

PHP Oracle Web Development

Data Processing, Security, Caching, XML,
Web Services, and AJAX

A practical guide to combining the power, performance,
scalability, and reliability of Oracle Database with
the ease of use, short development time, and high
performance of PHP

Yuli Vasiliev

 BIRMINGHAM - MUMBAI

PHP Oracle Web Development
Data Processing, Security, Caching, XML, Web Services, and AJAX

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2007

Production Reference: 1240707

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-63-6

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author

Yuli Vasiliev

Reviewer

Anup Nanda

Acquisition Editor

Priyanka Baruah

Technical Editor

Akshara Aware

Code Testing

Bansari Barot

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

Yuli Vasiliev is a software developer, freelance author, and a consultant currently
specializing in open-source development, Oracle technologies, and service-oriented
architecture (SOA). He has over 10 years of software development experience as well
as several years of technical writing experience. He has written a series of technical
articles for Oracle Technology Network (OTN) and Oracle Magazine.

About the Reviewer

Arup Nanda (arup@proligence.com) has been an Oracle DBA since 1993, when
the world was slowly turning its attention to a big force to reckon with—Oracle7. But
he was not so lucky; he was entrusted with a production Oracle database running
Oracle 6. Since then, he has never been out of the Oracle DBA career path—weaving
several interesting situations from modeling to performance tuning to backup/
recovery and beyond, with lots of gray hairs to document each ORA-600. He has
written several articles for publications such as Oracle Magazine and for Oracle Tech
Net, he has presented at conferences such as Oracle World and IOUG Live, and he
has coauthored four books. In 2003, Oracle chose him as the DBA of the Year. He
lives in Danbury, Connecticut, with his wife, Anu, and their son, Anish.

Table of Contents
Preface	 1
Chapter 1: Getting Started with PHP and Oracle	 5

Why PHP and Oracle?	 6
Simplicity and Flexibility	 6
Performance	 7
Robustness	 7

Exploring PHP and Oracle Alternatives	 8
PHP and MySQL	 8
JSF and Oracle	 8

What You Need to Start	 9
Pieces of Software Required	 9
Oracle Database Considerations	 10

Understanding the Oracle Database	 10
Choosing Between Oracle Database Editions	 11
Obtaining Oracle Database Software	 12

PHP Considerations	 13
Apache HTTP Server	 13
Why PHP 5	 14
Obtaining PHP	 15

Making PHP and Oracle Work Together	 15
Oracle Instant Client	 15
Zend Core for Oracle	 16

Using Oracle SQL*Plus	 17
Why Use SQL*Plus in PHP/Oracle Development?	 17
Connecting to a Database with SQL*Plus	 18
Running Scripts in SQL*Plus	 20

Putting It All Together	 21
Creating Your First PHP/Oracle Application	 23

Connecting to a Database	 26
Using the Local Naming Method	 26
Using the Easy Connect Method	 27

Table of Contents

[ii]

Issuing an SQL Statement Against the Database	 28
Fetching and Displaying Results	 28

Summary	 29
Chapter 2: PHP and Oracle Connection	 31

Introducing the PHP OCI8 Extension	 31
Why Use OCI8 Extension?	 32
Processing SQL Statements with OCI8	 32

Connecting to Oracle with OCI8	 36
Defining a Connection String	 37
OCI8 Functions for Connecting to Oracle	 38

Parsing and Executing SQL Statements with OCI8	 39
Preparing SQL Statements for Execution	 39
Using Bind Variables	 40
Executing SQL Statements	 42
Handling Errors	 42

Using the oci_error Function	 42
Using the trigger_error Function	 43
Using Exceptions	 44

Fetching Results with OCI8	 44
OCI8 Functions for Fetching	 45
Fetching the Next Row	 46
Fetching All the Rows	 47

Alternatives to PHP OCI8 Extension	 49
Using PEAR DB	 49
Using ADOdb	 51
Using PDO	 52
Creating Your Own Library on Top of OCI8	 53

Summary	 54
Chapter 3: Data Processing	 57

Implementing the Business Logic of a PHP/Oracle Application	 58
When to Move the Data to the Processing	 58
Advantages of Moving the Processing to the Data	 59
Ways of Implementing Business Logic Inside the Database	 60
Interaction between Components Implementing Business Logic	 61

Using Complex SQL Statements	 62
Employing Oracle SQL Functions in Queries	 62

Oracle SQL Functions versus PHP Data Processing	 62
Aggregate Functions	 65
The GROUP BY Clause	 66

Using Join Queries	 66
Taking Advantage of Views	 69

Table of Contents

[iii]

The Key Benefits of Using Views	 69
Hiding Data Complexity with Views	 70
Using the WHERE Clause	 71

Using Stored Subprograms	 73
What are Stored Subprograms?	 73
Advantages of Stored Subprograms	 75
An Example of When to Use a Stored Subprogram	 76
Creating Stored Subprograms	 80
Calling Stored Subprograms from PHP	 82

Using Triggers	 83
Creating Triggers	 84
Firing Triggers	 85
Calling Stored Procedures from a Trigger	 85

Summary	 86
Chapter 4: Transactions	 89

Overview of Transactions	 89
What is a Transaction?	 90
What are ACID Rules?	 91
How Transactions Work in Oracle	 92
Using Transactions in PHP/Oracle Applications	 93
Structuring a PHP/Oracle Application to Control Transactions	 96

Developing Transactional Code	 99
Controlling Transactions from PHP	 99
Moving Transactional Code to the Database	 105

Using Triggers	 105
Dealing with Statement-Level Rollbacks	 106

Transaction Isolation Considerations	 109
What OCI8 Connection Function to Choose	 110
Concurrent Update Issues	 113

Locking Issues	 114
Lost Updates	 115

Autonomous Transactions	 118
Summary	 121

Chapter 5: Object-Oriented Approach	 123
Implementing PHP Classes to Interact with Oracle	 123

Building Blocks of Applications	 124
Creating a Custom PHP Class from Scratch	 125
Testing the Newly Created Class	 127
Taking Advantage of PHP 5's Object-Oriented Features	 128

Functionality and Implementation	 130
Reusability	 132
Handling Exceptions	 132

Table of Contents

[iv]

Modifying an Existing Class to use Exceptions	 133
Distinguishing between Different Error Types	 136
Are Exceptions Necessarily Errors?	 138

Extending Existing Classes	 138
Using Standard Classes	 139

PEAR::Auth in Action	 139
Securing Pages with PEAR::Auth	 141

Customizing Standard Classes	 144
Customizing PEAR::Auth	 144
Building More Compact Client Code	 146

Interactions between Objects	 147
Composition	 148
Aggregation	 150

Event-Driven Communication	 155
Using Oracle Object-Relational Features	 157

Using Oracle Object Types	 157
Implementing Business Logic with Methods of Oracle Objects	 158
Using Oracle Objects to Simplify Application Creation	 161

Summary	 162
Chapter 6: Security	 163

Securing PHP/Oracle Applications	 164
Authenticating Users	 164
Separating Security Management and Data	 165

Using Two Database Schemas to Improve Security	 166
Using Three Database Schemas to Improve Security	 168
Employing PL/SQL Packages and Table Functions to Securely Access Database Data	 169
Using the %ROWTYPE Attribute	 173
Building a Custom Storage Container for the PEAR::Auth Class	 175
Testing the Authentication System	 176

Performing Authorization Based on the User Identity	 178
Using Sessions to Hold Information about the Authenticated User	 179
Holding a User's Information in Package Variables	 179
Protecting Resources Based on Information about the Authenticated User	 182

Hashing	 186
Hashing Passwords	 186
Modifying an Authentication System to Use Hashing	 188

Setting Up Fine-Grained Access with Database Views	 191
Implementing Column-Level Security with Views	 192
Masking the Column Values Returned to the Application	 195

Using the DECODE Function	 195
Implementing Row-Level Security with Views	 198

Using VPD to Implement Row-Level Security	 201
Summary	 204

Table of Contents

[�]

Chapter 7: Caching	 205
Caching Data with Oracle and PHP	 205

Caching Queries on the Database Server	 206
Processing SQL Statements	 206
Using Bind Variables to Increase the Probability of Shared Pool Cache Hits	 208

Using Oracle's Application Contexts for Caching	 210
Creating a Global Application Context	 212
Manipulating Data Held in a Global Context	 214
Resetting Values in a Global Context	 219

Caching Mechanisms Available in PHP	 222
Choosing a Caching Strategy	 223
Caching Function Calls with the PEAR::Cache_Lite Package	 223
Updating Cached Data	 227

Implementing Notification-Based Caching	 229
Using Database Change Notification	 231

Auditing Notification Messages	 231
Building a PL/SQL Procedure Sending Notifications to the Web Server	 232
Performing Configuration Steps Required for Change Notification	 234
Building the Notification Handler	 234
Creating a Query Registration for the Notification Handler	 236
Quick Test	 238

Implementing Notification-Based Caching with PEAR::Cache_Lite	 238
Summary	 241

Chapter 8: XML-Enabled Applications	 243
Processing XML in PHP/Oracle Applications	 243

Processing XML Data with PHP	 244
Creating XML with the DOM PHP Extension	 245
Querying a DOM Document with XPath	 247
Transforming and Processing XML with XSLT	 248

Performing XML Processing inside the Database	 254
Using Oracle SQL/XML Generation Functions	 254
Moving All the XML Processing into the Database	 257
Storing XML Data in the Database	 258
Performing XSLT Transformations inside the Database	 260

Building PHP Applications on Oracle XML DB	 261
Using Oracle Database for Storing, Modifying, and Retrieving XML Data	 262

Database Storage Options for XML Data in Oracle Database	 263
Using XMLType for Handling XML Data in the Database	 265
Using XML Schemas	 267
Retrieving XML Data	 272

Accessing Relational Data Through XMLType Views	 275
Using XMLType Views	 276
Creating XML Schema-Based XMLType Views	 277
Performing DML Operations on XML Schema-Based XMLType Views	 280

Using Oracle XML DB Repository	 284

Table of Contents

[vi]

Manipulating Repository Resources with PL/SQL	 285
Accessing Repository Resources with SQL	 286
Taking Advantage of Standard Internet Protocols	 287

Handling Transactions	 289
Querying Data with Oracle XQuery	 290

Using XQuery to Construct XML from Relational Data	 291
Breaking up XML into Relational Data	 293

Summary	 294
Chapter 9: Web Services	 295

Exposing a PHP/Oracle Application as a Web Service
Using PHP SOAP Extension	 295

Communicating Using SOAP	 296
What you Need to Build a SOAP Web Service	 297
Building a SOAP Web Service on Top of a PHP/Oracle Application	 299
Building the Business Logic of a Web Service Inside the Database	 300

Creating an XML Schema to Validate Incoming Documents	 301
Generating Unique IDs for Incoming Documents	 304
Creating PL/SQL Subprograms Implementing the Business Logic of the Web Service	 305

Building a PHP Handler Class	 310
Using WSDL	 312
Creating a SOAP Server with PHP's SOAP Extension	 315
Building a SOAP Client to Test the SOAP Server	 316

Adding Security	 319
Implementing Authorization Logic Inside the Database	 320
Creating a PHP Handler Class	 323
Creating a WSDL Document	 324
Creating a Client Script	 326

Summary	 327
Chapter 10: AJAX-Based Applications	 329

Building AJAX-Based PHP/Oracle Applications	 329
AJAX Interactions	 330
Designing an AJAX/PHP/Oracle Monitoring Application	 331
Building Blocks of an AJAX-Based Solution	 333

Creating the Data Structures	 333
Building the PHP Script that will Process AJAX Requests	 334
Using the XMLHttpRequest JavaScript Object	 335
Putting It All Together	 340
Using Caching to Further Improve Responsiveness	 342

Implementing Master/Detail Solutions with AJAX	 342
Planning a Master/Detail Solution that uses AJAX	 343
Building the Sample Application	 344

Creating the Data Structures	 346

Table of Contents

[vii]

Generating HTML with Oracle XQuery	 348
Sending Post Requests with AJAX	 350
Styling with CSS	 352
Putting It All Together	 353

Summary	 354
Appendix A: Installing PHP and Oracle Software	 355

Installing Oracle Database Software	 355
Installing Oracle Database Enterprise/Standard Editions	 356
Installing Oracle Database Express Edition (XE)	 359

Installing Oracle Database XE on Windows	 359
Installing Oracle Database XE on Linux	 361

Installing Apache HTTP Server	 361
Installing PHP	 363

Installing PHP on Windows	 363
Installing PHP on Unix-Like Systems	 364
Testing PHP	 365

Bridging the Gap Between Oracle and PHP	 366
Oracle Instant Client	 367
Enabling the OCI8 Extension in an Existing PHP Installation	 368
Installing SQL*Plus Instant Client	 368

Installing Zend Core for Oracle	 369
Installing Zend Core for Oracle on Windows	 369
Installing Zend Core for Oracle on Linux	 370

Index	 373

Preface
Oracle Database is the premier commercial database available today, providing
support for a wide range of features for professional developers. It's incomparable in
terms of performance, reliability, and scalability. With the advent of Oracle Database
XE, a lightweight edition of Oracle Database, you now have the option to use an
Oracle database for free even in a final product.

PHP is the most popular tool when it comes to building dynamic web applications.
Unlike Oracle Database, PHP is an open-source product. The key reasons behind
PHP's popularity are its ease of use, short development time, and high performance.
Even if you are new to PHP, getting started is pretty simple. When used in a
complementary way, though, PHP and Oracle allow you to build high-performance,
scalable, and reliable data-driven web applications with minimum effort.

PHP Oracle Web Development: Data processing, Security, Caching, XML, Web Services,
and AJAX is a 100% practical book crammed full of easy-to-follow examples. The
book provides all the tools a PHP/Oracle developer needs to take advantage
of the winning combination. It addresses the needs of a wide spectrum of
PHP/Oracle developers, placing the emphasis on the most up-to‑date topics, such as
new PHP and Oracle Database features, stored procedure programming, handling
transactions, security, caching, web services, and AJAX.

What This Book Covers
Chapter 1 gives an overview of the PHP and Oracle technologies, explaining why you
might want to use PHP in conjunction with Oracle.

Chapter 2 covers the basics of using the PHP OCI8 extension to interact with an
Oracle database from PHP. It also briefly discusses some popular alternatives to the
OCI8 extension to connect to Oracle from within PHP.

Preface

[�]

Chapter 3 discusses how you can move data processing performed by your
PHP/Oracle application into the database by using sophisticated SQL queries, stored
PL/SQL subprograms, and database triggers.

Chapter 4 discusses the various mechanisms that can be used to perform transactions
with PHP and Oracle.

Chapter 5 examines the object-oriented approach to developing PHP/Oracle
applications, as an efficient means to reduce the development time and complexity,
and increase the maintainability and flexibility of your applications.

Chapter 6 looks at how to effectively use the security features of both PHP and
Oracle together, examining the fundamental aspects of building a secure
PHP/Oracle application.

Chapter 7 discusses how to effectively use caching mechanisms available in PHP and
Oracle and provides several examples of caching in action.

Chapter 8 explains how to effectively use XML techniques and technologies available
in PHP and Oracle when building XML-enabled PHP/Oracle applications.

Chapter 9 shows how to build a SOAP web service exposing the functionality
of a PHP/Oracle application, using the PHP SOAP extension and Oracle XML
technologies.

Chapter 10 explains how AJAX and some other client-side (browser-side) JavaScript
technologies can be used along with the Oracle Database technologies as well as PHP
features to improve the responsiveness of PHP/Oracle applications.

Appendix A discusses how to install and configure the PHP and Oracle software
components required to follow the book's examples.

Who is This Book For?
Although the book covers only the most popular and up-to-date topic areas on the
use of PHP in conjunction with Oracle, the author does not make any assumption
about the skill level of the reader. Packed with information in an easy-to-read format,
the book is ideal for any PHP developer who deals with Oracle.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[�]

There are three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code will be set as follows:

<?php
 //File: dbtime.php
 $dbHost = "localhost";
 $dbHostPort="1521";
 $dbServiceName = "orcl";

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

$stmt = oci_parse($conn, $query);
 $deptno = '60';
 oci_bind_by_name($stmt, ':deptid', $deptno);
 oci_define_by_name($stmt, "EMPLOYEE_ID", $empno);

Any command-line input and output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

Preface

[�]

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Getting Started with PHP
and Oracle

There are two kinds of database-driven applications. Ones that use databases just
to store data, performing all the operations on it on the client side; and the others
that use databases not only to store data, but also to process it, thus moving data
processing to the data. While building the key business logic of a database-driven
application inside the database is always a good idea, you should bear in mind that
not all the databases available today allow you to put this into practice. However,
the Oracle database offers record‑breaking performance, scalability, and reliability.
The partnership formed by Oracle and PHP, an open-source scripting language, is an
excellent solution for building high-performance, scalable, and reliable data-driven
web applications.

This chapter contains technical information that will help you to quickly start
developing PHP applications on top of Oracle. It begins with a concise discussion of
why you might want to use PHP in conjunction with Oracle, followed by the PHP and
Oracle alternatives. Having learned what advantages the PHP/Oracle combination
has over its competitors, you might want to see its strengths in action. If you don't
have PHP and Oracle database software installed, you can read the What You Need to
Start section in this chapter. This section discusses the pieces of software required to
run the examples provided in this book. You could also read Appendix A Installing
PHP and Oracle Software, which provides a quick-and-dirty guide to installing and
configuring these software components to work together in your system.

Once you have all the required pieces of software installed, configured, and working
properly, you are ready to build your first PHP/Oracle application. For the sake of
simplicity, the sample application provided in this chapter simply obtains the current
time from the database and then displays it to the user. In spite of its simplicity,
the example demonstrates how to perform two basic things that every PHP/Oracle
application must take care of. Specifically, it demonstrates how a PHP application
can connect to an Oracle database and then interact with it.

Getting Started with PHP and Oracle

[�]

If you have already got your feet wet with PHP/Oracle development, you probably
will not be interested in reading this quick-start chapter. If so, you can move to
Chapter 2, which discusses how to use PHP's OCI8 extension, providing a common
way to interact with Oracle database from PHP.

Why PHP and Oracle?
With Oracle as the back-end database, you can develop and deploy data-driven
PHP applications with a powerful, proven, and industry-leading infrastructure,
while still taking advantage of PHP's ease of use, short development time, and
high performance.

Simplicity and Flexibility
One of the key reasons behind PHP's popularity is its simplicity. So, you don't have
to be a PHP guru to start building PHP applications on Oracle. All you need to
learn are a few APIs, which allow you to interact with the database and handle the
received data. The example discussed later in this chapter will show you how to
build a simple PHP/Oracle application by using a few OCI8 functions.

PHP's Object-Oriented features, available since PHP 3 and significantly improved
in PHP 5, help you create complex applications easily and quickly. Once a class has
been written and debugged, you can reuse it in a number of ways. This allows you
to reuse well‑designed pieces of object-oriented code over and over, reducing or
eliminating redundant code in your applications. For a detailed discussion of
how to combine the power of object-oriented PHP and Oracle, refer to Chapter 5
Object-Oriented Approach.

From a PHP developer's perspective, developing PHP/Oracle applications is much
easier than developing, PHP/MySQL applications. This is because, in the case of
Oracle database, you may implement key business logic of the application on the
database side. This not only reduces the amount of PHP code, but also improves the
performance and scalability of the entire application.

If you are a PHP developer who tends to think that Oracle database represents a
complicated, hard-to-drive mechanism, you should realize that—no matter how
complex the Oracle insides may be—what really matters is that Oracle offers a lot of
comprehensive tools intended to help you manage database objects and access data
stored in the database with minimum effort. Although coverage of all the tools is
beyond the scope of this book, the examples provided throughout the book will help
you to obtain a good understanding of how Oracle SQL and PL/SQL—two of the
most popular Oracle tools—are used to access and manipulate data, metadata, and
other database resources.

Chapter 1

[�]

Performance
Although you can process your application data on the client side in the case of
Oracle database, there are many advantages of processing data inside the database.
From a performance standpoint, moving processing to the data allows you to:

Reduce the communication overhead between the web server and
the database
Conserve the web server resources
Take advantage of optimizations and indexing techniques provided by the
Oracle database

By using triggers and stored procedures, you can develop an application whose
business logic resides entirely inside the database. Moving data processing to the
database tier is particularly useful if your application is database intensive. This is
because your application doesn't need to transfer a large amount of data between
tiers while processing data inside the database; instead, it sends only the final
product across the wire.

Robustness
Oracle gets high marks when it comes to performance, reliability, and scalability.
Building and deploying your PHP applications on Oracle database enables you to
combine the power and robustness of Oracle and the ease of use, short development
time, and high performance of PHP. By using both of these technologies in a
complementary way, you will be able to:

Move key business logic of your application to the data
Protect your application against data loss
Take advantage of Oracle security technologies
Leverage the power of object-oriented technology
Build transactional applications
Develop robust XML-enabled applications

All these capabilities make using PHP in conjunction with Oracle a natural
choice when it comes to developing mission-critical, highly secure data-driven
web applications.

•

•

•

•

•

•

•

•

•

Getting Started with PHP and Oracle

[�]

Exploring PHP and Oracle Alternatives
Now that you have a rough idea of what the PHP/Oracle combination has to
offer, it is worth taking a moment to familiarize yourself with some other popular
combinations that can be used as alternatives to PHP and Oracle. Exploring such
alternatives, including their advantages and disadvantages, can help you understand
better whether PHP and Oracle best suit your needs or there is another combination
that suits your needs better.

Although PHP supports all the major relational databases, including commercial
ones such as IBM's DB2 and Microsoft SQL Server, MySQL, an open-source database,
is still a popular choice among PHP developers. The major reason behind MySQL's
popularity is that it is completely free under the GPL license.

Of those based on Oracle, JSF and Oracle is probably one of the most powerful
combinations available. To make JSF/Oracle application development easier,
Oracle offers ADF Faces, a fully compliant JSF component library including over
100 JSF components.

PHP and MySQL
MySQL is extremely popular among the open‑source community that uses PHP.
There are several reasons behind MySQL's popularity among PHP developers. The
most significant ones are as follows:

Completely free under the GPL license
Low Total Cost of Ownership (TOC)
PHP natively supports MySQL—no additional modules are required

All these factors make MySQL a natural choice for web hosts providing support
for PHP. However, you should realize that the PHP/MySQL combination is a
good solution for small data-driven web applications whereas professional-quality
applications require much more.

JSF and Oracle
JavaServer Faces technology is a new server-side user interface (UI) component
framework that is quickly becoming the standard web-application framework for
J2EE applications. The biggest advantage of JavaServer Faces technology is that it
enables web developers to apply the Model-View-Controller (MVC) principle, thus
achieving a clean separation between the model and presentation layers of a web
application. The entire user interaction with the application is handled by a front-end
Faces servlet.

•

•

•

Chapter 1

[�]

The only disadvantage the JSF and Oracle combination has compared to PHP and
Oracle is that JavaServer Faces is a bit more difficult to learn than PHP.

What You Need to Start
Before you can proceed to PHP/Oracle development, you need to have PHP and
Oracle database installed and working properly in your system. Moreover, to work
with examples provided in this book, you will need an SQL command-line tool,
such as SQL*Plus, allowing you to enter and execute SQL statements and PL/SQL
code to manipulate database data, manage database objects, and perform database
administration tasks.

This section briefly discusses all these pieces of software individually as well as
how they fit into the big picture. For a discussion of how to install all the above
software pieces and make them work together, see Appendix A Installing PHP and
Oracle Software.

Pieces of Software Required
On jumping into a discussion of the software required for PHP/Oracle development,
the first question you might ask is: "Which software components do I need to install
in my system to be able to start developing PHP/Oracle applications?" Well, the list
of required software components includes the following items:

Oracle Database Server software
An Oracle database
Oracle Client libraries
A web server with activated support for PHP
An SQL command-line tool to interact with the database (or a GUI tool)

While the above list just tells you what software components you need to install, the
following list outlines general steps to take to install them in your system:

Install Oracle Database Server software. Make sure to create a database
during installation.
Install a web server. Note that, in most production environments, the web
server and Oracle database server reside on different machines located
within the same network. But for simplicity, you might have both the web
server and Oracle database server installed on the same machine.
Install PHP and configure the web server to use it.

•

•

•

•

•

•

•

•

Getting Started with PHP and Oracle

[10]

Install Oracle Client libraries. Note that you don't need to do it if the web
server and Oracle database server reside on the same machine.
Configure the PHP installation to work with Oracle.

The above three steps are unnecessary when employing Zend Core for
Oracle—a tool that allows you to install, deploy, and configure PHP to
work with Oracle as quickly as possible. For a detailed discussion of Zend
Core for Oracle, see the Installing Zend Core for Oracle section in Appendix A.

Install an SQL command-line tool to perform database administration tasks
and manipulate database objects. Note that you don't need to worry about
this if you are going to connect to the database from the same machine on
which the Oracle database server has been installed. In this case, Oracle
SQL*Plus—standard Oracle SQL command-line tool—is installed by default.

As a graphical alternative to Oracle SQL*Plus, you might use Oracle SQL
Developer, a new, free GUI tool that can be used not only to perform
database administration tasks and manipulate database objects, but
also to edit and debug PL/SQL code. You can download Oracle SQL
Developer from Oracle Technology Network (OTN) at: http://www.
oracle.com/technology/software/products/sql. For more
information, see the Oracle SQL Developer home page on OTN at:
http://www.oracle.com/technology/products/database/
sql_developer/index.html.

Before proceeding to the installation of the above products, it is recommended
that you read through the rest of this section to get an overview of the software
components mentioned above. Then, you can proceed to Appendix A Installing PHP
and Oracle Software, which provides a quick-and-dirty guide for each step presented
in the above list.

Oracle Database Considerations
This section provides a brief overview of some of the issues related to the Oracle
Database, which you need to be familiar with before installing Oracle Database
software in your system.

Understanding the Oracle Database
Looking through the list of the software components that need to be installed in
your system, you might notice that it distinguishes between Oracle Database Server
software and an Oracle database. If you are new to Oracle, this may sound confusing
to you. This needs a little explanation.

•

•

•

Chapter 1

[11]

According to the Oracle terminology, an Oracle database is simply a collection of
user and control data stored on a disk and is treated as a unit. It is obvious that a
database itself is useless—you need software to operate it.

An Oracle database server consists of an Oracle database and an Oracle
instance. While an Oracle database represents a collection of files that
hold the database data and metadata, an Oracle instance represents the
combination of the background processes operating on a database and
shared memory used by those processes.

During the installation of the Oracle Database software, you have the option of
creating a database or installing the software. It means that you can either install the
Oracle software components designed to operate on a database and create a database
itself or install only the Oracle software components. You might want to choose the
later if, for example, you already have a database created and you want to use it with
the newly installed software.

Choosing Between Oracle Database Editions
At the time of writing this book, the latest production release of Oracle's database
was Oracle Database 10g Release 2, which is available in several editions
outlined below:

Oracle Database 10g Express Edition—a starter database for DBAs and
developers. Being completely free of charge, this no-frills edition of Oracle
Database supports up to 4 GB of user data and executes on one processor
only. Built on the same core code as Oracle Database 10g Release 2, Express
Edition provides the same set of integrated programming interfaces available
in the other editions of Oracle Database 10g and can be easily upgraded to
Standard or Enterprise Edition.
Oracle Database 10g Standard Edition One—a full-featured Oracle database
that is ideal for small- to-medium-sized business environments. Standard
Edition One provides the proven performance, ease of use, reliability and
security of Oracle Database at a low cost. It can only be licensed on servers
supporting up to two CPUs.
Oracle Database 10g Standard Edition—an ideal choice for medium-sized
business environments. Unlike Standard Edition One, Standard Edition
supports Real Application Clusters, an Oracle technology that enables the
clustering of the Oracle Database, comprising several Oracle instances
running on multiple clustered computers so that they operate as a single
system. Standard Edition can be licensed on single or clustered servers with
up to four processors.

•

•

•

Getting Started with PHP and Oracle

[12]

Oracle Database 10g Enterprise Edition—ideal for enterprises that have to
operate on large amounts of information. Enterprise Edition contains all of the
components of the Oracle Database, offering enterprise-class performance as
well as reliable and secure data management for mission-critical applications.

For more information on the Oracle Database product family, see Oracle
white papers and Oracle documentation available on the OTN web site at:
http://www.oracle.com/technology.

You can choose the edition of Oracle Database that best suits your needs and budget.
As for the examples provided in this book, they should work with any of the above
editions, including Oracle Database Express Edition. Unless otherwise noted, all
examples provided in this book will work with Oracle Database 10g Release 2, or
higher, irrespective of its edition.

Obtaining Oracle Database Software
Since most of the Oracle products are available on a commercial basis, you may
be asking yourself: "Is there any way to try Oracle software for free in order to
determine if it suits my needs or not?" The Oracle Software Downloads page on the
Oracle website gives us the following information: All software downloads are free,
and each comes with a development license that allows you to use full versions
of the products only while developing and prototyping your applications. You
can buy Oracle products with full-use licenses at any time from the online Oracle
Store or from your Oracle sales representative.

What this means in practice is that you can download for free any piece of Oracle
software today, for example, Oracle Database Enterprise Edition, play with it
while developing and prototyping your applications, and then pay for that piece of
software only if you decide to use it in your final product. If you are not still satisfied
with it and would like to keep using an Oracle database for free even in a final
product, consider Oracle Database Express Edition—a lightweight Oracle database
that is free to develop, deploy, and distribute.

All Oracle Database 10g software is available for download from Oracle Technology
Network (OTN). For Oracle Database 10g Enterprise/Standard Editions, you start by
visiting the following OTN page:

http://www.oracle.com/technology/software/products/database/
oracle10g/index.html

For Oracle Database 10g Express Edition Editions, visit the following OTN page:

http://www.oracle.com/technology/software/products/database/xe/index.html

•

Chapter 1

[13]

Oracle Database software is easy to install regardless of which edition of the database
you choose. The Installing Oracle Database Software section in Appendix A provides
the basic steps to install Oracle Database 10g on both Windows and UNIX systems.
For detailed information on how to install Oracle Database software, see Oracle
documentation: the Oracle Database Installation Guide for your operating system
platform. Oracle documentation is available from the documentation section of the
OTN website at:

http://www.oracle.com/technology/documentation/index.html

Besides the detailed installation steps specific to your operating system, the Oracle
Database Installation Guide provides information on the issues to consider before
installing the software and discusses platform-specific post-installation tasks that
must be performed before you start using the database. It is highly recommended
that you familiarize yourself with this information before installing Oracle
Database software.

PHP Considerations
If you have already got your feet wet with PHP, you probably know that PHP is a
server‑side scripting language, which means that PHP code is executed on a web
server. Therefore, before you install PHP, you must have a web server installed and
working in your system.

Apache HTTP Server
Although PHP has support for most of the web servers worth mentioning, including
Microsoft Internet Information Server, Personal Web Server, Netscape, and iPlanet
servers, and many others, Apache/PHP remains the most popular combination
among developers. Oracle itself incorporates open-source Apache technology
in some of its products. For example, Oracle HTTP Server 10g, the web server
component of Oracle database, is based on the proven technology of both Apache 1.3
and Apache 2.0.

The Apache HTTP server is distributed under the Apache License, a free software/
open-source license authored by The Apache Software Foundation (ASF). The
current version of the Apache License can be found on the licenses page of the
Apache website at:

http://www.apache.org/licenses/

You can download the Apache HTTP server from the download page of the Apache
website at:

http://httpd.apache.org/download.cgi

Getting Started with PHP and Oracle

[14]

This page also contains a link to the Apache HTTP Server Documentation index,
which in turn contains a link to the Compiling and Installing document.

Oracle recommends that you install a web server on another machine but
on the same network as the database server. However, for simplicity, you
can install both an Oracle database server and a web server, which will
communicate with that database server, on the same machine.

For instructions on how to install Apache in your system, see the Installing Apache
HTTP Server section in Appendix A.

Why PHP 5
Although PHP 4 is still very popular, the examples provided throughout this book
assume that you will use PHP 5. We decided on PHP 5 because it offers a lot of new
features and improvements that are not available in its predecessors.

One of the significant improvements in PHP 5 is the new object model, which allows
you to leverage the power and flexibility of object-oriented programming in a
number of useful ways. In particular, you can take advantage of interfaces, abstract
classes, private/public/protected access modifiers, static members and methods,
exception handling, and other features that are usually found in other object-oriented
languages, such as Java, but were not available in prior releases of PHP.

Chapter 5 Object-Oriented Approach explains in detail how all these new
object features of PHP 5 can be used in PHP/Oracle development.

Another significant improvement in PHP 5 is its renewed XML support; SAX, DOM,
and XSLT extensions are now based on the single library, namely libxml2, thus
allowing for better interoperability between the XML extensions.

Chapter 8 XML-enabled Applications discusses how to build and deploy
robust XML-enabled PHP applications on Oracle Database.

While PHP 4 lacked native SOAP support, PHP 5 introduces the SOAP extension.
Written in C, this built-in extension can serve as a good alternative to the
PEAR::SOAP package.

Chapter 9 Web services discusses how to create a SOAP web service using
PHP 5's SOAP extension, on top of the Oracle database.

Chapter 1

[15]

Obtaining PHP
PHP is licensed under the PHP License, a BSD-style license. For more information,
visit the License Information page of the php.net website at:

http://www.php.net/license/

The current recommended releases of PHP are available for download from the
downloads page of the php.net site at:

http://www.php.net/downloads.php

From this page, download the latest stable release of PHP 5 and then follow the
installation steps—provided in the Installing PHP section in Appendix A. For further
assistance along the way, you may consult the Installation and Configuration manual
available on the php.net website at:

http://www.php.net/manual/install.php

Alternatively, you can read the install.txt file that is shipped with PHP.

Making PHP and Oracle Work Together
As you will learn in Chapter 2 PHP and Oracle Connection, there are several ways in
which PHP can interact with Oracle. However, it is important to realize that most
of these ways are based on using APIs provided by the PHP OCI8 extension, which
is not enabled by default. To enable it in your existing PHP installation, you have to
perform the following general steps:

Install the Oracle client libraries needed by the PHP OCI8 extension.
On UNIX-like systems, recompile PHP to support the OCI8 extension. On
Windows, uncomment the OCI8 extension line in php.ini.
Restart the web server.

As you can see from the above, you have to install the Oracle client libraries before
you can enable the OCI8 extension in your existing PHP installation.

Oracle Instant Client
Consider Oracle Instant Client, a package containing the Oracle client libraries
required to run OCI, OCCI, and JDBC-OCI applications. Note that Oracle Instant
Client comes with a free license for both development and production environments.

•

•

•

Getting Started with PHP and Oracle

[16]

If you have both the database and web server installed on the same
computer then you already have all the required Oracle components—no
Instant Client is required. However, in this case you still have to explicitly
enable the OCI8 extension in your PHP installation.

You can download a copy of Oracle Instant Client specific to your platform from the
Instant Client web page on OTN at:

http://www.oracle.com/technology/tech/oci/instantclient/
instantclient.html

Looking through this page, you may notice that there are in fact several Instant
Client Packages available for download. You should choose the Basic Instant
Client Package. It includes all the files required to run OCI, OCCI, and
JDBC-OCI applications.

For a detailed instruction on how to install Oracle Instant Client and then enable the
OCI8 extension, see the Enabling the OCI8 Extension in an Existing PHP Installation
section in Appendix A.

Zend Core for Oracle
As you learned in the previous sections, making PHP and Oracle software work
together is a process involving many tedious tasks. You have to find, download,
install, deploy, and configure a number of software pieces to get the job done.

You might significantly speed up and simplify the whole process by taking
advantage of Zend Core for Oracle, a pre-built stack that delivers a rapid
development and deployment foundation for Oracle-driven PHP applications.
In particular, Zend Core for Oracle saves you the trouble of performing the
following steps:

Installing PHP and configuring the web server to use it
Installing Oracle Client libraries
Configuring the PHP installation to work with Oracle

Moreover, Zend Core for Oracle provides the following features:

Updated OCI8 driver re-factored for reliability and performance
GUI-based tool that makes it easier to change the PHP configuration
Easy access to PHP, PEAR and Zend Core for Oracle documentation

•

•

•

•

•

•

Chapter 1

[17]

The installation steps in the Installing Zend Core for Oracle section in Appendix A will
help you install this tool in your system.

Using Oracle SQL*Plus
After an Oracle Database server and a web server with activated support for PHP,
which has the OCI8 extension enabled, are installed and working correctly, you can
proceed to developing PHP/Oracle applications. However, before moving on, you
might want to install another piece of software in your system in order to make your
development work easier.

Why Use SQL*Plus in PHP/Oracle Development?
While using the PHP OCI8 extension you can execute any valid SQL statement or
PL/SQL block against an Oracle database from your PHP script, it is generally not
a good idea to do so when you need to perform a database administration task or
create a database object.

The fact is that these kinds of tasks are usually performed with the help
of batch scripts executed against the database. However, executing batch
scripts from PHP is a tricky task and so you might want to use a more
appropriate tool for this purpose.

The simplest way to perform the above tasks is to use an SQL command-line tool
that will allow you to execute SQL statements and PL/SQL blocks in a batch or
individually, and display the results of each statement once it has been executed.

Consider Oracle SQL*Plus—an interactive and batch query command-line tool that is
installed by default with every Oracle Database installation. Most of the examples in
this book assume that you will use SQL*Plus when it comes to performing database
administration or creating database objects. Since SQL*Plus is installed by default
when installing the Oracle Database software, you don't need to install it again if you
are going to use a local database. Otherwise, you might take advantage of SQL*Plus
Instant Client—a stand-alone SQL*Plus command-line tool that allows you to
communicate with a remote database.

This section discusses how to use SQL*Plus to interact with an Oracle database. The
Installing SQL*Plus Instant Client section in Appendix A describes the installation
steps to install SQL*Plus Instant Client in your system, assuming you will work with
a remote database. For detailed information on how to use Oracle SQL*Plus, see
Oracle documentation: SQL*Plus User's Guide and Reference.

Getting Started with PHP and Oracle

[18]

From now on, we won't distinguish between SQL*Plus and SQL*Plus
Instant Client—references will be made to SQL*Plus.

Connecting to a Database with SQL*Plus
To connect to a database with SQL*Plus, you specify the database using an Oracle
Net connection identifier. For example, you might use the following Easy Connect
syntax to connect as hr/hr to the orcl database running on yourmachine:1521
within yourdomain:

sqlplus hr/hr@//yourmachine.yourdomain:1521/orcl

However, if you are connecting to a local database you might use a simpler syntax:

sqlplus hr/hr

HR/HR is a demonstration database schema that is installed by default
when you choose the Basic Installation and Create Starter Database
options during Oracle Database installation. Some examples in this book
use the default tables from this database schema.

If your HR/HR database schema is locked, you will see the following error message:

ERROR:
ORA-28000: the account is locked

To unlock the HR database account, first connect as SYSTEM database user:

sqlplus system/system_pswd@//yourmachine.yourdomain:1521/orcl

And then enter the following SQL statement at the SQL> prompt:

ALTER USER HR IDENTIFIED BY hr ACCOUNT UNLOCK;

Now, to connect as hr/hr, you don't have to open another SQL*Plus session. From
an existing SQL*Plus session, enter a CONNECT command as follows:

CONNECT hr/hr@//yourmachine.yourdomain:1521/orcl;

To connect to the database, all the above examples employ the Easy Connect
Naming feature that first appeared in Oracle Database 10g Release 1. You may find
this method very convenient because it enables you to connect to a database server
without first configuring net service names.

Chapter 1

[19]

Warning: the Easy Connect Naming feature can be used only in a
TCP/IP environment.

Alternatively, you might use the Local Naming method to connect to a database. The
local naming method uses a localized configuration tnsnames.ora file to store net
service names and their connect descriptors. So, you first create a connect descriptor
in the tnsnames.ora file and then you can refer to that descriptor by name.

Normally, the tnsnames.ora file can be found in the [ORACLE_HOME]\network\admin
directory on the client machine. However, if you are connecting to a remote database
by means of SQL*Plus Instant Client, you should take into account that neither
SQL*Plus Instant Client nor Basic Instant Client comes with a tnsnames.ora file and
so you will have to create it yourself. For example, if you have installed the Instant
Client to the c:\instantclient_10_2 directory, create the c:\instantclient_10_
2\network\admin\ directory and then create a plain-text tnsnames.ora file in
that directory.

Next, set the ORACLE_HOME environment variable to c:\instantclient_10_2\.
Finally, create a connect descriptor in the tnsnames.ora file. For example, you
might create the following connect descriptor for the orcl database running on
yourmachine:1521 within yourdomain:

ORCL10g =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = yourmachine.yourdomain)
 (PORT = 1521))
 (CONNECT_DATA =
 (SERVICE_NAME = orcl)
)
)

Once you have saved this entry in the tnsnames.ora file, you can then connect to the
specified database with SQL*Plus as follows:

sqlplus hr/hr@orcl10g

For further discussion of how to use the Easy Connect Naming and Local Naming
method, see the Connecting to a Database section, which discusses these Oracle Net
Services features from a PHP developer standpoint.

Getting Started with PHP and Oracle

[20]

Running Scripts in SQL*Plus
As you saw in the previous subsection, executing an SQL statement in SQL*Plus is
very simple. To do this, you simply enter the SQL statement at the SQL> prompt. For
example, you might enter the following statement at the SQL> prompt to obtain the
current date from the database:

SELECT SYSDATE FROM DUAL;

Once you press the Enter key, the above should produce a result that might look like
the following:

SYSDATE

20-MAR-06

However, note that entering statements at the SQL> prompt manually may be an
acceptable solution when dealing with a single statement that you are not going to
use frequently in the future. Otherwise, you might want to save the statement or
statements in a script and then run this script when necessary.

To create a script in SQL*Plus, you can use your operating system's default text
editor. To do this, you simply enter the EDIT command followed by the name of the
script file you want to create or edit. For example, if you want to create a dbdate.sql
script, you have to enter the following command at the SQL> prompt:

EDIT dbdate

As a result, the dbdate.sql file is opened in the editor so that you can insert the
desired statement or statements into the script. For simplicity, you might insert into
the dbdate.sql script the same SQL statement as in the above example:

SELECT SYSDATE FROM DUAL;

Once you have saved the dbdate.sql script with the editor, you can then run it by
entering the START command followed by the name of the script as follows:

START dbdate

This should produce the same output as in the previous example.

Now, if you want to edit the dbdate.sql script without leaving SQL*Plus, you can
do it with the help of the EDIT command, as shown below:

EDIT dbdate

Chapter 1

[21]

This should open the dbdate.sql file with the editor for editing. You can edit the
script as needed and then save the changes and quit the editor. For example, you
might replace the existing SQL statement in the dbdate.sql script with the following:

SELECT TO_CHAR(SYSDATE, ‘MM-DD-YYYY HH:MI:SS') FROM DUAL;

So, the next time you run the dbdate.sql script with the START command, it will
produce output that looks like:

TO_CHAR(SYSDATE,'MM

03-20-2006 04:50:07

Here, the script outputs the current date and time.

No doubt you have realized, the dbdate.sql script is a toy example. In a real-world
situation, you might need to create a script containing more than one statement. As
noted previously, using batch scripts can be very handy when you need to perform
database administration tasks or create database objects.

Putting It All Together
Now that you have a rough idea of what each piece of software required for PHP/
Oracle development is used for, let's look at how all these components interact with
each other to get the job done. Let's summarize what each piece does individually to
better understand its role in the entire architecture.

The following table gives a summary description for each piece of software you need
to have installed to get started.

Software component Functional description
Oracle Database Server
software

Provides concurrent access to the database data while still
delivering high performance. Also prevents unauthorized access
to the data and provides efficient mechanism for backup and
recovery.

Oracle Database Provides physical and logical structures in which user and
control data is stored. A database is mounted and opened by an
instance (may be more than one instance in the case of using Real
Application Clusters).

Apache HTTP Server Provides secure, efficient, and feature-rich web server services.
Provides the ability to incorporate new functionality in the form
of third-party modules.

PHP Provides a way to add dynamic content into HTML. Supports a
wide range of relational databases.

Getting Started with PHP and Oracle

[22]

Software component Functional description
Oracle Instant Client Provides the Oracle client libraries that allow client software to

interact with an Oracle Database server.
Zend Core for Oracle Contains all the client-side components required for PHP/

Oracle development. Specifically, it contains an Apache HTTP
server, PHP, and Oracle client libraries. All the components are
configured so that you can quickly start developing PHP/Oracle
applications.

While the above table gives a short functional description of each software
component needed to start developing PHP/Oracle applications, the following
figure illustrates how all these components fit together, giving you a high-level view
of PHP/Oracle interactions.

Oracle
Database

server

Oracle Client libraries

PHP OCIB extension

Apache/PHP web
server Oracle Net

listener

As you can see in the above figure, the web server sends connection requests to the
Oracle Net listener, a process that listens for client connection requests, rather than
to the Oracle database server directly. The listener in turn forwards those requests
to the database server. But what is not shown in the figure is that the web server
and Oracle database server start communicating directly with one another once a
connection is established.

Chapter 1

[23]

Creating Your First PHP/Oracle
Application
Using the information provided in the What You Need to Start section earlier in this
chapter, as well as the information provided in Appendix A Installing PHP and
Oracle Software, you can easily install all the required pieces of software in your
system. Once you are done with it, you are ready to create your first PHP/Oracle
applications. The example provided in this section consists of one PHP script:
dbtime.php. All this simple script does is display the current time obtained from the
database. The result is a single string that should look like this:

The current time is 07:30:20

The following figure shows what this looks like in a web browser:

Despite the simplicity of the results produced, this PHP script is a good example of
how a PHP application can interact with Oracle by means of PHP's OCI8 functions.
To display a simple string representing the current time, dbtime.php performs the
following sequence of steps:

Connects to the Oracle database
Executes a SELECT query against the database
Fetches the received result and then displays it to the user

•

•

•

Getting Started with PHP and Oracle

[24]

Now that you know what the script does behind the scene in order to display a
simple string representing the current time, you might want to look at the code. The
dbtime.php script code is shown below:

<?php
 //File: dbtime.php
 $dbHost = "localhost";
 $dbHostPort="1521";
 $dbServiceName = "orcl";
 $usr = "hr";
 $pswd = "hr";
 $dbConnStr = "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)
 (HOST=".$dbHost.")(PORT=".$dbHostPort."))
 (CONNECT_DATA=(SERVICE_NAME=".$dbServiceName.")))";
 if(!$dbConn = oci_connect($usr,$pswd,$dbConnStr)) {
 $err = oci_error();
 trigger_error(‘Could not establish a connection: ‘
 . $err[‘message'], E_USER_ERROR);
 };
 $strSQL = "SELECT TO_CHAR(SYSDATE, ‘HH:MI:SS') ctime FROM DUAL";
 $stmt = oci_parse($dbConn,$strSQL);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error(‘Query failed: ‘ . $err[‘message'], E_USER_ERROR);
 };
 oci_fetch($stmt);
 $rslt = oci_result($stmt, ‘CTIME');
 print "<h3>The current time is ".$rslt."</h3>";
?>

As you can see in the code, the connect descriptor contains location details for the
database you want to connect to. In particular, it consists of the host name, the port
on which the Oracle Net listener process is running, and the SID of the database. For
further discussion, see the Connecting to a Database subsection later in this section.

This example assumes that you have HR/HR demonstration schema
installed in your database. For the sake of this example, though, you
could use any other database schema. For this, you simply set the $usr
and $pswd variables to appropriate values.

T�� o establish a connection to the Oracle Database server, you use the oci_connect
function. This function returns a connection identifier that is then used in the other
OCI8 calls in this script.

Chapter 1

[25]

Besides oci_connect, there are two other OCI8 functions that you can
use to establish a connection to the database: oci_new_connect and
oci_pconnect. For detailed discussion of the OCI8 connection functions
see Chapter 4 Transactions.

Another important thing to note in the script is the use of the oci_error function.
When used to obtain a connection error, the oci_error function is invoked without
a parameter. Otherwise, you pass an appropriate connection identifier returned by
the oci_connect function.

In this example, the trigger_error function triggers an error and then stops
execution because you pass predefined constant E_USER_ERROR as the third parameter.

The trigger_error function is covered in more detail in Chapter 2,
section Using the trigger_error Function.

The query discussed in this example contains two standard Oracle SQL functions:
SYSDATE, used here to obtain the current time from the operating system on which
the database resides, and TO_CHAR, used here to convert a DATE value returned by
SYSDATE to a string of characters.

Another thing to note here is the use of the column alias in the query. This will allow
you to refer to the query result by its alias, in this example: ctime, later in the
oci_result function. Otherwise, you would have to deal with a column name,
which in this case is TO_CHAR(SYSDATE, ‘HH:MI:SS').

After the query string is defined, you use the oci_parse function that prepares the
SQL statement for execution.

oci_parse doesn't look for errors in the SQL query. You have to execute
the query to check if it is valid.

oci_execute returns a Boolean value: true on success and false on failure. Using
the IF-THEN statement allows you to take appropriate steps in case of a failure. In
this example, if oci_execute returns false, the script generates the error and
stops execution.

Normally you use the oci_fetch function in a loop to fetch the next row into the
result buffer. In this example, however, the result consists of one row only.

Getting Started with PHP and Oracle

[26]

After the current row has been fetched by oci_fetch, you use oci_result to obtain
the field's value from that row. As mentioned, in this particular case the query result
consists of one row that contains one field.

Regardless of the way in which you specified a column name or a column
alias name in the query, Oracle returns all field names in uppercase.
So, you must specify all field names in uppercase when calling the
oci_return function. Specifically, in this example you must use CTIME
instead of ctime.

Connecting to a Database
No doubt you have realized that before your application can make use of the
database data, it must first connect to the database. While the PHP OCI8 extension
provides the oci_connect function for just this purpose, Oracle in fact allows you to
configure connectivity information in several ways. This section discusses how to use
the Local Naming and Easy Connect Naming Oracle methods when connecting to an
Oracle database from PHP.

Using the Local Naming Method
By specifying localhost as the host name in the connect descriptor in the above
example, you tell oci_connect that the database you are connecting to is local. In a
real‑world situation, however, you might need to establish a connection to a
remote database. To do this, you can use either the IP address or network name of
the host machine on which the Oracle Net listener is running. For example, if your
Oracle database server resides on the computer whose network name is MyServer
and IP address is 192.168.100.1, you might use either HOST = MyServer or
HOST = 192.168.100.1 in the connect descriptor.

Using a connect descriptor is a common way of providing information
required for establishing a connection to a remote database.

To make using connect descriptors easier, you might define them in the tnsnames.
ora file, which is normally located in the ORACLE_HOME/network/admin directory on
the client machine. Once you have a connect descriptor defined in the tnsnames.ora
file, you can then refer to that descriptor by name. Doing so saves you the trouble of
defining descriptor connections in your application code. For example, you might
define the following connect descriptor in tnsnames.ora:

ORCL10gR2 =
 (DESCRIPTION =

Chapter 1

[27]

 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = orcl)
)
)

Once you have the above entry saved in the tnsnames.ora file, you can then pass
the name that maps to the connect descriptor, namely, ORCL10gR2, as the third
parameter to oci_connect, rather than passing the string representing the connect
descriptor itself:

$dbDescName = "ORCLR10gR2";
$dbConn = oci_connect($usr,$pswd,$dbDescName);

It is important to note that you may not pass the third parameter to oci_connect at
all if the database you are connecting to is local.

Using the Easy Connect Method
For TCP/IP environments, you might make use of Oracle Database 10g's Easy
Connect Naming Method feature, which can eliminate the need for service name
lookup in the tnsnames.ora file. We touched on this feature in the Using Oracle
SQL*Plus section earlier in this chapter, when discussing some of the ways you can
connect to a remote database with SQL*Plus. If you recall, the Easy Connect Naming
method enables you to connect to an Oracle database server by simply providing the
database user/password combination and the server computer's host name along
with two optional parameters, namely, the service name of the database and the port
on which the listener will accept connections. Note, however, that you cannot omit
the service name when it comes to defining the third parameter of oci_connect:

$dbEasyConn = "//MyDbServer/orcl";
$dbConn = oci_connect($usr,$pswd,$dbEasyConn);

To specify an optional port, you use the following syntax:

$dbEasyConn = "//MyDbServer:1521/orcl";

It is important to realize that orcl in the above examples is not the name of a connect
descriptor defined in the tnsnames.ora file, but the service name of the database.

The service name defaults to the global database name—a name
consisting of the database name and domain name, which are specified
during the installation or database creation.

Getting Started with PHP and Oracle

[28]

As you can see, the Easy Connect Naming method provides an easy-to-use syntax
enabling you to connect to a database server without any configuration.

Issuing an SQL Statement Against the
Database
In the example discussed earlier in this chapter, you used the oci_execute function
to execute a SELECT statement against the database. It is important to note that
oci_execute's use is not limited to QUERY operations—you can use this OCI8
function to execute any SQL or PL/SQL statements performing QUERY, DML, and
DDL operations.

As mentioned, oci_execute returns a Boolean value: true on success and false
on failure. In the case of a failure, you likely will want your script to perform certain
actions in response. For example, you might use the trigger_error PHP function
to either generate an error and stop execution or generate a warning and continue
execution. Whether error_trigger stops script execution or not depends on
what predefined error level constant you are passing to this function as the second
parameter. For example, if you want the script to generate a warning message and
continue execution, you must use the E_USER_WARNING predefined constant:

$err = oci_error();
trigger_error(‘Query failed: ‘ . $err[‘message'], E_USER_WARNING);

To terminate execution, you use the E_USER_ERROR constant.

Fetching and Displaying Results
If the oci_execute call returns true, you can then move on to fetching the results. Of
course, this makes sense only when you are dealing with a QUERY operation—that
is, you are issuing a SELECT statement.

There are several ways to fetch the result data using the PHP OCI8 extension. The
example discussed earlier in this chapter demonstrates the use of oci_fetch in
conjunction with oci_result:

oci_fetch($stmt);
$rslt = oci_result($stmt, ‘CTIME');
print "<h3>The current time is ".$rslt."</h3>";

You use oci_fetch to fetch the next row from the result data into the internal result
buffer. Then, you use oci_result to retrieve the CTIME field's value from the
fetched row.

Chapter 1

[29]

It is important to note that with oci_fetch and oci_result you are not limited
to using associative indices—you can use numeric indices as well. So, you might
rewrite the above code as follows:

oci_fetch($stmt);
$rslt = oci_result($stmt, 1);
print "<h3>The current time is ".$rslt."</h3>";

While using oci_fetch assumes that you will then use oci_result to retrieve the
fetched data from the internal result buffer, there are OCI8 fetch functions that fetch
the next row from the result data directly into a PHP array, thus eliminating the need
to use oci_result. One of these functions is oci_fetch_array. With this function,
you can reduce the above three lines of code to the following two:

$rslt = oci_fetch_array($stmt, OCI_ASSOC);
print "<h3>The current time is ".$rslt[‘CTIME']."</h3>";

Or by using numeric indices:

$rslt = oci_fetch_array($stmt, OCI_NUM);
print "<h3>The current time is ".$rslt[0]."</h3>";

For further discussion on OCI8 fetch functions, see Chapter 2 PHP and
Oracle Connection.

Summary
If you have made up your mind to take advantage of the capabilities that the PHP/
Oracle combination provides, the first obvious step is to make sure that you have
PHP and Oracle database software installed and working properly. This chapter in
conjunction with Appendix A Installing PHP and Oracle Software takes you through
the basics of getting your PHP/Oracle development environment installed and
configured. You learned that making PHP work with Oracle database is in fact
a piece of cake, especially if you employ Zend Core for Oracle—a package that
includes all the client libraries needed to work with Oracle from a PHP environment.

Every PHP/Oracle application does at least two things: connecting to the database
and executing an SQL statement or statements against it. For example, imagine an
application that collects user input and then executes an SQL pass-through query
to send the data to the database. In practice, however, you normally need to create
an application that takes care of two more things: fetching the retrieved data from
the database and displaying it to the user. The example discussed in this chapter
contains each of the steps mentioned above. Specifically, it shows you how to:
connect to the database, issue a query against it, and then fetch and display the
results to the user.

Getting Started with PHP and Oracle

[30]

This is a common set of operations, which almost every lightweight PHP front-end
application has to deal with.

Now that you've got a basic understanding of how a PHP/Oracle application works,
it's time to move on to more advanced uses. The next chapter deals with some of the
most interesting aspects of PHP/Oracle application development and deployment.

