>
</html>

2.	 Save the file as upload.php.

3.	 Open the dbconnection.php file again and change the DBNAME constant to
'myfiles':

const DBNAME = 'myfiles';

Handling Large Files with GridFS

[180]

4.	 Open the upload.php file in your browser. Choose any image from your computer
for uploading, type in a caption in the Enter Caption box:

5.	 Click the Upload button. The file will be uploaded and the page will reload with the
_id of the stored file. Click on the Upload another? link if you like to upload more
images:

What just happened?
In the example we just tried out, we built a simple image uploader—a PHP page showing
an HTML form with a file input field (and a text input field for the image caption). If the
upload is successful and the file is stored in the database, the page reloads showing the
_id for the stored file. Also, we modified the DBNAME constant in DBConnection class (in
dbconnection.php script) to store uploaded files in a new database myfiles.

Chapter 7

[181]

Let's walk through the code in upload.php. When a file is uploaded, the script opens a
connection to the Mongo server and gets an instance of a MongoGridFS class by calling the
getGridFS() method on the MongoDB object. Next, we invoked the storeFile() method
on the MongoGridFS object to store the uploaded file in the database. The method takes
the path of the file to be stored as its first argument. Any optional metadata that needs to be
stored along with the file can be supplied as the second argument to storeFile().

//storing the uploaded file
$id = $gridFS->storeFile($tmpfilepath,
 array('filename' => $filename,
 'filetype' => $filetype,
 'caption' => $caption));

The return value of the method is the _id of the document created in the files collection.

Alternatives to storeFile() method

You could also use the storeUpload() method to store the uploaded
file directly. It is a bit more convenient, however, it does not allow
specifying optional metadata at the time of creation. Also, you could use
storeBytes() to store string data whereas storeFile() stores file data.

Looking under the hood
Let's take a look under the hood to see what is actually getting stored in files and chunks.
Launch the mongo interactive shell, switch to the myfiles database, and query the files
collection with the _id of the uploaded file (displayed on the image.php page when the
upload is successful).

$./mongodb/bin/mongo

MongoDB shell version: 1.8.1

connecting to: test

> use myfiles

switched to db myfiles

>db.fs.files.findOne({_id:ObjectId("4e3267e95981ae1602010000")})

{

 "_id" : ObjectId("4e3267e95981ae1602010000"),

 "filename" 	: "05082009264.jpg",

Handling Large Files with GridFS

[182]

 "filetype" 	: "image/jpeg",

 "caption" : "My Macbook Pro",

 "uploadDate" : ISODate("2011-07-29T07:57:29.599Z"),

 "length" : 419575,

 "chunkSize" : 262144,

 "md5" : "f9d4aed29e59b409701f3c6c75796320"

}

The query returns a document that shows the filename, type, and caption of the uploaded
image. These are the fields that we explicitly set while storing the file. It also has the size of
the file (length), time of upload (uploadDate), size of each chunk (chunkSize), and the
MD5 hash of the file. These fields are set by MongoDB itself.

Now, let's take a look at chunks:

>db.fs.chunks.find({files_id:ObjectId("4e3246db5981ae0902010000")})

{ "_id" : ObjectId("4e3267e95981ae1602020000"),

"files_id" : ObjectId("4e3246db5981ae0902010000"),

"n" : 0,

"data" : BinData(2,"AAAEAP/Y/+FG0kV4aWYAAElJKgAIAAAACAAPAQIABgAAA….

chunks will have one or more documents (depending on file size) associated with a file.
The files_id field refers to the _id of the document in files. n shows the position of the
chunk in the set of chunks (if n is zero then it is the first chunk). And data obviously stores
the file content.

By default, both chunks and files reside under the
namespace fs of a database.

Have a go hero – perform multiple file uploads in GridFS
Extend the earlier example to handle multiple file uploads. Modify the image uploader to
accept up to five separate images and store them all in GridFS.

Serving files from GridFS
We have seen how we can store files in GridFS. Now it is time to learn how we can read them
back from it! The next example will show us how to do that.

Chapter 7

[183]

Time for action – serving images from GridFS
We are going to build two simple PHP pages, the first one will list all the images stored in the
database in an HTML table. Clicking on any item on this list will take us to the second script
that will output the image in the browser:

1.	 Open a new file in the text editor and add the following PHP/HTML code to it:

<?php
 require 'dbconnection.php';
 $mongo = DBConnection::instantiate();
 $gridFS = $mongo->database->getGridFS();
 $objects = $gridFS->find();
?>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Uploaded Images</title>
 <link rel="stylesheet" type="text/css"
 href="styles.css"/>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h1>Uploaded Images</h1>
 <table class="table-list" cellspacing="0"
 cellpadding="0">
 <thead>
 <tr>
 <th width="40%">Caption</th>
 <th width="30%">Filename</th>
 <th width="*">Size</th>
 </tr>
 </thead>
 <tbody>
 <?php while($object = $objects->getNext()): ?>
 <tr>
 <td>
 <?php echo $object->file['caption'];?>
 </td>
 <td>
 <a href="image.php?id=
 <?php echo $object->file['_id'];?>">
 <?php echo $object->file['filename'];?>

 </td>
 <td >
 <?php echo ceil($object->file['length'] /
 1024).' KB';?>
 </td>

Handling Large Files with GridFS

[184]

 </tr>
 <?php endwhile;?>
 </tbody>
 </table>
 </div>
 </div>
 </body>
</html>

2.	 Save the file as list.php.

3.	 Create another PHP script named image.php and add the following code to it:

<?php
 $id = $_GET['id'];
 require 'dbconnection.php';
 $mongo = DBConnection::instantiate();
 $gridFS = $mongo->database->getGridFS();
 //query the file object
 $object = $gridFS->findOne(array('_id' => new MongoId($id)));
 //set content-type header, output in browser
 header('Content-type: '.$object->file['filetype']);
 echo $object->getBytes();
?>

4.	 Open the list.php file in a browser. Click on any of the links under the Filename
column to load the image in browser:

Chapter 7

[185]

What just happened?
In step 1 of the last example, we created a script named list.php that queries the
database to get all the file objects. The find() method invoked on the MongoGridFS
object returns a MongoGridFSCursor object. It behaves in the same way as the
MongoCursor object does. We iterated over the cursor to list all the files stored in the
database. Each object in the cursor is a MongoGridFSFile object, which represents a file
stored in the database. We can access various metadata fields of the file by accessing the
file property of the MongoGridFSFile object:

<?php while($object = $objects->getNext()): ?>
 <tr>
 <td><?php echo $object->file['caption']; ?></td>
 <td>
 <a href="image.php?id=<?php echo $object->file['_id'];?>">
 <?php echo $object->file['filename']; ?>

 </td>
 <td >
 <?php echo ceil($object->file['length'] / 1024).' KB'; ?>
 </td>
 </tr>
<?php endwhile;?>

In step 2, we created another script called image.php. It receives the _id of the file through
the HTTP GET parameter, and queries the database with it. The findOne() method returns
a MongoGridFSFile object representing the image we are trying to open. Since this script
is supposed to output an image, we set the Content-type header as the type of the file
(image/jpeg or image/png or any other format). Next, we output the contents of the file by
calling the getBytes() method on the MongoGridFSFile object. getBytes() returns
the contents of the file as a string of bytes:

header('Content-type: '.$object->file['filetype']);
echo $object->getBytes();

Use getBytes() with care

Be careful when you use getBytes(). This will load the entire content
of the file into memory. If the file is too big to fit in the memory, it will
lead to critical problems. As of this writing, the PHP driver for Mongo
does not provide any built-in method for partially reading GridFS files.

Handling Large Files with GridFS

[186]

Updating metdata of a file
It is also possible to update the metadata of a file by calling the update() method on a
MongoGridFS object. The update() method of MongoGridFS works much the same way
as that of the MongoCollection (actually, MongoGridFS extends the MongoCollection
class):

$gridFS = $mongo->selectDB('myfiles')->getGridFS();
//change the caption of the file 'beach.jpeg'
$gridFS->update(array('filename' => 'beach.jpeg'),
 array('$set' => array('caption' =>
 'Me @ the beach')));

You can also update the contents of a file by modifying the binary data stored
in the associated documents in the chunks collection. But you have to be
very careful not to corrupt the integrity of the file as a whole (for example, if
you are messing with the content of a video file stored in GridFS, you might
accidentally drop frames in it). You should rather upload a new version of the
file instead, and store the version information as file metadata.

Deleting files
We can delete files by calling the remove() method on a MongoGridFS object, which works
the same as remove() of MongoCollection:

$mongo = new Mongo();
$database = $mongo->selectDB('myfiles');
$gridFS = $database->getGridFS();
//remove all files of PNG format
$gridFS->remove(array('filetype' => 'image/png'));

The thing you should know about remove() is that it does not alert you when it fails. To verify
whether the file deletion was actually successful, you can call the lastError() method on
MongoDB object, right after calling remove() and see if it returns any error message:

$mongo = new Mongo();
$database = $mongo->selectDB('myfiles');
$gridFS = $database->getGridFS();
//remove all files of PNG format
$gridFS->remove(array('filetype' => 'image/png'));
$error = $database->lastError();
if(isset($error['err'])) {
 echo 'Files deleted.';
} else {
 echo 'Error deleting files '.$error['err'];
}

Chapter 7

[187]

Have a go hero – create an image gallery with GridFS
Your task is to create a gallery of thumbnail size images. Whenever an image is uploaded,
create a thumbnail version of it and store it along with the original image (You can use the
GD library that comes built-in with PHP5 installations for image processing). Build a page that
displays the thumbnails. When the user clicks on one of them, load the full-sized image in a
new window.

Reading files in chunks
In the earlier example, we used the getBytes() method of the MongoGridFSFile class to
read the contents of a file. We learned that there is a potential problem with this approach,
getBytes() attempts to load the entire content of the file into memory. Reading large files
in this way may affect performance negatively. But there is a way to get around this problem.
As we know that in GridFS a file's contents are split into chunks, we could use the PHP driver
to read and output the data of each chunk individually, thus avoiding dumping the entire
content into memory. In the next example we are going to see how we can do that.

Time for action – reading images in chunks
We are going to make some changes in our earlier example. When serving an image file
from GridFS to the browser, we are going to read the image in chunks, instead of loading the
entire file in memory. Let's see how we can do that:

1.	 Create a new PHP file in your text editor and add the following lines of code to it:

<?php
 $id = $_GET['id'];
 require 'dbconnection.php';
 $mongo = DBConnection::instantiate();
 $gridFS = $mongo->database->getGridFS();
 $object = $gridFS->findOne(array('_id' => new MongoId($id)));
 //find the chunks for this file
 $chunks = $mongo->database->fs->chunks->find(array('files_id'
 => $object->file['_id']))
 ->sort(array('n' => 1));
 header('Content-type: '.$object->file['filetype']);
 //output the data in chunks
 foreach($chunks as $chunk){
 echo $chunk['data']->bin;
 }

Handling Large Files with GridFS

[188]

2.	 Save the file as stream.php.

3.	 Open the list.php file. Find the following line in it:

<a href="image.php?id=<?php echo $object->file['_id'];?>">

Change the line to:

<a href="stream.php?id=<?php echo $object->file['_id'];?>">

4.	 Open the list.php file in the browser. Click on the file with the largest size and
watch it load in the browser:

Chapter 7

[189]

What just happened?
We modified the list.php script that we created for the earlier example, to hyperlink the
names shown under the Filename column of the HTML table to the stream.php file instead
of the image.php file. stream.php is functionally the same as image.php. It outputs the
image in the browser, except it outputs the image in chunks. After it loads the file metadata
from files, it queries chunks with the _id of the file to get all the file chunks, ordered by
their position (the n field):

$object = $gridFS->findOne(array('_id' => new MongoId($id)));
//find the chunks for this file
$chunks = $mongo->database->fs->chunks->find(array('files_id' =>
 $object->file['_id']))
 ->sort(array('n' => 1));

It sets the Content-type appropriately (as the type of the file itself) and outputs the binary
data stored in each chunk individually. It reuses the same piece of memory over and over, and
thus keeps the memory consumption lower than the previous implementation image.php.

header('Content-type: '.$object->file['filetype']);
//output the data in chunks
foreach($chunks as $chunk){
 echo $chunk['data']->bin;
}

Benchmarking the scripts

Benchmark the stream.php script against image.php to verify changes in
performance. Use the memory_get_peak_usage() function to measure
the memory consumption of the scripts and compare them with each other.

When should you not use GridFS
One of the major selling points of MongoDB is scalability. It has been designed with features
that are supposed to help your application scale out. If you are developing your application to
be highly scalable, and your use cases fit into one of those advantages of GridFS we discussed
earlier in this chapter, you may consider it as your asset storage backend. But for a website
that experiences small to medium traffic, serving files over GridFS rather than the filesystem is
an overkill. As Martin Fowler rightly says, "Premature optimization is the root of all evil."

Handling Large Files with GridFS

[190]

Also, benchmarks show that for serving small static files (JavaScript, CSS, and so on, on your
website), using Apache or Nginx web server over the filesystem is faster than GridFS (Chris
Heald has a very informative post on his blog available at http://www.coffeepowered.
net/2010/02/17/serving-files-out-of-gridfs/). So you should stick to the
filesystem if you only need to serve small files over HTTP.

Summary
We have covered enough about GridFS to give you a good understanding of it. We covered:

•	 What GridFS is, the rationale behind it

•	 The GridFS specification, advantages of using GridFS over a traditional filesystem

•	 How we can store files in GridFS using PHP, how to read them back, how to update
their metadata, and how to delete them

We also discussed limitations of GridFS and situations where using the traditional filesystem
is preferable. In the next chapter, we will learn about a cool feature of MongoDB, Geo-spatial
indexing, and how we can use it to build location-aware web applications with it.

8
Building Location-aware Web

Applications with MongoDB and PHP

Location-aware websites are one of the hottest trends in the present day web
development scenario. A location-aware web application takes the user's
geographic location as an input, and renders output to that user (or provides
some sort of service to him) based on his location. Take Foursquare for example,
a hugely popular social networking website that lets you "explore" interesting
venues around your location, gives you badges when you "check in" at a
venue, shows where your friends are checking in, and so on. Applications like
this require databases that have special capabilities for storing, querying, and
comparing geographic position parameters (latitude, longitude, and so on).
MongoDB has Geospatial Indexing, which makes it efficiently perform location-
based queries. In this chapter, we are going to work with geospatial indexing
and learn how to use it to develop location-aware applications with PHP.

So in this chapter, we will:

•	 Cover a little background on geolocation

•	 Learn how to detect the current location of a user

•	 Learn how to build geospatial indexing

•	 Learn how to locate items near a user's location using geospatial indexing

•	 Learn about geospatial haystack indexing

The practical examples in this chapter are going to use a lot of JavaScript. So I suggest you
brush up your JavaScript skills before continuing!

Building Location-aware Web Applications with MongoDB and PHP

[192]

A geolocation primer
The term geolocation refers to the act of locating the geographic position of a person, a
place, or any place of interest. The geographic position of the object is determined mainly
by the latitude and longitude of the object, sometimes its height from sea level is also taken
into account. In this section, we are going to learn about different techniques that location-
based applications use to determine a user's location. You may skip this section if you are
already familiar with them, or if you just cannot wait to get started coding!

Methods to determine location
There are several ways to locate the geographic position of a computing device. Let's briefly
learn about the most effective ones among them:

•	 Global Positioning System (GPS): Nowadays, tech savvy people carry GPS-enabled
smartphones in their pockets. Devices like these act as GPS receivers; they
constantly exchange information with GPS satellites orbiting the Earth and calculate
their geographic position. This process is known as trilateration. This is perhaps the
most accurate way to determine location, as of today.

•	 Cellphone tracking: Each cellphone has a Cell ID assigned to it that uniquely
identifies it in a particular cellular network. In a process known as cellular
triangulation, three base stations (cellphone towers) are used to correctly identify
the latitude and longitude of the cellphone identified by the Cell ID. This method is
more accurate in urban areas, where there are more cellphone towers close to each
other, than in rural areas.

