

PHP and script.aculo.us
Web 2.0 Application Interfaces

Building powerful interactive AJAX
applications with script.aculo.us and PHP

A complete how-to guide for building web sites
using script.aculo.us and PHP to get your project
up and running

Sridhar Rao

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

PHP and script.aculo.us Web 2.0 Application Interfaces

Building powerful interactive AJAX applications with script.aculo.us
and PHP

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2009

Production Reference: 2280409

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-04-6

www.packtpub.com

Cover Image by Filippo (filosarti@tiscali.it)

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Credits

Author
Sridhar Rao

Reviewers
Andrew J. Peterson

Robert F. Castellow

Acquisition Editor
James Lumsden

Development Editors
Nikhil Bangera

Dilip Venkatesh

Technical Editors
Bhupali Khule

Hithesh Uchil

Copy Editor
Sneha Kulkarni

Indexer
Monica Ajmera

Production Editorial Manager
Abhijeet Deobhakta

Editorial Team Leader
Akshara Aware

Project Team Leader
Lata Basantani

Project Coordinator
Rajashree Hamine

Proofreader
Laura Booth

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

About the author

Sridhar Rao has been learning, working, and developing web applications from
the time he was first introduced to the Web. The very idea of reaching out to the
masses and bringing change in the behavior of the users through web applications
excites him the most.

Most of his work has been in PHP, MySQL, and JavaScript. He has worked with
some of the leading technology and service companies in his IT career.

Sridhar currently works for the world's leading database and enterprise company.
He holds an engineering degree in Information Technology and is based in
Bangalore, India.

A book is not the work of an individual. I would like to thank my
family and friends for their encouragement and support. I would
like to thank the whole team of Packt who not only helped me
when things were difficult, but also believed in this project. Special
mention goes to James Lumsden, Nikhil Bangera, Rajashree Hamine,
Bhupali Khule, Hithesh Uchil, and Navya Diwakar for their extra
efforts and patience.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

 About the reviewers

Rob Castellow is the president of PAC Enterprises LLC, a contract and
development company responsible for providing quality professional services. He
has provided services in the development of several J2EE based projects for large
corporations in the telecommunication and financial services sectors.

Rob graduated in 1998 with a Masters in Electrical Engineering from the Georgia
Institute of Technology, and began his career developing embedded systems. Rob
soon found that all the fun was in developing enterprise systems and has been
working on J2EE based applications ever since.

Rob is an enthusiast of new technologies. When he is not proofreading books in PHP
or script.aculo.us, he can be found developing Grails applications, attending user
groups, reading books, and managing or developing several web sites.

Andrew J. Peterson lives with his wife and three daughters in San Francisco,
California. He has about 20 years of experience in building and managing software
systems for consumers, enterprises, and non-profits. His expertise contributes
in the full life-cycle of software development, software methodologies, software
architecture, software engineering, and usability.

Andrew has diverse experience in the industry. In the consumer space, he led a team
in the creation of the top-selling SoundEdit 16. He served numerous roles producing
enterprise software for the leading supplier of software solutions for container
terminals, shipping ports and lines, and distribution centers.

He transferred this experience to web-based software. Over the past ten years, he's
built a variety of web applications, including non-profit, social networking, social
search, pharmaceuticals, and social e-commerce. He has built successful projects
in a variety of languages, including Java, Ruby, C++, and Perl.

I'd like to thank my daughters for sharing their energy with me.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents
Preface	 1
Chapter 1: About script.aculo.us	 5

Welcome to the script.aculo.us world	 5
Versions	 6
The script.aculo.us fun begins	 6

Effects	 6
Drag and drop	 7
AJAX	 8

Much more fun	 9
Summary	 9

Chapter 2: Exploring Client-side Techniques with Prototype	 11
About Prototype	 11

The story so far: Versions	 12
Compatibility	 12

Prototype features—a walk-through	 12
Getting started with Dollar, DOM, and more	 12
AJAX components—an overview	 16

Ajax.Request	 17
Ajax.Updater	 18
Ajax.PeriodicalUpdater	 18
Ajax.Responders	 19

Hands-on examples	 20
Event handling	 25

Description	 25
Handling general events	 25

Syntax	 26
Handling mouse events	 26
Handling keyboard events	 26
Hands-on examples	 27

Handling the keyboard events example	 28
Handling mouse event example	 29

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[ii]

Redefining forms with Prototype	 30
Introduction	 30
Description	 30
Usage	 31
Hands-on examples	 32

Getting more hands-on	 36
Hands-on example: How to use XML to read data from
the server using Prototype	 36

Summary	 40
Chapter 3: Server-side Techniques with PHP and MySQL	 41

Basic requirements	 41
A word about PHP 5.0 or above	 42
A word about MySQL 5.0	 42
The WAMP server: A must-have for Windows users	 42
phpMyAdmin	 43

Getting the playground ready	 44
Checking the PHP installation using the WAMP server	 44
Checking the MySQL installation using the WAMP server	 45
Adding Prototype library in our code	 46
Adding the script.aculo.us library in our code	 46
Basic classes	 46

DBConfig.php	 47
DBClass.php	 47
Secure.php	 49

Hands-on examples: Common scripts	 49
User login management system	 49

Signup.php	 50
Login.php	 53
Index.php	 57
Logout.php	 58

Adding a username availability script to the login management system	 59
Creating a simple tag cloud	 63

Summary	 66
Chapter 4: Adding Effects and Multimedia to
User Interface Design	 67

Introduction to effects	 67
Types of effects	 68

Common parameters	 69
Code usage	 69

Hands-on examples	 73
The core effects	 73

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[iii]

Various effects	 76
Combining all the effects	 78

Playing sounds with script.aculo.us	 79
Types of sounds	 79

MP3 sounds	 80
Code usage	 80
A hands-on example	 80

Summary	 82
Chapter 5: AJAX Drag and Drop Feature using script.aculo.us 	 83

Introduction to the drag and drop feature	 86
Explanation of the drag and drop feature	 86
Code usage of the drag and drop feature	 88
Hands-on example: Creating a drag and drop sample
in one line of code	 91
Hands-on example: Advanced drag and drop tutorial	 93
Summary	 97

Chapter 6: In-place Editing using script.aculo.us	 99
An introduction to the in-place editing feature	 99
Getting started with in-place editing	 101
Code usage of the in-place editing features and options	 102
Tips and tricks with in-place editing	 106

Disabling the element for the in-place editing functionality	 106
Entering into the edit mode	 106
Submitting on Blur	 107
Callbacks for onEnterEditMode and onLeaveEditMode	 108

Hands-on example: In-place editing with server-side handling	 108
Hands-on example: InPlaceCollectionEditor	 112
Summary	 114

Chapter 7: Creating Autocompletion using script.aculo.us	 115
Introduction to autocompletion	 115
Explanation of the autocompletion feature	 117

Types of autocompletion sources	 118
Remote sources	 118
Local sources	 118

Options for autocompletion sources	 119
Options for remote sources	 119
Options for local sources	 120

Code usage of autocompletion using remote sources	 121
Code usage of autocompletion using local sources	 123
Hands-on example: Autocompletion using remote sources	 124

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[iv]

Hands-on example: Advanced autocompletion
using remote sources for multiple fields	 128
Hands-on example: Autocompletion using local sources	 132
Summary	 133

Chapter 8: Slider for Dynamic Applications using script.aculo.us	 135
First steps with slider	 136

Parameters for the slider definition	 137
Options with the slider	 137
Types of slider	 138

Vertical slider	 138
Horizontal slider	 139

Code usage for the slider	 139
Code usage for the vertical slider	 140
Code usage for the horizontal slider	 142
Code usage for sliders with options	 143

Tips and tricks with the slider	 146
Reading the current value of the slider	 147
Multiple handles in the slider	 147
Disabling the slider	 148
Enabling the slider 	 149

Hands-on example: Using vertical and horizontal slider	 149
Summary	 154

Chapter 9: script.aculo.us in One Go	 155
Hands-on example: Multiple script.aculo.us features mash up	 155

Adding in-place editing in page	 156
Adding effects to the page	 157
How about adding the drag and drop feature?	 157
Out of the box thinking—adding multiple features to an element	 159

Hands-on example: Quick revision of all the features of
script.aculo.us in one page	 162

Let's start with effects	 162
Some in-place editing	 163
A little bit of drag and drop	 164
The slider needs to be in picture too	 165
How can we miss music?	 167

Summary	 168
Chapter 10: Todonow: A Tadalist Clone	 169

The BIG picture	 169
Features and functionality	 170
Creating a database playground	 170

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[�]

Let's log in…	 172
User interface comes first	 173
View all my lists	 174

Logic and code	 174
View all my lists along with a summary of incomplete items	 176

Logic and code	 176
Creating new lists	 177

Logic and code	 177
Adding items to our lists	 179

Adding items to the database	 179
Reading the newly added item and placing it back on the page	 181

Adding effects to our items	 182
Mark items as completed	 183

Add the item to the completed <div>	 184
Delete the item from the incomplete <div>	 185
Change the status of the item to completed	 185

Convert completed items to incomplete status	 186
Add the item to the incomplete <div>	 187
Delete the item from the complete <div>	 188
Change the status of the item to incomplete	 188

Deleting lists	 190
Let's wrap up and log out	 190
Our Todonow is ready to go live	 191
Summary	 191

Chapter 11: Creating Delicious and Digg Bookmarks Manager	 193
Application at a glance	 193
Features and functionality	 194
The database playground for our application	 194
User profile home page	 196
Submit new tutorials	 196

Submitting a tutorial URL	 197
Adding title, description, and tags to the tutorial	 199

View tutorial	 202
Deleting tutorials	 202
Search using real-time autocompletion	 204
Exploring the tag cloud features of 2.0 applications	 206

Adding tags to tutorials	 207
Reading all the tags in the database	 208
Creating a tag cloud	 208
Search using tags	 209

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Table of Contents

[vi]

Don't forget to log out	 210
Ideas for life	 211
Summary	 211

Chapter 12: Creating a Shopping Search Engine	 213
Application at a glance	 213
Features and functionalities	 214
The user management system	 214
Selecting the products to buy	 215
Adding effects	 217
Searching products	 218
Searching products using the tag cloud	 221

Generating a tag cloud	 222
View products for a tag name	 223

Summary	 224
Chapter 13: Common 43: 43 Things, 43 Places, and
43 People Clones	 225

Getting the database ready	 225
Database for places	 226
Database for people	 226
Database for things	 226

Advanced commenting system	 227
Creating a comments form	 227
Posting comments	 229
Edit or Delete comments	 234

Modules ready to go live	 234
User management system	 234
Tag cloud features	 235

Adding 2.0 flavour to applications	 235
AJAX modules	 235
Effects	 236
Real-time search	 237
In-place editing	 237
Drag and drop	 238

Putting the building blocks together	 239
Features and functionalities	 239

Summary	 240
Index	 241

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Preface
Let me start by thanking the whole script.aculo.us community, which is pushing the
limits of creativity through JavaScript.

This book is a humble attempt to help developers to quickly get on board and make
their web applications AJAXified using Prototype and script.aculo.us. We have used
PHP and MySQL as our server-side artillery to spread love among the PHP and
MySQL developers and community as a whole for script.aculo.us.

Prototype library has been covered in depth and features have been explained in a
way that would not only help a beginner but also amaze gurus. The script.aculo.us
library has been fully explored with the help of snippets, codes, and examples.

Exclusive hands-on examples have been provided that will act as a reference guide
whenever needed.

Towards the end of the book we go on to build three web applications from scratch.

"If Prototype is giving our web applications powerful performance, script.aculo.us is making
them look functionally beautiful."

What this book covers
Chapter 1 Kick-starts our script.aculo.us journey. We will explore the overview of the
script.aculo.us library, real-world usage, and a quick example.

In Chapter 2 we will learn about the powerful Prototype library. We will explore
various features like DOM, AJAX, event handling, and helper functions.

Chapter 3 gets us started with PHP and MySQL in building our complete Login
Management System, getting AJAX into the picture, and create our own Tag Cloud.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Preface

[�]

In Chapter 4 we will learn with the help of hands-on examples, how to add
multimedia and effects to web applications using script.aculo.us.

In Chapter 5 we will learn to make simple, clean, and beautiful user interfaces using
drag and drop. Drag everything and drop something.

In Chapter 6 we will learn how to use InPlaceEditor and InPlaceCollection for editing
on the fly.

Chapter 7 explores yet another 2.0 feature called autocompletion to create more
robust and engaging applications.

In Chapter 8 we will learn the hands-on examples with different types of sliders and
how to integrate it into our web applications.

Chapter 9 is our reference guide for all the script.aculo.us features in one go.

In Chapter 10 we will learn how to build our own tadalist application from scratch
to live.

In Chapter 11 we will build your own social bookmarking application from scratch
to live.

In Chapter 12 we will learn how to build a new design for a 2.0 shopping site from
scratch to live.

Chapter 13 explains the build modules required to implement 43 things, 43 people,
and 43 places from scratch to live.

Who this book is for
This book is for web developers who swear by simple yet agile and useful web
applications. This book assumes basic knowledge of HTML, CSS, JavaScript, and
PHP. A PHP beginner will surely find this book useful, and for the gurus, the book
gives you a completely new way of adding interactivity to your web applications.
The examples in the book use PHP, but can be adapted easily to other languages.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Preface

[�]

Code words in text are shown as follows: "We are calling the function fetchArray
defined in our DBClass to get the array of results and using a while loop read
each row."

A block of code will be set as follows:
$db = new DBClass();
$newlist = new lists();
$title = $_POST['ListTitle'];
$ownerid = $_SESSION["uid"];
$query = $newlist->add_new_list($title,$ownerid);

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "We click
on the Serialize The Form link and it creates a string which is ready to be passed to
the AJAX objects."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Preface

[�]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/4046_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in text or code—we would be grateful if you would report this to us. By doing so,
you can save other readers from frustration, and help us to improve subsequent
versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/support, selecting your book, clicking on the let
us know link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata added to any list of
existing errata. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

About script.aculo.us
We have been developing web applications using PHP and MySQL. But now we
want to learn how to make our applications interactive in terms of usage, and build a
community around them. In short, we want to build simple, yet powerful applications.

Look no further! script.aculo.us is our savior and our love, too. script.aculo.us is a
JavaScript library that provides dynamic visual effects, user interface controls, and
robust AJAX features. In this chapter, we will explore the script.aculo.us library with
regards to versions, features, and real-world usage.

The official site of script.aculo.us describes it as Web 2.0 JavaScript, which it truly is.
We will also see how we can delight our friends with just a few lines of code.

Welcome to the script.aculo.us world
Anyone developing a web application knows how painful it is to make cross-browser
JavaScript functionality—especially when we are dealing with XMLHttpRequest aka
AJAX and many more such features, as different browsers behave differently.

Thomas Fuchs wrote the initial version of script.aculo.us to solve this problem.
The open-source community of script.aculo.us too added many more features that
have redefined the way JavaScript is being used. From simple effects to complex
Rich Internet Applications (RIA), script.aculo.us does it all. script.aculo.us supports
popular browsers available in the market such as Internet Explorer, Mozilla, Opera,
and Safari.

script.aculo.us is an add-on to the Prototype library. If Prototype makes JavaScript
simple, script.aculo.us makes JavaScript fun.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

About script.aculo.us

[�]

Versions
Now that we are ready to have some serious fun with script.aculo.us, it's important
to quickly grab the latest version. We will require the Prototype library that comes
with the latest version of script.aculo.us.

You can download the latest version of script.aculo.us from their official
site at http://script.aculo.us/. Save the file in the web server's
root directory, www, inside the specific project folder. The Getting Started
URL explains this process in detail.

script.aculo.us 1.8 is the latest version that comes with Prototype 1.6.0.1 beta.
Alternatively, if you have an older version such as 1.7 or 1.6, it should be fine.
However, we highly recommend upgrading it to version 1.8, as it adds new features
for multimedia support and incorporates many bug fixes which may be missing in
the previous versions.

The script.aculo.us fun begins
The best way to understand and visualize what script.aculo.us can do for us is
by getting our code up and running—quickly! Yes, we mean it. Let's explore some
features of script.aculo.us with examples and real-world scenarios before we move
on to create the next big thing on the Web.

Effects
You want to impress your application users, don't you? Effects are all about adding
interactivity to your applications, which in turn gives an appealing user interface to
make users fall in love with your applications.

script.aculo.us comes with an effects engine, which provides various effects such as
grow, slide, highlight, and many more. When applied in applications these effects
add beauty to the functionality.

And, what if I tell you that we can do this in one line of code? I know you won't
believe it, so let's see it happening. Just copy and paste the following JavaScript
code in your editor and you should see the magic unfold.

The HTML code, which we will use to add effects, is as follows:
<html>
<body>

<div id="effect-id"> </div>

</body>
</html>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[�]

Now let's add effects to this <div>:

new Effect.Highlight($('effect-id'));

You should be able to see the effects when the <div> is selected. A simple real-world
example of what you have done now is shown next. It's a WordPress application
using the script.aculo.us effects.

Want to try something else? Try this:

new Effect.Fade($('effect-id'));

After applying the fade effect to the <div>, you should see the <div> fading
away slowly.

We will use many such effects in our applications throughout the book.

Drag and drop
Drag and drop is another feature that is quite often seen in many web applications.
Imagine a simple shopping cart where you can simply drag-and-drop the items you
want to buy from a list of items. Isn't it simple for users? Yes, it indeed is. And even
better, it is simple for developers too.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

About script.aculo.us

[�]

The complete drag and drop features of script.aculo.us will be explained in
Chapter 5. For now, check out the Backpackit application from 37signals at
www.backpackit.com and visualize what kind of application you want to
create using drag and drop.

In the following screenshot we can drag notes and lists, and re-arrange the items on
the page:

AJAX
Asynchronous JavaScript and XML or AJAX, as it is commonly known, redefines
and bridges the gap between the web and desktop applications. As a user, we send
requests to the server and data is received as a response. This is then displayed to
us—the user—on the same page without the whole page getting reloaded. The same
applies to desktop widgets synchronizing with web applications.

script.aculo.us uses the functions and power of Prototype, such as Request and
Updater, to add AJAX functionality to web applications easily. For now, all you
should understand is how it will help us in our applications.

In the previous screenshot we could add a List, Note, Divider, and Tag without
moving to another page. Everything is done on the same page, but the data is sent
to the server using AJAX. From the user's perspective, the application is easy, fast,
and simple.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 1

[�]

As we said before, we can add a Note, List, and Tag without moving to another
page. This feature makes use of the power of XML features through AJAX
techniques, which update the server at runtime and even fetch the data from the
server without loading the whole page.

Our idea of building a project is also the same. We shall go through all these features
step-by-step in Chapter 2.

Much more fun
It's only the beginning of the fun. We have just touched upon an overview of the
library. There are many other features such as autocomplete, sliders, in-place editing,
and multimedia. All these features are fun to work with and are covered in depth in
the chapters to come.

Throughout the process of learning script.aculo.us, all you need to do is visualize the
possibilities of how we can make our applications more interactive and engaging.

Summary
In this chapter we saw an overview of the script.aculo.us library. Real-world scenario
of WordPress and Backpackit prove that script.aculo.us has been trusted with
developing and deploying simple, yet powerful user-driven applications.

In the next chapter we will explore the very powerful JavaScript library Prototype.
We will learn about DOM manipulation, helper functions, and AJAX in detail.
Anything and everything about Prototype will be covered—but all the while
having fun. Read on!

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side
Techniques with Prototype

In the previous chapter, we saw some basic features provided by the script.aculo.us
library such as effects, drag and drop, and AJAX.

In this chapter we will cover the wonderful Prototype library. Some of the key
features of Prototype that we will be covering are as follows:

Helper functions
AJAX components
Forms and events handling
Hands-on examples

About Prototype
Prototype was originally written by Sam Stephenson. It is a powerful open-source
JavaScript framework, which makes it easy to develop dynamic and rich internet
applications. Prototype provides both simple and advanced JavaScript extensions
that assist developers, instead of making them rewrite their own code base. This
includes the powerful XMLHttpRequest (XHR).

Prototype natively supports the AJAX and Document Object Model (DOM)
features. This makes it an obvious choice for developers who want to bring
about rapid web application development.

A single chapter dedicated to Prototype is certainly not sufficient to cover and
explain everything that Prototype can help us do. However, remember that we
want to build dynamic web applications, and step-by-step we will explore features
of the library that we can actually use in our applications.

As said before, Prototype makes JavaScript easy, script.aculo.us makes it fun to
work with�.

•
•
•
•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side Techniques with Prototype

[12]

The story so far: Versions
The Prototype framework has seen a lot of contribution and changes from the
community since Sam Stephenson released it in February 2005.

The current stable version of Prototype is version 1.6, which comes with the
script.aculo.us library. Alternatively, you can grab the latest copy from
http://www.prototypejs.org/.

Compatibility
Prototype's JavaScript framework has the compatibility to work with leading web
browsers. What makes it more powerful is the fact that developers can extend it with
any of their programming languages such as Ruby, PHP, and Java.

Prototype features—a walk-through
Prototype extends the DOM through extensions and also allows developers to create
their own extensions and methods. Prototype provides the most powerful and the
simplest way of using AJAX in any web application.

Getting started with Dollar, DOM, and more
OK, fasten your seatbelt and get ready! We are going for a long drive with Prototype�.

Prototype comes with utility functions, which makes it easy to incorporate it with
any server-side scripting language�.

We are using PHP as our server-side scripting language
throughout the book.

A traditional way of ��� accessing�������������������������������������� the element by ID would be like this:

var elementID = document.getElementById('elementID');

Similarly, to get the value of anything in the input field we would use this:

var elementValue = document.getElementById('elementID').value;

If we were to use a set of HTML elements—such as an input box, a <div>, or
any other element—along with their values, it would result in typing the whole
syntax repeatedly for each element. So, are there any shortcuts? In such situations,
Prototype comes to our rescue.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[13]

We can achieve the same functionality with simple shortcuts, such as the following:

var element = $('elementID');
Var elementValue = $F('element');

You see how easy this is? Prototype has many more of these simple utility functions
to make our code neat and simple.

The $ function extends Element.extend(), which is valid for all the elements
and methods.

The complete cheat sheet is as follows:

Using Prototype Description
$() Get the element by ID
$F() Get the value of the element passing the ID
$A() Converts a single argument into an Array
$H() Converts objects into hash objects
$R() Used in place of writing the objectRange objects

These are some of the basic functions that prove to be really handy, instead of typing
the same syntax repeatedly. We will be using all these and many more functions in
all our applications.

Now let's create a simple example to demonstrate the power of helper functions on
the web page.

First, create a simple HTML file with some elements. Call it helper.html.

<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="Scripts.js"></script>
<script></script>

<link rel="stylesheet" href="style.css" >
<head>
 <title>Helper Functions!!!</title>
</head>
<body>
 <h3 class="heading">
 Trying Out With Some Helper Functions!!!
 </h3>
 <table class="FormTable">
 <tr>
 <td>Enter Your Name</td>
 <td><input type="text" name="first_name"
 id="first_name" size="35">

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side Techniques with Prototype

[14]

 </td>
 </tr>
 </table>
<p>
 <div class="links">

 Read The Object Name Using $ function

<p>

 Read Name Using $F function

<p>
 We have used a simple example by creating an array

 <i>var name=new Array("First Name","Last Name","Age");
 </i>
<p>

 Read All Inputs & Put in Array Using $A function
<p>
 </div>
</body>
</html>

We have included the stylesheet style.css. The code that follows is inserted into
the style.css file to add beauty to the code in the helper.html file. Feel free to
use your CSS creativity.

.FormTable {
 background: #9AAB3C;
 font-family:Verdana;
 font-size:13px;
 color:white;
 align:center;
}
.links a{
 width:300px;
 font-family:Verdana;
 font-size:14px;
 color:#13801C;
 align:center;
}
.heading {
 font-family:Verdana;
 font-size:14px;
 color:#9E5A70;
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[15]

Here, it is a simple user interface using a combination of both scripts and codes. When
we run it in the browser, the output that we get is similar to the following screenshot:

It's time to add some JavaScript to the helper.html file between <script> </script>.
This is pretty simple and straightforward.

function readDollar() {
 alert($('first_name'));
}

function readF() {
 alert($F('first_name'));
}

function readA() {
 var name=new Array("First Name","Last Name","Age");
 alert($A(name));
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side Techniques with Prototype

[16]

That's the most basic example you can find and, of course, you can quickly get
started. The following screenshot shows the result:

AJAX components—an overview
Ask any developer why he prefers working with Prototype and you will typically
find one obvious reason—it's native and easy support for AJAX.

Asynchronous JavaScript and XML aka XHR aka AJAX has become the de facto
technique for many web applications. Most of the community-centric and niche web
applications are powered by AJAX these days. Prototype provides a lot of features
that help us add AJAX functionality to web applications with ease. Otherwise,
we would have to write the XMLHttpRequest objects. The best part is that we, as
developers, don't have to worry about the cross-browser issues. Prototype takes
care of them.

An AJAX object is a predefined object in the library that helps us to create objects on
the fly. It comes with a lot of options for our convenience.

All AJAX functionality is contained in mainly four objects of the AJAX class. There
are basically the following four types of objects:

Ajax.Request

Ajax.Updater

Ajax.PeriodicalUpdater

Ajax.Responders

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[17]

Ajax.Request
Ajax.Request is inherited from the AJAX class of Prototype. It helps us in
dynamically requesting a URL from the server, which is followed by a server
response. An Ajax.Request object encapsulates commonly used AJAX code for
setting up the XMLHttpRequest object, performing cross-browser checking for
compatibility, and callback handling.

Communication with the server to establish client-side communication, based on
server-side script, is easy and painless.

A simple constructor looks like this:
New Request = new Ajax.Request(url, options);

As you will notice from the syntax, in order to initiate the Request object we need to
supply two arguments: the url, and the options.

Some of the options parameters are as follows:

Method: It specifies whether the action is a GET or POST method
Parameters: It is the input values that we will be passing to our server
onSuccess: On successful completion of the request, either call a function or
perform some other similar function
onFailure: It is the handle used if the request fails
onLoading: While requesting, show a simple image or text to notify the user
about what is happening

The syntax for calling an Ajax.Request object with all parameters is shown in the
following code:

var options = {
 method: "get",
 parameters: param,
 onSuccess: ShowReponse,
 onFailure: ShowError
};
var req = new Ajax.Request("url", options);

Alternatively, we can also define the options as a part of the constructor.

This would look like the following code snippet:
new Ajax.Request(url, {
 method: 'get',
 parameters:pars,
 onSuccess: showResponse,
 onFailure:showError
 });

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side Techniques with Prototype

[18]

Ajax.Updater
The Ajax.Updater class of Prototype helps us by updating specific portions of the
web page with the data that comes from the server dynamically.

The syntax looks like this:

new Ajax.Updater(location, url,[options])

If you look at the syntax, it takes two parameters:

location: It is the ID of the <div> or any specific part of the page that needs
to be updated
url: It is the URL of the server file to fetch the data

The options are the same as those of Ajax.Request. So, the complete constructor to
be defined would be as follows:

var options = {
 Method: "get",
 Parameters: param,
 onSuccess: ShowReponse,
 onFailure: ShowError
};
var req = new Ajax.Updater('location', "url", options);

Ajax.PeriodicalUpdater
The Ajax.PeriodicalUpdater class of Prototype uses the Ajax.Updater class to
refresh an element after a certain time interval. The syntax will be almost the same
as the one for Ajax.Updater. But along with this we need to supply the frequency
and delay.

A simple example that we can mention at this point of time is Gmail.

After a certain period of time the data gets refreshed and new data is placed inside
the container, as seen in the following screenshot:

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[19]

Ajax.Responders
Responders are global objects that monitor all AJAX activities on the page and are
notified of each step in the communication process. We can always keep a track of
any AJAX activity using Responders.

They act as listeners for the web page activity. We can create our own functions that
will respond to any other function using Responders.

This generally takes place in two steps:

Register the responder
Associate the function

The simplest way of doing it is shown here:

Ajax.Responders.register(responder)

Similarly, to unregister any responder use the script that follows:

Ajax.Responders.unregister(responder)

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side Techniques with Prototype

[20]

Now, let's quickly look at a simple example of how we can use Responders in
web applications.

Ajax.Responders.register({
 onCreate:callsomeFunction,
 onComplete: RemoveFunction
});

This means whenever an AJAX request is created, our Responders will automatically
call the function callsomeFunction and once that particular request is completed,
we will call RemoveFunction.

We have understood all the three major objects provided by Prototype for adding
AJAX to our web applications. Here's a quick look at the terms that we should
always keep in mind:

Ajax.Request: This helps and supports the communication between the
server and the client while taking care of cross-browser handling
Ajax.Updater or Ajax.PeriodcialUpdater: This helps in updating specific
parts of the web page without refreshing the whole page
Ajax.Responders: This helps in responding or reacting to other functions
inside the web page when triggered using AJAX calls

Hands-on examples
Enough said! Now let's see something working. Working code is not only an
inspiration, but a motivation too.

Username availability script using Ajax.Request
Talking about dynamic web sites and not mentioning username scripts doesn't
sound good. So, let's hack a simple Ajax.Request script. (And yes, once it is done,
don't forget to impress your friends.)

Let's fire up our browser and see the application module.

<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="Scripts.js"></script>
<script type="text/javascript" src="src/scriptaculous.js"></script>
<script type="text/javascript" src="src/effects.js"></script>

<link rel="stylesheet" href="style.css" >
<head>
 <title>Check Username Script</title>
</head>
<body onload="JavaScript:init();">

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[21]

 <form class="login-form">
 Username:<input type="text" name="username" id="username"
 onblur="CheckUsername();">
<p>
 <div class="yes" id="yes">
 <p>Username Available</p>
 </div>
 <div class="no" id="no">
 <p>Username NOT Available</p>
 </div>
 Password: <input type="text" name="password" id="password">
<p>
 <input type="submit" name="submit" value="Join" id="password">
 </form>
</body>
</html>

It creates a simple user interface layout for us.

We are also creating two <div>s to hold and show data whether a username is
available or not. The <div>s are hidden in the web page using the init() function
on load.

Let's add some spicy JavaScript to this code and make it more interactive.

function init() {
$('no').style.display='none';
$('yes').style.display='none';
}
function CheckUsername() {
var pars = 'username='+$F('username');
var url = 'checkusername.php';
new Ajax.Request(url, {
 method: 'get',
 parameters:pars,
 onSuccess: showResult,
 onFailure:showError
 });
}
function showError() {
alert("Something Went Wrong");
}
function showResult(ServerResponse) {
var response = ServerResponse.responseText;
if(response=="available"){

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side Techniques with Prototype

[22]

$('no').style.display='none';
$('yes').style.display='';
}
else {
$('no').style.display='';
$('yes').style.display='none';
}
}

Now, let's see the application module.

We also create a simple server URL called checkusername.php.

<?php
 $usernames = array('sam', 'me', 'prototype', 'sri');
 if(in_array($_GET['username'], $usernames))
 echo 'unavailable';
 else
 echo 'available';
?>

That's pretty much the simplest way of checking the username. �������������������� The important thing
to note here is that we are using the Ajax.Request object for this example�.

When you try to enter the data that is already present in the array, you will get a
message as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[23]

Display username availability script using Ajax.Updater
We have seen how we can implement the username-checking script
using Ajax.Request.

Maybe it's now a good idea to implement the same using Ajax.Updater.

For this example, the scripts and the code would also be on the similar lines but with
a little variation.

Let's explore some new ways.

<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="Scripts.js"></script>
<script type="text/javascript" src="src/scriptaculous.js"></script>
<script type="text/javascript" src="src/effects.js"></script>
<link rel="stylesheet" href="style.css" >
<head>
 <title>Check Username Script</title>
</head>
<body>
 <form class="login-form">
 Username:<input type="text" name="username" id="username"
 onblur="CheckUsername();">
<p>
 <div class="result" id="result" ></div>
<p>
 Password: <input type="text" name="password" id="password">
<p>
 <input type="submit" name="submit" value="Join" id="password">
 </form>
</body>
</html>

As you can see, we have removed the <div>s for each response and have introduced
only a single result <div> that would generate our response from server.

The server-side script file checkusername.php remains the same for this example.
After all, we are playing with the client-end scripts, right?