PHP and Oracle Connection
The sample in Chapter 1 represents a simple example of how the OCI8 functions can
be used to interact with Oracle. However, besides OCI8, there are some other ways
for Oracle and PHP to interact with each other. For example, you may choose from
a number of open-source libraries such as PEAR DB and ADOdb, which provide a
level of data abstraction. You might also create a set of your own PHP functions on
top of the OCI8 extension to encapsulate its low-level functionality.

However, it is important to realize that using another level of data abstraction can
simplify the development process, but using direct database calls made through the
OCI8 functions allows you to take full advantage of the Oracle database features and
build faster and more reliable applications. That is why, in the examples throughout
this book, the OCI8 extension is used as the primary way to communicate with an
Oracle database.

This chapter covers the basics of using the PHP OCI8 extension to interact with an
Oracle database from PHP. Covering them at this stage will ensure that you can go
further and understand specific topics discussed in the subsequent chapters. It also
briefly discusses some popular alternatives to the OCI8 extension available today.

Introducing the PHP OCI8 Extension
As a matter of fact, when it comes to working with Oracle, many PHP developers
prefer the PHP OCI8 extension to any other tool enabling PHP and Oracle to interact
with each other because OCI8 offers a lot of capabilities that the other tools lack.

One word of warning: Although the PHP OCI8 extension provides a
common way to communicate with Oracle database from PHP, it is not
enabled by default. Refer to the Making PHP and Oracle Work Together
section in Chapter 1 for information on how to enable PHP OCI8
extension in your PHP installation.

PHP and Oracle Connection

[32]

This section briefly discusses why you might want to use the OCI8 extension and
then explains how SQL statements are processed with OCI8.

Why Use OCI8 Extension
One of the key differences between the OCI8 extension and the other popular tools
such as PEAR DB, ADOdb, and PDO, which can also be used to access Oracle
database from PHP, is that OCI8 was developed exclusively for interacting with
Oracle database and hence provides a lot of options for PHP/Oracle developers.
With the OCI8 extension, you can employ a connection cache when connecting to the
database, bind PHP variables to Oracle placeholders, access and manipulate Oracle
collections, handle transactions, and deal with LOBs, to name only a few possibilities.

However, the key advantage of using the OCI8 extension is that it allows you to
control all phases of SQL statement execution, thus allowing a very fine-grained
control over script execution itself. The next subsection briefly outlines each step in
processing an SQL statement by means of OCI8.

Processing SQL Statements with OCI8
From the example discussed in Chapter 1, you learned which steps are required
when it comes to executing an SQL statement by means of the OCI8 extension.
Nevertheless, there may be some circumstances that require some additional steps.
This subsection outlines the general steps to be taken while processing an SQL
statement with the help of OCI8 functions. However, functions can vary depending
on the situation. The OCI8 extension offers many more functions for processing SQL
statements than the ones mentioned in the following steps.

Another thing to note is that some steps involved in processing an SQL statement
are not common to all types of SQL statements. For example, fetching the retrieved
results makes sense only when dealing with a query (SELECT) statement, while
taking care to explicitly commit or roll back the transaction makes sense only when
performing a DML (INSERT, UPDATE, or DELETE) operation. However, it is important
to note that there are also steps common to all SQL statements, regardless of the
type of statement. For example, you must always perform the parsing and executing
operations, whether you are dealing with a query or DML operation. Here are the
general steps involved in processing a SELECT statement:

Step 1 (required): Prepare the SQL statement for execution by using the
oci_parse function.

•

Chapter 2

[33]

Step 2 (optional): If the statement contains placeholders for values that will
be supplied by the application at run time, you use the oci_bind_by_name
function that allows you to create an association between a PHP script
variable and an Oracle placeholder.

Although Step 2 is optional, Oracle recommends using bind variables
wherever they make sense. Doing so can significantly improve the
performance of your application. For further discussion, see the Using
Bind Variables section later in this chapter.

Step 3 (optional): You can define PHP variables to fetch SQL
columns presented in the SELECT list. To do this, you use the
oci_define_by_name function.
Step 4 (optional): You can use the oci_set_prefetch function to set the
number of records to be prefetched after a successful call to oci_execute.
By default, this number is set to 1. By setting it to a larger number, you can
reduce the overhead associated with moving the data over the network, at
the cost of increased memory usage.
Step 5 (required): Execute the parsed statement by using the
oci_execute function.
Step 6 (optional): Make sure to check what the oci_execute function returns.
If oci_execute returns false, this indicates that the query failed. In this case,
you can take an appropriate action and make use of the oci_error function
that allows you to retrieve the error description and the Oracle error code.
Step 7 (required): Fetch the results of the query. To do this, you can use one
of the fetch functions available in OCI8. For example, you might use the
oci_fetch_all function to fetch all rows from the retrieved result set into a
user-defined array. You might also fetch the retrieved data into the internal
result buffer by using the oci_fetch function and then employ the
oci_result function to read the fetched results. If you defined variables to
fetch SQL columns, you can use these variables to access the retrieved results.

For details on the fetch functions available in OCI8, see the Fetching
Results section later in this chapter.

Here are the general steps involved in processing a DML statement:

Step 1 (required): Prepare the SQL statement for execution by using the
oci_parse function.

•

•

•

•

•

•

•

PHP and Oracle Connection

[34]

Step 2 (optional): If the statement contains placeholders, use the
oci_bind_by_name function.
Step 3 (required): Execute the parsed statement by using the oci_execute
function. By default, an executed statement is committed automatically.
However, setting the mode parameter to OCI_DEFAULT allows you to create
a transaction that can be committed later by explicitly calling oci_commit or
rolled back by oci_rollback.
Step 4 (optional): Make sure to check what the oci_execute function returns.
Step 5 (optional): If you are interested in knowing the number of rows
affected during statement execution, you can use the oci_num_rows function.
Step 6 (optional): If you have set the mode parameter of oci_execute to
OCI_DEFAULT, you should take care to explicitly commit or roll back the
transaction. Not doing so will result in rolling back the transaction when the
script ends or you close the connection.

Now that you are familiar with the basics of processing SQL statements
with OCI8, it is time to move on and build an application that will demonstrate
how an SQL statement can be processed using OCI8 APIs in practice. The
sqlproc.php script shown in the following listing demonstrates how to process
a SELECT statement, using all the steps outlined earlier involved in processing a
SELECT statement. In particular, sqlproc.php accesses the employees table from
the default HR/HR demonstration schema and displays some important fields of the
records representing employees who work in the Department whose department_id
is 60. The output of this script is shown in the following figure:

•

•

•

•

•

Chapter 2

[35]

Here is the code for the sqlproc.php script:

<?php
 //File: sqlproc.php
 if (!$conn = oci_connect('hr', 'hr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);
 }
 $query = 'SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, JOB_ID,
 SALARY FROM EMPLOYEES WHERE department_id = :deptid';
 $stmt = oci_parse($conn, $query);
 $deptno = '60';
 oci_bind_by_name($stmt, ':deptid', $deptno);
 oci_define_by_name($stmt, "EMPLOYEE_ID", $empno);
 oci_define_by_name($stmt, "FIRST_NAME", $firstname);
 oci_define_by_name($stmt, "LAST_NAME", $lastname);
 oci_define_by_name($stmt, "JOB_ID", $jobid);
 oci_define_by_name($stmt, "SALARY", $salary);
 if (!oci_set_prefetch($stmt, 5)) {
 trigger_error('Failed to set the number of rows to be
 prefetched', E_USER_WARNING);
 }
 if (!oci_execute($stmt, OCI_DEFAULT)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' . $err['message'], E_USER_ERROR);
 }
 print '<h3>'.'All employees working in Department '.$deptno.'</h3>';
 print '<table border="1">';
 print '<th>EMP_ID</th>
 <th>FIRST NAME</th>
 <th>LAST NAME</th>
 <th>JOB_ID</th>
 <th>SALARY</th>';
 while (oci_fetch($stmt)) {
 print '<tr>';
 print '<td>'.$empno.'</td>';
 print '<td>'.$firstname.'</td>';
 print '<td>'.$lastname.'</td>';
 print '<td>'.$jobid.'</td>';
 print '<td>'.$salary.'</td>';
 print '</tr>';
 }
 print '</table>';
?>

As you can see, the select list of the query used in this example contains only those
columns of the employees table that you will use later in the script.

PHP and Oracle Connection

[36]

From a performance standpoint, it is always a good idea to specify only
those columns in the query select list that you really need, instead of
specifying *, which means that all columns will be returned.

The oci_bind_by_name function is used here to associate the $deptno PHP script
variable with the deptid: Oracle placeholder. Using placeholders makes your
program more flexible, allowing you to operate with SQL statements and PL/SQL
blocks that contain input data to be supplied at run time. For further information, see
the Using Bind Variables section later in this chapter.

Then, you define PHP variables to fetch SQL columns using the
oci_define_by_name function. Doing so will allow you to access the fetched data
through the corresponding PHP variables once you have fetched the next row of the
retrieved data. This approach makes it easier to produce more readable code.

In this example, if the oci_set_prefetch function returns false, the script triggers a
warning by calling the trigger_error function with E_USER_WARNING as the second
parameter so that execution continues. When your application runs into a problem
that is beyond its limits, it is always a good idea to trigger a warning rather than a
fatal error. For more information on handling errors, see the Handling Errors section
later in this chapter.

Normally, the oci_fetch function fetches the next row from the result data into the
internal result buffer only. Then, you use the oci_result function to retrieve the
value of the desired field in the fetched row. However, in this example you need not
employ the oci_return function since you can access the fetched data through the
PHP variables defined for fetches before executing the query.

While the example presented in the above listing demonstrates some
important steps involved in processing an SQL statement with OCI8,
you'll see more examples and descriptions of the use of OCI8 APIs in the
subsequent sections of this chapter.

Connecting to Oracle with OCI8
Before diving into the details of processing SQL statements, it is worthwhile to
take a moment to look at another important step, which must be taken before the
application can start processing an SQL statement. As you have no doubt guessed,
this step involves getting a connection to the database.

Chapter 2

[37]

As you saw in the Connecting to a Database section of Chapter 1, Oracle offers several
methods for configuring connectivity information for client connections to an Oracle
database server. In particular, you learned how to use the local naming and easy
connect naming Oracle methods when connecting to Oracle from PHP.

After a brief discussion of how to compose a connection string that can be used to
connect to Oracle, this section discusses the OCI8 functions that are used to establish
a connection itself.

Defining a Connection String
If your web/PHP server and Oracle database server is connected using TCP/IP, the
simplest method for configuring information required to connect to Oracle from PHP
is to use the easy connect naming method discussed in the Connecting to a Database
section in the previous chapter. The biggest advantage of this method is that it allows
the client application to connect to an Oracle database server without configuring net
service names, thus eliminating the need to create a tnsnames.ora configuration file
on the client side.

The easy connect naming method is a new Oracle Database 10g feature. So, if you are
used to dealing with connect descriptors defined in the tnsnames.ora file but want
to switch to the easy connect naming method, you might want to see an example
demonstrating how this new method can be used instead of the customary way of
configuring connectivity information.

Suppose you have the following connect descriptor in the local tnsnames.ora file:

(DESCRIPTION=
 (ADDRESS=(PROTOCOL=TCP)(HOST=dbserverhost)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=orcl)))

Using the easy connect naming syntax, you could convert the above descriptor into
the following TCP/IP connect string:

//dbserverhost:1521/orcl

However, in practice you might use a shorter syntax form:

//dbserverhost/orcl

PHP and Oracle Connection

[38]

When using the easy connect naming method, the port parameter in a
connect descriptor can be omitted if your database server listening port
number is 1521.

To seee an example of the easy connect naming syntax when connecting to the
database with the help of the oci_connect function, you can turn back to the
sqlproc.php script discussed earlier in this chapter.

OCI8 Functions for Connecting to Oracle
So far, you have seen a few examples of using the oci_connect function to
connect to an Oracle database server from PHP. However, note, that the OCI8
extension offers three different functions for this purpose—namely oci_connect,
oci_pconnect, and oci_new_connect. These functions are summarized in the
following table:

OCI8 function for
connecting

Description

oci_connect Returns a database connection handle that is then used by some
other OCI8 APIs. oci_connect uses a database connection
cache so that each subsequent call to this function with the
same parameters during script execution will return the same
connection handle as the first call.

oci_pconnect Returns a handle that refers to a persistent connection established
to an Oracle database server. oci_pconnect uses a connection
cache to reuse connections between requests, thus reducing
overhead on each subsequent page load.

oci_new_connect Returns a handle that refers to a new connection established to
an Oracle database server. oci_new_connect doesn't use a
connetion cache and establishes a distinctly new connection each
time you call it.

Now that you know which OCI8 functions can be used to establish a connection to
an Oracle database server, let's discuss when one might be more appropriate than
the others.

In most cases, you will be happy using oci_connect when it comes to obtaining a
connection to an Oracle database server. You are not supposed to use oci_connect
in the following cases:

When you need to maintain transactional isolation when dealing with more
than one transaction, opened concurrently in your script.

•

Chapter 2

[39]

When you need to establish a persistent database connection, which can be
reused between requests.

The oci_new_connect function establishes a distinctly new connection to a database
server each time you call it and thereby can be used in situations where you need
to separate transactions. Using oci_new_connect, you can apply commits and
rollbacks to the specified connection only. By contrast, using oci_connect assumes
that commits and rollbacks are applied to all open transactions in the page. This
is because oci_connect doesn't establish a new connection if you have already
established a connection with the same parameters. Instead, it will return the
identifier of the already opened connection.

The oci_pconnect function establishes a persistent connection to an Oracle database
server. A persistent connection is not closed when the script execution ends. So, the
application may have a single persistent connection open against the Oracle database
server, thus eliminating the overhead of opening and terminating connections when
starting another instance of the application.

Parsing and Executing SQL Statements
with OCI8
Whether you are dealing with a query operation, selecting data from a database, or
performing a DML operation, modifying database data, both parsing (preparing for
execution) and executing are required when it comes to processing an SQL statement
with OCI8. Besides these required steps, there may be a few optional steps, such as
binding PHP variables to Oracle placeholders that you can perform after you have
parsed the statement, but have not yet executed it.

Preparing SQL Statements for Execution
Once a connection to the database is established and the query string is defined, you
can go ahead and prepare the statement for execution using the oci_parse function,
passing to this function the database connection and the SQL statement string as
the arguments.

As you saw in the sqlproc.php script discussed earlier in this chapter, oci_parse
returns the statement identifier that can be then passed to oci_bind_by_name,
oci_define_by_name, oci_set_prefetch, and oci_execute as the first argument.

•

PHP and Oracle Connection

[40]

One word of warning: it is important to realize that oci_parse doesn't
validate the SQL statement you pass to it. You have to execute the
statement, using oci_execute, to check to see if it is valid.

Using Bind Variables
Besides the fact that using bind variables allow you to build more flexible
applications, because it makes it possible for the user to supply input data at run
time, it may also significantly improve performance of your application. The fact is
that using bind variables, you can parse an SQL statement once and then execute it
many times.

From an Oracle database server perspective, once a statement is parsed,
it is shared within the shared pool so that the parse tree and execution
plan for the statement can be reused by multiple applications. When
bind variables are used in a statement, regardless of the fact that their
actual values may change from execution to execution, Oracle reuses
the metadata for the statement, which is stored in the shared pool, thus
avoiding repeated parses.

Finally, using bind variables allows you to avoid concatenating SQL statements, thus
preventing SQL injection attacks.

From the sqlproc.php script discussed earlier, you learned how bind variables can
be used when dealing with a SELECT statement. The bindvars.php script shown
below demonstrates how you can use bind variables when inserting new rows in the
departments database table from the HR/HR demonstration schema:

<?php
 //File: bindvars.php
 if(!$dbConn = oci_connect('hr', 'hr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);
 };
 $depts = array(array("deptno" => 330, "deptname" => 'Research'),
 array("deptno" => 340, "deptname" => 'DB Development'));
 $query = 'INSERT INTO departments (department_id, department_name)
 VALUES(:dept_id, :dept_name)';
 $stmt = oci_parse($dbConn, $query);
 foreach ($depts as $dept) {
 oci_bind_by_name($stmt, ':dept_id', $dept['deptno'], 4);

Chapter 2

[41]

 oci_bind_by_name($stmt, ':dept_name', $dept['deptname'], 30);

 if (!oci_execute($stmt)){
 $err = oci_error($stmt);
 trigger_error('Insertion failed: ' .
 $err['message'], E_USER_WARNING);
 } else {
 print 'Row inserted!
';
 }
 }
?>

Using bind variables in this example allows you to parse the statement only once and
then execute it in a loop several times, each time rebinding the same variables but
with different values.

In this example, you explicitly specify the maximum length for the bind variable
value when calling the oci_bind_by_name function. In particular, you set the
maximum length for the $dept['deptno'] array field variable to 4, and for
$dept['deptname'] to 30, thus limiting the maximum length for the values of
these bind variables to 4 and 30 characters respectively. To understand where these
numbers come from, you should examine the departments table structure. For
that, you might connect to the database as HR/HR from SQL*Plus and issue the
following query:

DESCRIBE departments

The result should look like the following figure:

As you can see in the figure, the department_id column is of type NUMBER and
limited to a length of 4 digits. The department_name column is of type VARCHAR2 up
to 30 characters in length.

Another thing to notice here is the execution mode used for oci_execute. Since
you didn't specify the execution mode for the oci_execute functions explicitly, it
is performed in the default OCI_COMMIT_ON_SUCCESS mode, which means that the
statement is committed automatically. If insertion fails, the script triggers a warning
and execution continues. In a real-world situation, however, you might

PHP and Oracle Connection

[42]

want to explicitly create a transaction and then commit it only if all the rows
have been inserted successfully. Transactions are discussed in detail in
Chapter 4 Transactions.

Executing SQL Statements
As you saw in the previous examples, you use the oci_execute function to execute
a previously parsed statement. This function takes the statement identifier returned
by oci_parse as the first parameter, and can take the execution mode as the optional
second parameter. The default execution mode is OCI_COMMIT_ON_SUCCESS. In this
mode, the executed statement is committed automatically. If you want to create a
transaction, you must specify OCI_DEFAULT as the execution mode.

For discussion on how to handle transactions by means of OCI8, refer to
Chapter 4 Transactions.

When performing a SELECT statement with the oci_execute function, the query
results are held in memory and not available to you immediately. To make use of
this data, you must fetch it using one of the OCI8 functions discussed in the OCI8
Functions for Fetching section later in this chapter.

Whether you perform a query or a DML operation, oci_execute returns a true on
success or false on failure. So, it is always a good idea to make sure that the execution
has been completed successfully, triggering an error or warning in case of a failure.
Handling errors is discussed in the next section.

Handling Errors
Even though your code doesn't contain programming errors, such as syntax/parse
or include/require errors, you may still bump into a run-time error during execution
of the script. For example, oci_connect may fail because the database server is
temporarily unavailable, and oci_execute may fail simply due to the fact that the
table specified in the statement doesn't exist any longer. It is obvious that in most
cases such problems are beyond your immediate control. And since there is no
guaranteed way of preventing the above problems from occurring, it is always a
good idea to employ a mechanism allowing you to handle run-time errors correctly.

Using the oci_error Function
A typical OCI8 function returns a status code indicating the success of the operation.
If it returns false, your script can call the oci_error function to obtain information
about the error that occurred. Normally, you pass the appropriate resource handle as

Chapter 2

[43]

the parameter to the oci_error function. For connection errors, you call oci_error
with no parameter. In both cases, oci_error returns an associative array containing
information relating to the error. A common example of oci_error in action
involves using this function in conjunction with trigger_error, as shown below:

$err = oci_error($stmt);
trigger_error($err['message']);

You saw a similar error handling block of code in each example discussed previously
in this book.

Using the trigger_error Function
The most popular approach to handling run-time errors in PHP involves using the
trigger_error function. When something goes wrong, you make a call to this
function, specifying the message describing the error. Optionally, you can pass a
predefined constant representing the type of error to trigger as the second parameter.
The following table lists the predefined constants representing the types of errors
used with trigger_error function:

Predefined constant Description
E_USER_ERROR Instructs trigger_error to trigger a fatal error. Terminates the

execution of the rest of the script. This level of error is usually
specified when it doesn't make much sense to let the script
continue to execute.

E_USER_WARNING Instructs trigger_error to trigger a warning (non-fatal error).
This level of error allows your code to continue execution. A
warning is usually issued when a non-critical error occurs.

E_USER_NOTICE Instructs trigger_error to trigger a notice. This will allow
the script to continue execution. A notice is normally issued in
response to an event that is not necessarily an error, but could
happen in the normal course of running a script.

In the following code fragment, you pass E_USER_ERROR as the second parameter
to the trigger_error function, which means that the execution of the rest of your
script will stop when a connection error occurs.

 if(!$dbConn = oci_connect('hr', 'hr'))
 {
 $err = oci_error();
 trigger_error('Failed to obtain a connection: '
 .$err['message'], E_USER_ERROR);
 }

PHP and Oracle Connection

[44]

It is important to realize that trigger_error doesn't necessarily have to be used for
triggering errors. Generally, you can use trigger_error as a notification mechanism
for all unexpected events occurring during execution of the script.

Using Exceptions
For handling errors, PHP 5 offers a new build-in mechanism based on the use of
exceptions. You create and throw an instance of the built-in Exception class in
response to an error that occurs in your object code. The following code fragment
shows exceptions in action:

...
try {
 if(!$dbConn = oci_connect('hr', 'hr')) {
 $err = oci_error();
 throw new Exception('Failed to obtain a connection:
 '.$err['message']);
 }

...// If an exception is thrown this code is not executed.

} catch (Exception $e) {
 print $e->getMessage()."\n";
}

...// Continue execution

?>

The above code looks nice and simple. However, before you decide whether you
want to use exceptions in your applications, you should consider the following issue.
Using exceptions comes at a cost, which is the performance. That's why, in most
cases, it is not a good idea to employ exceptions just as a notification mechanism
for unexpected events. Where exceptions fit nicely is the object-oriented world. So
they are discussed in greater detail in Chapter 5 Object-Oriented Approach later in
this book.

Fetching Results with OCI8
If the oci_execute call returns true, you can then move on to fetching the results.
Of course, this makes sense only if you are dealing with a query operation. This
section provides a practical description of the fetch functions available in OCI8 as
well as code samples showing a few different ways to fetch the retrieved data.

Chapter 2

[45]

OCI8 Functions for Fetching
The PHP OCI8 extension offers several functions that can be used to fetch the result
data. These functions are listed in the following table:

OCI8 fetching function Description
oci_fetch_assoc Returns the next row from the result data as an associative array,

thus allowing for the fields to be referenced by name. If there are
no more rows to be fetched, it returns false.

oci_fetch_row Returns the next row from the result data as a numeric array. If
there are no more rows to be fetched, it returns false.

oci_fetch_array Returns the next row from the result data as an array. An optional
second parameter allows you to specify the kind of array you
want to get (associative, numeric, or both). If there are no more
rows to be fetched, it returns false.

oci_fetch Retrieves the next row from the result data and sends it to the
internal result buffer. Then, oci_result is used to retrieve the
data from the buffer.

oci_fetch_all Fetches all the retrieved rows at once and sends them into a user-
defined array. Returns the number of fetched rows or false in the
event of an error.

oci_fetch_object Returns the next row from the result data as an object whose
attributes correspond to the columns specified in the select list
of the statement. If there are no more rows to be fetched, it
returns false.

As you can see from the table, OCI8 offers three different functions to fetch the next
row from the result data into a user-defined array, namely oci_fetch_assoc, oci_
fetch_row, and oci_fetch_array. While oci_fetch_assoc and oci_fetch_row
can be used to retrieve the next row as an associative or numeric array respectively,
oci_fetch_array allows you to either have one or both the arrays. You also have
oci_fetch to fetch the next row from the result data. However, it differs from the
above functions in that it fetches the next row into the internal result buffer and not
into a user-defined array. You then use the oci_result function to access the data
stored in that buffer.

While each of the above functions fetches the next row in one way or another,
in some situations, you might want to fetch all the retrieved rows into a two-
dimensional array at once. This is where oci_fetch_all comes in very handy.

PHP and Oracle Connection

[46]

Fetching the Next Row
Although oci_fetch_array can be insignificantly slower than the other OCI8
functions in fetching the next row into a user-defined array, you may find it more
useful in many ways. Here is an example of using the oci_fetch_array function to
fetch the data retrieved from the database.

...
$query = 'SELECT employee_id, first_name, last_name FROM employees';
...
print '<table border="1">';
 while ($emp = oci_fetch_array($stmt, OCI_ASSOC))
 {
 print '<tr>';
 print '<td>'.$emp['EMPLOYEE_ID'].'</td>';
 print '<td>'.$emp['FIRST_NAME'].' '.$emp['LAST_NAME'].'</td>';
 print '</tr>';
 }
 print '</table>';

In the above example, you make a call to the oci_fetch_array function specifying
OCI_ASSOC as the second optional parameter. This tells oci_fetch_array to return
the next row from the result data as an associative array.

By default, oci_fetch_array returns an array with both associative
and numeric indices. Although you may be satisfied with this default
behavior, it is a good practice to explicitly specify the type of array
you want to get.

Here is how you could use a combination of constants when specifying the second
parameter of oci_fetch_array:

...
$query = 'SELECT * FROM employees';
...
print '<table border="1">';
 while ($emp = oci_fetch_array($stmt, OCI_RETURN_NULLS+OCI_NUM)) {
 print '<tr>';
 foreach ($emp as $item) {
 print '<td>'.($item?htmlentities($item):' ').'</td>';
 }
 print '</tr>';
 }
 print '</table>';
...

Chapter 2

[47]

In the above example, you specify OCI_RETURN_NULLS+OCI_NUM as the second
parameter of oci_fetch_array. This combination tells the function to return the
next row as a numeric array, creating empty elements for the NULL fields.

Fetching All the Rows
Sometimes you might want to fetch all the retrieved rows into a user-defined array
at once. For example, this approach may be handy when you implement a function
that encapsulates SELECT statement processing, including fetching the retrieved data,
and then returns all the fetched records as an array to the calling code. In this case,
fetching the rows one at a time would definitely be an unnecessary step. An example
of such function is shown below:

<?php
 //File: getEmployees.php
 function getEmployees($deptno) {
 if(!$rsConnection = oci_connect('hr', 'hr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);
 };
 $strSQL = "SELECT * FROM employees WHERE department_id =:deptid";
 $rsStatement = oci_parse($rsConnection,$strSQL);
 oci_bind_by_name($rsStatement, ":deptid", $deptno, 4);
 if (!oci_execute($rsStatement)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' .
 $err['message'], E_USER_WARNING);
 return false;
 }
 $nrows = oci_fetch_all($rsStatement, $employees);

 return array ($nrows, $ employees);
 }
?>

In the above script, oci_fetch_all fetches all the retrieved rows into the employees
two-dimensional array. This example demonstrates how you can employ a list to
return multiple values from a function. The function discussed here returns the
number of retrieved rows and the array containing these rows as a single array.

PHP and Oracle Connection

[48]

To test the getEmployees function from this script, you need to create a script that
will call this function, passing the ID of a department as the parameter. Such a script
is shown below:

<?php
 //File: deptEmployees.php
require_once 'getEmployees.php';

$deptno = 60;
if(list($nrows, $employess) = getEmployees($deptno)){

 print '<h3>'.'All employees working in Department '.$deptno.'</h3>';
 if ($nrows > 0) {
 print "<table border=1>";
 print "<tr>\n";
 while (list($key, $value) = each($employees)) {
 print "<th>$key</th>\n";
 }
 print "</tr>\n";
 print "</tr>\n";
 for ($i = 0; $i < $nrows; $i++) {
 print "<tr>\n";
 foreach ($employees as $emp) {
 print "<td>$emp[$i]</td>\n";
 }
 print "</tr>\n";
 }
 print "</table>\n";
 } else {
 echo "No employees found
\n";
 }
}
?>

Using custom functions to encapsulate SQL statement processing can be useful
especially when you need to cache results retrieved from the database. In order to
achieve this, you could cache function calls using the PEAR::Cache_Lite package.

Using the PEAR::Cache_Lite package is discussed in extensive detail
in Chapter 7 Caching.

Chapter 2

[49]

Alternatives to PHP OCI8 Extension
Now that you are familiar with how to use OCI8 APIs to access Oracle database from
PHP, it is worthwhile to take a moment to briefly touch on the other tools that can be
used as alternatives to the OCI8 extension. This will not only give you an overview
of some popular tools other than the OCI8 extension that can be used to build PHP/
Oracle applications, but it can also help you understand whether OCI8 is
the best choice for a particular application or there is another tool that fits your
needs better.

As mentioned previously, there are several open-source libraries that can be used
to communicate with Oracle from PHP. This section briefly touches upon the most
popular two, namely PEAR DB and ADOdb, as well as the PHP Data Objects (PDO)
extension that provides a lightweight interface for accessing databases in PHP.
Finally, it discusses how you might benefit from creating your own library on top of
the OCI8 extension.

Using PEAR DB
PEAR DB is a database abstraction layer providing a single API for interacting with
most of the databases supported by PHP. You install the PEAR DB package using the
PEAR Installer, as shown below:

$ pear install DB

For more information on how to install PEAR and its packages, see PEAR
documentation available on the PEAR Documentation page of the PEAR website at:

http://pear.php.net/manual/

Once you have installed the PEAR DB package, you might want to see it in action.
Turning back to the example discussed in Chapter 1, you might rewrite it with PEAR
DB as shown in the following example:

<?php
 //File: dbtime_pear.php
 require_once 'DB.php';
 $dbh = DB::connect("oci8://hr:hr@localhost:1521/orcl");
 if(DB::isError($dbh)) {
 die($dbh->getMessage());
 }
 $dbh->setFetchMode(DB_FETCHMODE_ASSOC);
 $rslt = $dbh->query("SELECT TO_CHAR(SYSDATE, 'HH:MI:SS')
 ctime FROM DUAL");
 if (PEAR::isError($rslt)) {

PHP and Oracle Connection

[50]

 die($res->getMessage());
 }
 $rslt->fetchInto($row);
 print "<h3>The current time is ".$row['CTIME']."</h3>";
?>

As you can see in the above script, the connect method of a DB object is used
to connect to a database. It requires a valid Data Source Name (DSN) as the first
parameter, which can be either a string or an array. In this example, the DSN is a
string consisting of the database driver name as used in PHP, database user name
and password, host name where the database resides, port on which the database
server listens for connection requests, and the service name of the database.

Note that the connect method is a universal DB connection method that is used to
connect to all databases supported by PEAR DB. For example, when connecting
to a MySQL database, the DSN passed to the connect method might look like
the following:

mysql://usr:pswd@hostname/db_name

The query method performs a query passed as an argument. Note that the query
method eliminates the need for a prepare method, thus simplifying coding.
Alternatively, PEAR DB allows you to use the prepare and execute method
combination. In the above example, you might replace the query function with the
prepare and execute method combination as follows:

$sth = $dbh->prepare("SELECT TO_CHAR(SYSDATE, 'HH:MI:SS')
 ctime FROM DUAL");
$rslt = $dbh->execute($sth);

However, in this particular case, the above replacement would not make sense. The
prepare and execute method combination provides more power and flexibility
when it comes to performing the same query several times—each time with different
arguments. The following code snippet demonstrates how you could insert several
rows into a customers table using the DB's prepare and execute methods:

$custs = array(array(1, 'Maya Silver'),
 array(2, 'Tom Jamison'),
 array(3, 'Ann Nelson'));
$sth = $dbh->prepare('INSERT INTO customers VALUES(?, ?)');
foreach ($custs as $row) {
 $dbh->execute($sth, $row);
}

Chapter 2

[51]

Now, if you compare the dbtime.php script discussed in Chapter 1 to the
dbtime_pear.php script discussed in this section, you may note that the latter is
shorter and seems to be more readable. So, you might be asking yourself: "Why not
prefer PEAR DB API to using OCI8 functions?" Well, the main advantage of PEAR
DB is that it provides a way to rapidly develop portable and reusable database
solutions—you use a single API for all databases supported.

On the other hand, it is important to remember that DB is written in PHP, which in
practice means that it is slower than using built-in PHP functions directly. Moreover,
providing one common API for accessing different databases, PEAR DB in fact lacks
some Oracle-specific functionality, such as support for LOBs and REF cursors (this is
true for PEAR DB 1.6 at least).

So, the use of PEAR DB makes sense in the following situations:

When you need to quickly build an application where high performance is
not required.
When you need to build a portable application that can be easily migrated
from one database to another.
When you use other PEAR packages.

As for the last situation mentioned in the above list, it is important to note that
although choosing PEAR DB seems to be a reasonable way to go when you are
planning to use other PEAR packages, you actually don't have to follow this rule. In
many situations, using the OCI8 APIs in conjunction with some PEAR libraries still
results in better performance than using PEAR DB APIs with PEAR libraries.

Using ADOdb
ADOdb is another popular database abstraction layer designed to simplify coding
database-driven PHP applications. Like PEAR DB, ADOdb supports a wide range
of SQL databases, providing a unified API for accessing all databases. For detailed
information about how to install and then use ADOdb, visit the following web page:

http://phplens.com/lens/adodb/docs-adodb.htm

While the above web page includes a lot of detailed examples on how to interact
with databases using ADOdb library, the following example shows a simple
ADOdb/Oracle application obtaining the current time from the database:

<?php
 //File:dbtimeADOdb.php
 require_once "adodb\adodb.inc.php";
 if (!$db = NewADOConnection("oci8://hr:hr@localhost:1521/orcl")){

•

•

•

PHP and Oracle Connection

[52]

 die("Connection failed");}
 $db->SetFetchMode(ADODB_FETCH_ASSOC);
 if (!$rs = $db->Execute("SELECT TO_CHAR(SYSDATE, 'HH:MI:SS')
 ctime FROM DUAL")){
 die("Query failed: ".$db->ErrorMsg());}
 $row = $rs->FetchRow();
 print "<h3>The current time is ".$row['CTIME']."</h3>";
?>

As you can see, the NewADOConnection method is used to create a Connection object
through which you can then access the database. Like PEAR DB's connect method,
NewADOConnection takes a Data Source Name (DSN) as a parameter. Note that in
this example the DSN passed to the NewADOConnection function is the same as the
one used with the PEAR DB's connect method in the previous example.

The Execute function performs the query and returns a recordset object whose
FetchRow method then is used to fetch the retrieved rows. In this example, only
one row is retrieved and so there is no need to call FetchRow in a loop. If you are
using the same query several times during script execution, it makes sense to take
advantage of the Prepare function.

Generally, ADOdb provides more sophisticated functionality compared to PEAR DB,
when it comes to building applications interacting with Oracle. For example, unlike
PEAR DB, ADOdb supports LOBs and REF cursors. However, ADOdb is similar to
PEAR DB in that it is a high-level database abstraction layer designed to hide the
differences between the different database APIs. Practically, this means that you can
build an application quickly using OCI8 functions directly in your code, rather than
using ADOdb APIs.

Using PDO
PDO (PHP Data Objects) is a new PHP 5 extension providing a data-access
abstraction layer. Like PEAR DB and ADOdb, PDO provides a programming
interface for accessing different databases in PHP. However, PDO is different in that
it is a built-in C extension rather than a high-level API library written in PHP itself.

In PHP 5.0, you can install PDO as a PECL extension. Starting with PHP
5.1, PDO is included in the distribution. For detailed information on PDO,
see PDO documentation at: http://www.php.net/pdo.

Chapter 2

[53]

Here is a simple application using PDO to interact with Oracle:

<?php
//File:dbtimePDO.php
try {
 $dbh = new PDO('oci:host=localhost;dbname=orcl', 'hr', 'hr');
 foreach ($dbh->query("SELECT TO_CHAR(SYSDATE, 'HH:MI:SS')
 ctime FROM DUAL") as $row) {
 print "<h3>The current time is ".$row['CTIME']."</h3>";
 }
 $dbh = null;
} catch (PDOException $e) {
 die("Error!: " . $e->getMessage());
}
?>

Creating Your Own Library on Top of OCI8
Another way to simplify coding PHP applications interacting with Oracle is to create
a set of your own PHP functions built on top of the OCI8 extension. This approach
allows you to encapsulate repeated code in a function so it can be reused by multiple
applications. The connect.php script shown below contains the GetConnection
function that simplifies the process of obtaining a database connection.

<?php
 //File: connect.php
 function GetConnection(
 $usr,
 $pswd,
 $dbServiceName = "orcl",
 $dbHost = "localhost",
 $dbHostPort="1521")
 {
 $dbConnStr = "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)
 (HOST=".$dbHost.")(PORT=".$dbHostPort."))
 (CONNECT_DATA=(SERVICE_NAME=".$dbServiceName.")))";
 if(!$dbConn = oci_connect($usr,$pswd,$dbConnStr)) {
 $err = oci_error();
 trigger_error('Failed to connect ' . $err['message']);
 return false;
 }
 return $dbConn;
 }
?>

PHP and Oracle Connection

[54]

Looking through the previous code of the GetConnection function, you may note
that the function doesn't trigger a fatal error when it fails to obtain a connection.
Instead, GetConnection returns false to the calling code. This allows the calling code
to decide whether to stop execution or not when failing to obtain a connection.

Once you have defined the GetConnection function, you can use it in your scripts
to obtain a connection to a database. The following example demonstrates how
you might rewrite the dbtime.php script discussed in Chapter 1, using the above
GetConnection function:

<?php
 //File: dbtime2.php
 require_once "connect.php";
 $usr = "hr";
 $pswd = "hr";
 if(!$dbConn = GetConnection($usr,$pswd))
 {
 die('Could not establish a connection:');
 };
 $strSQL = "SELECT TO_CHAR(SYSDATE, 'HH:MI:SS') ctime FROM DUAL";
 $stmt = oci_parse($dbConn,$strSQL);
 if (!oci_execute($stmt))
 {
 $err = oci_error($stmt);
 trigger_error('Failed to execute the
 query: ' . $err['message'], E_USER_ERROR);
 };
 oci_fetch($stmt);
 $rslt = oci_result($stmt, 'CTIME');
 print "<h3>The current time is ".$rslt."</h3>";
?>

As you can see from the listing, using custom functions can help you produce shorter
and thus more readable code.

Chapter 2

[55]

Summary
OCI8 provides the most powerful way to interact with Oracle from PHP. Developed
exclusively for interacting with Oracle database, OCI8 offers more options than any
high‑level database abstraction layer does.

When developing a PHP/Oracle application, you normally start by creating the
code responsible for obtaining a database connection. With OCI8, you can choose
between three different connecting functions: oci_connect, oci_pconnect, and
oci_new_connect. While using oci_connect will be appropriate for most general
uses, you should use oci_new_connect instead when it comes to dealing with
transactions. When you want to reduce overhead on each subsequent page load, you
may use oci_pconnect to obtain a persistent connection that is not closed when the
script execution ends.

Once you have obtained a connection, you can start processing the SQL statement.
With OCI8, the required steps involved in SQL statement processing include
parsing and executing. You perform these steps using oci_parse and oci_execute
respectively. Also, there may be a few optional steps in SQL processing, where the
most interesting one is binding PHP variables to Oracle placeholders. You perform it
using the oci_bind_by_name function.

If something goes wrong when calling an OCI8 function, the information on the
error can be obtained by calling the oci_error function, which is commonly used in
conjunction with trigger_error.

By now, you should have a clear understanding of the steps involved in developing
PHP code interacting with Oracle by means of OCI8. In the next chapter, you'll learn
how to implement the business logic of your application inside the database.

Data Processing
Data processing is essential for any data-driven application. Whether you access
database data or modify it, you perform data processing in one way or another.
While in simple cases, data processing may involve a few steps, more sophisticated
solutions typically perform multiple operations on the data, with branch logic based
on the success or failure of any single operation involved.

For most PHP/Oracle applications, data processing takes place partly at the
web/PHP server and partly at the Oracle database server. Even if you are dealing
with an application that simply outputs the results of a query, you will need
to perform at least two general steps: retrieve data from the database and then
display the results to the user. In this case, the database server processes the query,
producing the results, and the web/PHP server is responsible for formatting and
displaying the query results. In more complex cases, you may have to perform some
additional processing to get the job done. For example, you might need to calculate
the sum of a particular column of the result set, or concatenate two columns into a
single column.

The performance of a data processing operation often depends heavily on the way
the operation is implemented and therefore on the place where it is performed—at
the database server or web/PHP server. While some operations on the data may be
performed at either the database server or web/PHP server, it is always a good idea
to move data processing to the data rather than moving the data to the processing.
Putting it simply, when developing a PHP/Oracle application, in most cases it is
better to implement the key business logic of the application inside the database so
that the data processing takes place at the database server rather than at the
web/PHP server. Doing so can significantly enhance the performance and scalability
of your application.

This chapter discusses the most common ways to implement the key business logic
of a PHP/Oracle application inside an Oracle database. In particular, it discusses
how you can move data processing to the data by using sophisticated SQL queries,
stored PL/SQL subprograms, and database triggers.

Data Processing

[58]

Implementing the Business Logic of a
PHP/Oracle Application
When developing the business logic of your PHP/Oracle application, you have a
number of choices. The first choice is to implement the key business logic of the
application entirely in PHP, so that the data is processed on the web/PHP server.
The situations where you might want to employ this technique are outlined in the
When to Move the Data to the Processing subsection discussed later in this section.

The second choice is to implement business logic entirely inside the database, so that
the data is processed on the database server. The advantages of this technique are
outlined in the Advantages of Moving the Processing to the Data subsection discussed
later in this section.

However, in a real-world situation it is often not possible to implement the business
logic of an application entirely inside a database, or entirely in PHP. So, you
normally use a bit of both the above techniques. In fact, this is the most common
way of implementing the business logic of a data-driven application—the data is
processed partly on the web/PHP server and partly on the database server.

When to Move the Data to the Processing
Although implementing business logic inside the database is preferable for most
typical PHP/Oracle applications, there are still some situations in which you might
prefer to write the key business logic of your application in PHP. The situations are
as follows:

When you need to develop a portable and reusable database solution that
can be used with a database other than Oracle.
When you need to implement the business logic of your application using the
tested pieces of PHP code that you already use in other applications.
When the database server you are using is heavily loaded. So, you might be
interested in offloading data processing from the database server to the
web/PHP server.

If none of the situations listed above applies, it is highly recommended that
you consider implementing the key business logic of your application inside
the database.

•

•

•

Chapter 3

[59]

Advantages of Moving the Processing to
the Data
While developing a PHP application that interacts with Oracle, you should always
bear in mind that a well-designed PHP/Oracle application performs the bulk of data
processing on the database server rather than on the web/PHP server. Generally,
implementing the key business logic of a PHP/Oracle application inside the database
can help you accomplish the following goals:

Enhance the performance
Increase the scalability
Improve the security

The following table summarizes concrete benefits that can be achieved when
implementing the key business logic of a PHP/Oracle application inside the database:

Benefit Description
Producing re-usable
solutions

By creating a common set of stored subprograms inside the
database, you can easily share business logic across applications.

Centralizing control over
business logic

Implementing business logic of a PHP/Oracle application
inside the database gives you centralized control over that
business logic, and therefore allows you to produce a more
maintainable solution.

Reducing network
overhead

When performing data processing inside the database, the
application doesn't need to transfer a large amount of data
between tiers; instead, it sends only the final product across
the wire.

Avoiding redundant
coding

When implementing the business logic of a PHP/Oracle
application inside the database, you normally have to work less
than writing it in PHP—Oracle tools are extremely effective when
it comes to implementing data processing operations.

Taking advantage
of Oracle's built-in
functionality

Because of the tight coupling between Oracle's built-in tools,
such as Oracle SQL and PL/SQL, and database data, you may
achieve a better performance using these tools when it comes to
processing the data stored in the database.

Building more secure
applications

By utilizing Oracle security features, you can effectively protect
your application data from unauthorized access, giving trusted
users easy access to that data at the same time.

As the table shows, there are several advantages of implementing the business logic
of a PHP/Oracle application inside the database. Specifically, this can significantly
enhance the performance, scalability, and security of your application.

•

•

•

Data Processing

[60]

Ways of Implementing Business Logic Inside
the Database
Now that you know the major advantages of performing data processing inside
the database, it's time to move on and discuss the ways in which this can be
accomplished. The first question you might ask is "which Oracle features should I
use to implement the business logic of my application inside an Oracle database?".
While the answer to this question may vary depending on the situation, there are
several Oracle features that are used in almost any Oracle-backed application. These
features are listed in the following table:

Feature Description
SQL statements A SQL statement is an instruction passed to the database to perform a

certain operation on information stored in the database. Specifically,
it is passed to the SQL compiler, which in turn generates a procedure
to perform the desired task. A SQL statement may have a very
sophisticated structure, combining subqueries to different database
objects and using a variety of built-in Oracle SQL functions.

Stored subprograms A stored subprogram, procedure, or function, is a named program
unit stored inside the database, used to access and manipulate
database information, usually consisting of PL/SQL constructs and
SQL statements. Stored subprograms can take parameters.

Database triggers Like a stored procedure or function, a database trigger is a
subprogram stored inside the database. A trigger is associated with
a database table, view, or database event such as instance startup or
shutdown, and is automatically invoked when a certain event occurs,
for example, updating a row in the associated table.

It is important to note that each of the features outlined in the table represents a
program unit running on an Oracle database server. The following figure gives a
conceptual depiction of how these program units interact with each other.

SQL
statements

Stored
Subprograms

Triggers
Tables
and

Views

Chapter 3

[61]

As can be seen from the previous diagram, in the long run, only SQL statements
provide a way to access and modify database data and metadata. Both stored
subprograms and triggers must employ SQL statements when it comes to operating
on database data or metadata.

Also notice that triggers cannot be called directly from SQL statements or stored
subprograms. Instead, triggers are fired implicitly whenever a triggering event, such
as an insertion of a new row into a certain table, occurs. Nevertheless, you can still
call the stored subprograms and issue SQL statements from triggers.

While the previous figure gives a high-level view of how program units of different
types interact with each other inside the database, the rest of this chapter discusses
these Oracle database features in detail, presenting several examples of using them
to effectively implement the business logic of a PHP/Oracle application.

Interaction between Components
Implementing Business Logic
Now that you know which program units can be used to implement the business
logic of a PHP/Oracle application inside the database and have a rough idea of how
they interact with each other, let's take a look at how these program units interact
with the other program components implementing the business logic of a PHP/
Oracle application. The following figure gives a high-level view of this interaction.

End user’s

browser
Web PHP server Oracle Database server

PHP code

SQL

queries

Stored

Subprog-

rams

HTML

generated by

the Web PHP

server

Triggers

From the previous figure you can see how application processing is done. In
particular, it shows that PHP code is processed on the web/PHP server, while SQL
statements, stored subprograms, and database triggers are executed on the database
server. You directly call SQL statements and stored subprograms from your PHP code,
whereas database triggers are normally invoked in response to the events triggered by
operations implemented using single SQL statements or stored subprograms.

Data Processing

[62]

Once all this processing is done, the web/PHP server sends the generated HTML
tags to the end user's browser. In practice, this means that some business logic may
also be implemented in a client-side scripting language. For example, the HTML
page generated by the web/PHP server may contain JavaScript scripts that
are returned as part of that HTML page and are run in the browser on an
end-user machine.

Using Complex SQL Statements
While developing PHP/Oracle applications, you may find that implementing some
data processing operations by means of PHP can be very difficult to accomplish, as
well as inefficient in terms of performance. For example, using PHP, if you need to
calculate the average value of all the values in a specific database table column with
a numeric data type, first you will have to retrieve all these values from the database
and then process them using custom PHP code. Obviously, this solution increases
the network overhead and slows down the performance. In this case, using the AVG
built-in Oracle SQL function in the query would allow you to achieve the same
general result with less overhead.

From the examples given in the preceding chapters, you learned how to use SQL
statements to access data stored in the database. This section discusses how you can
design SQL statements to offload data processing from the web/PHP server to the
database server.

Employing Oracle SQL Functions in Queries
In some situations, you don't need to write stored subprograms to move some
business logic from PHP to the database. Instead, you simply design a SQL query
that contains built-in Oracle SQL functions for getting the job done.

While the examples provided in this section demonstrate using just a few
of the Oracle SQL functions, Oracle actually offers a variety of built-in
functions, which can be used in SQL queries. For detailed information, see
Oracle documentation: Oracle Database SQL Reference.

Oracle SQL Functions versus PHP Data Processing
Consider the following example. Suppose you need to concatenate two columns
in the result set into a single column. Say, you want the first and last names of
employees to appear in a single table column when displaying in the browser, as
shown in the following figure:

Chapter 3

[63]

To accomplish this, you can either issue a query against the employees table, so
that it returns the first_name and last_name columns and then concatenate these
columns into a single column in PHP, or issue a query that will return the already
concatenated names, using Oracle built-in SQL function CONCAT in the select list of
the query. In the former case, to achieve the results shown in the previous figure, you
might build the following PHP script:

<?php
 //File: allEmployees.php
 if(!$rsConnection = oci_connect('hr', 'hr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: '
 . $err['message'], E_USER_ERROR);
 };
 $query = 'SELECT employee_id, first_name, last_name,
 salary, job_id FROM employees';
 $stmt = oci_parse($rsConnection,$query);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' . $err['message'], E_USER_ERROR);
 }
 print '<h2>All employess</h2>';

Data Processing

[64]

 print '<table border="1">';
 print '<th>ID</th>';
 print '<th>NAME</th>';
 print '<th>SALARY</th>';
 print '<th>JOB ID</th>';
 while ($emp = oci_fetch_array($stmt, OCI_ASSOC)) {
 print '<tr>';
 print '<td>'.$emp['EMPLOYEE_ID'].'</td>';
 print '<td>'.$emp['FIRST_NAME'].' '.$emp[
 'LAST_NAME'].'</td>';
 print '<td>'.$emp['SALARY'].'</td>';
 print '<td>'.$emp['JOB_ID'].'</td>';
 print '</tr>';
 }
 print '</table>';
?>

Looking through the previous script, you may notice that both the first_name and
last_name columns are included in the select list of the query. This means that each
of these columns will appear in the result set as a single column.

In this example, you call oci_fetch_array with the OCI_ASSOC flag to obtain the
return row data as an associative array.

Then, you concatenate the first name and last name of an employee together in the
way strings are normally concatenated in PHP.

The following example demonstrates how the same concatenation can be
accomplished using the Oracle SQL function CONCAT in the select list of the query.

 $query = "SELECT employee_id, CONCAT(CONCAT(first_name,'
 '),last_name) ename, salary, job_id FROM employees";
...
 print '<table border="1">';
 print '<th>ID</th>';
 print '<th>NAME</th>';
 print '<th>SALARY</th>';
 print '<th>JOB ID</th>';
 while ($emp = oci_fetch_array($stmt, OCI_ASSOC)) {
 print '<tr>';
 print '<td>'.$emp['EMPLOYEE_ID'].'</td>';
 print '<td>'.$emp['ENAME'].'</td>';
 print '<td>'.$emp['SALARY'].'</td>';
 print '<td>'.$emp['JOB_ID'].'</td>';
 print '</tr>';
 }
 print '</table>';

Chapter 3

[65]

Note the use of Oracle SQL's built-in CONCAT function in the query. The fact is
that the CONCAT function concatenates only two strings per call. However, in this
particular case, you need to concatenate three strings, namely: the first name of an
employee, his or her last name, and a separating space between them. To achieve
this, you call CONCAT twice.

Note that ENAME is a alias, which you used in the query for the CONCAT(CONCAT(…
column. It is always a good idea to use an alias for a column that has such a
long name.

Although the previous snippet is fairly simple, it does serve to illustrate the point.
In particular, it shows how a data processing operation implemented in PHP can
instead be implemented using a built-in Oracle function specified in the select list of
a query.

Aggregate Functions
In the previous example, you saw how an Oracle SQL function can be used to
operate on the values of fields in the same record, returning a single result for every
row in the result set. However, in some situations, you may need to operate on
groups of rows, producing a single result row for each group. This is where Oracle
SQL aggregate functions come in handy. The following example shows using the
MAX aggregate function to calculate the maximum value in a certain column of a
database table.

Suppose you need to find the highest salary of all employees present in the
employees table. Although the required processing may be implemented in PHP,
using Oracle SQL built-in function MAX in the select list of the query also results in
an efficient solution. The following code fragment demonstrates the MAX function
in action:

 $query = 'SELECT MAX(salary) maxsal FROM employees';
 $sal = oci_fetch_array($stmt, OCI_ASSOC);
 print '<h3>'.'The max salary is: '.$sal['MAXSAL'].'</h3>';

Now that you've seen the use of the MAX Oracle SQL function, try to figure out
how much code you would have to write if you decided to implement the same
functionality in PHP. Another thing to consider here is the performance. Whatever
PHP code you write to determine the maximum value in a table column, you will
first have to retrieve all the values presented in this column from the database, thus
increasing network overhead.

Data Processing

[66]

The GROUP BY Clause
Often, you don't need to apply aggregate functions to all the rows in a queried table.
Instead, you might want to divide the rows of a queried table into groups and then
apply the aggregate functions to each group, retrieving a single result row for each
group. To achieve such functionality, you might use the GROUP BY clause in the
query, as discussed in the following example.

Suppose you need to determine the highest salary in each department from the
employee records stored in the employees table. To achieve this, you might rewrite
the above code fragment as follows:

 $query = 'SELECT department_id, MAX(salary) maxsal
 FROM employees GROUP BY department_id;';
 while ($sal = oci_fetch_array($stmt, OCI_ASSOC)) {
 print '<h3>'.'The max salary in department
 '.$sal['DEPARTMENT_ID'].' is: '.$sal['MAXSAL'].'</h3>';
 }

As you can see, this is still a very easy task to accomplish using the MAX function and
the GROUP BY clause in the query. In contrast, a PHP-based solution would require
much more coding and would be inefficient in terms of performance, due to the
same reason mentioned in the preceding example.

Using Join Queries
So far, we've used SQL queries issued against a single database table. However,
often, you need to retrieve information stored in more than one table. In such
situations, using join queries comes in very handy.

A join query is a query that combines information from two or more
tables or views.

Without join queries, you would have to issue single queries against each table you
need to retrieve information from, and then process the retrieved data as needed,
using business logic implemented in PHP.

Probably the easiest way to understand join queries is to look at an example. Turning
back to the allEmployees.php script's output shown in the previous figure in the
Oracle SQL Functions versus PHP Data Processing section earlier, you may notice that
the last column in the table contains the job IDs of employees instead of their real job
titles. Of course, in a real-world situation, you probably will want to see the real job
titles in this column, as shown in the following figure:

Chapter 3

[67]

However, the fact is that the employees table queried in the allEmployees.php script
contains only employees' job IDs in the job_id column, while the corresponding job
titles are stored in the job_title column of another table, namely jobs, which, like
the employees table, resides in the HR/HR demonstration database schema by default.
One way to solve this problem is to develop a join query whose result set will include
the desired columns from both the employees and jobs tables. The following script
shows such a join query in action.

<?php
 //File: allEmployeesJobs.php
 if(!$rsConnection = oci_connect('hr', 'hr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: '
 . $err['message'], E_USER_ERROR);
 };
 $query = "SELECT employee_id, CONCAT(CONCAT(first_name,'
 '),last_name) ename, salary, job_title FROM
 employees e, jobs j WHERE e.job_id=j.job_id";

 $stmt = oci_parse($rsConnection,$query);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' . $err['message'], E_USER_ERROR);

Data Processing

[68]

 }
 print '<h2>All employees</h2>';
 print '<table border="1">';
 print '<th>ID</th>';
 print '<th>NAME</th>';
 print '<th>SALARY</th>';
 print '<th>TITLE</th>';
 while ($emp = oci_fetch_array($stmt, OCI_ASSOC)) {

 print '<tr>';
 print '<td>'.$emp['EMPLOYEE_ID'].'</td>';
 print '<td>'.$emp['ENAME'].'</td>';
 print '<td>'.$emp['SALARY'].'</td>';
 print '<td>'.$emp['JOB_TITLE'].'</td>';
 print '</tr>';
 }
 print '</table>';
?>

In the query used in the above script, you join the employees and jobs tables based
on the join condition comparing their job_id columns. When referencing these
columns, use the table aliases to avoid ambiguity.

When designing a join query, whether you are referencing a table
column in the select list or in a join condition, if the joined tables have
the name of that column in common, you have to use either the table
name or its alias to explicitly specify to which table the column belongs.
Neglecting to do so will result in the following Oracle error:
ORA-00918: column ambiguously defined.