•	 IP address: Internet service providers are given blocks of IP addresses based on a
country/city/region. When a user visits a website, the website could take a look at
his IP address and consult an database that stores location data against IP addresses
(it might be either an internal database or provided by a third-party service) to get
the location of the user. Accuracy of this approach depends on the accuracy of the
database itself. Also, if the user is behind a proxy server, the application will see the IP
address of the proxy server, which could be located in a different region than the user.

•	 Wi-Fi MAC address tracking: A Wi-Fi access point has a MAC (Media Access Control)
address assigned to it, which is globally unique. Some location-based services
use this to identify the location of the Wi-Fi router, and therefore, the location of
users on that Wi-Fi LAN. In principle, it works in the same way IP address-based
geolocation does. Google has an API that gives location information (latitude,
longitude, and so on) when provided with a MAC address.

Chapter 8

[193]

If you are curious to learn more about how geolocation works,
How Stuff Works has a comprehensive article on it available
at http://electronics.howstuffworks.com/
everyday-tech/location-tracking.htm.

Pop Quiz – locating a smartphone
1.	 Suppose you are the proud owner of a high-end, cutting-edge smartphone. Which of

the following techniques could potentially be used to detect its geographic location?

a.	 GPS

b.	 Cell ID

c.	 Its IP address (when connected to the Internet)

d.	 All of the above

Detecting the location of a web page visitor
When building a location-aware web application, the first part of the problem to be solved
is to get the location of the user visiting the web page. We have covered geolocation
techniques in the previous section, now it is time to see them in action.

The W3C Geolocation API
We are going to use the W3C Geolocation API for locating the visitors to our web page.
The W3C Geolocation API provides a high-level interface for web developers to implement
geolocation features in an application. The API takes care of detecting the location using one
or more methods (GPS, Cell ID, IP address). The developers do not have to worry about what
is going on under the hood; they only need to focus on the geographic information returned
by the API! You can read the whole specification online at http://www.w3.org/TR/
geolocation-API/.

Building Location-aware Web Applications with MongoDB and PHP

[194]

Browsers that support geolocation
The following table lists the browsers that support the W3C Geolocation API:

Browser Version

Google Chrome 5.0+

Mozilla Firefox 3.5+

Internet Explorer 9.0+

Safari 5.0+

Opera 10.6+

iPhone 3.1+

Android 2.0+

Blackberry 6.0+

Make sure you use one of these browsers when you try the practical examples in this chapter.

Time for action – detecting location with W3C API
In this section, we are going to build a web page that detects the location of a visitor using
the Geolocation API. The API will detect the latitude and longitude of the user who loads
the page in his browser. We are going use that information on a map, rendered dynamically
using the Google Maps API:

1.	 Fire up your text editor and create a new HTML file named location.html. Put
the following code in it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="styles.css"/>
 <style type="text/css" media="screen">
 div#map {
 width:450px;
 height: 400px;
 }
 </style>
 <title>Locating your position</title>
 </head>

Chapter 8

[195]

 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h2>Locating your position</h2>
 <div id="map"></div>
 </div>
 </div>
 <script type="text/javascript"
 src="http://maps.googleapis.com/maps/api/js?sensor=false">
 </script>
 <script type="text/javascript" src="geolocation.js">
 </script>
 </body>
 </html>

2.	 Create another file named geolocation.js and put the following JavaScript code
in it:

var mapContainer = document.getElementById('map');
var map;
function init() {
 //Google map settings (zoom level, map type etc.)
 var mapOptions = {zoom: 16,
 disableDefaultUI: true,
 mapTypeId: google.maps.MapTypeId.ROADMAP};
 //map will be drawn inside the mapContainer
 map = new google.maps.Map(mapContainer, mapOptions);
 detectLocation();
}
function detectLocation(){
 var options = { enableHighAccuracy: true,
 maximumAge: 1000, timeout: 30000};
 //check if the browser supports geolocation
 if (window.navigator.geolocation) {
 //get current position
 window.navigator.geolocation.getCurrentPosition(
 drawLocationOnMap,
 handleGeoloacteError,
 options);
 } else {
 alert("Sorry, your browser doesn't seem to support
 geolocation :-(");
 }
}

Building Location-aware Web Applications with MongoDB and PHP

[196]

//callback function of getCurrentPosition(), pinpoints location
//on Google map
function drawLocationOnMap(position) {
 //get latitude/longitude from Position object
 var lat = position.coords.latitude;
 var lon = position.coords.longitude;
 var msg = "You are here: Latitude "+lat+", Longitude "+lon;
 //mark current location on Google map
 var pos = new google.maps.LatLng(lat, lon);
 var infoBox = new google.maps.InfoWindow({map: map,
 position:pos,
 content: msg});
 map.setCenter(pos);
 return;
}
function handleGeoloacteError() {
 alert("Sorry, couldn't get your geolocation :-(");
}
window.onload = init;

3.	 Load the location.html page in your browser. When the browser asks for
permission to allow the page to access your location, click Yes/OK/Allow:

Chapter 8

[197]

4.	 Once you allow the page to access your location, it renders a map that shows your
current location on it, along with the geographic coordinates:

What just happened?
We built a web page and added JavaScript code that detects the latitude and longitude of
the user who loads the page in his browser. The API needs the user's permission to get his
geographic information. So when the page loads, it prompts the user to specify whether or
not he will allow the page to get his location. If the user agrees, the JavaScript code executes
and gets his geographic coordinates using the W3C Geolocation API. Then it renders a small
map using the Google Maps API, and highlights the user's location on the map.

Building Location-aware Web Applications with MongoDB and PHP

[198]

The Geolocation object
The Geolocation object implements the W3C Geolocation API. The JavaScript engine uses
this object to obtain geographic information of the computer or phone on which the browser
is running. Geolocation is a property of the Browser object (window.navigator),
accessed as window.navigator.geolocation. In our example, we detect if the browser
has geolocation capabilities by accessing this object, and notify the user if the browser fails
the test:

//check if the browser supports geolocation
if (window.navigator.geolocation) {
 window.navigator.geolocation.getCurrentPosition(
 drawLocationOnMap,
 handleGeoloacteError,
 options);
} else {
 alert("Sorry, your browser doesn't seem to support geolocation.");
}

The getCurrentPosition() method
The location information is obtained invoking the getCurrentPosition() method on the
Geolocation object.

getCurrentPostition(callbackOnSuccess, [callbackOnFailure, options])

The argument callbackOnSuccess is a reference to a callback function. It is executed
when the getCurrentPosition() method successfully determines the geolocation. This is
a mandatory argument. callbackOnFailure is an optional argument, a callback function
for handling failure to get the geolocation. options represents the PositionOptions
object, which specifies optional configuration parameters to the method. The
PositionOptions object has the following properties:

•	 enableHighAccuracy: Tells the API to try its best to get the exact current position.
It is set to false by default. When set to true, the API response tends to be slower.

•	 maximumAge: If API responses are cached, this setting specifies that the API will not
use the cached responses older than maximumAge milliseconds.

•	 timeout: The timeout value in milliseconds to receive the API response.

In our example, we used the drawLocationOnMap() method as a callbackOnSuccess
function, which draws a map and pinpoints the location on it (we will walkthrough it shortly).
The handleGeoloacteError() method notifies the user of any error while getting
the position:

Chapter 8

[199]

window.navigator.geolocation.getCurrentPosition(
 drawLocationOnMap,
 handleGeoloacteError,
 options);

Drawing the map using the Google Maps API
The Google Maps API is a popular JavaScript API for drawing maps on a web page. This API
has methods to highlight objects on the rendered map. We can access the API methods by
adding the following script tag in the web page (as we did in the location.html file):

<script type="text/javascript"
src="http://maps.googleapis.com/maps/api/js?sensor=false"></script>

If you are on a GPS-enabled device, set the sensor parameter to true, as follows:

<script type="text/javascript"
 src="http://maps.googleapis.com/maps/api/js?sensor=true"></script>

When the script is loaded, we can initiate the map drawing by instantiating the google.
maps.Map object. The Map object takes a DOM object as its first parameter; the map will be
rendered inside this DOM. It also takes an optional JSON object that specifies configurations
for the map (zoom level, map type, and so on):

var mapContainer = document.getElementById('map');
var mapOptions = {zoom: 16,
 disableDefaultUI: true,
 mapTypeId: google.maps.MapTypeId.ROADMAP};
map = new google.maps.Map(mapContainer, mapOptions);

Now, let's focus on the drawLocationOnMap() function in the geolocation.js file,
which is the callback function of the getCurrentPosition() method. As we know, this
method gets called when the W3C API successfully locates the position; it receives a Position
object as its argument. This object holds all the geolocation data returned by the API. The
Position object holds a reference to the Coordinates object (accessed by the property
coords). The Coordinates object contains geographical coordinates such as latitude,
longitude, altitude, and so on of the location:

function drawLocationOnMap(position) {
 var lat = position.coords.latitude;
 var lon = position.coords.longitude;

 var msg = "You are here: Latitude "+lat+", Longitude "+lon;
 ………
}

Building Location-aware Web Applications with MongoDB and PHP

[200]

After we get the latitude and longitude values of the coordinate, we set it as the center of the
map. We also display an information box with a message saying, You are here on the map!

function drawLocationOnMap(position) {
 var lat = position.coords.latitude;
 var lon = position.coords.longitude;
 var msg = "You are here: Latitude "+lat+", Longitude "+lon;
 var pos = new google.maps.LatLng(lat, lon);

 var infoBox = new google.maps.InfoWindow({map: map,
 position:pos,

 content: msg});

 map.setCenter(pos);

 return;
}

Get to know Google Maps API

We are going to use the Google Maps API in the upcoming
examples as well. You might consider familiarizing yourself
with it by reading some of its online documentation
at http://code.google.com/apis/maps/
documentation/javascript/basics.html.

Geospatial indexing
We can now turn our attention to the main topic of this chapter—geospatial indexing. A
geospatial index is a special kind of index, designed specifically with location queries in mind,
so you can perform queries like "Give me the closest n objects to my location". Geospatial
indexing essentially turns your collection into a two-dimensional map. Each point of interest
on that map (each document in the collection) is assigned a special value named geohash.
Geohashing divides the coordinate system into hierarchical buckets of grids; the whole
map gets divided into smaller quadrants. When you look for objects nearest to a point
(x,y) on the map, MongoDB calculates the geohash of (x,y) and returns the points with
the same geohash. I am not going to delve into much detail here on how it works, but if
you are interested, I recommend you read MongoDB in Flatland (found at http://www.
snailinaturtleneck.com/blog/2011/06/08/mongo-in-flatland/), an elaborate
yet simple demonstration of how geospatial indexing works in MongoDB.

Indexes are generally applied on fields to make field lookups faster.
We will cover indexing in more detail in the next chapter.

Chapter 8

[201]

Time for action – creating geospatial indexes
Let's see how we can build the geospatial index on a MongoDB collection:

1.	 Launch the mongo interactive shell. Switch to a new database namespace called
geolocation:

$./mongodb/bin/mongo
MongoDB shell version: 1.8.1

connecting to: test
> use geolocation
switched to db geolocation
>

2.	 Insert a few documents in a collection named map. Each document must contain an
embedded document with two fields, latitude and longitude:

> db.map.insert({coordinate: {latitude:23.2342987,
 longitude:90.20348}})

> db.map.insert({coordinate: {latitude:23.3459835,
 longitude:90.92348}})

> db.map.insert({coordinate: {latitude:23.6743521,
 longitude:90.30458}})

3.	 Create the geospatial index for the map collection by issuing the following command:

>db.map.ensureIndex({coordinate: '2d'})

4.	 Enter the next command to check if the index was created:

> db.system.indexes.find()

{ "name" : "_id_", "ns" : "geolocation.map", "key" : { "_id" : 1
}, "v" : 0 }

{ "_id" : ObjectId("4e46af48ffd7d5fd0a4d1e41"), "ns" :
"geolocation.map", "key" : { 	 "coordinate" : "2d" }, "name" : "
coordinate _" }

What just happened?
We created a MongoDB collection named geocollection in a database named map. We
manually inserted documents into the collection, each document contains some random
latitude and longitude values in an embedded document named coordinate:

> db.map.findOne()

{

 "_id" : ObjectId("4e46ae9bffd7d5fd0a4d1e3e"),

 "coordinate" : {

Building Location-aware Web Applications with MongoDB and PHP

[202]

 "latitude" : 23.2342987,

 "longitude" : 90.20348

 }

}

After that, we built the geospatial index on the latitude/longitude pairs by calling the
ensureIndex() method on the collection:

db.map.ensureIndex({coordinate: "2d"})

Next, we invoked the system.indexes.find() method that lists the indexes in the
database. The index we created should be in that list:

> db.system.indexes.find()

{ "name" : "_id_", "ns" : "geolocation.map", "key" : { "_id" : 1 }, "v" :
0 }

{ "_id" : ObjectId("4e46af48ffd7d5fd0a4d1e41"), "ns" : "geolocation.map",
"key" : { 	 "coordinate" : "2d" }, "name" : " coordinate _" }

Geospatial indexing – Important things to know
There are a few of things you must know about geospatial indexing:

•	 There can be only one geospatial index for a MongoDB collection. You cannot
have more than one geospatial index for a collection.

•	 The index must be created for an embedded document or an array field of the
document. If you build the index for an array field, the first two elements of the
array will be considered as the (x,y) coordinate:

>db.map.insert({coordinate: [23.3459835, 90.92348]})
>db.map.ensureIndex({coordinate: "2d"})

•	 Ordering is important when you are storing coordinates. If you store them in the
order (y,x) rather than (x,y), you will have to query the collection with (y,x).

Use arrays to store coordinates

When storing coordinates in a geospatially indexed field, arrays are
preferable to embedded objects. This is because an array preserves the
order of items in it. No matter what programming language you are using
to interact with MongoDB, this comes in very handy when you do queries.

Chapter 8

[203]

Performing location queries
We learned how to build geospatial indexes in MongoDB. Now it is time to learn how we
can perform location queries on the indexed field. We will use some of the JavaScript code
that we wrote in the earlier section to get the current location of the user. After we get the
location coordinates of the user, we will query MongoDB with them to get points of interest
near that location.

Time for action – finding restaurants near your location
In this example, we will build a web page that shows restaurants near the user's location.
Similar to the earlier example, we will get the current location with the W3C Geolocation
API, and mark it on a map rendered by the Google Maps API. Once the page is loaded and
the location is marked on the map, we will perform an AJAX request to query MongoDB with
the coordinates and get the location of the nearby restaurants (we will insert some sample
data into the collection before hand):

1.	 Launch the mongo shell and switch to the geolocation database:

$./mongodb/bin/mongo
MongoDB shell version: 1.8.1
connecting to: test
> use geolocation
switched to db geolocation

2.	 Manually insert some sample data into a collection named restaurants (the
location coordinates of the fictional restaurants should be close to your location):

> db.restaurants.insert({name:"McDowells", serves: "Fast Food",
"location": [23.755235, 90.375739]})
> db.restaurants.insert({name:" Bucksters Coffee", serves: "Fast
Food", "location": [23.755339, 90.375408]})
> db.restaurants.insert({name:"Dinkin Donuts", serves: "Fast
Food", "location": [23.752538, 90.382792]})

Use the Foursquare API for sample data

You can use the REST API of Foursquare (which also uses MongoDB by the
way!) to get geographic coordinates of eateries in your area for using as
sample data for this example. Use the Explore Venues method of the API to
get the list of locations near you: https://developer.foursquare.
com/docs/venues/explore.html.