OK, so here are the modifications we need to do for the JavaScript code:

function CheckUsername() {
var pars = 'username='+$F('username');
var url = 'checkusername.php';
new Ajax.Updater('result','checkusername.php', {
 method: 'get',

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side Techniques with Prototype

[24]

 parameters:pars
});
}
function showError() {
 alert("Something Went Wrong");
}

We are passing the result <div> as a container that would store the result sent by
the server.

Finally, it's time to see the application up and running.

If the Username is already in use, the message will be displayed. Check out the
following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[25]

Event handling
We may find ourselves typing some of the code repetitively. That's where Prototype
comes in handy for us.

Simple utility functions, a clean way of reading values, adding elements on the fly
just about anything and everything can be handled by Prototype—and you thought
magicians were rare.

Description
Events are a core part of web applications. Another way of saying this could be
Events talk to our users on behalf of us. They interact, and hence are close to users.

Let's explore the power of events and of course the ease with which we can use
them, using Prototype. By using events, we can handle a lot of functionality at the
client end rather than making it heavily dependent on the server-side scripts.

Let's quickly dive into the methods supported by Prototype for handling Events. We
have divided them into three basic categories for easy understanding.

Handling general events
Handling mouse events
Handling keyboard events

Handling general events
Handling general events becomes easy using the following methods:

Element: This returns the DOM element on which the event occurred.
Extend: Developers are given the freedom to create and extend the
Events.Methods class.
findElement: This helps us in finding the element with a specific tag name.
Observe: This method helps in registering an element for event handling.
For example, if a particular link was registered, we would be able to trace
how many times it was clicked on, and so on.
Stop: We have control over the flow of events. We can stop the events action
by calling this method.
StopObserving: Like we registered an event to observe, we can also
unregister it by calling the StopObserving method.
unloadedCache: If you are using Prototype versions less than 1.6, you will
not find this. But for those of you working with versions above 1.6, it's
already there.

•
•
•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side Techniques with Prototype

[26]

Syntax
The basic syntax for working with events would be like this:

Event.observe(element, name, observer);

We will now define the observe method for the event on an element when it
is clicked.

Event.observe('ElementID', 'click', function(event)
{ alert('Element Was Clicked');});

Simple? OK, let's try some more examples with key press and mouse events:
Event.observe('ElementID', 'keypress', function(event)
{ alert('Key Was Pressed');});
Event.observe('ElementID', 'mousemove', function(event)
{ alert('clicked!');});

What if we were to handle the onload function in the window? You think it is
tough? No, it is not.

Event.observe(window, 'onload', function(event){ alert('Loaded');});

Now, what if we wanted to stop some particular event? This is simple too.
Event.stop(event);

Having spoken about the events, now let's find the element on which the event
occurred. Interesting? It sure is.

var myElement = Event.element(e);

Handling mouse events
Dealing with the mouse becomes painless with these methods:

PointerX: It returns the horizontal position of the mouse event
PointerY: It returns the vertical position of the mouse event
isLeftClick: It is self-explanatory; returns with the left-click of the mouse

Handling keyboard events
Prototype has native support for the following keyboard event handlers. All these
are pretty straightforward. We handle key-press events and detect which of these
events were fired.

Event.KEY_BACKSPACE

Event.KEY_TAB

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[27]

Event.KEY_RETURN

Event.KEY_ESC

Event.KEY_LEFT

Event.KEY_UP

Event.KEY_RIGHT

Event.KEY_DOWN

Event.KEY_DELETE

Event.KEY_HOME

Event.KEY_END

Event.KEY_PAGEUP

Event.KEY_PAGEDOWN

Event.KEY_INSERT

So now let's look at how we can use these events in our application. A simple basic
syntax will look like the code shown here:

$(element).observe('keyup',function);

A quick example can be written as follows:

<input type="text" id="ourElement" />
<script type="text/javascript">
$('ourElement').observe('keyup',onKeyUp);
Function onKeyUp(e) {
If(e.keyCode==Event.KEY_RIGHT)
{
 alert("Well, you pressed the RIGHT key button");
}
}
</script>

Now that you have got a clear picture on how we can use the keyboard events, try
out the rest of the keyboard events. I will give you a simple example about the same
in the next chapter.

Hands-on examples
In this section we will try out hands-on exercises related to keyboard and mouse
events handling using Prototype.

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side Techniques with Prototype

[28]

Handling the keyboard events example
Let's see how the following piece of code, involving events handling, will look like
when we fire it in a browser:

<html>
<head>
 <title> determining which key was pressed</title>
 <script type="text/JavaScript" src="prototype.js"></script>
</head>
<body>
<div>
 <input type="text" id="myelement" />
</div>
 <script type="text/javascript">
 function onKeyup(e) {
 var element = Event.element(e);
 if(e.keycode == Event.ESC) {
 alert("Clicked");
 }
 }
 $('myelement').observe('keyup', onKeyup);
 </script>
</body>
</html>

We invoked a simple function, onKeyup, whenever you press a key in the input
textbox. We are comparing the keycode of the entered input with the keyboard
events. If the condition is satisfied, we display an alert for that.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[29]

Handling mouse event example
This is a simple example, but it's important for us to understand how it works, as we
will explore the drag and drop feature of script.aculo.us later. So here we go.

Let's take a pretty straightforward approach. We create a region or a simple term
<div>, which acts as an area in which we read the coordinates when the mouse
enters. When the mouse is rolled over it, we display the change of coordinates.

<html>
 <head>
 <title>X and Y coordinates of the mouse</title>
 <script type="text/javascript" src="prototype.js"></script>
 </head>
 <body>
 <div id="myMouse">
 Dare You Drag The Mouse Here!!!!!
 </div>

 <script type="text/javascript">
 function onMouseMove(e)
 {
 var element = Event.element(e);
 element.update(Event.pointerX(e) + 'x'
 + Event.pointerY(e));
 }

 $('myMouse').observe('mousemove', onMouseMove);
 </script>
 </body>
</html>

Want to see what it looks like when we are done? Let's have a look at the screenshot
that follows:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side Techniques with Prototype

[30]

Redefining forms with Prototype
Forms are an integral part of the Web and web applications. In this section we will
explore how to redefine the forms using Prototype's features. Prototype has native
support for reading values, adding elements, and changing the style properties
inside the forms. So let's get started and redefine our forms.

Introduction
Forms are the epicenter of any web application. For end users, they are the product.
So how can we explore and make our forms beautiful? In this section we will try to
make our forms interactive as well as eye-candy.

Prototype provides us with the form as a namespace that encapsulates everything
related to form handling, manipulation, and serialization.

Description
The form module of Prototype comes with the following methods that handle the
biggest pain that the developers face—cross-browser scripting with forms.

All these methods may not seem very powerful at first, but trust me that they take all
the pain of doing the same things time and again.

We will quickly run through all these methods.

Disable: Calling this method will help us disable the form. The form and the
corresponding form elements will be visible, but users will not be able to edit
them. Imagine a simple comment form. If a user is logged in, comments can
be written; otherwise they cannot edit anything.
Enable: Using this method we can dynamically make the form and its
elements active. All the form elements can be made completely or
partially active.
findFirstElement: Using this method we can find the first non-hidden,
non-disabled element in the form.
focusFirstElement: This method enables the keyboard to focus on the first
element of the form.
getElements: Using this method we get a collection of all the elements in
the form.
getInputs: Calling this method will return the values from all the input
elements from the form.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[31]

Request: Now I am sure this would catch your attention. The request
method is used to submit the form to the server using Ajax.Request.
Reset: Using this method we can reset the form to its default values.
serialize: This method is called when we need to serialize the data
coming from the form, and we need to pass it as parameters to the
Ajax.Request method.
For example, to pass two variables to server we need to create our URL to
look like this:
someform.php?id=1&username="proto"

Instead of creating the URLs ourselves, we just pass the variables in the form
of inputs. Prototype's serialize function would automatically create the query
string, which we can just pass to our server.
serializeElements: This is the same as the serialize method. But here
you select which elements are to be read from an array, and pass them to
the Ajax.Request method.

Usage
Now that we have seen all the form methods that our library Prototype provides, we
shall learn how to use them in our code.

Try this simple method. All you have to do is pass the ID of the form and you can
find the form being disabled. OK, one more piece of advice. Don't try to disable a
form before you read the values, otherwise it would result in an empty return.

$('formID').disable();
//again enabling the form
$('formID').enable();

Got it? Wasn't it fun? So why not try some more methods and get into the flow?

These methods are pretty much self-explanatory. We are trying to get the elements,
values of input elements, values for a specific input element, placing the keyboard
focus on to the first element of the form and reset the form to default values.

var myElements = Form.getElements($('formID'));

var myInputs = Form.getInputs('formID');

var firstName = Form.getInputs('formID', 'firstName');

Form.focusFirstElement('formID');

Form.reset('formID');

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side Techniques with Prototype

[32]

While we are at it, let's see a trickier one.

var params = $('myFormId').serialize();

Imagine that we have a form with five input elements. Reading the values and
passing them to the server would be a real pain. But using the method serialize,
we leave everything to Prototype to make our values ready to be sent or used as
POST or GET in Ajax.Request.

Hands-on examples
Now that we are well-versed with the concepts of playing and making our forms
intuitive, let's have some fun clubbing all the methods and features of the form
together to get a clear picture of how it works in an actual web page.

Here we go:

<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="Scripts_old.js"></script>
<script type="text/javascript" src="src/scriptaculous.js"></script>
<script type="text/javascript" src="src/effects.js"></script>

<link rel="stylesheet" href="style.css" >
<head>
 <title>Playing With Forms</title>
</head>
<body>
 <h3 class="heading"> Playing with Forms is Fun!!!!</h3>

 <form name="addForm" class="addForm" id="addForm">
 <table class="FormTable">
 <tr>
 <td>First Name</td>
 <td><input type="text" name="first_name" id="first_name"
 size="35">
 </td>
 </tr>
 <tr>
 <td>Last Name</td>
 <td><input type="text" name="last_name" id="last_name"
 size="35">
 </td>
 </tr>
 <tr>
 <td>Gender</td>
 <td>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[33]

 <select id="gender" name="gender">
 <option>Male</option>
 <option>Female</option>
 <option>Not Sure</option>
 </select>
 </td>
 </tr>
 <tr>
 <td></td>
 <td><input type="submit" value="Test Submit"><td>
 </tr>
 </table>
</form>

<div class="links">
 Disable The Form<p>
 Enable The Form<p>
 Find The First Element of
 Form<p>
 Read All Elements<p>
 Read Only Input Elements
 Value<p>
 Serialize The Form<p>
 Focus On The First
 Element of Form<p>
 Reset The Form<p>
</div>
</body>
</html>

The code we just saw is in plain HTML, which would create a simple user interface
for us to play with and test all our methods. When you open the file in the browser,
the web page now gets a new look.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side Techniques with Prototype

[34]

Check it out yourself.

Now that we have our skeleton ready, let's add some life to it with JavaScript�.

function disableForm(){
$("addForm").disable();
}
function enableForm(){
$("addForm").enable();
}
function findFirstElement() {
myElement = Form.findFirstElement("addForm");
alert(myElement.value);
}
function readAllElements() {
var myElements = Form.getElements('addForm');
for(i = 0; i < myElements.length; i++) {
 alert(myElements[i].value);
}
}
function readInputElements() {
var myInputs = Form.getInputs('addForm');
for(i = 0; i < myInputs.length; i++) {
 alert(myInputs[i].value);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[35]

}
}
function serializeForm() {
myForm = Form.serialize("addForm");
alert(myForm);
}
function resetForm() {
myForm = Form.reset("addForm");
}
function FocusOnFirstElement() {
Form.focusFirstElement('addForm');
}

I know you are eager to click on one of those links as quickly as you can. So what
are you waiting for? We click on the Serialize The Form link and it creates a string
which is ready to be passed to the AJAX objects.

It reads each of the form elements one by one and converts them into
ready-to-use parameters.

Go ahead and try clicking on some more links. You will get a clear picture as to
what and how the form methods will actually work. And yes, imagination has
no boundaries.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side Techniques with Prototype

[36]

Getting more hands-on
After exploring Prototype's features, which we can implement in our applications,
in this section we will learn how to interact with the server using Prototype through
the AJAX calls.

Hands-on example: How to use XML to read
data from the server using Prototype
By now, you are loaded with theory and have been through a simple hands-on. It's
now time for us to get into a real application module.

The module we will be working with is from the fully featured project in Chapter 10,
the Tadalist.

This module plays the most important role in an application. Using this module,
we can add items in our page dynamically and put them back to the page without
refreshing the page.

Let's quickly get the user interface part done with the following piece of code and
save the file as add.php.

<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="Scripts.js"></script>
<script type="text/javascript" src="src/scriptaculous.js"></script>
<script type="text/javascript" src="src/effects.js"></script>

<link rel="stylesheet" href="style.css" >
<head>
 <title>Adding New Items</title>
</head>
 <?php
 echo '<div id="ShowAddItem" class="ShowAddItem"><form id="myform"
 action="additem.php" method="post" onsubmit="return false;">';
 echo '
Enter a New Item to this List

';
 echo '<input type="text" name="myinput" id="myinput"
 size="25"/>

';
 echo '<input type="button" value="Submit!"
 onclick="Javascript:AddItem()">';
 echo '</form></div>';
 echo '<p>
';
 echo '<div id="ItemTree" class="ItemTree">';
?>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[37]

The code is pretty self-explanatory, but we will quickly run through it. We are
including all the required JavaScript files such as prototype, scriptaculous, and
Scripts.��� When we open the file in the browser we should able to find something
similar to the next screenshot:

Simple isn't it? I can see you smiling.

Now it's time to add some power functionality to make our add.php module
exciting. We have called a function AddItem() on the Submit button, so let's
implement it�.

function AddItem() {
var input = 'myinput='+$F('myinput');
var pars = input;
new Ajax.Request(
'additem.php',
 { asynchronous:true,
 parameters:pars,
 onComplete: ShowData
 }
);
$('myform').reset();
$('myinput').activate();
return false;
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side Techniques with Prototype

[38]

As discussed earlier, we are making use of the utility functions such as $F() to read
the value from the input textbox. Above all, we are making use of Ajax.Request and
passing our parameters to the utility functions in the form of pars. ���������������� Two interesting
things to note here are:

1.	 AddItem.php is the server-side URL we are passing our parameters to.
This URL would also return the response which would be handled by the
ShowData() function.

2.	 We are calling the ShowData() function on the successful completion of the
request. This helps us in reading the response from the server and displaying
it back on our page.

Let's quickly get these two things ready.

Here is the code for AddItem.php:
<?php
 mysql_connect("localhost", "root", "") or die(mysql_error());
 //connects to the mysql db or outputs an error
 mysql_select_db("test") or die(mysql_error());
 // selects the database from the choosen server or outputs an
 error
 header("Content-Type: text/xml");
 print'<?xml version="1.0" encoding="UTF-8" standalone="yes"?>';
 $the_name = $_POST['myinput'];
 $sql = "INSERT INTO items (ItemID,ItemName) VALUES
 (NULL,'$the_name')";
 $result = mysql_query($sql);
 $rowID = mysql_insert_id();

 if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
 }
 else {
 $sql = "SELECT ItemName from items where ItemID=".$rowID;
 $result = mysql_query($sql);
 $row = mysql_fetch_row($result);
 $itemValue = $row[0];
 echo '<response>';
 echo '<ItemID>'.$rowID.'</ItemID>';
 echo '<ItemName>'.$itemValue.'</ItemName>';
 echo '</response>';
 }
?>

Scared? Don't be; it's as simple as noodles.

Before I explain further, why don't we quickly get a simple database up and running
to save all our items?

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 2

[39]

Fire up your MySQL prompt and run the following SQL code to create a quick table:

CREATE TABLE `items` (
 `ItemID` smallint(5) NOT NULL auto_increment,
 `ItemName` varchar(20) NOT NULL,
 PRIMARY KEY (`ItemID`)
);

Don't worry too much about security. At this point of time we are trying to get our
basics strong. Once we have sound fundamentals we shall make our security really
powerful in the later part of the book.

Let's get back to the AddItem.php script. We are making use of MySQL functions to
connect to our database by passing our login credentials Username and Password.
We are selecting the database through mysql_select_db.

Now comes the most important part of the module—handling response
through XML.

header("Content-Type: text/xml");
print'<?xml version="1.0" encoding="UTF-8" standalone="yes"?>';

These lines of code will tell the server through the header that we are going to create
an XML file. Further, they will also tell the server to prepare itself to handle data in
the XML format.

And, finally, we have our ShowData function which is also pretty straightforward.

function ShowData(originalRequest) {
 var xmlDoc = originalRequest.responseXML.documentElement;
 var value = xmlDoc.getElementsByTagName("ItemName")[0].
 childNodes[0].nodeValue;
 var value1 = xmlDoc.getElementsByTagName("ItemID")[0].
 childNodes[0].nodeValue;
 divID = 'DIV'+value1;
 var div = document.createElement('div');
 div.className ='ItemRow';
 div.id = divID;
 var val = '"'+value+'"';
 var i = document.createElement('input');
 i.type='checkbox';
 i.id=value1;
 i.value=value;
 var t = document.createTextNode(value);
 div.appendChild(i);
 div.appendChild(t);
 $('ItemTree').appendChild(div);
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Exploring Client-side Techniques with Prototype

[40]

Using this function we will read the XML file that we have created in the
AddItem.php file. We then create a <div> and add it to our <div>, in the
add.php file, to ItemTree. With that, we are done.

The final output should look like the screenshot that follows:

Summary
In this chapter we have learned about the wonderful Prototype library. We have also
explored various features such as DOM, AJAX, and event handling.

A quick recapitualtion of all the features we explored in this chapter is as follows:

Helper functions
AJAX components
Handling events and forms

In the next chapter we will learn the server-side techniques using PHP—our new
best friend.

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Server-side Techniques with
PHP and MySQL

Finally, we have reached a point where we can connect the dots. We have learned
about the fantastic Prototype, have seen an overview of script.aculo.us, and in this
chapter we will explore the server-side techniques�.

Some of the key topics that we will cover in this chapter are:

Server-side scripting with PHP
Database management using MySQL
User login management system
Creating tag clouds

Basic requirements
In this section, we will be looking at some of the basic and key requirements for
working on web applications in Windows and Linux operating systems�.

We will be learning about the PHP, MySQL, WAMP server (only for Windows),
and phpMyAdmin applications.

Throughout the book we will work with various browsers to make sure
that our code is consistent and compatible with them. We will be using
Mozilla Firefox, Internet Explorer, and Google Chrome.

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Server-side Techniques with PHP and MySQL

[42]

A word about PHP 5.0 or above
PHP is undoubtedly a powerful server-side scripting language, which has powered
new age web applications. With PHP 5 or above, we also get a standard set of
object-oriented programming methodologies. Web applications can be created in
a structured manner by classifying their components into classes and objects using
different features such as inheritance, constructors, and so on. It's so much fun to
work with!

With loads of features, libraries, and documentation, we get complete support from
the lovely community as well.

While we are at it, it is recommended that you download the latest stable
version 5.2.6 from the official PHP web site at http://php.net.

A word about MySQL 5.0
Ask any open-source developer who hacks with PHP, the database (s)he loves to
work with, and the answer will be simple—MySQL. What makes MySQL
so special?

MySQL has a lot of inbuilt functions, which are very useful and engaging for a
beginner or an expert. MySQL has native support for the PHP scripting language,
which makes it the most preferable database to work with in the backend. Not to
forget, the supportive community help and documentation that comes in handy
all the time.

You can grab the latest copy of MySQL from the official web site: http://mysql.com.

Most of the Linux distributions come with pre-packaged PHP and MySQL
installations. So if you are using any of the leading Linux distributions,
you don't have to install PHP and MySQL packages separately. They
should come by default. Please check with your distribution manual for
more help.

The WAMP server: A must-have for
Windows users
There are people like me who don't necessarily swear by the Linux operating system;
but yes, they surely swear by PHP and MySQL. If you are one amongst them, then
you should have a WAMP server. WAMP is the abbreviation of Windows/Apache/
MySQL/PHP. It is a platform stack for Windows, which can be downloaded,
pre-packaged with PHP and MySQL.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[43]

You can grab a free copy of WAMP from the official web site at
http://www.wampserver.com/.

It comes with the latest version of PHP and MySQL, and so we don't have to worry
about the version history.

phpMyAdmin
The official site of phpMyAdmin describes phpMyAdmin as A tool written in PHP
intended to handle the administration of MySQL over the Web.

It is indeed very simple and powerful. Working with phpMyAdmin will make
working with the MySQL database easy and highly interactive. You can do
everything from the browser that you can otherwise do at the console.

You can download the latest version of phpMyAdmin from the web site at
http://phpmyadmin.net.

Now that all the required pieces are in place, I know you are excited to get your
hands dirty with code. So what are we waiting for? Let the party begin!

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Server-side Techniques with PHP and MySQL

[44]

Getting the playground ready
Since you have installed PHP, MySQL, or WAMP as a package, try performing some
basic procedures to check that the required software is up and running properly.

Checking the PHP installation using the
WAMP server
Fire up your browser and type http://localhost/ in the URL bar. You should be
able to see the index.php file up and running. If not, then we should check the
configurations in the httpd.conf and php.ini files. Some of the key points you
should check are:

The port should not be in use already
You have started the WAMP server

Please refer to the installation manual or documentation of
WAMP for further help�.

If the installation is a success, we should be able to see the page shown in the
following screenshot:

•
•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[45]

Checking the MySQL installation using the
WAMP server
Now, we need to test the MySQL connection using the phpMyAdmin tool.

Fire up your browser and type in the following URL:
http://localhost/phpmyadmin/index.php.

On success, you should be able to see a screen similar to the screenshot that follows:

OK, a pat on your back. We have successfully configured all the required server-side
software to create our dynamic and powerful web applications. We have seen how
to include the Prototype library and the script.aculo.us library in Chapter 2. Let's
quickly revise that front and get started with the code.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Server-side Techniques with PHP and MySQL

[46]

Adding Prototype library in our code
Before we start exploring the features of Prototype, we need to tell our browser to
include the library in our code.

Take a quick look at the folder structure to know where the files should be placed:

webroot | application name | javascript files | prototype library

Let's place our Prototype library inside our js folder.

<script type="text/javascript" src="js/prototype.js"></script>

Just one line pointing towards the path of the source of the library, and we are done.

No, I am serious! We are done.

Adding the script.aculo.us library in our code
Once we have added the Prototype library to our application, we then have to add
script.aculo.us too.

Let's do it.
<script type="text/javascript" src="src/scriptaculous.js">
</script>
<script type="text/javascript" src="src/effects.js"></script>

These are just the basic files that have been included for demonstration. If we
need to have drag and drop, controls, or slider, we need to include the respective
JavaScript files.

The script.aculo.us library is dependent on the Prototype
framework, so don't forget to add both the libraries.

Basic classes
No developer wants to rewrite the same code again and again. So it is best to create
basic classes, which we will use throughout our applications.

You can create and place all these basic class files under the
includes folder. Alternatively, you can also place them in the
current application folder in webroot.

For any web-driven application, we need a strong backend support. So, let's first
create the DBConfig file�.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[47]

DBConfig.php
In the code that follows, we will create a simple class where the variables and login
credentials will be declared. It really makes the task of developing web applications
easy at a later stage.

If at some point of time you need to point the application to a different database, all
you need to do is change the settings in the DBConfig file.

<?php
 class DBConfig {
 var $settings;
 function getSettings() {
 // Database variables
 $settings['dbhost'] = 'localhost';
 $settings['dbusername'] = 'root';
 $settings['dbpassword'] = '';
 $settings['dbname'] = 'book';
 // return all the db settings required
 return $settings;
 }
 }
?>

We need to pass the hostname, username, password, and the name of the database.
In the above example, we are pointing to our localhost as the host and root as
username, with no password (a bad idea). We are also using a database called book,
which will contain all the tables that we will create for our examples.

DBClass.php
In the code that follows, we are creating a simple class where we will be creating
various functions to work with our database. Some of these functions in the class are:

Reading settings from the DBConfig class
Querying
Reading the data
Closing the connection

Throughout the examples explained in the book, we will be making use of these
functions to read settings, query, fetch the data, and close the connection�.

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Server-side Techniques with PHP and MySQL

[48]

These are generic functions and we need to pass parameters to these functions. We
don't have to write the code again. Instead, we can just call these functions. Code
re-usage is the best thing we developers can learn while building web applications�.

<?php
require_once 'DBConfig.php';

class DbClass extends DBConfig{
 var $theQuery;
 var $link;
 //DbClass, Purpose: Connect to the database

 function DbClass(){
 // Load settings from parent class
 $settings =DBConfig::getSettings();
 // Get the main settings from the array we just loaded
 $host = $settings['dbhost'];
 $db = $settings['dbname'];
 $user = $settings['dbusername'];
 $pass = $settings['dbpassword'];
 // Connect to the database
 $this->link = mysql_connect($host, $user, $pass);
 mysql_select_db($db);
 register_shutdown_function(array(&$this, 'close'));
 }
//execute the query, Purpose: Execute a database query

 function query($query) {
 $this->theQuery = $query;
 return mysql_query($query, $this->link);
 }

 // fetch results in the array
 function fetchArray($result) {
 return mysql_fetch_array($result);
 }

 function close() {
 mysql_close($this->link);
 }
}
?>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[49]

Secure.php
The main purpose of this file is to clean up the data to prevent SQL injections, data
validations, and so on.

It is important to clean the data before entering or manipulating with the server.

<?php
/*
Class: Secure.php
*/
class Secure {
function clean_data($value, $handle) {
 if (get_magic_quotes_gpc()) {
 $value = stripslashes($value);
 }
 if (!is_numeric($value)) {
 $value = "'" . mysql_real_escape_string($value, $handle) . "'";
 }
 return $value;
}
} // class ends here
?>

Hands-on examples: Common scripts
In the following examples, we will see how to script some modules that are
commonly used while creating web applications. We will also be making use
of these modules in our examples throughout the book.

User login management system
Now that we are ready with our powerful open-source artillery, let's get to the
serious business of having fun with raw code.

In this example we will create a simple yet powerful login management system.

This module will help us achieve the following:

Register new users
Log in existing users
Log out

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Server-side Techniques with PHP and MySQL

[50]

For any web application, this module is the basic requirement. Rarely will you find
interactive web applications that do not have authentication and authorization
modules.

The login management system is an essential feature that we will be integrating in all
the projects covered in the chapters to come.

Before we get into actual PHP coding, it would be a nice idea to familiarize ourselves
with the database schema.

CREATE TABLE `users` (
 `userID` int(11) NOT NULL auto_increment,
 `Username` varchar(40) NOT NULL,
 `Password` varchar(40) NOT NULL,
 PRIMARY KEY (`userID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1;

Here we have a table called users. It has userID as an auto_increment along
with Username and Password. In this, userID acts as the PRIMARY KEY for the table.
Username would be varchar. Password would also be varchar, and in order
to protect our passwords we would also apply Message Digest 5 (MD5) or
Secure Hash Algorithm (SHA) encryption techniques. In our application, we are
using MD5.

Let's move on to the Signup page details.

Signup.php
This is pretty much a simple user interface layout in HTML. It builds a simple form
with two fields: Username and Password. Remember the schema? A new user enters
the username and password. If everything looks fine with the system, we add the
user to the table and return the values.

<html>
<head>
 <title>New User. Sign Up!!!</title>
 <link rel="stylesheet" href="style.css" >
 <script type="text/javascript" src="scripts.js"></script>
 <script type="text/javascript" src="prototype.js"></script>
</head>
<body>
 <h4>New User? Sign-up!!!!</h4>
 <FORM NAME ="form1" METHOD ="POST" ACTION ="signup.php"
 class="signup-form">
 <table class="signup-table">
 <tr>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[51]

 <td>Username: </td>
 <td><INPUT TYPE = 'TEXT' Name ='username' id="username"
 value="<?PHP print $uname;?>" maxlength="20">
 </td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><INPUT TYPE = 'TEXT' Name ='password' value="<?PHP print
 $pword;?>" maxlength="16">
 </td>
 </tr>
 </table>
<P>
 <INPUT TYPE = "Submit" Name = "Submit1" VALUE = "Register">
 </FORM>
<P>
<?PHP print $errorMessage;?>
</body>
</html>

Now let's add the PHP power to our signup.php script with the following code:

<?PHP

$uname = "";
$pword = "";
$errorMessage = "";
$num_rows = 0;

require_once 'DBConfig.php';
require_once 'Secure.php';

if ($_SERVER['REQUEST_METHOD'] == 'POST'){

 $uname = $_POST['username'];
 $pword = $_POST['password'];

 $uname = htmlspecialchars($uname);
 $pword = htmlspecialchars($pword);

 if ($errorMessage == "") {

 $settings = DBConfig::getSettings();
 // Get the main settings from the array we just loaded
 $server = $settings['dbhost'];
 $database = $settings['dbname'];
 $user_name = $settings['dbusername'];
 $pass_word = $settings['dbpassword'];

 $db_handle = mysql_connect($server, $user_name, $pass_word);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Server-side Techniques with PHP and MySQL

[52]

 $db_found = mysql_select_db($database, $db_handle);
 if ($db_found) {

 $secure = new Secure();

 $uname = $secure->clean_data($uname, $db_handle);
 $pword = $secure->clean_data($pword, $db_handle);

 $SQL = "INSERT INTO users (userID,Username,password) VALUES
 (NULL,$uname, md5($pword))";
 $result = mysql_query($SQL);
 mysql_close($db_handle);

 if($result)
 {
 // start a session for the new user
 session_start();
 $_SESSION['login'] = "1";
 header ("Location: index.php");
 }
 else
 {
 $errorMessage ="Somethign went wrong";
 }
 }
 else {
 $errorMessage = "Database Not Found";
 }
 }
}
?>

Let's break down the code into functionality, as this helps us to understand it better.

Include the common scripts such as DBConfig.php and Secure.php.
require_once 'DBConfig.php';
require_once 'Secure.php';

Check if the data has been posted.
if ($_SERVER['REQUEST_METHOD'] == 'POST')

Read the DB settings to get dbhost,dbname, dbuser, and dbpassword.
$settings = DBConfig::getSettings();

Clean the user input.
$secure = new Secure();
$uname = $secure->clean_data($uname, $db_handle);
$pword = $secure->clean_data($pword, $db_handle);

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[53]

Run the INSERT query to add users and get the results.
$SQL = "INSERT INTO users (userID,Username,password) VALUES
(NULL,$uname, md5($pword))";

If a user is added successfully, set SESSION['login'] as 1, which will tell
our system that the user is logged in. We can also prompt the user with
errors that were caused during operations.
Prompt the errors.
$errorMessage = "Database Not Found";

Finally, the sign-up page should be like the screenshot that follows:

Now, let's move on to the login.php page details. We have added the user
successfully to our user's table. It's probably a good idea to cross-check. Fire up
the web browser, open phpMyAdmin, and navigate to the user table under the
books database.

Alternatively, we can also check through the login.php page.

Login.php
Again, we are creating a simple user interface using HTML to show the user a simple
form where he or she will be required to enter a username and password.

<html>
<head>
 <title>Login Here!!!</title>
 <link rel="stylesheet" href="style.css" >

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Server-side Techniques with PHP and MySQL

[54]

</head>
<body>
 <h4>Already Registered? Sign-in!!!</h4>
 <FORM NAME ="form1" METHOD ="POST" ACTION ="login.php"
 class="login-form">
 <table class="login-table">
 <tr>
 <td>Username: </td>
 <td>
 <INPUT TYPE = 'TEXT' Name ='username' value="<?PHP print
 $uname;?>" maxlength="20">
 </td>
 </tr>
 <tr>
 <td>Password: </td>
 <td>
 <INPUT TYPE = 'password' Name ='password' value="<?PHP
 print $pword;?>" maxlength="16">
 </td>
 </tr>
 </table>
 <INPUT TYPE = "Submit" Name = "Submit1" VALUE = "Login">
 </p>
 </FORM>
 New User? Sign-up
 <p>
 <?PHP print $errorMessage;?>
</body>
</html>

Let's add some spice with the PHP power. Add the following code to the login.php
file that we just created:

<?PHP

$uname = "";
$pword = "";
$errorMessage = "";

require_once 'DBConfig.php';
require_once 'Secure.php';

// Check if the user has submittied with POST on the form
if ($_SERVER['REQUEST_METHOD'] == 'POST'){
 $uname = $_POST['username'];

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[55]

 $pword = $_POST['password'];

 $uname = htmlspecialchars($uname);
 $pword = htmlspecialchars($pword);

//Can also use a DBclass instead of the code below.