In the case of the fetching functions like oci_fetch_array used in this example,
there is no difference whether you are executing a query against a single table or
dealing with a join query. In either case, these functions will fetch the next row from
the result set into an array, whether the result set contains data retrieved from one
table or view or from several tables and/or views.

If you have fetched the row into an associative array, as in this example, you refer to
the array fields using column names or their aliases specified in the select list of the
join query.

Chapter 3

[69]

Taking Advantage of Views
Although SQL queries are performed on the database server, it is the responsibility
of a PHP developer to design the queries required to obtain the necessary
information from a database. As you saw in the preceding sections, often there
is a need to build complex SQL queries that use Oracle SQL functions and obtain
information from more than one table. Obviously, there are very few PHP
developers who have the advanced skills required to efficiently build such complex
SQL queries.

One possible way to solve the above problem is to use database views.

A view is a customized representation of the data contained in one or
more database tables or other views. A view can be thought of as a stored
query or a virtual table. This is because a view does not actually contain
data, but contains is a SELECT statement whose result set forms the
virtual table. The actual tables referenced by the SELECT statement of a
view are referred to as the base tables of the view.

In essence, views provide an efficient way of implementing business logic inside
the database. The queries that define views are not only performed at the database
server, but also stored inside the database, thus hiding data complexity from
application developers.

The Key Benefits of Using Views
Now that you know what views are, let's look at how they can be useful in
simplifying the development of applications. Here are the key benefits of using
views when developing PHP applications on top of Oracle:

Views can be used to hide data complexity, concealing the details related to
the data processing from PHP developers developing SQL queries. Using
views makes it possible for people developing PHP code for PHP/Oracle
applications to take advantage of the existing queries stored inside the
database, rather than designing them from scratch. Since the queries issued
against a view are defined in a manner that is similar to that for a single
database table, a PHP developer doesn't actually have to be an expert in SQL
to obtain required database data available through the views.
Views can be used to insulate applications from modifications in structures
of base tables. If the changes applied to the base tables' structures affect
columns referenced in a view, you may have to re-create the view so that
those changes in turn do not require rewriting SQL queries issued against
the view.

•

•

Data Processing

[70]

Views can be used to provide an additional level of security. Using views,
you can restrict a user to a predetermined set of rows or columns of a base
table or tables. For a detailed discussion on how views can be used to protect
application data stored in the database, see Chapter 6 Security.

Now that you have a basic grasp of when database views can be useful, it's time
to look at an example of them in practice. The following subsection provides an
example of when you might have to create a view to make it easier for the PHP
developer to build a SQL query retrieving data stored in several database tables.

Hiding Data Complexity with Views
As you learned in the Using Join Queries section earlier in this chapter, join queries
can be useful when you need to retrieve information stored in more than one table.
In particular, you saw how to build a join query on two tables. However, in a real-
world situation, you often need to develop a join between more than two tables. In
such cases, you have to include several join conditions in your query. However, with
more join conditions, your query increases in complexity, sometimes to the point
where it is diff﻿icult to understand and manage.

Turning back to the join query used in the allEmployeesJobs.php script discussed
in the Using Join Queries section earlier in this chapter, for example, you might
want to add a column containing the name of the department for each employee.
This information is stored in the department_name column of the departments
table, which resides in the HR/HR demonstration database schema by default, like
employees and jobs—the other two tables referenced in the query. So, to include
the department_name column into the query's select list, you first have to add
a join condition comparing the department_id column of employees to the
department_id column of departments. As a result, you should have a join of three
tables, namely employees, jobs, and departments. The code fragment below shows
this join query in action.

 $query =
 "SELECT employee_id, CONCAT(CONCAT(first_name,' '),last_name)
 ename, salary, job_title, department_name FROM employees e,
 jobs j, departments d
 WHERE e.job_id=j.job_id AND e.department_id=d.department_id";
 print '<h2>All employees</h2>';
 print '<table border="1">';
 print '<th>ID</th>';
 print '<th>NAME</th>';
 print '<th>SALARY</th>';
 print '<th>TITLE</th>';
 print '<th>DEPARTMENT</th>';
 while ($emp = oci_fetch_array($stmt, OCI_ASSOC)) {

•

Chapter 3

[71]

 print '<tr>';
 print '<td>'.$emp['EMPLOYEE_ID'].'</td>';
 print '<td>'.$emp['ENAME'].'</td>';
 print '<td>'.$emp['SALARY'].'</td>';
 print '<td>'.$emp['JOB_TITLE'].'</td>';
 print '<td>'.$emp['DEPARTMENT_NAME'].'</td>';
 print '</tr>';
 }
 print '</table>';

The query used in the above snippet is an example of a complex query. It uses an
Oracle SQL function in the select list and retrieves data from three database tables,
containing two join conditions in the WHERE clause.

One approach to hide the complexity of the query, used in the above code fragment
inside the database is to create a view for that query. This can be done very easily
from SQL*Plus. You run SQL*Plus, connecting to the database as hr/hr, and then
execute the following SQL statement:

CREATE OR REPLACE VIEW employees_v AS SELECT employee_id,
 CONCAT(CONCAT(first_name,' '),last_name) ename, salary,
 job_title, department_name FROM employees e, jobs j, departments d
 WHERE e.job_id=j.job_id AND e.department_id=d.department_id;

Once the above view has been created, you can issue queries against it. For example,
you might replace the query string used in the above script with the following one:

$query = 'SELECT * FROM employees_v';

Although this new query string is much simpler than the previous one, you will
obtain exactly the same result set in both cases.

Using the WHERE Clause
As you saw in the preceding example, you can issue SQL queries against a view
in the same way as you issue them against a regular database table. Any column
specified in the select list of the view's SELECT statement may be referenced in a
query issued against that view. What this means in practice is that you have to
include in the view's select lists all the base tables' columns that you may need to
refer to in the queries issued against the view, regardless of whether a given column
will be referenced in the SELECT or WHERE clause of a query.

Suppose you want to recreate the employees_v view discussed above so that you can
restrict the queries issued against that view to return only the records representing
employees working in a particular department, by specifying the condition in the
WHERE clause that equates the department_id column to the given department ID.

Data Processing

[72]

To achieve this, you need to modify the SELECT statement of the employees_v view
so that the view's select list includes the department_id column of the employees
table. You can perform this from SQL*Plus. Assuming that you're connected to the
database as hr/hr, issue the following SQL statement:

CREATE OR REPLACE VIEW employees_v AS SELECT employee_id,
 CONCAT(CONCAT(first_name,' '),last_name) ename, salary,
 job_title, department_name, e.department_id FROM employees e,
 jobs j, departments d WHERE e.job_id=j.job_id AND
 e.department_id=d.department_id;

The script below illustrates how you could put the above view into action:

<?php
 //File: displayEmployees.php
 function displayEmployees($deptno) {
 $query = 'SELECT employee_id, ename, salary, job_title,
 department_name FROM employees_v WHERE department_id =:deptid';
...
 oci_bind_by_name($rsStatement, ":deptid", $deptno, 4);
...
 print '<h2>All employees</h2>';
 print '<table border="1">';
 print '<th>ID</th>';
 print '<th>NAME</th>';
 print '<th>SALARY</th>';
 print '<th>TITLE</th>';
 print '<th>DEPARTMENT</th>';
 while ($emp = oci_fetch_array($stmt, OCI_ASSOC)) {
 print '<tr>';
 print '<td>'.$emp['EMPLOYEE_ID'].'</td>';
 print '<td>'.$emp['ENAME'].'</td>';
 print '<td>'.$emp['SALARY'].'</td>';
 print '<td>'.$emp['JOB_TITLE'].'</td>';
 print '<td>'.$emp['DEPARTMENT_NAME'].'</td>';
 print '</tr>';
 }
 print '</table>';
 ...
}
?>

Chapter 3

[73]

In the displayEmployees.php script shown opposite, you don't specify * in the
select list of the query to avoid moving unnecessary data from the database. Instead,
you specify only those columns of the employees_v view that contain information
you need to display. So, you exclude the department_id column from the select list
of the query because you are not going to display information stored in this column.

The only reason why you have included the department_id column of the
employees table in the select list of the employees_v's SELECT statement is that it
allows you to refer to that column in the WHERE clause of queries issued against
the employees_v view, restricting the results to only those rows where the
department_id values match the condition specified.

Using Stored Subprograms
Employing a view is definitely the best way to go when you need to store a single
SQL query in the database, hiding query complexity from the application developer.
However, in practice you may need to implement a stored program unit that
encapsulates a set of SQL statements and control-of-flow statements, such as loops
and conditional statements, grouped together and processed with a single call. In
such situations, Oracle recommends using stored subprograms.

What are Stored Subprograms?
Stored subprograms can be thought of as building blocks to create high-performance,
maintainable, and secure database-driven applications.

A stored subprogram is a named program unit stored inside a database,
ready to be executed. It runs in the database server, can take parameters
and return values, and can be called by many users.

Looking through the above definition, you may notice that it says nothing about the
programming language in which a stored subprogram can be implemented. The fact
is that you have several choices when it comes to implementing an Oracle Database
stored subprogram. In particular, you can use PL/SQL, Java, C, or any other
programming language that lets you create subprograms callable by C. However, if
you want to create a stored subprogram that will run within the address space of the
database server, you must use either PL/SQL or Java.

Data Processing

[74]

For example, you might prefer to use Java when you already have a Java application
that interacts with Oracle and meets your requirements, and you want to move the
application code to the database to take advantage of the computing resources of
the database server, avoid network bottlenecks, and reuse the application classes in
other applications.

Although Java provides full access to Oracle data, PL/SQL, because of its tight
integration with the Oracle database server, is, in most cases, the natural choice when
it comes to implementing stored subprograms inside an Oracle database. All the
examples of stored subprograms given in this book are written in PL/SQL.

The following code is an example of a PL/SQL subprogram. The dept_func function
shown here takes a department ID as the parameter and returns the corresponding
department name as the result. The primary purpose of this example is to illustrate
how a PL/SQL subprogram is organized. The details on how to create PL/SQL
subprograms and how to call them from PHP are discussed in subsequent sections
later in this chapter.

FUNCTION dept_func(deptno NUMBER)
RETURN VARCHAR2 AS
 dept_name VARCHAR2(30);
BEGIN
 SELECT department_name INTO dept_name FROM departments WHERE
department_id=deptno;
 RETURN dept_name;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN 'No such department';
END;

A PL/SQL subprogram spec begins with the keyword FUNCTION or PROCEDURE
followed by the subprogram name. The optional list of parameters must appear
in parentheses. The parentheses must be omitted if the subprogram takes no
parameters. The spec of a function ends with the RETURN clause that specifies the
datatype of the return value.

In the above example, you have the PL/SQL function dept_func that takes one
parameter of type NUMBER and returns a value of type VARCHAR2.

In the optional declarative part of a PL/SQL subprogram, you define types,
variables, exceptions, and other items that will be manipulated in the executable
part. In this example, you declare the only variable in the declarative part, namely
dept_name, which is then used to hold a department name retrieved by the SELECT
statement run in the executable part.

Chapter 3

[75]

The executable part is required. It starts with the BEGIN keyword and ends with the
END or EXCEPTION keyword, depending whether the subprogram has an optional
exception‑handling part or not. The executable part cannot be empty—at least one
statement must be included. In the case of a function, at least one RETURN statement
must appear in the executable part.

The optional exception-handling part is intended to deal with exceptions raised
during execution. In this particular example, you handle an exception that is raised
when the SELECT statement defined in the executable part returns no row.

Advantages of Stored Subprograms
Stored procedures provide an efficient way of the implementing business logic
of your PHP/Oracle application at the database server level, thus increasing
application performance, scalability, and security. Specifically, by employing
stored subprograms in your PHP/Oracle applications, you can achieve the
following benefits:

Performance improvements: Since subprograms are stored inside a
database in a compiled form, when called, they are immediately loaded
into the shared memory of a database instance and can be shared by many
applications. Another thing to note here is that using stored subprograms can
help you reduce network overhead. You need to make only a single call over
the network to run a stored subprogram that may encapsulate a series of SQL
statements to be processed on the database server.
Reusability: Using stored subprograms can help you to achieve a consistent
implementation of business logic across applications. For example, you
might create a set of stored subprograms to perform the most common tasks
faced by your applications.
Maintainability: Using stored subprograms makes maintenance and
enhancement easier. Although you can create a reference to a stored
subprogram from PHP code as well as from within other stored
subprograms, it doesn't automatically mean that you have to modify the
calling code once the stored subprogram has been modified. A well-designed
application assumes that changing the internals of a certain subprogram will
not require modifying the code calling it.
Security: Stored subprograms can be used as a security mechanism. For
example, you can implement a stored function that will manipulate data
stored in a database table. Then, you grant users privileges to execute this
function, instead of granting them privileges to issue SQL statements against
that table directly.

•

•

•

•

Data Processing

[76]

As you no doubt have realized, stored subprograms provide a powerful way of
implementing the business logic of your application inside a database, enabling
you to create reliable, maintainable, and reusable PHP/Oracle solutions. In general,
when developing a PHP/Oracle application, you should use stored subprograms
whenever possible.

An Example of When to Use a Stored
Subprogram
As stated earlier, stored subprograms can be especially useful when you deal with
a task that is implemented as a series of SQL statements. The following example
is intended to demonstrate a situation in which you might want to create a stored
subprogram to perform two SQL statements with a single call.

Suppose you need to develop a PHP/Oracle application accessing sensitive data
stored in the database. In such situation, you'll no doubt want to implement a secure
mechanism preventing unauthorized access to sensitive information. One common
approach to this task is to make sure that users log in, and determine their rights
before they can access certain information. To implement this functionality, you
might perform the following steps:

1.	 Create a new database schema, in which you create a table, say, accounts,
to store users' accounts, and another table, say, logons, to store information
about users' logons.

2.	 Build the PHP code that will check a user/password combination against
the accounts table and establish a new session, setting a session variable to
the user name, upon successful authentication. Also, build the code that will
insert a row into the logons table once a user is authenticated.

3.	 Implement a security mechanism inside the database that will allow only
authenticated users to access the data.

While the most common ways to implement step 3 are discussed in Chapter 6
Security, this section discusses how to implement steps 1 and 2. The main focus
here is on implementing step 2. In particular, you'll learn how to implement an
authentication system in PHP and then how to move the authentication logic
implemented in PHP to the database, accomplishing that by creating a PL/SQL
stored subprogram.

Before you proceed with the procedures outlined in step 2 you need to accomplish
a series of tasks outlined in step 1. Specifically, you need to create a new database
schema to work with and then create the accounts and logons database tables
in that schema. You can perform all these tasks from SQL*Plus by issuing the
following statements:

Chapter 3

[77]

CONN /AS sysdba

CREATE USER usr IDENTIFIED BY usr;

GRANT connect, resource TO usr;

CONN usr/usr

CREATE TABLE accounts (usr_id VARCHAR2(10) PRIMARY KEY,
 full_name VARCHAR2(20),
 pswd VARCHAR2(10) NOT NULL
);

CREATE TABLE logons (usr_id VARCHAR2(10) REFERENCES accounts,
 log_time DATE
);

CREATE INDEX ind_usr_id ON logons(usr_id);

INSERT INTO accounts VALUES ('bob', 'Bob Robinson', 'pswd');

COMMIT;

By issuing the above SQL statements, you create the usr user and then grant the
privileges to that user that will be required to work with the database object stored in
the usr/usr schema.

Next, you create the accounts table and then define a primary key on the usr_id
column of that table to guarantee that the value of the usr_id field for each row is
unique within the table and is not null.

When creating the logons table, you define a foreign key on the usr_id column that
references the primary key on the usr_id column of the accounts table to guarantee
that each row in the logons table will be assigned to a row in the accounts table.

Then, you create an index on the usr_id foreign key column of the logons table
to speed up queries issued against that table. Oracle recommends that you define
indexes on the foreign keys to have faster access to data.

Next, you insert a row into the accounts table, since you need to have at least one
row in the accounts table to be able to test your authentication system.

When issued, the COMMIT statement ends the current transaction, making the changes
made by the data modification language (DML) operations within the transaction
permanent. In this example, you issue the COMMIT statement to make the changes
made by the INSERT action performed above permanent.

Data Processing

[78]

You don't need to issue a COMMIT statement to make the changes made
by data definition language (DDL) operations like CREATE TABLE
permanent. In such cases, Oracle commits changes implicitly, upon
completion of a single DDL operation. For further discussion,
see Chapter 4 Transactions.

Once you have performed the statements discussed above, you can proceed to
implement an authentication system in PHP, as outlined in step 2 at the beginning of
this section. For simplicity, you might build a single PHP function implementing the
required functionality, as shown in the following script:

<?php
 //File: userLogin.php
 function login($usr, $pswd) {
 if(!$rsConnection = oci_connect('usr', 'usr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);
 };
 $query = "SELECT full_name FROM accounts
 WHERE usr_id = :userid AND pswd = :passwd";
 $stmt = oci_parse($rsConnection,$query);
 oci_bind_by_name($stmt, ':userid', $usr);
 oci_bind_by_name($stmt, ':passwd', $pswd);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' . $err['message'], E_USER_ERROR);
 }
 if ($arr = oci_fetch_array($stmt, OCI_ASSOC)) {
 print "Hello, ".$arr['FULL_NAME'];
 session_start();
 $_SESSION['user']=$usr;
 } else {
 print "Wrong user/password combination";
 return false;
 }
 oci_free_statement($stmt);
 $query = "INSERT INTO logons VALUES (:userid, SYSDATE)";
 $stmt = oci_parse($rsConnection,$query);
 oci_bind_by_name($stmt, ':userid', $usr);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Insertion failed: ' . $err['message'],
 E_USER_WARNING);

Chapter 3

[79]

 }
 return true;
 }
?>

In the previous script, you define the query that is used to check if a given user
account exists in the accounts table.

Once a query is parsed, you bind PHP variables to the placeholders used in that
query. In this particular example, you bind the PHP variables representing the user
name and password to the placeholders used in the query.

Upon successful authentication, you print a hello message including the full name of
the authenticated user, and also establish a new session. In this example, you create a
new session variable and set it to the ID of the authenticated user.

Then, assuming successful authentication, you insert a new row into the
logons table.

As you can see, the login function shown in the script opposite takes the user name
and password as parameters and validates the user against the database. Upon
successful authentication, it establishes a new session and sets the session variable
user to the name of the authenticated user, so that it can be used in the other
application scripts. While Chapter 6 Security discusses in detail how PHP session
variables can be used in conjunction with a security mechanism implemented inside
the database, the testLogin.php script shown below simply checks whether the
login function works as expected.

<?php
 //File: testLogin.php
 require_once "userLogin.php";
 if (login('bob','pswd')) {
 if (isset($_SESSION['user'])) {
 print '<p>'.'Your account name: '.$_SESSION['user'].'</p>';
 } else {
 print '<p>'.'Session variable representing the account
 name is not set'.'</p>';
 }
 }else {
 print '<p>'.'Authentication failed'.'</p>';
 }
?>

Data Processing

[80]

The testLogin.php script should produce the following output:

Hello, Bob Robinson
Your account name: bob

Now that you have an authentication system implemented in PHP, it's time to
look at how you can move the authentication logic from PHP to the database, thus
achieving the benefits of moving data processing inside the database, discussed in
the Advantages of Stored Subprograms section earlier in this chapter. The following
section discusses how the authentication logic implemented in the login function
discussed here might be implemented in a PL/SQL subprogram instead.

Creating Stored Subprograms
Turning back to the login function discussed in the preceding section, you may
notice that it issues two SQL statements against the database. The first statement is a
query issued against the accounts table. The second is an INSERT statement issued
against the logons table. In this situation, it would be a good idea to create a PL/
SQL stored subprogram that will encapsulate both these statements, thus moving the
data processing from PHP to the database.

When implementing a stored subprogram, you have two choices—you
can either create a function or procedure. Both stored procedures and
stored functions are commonly referred to as stored procedures. In fact, a
procedure differs from a function only in that a function always returns a
single value to the caller, while a procedure does not.

The following SQL statement shows how to create a PL/SQL function that
will authenticate users against the database, returning true upon successful
authentication and false otherwise. You can create the PL/SQL function shown
below in SQL*Plus, when connected as usr/usr:

CREATE OR REPLACE FUNCTION auth(user IN VARCHAR2, password IN
VARCHAR2, fullname OUT VARCHAR2, msg OUT VARCHAR2)
RETURN NUMBER AS
BEGIN
 BEGIN
 SELECT full_name INTO fullname FROM accounts
 WHERE usr_id=user AND pswd=password;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 msg:='Wrong user/password combination';
 RETURN 0;
 END;

Chapter 3

[81]

 BEGIN
 INSERT INTO logons VALUES(user, SYSDATE);
 COMMIT;
 EXCEPTION
 WHEN OTHERS THEN
 msg:='Failed to insert a row into the logons table';
 RETURN 1;
 END;
 RETURN 1;
END;
/

In the above code, note the use of IN and OUT parameters in the parameter list of the
function specification. You pass user and password as IN parameters to the function
because you don't need to change the values of these parameters in the function. In
contrast, you specify fullname and msg as OUT parameters because you compute
their values in the function and want to make these values available to the caller of
the function.

Besides IN and OUT parameters, PL/SQL also lets you specify IN OUT
parameters in the parameter list of a subprogram specification. You use
IN OUT parameters when you need to pass initial values to a subprogram
and then return updated values to the calling code.

In this example, the executable part of the function consists of two blocks. In the
first block, you issue a query against the accounts table, looking for the row
corresponding to the specified user/password combination. If the query fails to find
this row, PL/SQL raises a NO_DATA_FOUND exception and transfers control to the
exception-handling part of the block, in which you set the value of the msg variable
to a string containing the message saying that the given user/password combination
is wrong, and then you complete the execution of the function and return false to
the caller.

The second block is performed only if the query in the first block has returned a row,
which means that the authentication has been successful. Here, you simply create a
new record in the logons table. This record contains two fields, namely user_id
and log_time. The former contains the ID of the authenticated user, as specified
in the accounts table. The latter contains the date and time when the
authentication occurred.

Finally, note the use of the single slash (/) on the last line of the above statement. It
activates the CREATE FUNCTION statement. You must use the same technique when
creating a stored procedure with the CREATE PROCEDURE statement.

Data Processing

[82]

Calling Stored Subprograms from PHP
Now that you have the auth PL/SQL stored function created, you can call it from
PHP in much the same way you call SQL statements. The following script shows
how you can modify the login function originally used in the userLogin.php script
discussed in the An Example of When to Use a Stored Subprogram section earlier,
so that it calls the auth stored function, which implements the application's
authentication logic.

<?php
 //File: userLogin.php
 function login($usr, $pswd) {
 if(!$rsConnection = oci_connect('usr', 'usr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);
 };
 $query = "BEGIN :rslt:=auth(:usrid, :pwd, :fullname, :msg); END;";
 $stmt = oci_parse($rsConnection,$query);
 oci_bind_by_name($stmt, ':rslt', $func_rslt,1);
 oci_bind_by_name($stmt, ':usrid', $usr, 10);
 oci_bind_by_name($stmt, ':pwd', $pswd, 10);
 oci_bind_by_name($stmt, ':fullname', $full_name, 20);
 oci_bind_by_name($stmt, ':msg', $err_msg, 100);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Function call failed: ' .
 $err['message'], E_USER_ERROR);
 }
 if ($func_rslt) {
 print "Hello, ".$full_name;
 session_start();
 $_SESSION['user']=$usr;
 } else {
 print $err_msg;
 return false;
 }
 if (isset($err_msg)){
 print '<p><i>'.'Warning: '.$err_msg.'</i></p>';
 }
 return true;
 }
?>

Chapter 3

[83]

In the previous script, note the use of placeholders in the PL/SQL block to be
executed. Whether you are dealing with an IN, OUT, or IN OUT parameter, or the
return value of a PL/SQL stored function, you must use a placeholder that will be
then bound to a PHP variable, by using the oci_bind_by_name function.

It is important to realize that the oci_bind_by_name function doesn't let you specify
whether the bind variable is used for input or output—this is determined at run time.
That is why you bind all the PHP variables to the Oracle placeholders in the same
way, regardless of whether you are dealing with an IN, OUT, or IN OUT parameter, or
use a bind variable to obtain the return value of the auth function.

Then, you check whether the auth function has returned 0 or 1. The former means
that the authentication failed, while the latter indicates successful authentication.

Upon successful authentication, you print a welcome message and set the user
session variable to the ID of the authenticated user. If the authentication fails, you
print an error message generated in the auth stored function and then stop the
execution of the login PHP function, returning false to the calling code.

If you look through the code of the auth stored function shown in the preceding
section, you may notice that this function still returns true upon failure to insert
a new record into the logons table. However, in this case, it sets the msg output
parameter to the string containing a warning message. That is why you check to
see whether the err_msg variable in the logon function—which is bound to the msg
output parameter of the auth stored function—is set up, regardless of whether the
auth stored function returns true or false.

Using Triggers
In some situations, you may need to create a stored subprogram that will be invoked
implicitly when a certain action occurs. For example, you might need to create a
procedure that will be invoked whenever a certain DML operation (INSERT, UPDATE,
or DELETE) is issued against a given table or view. You can also choose a combination
of DML operations, each of which will fire the procedure. To handle such tasks, the
Oracle database offers triggers.

A database trigger is an event-driven stored subprogram that is invoked
automatically in response to a certain event.

The following sections discuss how to create a trigger on a database table. This is the
most common use of triggers. In chapter 6 Security, you'll see an example of a system
trigger created on the LOGON event, to be fired whenever a user is connected to
the database.

Data Processing

[84]

For more information on triggers, see Oracle documentation:
chapter Coding Triggers in the Oracle Database Application Developer's
Guide–Fundamentals book.

Creating Triggers
The simplest way to see how Oracle database triggers work is with the help of an
example. The following example shows how you might create a BEFORE INSERT OR
UPDATE trigger on the accounts table used in the preceding examples in this chapter.

CREATE OR REPLACE TRIGGER accounts_trigger
 BEFORE INSERT OR UPDATE OF usr_id
 ON accounts
 FOR EACH ROW
DECLARE
 not_allowed_symbol EXCEPTION;
BEGIN
 IF REGEXP_INSTR(:new.usr_id,'[[:digit:]]{1}')=1 THEN
 RAISE not_allowed_symbol;
 END IF;
 EXCEPTION
 WHEN not_allowed_symbol
 THEN
 RAISE_APPLICATION_ERROR (-20500,
 'This record cannot be inserted or updated because usr_id
begins with a digit');
END;
/

In the previous example, you created a trigger that will be invoked when any INSERT
or UPDATE operation—which affects the usr_id column in the accounts table—is
performed. You use the BEFORE keyword to handle the new values of the row fields
before they are written to the disk. You use the FOR EACH ROW clause to be able to
examine the data for each row that is affected.

In the DECLARE block of the trigger, you define a user-defined exception
not_allowed_symbol.

Then, with the IF statement, you simply check if the value of the usr_id field of the
affected row begins with a digit. If so, you raise a not_allowed_symbol exception
and pass control to the not_allowed_symbol exception handler.

Chapter 3

[85]

In the not_allowed_symbol exception handler, you call the
RAISE_APPLICATION_ERROR function to stop the execution of the current
INSERT or UPDATE statement and return the user-defined message to the caller.

Finally, you define a single slash (/) on the last line of the trigger to activate the
CREATE TRIGGER statement.

Firing Triggers
To make sure that the accounts_trigger trigger discussed in the preceding section
works as expected, you may connect to the database as usr/usr via SQL*Plus and
then issue the following INSERT statement:

INSERT INTO accounts VALUES('2tom','Tom Johnson','pswd');

Since you are trying to insert a row whose usr_id field contains a value that begins
with a digit, the accounts_trigger trigger will fire. As a result, you should see the
following error message:

ERROR at line 1:
ORA-20500: This record cannot be inserted or updated because usr_id
begins with a digit
ORA-06512: at "USR.ACCOUNTS_TRIGGER", line 10
ORA-04088: error during execution of trigger 'USR.ACCOUNTS_TRIGGER'

However, you should have no problem when attempting to perform the following
INSERT statement:

INSERT INTO accounts VALUES('tom','Tom Johnson','pswd');

1 row created.

Calling Stored Procedures from a Trigger
The best thing about triggers is that they let you call stored procedures and
functions. Suppose you already have a stored procedure or procedures that
implement the functionality that you need to implement in the trigger. In such cases,
it is always a good idea to call an existing stored procedure or procedures from the
trigger, rather than implementing the required functionality from scratch.

Going back to the accounts_trigger trigger discussed in the Creating Triggers
section earlier, you might, for example, move the code that validates the ID of a user
to a single PL/SQL function, thus increasing reusability and maintainability. The
following example shows how you might create such a function using the CREATE OR
REPLACE FUNCTION statement. To perform the statement shown overleaf, you must
connect to the database as usr/usr.

Data Processing

[86]

CREATE OR REPLACE FUNCTION checkUserid(usrid IN VARCHAR2) RETURN
BOOLEAN AS
BEGIN
 IF REGEXP_INSTR(usrid,'[[:digit:]]{1}')=1 THEN
 RETURN true;
 END IF;
 RETURN false;
END;
/

Once you have the checkUserid function created, you can modify the
accounts_trigger trigger as follows:

CREATE OR REPLACE TRIGGER accounts_trigger
 BEFORE INSERT OR UPDATE OF usr_id
 ON accounts
 FOR EACH ROW
DECLARE
 not_allowed_symbol EXCEPTION;
BEGIN
 IF checkUserid(:new.usr_id) THEN
 RAISE not_allowed_symbol;
 END IF;
 EXCEPTION
 WHEN not_allowed_symbol
 THEN
 RAISE_APPLICATION_ERROR (-20500,
 'This record cannot be inserted or updated because usr_id
 begins with a digit');
END;
/

The most important thing to note here is that the changes made to the
accounts_trigger trigger did not affect its functionality—it will still be fired
when any INSERT or UPDATE operation affecting the usr_id column in the accounts
table is performed, preventing those modifications where the new value of usr_id
begins with a digit.

Chapter 3

[87]

Summary
Whether you are developing a new PHP/Oracle application or redesigning an
existing one, probably the first decision you have to make is where you should
implement the key business logic of the application. While making this decision, you
should bear in mind that implementing the key business logic of your application
inside the database can significantly enhance the performance and scalability of
your application.

In this chapter, you examined the most common ways to implement business logic of
a PHP/Oracle application inside an Oracle database. You learned that in some cases
you don't even need to write PL/SQL code to move the key business logic of your
application to the database. Instead, you need to develop a sophisticated SQL query
that will return the required data from the database, so that no further processing of
that data is required.

Although Oracle SQL provides a powerful way to access and manipulate database
data, it lacks some important features normally found in procedural programming
languages. To handle tasks where you need to specify the sequence of steps to
be performed, Oracle offers PL/SQL—a procedural language that lets you create
procedural code encapsulating SQL statements and control-of-flow statements
grouped together and processed with a single call. This chapter provided a series of
examples demonstrating how to create stored subprograms, including triggers, with
PL/SQL.

By this point, you should be familiar with the ways of implementing the key
business logic of a PHP/Oracle application inside an Oracle database and have
a good hand on them. The next chapter examines how to build transactional
applications with PHP and Oracle, providing examples that illustrate how you can
benefit from having the key business logic of a transactional PHP/Oracle application
implemented inside the database.

Transactions
To guarantee that the data you are working on is always correct, you have to use
transactions. In a nutshell, transactions provide a mechanism that makes it possible
for you to safely modify database data, bringing the database from one consistent
state to another.

A classic example of transactions in action involves banking operations such as
transferring money from one bank account to another. Say you need to transfer
money from a savings account to a checking account. To accomplish this operation,
you have to at least perform the following two steps: decrement the savings account
and increment the checking account. It is obvious that in this situation it is important
to treat both the operations as a single unit of work, to maintain the balance in the
accounts. So, neither of the operations can be performed separately—either both
of them should be complete, or neither of them—you must ensure that either both
the operations are completed successfully or both are not done. In this situation, a
transaction is exactly what you need.

This chapter discusses the various mechanisms that can be used to perform
transactions with PHP and Oracle. It begins with a brief overview of transactions,
which is important in understanding how transactions work in general. The chapter
then explains in detail how to make use of transactions in PHP/Oracle applications
in a number of different ways.

Overview of Transactions
Before you can start building your own transactional PHP/Oracle applications,
you have to familiarize yourself with the basics of transactions and get an idea of
how they can be performed with PHP and Oracle. This section takes a brief look at
transactions and covers the following:

Transactions

[90]

What transactions are and why you may want to use them
How to perform transactions with PHP and Oracle
How to organize a PHP/Oracle application to effectively control transactions

Since the above topics may be better understood with the help of examples, this
section provides a couple of simple examples on how transactions could be used in
PHP/Oracle applications.

What is a Transaction?
In general terms, a transaction is an action or series of actions that take the system
from one consistent state to another. From the point of view of a developer who
builds database-driven applications, a transaction can be thought of as an indivisible
set of operations that brings the database from one consistent state to another.

A transaction is a logical unit of work containing one or more SQL
statements that can be either all committed or all rolled back.

This means that all the SQL statements within a transaction must complete
successfully so that the entire transaction can be committed, making the changes
made by all DML statements in the transaction permanent. Graphically, it might look
like the following figure:

SQL statement 1
...

SQL statement N

COMMIT

Data state 1

Data state 2

As you can see from the figure, the SQL statements composing the transaction take
the data on which they operate from one consistent state to another. The transaction
must be committed so that its effects can be applied to the database, thus bringing
the data to the next consistent state. Otherwise, all the changes made by the SQL
statements within the transaction are rolled back, thus bringing the data into the
state that it was before the transaction took place.

•
•
•

Chapter 4

[91]

If a severe error, such as a hardware failure, occurs during the transaction execution
then the effects of the transaction are automatically rolled back. However, in
some situations, you might want to manually roll back a transaction that has been
successfully completed (but not yet committed), depending on a condition you
specify. The following figure illustrates it graphically:

SQL statement 1
...

SQL statement N

COMMIT

ROLLBACK

IF condition THEN

ELSE

Data state 1

Data state 2

As you can see from the diagram, once all the statements composing the transaction
have been successfully completed, you have the choice of either committing the
transaction or rolling it back.

What are ACID Rules?
ACID is an acronym for Atomicity, Consistency, Isolation, and Durability. Any
DBMS (database management system) that supports transactions must conform to
the above characteristics. These are summarized in the following table:

Property Description
Atomicity A transaction is an atomic unit of work. This means that either

all the operations within a transaction are performed or none of
them are performed.

Consistency A transaction brings the database from one consistent state to
another. This means that no integrity constraints must be violated
during the transaction execution. If a transaction violates any data
integrity rule, then it is rolled back.

Transactions

[92]

Property Description
Isolation Changes made by the operations within a transaction should not

be visible to other simultaneous transactions until the transaction
has committed.

Durability Once the transaction is committed, all of the modifications
made in the transaction become permanent and visible to
other transactions. Durability guaranties that if a transaction is
successfully committed it will not be undone in the case of
system failure.

The Oracle database supports all of the ACID properties listed in the table. So, when
developing transactional applications on top of Oracle, you don't need to design
custom schemas that will guarantee the consistency and integrity of your data;
instead, it is always better to use Oracle transactions, thus letting the database worry
about these problems.

How Transactions Work in Oracle
This section provides a quick overview of Oracle transactions. For detailed
information on how transactions work in Oracle see Oracle documentation: chapter
Transaction Management in the Oracle Database Concepts manual.

In Oracle, you don't begin a transaction explicitly—it begins implicitly when you
perform the first executable SQL statement. However, there are several situations
that cause a transaction to end. The following table lists these situations:

Situation Description
A COMMIT statement
is issued

When issued, a COMMIT statement ends the current transaction,
making the changes made by the SQL statements within this
transaction permanent.

A ROLLBACK statement
is issued

When issued, a ROLLBACK statement ends the current transaction,
rolling back all the changes made by the SQL statements within
the transaction.

A DDL statement is
issued

If a DDL statement is issued, Oracle first commits the current
transaction and then performs and commits the DDL statement in
a new, single statement transaction.

A connection is closed When a connection is closed, Oracle automatically commits the
current transaction on that connection.

Execution of the program
terminates abnormally

If execution of the program terminates abnormally, Oracle
automatically rolls back the current transaction.

As you can see in the table, a transaction is always either committed or rolled back,
whether or not you commit it or roll it back explicitly.

Chapter 4

[93]

However, note that it is always a good practice to explicitly commit or roll back
transactions, rather than relying on the default behavior of Oracle. The fact is that the
default transactional behavior of an application may vary depending on the tool the
application uses to connect to Oracle.

For example, when it comes to PHP scripts that interact with Oracle via the OCI8
extension, you cannot rely on the fact that the active transaction on a connection will
be automatically committed when you close that connection. In that case, the active
transaction is rolled back when you close the connection, or when the script ends.

In contrast, if you disconnect from the database in SQL*Plus using a DISCONNECT
statement, or connect as another user using a CONNECT statement, or close the
SQL*Plus session with the help of the EXIT SQL*Plus command, then the active
transaction on the connection will be committed.

To prevent unexpected behavior in applications, it is always a good idea
to explicitly commit or roll back a transaction rather than relying on the
default transactional behavior of your application.

Using Transactions in PHP/Oracle
Applications
As mentioned in the preceding section, in Oracle you can explicitly either commit
a transaction or roll it back, using the COMMIT or ROLLBACK statements respectively.
To perform these statements from PHP code, you don't need to use the oci_parse
and oci_execute functions as you do it when it comes to performing other SQL
statements, such as SELECT or INSERT. Instead, you use the oci_commit and
oci_rollback OCI8 functions.

The following PHP script demonstrates how to explicitly commit or rollback a
transaction from PHP when dealing with DML operations. What this script does is
attempt to update those records in the employees table that represent employees
whose job ID is ST_MAN (Stock Manager), increasing their salaries by 10 percent. If it
fails to update one or more of these rows, then the entire transaction is rolled back,
setting the updated salary fields back to their original values. The following steps
summarize the process:

Step 1: Issues a query against the employees table to obtain the number of
rows representing stock managers.
Step 2: Opens a transaction and performs the UPDATE operation against the
employees table, attempting to increase stock managers' salaries by
10 percent.

•

•

Transactions

[94]

Step 3: Rolls back the transaction if the number of records affected by the
UPDATE operation is less than the number of all the records representing stock
managers. Otherwise, it commits the transaction.

Now, let's look at the code for the script to see how the above steps can be
implemented in PHP, using the OCI8 functions.

<?php
 //File: trans.php
 if(!$dbConn = oci_connect('hr', 'hr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);
 };
 $query = "SELECT count(*) num_rows FROM employees
 WHERE job_id='ST_MAN'";
 $stmt = oci_parse($dbConn,$query);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' . $err['message'], E_USER_ERROR);
 };
 oci_fetch($stmt);
 $numrows = oci_result($stmt, 'NUM_ROWS');
 oci_free_statement($stmt);
 $query = "UPDATE employees e

 SET salary = salary*1.1

 WHERE e.job_id='ST_MAN' AND salary*1.1

 BETWEEN (SELECT min_salary FROM jobs j WHERE j.job_id=e.job_id)

 AND (SELECT max_salary FROM jobs j WHERE j.job_id=e.job_id)";

 $stmt = oci_parse($dbConn,$query);
 if (!oci_execute($stmt, OCI_DEFAULT)) {
 $err = oci_error($stmt);
 trigger_error('Update failed: ' . $err['message'], E_USER_ERROR);
 }
 $updrows = oci_num_rows($stmt);

 print "Tried to update ".$numrows." rows.
";
 print "Managed to update ".$updrows." rows.
";
 if ($updrows<$numrows) {

 if (!oci_rollback($dbConn)) {

 $err = oci_error($dbConn);
 trigger_error('Failed to rollback transaction:
 '.$err['message'], E_USER_ERROR);
 }
 print "Transaction is rolled back";

•

Chapter 4

[95]

 } else {
 if (!oci_commit($dbConn)) {
 $err = oci_error($dbConn);
 trigger_error('Failed to commit transaction:
 '.$err['message'], E_USER_ERROR);
 }
 print "Transaction is committed";
 }
?>

In the above script, you define the query that will return the number of records
representing stock managers. In the select list of the query, you use the count
function to obtain the number of rows matching the criteria specified in the WHERE
clause of the query. In this particular example, count(*) will return the number of
records representing the employees whose job_id is ST_MAN.

In this example, you obtain the number of records representing stock managers from
the result buffer, using the oci_fetch/oci_result function combination. You don't
need to use a loop here because the query returns a single row containing only one
field, namely num_rows.

Next, you perform the query that updates the salary column in the employees
table, increasing salaries of stock managers by 10%. It updates the salary only if the
value of the new salary is still between the minimum and maximum salary specified
for the stock manager in the jobs table.

In this example, you execute the UPDATE statement in the OCI_DEFAULT execution
mode. Doing so opens a transaction, which will allow you to explicitly commit or roll
back the changes made by the UPDATE operation later in the script. It is interesting
to note that the default execution mode is OCI_COMMIT_ON_SUCCESS in which the
statement is committed automatically upon successful execution.

Oracle documentation states that applications should always explicitly
commit or roll back transactions before program termination. However,
when using PHP OCI8 extension, you don't have to do so if you execute
SQL statements in the OCI_COMMIT_ON_SUCCESS mode. In that mode, an
SQL statement is committed automatically upon successful execution (just
as if you explicitly committed immediately after executing the statement).
If a severe error prevents the successful execution of an SQL statement,
Oracle automatically rolls back all the changes made by that statement.

In the above script, you call the oci_num_rows function to get the number of
rows affected by the UPDATE operation. Once you know the number of records
representing stock managers and how many of them were actually updated, you can
compare these numbers to find out if they are equal.

Transactions

[96]

In this example, you simply roll back the transaction if the number of updated rows
is less than the total number of records representing stock managers. This makes
sense given that you don't want to have some stock managers' records updated and
others not.

Having the changes rolled back in this situation is crucial—this makes it possible
for you to make use of another script that will be able to update each stock manager
record in a proper way. For example, in a real-world situation, you would probably
want to set the salary of a stock manager to the maximum allowed value if a 10
percent raise exceeds that value.

If the UPDATE operation has affected all of the records representing stock managers,
you commit the transaction with the help of the oci_commit function, making the
changes made permanent.

Another thing to note here is the error handling mechanism used. If an error occurs
during the execution of oci_rollback or oci_commit, you pass the connection
identifier as the parameter to the oci_error function, which returns the error
message describing the error that has occurred.

Structuring a PHP/Oracle Application to
Control Transactions
If you recall from Chapter 3, it is generally a good idea to have the key business logic
of a PHP/Oracle application implemented inside the database. As discussed in that
chapter, in simple cases, you don't even need to write PL/SQL code to move the data
processing to the data—instead, you can design a complex SQL query that, when
issued, instructs the database server to perform all the necessary data processing.

Turning back to the example discussed in the preceding section, you might modify
the UPDATE statement used there so that it updates the records representing stock
managers only if the new salary of each and every stock manager is still between the
minimum and maximum salary specified for the stock manager in the jobs table,
thus eliminating the need to perform a separate query that returns the number of
stock manager records satisfying the above condition, and, therefore, reducing the
amount of code that must be written to implement the desired behavior.

In essence, this new UPDATE combines all the three steps outlined at the beginning
of the preceding section within a single statement. You don't even need now to
explicitly commit or roll back the UPDATE operation. Instead, you can execute that
UPDATE statement in the OCI_COMMIT_ON_SUCCESS mode, which guarantees that
the operation is automatically committed upon successful execution, or rolled
back otherwise.

Chapter 4

[97]

The following script shows the new UPDATE statement in action:

<?php
 //File: transQuery.php
 if(!$dbConn = oci_connect('hr', 'hr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);
 };
 $jobno = 'ST_MAN';
 $query = "
 UPDATE (SELECT salary, job_id FROM employees WHERE

 (SELECT count(*) FROM employees WHERE job_id=:jobid AND

 salary*1.1 BETWEEN (SELECT min_salary FROM jobs WHERE

 job_id=:jobid) AND

 (SELECT max_salary FROM jobs WHERE

 job_id=:jobid)) IN

 (SELECT count(*) FROM employees WHERE job_id=:jobid)

) emp

 SET emp.salary = salary*1.1

 WHERE emp.job_id=:jobid";

 $stmt = oci_parse($dbConn,$query);
 oci_bind_by_name($stmt, ':jobid', $jobno);
 if (!oci_execute($stmt, OCI_COMMIT_ON_SUCCESS)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' . $err['message'], E_USER_ERROR);
 };
 $updrows = oci_num_rows($stmt);

 if ($updrows>0) {

 print "Transaction is committed";

 } else {

 print "Transaction is rolled back";

 }

?>

Here, you define the UPDATE statement that will update all the records representing
stock managers, increasing their salaries by 10%, provided that each and every new
salary doesn't exceed the maximum salary defined for the stock manager in the jobs
table. If at least one new salary exceeds the maximum salary, the UPDATE statement
will update no rows.

Transactions

[98]

To achieve this functionality, rather than specifying the employees table in the
dml_table_expression_clause of the UPDATE statement, you specify the SELECT
statement that returns either all the records from the employees table or none of
them, depending on whether or not all the records that satisfy the condition in the
WHERE clause of the UPDATE statement (all records representing stock managers, in
this case) can be updated so that the new salary in each of the records being updated
does not exceed the maximum salary.

This SELECT statement is referred to as an inline view. Unlike regular
views discussed in the Taking Advantage of Views section in Chapter 3,
inline views are not database schema objects but subqueries that can be
referenced only within their containing statements, using aliases.

In this example, using the emp inline view in the UPDATE statement eliminates
the need to separately perform the query that returns the number of records
representing stock managers and then figure out whether that number is equal to
the number of rows actually affected by the UPDATE statement. Now the script has
to perform only one SQL statement to get the job done, thus reducing the script
execution time significantly.

The above is a good example of how you can benefit from moving the
key business logic of a PHP/Oracle application from PHP to Oracle. In
this example, rather than using two separate statements and analyzing
their results in PHP, you employ only one SQL statement that makes the
database server perform all the required data processing.

Also note how binding is performed in this example. You bind the jobno PHP
variable to the jobid placeholder used in the UPDATE statement. It is interesting to
note that the jobid placeholder appears in the statement more than one time.

Unlike the previous example where the UPDATE statement was executed in the
OCI_DEFAULT mode, which explicitly opens a transaction, in this example you
execute the statement in the OCI_COMMIT_ON_SUCCESS mode, thus committing the
UPDATE operation automatically upon successful execution.

As mentioned earlier, OCI_COMMIT_ON_SUCCESS is the default
execution mode. This means that you do not need to explicitly specify it
when calling oci_execute. In this example, it is specified explicitly just
to emphasize the point.

Chapter 4

[99]

In the previous example, you still use the oci_num_rows function to obtain the
number of rows affected by the UPDATE statement. However, this time you don't
need to compare that number with the total number of records representing stock
managers, as you did it in the preceding example. All you need to find out here is
whether or not the number of rows affected by the UPDATE statement is greater than 0.

If the number of updated rows is greater than 0, this automatically means that the
UPDATE operation has modified all the records representing stock managers and has
been successfully committed. In this case, all you need to do is output a message
informing the user that the transaction is committed.

If the number of updated rows is equal to 0, this means that the UPDATE operation
did not affect any rows. In this case, all you have to do is to output a message
informing the user that the transaction is rolled back. However, in reality the
transaction has committed but no rows were affected by the UPDATE operation.

Developing Transactional Code
So far, you have seen a few simple examples that showed the basics of how Oracle
transactions work in PHP. This section takes you through more complex examples of
using transactions in PHP/Oracle applications.

Controlling Transactions from PHP
As you learned from the examples discussed earlier in this chapter, the
oci_execute function allows you to execute an SQL statement in one of two
modes—OCI_COMMIT_ON_SUCCESS mode and OCI_DEFAULT mode.

While statements are automatically committed when run in the OCI_COMMIT_ON_
SUCCESS mode, you have to explicitly call oci_commit or oci_rollback to commit
or roll back the transaction respectively, when specifying the OCI_DEFAULT mode.

However, it is interesting to note that a transaction created when a statement is
executed in the OCI_DEFAULT mode may still be committed without calling oci_
commit. To accomplish this, all you need to do is to execute a subsequent statement
in the OCI_COMMIT_ON_SUCCESS mode.

The above technique can be applied when you're grouping two or more statements
into a single transaction. To guarantee that the entire transaction will be rolled back
when the execution of one of the statements within the transaction fails or you get
results telling you that the transaction must be undone, you may simply stop the
script execution by calling, say, the trigger_error function with E_USER_ERROR
as the second parameter, thus rolling back the transaction without calling
oci_rollback.

Transactions

[100]

You may be wondering why we need a discussion on how to implicitly end
an Oracle transaction from PHP, rather than explicitly calling oci_commit or
oci_rollback. After all, the latter is the recommended method for ending
transactions. Well, the main purpose of this discussion is to give you a better
understanding of how Oracle transactions work in PHP scripts that interact with
the database via the OCI8 extension.

The example discussed in this section uses the data structures that were defined in
the An Example of When to Use a Stored Subprogram section in Chapter 3. However,
before you proceed with the example, you need to alter these data structures as
shown below. You can perform the SQL statements shown in the following listing
via SQL*Plus when connected as usr/usr.

ALTER TABLE accounts
 ADD (num_logons INT);
UPDATE accounts
 SET num_logons = 0;
COMMIT;
DELETE logons;
ALTER TABLE logons
 ADD CONSTRAINT log_time_day
 CHECK (RTRIM(TO_CHAR(log_time, 'Day'))
 NOT IN ('Saturday', 'Sunday'));

By issuing the ALTER TABLE statement in the above example, you add a
num_logons column of INT to the accounts table. This column will accumulate
the number of successful logons for each user account. For that, you will have
to increase the number of logons stored in the num_logons field once the user is
successfully authenticated.

Of course, you can still do without it, querying the logons table like this:

SELECT count(*) FROM logons WHERE usr_id='bob';

However, as the number of logons grows, the above would be a very expensive
operation just to know how many logons a given user has performed.

Once you have added the num_logons column to the accounts table, you have to set
the initial value for that column to 0. Alternatively, you might have issued the ALTER
TABLE statement, using the DEFAULT clause for the num_logons column as follows:

ALTER TABLE accounts
 ADD (num_logons INT DEFAULT 0);

In this example, you explicitly commit the transaction to make the changes made by
the UPDATE operation permanent.

Chapter 4

[101]

In the next step you delete all the rows in the logons table. This step is required to
guarantee that the check constraint, which will be defined in the next step, is not
violated. In this example, you may omit this step if the logons table contains no
records created on Saturday or Sunday, and so the check constraint defined in the
next step will not be violated. Otherwise, when trying to perform the ALTER TABLE,
you will receive the following error message:

ERROR at line 2:
ORA-02293: cannot validate (USR.LOG_TIME_DAY) - check constraint
violated

Here, you define the check constraint on the log_time column of the logons
table. This constraint prevents inserting new rows into the logons table on Saturday
or Sunday, which allows you to modify your authentication system so that it
prevents each and every user from being able to log on on Saturdays and Sundays,
thus allowing users to log on only on the working days. Later, you can always drop
this constraint by issuing the following statement:

ALTER TABLE logons DROP CONSTRAINT log_time_day;

Turning back to the ALTER TABLE statement shown in the preceding page, note the
use of the format 'Day' specified as the second parameter of the TO_CHAR function.
This format tells the TO_CHAR function to convert a date stored in the log_time field
to a day of the week. Then, you use the NOT IN operator to exclude Saturdays and
Sundays from the list of allowed days.

Bear in mind that in this case Oracle uses case-sensitive matching. So, if you have
specified 'Day' as the second argument of the TO_CHAR function, then you have to
specify the days of the week in the expression list to the right of the NOT IN operator
like this: 'Saturday', 'Sunday'. It would be 'SATURDAY', 'SUNDAY' if you have
specified 'DAY' as the second parameter of TO_CHAR.

Now that you have modified all the required database structures as needed,
you can proceed with the example whose intent is to illustrate how to create a
transaction by executing a DML statement in the OCI_DEFAULT mode and then how
to implicitly end that transaction by executing the subsequent statement in the
OCI_COMMIT_ON_SUCCESS mode.

In reality, of course, you might want to have more than just two statements in a
transaction. To accomplish this, you might execute all of the statements (except for
the last one) that you want to group into a single transaction in the OCI_DEFAULT
mode, and then execute the last statement in the OCI_COMMIT_ON_SUCCESS mode to
close the transaction.

Transactions

[102]

Graphically, it might look like the following:

Data state 1

Data state 2

oci_execute($stml1,
OCI_DEFAULT);

oci_execute($stmlM,
OCI_DEFAULT);

oci_execute($stmlN,
OCI_COMMIT_ON_SUCCESS);

. . .

The following script demonstrates how the architecture shown in the figure can
be implemented in PHP. Note that unlike the login function discussed in the An
Example of When to Use a Stored Subprogram section in Chapter 3, the login function
shown below stops execution and returns false when it fails to insert an audit record
into the logons table. This makes sense, since you now insert a new record into
the logons table not only to save the information about a logon, but to check if
the inserted data adhere to the business rule, which says that no row in the logons
table can contain a date whose day of the week is Saturday or Sunday in the
log_time column.

<?php
 //File: userLoginTrans.php
 function login($usr, $pswd) {
 if(!$rsConnection = oci_connect('usr', 'usr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);
 };
 $query = "SELECT full_name, num_logons FROM accounts
 WHERE usr_id = :userid AND pswd = :passwd";

Chapter 4

[103]

 $stmt = oci_parse($rsConnection,$query);
 oci_bind_by_name($stmt, ':userid', $usr);
 oci_bind_by_name($stmt, ':passwd', $pswd);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' . $err['message'], E_USER_ERROR);
 }
 if (!$arr = oci_fetch_array($stmt, OCI_ASSOC)) {
 print "Wrong user/password combination";
 return false;
 }
 $num_logons=$arr['NUM_LOGONS']+1;
 oci_free_statement($stmt);
 $query = "UPDATE accounts SET num_logons = num_logons + 1";
 $stmt = oci_parse($rsConnection,$query);
 if (!oci_execute($stmt, OCI_DEFAULT)) {
 $err = oci_error($stmt);
 trigger_error('Update failed: '
 . $err['message'], E_USER_WARNING);
 return false;
 }
 oci_free_statement($stmt);
 $query = "INSERT INTO logons VALUES (:userid, SYSDATE)";
 $stmt = oci_parse($rsConnection,$query);
 oci_bind_by_name($stmt, ':userid', $usr);
 if (!oci_execute($stmt, OCI_COMMIT_ON_SUCCESS)) {
 $err = oci_error($stmt);
 trigger_error('Insertion failed: ' . $err['message'],
 E_USER_WARNING);
 if ($err['code']=='02290'){
 print "You cannot connect on Saturday or Sunday";
 }
 return false;
 }
 print "Hello, ".$arr['FULL_NAME']."
";
 print "You have visited us ".$num_logons." time(s)";
 session_start();
 $_SESSION['user']=$usr;
 return true;
 }
?>

Transactions

[104]

As mentioned earlier, the num_logons column in the logons table holds the
number of successful logons for each user account. In the script, you define the
UPDATE statement that will increase the value of the num_logons field in the record
representing the user whose credentials are being used for authentication.

By executing the statement in the OCI_DEFAULT mode, you create a new transaction.
This makes sense, since you may need to roll back the changes made by this UPDATE
operation if the subsequent insert into the logons table fails.

If the UPDATE operation fails, you exit the login function, returning false to the
calling script. This tells the calling script that the authentication has failed.

Next, you define the INSERT statement that is executed once a user has been
successfully authenticated and the counter of his or her successful logons has
been incremented.

Executing the INSERT statement in the OCI_COMMIT_ON_SUCCESS mode in the script
guarantees that the transaction will be committed on success or rolled back on
failure, which means that either both the changes made by the INSERT and the effects
of the UPDATE statement become permanent or both are undone.

If you recall, the oci_error function returns an associative array of two elements,
namely, code, which contains the Oracle error code, and message, which contains
the message string describing the error. In this particular example, you check to see
if the Oracle error code is equal to 02290. If so, this indicates that a check constraint
violation error occurred. Since you have only one check constraint defined on the
logons table (the one that prevents inserting new rows into the logons table on
Saturdays and Sundays), you may inform the user that he or she cannot connect on
Saturday and Sunday.