3.	 Build the geospatial index with the following command:

> db.restaurants.ensureIndex({location:"2d"})

Building Location-aware Web Applications with MongoDB and PHP

[204]

4.	 Create an HTML file named restaurants.html and add the following code to it:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="styles.css"/>
 <style type="text/css" media="screen">
 div#map {
 width:450px;
 height: 400px;
 }
 </style>
 <title>Restaurants near me</title>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h2>Restaurants near me</h2>
 <div id="map"></div>

 </div>
 </div>
 <script type="text/javascript"
 src="http://maps.googleapis.com/maps/api/js?sensor=false">
 </script>
 <script type="text/javascript"
 src="http://ajax.googleapis.com/
 ajax/libs/jquery/1.6.2/jquery.min.js">
 </script>
 <script type="text/javascript" src="restaurants.js">
 </script>
 </body>
</html>

5.	 Create a JavaScript file called restaurants.js and put the following code in it:

var mapContainer = document.getElementById('map');
var map;
function init() {
 //Google map settings (map type, zoom level etc.)
 var mapOptions = {zoom: 14,

Chapter 8

[205]

 disableDefaultUI: true,
 mapTypeId: google.maps.MapTypeId.ROADMAP};
 //draw the map insidet the mapContainer DOM
 map = new google.maps.Map(mapContainer, mapOptions);
 detectLocation();
}
function detectLocation(){
 var options = { enableHighAccuracy: true, maximumAge: 1000,
 timeout: 30000};
 //check if the browser supports geolocation
 if (window.navigator.geolocation) {
 //get the current position of user
 window.navigator.geolocation.getCurrentPosition(
 markMyLocation,
 handleGeoloacteError,
 options);
 } else {
 alert("Sorry, your browser doesn't seem to support
 geolocation");
 }
}
function markMyLocation(position) {
 //latitude, longitude of current location
 var lat = position.coords.latitude;
 var lon = position.coords.longitude;
 var msg = "You are here";
 var pos = new google.maps.LatLng(lat, lon);
 map.setCenter(pos);
 var infoBox = new google.maps.InfoWindow({map: map,
 position:pos,
 content: msg});
 //draw a Google Map Marker on current location
 var myMarker = new google.maps.Marker({map: map,
 position: pos});
 getNearByRestaurants(lat, lon);
 return;
}
function handleGeoloacteError() {
 alert("Sorry, couldn't get your geolocation :-(");
}
function getNearByRestaurants(lat, lon) {
 //Send an Ajax request to get nearby restaurants

Building Location-aware Web Applications with MongoDB and PHP

[206]

 $.ajax({
 url : 'query.php?lat='+lat+'&lon='+lon
 ,dataType : 'json'
 ,success : ajaxSuccess
 });
}
function ajaxSuccess(data){
 //callback function for Ajax, marks each nearbu restaurant
 //on Google map
 data.forEach(function(restaurant){
 var pos = new google.maps.LatLng(restaurant.latitude,
 restaurant.longitude);
 var marker = new google.maps.Marker({map: map,
 position: pos});
 });
}
window.onload = init;

6.	 Create a PHP file named query.php and put the following code in it:

<?php

 $lat = (float)$_GET['lat'];
 $lon = (float)$_GET['lon'];
 $mongo = new Mongo();
 $collection = $mongo->selectDB('geolocation')
 ->selectCollection('restaurants');
 //query the collection with given latitude and longitude
 $query = array('location' => array('$near' => array($lat,
 $lon)));
 $cursor = $collection->find($query);
 $response = array();
 while($doc = $cursor->getNext()) {
 $obj = array(
 'name' => $doc['name'],
 'serves'=> $doc['serves'],
 'latitude' => $doc['location'][0],
 'longitude' => $doc['location'][1]
);
 array_push($response, $obj);
 }
 //convert the array in JSON and send back to client
 echo json_encode($response);

Chapter 8

[207]

7.	 Run restaurants.html in your browser, once your location is identified the
nearby restaurants in the database will be marked on the map:

What just happened?
In steps 1 and 2, we inserted some sample data (names and geographic coordinates of some
fictional eateries) into a collection named restaurants. In step 3, we built the geospatial
index on the collection:

> db.restaurants.ensureIndex({location:"2d"})

After that, we wrote a couple of HTML and JavaScript files that render a Google map
centered to your current location. The code is almost the same as our earlier example;
we just added some AJAX functionality to it. The callback method of the Geolocation.
getCurrentPosition() method marks your current location on the map and then calls
the getNearByRestaurants() method with the latitude/longitude of your location.

Building Location-aware Web Applications with MongoDB and PHP

[208]

The getNearByRestaurants() method uses the ubiquitous JQuery library to perform an
AJAX request. It sends the latitude and longitude as HTTP parameters and receives a JSON
response, containing information about any nearby restaurants.

function getNearByRestaurants(lat, lon) {
 $.ajax({
 url : 'query.php?lat='+lat+'&lon='+lon
 ,dataType : 'json'
 ,success : ajaxSuccess
 });
}

The callback method of the AJAX call, marks the location of the restaurants on the rendered
Google map:

function ajaxSuccess(data){
 data.forEach(function(restaurant){
 var pos = new google.maps.LatLng(restaurant.latitude,
 restaurant.longitude);
 var marker = new google.maps.Marker({map: map,
 position: pos});
 });
}

Now, let's take a look at the code in the query.php script that performs the location lookup
in MongoDB. The code is pretty much straightforward except when querying the restaurants
collection with the coordinates. We used the $near operator so that it looks for nearby
points instead of an exact match:

$query = array('location' => array('$near' => array($lat, $lon)));

$cursor = $collection->find($query);

The coordinates returned by the query are automatically sorted by their distance from the
query coordinate. Once we get the data from the database, we encode them in JSON format
and send the data to the script making the AJAX call.

The geoNear() command
An alternative to using the find() command with the $near operator for geolocation
queries, is using the geoNear() command. It has the added benefit of returning the
distance of each item in the result set from the specified point. It comes in handy when you
are debugging:

> db.runCommand({geoNear: 'restaurants', near:
[23.75174102,90.383315705], num: 2})

{

 "ns" : "geolocation.restaurants",

Chapter 8

[209]

 "near" : "1101001000000000101110000001101111110010101111110111",

 "results" : [

 {

 "dis" : 0.0009566879712264728,

 "obj" : {

 "_id" : ObjectId("4e4921045981ae03020a0000"),

 "name" : "Dinkin Donuts",

 "serves" : "Donuts",

 "location" : [

 23.752538,

 90.382792

]

 }

 },

 {

 "dis" : 0.001794195350846737,

 "obj" : {

 "_id" : ObjectId("4e4921045981ae03020b0000"),

 "name" : "The Kebab Palace",

 "serves" : "Mid-eastern Cuisine",

 "location" : [

 23.753012,

 90.382051

]

 }

 }

],

 "stats" : {

 "time" : 0,

 "btreelocs" : 15,

 "nscanned" : 15,

 "objectsLoaded" : 7,

 "avgDistance" : 0.001375441661036605,

 "maxDistance" : 0.001794195350846737

 },

 "ok" : 1

}

Building Location-aware Web Applications with MongoDB and PHP

[210]

The num parameter in the query limits the number of items in the result set (works like the
limit()). The dis field in each result of the set shows the distance of the point from the
query coordinate. The stats field contains some helpful data such as average distance,
maximum distance, and so on. The equivalent command in PHP will be as follows:

$db->command(array('geoNear' => 'restaurants',
 'near' => array(23.75174102,90.383315705),
 'num' => 2));

Bounded queries
Suppose you have drawn an imaginary circle with your current position as the centre. Now
you want all restaurants within that circle. Is that possible to do in MongoDB? The answer
is yes. The following query returns all restaurants in a circle of radius 10 around the point
(23.42342, 90.23423):

$center = array(23.42342,90.23423);
$radius = 10;
$collection->find(array('location' => array('$within' =>
 array('$center' =>
 array($center,
 $radius)
)
)
)
);

Notice that we used the $within operator instead of the $near operator, and passed the
coordinate and radius as the $center parameter. This is an example of a bounded query; we
are looking for items with in a geometrical shape on the map. The shape does not have to
be a circle; it could also be a box or a polygon. Visit the related page in the MongoDB online
documentation to learn more about it http://www.mongodb.org/display/DOCS/Geos
patial+Indexing#GeospatialIndexing-BoundsQueries.

Geospatial haystack indexing
Sometimes querying on the geographic coordinates is not enough, you may need to specify
some additional criteria. For example, we may need to search for nearby restaurants that serve
pizza. This is what geospatial haystack indexing is good for. This is a bucket-based geospatial
index, tuned for small-region latitude/longitude queries where some extra criteria are also
specified. We will learn how to build and use this index through our next practical example.

Chapter 8

[211]

Time for action – finding nearby restaurants that serve burgers
We are going to refine our earlier example to look for nearby eateries that serve burgers and
display them on the map. Let's see how we can do that:

1.	 In the mongo shell, enter the following commands to build a geospatial haystack
index for the location and serves field of the restaurants collection:

> use geolocation
switched to db geolocation
> db.restaurants.ensureIndex({location:"geoHaystack",
serves:1},{bucketSize : 1})

2.	 Create a file named haystack.html and put the following code in it:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
 lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8"/>
 <link rel="stylesheet" href="styles.css"/>
 <style type="text/css" media="screen">
 div#map {
 width:450px;
 height: 400px;
 }
 </style>
 <title>Burger place near me</title>
 </head>
 <body>
 <div id="contentarea">
 <div id="innercontentarea">
 <h2>Burger place near me</h2>
 <div id="map"></div>

 </div>
 </div>
 <script type="text/javascript"
 src="http://maps.googleapis.com/maps/api/js?sensor=false">
 </script>
 <script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/
 1.6.2/jquery.min.js">
 </script>
 <script type="text/javascript" src="haystack.js"></script>
 </body>
</html>

Building Location-aware Web Applications with MongoDB and PHP

[212]

3.	 Create a JavaScript file named haystack.js with the following code:

var mapContainer = document.getElementById('map');
var map;
function init() {
 var mapOptions = {zoom: 15,
 disableDefaultUI: true,
 mapTypeId: google.maps.MapTypeId.ROADMAP};
 map = new google.maps.Map(mapContainer, mapOptions);
 detectLocation();
}
function detectLocation(){
 var options = { enableHighAccuracy: true, maximumAge: 1000,
 timeout: 30000};
 //check if the browser supports geolocation
 if (window.navigator.geolocation) {
 window.navigator.geolocation.getCurrentPosition(
 markMyLocation,
 handleGeoloacteError,
 options);
 } else {
 alert("Sorry, your browser doesn't seem to support
 geolocation");
 }
}
function markMyLocation(position) {
 var lat = position.coords.latitude;
 var lon = position.coords.longitude;
 var msg = "You are here";
 var pos = new google.maps.LatLng(lat, lon);
 map.setCenter(pos);
 var infoBox = new google.maps.InfoWindow({map: map,
 position:pos,
 content: msg});
 var myMarker = new google.maps.Marker({map: map,
 position: pos});
 getNearByRestaurants(lat, lon);
 return;
}

function handleGeoloacteError() {
 alert("Sorry, couldn't get your geolocation :-(");
}
function getNearByRestaurants(lat, lon) {
 $.ajax({
 url : 'haystack.php?lat='+lat+'&lon='+lon
 ,dataType : 'json'

Chapter 8

[213]

 ,success : ajaxSuccess
 });
}
function ajaxSuccess(data){
 data.forEach(function(restaurant){
 var pos = new google.maps.LatLng(restaurant.latitude,
 restaurant.longitude);
 var marker = new google.maps.Marker({map: map,
 position: pos });
 var infoBox = new google.maps.InfoWindow({map: map,
 position: pos,
 content: restaurant.name});
 });
}
window.onload = init;

4.	 Create a PHP script named haystack.php and add the following code in it:

<?php
 $lat = (float)$_GET['lat'];
 $lon = (float)$_GET['lon'];
 $mongo = new Mongo();
 $db = $mongo->selectDB('geolocation');
 //perform a search on the haystack index with the lat/long and
 //where serves == Burger
 $command = array('geoSearch' => 'restaurants',
 'near' => array($lat, $lon),
 'search' => array('serves' => 'Burger'),
 'maxDistance' => 3);
 $response = $db->command($command);
 $jsonResponse = array();
 foreach($response['results'] as $result) {
 $obj = array(
 'name' => $result['name'],
 'serves'=> $result['serves'],
 'latitude' => $result['location'][0],
 'longitude' => $result['location'][1]
);
 array_push($jsonResponse, $obj);
}
echo json_encode($jsonResponse);

Building Location-aware Web Applications with MongoDB and PHP

[214]

5.	 Open the haystack.html file in your browser. If there are any restaurants that serve
burgers they will be marked on the map, as shown in the following screenshot:

What just happened?
In step 1, we built the geospatial haystack index on the location and serves fields of the
restaurants collection by issuing the following command in the mongo shell:

> db.restaurants.ensureIndex({location:"geoHaystack", serves: 1},
{bucketSize : 1})

The index of the location field is of type geoHaystack (as opposed to 2d in a regular geo
index). We also passed {serves: 1} to the ensureIndex() command to specify that we
are going to search on the serves field of the collection. The bucketSize parameter is a
mandatory one; it determines the granularity of the bucket index. A value of 1 for bucket
size means that coordinates within 1 degree of latitude or longitude will be stored in the
same bucket.

The HTML and JavaScript code for this example are almost the same. In the JavaScript code, we
changed the AJAX URL in the getNearByRestaurants() method to make requests to the
haystack.php script instead of the query.php script. Also, we changed the ajaxSuccess
callback to add the information window showing the names of the burger places:

Chapter 8

[215]

function ajaxSuccess(data){
 data.forEach(function(restaurant){
 var pos = new google.maps.LatLng(restaurant.latitude,
 restaurant.longitude);
 var marker = new google.maps.Marker({map: map,
 position: pos });
 var infoBox = new google.maps.InfoWindow({map: map,

 position: pos,

 content: restaurant.name});

 });

}

In the haystack.php file, we queried the database with the following command:

$command = array('geoSearch' => 'restaurants',
 'near' => array($lat, $lon),
 'search' => array('serves' => 'Burger'),
 'maxDistance' => 1);
$response = $db->command($command);

The geoSearch parameter is a query on the haystack index of the restaurants collection.
The near and search operators represent the query coordinate and the restaurant type
respectively. Setting the maxDistance parameter (also a mandatory one) to 3 means to get all
burger places in the area with a given maximum area of 3 degrees of latitude and longitude.

Summary
Let's see what we have covered in this chapter:

•	 We learned about geolocation and ways to get the geographic coordinates of a
computing device

•	 We learned how to use the W3C Geolocation API to get the latitude and longitude
of a user visiting a website

•	 We learned about MongoDB geospatial indexing, how it works, and how can we
build it for a collection

•	 We learned how to get nearby objects of interest on the map by querying a
geospatially-indexed collection

•	 We learned about geospatial haystack indexing, and how to use it to perform
location queries that require querying on additional criteria of objects

In the next chapter, we are going to learn how to improve query performance, security, and
the data durability of MongoDB.

9
Improving Security and Performance

Up until now, we have covered MongoDB from an application developer's point
of view. But when we are ready to deploy the application on the production
server, we have to pay attention to a few things other than ensuring that the
application works the way we want it to. For instance, we want the queries to
be fast enough so that it does not slow the website down. We have to make
sure the database is safe and secure as we do not want some malicious user
getting control of the database. In this chapter, we are going to touch all of
these topics. So this is going to be a little more theoretical than other chapters.

So, in this chapter we will learn:

•	 How to improve query performance using indexes

•	 How to use built-in tools for profiling and optimizing queries

•	 How to add user authentication and improve the security of a MongoDB server

•	 How to improve durability of data in MongoDB

Enhancing query performance using indexes
If you have worked with a relational database such as MySQL before, indexes should not
be new to you. In MongoDB, an index is a special data structure (A B-Tree in computer
science terms) that holds information about the values of specific fields of the documents
in a collection. When we query the collection on these fields, MongoDB looks into this data
structure to quickly sort through and order the documents.

Improving Security and Performance

[218]

We covered geospatial indexes in the previous chapter. The geospatial
index is a special kind of an index (implemented by encoding geohash
values on top of B-Tree structures) designed for location-based queries.
In this chapter, we will focus on general purpose indexes.