$settings = DBConfig::getSettings();

// Get the main settings from the array we just loaded
$server = $settings['dbhost'];
$database = $settings['dbname'];
$user_name = $settings['dbusername'];
$pass_word = $settings['dbpassword'];

$db_handle = mysql_connect($server, $user_name, $pass_word);
$db_found = mysql_select_db($database, $db_handle);

 if ($db_found) {
 $secure = new Secure();
 $uname = $secure->clean_data($uname, $db_handle);
 $pword = $secure->clean_data($pword, $db_handle);
 $SQL = "SELECT * FROM users WHERE username =$uname AND password=
 md5($pword)";
 $result = mysql_query($SQL);
 $num_rows = mysql_num_rows($result);
 if ($result) {
 if ($num_rows > 0) {
 session_start();
 $_SESSION['login'] = "1";
 header ("Location: index.php");
 }
 else {
 session_start();
 $_SESSION['login'] = "";
 header ("Location: signup.php");
 }
 }
 else {
 $errorMessage = "Error logging on";
 }
 mysql_close($db_handle);
 }
 else {
 $errorMessage = "Error logging on";
 }
}
?>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Server-side Techniques with PHP and MySQL

[56]

Let's break down the code into functionality once again:

Include the common scripts such as DBConfig.php and Secure.php.
require_once 'DBConfig.php';
require_once 'Secure.php';

Check if the data has been posted.
if ($_SERVER['REQUEST_METHOD'] == 'POST'){

Read the ������������������������� database ���������������� settings to get dbhost, dbname, dbusername, and
dbpassword.
$settings = DBConfig::getSettings();

Clean the user input.
$uname = $secure->clean_data($uname, $db_handle);
$pword = $secure->clean_data($pword, $db_handle);

Run the SELECT query to check if the username and password entered by the
user matches to the ones present in the database table, and get the results.
$SQL = "SELECT * FROM users WHERE username =$uname AND
password= md5($pword)";

If username and password matches, set SESSION['login'] as 1, which will
tell our system the user is logged in; or else prompt him with errors that were
caused during operations.

At the end of this part, we should be able to see the application as shown in the
following screenshot�:

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[57]

Index.php
Take a look at the index.php file. This is pretty much a straightforward approach.
Only users who are logged in will be able to see this data. Using SESSION, we check
if the user is logged in or not.

<?PHP
session_start();
if (!(isset($_SESSION['login']) && $_SESSION['login'] != '')) {
 header ("Location: login.php");
}

?>
 <html>
 <head>
 <title>Home Page</title>
 </head>
 <body>
 <p>
Thank God.You logged In, system admin was rude...with me!!!!
<p>
 This is where all the protected contents come into picture
<p>
Log out

 </body>
 </html>

Breaking this code down as per functionality, we do the following:

Check if the SESSION variable login is set.
session_start();
if (!(isset($_SESSION['login']) && $_SESSION['login'] != '')) {
 header ("Location: login.php");
}

If set, show the user the page details.
Else, redirect him to login.php.

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Server-side Techniques with PHP and MySQL

[58]

We should now have reached a level where our application will look like the
following screenshot:

Logout.php
Finally, we come to our last script Logout.php.

The purpose of this script is to destroy the sessions that we have set, while logging
the user inside the application.

<?PHP
 session_start();
 session_destroy();
?>
<html>
<head>
 <title>Logout</title>
</head>
<body>

 Okay, destroyed the sessions of the user. Now try hitting the
 back button. You should be able to see the login page :)
 <p>
 User Logged Out
 <p>
 Want to Login again? Login Here
</body>
</html>

The logout interface is shown in the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[59]

Adding a username availability script to the
login management system
In the previous chapter, we saw how to add a username availability script using
AJAX. But in those scripts we were using an array to supply our data, not the real
database values. So, let's combine the scripts and make something more powerful,
beautiful, and agile.

We need to add the CheckUsername.php script to our login management system in
the signup.php file. We used the following form in the signup.php file to create a
user interface, right?

 <FORM NAME ="form1" METHOD ="POST" ACTION ="signup.php"
 class="signup-form">
 <table class="signup-table">
 <tr>
 <td>Username: </td>
 <td>
 <INPUT TYPE = 'TEXT' Name ='username' id="username"
 value="<?PHP print $uname;?>" maxlength="20">
 </td>
 </tr>
 <tr>
 <td>Password:</td>
 <td>
 <INPUT TYPE = 'TEXT' Name ='password' value="<?PHP print
 $pword;?>" maxlength="16">
 </td>
 </tr>
 </table>
 <p>
 <INPUT TYPE = "Submit" Name = "Submit1" VALUE = "Register">
 </FORM>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Server-side Techniques with PHP and MySQL

[60]

Just add the following code to the above form inside the table in signup.php. This
will make it more interactive.

 <tr>
 <td></td>
 <td>
 Check Availability

 <div class="result" name="result" id="result"></div>
 </td>
 </tr>

The resulting code is shown here:
 <FORM NAME ="form1" METHOD ="POST" ACTION ="signup.php"
 class="signup-form">
 <table class="signup-table">
 <tr>
 <td>Username: </td>
 <td><INPUT TYPE = 'TEXT' Name ='username' id="username"
 value="<?PHP print $uname;?>" maxlength="20">
 </td>
 </tr>
 <tr>
 <td></td>
 <td>
 Check Availability

 <div class="result" name="result" id="result"></div>
 </td>
 </tr>
 <tr>
 <td>Password:</td>
 <td>
 <INPUT TYPE = 'TEXT' Name ='password' value="<?PHP print
 $pword;?>" maxlength="16">
 </td>
 </tr>
 </table>
 <p>
 <INPUT TYPE = "Submit" Name = "Submit1" VALUE = "Register">
 </FORM>

This would invoke the JavaScript function, CheckUsername(), when the
Check Availability link is clicked.

Once we have defined the JavaScript function, we need to include the following
JavaScript files to our signup.php file. Add them to our code as follows:

<script type="text/javascript" src="scripts.js"></script>
<script type="text/javascript" src="prototype.js"></script>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[61]

Now that we have defined the scripts.js file, which will contain all our JavaScript
functions required, quickly create it.

Add the CheckUsername()function to show the response to our code.

In the code that follows, we are reading the value from the input field name
username, making an Ajax.Request, and passing the value to Checkuser.php.
On completion of the request, we invoke the ShowUsernameStatus function which
displays the data.

function CheckUsername(){

var user = $('username');
var name = "username='"+user.value+"'";

var pars = name;
new Ajax.Request(

'CheckUser.php',
 {
 method:'post',
 parameters:pars,
 asynchronous:true,
 onComplete: ShowUsernameStatus	

 }
);

}
function ShowUsernameStatus(originalRequest) {
 var newData = originalRequest.responseText;
 $('result').innerHTML=newData;
}

The following screenshot shows the user availibility script incorporated into the
login form:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Server-side Techniques with PHP and MySQL

[62]

As mentioned in Chapter 3, we have made use of the Ajax.Request feature of the
Prototype library. You will find it similar to the Ajax.Request example we have
seen in Chapter 2.

The only difference is in the CheckUser.php file.

<?php
require_once "DBClass.php";
 $dbclass = new DBClass();
 $username = $_POST['username'];
 $name= stripslashes($username);
 $sql = "SELECT userID from users where username=".$name."";
 $result= $dbclass->query($sql);
 $num = mysql_num_rows($result);
 if ($num>0) {
 echo 'UserName is NOT avaliable';
 }
 else {
 echo 'UserName is avaliable';
 }
?>

Let's break the code as per functionality:

Connect to the database and tables.
require_once "DBClass.php";
$dbclass = new DBClass();

Run the SELECT query to check if the username already exists in the table.
$sql = "SELECT userID from users where username=".$name."";
$result= $dbclass->query($sql);

Depending upon the response, update the message in the signup.php page�.

With this, our login management system is complete.

We will be using it later in the book. Some significant changes will be made in the
later part of the projects, as and when required.

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[63]

The final resulting page will appear like the following screenshot:

Creating a simple tag cloud
We have our login management system ready, so now we can move on and create a
simple tag cloud module.

Tags are user-generated words, or words that describe functionality of the
site. When these tags are displayed based on weight or frequency of usage
in the form of clouds, we call them tag clouds.

In every chapter we learned something new to impress your friends, right? So, we
don't want to miss out on that in this chapter. This is purely for fun and to make you
feel comfortable with PHP and MySQL scripting.

Let's start with the table required for the module, and let's call it tags. The table
will contain three columns: tagID, tagName, and count. tagID will be set to
auto_increment and will act as the PRIMARY KEY for the table. count will be used in
real-time projects when we need to create the count of how many times a particular
tag was used.

CREATE TABLE `tags` (
 `tagID` int(11) NOT NULL auto_increment,
 `tagName` varchar(20) NOT NULL,
 `count` int(11) NOT NULL,
 PRIMARY KEY (`tagID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Server-side Techniques with PHP and MySQL

[64]

Now that we have our database table tags ready, it's time to populate the table with
some data. The code to insert a tag in the table is given here:

INSERT INTO `tags` (`tagID` , `tagName` , `count`) VALUES (NULL ,
'Prototype', '3');

Feel free to add more tags to see a huge tag cloud. Moving on, let's do the coding
part of the tag cloud.

<?php
require_once 'DBClass.php';

$dbclass = new DBClass();

function tag_info() {
 $result = mysql_query("SELECT * FROM tags GROUP BY tagName ORDER
 BY Rand() DESC LIMIT 0 , 30");
 while($row = mysql_fetch_array($result)) {
 $arr[$row['tagName']] = $row['count'];
 }
 //ksort($arr);
 return $arr;
}
function tag_cloud() {
 $min_size = 20;
 $max_size = 60;
 $tags = tag_info();
 $minimum_count = min(array_values($tags));
 $maximum_count = max(array_values($tags));
 $spread = $maximum_count - $minimum_count;
 if($spread == 0) {
 $spread = 1;
 }
 $cloud_html = '';
 $cloud_tags = array();
 $step = ($max_size - $min_size)/($spread);
 foreach ($tags as $tag => $count) {
 $size = $min_size + ($count - $minimum_count)
 * $step;
// $size = ($max_size + $min_size)/$spread;
 $cloud_tags[] = '<a style="font-size: '. floor($size) . 'px'
 '" class="tag_cloud"
 href="http://localhost/content/SearchTag.php?tag=' . $tag
 . '" title="\'' . $tag . '">'
 . htmlspecialchars(stripslashes($tag)) . '';
 }
 $cloud_html = join("\n", $cloud_tags) . "\n";

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 3

[65]

 return $cloud_html;
}
?>

<style type="text/css">
.tag_cloud
 {padding: 3px; text-decoration: none;
 font-family: verdana; }
.tag_cloud:link { color: #8FC486; }
.tag_cloud:visited { color: #BACC89; }
.tag_cloud:hover { color: #BACC89; background: #000000; }
.tag_cloud:active { color: #BACC89; background: #000000; }
div.wrapper{
 position:absolute;
 height:300px;
 width:500px;

}
</style>

<div id="wrapper" class="wrapper">
 <?php print tag_cloud(); ?>
</div>

Again, as in the pattern we follow, let's break it down according to the features
and functionality.

Call the DBClass class,��� initiate the object of the database, and connect to the
database as well as the table.
require_once 'DBClass.php';
$dbclass = new DBClass();

The Tag_info function returns the particular tags by querying the tags table.
function tag_info() {
 $result = mysql_query("SELECT * FROM tags GROUP BY tagName
 ORDER BY Rand() DESC");
 while($row = mysql_fetch_array($result)) {
 $arr[$row['tagName']] = $row['count'];
 }
 return $arr;
}

When we call the tag_cloud()function�������������������������������������� ,������������������������������������� we read all the tags and define the
maximum and minimum size of the tags we would want to see on our page.

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Server-side Techniques with PHP and MySQL

[66]

In the tag_cloud()function�� ,��� we are reading out all the tags and getting their
maximum and minimum count. Using a simple calculation, we are able to
provide a random value as font-size.
We get the array and just loop through it. Then we put them back in the
page by defining various attributes of HTML such as size, width, height,
and color.

As seen in the following screenshot, this is how it should look when we run the
above script in the browser:

Summary
In this chapter we learned quite a lot of things from the rocking PHP 5 to the lovely
MySQL, and from the powerful WAMP server to the exciting phpMyAdmin.

We also got our hands dirty with code while building a complete login management
system. We tried to recapitulate the AJAX feature that we have used in a login module.

To impress our friends, we did a small clean hack of the tag cloud.

In the next chapter, we will get into the effects feature of the script.aculo.us library
and go through loads of hands-on examples. If you thought that the fun is over, I
must tell you the party has only just begun! Read on!

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding Effects and Multimedia
to User Interface Design

We finished Chapter 3 on the note that the party has only just begun. So, let your hair
down and get ready to play with code! We have learned about the necessities that
enable us to dive into the script.aculo.us world and explore it.

In this chapter we will learn how to:

Add effects and multimedia content
Use different types of effects such as morph, scale, opacity, fade, appear,�
and many more
Use sounds and play MP3 songs using script.aculo.us from any browser

Introduction to effects
Before we get started, do you remember how we impressed your friends in
Chapter 2? Even without knowing much about the effects, you were able to
use them.

Effects help us in improving the look and feel of our applications during user
interactions. Imagine a situation where a user clicks on the Delete button in an
application, and an offending item is deleted (using AJAX). Now the user thinks
What just happened?

The idea, therefore, is to use effects in such a way that the user is kept informed
about the various things happening to the page elements and is also presented
with an attractive and appealing page.

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding Effects and Multimedia to User Interface Design

[68]

script.aculo.us is highly customizable when it comes to using effects. We can set
opacity, colors, different types of effects, and duration. In short, script.aculo.us
empowers developers to use their creativity and bring out their best on the page��.
Effects can be used in many ways. We can make use of effects for specific JavaScript
events, on a page load, or on function-calling events—just about anything and
everything is possible�!

If, for example, you want to let a user hide some portion of the page that is no longer
needed, we can use Fade or Dropout. If you want to inform the user about something
important, we can use the Highlight effect.

Types of effects
There are various types of effects provided in the script.aculo.us visual library. The�
Effects.Methods contains them, as well as helper methods which can be used to
interact with the DOM elements.

There are six core effects, which are:

Effect.Opacity: ��������������������������������������� Affects the translucence of an element.
Effect.Scale: Scales any DOM element in terms of width and height. We
can use this effect for smooth transition, or for changing the relative size of
any element dynamically.
Effect.Morph: Changes an element's CSS properties smoothly from
whatever CSS properties it is currently having. On the fly you can change
the font size, background, width, and much more.
Effect.Move: Moves the element around the page.
Effect.Highlight: We can use this to highlight any portion of the page.
Effect.Multiple: Using this we can club effects for different elements. For
example, we can apply the Fade effect to multiple elements, so that using one
event all the elements defined will fade away from the page.

Along with these six core effects, we also have methods for lots of other effects.
Here's the complete list of all the additional methods that we can apply to any page
element. We have a visual demo treat coming up in the next section.

Appear

BlindDown

BlindUp

SwitchOff

SlideDown

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[69]

SlideUp

DropOut

Shake

Pulsate

Squish

Fold

Grow

Shrink

Highlight

Common parameters
There is a set of parameters that we can use with many of the effects mentioned
above. These parameters play an important role in customizing the look and feel
of the effects.

Some of the common parameters are:

Duration: This parameter helps us in setting the duration of the Effect, that
is, how long the Effect should play
to: Used to set the end time of Effect
from: Used to set the start time of Effect
delay: Used to determine how much to delay the Effect

Code usage
Now that we are (at least in theory) aware of all the effects, let's get into the code and
make our page look funky.

First, include the script.aculo.us library and Prototype library in the page. Since we
are working with effects, don't forget to add the effects.js file too.

<script src="../../lib/prototype.js" type="text/javascript"></script>
<script src="../../src/scriptaculous.js" type="text/javascript">
</script>
<script src="../../src/effects.js" type="text/javascript"></script>

Now let's save it as index.php.

After that, quickly create some <div> elements in the page to apply the effects.

<div id="mydiv"><div>
This is some random text to amaze u :)
</div>

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding Effects and Multimedia to User Interface Design

[70]

OK, here's the magic now.

Add this one line of JavaScript code and open the page in a browser.

<a href="#" onClick="new Effect.Fade('mydiv');
return false;">Fade Away my DIV

You saw the <div> with id=mydiv fading away when you clicked on the link we just
created above, didn't you?

Yeah, this is very similar to what we saw in Chapter 1. Now, let's make it a little
spicier. In the same page, add this piece of code:

<a href="#" onClick="new Effect.Highlight('mydiv',
{ startcolor: '#ffff99', endcolor: '#fffffff'});
return false;"">Highlight my DIV

Fire up the code in the browser. Did you see something special this time? Did you
see the change in colors? Magicians still exist. We are overriding the constructor with
the parameters such as startcolor. More parameters can be specified depending
upon their requirement.

This was pretty straightforward. It would be great if you could just replace the word
Highlight with BlindUp, or any other Effect name you like.

What will that result in? Here is the complete code and the corresponding
screenshots too:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1" />
<title>Untitled Document</title>
 <style type="text/css">
 #mydiv {
 width: 500px;
 border: 1px green solid;
 background:#FFFFCC;
 }
 </style>
 <script src="includes/scriptaculous/lib/prototype.js"
 type="text/javascript"></script>
 <script src="includes/scriptaculous/src/scriptaculous.js"
 type="text/javascript"></script>
 <script src="includes/scriptaculous/src/effects.js"

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[71]

 type="text/javascript"></script>
 <script src="includes/scriptaculous/src/unittest.js"
 type="text/javascript"></script>
</head>
<body>

 <a href="#" onClick="new Effect.Fade('mydiv'); return
 false;">Fade

 <a href="#" onClick="new Effect.Highlight('mydiv', { startcolor:
 '#ffff99',endcolor: '#DFEDFF' }); return false;"">Highlight

 <a href="#" onClick="new Effect.Appear('mydiv'); return
 false;">Reset
 <p>
 <div class="mydiv" id="mydiv">
 This is some random text to amaze u :)
 </div>
</body>
</html>

The following screenshot shows how our page looks at this stage:

We can also add duration and opacity to the effects.

<a href="#" onClick="new Effect.Opacity('mydiv',{from:1.0,to:0.10});
return false;">Change my DIV with Opacity

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding Effects and Multimedia to User Interface Design

[72]

So, the modified page will look like the following screenshots:

Before applying opacity:

After applying opacity:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[73]

In the piece of code that we just saw, we restricted ourselves to using only text, but
feel free to add images and multimedia as well. Use the tags to add images in
the code to see the effects on the images�.

Excited? Want to get more creative? Here we go.

Hands-on examples
The best way to understand, believe, and visualize what script.aculo.us can do
for us is by getting our code up and running. Quickly, let's explore some features
of script.aculo.us with examples and real-world scenarios before we move on
to create the next big thing on the Web.

The core effects
As mentioned above, there are some core effects (highlight, opacity, morph, and
scale) you will probably want to use. So let's see them in action.

It may seem like a lot of messy code here, but it is the simplest part. Trust me!

Let me give you a walk-through. As we learned, we are adding a link and on click
we are adding our JavaScript code for effects. All we are doing here is changing the
name of the effect. Simple?

<a href="#" onclick="$('mydiv1').morph('background:#CDEDCD;
width:450px;'); return false;">Morph

Similarly, let's just change the name of the effect. Instead of morph, change it to
highlight and see the result. You will find that I have listed out all the effects
for you here.

In the following code, we have used several images in BMP format, but feel free to
add either text or multimedia to use your own creativity. All the mentioned code
can be downloaded as well.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
<title>Combination of Core Effects</title>
 <style type="text/css">
 #mydiv {
 border: 1px #green solid;

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding Effects and Multimedia to User Interface Design

[74]

 }
 #mydiv1 {
 border: 1px #green solid;
 background:#DFEDFD;
 }
 .toolbar {
 background:#FFFFCC;
 }
 </style>
 <script src="includes/scriptaculous/lib/prototype.js"
 type="text/javascript"></script>
 <script src="includes/scriptaculous/src/scriptaculous.js"
 type="text/javascript"></script>
 <script src="includes/scriptaculous/src/effects.js"
 type="text/javascript"></script>
 <script src="includes/scriptaculous/src/unittest.js"
 type="text/javascript"></script>
</head>
<body>
 <div class="toolbar">
 <a href="#" onClick="new
 Effect.multiple(['mydiv','mydiv1'],Effect.Appear); return
 false; ">RESET
 <a href="#" onClick="new
 Effect.multiple(['mydiv','mydiv1'],Effect.Fade); return
 false;">Multiple
 <a href="#" onClick="new
 Effect.Opacity('mydiv',{from:1.0,to:0.10}); return
 false;">Opacity
 <a href="#" onclick="$('mydiv1').morph('background:#CDEDCD;
 width:450px;'); return false;">Morph
 <a href="#" onClick="new Effect.Highlight('mydiv1', { startcolor:
 '#ffff99',endcolor: '#fffffff' }); return
 false;"">Highlight
 <a href="#" onClick="new Effect.Scale('mydiv1', 200); return
 false;">Scale
 </div>
 <p>
 <div class="mydiv" id="mydiv" >

 </div>
 <div class="mydiv1" id="mydiv1" style="background:#DFEDFD;">
 This is some random Text to make u smile. Please say Cheese :)
 </div>
</body>
</html>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[75]

Now, you should be able to see the result before and after applying the core effects as
shown in the following screenshots.

Before applying the core effects:

After applying the core effects:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding Effects and Multimedia to User Interface Design

[76]

Various effects
We are aware of the fact that script.aculo.us provides us with many effects which we
can play with in the user interface.

So let's quickly create a complete page with the various effects.

We have mastered the art of adding morph and highlight in the previous example.
We are going to do it again, but this time we will be playing with lots of other effects.
We will walk through a few effects; you must have surely hacked the rest already!

To create a shake effect in the page, we will add the following code:

<a href="#" onClick="new Effect.Shake('mydiv');
return false;">Shake

Similarly, let's add one more effect. Remember, all you need to do is change the
name of the effect you want to use.

<a href="#" onClick="new Effect.Shrink('mydiv');
return false;">Shrink

You saw how, on the fly, we added a new effect Shrink with one line.

In the code that follows, you will see that we have all the effects listed on the
page. We have two <div>s, mydiv and mydiv1, upon which the effects will
show their magic.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
<title>Combination of Various Effects</title>
 <style type="text/css">
 #mydiv {
 border: 1px #green solid;
 }
 #mydiv1 {
 border: 1px #green solid;
 background:#DFEDFD;
 }
 .toolbar {
 background:#FFFFCC;
 }
 </style>
 <script src="includes/scriptaculous/lib/prototype.js"

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[77]

 type="text/javascript"></script>
 <script src="includes/scriptaculous/src/scriptaculous.js"
 type="text/javascript"></script>
 <script src="includes/scriptaculous/src/effects.js"
 type="text/javascript"></script>
 <script src="includes/scriptaculous/src/unittest.js"
 type="text/javascript"></script>
</head>
<body>
 <div class="toolbar">
 <a href="#" onClick="new Effect.Fade('mydiv'); return
 false;">Fade
 <a href="#" onClick="new Effect.SlideUp('mydiv'); return
 false;">SlideUp
 <a href="#" onClick="new Effect.SlideDown('mydiv'); return
 false;">SlideDown
 <a href="#" onClick="new Effect.Puff('mydiv'); return
 false;">Puff
 <a href="#" onClick="new Effect.DropOut('mydiv'); return
 false;">DropOut
 <a href="#" onClick="new Effect.Shake('mydiv'); return
 false;">Shake
 <a href="#" onClick="new Effect.Pulsate('mydiv'); return
 false;">Pulsate
 <a href="#" onClick="new Effect.Squish('mydiv'); return
 false;">Squish
 <a href="#" onClick="new Effect.Shrink('mydiv'); return
 false;">Shrink
 <a href="#" onClick="new
 Effect.multiple(['mydiv','mydiv1'],Effect.Appear); return
 false; ">RESET
 <a href="#" onClick="new Effect.BlindUp('mydiv'); return
 false;">BlindUp
 <a href="#" onClick="new Effect.SwitchOff('mydiv'); return
 false;">SwitchOff
 <a href="#" onClick="new Effect.Fold('mydiv'); return
 false;">Fold
 <a href="#" onClick="new Effect.Grow('mydiv'); return
 false;">Grow
 </div>
 <p>
 <div class="mydiv" id="mydiv" >

 </div>
 <div class="mydiv1" id="mydiv1" style="background:#DFEDFD;">
 This is some random Text to make u smile. Please say Cheese :)
 </div>
</body>
</html>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding Effects and Multimedia to User Interface Design

[78]

Finally, this is how it looks when we add the additional effects:

Combining all the effects
Now that we have learned about the different types of effects, why not create a
simple page to involve all the possible effects on a single page?

There's nothing new in this code. Just club together the above two snippets and you
should be able to see all the effects on one page�.

No, I am not giving you the code now, but only the screenshot. This screenshot will
help you to understand what the resulting code should contain. This is for you to try
out. We will see the solution in the next chapter.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[79]

Playing sounds with script.aculo.us
Hey, what is your best friend's favorite song? Wouldn't it be great if you could
surprise him/her by playing his/her favorite song from the browser (copyright
issues notwithstanding)? Let's see how.

script.aculo.us provides us with the sounds.js file through which we can play any
song with just one line of code. It is dead simple to play a song from the browser
using JavaScript.

Types of sounds
Not to mention, most of us are bitten by music bugs—especially if you like to work
late nights with your favorite music playing. Here is a simple tutorial section to
quickly create your own playlist and share it with others too. Using this module,
we can play music through the browser. Let's see it in action.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding Effects and Multimedia to User Interface Design

[80]

MP3 sounds
MP3s are supported only in the sounds.js file from script.aculo.us 1.8 onwards.
This feature is not available in version 1.6. Here are some of the methods we can
use while trying to play sounds with script.aculo.us.

play: When this method is invoked, the MP3 file starts playing
disable: We can disable the MP3 playback using this option
enable: The MP3 playback can be enabled using this option

You might want to use this feature for critical events when something goes wrong
(maybe introduce a beep). Alternatively, a more positive sound could be played
that lets the user know something successful has happened.

Code usage
The syntax for using this feature is pretty simple. But before we get started, let's get
all of the necessary files included in a single file and save it as song.html.

<script src="../../lib/prototype.js" type="text/javascript"></script>
<script src="../../src/scriptaculous.js" type="text/javascript"></
script>
<script src="../../src/sounds.js" type="text/javascript"></script>

OK, so now quickly add this piece of JavaScript code into the page:

<a href="#" onclick="Sound.play('dance_of_dead.MP3');
return false">play sound (parallel)

A hands-on example
A simple example is demonstrated here.

To play a song we need to create a link that, on clicking, should play the song.

<a href="#" onclick="Sound.play('dance_of_dead.MP3');
return false">Play Song

The song path can be on our server side. Alternatively, we can even pass the
complete and correct URL of the location of the song.

We can have the MP3 song residing on our own server space, or
we can specify a path for the song. But generally it would require
much more engineering work to make the application work fast
in a multiuser environment.

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 4

[81]

To disable the sound being played, we define the following code:

Mute

Again, to enable the sound we use:

Enable

Simple? OK. Now that we have our basics ready, let's see the action.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Let The Music PLay, baby!!!</title>
 <style type="text/css">
 .toolbar {
 background:#FFFFCC;
 }
 </style>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <script src="includes/scriptaculous/lib/prototype.js"
 type="text/javascript"></script>
 <script src="includes/scriptaculous/src/scriptaculous.js"
 type="text/javascript"></script>
 <script src="includes/scriptaculous/src/effects.js"
 type="text/javascript"></script>
 <script src="includes/scriptaculous/src/sound.js"
 type="text/javascript"></script>
</head>
<body>
 <h4>
 Let The Music Play, baby!!!
 </h4>
 <div class="toolbar">
 <a href="#" onclick="Sound.play('dance_of_dead.MP3');
 return false">Play Song
 <a href="#" onclick="Sound.play('rainmaker.mp3',{replace:true});
 return false">Change The Next Song
 <a href="#" onclick="Sound.disable();
 return false">Mute
 <a href="#" onclick="Sound.enable();
 return false">Enable sounds
 </div>
</body>
</html>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Adding Effects and Multimedia to User Interface Design

[82]

When you run the script, you should be able to see the following screenshot and hear
the song when you click on the Play Song link:

Summary
So far, we have covered various multimedia effects using script.aculo.us.

In this chapter we learned:

To use different types of effects such as morph, highlight, fade, blinddown,�
and many more
About the options available with effects
How to use sounds, and play songs using script.aculo.us from any browser
To have fun while working with the hands-on examples

In the next chapter, we shall have loads of fun learning to implement the drag and
drop functionality using script.aculo.us. Play on!

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

AJAX Drag and Drop Feature
using script.aculo.us

In Chapter 4 we saw the various effects provided by the script.aculo.us visual
library. At the end of Chapter 4, I also gave you a hands-on task. How did you
do it? The solution to the task that combines all the effects in one go,is as follows:

<script src="includes/scriptaculous/lib/prototype.js"
 type="text/javascript"></script>
<script src="includes/scriptaculous/src/scriptaculous.js"
 type="text/javascript"></script>
<script src="includes/scriptaculous/src/effects.js"
 type="text/javascript"></script>
<script src="includes/scriptaculous/src/unittest.js"
 type="text/javascript"></script>
</head>
<body>
 <div class="toolbar">
 <a href="#" onClick="new Effect.Fade('mydiv');
 return false;">Fade
 <a href="#" onClick="new Effect.SlideUp('mydiv');
 return false;">SlideUp
 <a href="#" onClick="new Effect.SlideDown('mydiv');
 return false;">SlideDown
 <a href="#" onClick="new Effect.Puff('mydiv');
 return false;">Puff
 <a href="#" onClick="new Effect.DropOut('mydiv');
 return false;">DropOut
 <a href="#" onClick="new Effect.Shake('mydiv');
 return false;">Shake
 <a href="#" onClick="new Effect.Pulsate('mydiv');
 return false;">Pulsate
 <a href="#" onClick="new Effect.Squish('mydiv');
 return false;">Squish

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

AJAX Drag and Drop Feature using script.aculo.us

[84]

 <a href="#" onClick="new Effect.Shrink('mydiv');
 return false;">Shrink
 <a href="#" onClick="new
 Effect.multiple(['mydiv','mydiv1'],Effect.Appear);
 return false; ">RESET
 <a href="#" onClick="new Effect.BlindUp('mydiv');
 return false;">BlindUp
 <a href="#" onClick="new Effect.SwitchOff('mydiv');
 return false;">SwitchOff
 <a href="#" onClick="new Effect.Fold('mydiv');
 return false;">Fold
 <a href="#" onClick="new Effect.Grow('mydiv');
 return false;">Grow

 <a href="#" onClick="new
 Effect.multiple(['mydiv','mydiv1'],Effect.Fade);
 return false;">Multiple

 <a href="#" onClick="new
 Effect.Opacity('mydiv',{from:1.0,to:0.10});
 return false;">Opacity

 <a href="#" onclick="$('mydiv1').morph('background:#CDEDCD;
 width:450px;'); return false;">Morph

 <a href="#" onClick="new Effect.Highlight('mydiv1', { startcolor:
 '#ffff99',endcolor: '#fffffff' }); return
 false;"">Highlight

 <a href="#" onClick="new Effect.Scale('mydiv1', 200);
 return false;">Scale
 </div>
<p>
 <div class="mydiv" id="mydiv" >

 </div>

 <div class="mydiv1" id="mydiv1" style="background:#DFEDFD;">
 This is some random Text to make u smile. Please say Cheese :)
 </div>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[85]

Here is the screenshot for how it should look:

I am sure you got it right in one go!

Let's move on to yet another appealing Web 2.0-ish feature—Drag and drop using
script.aculo.us. In this chapter we will learn the following:

Drag and drop—an introduction and explanation
The functionality of code usage
Getting started quickly with an example
Creating a multifunctional drag and drop application

•
•
•
•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

AJAX Drag and Drop Feature using script.aculo.us

[86]

Introduction to the drag and drop feature
We all have used the drag and drop feature many times. Let me give you some
examples. If you've used any of the applications such as iGoogle, Blogger,
Wordpress, Backpackit, and Yahoo Mail, then chances are you will have come across
drag and drop. See the next screenshot taken from the iGoogle application where
we can drag various widgets provided by Google. We can also customize the whole
layout and rearrange the whole user interface as we want.