In this example, if the INSERT fails, you exit the login function with false, thus
telling the calling script that the authentication has failed. In the case of successful
authentication, you take appropriate actions, such as displaying a welcome message
and creating a new session.

Now, to see the newly created login function in action, you might use the following
simple script:

<?php
 //File: testLoginTrans.php
 require_once "userLoginTrans.php";
 if (login('bob','pswd')) {
 if (isset($_SESSION['user'])) {
 print '<p>'.'Your account name: '.$_SESSION['user'].'</p>';
 } else {
 print '<p>'.'Session variable representing the account name

Chapter 4

[105]

 is not set'.'</p>';
 }
 }else {
 print '<p>'.'Authentication failed'.'</p>';
 }
?>

If you run the testLoginTrans.php script shown in the above listing on Saturday or
Sunday, you should see the following output:

You cannot connect on Saturday or Sunday

Authentication failed

On a working day, however, the output should be as follows:

Hello, Bob Robinson
You have visited us 1 time(s)

Your account name: bob

Each subsequent execution of the testLoginTrans.php script on a working day
should increase the number of Bob Robinson's visits. However, if you execute the
script on Saturday or Sunday, it will not increase that number. This proves that
everything works as expected.

Moving Transactional Code to the Database
Now that you have a working transactional solution implemented mainly in PHP, it
is time to think of how to minimize the amount of PHP programming, moving some
of the business logic of the application to the database.

Using Triggers
To start with, you might define a BEFORE INSERT trigger on the logons table that will
automatically update the accounts table, increasing the value of the num_logons
field in the appropriate row. Doing so eliminates the need to invoke this UPDATE
operation from PHP code.

The following SQL statement is used to cerate the trigger. You can run this statement
from SQL*Plus when connected as usr/usr.

CREATE OR REPLACE TRIGGER logons_insert
 BEFORE INSERT
 ON logons
 FOR EACH ROW
BEGIN

Transactions

[106]

 UPDATE accounts
 SET num_logons = num_logons + 1
 WHERE usr_id = :new.usr_id;
END;
/

Once you have created the logons_insert trigger shown above, you should remove
the following lines of code from the login function in the userLoginTrans.php
script shown in the preceding section:

 $query = "UPDATE accounts SET num_logons = num_logons + 1";
 $stmt = oci_parse($rsConnection,$query);
 if (!oci_execute($stmt, OCI_DEFAULT)) {
 $err = oci_error($stmt);
 trigger_error('Update failed: ' . $err['message'],
 E_USER_WARNING);
 return false;
 }
 oci_free_statement($stmt);

It is important to note that the above modification in the login function does not
require a change in the existing code that employs this function. So, to test the
updated login function, you can still run the testLoginTrans.php script shown in
the preceding section, which would produce the same results as before.

Dealing with Statement-Level Rollbacks
Looking through the code of the updated login function, you may notice
that it does not execute any statement in the OCI_DEFAULT mode and so
doesn't create a transaction. Instead, it executes the INSERT statement in the
OCI_COMMIT_ON_SUCCESS mode, which means that any error discovered during the
INSERT statement execution will cause all the effects of the INSERT to be rolled back.
If the INSERT completes successfully, its effects are automatically committed.

So far, so good. But what happens if the UPDATE statement invoked from the trigger
fails? Will it cause the INSERT to roll back? One simple test is to temporarily modify
the UPDATE statement in the logons_insert trigger so that the UPDATE operation
always fails, and then run the testLoginTrans.php script from the Controlling
Transactions from PHP section to see what happens.

To re-create the trigger so that the UPDATE always fails, you can use the SQL
statement shown below:

CREATE OR REPLACE TRIGGER logons_insert
 BEFORE INSERT
 ON logons

Chapter 4

[107]

 FOR EACH ROW
BEGIN
 UPDATE accounts
 SET num_logons = num_logons + 'str'
 WHERE usr_id = :new.usr_id;
END;
/

It is important to note that although the UPDATE statement in the trigger will always
fail, the trigger itself should be successfully compiled.

Now, if you try to run the testLoginTrans.php script, you should see the
following output:

Authentication failed

As you can see, the authentication has failed. To make sure that the INSERT into the
logons table has failed as well, you might count the number of rows in this table
before the execution of testLoginTrans.php and after that. This can be done with
the help of the following SQL statement issued from SQL*Plus when connected as
usr/usr:

SELECT count(*) FROM logons;

You should see that the number of rows in the logons table remains the same after
the execution of the testLoginTrans.php script. This proves that a failure to update
the logons table from the logons_insert BEFORE INSERT trigger defined on the
accounts table causes the INSERT statement to be rolled back as well.

Generally, if an error occurs during the execution of a trigger, this rolls
back all the effects of the operation that caused the trigger to fire. This is
due to a so‑called statement-level rollback—any error raised during the
statement execution causes all the effects of the statement to roll back.

The above is not always true, however: for example, the logons_insert trigger may
be implemented in a way in which it will not roll back the INSERT statement when
the UPDATE performed from the trigger fails. Consider the logons_insert trigger
shown below:

CREATE OR REPLACE TRIGGER logons_insert
 BEFORE INSERT
 ON logons
 FOR EACH ROW
BEGIN
 UPDATE accounts

Transactions

[108]

 SET num_logons = num_logons + 'str'
 WHERE usr_id = :new.usr_id;
EXCEPTION
 WHEN OTHERS THEN
 NULL;
END;
/

Now, if you run the testLoginTrans.php script, you should see the following:

Hello, Bob Robinson
You have visited us 3 time(s)

Your account name: bob

Then, if you run the script again, you should see that the number of logons displayed
by the script remains the same. However, if you check the number of rows in the
logons table as discussed earlier in this section, you should notice that a subsequent
execution of the testLoginTrans.php script increases that number.

This indicates that although the UPDATE performed from the trigger fails, the INSERT
is completed successfully. This is so because the logons_insert trigger shown
above silently ignores any error raised during its execution—you have specified NULL
in the WHEN OTHERS section, which is the only exception handler in the exception-
handling part of the trigger.

In most cases, using the above technique is not recommended since
it changes the expected behavior of the database. The reasonable
assumption is that if during execution an SQL statement causes an error,
any effects of that statement are automatically undone.

That is why, rather then specifying a NULL in an exception handler, you should
write the code that will take appropriate actions in response to an error. For example,
you might make use of the RAISE_APPLICATION_ERROR procedure to issue a user-
defined ORA‑error. The following example shows how the logons_insert trigger
could be modified to call RAISE_APPLICATION_ERROR from the exception handler.

CREATE OR REPLACE TRIGGER logons_insert
 BEFORE INSERT
 ON logons
 FOR EACH ROW
BEGIN
 UPDATE accounts
 SET num_logons = num_logons + 'str'
 WHERE usr_id = :new.usr_id;

Chapter 4

[109]

EXCEPTION
 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR(-20000, 'Failed to update the counter');
END;
/

In the above trigger, the exception handler explicitly calls the
RAISE_APPLICATION_ERROR procedure to issue a user-defined ORA-error.

If you have the display_errors parameter set to On in the php.ini
configuration file, the userLoginTrans.php script discussed in the
Controlling Transactions from PHP section will display the error message
specified as the second parameter in the RAISE_APPLICATION_ERROR
procedure.

Now, if you execute the testLoginTrans.php script, you should see the
following output:

Authentication failed

And the number of rows in the logons table should remain the same, which means
that the failure to update the accounts table in the trigger causes not only the
UPDATE to roll back, but also the INSERT to do so.

Before you leave this example, make sure to re-create the logons_insert trigger so
that the SET clause of the UPDATE statement looks as follows:

SET num_logons = num_logons + 1

Transaction Isolation Considerations
When a transaction modifies a table row of a database, Oracle holds that row with a
lock until the transaction is committed or rolled back. The purpose of doing this is to
prevent two concurrent transactions from modifying the same row.

It is important to note here that locked rows can still be read by both the transaction
that updates the rows and any other transaction. The difference between the two is
that the transaction holding locks on the rows can see the changes immediately after
the execution of the statement affecting the rows, whereas any other transaction
cannot see those changes until the transaction that made them is committed.

While the locking mechanisms used in Oracle are discussed in detail in Oracle
documentation (chapter Data Concurrency and Consistency in the Oracle Database
Concepts manual), this section gives a brief overview of how transaction isolation
works in PHP/Oracle applications.

Transactions

[110]

What OCI8 Connection Function to Choose
If you recall from Chapter 2, section OCI8 Functions for Connecting to Oracle, the
OCI8 PHP extension offers three different functions when it comes to establishing
a connection to an Oracle database. These are the oci_connect, oci_new_connect,
and oci_pconnect functions. These functions differ only in the type of connections
they establish to the database.

Both oci_connect and oci_pconnect use a database connection cache, thus
eliminating the cost of opening a database connection on every request. The
difference between the two is that the connections created by oci_connect are
released when the script execution ends, while oci_pconnect's connections persist
across script executions.

Unlike oci_connect and oci_pconnect, the oci_new_connect function doesn't use
a connection cache, always returning a fresh new connection. You use this function
when you need to create two or more concurrent transactions within a script. The
following example shows the oci_new_connect function in action.

In the following script, note the use of the oci_new_connect function to create a
concurrent transaction. While you create the first connection in the script by
oci_connect, you use oci_new_connect to create a fresh new connection.

<?php
 //File: newConns.php
 function select_emp_job ($conn, $jobno) {
 $query = "SELECT employee_id, first_name, last_name, salary
 FROM employees WHERE job_id =:jobid";
 $stmt = oci_parse($conn,$query);
 oci_bind_by_name($stmt, ':jobid', $jobno);
 if (!oci_execute($stmt, OCI_DEFAULT)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: '
 . $err['message'], E_USER_ERROR);
 };
 print '<table border="1">';
 while ($emp = oci_fetch_array($stmt, OCI_ASSOC)) {
 print '<tr>';
 print '<td>'.$emp['EMPLOYEE_ID'].'</td>';
 print '<td>'.$emp['FIRST_NAME'].' '.$emp['LAST_NAME'].
 '</td>';
 print '<td>'.$emp['SALARY'].'</td>';
 print '</tr>';
 }
 print '</table>';

Chapter 4

[111]

 }
 if(!$conn1 = oci_connect('hr', 'hr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: '
 . $err['message'], E_USER_ERROR);
 };
 if(!$conn2 = oci_new_connect('hr', 'hr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: '
 . $err['message'], E_USER_ERROR);
 };
 $jobno = 'AD_VP';
 $query = "UPDATE employees SET salary = 18000 WHERE job_id=:jobid";
 $stmt = oci_parse($conn1,$query);
 oci_bind_by_name($stmt, ':jobid', $jobno);
 if (!oci_execute($stmt, OCI_DEFAULT)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' . $err['message'], E_USER_ERROR);
 };
 print "<h2>Transaction isolation testing!</h2>";
 print "<h4>Transaction A on conn1:</h4>";
 print "<p>(results after the update and before
 the commit on conn1)</p>";
 select_emp_job($conn1, $jobno);
 print "<h4>Transaction B on conn2:</h4>";
 print "<p>(results after the update and before
 the commit on conn1)</p>";
 select_emp_job($conn2, $jobno);

 if (!oci_commit($conn1)) {
 $err = oci_error($conn1);
 trigger_error('Failed to commit transaction: '
 .$err['message'], E_USER_ERROR);
 }
 print "<h4>Transaction B on conn2:</h4>";
 print "<p>(results after the update and after
 the commit on conn1)</p>";
 select_emp_job($conn2, $jobno);
 $query = "UPDATE employees SET salary = 17000 WHERE job_id=:jobid";
 $stmt = oci_parse($conn1,$query);
 oci_bind_by_name($stmt, ':jobid', $jobno);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' . $err['message'], E_USER_ERROR);
 };
?>

Transactions

[112]

The following figure illustrates the output of this script. As you can see from the
figure, the changes made by the UPDATE operation performed within the transaction
on the conn1 database connection can be seen within that transaction immediately
after the UPDATE takes place, and cannot be seen from the concurrent transaction on
the conn2 connection until the first transaction is committed.

Turning back to the code for the newConns.php script discussed here, note that all
the SQL statements used in this script are executed in the OCI_DEFAULT mode. This
guarantees that the transactions are committed immediately.

Note that you create the first connection in this script with oci_connect. Since it's
the first connection, the connection cache associated with the script is empty and so
oci_connect will establish a fresh new connection to the database.

Chapter 4

[113]

You have to create concurrent transactions on transactionally isolated
connections. While the first connection in the script can be created
by oci_connect, you have to use oci_new_connect to create a
subsequent, transactionally isolated connection within that script.

Then, to create a fresh, new, transactionally isolated connection in the script, you call
oci_new_connect.

By executing the UPDATE statement in the OCI_DEFAULT mode on the conn1
connection, you create a transaction on this connection.

After the UPDATE has been executed, the effects of this operation can be seen for
any other operation performed within the same transaction. To prove this point,
you select the rows affected by the UPDATE within the same transaction, before it is
committed. As seen from the previous f﻿igure, a SELECT returns the new values of the
rows being updated.

However, you still will see the original values of the rows being updated when
performing a SELECT within a concurrent transaction. This is because simultaneous
transactions are isolated from the updates made by other uncommitted transactions.
Once the transaction is committed, all its effects can be seen from the other
transactions.

Finally, with the help of this UPDATE, you restore the original values of the
updated rows.

Concurrent Update Issues
As a developer, you have two primary concerns when designing an application that
will modify database data in a multi-user environment:

To ensure the integrity and consistency of the data
To ensure that performance will not be hindered by locking issues

While Oracle provides a broad set of features that can help you accomplish the above
goals, it is your responsibility to make the correct use of these features. The following
sections focus on some concurrent update issues that may be encountered in multi-
user environments when using transactions incorrectly.

•

•

Transactions

[114]

Locking Issues
As mentioned earlier, Oracle puts a lock on a row being updated so that the other
transactions cannot modify that row until the transaction updating it ends. While the
purpose of doing this is to guarantee the integrity of the data accessed in a multi-user
environment, this may add significant overhead in a badly designed application.

Let's take a look at a simple example that illustrates how a badly designed script
performing long-running operations may cause locking issues when used in a multi-
user environment. The updateSleep.php script shown in the following listing
performs the following steps:

Creates a transaction
Updates some rows in the employees table
Delays execution for 20 seconds
Rolls back the transaction

Delaying the execution with the help of the sleep function in this example allows
you to simulate a computationally expensive operation.

<?php
 //File: updateSleep.php
 if(!$dbConn = oci_connect('hr', 'hr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);
 };
 $jobno = 'AD_VP';
 $query = "
 UPDATE employees
 SET salary = salary*1.1
 WHERE job_id=:jobid";
 $stmt = oci_parse($dbConn,$query);
 oci_bind_by_name($stmt, ':jobid', $jobno);
 if (!oci_execute($stmt, OCI_DEFAULT)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' . $err['message'], E_USER_ERROR);
 };
 $updrows = oci_num_rows($stmt);
 print 'You just updated '.$updrows. ' row(s)'.'
';
 sleep(20);
 oci_rollback($dbConn);
 print 'Transaction is rolled back';
?>

•

•

•

•

Chapter 4

[115]

In this script, you execute the UPDATE statement in the OCI_DEFAULT mode, thus
instructing Oracle to create a transaction.

Next, you use the sleep function to delay the execution for 20 seconds, thus
simulating a computationally expensive operation.

Finally, you explicitly roll back the transaction with oci_rollback. Actually, this
step is optional because transactions are automatically rolled back when the
script ends.

Now, if you run the updateSleep.php script discussed here, it will update all the
Administration Vice President records in the employees table, block these
records for 20 seconds and then roll the transaction back.

If, within that 20 second delay, you try to update the same records from another
script or, say, from SQL*Plus, you will be blocked until the updateSleep.php script
releases the locks on these records.

The moral of this example is that if your script has to perform a long-running
operation in a high-traffic multi-user environment, it is always a good idea to
close all the active transactions within the script before beginning to process
that operation.

Lost Updates
The preceding example demonstrated how a badly designed transactional
application may lock database resources for long periods of time, preventing other
concurrent transactions from accessing those resources in a timely manner. However,
note that using a non‑blocking approach while modifying database data in a
multi-user environment, may cause another issue—lost updates. To understand
what a lost update problem is, consider the steps that an interactive application
usually performs when it comes to modifying information stored in a database:

Selects the data from the database
Displays the data to the user
Waits for feedback from the user
Updates the data in the database

It should be fairly obvious from the above scenario that while the application waits
for feedback from the user, another user may change the data. Then, if the first user
proceeds to update the data, the changes made by the second user will be lost.

•

•

•

•

Transactions

[116]

This may be better understood with the help of an example. Let's look at the
updateQuickForm.php script that implements the above steps using PEAR's
HTML_QuickForm package. When you run the script, it performs the following steps:

Updates two rows in the employees table
Produces the form asking the user to commit or roll back the changes
Ends execution, rolling back the changes

On the form that the script produced, the user can choose either commit or roll back
and then click the Submit button. Once the user clicks Submit, it invokes the script
again, which this time performs the following steps:

Updates the same two rows in the employees table
Commits or rolls back the changes depending on the user's choice
Ends execution

The following figure shows the form produced by the script.

However, before you run the updateQuickForm.php script, make sure you install
the HTML_QuickForm PEAR package. Since the HTML_QuickForm depends on another
package, called HTML_Common, you first have to install the latter. Given that you have
the PEAR Installer installed and configured, you might issue the following command
to download and install the HTML_Common package:

$ pear install HTML_Common

•

•

•

•

•

•

Chapter 4

[117]

Once HTML_Common is installed, you can download and install the HTML_QuickForm
package as follows:

$ pear install HTML_QuickForm

With all that done, you can run the updateQuickForm.php script whose code is
shown below:

<?php
 //File: updateQuickForm.php
 require_once 'HTML/QuickForm.php';
 if(!$dbConn = oci_connect('hr', 'hr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);
 };
 $jobno = 'AD_VP';
 $query = "
 UPDATE employees
 SET salary = salary*1.1
 WHERE job_id=:jobid";
 $stmt = oci_parse($dbConn,$query);
 oci_bind_by_name($stmt, ':jobid', $jobno);
 if (!oci_execute($stmt, OCI_DEFAULT)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' . $err['message'], E_USER_ERROR);
 };
 print '<h2>Update confirmation!</h2>';
 $updrows = oci_num_rows($stmt);
 $frm=new HTML_QuickForm('frm1', 'POST');
 $frm->addElement('header','msg1','You just updated '.$updrows. '
 row(s). Do you want to commit changes?');
 $grp[] =& HTML_QuickForm::createElement('radio', null,
 null,'commit', 'C');
 $grp[] =& HTML_QuickForm::createElement('radio', null,
 null,'rollback', 'R');
 $frm->addGroup($grp, 'trans');
 $frm->setDefaults(array('trans' => 'C'));
 $frm->addElement('submit','submit','Submit');
 if(isset($_POST['submit'])) {
 if ($_POST['trans']=='C'){
 oci_commit($dbConn);
 print 'Transaction committed';
 } elseif ($_POST['trans']=='R'){
 oci_rollback($dbConn);

Transactions

[118]

 print 'Transaction rolled back';
 } else {
 $frm->display();
 }
 } else {
 $frm->display();
 }
?>

Looking at the form shown in the previous figure, you may think that once the script
has updated two rows in the employees table, it waits for user feedback, keeping the
transaction active. In fact, it works in a different way.

When you run the script, it actually updates two rows in the employees table,
but then it rolls back the transaction. Doing so allows you to count the number of
rows affected by the UPDATE, giving that information to the user. Once the user has
selected either commit or rollback and then pressed the Submit button, the script
performs the same UPDATE operation again, either committing the effects of the
UPDATE or rolling them back, depending on the user's choice.

The advantage of the above technique is that the rows being processed are not
blocked while the user is deciding which radio button to select: commit or rollback,
thus allowing other transactions to operate on these rows during this time. However,
this may cause another problem—a lost update, as outlined earlier in this section.

To prevent a lost update problem, you might use an optimistic locking strategy,
making sure that the values of the fields being updated have not changed since the
user began working with them.

Autonomous Transactions
Continuing with the preceding example, you might want to record attempts made to
update the rows of the employees table. To accomplish this, you will need to create
a table to hold audit records as well as a BEFORE UPDATE trigger on the employees
table, which will insert a record into the audit table whenever someone updates a
row in employees table.

To set up the above data structures, you can execute the following SQL statement:

CONN usr/usr

CREATE TABLE emp_updates(
 emp_id NUMBER(6),
 job_id VARCHAR2(10),
 timedate DATE);

Chapter 4

[119]

CONN /AS SYSDBA

GRANT INSERT on usr.emp_updates TO hr;

CONN hr/hr

CREATE OR REPLACE TRIGGER emp_updates_trigger
 BEFORE UPDATE
 ON employees
 FOR EACH ROW
BEGIN
 INSERT INTO usr.emp_updates VALUES (:new.employee_id, :new.job_id,
SYSDATE);
EXCEPTION
 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR(-20001, 'An error raised in the trigger');
END;
/

With that done, you may run the updateQuickForm.php script discussed in the
preceding section to check if your auditing mechanism works as expected. In the
form generated by the script, choose rollback and then click Submit. Now, if you
count the number of rows in the emp_updates table as follows:

CONN usr/usr;
SELECT * FROM emp_updates;

you should see that the emp_updates table still contains no rows:

no rows selected

This indicates that when you roll back an UPDATE operation, it rolls back its audit
record as well. It is the expected behavior, since you cannot roll back some effects of
a transaction—you can either commit all effects of it or roll them all back.

An attempt to commit only the INSERT statement performed within the trigger will
fail because no transaction control statements are allowed in a trigger. So, if you try
to recreate the emp_updates_trigger trigger as follows:

CREATE OR REPLACE TRIGGER emp_updates_trigger
 BEFORE UPDATE
 ON employees
 FOR EACH ROW
BEGIN
 INSERT INTO usr.emp_updates VALUES (:new.employee_id,
 :new.job_id, SYSDATE);
 COMMIT;
EXCEPTION

Transactions

[120]

 WHEN OTHERS THEN
 ROLLBACK;
END;
/

You will get the following errors when running the updateQuickForm.php script:

Warning: oci_execute()[function.oci-execute]:ORA-04092: cannot
ROLLBACK in a trigger ORA-06512: at "HR.EMP_UPDATES_TRIGGER", line
6 ORA-04092: cannot COMMIT in a trigger ORA-04088: error during
execution of trigger 'HR.EMP_UPDATES_TRIGGER'

Fatal error: Query failed: ORA-04092: cannot ROLLBACK in a trigger
ORA-06512: at "HR.EMP_UPDATES_TRIGGER", line 6 ORA-04092: cannot
COMMIT in a trigger ORA-04088: error during execution of trigger 'HR.
EMP_UPDATES_TRIGGER'

The above error messages will be displayed only if you have the
display_errors parameter set to On in php.ini.

One way to solve the above problem is to make use of an autonomous transaction.

An autonomous transaction is a transaction within another transaction.
Being totally independent of the calling transaction, an autonomous
transaction lets you perform SQL operations and then either commit or
roll back them, without committing or rolling back the calling transaction.

Employing an autonomous transaction in this example will allow you to commit the
INSERT performed within the emp_updates_trigger trigger independently of the
transaction created in the updateQuickForm.php script, thus creating a record in the
emp_updates table even if the effects of the UPDATE operation that fired the trigger
are rolled back.

The following example shows how to recreate the emp_updates_trigger trigger so
that it uses an autonomous transaction.

CREATE OR REPLACE TRIGGER emp_updates_trigger
 BEFORE UPDATE
 ON employees
 FOR EACH ROW
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO usr.emp_updates VALUES (:new.employee_id,
 :new.job_id, SYSDATE);

Chapter 4

[121]

 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 ROLLBACK;
END;
/

The above example shows an autonomous transaction implemented in a database
trigger. Using an autonomous transaction here ensures that an audit record will be
created in the emp_updates table, regardless of whether an UPDATE operation on the
employees table is committed or rolled back.

To test the newly created trigger, run the updateQuickForm.php script again and
submit the form produced by the script, having the rollback radio button selected.
Then, select the emp_updates again as follows:

SELECT * FROM emp_updates;

This time, you should see results that might look like the following:

EMP_ID JOB_ID TIMEDATE
------- ---------- ---------
 101 AD_VP 29-MAY-06
 102 AD_VP 29-MAY-06
 101 AD_VP 29-MAY-06
 102 AD_VP 29-MAY-06

Note that although you attempted to update only two rows in the employees table,
four audit records have been inserted into the emp_updates table. Recall that the
updateQuickForm.php script actually performs the UPDATE twice—first, in order to
count the number of rows to be updated, and then, to actually update these rows.

Summary
Some operations performed against a database make sense only when grouped
together. A classic example involves a transfer of funds between two bank accounts.
The only way to perform such an operation safely is to use a transaction. Using
transactions lets you group SQL statements together into logical, indivisible units of
work, each of which can be either all committed or all rolled back.

Transactions

[122]

In this chapter you learned when and how to use transactions in PHP/Oracle
applications. The discussion began with a brief overview of Oracle transactions
and why you may want to use them in PHP applications built on top of Oracle.
Then, it explained how to organize a PHP/Oracle application to effectively
control transactions, focusing on the benefits from moving the business logic of
a transactional application from PHP to the database. You learned which OCI8
connection function to choose when it comes to using transactions, and how to create
simultaneous transactions within the same script. Finally, you saw how to call an
independent transaction from within another transaction and looked at the situation
where it might be desired.

Object-Oriented Approach
Developing a serious PHP application that interacts with Oracle may require writing
hundreds or even thousands of lines of code. No doubt, at some point in coding,
you will start looking for a way to effectively group and organize your code, so that
well-designed pieces of already written code can be reused over and over in your
application development.

From the examples discussed in the previous chapters, you learned about two
powerful ways to reuse the previously written codes in PHP. Specifically, you saw
how to use functions and how to take advantage of putting reusable code into
separate files, which can then be included in other scripts. When used together,
these methods can be very efficient when developing small and midsize
applications. However, while developing complex PHP/Oracle applications, you
might want to take advantage of a more powerful way to obtain reusability, namely
object-oriented programming.

This chapter examines the object-oriented approach for developing PHP/Oracle
applications, as an efficient means to reduce the development time and complexity,
and increase the maintainability and flexibility of your applications. The material
in the chapter not only covers PHP 5's major object-oriented features required to
build an efficient object-oriented PHP application interacting with Oracle, but also
discusses some Oracle's native object-relational features that make it possible for you
to organize data into object structures at the database level.

Implementing PHP Classes to Interact
with Oracle
Before you start developing object-oriented solutions with PHP 5, it is important to
understand that its object model provides more features than PHP 4's object model.
Like most object-oriented languages, PHP 5 allows the developer to take advantage
of interfaces, abstract classes, private/public/protected access modifiers, static

Object-Oriented Approach

[124]

members and methods, exception handling, and other features that were not
available in PHP 4. But perhaps the most important thing to note about the
object-oriented improvements of PHP 5 is that objects are now referenced by
handle, and not by value.

In the following sections, you will learn how to create a simple PHP class to interact
with Oracle and then how that class can be modified and reused in different scripts.

Building Blocks of Applications
As you no doubt know, the fundamental building block in any object-oriented
language is a structure called a class.

A class is a template for an object. It describes the data and behavior of
its instances (objects). During run time, an application can create as many
instances of a single class as necessary.

The following diagram conceptually depicts the structure of a class.

class MyClass {
property1

...
propertyN

Constructor()
Method1()

...
MethodM()

}

You might find it handy to think of an object-oriented application as a building made
of blocks, where classes are those blocks. However, it is important to note that all
blocks in this case are exchangeable. What this means is that if you are not satisfied
with the implementation of a certain class, you can use a relevant class that has
the same Application Programming Interface (API) but a different implementation
instead. This allows you to increase the reusability and maintainability of your
application, without increasing the complexity.

The intent of the example discussed in this section is to illustrate how you can
rewrite the implementation of a class so that this doesn't require a change in the
existing code that employs this class. In particular, you'll see how a custom PHP 4
class designed to interact with Oracle can be rewritten to use the new object-oriented
features available in PHP 5.

Chapter 5

[125]

Creating a Custom PHP Class from Scratch
To proceed with the example, you first need to create a PHP 4 class interacting with
Oracle. Consider the following dbConn4 class:

<?php
 //File: dbConn4.php
 class dbConn4 {
 var $user;
 var $pswd;
 var $db;
 var $conn;
 var $query;
 var $row;
 var $exec_mode;
 function dbConn4($user, $pswd, $db,
 $exec_mode= OCI_COMMIT_ON_SUCCESS)
 {
 $this->user = $user;
 $this->pswd = $pswd;
 $this->db = $db;
 $this->exec_mode = $exec_mode;
 $this->GetConn ();
 }
 function GetConn()
 {
 if(!$this->conn = OCILogon($this->user, $this->pswd, $this->db))
 {
 $err = OCIError();
 trigger_error('Failed to establish a connection: ' .
 $err['message']);
 }
 }
 function query($sql)
 {
 if(!$this->query = OCIParse($this->conn, $sql)) {
 $err = OCIError($this->conn);
 trigger_error('Failed to parse SQL query: ' .
 $err['message']);
 return false;
 }
 else if(!OCIExecute($this->query, $this->exec_mode)) {
 $err = OCIError($this->query);
 trigger_error('Failed to execute SQL query: ' .
 $err['message']);

Object-Oriented Approach

[126]

 return false;
 }
 return true;
 }
 function fetch()
 {
 if(!OCIFetchInto($this->query, $this->row, OCI_ASSOC)){
 return false;
 }
 return $this->row;
 }
 }
?>

In the above script, to define a class, you use the class keyword followed by the
class name. Then, within curly braces, you define class properties and methods. Since
this class is designed to work under both PHP 4 and PHP 5, all the class properties
are defined with the var keyword. Declaring a property with var makes it publicly
readable and writable. In PHP 5, you would use the public keyword instead.

In PHP 4, you define the class constructor as a function with the same name as the
class itself. This still works in PHP 5 for backward compatibility. However, in PHP 5,
it's recommended that you use __construct as the constructor name.

In the above example, the class constructor is used to set the member variables of a
class instance to the values passed to the constructor as parameters. Note the use of
the self‑referencing variable $this that is used here to access the member variables
of the current class instance.

Within class methods, you can use $this, the special variable that points
to the current instance of a class. This variable is created automatically
during the execution of any object's method and can be used to access
both member variables of the current instance and its methods.

Then, you call the GetConn method from within the constructor to obtain a
connection to the database. You reference the method using the $this variable.
In this example, the GetConn method is supposed to be called from within the
constructor only. In PHP 5, you would declare this method as private.

To obtain a connection to the database in this example, you use the OCILogon
function. In PHP 5, you would use the oci_connect function instead.

Chapter 5

[127]

The query method defined here takes an SQL string as the parameter and then
parses and executes the query. It returns true on success or false on failure. This
method is supposed to be called from outside an object. So, in PHP 5, you would
declare it as public.

Finally, you define the fetch method. You will call this method to fetch the results
retrieved by a SELECT statement that has been executed with the query method.

Testing the Newly Created Class
Once written, the dbConn4 class discussed in the preceding section can be used in
applications in order to establish a connection to an Oracle database and then issue
queries against it as needed. To see this class in action, you might use the following
PHP script. Assuming that you have saved the dbConn4 class as the dbConn4.php
file, save the following script as select.php:

<?php
 //File: select.php
 require_once 'dbConn4.php';
 require_once 'hrCred.php';
 $db = new dbConn4($user, $pswd, $conn);
 $sql="SELECT FIRST_NAME, LAST_NAME FROM employees";
 if($db->query($sql)){
 print 'Employee Names: ' . '
';
 while ($row = $db->fetch()) {
 print $row['FIRST_NAME'] . ' ';
 print $row['LAST_NAME'] . '
';
 }
 }
?>

The above select.php script employs the employees table from the hr/hr
demonstration schema. So, before you can execute this script, you must create the
hrCred.php file that contains all the information required to establish a connection to
your Oracle database using the HR account. The hrCred.php file should look as shown
below (note that the connection string may vary depending on your configuration):

<?php
 //File: hrCred.php
 $user="hr";
 $pswd="hr";
 $conn="(DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=localhost)(PORT=1521))
)

Object-Oriented Approach

[128]

 (CONNECT_DATA=(SID=orcl)(SERVER=DEDICATED))
)";
?>

Once you have created the hrCred.php script, you can execute the select.php
script. As a result, it should output the names of employees from the employees
table in the hr/hr demonstration schema.

Taking Advantage of PHP 5's Object-Oriented
Features
Turning back to the dbConn4 class, you may have noticed that it was written for PHP
4. Of course, it still can be used in new applications written for PHP 5. However, to
take advantage of the new object-oriented features available in PHP 5, you might
want to rewrite this class as follows:

<?php
 //File: dbConn5.php
 class dbConn5 {
 private $user;
 private $pswd;
 private $db;
 private $conn;
 private $query;
 private $row;
 private $exec_mode;
 public function __construct($user, $pswd, $db,
 $exec_mode= OCI_COMMIT_ON_SUCCESS)
 {
 $this->user = $user;
 $this->pswd = $pswd;
 $this->db = $db;
 $this->exec_mode = $exec_mode;
 $this->GetConn();
 }
 private function GetConn()
 {
 if(!$this->conn = oci_connect($this->user, $this->pswd,
 $this->db))
 {
 $err = oci_error();
 trigger_error('Failed to establish a connection: ' .
 $err['message']);
 }

Chapter 5

[129]

 }
 public function query($sql)
 {
 if(!$this->query = oci_parse($this->conn, $sql)) {
 $err = oci_error($this->conn);
 trigger_error('Failed to execute SQL query: ' .
 $err['message']);
 return false;
 }
 else if(!oci_execute($this->query, $this->exec_mode)) {
 $err = oci_error($this->query);
 trigger_error('Failed to execute SQL query: ' .
 $err['message']);
 return false;
 }
 return true;
 }
 public function fetch()
 {
 if($this->row=oci_fetch_assoc($this->query)){
 return $this->row;
 }
 else {
 return false;
 }
 }
 }
?>

As you can see, the implementation of the class has been improved to conform
to the new standards of PHP 5. For instance, the above class takes advantage of
encapsulation that is accomplished in PHP 5—like most other object-oriented
languages—by means of access modifiers, namely public, protected, and private.
The idea behind encapsulation is to enable the developer to design the classes that
reveal only the important members and methods and hide the internals. For instance,
the GetConn method in the dbConn5 class is declared with the private modifier
because this method is supposed to be called only from inside the constructor when
a new instance of the class is initialized; therefore, there is no need to allow client
code to access this method directly.

Since the implementation of the newly created dbConn5 class is different from the
one used in dbConn4, you may be asking yourself: "Does that mean we need to
rewrite the client code that uses the dbConn4 class as well?" The answer is obvious:
you don't need to rewrite client code that uses the dbConn4 class since you have

Object-Oriented Approach

[130]

neither changed the Application Programming Interface (API) of the class nor,
more importantly, its functionality. Thus, all you need to do in order to make the
select.php script work with dbConn5 is simply replace all the references to dbConn4
with references to dbConn5 throughout the script.

Functionality and Implementation
As you learned from the preceding example, you can easily replace one class with
another in a calling script given that both the classes deliver the same API and the
same functionality. Practically, this means that you can improve the implementation
of the class that is used in existing applications until this changes the API of that class
or its functionality. Of course, you can still extend the API of the class with some
new public methods in order to add new functionality that might be employed in
new applications using the class. However, in this case you must ensure that the new
class still works with old clients.

Essentially, the above technique lets you improve object code without having to
rewrite any client code. However, it is worth remembering that sometimes it is
very hard to retain the functionality of the class when rewriting its implementation.
Bear in mind that the implementation in essence forms the functionality. In some
situations, like the one discussed in the previous section, you can rewrite the
implementation of the class so that this doesn't change its functionality. However, in
other situations, rewriting the implementation of the class, results in a change in the
functionality provided by the class.

Imagine what would happen if you decided to use the oci_new_connect function
in place of oci_connect in the GetConn method of the dbConn5 class. As you might
recall from Chapter 4 Transactions, this would allow you to establish distinctly new
connections to the database within a script using the class, and thereby separate
transactions. In this case, you could apply commits and rollbacks to the specified
connection only.

By contrast, using oci_connect assumes that commits and rollbacks are applied
to all open transactions in the page. This is because oci_connect doesn't establish
a new connection if you have already established a connection with the same
parameters. Instead, it returns the identifier of the already opened connection.

The following script will generate different results depending on which connection
function you use in the dbConn5 class.

<?php
 //File: testDbConn.php
 require_once 'dbConn5.php';
 require_once 'hrCred.php';

Chapter 5

[131]

 $exec_mode=OCI_DEFAULT;
 $job_id='FI_MGR';
 $db = new dbConn5($user, $pswd, $conn, $exec_mode);
 $sql="UPDATE employees SET salary = salary*1.1
 WHERE job_id='".$job_id."'";
 if(!$db->query($sql)){
 print 'Failed to update the employees table';
 }
 $newDb = new dbConn5($user, $pswd, $conn, $exec_mode);
 $sql="SELECT last_name, salary FROM employees
 WHERE job_id='".$job_id."'";
 if($newDb->query($sql)){
 print '<table>';
 while ($row = $newDb->fetch()) {
 print '<tr>';
 print '<td>'.$row['LAST_NAME'].'</td>';
 print '<td>'.$row['SALARY'].'</td >';
 print '</tr>';
 }
 print '</table>';
 }
?>

If you run the testDbConn.php script shown above, it should produce the
following output:

Greenberg 13200

In this example, you don't need to worry about setting Greenberg's salary
to its original value. When the script execution ends, the transaction
is automatically rolled back. This is because you execute the UPDATE
operation in OCI_DEFAULT mode and then you don't commit the opened
transaction explicitly.

Now, if you replace the oci_connect function in the GetConn method of the
dbConn5 class with the oci_new_connect function, the testDbConn.php script will
produce the following result:

Greenberg 12000

So, if you make such a replacement in the dbConn5 class—oci_new_connect in place
of oci_connect—then you will no longer be able to use the dbConn5 class in place
of dbConn4 in any application; you won't be able to use the dbConn5 class in the
applications that are designed to work with transactions, assuming that connections
are shared at the page level.

Object-Oriented Approach

[132]

As you can see, having two classes that have the same API doesn't automatically
mean that these classes provide the same functionality. Thus, care must be taken
when you are replacing one class with another in existing applications.

Reusability
Once a class has been written and debugged, you can then reuse it over and over in
new projects. In the Building Blocks of Applications section earlier in this chapter, you
learned how to use the dbConn5 class in a script that selects data from the database.

In fact, you are not limited to a SELECT operation and can use the query method of
the dbConn5 class to perform any SQL statement against the database. For instance,
you might use the following script to insert a row into the departments table under
the hr/hr database schema:

<?php
 //File: insert.php
 require_once 'dbConn5.php';
 require_once 'hrCred.php';
 $db = new dbConn5($user, $pswd, $conn);
 $sql="INSERT INTO departments VALUES(320, 'DB design',
 null, 1700)";
 if($db->query($sql)){
 print 'data have been submitted';
 }
 else {
 print 'failed to submit data';
 }
?>

This example shows the simplest way in which you can take advantage of code
reuse. Specifically, it demonstrates how to reuse an existing class to solve a similar
problem in another script. Similarly, you might use the query method to perform
DDL operations against the database.

In the Extending Existing Classes and Interaction between Objects sections, later in this
chapter, you will learn about more ways to achieve code reuse in object-oriented
PHP applications.

Handling Exceptions
For handling errors, PHP 5 offers a new mechanism that is completely different
from that in PHP 4. In PHP 5, you can create and throw an instance of the built-in
Exception class in response to an error that has occurred in your object code.

Chapter 5

[133]

Throwing an exception terminates method execution and makes the appropriate
Exception instance available to the calling code. To be able to handle an exception
thrown from inside an object's method, the calling code must call that method inside
a try block. It also must have an appropriate catch block to handle the exception
thrown. It might look like the following figure.

<?php
...
try {
...
obj=new MyClass;

...
obj->MyMethod();

...
}
catch (Exception $e) {
//Code handling exception
}
...

?>

class MyClass {
...
MyMethod() {
...
throw new Exception(...);
...
}
...

}

Modifying an Existing Class to use Exceptions
Now that you have a rough idea of how PHP 5's exceptions work in an
object‑oriented environment, it is time to look at an example of how exceptions can
be used. Turning back to the dbConn5 class discussed in the Taking Advantage of PHP
5's Object-Oriented Features section earlier, you might rewrite it to support PHP 5's
new exception model as shown below:

<?php
 //File: dbConn5e.php
 class dbConn5e {
 private $user;
 private $pswd;
 private $db;
 private $conn;
 private $query;
 private $row;
 private $exec_mode;
 public function __construct($user, $pswd, $db,
 $exec_mode= OCI_COMMIT_ON_SUCCESS)
 {
 $this->user = $user;
 $this->pswd = $pswd;
 $this->db = $db;

Object-Oriented Approach

[134]

 $this->exec_mode = $exec_mode;
 $this->GetConn();
 }
 private function GetConn()
 {
 if(!$this->conn = oci_connect($this->user, $this->pswd,
 $this->db))
 {
 $err = oci_error();
 throw new Exception('Could not establish a connection: ' .
 $err['message']);
 }
 }
 public function query($sql)
 {
 if(!$this->query = oci_parse($this->conn, $sql)) {
 $err = oci_error($this->conn);
 throw new Exception('Failed to execute SQL query: ' .
 $err['message']);
 }
 else if(!oci_execute($this->query, $this->exec_mode)) {
 $err = oci_error($this->query);
 throw new Exception('Failed to execute SQL query: ' .
 $err['message']);
 }
 return true;
 }
 public function fetch()
 {
 if($this->row=oci_fetch_assoc($this->query)){
 return $this->row;
 }
 else {
 return false;
 }
 }
 }
?>

In the above class, you obtain the error as an associative array, with the help of the
oci_error function, just as you did in the preceding examples earlier in this book.
Then, you assign the error message to the exception object thrown here.

Chapter 5

[135]

As you can see, the dbConn5e class no longer uses the trigger_error function
that you saw in the dbConn5 class discussed earlier. Instead, when something
goes wrong, the code in the dbConn5e class throws an exception using the throw
new Exception syntax. As previously mentioned, when an exception is thrown,
it becomes available to the client context. On the client side, you should place any
code that might throw an exception inside the try block. When you have defined
the try block, you must then define at least one catch block, which will be used to
handle thrown exceptions. So, client code no longer needs to check the return value
of a called method to see whether an error has occurred during the execution of the
method—the code within a catch block takes care of the thrown exception.

Note that the fetch method of the dbConn5e class still returns false on failure to
obtain the next row from the result data, rather than generating an exception. This
makes sense, since generating an exception just because all the retrieved rows have
been fetched might not seem appropriate.

Now that you have written the dbConn5e class, you might want to write a script to
test that class. The following select_e.php script makes use of the newly created
dbConn5e class.

<?php
 //File: select_e.php
 require_once 'dbConn5e.php';
 require_once 'hrCred.php';
 try {
 $db = new dbConn5e($user, $pswd, $conn);
 $sql="SELECT last_name FROM employees";
 $db->query($sql);
 print 'Employee Name: ' . '
';
 while ($row = $db->fetch()) {
 print $row['LAST_NAME'] . '
';
 }
 }
 catch (Exception $e) {
 print $e->getMessage();
 exit();
 }
?>

In the select_e.php script shown in the listing, you no longer need to check
whether the query method of dbConn5 has returned true. Instead, you simply wrap
the code that might throw an exception in the try block. Then, you define the catch
block to handle the thrown exceptions. The script will simply print the appropriate
error message when an exception is thrown.

Object-Oriented Approach

[136]

Distinguishing between Different Error Types
In a real-world application you might want your application to distinguish between
the different error types in the catch block. One way to do this is to use the
user-defined exception flag that can be passed as an optional parameter to the
Exception constructor.

The dbConn5e2 class shown below is a revision of the dbConn5e class discussed in
the preceding section. The new dbConn5e2 class can throw exceptions that will differ
by error type.

<?php
 //File: dbConn5e2.php
 class dbConn5e2 {
 private $user;
 private $pswd;
 private $db;
 private $conn;
 private $query;
 private $row;
 private $exec_mode;
 const CONNECTION_ERROR = 1;
 const SQLEXECUTION_ERROR = 2;
 function __construct($user, $pswd, $db)
 {
 $this->user = $user;
 $this->pswd = $pswd;
 $this->db = $db;
 $this->exec_mode = $exec_mode;
 $this->GetConn();
 }
 function GetConn()
 {
 if(!$this->conn = oci_connect($this->user, $this->pswd,
 $this->db))
 {
 $err = oci_error();
 throw new Exception('Could not establish a connection: '
 . $err['message'], self::CONNECTION_ERROR);
 }
 }
 function query($sql)
 {
 if(!$this->query = oci_parse($this->conn, $sql)) {
 $err = oci_error($this->conn);

Chapter 5

[137]

 throw new Exception('Failed to execute SQL query: '
 . $err['message'], self::SQLEXECUTION_ERROR);
 }
 else if(!oci_execute($this->query, $this->exec_mode)) {
 $err = oci_error($this->query);
 throw new Exception('Failed to execute SQL query: '
 . $err['message'], self::SQLEXECUTION_ERROR);
 }
 return true;
 }
 function fetch()
 {
 if($this->row=oci_fetch_assoc($this->query)){
 return $this->row;
 }
 else {
 return false;
 }
 }
 }
?>

Now, you can improve the catch block in the client code so that it recognizes
different error categories. In the select_e2.php script shown below, a failure to
connect to the database results in a fatal error, which means the script will terminate.
On the other hand, failure to perform a query against the database leads only to
generation of the appropriate warning message and execution continues after the
catch block.

<?php
 //File: select_e2.php
 require_once 'dbConn5e2.php';
 require_once 'hrCred.php';
 try {
 $db = new dbConn5e2($user, $pswd, $conn);
 $sql="SELECT last_name FROM employees";
 $db->query($sql);
 print 'Employee Name: ' . '
';
 while ($row = $db->fetch()) {
 print $row['ENAME'] . '
';
 }
 }
 catch (Exception $e) {
 if ($e->getCode() == dbConn5e2::CONNECTION_ERROR) {
 die($e->getMessage());

Object-Oriented Approach

[138]

 }
 else if ($e->getCode() == dbConn5e2::SQLEXECUTION_ERROR) {
 print $e->getMessage();
 }
 }
 //Continue execution
?>

It is interesting to note that using user-defined exception codes is not the only way to
separate different types of exceptions in your application. Alternatively, you might
define subclasses of the built-in Exception class and then use multiple catch blocks
to catch different classes of exceptions. For information on this subject, refer to PHP
documentation: Language Reference, chapter Exceptions.

Are Exceptions Necessarily Errors?
It is important to understand that exceptions are not necessarily errors. Whether or
not an exception represents an error is determined by the application that employs
the class in which the exception occurred. In other words, if an exception has been
thrown, it is up to the client code to decide what to do.

For example, imagine an application that requires the user to log in using a logon
page. How would you like such an application to behave if a user mistypes when
entering his or her credentials? Obviously, it would be a bad idea in such a case to
throw an exception that will terminate the execution. Instead, you most probably
might want the application to generate a warning message and then allow the user to
enter his or her credentials again.

Extending Existing Classes
In the Implementing PHP Classes to Interact with Oracle section earlier in this chapter,
you saw an example of how to build a new class from scratch and how to reuse it
then in different scripts. However, in most cases, you don't need to create a new class
from scratch; instead, you may choose an existing class, say, a predefined PHP class,
or a class from the PEAR library, and then customize it as needed.

This section gives an example of how the Auth class from the Auth PEAR package
can be extended to better suit your needs. But first, to give you an idea of how the
Auth class works and when you might need it, this section provides an example of
using that class itself.

Chapter 5

[139]

This section uses the PEAR::Auth class to illustrate an object-oriented
approach when it comes to using and customizing classes from
open-source libraries, or built-in PHP classes. For a detailed discussion
of security issues, see Chapter 6 Security.

Using Standard Classes
Before you can start working with PEAR::Auth class, you have to download and
install the Auth PEAR package. This can be done with the help of the PEAR Installer.
Assuming that you have PEAR installed in your PHP installation, run the following
command from the command line:

$ pear install Auth

PEAR::Auth can optionally use a number of packages that provide
access to various storage containers holding authentication data. In the
example provided in this section, the Auth object uses the DB abstraction
layer to store the login data. This means that you must have the DB PEAR
package installed before proceeding to this example.

PEAR::Auth in Action
Once you have installed the Auth package, you can use the Auth class in your
applications. The testAuth.php script shown below is an example of the Auth
class in action.

<?php
 //File: testAuth.php
 require_once "Auth.php";

 $auth_opts = array(
 'dsn'=>'oci8://usr:usr@localhost:1521/orcl',
 'table'=>'accounts',
 'usernamecol'=>'usr_id',
 'passwordcol'=>'pswd',
 'db_fields' => '*',
 'cryptType'=>'none'
);
 $auth_opts['usernamecol'] = strtoupper($auth_opts['usernamecol']);
 $auth_opts['passwordcol'] = strtoupper($auth_opts['passwordcol']);
 $a = new Auth('DB', $auth_opts);
 $a->setIdle(5);
 $a->setExpire(15);

Object-Oriented Approach

[140]

 $a->start();
 if ($a->getAuth()) {
 print "<h2>Hello, ".$a->getAuthData('FULL_NAME')."!</h2>
";
 } else {
 exit;
 }
?>

Now, let's discuss the code used in the above script.

With the help of the require_once PHP command, you make your script aware of
the Auth class. It is assumed that you have the Auth package installed.

In the array of options passed to the storage container, you specify the DSN (data
source name) holding information required to obtain a database connection with
PEAR::DB, the name of the database table holding the authorization data, the
names of the columns where the username and password are stored, other fields
to be fetched from the row containing the specified username and password, and
password encryption type.

The testAuth.php script discussed in this example queries the
accounts table from the usr/usr database schema. So, it is assumed
that you have that table created as described in the An Example of When to
Use a Stored Subprogram section in Chapter 3 Data Processing.

As you might recall from Chapter 1 Getting Started with PHP and Oracle, Oracle
returns all field names in the result set in uppercase. That is why you must
make sure that the names of the username and password columns are specified
in uppercase.

In this example, you pass DB as the first parameter to the Auth constructor, which
means that the Auth object will use the PEAR::DB abstraction layer for database
access. As the second parameter passed to the Auth constructor, you use an array of
the database connection options.

With the help of the setIdle method of Auth, you set the maximum allowable idle
time, in seconds, before the user is automatically logged out. In this example, you set
the idle time to 5 seconds, which is good only for testing of course.

Chapter 5

[141]

Using the setExpire method, you set the expiration time, in seconds, for the PHP
session that holds the authentication data. In this example, you set the expiration
time to 15 seconds, which is good only for testing.

Next, you call the start method of the Auth object to set up the PHP session
that will hold the authentication information. This session has the predefined name
_authsession. Once the _authsession session is established, it will exist until it
expires or the specified amount of idle time has passed.

The Auth class provides the logout method to explicitly destroy all the
data associated with the _authsession session, thus giving the user a
logout option. For simplicity, the logout method is not employed in
this example.

Then, you call the getAuth method to check if the user has been authenticated. If so,
the script produces a welcome message containing the full name of the authenticated
user. Otherwise, the exit command is invoked, terminating further processing.

Actually, getAuth calls another of Auth's methods, namely checkAuth,
that simply checks if there is a valid _authsession session.

In this example, you call the getAuthData method, passing, as the parameter,
the name of the field containing the full name of the authenticated user. In fact,
FULL_NAME is a column in the accounts table holding the authorization data. You
can access FULL_NAME here because you have enabled fetching all the columns of the
accounts table by setting the db_fields option to *, in the array of options passed
to the storage container.

Securing Pages with PEAR::Auth
Now that you have an idea of how the testAuth.php script works, it is time to put it
into practice with an example. The appPage.php script discussed later in this section
includes testAuth.php so that only the users who have been authenticated can
access the page produced by appPage.php. The first time you run the appPage.php
script, it displays a login form, which you must fill in with a valid username
and password.

Object-Oriented Approach

[142]

This login form is shown in the following figure:

This login form appears whenever an unauthenticated user attempts to run the
appPage.php script discussed later in this section.

Once you have entered valid credentials in the form shown in the previous figure,
you can access the page produced by the appPage.php script. The page looks like
the following:

Chapter 5

[143]

This page is an example of a secure page. This page appears only if the getAuth
method of Auth returns true, which means that the user has been successfully
authenticated and the _authsession session containing the authentication
information is still valid.

To be successfully authenticated, you must enter a valid username/
password pair stored in the accounts table in the usr/usr database
schema. Provided that you have performed all of the SQL statements
shown in the An Example of When to Use a Stored Subprogram section in
Chapter 3, you should have the accounts table containing only one
record—the one that represents the Bob Robinson's account with bob as
the username and pswd as the password.

Upon successful authentication, the appPage.php script produces a simple page that
contains a link to this same page itself (to appPage.php actually). When you click
that link, the appPage.php script invokes testAuth.php again to make sure that the
authentication session is still valid. If the session has expired or the amount of idle
time has passed, the user will be asked to log in again.

The following listing shows the source code for the appPage.php script:

<?php
 //File: appPage.php
 require_once "testAuth.php";
 $thisPage='"'."appPage.php".'"';
 print "Click here to reload this page";
?>

By including testAuth.php, you make sure that the authentication mechanism
implemented in this script will be invoked each time appPage.php is executed. If
authentication fails, testAuth.php returns the user to the login form and stops
further processing, and so appPage.php does not output anything.

The message produced by the appPage.php script includes a link to appPage.php
itself. However, in a real-world application, it might be a link to another page of
the application.

A real-world application normally has more than one page to be
secured. To use the secure mechanism discussed here in a multi-page
application, you simply include testAuth.php at the beginning of
each script producing a page that you want to secure. This will prevent
unauthenticated users from accessing the secure pages of the application.

Object-Oriented Approach

[144]

Customizing Standard Classes
Whether you use a built-in PHP class or a PEAR class, you can always customize the
class you're using so that it best suits your needs. For example, you might want to
build a new class on an existing one so that the new class shares the properties and
the behavior of the base class, extending its functionality by adding new member
variables and/or methods. Such a relationship between classes is called inheritance.

Inheritance is a relationship between classes where one class (child/
subclass) inherits attributes and behavior from another (parent/
superclass). Child classes can override inherited methods with new
ones, thus allowing for customizing the parent class to address a specific
problem. So, inheritance provides a powerful way to achieve code reuse
in an object-oriented paradigm. A class, once written and debugged, can
be reused over and over as the basis for another class.

Customizing PEAR::Auth
Turning back to the PEAR::Auth class discussed in the preceding section, you
might extend that class so that the derived class, say, MyAuthOrcl, inherits all the
properties and methods of the Auth parent class and additionally encapsulates some
functionality you repeatedly implement in the code that employs PEAR::Auth, thus
making that code more readable and clearer.

The following diagram gives a conceptual depiction of the inheritance relationship
between the Auth class and the MyAuthOrcl class that extends Auth.

class Auth

class MyAuthOrcl

...
__construct(...)
...

...
__construct(...)
...
parent::__construct(...)
}
...

Chapter 5

[145]

The following listing shows the code for the MyAuthOrcl class extending PEAR::
Auth. It is important to note that the new class inherits all of the properties and
method of the PEAR::Auth class. It simply overrides the parent constructor and adds
a new protected member variable, namely $auth_default_options.

<?php
 //File: MyAuthOrcl.php
 require_once 'Auth.php';
 class MyAuthOrcl extends Auth
 {
 protected $auth_default_options = array(
 'cryptType'=>'none',
);
 public function __construct ($arr)
 {
 $auth_options = array_merge($this->auth_default_options, $arr);
 $auth_options['usernamecol'] =
 strtoupper($auth_options['usernamecol']);
 $auth_options['passwordcol'] =
 strtoupper($auth_options['passwordcol']);
 parent::__construct('DB',$auth_options);
 }
 }
?>

You must always include the file containing the class you are using in the script. In
this particular example, you include Auth.php because you use the Auth class as the
parent class for the MyAuthOrcl class defined here.