To understand how indexing benefits query performance, consider a collection of movies:

> db.movies.find()

{ "_id" : ObjectId("4db439153ec7b6fd1c9093ec"), "name" : "Source Code",
 "genre" : "sci-fi", "year" : 2011 }

{ "_id" : ObjectId("4db439df3ec7b6fd1c9093ed"), "name" : "The Dark
 Knight", "genre" : "action", "year" : 2008 }

{ "_id" : ObjectId("4db439f33ec7b6fd1c9093ee"), "name" : "Megamind",
 "genre" : "animation", "year" : 2010 }

{ "_id" : ObjectId("4db439f33ec7b6fd1c9093ef"), "name" : "Paranormal
 Activity", "genre" : "horror", "year" : 2009 }

{ "_id" : ObjectId("4db439f43ec7b6fd1c9093f0"), "name" : "Hangover 2",
 "genre" : "comedy", "year" : 2011 }

Now, let's assume that we need to find all the science fiction movies. We can do that simply
by querying on the genre field.

> db.movies.find({genre: "sci-fi"})

{ "_id" : ObjectId("4db439153ec7b6fd1c9093ec"), "name" : "Source Code",
 "genre" : "sci-fi", "year" : 2011 }

When we issued that command, MongoDB looked through every document in the
collection and checked the value of the genre field. If the collection had a larger number of
documents, it would take longer for the query to complete! This is where indexing helps. If
the collection has an index on the genre field, MongoDB will check the index first instead of
the collection, and randomly access the documents that matched the criteria.

Time for action – creating an index on a MongoDB collection
Let's see how we can build an index on a field of a MongoDB collection using the mongo
interactive shell.

1.	 Launch the mongo interactive shell and switch to a database named testdb:

$./mongodb/bin/mongo
 MongoDB shell version: 1.8.1
 connecting to: test
 > use testdb
 switched to db testdb

 >

Chapter 9

[219]

2.	 Insert information about some of your favorite movies in a collection named movies:

> db.movies.insert({name: "The Matrix", genre:"sci-fi", year:
1998})

> db.movies.insert({name: "Lord of the Rings", genre:"fantasy",
 year: 2002})

> db.movies.insert({name: "Saving Private Ryan", genre: "war", 	
 year: 1997})

> db.movies.insert({name: "Goodwill Hunting", genre: "drama",
 year: 1995})

> db.movies.insert({name: "The Dark Knight", genre: "action",
 year: 2008})

> db.movies.insert({name: "Inception", genre: "sci-fi", year:
2010})

3.	 Enter the following command to create an index on the genre field:

> db.movies.ensureIndex({genre:1})

4.	 Use the next command to list all the indexes in the movies collection:

> db.movies.getIndexes()

[

 {

 "name" : "_id_",

 "ns" : "testdb.movies",

 "key" : {

 "_id" : 1

 },

 "v" : 0

 },

 {

 "_id" : ObjectId("4e5772551f4be29af4a55ae9"),

 "ns" : "testdb.movies",

 "key" : {

 "genre" : 1

 },

 "name" : "genre_1",

 "v" : 0

 }

]

>

Improving Security and Performance

[220]

What just happened?
The example is quite simple. We entered some sample data into a collection and built an
index on its genre field.

> db.movies.ensureIndex({genre:1})

The ensureIndex() method, invoked on the movies collection, creates an index, on the
genre field (as specified by the {genre:1} JSON argument to the method).

We can see what indexes are in the collection by calling the getIndexes() method. When
we did that for the movies collection, we saw the index on the genre field in the output list.

> db.movies.getIndexes()

[

{

 "name" : "_id_",

 "ns" : "testdb.movies",

 "key" : {

 "_id" : 1

 },

 "v" : 0

},

{

 "_id" : ObjectId("4e5772551f4be29af4a55ae9"),

 "ns" : "testdb.movies",

 "key" : {

 "genre" : 1

 },

 "name" : "genre_1",

 "v" : 0

}

]

The second document in the array ,returned by getIndexes(), shows information on the
index we just created. The key field of this document specifies the field of the collection that
we created the index on. The name field shows the name of the index, which is genre_1 in
this case. The index is given this name by default, but we could also explicitly specify it as an
optional argument to ensureIndex().

> db.movies.ensureIndex({genre:1},{name: "genre_index"})

Chapter 9

[221]

The last command will create an index on the genre field and name it genre_index.

Finally, the _id, ns, and v fields specify the ObjectId, namespace, and version of the
index respectively.

To get information about indexes created for all the collections in a
database, use the db.system.indexes.find() command.

The _id index
If you look at the output of getIndexes(), you will notice there is an index on the _id
field, even though we did not create this index explicitly.

> db.movies.getIndexes()

[
 {
 "name" : "_id_",
 "ns" : "testdb.movies",
 "key" : {
 "_id" : 1
 },
 "v" : 0
 },

The _id index gets created automatically, every time we create a collection, except for
capped collections. The values of _id fields are unique for each document and invariant.
Lookups using the _id field always tend to be fast.

Unique indexes
Unique indexes work like the UNIQUE KEY in MySQL. It ensures that no two documents in a
collection will have the same value for the indexed field. The following command creates
a unique index on the name field of the movies collection:

> db.movies.ensureIndex({name:1}, {unique:1})

If we try to insert two documents with the same value for the uniquely indexed field, we will
get an error. Also, if we insert a document that is missing the value for the uniquely indexed
field, MongoDB will insert a null value for that value. Thus, we will not be able have two
documents in the collection missing the unique field.

//this document has a null value for the name field
>db.movies.insert({genre:'romance', year:1997})
//this will result in an error
>db.movies.insert({genre:'romance', year:1997})

Improving Security and Performance

[222]

If the field in question has non-unique values across the collection, we will not be able
to create a unique index for it. To get around this, we can add the dropDups option. For
example, the next command will create a unique index on the name field. If there are
multiple documents with the same value for name, only the first such document will be
indexed and the rest of them will be dropped. Obviously, we need to be mindful about the
possible data loss when applying such an operation.

> db.movies.ensureIndex({name:1}, {unique:1, dropDups: true})

Compound keys indexes
In MongoDB, you can create an index on multiple fields of a document. This is known as a
compound keys index. The next command creates a compound index on genre and year
fields of movies:

> db.movies.ensureIndex({genre: 1, year: -1})

The numbers associated with key names (1 and -1) in the command specify the direction
of the index. 1 specifies direction in the ascending order, while -1 in the descending order.
Direction is very important in compound indexes when you need to perform sorting and
range queries. For example, the business logic may require showing recently released movies
appear first in the UI, and the movies should be alphabetically ordered by their genres. So, it
makes sense to create a compound index on the year field in descending order, and on the
genre field in ascending order. For single-key indexes or random access retrievals, ordering
does not matter much (unless the queries involve reversing the result set order).

Furthermore, when you have a compound index on several fields, you can use it to query on
a subset of fields. For example, suppose there is a compound index on fields x, y, and z of
the documents in a collection. This index can be used to query on:

•	 x

•	 x, y

•	 x, y, and z

So, if you have a compound index on x, y, and z, you don't need a single key index on x (or
a compound keys index on x, y). However, if we do a query on y, z or y only, the compound
index may not be used unless we explicitly hint the query planner to do so using the hint()
command (which we will cover later in this chapter).

Chapter 9

[223]

Indexing embedded document fields
Indexes can be applied on any type of fields, including an embedded document. For example,
let's say we have an additional meta field in our movies collection, storing the duration of
the movie and the name of the studio:

> db.movies.insert({name: "Thor", genre: "action", year: 2011, meta:
{duration_minutes: 115, studio: "Paramount"}})

We can create an index on the meta field as follows:

> db.movies.ensureIndex({meta: 1})

We could do equality or range queries on the fields of the embedded document:

> db.movies.find({meta: {duration_minutes: 115, studio: "Paramount"}})

{ "_id" : ObjectId("4e58bf4c3eadcfa57f69447b"), "name" : "Thor", "genre"
 : "action", "year" : 2011, "meta" : { "duration_minutes" : 115,
 "studio" : "Paramount" } }

> db.movies.find({meta: {$gte :{duration_minutes: 115}}})

{ "_id" : ObjectId("4e58bf4c3eadcfa57f69447b"), "name" : "Thor", "genre"
 : "action", "year" : 2011, "meta" : { "duration_minutes" : 115,
 "studio" : "Paramount" } }

Alternatively, we could use Dot notation to reach into the embedded documents and create
compound key indexes on their fields.

> db.movies.ensureIndex({"meta.duration_minutes": 1, "meta.studio": 1})

> db.movies.find({"meta.duration_minutes": 115})

There is an important difference between creating an index on a nested document and
creating an index on a specific field of the nested document. In the first one, we have to
specify the query parameters in the same order as they appear in the embedded document.

//this query will return an object

> db.movies.find({meta: {duration_minutes: 115, studio: "Paramount"}})

//but this query will not

> db.movies.find({meta: {studio: "Paramount", duration_minutes: 115}})

This is not the case when you use the dot notation; you can specify the query parameter in
any order:

> db.movies.find({"meta.studio": "Paramount", "meta.duration_minutes":
115})

Improving Security and Performance

[224]

Indexing array fields
Indexes can also be built on array fields. For example, suppose the documents in the movies
collection have an array field named tags:

> db.movies.insert({name: "Iron Man 2", genre: "action", year: 2010,
 tags: ['superhero', ‘marvel', ‘comics', ‘scifi']})

If we build an index on this array field, MongoDB will index each element of the array:

> db.movies.ensureIndex({tags: 1})

> db.movies.find({tags: ‘superhero'})

Deleting indexes
The index on a field of a collection can be deleted using the dropIndex() method.

> db.movies.dropIndex({tags:1})

{ "nIndexesWas" : 7, "ok" : 1 }

The last command drops the index on the tags field of the movies collection. If we need to
delete all the indexes for the collection, we could use the dropIndexes() command instead:

> db.movies.dropIndexes()

{

 "nIndexesWas" : 6,

 "msg" : "non-_id indexes dropped for collection",

 "ok" : 1

}

The maximum allowed size for a key to be indexed is around 800 bytes. Any
document having a key greater than this size will be stored, but the key will not
be indexed.

When indexing cannot be used
Indexing will not work in any of the following situations:

•	 Queries involving negation operators, such as $ne, $not, and so on

•	 Queries using arithmetic operations, such as $mod

•	 Queries involving most regular expressions.

•	 JavaScript expressions used in a $where statement

•	 JavaScript code in MapReduce jobs; the query engine is not able to see
through the mapping functions

Chapter 9

[225]

Indexing guidelines
Indexes definitely help boost query performance, but that does not mean we can keep
creating indexes and not worry about it ever. An indexing operation has its own cost, so we
should give it some thought before building an index for a large dataset. Also, we should be
smart about choosing the keys so that we can reap the benefits of indexing. Let's take a look
at some basic guidelines on indexing.

Choose the keys wisely
We should try to figure out what keys are going to be used in most queries, and build indexes
for them. MongoDB uses only one index per query. So having a combined key index is more
effective than having multiple single key indexes. The direction of the indexes should match
the sorting behavior of your queries. For instance, if the documents have a created_at
field, and we need the latest created objects to appear at the start of the result set, the
index for created_at should be in descending order.

Keep an eye on the index size
MongoDB tries to fit the indexes in RAM. If the index gets too big, part of it will get
swapped out to the disk. This will cause the queries to get slower, and this is why we
should keep an eye on the size of the index. The following command gives us the size
of the index in bytes:

>db.movies.totalIndexSize()

65637

If the size gets too big to fit in RAM, we should try to find out if there are indexes not being
used as much as the others, and drop them.

Recently, people are turning to Solid State Drives (SSD) instead of
magnetic Hard Disk Drives (HDD) for use as a secondary memory. SSDs
are blazingly fast compared to HDDs and give significant performance
boost when used in database server machines. However, their reliability
is still an issue. Have a solid back-up and restore plan if you use them.

Avoid using low-selectivity single key indexes
When creating an index, we should choose a field that has high-selectivity, that is, a field that
has more distinct values for the documents in a collection compared to other fields. Say for
example, our movies collection has a Boolean field in_theater that could either be true
or false. This is a low-selectivity key, so creating an index on it is not going to be of much
help, rather it will be taking up space. Such a low-selectivity single key is to be avoided, and
should be made part of a compound index instead (depending on the query).

Improving Security and Performance

[226]

Be aware of indexing costs
Indexing incurs extra overhead on insert/update/delete operations. Every time we
create, update, or delete a document in the collection, the index needs to be updated
accordingly. This is why we should think about the read-write ratio of the collection before
building indexes on it. A read-heavy collection definitely benefits from having indexes. But
if it is write-heavy, we should carefully weigh the indexing overhead during writes with
whatever we hope to gain from adding the index.

On a live database, run indexing in the background
Building indexes for a large dataset takes time. Also, the database gets locked down during
the creation of the index and no read or writes are allowed to happen. If your database is
live on a production website, creating indexes will block other operations. To get around this,
indexes should be built in the background.

> db.movies.ensureIndex({genre: 1}, {background: true})

In this mode, other operations on the data will not be blocked while the index is being
built. The only catch is that the index takes a longer time to be created than in the usual
foreground mode.

Pop quiz – the indexing MCQ test
1.	 What data structure is used for storing indexes in MongoDB?

a.	 Stack

b.	 Priority Queue

c.	 B-tree

d.	 Heap

2.	 What is the maximum allowed size for a key to be indexed?

a.	 1 MB

b.	 1 KB

c.	 800 Bytes

d.	 None of the above

3.	 Which of the following use cases is not suitable for having indexes on a collection?

a.	 Write heavy operations

b.	 Map/Reduce jobs

c.	 Regular expression queries

d.	 All of the above

Chapter 9

[227]

Have a go hero – implement search in the blogging application
Remember the simple blogging application that we built in the earlier chapters? We need to
implement a search feature for this application. Users will type in keywords and hit a search
button, and the application will present a list of relevant articles. How would you go about
implementing this? What fields should you have the indexes on? Brainstorm about it.

Optimizing queries
In this section, we are going to look at some tools provided by MongoDB for analyzing
individual queries, and learn how to use their output for optimization.

Explaining queries using explain()
The explain() method is used to explain a query, giving us useful information about how
the query was performed, which we could use to fine-tune the query itself. It is invoked on a
cursor, and it returns a document holding pieces of data about the query.

> db.movies.find({name: ‘Inception'}).explain()
{

 "cursor" : "BtreeCursor genre_1",

 "nscanned" : 3,

 "nscannedObjects" : 3,

 "n" : 3,

 "millis" : 0,

 "nYields" : 0,

 "nChunkSkips" : 0,

 "isMultiKey" : false,

 "indexOnly" : false,

 "indexBounds" : {

 "genre" : [

 [

 "action",

 "action"

]

]

 }

}

>

Improving Security and Performance

[228]

Let's take a look at some of the important information returned by explain():

•	 cursor: The value for this field could either be a BasicCursor or a BtreeCursor.
If it is the second, it means the query has used an index. Since the genre field was
indexed, the value is obviously BtreeCursor in this case.

•	 nscanned: It returns the number of items scanned through the collection by
the query.

•	 n: It returns the number of documents returned by the query.

•	 millis: It returns the number of milliseconds it took for the database to execute
the query.

Optimization rules
We can employ the following rules for optimizing queries using the output of explain():

•	 The number of items scanned (nscanned) should be close to the number of
documents returned (n). If the query is scanning a large number of documents and
returning a small number of them, we should fine-tune the indexing on the fields.

•	 The number of milliseconds to perform the query (millis) should be very small.

Have a go hero – compare outputs of explain() for indexed and
non-indexed queries

Run two separate queries, one on an indexed field and the other on a non-indexed field.
Compare the outputs of explain() for both queries, note the differences in nscanned,
n, and millis.

Using hint()
The hint() method can be used to explicitly direct MongoDB to use a certain index. Let's
say we are querying on multiple fields and only some of those fields are indexed. We can
supply the indexed field as a JSON argument to hint() and force MongoDB to use the
index.

//hint the query planner to use the genre index

> db.movies.find({name: ‘Inception', genre: ‘sci-fi'}).hint({genre:1})

In most situations, using hint() will be unnecessary, because the MongoDB query optimizer
is quite smart about choosing which index to use. When a query is run for the first time, the
optimizer attempts multiple query plans concurrently. It uses the plan that finishes first and
suspends the others. This query plan is used in all future queries using the same keys.