You will find that we can do a lot just by dragging the widgets into a certain portion
on the interface, and the application's behaviour changes with it. As the name
suggests, we can make the elements of the page draggable and apply functionality
to the behavior.

Explanation of the drag and drop feature
We can easily make any element draggable just by creating a draggable class
instance from the drag and drop module of the script.aculo.us library. We can also
add various options to the element that we want to make draggable, to add greater
interactivity as well as functionality.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[87]

A simple way of initializing the draggable element is shown here:

new Draggable(element, options);

Some of the available options that we can explore with drag and drop are:

revert: When set to true, the element returns to the original position when
the drag ends. By default, this is set to false.
snap: This is used to form a draggable area or grid. It constrains the
movement of the element.
ghosting: When you are dragging the element, a clone of the original
element will be in the starting position until the drag ends.
constraint: Using this option we can restrict the movement of the element
on horizontal and vertical planes.
handle: Using this option, we can handle the movement and drag of an
element using some other element. This is rarely used because of the fact that
every draggable element will have its own handle by default.
startEffect: This option changes the behavior of the element on the user
interface when the drag begins. We can change opacity, colors, and so on to
make flexible user interface changes.
endEffect: This option defines what effects should be shown when the drag
ends in the page.
revertEffect: This option is valid only with the revert feature. When an
element is applied with the revert option, this particular revertEffect is
called. When the drag action ends, the effect changes (reverts) to the initial
effect, or the default effect, specified.

There are various callback options that we can use along with drag and drop:

onStart: This is called when a drag is initiated
onDrag: This is called while the drag is in progress, with every
mouse movement
change: This is the same as the onDrag callback option, but is used mostly
with every ��������������� mouse movement
onEnd: ������������������������������ This is called when a drag is ended

We have learned about dragging things in the page, but hang on—where
are we going to drop them? Yes, this is yet another interesting feature with
script.aculo.us—Droppables.

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

AJAX Drag and Drop Feature using script.aculo.us

[88]

Droppables is a namespace where we can drop the dragged element by making a
call to the add() method inside this namespace. The droppables namespace has two
methods to work with:

Add: Calling this will add the dragged and dropped element to the target area
Remove: Calling this will remove the element from the target area

This namespace also comes with certain useful callbacks. They are:

onHover: When the mouse is rolled over the target area and its elements
onDrop: When a particular element is dropped inside the target area

If you feel this was a heavy dose of theory, just relax! ������������������������������� We will see in detail each and
every option mentioned above in the next section of code usage�.

Code usage of the drag and drop feature
To get started with drag and drop, the obvious thing to do is to include the drag
and drop module. We will also include the effects module to add more beauty to
our user interface.

<script type="text/javascript" src="src/scriptaculous.js"></script>
<script type="text/javascript" src="src/effects.js"></script>
<script type="text/javascript" src="src/dragdrop.js"></script>

We know that to initialize the draggable element we have to call the instance of the
draggable class:

new Draggable(element,options);

The first parameter is the ID of the element which we want to make draggable������ . The
other parameters are optional, like fading effect, revert, and the others that we have
covered above�.

Now, let's learn to add different options step-by-step.

Add the revert option
new Draggable(element,{revert:true});

Add the snap option
new Draggable(element,
 {
 revert:true,
 snap: [x,y]
});

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[89]

Add the ghosting option
new Draggable(element,
 {
 revert:true,
 snap: [x,y],
 ghosting:true
});

Add the constraint option
new Draggable(element,
 {
 revert:true,
 snap: [x,y],
 ghosting:true,
 constraint:"horizontal"
});

Add the handle option
new Draggable(element,

 {
 revert:true,
 snap: [x,y],
 ghosting:true,
 constraint:"horizontal",

 handle: 'dragHandle'
});

Add the startEffect option
new Draggable(element,
 {
 revert:true,
 snap: [x,y],
 ghosting:true,
 constraint:"horizontal",
 handle: 'dragHandle',
 startEffect: CallFunction('element')
});

Add the endEffect option
new Draggable(element,
 {
 revert:true,
 snap: [x,y],
 ghosting:true,
 constraint:"horizontal",

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

AJAX Drag and Drop Feature using script.aculo.us

[90]

 handle: 'dragHandle',
 startEffect: CallFunction('element'),
 endEffect: EndcallFunction('element')
});

Add the revertEffect option
new Draggable(element,
 {
 revert:true,
 snap: [x,y],
 ghosting:true,
 constraint:"horizontal",
 handle: 'dragHandle',
 startEffect: CallFunction('element'),
 endEffect: EndcallFunction('element'),
 revertEffect:callrevertFunction('element')
});

Well, this was all about the draggable options. Let's quickly define the callback
functions (in one go) as well.

new Draggable(element,
 {
 onStart: callFunctionOnStart(),
 onDrag: callFunctionOnDrag(),
 onEnd: callFunctionOnEnd()
});

Now, let's not forget the droppables. After all, that's where we're going to drop
things, right? As mentioned before, droppables mainly has two methods:

Adding a new element in the target area
Droppables.add(element, options);

Removing an element from the target area
Droppables.remove(element);

When we drop elements in the droppable area, they become a part of the new
droppable section. Hence, we can add a couple of callbacks and functions within
the same.

Let's add some callback functions to the droppables.
Droppables.add(
 element,
 {
 onDrop:callDropFunction
 }
);

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[91]

We have approached things differently in this section, adding options
step-by-step to make it clear that we can actually do a lot of things with the drag
and drop functionality. Having said that, let's move on and play with some code.
Again, we shall start with the simplest possible example and convert it step-by-step
into a monster.

Hands-on example: Creating a drag and
drop sample in one line of code
We can achieve the drag and drop functionality in just one line of JavaScript code.
That's how simple script.aculo.us makes it for us.

All we did above was—we created a simple <div> and added some text to it. As
suggested earlier, let's also add the required .js files of script.aculo.us.

<script type="text/javascript" src="src/prototype.js"></script>
<script type="text/javascript" src="src/scriptaculous.js"></script>
<script type="text/javascript" src="src/dragdrop.js"></script>

Let's quickly add some flesh in our HTML code.

<body>
 <h4>This part wont move..come what may!!!!</h4><p>
 <div id="myDiv">
 Drag me to Next level...<p>
 And, Next level is where you drag me
 </div>
</body>

Now comes the magic scripting part of JavaScript.

window.onload = function() {
 new Draggable('myDiv');
}

And we are done! The next screenshot shows what the application looks like:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

AJAX Drag and Drop Feature using script.aculo.us

[92]

You will have to figure out what the <div> box does here. OK, so now that you have
learned the art of moving elements in the page, it's our duty as well to send it back to
the original place. So, let's modify the above JavaScript code and send the <div> box
back to the original place using the revert option. The updated script is shown here:

window.onload = function() {
 new Draggable('myDiv',{revert:true});
}

When you drag the <div> box and then release the mouse (that is, when a drag is
complete), the <div> box goes back to the original place.

I am sure loads of ideas are running around in your mind about all the possibilities
of using the drag and drop feature. Let's walk through some of them. While dragging
the element from the page, why not show a clone of the original in its place (and yes,
doing it many times results in chaos)?

window.onload = function() {
 new Draggable('myDiv',{ghosting:true});
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[93]

This is how it might look. Oops! Does it look ugly? You can see why people
call it ghost!

Hands-on example: Advanced drag and
drop tutorial
Now that the concepts of drag and drop are clear, we are well set to work out an
advanced drag and drop module. Imagine a product cart. As users, we need to
select products and then check out. Wouldn't it be simple if a user can just drag the
products (s)he wants to buy, drop them in the selected cart, and then check out?
On top of that, we will try to keep our user interface pretty neat and clean.

Let's get started with the code. First, add the script.aculo.us libraries to our code in
the <head> section.

<script type="text/javascript" src="src/prototype.js"></script>
<script type="text/javascript" src="src/scriptaculous.js"></script>
<script type="text/javascript" src="src/effects.js"></script>
<script type="text/javascript" src="src/dragdrop.js"></script>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

AJAX Drag and Drop Feature using script.aculo.us

[94]

We will add some effects to our module. We will also need to add some products.
For now we are just creating <div>s. But in the later part of the book, we will create
the same module through a database-driven module too.

Let's create a simple <div> and give some name to the product.

<div id="myProduct1" align="center">
iPhone <p>
</div>

Similarly, let's add a few more <div>s and (to give a neat user interface) embed them
inside a table. The code now looks like this:

<div id="container">
Select products and just drag them!!!
 <table>
 <tr>
 <td>
 <div id="myProduct1" align="center">
 iPhone <p>
 </div>
 </td>
 <td>
 <div id="myProduct2" align="center">
 Ipod Nano<p>
 </div>
 </td>
 <td>
 <div id="myProduct3" align="center">
 MacPro Airbook <p>
 </div>
 </td>
 </tr>
 </table>
 <p>
</div>
 <p>
<div id="myDiv">
 Drag Some products to my menu<p>
</div>
 <p>
<div id="note">
</div>

We need to keep our user informed as to what is happening in the module.
Therefore, we have added a <div> with id=note. We will use this to update
the user with whatever is happening on the page.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[95]

Now moving on to coding, let's first initialize the draggables and droppables
of the page.

window.onload = function() {
 new Draggable('myProduct1',{revert:true});
 new Draggable('myProduct2',{revert:true});
 new Draggable('myProduct3',{revert:true});

 Droppables.add(
 'myDiv',
 {
 onDrop: addItem
 }
);

 Droppables.add(
 'container',
 {
 onDrop: removeItem
 }
);
}

We have added all three product <div>s as draggable. We have added our
myDiv <div> as a droppable, as we're dragging the products from the container to
myDiv. Similarly, we have also added container as droppables, since we want the
user to remove the products as well if (s)he wants to.

We learned about the callbacks in the previous hands-on section. Let's make use of
them. We are calling the function addItem and removeItem for the onDrop event.
This means when a user drags the product <div> and drops it in the droppable
area, the functions get called. Now, let's define the functionality for addItem and
removeItem. In addItem, we are simply appending the draggable elements to myDiv.

function addItem(draggable) {
 myDiv.appendChild(draggable);
 $('note').innerHTML="Added"+draggable.innerHTML;
 new Effect.Highlight($('note'));
}

In removeItem, we are appending the draggable elements back to our container.

function removeItem(draggable, droppable) {
 container.appendChild(draggable);
 $('note').innerHTML="Removed"+draggable.innerHTML;
 new Effect.Highlight($('note'));
}

We are also adding the product name to the <div> note along with the Highlight
effect to help the user understand what is happening on the screen.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

AJAX Drag and Drop Feature using script.aculo.us

[96]

Now, a little bit of CSS styling for our application. This is how it looks when we add
colors to our module:

When we drag a product to our menu, we get the following screenshot of
the application:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 5

[97]

We have also added some effects to the module. Let's see how they look in
the application�:

The idea of using Highlight here is to showcase that we can use our own creativity
and the power of AJAX functionality on the page. We are updating the status
without refreshing the page. We can do a lot of things such as fetching data
from server or passing data to the server on every event.

Summary
With this happy, clean, and beautiful user interface we come to the end of the drag
and drop section. So far we have learned:

Drag and drop—an introduction and explanation
Code usage
Various options and hands-on examples
Advanced drag and drop module to get comfortable with AJAX

In the next chapter we will learn everything about in-place editing using
script.aculo.us. By the way, what is your favourite color? You will need it in
the next chapter.

•
•
•
•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

In-place Editing using
 script.aculo.us

In Chapter 5 we learned about the drag and drop features of the script.aculo.us
library. We created elements, which we could move around the page, and also
tried adding some AJAX functionality to them.

In this chapter, we will learn about editing the content in the page without moving,
dragging, or dropping it. This feature is called in-place editing. The key topics that
we are going to explore in this chapter are:

Introduction to in-place editing
In-place editing: Definition and attributes
Code usage in examples
Tips and tricks involving in-place editing
Hands-on example: Handling at the server-side
Hands-on with InPlaceCollectionEditor

An introduction to the in-place
editing feature
In-place editing means making the content available for editing just by clicking on it.
We hover on the element, allow the user to click on the element, edit the content, and
update the new content to our server.

•
•
•
•
•
•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

In-place Editing using script.aculo.us

[100]

Sounds complex? Not at all! It's very simple. Check out the example about
www.netvibes.com shown in the following screenshot. You will notice that
by just clicking on the title, we can edit and update it.

Now, check out the following screenshot to see what happens when we click on
the title�.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[101]

In simple terms, in-place editing is about converting the static content into an
editable form without changing the place and updating it using AJAX.

Getting started with in-place editing
Imagine that we can edit the content inside the static HTML tags such as a simple
<p> or even a complex <div>.

The basic syntax of initiating the constructor is shown as follows:

New Ajax.InPlaceEditor(element,url,[options]);

The constructor accepts three parameters:

element: The target static element which we need to make editable
url: We need to update the new content to the server, so we need a URL to
handle the request
options: Loads of options to fully customize our element as well as the
in-place editing feature

We shall look into the details of element and url in the next section. For now,
let's learn about all the options that we will be using in our future examples.

The following set of options is provided by the script.aculo.us library. We can use
the following options with the InPlaceEditor object:

okButton: Using this option we show an OK button that the user clicks on
after editing. By default it is set to true.
okText: With this option we set the text value on the OK button. By default
this is set to true.
cancelLink: This is the button we show when the user wishes to cancel the
action. By default it's set to true.
cancelText: This is the text we show as a value on the Cancel button. By
default it's set to true.
savingText: This is the text we show when the content is being saved. By
default it's set to Saving. We can also give it any other name.
clickToEditText: This is the text string that appears as the control tooltip
upon mouse-hover.
rows: Using this option we specify how many rows to show to the user. By
default it is set to 1. But if we pass more than 1 it would appear as a text area,
or it will show a text box.

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

In-place Editing using script.aculo.us

[102]

cols: Using this option we can set the number of columns we need to show
to the user.
highlightColor: With this option we can set the background color of
the element.
highlightendColor: Using this option we can bring in the use of effects.
Specify which color should be set when the action ends.
loadingText: When this option is used, we can keep our users informed
about what is happening on the page with text such as Loading or
Processing Request.
loadTextURL: By using this option we can specify the URL at the server
side to be contacted in order to load the initial value of the editor when it
becomes active.

We also have some callback options to use along with in-place editing.

onComplete: On any successful completion of a request, this callback option
enables us to call functions.
onFailure: Using this callback option on a request's failure, we can make a
call to functions.
Callback: This option calls back functions to read values in the text box, or
text area, before initiating a save or an update request.

We will be exploring all these options in our hands-on examples.

Code usage of the in-place editing
features and options
Now things are simple from here on. Let's get started with code.

First, let's include all the required scripts for in-place editing:
<script type="text/javascript" src="src/prototype.js"></script>
<script type="text/javascript" src="src/scriptaculous.js"></script>
<script type="text/javascript" src="src/effects.js"></script>
<script type="text/javascript" src="src/controls.js"></script>

Once this is done, let's create a basic HTML page with some <p> and <div> elements,
and add some content to them.

<body>
<div id="myDiv">
 First move the mouse over me and then click on ME :)
</div>
</body>

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[103]

In this section we will be learning about the options provided
with the in-place editing feature. In the hands-on section we will be
working with server-side scripts of handling data.

Now, it's turn to add some spicy JavaScript code and create the object for
InPlaceEditor.

In the following piece of code we have passed the element ID as myDIV, a fake URL,
and two options okText and cancelText:

Function makeEditable() {
new Ajax.InPlaceEditor(
 'myDIV',
 'URL',
 {
 okText: 'Update',
 cancelText: 'Cancel',
 }
);
}

We will be placing them inside a function and we will call them on page load. So the
complete script would look like this:

<script>
function makeEditable() {
new Ajax.InPlaceEditor(
 'myDIV',
 'URL',
 {
 okText: 'Update',
 cancelText: 'Cancel'
 }
);
}
</script>
<body onload="JavaScript:makeEditable();">
<div id="myDiv">
 First move the mouse over me and then click on ME :)
</div>
</body>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

In-place Editing using script.aculo.us

[104]

Now, save the file as Inplace.html. Open it in a browser and you should see the
result as shown in the following screenshot:

Now, let's add all the options step-by-step.

Remember, whatever we are adding now will be inside
the definition of the constructor.

1.	 First let's add rows and columns to the object.
 new Ajax.InPlaceEditor(
 'myDIV',
 'URL',
 {
 okText: 'Update',
 cancelText: 'Cancel',
 rows: 4,
 cols: 70
 }
);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[105]

2.	 After adding the rows and cols,������������������������������������� we should be able to see the result
displayed in the following screenshot:

3.	 Now, let's set the color that will be used to highlight the element.
 new Ajax.InPlaceEditor(
 'myDIV',
 'URL',
 {
 okText: 'Update',
 cancelText: 'Cancel',
 rows: 4, 	
 cols: 70,
 highlightColor:'#E2F1B1'
 }
);

4.	 Drag the mouse over the element. Did you notice the change in color?
You did? Great!

5.	 Throughout the book we have insisted on keeping the user informed,
so let's add more options to make this more appealing. We will add
clickToEditText, which will be used to inform the user when the
mouse hovers on the element.

 new Ajax.InPlaceEditor(
 'myDIV',
 'URL',
 {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

In-place Editing using script.aculo.us

[106]

 okText: 'Update',
 cancelText: 'Cancel',
 rows: 4,
 cols: 70,
 highlightColor:'#E2F1B1',
 clickToEditText: 'Click me to edit'
 }
);

Tips and tricks with in-place editing
Now that we have learned how to use in-place editing, we can take a look at
some cheat codes. Here are some tips and tricks to get you on a fast track with
using in-place editing.

Disabling the element for the in-place
editing functionality
We may need to disable the in-place editing functionality of an element after a
certain action in the application. In the real world (say a project management
application), where to-do lists are shared, we can disable the functionality of certain
items based on the user access roles. This is just a teaser; you can think of more. For
now, let's quickly learn the art of disabling.

The functionality can be disabled on the fly.
Element.dispose();

Now, let's try this with the myDIV element created above. To disable it, add this line
of code:

myDiv.dispose();

Disabling the editing functionality certainly comes in handy and can be called after a
particular event, or as a callback.

Entering into the edit mode
Now that we have disabled the element, chances are that we may also need to bring
back the sanity and make the element editable. Again, making an element editable is
as simple as disabling it.

The element can be made editable with a brute force method.
Element.enterEnterMode();

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[107]

We need to invoke the element ID with the enterEnterMode() function. To make
the myDiv element editable, we need to add this line of code:

myDiv.enterEnterMode();

We can make certain functionality on an application editable only to the
administrator, and not to the general users. We can disable in-place editing for
general users and allow the admin to do in-place editing.

Submitting on Blur
There may be a lot of places where we don't want to show the user okButton or
cancelLink along with our text box or field.

The following code shows the constructor definition for submitting the data on Blur.

 new Ajax.InPlaceEditor(
 'theElement',
 'Server-Side Script',
 {
 okButton: false,
 cancelLink:false,
 submitOnBlur :true,
 ajaxOptions: {method: 'post'}
 }
);

The resulting user interface is shown in the following screenshot:

A simple example is the Gtalk status message. We can add our own title and
the messenger updates it at runtime, without showing the user the Submit and
Cancel buttons.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

In-place Editing using script.aculo.us

[108]

There are lots of uses of this particular option. It's not a good practice to present the
user with the Submit and Cancel buttons every time, mainly, from the user interface
perspective. So the next time you plan to show the user a Submit button, think about
the submitOnBlur option.

Callbacks for onEnterEditMode and
onLeaveEditMode
We can customize callbacks based on the behavior of the user while using applications.
We can create callbacks when a particular element is made editable, or when a
particular element leaves the edit mode.

These callbacks can be very useful and powerful in keeping the user informed, and
also while changing the behavior of the application based on user inputs.

Invoking the callbacks is pretty neat and simple. Don't believe it? Check this code.

onEnterEditMode:f1(),
onLeaveEditMode: f2();

These options will come with the callback functions in the constructor definition. The
complete code snippet will look like this:

new Ajax.InPlaceEditor(id, url, {
 callback: function(form, value) { return value},
 onEnterEditMode: f1(form, value),
 onLeaveEditMode: f2(form, value)

});

In the code snippet, the f1() and f2()functions will be invoked once the element
becomes editable and when it leaves the edit mode, respectively.

Hands-on example: In-place editing with
server-side handling
In the previous section, we saw different uses for the client-side options. In this
section we will be working with the server-side processing.

Most of our web applications are database-driven. When the user edits and submits
the data, we need to update the database with the new content. Server-side handling
comes into the picture here.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[109]

Let's go straight into making an in-place editing module. We are not going to write
the module from scratch, but we will be extending the above example. In the story so
far, we have added a simple <div> element to the page, initiated the InPlaceEditor
constructor, and added a few options to it. We have clubbed together the above
pieces of code and the complete code is given here:

<html>
<head>
<title>In-Place Editing Example</title>
<script type="text/javascript" src="src/lib/prototype.js"></script>
<script type="text/javascript"
 src="src/src/scriptaculous.js"></script>
<script type="text/javascript" src="src/src/effects.js"></script>
<script type="text/javascript" src="src/src/controls.js"></script>
<style>
Body
 {
 color:black;
 }
 #myDiv
 {
 background-color:#BCE6D6;
 width:400px;
 height:30px;
 text-align:center;
}
</style>
<script>
window.onload = function() {
 new Ajax.InPlaceEditor(
 'myDiv',
 'URL',
 {
 okText: 'Update',
 cancelText: 'Cancel',
 highlightColor:'#E2F1B1',
 clickToEditText: 'Click me to edit',
 loadingText: 'Loading..',
 savingText: 'Saving..'
 }
);
}
</script>
<body>
<div id="myDiv">

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

In-place Editing using script.aculo.us

[110]

 First move the mouse over me and then click on ME :)
</div>
</body>
</html>

Let's look closely into the constructor definition.

 new Ajax.InPlaceEditor(
 'myDiv',
 'URL',
 {
 okText: 'Update',
 cancelText: 'Cancel',
 highlightColor:'#E2F1B1',
 clickToEditText: 'Click me to edit',
 loadingText: 'Loading..',
 savingText: 'Saving..'
 }
);

Here, we have given a proxy URL in the option. We now need to create a script at
the server side to handle the request sent through this constructor. Let's name it
readValue.php.

<?php
$value = $_REQUEST['value'];
echo $value;
?>

That's it! It takes just these two lines to read the value. This is because, by default,
it uses REQUEST to send the value. We can also overwrite it by passing our own
ajaxOptions. We can also replace $_REQUEST with $_POST and it will still work.

Try it out to believe me. Just replace the URL with readValue.php. The new
definition of the constructor now looks like this:

 new Ajax.InPlaceEditor(
 'myDiv',
 'readValue.php',
 {
 okText: 'Update',
 cancelText: 'Cancel',
 highlightColor:'#E2F1B1',
 clickToEditText: 'Click me to edit',
 loadingText: 'Loading..',
 savingText: 'Saving..'
 }
);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[111]

Open the file in a browser. Click on the <div> element and add some new content. It
should show you the following result:

After we edit the text, check out the resulting output:

We were able to read the value at the server-side script. We can do a lot of things
with the value such as edit it, add it to a database, or print it back.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

In-place Editing using script.aculo.us

[112]

Hands-on example:
InPlaceCollectionEditor
We have covered the InPlaceEditor up to now. There is one more nice feature we
need to learn while we are at in-place editing—InPlaceCollectionEditor.

After clicking on the editable element, the user sees a text box or a text area. In
some cases, we need to provide the user with fixed values, which they will have
to choose between.

A simple example can be—being asked what your favourite programming language
is. Instead of entering any value, you would be prompted with fixed values in a
drop-down menu.

Firstly, we have to define the element to initiate the InPlaceCollectionEditor
constructor.

 new Ajax.InPlaceCollectionEditor(
 'myDIV',
 'URL',
 {
 okText: 'Update',
 cancelText: 'Cancel',
 collection: ['php','mysql','Javascript','C++']
 }
);

If you look closely at the code snippet, the syntax is similar to the InPlaceEditor
syntax. The only major difference is the new option—collection. The collection
option takes multiple values in the form of an array and prompts them in a
drop-down menu for the user. We can use the above server-side code as it is.

Leave this as a part of a hands-on exercise, and try it out! You will be provided the
complete code in the next chapter. In the following screenshot, check out how it
should behave when you convert InPlaceEditor to InPlaceCollectionEditor:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 6

[113]

After selecting the JavaScript option and clicking on ok, we get:

In short, InPlaceCollectionEditor is an extension to InPlaceEditor providing
the user with a set of fixed, predefined values. These values are shown in the form
of a drop-down menu.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

In-place Editing using script.aculo.us

[114]

Summary
We have almost edited everything on the page using InPlaceEditor and
InPlaceCollectionEditor. So far we have:

Learned about InPlaceEditor
Seen the explanation and code usage for InPlaceEditor
Learned some tips and tricks with in-place editing
Seen hands-on modules for InPlaceEditor at the server-side handling
Learned about InPlaceCollectionEditor

In the next chapter, we will be learning about autocompletion using script.aculo.us.
We call this feature a must for the Web 2.0 applications. It makes the applications
sleek and robust. You have possibly used it in the Yahoo! homepage, or in a Gmail
contact list.

•
•
•
•
•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Auto�����������completion�
using script.aculo.us

Having learned the in-place editing functionality, we now move to some serious fun.
We will discuss yet another power functionality of autocompletion using
script.aculo.us. Some of the key topics we will cover are:

Introduction to autocompletion
Explanation, types, and options of autocompletion
Code usage for autocompletion
Hands-on example using local and remote sources

Introduction to autocompletion
As the end user of an application, we would expect the system, as a whole, to be
user-friendly and to help us achieve the desired results faster. It's always good to
suggest to users possible matches for the results while the input is being entered,
thus enabling the user to select a result if it satisfies his/her criteria. This not only
makes the application faster, but also makes it more efficient.

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Autocompletion using script.aculo.us

[116]

Let me start by giving you a very basic example of Yahoo! search. Look at the
following screenshot:

In this screenshot, when we type scriptac in the text box we see a drop-down list
suggesting some of the relevant topics such as scriptaculous, scriptacom, and so on.

Imagine that if a user is searching for effects, then (s)he just has to click on the link
shown through suggestions and search results would be displayed accordingly.

As a user we don't have to type complete words. Above all, it helps us in refining our
criteria which makes it more relevant.

From a developers' point of view, autocompletion is not necessarily used only with
web searching, but from our local database as well. It can be used with a string of
arrays too. In short, we can apply autocompletion in any project where we need to
suggest quick options to the users.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[117]

Let me give you another quick example and then we can move to the creation of our
own autocompletion modules using script.aculo.us.

Google has introduced this powerful usage of autocompletion in various features
of Gmail. In the Compose Mail feature, on typing the name of the contact we see a
list showing the related names from the entire contact list. The same applies to some
other features such as adding a contact.

I must admit, these features save a lot of time and memory as well (else we would be
compelled to remember or add exclusively).

OK! So, we are clear about the real-world usage of the autocompletion feature. We
will now move on to learn and build our own modules.

Explanation of the autocompletion
feature
Like all the other features, script.aculo.us offers powerful, customizable, and
developer-friendly options for implementing autocompletion in our projects.

To invoke the constructor for autocompletion, we need to pass four parameters with
options as optional parameters. They are as follows:

Element: This is the refer��� ence to the element name or reference of the
text field.
Container: This is the reference�� to the element which would be the host
for the options being suggested.

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Autocompletion using script.aculo.us

[118]

Source: Earlier, in the introduction, I mentioned that we can use
autocompletion with a local database or with arrays. This is where we mention
our sources. It can be from a server-side script using AJAX or as simple as an
array. We will be looking into the details about them in the next section.
Options: We can fully customize our autocompletion feature by adding more
callbacks and functions.

Types of autocompletion sources
script.aculo.us provides us with two principle sources for autocompletion. They are:

Remote sources
Local sources

Remote sources
Remote sources are used to fetch data from outside sources in real time.

User enters a particular character and on every keyup event the autocompletion
feature is called. The entered text is then sent to the server, gets refined in terms
of matching words, and is displayed on the page.

On the technical front, an AJAX call is being made to fetch the relevant data from
the server side.

The syntax for the constructor is shown below:

new Ajax.Autocompleter(ElementID, Container, source URL,[options]);

We need to pass ElementID or reference, the Container element, Source URL,
and options.

A real-world example code usage is shown below:

new Ajax.Autocompleter('myDIV','suggestDIV','readSuggests.php', {
updateElement: function(){alert("posted");} });

Local sources
One obvious thought that comes to mind at this point of time is What is the
difference between remote and local sources, when both of them fetch data and prompt
the relevant values?

The difference lies in the sources. Local sources are passed as an array of strings without
making any AJAX calls, and remote sources take server-side scripts with AJAX calls.

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[119]

This is also useful from the performance point of view. Accessing local sources
would result in high performance and using remote sources needs extra care,
since it requires querying in the database. But care has to be taken in optimizing
the results, either at the database level or at server side.

Now, let's see the syntax for invoking the constructor using local sources.

new Autocompleter.Local(element, container, "array"[, options]);

Real-world example code usage is shown here:

var cities= [
'Illinois',
'Idaho',
'Indiana'
];
new Autocompleter.Local('city', 'cityList', cities);

Options for autocompletion sources
In this section, we will learn about the options available to explore with the
autocompletion feature. We will learn about the options available for remote
as well as local sources.

Options for remote sources
script.aculo.us provides various options, which can be used along with
autocompletion objects using remote sources. They are:

paramName: When we post our data, that is, through the text field, we can
add our own parameter name to the query string. By default it takes the
name of the text field. It can be particularly useful for naming the parameter
if we are taking our parameter as criteria in the database query.
minChars: We mentioned before that the AJAX calls are made on every
keyup event. Using this option we can specify how many minimum
characters we need as our data. By default it is one character.
Frequency: This is the interval time which is passed to the server-side script.
By default it is 0.4 seconds.
Indicator: This is like Loading an image or Requesting an element in AJAX
calls. This element will be displayed while AJAX calls are being processed
at the server side.

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Autocompletion using script.aculo.us

[120]

Parameters: Sometimes it's not sufficient to fetch results only by passing
the query string that has passed through text field. We may also need to
pass other parameters such as userID, username, or sessionname. We can
pass those parameters using this option.
callback: This is used to modify the query string entered through the
text field. This is called before the AJAX call is made. We can modify or
format the data and make it ready for the AJAX request to be made to the
server side.
updateElement: Once a user selects one element out of the list prompted
from the server-side script, we can use this callback option to invoke a
function to handle what is to be done with that data. It's like a trigger to
add more customized functionality.
afterUpdateElement: Using this callback option we can specify our
application of what to do after the updateElement execution.
Tokens: Tokens, as an option, are mainly used to delimit the entry of
multiple elements into the text field.

Options for local sources
script.aculo.us provides various options that can be used along with autocompletion
objects using local sources. They are:

Choices: The number of choices to be displayed. By default it is set to 10.
partialSearch: This is a little tricky option. While using the partialSearch
option, the search operation is performed on the expressions in matching
order from left to right. That means if we enter "ab", the choices will be like
"abc", "abxyz", and so on.
fullSearch: In the fullSearch option, the search is performed on the
matching expressions without any constraints of order; which means they
may match anywhere in the expression. For example, if we enter ab, we will
find abc, fab, and labs because the ab pattern is matching in all the choices. By
default it is false.
partialChars: The number of characters to be typed before going for a
partialSearch. By default it is 2.
ignoreCase: The name speaks for itself. We will not take into account the
case of characters.

Code usage for all the above mentioned sources and options is explained.

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[121]

Code usage of autocompletion using
remote sources
Let's quickly learn how to create a constructor making good usage of the available
options, and create a base example for our hands-on example.

The syntax for the autocompletion constructor using remote sources is shown
as follows:

new Ajax.Autocompleter(ElementID, Container, source URL,[options]);

Let's have a quick glance at the usage of the HTML code.