You use the extends keyword to define a class based upon another class. In this
example, you build the MyAuthOrcl class upon the PEAR::Auth class.

Next, you define the member variable $auth_default_options to hold an array
of default options passed to the storage container. You should add an option to this
array only if you want to replace the option's default value used in the Auth class
with a new one.

In PEAR::Auth, the cryptType option passed to the storage container is set to md5
by default. Here, you define the new default value for the cryptType option,
namely none.

In this example, the derived class overrides the parent constructor. In the same way,
you would override any other method of the parent class.

In the constructor, you merge the elements of the array passed to the constructor and
the elements of the array defined in the $auth_default_options member variable.

Object-Oriented Approach

[146]

In this example, you call the strtoupper function from inside the class constructor.
By doing this, you eliminate the need to call this function from within the
calling code.

In the last code line in the overriding constructor, you call the parent constructor
from within the overriding constructor using the parent keyword followed by the
scope resolution operator ::, and then by the __construct keyword.

Unlike most other object-oriented languages, PHP doesn't automatically
call the parent constructor when running an overriding constructor of the
subclass. So, you have to explicitly call the parent constructor from within
an overriding constructor of the subclass to ensure you get a complete
and correct instance of the class.

In the same way—using the parent:: syntax—you can refer to any other public or
protected member variable or method of a base class from within its subclasses.

At the time of this writing, the PEAR::Auth class did not employ PHP 5's
new visibility keywords when defining its member variables and methods.
This means that all the member variables and methods of PEAR::Auth
had public visibility and so they could be overridden in subclasses.

Building More Compact Client Code
Now that you have the MyAuthOrcl class, it's time to put it into action. However, to
make the client code employing the newly created class more compact, you might
want to place the array of options passed to the storage container in a separate file.
The following listing shows the connOptions.php file containing that array.

<?php
 //File: connOptions.php
 $auth_opts = array(
 'dsn'=>'oci8://usr:usr@localhost:1521/orcl',
 'table'=>'accounts',
 'usernamecol'=>'usr_id',
 'passwordcol'=>'pswd',
 'db_fields' => '*'
);
?>

Chapter 5

[147]

Once you have created the connOptions.php file, you can include it into the scripts
that use the MyAuthOrcl class, as shown below.

<?php
 //File: testMyAuthOrcl.php
 require_once "MyAuthOrcl.php";
 require_once "connOptions.php";
 $a = new MyAuthOrcl($auth_opts);
 $a->setIdle(5);
 $a->setExpire(15);
 $a->start();
 if ($a->getAuth()) {
 print "<h2>Hello, ".$a->getAuthData('FULL_NAME')."!</h2>
";
 } else {
 exit;
 }
?>

As you can see from the listing, the testMyAuthOrcl.php script provides the same
functionality as the testAuth.php discussed in the PEAR::Auth in Action section
earlier, and requires less code. It is important to realize that the MyAuthOrcl class has
all the data and methods of the PEAR::Auth class, extending its functionality a little.

You can test the newly created testMyAuthOrcl.php script with the help of the
appPage.php script discussed in the Securing Pages with PEAR::Auth section earlier.
However, before you do that, make sure to replace testAuth.php, included with
the require_once command at the beginning of the appPage.php script, with
testMyAuthOrcl.php.

The updated appPage.php page, when executed, should produce the same page as
shown in the figure in the Securing Pages with PEAR:: Auth section. Further testing
should indicate that the sample works as before and the changes made do not affect
the application behavior from the user's point of view.

Interactions between Objects
In the preceding section, you looked at inheritance—a way to build new classes upon
existing ones, thus allowing you to reuse and extend what has already been defined
and debugged.

This section looks at code reuse through two powerful methods commonly used in
object-oriented programming, namely composition and aggregation.

Object-Oriented Approach

[148]

Composition
Using the functionality of an object from within another object allows you to leverage
existing functionality, rather than creating it from scratch. One way to accomplish
such an interaction is through composition.

Composition takes place when one object contains another object,
meaning that the owning object is responsible for creating the contained
object, and once the owner is destroyed, the contained object is
destroyed as well.

The best way to understand how composition works in PHP is by example. Imagine
that you want to replace the default login form used in the MyAuthOrcl class
discussed in the preceding section with a custom one. To achieve this goal, you
might design a login function responsible for creating and displaying a custom
login form, and then pass the name of that function to the Auth class constructor as
the third parameter. Recall that you call the Auth class constructor from within the
MyAuthOrcl constructor.

A custom login form designed with the help of the PEAR::HTML_QuickForm class
might look like the following figure:

Chapter 5

[149]

The following listing shows the code for the revision of the MyAuthOrcl class, which
creates and uses an instance of the PEAR::HTML_QuickForm class to build and
display a custom login form.

<?php
 //File: MyAuthOrcl_CustForm.php
 require_once 'HTML/QuickForm.php';
 //Obtain the Auth class so it can be extended
 require_once 'Auth.php';
 class MyAuthOrcl_CustForm extends Auth
 {
 protected $auth_default_options = array(
 'cryptType'=>'none',
);
 public function __construct ($arr)
 {
 function login_function($username, $status)
 {
 $headerTemplate = '<tr><td style="background-color:
 #dddddd;" align="center" colspan="2"><font
 face="Arial"><i>{header}</i></td></tr>';
 $elementTemplate = '<tr><td align="right"><font
 face="Arial"><!-- BEGIN required --><span
 style="color: #ff0000">*';
 $elementTemplate .= '<!-- END required -->
 {label}</td><td align="left">{element}</td></tr>';
 $form=new HTML_QuickForm('login', 'POST');
 $renderer = $form->defaultRenderer();
 $renderer->setHeaderTemplate($headerTemplate);
 $renderer->setElementTemplate($elementTemplate);
 $header='Please enter your credentials';
 switch ($status) {
 case -1: $header='You have been idle for too long.
 Please login again.';
 break;
 case -2: $header='Session expired. Please login again.';
 break;
 case -3: $header='You entered wrong data. Please try again.';
 break;
 }
 $form->addElement('header',null,$header);
 $form->addElement('text','username','User name:');
 $form->addRule('username','The username field is
 required!','required', null, 'client');

Object-Oriented Approach

[150]

 $form->addElement('password','password','Password:');
 $form->addRule('password','The password field is
 required!','required', null, 'client');
 $form->addElement('submit','submit','Sign in!');
 $form->display();
 }
 $auth_options = array_merge($this->auth_default_options, $arr);
 $auth_options['usernamecol'] =
 strtoupper($auth_options['usernamecol']);
 $auth_options['passwordcol'] =
 strtoupper($auth_options['passwordcol']);
 parent::__construct('DB',$auth_options, 'login_function');
 }
}
?>

In this example, you create an instance of the PEAR::HTML_QuickForm class
from within the login_function defined inside the constructor of the
MyAuthOrcl_CustForm class. The HTML_QuickForm object created here is
referenced only within that function and cannot be referenced by external code.

Alternatively, the custom function passed to the Auth constructor might
be defined in the client code, rather than in the MyAuthOrcl_CustForm
class constructor. However, encapsulating it in the class constructor
allows for building more compact and clearer client code.

Now, to put the new MyAuthOrcl_CustForm class into action, all you need to do
is revise the testMyAuthOrcl.php script discussed in the Building More Compact
Client Code section earlier, so that the revision, say, testMyAuthOrcl_CustForm.
php script, includes the MyAuthOrcl_CustForm.php file with the require_once
command, instead of the MyAuthOrcl.php file, and creates the new MyAuthOrcl_
CustForm object instead of the MyAuthOrcl one. Next, in the appPage.php script
discussed in the Securing Pages with PEAR::Auth section, you need to include the
testMyAuthOrcl_CustForm.php file instead of the testMyAuthOrcl.php.

With that done, you can run the appPage.php script to test the newly created
MyAuthOrcl_CustForm class. Besides the new look of the login form, the sample
should behave as before.

Aggregation
Aggregation is another powerful way for objects to interact with each other. Unlike
composition, aggregation does not imply ownership—several objects may share a
single object at the same time.

Chapter 5

[151]

Aggregation takes place when one object uses another one, taking a
reference to it as a parameter passed to the constructor or any other
method. So, in aggregation the object does not create another object, and
the aggregated object is not necessarily destroyed when the object that
uses it is destroyed.

To understand better how aggregation works, let's look at an example of it in action.
Looking through the PEAR documentation on the Auth class, you may notice that
you are allowed to specify an existing DB object with the dsn option instead of a
DSN string when using the DB abstraction layer to store the login data.

The following example shows how the MyAuthOrcl class discussed in the
Customizing PEAR::Auth section earlier in this chapter might use an instance of
PEAR::DB, taking a reference to it as a parameter passed to the constructor. It is
important to note that, to accomplish this, no change is required in the MyAuthOrcl
class code. In the code that uses that class, you simply have to set the dsn parameter,
which is passed within an array to the class constructor, to a reference of DB object.

The following listing contains a revision of the testMyAuthOrcl.php script
discussed in the Building More Compact Client Code section earlier. The
testMyAuthOrcl_DB.php script shown in the listing illustrates a situation in which a
MyAuthOrcl object aggregates a PEAR:DB object.

<?php
 //File: testMyAuthOrcl_DB.php
 require_once "MyAuthOrcl.php";
 require_once "connOptions.php";
 require_once 'DB.php';
 $dbh = DB::connect($auth_opts['dsn']);
 if(DB::isError($dbh)) {
 die($dbh->getMessage());
 }
 $auth_opts['dsn'] = $dbh;
 $a = new MyAuthOrcl($auth_opts);
 $a->setIdle(5);
 $a->setExpire(10);
 $a->start();
 if ($a->getAuth()) {
 print '';
 print "<h2>Hello, ".$a->getAuthData('FULL_NAME')."!</h2>
";
 print '';
 } else {
 exit;
 }
?>

Object-Oriented Approach

[152]

As in the preceding examples, to test the testMyAuthOrcl_DB.php script
shown in the listing, you can still use the appPage.php script, having included
testMyAuthOrcl_DB.php with require_once, of course. Again, from the user's
standpoint, the changes made should not affect the sample behavior.

Now that you have seen how an object can aggregate another object, it is time to look
at a more complicated example of object aggregation. The following listing shows
how the MyAuthOrcl_dbConn5 class derived from the PEAR::Auth class could be
modified to aggregate an instance of the dbConn5 class discussed in the Implementing
PHP Classes to Interact with Oracle section earlier in this chapter.

<?php
 //File: MyAuthOrcl_dbConn5.php
 require_once 'HTML/QuickForm.php';
 require_once 'Auth.php';
 class MyAuthOrcl_dbConn5 extends Auth
 {
 protected $auth_default_options = array(
 'cryptType'=>'none',
);
 private $dbConn = null;
 public function __construct ($arr, $conn)
 {
 $this->dbConn=$conn;
 function login_function($username, $status)
 {
 ...
 // Here is the body of the login_function function as
 shown in listing 5.16
 ...
 }
 $auth_options = array_merge($this->auth_default_options, $arr);
 $auth_options['usernamecol'] =
 strtoupper($auth_options['usernamecol']);
 $auth_options['passwordcol'] =
 strtoupper($auth_options['passwordcol']);
 parent::__construct('DB',$auth_options, 'login_function');
 }
 public function login()
 {
 function defaultLoginCallback($username, $authObj)
 {
 $query="INSERT INTO logons
 VALUES("."'".$username."',"."SYSDATE)";

Chapter 5

[153]

 if(!$authObj->dbConn->query($query)){
 print "Failed to create an audit record";
 }
 };
 if ($this->loginCallback==''){
 $this->setLoginCallback('defaultLoginCallback');
 }
 return parent::login();
 }
 }
?>

In this example, you define the dbConn member variable to hold a reference to a
dbConn5 object. Since the client code that will use the MyAuthOrcl_dbConn5 class is
not supposed to initialize this member variable directly, you define it as private.

Then, you define the MyAuthOrcl_dbConn5 class constructor so that it takes a
reference to a dbConn5 object as the second parameter. In the constructor, you
initialize the dbConn member variable to the value returned in the second
constructor parameter.

In this example, you override the login method that the MyAuthOrcl_dbConn5 class
inherits from the Auth class.

Looking through the documentation on the PEAR::Auth class, you
may notice that it doesn't contain a section on the login method. So,
you might be asking yourself, how would I know that the PEAR::Auth
class includes a login method at all? Well, the best way to understand
how an existing class works and what member variables and methods it
contains is by stepping through its source code, if it is available, of course.
In this particular example, it is highly recommended that you examine the
source code for the PEAR::Auth class, which can be found in the pear/
Auth.php source file.

Within the login method, you define the defaultLoginCallback function. Later
in the login method, you set the loginCallback member variable to the name of
this function. By doing this, you instruct the MyAuthOrcl_dbConn5 object to call the
defaultLoginCallback function every time a user is successfully authenticated.

Within the defaultLoginCallback function, you define the INSERT statement that,
when executed, inserts an audit record into the logons table.

Object-Oriented Approach

[154]

Again, it is assumed that you have the logons table as described in the
An Example of When to Use a Stored Subprogram section in Chapter 3 Data
Processing. Then, you use the dbConn5's query method to execute the
INSERT statement.

Next, you check to see if the loginCallback member variable has been set in the
client code. If so, your MyAuthOrcl_dbConn5 object will invoke the specified function
every time a user is successfully authenticated.

If the loginCallback member variable has not been set in the client code, you set it
to defaultLoginCallback.

As you can see, the mechanism used here allows the client code
to override the default function invoked when a user is
successfully authenticated.

Finally, you explicitly call Auth's login method. This ensures that the overriding
method, in addition to the custom code you defined in this method, will execute the
code defined in the overridden method.

Now that you have an idea of how the MyAuthOrcl_dbConn5 class works, it is time
to put it into action. The testMyAuthOrcl_dbConn5.php script shown below makes
use of the MyAuthOrcl_dbConn5 class.

<?php
 //File: testMyAuthOrcl_dbConn5.php
 require_once "MyAuthOrcl_dbConn5.php";
 require_once "connOptions.php";
 require_once "dbConn5.php";
 $db = new dbConn5('usr', 'usr', '//localhost/orcl');
 $a = new MyAuthOrcl_dbConn5($auth_opts, $db);
 $a->setIdle(5);
 $a->setExpire(10);
 $a->start();
 if ($a->getAuth()) {
 print '';
 print "<h2>Hello, ".$a->getAuthData('FULL_NAME')."!</h2>
";
 print '';
 } else {
 exit;
 }
?>

Chapter 5

[155]

Again, to test the script shown in the listing, you can use the appPage.php script, this
time having included testMyAuthOrcl_dbConn5.php with require_once. Besides
the fact that information about successful logons will be stored in the logons table,
the updated sample should behave as in the preceding examples.

Event-Driven Communication
In the preceding section, you saw how you can take advantage of an event-driven
model when developing object code. In particular, you saw an example of the class
that allows for registering a custom function with an instance of that class, so that
this function is invoked whenever a certain event occurs.

Graphically, an event-driven communication might look like that shown in the
following diagram:

Event A

Event B

Event C

function1() {
function1 body

}

function2() {
function2 body

}

In the preceding example, you learned that the PEAR::Auth class allows you to
define a custom function that will be invoked automatically whenever a user is
successfully authenticated.

However, looking through the Auth.php source file, you may notice that the Auth
class also allows you to define a custom function that will be invoked automatically
whenever an authentication process fails. This comes in handy when you need to
record every login attempt, whether it is successful or not.

To start with, you have to create a database table that will be used to store audit
records. To do this, you might connect to the database as usr/usr from SQL*Plus
and then issue the CREATE TABLE statement shown below:

CREATE TABLE log_attempts (
 usrname VARCHAR2(10),
 success NUMBER(1),
 log_time DATE
);

Object-Oriented Approach

[156]

Once the log_attempts table has been created, you can modify the
testMyAuthOrcl_dbConn5.php file discussed in the preceding section as
shown below:

<?php
 //File: testMyAuthOrcl_Events.php
 require_once "MyAuthOrcl_dbConn5.php";
 require_once "connOptions.php";
 require_once "dbConn5.php";
 function loginCallback_function($username, $authObj)
 {
 if($authObj->getAuth()){
 $auth=1;
 } else {
 $auth=0;
 }
 $query="INSERT INTO log_attempts
 VALUES("."'".$username."',".$auth.", SYSDATE)";
 if(!$authObj->dbConn->query($query)){
 print "Failed to create an audit record";
 }
 }

 $db = new dbConn5('usr', 'usr', '//localhost/orcl');
 $a = new MyAuthOrcl_dbConn5($auth_opts, $db);
 $a->setLoginCallback('loginCallback_function');
 $a->setFailedLoginCallback('loginCallback_function');
 $a->setIdle(5);
 $a->setExpire(10);
 $a->start();
 if ($a->getAuth()) {
 print '';
 print "<h2>Hello, ".$a->getAuthData('FULL_NAME')."!</h2>
";
 print '';
 } else {
 exit;
 }
?>

As you can see in the code for the testMyAuthOrcl_Events.php script, the
loginCallback_function function is created, and then is registered to be
called whenever a login attempt occurs, regardless of whether that attempt is
successful or not. To achieve this goal, you set both the loginCallback and
failedLoginCallback member variables of MyAuthOrcl_dbConn5 to the same
value, namely loginCallback_function.

Chapter 5

[157]

As a result, you have two different types of events, which are generated by the
MyAuthOrcl_dbConn5 object on login and logout operations respectively, bound to
the single event handler. In the event handler loginCallback_function function,
you call the query method of the dbConn5 aggregated object to insert an audit record
into the log_attempts table.

Using Oracle Object-Relational Features
So far, you have looked at the features that can help you take advantage of the
object‑oriented model at the PHP side of your PHP/Oracle application. This section
briefly touches upon the Oracle object-relational features, providing some examples
that should help you better understand how these features can be used to
develop effective PHP/Oracle applications. For detailed information about Oracle
object-relational features, see Oracle documentation: Application Developer's
Guide - Object-Relational Features.

Using Oracle Object Types
As an alternative to creating relational tables and views, Oracle allows you to define
tables and views based on user-defined object types, making it easier for you to
model real-world entities and relationships between them.

Turning back to the example discussed in the Using Transactions in PHP/Oracle
Applications section in Chapter 4, let's look at how you might reorganize the database
data used by the example into Oracle objects, moving some of the business logic of
the example into the methods of those objects. This section discusses how to create
and populate with data the jobs_obj_table object table, which will be used in this
example instead of the jobs relational table. In the following section, you will see
how to define the emp_t object type with the newsalary member function and then
define the emps_obj_table object table based on that type.

The following listing shows how to create the jobs_obj_table object table based
on the job_t user-defined object type. You can run the SQL statements shown in the
listing from SQL*Plus.

CONN usr/usr
CREATE OR REPLACE TYPE job_t AS OBJECT(
 job_id VARCHAR2(10),
 job_title VARCHAR2(35),
 min_salary NUMBER(6),
 max_salary NUMBER(6)
);
/

Object-Oriented Approach

[158]

In this code we define an object type, which, in Oracle, is a kind of datatype. Once
an Oracle object type is defined, you can declare variables of that type in PL/SQL
programs or define a table column of it.

By issuing the following command, you create the jobs_obj_table object table of
the job_t type defined above:

CREATE TABLE jobs_obj_table OF job_t;

You cannot declare a primary key when defining an object type. But you can always
add the primary key to an object table by using the ALTER TABLE statement with the
ADD PRIMARY KEY clause, as demonstrated in the following example:

ALTER TABLE jobs_obj_table ADD PRIMARY KEY (job_id);

An object table can be populated with data in the same way as a relational table. In
this example, you populate the jobs_obj_table object table with the data retrieved
from the jobs table located in the default hr/hr database schema:

CONN /AS SYSDBA
GRANT SELECT on hr.jobs TO usr;
CONN usr/usr
INSERT INTO jobs_obj_table SELECT * FROM hr.jobs;

Implementing Business Logic with Methods
of Oracle Objects
Optionally, you can declare methods in an object type definition. Using object methods
allows you to encapsulate some of the business logic of your application along with
the data, thus providing another way of moving data processing to the data.

The following listing comprises of a set of SQL statements and shows how you can
define an object type with a member function. Specifically, it shows how to define
the emp_t object type with the newsalary member function that calculates the new
salary for the current employee record based upon the factor passed to the function
as the parameter and the current salary. If the new salary exceeds the maximum
allowable salary defined in the jobs_obj_table table for the particular title, the
newsalary function triggers an error.

CONN usr/usr

CREATE OR REPLACE TYPE emp_t AS OBJECT(
 empno VARCHAR2(6),
 name VARCHAR2(30),
 job_ref REF job_t,
 salary NUMBER,

Chapter 5

[159]

 MEMBER FUNCTION newsalary(inc_sal NUMBER) RETURN NUMBER DETERMINISTIC
);
/

CREATE OR REPLACE TYPE BODY emp_t IS
MEMBER FUNCTION newsalary(inc_sal NUMBER) RETURN NUMBER IS
 job_obj job_t;
 maxsal NUMBER;
BEGIN
 UTL_REF.SELECT_OBJECT(self.job_ref,job_obj);
 maxsal:=job_obj.max_salary;
 IF (inc_sal*self.salary > maxsal) THEN
 RAISE_APPLICATION_ERROR(-20000, 'New salary exceeds the maximum
 allowable salary');
 END IF;
 RETURN inc_sal*self.salary;
END;
END;
/

CREATE TABLE emps_obj_table OF emp_t;

ALTER TABLE emps_obj_table ADD PRIMARY KEY (empno);

CONN /AS SYSDBA

GRANT SELECT on hr.employees TO usr;

CONN usr/usr

INSERT INTO emps_obj_table(empno, name, salary, job_ref)
SELECT employee_id, last_name, salary, (SELECT REF(j) FROM
 jobs_obj_table j WHERE j.job_id=e.job_id)
 FROM hr.employees e;

Once you have executed all the SQL statements shown in the above listing, you
should have the emps_obj_table object table created and populated with the emp_t
objects generated from the relational data retrieved from the hr.employees table.

You select the data stored in an object table in the same way you would do it
when dealing with a relational table—with the help of the SELECT statement. In
the following example, you select all the records representing stock managers in
the emps_obj_table object table, using the DEREF SQL function to retrieve the
corresponding job_t objects from the jobs_obj_table object table created in the
preceding section.

SELECT empno, name, DEREF(job_ref).job_id as job_id, salary FROM
 emps_obj_table WHERE DEREF(job_ref).job_id ='ST_MAN';

Object-Oriented Approach

[160]

This should produce the following output:

EMPNO NAME JOB_ID SALARY
------ ------------------------------ ---------- ----------
120 Weiss ST_MAN 8000
121 Fripp ST_MAN 8200
122 Kaufling ST_MAN 7900
123 Vollman ST_MAN 6500
124 Mourgos ST_MAN 5800

To update the data stored in an object table, you use an UPDATE statement, as with
a relational table. In the following example, you're attempting to increase stock
managers' salaries by 10 percent, calling the newsalary member function of the emp_
t object type from within the SET clause of the UPDATE statement.

UPDATE emps_obj_table e
SET salary=e.newsalary(1.1)
WHERE DEREF(job_ref).job_id ='ST_MAN';

The UPDATE operation should fail with the following error message:

ERROR at line 2:
ORA-20000: New salary exceeds the maximum allowable salary
ORA-06512: at "USR.EMP_T", line 9

The fact is that not all records representing stock managers can be updated with this
UPDATE operation. Looking through the current stock the managers' salaries, you
may notice that some of them will exceed the maximum allowed value specified
for the stock manager in the jobs table, when giving a 10 percent raise. When it
happens, the newsalary member function generates an error and so the UPDATE
operation is aborted.

However, you should have no problem when giving a 10 percent raise to
administration vice presidents. Before updating their records, however, you might
select them as follows:

SELECT empno, name, DEREF(job_ref).job_id as job_id, salary FROM
 emps_obj_table WHERE DEREF(job_ref).job_id ='AD_VP';

This should produce the following output:

EMPNO NAME JOB_ID SALARY
------ ------------------------------ ---------- ----------
101 Kochhar AD_VP 17000
102 De Haan AD_VP 17000

Chapter 5

[161]

To perform the UPDATE, you might issue the following statement:

UPDATE emps_obj_table e
SET salary=e.newsalary(1.1)
WHERE DEREF(job_ref).job_id ='AD_VP';

2 rows updated.

Now, if you select the administration vice presidents' records again, you should see
the following results:

EMPNO NAME JOB_ID SALARY
------ ------------------------------ ---------- ----------
101 Kochhar AD_VP 18700
102 De Haan AD_VP 18700

Finally, don't forget to roll back the changes made by this UPDATE operation by
issuing the ROLLBACK statement:

ROLLBACK;

Using Oracle Objects to Simplify Application
Creation
Now that you have a rough idea of how object-relational features work in Oracle, it
is time to look at an example of how you can benefit from using them in your PHP/
Oracle applications.

The updateWithObjects.php script shown below issues an UPDATE operation
against the emps_obj_table table defined in the preceding section. Since the
emps_obj_table table is an object, SQL operations issued against it deal with
objects, rather than relational rows. In this particular example, the UPDATE operation,
when executed, modifies emp_t objects rather than just relational rows stored in the
emps_obj_table table.

<?php
 //File: updateWithObjects.php
 if(!$dbConn = oci_connect('usr', 'usr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);
 };
 $jobno = 'ST_MAN';
 $query = "
 UPDATE emps_obj_table e
 SET salary=e.newsalary(1.1)

Object-Oriented Approach

[162]

 WHERE DEREF(job_ref).job_id =:jobid;
 $stmt = oci_parse($dbConn,$query);
 oci_bind_by_name($stmt, ':jobid', $jobno);
 if (!oci_execute($stmt, OCI_COMMIT_ON_SUCCESS)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' . $err['message'], E_USER_ERROR);
 };
 print "Transaction is committed";
?>

The above script is a revision of the script originally shown in the Using
Transactions in PHP/Oracle Applications section in Chapter 4, and then
improved as discussed in the Structuring a PHP/Oracle Application to
Control Transactions section. This example illustrates how organizing
database data into Oracle objects can make it easier for you to write PHP
code manipulating that data.

In this example, you call the newsalary member function of the emp_t object type
to calculate the value for the salary attribute of the emp_t instance that is currently
being invoked. If the new salary exceeds the maximum salary defined for the
specified job title in the jobs table, the newsalary function triggers an error and
so all the effects of the UPDATE operation are rolled back. If it happens, the UPDATE
operation updates no rows, as discussed in the preceding example.

Summary
Using object-oriented design principles to organize your applications can help you
build re-usable, maintainable, and well-structured solutions. With classes as building
blocks of your application, you can focus on the specifics of the application rather
than on what is going on "under the hood".

In this chapter, you saw methods for code reuse when building object-oriented PHP
applications on top of Oracle. In particular, you saw how to build a new class from
scratch and how to build a child class upon an existing one, customizing the parent
class to address a specific problem. You also learned how to use the try/catch/throw
exception-handling paradigm in object-oriented PHP applications.

Finally, you learned that Oracle objects, like PHP objects, make it possible to
encapsulate operations along with the data, thus allowing you to take advantage of
reusing business logic implemented with object's methods.

Security
The main reason for setting up security in your PHP/Oracle application is to protect
it against unauthorized access or alteration of the data.

In the preceding chapter, you learned how to build an authentication system in PHP
using the Auth class from the PEAR library. You also saw several examples of how
this class might be extended to suit the needs of a particular application. However,
it is important to realize that implementing an authentication system is only the first
step in building a secure application. Once a user is successfully authenticated, your
application should determine whether that user is authorized to access the requested
database resources, thus defining different levels of permissions for different
users. It is always a good idea to implement authorization within the database as it
guarantees that no one will be able to bypass the application's security, even if the
connecting to the database is made directly.

This chapter discusses how to effectively use the security features of both PHP and
Oracle together, examining the fundamental aspects of building a secure PHP/Oracle
application. In particular, you will learn how to:

Separate security management and data
Implement an authentication/authorization system
Hash sensitive data
Implement fine-grained access using database views
Mask column values returned to the application
Use Oracle Virtual Private Database (VPD) technology

•

•

•

•

•

•

Security

[164]

Securing PHP/Oracle Applications
In this section, you will learn how to build a simple secure PHP/Oracle application.
The intent of this example is to demonstrate how to use simple security mechanisms
available in PHP and Oracle in a complementary way in order to protect sensitive
data from unauthorized disclosure and prevent data from unauthorized modification
or destruction of data.

In particular, you will see how to organize data structures within the database to
ensure a secure access to the application data stored in the database, and how to
build secure PHP scripts through which application users will access that data.

An important point to note here is that the example discussed in this section uses
only those Oracle database features that are available in any of Oracle the database
editions, including Oracle Database Express Edition.

Another point to note about the example discussed here is that, in order to follow it,
you do not necessarily need to have the samples from the previous chapters built.
You simply will need to borrow the testAuth.php script described in the PEAR::
Auth in Action section in Chapter 5 and the usr.acoounts table created as described
in the An Example of When to Use a Stored Subprogram section in Chapter 3, before
proceeding to the sample.

Authenticating Users
In the Using Standard Classes section in Chapter 5, you saw an example of an
authentication system built using the Auth package from the PEAR library. In
particular, you saw how the PEAR::Auth class can be used to build secure pages
in your PHP/Oracle application, preventing unauthenticated users from accessing
secure information. The following steps outline how it works:

Users cannot access any secure application page until they log in. Users
log in through a login form, supplying a valid username/password pair
maintained in the database.
Once logged in, the user gains access to secure pages. He or she doesn't need
to supply his or her credentials again when moving from one secure page to
another. Before a secure page is displayed, a check of whether a session with
valid authentication information exists takes place.
An authenticated user is automatically logged out when the session holding
the authentication information expires or the specified amount of idle time
has passed, whichever is soonest.

•

•

•

Chapter 6

[165]

In a real-world application, in addition to this functionality, you would, no
doubt, implement the logout functionality based on the logout method of
the PEAR::Auth class, providing a way for users to log out.

For simplicity, the example discussed in Chapter 5, on its secure page, displays a
hello message including the name of the authenticated user and some text applicable
to all application users. Regardless of the credentials being used by the end users to
get authenticated, the application connects all users to the single database schema.
The following diagram offers a high-level view of that interaction.

WEB Server Database Server

Shared DB
account

PHP
engine

User 1

User 2

User N

. . .

As you can see from the figure, you don't need to create a database account for each
application user just to make it possible for him or her to access the data stored in the
database—all application users are associated with the same single database account.

Being commonly used in database-driven web applications, this all-to-one type
of mapping will be used in all the examples discussed throughout this chapter.
The next sections examine how the authentication system discussed here can be
improved for better security.

Separating Security Management and Data
In the example discussed in the Using Standard Classes section in Chapter 5, the
application uses the same database schema to connect to the database and to hold the
database tables queried from the application. However, from a security standpoint,
using the same single database schema in this case is definitely not the best way to go.

The fact is that when connecting to a database schema, the user obtains full access to
all the database objects belonging to that schema. In practice, this means that after a
connection to the database is established the application can not only issue
SELECT statements against the database objects it works with, but also issue DML
(INSERT, UPDATE, DELETE) and DDL (DROP TABLE, for example) statements against
those objects, thus creating a potential security issue. Such issues can be resolved by
using database schemas as discussed in the following sections.

Security

[166]

Using Two Database Schemas to Improve Security
To improve security, you might create another database schema to be used only
for establishing connections, and then give only SELECT privileges on the database
objects that your application queries to that schema.

As an example of where this technique might be useful, let's turn back to the example
discussed in the PEAR::Auth in Action section in the preceding chapter. Looking
through the testAuth.php script shown in the listing, you may notice that
it authenticates users against the accounts table, which in turn is created as
described in the An Example of When to Use a Stored Subprogram section in Chapter 3.
Since the testAuth.php script connects to the database through the same database
schema where the accounts table resides, this represents a weak spot in the
application's defense.

Before you proceed with this example, make sure that you have the accounts table
installed in your database. To do this, issue the following SELECT statement from
SQL*Plus when connected as usr/usr:

SELECT * FROM accounts;

If you have performed the SQL statements shown in the An Example of When to Use a
Stored Subprogram section in Chapter 3, you should receive results that might look
as follows:

USR_ID FULL_NAME PSWD NUM_LOGONS
---------- -------------------- ---------- ----------
bob Bob Robinson pswd 32

The num_logons column was added to the accounts table when
performing SQL statements shown in the Controlling Transactions from PHP
section in Chapter 4. For the example discussed in this section, it does not
matter if your accounts table contains the num_logons column or not.

If you still don't have the accounts table, you need to create it now, using the
appropriate statements from the An Example of When to Use a Stored Subprogram
section in Chapter 3.

Once you have that set up, you can create a new database schema through which the
testAuth.php script will connect to the database. Then, you can grant the SELECT
privileges on the accounts table to the newly created schema. The following SQL
statements are required to perform these tasks.

CONN /AS sysdba

Chapter 6

[167]

Using this SQL statement, you create a new database schema that will be used by the
application to connect to the database.

CREATE USER app_conn IDENTIFIED BY appconn;

Once a database schema is created, you should grant all the required privileges to it.
When granting privileges, you should always remember the least privilege principle,
which implies that users should be given only the minimum privileges required to
do their job and nothing else.

To make managing and controlling privileges easier, Oracle uses roles,
combining related privileges into groups. In addition to predefined roles
available in Oracle, you can create and then employ your own roles,
grouping privileges as needed.

In this example, you grant only the default CONNECT role to the newly created
schema, thus allowing users accessing only this account to connect to the database:

GRANT CONNECT TO app_conn;

Starting with Oracle Database 10g Release 2, the CONNECT role has only
the CREATE SESSION privilege—the minimum required to establish a
connection to the database. Other privileges, such as CREATE TABLE and
CREATE VIEW, were removed from the CONNECT role for security reasons.

Next, you grant the SELECT privilege on the usr.accounts table to the app_conn
schema, so that the application users using app_conn schema to connect to the
database will be able to view data stored in this table, but not alter it.

GRANT SELECT ON usr.accounts TO app_conn;

Now that you have the app_conn schema set up and granted the CONNECT role, you
can use this schema instead of usr in your application in order to connect to the
database. So, you should revoke the CONNECT role from the usr schema for
security reasons.

REVOKE CONNECT FROM usr;

Once you have performed all the SQL statements discussed above, you need to
slightly modify the testAuth.php script discussed in the PEAR::Auth in Action
section in Chapter 5 to use the newly created app_conn database schema instead
of usr.

Security

[168]

In fact, all you need to modify is the array of options passed to the storage container
of the Auth object, as shown below:

 $auth_opts = array(
 'dsn'=>'oci8://app_conn:appconn@localhost:1521/orcl',
 'table'=>'usr.accounts',
 'usernamecol'=>'usr_id',
 'passwordcol'=>'pswd',
 'db_fields' => '*',
 'cryptType'=>'none'
);

Once you've done that, you can then test the updated authentication system. To
do this, you might run the appPage.php script discussed in the Securing Pages with
PEAR::Auth section in the preceding chapter. When testing the sample, you should
note that while the above changes improve the security of the authentication scheme
used here, from the user's point of view, the sample behaves as before.

Using Three Database Schemas to Improve Security
Having two database schemas—one for establishing connections and the other
for holding database resources used by the application—is undoubtedly a good
idea from the point of view of security. This way the schema used for establishing
a connection to the database has no rights to modify the data accessed by the
application. However, it is still not an optimal security solution—everyone who can
obtain the database connection credentials embedded in the application source code
will be able to issue a SELECT query against the usr.accounts table, thus obtaining
access to all application users' accounts stored in this table.

One possible solution to this problem is to create another database schema that will
serve as an intermediate point of connection between the above two schemas. In
this schema, you might create a set of stored procedures providing secure access to
database resources. Graphically, it might look like the following figure.

PHP
engine

Application
Users

Database ServerWEB Server

Security
manager

DB schema

DB schema
to connect to

Shared
DB schema

Chapter 6

[169]

Using the security solution shown in the figure, you restrict access to database data
by allowing users to manipulate it only through the stored procedures that in turn
have a restricted set of privileges on the data they manipulate. Residing in a separate
database schema, these stored procedures are used to safely access resources stored
in another schema. For better security, the schema used for establishing connections
has only the rights to execute these stored procedures but not to create or alter them.

You need to execute t�� he following SQL statements to create a new database schema
for holding stored procedures that will be used to safely access database data.

CONN /AS sysdba

Next, you create the sec_adm database schema that will be used to perform the
security related tasks:

CREATE USER sec_adm IDENTIFIED BY secadm;

You grant the RESOURCE role to the newly created schema so that you can create
database resources in it. Note that you should not grant the CONNECT role to this
schema because your application will use only the app_conn schema to connect to
the database:

GRANT RESOURCE TO sec_adm;

To be able to view the usr.accounts table from sec_adm, you grant the SELECT
privilege on this table to sec_adm:

GRANT SELECT ON usr.accounts TO sec_adm;

Since the SELECT privilege on usr.accounts table granted to the app_conn schema
is no longer needed, you should revoke it.

REVOKE SELECT ON usr.accounts FROM app_conn;

Employing PL/SQL Packages and Table Functions
to Securely Access Database Data
After you have created a single database schema for performing security-related
tasks, the next step is to create appropriate database objects in that schema. In this
example, you might create a single stored function that will take a user name as the
parameter and then return the corresponding row from the usr.accounts table
if any.

Security

[170]

The following listing shows how to create the sec_pkg PL/SQL package containing
the f_auth function that will be used to securely access the usr.accounts table.

CONN /AS sysdba

CREATE OR REPLACE PACKAGE sec_adm.sec_pkg IS
 TYPE acc_rec_typ IS RECORD (
 USR_ID VARCHAR2(10),
 FULL_NAME VARCHAR2(20),
 PSWD VARCHAR2(10),
 NUM_LOGONS NUMBER(38));
 TYPE acc_rec_set IS TABLE OF acc_rec_typ;
 FUNCTION f_auth(usrid VARCHAR2) RETURN acc_rec_set PIPELINED;
 END sec_pkg;
/

CREATE OR REPLACE PACKAGE BODY sec_adm.sec_pkg IS
FUNCTION f_auth(usrid VARCHAR2)
RETURN acc_rec_set PIPELINED IS
 acc_rec acc_rec_typ;
BEGIN
 SELECT * INTO acc_rec FROM usr.accounts WHERE usr_id=usrid;
 PIPE ROW(acc_rec);
 RETURN;
END;
END sec_pkg;
/

Now let's discuss the statements in the above listing, step by step.

As you might recall from the preceding section, the sec_adm database schema is
granted only the RESOURCE role. Therefore, you cannot connect to the sec_adm
database schema directly, because it lacks the CREATE SESSION privilege required
for this operation. In this example, you connect to the database as sysdba and then
create the desired database objects in sec_adm.

With the help of the CREATE PACKAGE statement shown in the above listing, you
create a new PL/SQL package specification, declaring types, variables, and
subprograms that can be referenced from both inside the package and outside
it. Note that in this example you create a package specification from outside the
database schema to which that package will belong. That is why in this case, the
parameter of the CREATE PACKAGE statement must contain that schema name
followed by the package name.

Chapter 6

[171]

In the Performing Authorization Based on the User Identity section later in
this chapter, you will see how package variables can be used to hold
authentication information during a database session.

In the package specification, you first define the acc_rec_typ user-defined record
type, which should reflect the structure of a usr.accounts table row. To see the
exact structure of the usr.accounts table, you might issue the following SQL
statement from SQL*Plus when connected as sysdba:

DESC usr.accounts

If you have performed the SQL statements described in the An Example of When
to Use a Stored Subprogram section in Chapter 3, as well as the statements in the
Controlling Transactions from PHP section in Chapter 4, then the above statement
should produce the following results:

Name Null? Type
 --- -------- ------------
 USR_ID NOT NULL VARCHAR2(10)
 FULL_NAME VARCHAR2(20)
 PSWD NOT NULL VARCHAR2(10)
 NUM_LOGONS NUMBER(38)

If you did not perform the SQL statements from the Controlling Transactions from PHP
section in Chapter 4, you will not see num_logons field in the above output. If so, you
must not include this field in the acc_rec_typ record type either.

Next, you declare the acc_rec_set table type of acc_rec_typ. You will use this type
as the return type of the f_auth package function declared in the next line.

The f_auth function will be called from outside the package. Note the use of the
PIPELINED keyword when declaring the f_auth function. By declaring a function
as PIPELINED, you specify that this function will return a collection of rows like a
database table or view when queried.

Pipelined functions, also known as pipelined table functions, may come
in very handy when you need to protect sensitive database data from
unauthorized access. Unlike regular database tables and views that may
be queried with SELECT statements containing no WHERE clause, and,
thus, returning all the rows from the queried object, a table function can
be organized so that it never returns all the rows from the table or view
queried inside the function. For more information on pipelined functions,
refer to Oracle documentation: Tuning PL/SQL Applications for Performance
chapter in the Oracle Database PL/SQL User's Guide and Reference book.

Security

[172]

Next, you use the CREATE PACKAGE BODY statement to define the sec_pkg package
body, in which you define the code for the f_auth function declared in the package
specification.

You begin creating the f_auth function by declaring its header, as defined earlier
in the package specification. In this example, the f_auth function takes only one
parameter, namely usrid, and then returns the corresponding row from the
usr.accounts table if the SELECT statement executed within this function finds one.

Then, you define the acc_rec variable of the acc_rec_typ type declared earlier in
the package specification. This variable will be used to hold the row retrieved by the
SELECT statement.

Next, you query the usr.accounts table to obtain the row whose usr_id field value
is equal to the value of the parameter passed to the f_auth function. It is important
to note that since the usr_id column in the usr.accounts table is the primary
key column, the SELECT statement used here cannot return more than one row.
Otherwise, you would have to process the retrieved rows individually in a loop.

Now, look at the following statement. With it, you might create the sec_pkg.f_auth
function so that it could theoretically return more than one row to the caller:

CREATE OR REPLACE PACKAGE BODY sec_adm.sec_pkg IS
FUNCTION f_auth(usrid VARCHAR2)
RETURN acc_rec_set PIPELINED IS
BEGIN
 FOR acc_rec IN (SELECT * FROM usr.accounts WHERE usr_id=usrid)

 LOOP

 PIPE ROW(acc_rec);

 END LOOP;

 RETURN;
END;
END sec_pkg;
/

In this particular example, the sec_pkg.f_auth function will always return either
one row or none, regardless of whether you perform the SELECT operation in a loop
or not. This is because a given username cannot be associated with more than one
row in the usr.accounts table.

You use the PIPE ROW statement to pipeline the row retrieved out of the f_auth
function to the caller. Once an appropriate row has been pipelined, you use the
RETURN statement to end the execution of the function and return control to
the caller.

Chapter 6

[173]

Using the %ROWTYPE Attribute
As an alternative to using a user-defined record when defining the acc_rec_typ
type in the sec_pkg package discussed in the preceding example, you might define
that type as usr.accounts%ROWTYPE, which could save you the trouble of needing to
know whether the usr.accounts table contains the num_logons column.

The problem with this approach in this example is that you're using the %ROWTYPE
attribute with the accounts table that resides in the usr database schema, while the
sec_pkg PL/SQL package, which employs %ROWTYPE, resides in a different schema,
namely sec_adm. Looking through the %ROWTYPE Attribute section in the PL/SQL
User's Guide and Reference Oracle documentation book, you may notice that the
syntax of the %ROWTYPE attribute does not imply specifying a database schema name
in front of the table (or view) name used with the attribute.

Actually, you can still do so. However, there is no guarantee that
this will work as expected. In this particular example, using usr.
accounts%ROWTYPE instead of the user-defined record may result in a
runtime error when the sec_pkg.f_auth function is invoked.

One way to solve this problem is to define a view on the usr.accounts table in the
sec_adm schema, and then use the name of that view with %ROWTYPE to declare
a record type representing a row in the usr.accounts table. From a security
perspective, it is important that the newly created view, while having the same
structure as the usr.accounts base table, selects no rows from this table. This can be
achieved by specifying, say, 1=0 in the WHERE clause of the view's defining query.

The following listing shows how to create a view on the usr.accounts table in the
sec_adm schema, and then rewrite the sec_pkg package created as described in the
preceding section so that it uses the name of the newly created view with %ROWTYPE
when declaring a record type representing a row in the usr.accounts table.

CONN /AS sysdba

CREATE VIEW sec_adm.accounts_empty_v AS
SELECT * FROM usr.accounts WHERE 1=0;

CREATE OR REPLACE PACKAGE sec_adm.sec_pkg IS
 TYPE acc_rec_set IS TABLE OF accounts_empty_v%ROWTYPE ;
 FUNCTION f_auth(usrid VARCHAR2) RETURN acc_rec_set PIPELINED;
 END sec_pkg;
/

CREATE OR REPLACE PACKAGE BODY sec_adm.sec_pkg IS
FUNCTION f_auth(usrid VARCHAR2)
RETURN acc_rec_set PIPELINED IS

Security

[174]

 acc_rec accounts_empty_v%ROWTYPE;
BEGIN
 SELECT * INTO acc_rec FROM usr.accounts WHERE usr_id=usrid;
 PIPE ROW(acc_rec);
 RETURN;
END;
END sec_pkg;
/

By issuing the CREATE VIEW statement in the above listing, you create an empty
view whose structure is the same as the structure of the usr.accounts table. It is
important to understand that the only goal of this view is to provide information
about the usr.accounts table's structure, rather than providing information stored
in the table. So, you specify 1=0 in the WHERE clause of the view's query to make sure
that it returns no rows from the base table and, thus, the view is empty.

Another good thing, from a security standpoint, is that you don't have to grant
any privileges on the accounts_empty_v view to the app_conn schema through
which your application establishes connections to the database. This is because you
reference the accounts_empty_v view within the sec_pkg package, which belongs
to the same database schema as the view.

In the package specification, you declare a table type of accounts_empty_v%ROWTYPE.
Note the use of the accounts_empty_v view that was created earlier in this
listing. The table type declared here will be used as the return type of the f_auth
package function.

Next, you declare the acc_rec variable of accounts_empty_v%ROWTYPE. You will
then use this variable to hold the account information retrieved from the usr.
accounts table.

Then you define the SELECT statement that queries the usr.accounts table, inserting
appropriate account data into the acc_rec variable.

Now that you have examined the sec_pkg package's code and learned how login
credentials are processed within the f_auth function defined in the package, you
might want to look at how the example will use it in the authentication process.

However, before you start using the f_auth function defined in the sec_pkg
package, you need to grant the EXECUTE privilege on the sec_pkg package to the
app_conn database schema so that the f_auth function can be executed from within
the applications connecting to the database through that schema. This can be done
with the following SQL statement:

CONN /AS sysdba

GRANT EXECUTE ON sec_adm.sec_pkg TO app_conn;

Chapter 6

[175]

It is important to understand that the EXECUTE privilege on a package
allows the schema that is granted it only to execute subprograms from the
package, not to alter or drop it.

Once you've done all that, you can turn back to the testAuth.php script, making it
work with the sec_adm.f_auth function rather than with the usr.accounts
table directly.

One problem here is that you cannot simply specify sec_adm.f_auth instead of usr.
accounts as the value for the table parameter in the array of options passed to the
storage container of the Auth object. This is because the sec_adm.f_function takes
the parameter, which is passed to the function when the user submits the login form.

Building a Custom Storage Container for the
PEAR::Auth Class
A simple, yet effective solution to the above problem is to create a custom storage
container for the Auth class that would work with a table function rather than with a
regular database table or view.

In the spirit of code reuse, you don't have to write a storage container from scratch.
Instead, you might take advantage of an existing one, customizing it as needed.
The Auth PEAR package ships with a number of storage containers, which are
implemented as classes and stored in single files in the /Auth/Container directory
located within the PEAR directory. It is important to note that the /Auth/Container
directory is hard-coded into the Auth class. Therefore, if you want to create a custom
storage container, you have to store it in this directory.

As you may recall from Chapter 5 Object-Oriented Approach, PHP allows you to
extend existing classes by adding new methods and properties and overriding the
existing ones. In this example, you need to extend the class that implements the DB
container used by PEAR::Auth, so that the new class can work with a table function
that takes a user ID as the parameter, rather than working with a regular table
or view.

Examining the files in the /Auth/Container directory, you may find that
the DB container is implemented as the Auth_Container_DB class and resides
in the Auth/Container/DB.php file. Now, to build a custom class upon
Auth_Container_DB, create a new file, say, DB_func.php, in the Auth/Container
directory and insert the following code

<?php
 //File: DB_func.php

Security

[176]

 require_once 'Auth/Container/DB.php';
 class Auth_Container_DB_func extends Auth_Container_DB
 {
 function fetchData($username, $password,
 $isChallengeResponse=false){
 $this->options['table']="TABLE(".

 $this->options['table']."('".$username."'))";

 return parent::fetchData($username, $password,
 $isChallengeResponse=false);
 }
 }
?>

In the above script, you include the Auth/Container/DB.php file because it
contains the Auth_Container_DB class that acts as the parent class for the
Auth_Container_DB_func class defined in this script.

Next, you begin the class definition, specifying that the newly created class is built
upon Auth_Container_DB.

The only parent class method you override in the Auth_Container_DB_func class
is the fetchData method. This method is invoked immediately after a user submits
the login form, using the given username to fetch the corresponding authentication
information from the database.

Within the fetchData method, you override the table parameter in the array
of options passed to the container. In the new value of the table parameter, you
include the old value of the parameter, which in turn includes the name of the
sec_adm.f_auth function, and specify the username variable as the function's input
argument, which in turn is an input parameter of the fetchData method.

Once the table parameter is set up to the new value, you call the fetchData method
of the parent class.

Testing the Authentication System
Now it's time to put the newly created authentication system into action. Note that
the testAuth.php script shown below, which was originally discussed in the PEAR::
Auth in Action section in Chapter 5, is modified to support user authentication against
the sec_adm.sec_pkg.f_auth table function rather than the usr.accounts table.

<?php
 //File: testAuth.php
 require_once "Auth.php";
 $auth_opts = array(

Chapter 6

[177]

 'dsn'=>'oci8://app_conn:appconn@localhost:1521/orcl',
 'table'=>"sec_adm.sec_pkg.f_auth",
 'usernamecol'=>'usr_id',
 'passwordcol'=>'pswd',
 'db_fields' => '*',
 'cryptType'=>'none'
);
 $auth_opts['usernamecol'] = strtoupper($auth_opts['usernamecol']);
 $auth_opts['passwordcol'] = strtoupper($auth_opts['passwordcol']);
 $a = new Auth('DB_func', $auth_opts);
 $a->setExpire(5);
 $a->start();
 if ($a->getAuth()) {
 print '';
 print "<h2>Hello, ".$a->getAuthData('FULL_NAME')."!</h2>
";
 print '';
 } else {
 exit;
 }
?>

In the above script, you specify a table function as the value of the table parameter
in the array of options passed to the storage container in the same way you would
specify a regular table. In this example, to reference the f_auth function, you use dot
notation, specifying the database schema and then the package to which this function
belongs.

By specifying DB_func as the first parameter of the Auth's constructor, you tell the
Auth object to use the DB_func storage container discussed in the preceding section.

After you have updated the testAuth.php script as shown above, you can run
the appPage.php script discussed in the Securing Pages with PEAR::Auth section
in Chapter 5 to test the authentication system developed in this section. As in
the example from Chapter 5, you may use the bob/pswd username/password
combination to get authenticated.

After successful authentication, you will see the secure page produced by the
appPage.php script. You may reload this page several times by clicking the here
link on it until the authentication session expires (for testing purposes, it is set to 5
seconds in this example). When this happens, you are redirected to the login
page again.

Security

[178]

As you may conclude, from the end-user point of view, the updated example
discussed here behaves exactly like the sample discussed in Chapter 5. What this
means in practice is that you can apply security techniques discussed in this section
not only when developing a new application but also when improving the security
of an existing application.

Performing Authorization Based on the User
Identity
Now that you have an authentication system installed and working, it's time to think
about authorization. So far, all application users in the example discussed here are
associated with the same database schema and, once successfully authenticated, have
the same privileges to access the data stored in the database. Going one step further,
you might implement an authorization schema so that a given user has access only to
certain database resources.

Graphically, it would look like the following figure:.

PHP
engine

Application
Users

Database Server

User bob

WEB Server

Authorization usr_id

bob

maya

. . .
. . .

. . .

. . .

. . .

.

User maya

The diagram in the figure shows authentication in action. Once a user is
authenticated, he or she is authorized to access only his or her own record in the
table holding authentication information. In a real-world situation, you probably will
want to authorize the user to access not only his or her account record but also the
related records in another table or tables.

One way to achieve this functionality is to store information about an authenticated
user in the database session and then use this information when performing
authorization checks. It is interesting to note that a database session is created when
a user connects to the database and ends when the user disconnects (explicitly
or implicitly).

Chapter 6

[179]

Using Sessions to Hold Information about the
Authenticated User
As you may recall from Chapter 4, if you're establishing a connection to the database
from PHP with the oci_connect function, then the connection is automatically
closed when the script ends. The fact is that the DB storage container, which is
used by the PEAR::Auth object in the sample discussed here, uses the oci_connect
function in the long run to connect to the database. What this means is that once the
script that performs authentication ends, the database connection used by that script
and, thus, the corresponding database session are closed as well.

On the other hand, the _authsession PHP session, which is set up by the PEAR::
Auth object to hold the authentication information once a user is successfully
authenticated, exists until it expires or the specified amount of idle time has passed.

To handle this problem, you have to transmit the information about the current
authenticated user to the database before performing any database-related operations
from within PHP. In particular, you have to set appropriate database session variables
to the values held in the corresponding variables of the _authsession PHP session,
prior to issuing any queries against the database within a script.

The same technique is used when implementing row-level security with
Virtual Private Database (VPD). You will see this in action in the Using
VPD to Implement Row-Level Security section later in this chapter.

Holding a User's Information in Package Variables
The easiest way to pass a user's information to the database is to use PL/SQL
packages. The fact is that the state of a package persists for the lifetime of a database
session (unless you marked that package SERIALLY_REUSABLE). Moreover, the
state of a package is private to each database session, which makes it possible for you
to use package variables for keeping information about the current user.

Later in this section we look at how to create two PL/SQL packages that will be
used to transmit and hold information about the current authenticated user in the
database session. The idea is to have one package to hold the user information
and the other to manipulate the variables from the first package, setting them to
appropriate values and getting them when necessary.

Security

[180]

The fact is that the EXECUTE privilege granted on a package to a database
schema permits the users connected to the database through that schema
to execute any public subprograms in the package and access any public
package variables. You cannot grant EXECUTE privilege for a certain
subprogram or variable in a package.

Thus, this separation of the packages allows for better security. This is because
you have to grant the EXECUTE privilege only on the package containing the
'setter' and 'getter' methods to the schema used for establishing connections to the
database, while the package holding user information in its package variables will
be inaccessible from that schema. This ensures that the only way for users to pass
authentication information to the database is to use the 'setter' package procedures.

You start by creating the sec_adm.app_cxt_pkg package as follows:

CONN /as sysdba
CREATE OR REPLACE PACKAGE sec_adm.app_cxt_pkg IS
 userid VARCHAR2(40);
END;
/

In this simple case, you define the sec_adm.app_cxt_pkg package containing
only one variable, userid, which will hold the name of the application user being
connected. Since you are not going to grant any privileges on the sec_adm.app_
cxt_pkg package to any other database schema, the userid package variable can be
referenced only within database objects belonging to the sec_adm schema.

Next, you create the sec_adm.set_cxt_pkg package as follows:

CREATE OR REPLACE PACKAGE sec_adm.set_cxt_pkg IS
 FUNCTION get_userid RETURN VARCHAR2;
 PROCEDURE set_userid(usrid VARCHAR2);
END;
/

In the above package, you declare the 'getter' function and the 'setter' procedure,
which are then defined in the package body. Note that the function takes no
parameter, while the procedure takes only one parameter, namely userid.

Then you create the package body for the sec_adm.set_cxt_pkg package:

CREATE OR REPLACE PACKAGE BODY sec_adm.set_cxt_pkg IS
 FUNCTION get_userid RETURN VARCHAR2
 AS
 BEGIN

Chapter 6

[181]

 RETURN app_cxt_pkg.userid;
 END;
 PROCEDURE set_userid(usrid VARCHAR2)
 AS
 BEGIN
 IF (SYS_CONTEXT('USERENV', 'IP_ADDRESS') = '127.0.0.1')
 THEN
 app_cxt_pkg.userid:=usrid;
 END IF;
END;
END;
/

The get_userid package function used here simply returns the value of the app_
cxt_pkg.userid package variable.