Chapter 9

[229]

Force a table scan

You can use the hint() method to force a table scan even when
you are querying an indexed field.

> db.movies.find({genre: ‘sci-fi'}).hint({$natural:1})

Profiling queries
MongoDB ships with a built-in database profiler tool. It comes in handy for analyzing
different database operations.

Profiling is turned off by default. It is turned on by running the setProfilingLevel()
command in the mongo interactive shell. Profiling is database-specific.

> use testdb

switched to db testdb

> db.setProfilingLevel(1, 100)

{ "was" : 0, "slowms" : 10, "ok" : 1 }

These commands tell MongoDB to profile any query slower than 100 milliseconds on
the database testdb. The profiling data is stored in the system.profile collection
of the database.

> db.system.profile.find()

{ "ts" : ISODate("2011-08-28T13:51:12.725Z"), "info" : "query
 testdb.movies reslen:257 nscanned:7344 query: { query: { genre:
 \"action\" }} nreturned:1 110ms", "millis" : 110 }

Understanding the output
The following are some of the important fields stored in the system.profile documents:

•	 ts: It is the timestamp when the profiling occurred

•	 millis: Specifies the time took to perform the operation in milliseconds

•	 info: Gives detailed information about the operation and could be either query,
update, or insert

°° ntoreturn: It returns the number of objects requested by the client
to return from the query

°° query: It returns the details of the query specification

°° nscanned: It returns the number of objects scanned while executing
the operation

Improving Security and Performance

[230]

°° reslen: It returns the length of objects in the query result, specified in
bytes

°° nreturned: The number of objects returned from the query

°° upsert: This indicates an upsert operation

Visit the following page for database profiling on MongoDB documentation to get
more information about output fields: http://www.mongodb.org/display/
DOCS/Database+Profiler#DatabaseProfiler-UnderstandingtheOutput.

Optimization rules
Looking at the output of the profiling information, we can apply some general optimization
rules:

•	 When querying documents, nscanned should not be much larger than nreturned
(for reasons explained earlier in this chapter). If so, we should consider building
indexes on the query fields (this also applies for update/upsert operations).

•	 If the size of objects returned by the query (reslen) is too big, performance will
suffer. We should send a second parameter to find() to return only the fields that
we need.

Securing MongoDB
MongoDB provides a basic user authentication mechanism for authorizing users accessing
the database. In this section, we are going to learn how to add user authentication,
adding/removing users to/from databases, and connecting to MongoDB with PHP in
authenticated mode.

Time for action – adding user authentication in MongoDB
In this example, we will start the MongoDB server in authentication mode, and then add
an admin user to the database. We will use this admin user account to create users for
specific databases.

1.	 Launch the monogd process in authentication mode by passing in the --auth flag:

$./mongodb/bin/mongod --auth

Sat Aug 27 23:11:56 [initandlisten] MongoDB starting : pid=603
 port=27017 dbpath=/data/db/ 32-bit

Chapter 9

[231]

2.	 Launch the mongo shell and switch to admin database:

$./mongodb/bin/mongo

MongoDB shell version: 1.8.1

connecting to: test

> use admin

switched to db admin

>

3.	 Add a user named dbadmin to the admin database and set an arbitrary password:

> db.addUser(‘dbadmin', ‘mysecretpass')
{

 "user" : "dbadmin",

 "readOnly" : false,

 "pwd" : "ca75881da377b1f792f82ce374cb2c0f"

}

4.	 Authenticate yourself as the just created admin user using the following command:

> db.auth(‘dbadmin', ‘mysecretpass')

1

6.	 Switch to a different database named testdb. Add the user testuser for this
database:

> use testdb

switched to db testdb

> db.addUser(‘testuser', ‘abcd1234')

{

 "user" : "testuser",

 "readOnly" : false,

 "pwd" : "c930e938bc4479b5544cac839211c9d8"

}

7.	 Issue the next command to list all the users of the current database:

> db.system.users.find()

{

 "_id" : ObjectId("4e593b8ae088769ac5295593"),
 "user" : "testuser",
 "readOnly" : false, "pwd" : "c930e938bc4479b5544cac839211c9d8"

}

Improving Security and Performance

[232]

What just happened?
In the previous example, we demonstrated how to turn authentication on in the MongoDB
server and create user accounts with administrative privileges over the whole server and/or
a certain database. To turn authentication on, the mongod server process has to be started
with the --auth flag:

$./mongodb/bin/mongod --auth

Sat Aug 27 23:11:56 [initandlisten] MongoDB starting : pid=603
 port=27017 dbpath=/data/db/ 32-bit

After that, we launched the mongo shell client and switched to the admin database. This
is a special database for doing administrative tasks.

$./mongodb/bin/mongo

MongoDB shell version: 1.8.1

connecting to: test

> use admin

switched to db admin
>

Creating an admin user
An admin user is one who has administrative privileges over the entire database server. To
create an admin, we have to be in the admin database and use the addUser() method,
as follows:

> use admin

switched to db admin

> db.addUser(‘dbadmin', ‘mysecretpass')
{

 "user" : "dbadmin",

 "readOnly" : false,

 "pwd" : "ca75881da377b1f792f82ce374cb2c0f"

}

This command creates an admin user named dbadmin and sets the password as
mysecretpass. Once created, we have to authenticate as the admin user using the auth()
method to perform further administrative tasks:

> db.auth(‘dbadmin', ‘mysecretpass')

1

An admin user can create/remove database-specific users, and has read-write access to all
databases on the server.

Chapter 9

[233]

Creating regular user
As an admin user, we can create regular users, the ones having read/write access on a single
database. To do so, we have to authenticate as admin, switch to a new database, and use the
addUser() method again to create a user account for that namespace.

> use testdb

switched to db testdb

> db.addUser(‘testuser', ‘abcd1234')

{

 "_id" : ObjectId("4e593b8ae088769ac5295593"),

 "user" : "testuser",

 "readOnly" : false,

 "pwd" : "c930e938bc4479b5544cac839211c9d8"

}

> db.auth(‘testuser', ‘abcd1234')

1

>

We could also create a read-only user for a database:

> db.addUser(‘readonlyuser', ‘abc123', true)

{

 "user" : "readonlyuser",

 "readOnly" : true,

 "pwd" : "bb15dce2e51f865353f0e7d8527f52f0"

}

>

Viewing, changing, and deleting user accounts
To list all the users in a database, use the following command:

> db.system.users.find()

{ "_id" : ObjectId("4e593b8ae088769ac5295593"), "user" : "testuser",
 "readOnly" : false, "pwd" : "c930e938bc4479b5544cac839211c9d8" }

{ "_id" : ObjectId("4e5950cde088769ac5295595"), "user" : "readonlyuser",
 "readOnly" : true, "pwd" : "bb15dce2e51f865353f0e7d8527f52f0" }

Improving Security and Performance

[234]

To change the password of an existing user, use the following command:

> db.addUser(‘testuser', ‘newpassword')

{

 "_id" : ObjectId("4e593b8ae088769ac5295593"),

 "user" : "testuser",

 "readOnly" : false,

 "pwd" : "4b710c355d07736ea06795dfcd5f8c1c"

}

Since the testuser account already exists, the command will set its password to
newpassword.

Finally, to remove a user account, use the following command:

> db.removeUser(‘testuser')

This will delete the testuser account from the namespace.

User authentication through PHP driver
To authenticate users when connecting to the server using the PHP driver, we have to pass
the username and password as optional arguments to the Mongo() constructor. Consider
the following code snippet:

<?php
 $user = ‘testuser';
 $password = ‘abcd1234';
 $host = ‘localhost';
 $port = 27017;
 $database = ‘testdb';
 $connectionString = sprintf(‘mongodb://%s:%d/%s', $host, $port,
 $database);
 try{
 $dbConnection = new Mongo($connectionString,
 array(‘username' => $user, ‘password' => $password));

 echo ‘Connected to database!';
 } catch(MongoConnectionException $e) {
 exit($e->getMessage());
}

The first argument to the constructor is the connection string, in the format mongodb:
//<hostname>:<port>/<databasename>. We sent the username and password as
optional arguments.

Chapter 9

[235]

Have a go hero – modify DBConnection class to add user authentication
Modify the DBConnection class defined in the dbconnection.php file that we created in
earlier chapters to add user authentication.

Filtering user input
Developers building applications on top of relational databases have to take special care
to guard against the dreaded SQL Injection. Since in MongoDB queries are not built from
strings, we do not have to worry about that. That being said, we should be cautious about
accepting user input, and filter them in the following situations:

•	 We should be careful about running server-side JavaScript (code supplied by the
MongoCode() class in the PHP driver). The use of $where statements in a query
comes to mind as an example. We should avoid concatenating user-supplied input
to build JavaScipt code as arguments to $where. This will be similar to being
vulnerable to SQL injection attacks.

•	 In situations where the keys of the BSON objects will be user-supplied, we should
not allow any key having the dollar ($) or dot (.) sign in it, since these are part of
special query operations. We could either remove these characters from key names,
or use their full width Unicode equivalents.

For more detailed information about how to handle such cases, visit this page at the
MongoDB official documentation site: http://www.mongodb.org/display/DOCS/Do+I
+Have+to+Worry+About+SQL+Injection.

Running MongoDB server in a secure environment
The user authentication scheme in MongoDB is very basic and not so secure against
sophisticated attacks. This is why it is recommended that a production MongoDB server
should be deployed in a trusted environment. You may consider the following measures for
ensuring such an environment:

•	 The server can be deployed behind a firewall

•	 Rather than listening to all available IP addresses on a machine (by default), the
server should be configured to listen on a specific IP (specified using the bind_ip
configuration option)

•	 The TCP ports utilized by the server should be configured so that only trusted
machines can access them.

Improving Security and Performance

[236]

Ensuring data durability
One of coolest features of MongoDB that we discussed and used in earlier chapters, is its
support for fast asynchronous writes. MongoDB achieves this speed by using memory-
mapped files. A memory-mapped file is a data structure that represents a file in main
memory the same way it is stored on the disk. Processes accessing such a file can treat it as
a part of memory, speeding up the I/O performance. MongoDB uses memory-mapped files
to perform disk I/O operations. When a document is loaded in the application, MongoDB
transparently loads it from the disk to memory. Any writes to the document results in writing
to the appropriate address in memory. MongoDB flushes the data in memory back to the
disk every 60 seconds (which is the default interval between two successive flushes. It is
configurable through the --syncdelay command-line option).

The problem with this approach is that if the system crashes even 1 millisecond before the
flush, we will lose all the data since the last flush. The impressive write speed comes at the
cost of durability. Fortunately, MongoDB provides us with ways to get around this problem.
In this section, we are going to learn what can we do to improve the durability of data.

Journaling
Recent releases of MongoDB (version 1.7.5 and greater) provide a feature named Journaling.
All the operations on data are recorded in special journal files. If the system ever crashes, the
records from the journals are played back when the mongod process restarts, to restore the
corrupted databases.

To enable journaling, we have to start the server with the --journal switch:

$./mongodb/bin/mongod --journal

Since MongoDB 2.0 journaling is turned on by default in 64 bit versions, the
default journaling could be turned off by sending the --nojournal flag.

When journaling is on, MongoDB creates a directory named journal under the dbpath (/
data/db by default). This is where all the journaled files will reside. These files are all
rotated, so we don't have to worry about them eating up disk space. If the server is shut down
cleanly, all the files will be cleaned up. If the server crashes, the mongod process uses these
files to replay the write operations. After it has finished the recovery process, it will start
accepting connections from clients. Time to recover depends on the volume of journaled data.

Chapter 9

[237]

Performance
When journaling is turned on, read performance is not affected, but write operations
will incur the journaling overhead (journaling is a write-ahead operation, where changes
to data are logged in the journal before they actually take place). However, MongoDB's
official documentation says the overhead is too small to influence the writes, and claims
to have minimized the speed gap between journaled and nonjournaled writes in the most
recent releases.

Adrian Hills has done some benchmarking on MongoDB
journaling and published the results in his personal blog:
http://www.adathedev.co.uk/2011/03/
mongodb-journaling-performance-single.html.

Measure journal overhead with journalLatencytest

To measure how long it takes your volume to write to the disk,
use the journalLatencyTest command.

> use admin

> db.runCommand(‘journalLatencyTest')

Using fsync
If you want to make sure that your data makes it to the disk, you can use the fsync
command in mongo shell.

> use admin

> db.runCommand({fsync:1})

fsync puts the write operations on hold until the data is written to the disk at the next
flush. The read operations however, will not be blocked. We should use this command as
sparingly as possible. We definitely don't want to use it on every insert, as it will slow down
the write operations.

Doing fsync at insertion

The MongoDB-PHP driver allows us to force the data to be synced to disk at the
time of insertion. This is done by setting the optional fsync option to TRUE in
the MongoCollection::insert() method.
$collection->insert(array(‘user' => ‘joe',
 ‘email' => ‘joe@example.com'), array(‘fsync' => TRUE))

When doing an fsync insert, a safe insert is implied. (This means insert will not
be asynchronous and program control waits for a server response.)

Improving Security and Performance

[238]

Replication
We could also use replication to ensure the durability of data. In a replicated setup, the
database is hosted on multiple nodes instead of one. One of the nodes act as a master
and all the write operations take place in this node. Other nodes are known as slaves and
used for reads. The changes to data are asynchronously copied over from the master to the
slave(s).

write operations

master

slave slave

read operations read operations

If the master crashes, we would still be able to read from the slaves. We can configure one of
the slaves to act as master until the crashed master comes back up. Ideally, journaling should
be turned on at the master node to ensure safe recovery of data.

Another way to ensure multi-server data durability is replica sets. A Replica Set essentially
acts just like a master-slave replication cluster (it has a master node and one or more slave
nodes) except the roles of the nodes are not fixed. When the master node (called a primary
node in replica set context) goes down, the slave nodes (also known as secondary nodes)
automatically elect a new master. Each node has a predefined priority and when the primary
goes down, the node with the highest priority is elected as the new primary. In case of a tie,
the node with the most recent version of data is elected. The developer does not have to be
concerned about all this since it all happens automatically.

Features, such as replication and replica sets (and sharding) are excellent tools for ensuring
data durability as well as improving scalability, a major selling point of MongoDB as a database
server. Setting up and using these features is too advanced to be covered in a beginner's
guide. But if you are interested, there are a lot of blog posts, books, and other kinds of
content available covering those topics. You can start from this page at the MongoDB official
documentation site: http://www.mongodb.org/display/DOCS/Replication.

Chapter 9

[239]

Pop quiz – flushing data to disk
1.	 What is the default interval between data flushes to disk in MongoDB?

a.	 1 second

b.	 0.1 second

c.	 1 minute

d.	 1 millisecond

2.	 What happens when the fsync flag is set to TRUE during insertion?

a.	 Program control continues to the next statement (asynchronous insert)

b.	 MongoDB checks for data integrity, such as uniqueness of _id

c.	 Data is flushed to disk

d.	 All of the above

Summary
Let's review what we covered in this chapter:

•	 We learned how to enhance query performance by creating indexes on appropriate
fields

•	 How to use the MongoDB database profiler, explain and hint tools to analyze, and
optimize queries.

•	 Enabling user authentication in MongoDB, adding/removing user accounts, and
using user authentication through the MongoDB-PHP driver

•	 Using the journaling feature to improve data durability

We also covered when indexes are not a good idea, when and why we should filter user
input for security reasons, and what is the speed-durability trade-off when journaling is
turned on. In the next chapter, we will learn about tools for administering a MongoDB server.