<input type="text" id="cityName"/>
<div id="cityChoices"></div>

We have just created a simple text field and given an id to it. We have also created
a <div> element with id, which will be used to populate with the choices we get
from the server side.

Now, to invoke the autocompletion feature, we need to add our required files and
scripts. We need to add the script.aculo.us modules effects.js and controls.js,
and the Prototype library as well.

<script type="text/javascript" src="/src/effects.js"></script>
<script type="text/javascript" src="/src/controls.js"></script>
<script type="text/javascript" src="src/prototype.js"></script>
<script type="text/javascript" src="src/scriptaculous.js"></script>

All set. Now, let's write the JavaScript code.

window.onload = function() {
 new Ajax.Autocompleter(
 'cityName',
 'cityChoices',
 'viewCities.php'
);
}

We have invoked a function and passed the element ID cityName, the container ID
cityChoices,�������������������� and the server URL viewCities.php.

Let's add some options to our code to make it more flexible.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Autocompletion using script.aculo.us

[122]

Adding options to our constructor
Let's add some options with our constructor definition to enhance the behaviour
and functionality.

window.onload = function() {
 new Ajax.Autocompleter(
 'cityName',
 'cityChoices',
 'viewCities.php',
{
paramName: 'myQuery',
minChars:2,
frequency: 3,
indicator: 'Requesting',
updateElement: handleRequest

}
);
}

function handleRequest(text)
{
alert(text.value);
}

<input type="text" id="cityName"/>
<div id="Requesting">Searching</div>
<div id="cityChoices"></div>

In the above snippet we are adding some options such as paramName, minChars,
frequency, indicator, and updateElement.

To use the indicator option we have added a <div> element with text Searching,
which will be shown while the AJAX request is taking place.

We have also defined a function handleRequest,�������������������������������� which will be called using the
callback option updateElement.

Similarly, we can add the rest of the options as well.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[123]

Code usage of autocompletion using
local sources
After learning about autocompletion using remote sources, now it's time to
learn autocompletion using local sources.

The syntax for the autocompletion constructor using local sources is shown
as follows:

new Autocompleter.Local(ElementID, Container,"array of strings",
[options]);

Let's include the required modules and libraries. The HTML part of the code remains
the same. Remember, we told you the difference lies only in the way the data is
fetched from different sources.

<script type="text/javascript" src="/src/effects.js"></script>
<script type="text/javascript" src="/src/controls.js"></script>
<script type="text/javascript" src="src/prototype.js"></script>
<script type="text/javascript" src="src/scriptaculous.js"></script>

<input type="text" id="cityName"/>
<div id="cityChoices"></div>

So now let's define our constructor using local sources.

var citiesList= [
'Indiana',
'Idaho',
'Illinois'
];

new Autocompleter.Local('cityName', 'cityChoices', citiesList);

We have created the constructor by passing the text field element's ID—cityName,
the <div> element that will contain the matching choices, and finally the array that
has some city names.

Adding options to our constructor
Let's add some options with our constructor definition.

<script type="text/javascript" src="/src/effects.js"></script>
<script type="text/javascript" src="/src/controls.js"></script>
<script type="text/javascript" src="src/prototype.js"></script>
<script type="text/javascript" src="src/scriptaculous.js"></script>

<script type="text/javascript">

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Autocompletion using script.aculo.us

[124]

var citiesList= [
'Indiana',
'Idaho',
'Illinois
];

window.onload = function() {
 new Autocompleter.Local(
 'autoCompleteTextField',
 'autoCompleteMenu',
 citiesList,
 {ignoreCase:true,
 fullSearch:true
}
);
 }
</script>

<input type="text" id="cityName"/>
<div id="cityChoices"></div>

The above snippet shows the complete code for implementing autocompletion
using local sources.

We have added three options to our constructor definition: ignoreCase,
partialSearch, and fullSearch.

Hands-on example: Autocompletion using
remote sources
OK! So, to this point we have learned about the theory and code usage for the
autocompletion feature using remote sources.

Now let's get straight into code and quickly get a module up and running.

The module is about finding the city names from the database. Simple, right?
Yes it is. And in fact it is one of the most used features in most web applications.

The user starts typing the city name in the text field and we provide the options
matching with the data entered by the user.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[125]

Before we start with the code, check out the following screenshot to get a clear
picture of the working module:

Let's get started and include all the required files and libraries.

<script type="text/javascript" src="src/lib/prototype.js"></script>
<script type="text/javascript" src="src/src/scriptaculous.js">
</script>
<script type="text/javascript" src="src/src/effects.js"></script>
<script type="text/javascript" src="src/src/controls.js"></script>

Now, let's define the HTML body for our module.

<body>
<h3>Advanced Auto Completion Using Remote Sources</h3>
<p>
Start Typing the name of the city, And you should
see the drop down menu<p>
 <div>
 <label>City</label>
 <input type="text" id="city" name="city"/>
 <div id="myDiv"></div>
 </div>
<p>
 <div id="result" name="result"> </div>
</body>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Autocompletion using script.aculo.us

[126]

We are adding a text field named city, and a blank <div> element myDIV which
will contain the list of choices prompted from the server.

All set. Let's add the autocompletion constructor to our HTML code.

<script type="text/javascript">
 window.onload = function() {
 new Ajax.Autocompleter(
 'city',
 'myDiv',
 'fetchChoices.php'
);
}
</script>

That's right. As you can see we are passing the text field element city, container
field myDiv, and the server-side script URL fetchChoices.php.

Before we start with our server-side scripting, let's quickly create a sample test
database and a dummy table with some data about cities.

The code for SQL query and dummy data is shown as follows:

CREATE TABLE `cities` (
 `cityName` varchar(20) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Insert some values into the table and make it ready for querying. You can add more
values later.

INSERT INTO `trial`.`cities` (`cityName`) VALUES ('Lucknow');

Now coming back to our server-side script, the complete definition in
fetchChocies.php is shown as follows:

<?php
$value = $_POST['city'];

$dbuser ="root";
$dbpassword = "";
$database = "trial";
$host = 'localhost';

mysql_connect($host, $dbuser, $dbpassword);
mysql_select_db($database) or die("Unable to connect to DB");

$query="SELECT * FROM cities WHERE cityName LIKE '%".$value."%'";
$result=mysql_query($query);

if(!$result) die();

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[127]

echo '<ul class="options" >';

while($row= mysql_fetch_array($result))
{
 echo '<li align="left" name="'.$row["cityName"].'">'
.$row["cityName"].'';
}

echo '';
?>

Now, let's break the code into snippets for easier understanding.

$value = $_POST ['city'];

script.aculo.us autocompletion recognizes POST by default to read the value.

In fetchChoices.php we are getting the value of city, which is what the user
entered and was posted by our AJAX call.

We have used the quick method of accessing the database, but we
encourage you to use the DBConnector class we created in Chapter 3
and make all necessary security checks.

After having connected to the database—with a valid username and password—we
fire a query to fetch the results, which match with the data entered by the user.

$query="SELECT * FROM cities WHERE cityName LIKE '%".$value."%'";

This means any name that has the matching characters will be shown. Remember
the fullSearch option?

Now comes the most important part: handling the results returned by the query.

script.aculo.us autocompletion, using remote
sources, should return the values in the form
of ul elements.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Autocompletion using script.aculo.us

[128]

We see the choices returned by the server in our container element. We have also
added some style to our results. When the user clicks on any choice, it is selected
in the text field.

Hands-on example: Advanced
autocompletion using remote sources
for multiple fields
I am sure you have enjoyed building the city module discussed in the previous
hands-on example. At the same time, it must have triggered a couple of thoughts
such as:

How can we edit the data before we display the results?
Can we read the value selected by the user and format it for other uses?

Well, I must tell you that if you have come across these thoughts, it's simply superb.
Questioning is a way to learn more.

Now, let's try to find answers for the same.

Yes, we certainly can edit and format the results before displaying them to users.
And, knowingly or unknowingly, we have done it. In the fetchChoices.php script,
we have created our own ul and li elements. We were able to format the look and
feel. And certainly, a lot more can be done.

The answer to the second question is our advanced hands-on example.

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[129]

So what will this advanced module do? We were able to display city names to the
users, and they will select one choice. Perfect till here.

Now, assuming that we want to show which state the selected city belongs to, we
will need to read the value selected by the user and display the results accordingly.
We are going to extend the above example.

Remember, our purpose behind this hands-on is to understand and explore the
possibilities of using the data the way that we want it for our applications.

Let's create a text field to store our state names. We have also disabled it, so that it
gets loaded automatically. The new HTML code is shown here. We have formatted
it a little bit by adding all these elements into the table.

<body>
<h3>Advanced Auto Completion Using Remote Sources</h3>
<p>
Start Typing the name of the city, And you should
see the drop down menu<p>
 <div>
 <table class="cityForm" cellpadding="5" cellspacing="5">
 <tr><td>City</td><td><input type="text" id="city"
 name="city"/></td></tr>

 <tr><td></td><td><div id="myDiv"></div></td></tr>

<tr><td>State </td><td><input type="text" id="result" name="result"
 disabled="true" > </td></tr>

 </table>
 </div>
</body>

This would result in the screenshot shown as follows:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Autocompletion using script.aculo.us

[130]

As mentioned earlier, in options for remote sources we can make use of the
afterUpdateElement callback to do processing after the AJAX call has been
made successfully.

Let's modify our constructor definition first and add the callback option
afterUpdateElement:

window.onload = function() {
 new Ajax.Autocompleter(
 'city',
 'myDiv',
 'fetchChoices.php',
 {afterUpdateElement:PostValue}
);
}

We are calling another function named PostValue using afterUpdateElement. This
function would read the value selected by the user and send it back for processing at
the server side and display results.

function PostValue(text){
var pars = 'cityName='+text.value;
var url = 'getValues.php';

new Ajax.Request(url, {
 method: 'post',
 parameters:pars,
 onSuccess: showResult,
 onFailure:showError
 });
}

We are reading the value of the choice made by the user. Remember that we learned
about using an AJAX request in Chapter 2? Yes, we are making an AJAX call to fetch
the values from the database.

We have also defined two more functions, namely, showResult and showError.
For now, let's keep them straight and simple.

function showResult(ServerResponse)
{
 alert(ServerResponse.responseText);
 $('result').value=ServerResponse.responseText;
}

function showError() {
 alert("Something Went Wrong");
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[131]

We are also calling the getValues.php script at the server side to read runtime data.
Below is the complete code used in getValues.php.

Hey, wait. Before we get into the details of the getValues.php script, it's important for
us to modify our database table definition. We need to add a state column to the table.

ALTER TABLE `cities` ADD `states` VARCHAR(20) NOT NULL ;

Insert some values for cities and states as well. OK, now we are all set to create
the getValues.php script.

<?php

$value = $_POST['cityName'];

$dbuser ="root";
$dbpassword = "";
$database = "trial";
$host = "localhost";

mysql_connect($host, $dbuser, $dbpassword);
mysql_select_db($database) or die("Unable to connect to DB");
$query="SELECT states FROM cities WHERE cityName ='".$value."'";
$result=mysql_query($query);
if(!$result) die("Error in fetching results");
while($row= mysql_fetch_array($result))
{
 echo $row["states"];
}
?>

We are reading the value of cityName through POST, and querying the database
and fetching the value of the state respectively. We are also passing it back to the
showResult function.

Open the file in a browser and you will see the result as shown in the following
screenshots. When the user starts typing the characters, we prompt the choices.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Autocompletion using script.aculo.us

[132]

Once the user has selected from one of the choices, the text field for that state gets
populated automatically.

Hands-on example: Autocompletion
using local sources
We can even create the same example module using local sources. As mentioned
earlier, the difference between autocompletion using remote sources and using local
sources is in the source of data.

For local sources, we keep an array of strings with all the values and use the
Autocompleter.Local constructor.

We will not be using any server-side scripting while working with local sources.
I will leave this as a practice example for you at this point of time.

I will give you a step-by-step guide to do it.

Create a text field an���������������� d the container <div> element in HTML code
Initiate the Autocompleter.Local constructor as described in above code
us���age
Create a��� simple array of strings with some city names in it
Run the code and check the results. The result should be similar to the above
hands-on example

We will give you the complete code for this hands-on in the next chapter.

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 7

[133]

Summary
That's all we need to know about the autocompletion feature to get started
with more robust and efficient features for 2.0 web sites. In this chapter we have
learned about:

Autocompletion
Different types of sources of autocompletion
Different types of options for sources
Code usage for remote sources and local sources
A hands-on example with remote sources
An advanced hands-on example with remote sources

In the next chapter we will be exploring sliders. Sliders are tracks with handles so
that the user can drag along the track, and the data gets changed. There are basically
two types of sliders: vertical sliders and horizontal sliders. Interesting! We will cover
sliders in detail in the next chapter.

Don't forget to work on the hands-on example.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Slider for Dynamic
Applications using

script.aculo.us
Handling, processing, and representing data in the 2.0 era of web applications has
become so crucial that designers and programmers are working towards new ways
of improving the user interface experience.

Slider is one such killer concept, using which the user can represent and handle
data easily.

A slider, according to the dictionary, stands for "the one that slides". Yes, a slider in
the web application context stands for holding and sliding values from a fixed given
range, or even from an array of values.

The slider is really useful and worthy in places where the user needs to slide through
a lot of values and also the application needs to respond to those values and changes.

Some of the key topics we will cover in this chapter are:

First steps with the script.aculo.us slider
Types of the slider
Code usage for the slider
Tips an������������������������ d tricks with the slider
Hands-on example with vertical and horizontal slider

Before we start exploring the slider, let me try to give you a complete picture of its
functionality with a simple example.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Slider for Dynamic Applications using script.aculo.us

[136]

Google Finance uses a horizontal slider, showing the price at a given day, month,
and year. Although this particular module is built in Flash, we can build a similar
module using the script.aculo.us slider too. To understand the concept and how it
works, look at the following screenshot:

Now that we have a clear understanding of what the slider is and how it appears in
user interface, let's get started!

First steps with slider
As just explained, a slider can handle a single value or a set of values. It's important
to understand at this point of time that unlike other features of script.aculo.us, a
slider is used in very niche applications for a specific functionality.

The slider is not just mere �� functionality��������������������������������������� , but is the behavior of the users and
the application.

A typical constructor syntax definition for the slider is shown as follows:

new Control.Slider(handle, track [, options]);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[137]

Track mostly represents the <div> �� element��� . ��� Handle represents the element inside the
track and, as usual, a large number of options for us to fully customize our slider.

For now, we will focus on understanding the concepts and fundamentals of the slider.
We will surely have fun playing with code in our Code usage for the slider section.

Parameters for the slider definition
In this section we will look at the parameters required to define the slider constructor:

track in a slider represents a range
handle in a slider represents the sliding along the track, that is, within a
particular range and holding the current value
options in a slider are provided to fully customize our slider's look and feel
as well as functionality

It's time to put the theory into action. We need the appropriate markup for working
with the slider. We have <div> for the track and one <div> for each handle. The
resulting code should look like the snippet shown as follows:

<div id="track"><div id="handle1"></div></div>

It is possible to have multiple handles inside a single track. The following code
snippet is a simple example:

<div id="track"><div id="handle1"></div>
<div id="handle2"></div></div>

Options with the slider
Like all the wonderful features of script.aculo.us, the slider too comes with a large
number of options that allow us to create multiple behaviours for the slider. They are:

Axis: This defines the orientation of the slider. The direction of movement
could be horizontal or vertical. By default it is horizontal.
Increment: This defines the relation between value and pixels.
Maximum: �This is the maximum value set for the slider to move to. While
using a vertical slider from top-to-bottom, the bottom most value will be the
maximum. And for a horizontal slider from left-to-right, the right most value
will be the maximum value.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Slider for Dynamic Applications using script.aculo.us

[138]

Minimum: �This is the minimum value set for the slider to move to. While
using a vertical slider from top-to-bottom, the top most value will be the
minimum. And for a horizontal slider from left-to-right, the left most value
will be the minimum value approach for horizontal slider�.
Range: This is the fixed bandwidth allowed for the values. Define the
minimum and maximum values.
Values: Instead of a range, pass a set of values as an array.
SliderValue: This sets the initial value of the slider. If not set, will take the
extreme value of the slide as the default value.
Disabled: As the name suggests, this disables the slider functionality.

Some of the functions offered by the slider are:

setValue: This will set the value of the slider directly and move it to the
value position.
setDisabled: This defines that the slider is disabled at runtime.
setEnabled: This can enable the slider at runtime.

Some of the callbacks supported by the slider are:

onSlide: This is initiated on every slide movement. The called function
would get the "current" slider value as parameter.
onChange: Whenever the value of the slider is changed, the called function is
invoked. The value can change due to the slider movement or by passing the
setValue function.

Types of slider
script.aculo.us provides us the flexibility and comfort of two different orientations
for the slider:

Vertical slider
Horizontal slider

Vertical slider
When the axis orientation of a slider is defined as vertical, the slider becomes and
acts as a vertical slider.

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[139]

Horizontal slider
When the axis orientation of a slider is defined as horizontal, the slider becomes and
acts as a horizontal slider.

So let's get our hands dirty with code and start defining the constructors for
horizontal and vertical slider with options. Trust me this will be fun.

Code usage for the slider
As a developer, I am sure you must have got a little bored reading only explanation.
But hey hang on, we are getting into code!

Let's start with our HTML code and then the basic constructor definition of
the slider.

The HTML code snippet is shown as follows:

<div id="track"><div id="handle1"></div>div>

Here, we have defined our track and handle as <div> elements.

The handle element should b�������������������� e placed inside the track element.

Good. So let's define the constructor for the slider here:

new Control.Slider('handle1', 'track1');

That's it! No, wait. We are missing something. Although the code is perfect, when we
fire it up in the browser we can't see anything. That's because we need to style it.

The complete code with CSS is shown as follows:

<script type="text/javascript">
 window.onload = function() {
 new Control.Slider('handle1', 'track1'
);
}
</script>

<style type="text/css">
h4{ font: 13px verdana }
#track1 {
 background-color:#BCE6D6;
 height: 1em;
 width: 150px;
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Slider for Dynamic Applications using script.aculo.us

[140]

#handle1 {
 background-color:#30679B;
 height: 1em;
 width: 6px;
}
</style>

<body>
<h4>Basic Slider Example</h4>
<div id="track1">
 <div id="handle1"></div>
</div>

And the resulting output is shown in the following screenshot:

That's the most basic slider we created. And I am sure you are not content with that.
We need to explore more.

Code usage for the vertical slider
Moving on, we will now create a vertical slider and add some options to enhance our
slider feature.

Most of the code remains from the above example. We will focus on the required
changes to be made in the above code.

As mentioned in the explanation above, we need to define the axis orientation as
vertical in our options to make a slider vertical.

axis: 'vertical'

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[141]

So, the new constructor looks like the snippet shown as follows:

window.onload = function() {
 new Control.Slider('handle1', 'track1',

 {
 axis:'vertical'

 }
);
}

And yes, since we are trying to make our slider vertical we need to change the CSS
properties of height. The new CSS code will look like the following snippet:

#track1 {
 background-color:#BCE6D6;
 height: 10em;
 width: 15px;
}
#handle1 {
 background-color:#30679B;
 height: 1em;
 width: 15px;
}

So, the final script for the vertical slider is shown as follows:

<script type="text/javascript">
 window.onload = function() {
 new Control.Slider('handle1', 'track1',
 {
 axis:'vertical'

 }
);
}
</script>
<style type="text/css">
h4{ font: 13px verdana }
#track1 {
 background-color:#BCE6D6;
 height: 10em;
 width: 15px;
}
#handle1 {

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Slider for Dynamic Applications using script.aculo.us

[142]

 background-color:#30679B;
 height: 1em;
 width: 15px;
}
</style>
</head>
<body>
<h4>Basic Vertical Slider Example</h4>
<div id="track1">
 <div id="handle1"></div>
</div>

And, the beautiful vertical slider is here! Check out the following screenshot:

Code usage for the horizontal slider
We have seen how to create a vertical slider. We want you to have a wild guess of
how to make a horizontal slider. Let me give you two hints:

We don't have to struggle to make a slider horizontal. It's the default
axis option.

We can make a horizontal slider by passing the "horizontal" option to axis.

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[143]

Which one would you prefer?

I am not going to give you code for this one though. But yes, I will guide you for
doing the same. The code will be given in the next chapter.

We have already created one horizontal slider in the Code usage for the horizontal slider
section. That was one approach. Now try changing the axis option to horizontal in
the above code for the vertical slider.

You may also need to change some CSS properties for height and width, and I am
sure you would love doing them. It's so much fun! After you make changes to the
height and width parameters of the CSS properties, the screenshot of slider should
look like the following:

Code usage for sliders with options
We are now done with the most important part of the slider: the implementation of
the slider in our applications.

But wait, we need the slider to suit our applications, right? So let's customize our
slider with options.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Slider for Dynamic Applications using script.aculo.us

[144]

We have mentioned earlier that track is the range of values. So let's first define the
range for our slider.

window.onload = function() {
 new Control.Slider('handle1', 'track1',
 {
 axis:'vertical',

 range:$R(1,100)
 }

The range option uses the Prototypes' objectRange instance. Hence, we declare
it using

$R (minimum, Maximum).

Everything looks neat until here. Let's add some more options to our constructor,
onSlide().

Using the onSlide() callback every time, we drag the slider and the callback is
invoked. The default parameter passed to onSlide() is the current slider value.

window.onload = function() {
 new Control.Slider('handle1', 'track1',
 {
 axis:'vertical',
 range:$R(1,100),
 onSlide: function(v) { $('value1').innerHTML = "New Slide
 Value="+v;}
 }

We have added a div called value1 in our HTML code. On dragging the slider, we
will update the value1 with the current slider value.

OK, so let's see what happened to our slider uptill now. Check out the
following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[145]

Impressed? And, we are not done yet. Let's add more options to the slider now.

You may ask me, what if the slider in the application needs to be at a particular value
by default? And I will say use the sliderValue option. Let's make our slider value
10 by default. Here is the snippet for the same:

window.onload = function() {
 new Control.Slider('handle1', 'track1',
 {
 axis:'vertical',
 range:$R(1,100),
 sliderValue: 10,
 onSlide: function(v) { $('value1').innerHTML =
 "New Slide Value="+v;}
 }
}

And, you should see the slider value at 10 when you run the code.

Now your dear friend will ask, what if we don't want to give the range, but we need
to pass the fixed set of values? And you proudly say, use the values option.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Slider for Dynamic Applications using script.aculo.us

[146]

Check out the usage of the values options in the constructor.

window.onload = function() {
 new Control.Slider('handle1', 'track1',
 {
 range:$R(1,25),
 values:[1, 5,10,15,20,25],
 onSlide:function(v){ $('value1').innerHTML = "New Slide
 Value="+v;}
 }
);
}

We have added a set of values in the array form and passed it to our constructor.
Let's see what it looks like.

Tips and tricks with the slider
After covering all the aspects of the slider feature, here is a list of simple tips and
tricks which we can make use of in our applications with ease.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[147]

Reading the current value of the slider
script.aculo.us "genie" provides us with two callbacks for the slider to read the
current value of the slider. They are:

onSlide

onChange

Both these callbacks are used as a part of options in the slider.

onSlide contains the current sliding value while the drag is on. The callback syntax
is shown as follows:

onSlide: function(value) {

// do something with the value while sliding. Write or Edit the
//value of current slider value while sliding
}

onChange callback will contain the value of the slider while the "sliding" or the drag
event ends. After the drag is completed and if the value of the slider has changed
then the onChange function will be called. For example, if the slider's current value
is set to 10 and after sliding we change it to 15, then the onChange callback will be
fired. The callback syntax is shown as follows:

onChange: function(value){
 // do anything with the "changed" and current value
}

Multiple handles in the slider
Now, a thought comes to our mind at this point: Is it possible for us to have two
handles in one track?

And, the mighty script.aculo.us library says yes!

Check out the following code snippet and screenshot for a quick glance of having
two handles in one track:

HTML code
<div id="track1">
 <div id="handle1"></div>
 <div id="handle2"></div>
</div>

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Slider for Dynamic Applications using script.aculo.us

[148]

JavaScript code for the same:

window.onload = function() {
 new Control.Slider(['handle1','handle2'] , 'track1'
);
}

Now, check out the resulting screenshot having two handles and one track:

The same can also be applied for the vertical slider too.

Disabling the slider
We can disable our slider element using the option: disabled. We need to pass true
to set the element in the disabled state. By default the value is set to false.

 Our constructor definition would look like the code snippet shown as follows:

window.onload = function() {
 new Control.Slider('handle1', 'track1',
 {
 range:$R(1,25),
 values:[1, 5,10,15,20,25],
 disabled:true,

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[149]

 onSlide:function(v){ $('value1').innerHTML = "New Slide
 Value="+v;}
 }

);
}

The disabled option will initially make the element's state disabled, and we can
change this state using setDisabled.

Enabling the slider
As we can disable our slider element using the disabled option, we can also enable
the element using the same option by passing the value as false.

Our constructor definition would look like the code snippet shown as follows:

window.onload = function() {
 new Control.Slider('handle1', 'track1',
 {
 range:$R(1,25),
 values:[1, 5,10,15,20,25],
 disabled:false,
 onSlide:function(v){ $('value1').innerHTML = "New Slide
 Value="+v;}
 }
);
}

By default the value of the disabled option is false. The elements are enabled, and
we can change the state using setEnabled.

Hands-on example: Using vertical and
horizontal slider
Now that we have worked with vertical and horizontal slider, wouldn't it be a great
idea to see both types of the slider on the same page? Yes indeed.

Let's get started.

At a very basic level, we can change the Axis option of slider and we can get either
the horizontal or vertical slider.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Slider for Dynamic Applications using script.aculo.us

[150]

So now we will have two slider types on one page, and the only difference is in the
axis orientation.

We need to create two tracks and the respective handles for the slider <div>s. The
HTML part of the code is given as follows:

<h4>Mashup of Horizontal + Vertical Sliders</h4>

<div id="track1" class="track">
 <div id="handle1" class="handle"></div>
</div>

<div id="track2">
 <div id="handle2"></div>
</div>

This code is pretty simple. We have created a <div> as track1 and its respective
inner <div> to hold the value as handle1. Similarly, we have created one more slider
<div> as track2 and its handle as handle2.

After a bit of trendy dressing up of, and applying make-up to, the CSS, the basic
slider looks like the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[151]

The CSS code is given here:

h4{ font: 13px verdana }
#track1 {
 background-color:#BCE6D6;
 height: 1em;
 width: 200px;
}
#handle1 {

 background-color:#30679B;
 height: 0.5em;
 width: 10px;
}
#track2 {
 background-color:#BCE6D6;
 height: 10em;
 width: 15px;
 }
 #handle2 {
 background-color:#30679B;
 height: 1em;
 width: 15px;
}
#sliding {
font: 13px verdana;
}
#changed {
font: 13px verdana;
}

OK, so now we have our slider in our page. Wait, we are missing something.
Are you wondering where is the scripting and functionality?

Before that, let's add two divs, which will help us view the current values using the
onChange and onSlide callbacks.

<p id="sliding"></p>
<p id="changed"></p>

Now let's first add script.aculo.us power to track1, our first slider.

new Control.Slider('handle1', 'track1',
 {
 range: $R(1,50),
 values: [1,5,15,25,35,45,50],
 sliderValue: 1,
 onChange: function(value){

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Slider for Dynamic Applications using script.aculo.us

[152]

 $('changed').innerHTML = 'Changed Value : '+value;
 },
 onSlide: function(value) {
 $('sliding').innerHTML = 'Sliding Value: '+value;
 }
 });

Let's take a closer look at the above code and see what is happening.

We have defined range, values, and sliderValue options for the slider. We have
also added two callbacks onChange and onSlide. As I mentioned earlier, these
callbacks get the current value of the slider as a parameter.

Hence, we are reading values from both the callbacks and updating the divs' sliding
and changed when the event occurs.

Also, since we did not exclusively mention the axis definition, the default
is horizontal.

So, the application now looks like the following screenshot:

Remember, the values will only be updated if we move the horizontal slider. And,
nothing happens if we slide through the vertical slider. We have not yet defined the
functionality for the vertical slider. Let's do it now.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 8

[153]

The code for the vertical slider will also remain mostly similar with only difference of
axis orientation.

new Control.Slider('handle2', 'track2',
 {
 range: $R(1,50),
 axis:'vertical',
 sliderValue: 1,
 onChange: function(value){
 $('changed').innerHTML =
 'Changed Value : '+value;
 },
 onSlide: function(value) {
 $('sliding').innerHTML =
 'Sliding Value: '+value;
 }
 });

You can notice the fact that the callback definition remains the same for the vertical
slider as well.

So now when we move the vertical slider, the value gets updated in the sliding and
changed <div>s. They get updated with the current value.

The complete module with both horizontal and vertical slider is shown as follows:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Slider for Dynamic Applications using script.aculo.us

[154]

Summary
In this chapter we have learned and explored the following topics:

Introduction to the slider using script.aculo.us
Explanation of the slider
Different types of the slider
Options provided with the slider
Code usage for the slider and options
Tips and tricks with slider
Hands-on example for the horizontal and vertical slider

So far we have learned all the features of script.aculo.us in detail. We have
also worked on some hands-on examples to make us more comfortable using
the features of script.aculo.us in our own applications.

But we think it would be nice to have a cheat sheet of all the features in one page.
This would act as a reference for us at any point in time. We will cover all this and
more in the next chapter!

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

script.aculo.us in One Go
We have explored all the features of script.aculo.us so far. We started with a simple
one-line effect to go deep into the Prototype library, which includes everything
from PHP techniques to effects, from drag-drop to in-place editing, and finally
from autocompletion to slider.

Each of these features has its own significant importance and, when used effectively,
can help you in making the next BIG thing on the Web.

The script.aculo.us features are very useful, but do we have any quick reference for
all of them?

We are going to create one now. At any point if we want to see the feature and its
quick implementation, remind yourself of all the quick hands-on examples we will
learn in this chapter.

Here's a quick list of the key topics that we will explore in this chapter:

A hands-on example: Multiple script.aculo.us features mash up
A quick glance at all of the features of script.aculo.us

Hands-on example: Multiple
script.aculo.us features mash up
So far we have worked with features individually. But if we look closely, we will find
that some of the features are quite interdependent.

Let's see and work with some of these features. We will aim to get some of the key
features of script.aculo.us onto one page.

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

script.aculo.us in One Go

[156]

Adding in-place editing in page
So your friend liked the in-place editing feature? OK! We will start with it.

The basic HTML code for in-place editing is shown as follows:

<div id="editme">Click to Edit Me</div>

This way we have created a simple <div> element, which we will make editable.

Let's make it trendy using CSS.

#editme{
 width: 200px;
 font: 13px verdana;
}

We have now specified the width and font for the <div> element. You are welcome
to add even more CSS style elements to make it even better.

Let's move on to the most interesting part. Yes, you guessed it right, playing with
script.aculo.us. Add the required script.aculo.us files here:

<script type="text/javascript" src="src/lib/prototype.js">
</script>
<script type="text/javascript" src="src/src/scriptaculous.js">
</script>
<script type="text/javascript" src="src/src/effects.js"></script>
<script type="text/javascript" src="src/src/controls.js"></script>

Now, let's make our in-place element editable.

new Ajax.InPlaceEditor($('editme'), '/server-side-script.php');

That was super cool. Again, we did it just in one line. Wow! Check out how it looks
on this page:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 9

[157]

Adding effects to the page
Since we are trying to make use of the script.aculo.us features in a combination, let's
add beauty to our in-place editing:

new Ajax.InPlaceEditor($('editme'), '/server-side-script.php',
 {highlightcolor:'#BCE6D6'});

We have added the highlight option to our in-place editor. We are overriding the
default color with our new color. Now check out how the new in-place editor looks:

How about adding the drag and drop feature?
We are content with what we just did, but I think we can do much better. Yes, we can
add more features to the page. Let's also add the drag and drop feature.