In this example, the app_cxt_pkg.userid package variable is set to the value passed
to the set_cxt_pkg.set_userid procedure as the parameter only if the web/PHP
server through which the user is being connected to the database resides on the same
machine as the database server. To obtain the IP address of the web/PHP server,
you use the SYS_CONTEXT function with the built-in USERENV namespace as the first
parameter and IP_ADDRESS as the second parameter, which is associated with the
USERENV namespace.

If your web/PHP server and database server reside on different
machines, you have to specify the actual IP address of the web/PHP
server here, rather than specifying 127.0.0.1.

Performing this additional security check for callers of the
set_cxt_pkg.set_userid procedure allows you to make sure that only
users connected through a certain web/PHP server pass authorization.

Checking the IP address at this stage is definitely a good idea. However,
in a real-world situation, you should not rely on a single check—after all,
IP addresses can be spoofed. It is good practice to check a combination
of things when making access-control decisions. For example, you might
check whether the request occurs during normal operating hours, thus
ensuring timely access to the database resources.

Finally, you grant the EXECUTE privilege on the sec_adm.set_cxt_pkg package
to the app_conn schema, thus making it possible for applications connecting to
the database through this schema to call the set_userid procedure and the
get_userid function.

GRANT EXECUTE ON sec_adm.set_cxt_pkg TO app_conn;

Security

[182]

Once you have created packages to hold and manipulate information about the
current authenticated user, the next step is to set up database objects that will use
these packages to provide secure access to protected resources.

Protecting Resources Based on Information about
the Authenticated User
To be in line with the least privilege principle, which implies that each user should
be given only the minimum privileges required to do his or her job and nothing else,
you might implement an authorization system so that each user can see only the
set of records related to his or her account record in the usr.account table. In the
simplest case, you might authorize an authenticated user to access only the record
representing his or her account.

Using the following statements, you create a view on a table function that will
take the sec_adm.set_cxt_pkg.get_userid getter function as the parameter and
retrieve the corresponding row from the usr.accounts table.

CONN /as sysdba
CREATE OR REPLACE VIEW sec_adm.accounts_v AS
SELECT usr_id, full_name
FROM TABLE(sec_adm.sec_pkg.f_auth(sec_adm.set_cxt_pkg.get_userid));
GRANT SELECT ON sec_adm.accounts_v TO app_conn;

You don't have to include all the columns from the base table when creating a view.
In this example, you exclude the pswd column from the select list of the view's
defining query.

As you can see, the sec_adm.accounts_v view discussed here is based on a table
function, rather than a regular table. Specifically, it is based on the sec_adm.sec_
pkg.f_auth table function discussed in the preceding section, which returns a row
from the usr.accounts table based on the username passed in as the parameter.

Since the sec_adm.accounts_v view is supposed to contain the usr.accounts
table's row representing the current authenticated user, it would be a good idea to
insert a couple of new records into the usr.accounts table, before you proceed to
testing the view.

You could insert rows into usr.accounts as shown below:

INSERT INTO usr.accounts (usr_id, full_name, pswd) VALUES
 ('maya', 'Maya Silver', 'mayapwd');
INSERT INTO usr.accounts (usr_id, full_name, pswd) VALUES
 ('john', 'John Stevenson', 'johnpwd');
COMMIT;

Chapter 6

[183]

With that done, you can turn back to the testAuth.php script discussed in the
Testing the Authentication System section earlier in this chapter. The testAuthor.php
script shown below is a version of testAuth.php revised to use authorization based
on the name of the current authenticated user.

<?php
 //File: testAuthor.php
 require_once "Auth.php";
 require_once "DB.php";
 $auth_opts = array(
 'dsn'=>'oci8://app_conn:appconn@localhost:1521/orcl',
 'table'=>"sec_adm.sec_pkg.f_auth",
 'usernamecol'=>'usr_id',
 'passwordcol'=>'pswd',
 'db_fields' => '*',
 'cryptType'=>'none'
);
 $dbh = DB::connect($auth_opts['dsn']);
 if(DB::isError($dbh)) {
 die($dbh->getMessage());
 }
 $auth_opts['dsn'] = $dbh;
 $auth_opts['usernamecol'] = strtoupper($auth_opts['usernamecol']);
 $auth_opts['passwordcol'] = strtoupper($auth_opts['passwordcol']);
 $a = new Auth('DB_func', $auth_opts);
 $a->setExpire(5);
 $a->start();
 if ($a->getAuth()) {
 $username= $a->getUsername();
 $rslt =$dbh->query("BEGIN sec_adm.set_cxt_pkg.set_
userid('".$username."'); END;");
 if (PEAR::isError($rslt)) {
 print $rslt->getMessage();
 }
 print '';
 print "<h2>Hello, ".$a->getAuthData('FULL_NAME')."!</h2>
";
 print '';
 } else {
 exit;
 }
?>

In the above script, you establish a connection to the database using the connect
method of the PEAR::DB class, passing the DSN string defined in the array of options
to be passed to the storage container used by the Auth object.

Security

[184]

In the DSN string used here, you specify an existing instance of PEAR::DB with the
dsn parameter instead of a DSN string.

In this example, you use the getUsername method of the Auth object to obtain the
name of the current authenticated user.

Next, you set the sec_adm.set_cxt_pkg.userid package variable to the name of
the authenticated user obtained by the getUsername method.

It is interesting to note that the script doesn't stop its execution on failure to set the
sec_adm.set_cxt_pkg.userid package variable. This makes sense here, since
having the sec_adm.set_cxt_pkg.userid package variable undefined simply
means that the sec_adm.accounts_v view defined at the beginning of this section
contains no record, and, thus, the user will see no account information on the secure
page shown in the following figure:

This secure page displays account information of the current authenticated user.
Information is displayed only if the user has been successfully authenticated and the
sec_adm.set_cxt_pkg.userid package variable has been successfully set to the
user's account name.

To see the page shown in the figure, you should run the appPageInfo.php script
shown next, and then enter maya/mayapwd as the username/password combination
on the login page.

Chapter 6

[185]

<?php
 //File: appPageInfo.php
 require_once "testAuthor.php";
 $thisPage='"'."appPageInfo.php".'"';
 $rslt =$dbh->query('SELECT * FROM sec_adm.accounts_v');
 if (PEAR::isError($rslt)) {
 print $rslt->getMessage();
 }
 print '';
 print "<h3>Here's your account information</h3>";
 $row = $rslt->fetchRow(DB_FETCHMODE_ASSOC);
 print '<table border="1" cellpadding="5">';
 print '<tr>';
 print '<td>Account name</td><td>'.$row['USR_ID'].'</td>';
 print '</tr>';
 print '<tr>';
 print '<td>Full name</td><td>'.$row['FULL_NAME'].'</td >';
 print '</tr>';
 print '</table>';
 print '
';
 print "Click here to reload this page";
 print '';
?>

Let's walk through exactly what the above script does.

Including testAuthor.php at the beginning of the appPageInfo.php script
guarantees that only an authenticated user will see the page produced by
appPageInfo.php.

Note the use of the $dbh variable representing the PEAR::DB instance created in
the testAuthor.php script discussed earlier in this section. So, you don't need to
create another instance of PEAR::DB because testAutor.php has been included in
the script.

Then, you fetch the results of the query issued earlier. In this example, you specify
DB_FETCHMODE_ASSOC as the fetch mode, which tells the fetchRow method of PEAR::
DB to return results as an associative array.

For testing purposes, you include here the link to the same page. In a real-world
application, it would be a link to another secure page of the application.

Security

[186]

Hashing
It is critical that sensitive data is securely sent over the network. For example, it is
always a good idea to transmit user passwords over the network in a secure
manner, rather than transmitting them in clear text. One way to achieve this is
by using hashing.

Hashing is the process of converting a plaintext string of variable
length to a fixed-length string, a hash value, which serves as a digital
"fingerprint" of the input string. If two hash values generated with the
same hashing algorithm are different, this automatically means that
the two input strings are different as well. Hashing is a one-way
process—theoretically, it is impossible to determine the original string
based on its hash value.

The following sections demonstrate how to add another level of security to the
sample application discussed in the preceding sections by hashing user passwords.
So, you will see how an existing authentication system can be modified to take
advantage of hashing.

Hashing Passwords
Turning back to the testAuthor.php script discussed in the Protecting Resources
Based on Information about the Authenticated User section earlier, you may notice
that the cryptType parameter in the array of options is set to none, meaning that
the storage container used by the Auth object will use no hashing algorithm when
processing the password entered by a user, implying that the password retrieved
from the database is in plain-text format as well.

Now, to start using hashed passwords in the sample application discussed in the
previous section, you have to perform the following two general steps:

Make sure that the database sends hashed passwords instead of plain-text
passwords when passing account data to the testAuthor.php script.
Modify the testAuthor.php script so that the Auth object hashes passwords
entered via the login form.

The easiest way to make sure that the database sends password hashes when passing
account data to the testAuthor.php script would be to store password hashes in the
usr.accounts table, rather than storing actual passwords in clear text in this table.

However, since hashed data cannot be returned to its original state, in some
situations you might want to still store user passwords in clear text, while hashing a
password just before sending the user account record to which that password

•

•

Chapter 6

[187]

belongs to over the network. For example, you might want your application to
support forgotten passwords functionality, sending a user his or her forgotten
password via email once he or she has successfully answered a secure question.

The following figure illustrates the process of hashing a user password stored in
the database in plain-text format, before sending it to the PHP script running on the
web/PHP server for further processing.

to Web/PHP server hash value

bob Bob Robinson

Database Server

clear text

PACKAGE sec_pkg

//performs hashing

END f_auth;
END sec_pkg

FUNCTION f_auth
BEGIN

. . .

. . .

. . .

a3f05c8283e5...

bob Bob Robinson
. . .

. . .

. . .

USR_ID FULL_NAME PSWD

PSWD

The figure depicts the process of hashing a password stored in plain-text format. The
f_auth function from the sec_adm package retrieves appropriate account data from
the usr.accounts table and then hashes the password in the retrieved data. Finally,
it sends the updated account data to the authAuth.php script.

As you can see from the figure, in the f_auth package function you hash only the
password—the rest of the account data is sent to the web/PHP server unhashed.

Before you can implement the functionality shown in the previous figure, you first
have to decide which hashing algorithm to choose.

As for the Oracle Database 10g Release 2, it supports several industry
standard hashing algorithms, including MD4, MD5, and SHA-1. As for
the PEAR::Auth package Release: 1.3.0, it uses MD5 hashing algorithm
by default. Alternatively, PEAR::Auth allows you to employ any other
hash function available in PHP. For example, you might use the sha1
hash function to take advantage of the SHA-1 hashing algorithm that
produces a 160-bit hash.

While MD5 and SHA-1 hashing algorithms are implemented in individual PHP
functions, called md5 and sha1 respectively, PHP doesn't provide a single function
implementing the MD4 algorithm. To produce an MD4 hash value in PHP, you should

Security

[188]

use the hash function, specifying md4 as the first parameter and a string to be hashed
as the second one. This makes using MD4 with PEAR::Auth a little tricky. Another
reason not to employ MD4 is that this hashing algorithm is less secure than its
successor MD5.

So, you might consider using either MD5 or SHA-1 in the example discussed here.
The following table briefly summarizes these two hashing algorithms.

Hashing algorithm Description
MD5 (Message-Digest
algorithm 5)

MD5 hashing algorithm is defined in the RFC 1321 document.
This algorithm produces a 128-bit hash value and is widely used
to hash passwords.

SHA-1 (Secure Hash
Algorithm)

SHA-1 hashing algorithm is defined in RFC 3174. It produces
a 160-bit hash value. Oracle recommends using this algorithm
rather than using its less secure predecessor, MD5.

The choice of the algorithm to be used is up to you. While the example in the next
section uses the MD5 hashing algorithm, you could easily use SHA-1 instead.

Modifying an Authentication System to Use
Hashing
Now that you have a rough idea of how hashing might be used to secure passwords
in the sample application discussed in this chapter, it's time to see how to put this
into action.

By executing the SQL following statements you set up database objects so that the
authentication system used in the sample application uses password hashes rather
than plain text passwords.

You start by altering the usr.accounts table. In particular, you enlarge the pswd
column in the usr.accounts table so that it can store hash values.

You may be wondering why you need to do that—after all, you are not going to
replace clear text passwords stored in this column with password hashes. Yes,
you are not going to do that. However, you might refer to the Separating Security
Management and Data section, where you use the structure of the sec_adm.
accounts_empty_v view based on the usr.accounts table when creating a
record with the account data, which is then sent to the testAuth.php script for
further processing.

Chapter 6

[189]

So, you have to make sure that the pswd column in the sec_adm.accounts_empty_v
view could be used to hold a hashing value. The only way to achieve this is to alter
the base table.

CONN /as sysdba
ALTER TABLE usr.accounts
MODIFY (pswd VARCHAR2(40));

After you have altered the structure of the usr.accounts table by issuing the above
statement, the structure of the sec_adm.accounts_empty_v view based on that table
is altered automatically. Since the sec_adm.sec_pkg package contains a reference to
the sec_adm.accounts_empty_v view, the package needs to be recompiled to pick
up the changes made.

Then, you recompile the package by simply recreating it.

CREATE OR REPLACE PACKAGE sec_adm.sec_pkg IS
 TYPE acc_rec_set IS TABLE OF accounts_empty_v%ROWTYPE ;
 FUNCTION f_auth(usrid VARCHAR2) RETURN acc_rec_set PIPELINED;
 END sec_pkg;
/

Before you can start using the DBMS_CRYPTO package in your PL/SQL subprograms,
you have to grant the EXECUTE privilege on this package to the database schema
under which those subprograms are created.

In this particular example, you grant the EXECUTE privilege on DBMS_CRYPTO
package to the sec_adm schema. This is because the f_auth function from the
sec_adm.sec_pkg package will use DBMS_CRYPTO.

GRANT EXECUTE ON dbms_crypto TO sec_adm;

Next, you recreate the sec_pkg package body in order to recreate the f_auth
package function so that it hashes the password before sending account data to the
testAuthor.php script for further processing.

CREATE OR REPLACE PACKAGE BODY sec_adm.sec_pkg IS
FUNCTION f_auth(usrid VARCHAR2)
RETURN acc_rec_set PIPELINED IS
 acc_rec accounts_empty_v%ROWTYPE;
BEGIN
 SELECT * INTO acc_rec FROM usr.accounts WHERE usr_id=usrid;
 acc_rec.pswd := DBMS_CRYPTO.HASH (
 UTL_I18N.STRING_TO_RAW (acc_rec.pswd, 'AL32UTF8'),
 DBMS_CRYPTO.HASH_MD5);
 acc_rec.pswd:=NLS_LOWER(acc_rec.pswd);
 PIPE ROW(acc_rec);

Security

[190]

 RETURN;
END;
END sec_pkg;
/

In the f_auth function, note the use of the HASH function from the DBMS_CRYPTO
package. This function either takes a RAW or LOB value as a parameter and returns
the hashed value computed using the hashing algorithm specified with the constant
passed to the HASH function as the second parameter.

Since the HASH function can take only a RAW or LOB value as the parameter to be
hashed, rather than taking a VARCHAR2 value, you first have to convert a VARCHAR2
to a RAW before passing it to the function. In this example, you use the UTL_I18N.
STRING_TO_RAW function to convert a password stored in the database in clear text as
VARCHAR2 to a RAW value.

In this example, you specify the DBMS_CRYPTO.HASH_MD5 package constant as the
second parameter of the HASH function. This tells the HASH function to compute a
hash value using the MD5 hashing algorithm.

If you want to use SHA-1 hashing algorithm rather than MD5, you must
specify the DBMS_CRYPTO.HASH_SH1 package constant instead.

Finally, you convert the hash value returned by the HASH function to lowercase. This
is because the HASH function returns a hash value in uppercase, but the md5 PHP
function, which is used by the PEAR::Auth class to hash a password entered via the
login form, returns a hash value in lowercase.

Now, to make sure that everything works as expected, you might perform the
following quick test from SQL*Plus when connected as sysdba:

SELECT * FROM TABLE(sec_adm.sec_pkg.f_auth('bob'));

The results should look as follows:

USR_ID FULL_NAME PSWD NUM_
LOGONS
--------- --------------- ---------------------------------- --------
--
bob Bob Robinson a3f05c8283e5350106829f855c93c07d 32

Chapter 6

[191]

As you can see, the pswd column in the output contains a hash value rather than a
plain text. This means that a user password, being a sensitive part of the account
data, will be sent to the web/PHP server processing the testAuthor.php script, as a
32‑character string of random-looking hexadecimal digits.

Now, you can test the updated authentication system by running the appPageInfo.
php script discussed in the Performing Authorization Based on the User Identity section
earlier in this chapter. Before you can do that, however, you have to turn back to
the testAuthor.php source code and set the cryptType parameter in the array of
options to md5, as shown below:

'cryptType'=>'md5'

Alternatively, you might simply remove this parameter from the array.
The fact is that PEAR::Auth uses the MD5 hashing algorithm by default,
when it comes to passwords. However, if you have decided to use
the SHA-1 hashing algorithm, you must explicitly set the cryptType
parameter to sha1.

It is important to note that the hashing mechanism employed here works behind the
scenes. From the end user standpoint, the sample application behaves as before.

Setting Up Fine-Grained Access with
Database Views
There may be situations where you need to remove access to a certain column within
the table because that column contains sensitive data. In such situations, using views
is definitely the best way to go.

Your first step is to create a view that selects all the columns from the underlying
table except the one you want to make inaccessible.

Then, you grant the SELECT privilege on that view to your users, instead of granting
this privilege on the underlying table.

Security

[192]

The following figure gives a graphical depiction of this solution.

Col_1 Col_2
View

Base table

SQL queries from
applications

Col_N. . .

Col_1 Col_2 Col_3 . . . Col_N

As you can see from the figure, the simple technique based on using views allows
you to restrict access to sensitive data within tables, without the need to reconstruct
existing database objects.

It is interesting to note that views can also be used to restrict access to
certain rows in their base tables. To achieve this, you define the WHERE
clause in the view's defining query so that the view displays only
allowable rows of the base table or tables.

The examples provided in the following sections demonstrate how views can be
used when implementing fine-grained access for each application user in a PHP/
Oracle application that uses a single database schema on behalf of all users. The
first example will show using views for column-level security. Then, you will see an
example of implementing value-based security with views.

Implementing Column-Level Security with
Views
For the purpose of the example discussed in this section, let's say that the usr.
accounts table used in the previous examples contains records representing sales
representatives working for your firm. Suppose you store all the orders placed by the
sales representatives in the orders table, which resides in the usr database schema.

Chapter 6

[193]

With the following SQL statements, you create the usr.orders table and populate it
with data:

CONN /as sysdba

CREATE TABLE usr.orders(
 ordno NUMBER PRIMARY KEY,
 empno VARCHAR2(40) REFERENCES usr.accounts(usr_id),
 orddate DATE,
 total NUMBER(10,2)
);

INSERT INTO usr.orders VALUES
(1001, 'bob', '01-aug-2006', 5870.00);
INSERT INTO usr.orders VALUES
(1002, 'bob', '01-aug-2006', 12500.00);

INSERT INTO usr.orders VALUES
(1003, 'maya', '04-aug-2006', 1100.50);

INSERT INTO usr.orders VALUES
(1004, 'bob', '05-aug-2006', 10230.00);

COMMIT;

Now, suppose you want each sales representative to be ale to view all the orders,
regardless of who placed an order, but, at the same time, you want to keep the empno
column in the orders table inaccessible, so that everyone can view any order but
there is no way to determine who placed it.

Next, you create a view on the usr.orders table created above, so that the newly
created view contains only allowable columns from the base table.

CONN /as sysdba

CREATE OR REPLACE VIEW usr.orders_v AS
SELECT ordno, orddate, total
FROM usr.orders;

GRANT SELECT ON usr.orders_v TO app_conn;

In this example, for better security you create the order table as well as the
orders_v view built upon this table in the usr database schema, and then grant
SELECT privilege only on the view to the app_conn schema, which is used by
application users to connect to the database.

Security

[194]

A secure page based on the orders_v view created here might look like the
following figure:

The above page can be seen by anyone who has successfully authenticated.
Containing information about the orders placed by all employees, the page doesn't
provide any information on who exactly placed a certain order.

To see the page shown in the figure, you might run the appPageOrders.php script
shown below:

<?php
 //File: appPageOrders.php
 require_once "testAuthor.php";
 $infoPage='"'."appPageInfo.php".'"';
 $rslt =$dbh->query("SELECT ordno, TO_CHAR(orddate,
 'DD-MON-YYYY') orddate, total FROM usr.orders_v");
 if (PEAR::isError($rslt)) {
 print $rslt->getMessage();
 }
 print '';
 print "<h3>List of orders placed by all employees</h3>";
 print '<table border="1" cellpadding="5">';
 print '<tr>';
 print '<th>Order No</th><th>Order Date</th><th>Order Total</th>';

Chapter 6

[195]

 print '</tr>';
 while($row = $rslt->fetchRow(DB_FETCHMODE_ASSOC)){
 print '<tr>';
 print '<td>'.$row['ORDNO'].'</td><td>'.$row['ORDDATE'].
 '</td><td align="right">'.number_format($row['TOTAL'],
 2).'</td>';
 print '</tr>';
 };
 print '</table>';
 print '
';
 print "Click here to see the account
 info related to the current user";
 print '';
?>

In the above script, note the use of the TO_CHAR function to convert a DATE to
VARCHAR2 in the query. You pass the date format as the second parameter to
the function.

After the query has completed, you can fetch the results using one of the fetch
functions available in PEAR::DB. In this example, you use the fetchRow method,
which is called in a loop until there are no more rows to fetch.

Finally, you define a link to another secure page of the sample, which is produced by
the appPageInfo.php script discussed in the Protecting Resources Based on Information
about the Authenticated User section earlier in this chapter.

Masking the Column Values Returned to the
Application
Using views is definitely the best way to go if you need to remove access to a certain
column or columns within the underlying table. However, in some situations,
making a certain column completely inaccessible may be inappropriate. Instead, you
might want to mask some values within a certain column, letting a user access only
those column values that he or she is authorized to access.

Using the DECODE Function
This section discusses how the built-in DECODE function can be used to implement
column masking when implementing a fine-grained access with views.

Turning back to the preceding example, suppose you want to add the full_name
column from the usr.accounts table to the select list of the of the orders_v view's
defining query, masking the values of that column so that each user can see the

Security

[196]

employee's name only in records representing orders placed by him or her (in other
words, the user will see his or her name), while the other records should contain
null in this column.

By issuing the following SQL statements, you create the orders_decode_v view
whose defining query employs the DECODE function for masking the full_name
column derived from the usr.accounts table.

CONN /as sysdba

GRANT EXECUTE ON sec_adm.set_cxt_pkg TO usr;

CREATE OR REPLACE FUNCTION usr.f_get_userid RETURN VARCHAR2 IS
BEGIN
 RETURN sec_adm.set_cxt_pkg.get_userid;
END;
/

CREATE OR REPLACE VIEW usr.orders_decode_v AS
SELECT ordno, DECODE(empno, usr.f_get_userid, full_name, NULL)
empname, orddate, total
FROM usr.orders, usr.accounts
WHERE empno=usr_id;

GRANT SELECT ON usr.orders_decode_v TO app_conn;

You start by creating a function that will return the account name of the currently
authenticated user held in the userid variable of the app_cxt_pkg package in the
sec_adm schema.

You create this function in the usr schema so that it can be called from within the
orders_decode_v view created in the same schema, when connected to the database
through the app_conn schema.

As you can see, the usr.orders_decode_v view is based on two tables, namely
usr.orders and usr.accounts. The DECODE function is used in the select list of
the view's query to mask values of the full_name column derived from the
usr.accounts table.

Chapter 6

[197]

The following figure illustrates what a secure page based on the
usr.orders_decode_v view just created might look like.

While the above page displays all the orders placed by all employees, there is no way
the user can determine who exactly placed a certain order unless he or she did it.

The following listing shows the source code for the appPageEmpOrders.php script
that might be used to produce the page shown in the above figure.

The page produced by this script will contain information about orders
placed by all employees, masking the values in the empname column
depending on the currently authenticated user.

<?php
 //File: appPageEmpOrders.php
 require_once "testAuthor.php";
 $infoPage='"'."appPageInfo.php".'"';
 $rslt =$dbh->query("SELECT ordno, empname, TO_CHAR(orddate,
 'DD-MON-YYYY') orddate, total FROM usr.orders_decode_v");
 if (PEAR::isError($rslt)) {
 print $rslt->getMessage();
 }

Security

[198]

 print '';
 print "<h3>List of orders placed by all employees</h3>";
 print '<table border="1" cellpadding="5">';
 print '<tr>';
 print '<th>Order No</th><th>Employee</th><th>Order Date</
th><th>Order Total</th>';
 print '</tr>';
 while($row = $rslt->fetchRow(DB_FETCHMODE_ASSOC)){
 print '<tr>';
 if (is_null($row['EMPNAME'])){$row['EMPNAME']=' ';}
 print '<td>'.$row['ORDNO'].
 '</td><td>'.$row['EMPNAME'].'</td><td>'.$row['ORDDATE'].
 '</td><td align="right">'.number_format($row['TOTAL'], 2).'</td>';
 print '</tr>';
 };
 print '</table>';
 print '
';
 print "Click here to see the account
 info related to the current user";
 print '';
?>

In the above script, you query the usr.orders_decode_v view created earlier in
this section. Note that empname in the select list of the query is an alias for the view's
select list item built on the DECODE function.

Implementing Row-Level Security with Views
In the preceding example, you saw how to restrict access to sensitive fields within
the view's record based on the user's identity, while still allowing each user to view
all records in the view. However, sometimes you might need to allow a user to view
only the records related to his or her account, completely restricting access to all
other records.

Continuing with the preceding example, suppose you want to create another page in
the sample application on which each user will see only his or her orders. To achieve
this, you first need to create another view on the usr.orders and usr.accounts
tables, defining a predicate in the view's query that will be specific to the current
user. This view will return only the records related to the currently authenticated
user's account, and eliminate all the other records.

CONN /as sysdba

CREATE OR REPLACE VIEW usr.orders_emp_v AS
SELECT ordno, full_name as empname, orddate, total

Chapter 6

[199]

FROM usr.orders, usr.accounts
WHERE (empno=usr.f_get_userid) AND (empno=usr_id);

GRANT SELECT ON usr.orders_emp_v TO app_conn;

Note the use of an alias for the second item in the select list of the view query. Here,
you use the same alias you used for the second item in the select list of the usr.
orders_decode_v view created as described in the preceding section. By doing so,
you eliminate the need to change a lot in the appPageEmpOrders.php script when
modifying it to use the usr.orders_emp_v view instead of usr.orders_decode_v.

Unlike the usr.orders_decode_v view that uses the usr.f_get_userid PL/SQL
function in the view's select list as a parameter of the DECODE function, the usr.
orders_emp_v view discussed here employs this function in the WHERE clause to
enforce row-level security through a predicate.

A secure page based on the usr.orders_emp_v view discussed here might look like
the following figure:

This page displays all the orders placed by the currently authenticated user
(employee). By clicking the link at the bottom of the page, a user can load a page
as shown in the figure in the Using the DECODE Function section in order to see all
orders placed by all employees.

Security

[200]

The appPageEmpOwnOrders.php script shown below might be used to produce a
page like that shown in the previous figure.

<?php
 //File: appPageEmpOwnOrders.php
 require_once "testAuthor.php";
 $ordersPage='"'."appPageEmpOrders.php".'"';
 $rslt =$dbh->query("SELECT ordno, empname, TO_CHAR(orddate,
 'DD-MON-YYYY') orddate, total FROM usr.orders_emp_v");
 if (PEAR::isError($rslt)) {
 print $rslt->getMessage();
 }
 print '';
 print "<h3>List of orders placed by
 ".$a->getAuthData('FULL_NAME')."</h3>";
 print '<table border="1" cellpadding="5">';
 print '<tr>';
 print '<th>Order No</th><th>Employee</th><th>Order
 Date</th><th>Order Total</th>';
 print '</tr>';
 while($row = $rslt->fetchRow(DB_FETCHMODE_ASSOC)){
 print '<tr>';
 print '<td>'.$row['ORDNO'].
 '</td><td>'.$row['EMPNAME'].'</td><td>'.$row['ORDDATE'].
 '</td><td align="right">'.number_format($row['TOTAL'], 2).'</td>';
 print '</tr>';
 };
 print '</table>';
 print '
';
 print "Click here to see all orders
 placed by all employees";
 print '';
?>

As you can see, the query passed to PEAR::DB's query method here looks the same as
the query in the appPageEmpOrders.php script discussed in the Using the DECODE
Function section earlier. The only difference between these queries is the view
specified in the FROM clause.

Since all the orders displayed on a page generated by this script are always specific
to a current user, it makes sense to display a message that includes the name of that
user, saying who placed the orders displayed on the page. Note the use of the $a
variable, which contains a reference to the Auth object created during execution of
the testAuthor.php script included at the beginning of the script. Here, you call the
getAuthData method of Auth with FULL_NAME as the parameter to get the full name
of the currently authenticated user.

Chapter 6

[201]

Here, you display a link to the appPageEmpOrders.php script that produces a page
displaying all orders placed by all employees and masking the empname column
values depending on the currently authenticated user.

Using VPD to Implement Row-Level
Security
Virtual Private Database (VPD) is a powerful Oracle Database security feature that
allows you to implement row-level security, centralizing access security mechanisms
within the database. The basic idea behind this approach is that each user, when
successfully authenticated, is authorized to access only certain rows within a
database table or view protected with a VPD security policy.

The Virtual Private Database feature is available only in Oracle Database
Enterprise Edition. If you're using another edition of Oracle database,
consider using a view-based approach when implementing row-level
security, as discussed in the preceding section.

Since a VPD policy can be applied directly to a database table and is enforced
whenever data in that table is accessed (directly or indirectly), there is no way for the
user to bypass security. To protect a table or view with a VPD policy, you have to
perform the following general steps:

1.	 Create a PL/SQL function that implements the security policy.
2.	 Register the function created in step 1 against the table or view to

be protected.

That is it. Once you have performed the above steps, the database will append a
dynamic predicate generated by the function created in step 1 to the original SQL
statement whenever you issue it against the protected table or view.

Turning back to the preceding example where you implemented a security solution
to protect the information in the usr.orders_emp_v view at the row level, based
on the user's identity, you might achieve the same general results using the
VPD feature.

To start with, you have to recreate the usr.orders_emp_v view so that its defining
query does not contain the empno=usr.f_get_userid predicate. You really don't
need this predicate in the view's query because the database will automatically
append a dynamic predicate to each SQL statement issued against the view once
you've protected it by a VPD policy.

Security

[202]

So, the updated view might be created as follows:

CONN /as sysdba

CREATE OR REPLACE VIEW usr.orders_vpd_v AS
SELECT ordno, full_name as empname, orddate, total
FROM usr.orders, usr.accounts
WHERE empno=usr_id;

GRANT SELECT ON usr.orders_vpd_v TO app_conn;

Here, you create the usr.orders_vpd_v view on the usr.orders and usr.accounts
tables. Unlike the usr.orders_emp_v view created as described in the Using the
DECODE Function section earlier, usr.orders_vpd_v doesn't use the empno=usr.
f_get_userid predicate in the WHERE clause of the view's query. This is because the
usr.orders base table containing sensitive information on orders will be protected
by the VPD policy based on the PL/SQL function defined later in this section.

From a security standpoint, it would be a good idea in this example to apply a VPD
policy to the usr.orders base table, rather than protecting the usr.orders_vpd_v
view based on this table. Protecting the usr.orders table with a VPD policy
guarantees that each user will be able to access only those order records that he or
she is authorized to access, whether the user is using the usr.orders_vpd_v view
for that, or accessing the usr.orders base table directly.

Therefore, the next step is to create a policy that can be applied to the usr.orders
table to enforce row-level security based on the user's identity. To do this, you first
need to create a PL/SQL function that implements the security policy, producing a
dynamic predicate that will be appended to SELECT statements issued against the
usr.orders table. You might create the following function:

CONN /as sysdba

CREATE OR REPLACE FUNCTION sec_adm.f_vpd_ord (D1 VARCHAR2, D2
VARCHAR2) RETURN VARCHAR2
IS
 predicate VARCHAR2(1000);
BEGIN
 predicate := 'empno = '''||sec_adm.set_cxt_pkg.get_userid||'''';
 RETURN predicate;
END;
/

As you can see, the sec_adm.f_vpd_ord function will generate a different predicate
for each user, based on the user's identity.

Chapter 6

[203]

Once you have created the usr.f_vpd_ord function, you need to register that
function against the usr.orders table, as shown below:

CONNECT /AS sysdba;

BEGIN
 DBMS_RLS.ADD_POLICY ('usr', 'orders', 'ord_policy',
 'sec_adm', 'f_vpd_ord', 'select');
END;
/

GRANT EXECUTE ON sec_adm.f_vpd_ord TO app_conn;

Now, whenever you query the usr.orders table (directly or indirectly) Oracle will
append a dynamic predicate generated by the sec_adm.f_vpd_ord function to the
original SELECT statement.

This works regardless of the way in which you query the
usr.orders table. Whether you query it directly, by issuing a
query against that table, or indirectly, by issuing a query against a view
based on this table, the database will filter the records retrieved from
the usr.orders table, based on the security policy implemented in the
sec_adm.f_vpd_ord function.

To make sure that everything works as expected, you might make use of the
appPageEmpOwnOrders.php script discussed in the preceding section. Before you
run this script, make sure to replace orders_emp_v with orders_vpd_v in the FROM
clause of the query used in the script to retrieve information on the orders placed by
the current user.

When testing the updated sample application, you should notice that employing a
VPD-based mechanism to secure information on the orders stored in the usr.orders
table makes no difference to the sample behavior. If you login as maya/mayapwd, you
should see the same page as shown in the previous figure.

It is interesting to note that you can always drop an existing VPD policy by using the
DROP_POLICY procedure from the DBMS_RLS package. For example, to drop the policy
created in the preceding listing, you might issue the PL/SQL block shown below:

CONNECT /AS sysdba;

BEGIN
 DBMS_RLS.DROP_POLICY('usr', 'orders', 'ord_policy');
END;
/

Security

[204]

Since the usr.orders table will be used in the examples in the following
chapters, you have to perform the PL/SQL block shown in the listing
before moving on.

The example discussed in this section illustrates how a VPD secure policy can be
applied to SELECT statements issued against a certain database table. However, in a
real-world situation, you might apply a VPD policy to INSERT, UPDATE, INDEX, and
DELETE statements issued against a certain table or view. For more information on
the Oracle VPD security feature, refer to Oracle Documentation: the Using Virtual
Private Database to Implement Application Security Policies chapter in Oracle Database
Security Guide.

Summary
If your application provides access to confidential information, you need to control
access more carefully, employing different security mechanisms protecting your data
from unauthorized access and/or modification.

In this chapter, you learned how to build secure PHP/Oracle applications using
the security features of both PHP and Oracle in a complementary way. The chapter
began with an example of how an easy-to-use authentication mechanism provided
by the PEAR::Auth class could be used with Oracle database security features to
secure your PHP/Oracle application. Using techniques discussed in the Securing
PHP and Oracle Applications section in this chapter, you will be able to build a simple,
yet effective security solution for your PHP/Oracle application, even if you are using
Oracle Database Express Edition.

Then we looked at how to use hashing to protect end-user passwords stored in a
database table in plain text format and how view-based security techniques could
be used to implement column-level security and row-level security, based on the
user's identity. Finally, you saw how Oracle's Virtual Private Database (VPD) feature
available in the Enterprise Edition of Oracle Database might be used instead of
view-based security techniques to provide access control at the row level, ensuring
that each user can access only those records that he or she is authorized to access.

By now, you should have a solid understanding of how to build a secure
PHP/Oracle application, using different techniques and technologies available for
PHP/Oracle developers.

Caching
While developing a PHP/Oracle application that uses database data heavily, it
makes sense to think about caching the data that is frequently moved between
the database server and web server. In practice, for the purpose of increasing
performance, it might be useful not only to cache database result sets on the web
server, but also to hold information that is used often, which is relevant to an
application, in the memory of the database server instance.

However, to effectively implement caching on the database server, you must
have a good understanding of how Oracle's default caching mechanisms work. In
particular, you must have a grasp of how Oracle caches the data and metadata of
SQL and PL/SQL statements issued against the database.

The challenge with caching data on the web server is to know in advance the time
to update the cache. Obviously, a time-triggered approach that is commonly used
in caching systems is not the best strategy when it comes to implementing caching
systems for applications where using up-to-date database result sets is vital. In such
cases, the Oracle Database Change Notification feature, which allows for notification
an application whenever a change occurs to the application data stored in the
database, may come in very handy.

This chapter discusses how to effectively use the caching mechanisms available in
PHP and Oracle and provides several examples of caching in action.

Caching Data with Oracle and PHP
You may achieve good performance by using several caching mechanisms available
in PHP and Oracle. Certain caching mechanisms and strategies should be chosen
depending on several factors, such as whether the data you're caching is fairly static
and whether using up-to-date data is crucial for your application.

Caching

[206]

In the following sections, you will learn how to implement efficient caching schemas
using the capabilities of both Oracle and PHP.

Caching Queries on the Database Server
The good news is that Oracle has several built-in caching mechanisms that are used
by default. Nevertheless, you should have a good understanding of how these
default mechanisms work to take full advantage of them.

This section discusses how Oracle processes SQL statements issued against the
database, focusing on the issues related to caching.

Processing SQL Statements
Like any other computer program, an SQL statement has to be compiled (parsed)
before it can be executed. When a new SQL statement is parsed, Oracle creates the
parse tree and execution plan for that statement and then caches this information
in the shared pool portion of the system global area (SGA) memory, as an item
usually called a shared SQL area. Oracle reuses a shared SQL area for similar SQL
statements issued against the database, thus using the cached information instead of
generating it from scratch.

The system global area (SGA), also known as the shared memory area, is
a basic memory structure shared by all processes of an Oracle database
instance. The SGA consists of a set of memory structures, buffers and
pools, which allow for high-speed access to data and control information.
For more information on the Oracle memory structures, refer to Oracle
documentation: Memory Architecture chapter in the Oracle Database
Concepts manual.

Once Oracle has the shared SQL area for the statement being processed, it checks the
buffer cache, searching for the required data blocks.

The buffer cache is a portion of the system global area (SGA) memory
designed for caching data blocks read from and written to the
database files.

Upon failure to find these blocks in the buffer cache, Oracle reads them from the
appropriate database files and then loads the retrieved data blocks into the buffer
cache, which is, of course, an expensive operation in terms of CPU time and
physical I/Os.

Chapter 7

[207]

The following figure depicts the process of SQL statement processing
diagrammatically.

WEB Server

PHP
engine

SQL query

Data result set

Retrieves
data blocksSQL

engine

System Global Area (SGA)
Database Server

Data files

Shared pool

Shared SQL
areas

Buffer
cache

Checks for
parsing info

Checks for
data blocks

For detailed information on what happens during the execution of an SQL
statement, see Oracle documentation: SQL, PL/SQL, and Java chapter in
the Oracle Database Concepts manual.

It is important to understand that the parsing information held in the shared pool
and the data blocks kept in the buffer cache are shared across all database sessions,
regardless of the database schema under which a certain session is created, thus
allowing multiple applications and multiple users to use cached data. To understand
this better, consider the following example.

Suppose an application, which connects to the database using, say, usr1 database
schema, issues an SQL query. The database server in turn processes the query,
caching the generated execution plan and parse tree for the query in the shared pool
and the data blocks retrieved from the data file or files in the buffer cache. Then,
another application, when connected to the database through, say, the usr2 schema,
issues the same query. This time, Oracle will not generate the execution plan and
parse tree for the query again and nor will it retrieve the appropriate data blocks
from the database files. Instead, it will reuse the data held in the SGA, specifically, in
the shared pool and in the buffer cache, which was loaded there when processing the
query issued by the first application.

Caching

[208]

When an SQL statement is issued, Oracle, checks whether the database
schema, through which the application issuing the statement is connected,
has privileges to access the database objects referenced in the statement.

Another important point to note here is that Oracle can reuse parsing information for
similar statements. You might be wondering which statements Oracle considers to be
similar when it comes to sharing parsing information. Well, Oracle will use the same
shared SQL area for two SQL statements if their SQL texts are identical, including
white spaces and case. Consider the following statement:

SELECT * FROM users WHERE usrid=:id

As you can see, this statement contains a placeholder in the WHERE clause, thus
allowing the application to supply a particular value for the :id placeholder at run
time. From the user's perspective, the above SQL string can be used to issue similar
statements that differ by the user ID specified in the WHERE clause at run time.
However, to Oracle, all those statements based on the above one are identical, at least
at the stage of determining whether the same shared SQL area can be used for each
of them.

For detailed discussion on SQL sharing criteria used by Oracle, see
Oracle documentation: chapter Memory Configuration and Use in the Oracle
Database Performance Tuning guide.

Using Bind Variables to Increase the Probability of
Shared Pool Cache Hits
As you have no doubt guessed, an efficient way to reduce the number of parses
required is to use bind variables in SQL and PL/SQL statements, rather than using
string literals. What this means in practice is that you should use placeholders in SQL
and PL/SQL statements to mark where actual data must be supplied at run time.

For example, Oracle will use the same parsing information for the query used in the
code snippet below, regardless of the actual value of the $usrno bind variable passed
to the getUser function as the parameter.

<?php
function getUser($usrno)
 {
 ...

Chapter 7

[209]

 $sql = 'SELECT * FROM users WHERE usrid=:id';
 $stmt = oci_parse($dbConn, $sql);
 oci_bind_by_name($stmt,":id", $usrno);
 if(!oci_execute($stmt))
 {
 $err = oci_error($stmt);
 trigger_error($err['message'], E_USER_ERROR);
 }
 ...
 }
?>

When using the PEAR::DB package for interacting with the database, the above
snippet might look like this:

<?php
 function getUser($usrno)
 {
 ...
 $sql ='SELECT * FROM orders WHERE usrid=?';
 $res =$db->query($sql, $usrno);
 if (PEAR::isError($res)) {
 die($res->getMessage());
 }
 ...
 }
?>

Looking through the above snippets, you might come to the conclusion that they
both issue the same SQL statement. This is not the case, however. While the first code
snippet issues exactly the same query as you see in the code:

SELECT * FROM users WHERE usrid=:id

The second one, which is based on using PEAR:DB, will convert the SQL before
passing it to the database, generating the following query:

SELECT * FROM users WHERE usrid=:bind0

Although the :bind0 and :id placeholders are of the same data type, they differ in
name, and, therefore, Oracle cannot use the same shared SQL area when processing
the above two statements.

Caching

[210]

If you are employing the PEAR::DB package to interact with Oracle, you
don't have to worry about using a naming convention for placeholders;
– PEAR::DB does it for you. However, when using OCI8 APIs directly,
it's important that you standardize how you name placeholders in SQL
statements and PL/SQL code.

As mentioned above, PEAR::DB implicitly names placeholders using the prefix bind
followed by a number starting with 0. If you're using more than one bind variable
in a statement, you should pass an array of the actual values for the placeholders
to the query method, and PEAR::DB in turn will rename each placeholder to the
appropriate name before sending the statement to the database server for processing.
Take a look at the following snippet:

<?php
 function getUserOrders($usrno, $status)
 {
 ...
 $sql ='SELECT * FROM users WHERE (usrid=?)AND(status=?)';
 $params =array($usrno, $status);
 $res =$db->query($sql, $params);
 if (PEAR::isError($res)) {
 die($res->getMessage());
 }
 ...
 }
?>

After processing the SQL in this snippet, PEAR::DB will produce the
following statement:

SELECT * FROM users WHERE (usrid=:bind0)AND(status=:bind1);

It is interesting to note that the same statement will be generated by PEAR::DB even
if you change the names of the $usrno and $status variables in the snippet.

Using Oracle's Application Contexts for
Caching
Although Oracle automatically uses caching when processing SQL and PL/SQL
statements, there is still room for improvement here. A useful technique for caching
the information your application uses most often is to use application contexts.
Since application contexts are held in memory, it is typically more efficient from a
performance perspective to retrieve frequently queried information from an

Chapter 7

[211]

application context, rather than retrieving that information from the database tables
or views.

In the preceding chapter, you saw an example of using USERENV, a built-in
application context whose attributes hold information regarding a user session.
Upon creating a new session, Oracle automatically fills the values of the USERENV's
predefined attributes with appropriate data. In an example discussed in the
preceding chapter, you checked the IP_ADDRESS attribute of USERENV to determine
the IP address of the web server through which the current user was interacting with
the database.

The USERENV built-in context is an example of a local context. The
attributes of USERENV provide information specific to the current
database session—you cannot share this information across different
sessions. If you need to share data across database sessions, you have to
define a global context.

Unlike a local application context whose attributes are private to the user's session,
attributes of a global context can be defined so that they are loaded in the SGA
memory and thus, shared across all database sessions. Once attributes of a global
context are initialized, they can be referenced in SQL as well as database tables
and views.

The following figure depicts this diagrammatically. The figure illustrates that
information needed to satisfy an SQL query may be stored not only in the database
tables and views but also in global contexts held in the SGA memory of an Oracle
database instance. The fact is that accessing data through contexts is more efficient in
terms of performance compared to accessing it through tables or views.

Col_1 Col_2 Col_N

attr1 attr2 attrN

...

...
Col_1Col_2 Col_N

attr1 attr2 attrN

...

...

Web Server

PHP
engine SQL

engine
Accesses data
stored in tables
and views Database

attr1 attr2 attrN...

Database Server
System Global Area (SGA)
...

...

A global context

Accesses data
held in contextSQL

query

Data
result set

Col_1 Col_2 Col_N

attr1 attr2 attrN

...

...

Caching

[212]

The important thing about global contexts is that you don't need to initialize their
attributes each time a new session is established. You initialize them once, say,
upon startup of the database server, and then reuse their values across all
database sessions.

Creating a Global Application Context
Continuing with the example discussed in the preceding chapter, you might, for
example, want to add some information about the most recently placed order to the
page where users view their orders, so that each user can see who placed the most
recent order and when it happened. Since this information is supposed to be shared
across all database sessions and all users, it would be a good idea to cache it in a
global context in the SGA memory.

To build the example discussed in this section, you need to have some data
structures and PHP scripts defined in the preceding chapters. At a minimum, you
must have created the items listed in the following table.

Data structure or
PHP script

Created as described in Comments

usr database schema An Example of When to
Use a Stored Subprogram
section, Chapter 3.

This schema contains data structures
storing users' data. In particular, the
accounts and orders tables used in the
sample reside in this schema.

usr.accounts
database table

An Example of When to
Use a Stored Subprogram
section, Chapter 3.

This table contains records representing
users of the sample application. Once you
have this table created, make sure to fill
it with data as discussed in the Protecting
Resources Based on Information about the
Authenticated User section in Chapter 6.

app_conn database
schema

Using Two Database
Schemas to Improve
Security section,
Chapter 6.

This schema is used for establishing
connections to the database.

sec_adm database
schema

Using Three Database
Schemas to Improve
Security section,
Chapter 6.

This schema is designed to contain
database objects required to perform
security-related tasks.

sec_adm.
accounts_empty_v
database view

Using the %ROWTYPE
Attribute section,
Chapter 6.

This view is required for the sec_adm.
sec_pkg package to work.

Chapter 7

[213]

Data structure or
PHP script

Created as described in Comments

sec_adm.sec_pkg
PL/SQL package

Using the %ROWTYPE
Attribute section,
Chapter 6.

This package is used to provide secure
access to account information stored in
the usr.accounts table. Once you have
this package created, make sure to grant
EXECUTE ON sec_adm.sec_pkg to
app_conn as discussed in the Using the
%ROWTYPE Attribute section, Chapter 6.

Auth_Container_
DB_func PHP class

Building a Custom
Storage Container for
the PEAR::Auth Class
section, Chapter 6.

This PHP class extends the predefined
Auth_Container_DB class that represents
the DB storage container used by the
PEAR::Auth class.

sec_adm.app_cxt_
pkg PL/SQL package

Holding a User's
Information in Package
Variables section,
Chapter 6.

All this package contains is a package
variable intended to hold the current user's
name during a database session.

sec_adm.set_cxt_
pkg PL/SQL package

Holding a User's
Information in Package
Variables section,
Chapter 6.

This package contains setter and getter
methods intended to manipulate the
package variable defined in the sec_adm.
app_cxt_pkg package.

testAuthor.php
script

Protecting Resources
Based on Information
about the Authenticated
User section, Chapter 6

This script is included at the beginning of
each secure page in the sample application.
It is responsible for authentication and
authorization, preventing unauthorized
access to sensitive data.

usr.orders
database table

Implementing Column-
Level Security with Views
section, Chapter 6.

This table is used to store orders placed by
the sales representatives whose records are
stored in the usr.accounts table defined
as described in the An Example of When to
Use a Stored Subprogram section, Chapter 3.

usr.f_get_userid
PL/SQL function

Using the DECODE
Function section,
Chapter 6.

This function returns the account name of
the currently authenticated user held in
the userid variable of the app_cxt_pkg
package created as described in the Holding
a User's Information in Package Variables
section in Chapter 6. You use this function
in the WHERE clause of the defining query
of the usr.orders_emp_v view.

usr.orders_emp_v
database view

Implementing Row-Level
security with Views
section, Chapter 6.

This view is based on the usr.orders
and usr.accounts tables. It returns
only records related to the account of the
currently authenticated user, eliminating
all other records.

Caching

[214]

As you can see, most of the items listed in the table are either data structures or
PHP scripts created in Chapter 6. So, before moving on, it is highly recommended
that you read Chapter 6 and build the sample application discussed in that chapter,
rather than simply creating the data structures and PHP scripts listed in the table.

Once you have all these objects created, you can proceed to the sample discussed in
this section. To start with, you need to create a global context. You might do that by
issuing the following SQL commands from SQL*Plus:

CONN /as sysdba

CREATE CONTEXT cxt_ord USING sec_adm.cxt_ord_pkg ACCESSED GLOBALLY;

By specifying the sec_adm.cxt_ord_pkg in the USING clause of the CREATE CONTEXT
statement, you tell Oracle that only subprograms in the sec_adm.cxt_ord_pkg
package can be used to manipulate the attributes of the application context
created here.

By including ACCESSED GLOBALLY clause, you specify that attributes of the
application context can be shared across all database sessions.

To be able to create an application context, the database user needs the
CREATE ANY CONTEXT privilege. In this particular example, you create
a context when connected as sysdba, which implies that you have this
privilege by default.

Manipulating Data Held in a Global Context
Once a global context is created, you need to define the package specified in the
USING clause of the CREATE CONTEXT statement to manipulate the data held in the
context.

By issuing the following statements you create the cxt_ord_pkg package in the
sec_adm schema to manipulate values in the cxt_ord global context.

CONN /as sysdba

Since the cxt_ord_pkg.getRecentOrder getter function declared a bit later issues
a query against the usr.accounts and usr.orders tables, you first have to grant
SELECT privileges on these tables to the sec_adm schema.

GRANT SELECT ON usr.accounts TO sec_adm;

Chapter 7

[215]

If you have executed all the statements provided in the Using Three
Database Schemas to Improve Security section in Chapter 6, the sec_adm
schema already should be granted the SELECT privilege on the usr.
accounts table, and so you need not execute the above GRANT statement.

Next, you grant the SELECT privilege on the usr.orders table:

GRANT SELECT ON usr.orders TO sec_adm;

The next step is to create the cxt_ord_pkg package in the sec_adm schema.

CREATE OR REPLACE PACKAGE sec_adm.cxt_ord_pkg
AS
TYPE ord_rec_typ IS RECORD (
 EMPNAME VARCHAR2(20),
 ORDDATE DATE);
 TYPE ord_rec_set IS TABLE OF ord_rec_typ;
 PROCEDURE setRecentOrder(empname VARCHAR2,orddate DATE);
 FUNCTION getRecentOrder RETURN ord_rec_set PIPELINED;
END;
/

In this example, you set up only two attributes for the cxt_ord global context,
namely empname and orddate. So, you pass these two parameters to the
setRecentOrder setter procedure.

You also declare the getRecentOrder package function that will query the cxt_ord
context, retrieving information about the most recent order placed by the current
user. If the cxt_ord context's attributes are not set, it retrieves this information from
the usr.orders table, and then calls the setRecentOrder package procedure to set
the attributes of the cxt_ord context to appropriate values.

Next, you create the body for the sec_adm.cxt_ord_pkg package:

CREATE OR REPLACE PACKAGE BODY sec_adm.cxt_ord_pkg IS
PROCEDURE setRecentOrder(empname VARCHAR2,orddate DATE) IS
BEGIN
 DBMS_SESSION.SET_CONTEXT(
 NAMESPACE => 'cxt_ord',
 ATTRIBUTE => 'empname',
 VALUE => empname
);
 DBMS_SESSION.SET_CONTEXT(
 NAMESPACE => 'cxt_ord',

Caching

[216]

 ATTRIBUTE => 'orddate',
 VALUE => orddate
);
END;
FUNCTION getRecentOrder RETURN ord_rec_set PIPELINED IS
 ord_rec ord_rec_typ;
BEGIN
 IF SYS_CONTEXT('cxt_ord', 'empname') IS NULL THEN
 SELECT * INTO ord_rec FROM
 (SELECT full_name as empname, orddate FROM usr.orders, usr.accounts
WHERE empno=usr_id ORDER BY orddate DESC)
 WHERE rownum=1;
 setRecentOrder(ord_rec.empname, ord_rec.orddate);
ELSE
 ord_rec.empname:= SYS_CONTEXT('cxt_ord', 'empname');
 ord_rec.orddate:= SYS_CONTEXT('cxt_ord', 'orddate');
 END IF;
 PIPE ROW(ord_rec);
 RETURN;
END;
END;
/

In the setRecentOrder procedure, you set up attributes within the context so that
their values are available for all database sessions and all database schemas. In the
getRecentOrder function, you start by checking to make sure that these values have
been set up. For simplicity, in this example you only check to see if the empname
attribute is set.

To access attributes of an application context, you use SYS_CONTEXT function,
passing the name of the context as the first parameter and the name of the attribute
as the second.

If the attributes in the context are not set, you retrieve the information about the
most recent order from the usr.orders table. Normally, it happens the first time the
getRecentOrder function is invoked.

In this example, when designing the query that will retrieve the row representing
the most recently placed order, you rely on the fact that Oracle considers a later
date greater than an earlier one. So, the query used here retrieves the first row from
the subquery that selects all order records, sorting them by the orddate column in
descending order.

Finally, you need to grant the EXECUTE privilege on sec_adm.cxt_ord_pkg TO
app_conn. This can be done as follows:

GRANT EXECUTE ON sec_adm.cxt_ord_pkg TO app_conn;

Chapter 7

[217]

Now that you have the sec_adm.cxt_ord_pkg package created, you can turn back
to the appPageEmpOwnOrders.php script created as described in the Implementing
Row-Level Security with Views section in Chapter 6, and modify it so that the updated
script produces a page that will display not only the information about the orders
placed by the current user but also some information on the most recent order,
whoever placed it.

The following figure illustrates what this page might look like.

The following listing contains the source code for the appPageEmpOwnOrders.php
script. The updated script will produce a page that might look like the
previous figure:

<?php
 //File: appPageOrdersCxt.php
 require_once "testAuthor.php";
 $ordersPage='"'."appPageEmpOrders.php".'"';
 $rslt =$dbh->query("SELECT * FROM
 TABLE(sec_adm.cxt_ord_pkg.getRecentOrder)");

Caching

[218]

 if (PEAR::isError($rslt)) {
 print $rslt->getMessage();
 }
 $cxt =$rslt->fetchRow(DB_FETCHMODE_ASSOC);
 print '';
 print "The most recent order was placed by ".$cxt['EMPNAME'].
 " on ".$cxt['ORDDATE'];
 $rslt =$dbh->query("SELECT ordno, empname, TO_CHAR(orddate,
 'DD-MON-YYYY') orddate, total FROM usr.orders_emp_v");
 if (PEAR::isError($rslt)) {
 print $rslt->getMessage();
 }
 print "<h3>List of orders placed by ".
 $a->getAuthData('FULL_NAME')."</h3>";
 print '<table border="1" cellpadding="5">';
 print '<tr>';
 print '<th>Order No</th><th>Employee</th><th>Order
 Date</th><th>Order Total</th>';
 print '</tr>';
 while($row = $rslt->fetchRow(DB_FETCHMODE_ASSOC)){
 print '<tr>';
 print '<td>'.$row['ORDNO'].
 '</td><td>'.$row['EMPNAME'].'</td><td>'.$row['ORDDATE'].
 '</td><td align="right">'.number_format($row['TOTAL'], 2).'</td>';
 print '</tr>';
 };
 print '</table>';
 print '
';
 print "Click here to see all orders
 placed by all employees";
 print '';
?>

In the above script, you obtain information about the most recent order. For this,
you query the sec_adm.cxt_ord_pkg.getRecentOrder table function like a regular
database table. This query is highlighted in the above script (see previous page).