10
Easy MongoDB Administration with

RockMongo and phpMoAdmin

We have been using the mongo interactive shell quite heavily for querying
MongoDB, inserting data, building indexes, and so on. This is because getting
comfortable with using the JavaScript query language in the shell is very
important for a developer working with MongoDB, even though he would be
using PHP (or the programming language of his choice) most of the time for
talking to the database. However, when it comes to being productive, many
people prefer using graphical user interface (GUI) tools (I am saying many people,
not all people, because there are those of us who prefer the command line!).
There are quite a few GUI tools available for administering MongoDB, developed
and supported by third-party developers. But we are going to focus on the ones
built with PHP – RockMongo and phpMoAdmin. The obvious benefit of using
PHP based admin GUIs is that we can deploy them on the existing LAMP (Linux-
Apache-MongoDB-PHP) stack, and don't have to install any additional software
to support them. In this chapter, we are going to cover how to install and run both
RockMongo and phpMoAdmin on a computer; how to use them to query, insert,
update, and delete documents; how to import or export data; how to retrieve
server stats; and so on. Finally, we will compare these two tools based on their
features and try to identify the more suitable one.

Specifically, in this chapter, we will discuss the following topics:

•	 Downloading and installing RockMongo on the computer

•	 Using RockMongo to query, save, and delete documents

•	 Importing and exporting data using RockMongo, getting server/database stats

Easy MongoDB Administration with RockMongo and phpMoAdmin

[242]

•	 Installing phpMoAdmin on the machine; querying databases, saving, and deleting
documents, using data import/export tools, getting server stats

•	 Comparing features of RockMongo and phpMoAdmin

Administering MongoDB with RockMongo
RockMongo is a GUI tool for browsing and administering MongoDB and written in PHP 5. It is
basically a web application running on top of Apache (or any web server that supports PHP
5) that lets you manage databases hosted on a MongoDB server. It is an open source project
(BSD license), hosted on Google Code (http://code.google.com/p/rock-php/) and
has released stable versions.

Time for action – installing RockMongo on your computer
In this section, we will learn how to download, configure, and run RockMongo on a
computer. The following instructions are not platform specific, and you can run them either
on a Windows or a UNIX machine:

1.	 Download the latest stable version of RockMongo (marked as Featured) from the
Downloads page of the project website http://code.google.com/p/rock-
php/downloads/list:

2.	 Unzip the downloaded zip file and rename the unzipped directory as rockmongo.

3.	 Move the rockmongo directory under the document root (the htdocs folder in
case you are using Apache) of your web server.

4.	 Open the config.php file under rockmongo in your text editor and set the
$MONGO["servers"][$i]["mongo_auth"] variable to true.

$MONGO["servers"][$i]["mongo_auth"] = true;

Chapter 10

[243]

5.	 Launch the web browser and visit the index.php file of the app. You will see the
Log-in page of RockMongo:

6.	 Type in the Username and Password of the admin user of your MongoDB server,
and click the Login and Rock button. You will be redirected to the landing page as
shown in the following screenshot (in case you don't have an admin user, keep the
mongo_auth settings to false in step 5 and use admin as the default username
and password).

Easy MongoDB Administration with RockMongo and phpMoAdmin

[244]

What just happened?
We downloaded the latest stable version of RockMongo as a zipped file from Google code,
unzipped the package, and deployed it on the web server running on your machine. We
changed the config.php file so that only admin users in MongoDB are allowed access to
RockMongo. We achieved this by switching the mongo_auth flag to true:

$MONGO["servers"][$i]["mongo_auth"] = true;

By default, mongo_auth is set to false, and we can use admin as the default username
and password. We can change these default values by changing the control_users flag:

//one of control users [USERNAME]=PASSWORD, works only if
//mongo_auth=false
$MONGO["servers"][$i]["control_users"]["admin"] = "mysecretpass";

The config.php file contains global configurations for the entire app; we can set the
host, port, and connection timeout values for the MongoDB server. We can also configure
RockMongo so that it shows only the databases that we want it to show, and hides others.
The configuration file is quite well commented, so users can easily figure out how to achieve
these changes.

After logging into RockMongo, we arrived at a landing page that lists all the databases hosted
on the server in the left sidebar. The content area on the right shows server settings (host,
port, and so on), web server name, PHP version, and runtime directives. If we click on the
Databases link on the top of the content area, it shows a table listing all the databases, along
with some additional information such as number of collections per database, index size,
total number of objects, and so on. A new database can be created by clicking on the Create
new Database link at the top of the table.

Exploring data with RockMongo
Clicking on a database name on the left sidebar expands it and shows all the collections in
the database. We can create a new collection by clicking on the Create link on the expanded
tree in the left pane. Clicking on a collection name shows all the documents in a paginated
list in that collection in the content area to the right.

Chapter 10

[245]

Querying
We can query documents by writing the query expression in the text area at the top of
content panel and then hitting the Submit Query button. Query expressions can be written
either in JSON format or in PHP array format. This could be a little inconvenient for those
who don't like typing query expressions in the command line, since this does not give them
any point and click alternative for achieving the task, as GUI tools are supposed to do. The
documents returned by the query are displayed below the text area in a paginated list:

The textboxes to the right of the text area are used for sorting the results; we can specify
the fields on which to sort in the textboxes, and select the desired order (ascending or
descending) from the drop-down menu. The textbox labeled Limit is used to limit the query.
Finally, the Fields menu can be used to specify a subset of fields to be returned by the query.

Updating, deleting, and creating documents
Documents returned by the query can be individually updated by clicking on the Update
link on top of each document. Clicking the link opens the associated document (either in
PHP or JSON format) in a text area of a new page, where the user can make changes to the
document and click on the Save button to apply the changes. We can add a new field to a
single document by clicking on the New Field link associated with it. It shows a pop-up box
where we can specify the name, data type, and value of the field.

Easy MongoDB Administration with RockMongo and phpMoAdmin

[246]

We can also perform bulk updates by writing the query for selecting documents to be
updated in the query text area and choosing modify from the Action drop-down menu
(default is findAll). This will open a second text area, below the one we are using, where
we can write the expression for updating each document. Once we have done that, we can
apply the bulk edit by clicking on the Submit Query button:

In the previous screenshot, we are querying all documents in the sample_articles
collection having Spock as the author and Programming as category and setting their
is_published flag to false.

We can delete individual records by clicking on the Delete link on top of each document
shown in the paginated list. We can also perform bulk deletes much in the same way we do
bulk updates (specifying the query and selecting remove from the Action drop-down menu).

To insert documents, we have to click on the Insert link at the top of the content panel. It
takes us to a new page showing a big text area. Here we can type in the new document in
PHP array syntax or JSON and insert it by clicking the Save button.

Chapter 10

[247]

Importing and exporting data
Data importing and exporting options are important features for any database administration
tool. We need them for creating backups or migrating data. RockMongo allows us to export
data in one or more collections in JSON format. When exploring a database, clicking on the
Export link at the top of the page takes us to the data export page:

We can select the collections whose data we want to export by ticking the checkboxes next
to their names (or we could select the checkbox labeled All and dump the entire database).
If the Download? option is selected, RockMongo will write the exported data in a JSON
file, which will be downloaded automatically on to the computer. Selecting the GZIP option
compresses the downloadable file; this comes in handy when exporting a large dataset.

The import interface is pretty simple and shows a form with a file upload field. We just need
to select the JSON file containing the data and hit the Import button. We will get a success
message if the data is imported without any glitches.

When exporting/importing large amounts of data, RockMongo may run
out of memory and execution time allotted per PHP script. To get around
this, set the max_execution_time and memory_limit directives
in php.ini to higher values.

Easy MongoDB Administration with RockMongo and phpMoAdmin

[248]

Viewing stats
To get different stats about the server running on the machine, click on the Server link at the
top of the left sidebar, and then click on Stats on the resulting page in the content area:

This page shows some useful information about the server, such as uptime, memory
consumption, number of open connections, network activity, and so on. We can also view what
operations are running on the server in real time by clicking on the Processlist link at the top.

Miscellaneous
We can view the users authorized for a particular database by clicking on the database name
on the left sidebar and then clicking on the More | Authentication link in the top-right corner
of the content area. The page will display the currently authorized users for the database in a
table. We can add new users by clicking on the Add User link and filling out the form.

To see what indexes there are for a collection, click on the collection name on the left
sidebar and click on the More | Indexes link at the top of the content panel. We can view
existing indexes, add new ones, or drop them individually from using the links shown in
the landing page.

RockMongo also has support for GridFS. The files and chunks collections can be browsed
just like regular collections, except when we are browsing files we will see Download and
Chunks links on top of each document. Clicking on the former will download the stored file
on the computer, while clicking on the latter will display the associated chunks documents
for that file.

Chapter 10

[249]

We can also run MapReduce jobs on RockMongo. While on the database view, clicking on the
Execute link at the top of content area takes us to a page showing a text area where we can
define the JavaScript map, reduce, and finalize functions. Hitting the Execute Code button will
run the defined functions on the database and the response will be printed at the bottom.

Using phpMoAdmin to administer MongoDB
phpMoAdmin is a GUI tool for administering MongoDB databases. It is built with PHP and runs
on Apache. phpMoAdmin is built using a stripped-down version of Vork, a high-performance
PHP web framework. It is very light-weight, and the entire app is contained within a 95 Kilobyte
file. Like RockMongo, this is also open sourced (GPLv3 FOSS License), and hosted on Github
(https://github.com/MongoDB-Rox/phpMoAdmin-MongoDB-Admin-Tool-for-PHP).

Time for action – installing phpMoAdmin on your computer
In this example, we will see how to download and install phpMoAdmin on your computer.
The following instructions can be run either on a Windows or a Unix platform:

1.	 Download the phpMoAdmin app from its official website: http://www.
phpmoadmin.com/file/phpmoadmin.zip.

2.	 Unzip the zipped file to extract the moadmin.php script.

3.	 Create a new directory named phpmoadmin inside the document root directory
of your web server (the htdocs folder in case you are running Apache). Copy and
paste the moadmin.php script to this new directory.

4.	 Open the moadmin.php file in your text editor and uncomment the following line

$accessControl = array('scott' => 'tiger');

5.	 Launch the web browser and visit the phpmoadmin/moadmin.php page, type in
scott and tiger as username and password. You will be redirected to the default
landing page of the app:

Easy MongoDB Administration with RockMongo and phpMoAdmin

[250]

What just happened?
Installing phpMoAdmin on the computer is very simple, as we saw in the last example. We
downloaded the single script app and copied it to the document root folder of our local
web server in its own directory. We configured the script and turned on user authentication
(turned off in phpMoAdmin by default) by uncommenting the following line:

$accessControl = array('scott' => 'tiger');

We can modify this line to change the default password, and/or add as many users as we like.

$accessControl = array('admin' => 'mysecretpass',
 'scott' => 'tiger');

Finally, we launched the app by running the script on the browser. After providing the
username and password, we were redirected to the landing page of the app. By default, the
admin database is selected as the database to be explored.

Viewing databases and collections
The databases hosted on the MongoDB server are listed as options in the drop-down box
in the top-left corner of the page. The collections in the database are listed under the drop-
down box. By default admin is selected as the database, and none of its collections are
shown (since it is a system database). To switch to a different database, we have to choose
one from the drop-down and hit the Change database button:

Chapter 10

[251]

Querying documents
When we click on a collection shown in the list, the page reloads with all the documents in
the database. We can write queries in PHP array syntax or JSON format in the text area that
appears once we click on the [query] link. The result of the query can be sorted by selecting
a sort key and order from the drop-down boxes that appear when the sort link is clicked. An
interesting feature of phpMoAdmin is the search feature. We can choose a field name from
the drop-down menu in the top-left corner (this appears when the [search] link is clicked)
and specify the value in the textbox next to it. After that we can launch a search by clicking
on the Search link. This comes in very handy when quickly looking for documents. We can
also perform a search by entering wildcards (*), JSON objects, or regular expressions in the
search box. Although the search box can search on only one field, we can narrow the scope
of the search by adding query expressions in the text area below (this appears when the
[query] link is clicked):

The previous screenshot shows how to perform a search where we are looking for
documents in the sample_articles collection with Nyota Uhura as the author with a rating
greater or equal to 5.

Easy MongoDB Administration with RockMongo and phpMoAdmin

[252]

Saving and deleting objects
Every document shown in the result set has two links, X and E in the top-left corner. Clicking
on the former deletes the document (after confirmation from the user); clicking on the latter
opens the document in a text area in PHP array syntax where we can modify it and save it by
hitting the Save Changes button. We can also create new documents by clicking on the insert
new object link, writing the document in PHP array syntax in the text area, and clicking on
the Save changes button.

Importing and exporting data
phpMoAdmin is quite impressive when it comes to importing or exporting data. It allows us
to export the data returned by a query, as well as to export the whole collection. In the case
of importing, it lets us specify what to do when duplicate objects are encountered. Both
import and export use the JSON format:

Unfortunately, there is no option to export an entire database.

Chapter 10

[253]

Viewing stats
To see server stats, we can click on the [Show databases & Collection selection] link at the
top, choose the intended database from the drop-down box, and then click on the stats link.
The information is displayed in the content area of the page in a plain HTML unordered list,
which is not very visually useful:

Other features
Here are some other mentionable features of phpMoAdmin:

•	 The index view (this appears when the show indexes link is clicked when browsing
a collection) shows us what indexes are in a collection, and lets us create or drop
indexes.

•	 It has GridFS support. GridFS file objects are automatically linked to GridFS chunks.

•	 Supports multiple themes. Themes can be set by changing the theme constant
in the moadmin.php file (the choices are classic, trontastic, and swanky-purse),
although it hardly serves any purpose from a functionality point of view, as follows:

/**
* Sets the design theme - themes options are: swanky-purse,
* trontastic and classic
*/
define('THEME', 'classic');

Easy MongoDB Administration with RockMongo and phpMoAdmin

[254]

RockMongo versus phpMoAdmin
Now that we have played with both RockMongo and phpMoAdmin, let us compare these
two GUI tools based on some important factors and try to figure out which one is more
suited to our specific needs.

Feature RockMongo (v1.1.0) phpMoAdmin (1.1.0)

Installation Installation is quite easy. Some
configuration is needed to
turn password-protection on.

Installation is very simple. Just drop
the single script app in a directory
on the web server and it is ready
to go.

Configurability User can change the default
configuration settings
by modifying the well-
commented config.php
file.

Not as configurable. User will have
to delve deep into the code and
tweak the default settings.

User authentication Supports both app level
and database level user
authentication. Allows the
user to add/remove users on a
MongoDB database.

Only app level user authentication.
No support for authenticating/
adding/removing users defined in
MongoDB.

Interface The UI is very clean and
professional looking. The
controls on the screen are
placed in clearly defined
regions; operation results
are printed in visually
comprehensible form.

Interface is not as good. Doing
some of the tasks is not as intuitive
as it should be.

Querying Supports querying in
both PHP array and JSON
syntax. No visual tool for
performing queries; might be
inconvenient for some people.

Provides a smart search box that
supports querying using text,
integers, JSON objects, regular
expressions, and so on. Complex
queries are done using JSON or PHP
array syntax.

Data import and export Supports importing and
exporting of data in JSON
format. No option for
resolving duplicate objects
while importing. Supports
export of entire databases.

Importing and exporting are done
in JSON format. Allows the user to
export the result of a query. User
can specify how to resolve duplicate
data issues while importing data.

Chapter 10

[255]

Feature RockMongo (v1.1.0) phpMoAdmin (1.1.0)

Server stats display Supports displaying server
stats information in a clearly
comprehensible format. User
can check what processes are
running in the background.

Displays sever stats, but the output
is not visually helpful. No support
for checking processes running in
background.

Managing Indexes Supports listing, creating,
and dropping of indexes on a
collection.

Supports listing, creating, and
dropping of indexes on a collection.

Map/Reduce Allows the user to define
map and reduce functions in
JavaScript and execute them.

No support for running MapReduce
through the interface.

GridFS Files are automatically
associated with chunks.
Supports downloading of files.

Files and chunks are automatically
associated. No support for
downloads.

The verdict
If you are looking for a GUI tool to manage MongoDB servers in the production environment,
you should go with RockMongo. Its clean and professional looking interface with the ability
to control background processes, run Map/Reduce jobs, and so on to makes it an excellent
choice for a serious MongoDB administration tool. If you are working on your local machine
and just looking for a simple and visual alternative to the mongo interactive shell (one that
lets you run queries using buttons and drop-down menus!) you might want to go with
phpMoAdmin.