Start with the following basic HTML code:

<h4 id="section">Drag & Drop With Effects</h4>
<div id="myDrag">
iPhone <p>
</div>

And, let's add some style with CSS as follows:

#myDrag {
 font: 13px verdana;
 background-color:#E2F1B1;
 width:300px;
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

script.aculo.us in One Go

[158]

We are adding width, font, and background-color style elements to our
drag and drop element. Check out the following screenshot:

What about the functionality of drag and drop element? Let's spice it up.

new Draggable('myDrag',{revert:true});

So our element is all set to get dragged and dropped. Check out the
following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 9

[159]

And, how about adding some effects to our element? Yes, your neighbor would
love it.

new Draggable('myDrag',{revert:true, endeffect: function(element){
 new Effect.Opacity(element,
 {from:0, to:1.0, duration:10})
 }});

We have added effects to the endEffect option of the drag and drop feature. We are
adding the opacity effect and mentioning the time duration for the same. Check out
the effects in action after the drag action is complete, in the following screenshot:

Everything looks fine to this point. Can we please add one more feature? You can
add as many features (or users) as you want.

Out of the box thinking—adding multiple
features to an element
This has all been the traditional way of using features. In the 2.0 era of application,
mash up is the buzz word. So why not mash up these features? Sounds exciting? Good.

Let's call this out of the box thinking.

We are going to have an in-place editing element that can be dragged and dropped,
and have effects to inform the user. Here's how we will proceed with it.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

script.aculo.us in One Go

[160]

The HTML code for creating the element is as follows:

<h4 id="section">(Out Of Box) Drag & Drop + In Place Editing With
Effects</h4>
<div id="dragedit">Drag Me Or Click To Edit</div>
<p>

We created a simple <div> element with id.

Some CSS style please!

#dragedit{

 width: 200px;
 font: 13px verdana;
 background-color:#BCE6D6;
}

Ok! So we have an element ready to be molded into an in-place editor and drag and
drop element. Check out the following screenshot:

Fine! So now we need to make the element editable.

new Ajax.InPlaceEditor($('dragedit'), '/server-side-script.php');

Now the element is editable. The user can click on the element and they will see an
edit area.

Similarly, let us now also make the element draggable.

new Draggable('dragedit', {revert:true});

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 9

[161]

So what does it result in? Check out the screenshots that follow.

We can click on the element and edit the value, since we made it editable.

We can also drag the element to any particular location of the page, since we have
made it draggable.

This was just one simple instance of the product of creative cells in the right brain.
I am sure you can come up with many more instances.

The idea is to use different features in a clean and clear way to improve functionality
as well as the user interface experience. Get your thinking gears on!

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

script.aculo.us in One Go

[162]

Hands-on example: Quick revision of all
the features of script.aculo.us in one page
We have worked with multiple features of script.aculo.us. Let's move on to
create a full example page to show all the features together on one page. Here we go.

Let's start with effects
We have to admit, effects are something we love to play with in our applications.
So let's first play with some effects. But before that, include all the required
script.aculo.us files here:

<script type="text/javascript" src="src/lib/prototype.js">
</script>
<script type="text/javascript" src="src/src/scriptaculous.js">
</script>
<script type="text/javascript" src="src/src/effects.js"></script>
<script type="text/javascript" src="src/src/controls.js"></script>

The HTML code for getting the effects is as follows:

<h4 id="section">Effects In Scriptaculous</h4>
<div id="effects">
<div id="dropout" onclick="new Effect.DropOut(this);">
Drop Out Effect</div>

<div id="fade" onclick="new Effect.Fade(this);">Fade Effect</div>

<div id="blinddown" onclick="new Effect.BlindDown(this);">
BlindDown Effect</div>

<div id="ex-highlight" onclick="new Effect.Highlight(this);">
 Highlight Effect</div>

</div>
<p>

We have added four effects here, but feel free to use as many effects as you wish to
(as mentioned in Chapter 4).

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 9

[163]

We are calling the onclick event actions on each of the <����div>s we have created.
We are calling the event actions. Check out what it results in�.

Add CSS to style up the effects in the user interface. Now, try clicking on those links
for the effects and you should be able to see the effects on your page. Try adding a
few more effects as practice.

Some in-place editing
Moving on, we are going to add the in-place editing element. Let's add the HTML
code for the in-place editor.

<h4 id="section">In Place Editing With Effects</h4>
<div id="editme">Click To Edit Me</div>
<p>

Let's add some JavaScript to the element.

new Ajax.InPlaceEditor($('editme'), '/server-side-script.php',
 {highlightcolor:'#BCE6D6'});

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

script.aculo.us in One Go

[164]

Check out the following screenshot:

A little bit of drag and drop
Similarly, we will be adding the drag and drop element to the page. The HTML code
is given as follows:

<h4 id="section">Drag & Drop With Effects</h4>
 <div id="myDrag">iPhone <p>
 </div>
<p>

And, the corresponding scripting is shown as follows:

new Draggable('myDrag',{revert:true, endeffect: function(element){
 new Effect.Opacity(element,
 {from:0, to:1.0, duration:10})
 }});

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 9

[165]

The resulting page is shown as follows:

The slider needs to be in picture too
The slider is also a pretty handy feature, so let's add it too. Here's how we go
about it:

<h4 id="section">Sliders with Scriptaculous</h4>
<div id="track1">
 <div id="handle1"></div>
</div>

And the corresponding script for the element is shown as follows:

new Control.Slider('handle1', 'track1');

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

script.aculo.us in One Go

[166]

We need to dress up the element in a more presentable form. The required CSS code
is as follows:

#track1 {
 background-color:#BCE6D6;
 height: 1em;
 width: 150px;
}
#handle1 {
 background-color:#30679B;
 height: 0.5em;
 width: 7px;
}

And now the new page looks like the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 9

[167]

How can we miss music?
Now, assume you need some rest from these features and want to listen to your
favorite song. Well, you can do it right here.

Include the required script.aculo.us file to play the song.
<script src="includes/scriptaculous/src/sound.js"
 type="text/javascript"></script>

Now, play the song right from your browser.
<h4 id="section">Multi Media with Scriptaculous</h4>
<a href="#" onclick="Sound.play('Track01.MP3');
 return false">Play Song

I am playing Track01. Just replace it with the song you want to listen to and hit Play.

By the way, which song are you going to play?

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

script.aculo.us in One Go

[168]

Summary
Exploring the script.aculo.us library was a wonderful journey. We promised you in
the beginning that this was going to be a rocking experience.

Learning and working with features such as effects, in-place editing, drag and drop,
multimedia, slider, and autocompletion was real fun.

Some of the hands-on examples that we looked at in this chapter are:

Exploring the features of script.aculo.us as a mash up
Quick glance of all the script.aculo.us features in one page for reference

We are now skilled and armed with the technical knowledge of the script.aculo.us
library. It's time for us to get into building some real-world applications.

To start with, we are going to create a clone of Tadalist.com and many more such
simple yet killer web applications.

And, before we move on to the next section, let's take a moment to thank the
wonderful community for supporting script.aculo.us.

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Todonow: A Tadalist Clone
I have a lot of things on my mind before leaving my house such as visiting the
bank, buying vegetables, or office work. But whatever is on my mind is there on
my tadalist.com application too.

Tadalist is a simple web application for making lists and managing items. It comes
in handy all the time. So after learning script.aculo.us, why don't we try to create our
own Tadalist clone? Hang on. Before we proceed and create an application, let's give
it a Web 2.0-ish name—say todonow. Get, set, and code!

Some of the key points we will be covering in this chapter are:

The BIG picture of the application
Features and functionalities
Creating a database for the project
Implementing all the features of the application

The BIG picture
Let's quickly get a complete picture of what the application is and what it should do.
In simple words, we are trying to create a to-do list manager. As a user, we should
be able to sign up, log in, and log out as mentioned in Chapter 3 in the User login
management system module.

The user should be able to create lists and add items to a list
The user can mark items as completed, when done
The user will see completed items as well as incomplete tasks

All these operations will be performed when the user is logged in. And, finally, the
user can log out.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Todonow: A Tadalist Clone

[170]

Features and functionality
Now that we are clear about what our application will do, let's quickly get an
overview of the features and functionality that our application will have.

User signup
User login
View all my lists
Show a summary of items for lists (in complete status)
Create new lists
Add new items
Mark items as completed
Mark complete items as incomplete
Delete lists
Logout

These features and functionalities are the fundamental requirements for any
to-do list manager. You may think there are too many features and functionalities
to code. Nope! We have already implemented some of them in our User login
management system.

Creating a database playground
Having a clear picture of todonow gives us clarity about the kind of data we will be
dealing with. In our application, users will create lists, add items, update the status
of the items, and so on.

We explored and used the phpMyAdmin application to work with the MySQL
database in Chapter 3. We will be using phpMyAdmin again for creating our
database tables.

We will need three tables for user information, lists, and items, to store the
corresponding data in our application. So, let's quickly create the tables for users,
lists, and items.

We have already created the schema for the user table in our login management
system in Chapter 3.

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[171]

The fields for the database table lists are as follows:

listID: This is the primary key to identify the lists individually. It is defined
as auto_increment, which means our system will automatically increase
the value of this field every time we add entries. In Oracle SQL, we call these
fields a sequence.
ListName: This is the name of the list provided by the user.
ownerID: This tracks the user of the list.
Date: This is the time when the list was created.

The database schema for storing lists is as follows:

CREATE TABLE `lists` (
 `listID` int(11) NOT NULL auto_increment,
 `ListName` varchar(50) NOT NULL,
 `ownerID` int(11) NOT NULL,
 `Date` timestamp NOT NULL default CURRENT_TIMESTAMP on update
CURRENT_TIMESTAMP,
 PRIMARY KEY (`listID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

Similarly, fields for the database table items are as follows:

ItemID: It is the primary key to identify the items individually. This is
defined as auto_increment, which means that the system will automatically
increase the value of this field every time we add entries. In Oracle SQL, we
call these fields a sequence.
ListID: This helps in identifying the parent of items.
ItemName: This is the name of the item provided by the user.
Status: This shows whether the item is complete or incomplete.
ownerID: This tracks the user of the list.
Date: This is the time when the list was created.

The database schema for storing the items is as follows:.

CREATE TABLE `items` (
 `ItemID` int(11) NOT NULL auto_increment,
 `ListID` int(11) NOT NULL,
 `ownerID` int(11) NOT NULL,
 `itemName` varchar(40) NOT NULL,
 `status` enum('Incomplete','Completed') NOT NULL,
 `Date` timestamp NOT NULL default CURRENT_TIMESTAMP,
 PRIMARY KEY (`ItemID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Todonow: A Tadalist Clone

[172]

We shall loop through the code snippets for each feature to understand
it better. The complete code is available to download for free at the URL
given in the Preface of the book.

Let's log in…
I am sure you must have figured out that I am referring to the login management
system that we created in Chapter 3.

Check out the following screenshot from Chapter 3 for a quick reference:

Once we log in to the application, we don't see much happening. What we created in
Chapter 3 was just a simple secured page that looked like the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[173]

We have created a raw skeleton for the todonow application. So let the party begin!

The login management system is just a simple and basic module for your
understanding. In real web applications, you may need to enhance or
modify it according to your security and performance needs.

User interface comes first
Coding is a costly affair, and that's why we will start designing the user interface
first. We can always change the interface layout, color combinations, and look and
feel of the application. This really is a useful feature, since our code functionality
will remain the same. Only the user interface changes, and trust me it doesn't hurt!

My friend John thinks that the three-column layout is better than a two-column
layout. Different people have different tastes for interface design. And, that's the
reason I am suggesting a simple user interface for our todonow application. Feel
free to modify it on the basis of your comfort.

It's time now for us to create a user interface for our application once the user has
successfully logged in. We will try and keep the user interface as simple and beautiful
as possible. Below is the simple modification done to our existing index.php file
from the login management system. We have added the session variables to our page
to read user ID {$_SESSION(uid)} and username {$_SESSION(uid)}.This will help
us in further reading the values based on user authorization.

The following code is used to create a simple user interface for our application:

<p>

<?php echo 'Welcome, '.$_SESSION['username']; ?>
 |
My Lists
 |

Create New List |
Logout

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Todonow: A Tadalist Clone

[174]

What we have done here is pretty neat and simple. We needed text, My Lists, and
two hyperlinks each for Create New Lists and Logout. Check out the result in the
following screenshot:

View all my lists
Now that the user is logged in, we need to check if the user has created any lists.
If the user has previously created lists, we shall show all those lists on the user
home page.

Logic and code
The process to view the lists for a logged-in user is as follows:

We will read the userID from the session variable.
We will run the query to select the lists, if any, created by the user. We are
using DBClass defined in our login management system and the related
functions by creating an object of the database class.
We are running the SQL query to read the lists and the lists details such as
ListID, ListName, and Date created by the user.
require_once 'DBClass.php';
 $db = new DBClass();
 $GetListDetails = "SELECT ListID,ListName,MonthName(Date) as
 Month,Day(Date) as Day from Lists where
 ownerID=".$_SESSION['uid'];
$ListResult = $db->Query($GetListDetails);

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[175]

We check whether the user has created any lists before. Using the
Mysql_num_rows function of MySQL, we get the number of rows returned by
our query. If the count is more than zero, we will read the rows individually;
else, we will show no lists.
$num_rows = mysql_num_rows($ListResult);
if($num_rows>0)

We will loop through the result array. We are calling the fetchArray
function defined in our DBClass to get the array of results and using a
 while loop to read each row.
while($row = $db->fetchArray($ListResult))

We display each row on the screen. Using the value ListID, we will create a
link to a viewList.php file with ListID, so that the user can click on the list
to view the details. And yes, make it attractive using the power of CSS.
echo '
'.$row[ListName].'

 <p>';

Check out the resulting output in the following screenshot:

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Todonow: A Tadalist Clone

[176]

View all my lists along with a summary of
incomplete items
A better way of representing the data is by showing a summary. We have displayed
the lists created by the user on the home page. It would be of great help to show the
user the status of incomplete items from the lists.

Logic and code
Extending the code used for reading the lists, we will create a subquery inside the
while loop to read the count of the number of items with the status Incomplete.

while($row = $db->fetchArray($ListResult))
{
 $sql2 = "SELECT COUNT(ItemID) from Items where
 ListID=".$row[ListID]." AND status='Incomplete'";
 $result2 = $db->perform_query($sql2);
 $row2 = $db->fetch_one_row($result2);

}

Now, let's also display the timestamp when the list was created. We have read the
value in the SQL query used while reading the lists created by the user.

$GetListDetails = "SELECT ListID,ListName,MonthName(Date) as
Month,Day(Date) as Day from Lists where ownerID=".$_SESSION['uid'];

Let's display the summary of the incomplete items and the date timestamp to the
user along with the lists.

echo '

 '.$row[ListName].'
 --'.$row2[0].' remaining items

 on'.$row[Day].'
 '.$row[Month].'

<p>';

Check out the result shown in the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[177]

Creating new lists
I prefer classifying my items into separate lists. It helps me to be what I am actually
not—organized! I classify my items as Home, Office, Personal, and so on. This brings
us to the core feature of our application: creating new lists to get organized.

Logic and code
The f﻿irst thing we need to do is show the user a form to create the list. We will be
creating a new file addLists.php. As we decided earlier, we shall keep the form
very neat and pretty simple. Check out the following screenshot to see what our
form will look like:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Todonow: A Tadalist Clone

[178]

The code to create the user interface in the screenshot is given here. We have to
create an input text box and a submit button. The user will Enter a Title for the List
and hit the Add This List button.

<div class="AddListForm">
<div class="MyNewList">Add New List</div>
 <form action="AddLists.php" method="POST">
 Enter a Title for the List<p>
 <input type="text" name="ListTitle" size="35">

 <input type="submit" name="AddLists" value="Add This List">
 </form>
</div>

When the user submits the information, we will check whether or not the user has
posted the data (reading POST variables).

We will read userID using the session variable. Using $_POST, we will be reading
the value of the list name entered by the user.

For those of you who are Object Oriented Programming Languages and Systems
(OOPS) lovers, we have created a class called lists. This will have all the
constructors and functions related to working with lists, some of which are
ad_new_list(), read_list(), and so on. Otherwise, a simpler way is to run
the query from the code itself.

$db = new DBClass();
$newlist = new lists();
$title = $_POST['ListTitle'];
$ownerid = $_SESSION["uid"];
$query = $newlist->add_new_list($title,$ownerid);
//$AddListQuery = "INSERT INTO Lists (listID,ListName,ownerID,Date)
VALUES (NULL,'$title','$ownerid',CURRENT_TIMESTAMP)";

We shall execute the query calling our DBClass function query.
$AddListResult = $db->Query($query);

We have added the list to our database, and we will now use a Mysql_insert_id()
function to read ListID, which is an auto_increment. This function will always
return the ID of the last INSERT action performed, and then we will execute the
query and check if the query returned a value or not.

$sql = 'SELECT ListID, ListName from lists
 where ListID = '.mysql_insert_id();
$result = $db->Query($sql);
if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[179]

From the result set, we will read the list details.

$row = $db->fetch_one_row($result);

Now comes a very tricky part. Once we have read the ListID of the newly added
list, we shall redirect the user to the list page showing the details. For that, we will
write a simple Redirect function that will take time and page URL as parameters.

The time parameter is used to define after how much and at what interval
the user should be redirected
The page URL will be used to specify to which page the application
gets redirected

The code for the Redirect function is as follows:

function Redirect($time, $topage) {
echo "<meta http-equiv=\"refresh\" content=\"{$time};
 url={$topage}\" /> ";
}

Adding items to our lists
OK, now that we have created our lists we need to populate them with items or
tasks. Wait, this is where our script.aculo.us magic comes into the picture. We are
going to add the items in our AJAX way. We will do this in two steps:

1.	 Add items to the database.
2.	 Read the newly added items and place them back on the page.

Adding items to the database
We will add our items using a simple form in the viewList.php file. When a user
enters the item name and hits submit, the JavaScript function AddItem() gets
invoked. It uses Ajax.Request of Prototype to submit the data to GetItem.php.

Values of the item are read, that is the item name entered by the user, using our good
old $F() function and then passed as parameters using $_POST.

The code for the AddItem() function is as follows:

function AddItem() {
var input = 'myinput='+$F('myinput');
var list = 'ListID='+$F('ListID');
var user = 'userID='+$F('userID');
var pars = input+'&'+user+'&'+list;

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Todonow: A Tadalist Clone

[180]

new Ajax.Request(
'addItem.php',
 {
 asynchronous:true,
 parameters:pars,
 onComplete: ShowData

 }
);
$('myform').reset();
$('myinput').activate();
return false;
}

These values will be passed to our GetItem.php file, which will be working in the
background asynchronously.

We will read the value of the itemName, ListID, and userID, and insert these
values into the database table items.

But before we do that, we have to create an XML file through GetItem.php since we
are using the AJAX way of returning the results. So let's define the headers for the
XML file.

header("Content-Type: text/xml");
print'<?xml version="1.0" encoding="UTF-8" standalone="yes"?>';

Now, let's read the values of the variables and create a query to insert the values in
the database. Using our DBClass, we will create an object for the class and invoke
the query function to execute the query.

$the_name = $_POST['myinput'];
$List_name = $_POST['ListID'];
$user_name = $_POST['userID'];
$sql = "INSERT INTO items (ItemID,ListID,ownerID,itemName,status,Date)
VALUES (NULL,'$List_name','$user_name','$the_name','Incomplete',
 CURRENT_TIMESTAMP)";
require_once 'DBClass.php';
$db= new DBClass();
$result = $db->Query($sql);

We have added the item to our database table. Since we need to put the item
back on the screen, we will read the ID of the recently inserted item using
mysql_insert_id() and execute the query to read the details of the item.

$rowID = mysql_insert_id();
$sql = "SELECT itemName from items where ItemID=".$rowID;
$result = $db->Query($sql);
$row = $db->fetch_one_row($result);
$itemValue = $row[0];

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[181]

As I said, we are going to return an XML file. Therefore, we need to place our data in
the XML format.

echo '<response>';
echo '<ItemID>'.$rowID.'</ItemID>';
echo '<ItemValue>'.$itemValue.'</ItemValue>';
echo '</response>';

Finally, we are done with our XML file. The system is ready to return the data back
to the JavaScript function.

Reading the newly added item and placing it
back on the page
If you remember, we mentioned the showData() function when the AJAX call was
completed. We will read the XML values returned by the Ajax.Request call and put
them back on the screen in the incomplete <div>.

We are reading the values using getElementsByTagName of ItemID and ItemValue,
which we mentioned while creating the XML file.

function ShowData(originalRequest) {
var xmlDoc = originalRequest.responseXML.documentElement;
var value1 = xmlDoc.getElementsByTagName("ItemID")[0].childNodes[0].
nodeValue;
var value = xmlDoc.getElementsByTagName("ItemValue")[0].childNodes[0].
nodeValue;

Now, let's use this information and create a <div> element and a checkbox with the
values we have read from the XML file.

divID = 'DIV'+value1;
var div = document.createElement('div');
div.className ='ItemRow';
div.id = divID;
var val = '"'+value+'"';
var i = document.createElement('input');
i.type='checkbox';
i.id=value1;
i.value=value;
i["onclick"] = new Function("MarkDone(this.id)");
var t = document.createTextNode(value);
div.appendChild(i);
div.appendChild(t);
$('ItemTree').appendChild(div);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Todonow: A Tadalist Clone

[182]

If you look closely, we have added a function for the onclick event called
MarkDone(this.id). We shall get to this function in the next topic. Let's just be
happy to see how the application is shaping up. Check out the following screenshot:

Adding effects to our items
Now that we have added our items in the AJAX way, you must have already started
thinking of how to make them more appealing using the effects of the script.aculo.us
library. In this section we will add effects to our functionality.

We are now well-versed with the power and beauty of the script.aculo.us library for
using effects in our application. Before we do that, let's include the required files.

<script type="text/javascript" src="src/prototype.js"></script>
<script type="text/javascript" src="src/scriptaculous.js"></script>
<script type="text/javascript" src="src/effects.js"></script>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[183]

Alright, now we are ready to explore the special effects in our application.

Just add this one line of code at the end of the above function:

new Effect.Highlight($(div));

And, you will not believe me. So, go ahead and see the visual treat for yourself!

Check out the following screenshot:

Mark items as completed
OK, this is the story so far. We have created lists, added items to our lists, and
highlighted them using effects. Perfect! Now, the user has completed a particular
task, so what's the point of showing the same task to the user along with the
incomplete items? So the user marks the item as complete. The user will have to just
click on the checkbox of the item and the item should get added into the incomplete
item <div>.

In the previous topic we talked about the MarkDone(this.id)function, and we will
cover that function in this section.

For that, we have some background work to process.

Add the item to the completed <div>
Delete the item from the incomplete <div>
Change the status of the item to completed

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Todonow: A Tadalist Clone

[184]

Before we get into the code, have a look at the following screenshot to see what the
application will look like:

Let's get started. What follows is the snippet for the function MarkDone(this.id).
We are just calling the function by passing the ID and the value of the item.

function MarkDone(valueID){
 var itemValue = $(valueID).value;
 AddtoCompleted(valueID, itemValue);
}

Add the item to the completed <div>
We are calling the AddtoCompleted function. The purpose of this function is to
create a <div> element and append an input checkbox element with the onclick
event as MarkUndone(this.id). The functions DeletefromItemTree() and
ChangeStatus() will be covered in the next topic.

The AddtoCompleted function takes valueID and itemValue as parameters. We are
creating a <div> and the checkbox on the fly.

Function AddtoCompleted(valueID, itemValue) {
 var str = "DIV"+valueID;
 var divDelete = $(str);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[185]

 DeletefromItemTree(divDelete);
 ChangeStatus(valueID);
 var div1 = document.createElement('div');
 div1.className ='ItemComplete';
 div1.id = str;
 var i = document.createElement('input');
 i.setAttribute("type","checkbox");
 i.id=valueID;
 i.defaultChecked="true";
 i.value=itemValue;
 i.className="ItemList";
 i["onclick"] = new Function("MarkUnDone(this.id)");
 var t = document.createTextNode(itemValue);
 div1.appendChild(i);
 div1.appendChild(t);
 $('Completed').appendChild(div1);
 new Effect.Highlight($(div1));
}

Delete the item from the incomplete <div>
In the above function AddToCompleted(), we have called the
DeleteFromItemTree(divDelete) function. It takes <div> to delete from the
completed <div> called ItemTree.

function DeletefromItemTree(divDelete)
{
 $('ItemTree').removeChild(divDelete);
}

Using the code that we just saw, we are removing the child from the
completed ItemTree <div>.

Change the status of the item to completed
We have also called the function changeStatus(valueID) function, which is
used to update the status of the item in the database. Again, we will be making
Ajax.Request and updating the status.

function ChangeStatus(valueID) {
 var list = 'ListID='+$F('ListID');
 var user = 'userID='+$F('userID');
 var itemID = 'itemID='+valueID;
 var pars = itemID+'&'+user+'&'+list;
 new Ajax.Request(

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Todonow: A Tadalist Clone

[186]

 'ChangeStatus.php',
 {
 asynchronous:true,
 parameters:pars,
 onComplete: ShowStatus	
 }
);
}

We are calling the changeStatus.php; script. We will update the status by
executing the query, reading back the value, and returning the message.

<?php
require_once 'DBClass.php';
$ListID = $_POST['ListID'];
$user_name = $_POST['userID'];
$itemID = $_POST['itemID'];
$sql = "UPDATE items SET `status` = 'Completed'
 WHERE itemID =".$itemID;
$db = new DBclass();
$result = $db->Query($sql);
if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
}
else {
$sql = "SELECT COUNT(itemID) from Items WHERE `status` = 'Incomplete'
and ListID =".$ListID;
$result = $db->Query($sql);
$row = $db->fetch_one_row($result);
$num = $row[0];
echo 'You Have'.$num.' Of Incomplete Tasks';
	 }
?>

OK, now we are done completely with marking the item as completed.

Convert completed items to incomplete
status
Oh my god! I marked the place new LCD monitor order item as completed. But a small
problem, I just placed an order and I didn't pay for it. So, it's still an incomplete task.
What do I do now? Simple, I will uncheck to make the item incomplete again. So we

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[187]

need to change the status of the item from completed to incomplete.

Before we actually go into making our items incomplete, we will add a function on
the onclick event as MarkUnDone(this.id).

The code for the MarkUnDone function is as follows:

function MarkUnDone(valueID){
 var itemValue = document.getElementById(valueID).value;
 AddtoItemTree(valueID, itemValue);
}

The same process applies to converting the completed items back to incomplete status.

Add the item to the incomplete <div>
Delete the item from the complete <div>
Change the status of the item to incomplete

Add the item to the incomplete <div>
Now you must have guessed it right. We are going to perform the reverse process of
the same procedure that we did in the previous topic.

First, we are going to add a <div> element and an input checkbox to append with
the MarkDone(this.id)function on the onclick event.

We are also calling the functions DeleteFromCompleted() and ResetStatus(). The
code for the function AddtoItemTree() is as follows:

function AddtoItemTree(valueID, itemValue) {
 var str = "DIV"+valueID;
 var divDelete = $(str);
 DeletefromCompleted(divDelete);
 ResetStatus(valueID);
 var div = document.createElement('div');
 div.className ='ItemRow';
 div.id = str;
 var i = document.createElement('input');
 i.type='checkbox';
 i.id=valueID;
 i.value=itemValue;
 i["onclick"] = new Function("MarkDone(this.id)");
 var t = document.createTextNode(itemValue);
 var br = document.createElement('br');

 div.appendChild(i);

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Todonow: A Tadalist Clone

[188]

 div.appendChild(t);
 div.appendChild(br);
 $('ItemTree').appendChild(div);
 new Effect.Highlight($(div));
}

Delete the item from the complete <div>
Now, let's repeat the same logic that we used while deleting the item from the
completed <div>. We will be removing the item from the completed <div> using
this function:

function DeletefromCompleted(divDelete)
{
 $('Completed').removeChild(divDelete);
}

Change the status of the item to incomplete
There is one last thing to do before we place the item back to the incomplete <div>.
We need to reset the status of the item just as we did in changing the status from
incomplete to complete.

We are making Ajax.Request to update the status of the item back from complete to
incomplete. The ResetStatus.php file, which will be used to update the status of the
item, is called.

The code for the function ResetStatus() is as follows:

function ResetStatus(valueID) {
 var list = 'ListID='+$F('ListID');
 var user = 'userID='+$F('userID');
 var itemID = 'itemID='+valueID;
 var pars = itemID+'&'+user+'&'+list;
 new Ajax.Request(
 'ResetStatus.php',
 {
 asynchronous:true,
 parameters:pars,
 onComplete: ShowStatus
 }
);
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[189]

In the resetStatus.php script we are updating the status of the item back to
incomplete again, and then sending the status update back to the user screen.

The value of the parameters are read and the query to update the status of the items
is executed.

$ListID = $_POST['ListID'];
$user_name = $_POST['userID'];
$itemID = $_POST['itemID'];
$db = new DBClass();
$sql = "UPDATE items SET `status` = 'Incomplete' WHERE itemID
 =".$itemID;
$result = $db->Query($sql);

If the result is true, we will count the total number of items that have an incomplete
status. The number will be prompted back to the user.

$sql = "SELECT COUNT(itemID) from Items WHERE `status` = 'Incomplete'
and ListID =".$ListID;
$result = $db->Query($sql);
$row = $db->fetch_one_row($result);
$num = $row[0];
echo 'You Have'.$num.' Of Incomplete Tasks';
}
?>

After a lot of coding and scripting, I am sure that you are now eager to see the output
of the application. Here it is. Check out the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Todonow: A Tadalist Clone

[190]

Deleting lists
The other day I was planning for a reunion and it got cancelled. Now that there is no
reunion, I want to delete the entire list. We can delete any list on the fly. Be game and
let's take this feature as your homework. I shall give the code for this feature in the
next chapter. Here is the hint.

Read the session userID, read the $_POST value of the list, delete it from
the database, and update the user about the status. Try it out.

Let's wrap up and log out
Finally, the user has finished today's tasks and (s)he can join the party downtown.
The user can log out. Here, the script is the same as the one we used in our login
management system module.

Check out the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 10

[191]

Don't worry about your lists. Now that we have killed the session, no one will be
able to see your data. Go ahead and party hard!

Our Todonow is ready to go live
So after a long journey, we reached our first destination. Our todonow application is
now ready to go live. Here is a glimpse of our application:

Summary
In the previous chapters we learned about the striking features of script.aculo.us. In
this chapter we implemented some of those features and created a ready-to-go-live
project (and a to-do list manager), that is, the Todonow application.

In this chapter we used features of Prototype and script.aculo.us such as Ajax.
Request and effects. It's amazing to see that we started our journey with simple
features and now we are ready with our own applications.

The sole idea was to show how web developers and user interface designers use
the wonderful yet powerful script.aculo.us library to make appealing and useful
web applications.

In the next chapter we will create yet another killer web application. Yes, now it's
time for you and me to go ahead and plan our lists and tasks for the day.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Delicious and Digg
Bookmarks Manager

Now that we have planned our to-do list for today (using our todonow manager
created in the previous chapter), let's quickly get started with the day's work.

Some of the key topics we will be covering are how to:

Create a database for our application
Define features and functionality
Create the user interface for our frontend user
Implement the features
View the complete application at a glance

In this chapter we will be creating a mash up of Delicious and Digg applications.
Let's admit that we love Delicious and Digg applications. So, why not try and build
some of the features in our web application based on these lovely applications?

The whole point of doing this project is to understand how we, as developers, can
explore new possibilities and build features in a more agile way.

Application at a glance
Let's quickly get the complete picture of what the application is all about. Let's call
this application bookmarker.

We are trying to create a mash up of Delicious and Digg applications. As a
user, we will be able to submit our URLs and search using real-time search
(aka autocompletion). We learned this in Chapter 7.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Delicious and Digg Bookmarks Manager

[194]

Users can search for tutorials submitted by other users under different tags
(one must not forget the wonderful and powerful tag-based features that have
become an integral part of any Web 2.0 applications).

The key features and functionality that we will be implementing for the
bookmarker application are listed in the next section. Now is the time to
switch to your coding gears!

Features and functionality
Let's quickly get an overview of the features and functionality using our
bookmarker application.

User signup
User login
My tutorials
Submit new tutorial
Add title, description, and tags to tutorials
Search all the tutorials based on the title
Tag cloud search
Edit my tutorials
Delete my tutorials
Logout

Some of the key features covered in this chapter form the basis of Web 2.0 features.
For example: Generate the tag cloud and search using the tags—you see the results
accordingly. This is a powerful feature and most of the search engines will render it.
We will be implementing the real-time search (aka autocompletion) using the title for
quick searching.

The database playground for our
application
As we did in Chapter 10, before we start building our application user interface and
functionality, let's work towards getting our database ready.