Once you know who placed the most recent order and when it happened, you can
display this information.

Next, you can use the same PEAR::DB object to obtain records representing orders
placed by the current user.

Chapter 7

[219]

Resetting Values in a Global Context
As mentioned earlier, the sec_adm.cxt_ord_pkg.getRecentOrder function is
responsible for initializing the cxt_ord global context. The stage of initialization
takes place when the above function is called for the first time. However, later,
when a new order is submitted, you will need to reset the values in the context to
appropriate values.

Since, for security reasons, the app_conn database schema through which the sample
application connects to the database has no rights to access the usr.orders table,
you first have to decide which mechanism to use when it comes to submitting a new
order. A common approach to this problem is to create a stored subprogram through
which the application will insert new records into the table.

By issuing the statements in the following listing, you create the newOrder procedure
that will be used for inserting new records into the usr.orders table, and grant the
EXECUTE privilege on this procedure to the app_conn schema.

CONN /as sysdba

CREATE OR REPLACE PROCEDURE usr.newOrder(
 ordno NUMBER,
 empno VARCHAR2,
 total NUMBER)
IS
BEGIN
 INSERT INTO usr.orders VALUES(ordno, empno, SYSDATE, total);
END;
/

GRANT EXECUTE ON usr.newOrder TO app_conn;

For simplicity, the procedure shown in the listing simply issues an INSERT statement
against the usr.orders table.

It's interesting to note that in DML statements embedded in PL/SQL
code, Oracle automatically turns the variables in the WHERE and VALUES
clauses into bind variables. So, in this PL/SQL procedure you don't have
to use bind variables explicitly.

Once you have the newOrders procedure created, you can move on to creating a
script that will use this procedure to insert new rows into the usr.orders table.

Caching

[220]

The following figure illustrates a mock-up of the input form that might be used for
entering data for a new order.

When executed, t���he newOrder.php script shown below produces a page containing
the input form as shown in the above figure. Upon submission of the form, the script
calls the newOrder procedure defined in the preceding listing, which in turn issues
an INSERT statement against the orders table.

<?php
 //File: newOrder.php
 require_once "testAuthor.php";
 require_once "HTML/QuickForm.php";
 $form = new HTML_QuickForm('newOrderForm');
 $form->setDefaults(
 array(
 'empno' => $username
)
);
 $form->addElement('text', 'ordno', 'Enter order number:',
 array('size' => 10, 'maxlength' => 10));
 $form->addElement('text', 'empno', 'Your account name:',
 array('size' => 20, 'readonly'));
 $form->addElement('text', 'total', 'Enter order total:',
 array('size' => 20, 'maxlength' => 20));
 $form->addElement('submit', 'submit', 'Send');
 // Define validation rules
 $form->addRule('ordno', 'Please enter order number', 'required',
 null, 'client');
 $form->addRule('total', 'Please enter order total', 'required',
 null, 'client');
 if(isset($_POST['submit'])) {
 $arr_ord =array(
 $form->getSubmitValue('ordno'),
 $form->getSubmitValue('empno'),
 $form->getSubmitValue('total')
);

Chapter 7

[221]

 $rslt =$dbh->query("BEGIN usr.newOrder(?,?,?); END;",$arr_ord);
 if (PEAR::isError($rslt)) {
 die($rslt->getMessage());
 }
 $f_name =$a->getAuthData('FULL_NAME');
 $rslt =$dbh->query("BEGIN sec_adm.cxt_ord_pkg.setRecentOrder(?,SYS
DATE); END;",$f_name);
 if (PEAR::isError($rslt)) {
 print $rslt->getMessage();
 }
 print "<h4>You just placed a new order!</h4>";
 } else{
 $form->display();
 }
?>

Now, let's break into the above script and look at how it works, step by step.

By including the testAuthor.php script discussed in the Protecting Resources Based
on Information about the Authenticated User section in Chapter 6, you secure the page
produced by the script shown in the above listing, which guarantees that only
authenticated users will be able to access the input form on this page.

In this example, you create the input form for entering a new order, using the
HTML_QuickForm PEAR package. In Chapter 5 Object-Oriented Approach, you saw an
example of using PEAR::HTML_QuickForm when building a custom login form to be
used with a class based on PEAR::Auth.

Next, you set the default value for the empno input element of the HTM_QuickForm
form created.

Once the form object is created, you can add elements to the form. In particular, you
add three input boxes that will be used for entering data for a new order. Note that
the empno input box element is defined as readonly, which means that the user will
not be able to change its default value.

Next, with the help of the addRule method, you add validation rules to the form. The
rules specified here tell the form to verify whether the ordno and total input boxes
are filled, upon submission of the form.

Then, you check to see if the form has been submitted. It is important to note that
if at least one of the validation rules defined earlier in this script is not satisfied, so
validation fails, the form is displayed again along with an error message.

Caching

[222]

Once the form is submitted, you can retrieve the submitted elements' values, by
using the getSubmitValue method. In this example, you save the entered data in an
array, which is then passed to the query method as the second parameter.

You issue the PL/SQL statement through which you call the usr.newOrder
procedure defined as described earlier in this section. Note the use of placeholders
in the parameter list of the procedure. You supply particular values to these
placeholders during execution, through the $arr_ord array.

If the PL/SQL statement issued within the script fails, you issue an error message
and stop execution with the help of the die function.

If the PL/SQL statement is executed successfully, you obtain the full name of the
currently authenticated user. For this, you call the getAuthData method of the
PEAR::Auth object created in the included testAuthor.php script, specifying the
FULL_NAME as the parameter.

Then, you reset the cxt_ord global context created as described in the Manipulating
Data Held in a Global Context section earlier, so that it contains information about the
order that was just inserted. To do this, you issue the PL/SQL statement that calls the
setRecentOrder setter method of the sec_adm.cxt_ord_pkg package created
as described in the Manipulating Data Held in a Global Context section earlier in
this chapter.

Now that you know how the newOrder.php script works, it is time to put it into
action. When you run the script, you first will be prompted to enter a user name and
password to get authenticated. You might, for example, use maya/mayapwd account/
password combination. After you are successfully authenticated, you should see the
input form for entering a new order, like the one as shown in the previous figure. In
the form, simply enter the order number and total for the order and then click the
Send button. As a result, a new record should be inserted in the usr.orders table
and you should see a message telling you about this.

Once a new record has been inserted into the usr.orders table, you might run the
appPageOrdersCxt.php script discussed in the Manipulating Data Held in a Global
Context section again in order to make sure that everything works as expected. This
time, the message displayed below the welcome message on the page should contain
information about the order that was just inserted.

Caching Mechanisms Available in PHP
While holding often-used information in a global context in the SGA memory of
the database instance lets you avoid repetitively querying database tables or views,
caching the database result sets retrieved from the database on the web server

Chapter 7

[223]

reduces the need to even send a query to the database because many data requests
may be eventually satisfied from the local cache.

Caching database result sets on the web server makes sense when the web
server and database server reside on different machines.

Choosing a Caching Strategy
Before you can start caching database result sets on the web server side, you first
have to decide which caching strategy best fits your needs.

A time -triggered caching approach, which is commonly used in caching systems,
implies that the cache is regenerated each time an expiry timestamp is reached.
While such a caching system can be easily implemented, it is not always a
satisfactory solution for those applications where using up-to-date database result
sets is crucial.

In such cases, you need to employ a mechanism that will notify your application
each time a change occurs to the database data the application is interested in
caching, so that the application can reconcile cached, out-of-date data with the
database. You can achieve this functionality with Database Change Notification, a
new Oracle Database 10g Release 2 feature.

The rest of this section discusses how to implement a time triggered-caching system
on the web server side with the help of the PEAR::Cache_Lite package. In the
following sections, you will see how to use the Database Change Notification feature
to create a notification-based caching system.

Caching Function Calls with the PEAR::Cache_Lite
Package
Turning back to the appPageOrdersCxt.php script discussed earlier in this chapter,
you might want to update it so that it caches the information on the orders retrieved
from the database in a local cache of the web server, thus reducing the overhead
associated with frequent database server requests.

One way to achieve this is to encapsulate the code responsible for retrieving
information about orders from the database into a separate function and then cache
the results of this function, thus taking advantage of so-called caching functions
calls. For example, you might create the getEmpOrders function that will query the
database and retrieve the orders for the currently authenticated user, returning this
information to the caller. After you create the getEmpOrders function, you can

Caching

[224]

rewrite the appPageOrdersCxt.php script so that it calls getEmpOrders and caches
its results in the local cache of the web server.

This can be depicted diagrammatically, as shown in following figure

Web Server

PHP engine

<?php
...
sr=getEmpOrders(...);
...

?>

Local
cache

Retrieves data
from local cache

Database Server

Database
server

process
Database

ORDERS_EMP_V view
ORDNO EMPNAME ORDDATE TOTAL

if cache is
empty, issues
query against

database

The following listing shows the source code for the script containing the
getEmpOrders function, which returns information about the orders of the current
user, whose results you are going to cache on the web server.

<?php
 //File: getEmpOrders.php
 function getEmpOrders($dsn, $user) {
 $db = DB::connect($dsn);
 if(DB::isError($db)) {
 die($db->getMessage());
 }
 $db->setFetchMode(DB_FETCHMODE_ASSOC);
 $rs =$db->getAll("SELECT ordno, empname, TO_CHAR(orddate,
 'DD-MON-YYYY') orddate, total FROM usr.orders_emp_v");
 if (PEAR::isError($rs)) {
 print $rs->getMessage();
 }
 return($rs);
 }
?>

It is interesting to note that the second parameter passed to the getEmpOrders
function is not referenced within the function code. You have to use this parameter,
which contains the account name of the current user, in order to make it possible for
the caching system to distinguish between the calls of getEmpOrders made to obtain
the orders placed by different users.

Chapter 7

[225]

In this script, by setting the fetch mode to DB_FETCHMODE_ASSOC, you tell the PEAR::
DB object to return the resulting data as an associative array.

Next, you use the getAll method to run the query and retrieve all the data as an
array, thus eliminating the need to make a separate call to a fetching method.

Now you can turn back to the appPageOrdersCxt.php script and update it to use
getEmpOrders, caching its results on the web server. The following listing contains
the source code for such a revision.

<?php
 //File: appPageOrdersCache.php
 require_once "testAuthor.php";
 require_once "getEmpOrders.php";
 require_once 'Cache/Lite/Function.php';
 $options = array(
 'cacheDir' => '/tmp/',
 'lifeTime' => 300
);
 $ordersPage='"'."appPageEmpOrders.php".'"';
 $rslt =$dbh->query("SELECT * FROM TABLE(sec_adm.cxt_ord_pkg.
getRecentOrder)");
 if (PEAR::isError($rslt)) {
 print $rslt->getMessage();
 }
 $cxt =$rslt->fetchRow(DB_FETCHMODE_ASSOC);
 print '';
 print "The most recent order was placed by ".$cxt['EMPNAME']."
 on ".$cxt['ORDDATE'];
 $cache = new Cache_Lite_Function($options);
 if ($rslt = $cache->call('getEmpOrders', $dbh->dsn, $username)){
 print "<h3>List of orders placed by ".
 $a->getAuthData('FULL_NAME')."</h3>";
 print '<table border="1" cellpadding="5">';
 print '<tr>';
 print '<th>Order No</th><th>Employee</th><th>Order
 Date</th><th>Order Total</th>';
 print '</tr>';
 foreach ($rslt as $row) {
 print '<tr>';
 print '<td>'.$row['ORDNO'].
 '</td><td>'.$row['EMPNAME'].'</td><td>'.$row['ORDDATE'].
 '</td><td align="right">'.number_format($row['TOTAL'], 2).'</td>';
 print '</tr>';
 };

Caching

[226]

 print '</table>';
 } else {
 print "Some problem occurred while getting orders!\n";
 $cache->drop('getEmpOrders', $dbh->dsn, $username);
 }
 print '
';
 print "Click here to see all orders
 placed by all employees";
 print '';
?>

In this example, you cache results returned by the getEmpOrders function with
the help of the Cache_Lite_Function class from the PEAR package. So, before you
can run the script defined in the listing, you have to install the PEAR::Cache_Lite
package. As usual, this can be done with the help of the PEAR Installer. Assuming
PEAR is installed in your PHP installation, you can run the following command from
the command line to install the PEAR::Cache_Lite package:

$ pear install Cache_lite

The Cache/Lite/Function.php file included in the above script is created during
PEAR::Cache_Lite installation. This file contains the Cache_Lite_Function class
used in the script to cache getEmpOrders calls.

However, before you can create an instance of Cache_Lite_Function you have
to define an array of options, which will be passed to the class constructor as the
parameter. In this particular example, you set the lifeTime option to 300, which
will tell the Cache_Lite_Function object to cache the results of the getEmpOrders
function for 300 seconds.

Another parameter included in the array of options is cacheDir, through which you
define the directory to hold cache files on the web server. In this example, you set
this option to /tmp/, thus specifying the /tmp directory to be the cache directory.

If you are a Windows user, you might want to use the %SystemDrive%\
temp directory as the cache directory. In that case, you have to set
cacheDir to /temp/.

Next, you call the getEmpOrders cacheable function using the call method of the
Cache_Lite_Function object. The $dbh->dns and $username are the parameters
passed to getEmpOrders. As mentioned earlier, the $username parameter is used
only to make it possible for the Cache_Lite_Function object to distinguish between
the calls of getEmpOrders made to obtain the orders placed by different users.

Chapter 7

[227]

Next, you use the foreach construct to loop over the array returned by the
getEmpOrders function.

In this example, you drop the cached data associated with the corresponding
getEmpOrders function call with given parameters if the call method returns false
instead of the array of orders, which in turn is returned either by the getEmpOrders
function or from the local cache.

Updating Cached Data
Once the data has been updated in the database, it is good practice to update the
cache to make sure that it does not contain out-of-date data. The problem with the
caching approach used in the preceding example is that it does not provide a way to
determine when the time comes to update the cache.

To solve this problem, you can make use of the drop method of the
Cache_Lite_Function class, removing from the cache a specific call of the
getEmpOrders function when the data that that call is supposed to return has been
changed in the database.

So, you can now turn back to the newOrder.php script discussed in the Resetting
Values in a Global Context section earlier and revise it so that it removes the set of
orders placed by the current user from the cache once that user has successfully
inserted a new order into the usr.orders table.

The following listing shows the updated newOrder.php script that calls the drop
method of the Cache_Lite_Function object to remove the out-of-date set of orders
from the cache.

<?php
 //File: newOrderCache.php
 require_once "testAuthor.php";
 require_once 'Cache/Lite/Function.php';

 print '';
 require_once 'HTML/QuickForm.php';
 $form = new HTML_QuickForm('newOrderForm');
 $form->setDefaults(
 array(
 'empno' => $username
)
);
 $form->addElement('text', 'ordno', 'Enter order number:',
 array('size' => 10, 'maxlength' => 10));
 $form->addElement('text', 'empno', 'Your account name:',
 array('size' => 20, 'readonly'));

Caching

[228]

 $form->addElement('text', 'total', 'Enter order total:',
 array('size' => 20, 'maxlength' => 20));
 $form->addElement('submit', 'submit', 'Send');
 // Define validation rules
 $form->addRule('ordno', 'Please enter order number',
 'required', null, 'client');
 $form->addRule('total', 'Please enter order total',
 'required', null, 'client');
 // Try to validate a form
 if(isset($_POST['submit'])) {
 $arr_ord =array($form->getSubmitValue('ordno'),
 $form->getSubmitValue('empno'),
 $form->getSubmitValue('total')
);
 $rslt =$dbh->query("BEGIN usr.newOrder(?,?,?); END;",$arr_ord);
 if (PEAR::isError($rslt)) {
 die($rslt->getMessage());
 }
 $f_name =$a->getAuthData('FULL_NAME');
 $rslt =$dbh->query("BEGIN sec_adm.cxt_ord_pkg.setRecentOrder(?,SY
SDATE);
 END;",$f_name);
 if (PEAR::isError($rslt)) {
 print $rslt->getMessage();
 }
 print "<h4>You just placed a new order!</h4>";
 $options = array(

 'cacheDir' => '/tmp/'

);

 $cache = new Cache_Lite_Function($options);

 $cache->drop('getEmpOrders', $dbh->dsn, $username);

 } else{
 // Output the form
 $form->display();
}
 print '';
?>

You start with including the file that contains the Cache_Lite_Function class
upon which you then create an object within the second highlighted block in the
above script.

Chapter 7

[229]

Note that you don't specify the cache lifetime in the array of caching options
highlighted in the script opposite. This is because a Cache_Lite_Function object
doesn't need this parameter when it comes to removing a function call from the
cache. Here, you specify only the cache directory to tell the Cache_Lite_Function
object created in this script where the cache files reside.

To remove a specific function call from the cache, you must pass the same
parameters to the drop method, called within the highlighted block opposite, as you
passed to the call method when making that function call.

That is it. Now, the newOrderCache.php script will take care to remove the
out-of-date data from the cache upon insertion of a new order. To make sure that it
works as expected, you might perform the following steps:

Step 1: Run the appPageOrdersCache.php script discussed in the Caching
Function Calls with the PEAR::Cache_Lite Package section earlier, and when
connecting, enter the maya/mayapwd username/password combination.
Step 2: Check out the /tmp directory where the Cache_Lite_Function object
had to create a cache file for the getEmpOrders function call made by the
appPageOrdersCache.php script in Step 1. This newly created cache file
might be named something like this:

	 cache_7b181b55b55aee36ad5e7bd9d5a091ec_		
	 7fb088baee4564f0a34f41fa4223a877

Step 3: Run the newOrderCache.php script discussed at the beginning of this
section, and connect as maya/mayapwd. Through the new order form, submit
a new order.
Step 4: Check out the cache directory again. If the cache file created during
execution of the appPageOrdersCache.php script in Step 1 has gone, then
everything works as expected.

As you can see, the newOrderCache.php script not only provides an input form for
entering a new order, but also removes the set of orders that becomes out of date
upon insertion of that new order from the cache.

Implementing Notification-Based Caching
The preceding example illustrates a simple way of solving the problem of outdated
data. Through the application, you automatically remove a result set from the cache
upon making a change to this result set in the database. This mechanism works
perfectly provided that the only way to change the data you're working with is
through your application. This will most likely be the case for applications like the
one discussed in the preceding chapters. After all, there is no reason to have more

•

•

•

•

Caching

[230]

than one application to work with the orders stored in the usr.orders table, and
have more than one input form within this application to insert new orders, right?

However, in practice you may find yourself developing an application that assumes
that the data it will work with may be changed by more than one application. In such
cases, you might find it useful to employ the database change notification feature,
which has been available in Oracle Database since version 10g release 2.

This notification mechanism will trigger a change notification whenever a
database object (table or view) holding the application data is modified. To handle
notifications, you must create a notification handler, a PL/SQL stored procedure or a
client-side OCI callback function, which will be executed when a change notification
is issued. The notification handle is designed to invoke a PHP script that will remove
the out-of-date data from the cache on the web server, depending on the information
contained in the change notification message.

Graphically, this might look like the following figure:

Web Server

PHP engine

<?php

...

$cache->drop(’getEmpOrders’,

$dsn,

$usrid_has

)?

...

?>

Local

cache

Database Server

PL/SQL

procedure

(notification

handler)

A database

background

process

Database

ORDERS_EMP_V view
ORDNO EMPNAME ORDDATE TOTAL

1
2

3

4

Here is the explanation of the steps in the figure:

Step 1: When the usr.orders table is modified, Oracle automatically notifies
a job queue background process about it.
Step 2: The job queue background process in turn invokes a notification
handler, which is usually a PL/SQL procedure.
Step 3: The notification handler, when executed, invokes a PHP script,
passing the information describing which set of orders must be removed
from the cache.
Step 4: The PHP script removes the specified set of orders from the local
cache on the web server.

•

•

•

•

Chapter 7

[231]

The following sections show how you can implement a caching system based on the
change notification mechanism discussed here.

Using Database Change Notification
To make use of the database change notification feature, you have to perform the
following two general steps:

Step 1: Create a notification handler to be executed in response to
a notification.
Step 2: Register a query on a database object or objects for which you want to
receive change notifications, so that the notification handler created in step 1
is invoked whenever a transaction changes any of these objects and commits.

The following subsections discuss how to implement these steps when developing a
notification-based caching system.

For detailed information on the database change notification feature, refer
to Oracle documentation: chapter Developing Applications with Database
Change Notification in Oracle Database Application Developer's
Guide – Fundamentals.

Auditing Notification Messages
It is good practice to audit notification messages issued by the change notification
mechanism. To achieve this, you first have to create an audit table that will hold
information about issued notifications.

By issuing the following CREATE TABLE SQL statement you create the usr.
ntfresults table to be used for holding information about each notification issued.

CONN /as sysdba

CREATE TABLE usr.ntfresults (
 ntf_date DATE,
 tbl_name VARCHAR2(60),
 emp_id VARCHAR2(40),
 rslt_msg VARCHAR2(100)
);

•

•

Caching

[232]

As you can see, the table is designed to hold the following information about
a notification:

The date and time the notification was issued
The table for which the change notification was received (it's usr.orders in
this example)
The ID of the employee who placed the record
The message describing whether the notification handler has managed to
invoke the PHP script responsible for cleaning the cache

The notification handler is responsible for generating an audit record based on the
notification received.

Building a PL/SQL Procedure Sending Notifications
to the Web Server
Next, you might want to encapsulate the functionality associated with posting a
notification to the client into a separate PL/SQL procedure, which will allow you to
have a simpler and more readable notification handler.

The following listing contains the statements you have to issue in order to create
the usr.postNtf PL/SQL procedure that will be called from within the notification
handler and will invoke a PHP script dropping the set of orders that have become
out of date, from the local cache on the web server.

CONN /as sysdba

GRANT EXECUTE ON dbms_crypto TO usr;

CREATE OR REPLACE PROCEDURE usr.postNtf(url IN VARCHAR2,
 sch_tbl IN VARCHAR2, usr IN VARCHAR2) IS
 req UTL_HTTP.REQ;
 resp UTL_HTTP.RESP;
 err_msg VARCHAR2(100);
 usr_hash VARCHAR2(40);
BEGIN
 BEGIN
 usr_hash:= DBMS_CRYPTO.HASH (
 UTL_I18N.STRING_TO_RAW (usr, 'AL32UTF8'),
 DBMS_CRYPTO.HASH_SH1);
 usr_hash:=NLS_LOWER(usr_hash);
 req := UTL_HTTP.BEGIN_REQUEST(url||usr_hash);
 resp := UTL_HTTP.GET_RESPONSE(req);

•

•

•

•

Chapter 7

[233]

 INSERT INTO ntfresults VALUES(SYSDATE, sch_tbl,
 usr, resp.reason_phrase);
 UTL_HTTP.END_RESPONSE(resp);
 EXCEPTION WHEN OTHERS THEN
 err_msg := SUBSTR(SQLERRM, 1, 100);
 INSERT INTO ntfresults VALUES(SYSDATE, sch_tbl, usr, err_msg);
 END;
 COMMIT;
END;
/

In the above script, you start with granting the EXECUTE privilege on the DBMS_
CRYPTO package to the usr database schema. You refer to this package from within
the usr.postNtf procedure.

The usr.postNtf procedure created by the above CREATE PROCEDURE statement
takes the following information through its parameters:

The URL of the PHP script removing the out-of-date set of orders from the
local cache on the web server.
The name of the table (including the schema name in which this table
resides) that was modified. In this example, it is the usr.orders table.
The ID of the user who inserted a new order into the usr.orders table.

For security reasons, you hash the ID of the user before sending it as the parameter
in the HTTP request issued by the UTL_HTTP.BEGIN_REQUEST function.

So, the usr.postNtf procedure uses the UTL_HTTP.BEGIN_REQUEST function to
send a notification message to the client in the form of an HTTP request. And the
usr_hash parameter in the request contains the hash of the ID of the user who just
inserted a new record into the usr.orders table.

Then, the usr.postNtf procedure calls UTL_HTTP.GET_RESPONSE to obtain response
information indicating whether the PHP script specified in the HTTP request has
been successfully invoked. Actually, usr.postNtf is not interested in processing
the whole response returned from the client. Instead, it obtains only a short message
stored in the reason_phrase field of the RESP record, describing the status code.
This message, among other pieces of information, is stored in the ntfresults table
created as described in the Auditing Notification Messages section. However, if the
UTL_HTTP package raises an error, a new record is inserted into ntfresults in the
exception handler block.

•

•

•

Caching

[234]

Performing Configuration Steps Required for
Change Notification
Now, the last thing you have to do before proceeding to the notification handler is to
grant the usr schema the privileges required to work with the change notification,
and alter the system to receive notifications.

Here are the SQL statements you have to execute before you can create the
notification handler. Specifically, you grant the usr schema privileges required to
work with notifications and alter the system to receive notifications.

CONNECT /AS SYSDBA;

GRANT CHANGE NOTIFICATION TO usr;

GRANT EXECUTE ON DBMS_CHANGE_NOTIFICATION TO usr;

ALTER SYSTEM SET "job_queue_processes"=2;

As an alternative to issuing ALTER SYSTEM, you might set the
job_queue_processes parameter in the init.ora configuration file
to a non‑zero value to receive PL/SQL notifications.

Building the Notification Handler
As its name implies, the notification handler is used to handle notifications.
By issuing the CREATE PROCEDURE statement shown below, you create the
usr.orders_ntf_callback procedure that will then be used as the notification
handler for the notifications issued in response to changes to the usr.orders table.

CONN /as sysdba

CREATE OR REPLACE PROCEDURE usr.orders_ntf_callback (ntfnds IN SYS.
CHNF$_DESC) IS
 tblname VARCHAR2(60);
 numtables NUMBER;
 event_type NUMBER;
 row_id VARCHAR2(20);
 numrows NUMBER;
 usr VARCHAR2(40);
 url VARCHAR2(256) := 'http://localhost/PHPOracleInAction/ch7/
dropCachedEmpOrders.php?par=';
BEGIN
 event_type := ntfnds.event_type;

Chapter 7

[235]

 numtables := ntfnds.numtables;
 IF (event_type = DBMS_CHANGE_NOTIFICATION.EVENT_OBJCHANGE) THEN
 FOR i IN 1..numtables LOOP
 tblname := ntfnds.table_desc_array(i).table_name;
 IF (bitand(ntfnds.table_desc_array(i).opflags, DBMS_CHANGE_
NOTIFICATION.ALL_ROWS) = 0) THEN
 numrows := ntfnds.table_desc_array(i).numrows;
 ELSE
 numrows :=0;
 END IF;
 IF (tblname = 'USR.ORDERS') THEN
 FOR j IN 1..numrows LOOP
 row_id := ntfnds.table_desc_array(i).row_desc_array(j).row_id;
 SELECT empno INTO usr FROM usr.orders WHERE rowid = row_id;
 postNtf(url, tblname, usr);
 END LOOP;
 END IF;
 END LOOP;
 END IF;
 COMMIT;
END;
/

To figure out how the orders_ntf_callback notification handler created as shown
above works, let's take a closer look at its code.

As you can see, the notification handler takes the SYS.CHNF$_DESC object as its
parameter. Through this parameter, the notification system passes the information
about the change that occurred.

The url variable declared in the orders_ntf_callback created above contains the
URL that points to the PHP script that will be used to remove the out-of-date set of
orders from the local cache on the web server. Notice that the URL specified here is
not completed—it is assumed that the value of the par parameter will be appended
to the URL during execution. If you recall from the Building a PL/SQL Procedure
Sending Notifications to the Web Server section, the usr.postNtf PL/SQL procedure
called from within the notification handler appends the hash value of the employee's
ID to the value of the url variable.

Next, before proceeding with processing the notification information, you check to
see whether the notification type is set to EVENT_OBJCHANGE, which means that the
notification has been published by the database in response to changing data in an
object or objects registered for notification.

Caching

[236]

The change notification mechanism discussed here also issues
notifications in response to other database events, such as instance startup
or instance shutdown. In this particular example, the notification handler
will ignore the notifications on these events.

If the notification type is set to EVENT_OBJCHANGE, you move on to the loop iterating
through the tables registered for notification in which a change occurred.

Although this example assumes that the usr.orders table will be the
only table registered for notification, using a loop here is a good idea
anyway. With it, logic for processing another table can easily be added to
the notification handler if needed.

Within the loop, you obtain the name of the modified table, getting the value of the
table_name attribute of the so-called table change descriptor—an object holding
change notification information related to a particular modified table. The
SYS.CHNF$_DESC object, which is passed to the notification handler as the parameter,
contains the table_desc_array attribute holding an array of table change
descriptors. Again, in this particular example, this array will contain the only table
descriptor—the one that corresponds to the usr.orders table.

Before obtaining the number of modified rows (actually, inserted and/or updated
rows) in a given modified table, you check to see whether the ROWID information for
those rows is available through the table change descriptor.

For the usr.orders table change descriptor, you begin a nested loop to step through
all of the modified rows. You obtain the ROWID of each row and then you use this
information in the WHERE clause of the SELECT query to obtain the value of the
empno field in the modified row. Then, you invoke the postNtf procedure created
as discussed in the Building a PL/SQL Procedure Sending Notifications to the Web
Server section earlier, passing to it the following parameters: the URL defined at the
beginning of the procedure, the table name obtained in the first line of the outer loop,
and the empno of the modified (inserted or updated) row.

Creating a Query Registration for the Notification
Handler
Once you have created a notification handler, you then have to create a query
registration for it. In this example, you need to execute any query on the usr.orders
table within the so-called registration block, specifying orders_ntf_callback as the
notification handler.

Chapter 7

[237]

By issuing the following PL/SQL block, you create a query registration for the
notification handler defined in the preceding section.

CONN /as sysdba

GRANT CONNECT TO usr;

CONNECT usr/usr

DECLARE
 REGDS SYS.CHNF$_REG_INFO;
 regid NUMBER;
 empid VARCHAR2(40);
 qosflags NUMBER;
BEGIN
 qosflags := DBMS_CHANGE_NOTIFICATION.QOS_RELIABLE + DBMS_CHANGE_
NOTIFICATION.QOS_ROWIDS;
 REGDS := SYS.CHNF$_REG_INFO ('usr.orders_ntf_callback',
 qosflags, 0,0,0);
 regid := DBMS_CHANGE_NOTIFICATION.NEW_REG_START (REGDS);
 SELECT empno INTO empid FROM usr.orders WHERE ROWNUM<2;
 DBMS_CHANGE_NOTIFICATION.REG_END;
END;
/

CONN /as sysdba

REVOKE CONNECT FROM usr;

By issuing the above anonymous PL/SQL block, you register the usr.orders table
with the usr.orders_ntf_callback procedure. However, before you can execute
this block, you have to temporarily grant CONNECT role to the usr schema and then
connect as usr/usr.

In the above example, you use the qosflags variable to hold the options that are
used during registration. In particular, you specify that the notification should
include the ROWID information of the modified rows and notifications should persist
in the database, surviving instance failure.

Then, you create a SYS.CHNF$_REG_INFO object, passing the qosflags variable to the
constructor and specifying usr.orders_ntf_callback as the notification handler.

Caching

[238]

With the DBMS_CHANGE_NOTIFICATION.NEW_REG_START function, you begin a
registration block. Next, you issue a query against the usr.orders table, so that
it returns a single row. Finally, you end the registration by calling DBMS_CHANGE_
NOTIFICATION.REG_END.

After the anonymous PL/SQL block defined in the listing is successfully executed,
you can revoke the CONNECT role from the usr schema.

Quick Test
From now on, the usr.orders_ntf_callback procedure will be invoked whenever
the usr.orders table changes. As a quick test, you might run the following INSERT
statement from SQL*Plus:

CONN /as sysdba

INSERT INTO usr.orders VALUES(1045, 'maya', SYSDATE, 450.75);

COMMIT;

and then issue the following query:

SELECT * FROM usr.ntfresults;

As a result, you should see the following output:

NTF_DATE TBL_NAME EMP_ID RSLT_MSG
--------- ----------- --------- -------------
27-AUG-06 USR.ORDERS maya Not Found

This proves that the notification handler has been invoked. Not found in the
rslt_msg field indicates that the script invoked by the postNtf procedure was
not found. This is expected behavior in this case because you haven't yet created a
dropCachedEmpOrders.php script specified in the HTTP request issued from within
the postNtf procedure.

Implementing Notification-Based Caching
with PEAR::Cache_Lite
Now that you have the notification system working, the next step is to create the
dropCachedEmpOrders.php script that will be invoked in response to a change to
the usr.orders table, removing the out-of-date data from the local cache on the
web server.

Chapter 7

[239]

The dropCachedEmpOrders.php script shown below should be invoked whenever
a change is made to the usr.orders table. Depending on the hashed value of
the employee ID passed to the script as the parameter, the script will remove the
corresponding set of orders from the cache.

<?php
 //File: dropCachedEmpOrders.php
 require_once 'Cache/Lite/Function.php';
 require_once "DB.php";
 $options = array(
 'cacheDir' => '/tmp/'
);
 $dsn = 'oci8://app_conn:appconn@localhost:1521/orcl';
 $dsn = DB::parseDSN($dsn);
 $cache = new Cache_Lite_Function($options);
 if (isset($_GET['par'])) {
 $cache->drop('getEmpOrders', $dsn, $_GET['par']);
 }
?>

Although you are not going to connect to the database here, you include the DB.php
file containing PEAR::DB. This is because you will use the DB::parseDSN method
to parse the DSN, which is then passed to the drop method of PEAR::Cache_Lite_
Function as a parameter. Since you have to pass the same DSN to the drop method
as you pass to the call method, you define the same DSN here as you used in the
testAuthor.php script discussed in the Protecting Resources Based on Information
about the Authenticated User section in Chapter 6.

Another parameter you have to pass to the drop method is the hashed value of the
employee ID, which in turn is passed to the dropCachedEmpOrders.php script from
the postNtf PL/SQL procedure as a URL query-string variable. You check to see if
this variable is set before calling the drop method. If so, you call the drop method,
thus removing the specified set of orders from the cache.

After you have created the dropCachedEmpOrders.php script, it's time to
see how you can put it into action. For this, you should turn back to the
appPageOrdersCache.php script discussed in the Caching Function Calls with the
PEAR::Cache_Lite Package section earlier in this chapter and modify it so that it passes
the hashed value of an employee ID to the getEmpOrders function, rather than
passing the employee ID itself.

Caching

[240]

The appPageOrdersCacheNotify.php script shown below caches
getEmpOrders function calls in a secure manner. The script is a revision of the
appPageOrdersCache.php script discussed earlier in this chapter. In this revision,
to improve security, you pass the hashed value of an employee ID to the
getEmpOrders function.

<?php
 //File: appPageOrdersCacheNotify.php
 require_once "testAuthor.php";
 require_once "getEmpOrders.php";
 require_once 'Cache/Lite/Function.php';
 $options = array(
 'cacheDir' => '/tmp/',
 'lifeTime' => 300
);
 $ordersPage='"'."appPageEmpOrders.php".'"';
 $rslt =$dbh->query("SELECT * FROM
 TABLE(sec_adm.cxt_ord_pkg.getRecentOrder)");
 if (PEAR::isError($rslt)) {
 print $rslt->getMessage();
 }
 $cxt =$rslt->fetchRow(DB_FETCHMODE_ASSOC);
 print '';
 print "The most recent order was placed by ".$cxt['EMPNAME'].
 " on ".$cxt['ORDDATE'];
 $cache = new Cache_Lite_Function($options);
 $hash_usr = sha1($username);

 if ($rslt = $cache->call('getEmpOrders', $dbh->dsn, $hash_usr)){
 print "<h3>List of orders placed by ".
 $a->getAuthData('FULL_NAME')."</h3>";
 print '<table border="1" cellpadding="5">';
 print '<tr>';
 print '<th>Order No</th><th>Employee</th><th>
 Order Date</th><th>Order Total</th>';
 print '</tr>';
 foreach ($rslt as $row) {
 print '<tr>';
 print '<td>'.$row['ORDNO'].
 '</td><td>'.$row['EMPNAME'].'</td><td>'.$row['ORDDATE'].'
 </td><td align="right">'.number_format($row['TOTAL'], 2).'</td>';
 print '</tr>';
 };
 print '</table>';
 } else {
 print "Some problem occurred while getting orders!\n";

Chapter 7

[241]

 $cache->drop('getEmpOrders', $dbh->dsn, $hash_usr);

 }
 print '
';
 print "Click here to see all
 orders placed by all employees";
 print '';
?>

In the script opposite, to get the hashed value of an employee ID, you use the sha1
PHP function. This line of code is highlighted in the listing.

Then, you pass the hash to the call method of Cache_Lite_Function as a
parameter when making a call to the getEmpOrders cached function. You also have
to pass the hash to the drop method, which is invoked if the call method invoked
here returns false.

You are now ready to test your caching system based on notifications issued by the
database. To start with, run the appPageOrdersCacheNotify.php script shown
opposite, and connect as maya/mayapwd. This should create a corresponding cache
file in the /tmp directory on the web server. This cached data will be used in all
subsequent executions of the appPageOrdersCacheNotify.php script made within
the next 300 seconds. However, the cache file will be removed immediately, should
you insert a new order or update an existing one on behalf of employee whose ID
is maya.

Summary
Caching frequently accessed data can significantly reduce the use of system
resources. By increasing the probability of cache hits, you reduce the amount
of processing required to process a result set accessed by your application, thus
improving application performance.

Although Oracle caches recently (in practice, this often means frequently) used
metadata and data in memory by default, there are still a lot of details to master
in order to take full advantage of these caching mechanisms. In this chapter, you
learned how Oracle's caching mechanisms work when it comes to processing SQL
and PL/SQL statements issued against the database, and why using bind variables
can greatly increase the probability of shared pool cache hits. Also, you saw how
global contexts can be used to boost performance by caching frequently used
information in the memory of the database instance.

Caching

[242]

Another important topic discussed in this chapter is caching database data
frequently accessed by the application on the web server. You learned that while
using the PEAR::Cache_Lite package can help you build such a caching system
on the web server side with a minimum of effort, with Oracle's database change
notification feature you get the ability to keep the data cached on the web server
up to date.

XML-Enabled Applications
Both PHP and Oracle provide comprehensive support for XML and XML-related
technologies. Practically, this means you can perform any XML processing either
with PHP or inside an Oracle database. While PHP allows you to construct and
transform XML by using either PHP's XML extensions or PEAR XML packages,
Oracle provides the Oracle XML DB, which has a wide set of XML features that can
be used to efficiently store, retrieve, update, as well as transform XML data and
generate it from relational data.

This chapter explains how to effectively use XML techniques and technologies
available in PHP and Oracle when building XML-enabled PHP/Oracle applications.
Specifically, you will see how to:

Construct XML with the PHP DOM extension
Navigate XML with XPath
Transform XML with PHP XSL functions
Generate XML from relational data with Oracle SQL/XML functions
Store, retrieve, update, and transform XML with Oracle XML DB
Validate XML documents against XML schemas
Access XML stored in Oracle XML DB with standard internet protocols
Query, construct, and transform XML with Oracle XQuery

Processing XML in PHP/Oracle
Applications
As mentioned, there are two alternatives when it comes to performing XML
processing in your PHP/Oracle application. You can perform any required XML
processing using either PHP's XML extensions (or PEAR XML packages) or Oracle's
XML features.

•
•
•
•
•
•
•
•

XML-Enabled Applications

[244]

In the following sections, you will learn how to construct XML from relational data
using the XML capabilities of both PHP and Oracle.

Processing XML Data with PHP
PHP provides three general extensions allowing you to work with XML. These
extensions are listed in the following table:

PHP extension Description
XML extension The XML extension implements the SAX (Simple API for XML)

approach to parsing and accessing XML content. The SAX
parsing mechanism is memory efficient since it doesn't require
the entire XML document to be stored in memory. This makes the
SAX approach useful for certain type of operations on XML, for
example, searching.

DOM extension The DOM extension provides APIs for working with XML using
DOM (Document Object Model). Unlike a SAX parser, a DOM
parser builds an in-memory representation of an XML document,
which in most cases makes performing modifying and updating
operations more efficient.

SimpleXML extension As its name implies, the SimpleXML extension provides the
easiest way to work with XML. The SimpleXML approach allows
you to access an XML document through its data structure
representation and so can be especially useful when you simply
need to read XML.

In practice, you should choose the extension that best suits the needs of your
applications. For example, the XML extension implementing the SAX model can
be very efficient when it comes to parsing large XML documents from which you
only want to extract useful information. In contrast, the DOM extension comes in
handy when you need to generate XML documents or modify existing ones. With
the SimpleXML extension, XML documents are turned into data structures that can
be then iterated like regular PHP arrays and objects, thus providing the most natural
way for PHP developers to access data.

Since the Document Object Model (DOM) is best used for solving complex tasks, the
following sections demonstrate how to use DOM extension APIs to generate, query,
and manipulate XML documents in PHP.

Chapter 8

[245]

Admittedly, the Document Object Model is widely used in web
development. Web browsers, for example, use the DOM to represent web
pages they display to the users. In Chapter 10 AJAX-Based Applications,
you will learn techniques to access and manipulate the DOM tree of a
web page sent to the browser by your application, thus allowing you to
produce more interactive and responsive PHP/Oracle solutions.

Creating XML with the DOM PHP Extension
In fact, the PHP DOM extension is a set of classes that can be used to generate,
access, and manipulate XML data. The DOM.php script defined in the following listing
shows how to generate an XML document based on the result set retrieved from the
database.

<?php
 //File: DOM.php
 if(!$rsConnection = oci_connect('hr', 'hr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);
 };
 $dept_id = 90;
 $query = "SELECT employee_id, last_name, salary FROM employees
 WHERE department_id = :deptid";
 $stmt = oci_parse($rsConnection,$query);
 oci_bind_by_name($stmt, ':deptid', $dept_id);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' . $err['message'], E_USER_ERROR);
 }
 $dom = new DOMDocument('1.0', 'UTF-8');
 $root = $dom->createElement('EMPLOYEES', '');
 $root = $dom->appendChild($root);
 while ($row = oci_fetch_assoc($stmt)) {
 $emp = $dom->createElement('EMPLOYEE', '');
 $emp = $root->appendChild($emp);
 $emp->setAttribute('id', $row['EMPLOYEE_ID']);
 $ename = $dom->createElement('ENAME', $row['LAST_NAME']);
 $ename = $emp->appendChild($ename);
 $salary = $dom->createElement('SALARY', $row['SALARY']);
 $salary = $emp->appendChild($salary);
 }
 echo $dom->saveXML();
 $dom->save("employees.xml");
?>

XML-Enabled Applications

[246]

To figure out what happens when you run the DOM.php script, let's take a closer look
at this code.

You start by connecting to the database as hr/hr. Then, you define a query, which,
when issued, retrieves some information about the employees working in the
department whose ID is 90.

After the query is executed, you create a new DOM document that will be used
to wrap the retrieved result set in XML format. You start generating a new DOM
document by creating the root element and then appending it to the DOM tree.

In the next step you create the nodes of the DOM document based on the data
retrieved from the database. For this, you fetch the data from the result set in a loop,
creating the document structure.

In this example, you simply display the generated XML document using the saveXML
method of the DOMDocument object and then save it to disk with the save method
to the same folder where the script source file resides. However, in a real-world
situation, you probably would continue processing this XML document, producing
a result XML document that could then, for example, be sent to a web service or
published as an RSS feed.

When you run the DOM.php script discussed here, you probably will see the
following string in your browser:

King24000Kochhar17000De Haan17000

However, if you look at the source, you should see the following XML document:

<?xml version="1.0" encoding="UTF-8"?>
<EMPLOYEES>
 <EMPLOYEE id="100">
 <ENAME>King</ENAME>
 <SALARY>24000</SALARY>
 </EMPLOYEE>
 <EMPLOYEE id="101">
 <ENAME>Kochhar</ENAME>
 <SALARY>17000</SALARY>
 </EMPLOYEE>
 <EMPLOYEE id="102">
 <ENAME>De Haan</ENAME>
 <SALARY>17000</SALARY>
 </EMPLOYEE>
</EMPLOYEES>

Chapter 8

[247]

After running the DOM.php script, the employees.xml file containing the document
shown in the listing should appear in the folder where the script source file resides.

Querying a DOM Document with XPath
One way to access the DOM tree in a DOMDocument object is through an associated
DOMXPath object. Identifying a specific node or nodes within the DOM tree of
a DOMDocument object with this approach involves use of appropriate XPath
expressions passed to the DOMXPath object as parameters.

While the example in this section shows how XPath can be used in
PHP, Oracle also has some SQL functions operating on XML, such as
existsNode, extractValue, and updateXML, which take XPath-
expression arguments.

The following script illustrates how to access XML content held in a DOMDocument
object through the DOMXPath object associated with that DOMDocument.

<?php
 //File: XPath.php
 $dom = new DomDocument();
 $dom->load('employees.xml');
 $xpath = new DOMXPath($dom);
 $query = '//EMPLOYEE/SALARY[. > "15000"]';
 $emps = $xpath->query($query);
 print '';
 print '<h3>Executive officers whose salaries > $15,000</h3>';
 print '<table border="1" cellpadding="5">';
 print '<th>Employee ID</th><th>Last Name</th><th>Salary</th>';
 foreach ($emps as $emp) {
 print '<tr><td>'.$emp->parentNode->getAttribute('id').'</td>';
 print '<td>'.$emp->previousSibling->nodeValue.'</td>';
 print '<td>'.$emp->nodeValue.'</td></tr>';
 }
 print '</table>';
 print '';
?>

Unlike the preceding example where you generated an XML document from scratch,
here you load it from a file, using the load method of the DOMDocument object. After
the document is loaded, you create a new DOMXPath object, and associate it with the
newly created DOMDocument object.

XML-Enabled Applications

[248]

The XPath expression used in the above script is to be applied to the employees XML
document loaded to DOMDocument object. You use this expression to identify all the
SALARY nodes whose values exceed 15000, passing it to the DOMXPath's query method
as the parameter.

For more information on XPath, you can refer to the W3C XML
Path Language (XPath) Version 1.0 recommendation at
http://www.w3.org/TR/xpath.

To iterate over the result set returned by the query issued within the script, you
use the foreach construct. Since each row of the result set represents a SALARY
node defined within its parent EMPLOYEE node, you access that parent node using
the parentNode method of the DOMNode object representing the SALARY node
being processed. However, to access the corresponding ENAME node you use the
previousSibling method of the DOMNode object.

If you run the XPath.php script discussed here, your browser should display an
HTML table representing the list of employees whose salaries exceed 15,000.

Transforming and Processing XML with XSLT
In the preceding example, you transform XML into HTML directly in your script,
wrapping the data extracted from the XML document into appropriate HTML
tags. Alternatively, you might perform an XSL (Extensible Stylesheet Language)
transformation to get the same general results.

However, before you can use the XSL extension you have to enable it in your
PHP installation.

In UNIX, you have to recompile PHP with the following flag:

--with-xsl

In Windows, you have to uncomment the following line in the php.ini
configuration file and then restart the Apache/PHP server:

extension=php_xsl.dll

Chapter 8

[249]

Once you have enabled the XSL extension, you can use XSL functions to transform
XML into HTML or another XML or a variety of other formats. The following figure
depicts the general steps performed by a PHP/Oracle application that generates an
HTML page with PHP, based on the result set retrieved from the database.

Web Server Database Server

PHP engine

SQL
engine

Relational data

DOM
extension

XSL
extension

to browser

<?php
...
// Querying database
// Generating XML
// Transforming XML

into HTML
// Posting results
...
?>

1

4

2

3

Here is the explanation of the steps in the above figure:

The script queries the database to retrieve the data that will be used to
construct an XML document.
The script generates the XML document using the PHP DOM extension,
based on the data retrieved in Step 1.
The script transforms the XML document generated in step 2 into HTML
format with the PHP XSL extension.
The script posts the HTML page generated in step 3 to the user's browser.

As you can see, most of the XML processing work in the above scenario is performed
by the PHP engine on the web server rather than on the database server. So, this may
be efficient in cases where the database server becomes a performance bottleneck in
your system.

•

•

•

•

XML-Enabled Applications

[250]

Using this scenario, you might transform the employees XML document shown in
the Creating XML with the DOM PHP Extension section into HTML so that the result
page looks like the following figure:

If you want to get the page shown in the above figure by applying an XSL
transformation to the employees XML document, you first have to create an XSLT
stylesheet describing the way the data is to be transformed.

The following employees.xsl stylesheet might be used to transform the employees
XML document into HTML to get the page shown in the above figure.

<?xml version="1.0" encoding="utf-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">
 <xsl:template match="/">
 <html>
 <head>
 <title>Employees</title>
 </head>
 <body>

 <h2>List of employees from employees.xml</h2>
 <table border="1" cellspacing="0" cellpadding="5">
 <tr>

Chapter 8

[251]

 <th>EMPLOYEE ID</th>
 <th>LAST NAME</th>
 <th>SALARY</th>
 </tr>
 <xsl:for-each select="EMPLOYEES">
 <xsl:for-each select="EMPLOYEE">
 <tr>
 <td><xsl:value-of select="@id"/></td>
 <td><xsl:value-of select="ENAME"/></td>
 <td><xsl:value-of select="SALARY"/></td>
 </tr>
 </xsl:for-each>
 </xsl:for-each>
 </table>

 </body>
 </html>
 </xsl:template>
 </xsl:stylesheet>

As you can see, the XSLT stylesheet shown in the listing is an XML document that
contains elements and attributes defined in the XSLT namespace: http://www.
w3.org/1999/XSL/Transform. Whereas the intent of these elements and attributes
is to provide instructions to an XSLT processor, the HTML tags also presented in the
stylesheet will be directly added to the resultant XML document.

While the employees.xsl stylesheet shown in the listing is designed to simply
transform an employees XML document into HTML, you might create a more
complicated stylesheet that would process XML data included in that
XML document.

It is interesting to note that XSLT is not limited to transforming XML
data—it also can be used to process XML. Sometimes, performing
the XML processing with XSLT may be much easier than using DOM
operations to do the same job. For example, with XSLT, to calculate the
total of all the orders included in the document, you don't need to write
the code that will iterate over all the elements representing that orders,
as you would with the DOM approach. Instead, you might use the xsl:
value-of select element with the sum function in your stylesheet to
get the job done.

XML-Enabled Applications

[252]

Turning back to the employees.xsl stylesheet, suppose you want to add another
column to the resultant HTML table, say, BONUS whose values are calculated based
on the values from the SALARY column. In that case, the fragment of the stylesheet
responsible for generating the HTML table might be modified as follows:

 <table border="1" cellspacing="0" cellpadding="5">
 <tr>
 <th>EMPLOYEE ID</th>
 <th>LAST NAME</th>
 <th>SALARY</th>
 <th>BONUS</th>
 </tr>
 <xsl:for-each select="EMPLOYEES">
 <xsl:for-each select="EMPLOYEE">
 <tr>
 <td><xsl:value-of select="@id"/></td>
 <td><xsl:value-of select="ENAME"/></td>
 <td><xsl:value-of select="SALARY"/></td>
 <td><xsl:value-of select="SALARY*0.1"/></td>
 </tr>
 </xsl:for-each>
 </xsl:for-each>
 </table>

You might also want to calculate the average salary for the employees included
in the employees XML document. To achieve this, you might further modify the
employees.xsl stylesheet by adding the following XSLT construction immediately
after the code shown above:

<p>Average salary is: <xsl:value-of
 select="format-number(sum(//SALARY) div
 count(//EMPLOYEE), '#######0.00')"/></p>

In this example, you sum the salaries of all employees included in the document with
the sum function, and then divide the calculated sum by the number of employees
obtained with the count function, thus getting the average salary formatted with the
format‑number function.

For more examples of XSLT stylesheets, you can refer to the W3C XSL
Transformations (XSLT) Version 1.0 recommendation available at
http://www.w3.org/TR/xslt.

Chapter 8

[253]

Now that you have a grasp on how to create XSLT stylesheets to be used for
transforming and processing XML data, it's time to see an XSL transformation
in action.

The following listing contains a simple PHP script that performs an XSL
transformation, applying the employees.xsl XSLT stylesheet defined earlier in this
section to the employees XML document shown in the Creating XML with the DOM
PHP Extension section. It is assumed that the employees.xsl, employees.xml, and
the XSLTrans.php files reside in the same directory.

<?php
 //File: XSLTrans.php
 $domxsl = new DOMDocument();
 $domxsl->load('employees.xsl');
 $proc = new XSLTProcessor;
 $xsl = $proc->importStylesheet($domxsl);
 $domxml = new DOMDocument();
 $domxml->load('employees.xml');
 $rslt = $proc->transformToXml($domxml);
 print $rslt;
?>

After you have created a new DOM document, you load the XSL stylesheet discussed
earlier in this section into that document. Next, you create a new XSLTProcessor
object that is then used to perform an XSL transformation. However, before you can
do this, you need to import the stylesheet into the newly created XSLT processor,
and you also need to create a new DOM document and then load the XML document
to be transformed.

For simplicity, in this example you do not query the database, nor do you
generate a new XML document from scratch with the DOM functions.
Instead, you load the existing document employees.xml, which was
generated and saved to disk during the execution of the DOM.php script
discussed in the Creating XML with the DOM PHP Extension section earlier
in this chapter.

The XSL transformation performed in the above script transforms the employees
XML document into an HTML page that you then send to the user's browser.

When you run the XSLTrans.php script defined in the above listing, the result
should be something like the previous figure.

XML-Enabled Applications

[254]

Performing XML Processing inside the
Database
When building XML-enabled applications on top of Oracle, there are many
advantages to performing the XML processing inside the database when compared
to performing it on the client. The key advantages to perform XML processing inside
the database are as follows:

Benefiting from the XML-specific memory optimizations provided by
Oracle XML DB
Eliminating overhead associated with parsing XML documents
Reducing overhead associated with I/O disk operations and network traffic
between the Web server and database server

Moving XML processing to the database may be especially useful if you are dealing
with large XML documents stored in the database. In that case, your application
won't need to transfer a large amount of data between the database and web server
when processing XML inside the database—only the final product is sent across
the wire.

Using Oracle SQL/XML Generation Functions
The simplest way to benefit from moving XML processing to the database is to use
Oracle SQL/XML functions, which allow you to build SQL queries generating XML
from relational data.

Turning back to the preceding sample, you might, for example, rewrite the query
issued against the database so that it retrieves the generated employees XML
document that is ready to be transformed into HTML with the PHP XSL
extension functions.

•

•

•

Chapter 8

[255]

Diagrammatically, this might look like the following figure:

Web Server Database Server
PHP engine

SQL statement
executor

SQL/XML
functions

Relational data

SQL engine
to browser

<?php
...
// Querying database
// Transforming XML

into HTML
// Posting results
...
?>

1

4

3
2

XSL
extension

The explanation of the steps in the figure is the following:

Step 1: The script issues the query containing SQL/XML functions so that it
retrieves an XML document generated by the database server.
Step 2: The database server generates the XML document, based on the query
issued by the script in step 1.
Step 3: The script transforms the XML document retrieved from the database
into HTML format with the help of the PHP XSL extension functions.
Step 4: The script posts the HTML page generated in step 3 to the
user's browser.

In this scenario, you move some XML processing from the web server to the database
server. In particular, the XML document is now generated on the database server
with the help of the SQL/XML generation functions specified in the query, rather
than generating that document on the web server with the PHP DOM extension
functions as it was in the scenario depicted in the figure shown in the Transforming
and Processing XML with XSLT section earlier in this chapter.