Easy MongoDB Administration with RockMongo and phpMoAdmin

[256]

Summary
Let's quickly go over what we covered in this chapter:

•	 We learned how to download and install the RockMongo GUI tool into a LAMP
environment and how to configure it to support the MongoDB user authentication
system.

•	 We reviewed how RockMongo can be used to explore databases and collections on
a MongoDB server, how documents are queried, created, modified, and deleted,
how to perform other administrative tasks such as index management, data import/
export, adding user accounts, and so on.

•	 We learned how to download and install the phpMoAdmin GUI tool.

•	 We played around with phpMoAdmin and figured out how to create/update/delete
documents with it, how to import and export data, and how to use its smart search
box to quickly query and view data.

•	 We drew a comparison between RockMongo and phpMoAdmin based on their
features, and attempted to choose the better tool for development and production
environments.

This concludes our journey of learning web development with PHP and MongoDB. I hope
you enjoyed it as much as I did. I would encourage you to keep learning more about the
topics covered in this book using the Internet, master advanced topics, such as scaling with
replication and sharding, and build really cool web applications with PHP and MongoDB!

Pop Quiz Answers

Chapter 1, Getting Started with MongoDB
•	 What is the default port address of MongoDB?

o	 Answer: 27017

•	 How does a new database get created in MongoDB?

o	 Answer: By doing use <databasename> first and then doing
db.<collectionname>.insert(<jsondocument>)

Chapter 2, Building your First MongoDB Powered
Web App

•	 What does this following query do?

$movies->find(array(‘genre’ => ‘comedy’,
 ‘year’ => array(‘$gt’ => 2009, ‘$lt’ => 2011)));

o	 Answer: Gets all movies released after the year 2009 and before
the year 2011

Pop Quiz Answers

[258]

Chapter 3, Building a Session Manager
•	 Which session handling callback method gets called when we call the

session_destory() method in our code?

o	 Answer: destroy()

Chapter 4, Aggregation Queries
•	 The concept MapReduce has been derived from which programming paradigm?

o	 Answer: Functional Programming

•	 When running a MapReduce job in a distributed environment that is, on a cluster
of machines, which of the following task a master node is supposed to do?

o	 Answer: both a. and c.

•	 Which of the following is a limitation of the group() command for running
aggregation queries in MongoDB

o	 Answer: All of the above

Chapter 5, Web Analytics using MongoDB
•	 Which of the following is a false statement?

o	 Answer: Documents in a capped collection cannot be modified

•	 What happens when a capped collection exceeds its pre-allocated size when we are
inserting new documents into it?

o	 Answer: The newly inserted objects automatically replace the oldest
ones in the collection

•	 Sorting by natural order means:

o	 Answer: The documents that were inserted first will be returned first
(First in First Out)

Appendix

[259]

Chapter 7, Handling Large Files with GridFS
•	 What is the maximum allowed size of BSON objects (MongoDB documents)?

o	 Answer: 16 MB

•	 If a 20 MB file is stored in GridFS, how many chunks will it be split into?

o	 Answer: 80

Chapter 8, Building Location-aware Web Applications
with MongoDB and PHP

•	 Suppose you are the proud owner of a high-end, cutting-edge smartphone. Which of
the following techniques could potentially be used to detect its geographic location?

o	 Answer: All of the above

Chapter 9, Improving Security and Performance
•	 What data structure is used for storing indexes in MongoDB?

o	 Answer: B-tree

•	 What is the maximum allowed size for a key to be indexed?

o	 Answer: 800 Bytes

•	 Which of the following use cases is not suitable for having indexes on a collection?

o	 Answer: All of the above

•	 What is the default interval between data flushes to disk in MongoDB?

o	 Answer: 1 minute

•	 What happens when the fsync flag is set to TRUE during insertion?

o	 Answer: Data is flushed to disk

Index
Symbols
$article array 34
$inc

about 57
value, incrementing for particular field 57

$inc modifier 141
$near operator 208
$rename

about 57
fields, renaming with 57

$set
about 56
value, setting for particular field 56

$unset
about 57
fields, deleting with 57

10gen
URL 9

64-bit version, MongoDB
installing 14

--bind_ip parameter 17
--dbpath parameter 17
--logappend parameter 17
--logpath parameter 17
--port parameter 17
__construct() method 83
_get() method 170
_id index 221
_set() method 170

A
addUser() method 232, 233
admin user

about 232
creating 232

advanced queries
performing, in MongoDB 45

aggregation
performing, group() method used 120
results, viewing 113

aggregation queries
about 103
results, storing for 148

aggregation results
caching, in MongoDB 153-159

ALTER TABLE statement 12
analytics data

extracting, with MapReduce 136
Apache CouchDB 8
Apache Hadoop 108
archival table 148
array

documents, returning in 43
used, for storing coordinates 202

array fields
indexing 224

articles
counting, for authors 110, 111
distinct categories, listing 125, 126
retrieving, from databases 38-41
storing tags, allowing for 37

[262]

authenticate() method 92, 98
auth() method 232
authors

articles, counting for 110, 111
average rating per author

calculating 121-123
average response time per blog post

calculating 137-140

B
Blog Dashboard

building 45-48
blog editor

building 51-54
blogging application

search, implementing in 227
blogging web app

user authentication, implementing in 99
blog homepage script

rewriting 51
Blog Post Creator

creating 30-34
blogpost.php file 32, 34
blog posts

comments, posting to 64-68
deleting 58-62

bounded queries 210
BSON 11, 37
B-Tree 217
bucket-based geospatial index 210
bucketSize parameter 214

C
C 130
caching queries

benefits 160
callbackOnSuccess argument 198
callbackOnSuccess function 198
capped collection

about 134
documents, deleting 135
documents, updating 135
natural ordering 135
regular collection, converting to 136

Cassandra 8
cellphone tracking 192
cellular triangulation 192
CERN 10
chunks

about 176
files, reading in 187
images, reading in 187-189

close() method 25, 78, 84
collection

about 10
creating 19, 20
creating, implicitly 35
documents, querying in 38
map function, applying on 112, 113
reduce function, applying on 112, 113
selecting, shortcut approach 35
viewing 250

column-based databases 8
command() method 119, 126, 140
comments

getting, by username 70
posting, to blog posts 64-68

compound keys index 222
computing device

geographic position, determining for 192
concurrency 114
conditional queries 44
configuration, MongoDB 17
connection

creating, to MongoDB server from PHP 24, 25
coordinates

storing, arrays used 202
count() method

about 43, 49, 127
documents, counting with 127

Craigslist 9
createCollection() method 134, 135
Create, Read, Update, Delete. See CRUD
CRUD 30
CRUD operations 170
cURL 145
customer metadata

storing, MongoDB used 164, 168-172
custom keys

documents, grouping by 124

[263]

D
daily sales history of products

storing, in MongoDB 153-159
dashboard.php file 53
data

exploring, with RockMongo 244
exporting 252
importing 252

data archiving
about 148
MongoDB, using for 160

databases
articles, retrieving from 38-41
creating 19, 20
creating, implicitly 35
creating, in MySQL 150, 152
safe inserts, performing for 35
selecting, shortcut approach 35
viewing 250

data durability
ensuring 236
journaling 236
replication 238

data exchange format, MongoDB 11
data, exploring with RockMongo

about 244
documents, creating 245, 246
documents, deleting 245, 246
documents, querying 245
documents, updating 245, 246

data exporting options, RockMongo 247
data importing options, RockMongo 247
date() function 37
dates

range queries, performing on 50
DBConnection class 83, 107
dbconnnection.php file 107
delete() method 170
destroy() method 79, 84
distinct categories

listing, of articles 125, 126
distinct() method

about 125
using, in mongo shell 127

distinct values
listing, for fields 125

document-based databases 8
documents

about 10
anatomy 10
conditional queries 44
counting, with count() method 127
creating 19, 20, 245, 246
deleting 245, 246
deleting, in capped collection 135
deleting, in MongoDB 58
fields 104
grouping, by custom keys 124
inserting, in MongoDB 30
querying 245, 251
querying, in collection 38
relationships, managing between 63
returning, in array 43
structure 104
updating 245, 246
updating, in capped collection 135
updating, in MongoDB 51

domains
setting, for session cookies 100

drawLocationOnMap() function 199
drawLocationOnMap() method 198
dropIndex() method 224
drop() method 135
Dynomite 8

E
echo statement 36
embedded document fields

indexing 223
embedded documents

about 64
versus referenced documents 69

embedded objects
querying 69, 70

emit() method 112
ensureIndex() command 214
ensureIndex() method 202, 220
entity metadata

storing 149

[264]

explain() method
about 227
arguments 228
queries, explaining with 227, 228

explain() method, arguments
cursor 228
millis 228
n 228
nscanned 228

F
Facebook 8
features, MongoDB 9, 130
features, phpMoAdmin 253
fields

deleting, with $unset 57
distinct values, listing for 125
renaming, with $rename 57
subset, returning 49

files
about 176
deleting 186
reading in chunks 187
serving, from GridFS 182-185
storing, in GridFS 178, 180

files_id field 176
finalize function 140
find() command 20, 113, 134, 208
find() method 41, 42, 49, 103
findOne() method 41
Flatland 200
Flexible schema feature 130
foreach loop 43
foreign key constraints

dealing with 163
Foursquare 9, 191
Foursquare API

used, for sample data 203
fsync command 237

G
gc method 79, 85
geographic position

determining, of computing device 192
geohashing 200
geolocation 192

Geolocation object
about 198
getCurrentPosition() method 198

geoNear() command 208, 210
geoSearch parameter 215
geospatial index

about 218
creating, on MongoDB collection 201

geospatial indexing
about 200
overview 202

getBytes() method 185
getCollection() method 83
getCurrentPosition() method 198, 199
getIndexes() method 220
getMetadata() method 172
getNearByRestaurants() method 208, 214
getNext() method 41, 43
Global Positioning System. See GPS
Google 108, 192
Google Maps API

about 199
used, for drawing map 199, 200

google.maps.Map object 199
GPLv3 FOSS License 249
GPS 192
graph-based data-stores 8
GridFS

about 175, 248
advantages, over filesystem 177
files, serving from 182-185
files, storing in 178, 180
images, serving from 183-185
images, uploading to 178, 180
principle 176

group() method
about 120-124
aggregation, performing with 120
optional arguments 120
parameters 120
versus MapReduce 124

group() method, parameters
initial 120
key 120
reduce 120

GUI tool 242

[265]

H
handleGeoloacteError() method 198
Hard Disk Drives (HDD) 225
hasNext() method 43
haystack.php file 215
Hbase 8
hint() command 222
hint() method 228
HomeBrew 17
HTTP 74
HTTP request

about 130
aspects 131

HTTP session
about 74
overview 74

Hypertable 8

I
image gallery

creating, with GridFS 187
images

reading, in chunks 187-189
serving, from GridFS 183-185
uploading, to GridFS 178, 180

index
creating, on look up fields 145
creating, on MongoDB collection 218, 220
deleting 224
query performance, enhancing 217, 218

indexing
cost 226
don’ts 224
guidelines 225, 226

indexing costs 226
indexing guidelines 225, 226
index size 225
initialize() static method 83
insert

timeout, specifying on 36
insert() method 30, 35
installing

MongoDB, on OS X 17
PHP driver, for MongoDB 21, 22
PHP-MongoDB driver, on UNIX 23

IP address 192
isLoggedIn() method 92
iterator_to_array() function 43

J
Java 11
JavaScript 130
JOIN queries 160
journalining

about 236
enabling 236
fsync command, using 237
performance 237

journalLatencyTest command 237
JSON 11

K
key-value data stores 8

L
LAMP (Linux-Apache-MongoDB-PHP) 241
lastError() method 186
limit() method 50
Linux

MongoDB, running on 15, 16
listDBs() method 25
location

detecting, of web page visitor 193
detecting, with W3C Geolocation API 194-197

location-aware web application 191
location queries

performing 203-208
login page

about 93
creating 93-98

logout page
about 93
creating 93-98

logRequest() method 134
log table 149
look up fields

index, creating on 145

[266]

M
map

drawing, Google Maps API used 199, 200
map function

about 110, 111, 140
applying, on collection 112, 113
sample data, generating 107

map phase 107
MapReduce

about 103, 107
analytics data, extracting with 136
average response time per blog post, calculating

137-140
performing, in MongoDB 109, 111
performing, on subset of collection 114
principal phases 107
resources, for further reading 109
usage share, finding for browsers 141
versus group() method 124
visualizing 108

MapReduce, phases
map 107
reduce 107

MapReduce, running in real time
versus MapReduce in background 141

memory_get_peak_usage() function 189
metadata

storing, in MongoDB 164, 168-172
modifier operations

using 56
MongoCode object 119
MongoCollection object 34, 51
MongoConnectionException 25
MongoCursorException 36, 37
MongoCursor object 41, 42, 49
MongoCursorTimeoutException 36
MongoDate object 37, 50
MongoDB

64-bit version, installing 14
about 7-9, 29, 148
administering, phpMoAdmin used 249, 250
administering, RockMongo with 242-244
advanced queries, performing in 45
aggregation results, caching 153-159
caching queries, benefits 160

capped collection 134
command-line parameters 17
configuring, for running with

non-default settings 18
configuring 17
daily sales history of products,

storing in 153-159
data durability, ensuring 236
data exchange format 11
documents, deleting in 58
documents, inserting in 30
documents, updating in 51
downloading 13, 14
features 9, 130
file-based configuration 18
geospatial indexing 200
location queries, performing 203-208
logging with 131-134
MapReduce, performing in 109, 111
metadata, storing in 164, 168-172
old sales records, archiving in 161-163
page visits, logging with 131-134
PHP driver, installing for 21, 22
query performance, enhancing 217, 218
real-time analytics 141
real-time page visit counter, building 141-145
results, storing of expensive JOINs 160
running, on Linux 15, 16
running, on Windows 13, 14
sample data, generating 104-107
securing 230
server, running 30
session handling, implementing with 78
similarity, with relational databases 11, 12
stopping 18, 19
system requisites 12
used, for data archiving 160
used, for storing customer metadata 164, 168-

172
user authentication, adding in 230-232
users 9
Views, replacing with 160
web analytics backend, features 130

MongoDB collection
geospatial indexes, creating on 201
index, creating on 218, 220

[267]

MongoDB concepts
collection 10
database 10
document 10

MongoDB database 10, 30
MongoDB, installing

on OS X 17
package managers used 16

MongoDB MapReduce
performing, within PHP 114, 117-119

MongoDB object 34
MongoDB powered blog 30
MongoDB, securing

admin user, creating 232
regular user, creating 233
user accounts, deleting 233, 234
user accounts, modifying 233, 234
user accounts, viewing 233, 234
user authentication, through PHP driver 234
user input, filtering 235

MongoDB server
connecting to 23-25
running 30
running, in secure environment 235
timeout, specifying for connection attempt 26

MongoDB, stopping
Control + C, hitting 18
INT or TERM signal, sending in UNIX 19
mongo interactive shell used 19

MongoDB, users
CERN 10
Craigslist 9
Foursquare 9

MongoDB, with RDBMS
data archiving 148
entity metadata, storing 149
issues 173
logging 149
online table 148
results, storing for aggregation queries 148

mongo interactive shell 30, 109
Mongo Query Language 42
mongo shell

distinct() method, using in 127
myfirstdb command 20

MySQL
about 217
databases, creating in 150, 152

N
natural ordering 135
Neo4j 8
NoSQL 8
NoSQL databases

about 8, 108
types 8

NoSQL databases, types
about 8
column-based databases 8
document-based databases 8
graph-based data-stores 8
key-value data stores 8