Since we will be reusing the login management system from Chapter 3, we will use
the same database table for storing the user information.

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[195]

For our bookmarker application, we will be adding two new tables:

tutorials

tutorial_tags

The tutorials table will store all information regarding the tutorial submitted
by the user. Similarly, tutorials_tags will store information about tags.

Have a look at the schema of the tutorials table.

CREATE TABLE `tutorials` (
 `tutorialID` int(11) NOT NULL auto_increment,
 `tutorial_url` varchar(200) default NULL,
 `tutorial_title` varchar(200) default NULL,
 `tutorial_desc` varchar(400) default NULL,
 `ownerID` int(11) NOT NULL,
 `date` timestamp NOT NULL default CURRENT_TIMESTAMP,

 PRIMARY KEY (`tutorialID`),
 UNIQUE(`tutorial_url`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=0;

The attributes of the tutorials table are explained as follows:

tutorialID: This is the primary key attribute to uniquely identify each
tutorial. The field is made auto_increment. For every insertion into the
table, the value automatically increases. It has an integer value.
tutorial_url: This stores the URL of the tutorial submitted by the user.
tutorial_title: This field stores the title of the tutorial defined as varchar,
since it's a text.
tutorial_desc: This is the description of the tutorial added by the user.
ownerID: The owner refers to the user who added the tutorial maps from the
users table.
date: This field stores the timestamp of when the tutorial was submitted.

The other table we need is the tutotials_tags table. The following is the schema
definition of the table:

CREATE TABLE `tutorial_tags` (
 `tutorialID` bigint(20) unsigned NOT NULL,
 `tag` varchar(255) NOT NULL,
 PRIMARY KEY (`tutorialID`,`tag`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Delicious and Digg Bookmarks Manager

[196]

The attributes of the table are as follows:

tutorialID: It is added as a reference to identify which tutorials tags
were added.
tag: It is the name of the tag. It can be anything that the user adds or wants
to identify the tutorial by.

That's it! Our database tables are ready and we can build our application on them.

User profile home page
Let's quickly design a common header layout that the users will see once
they log in. We will try to keep it simple, but feel free to add your own creativity
to the user interface.

Have a look at the following screenshot for the user profile home page:

We have created five simple tabs. Each tab represents a feature that we will be
working on.

Submit new tutorials
Once the user logs in by providing the necessary credentials, s(he) can submit
new tutorials. In this section we will learn how to add tutorials. This will be done
in two steps:

1.	 We will allow the user to submit the tutorial URL.
2.	 If the URL submitted is unique, the user will be allowed to add a title,

description, and tags for the tutorial.

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[197]

Submitting a tutorial URL
While creating the database schema, we have defined the tutorial_url field as
UNIQUE. This means there can only be one entry for a tutorial. If the tutorial has
already been added, no other user can add the same tutorial again.

Let's quickly create a user interface for adding new tutorials. We will need a
text box where a user can type the URL and click on the Submit Now button to
post to the server.

<body>

<p>
 <div class="header-links">

 <?php echo $_SESSION['username']."'s";?> Home
 Submit New Tutorial
 Search Tutorials
 Tag Cloud Search
 Logout</div>
</body>

The following screenshot shows the user interface for submitting tutorials:

We have our user interface ready, so let's quickly get the server-side code prepared.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Delicious and Digg Bookmarks Manager

[198]

We will be checking if the session is valid on every page.

<?PHP
session_start();
if (!(isset($_SESSION['login']) && $_SESSION['login'] != '')) {
 header ("Location: login.php");
}
?>

Once the session is set, we read the user ID and the tutorial URL that the user
has posted.

$url = $_POST['titleURL'];
$ownerid = $_SESSION["uid"];

OK, so far so good! Let's move on to create a class called Tutorials. It will have all
the functions related to tutorials such as adding, deleting, and editing tutorials.

The complete Tutorials class is given as a part of the code download. For now, we
will see a snippet of code to add tutorials to the database.

function add_new_tutorial($url, $ownerid){
 $query = "INSERT INTO Tutorials
 (tutorialID,tutorial_url,ownerID,Date) VALUES
 (NULL,'$url','$ownerid',CURRENT_TIMESTAMP)";
 return $query;
}

We are adding tutorial_url, ownerID, and Date to our database using the
following query:

$query = "INSERT INTO Tutorials (tutorialID,tutorial_url,ownerID,Date)
VALUES (NULL,'$url','$ownerid',CURRENT_TIMESTAMP)";

On success, the user will be redirected to the submit details page.

$query = $newtutorial->add_new_tutorial($url,$ownerid);
$AddURLResult = $db->perform_query($query);
If ($AddURLResult)
 {
 //re-direct the user to submit details page
 }
else
 {
 // alert message to user
 }

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[199]

Now, when the user submits a tutorial, an alert message will be displayed to the
user. If the tutorial does not exist, the next page will be shown where the user can
add the title, description, and tags.

Adding title, description, and tags to
the tutorial
Now that the user has submitted the tutorial and we have checked that the tutorial
does not exist already, it's time to add the title, description, and tags to the newly
added tutorial through tutorialDetails.php.

Let's first quickly create a user interface to add the title, description, and tags.

<div class="add-details-div">
<form action="tutorialDetails.php" method="POST" >

 Enter a title for the tutorial

 <input class="submit-url" type="text" name="title">

 Enter description for the tutorial

 <input type="text" name="desc">

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Delicious and Digg Bookmarks Manager

[200]

 <p>

 Enter Tags for the tutorial

 <input type="text" name="tags">

 <input type="hidden" name="tutorialID" value="<?php echo
 $tutorialID; ?>">
 <p>
 <input name="submitDetails" class="submit-button" type="submit"
 value="Submit now">
</form>
</div>

The user interface for tutorialDetails.php is shown in the following screenshot:

This page will be available to the user only when the session is valid.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[201]

We will read the user ID through $_SESSION, and the details of the tutorials posted
by the user using $_POST.

$ownerid = $_SESSION["uid"];
$tutorialID = $_POST["tutorialID"];
$title = $_POST['title'];
$desc = $_POST['desc'];
$tags = $_POST['tags'];

We have all the details of the tutorials. So, let's update the same in the database. In
the tutorials class we have a function for adding the tutorials description called
add_tutorial_desc($title, $desc, $tutorialID).

function add_tutorial_desc($title, $desc,$tutorialID){
 $query = "UPDATE tutorials SET tutorial_title='".$title ."',
 tutorial_desc ='".$desc."' WHERE tutorialID =".$tutorialID ;
return $query;
}

We will insert the details of the tutorials using the query as follows:

$query = "UPDATE tutorials SET tutorial_title='".$title ."',
tutorial_desc ='".$desc."' WHERE tutorialID =".$tutorialID ;

For now, we are not adding any details about the tags. It
needs a separate explanation that is covered in next section.

The resulting user interface after adding the details is as follows:

We also give a link to viewTutorial.php with the ID so that the user can see the
recently added tutorial.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Delicious and Digg Bookmarks Manager

[202]

View tutorial
In the previous section we successfully created a tutorial. We were able to read
back tutorialID of the latest inserted tutorial. Now, let's create a script called
viewTutorial.php that will take tutorialID via $_GET.

We need to query the database table tutorials for details with tutorialID as the
last inserted ID.

The following is the query to read the values for the recently inserted tutorial:

$query="SELECT * FROM tutorials WHERE tutorialD=".$tutorialID;

The query returns an array with all the details of the particular tutorial. Loop the
details, decorate it with CSS, and display it to the user.

We have used the same logic and steps for reading the details
of the list in our todonow application in Chapter 10. Refer to
the viewList.php script.

Deleting tutorials
It's not enough to just submit tutorials. Sometimes, we realize that we have made the
mistake of submitting a wrong tutorial. So, it's important to have a mechanism to
delete the unwanted tutorials.

We refer to these basic set of actions as CRUD, which stands for Create, Read,
Update, and Delete. In this section we will be creating our delete function for the
tutorials using the AJAX way.

In the user profile page we will see all the tutorials submitted by the user. Along
with each tutorial, we will also have the links for editing and deleting the tutorial.
The point is to do it in such a way that we use an AJAX call and do not take the user
to a new page.

We will prompt the user with a JavaScript confirmation message to verify whether
the user really wants to delete the tutorial.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[203]

Take a look at the following screenshot to see what happens when a user clicks on
the Delete link:

When the user clicks on Cancel, nothing happens. If the user clicks on OK, the
following steps take place in the given sequence:

1.	 Read the tutorialID.
2.	 Read the tableID and rowID.
3.	 Delete the child row from the table.
4.	 Call the AJAX function to delete the data from the database.
5.	 Use the effects to highlight the updated row.

While presenting the information about the tutorials submitted by the user, we also
read tutorialID and place it under the Delete link along with the ID.

The tutorial ID will be passed by calling a JavaScript function deleteTutorial(ID).

function deleteTutorial(id)
{
 var result = confirm("Are you sure you want to delete?");
 if(result==true)
 {
 deletechildrow('mytutorials-table',id);
 }
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Delicious and Digg Bookmarks Manager

[204]

This function in return calls another JavaScript function deletechildrow(tableID,
rowID), where we actually delete the child row from the table.

function deletechildrow(tableID,rowID)
{
 var d = document.getElementById(tableID);
 var olddiv = document.getElementById(rowID);
 d.deleteRow(olddiv);
 alert("Tutorial Deleted");
}

Did we miss out anything? Yes, we did! We did not make a remote call to the server
to delete the tutorial. I leave it to you to make that call.

Let's add a little spice of effects while deleting the child row from the table.

new Effect.Highlight($(id));

Search using real-time autocompletion
Does real-time autocompletion sound familiar? It's the same awesome feature of
script.aculo.us that we learned about in Chapter 7.

In this section we will build a simple real-time search of tutorials based on titles.

When we aim at scaling large data in a real-world application, the
autocompletion feature might slow down as it has to search through a
lot of records. The idea here is to show how we can integrate the
autocomplete feature into a web application�.

So, let's quickly create a user interface for searching. We will need a text box where
the user will start typing the query and our system will search for it in real time.

<div class="tutorial-search">
 <label>Enter Your Search Terms</label>
 <input type="text" id="title" name="title"/>
 <div id="myDiv"></div>
<p>
 <div id="result" name="result"></div>
</div>

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[205]

The screenshot corresponding to the above user interface script for searching is
as follows:

Now it's time to start searching for the tutorials. On loading the page, we will invoke
our JavaScript code for autocompletion.

<script type="text/javascript">
 window.onload = function() {
 new Ajax.Autocompleter(
 'title',
 'myDiv',
 'fetchChoices.php'
);
 }
</script>

In the code snippet that we have just seen, we are passing the ID of the text box as
title, a <div> to host the result set as myDiv, and our script in fetchChoices.php
that will get us the results.

The code for fetchChoices.php remains the same as the one we used in Chapter 7.
The only difference is in the query that we pass to get the results.

$query="SELECT * FROM tutorials WHERE tutorial_title LIKE
'%".$value."%'";

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Delicious and Digg Bookmarks Manager

[206]

This wildcard search will get all the tutorials using LIKE, which gets the matching
records. We are restricting the number of tutorials to 20 by using LIMIT in our query.

Check out the following screenshot to see the resulting user interface:

On selecting the row from the list, we automatically redirect the user to view
the tutorial.

Exploring the tag cloud features of
2.0 applications
Tags in web applications have become a standard for 2.0 applications. To a user and
a developer of web applications, it really makes things simpler in terms of organizing
or searching content.

For example, the Delicious application really explored the power of using tags. The
whole world started appreciating the art of quick-searching relevant content based
on tags.

In this section we will learn and master the art of tags.

The same concept and approach can be applied to any content in any web
application. The logic remains the same.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[207]

Some of the key functionalities related to the tags in our bookmarker application
include how to:

Add tags to tutorials
Read all the tags in the database
Create a tag cloud
Search using tags

For implementing the tags, we have to create a separate class called tags, which we
will be using in our applications. The tags class can be used with any web application.

Adding tags to tutorials
While adding the tutorial, we have skipped this part. So, let's first implement the
process of adding tags to our tutorials.

A user can add any number of tags to a tutorial. We have to collect all the tags that the
user inputs, and then explode the string to get each word separately. The words are
then put in an array and each word is inserted as a row in the tutorials_tags table.

function add_tutorial_tags($tags, $tutorialID){
$temp_tags = explode(',', $tags);
foreach ($temp_tags as $tag)
{
 $tag = strtolower($tag);
 $query = "INSERT INTO tutorial_tags(tutorialID, tag)
 VALUES ('$tutorialID','".$tag."')";
 $result = mysql_query($query);
 if($result)
 {
 continue;
 }
 }
}

In the code above, we are reading the values as $tags. Using the explode()
function, we will separate the words and the criteria for separation is ','.

For each tag read, we will loop using the foreach loop and insert the data into the
database table. It's time for you to go ahead and add lots of tutorials along with tags.

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Delicious and Digg Bookmarks Manager

[208]

Reading all the tags in the database
Now that we have added our tags to tutorials, it is important to read them back.
These tags will be used in the creation of our tag cloud, which we will display to
the users.

We are reading all the tags submitted by the users of the application,
which can be a massive number. You may want to restrict the number of
tags displayed by applying LIMIT to the query. We can also match the
tags and display only the most used tags by counting the tags.

The function to read the tags from the database is as follows:

function read_all_tags() {
$query = "SELECT tag FROM tutorial_tags LIMIT 0,30 ";
$result = mysql_query($query);
if($result) {
 while($row = mysql_fetch_array($result)) {
 $all_tags[$row['tag']] = $row['tag'];
 }
return $all_tags;
}

Creating a tag cloud
The playground has been prepped. We have added tags to the tutorials and read
the tags from the database. What are we waiting for? Let's go ahead and create a
tag cloud.

In our applications we need to know how many times a tag was used by
the users. Depending upon the weight of the usage of the tag, we will
return the tags. Alternatively, we can also use the LIMIT clause in our
query to restrict the number of tags displayed to users.

If you remember, we have an array of $all_tags returned from the above feature
that is reading the tags from the database.

$all_tags = $tutorials->read_all_tags();

Now, let's read these values and create our own tag cloud.

foreach ($all_tags as $tag =>$value)
{
 echo '<a style="font-size:'. rand(50,20). 'px'

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[209]

.'" class="tag_cloud" href="http://localhost/content/searchTag.php?s='

. $value.'" title="\'' . $tag . '">'.$value.'';
}

We are looping through each tag and creating a random-sized font (for each tag) on
the page.

Take a look at how the tag cloud looks in the following screenshot:

Search using tags
We have covered all the aspects from adding the tags and reading the tags to
creating the tag cloud. Let's now take a look at the search function using tags.

In the following piece of code, we are searching through all the tutorials
submitted by the users. In a real-time application, you may need to
display limited tutorials based on your application requirements. This
module is an example for searching through all tutorials.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating Delicious and Digg Bookmarks Manager

[210]

If you look at the code that we used while creating a tag cloud, we have given a link
for the searchTag.php script. This script is used for searching through the tags. I
will only give you a hint in the form of a query. Just use this query and see what it
results in.

$query = "SELECT tutorialID FROM tutorial_tags WHERE tag='".$tag."'";

This query will give you the resultant set for all the matching tutorials. Just loop the
set and display the results to the user.

Don't forget to log out
This brings us to the most important task, especially if you are using a public system.
Users need to log out so that the session is no longer valid and they need to give their
credentials to access the system again.

You can also use a session time-out feature from our login management
system that we built in Chapter 3. Set session.gc.maxlifetime in the
php.ini file. Using a variable, you can check the idle state time and the
current session start time.

We will use the same log out script that we created in Chapter 3 for the login
management system. The following screenshot shows the logout screen:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 11

[211]

Ideas for life
The Delicious and Digg applications are two huge projects. Here are some of the
ideas that can also be added to our bookmarker application:

Adding the user's picture
Searching using description
Adding categories for tutorials
Editing tutorial information using AJAX
Visiting a URL

Summary
Did you show off your application to your friends? You should! When everyone
seems to be appreciating Digg and Delicious based applications, we can boast of
having our own versions of the same.

We have built some cool features such as submitting tutorials, real-time search, tag
clouds, and adding tags. We must admit it was fun building them.

In the next chapter we will explore and build a better shopping search experience.
Oh, I forgot! I have a lot of tutorials and I am off to bookmark my tutorials using the
bookmarker application. Happy hacking!

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating a Shopping
Search Engine

Still playing with our bookmarking application? Here is a reason to cheer up. In
this chapter, along with the bookmarking tutorials, we will create a new shopping
search engine. The shopping application is more about adding a rich user interface
experience to the search functionality. We will learn how to integrate the features of
the script.aculo.us library to our application. Keep your shopping list ready!

Application at a glance
Before we start coding our shopping application, let's give it a nice 2.0 name. For
now, we will name it as Shop-Me. You can give it any name that you want.

So let's get started and get a complete picture of our application.

As a user, our friend Jenny signs up with the application. She will be able to see the
user profile home page. It has an option to Buy Products in which she has to drag
products and place them under her selection zone.

She can also search various products using real-time search, and the product details
will be displayed in an AJAX way.

We will provide Jenny with a tag cloud. For each tag, search products will be
displayed to her.

And finally, Jenny can log off.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating a Shopping Search Engine

[214]

To put all the above explained words in a user interface, check out the
following screenshot:

Features and functionalities
Now that we are clear about the application, let's quickly walk through the features
we are going to build into the Shop-Me application. The features we will be working
on are listed here:

The user management system
Searching products
Selecting the products to buy
Adding effects
Searching products using the tag cloud

So, let's help our friend Jenny with her shopping.

The user management system
We are going to build a user management system for our application. Not really! It
is said that good programmers code, great programmers re-use. Honestly, we all want to
be great programmers. Hence, we will re-use the user management system module
created in Chapter 3.

We will use the same database table schema for users, which we created earlier. The
schema definition is given as follows:

CREATE TABLE `users` (
 `userID` int(11) NOT NULL auto_increment,
 `Username` varchar(40) NOT NULL,

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 12

[215]

 `Password` varchar(40) NOT NULL,
 PRIMARY KEY (`userID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

We will also be using the users class. The screenshot that follows will help us to
quickly get started with the application:

Selecting the products to buy
We have a user management system and our user wants to select the products to
buy. We all know Jenny. She just can't wait to buy her new handbag.

Let's do a simple memory test here. Check out the following screenshot and see if
you find it familiar:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating a Shopping Search Engine

[216]

There you go! Yes, we made this module in Chapter 5 while learning the
drag and drop feature of script.aculo.us.

Here, we are going to integrate the same module with our application. We will be
using the same code and we will add our PHP sessions to make sure that only a
registered and logged-in user can access and buy the products.

<?PHP
session_start();
if (!(isset($_SESSION['login']) && $_SESSION['login'] != '')) {
 header ("Location: login.php");
}

We ensured that this page can be accessed only by the users who are logged in. We
have created three products and have made them draggable.

When dealing with data about products coming from
database, you may need to change certain JavaScript code
to make things draggable.

The products that we need to buy can be dragged and placed under the droppable
area that we have created to hold the products.

We make the created products draggable by using the following code:

new Draggable('myProduct2',{revert:true});

When we make a product draggable, we can play with the product and drag it
anywhere on the page.

The products have been made draggable. Now, we will need a container to hold the
products, or an area where we can drop the draggable elements.

We can create a droppable area by defining the <div> with the code, as follows:

Droppables.add(
 'myDiv',
 {
 onDrop: addItem
 }
);

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 12

[217]

The attributes in the piece of code snippet that we have just seen are:

myDiv: This is the area, <div>, or any portion of the page we want to make as
the droppable area
onDrop: We call the function addItem once we are done with dropping the
products in the droppable area

Have a look at the following screenshot and see how the application behaves:

Adding effects
Effects have been one of the most adorable features of script.aculo.us. We surely
have done justice to this feature by using it in all the modules and applications
that we created.

We have used the effects to inform the user about any update, results, or responses.
Users just love them!

Some effects will also be added to our Shop-Me application to inform the users—in
plain text—about what's happening in the application. As explained before, we can
add effects with only one line of code.

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating a Shopping Search Engine

[218]

In the Shop-Me application, in the buyProducts.php file, we add this magic line of
code to add effects to our results:

new Effect.Highlight($('note'));

Adding this line of code results in a neat, clean, and attractive text been shown to the
user. Check out the following screenshot to see the code in action:

Searching products
We have given Jenny an option to buy the products that we have defined. But that's
not really fair. We can do much better! We are now going to create a products table
in our database. The schema for the products table is as follows:

CREATE TABLE `products` (
 `product_id` int(11) NOT NULL auto_increment,
 `product_title` varchar(200) NOT NULL,
 PRIMARY KEY ('product_id')
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1;

We have used very basic attributes for the products. product_id and
product_title are the only attributes we are considering for our Prototype.

We will power this search feature with the autocompletion feature of script.aculo.us.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 12

[219]

After readying the database, it's time to create the user interface for
searchProducts.php. The code for the interface is as follows:

<div class="product-search">
 <label>Enter Your Search Terms</label>
 <input type="text" id="title" name="title"/>
 <div id="myDiv"></div>
<p>
 <div id="result" name="result"></div>
</div>
<div class="show-product" id="show-product"> </div>

Check out what the interface looks like in the following screenshot:

It's show time! We are now going to add the autocompletion feature of
script.aculo.us to our search.

The following is the spicy JavaScript code to add the functionality to our application:

window.onload = function() {
 new Ajax.Autocompleter(
 'title',
 'myDiv',
 'fetchChoices.php',
 {afterUpdateElement:showProduct}
);
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating a Shopping Search Engine

[220]

The code is pretty much similar to what we did in Chapter 7 and even in our
bookmarking application. The only difference is the afterUpdateElement event
in our definition.

Let's get a clear picture by taking some help from the user interface. When our user,
Jenny, starts typing the product name or title using the autocompletion feature, we
give her suggestions about the available product names in the database. This is seen
in the following screenshot:

So, now when Jenny selects a particular product using the Ajax.Request feature,
we fetch the product information and display it in the empty <div>. Jenny sees the
product information without having to refresh the page.

When the user selects a product from the list of suggestions, the
afterUpdateElement event gets called and the showProduct()function is invoked.

The code for the showProduct()function is as follows:

function showProduct(text,li)
{
var pars = 'product_id='+li.id;
var url = 'getProduct.php';
new Ajax.Request(url, {
 method: 'POST',
 parameters:pars,
 onSuccess: showResult,
 onFailure:showError
 });
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 12

[221]

We are reading the product ID information, and we are passing it to
getProduct.php using POST.

The getProduct.php script at the server side will process the data and send the
response back to the JavaScript function.

Let's quickly take a look at the getProduct.php script. To read the product
information, we are using the following query:

$query="SELECT product_id, product_title FROM products
 WHERE product_id=".$value;

Executing the query above with $value as product_id, we read the product
information and pass it back to our function showProduct. Using onSuccess, we
will read the response from the server and put it back on the user interface.

The snippet to display the response from the server is as follows:

$('show-product').innerHTML = response;

Check out the corresponding interface to display the response from the server.

Searching products using the tag cloud
We created the tags class in our application in Chapter 11, and we will make use of
the same class in our application here. Of course, we will be making the necessary
changes to our database settings, queries, and table names.

We will be searching products in two steps:

1.	 Generate a tag cloud.
2.	 View the products for a tag name.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating a Shopping Search Engine

[222]

Generating a tag cloud
We have generated the tag cloud in the Chapter 11 tutorials using the
read_all_tags() function from the tags class.

Let's quickly see the code that helped us create a tag cloud. The following query will
read all the tags for the products:

function read_all_tags() {
$query = "SELECT tag_name FROM product_tags";
$result = mysql_query($query);
 if($result) {
 while($row = mysql_fetch_array($result)) {
 $all_tags[$row['tag_name']] = $row['tag_name'];
 }
 return $all_tags;
 }
}

The query we used in the code that we just saw is to read all the tags from the
product_tags table.

$query = "SELECT tag_name FROM product_tags";

Now, let's see the necessary changes we need to create our tag cloud.

foreach ($all_tags as $tag =>$value)
{
 echo '<a style="font-size:'. rand(50,20). 'px'.'" class="tag_cloud"
 href="http://localhost/book/shopping/searchTags.php?tag='
 .$value.'" title="\'' . $tag . '">'.$value.'';
}

In the code that we just saw, we are looping through each tag in the tagCloud.php
script and making magic with CSS.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 12

[223]

View products for a tag name
So far, we have created our tag cloud and we have all our tags presented to the user.
Now, when a user clicks on a tag, we need to display the products associated with
the tag.

Let's quickly add the function to our products class and then invoke it in our
searchTags.php script. The code for the function that will fetch us all the products
with a particular tag is as follows:

function search_by_tags($tag) {
$query = "SELECT product_id FROM product_tags WHERE tag_name =
'".$tag."'";
return $query;
}

OK, now when we are done with executing our query, we will have a result set with
the values of products that are matching our tag.

We will take that result set, loop through it, and display it to the user. The code to
loop through the result set is as follows:

$result = $db->perform_query($query);
 if($result) {
 while($row=$db->fetch_array($result))
 {
 echo "<div class='show-product-id'>Product
 ID:".$row[0]."
</div>";
 }
}

Take a look at the following screenshot and see how the application looks:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Creating a Shopping Search Engine

[224]

Summary
Shopping has been a thing of interest as well as business. In this chapter
we created a new shopping search experience. We have integrated a couple of
script.aculo.us features into our application, Shop-Me.

From searching products to tag clouds and from drag and drop features to effects,
we have added them all in our application.

In the next (and the last) chapter, we will revisit all the modules that we have created
so far and see how we can integrate them into any web applications. We will also
create a new commenting system for our applications. See you in the next chapter!

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Common 43: 43 Things,
43 Places, and

43 People Clones
How many tutorials did you bookmark? And how many products did you add to
your shopping cart? We had fun developing our applications and the applications
stand as a testimony to our claim.

In this chapter we will be building the clones of 43 things, 43 places, and 43 people.
These clones are also some of the most famous applications of the Web 2.0 era. We
will create a raw structure and see how we can integrate our modules to build clones
for these applications.

Some of the key features we will be learning and working with in this chapter are:

Getting the database ready for the common 43 applications
The AJAX commenting system
The modules built so far
A quick view of the script.aculo.us features
Clubbing the pieces together

So let the party begin!

Getting the database ready
The first thing we learned in all the chapters till now is to start with designing the
database schema. We certainly believe in breaking rules, but not when it comes to
making killer web applications. So, let's quickly create the database tables for places,
people, things, and also for tagging.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Common 43: 43 Things, 43 Places, and 43 People Clones

[226]

Database for places
We will be creating a basic schema for storing information about places. The schema
is defined as follows:

CREATE TABLE `places` (
 `place_id` INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,
 `place_name` VARCHAR(200) NOT NULL ,
 `place_desc` VARCHAR(300) NOT NULL
) ENGINE = innodb;

The attributes of the places table are as follows:

place_id: This is the unique id for each place. The field is defined as the
PRIMARY KEY and will be auto incremented every time places are added in
the database.
place_name: This field contains the name of the place.
place_desc: This field contains some description about the place.

Database for people
Now, let's quickly create a schema definition for the people's table. This will be on
the same lines as our places table.

CREATE TABLE `people` (
 `people_id` INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,
 `people_title` VARCHAR(200) NOT NULL ,
 `people_desc` VARCHAR(300) NOT NULL
) ENGINE = innodb;

The attributes of the people's table are as follows:

people_id: This a unique id using which the application can identify each
user as separate
people_name: This is the name of the user
people_desc: This contains some description about the place

Database for things
OK, so now we have created a schema definition for people and places. On the same
lines, you can try and create the schema for things. The database code is given as a
part of code download at the URL mentioned in the Preface to test your skills.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[227]

Advanced commenting system
We have covered and created a lot of modules for our web applications. Ask your
friend, and he will tell you that we have missed out one important feature—comments.

Comments have become an integral part of all web applications. They allow the
users to discuss and share their view points.

In this section we will learn how to create an AJAX-based comments module. This
module is a Prototype. Please feel free to add your creative ideas to make it as
powerful as your applications.

So, let's get started and add the comments module to our bookmarker application.
In viewtutorial.php from Chapter 11, we have seen the details of the tutorial and
now let's add the comments section to it.

Creating a comments form
Let's quickly put some code together and make the user interface for our comments
module. We need to have a link called Add Comments and on clicking it, the user
will be shown the add comments form.

Another link that we need is the Hide Comments link, which will be hidden from the
user and will only be shown to the user when the add comments form is displayed.

echo '<div>
 <table id="show-comments" class="show-comments">
 </table>
</div>';
echo '<div id="add-comments">
 Add Comments
</div>';
echo '<div id="hide-comments" style="display:none">
 Hide Comments
</div>';

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Common 43: 43 Things, 43 Places, and 43 People Clones

[228]

Check out the following screenshot with the Add Comments link:

An empty table named show-comments will be used to hold all the comments posted
by the user.

echo '<div class="comments-form" id="comments-form"
 style="display:none">
 <form id="myform" method="POST" onsubmit="return false;">';
 echo '<input type="hidden" size="45" name="tutorialID"
 id="tutorialID" value="'.$tutorialID.'">
 <input type="hidden" size="45" name="ownerID" id="ownerID"
 value="'.$ownerid.'">Add Your Comments

 <input type="text" size="45" name="your_comments"
 id="your_comments">

 <input type="button" onclick="addComments()"
 value="Add Comments">
 </form>
</div>';

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[229]

In the code that we just saw, we have created a simple text box and a submit button
to post the data. The following screenshot shows us the output:

Now let's wrap things up and hide the user interface components that we do not
intend to show to the user at this point in time.

function showCommentsForm(){
 $('comments-form').style.display="";
 $('add-comments').style.display="none";
 $('hide-comments').style.display="";
}

Posting comments
OK, so now that we have our comments interface ready, we will post the data to
server the AJAX way. When the user clicks on the submit button, the data is posted
using the Ajax.Request feature that we learned in Chapter 2.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Common 43: 43 Things, 43 Places, and 43 People Clones

[230]

We will add the following piece of JavaScript code to add the comments functionality:

function addComments() {
 var your_comments = 'your_comments='+$F('your_comments');
 var tutorialID = 'tutorialID='+$F('tutorialID');
 var ownerID = 'ownerID='+$F('ownerID');
 var pars = your_comments+'&'+tutorialID+'&'+ownerID;

 new Ajax.Request(
 'GetItem.php',
 {
 asynchronous:true,
 parameters:pars,
 onComplete: ShowData	
 }
);
 $('myform').reset();
 return false;
}

In the above piece of code, we are creating a function called addComments() and it
will read userID, tutorialID, and the comments posted by the user.

We will pass these values to the server file, getItem.php, using Ajax.Request.
When the request is completed, we will call another JavaScript function, ShowData(),
which will handle the response sent by the server.

We mentioned that we are passing the values to the GetItem.php script. So, let's
explore what we will be doing in GetItem.php.

A couple of things that we will have to do in sequence at the server side are
as follows:

1.	 Create an XML file.
2.	 Insert the data.
3.	 Read back the recently added comment.
4.	 Create an XML tree with the data read.

Let's start by creating the XML file. The lines of code that we need to add to create an
XML file are as follows:

header("Content-Type: text/xml");	
print'<?xml version="1.0" encoding="UTF-8" standalone="yes"?>';

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[231]

In this way, we are passing our header information to the PHP compiler and
informing it that the file has XML content.

We need to read the values of tutorialID, ownerID, and the comments posted by
the user. The code for reading the values is as follows:

$your_comments = $_POST['your_comments'];
$tutorialID = $_POST['tutorialID'];
$ownerID = $_POST['ownerID'];

The next step is to insert the comment information to our database tables. The query
to insert the data is as follows:

$sql = "INSERT INTO comments (commentID,tutorialID,ownerID,
comment_desc,Date) VALUES (NULL,'$tutorialID','$ownerID',
'$your_comments',CURRENT_TIMESTAMP)";

After inserting the data in the table, we will have to read back the recently
added commentID.

 $rowID = $db->get_last_insert_id();

We have commentID for the latest inserted comment. We will read the values for this
commentID and put them in the XML tree format.

echo '<response>';
echo '<commentID>'.$rowID.'</commentID>';
echo '<comment_desc>'.$comment_desc.'</comment_desc>';
echo '</response>';

That makes the getItem.php file complete. This will return the response in the XML
format. We need to handle and read the response in the JavaScript file.

A function called showData() in our Ajax.Request will be called once the server
sends the response.

The code for the showData() function is as follows:

function ShowData(originalRequest) {
 var xmlDoc = originalRequest.responseXML.documentElement;
 var value =
 xmlDoc.getElementsByTagName("comment_desc")[0].childNodes[0].
 nodeValue;
 var value1 =
 xmlDoc.getElementsByTagName("commentID")[0].childNodes[0].
 nodeValue;
}

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Common 43: 43 Things, 43 Places, and 43 People Clones

[232]

In the function that we just saw, we are reading the response sent by the server. The
response sent is in the XML format. Hence, we will loop through the childNodes
and read the values.

But wait! We are missing something.

We have read the comments inserted in the database and received the response.
Now, we need to put it in our user interface and display it to the user.

The table rows will be added dynamically using DOM with the data that we received
from the server.

The code for creating dynamic table rows and data is as follows:

var newTR=document.createElement('tr');
newTR.class='show-comments';
var newTD=document.createElement('td');
newTD.appendChild(document.createTextNode(value));

But that's not all! We need to present the user with the Edit and Delete options along
with the data.

Here is the complete code for the function showData():

function ShowData(originalRequest) {
 var xmlDoc = originalRequest.responseXML.documentElement;
 var value =
 xmlDoc.getElementsByTagName("comment_desc")[0].childNodes[0].
 nodeValue;
 var value1 =
 xmlDoc.getElementsByTagName("commentID")[0].childNodes[0].
 nodeValue;
 var newTR=document.createElement('tr');
 newTR.class='show-comments';
 var newTD=document.createElement('td');
 newTD.appendChild(document.createTextNode(value));
 var newTD2=document.createElement('td');
 var textNode2=document.createTextNode('Edit')
 var editLink=document.createElement("a")
 editLink.setAttribute("title",'Delete')
 editLink.setAttribute("href",'#')
 editLink.appendChild(textNode2);
 newTD2.appendChild(editLink);
 var newTD3=document.createElement('td');
 var textNode=document.createTextNode('Delete')
 var delLink=document.createElement("a")
 delLink.setAttribute("title",'Delete')

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[233]

 delLink.setAttribute("href",'#')
 delLink.appendChild(textNode);
 newTD3.appendChild(delLink);
 newTR.appendChild(newTD);
 newTR.appendChild(newTD2);
 newTR.appendChild(newTD3);
 $('show-comments').appendChild(newTR);
}

The above code might have confused you. But if you look at the code carefully, you
will find that we are just doing the simplest thing with DOM.

Now, after all this coding, it's time to see what our hard work results in. Check out
the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Common 43: 43 Things, 43 Places, and 43 People Clones

[234]

Edit or Delete comments
OK, so we have added Edit and Delete options as links with href="#". Here, we
need the two functions editComment() and deleteComment() that will be linked to
the Edit and Delete options.

That's your homework. OK, let me give you a few hints. Just follow these steps in the
sequence mentioned and you should be able to see the resulting output.

Read the comment ID
Using Ajax.Request, pass the value of commentID and userID
Check if the user can delete or edit the comment
Edit or Delete and get the response from the server
Display the result to the user

Those are all the hints I will give you.

Modules ready to go live
Throughout this book we have learned and built different modules, most of which
can be easily integrated into any web application. In this section we will look at some
of these modules that can be used at the server side.

User management system
Tag cloud features

Let's quickly walk through each of the modules and see how we can extend them to
any web application.

User management system
We created a user management system in Chapter 3, which we have also re-used in
our real-world applications.

Some of the key features we created are:

User signup
Log in
Register new user
Log out

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[235]

These are the most basic features for any web application. In a real scenario, you
may have to work and tweak the code to add necessary security and other important
features as per the requirement of the projects.

We have created separate classes for Users and Database that can be extended
further and can easily be used in invoking the objects for the classes.

Tag cloud features
I am sure that by now you are a fan of tags and want to use them effectively in your
web applications. We have created the tag class in Chapter 11.

Using the tags class, we have been able to do the following functionalities:

Add tags
Search using tags
Create a tag cloud
Delete tags
Edit tags

With a simple change in database schema definition, we can extend the tags to any
web application.

Adding 2.0 flavour to applications
We covered the basic modules at the server side in the previous section. Now, let's
also quickly recollect and add the 2.0 aspects to our web applications. All these
features have been covered extensively in the previous chapters.

AJAX modules
We are in the Web 2.0 era and AJAX has become a part of applications and also of
developers like us.

AJAX helps us in making our applications fast and efficient. Prototype and
script.aculo.us provide us with a very powerful combination to add beauty to
powerful features. We have explored in detail some of the following features in
Chapter 2:

Ajax.Request

Ajax.updater

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Common 43: 43 Things, 43 Places, and 43 People Clones

[236]

Effects
One of the most amazing features of script.aculo.us, and my personal favourite, is
effects. Effects can be used to inform users, highlight some key aspect of features, or
just to add beauty to applications. Just about anything and everything can be done
using effects.

We have seen how to use various types of effects. Some of the key effects are
as follows:

Effect.Opacity

Effect.Scale

Effect.Morph

Effect.Move

Effect.Highlight

Effect.Parellel

There are some more effects that can also be used along with applications. We have
explored them in detail in Chapter 4. The application we created in Chapter 4 is
shown in the following screenshot:

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[237]

Real-time search
We have created real-time search using the autocompletion feature of script.aculo.us
that we covered in detail in Chapter 7.

We implemented the same in our projects. In the bookmarker application, we used
it to search tutorials. In our Shop-Me application, we used it to search the products
as well.

The logic behind the feature remains the same. For reference, look at the following
screenshot from the bookmarker application. So, go ahead and plug this feature into
your applications.

In-place editing
This feature makes things dead simple for basic editing, and especially for any text
field. We covered this feature in detail in Chapter 6.

Any portion of application user interface can be customized for
in-place editing. But be choosy about where you apply it!

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Common 43: 43 Things, 43 Places, and 43 People Clones

[238]

Drag and drop
How simple would it be if we could just drag and drop things in real life? A great
thought by the way! We learned in detail about the drag and drop feature in
Chapter 5. Remember how we dragged and dropped our products in the
Shop-Me application?

The drag and drop feature is mainly used for a limited
set of items. If this set of items is huge, think twice!

For a quick revision, check out the following screenshot:

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Chapter 13

[239]

Putting the building blocks together
OK, so now we have covered all the modules at both the server side and the client
side. Let's club them together and make new applications.

Features and functionalities
These are some of the key features and functionalities that we will create just by
integrating all the modules and code we have created so far.

User signup
Login
Forgot password
Logout
User profile
Tag cloud search for people/places/things
Add new people/places/things
Edit people/places/things
Delete people/places/things
Effects to notify the user
Ajax.Request to add the 2.0 way of handling data
In-place editing for title/description
Real-time search for people/places/things

We have covered and created all the above features in various modules and also in
our projects.

So, just play around with the code, tweak it, and plug it into any web application.

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Common 43: 43 Things, 43 Places, and 43 People Clones

[240]

Summary
OK, so that brings us to the end of the chapter and the journey of script.aculo.us. We
learned many exciting and useful features throughout the book.

Some of the key features that we learned are:

Effects
In-place editing
Autocompletion
Slider
Drag and drop

The key modules that we used at the server side are:

User management system
Tag cloud features

And, as I have said throughout the book, script.aculo.us has a lot of promise. The only
thing that will completely explore its potential is your creativity and imagination.
Here's wishing you good luck. May your friends and users be impressed!

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Index
Symbols
$() prototype 13
$_POST 178
$A() prototype 13
$F() prototype 13
$H() prototype 13
$R() prototype 13

A
ad_new_list() 178
add() method 88
Add Comments link, comments 227
AddItem() function, code 179, 180
add method, droppables namespace 88
Add This List button 178
AddtoCompleted function

itemValue parameter 184
valueID parameter 184

AddtoItemTree() function, code 187
afterUpdateElement option,

remote sources 120
AJAX 8, 9
Ajax.PeriodicalUpdater class, prototype 18
Ajax.Request object, prototype 17, 18
Ajax.Responders class, prototype 19, 20
Ajax.Updater class, prototype 18
AJAX components 16
AJAX modules 235
AJAX objects

Ajax.PeriodicalUpdater class 18
Ajax.Request object 17, 18
Ajax.Responders class 19, 20
Ajax.Updater class 18

display username availability script, Ajax.
Updater used 23, 24

examples 20
username availability script, Ajax.Request

used 20-22
Asynchronous JavaScript and XML. See

AJAX
auto completion feature

about 115-117
auto completion sources 118
auto completion sources, options 119
auto completion sources, types 118
code usage, local sources used 123
code usage, remote sources used 121, 122
container parameter 117
element parameter 117
example, local sources used 132, 133
example, remote sources for multiple fields

used 128-132
example, remote sources used 124-127
explanation 117
local sources 119
local sources, auto completion sources 118
local sources:about 118
options parameter 118
parameters 117
remote sources 118
remote sources, auto completion

sources 118
source parameter 118
sources, types 118

auto completion feature, local sources used
code usage 123
example 132, 133
options, adding to constructor 123

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

[242]

auto completion feature, remote sources for
multiple fields used

example 128-132
auto completion feature, remote sources

used 123
code usage 121
example 124-128
options, adding to constructor 122, 123

auto completion sources
options 119
options, for local sources 120, 121
options, for remote sources 119, 120

axis, slider options 137

B
Backpackit application 8
bookmarker application

2.0 application, tag cloud features 206, 207
database playground 194
description, adding to tutorial 199-201
features 194
functionality 194
logging out 210
new tutorials, submitting 196
real-time auto completion search 204-206
search function, tags used 209
tag cloud, creating 208
tags, adding to tutorial 199-201
tags, adding to tutorials 207, 208
tags in database, reading 208
tips and tricks 211
title, adding to tutorial 199-201
tutorials, deleting 202-204
tutorials, viewing 202
tutorial URL, submitting 197, 198
user interface 199-201
user profile home page 196

bookmarker application, tips and tricks 211

C
callback option, in-place editing feature 102
callback option, remote sources 120
callsomeFunction 20
cancelLink option, in-place

editing feature 101

cancelText option, in-place editing
feature 101, 103

change option, drag and drop feature 87
ChangeStatus() function 185
changeStatus(valueID) function 185, 186
choices option, local sources 120
clickToEditText option, in-place editing

feature 101, 105
cols option, in-place editing feature 102, 105
commentID 231
comments

about 227
Add Comments link 227
deleting 234
editing 234
form, creating 227-229
Hide Comments link 227
posting 229-233

common parameters
delay parameter 69
duration parameter 69
from parameter 69
to parameter 69

common scripts 49
constraint option, drag and drop feature 87
container parameter, auto completion

feature 117

D
database

for people 226
for places 226
for things 226

database playground, bookmarker
application

tutorials_tags table 195
tutorials_tags table, attributes 196
tutorials_tags table, schema 195
tutorials table 195
tutorials table, attributes 195
tutorials table, schema 195

database playground, todonow
database table items, fields 171
database table lists, fields 171
Date, items field 171
Date, lists field 171

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

[243]

ItemID, items field 171
ItemName, items field 171
ListID, lists field 171
ListName, lists field 171
ownerID, items field 171
ownerID, lists field 171
Status, items field 171

DBClass.php 47, 49
DBConfig.php 47
DeletefromItemTree() function 185
DeleteFromItemTree(divDelete)

function 185
Delicious application 206
disable method 30
Digg application 193
disabled, slider options 138
drag and drop feature 7, 238

about 86
advanced tutorial 93-97
callback options 87
code usage 88
draggable element, initializing 87
exercise 157-159
options 87
sample, in one line code 91, 92

drag and drop feature, callback option
change option 87
droppables, namespace 88
onDrag option 87
onEnd option 87
onStart option 87

drag and drop feature, options
constraint option 87
endEffect option 87
ghosting option 87
handle option 87
revertEffect option 87
revert option 87
snap option 87
startEffect option 87

draggable element, initializing 87
droppables, namespace 88

add method 88, 90
onDrop callback 88, 90
onHover callback 88
remove method 88, 90

E
Effect.Highlight, effect 68
Effect.Morph, effect 68
Effect.Move, effect 68
Effect.Multiple, effect 68
Effect.Opacity, effect 68
Effect.Scale, effect 68
effect engine feature 6, 7, 236
effects

about 67, 68
code usage 69-73
common parameters 69
core effects 73, 74
Effect.Highlight 68
Effect.Morph 68
Effect.Move 68
Effect.Multiple 68
Effect.Opacity 68
Effect.Scale 68
example 73
exercise 157
types 68
various effects 76, 78

effects, example
combining 78
core effects 73-75
various effects 76, 78

effects, shopping application
adding 217

Element.extend() 13
element parameter, auto completion

feature 117
element parameter, in-place editing

feature 101
enable method 30
endEffect option, drag and drop

feature 87-89
enterEnterMode() function, in-place editing

feature 107
event handling, prototype

about 25
general events, handling 25
keyboard events, handling 26, 27
keyboard events handling, example 28
mouse events, handling 26
mouse events handling, example 29

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

[244]

example
drag and drop, advanced 93-97
drag and drop, in one line code 91, 92

F
fetchArray function 175
forms, prototype

about 30
disable method 30
enable method 30
examples 32-35
findFirstElement method 30
focusFirstElement method 30
getElements method 30
getInputs method 30
methods 30
request method 31
reset method 31
serializeElements method 31
serialize method 31
usage 31

frequency option, remote sources 119
fullSearch option, local sources 120
findFirstElement method 30
focusFirstElement method 30

G
general events, handling methods

element method 25
extend method 25
findElement method 25
observe method 25
stop method 25
StopObserving method 25
unloadedCache method 26
syntax 26

getElements method 30
getInputs method 30
ghosting option, drag and drop

feature 87, 89

H
handle, slider parameter 137
handle option, drag and drop feature 87, 89
Hide Comments link, comments 227

highlightColor option, in-place editing
feature 102, 105

highlightendColor option, in-place editing
feature 102

horizontal slider
about 139
code usage 142, 143
example 149-153

I
ignoreCase option, local sources 120
in-place editing feature 237

about 99-101
at server-side handling, example 108-111
code usage 102-105
constructor, parameters 101
constructor initiating, syntax 101
element parameter 101
exercise 156
getting started 101
InPlaceCollectionEditor

constructor 112, 113
InPlaceEditor constructor, initiating 109
onEnterEditMode, callbacks for 108
onLeaveEditMode, callbacks for 108
options 101
options parameter 101
url parameter 101

in-place editing feature, callback option
Callback option 102
onComplete option 102
onFailure option 102

in-place editing feature, options
cancelLink option 101
cancelText option 101
clickToEditText option 101
cols option 102
highlightColor option 102
highlightendColor option 102
loadingText option 102
loadTextURL option 102
okButton option 101
okText option 101
rows option 101
savingText option 101

in-place editing feature, tips and tricks
data submitting, on Blur 107, 108

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

[245]

edit mode, entering into 106
element, displaying 106
enterEnterMode() function 107
submitOnBlur option 107

increment, slider options 137
Index.php, user login management

system 57
indicator option, remote sources 120
InPlaceCollectionEditor feature 112, 113
InPlaceEditor constructor

initiating, syntax 101
options, adding 109, 110

items, todonow application
added item, reading 181, 182
adding 179
adding, to database 179
adding, to incomplete <div> 187
AddItem() function 179-181
AddtoCompleted function 184
AddtoItemTree() function, code 187
ChangeStatus() function 185
changeStatus(valueID) function 185, 186
completed items, converting to incomplete

status 186
database table, fields 171
Date field 171
DeletefromItemTree() function 185
DeleteFromItemTree(divDelete)

function 185
deleting, from complete <div> 188
deleting, from incomplete <div> 185
effects, adding 182, 183
item, adding to completed <div> 184
ItemID field 171
ItemName field 171
items to completed, status

changing 185, 186
ListID field 171
MarkDone(this.id)function 184
marking, as completed 183, 184
MarkUnDone function, code 187
ownerID field 171
ResetStatus() function, code 188, 189
status, changing to incomplete 188, 189
Status field 171
storing, database schema 171

K
keyboard events, handling 26, 27

L
lists, todonow application

$_POST 178
ad_new_list() 178
Add This List button 178
creating 177
creating, logic and code 177-179
database table, fields 171
Date field 171
deleting 190
fetchArray function 175
ListID field 171
ListName field 171
Mysql_num_rows function 175
ownerID field 171
read_list() 178
Redirect function, code 179
storing, database schema 171
viewing 174-176
viewing, logic and code 174, 175
viewing, with summary of incomplete

items 176
viewing with summary of incomplete

items, logic and code 176
loadingText option, in-place editing feature

102
loadTextURL option, in-place editing

feature 102
local sources, auto completion sources

about 119
options 120

local sources options, auto completion
sources

choices 120
fullSearch 120
ignoreCase 120
partialChars 120
partialSearch 120

location parameter , Ajax.Updater 18
Login.php, user login management

system 53-56
Logout.php, user login management

system 58, 59

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

[246]

M
MarkDone(this.id)function 184
MarkUnDone function, code 187
maximum, slider options 137
minChars option, remote sources 119
minimum, slider options 138
modules, at server side

tag cloud features 235
user management system 234

mouse events, handling methods
isLeftClick method 26
PointerX method 26
PointerY method 26

multiple Script.aculo.us feature
drag-and-drop feature, adding 157-159
effects, adding to page 157
in-place editing in page, adding 156
multiple features, adding to

element 159-161
Mysql_num_rows function 175
MySQL 5.0 42
MySQL installation

checking, WAMP server used 45

N
new tutorials, submitting 126

O
okButton, in-place editing feature 101
okText option, in-place editing

feature 101, 103
onChange, slider callback 138
onComplete callback option, in-place

editing feature 102
onDrag option, drag and drop feature 87
onEnd option, drag and drop feature 87
onEnterEditMode callback option, in-place

editing feature 108
onFailure callback option, in-place editing

feature 102
onFailure, option parameter 17
onLeaveEditMode callback option, in-place

editing feature 108
onLoading, option parameter 17
onSlide, slider callback 138

onStart option, drag and drop feature 87
option parameters, Ajax.Request

method 17
onFailure 17
onLoading 17
parameters 17

options, slider parameter 137
option parameter, auto completion

feature 118
option parameter, in-place editing

feature 101

P
parameters option, remote sources 120
paramName option, remote sources 119
partialChars option, local sources 120
partialSearch option, local sources 120
people_desc attribute, people table 226
people_id attribute, people table 226
people_name attribute, people table 226
people tables, database

attributes 226
people_desc attribute 226
people_id attribute 226
people_name attribute 226
schema 226

PHP 5.0 42
PHP installation

checking, WAMP server used 44
phpMyAdmin 43
place_desc attribute, places table 226
place_id attribute, places table 226
place_name attribute, places table 226
place table, database

attributes 226
place_desc attribute 226
place_id attribute 226
place_name attribute 226
schema 226

products, shopping application
creating draggable 216
searching 218-221
searching, tag cloud used 221
selecting, to buy 216
tag cloud, generating 222
viewing, for tag name 223

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

[247]

prototype
$() 13
$A() 13
$F() 13
$H() 13
$R() 13
about 11
Ajax.PeriodicalUpdater class 18
Ajax.Request object 17, 18
Ajax.Responders class 19, 20
Ajax.Updater class 18
compatibility 12
element, accessing by ID 12
event handling 25
features 12
helper functions 12-16
version 1.6 12

prototype library
adding, to code 46

R
range, slider options 138
real-time auto search, bookmarker

application 204-206
read_list() 178
real-time search 237
Redirect function, code 179
remote sources, auto completion sources

about 118
options 119, 120

remote sources options, auto completion
sources

afterUpdateElement 120
callback 120
frequency 119
indicator 120
minChars 119
parameters 120
paramName 119
tokens 120
updateElement 120

RemoveFunction 20
remove method, droppables namespace 88
reset method 31
request method 31
ResetStatus() function, code 188, 189

revertEffect option, drag and drop
feature 87, 90

revert option, drag and drop feature 87, 88
Rich Internet Applications (RIA) 5
rows option, in-place editing

feature 101, 105

S
savingText option, in-place editing

feature 101
Script.aculo.us

about 5
auto completion feature 115-117
bookmarker application 193, 194
drag and drop feature 86
Effect.Highlight, effect 68
Effect.Morph, effect 68
Effect.Move, effect 68
Effect.Multiple, effect 68
Effect.Opacity, effect 68
Effect.Scale, effect 68
effects 67, 68
effects, types 68
features, revising 162
in-place editing feature 99-101
latest version, downloading link 6
MP3 sounds 80
multiple Script.aculo.us feature 155
shopping application 213
slider 135
slider, types 138
sounds 79
sounds, types 79

Script.aculo.us, features
AJAX 8
drag and drop feature 7
effects engine feature 7

Script.aculo.us, features in one page
drag and drop 164
effects, adding 162, 163
in-place editing 163
multimedia 167
slider 165

Script.aculo.us library
adding, to code 46

Serialize method 31

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

[248]

serializeElements method 31
Secure.php 49
server-side scripting

PHP used 41
setDisabled, slider functions 138
setEnabled, slider functions 138
setValue, slider functions 138
Shop-Me application. See shopping

application
shopping application

effects, adding 217
features 214
functionalities 214
products, searching 218-221
products, selecting to buy 215, 216
products, viewing for tag name 223
products searching, tag cloud used 221
tag cloud, generating 222
user management system 214

show comments 228
showData() function 231, 232
Signup.php, user login management

system 50-53
simple tag cloud, creating 63-66
slider

callbacks 138
code usage 139, 140
current value, reading 147
disabling 148
enabling 149
functions 138
horizontal slider, code usage 142
multiple handles 147, 148
options 137
parameters 137
steps 136
tips and tricks 146
types 138
vertical slider, code usage 140-142
with options, code usage 143-146

slider, callbacks
onChange callback 138
onSlide callback 138

slider, functions
setDisabled function 138
setEnabled function 138
setValue function 138

slider, options
axis option 137
disabled option 138
increment option 137
maximum option 137
minimum option 138
range option 138
SliderValue option 138
values option 138

slider, parameters
handle parameter 137
options parameter 137
track parameter 137

slider, tips and tricks
current value, reading 147
disabling 148
enabling 149
multiple handles 147, 148

slider, types
horizontal slider 139
vertical slider 138

SliderValue, slider options 138
snap option, drag and drop feature 87, 88
sounds

code usage 80
example 80-82
MP3 sounds 80
types 79, 80

source parameter, auto completion
feature 118

startEffect option, drag and drop
feature 87, 89

submitOnBlur option, in-place editing
feature 107, 108

T
Tadalist. See todonow application
tag cloud features, Web 2.0 applications

search, tags used 210
search function, tags used 209
tag cloud, creating 208-222
tags, adding to tutorials 207, 208
tags in database, reading 208

tags, bookmarker application
adding, to tutorials 207, 208
in database, reading 208

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

[249]

search function, tags used 209
tag cloud, creating 208, 209

things, database 226
to-do list manager. See todonow application
todonow application

about 169
completed items, converting to incomplete

status 186
database playground, creating 170, 171
effects, adding to item 182, 183
features 170
functionality 170
item, adding to completed <div> 184
item, deleting from incomplete <div> 185
item, marking as completed 183, 184
items, adding to database 179, 181
items, adding to incomplete <div> 187, 188
items, adding to lists 179
items, deleting from complete <div> 188
items status, changing to

incomplete 188, 189
item status, changing 185, 186
lists, viewing 174, 175
lists, viewing with summary of incomplete

items 176
logging in 172, 173
new lists, creating 177-179
newly added item, reading 181, 182
to-do list manager 169
user interface 173

tokens option, remote sources 120
track, slider parameter 137
tutorial_tags table, bookmarker application

attributes 196
schema 195
tag attribute 196
tutorialID attribute 196

tutorials, bookmarker application
deleting 202-204
description, adding to tutorial 199-201
submitting 196
tags, adding to tutorial 199-201
title, adding to tutorial 199-201
URL, submitting 197, 198
viewing 202

tutorials table, bookmarker application
attributes 195
date attribute 195
ownerID attribute 195
schema 195
tutorial_desc attribute 195
tutorial_title attribute 195
tutorial_url attribute 195
tutorialID attribute 195

U
Universal Description and Discovery

Information. See UDDI
updateElement option, remote sources 120
url parameter , Ajax.Updater 18
url parameter, in-place editing feature 101
user interface, todonow application 173
user login management system

Index.php 57
Login.php 53-56
Logout.php 58, 59
Signup.php 50-53

user management system, shopping
application 214, 215

username availability script
adding, to login management system 59-62

user profile home page, bookmarker
application 196

V
values, slider options 138
versions, downloading link 6
vertical slider

about 138
code usage 140-142
example 149-153

W
WAMP server

about 42
MySQL installation, checking 45, 46

Web 2.0 applications
tag cloud features 206, 207

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Thank you for buying
PHP and script.aculo.us
Web 2.0 Application Interfaces

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing PHP and script.aculo.us Web 2.0 Application Interfaces,
Packt will have given some of the money received to the script.aculo.us project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our web site: www.PacktPub.com.

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

Learning jQuery 1.3
ISBN: 978-1-847196-70-5 Paperback: 444 pages

Better Interaction Design and Web Development with
Simple JavaScript Techniques

1.	 An introduction to jQuery that requires
minimal programming experience

2.	 Detailed solutions to specific client-side
problems

3.	 For web designers to create interactive elements
for their designs

4.	 For developers to create the best user interface
for their web applications

5.	 Packed with great examples, code, and clear
explanations

AJAX and PHP
ISBN: 978-1-904811-82-4 Paperback: 284 pages

Enhance the user experience of your PHP web site
using AJAX with this practical tutorial featuring
detailed case studies

1.	 Build a solid foundation for your next
generation of web applications

2.	 Use better JavaScript code to enable powerful
web features

3.	 Leverage the power of PHP and MySQL to
create powerful back-end functionality and
make it work in harmony with the smart
AJAX client

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Richard Ostheimer on 18th June 2009

2205 hilda ave., , missoula, , 59801

	Cover
	Table of Contents
	Preface
	Chapter 1: About script.aculo.us
	Welcome to the script.aculo.us world
	Versions
	The script.aculo.us fun begins
	Effects
	Drag and drop
	AJAX

	Much more fun
	Summary

	Chapter 2: Exploring Client-side Techniques with Prototype
	About Prototype
	The story so far: Versions
	Compatibility

	Prototype features—a walk-through
	Getting started with Dollar, DOM, and more
	AJAX components—an overview
	Ajax.Request
	Ajax.Updater
	Ajax.PeriodicalUpdater
	Ajax.Responders

	Hands-on examples

	Event handling
	Description
	Handling general events
	Syntax

	Handling mouse events
	Handling keyboard events
	Hands-on examples
	Handling the keyboard events example
	Handling mouse event example

	Redefining forms with Prototype
	Introduction
	Description
	Usage
	Hands-on examples

	Getting more hands-on
	Hands-on example: How to use XML to read data from the server using Prototype

	Summary

	Chapter 3: Server-side Techniques with PHP and MySQL
	Basic requirements
	A word about PHP 5.0 or above
	A word about MySQL 5.0
	The WAMP server: A must-have for Windows users
	phpMyAdmin

	Getting the playground ready
	Checking the PHP installation using the WAMP server
	Checking the MySQL installation using the WAMP server
	Adding Prototype library in our code
	Adding the script.acluo.us library in our code
	Basic classes
	DBConfig.php
	DBClass.php
	Secure.php

	Hands-on examples: Common scripts
	User login management system
	Signup.php
	Login.php
	Index.php
	Logout.php

	Adding a username availability script to the login management system
	Creating a simple tag cloud

	Summary

	Chapter 4: Adding Effects and Multimedia to User Interface Design
	Introduction to effects
	Types of effects
	Common parameters
	Code usage

	Hands-on examples
	The core effects
	Various effects
	Combining all the effects

	Playing sounds with script.aculo.us
	Types of sounds
	MP3 sounds

	Code usage
	A hands-on example

	Summary

	Chapter 5: AJAX Drag and Drop Feature using script.acluo.us
	Introduction to the drag and drop feature
	Explanation of the drag and drop feature
	Code usage of the drag and drop feature
	Hands-on example: Creating a drag and drop sample in one line of code
	Hands-on example: Advanced drag and drop tutorial
	Summary

	Chapter 6: In-place Editing usingscript.aculo.us
	An introduction to the in-place editing feature
	Getting started with in-place editing
	Code usage of the in-place editing features and options
	Tips and tricks with in-place editing
	Disabling the element for the in-place editing functionality
	Entering into the edit mode
	Submitting on Blur
	Callbacks for onEnterEditMode and onLeaveEditMode

	Hands-on example: In-place editing with server-side handling
	Hands-on example: InPlaceCollectionEditor
	Summary

	Chapter 7: Creating Autocompletion using script.aculo.us
	Introduction to autocompletion
	Explanation of the autocompletion feature
	Types of autocompletion sources
	Remote sources
	Local sources

	Options for autocompletion sources
	Options for remote sources
	Options for local sources

	Code usage of autocompletion using remote sources
	Code usage of autocompletion using local sources
	Hands-on example: Autocompletion using remote sources
	Hands-on example: Advanced autocompletion using remote sources for multiple fields
	Hands-on example: Autocompletion using local sources
	Summary

	Chapter 8: Slider for Dynamic Applications using script.aculo.us
	First steps with slider
	Parameters for the slider definition
	Options with the slider
	Types of slider
	Vertical slider
	Horizontal slider

	Code usage for the slider
	Code usage for the vertical slider
	Code usage for the horizontal slider
	Code usage for sliders with options

	Tips and tricks with the slider
	Reading the current value of the slider
	Multiple handles in the slider
	Disabling the slider
	Enabling the slider

	Hands-on example: Using vertical and horizontal slider
	Summary

	Chapter 9: script.aculo.us in One Go
	Hands-on example: Multiple script.aculo.us features mash up
	Adding in-place editing in page
	Adding effects to the page
	How about adding the drag and drop feature?
	Out of the box thinking—adding multiple features to an element

	Hands-on example: Quick revision of all the features of script.aculo.us in one page
	Let's start with effects
	Some in-place editing
	A little bit of drag and drop
	The slider needs to be in picture too
	How can we miss music?

	Summary

	Chapter 10: Todonow: A Tadalist Clone
	The BIG picture
	Features and functionality
	Creating a database playground
	Let's log in…
	User interface comes first
	View all my lists
	Logic and code

	View all my lists along with a summary of incomplete items
	Logic and code

	Creating new lists
	Logic and code

	Adding items to our lists
	Adding items to the database
	Reading the newly added item and placing it back on the page

	Adding effects to our items
	Mark items as completed
	Add the item to the completed <div>
	Delete the item from the incomplete <div>
	Change the status of the item to completed

	Convert completed items to incomplete status
	Add the item to the incomplete <div>
	Delete the item from the complete <div>
	Change the status of the item to incomplete

	Deleting lists
	Let's wrap up and log out
	Our Todonow is ready to go live
	Summary

	Chapter 11: Creating Delicious and Digg Bookmarks Manager
	Application at a glance
	Features and functionality
	The database playground for our application
	User profile home page
	Submit new tutorials
	Submitting a tutorial URL
	Adding title, description, and tags to the tutorial

	View tutorial
	Deleting tutorials
	Search using real-time autocompletion
	Exploring the tag cloud features of 2.0 applications
	Adding tags to tutorials
	Reading all the tags in the database
	Creating a tag cloud
	Search using tags

	Don't forget to log out
	Ideas for life
	Summary

	Chapter 12: Creating a Shopping Search Engine
	Application at a glance
	Features and functionalities
	The user management system
	Selecting the products to buy
	Adding effects
	Searching products
	Searching products using the tag cloud
	Generating a tag cloud
	View products for a tag name

	Summary

	Chapter 13: Common 43: 43 Things, 43 Places, and 43 People Clones
	Getting the database ready
	Database for places
	Database for people
	Database for things

	Advanced commenting system
	Creating a comments form
	Posting comments
	Edit or Delete comments

	Modules ready to go live
	User management system
	Tag cloud features

	Adding 2.0 flavour to applications
	AJAX modules
	Effects
	Real-time search
	In-place editing
	Drag and drop

	Putting the building blocks together
	Features and functionalities

	Summary
	Index