NoSQL movement 8
Not only SQL. See NoSQL
num parameter 210

O
objects

deleting 252
saving 252

old sales records
archiving, in MongoDB 161-163

online table 148
open() method 78, 84
OS X

MongoDB, installing on 17

P
page_views_last_week collection 140
page visits

logging, with MongoDB 131-134
PHP

about 11, 130, 175, 241
MongoDB MapReduce, performing within 114,

117-119
PHP 5 242
PHP driver

installing, for MongoDB 21, 22
user, authenticating 234

[268]

phpinfo() method 22
php.ini file 23
phpMoAdmin

about 241, 249
collections, viewing 250
data, exporting 252
data, importing 252
documents, querying 251
documents, viewing 250
features 253
installing, on computer 249, 250
objects, deleting 252
objects, saving 252
stats, viewing 253
used, for administering MongoDB 249, 250
versus RockMongo 254, 255

phpMoAdmin versus RockMongo
about 254
configurability 254
data import and export 254
GridFS 255
indexes, managing 255
installation 254
interface 254
map/reduce 255
querying 254
server stats display 255
user authentication 254

PHP-Mongo connection
configuring 26
creating 23, 24, 25

PHP-MongoDB driver
installing, on UNIX 23

PHP native session handling
about 74
limitations 78
testing 74-77

PHPSESSID cookie 77
player 149
PositionOptions object

about 198
properties 198

PositionOptions object, properties
enableHighAccuracy 198
maximumAge 198
timeout 198

profile page
about 93
creating 93-98

profiling
about 229
optimization rules 230

Python 11, 175

Q
queries

explaining, explain() method used 227, 228
optimizing 227
profiling 229

query performance
enhancing, indexes used 217, 218

query results
sorting 49

R
range queries

performing, on dates 50
RDBMS 148
RDBMS to MongoDB migration

challenges 163
RDBMS to MongoDB migration, challenges

data types 163
foreign key constraints 163

read() method 78, 84
real time

unique page visits, retrieving in 146
real-time analytics, MongoDB 141
real-time page visit counter

building 141-145
Redis 8
reduce function

about 107, 110, 112, 140
applying, on collection 112, 113

reduce phase 107
referenced documents

about 64
versus embedded documents 69

regular collection
converting, to capped collection 136
size, specifying 135

[269]

regular user
creating 233

relational databases
about 148
similarity, with MongoDB 11, 12

relational model
defining 149, 150

relationships
managing, between documents 63

remove() method
about 62, 186
optional arguments 63

remove() method, optional arguments
justOne 63
safe 63
timeout 63

Replica Set 238
replication 130, 238
restaurants

displaying, near user location 203-08
retrieving, that serve burgers 211-215

results
storing, for aggregation queries 148
viewing, for aggregation 113

RockMongo
about 241, 242
data, exploring with 244
data exporting options 247
data importing options 247
installing, on computer 242-244
MongoDB, administering with 242-244
stats, viewing 248
versus phpMoAdmin 254, 255

rockmongo directory 242
RockMongo versus phpMoAdmin

about 254
configurability 254
data import and export 254
GridFS 255
indexes, managing 255
installation 254
interface 254
map/reduce 255
querying 254
server stats display 255
user authentication 254

RSS feed 8
Ruby 175
rules

queries, optimizing 228
runCommand() method

about 113, 114
arguments 113

runCommand() method, arguments
map 113
mapreduce 113
out 113
reduce 113

S
safe inserts

performing, for databases 35
safe inserts, for databases

benefits 36
sample data

generating 104-107, 152
save() method 170

versus update() method 56
scripts

benchmarking 189
search

implementing, in blogging application 227
search feature 251
secure environment

MongoDB server, running 235
selectCollection() method 34, 35
selectDB() method 34
session

about 74, 77
practices 99, 100

session cookies
domains, setting for 100

session_destroy() method 77
session garbage collector

influencing 85
session.gc_divisor 85
session.gc_probability 85
session handling

extending, with session_set_save_handler()
function 78

implementing, with MongoDB 78

[270]

session_id() function 77
SessionManager class

__construct() method 83
about 79
building 79-83
close method 84
constructor 83
destroy method 84
gc method 85
open method 84
read() method 84
using 86, 87, 88
working 83
write method 84

session practices
browser consistency, verifying 100
low expiry times, setting for session cookies 99
proper domains, setting for session cookies 100
session timeouts 100

session_set_save_handler() function
about 78, 79
session handling, extending with 78

session_start() method 77
session timeouts 100
setMetadata() method 171
setProfilingLevel() command 229
sharding 114, 130
show dbs command 14
shutdownServer() command 19
size

specifying, of regular collection 135
skip() method 50
Solid State Drives (SSD) 225
sort() method 49, 135
stats

viewing 248, 253
storeUpload() method 181
storing tags

allowing, for articles 37
strtotime() function 37
style.css file 32
subset

returning, of fields 49
syncdelay command 236

system.profile documents
fields 229

system requisites, MongoDB 12

T
table scan

forcing 229
tag cloud

creating 115-119
timeout

specifying, on insert 36
trilateration 192
Twitter 8

U
unique indexes 221
unique page visits

retrieving, in real time 146
UNIX

PHP-MongoDB driver, installing on 23
update() method

about 51, 186
optional arguments 55
versus save() method 56

update() method, optional arguments
multiple 55
safe 55
timeout 55

updateVisitCounter() method 145
upsert

about 55, 141
performing 56

user
authenticating, through PHP driver 234

user accounts
deleting 233, 234
modifying 233, 234
viewing 233, 234

User Agent string 100
user authentication

adding, in MongoDB 230-232
implementing, in blogging web app 99

user authentication module 88

[271]

User class
building 89-92

user generated _id
setting 37

user input
filtering 235

username
comments, getting by 70

V
Views

about 160
replacing, with MongoDB 160

Voldemort 8

W
W3C Geolocation API

about 193
browsers 194
location, detecting with 194-197

web analytics 130
web page visitor

location, detecting 193
while loop 42
Wi-Fi MAC address tracking 192
Windows

MongoDB, running on 13, 14
PHP driver, installing for MongoDB 21, 22

write() method 78, 84

Thank you for buying
PHP and MongoDB Web Development

Beginner’s Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

PHP and CouchDB Web Development
Beginner’s Guide
ISBN: 978-1-84951-358-6 Paperback: 282 pages

Get your PHP application from conception to
deployment by leveraging CouchDB’s robust features.

1.	 Build and deploy a flexible Social Networking
application using PHP and leveraging key features of
CouchDB to do the heavy lifting

2.	 Explore the features and functionality of CouchDB,
by taking a deep look into Documents, Views,
Replication, and much more.

3.	 Conceptualize a lightweight PHP framework from
scratch and write code that can easily port to
other frameworks

Cassandra High Performance Cookbook
ISBN: 978-1-84951-512-2 Paperback: 310 pages

Over 150 recipes to design and optimize large scale
Apache Cassandra deployments

1.	 Get the best out of Cassandra using this efficient
recipe bank

2.	 Configure and tune Cassandra components to
enhance performance

3.	 Deploy Cassandra in various environments and
monitor its performance

4.	 Well illustrated, step-by-step recipes to make all
tasks look easy!

Please check www.PacktPub.com for information on our titles

PostgreSQL 9 Administration Cookbook: LITE
ISBN: 978-1-849516-42-6 Paperback: 88 pages

Configuration, Monitoring and Maintenance

1.	 Administer and maintain a healthy database

2.	 Configure your PostgreSQL database to your needs

3.	 Monitor your database and learn to diagnose
any problems

4.	 Part of Packt's Cookbook series: Each recipe is a
carefully organized sequence of instructions to
complete the task as efficiently as possible

PostgreSQL 9.0 High Performance
ISBN: 978-1-84951-030-1 Paperback: 468 pages

Accelerate your PostgreSQL system

1.	 Learn the right techniques to obtain optimal
PostgreSQL database performance, from initial
design to routine maintenance

2.	 Discover the techniques used to scale successful
database installations

3.	 Avoid the common pitfalls that can slow your
system down

4.	 Filled with advice about what you should be doing;
how to build experimental databases to explore
performance topics, and then move what you've
learned into a production database environment

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with MongoDB
	The NoSQL movement
	Types of NoSQL databases

	MongoDB – A document-based NoSQL database
	Why MongoDB?
	Who is using MongoDB?
	MongoDB concepts—Databases, collections, and documents
	Anatomy of document
	BSON—The data exchange format for MongoDB
	Similarity with relational databases

	Downloading, installing, and running MongoDB
	System requirements

	Time for action – downloading and running MongoDB on Windows
	Installing the 64-bit version

	Time for action – downloading and running MongoDB on Linux
	Installing MongoDB on OS X
	Configuring MongoDB
	Command-line parameters
	File-based configuration

	Stopping MongoDB
	Hitting Control + C
	From the mongo shell
	Sending INT or TERM signal in UNIX

	Creating databases, collections, and documents
	Time for Action – creating databases, collections, and documents
	Installing the PHP driver for MongoDB
	Time for Action – installing PHP driver for MongoDB on Windows
	Installing the PHP-MongoDB driver on Unix

	Connecting to the MongoDB server from PHP
	Creating a PHP-Mongo connection

	Time for action – creating a connection to the MongoDB server from PHP
	Configuring the PHP-MongoDB connection
	Specifying timeout for the connection attempt

	Summary

	Chapter 2: Building your First MongoDB Powered Web App
	A MongoDB powered blog
	Have the MongoDB server running
	Inserting documents in MongoDB
	Time for action – building the Blog Post Creator
	Creating databases and collections implicitly
	Performing 'safe' inserts
	Benefits of safe inserts

	Specifying a timeout on insert
	Setting the user generated _id
	The MongoDate object

	Querying documents in a collection
	Time for action – retrieving articles from a database
	The Mongo Query Language
	The MongoCursor object
	Conditional Queries

	Doing advanced queries in MongoDB
	Time for action – building the Blog Dashboard
	Returning a subset of fields
	Sorting the query results
	Using 'count ', 'skip', and 'limit'
	Performing range queries on dates

	Updating documents in MongoDB
	Time for action – building the blog editor
	Optional arguments to the update method
	Performing 'Upsert'
	Using update versus using save
	Using modifier operations
	Setting with $set
	Incrementing with $inc
	Deleting fields with $unset
	Renaming fields with $rename

	Deleting documents in MongoDB
	Time for action – deleting blog posts
	Optional arguments to remove

	Managing relationships between documents
	Embedded documents
	Referenced documents

	Time for action – posting comments to blog posts
	Embedded versus referenced – Which one to use?
	Querying embedded objects

	Summary

	Chapter 3: Building a Session Manager
	Understanding HTTP sessions
	Understanding PHP native session handling
	Time for action – testing native PHP session handling
	Limitations of native PHP session handling

	Implementing session handling with MongoDB
	Extending session handling with session_set_save_handler
	The SessionManager class

	Time for action – building the SessionManager class
	How the SessionManager works
	The constructor
	The open and close methods
	The read method
	The write method
	The destroy method
	The gc method

	Putting the SessionManager in action
	 Time for action – putting SessionManager into action
	Building the user authentication module
	Time for action – building the User class
	Creating the login, logout, and user profile page
	Time for action – creating the login, logout, and profile page
	Using good session practices
	Setting low expiry times of session cookies
	Using session timeouts
	Setting proper domains for session cookies
	Checking for browser consistency

	Summary

	Chapter 4: Aggregation Queries
	Generating sample data
	Time for action – generating sample data
	Understanding MapReduce
	Visualizing MapReduce

	Performing MapReduce in MongoDB
	Time for action – counting the number of articles for each author
	Defining the Map function
	Defining the Reduce function
	Applying the Map and Reduce
	Viewing the results
	Performing MapReduce on a subset of the collection
	Concurrency

	Performing MongoDB MapReduce within PHP
	Time for action – creating a tag cloud
	Performing aggregation using group()
	Time for action – calculating the average rating per author
	Grouping by custom keys
	MapReduce versus group()

	Listing distinct values for a field
	Time for action – listing distinct categories of articles
	Using distinct() in mongo shell

	Counting documents with count()
	Summary

	Chapter 5: Web Analytics using MongoDB
	Why MongoDB is a good choice as a web analytics
backend
	Logging with MongoDB
	Time for action – logging page visits with MongoDB
	Capped collections
	Sorting in natural order
	Updating and deleting documents in a capped collection
	Specifying the size of a regular collection
	Convert a regular collection to a capped one

	Extracting analytics data with MapReduce
	Time for action – finding total views and average response time per blog post
	The map, reduce, and finalize functions
	Displaying the result
	Running MapReduce in real time versus running it in the background

	Real-time analytics using MongoDB
	Time for action – building a real-time page visit counter
	Summary

	Chapter 6: Using MongoDB with Relational Databases
	The motivation behind using MongoDB and an RDBMS together
	Potential use cases

	Defining the relational model
	Time for action – creating the database in MySQL
	Caching aggregation results in MongoDB
	Time for action – storing the daily sales history of products in MongoDB
	Benefits of caching queries in MongoDB
	Storing results of expensive JOINs

	Using MongoDB for data archiving
	Time for action – archiving old sales records in MongoDB
	Challenges in archiving and migration
	Dealing with foreign key constraints
	Preserving data types

	Storing metadata in MongoDB
	Time for action – using MongoDB to store customer metadata
	Problems with using MongoDB and RDBMS together
	Summary

	Chapter 7: Handling Large Files with GridFS
	What is GridFS?
	The rationale of GridFS
	The specification
	Advantages over the filesystem

	Storing files in GridFS
	Time for action – uploading images to GridFS
	Looking under the hood

	Serving files from GridFS
	Time for action – serving images from GridFS
	Updating metdata of a file
	Deleting files

	Reading files in chunks
	Time for action – reading images in chunks
	When should you not use GridFS
	Summary

	Chapter 8: Building Location-aware Web Applications with MongoDB and PHP
	A geolocation primer
	Methods to determine location

	Detecting the location of a web page visitor
	The W3C Geolocation API
	Browsers that support geolocation

	Time for action – detecting location with W3C API
	The Geolocation object
	The getCurrentPosition() method

	Drawing the map using the Google Maps API

	Geospatial indexing
	Time for action – creating geospatial indexes
	Geospatial indexing – Important things to know

	Performing location queries
	Time for action – finding restaurants near your location
	The geoNear() command
	Bounded queries

	Geospatial 'haystack' indexing
	Time for action – finding nearby restaurants that serve burgers
	Summary

	Chapter 9: Improving Security and Performance
	Enhancing query performance using indexes
	Time for action – creating an index on a MongoDB collection
	The _id index
	Unique indexes
	Compound keys indexes
	Indexing embedded document fields
	Indexing array fields
	Deleting indexes
	When indexing cannot be used
	Indexing guidelines
	Choose the keys wisely
	Keep an eye on the index size
	Avoid using low-selectivity single key indexes
	Be aware of indexing costs
	On a live database, run indexing in the background

	Optimizing queries
	Explaining queries using explain()
	Optimization rules

	Using hint()
	Profiling queries
	Understanding the output
	Optimization rules

	Securing MongoDB
	Time for action – adding user authentication in MongoDB
	Creating an admin user
	Creating ‘regular' user
	Viewing, changing, and deleting user accounts
	User authentication through PHP driver
	Filtering user input
	Running MongoDB server in a secure environment

	Ensuring data durability
	Journaling
	Performance
	Using fsync

	Replication

	Summary

	Chapter 10: Easy MongoDB Administration with RockMongo and phpMoAdmin
	Administering MongoDB with RockMongo
	Time for action – installing RockMongo on your computer
	Exploring data with RockMongo
	Querying
	Updating, deleting, and creating documents

	Importing and exporting data
	Viewing stats
	Miscellaneous

	Using phpMoAdmin to administer MongoDB
	Time for action – installing phpMoAdmin on your computer
	Viewing databases and collections
	Querying documents
	Saving and deleting objects
	Importing and exporting data
	Viewing stats
	Other features

	RockMongo versus phpMoAdmin
	The verdict

	Summary

	Pop Quiz Answers
	Chapter 1, Getting Started with MongoDB
	Chapter 2, Building your First MongoDB Powered
Web App
	Chapter 3, Building a Session Manager
	Chapter 4, Aggregation Queries
	Chapter 5, Web Analytics using MongoDB
	Chapter 7, Handling Large Files with GridFS
	Chapter 8, Building Location-aware Web Applications with MongoDB and PHP
	Chapter 9, Improving Security and Performance

	Index