The following listing contains the SQLXMLQuery.php script that implements the
above scenario. So, the script issues the query that makes Oracle generate the
employees XML document, thus retrieving the employees XML document that is
ready to be transformed with XSLT. The following script provides an example of
using Oracle SQL/XML functions to generate XML from relational data. Using these
functions lets you move the processing required to generate the employees XML
document from the web server to the database server.

•

•

•

•

XML-Enabled Applications

[256]

<?php
 //File: SQLXMLQuery.php
 if(!$rsConnection = oci_connect('hr', 'hr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection:
 '.$err['message'], E_USER_ERROR);
 };
 $dept_id = 90;
 $query = 'SELECT XMLELEMENT("EMPLOYEES",
 XMLAgg(
 XMLELEMENT("EMPLOYEE",
 XMLATTRIBUTES(employee_id AS "id"),
 XMLFOREST(last_name as "ENAME", salary as "SALARY"))))
 AS result
 FROM employees WHERE department_id=:deptid';
 $stmt = oci_parse($rsConnection,$query);
 oci_bind_by_name($stmt, ':deptid', $dept_id);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: '.$err['message'], E_USER_ERROR);
 }
 $xmlDoc = oci_fetch_assoc($stmt);
 $domxml = new DOMDocument();
 $domxml->loadXML($xmlDoc['RESULT']);
 $domxsl = new DOMDocument();
 $domxsl->load('employees.xsl');
 $proc = new XSLTProcessor;
 $xsl = $proc->importStylesheet($domxsl);
 $rslt = $proc->transformToXml($domxml);
 print $rslt;
?>

As you can see, the SQLXMLQuery.php script, unlike the DOM.php script discussed
earlier in this chapter, does not use the PHP DOM functions to generate the
employees XML document from scratch, based on the result set retrieved from the
database. Instead, it issues a query that instructs the database server to generate that
XML document. After executing the query, you fetch the result of the query and then
load it to the newly created DOM document.

Next, you load the employees.xsl XSL stylesheet discussed in the Transforming and
Processing XML with XSLT section earlier, assuming that this file resides in the same
directory where you saved the SQLXMLQuery.php script discussed here.

Then, you create an XSLT processor, in which you import the employees.xsl
stylesheet loaded into a DOM document. After performing the XSL transformation,
you print the resultant HTML page.

Chapter 8

[257]

When you run the SQLXMLQuery.php script, it should output a page that looks
like the one shown in the figure in the Transforming and Processing XML with
XSLT section.

Moving All the XML Processing into the Database
In the preceding example, the database server performs only a part of the XML
processing while the rest is still performed by the PHP engine. Specifically, the
database server generates an employees XML document based on the records from
the hr.employees table, and the PHP script then transforms that document with
XSLT into HTML format with the PHP XSL extension functions.

As an efficient alternative to PHP's XSLT processor, you might use Oracle's XSLT
processor, thus benefiting from performing XSL transformations inside
the database.

The following figure depicts the scenario where both generating XML and then
transforming it into HTML take place inside the database.

Web Server Database Server
PHP engine

SQL statement
executor

SQL/XML
functions

Relational data

SQL engine

to browser

<?php
...
// Querying database
// Posting results
...
?>

1

4
3

2

XSL
processor

There are several advantages to performing XSLT transformations, as well
as many other XML processing operations, inside the database. These
advantages are outlined at the beginning of the Performing XML Processing
inside the Database section earlier in this chapter.

XML-Enabled Applications

[258]

The explanation of the steps in the figure is as follows:

Step 1: The script issues the query containing SQL/XML functions so that it
retrieves an HTML document generated by the database server.
Step 2: The database server generates the XML document, based on the
instructions in the query issued by the script in step 1.
Step 3: The database server transforms the XML document into HTML with
the XSL stylesheet specified in the query issued in step 1.
Step 4: The script posts the HTML page retrieved from the database to the
user's browser.

However, before you implement this scenario, you have to decide where to store
the XSL stylesheet to be used for the XSL transformation. Obviously, retrieving the
stylesheet from the web server before performing the transformation on the database
server would be a bad idea in this case, since it would increase network overhead.
In contrast, storing the stylesheet in the database would be the best solution for
this situation.

When choosing the storage option for XSL stylesheets, you should bear in mind that
an XSL stylesheet is in fact an XML document. So, it would be a good idea to choose
one of the XML storage options available in Oracle database.

Storing XML Data in the Database
When using the database as a persistent storage for XML, you have several storage
options. While all these options are discussed in the Database Storage Options for XML
Data in Oracle Database section later in this chapter, this section provides a simple
example of how you might store XML documents in an XMLType column in a
database table as Character Large Object (CLOB) values. Once created, such a table
can be used for storing different XML documents, including XSL stylesheets.

However, before creating this table you might want to create a new database schema.
To create that schema and grant it all the required privileges, you might execute the
SQL statements shown below:

CONN /as sysdba

CREATE USER xmlusr IDENTIFIED BY xmlusr;

GRANT connect, resource TO xmlusr;

Once the xmlusr schema is created and all the privileges required to work with it are
granted, you can create the XSLTstylesheets table under this schema and populate
it with the data. You might achieve this by issuing the SQL statements shown next:

•

•

•

•

Chapter 8

[259]

CONN xmlusr/xmlusr

CREATE TABLE XSLTstylesheets (
 id NUMBER,
 stylesheet XMLType
);

INSERT INTO XSLTstylesheets VALUES (
 1,
 XMLType(
'<?xml version="1.0" encoding="utf-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">
 <xsl:template match="/">
 <html>
 <head>
 <title>Employees</title>
 </head>
 <body>

 <h2>List of employees from employees.xml</h2>
 <table border="1" cellspacing="0" cellpadding="5">
 <tr>
 <th>EMPLOYEE ID</th>
 <th>LAST NAME</th>
 <th>SALARY</th>
 </tr>
 <xsl:for-each select="EMPLOYEES">
 <xsl:for-each select="EMPLOYEE">
 <tr>
 <td><xsl:value-of select="@id"/></td>
 <td><xsl:value-of select="ENAME"/></td>
 <td><xsl:value-of select="SALARY"/></td>
 </tr>
 </xsl:for-each>
 </xsl:for-each>
 </table>

 </body>
 </html>
 </xsl:template>
 </xsl:stylesheet>')
);
COMMIT;

XML-Enabled Applications

[260]

As you can see, inserting a new row into a table that contains an XMLType column
is similar to inserting a new row into any other table—you use an INSERT statement
and then issue the COMMIT to make the changes permanent. The only thing to notice
here is that you have to explicitly convert the string representing an XML document
to an XMLType value before inserting it to an XMLType column.

In this example, you insert only one row into the newly created XSLTstylesheets
table. The stylesheet column of XMLType in this row includes the employees XSL
stylesheet discussed in the Transforming and Processing XML with XSLT section earlier
in this chapter. Once you have stored this stylesheet in the XSLTstylesheets table,
you can access it with a SELECT statement when connected as xmlusr/xmlusr.

However, before you can move on to a script that will implement the scenario
depicted in the figure shown in the Moving All the XML Processing into the Database
section earlier in this chapter, you need to grant the SELECT privilege on the
hr.employees table to the xmlusr database schema. This can be done by issuing the
following statements from SQL*Plus:

CONN /as sysdba

GRANT SELECT ON hr.employees TO xmlusr;

By granting the SELECT privilege on the hr.employees table to xmlusr you permit
the applications that will connect to the database through this schema to access data
stored in the table.

Performing XSLT Transformations inside the
Database
Now that you have the employees XSL stylesheet stored in the database and the
xmlusr schema is permitted to access the hr.employees table, you can create a script
that will instruct the database to build an HTML page based on the data stored in
hr.employees.

The following listing contains the source code for such a script.

<?php
 //File: DBServerXSLTrans.php
 if(!$rsConnection = oci_connect('xmlusr', 'xmlusr',
 '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection:
 '.$err['message'], E_USER_ERROR);
 };
 $dept_id = 90;
 $query = 'SELECT XMLtransform(x.xmlcol,

Chapter 8

[261]

 (SELECT stylesheet FROM XSLTstylesheets WHERE
 id = 1)).getStringVal()
 AS result FROM
 (SELECT XMLELEMENT("EMPLOYEES",
 XMLAgg(
 XMLELEMENT("EMPLOYEE",
 XMLATTRIBUTES(employee_id AS "id"),
 XMLFOREST(last_name AS "ENAME", salary AS "SALARY")
)
)
) AS xmlcol
 FROM hr.employees WHERE department_id=:deptid) x';
 $stmt = oci_parse($rsConnection,$query);
 oci_bind_by_name($stmt, ':deptid', $dept_id);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: '.$err['message'], E_USER_ERROR);
 }
 $xmlDoc = oci_fetch_assoc($stmt);
 $dom = new DOMDocument();
 $dom->loadXML($xmlDoc['RESULT']);
 echo $dom->saveXML();
?>

As you can see, the select list of the SELECT statement used in the
DBServerXSLTrans.php script includes the XMLtransform SQL/XML function.
This function is used here to apply the employees XSL stylesheet retrieved from
the XSLTstylesheets table by the subquery to the employees XML document
generated by the subquery defined in the FROM clause of the query. The result of this
transformation should be an HTML page, which you load into a new DOMDocument
object and then display it in the browser. When displayed, the generated HTML page
should look like the figure shown in the Transforming and Processing XML with XSLT
section shown earlier in this chapter.

Building PHP Applications on Oracle
XML DB
The preceding example shows how you might move the XML processing performed
by your PHP/Oracle application from PHP to Oracle, thus taking advantage of the
optimizations provided by the Oracle database server. In particular, you saw how to
generate an XML document from scratch and apply an XSL transformation inside the
database, rather than performing these operations with PHP.

XML-Enabled Applications

[262]

In fact, Oracle XML Database provides much more functionality than what the
sample demonstrates.

Oracle XML DB refers to the set of Oracle Database XML technologies
integrated with the relational database server, providing high-
performance XML storage, retrieval, and processing.

The most significant features of Oracle XML DB, which make Oracle database ideal
for XML-enabled database-driven applications, are listed below:

Ability to store, retrieve, update, and transform XML data through the SQL
and PL/SQL interfaces.
Ability to perform XML operations on SQL data without physically
migrating it into XML format.
Oracle XML DB repository lets you manipulate XML content stored in the
database with the standard Internet protocols, such as FTP, HTTP, and
WebDAV.
Support for the Worldwide Web Consortium (W3C) XML Schema
Recommendation: http://www.w3.org/TR/xmlschema-0/, allowing you to
validate XML documents against appropriate XML schemas registered in the
database.
XML-specific optimizations, reducing the cost of performing XML processing
inside the database.

The subsections that follow show how you can make use of these features when
building XML-enabled PHP/Oracle applications.

Using Oracle Database for Storing, Modifying,
and Retrieving XML Data
With Oracle XML DB, you have various XML storage and XML processing options
allowing you to achieve the required level of performance and scalability. One of the
most interesting things about Oracle XML DB is that it allows you to perform SQL
operations on XML data as well as XML operations on relational data, thus bridging
the gap between the SQL and XML worlds.

•

•

•

•

•

Chapter 8

[263]

Database Storage Options for XML Data in Oracle
Database
When storing XML in Oracle database, you can choose between several storage
options. The general XML storage options available in Oracle database are outlined
in the following table:

XML storage option Description
XMLType CLOB Storing an XML document as a CLOB is a good idea if this

document will be normally retrieved as a whole and updated by
rewriting the entire document, rather than by performing piece-
wise updates.

Native XMLType
(Structured storage)

With structured storage, an XML document must conform to a
certain XML schema and is stored in the database as a set of
SQL objects, which provides excellent DML performance in
most situations.

XMLType views Using XMLType views lets you operate on XML data created
on top of relational data, thus allowing you to construct XML
representations of that data.

The following figure will help you understand better the ideas behind the storage
methods outlined in the table.

<?xml version=”1.0”?>

...

...

<?xml version=”1.0”?>

...

...

Native XML Type
storage

XML Type
views

XML Type CLOB
storage

XMType CLOB columns

and tables

ID

1 <?xml version=”1.0”?>
...
...

<?xml version=”1.0”?>
...
...

...

N

...

XMLDOC Object-relational tables

generated during an

XML schema

registration
Relational or XML Type

tables and views

<?xml version=”1.0”?>

...

...

<?xml version=”1.0”?>

...

...

XML-Enabled Applications

[264]

As you can see from the previous figure, when using CLOB storage for XMLType
data, an XML document is stored in an XMLType column or table as a complete
text document. Hence, updating an XML document stored as an XMLType CLOB is
a very expensive operation that involves DOM parsing the document, performing
the update operation on the DOM representation of the document, serializing the
updated document back into text, and finally replacing it. Storing XML in CLOBs can
be efficient when, for example, you're dealing with large XML documents, which are
not updated frequently, and which you are going to retrieve as a whole.

In the preceding sample, you use XMLType CLOB storage for the employees XSL
stylesheet, storing it in the stylesheet XMLType column of the XSLTstylesheets
table, as discussed in the Storing XML Data in the Database section earlier. The
XMLType CLOB storage is the best choice in that example because the only
operation you are supposed to perform on the employees XSL stylesheet frequently
is retrieving it as a whole when it comes to transforming an employees XML
document into HTML.

In contrast, native XMLType storage, also known as structured or shredded storage,
can be very efficient when you perform update operations on XML data frequently.
This type of storage is created automatically by Oracle when registering an XML
schema against the database.

XML schemas are discussed in the Using XML Schemas subsection later in
this section.

Based on the information in an XML schema, Oracle creates a set of SQL object types
and XMLType tables to be used for managing and storing the contents of XML
documents conforming to that XML schema. Before storing, a document is broken
up, and its contents are stored as an instance of the appropriate object type generated
during the XML schema registration process.

This approach makes it possible for Oracle XML DB to rewrite SQL statements
issued to access or manipulate XML schema-based XML data to purely relational
SQL statements, thus allowing for efficient processing of XML data.

XMLType views can be useful when you need to wrap existing relational data in
XML format without physically migrating it into XML. In fact, you can define an
XMLType view not only on relational tables and views but also on XMLType ones.
For examples on using XMLType views, see the Using XMLType Views section later
in this chapter.

As you can see, all the XML storage options presented in the table are based on
XMLType. The following section discusses this native Oracle datatype in detail.

Chapter 8

[265]

Using XMLType for Handling XML Data in the
Database
Being an object type, XMLType can not only be used to store XML data in the
database but also to operate on that data via its built-in methods. Regardless of the
storage model you choose, XMLType provides a set of XML-specific methods to
operate on XMLType instances.

The most commonly used methods of XMLType are listed in the following table:

XMLType method Description
existsNode Checks whether the XML document in a given XMLType instance

contains a node that matches the XPath expression passed as the
parameter. If the specified node is found, it returns 1; otherwise,
it returns 0.

extract Extracts a node or nodes from the XML document in an
XMLType instance, based on the XPath expression passed as the
parameter. Returns the result nodes as an XMLType instance.

createSchemaBasedXML Explicitly associates an XML document in an XMLType instance
with a registered XML schema specified in the parameter. You
might want to perform this operation when inserting an XML
document into an XML schema-based XMLType column or table.

schemaValidate Validates an XML document in an XMLType instance against an
XML schema specified in the parameter. On success, the status of
the document is changed to VALIDATED; otherwise, an error
is raised.

transform Transforms an XML document in an XMLType instance with the
XSL stylesheet specified in the parameter. Returns the resultant
document as an XMLType instance.

You saw an example of using an XMLType method in the preceding sample
application. In particular, in the DBServerXSLTrans.php script discussed in the
Performing XSLT Transformations inside the Database section you use the getStringVal
method of XMLType to retrieve the generated XHTML data as a VARCHAR value,
so that it can then be loaded in a DOMDocument instance. If you recall, the query used
in the DBServerXSLTrans.php script looks as follows:

 $query = 'SELECT XMLtransform(x.xmlcol,
 (SELECT stylesheet FROM XSLTstylesheets WHERE
 id = 1)).getStringVal()
 AS result FROM
 (SELECT XMLELEMENT("EMPLOYEES",
 XMLAgg(

XML-Enabled Applications

[266]

 XMLELEMENT("EMPLOYEE",
 XMLATTRIBUTES(employee_id AS "id"),
 XMLFOREST(last_name AS "ENAME", salary AS "SALARY")
)
)
) AS xmlcol
 FROM hr.employees WHERE department_id=:deptid) x';

To see another XMLType method in action, namely transform, you might rewrite
the above SQL statement as follows:

 $query = 'SELECT x.xmlcol.transform((SELECT stylesheet FROM
 XSLTstylesheets WHERE id = 1)).getStringVal()
 AS result FROM
 (SELECT XMLELEMENT("EMPLOYEES",
 XMLAgg(
 XMLELEMENT("EMPLOYEE",
 XMLATTRIBUTES(employee_id AS "id"),
 XMLFOREST(last_name AS "ENAME", salary AS "SALARY")
)
)
) AS xmlcol
 FROM hr.employees WHERE department_id=:deptid) x';

In the above query, you use the transform XMLType method as an alternative to the
XMLtransform SQL function used in the original query. Since both transform and
XMLtransform have the same functionality, the above queries will produce the same
general result.

XMLtransform is not the only example of an SQL function providing the
same functionality as the appropriate XMLType method. In fact, Oracle
XML DB provides analogous SQL functions for many XMLType methods.
For example, XMLType methods extract and existsNode can be used
instead of the SQL functions having the same names.

As you can see, the above queries operate on relational data, and transform it into
XML format with SQL/XML generation functions. Before looking at the approaches
you can take to retrieve XML data stored in the database natively, however, it would
be a good idea to look at how you can create an XMLType storage in Oracle XML
DB. The following section discusses how you can do this with the help of the XML
Schema feature.

Chapter 8

[267]

Using XML Schemas
The simplest way to create an XMLType storage structure in Oracle XML DB is
by registering an appropriate XML schema against the database. As a part of the
registration process, Oracle automatically creates the storage for a particular set of
XML documents, based on the information provided by the schema.

An XML schema can be thought of as the metadata describing a certain
class of XML documents. So, an XML document conforming to a
particular XML schema can be considered as an instance of this
XML schema.

You might want to use an XML schema for:

Building the storage for XML documents conforming the schema
Setting up business rules on XML content of conforming documents
Validating XML documents conforming to the schema

However, before you can use an XML schema, you have to create and then register
it against the database. Both these tasks can be accomplished in one step with
the registerschema procedure from the DBMS_XMLSCHEMA PL/SQL package.
For example, to register an XML schema to which the following employee XML
document conforms:

<EMPLOYEE id="100">
 <ENAME>King</ENAME>
 <SALARY>24000</SALARY>
</EMPLOYEE>

You might issue the following statements:

CONN /as sysdba

GRANT ALTER SESSION TO xmlusr;

CONN xmlusr/xmlusr

BEGIN
 DBMS_XMLSCHEMA.registerschema(
 'employee.xsd',
 '<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb">
 <xs:element name="EMPLOYEE" type="EMPLOYEE_TYP"
 xdb:defaultTable="EMPLOYEES"
 xdb:columnProps=

•

•

•

XML-Enabled Applications

[268]

 "CONSTRAINT emp_pkey PRIMARY KEY (XMLDATA.empno)"/>
 <xs:complexType name="EMPLOYEE_TYP" xdb:SQLType="EMPLOYEE_T">
 <xs:sequence>
 <xs:element name="ENAME" type="xs:string" xdb:SQLName="ENAME"
 xdb:SQLType="VARCHAR2"/>
 <xs:element name="SALARY" type="xs:double" xdb:SQLName="SALARY"
 xdb:SQLType="NUMBER"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:positiveInteger"
 xdb:SQLName="EMPNO"
 xdb:SQLType="NUMBER"/>
 </xs:complexType>
 </xs:schema>',
 TRUE,
 TRUE,
 FALSE,
 TRUE
);
END;
/

As you can see, the DBMS_XMLSCHEMA.registerschema procedure takes two
arguments. The first one is the string representing the name under which you want
to register the schema against the database, and the other one is the document
containing the schema itself.

In this example, the root element of the XML schema includes two namespace
declarations, namely the XML schema namespace declaration and Oracle XML DB
namespace declaration. To denote these namespaces, you use prefixes: xs and xdb
respectively.

By including the XML schema namespace declaration, you obtain the ability to use
the elements and attributes defined in this namespace, as well as the data types
defined by the XML Schema language. For example, in the above example you
specify the positiveInteger XML Schema language data type for the id attribute of
the EMPLOYEE element.

The Oracle XML DB namespace lets you use annotations in the schema. For
example, you use the xdb:defaultTable annotation to tell Oracle to use the
specified table name when generating an XMLType table that will be used for storing
XML documents conforming to the schema, rather than using a system-generated
name for that table. In this particular example, you specify EMPLOYEES as the name
for this table.

Chapter 8

[269]

Another interesting annotation used in this XML schema is the xdb:columnProps.
In this example, you use this annotation to define a primary key on the EMPLOYEE
element's id attribute mapped to the EMPNO attribute of the EMPLOYEE_T SQL
object type.

By including the xdb:SQLName annotation you make sure that the name of the
generated SQL object type will be EMPLOYEE_T.

Finally, note the use of the flags passed to the DBMS_XMLSCHEMA.registerschema
procedure:

 TRUE,
 TRUE,
 FALSE,
 TRUE

The above flags indicate the following (in the same order as they appear in
the listing):

The schema is generated as local (visible only to the database user who
created it)
Appropriate SQL object types are generated
Java beans are not generated
Default tables are generated

After registering the schema, you might want to look at the database object
generated during the registration. The following listing contains the SQL statements
that you might issue from SQL*Plus to make sure that Oracle generated the objects
annotated in the schema. For convenience, the listing also contains the
output produced.

DESC employee_t

 employee_t is NOT FINAL
 Name Null? Type
 --- -------- -----------------
--
 SYS_XDBPD$ XDB.XDB$RAW_LIST_T
 EMPNO NUMBER(38)
 ENAME VARCHAR2(4000
CHAR)
 SALARY NUMBER

DESC employees

 Name Null? Type
 --- -------- ------------------

•

•

•

•

XML-Enabled Applications

[270]

TABLE of
 SYS.XMLTYPE(
 XMLSchema "employee.xsd"
 Element "EMPLOYEE")
 STORAGE Object-relational TYPE "EMPLOYEE_T"

As you can see, Oracle generated the employee_t object type and employees
XMLType table based on this object type, as a part of the XML schema registration
process. Note that the names of the generated objects have been defined in the
schema. If you recall, you set the value of the xdb:SQLName attribute of global
element EMPLOYEE to EMPLOYEE_T, and the xdb:defaultTable attribute to
EMPLOYEES.

It's interesting to note that the names of database objects generated during
the XML schema registration process are case sensitive. However, since
SQL is case insensitive, you can refer to these objects in SQL disregarding
the case of their names. The names of XML elements and attributes
specified in an XML schema are also case sensitive. However, unlike SQL,
XML is case-sensitive, which means you must refer to XML elements and
attributes in XML code using the case with which they were defined in
the XML schema.

Now that you have defined the XMLType storage for employee XML documents,
you might want to load some data into the employees XML schema-based XMLType
table generated during the schema registration. The simplest way to do this is to use
the INSERT SQL statement, as follows:

CONN xmlusr/xmlusr

INSERT INTO employees VALUES(
 XMLType(
 '<EMPLOYEE id="100">
 <ENAME>King</ENAME>
 <SALARY>24000</SALARY>
 </EMPLOYEE>'
).createSchemaBasedXML('employee.xsd')
);

COMMIT;

In the above example, you use the createSchemaBasedXML method of XMLType
to explicitly identify the employee XML schema when inserting a new row into the
employees table.

Chapter 8

[271]

Now, if you try to issue the INSERT statement shown in the listing again, you will
receive the following error message:

ERROR at line 1:
ORA-00001: unique constraint (XMLUSR.EMP_PKEY) violated

As you can see, an attempt to insert the same row into the employees table fails due
to a EMP_PKEY primary key constraint violation. If you recall, you define the EMP_
PKEY primary key on the id attribute of the EMPLOYEE element in the XML schema
registered as discussed in this section earlier. This constraint makes it impossible to
insert two employee XML documents with the same ID into the employees table.

Another way to load data into the employees table is via one of the
internet protocols supported by Oracle XML DB. This mechanism is
discussed in the Taking Advantage of Standard Internet Protocols section later
in this chapter.

Finally, it's worth noting that you can always delete a registered XML schema along
with all the database objects generated during its registration. For example, to delete
the employee XML schema registered as discussed earlier in this section, you might
issue the following PL/SQL block:

CONN xmlusr/xmlusr

BEGIN
 DBMS_XMLSCHEMA.deleteSchema(
 SCHEMAURL => 'employee.xsd',
 DELETE_OPTION => dbms_xmlschema.DELETE_CASCADE_FORCE);
END;
/

Since the employees table is used in the subsequent examples, make
sure to register the employee XML schema again as discussed earlier in
this section. Also make sure to insert a row into the table as shown earlier
in this section.

Besides deleting the employee XML schema, the above code deletes the employee_t
object type and employees XMLType table generated during the schema
registration process.

XML-Enabled Applications

[272]

For more information on using XML schemas in Oracle XML DB, you can
refer to Oracle documentation: chapters: XML Schema Storage and Query:
Basic and XML Schema Storage and Query: Advanced in the Oracle XML
DB Developer's Guide. Also, for information on XML Schema language,
you can refer to the W3C XML Schema Recommendation at
http://www.w3.org/TR/xmlschema-0/.

Retrieving XML Data
To retrieve XML data from an XMLType table, you can use a SELECT SQL statement,
just as you would if you had to query a relational table. For example, to select the
employee with the id set to 100 from the employees XMLType table discussed in
the preceding section, you might issue the following query from SQL*Plus when
connected as xmlusr/xmlusr:

SELECT * FROM employees x WHERE existsNode(value(x),
 '/EMPLOYEE/@id="100"') = 1;

This query should produce the following output:

SYS_NC_ROWINFO$

<EMPLOYEE id="100">
 <ENAME>King</ENAME>
 <SALARY>24000</SALARY>
</EMPLOYEE>

The QueryXML.php script defined below shows how the above query might be issued
from PHP.

<?php
 //File: QueryXML.php
 if(!$rsConnection = oci_connect('xmlusr', 'xmlusr',
 '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection:
 '.$err['message'], E_USER_ERROR);
 };
 $xpath_exp = '/EMPLOYEE/@id="100"';
 $query = 'SELECT value(x).GetStringVal() as RESULT
 FROM employees x
 WHERE existsNode(value(x), :xpath) = 1';
 $stmt = oci_parse($rsConnection,$query);
 oci_bind_by_name($stmt, ":xpath", $xpath_exp);
 if (!oci_execute($stmt)) {

Chapter 8

[273]

 $err = oci_error($stmt);
 trigger_error('Query failed: '.$err['message'], E_USER_ERROR);
 }
 $xmlDoc = oci_fetch_assoc($stmt);
 $dom = new DOMDocument();
 $dom->loadXML($xmlDoc['RESULT']);
 print $dom->saveXML();
?>

In the above script, you set the $xpath_exp variable to the XPath expression that
points to the EMPLOYEE node whose id attribute is set to 100. This variable is then
bound to the :xpath placeholder.

Note the use of the value(x) pseudocolumn in the select list of the query. In this
example, value(x) is used to access the XMLType object representing an employee
XML document retrieved by the query. You use the GetStringVal XMLType
method to convert the retrieved XML document into a string, so that it can be loaded
into a DOMDocument.

When you run the QueryXML.php script shown in the listing, it should produce the
following output:

<?xml version="1.0" ?>
<EMPLOYEE id="100">
 <ENAME>King</ENAME>
 <SALARY>24000</SALARY>
</EMPLOYEE>

If your browser omits XML tags, though, you will see the following:

King 2400

While the existsNode SQL function used in the preceding example checks for
the existence of elements based on the XPath expression, the extractValue SQL
function lets you extract the value of a node or attribute conforming to the specified
XPath expression. So, the extractValue SQL function lets you access XML data,
receiving results similar to those received when querying relational data.

XML-Enabled Applications

[274]

The following figure illustrates this point diagrammatically.

<?xml version=”1.0”?>

extractValue()

XML documents

SQL representation
of XML data

<?xml version=”1.0”?>

The following query is a simple example of extractValue in action:

SELECT extractValue(OBJECT_VALUE, '/EMPLOYEE/ENAME')
 ENAME FROM employees WHERE existsNode(OBJECT_VALUE,
 '/EMPLOYEE/@id="100"') = 1;

As you can see, the query extracts the value of the ENAME node under the
EMPLOYEE node whose id attribute is set to 100. Note the use of the OBJECT_VALUE
pseudocolumn in the query. This pseudocolumn is an Oracle Database 10g
alternative to value(x). In this query, you use OBJECT_VALUE to access an employee
XMLType object retrieved from the employees table.

When issued from SQL*Plus, the above query should return the following result:

ENAME
--
King

You might rewrite the query to use the extract and existsNode XMLType methods
as follows:

SELECT x.OBJECT_VALUE.extract('/EMPLOYEE/ENAME/text()').getStringVal()
 ENAME FROM employees x
 WHERE x.OBJECT_VALUE.existsNode('/EMPLOYEE/@id="100"')=1;

Chapter 8

[275]

To test this query with PHP, you might write the extractXML.php script
shown below:

<?php
 //File: extractXML.php
 if(!$rsConnection = oci_connect('xmlusr', 'xmlusr',
 '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection:
 '.$err['message'], E_USER_ERROR);
 };
 $id = 100;
 $exist_exp = '/EMPLOYEE/@id='.$id;
 $extr_exp = '/EMPLOYEE/ENAME/text()';
 $query = 'SELECT x.OBJECT_VALUE.extract(:extr).getStringVal() ENAME
 FROM employees x
 WHERE x.OBJECT_VALUE.existsNode(:exist)=1';
 $stmt = oci_parse($rsConnection,$query);
 oci_bind_by_name($stmt, ":extr", $extr_exp);
 oci_bind_by_name($stmt, ":exist", $exist_exp);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: '.$err['message'], E_USER_ERROR);
 }
 $xmlDoc = oci_fetch_assoc($stmt);
 print '<h2>The name of employee whose id='.$id.' is:</h2>';
 print $xmlDoc['ENAME'];
?>

The query used in the script represents a simple example of using the extractValue
SQL function. Usually, extractValue is used in complex SQL statements in which
the data extracted from XML is then used in INSERT or UPDATE operations performed
on relational tables.

Accessing Relational Data Through XMLType
Views
Using relational tables to store shredded XML documents allows you to take
advantage of both the Oracle XML technologies and Oracle database relational
technologies when developing XML-enabled applications.

XML-Enabled Applications

[276]

For example, you can easily implement fine-grained access when working
with XML content built upon relational data. In Chapter 9 Web Services,
you will see an example of how to secure XML data, based on the row-
level security implemented on the relational data upon which that XML
data is built.

In the preceding sections, you saw several examples of how to construct XML from
SQL data with the help of SQL/XML generation functions. In the following sections,
you will learn how to simplify the development of XML-enabled PHP/Oracle
applications with XMLType views built upon relational tables.

Using XMLType Views
XMLType views provide a convenient way to construct XML representations of
relational data without physically migrating that data into XML. Once written,
an XMLType view may be used in various queries, making them simpler and so
increasing their readability.

Turning back to the SELECT statement used in the SQLXMLQuery.php script discussed
in the Using Oracle SQL/XML Generation Functions section earlier in this chapter, you
might create an XMLType view based on that statement as shown below.

CONN /as sysdba
GRANT CREATE ANY VIEW TO xmlusr;
CONN xmlusr/xmlusr;
CREATE VIEW EmpsXML AS
 SELECT XMLELEMENT("EMPLOYEES",
 XMLAgg(
 XMLELEMENT("EMPLOYEE",
 XMLATTRIBUTES(employee_id AS "id"),
 XMLFOREST(last_name AS "ENAME", salary AS "SALARY")
)
)
) AS xmlcol,
 department_id AS dept_id
 FROM hr.employees GROUP BY department_id;

In this example, you start by granting the CREATE VIEW privilege to the xmlusr
database schema and then, when connected as xmlusr/xmlusr, create the EmpsXML
view based on the query that uses SQL/XML functions to generate XML from the
data stored in the hr.employees relational table.

Chapter 8

[277]

The good thing about the EmpsXML view is that it hides the details of generating
an employees XML document, thus letting you write simpler and more readable
queries. With it, the query used in the SQLXMLQuery.php script might be rewritten
as follows:

$query = 'SELECT xmlcol as RESULT FROM EmpsXML WHERE
 dept_id=:deptid';

Before running the updated SQLXMLQuery.php script, make sure to specify the
xmlusr/xmlusr schema in the oci_connect function at the beginning of the script
as follows:

$rsConnection = oci_connect('xmlusr', 'xmlusr', '//localhost/orcl'))

Also, you might rewrite the query string used in the DBServerXSLTrans.php script
discussed in the Performing XSLT Transformations inside the Database section earlier in
this chapter as follows:

 $query = 'SELECT XMLtransform(x.xmlcol,
 (SELECT stylesheet FROM XSLTstylesheets
 WHERE id = 1)).getStringVal()
 AS result FROM
 (SELECT * FROM EmpsXML WHERE dept_id=:deptid) x';

As you can see, the above query is three times smaller than the one originally used in
the DBServerXSLTrans.php script.

Creating XML Schema-Based XMLType Views
While the Using XML Schemas section earlier in this chapter focuses on how the
XML Schema feature of Oracle XML DB can be used to create an XML schema-based
storage structure, this section discusses how XML schema functionality might be
used when working with existing relational data, without having to change the
physical structure of that data.

Creating an XML schema-based XMLType view is the most common way
to take advantage of XML schema functionality when dealing with data
stored relationally.

However, before you create an XML schema-based XMLType view, you must
have the appropriate XML schema created and registered against the database. By
executing the statement shown overleaf, you create and register the emp.xsd XML
schema on which you will then create an XMLType view.

XML-Enabled Applications

[278]

CONN xmlusr/xmlusr
BEGIN
 DBMS_XMLSCHEMA.registerschema(
 'emp.xsd',
 '<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb">
 <xs:element name="EMPLOYEE" type="EMP_TYP"/>
 <xs:complexType name="EMP_TYP" xdb:SQLType="EMP_T"
 xdb:maintainDOM="false">
 <xs:sequence>
 <xs:element name="ENAME" type ="enameType" xdb:SQLName="ENAME"
 xdb:SQLType="VARCHAR2"/>
 <xs:element name="SALARY" type ="salaryType" xdb:SQLName="SALARY"
 xdb:SQLType="NUMBER"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:positiveInteger"
 xdb:SQLName="EMPNO"
 xdb:SQLType="NUMBER"/>
 </xs:complexType>
 <xs:simpleType name="salaryType">
 <xs:restriction base="xs:double">
 <xs:maxExclusive value="100000"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="enameType">
 <xs:restriction base="xs:string">
 <xs:minLength value="2"/>
 <xs:maxLength value="30"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>',
 TRUE,
 TRUE,
 FALSE,
 FALSE
);
END;
/

As you can see from the listing, the EMPLOYEE element, which is the root element
of the employee XML document described by this schema, is mapped to the EMP_T
SQL object type. This object type will be automatically generated during schema
registration as long as you set the DBMS_XMLSCHEMA.registerschema's fourth
parameter, which is actually called GENTYPES, to TRUE.

Chapter 8

[279]

At the same time, you set the sixth (GENTABLES) parameter to FALSE, thus instructing
Oracle not to create any tables during schema registration. This makes sense in
this case because you are going to map between this XML schema and an existing
relational table later, with the help of an XMLType view.

After the PL/SQL block shown in the listing has been successfully executed, you
might issue the DESC SQL command in order to make sure that the EMP_T object type
was generated:

DESC EMP_T

This should return the following result:

EMP_T is NOT FINAL
 Name Null? Type
 --- -------- -----------------
--
 EMPNO NUMBER(38)
 ENAME VARCHAR2(4000
CHAR)
 SALARY NUMBER

Since DOM fidelity is not required when it comes to wrapping relational data in
XML, you set the attribute maintainDOM to FALSE. As a result, the EMP_T type, unlike
the EMPLOYEE_T type created as discussed in the Using XML Schemas section earlier,
doesn't contain the SYS_XDBPD$ attribute.

The XML schema defined in the listing contains an example of how to add a
constraint to an element described in the schema, restricting its content to values
matching a set of conditions. In particular, you restrict the value of node SALARY
in all employee XML documents conforming to the schema to be less than 100 000.
To achieve this, you use a maxExclusive element under the restriction element
defined in turn under the simpleType element for the SALARY element.

The following listing shows how to set up an XML schema-based XMLType view
based on the hr.employees relational table. The view created here conforms to the
employee XML schema created as discussed at the beginning of this section.

CONN xmlusr/xmlusr
CREATE TABLE emps
AS SELECT employee_id, last_name, salary FROM hr.employees;
ALTER TABLE emps
ADD constraint EMP_PRIMARYKEY
PRIMARY KEY (employee_id);
CREATE OR REPLACE VIEW empSch_v OF XMLType
 XMLSCHEMA "emp.xsd" ELEMENT "EMPLOYEE"

XML-Enabled Applications

[280]

 WITH OBJECT ID (extract(OBJECT_VALUE, '/EMPLOYEE/@id/text()').
getNumberVal()) AS
 SELECT EMP_T(e.employee_id, e.last_name, e.salary)
 FROM emps e;

In the above listing, you start by creating relational table emps based on the
hr.employees table. For simplicity, you include only three columns in the newly
created table, while loading all the rows from hr.employees.

By specifying employee.xsd in the XMLSCHEMA clause and EMPLOYEE in the ELEMENT
clause of the CREATE VIEW statement, you constrain a resultant row object in the view
to be an instance of the element EMPLOYEE defined in the emp.xsd XML schema.

Since row objects in the empSch_v XMLType object view are synthesized from
relational data, you must explicitly choose a set of unique identifiers to be used as
object identifiers. In this example, in the WITH clause you specify the id attribute of
the EMPLOYEE element as the object identifier because it is unique within the view
row objects.

In the select list of the view, you explicitly convert the data retrieved from the
relational table emps to the EMP_T SQL object type specified for the EMPLOYEE element
in the emp.xsd XML schema.

Performing DML Operations on XML Schema-Based
XMLType Views
Analyzing the underlying query of the empSch_v view discussed in the preceding
section, you may note that each attribute of the EMP_T object used in the select list
maps to a certain column of a single table, namely emps. What this means in practice
is that the empSch_v view can be inherently updated, so you can perform DML
operations against it without having to write INSTEAD-OF triggers.

Chapter 8

[281]

The following figure gives a conceptual depiction of what occurs upon
insertion of an XML document into an inherently updatable XML schema-based
XMLType view.

Web Server

PHP engine

<?php

...

// Posting XML document

?>

<?xml ?>

XML

document XML schema-based

XML Type view

Underlying

relational table Shredding process

Shredded

XML document

Database Server

XML schema

Validated

XML document

XMLDOC

<?xml version=”1”?> <?xml version=”1”?>

<xs:schema...

<?xml ?>

</xs:schema>

<?xml version=”1”?>

...1

2

3

4

Here is the explanation of the steps outlined in the previous figure:

Step 1: PHP script posts a schema-based XML document to be inserted into
an XML schema-based XMLType view.
Step 2: Oracle checks whether the XML document being inserted into the
view conforms to the XML schema on which the view is defined.
Step 3: If the document conforms to the schema, it is shredded into relational
data conforming to the underlying relational table.
Step 4: The shredded XML document is inserted into the underlying
relational table, as a new row.

Turning back to the empSch_v view, you might issue the following INSERT statement
against it from SQL*Plus in order to make sure that the view actually allows you to
perform INSERT operations on it:

INSERT INTO empSch_v VALUES(XMLType(
 '<EMPLOYEE
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="emp.xsd"
 id="300">

•

•

•

•

XML-Enabled Applications

[282]

 <ENAME>Silver</ENAME>
 <SALARY>12000</SALARY>
 </EMPLOYEE>')
);

COMMIT;

Issuing a statement from SQL*Plus is always a good idea when you need
to perform a quick test. All INSERT operations discussed in this section
might be issued from within PHP code as well.

Note the use of the xsi:noNamespaceSchemaLocation attribute of the root
document element EMPLOYEE in the above statement. This attribute is used to indicate
the schema location. Alternatively, you might use the createSchemaBasedXML
method of XMLType, as you did in the Using XML Schemas section when inserting a
row into the employees table. However, in this example you would specify emp.xsd
as the parameter of createSchemaBasedXML.

The data inserted through the empSch_v view can then be accessed not only through
that view as XML, but also through its underlying table emps as relational data. For
example, to retrieve the employee XML document inserted into the empSch_v view
by the preceding query, you might use the following query:

SELECT * FROM empSch_v WHERE existsNode(OBJECT_VALUE,
 '/EMPLOYEE/@id="300"')=1;

On the other hand, to see a relational representation of the inserted document, you
might issue the following query against the emps underlying table:

SELECT * FROM emps WHERE employee_id=300;

This should produce the following output:

EMPLOYEE_ID LAST_NAME SALARY
----------- ------------------------- ----------
 300 Silver 12000

Now, what happens if you try to insert an employee XML document into empSch_v,
which doesn't conform the emp.xsd XML schema? Say, for example, the value of the
SALARY element in the inserted document exceeds the maximum allowable value
specified for this element in the schema. For example, you might issue the following
statement and see what happens:

INSERT INTO empSch_v VALUES(XMLType(
 '<EMPLOYEE

Chapter 8

[283]

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="emp.xsd"
 id="301">
 <ENAME>Jamison</ENAME>
 <SALARY>100000</SALARY>
 </EMPLOYEE>')
);

You might be surprised to see that the above statement works without any problem.
This is despite the fact that the value of the SALARY element is restricted to be less
than 100000, as you might recall from the listing in the Creating XML Schema-Based
XMLType Views section, describing emp.xsd XML schema registration.

The fact is that Oracle performs only a partial validation when it comes to inserting
an XML document into an XML schema-based XMLType table or column or view. In
particular, it checks to see whether the structure of the XML document being inserted
conforms to the appropriate XML schema and does not check the contents of
the document.

So, to ensure that the employee XML documents inserted into the empSch_v view
are fully compliant with the emp.xsd XML schema, you need to explicitly invoke an
XML schema validation when performing INSERT operations. The simplest way to
do this is to use a PL/SQL function that might be created as follows:

CONN xmlusr/xmlusr
CREATE OR REPLACE FUNCTION val_xml (xmldoc XMLType)
RETURN XMLType
IS
 tmpxml XMLType;
BEGIN
 tmpxml := xmldoc;
 XMLTYPE.schemavalidate(tmpxml);
 RETURN xmldoc;
END;
/

Issuing a statement from SQL*Plus is always a good idea when you need
to perform a quick test. All INSERT operations discussed in this section
might be issued from within PHP code as well.

XML-Enabled Applications

[284]

After you have created the val_xml function, you might use it in INSERT operations
issued against XML schema-based tables and views as follows:

INSERT INTO empSch_v VALUES(VAL_XML(XMLType(
 '<EMPLOYEE
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="emp.xsd"
 id="302">
 <ENAME>Johnson</ENAME>
 <SALARY>100000</SALARY>
 </EMPLOYEE>')
)
);

Now, a full XML schema validation takes place. Since the value of the SALARY
element in the above employee XML document is greater than the maximum
allowable value defined in the schema, you should receive the following
error message:

ERROR at line 1:
ORA-31154: invalid XML document
ORA-19202: Error occurred in XML processing
LSX-00292: value "100000" is greater than maximum "100000" (exclusive)
ORA-06512: at "SYS.XMLTYPE", line 345
ORA-06512: at "XMLUSR.VAL_XML", line 7

However, it is important to note that while a full XML schema validation allows
you to validate both the structure and contents of an instance document, it comes
at the cost of processing time and memory usage, thus adding overhead to your
application and decreasing performance.

Using Oracle XML DB Repository
Another variation on accessing and manipulating XML content stored in Oracle
database is provided by Oracle XML DB repository, which is an essential component
of Oracle XML DB.

Oracle XML DB repository, also known as XML repository, is a
hierarchically organized repository seamlessly integrated with Oracle
Database, containing resources that can be manipulated using a file/
folder/URL metaphor.

Chapter 8

[285]

The most significant thing about XML repository is that it makes it possible to access
and manipulate XML data in a number of different ways, including SQL, PL/SQL,
and standard internet protocols, such as HTTP, FTP, and WebDAV. Graphically, it
looks as shown in the following figure.

Database Server

XML
repository

HTTP protocol
handler

FTP
server

WebDAV
server

DBMS_XDB
PL/SQL package
BEGIN

END:

Oracle XML DB

RESOURCE_VIEW
PATH_VIEW

You may find it convenient to think of Oracle XML DB repository as a file system
whose metadata and data are stored in the database. Like a conventional file system,
Oracle XML DB repository contains resources: files and folders. However, in the case
of XML repository, each resource also can be accessed through SQL.

Although XML repository is optimized for working with XML data, you
can use it to store non-XML data as well. For example, you might store a
collection of pictures there.

Manipulating Repository Resources with PL/SQL
Oracle XML DB provides PL/SQL package DBMS_XDB to access Oracle XML DB
repository programmatically from within PL/SQL code.

XML-Enabled Applications

[286]

For example, to create a repository folder and then a resource in that folder, you
might use the DBMS_XDB.createFolder and DBMS_XDB.createResource function
respectively, as follows:

CONN xmlusr/xmlusr;
DECLARE
 rslt BOOLEAN;
 xmldoc VARCHAR2(250) :=
 '<EMPLOYEE
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="employee.xsd"
 id="303">
 <ENAME>Locke</ENAME>
 <SALARY>7000</SALARY>
 </EMPLOYEE>';
BEGIN
 IF (NOT DBMS_XDB.existsResource('/public/xmlusr')) THEN
 rslt:=DBMS_XDB.createFolder('/public/xmlusr');
 END IF;
 IF (NOT DBMS_XDB.existsResource('/public/xmlusr/emps')) THEN
 rslt:=DBMS_XDB.createFolder('/public/xmlusr/emps');
 END IF;
 rslt := DBMS_XDB.createResource('/public/xmlusr/emps/emp303.xml',
xmldoc);
 COMMIT;
END;
/

As you can see, when creating a resource, regardless of whether it is a file or folder,
you must specify an absolute path to that resource. This is required because, as in a
conventional file system, each resource in the XML repository is identified by a path
and name.

Accessing Repository Resources with SQL
In fact, Oracle XML DB repository resources are stored in a set of database tables and
indexes, which can be accessed via SQL. You are not supposed to access those tables
directly. Instead, Oracle XML DB provides two public views RESOURCE_VIEW and
PATH_VIEW through which you can access repository resources.

For example, you might issue the following query against the RESOURCE_VIEW view
to access the employee XML document stored in the XML repository as /public/
xmlusr/emps/emp303.xml, assuming that you have executed the PL/SQL block
shown in the preceding section.

Chapter 8

[287]

SELECT extract(r.RES, '/Resource/Contents/*').getStringVal()
 RESULT FROM RESOURCE_VIEW r
 WHERE equals_path(res, '/public/xmlusr/emps/emp303.xml') = 1;

This should produce the following result:

<EMPLOYEE
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="employee.xsd"
 id="303">
 <ENAME>Locke</ENAME>
 <SALARY>7000</SALARY>
</EMPLOYEE>

However, in this particular example you don't have to query RESOURCE_VIEW to
retrieve the above XML document through SQL. Instead, you might issue the
following query against the employees XMLType table:

SELECT extract(OBJECT_VALUE,'/').getStringVal()
 RESULT FROM employees
 WHERE existsNode(OBJECT_VALUE, '/EMPLOYEE/@id="303"') = 1;

You might be asking yourself: How could that have happened—a document
uploaded into the XML repository appeared in an XMLType table? As you might
recall from the listing describing the employee.xsd XML schema registration in the
Using XML Schemas section, the employees XMLType table is specified as a default
table in the employee.xsd XML schema and so it must have been generated during
the schema registration process. Since the employee XML document inserted into the
XML repository by the PL/SQL code as discussed in the preceding section is based
on the employee.xsd XML schema, this document has been automatically inserted
into the employees XMLType table.

Taking Advantage of Standard Internet Protocols
As mentioned, Oracle XML DB provides native support for standard internet
protocols, such as HTTP(S), WebDAV, and FTP. Continuing with the preceding
sample, you might, for example, upload another employee XML document into the
XML repository with one of the above protocols, say, FTP.

XML-Enabled Applications

[288]

Starting with Oracle Database 10g Release 2, FTP is disabled by
default, for security reasons. This is achieved by setting the FTP port
to 0. To enable FTP, you must manually set the FTP port number
to an appropriate value, such as 2100, which is the default value in
Oracle Database releases before 10g Release 2. Changing the FTP port
to an appropriate value can be easily done with the help of Oracle
Enterprise Manager, a graphical tool supplied with Oracle Database.
For more information on Oracle Enterprise Manager, refer to Oracle
documentation: chapter Getting Started with Oracle Enterprise Manager in
the Oracle Database 2 Day DBA manual.

The uploadXML.php script shown below provides a simple example of how you
might upload an XML document into the XML repository through FTP protocol.

<?php
 //File: uploadXML.php
 $host='localhost';
 $port=2100;
 $timeout=30;
 $db_user='xmlusr';
 $db_pswd='xmlusr';
 $root_dir='/public/xmlusr/emps';
 $empid=304;
 $file='emp'.$empid.'.xml';
 $cnt=
 '<?xml version="1.0"?>
 <EMPLOYEE
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="employee.xsd"
 id="'.$empid.'">
 <ENAME>Polonski</ENAME>
 <SALARY>8200</SALARY>
 </EMPLOYEE>';
 $temp = tmpfile();
 fwrite($temp, $cnt);
 fseek($temp, 0);
 $ftpcon = ftp_connect($host, $port, $timeout);
 $login = ftp_login($ftpcon, $db_user, $db_pswd);
 ftp_chdir($ftpcon, $root_dir);
 ftp_fput($ftpcon, $file, $temp, FTP_ASCII);
 ftp_close($ftpcon);
?>

In the above script, you start by setting up the parameters required to connect to the
FTP server running on the database server.

Chapter 8

[289]

By including the value of the employee's id attribute in the name of the XML file
to be uploaded into the XML repository, you ensure the uniqueness of file names
within the repository folder that contains employee XML documents in single files.

Then, you create a temp file and write XML content in it. Then, you connect to the
Oracle FTP server and upload the file into the XML repository.

After the uploadXML.php script is executed, to make sure that the employee XML
document has been successfully uploaded into the XML repository, you might issue
the following query from SQL*Plus:

CONN xmlusr/xmlusr
SELECT extract(OBJECT_VALUE,'/').getStringVal()
 RESULT FROM employees
 WHERE existsNode(OBJECT_VALUE, '/EMPLOYEE/@id="304"') = 1;

If everything is OK, this query should output the employee XML document
uploaded by the uploadXML.php script:

<?xml version="1.0"?>
 <EMPLOYEE
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="employee.xsd"
 id="304">
 <ENAME>Polonski</ENAME>
 <SALARY>8200</SALARY>
 </EMPLOYEE>

So, after the uploadXML.php script is executed, the XML document inserted by the
script becomes permanent immediately.

Handling Transactions
As you can see from the preceding example, changes made through internet
protocols to repository resources become permanent once a single operation on a
resource has been completed.

In contrast, all SQL and PL/SQL operations that you perform on the XML data
stored in Oracle XML DB are transactional, irrespective of whether you're using
XMLType storage or the XML repository. This allows you to combine SQL and
PL/SQL statements operating on XML data within a logical unit of work and
explicitly commit the transaction or roll it back if necessary.

Suppose you want to create a folder in the XML repository and then upload an
XML document in it. The following code fragment shows how this can be done in
PL/SQL:

XML-Enabled Applications

[290]

rslt:=DBMS_XDB.createFolder('/public/xmlusr/emps/303');
rslt:=DBMS_XDB.createResource('/public/xmlusr/emps/303/emp303.xml',
xmldoc);
COMMIT;

The above PL/SQL code is transactional. If an error occurs during the execution
of the createFolder function, then the results of execution of createFolder are
discarded automatically.

On the other hand, when performing the same operations through FTP protocol,
failure to create the resource doesn't affect the results of preceding operation. So, the
following fragment of PHP code is not transactional:

$login = ftp_login($ftpcon, $db_user, $db_pswd);
ftp_chdir($ftpcon, '/public/xmlusr/emps');
ftp_mkdir($ftpcon, '303');
ftp_chdir($ftpcon, '/public/xmlusr/emps/303');
ftp_fput($ftpcon, 'emp303.xml', $xmldoc, FTP_ASCII);
ftp_close($ftpcon);

Chapter 4 Transactions, presented earlier in this book, explains in detail
how to use transactions in PHP/Oracle applications.

Querying Data with Oracle XQuery
Starting with Oracle Database 10g Release 2, you can take advantage of a
full-featured native XQuery engine integrated with the database. With Oracle
XQuery, you can accomplish various tasks involved in developing PHP/Oracle XML
applications, operating on any kind of data that can be expressed in XML.

Chapter 8

[291]

The following figure shows the data sources with which Oracle XQuery can work.

Relational data Database Server

XML data

<?xml version=”1.0”?>

<?xml version=”1.0”?>
...
...

External
sources

Xquery engine

As you can see from the figure, XQuery can be used to query any data stored in the
database and out of it.

Please note that XQuery is not available in the Express Edition of
Oracle Database. For more information on Oracle XQuery, you can
refer to Oracle documentation: chapter Using XQuery with Oracle XML DB
in the Oracle XML DB Developer's Guide. You can also refer to the
XQuery 1.0: An XML Query Language W3C Recommendation at
http://www.w3.org/TR/xquery/.

Using XQuery to Construct XML from
Relational Data
In the preceding sections, you saw several examples of how to construct XML
representations of relational data using the SQL/XML generation function, as well as
using object types when creating XMLType views on relational tables. In this section,
you will learn how to build XML on relational data with XQuery.

Turning back to the Using Oracle SQL/XML Generation Functions section, you might
modify the listing containing the SQLXMLQuery.php script that uses PHP DOM
extension functions to produce an XML representation of relational data to use
XQuery instead of those functions, as shown overleaf:

XML-Enabled Applications

[292]

<?php
 //File: XQuery.php
 if(!$rsConnection = oci_connect('hr', 'hr', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);
 };
 $dept_id=90;
 $query =
 'SELECT XMLQuery('.
 "'".'for $j in 1
 return (
 <EMPLOYEES> {
 for $i in ora:view("hr", "employees")/ROW
 where $i/DEPARTMENT_ID = $deptid
 return (<EMPLOYEE id="{xs:integer($i/EMPLOYEE_ID)}">
 <ENAME>{xs:string($i/LAST_NAME)}</ENAME>
 <SALARY>{xs:integer($i/SALARY)}</SALARY>
 </EMPLOYEE>)} </EMPLOYEES>)'."'".
 'PASSING XMLElement("deptid", :deptid) AS "deptid"
 RETURNING CONTENT).getStringVal() RESULT FROM DUAL';
 $stmt = oci_parse($rsConnection,$query);
 oci_bind_by_name($stmt, ':deptid', $dept_id);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' . $err['message'], E_USER_ERROR);
 }
 $xmlDoc = oci_fetch_assoc($stmt);
 $domxml = new DOMDocument();
 $domxml->loadXML($xmlDoc['RESULT']);
 print $domxml->saveXML();
?>

The Oracle SQL function XMLQuery can be used to construct or query XML data,
based on an XQuery expression passed as the parameter. In this example, you use
the XMLQuery function to generate an XML representation of some data stored in the
relational table hr.employees.

You start the FLWOR expression used in this example with the for clause performing
only one iteration.

FLWOR stands for for, let, where, order by, return—the clauses used
when composing an XQuery expression.

Chapter 8

[293]

Next, in the nested FLWOR expression that starts with the for clause, you iterate
over the hr.employees rows selected based on the condition specified in the where
clause. With the help of the ora:view XQuery function, you query relational table
hr.employees, as it were an XMLType table, creating XML documents on the fly.

In the return clause of the FLWOR expression, you construct the EMPLOYEE nodes of
the resultant EMPLOYEES document.

You bind dynamic variable deptid to an XQuery expression using the
PASSING clause. This variable is used in the where clause of the nested FLWOR
expression, restricting the retrieved employee records to those that belong to the
specified department.

When executed, the XQuery.php script shown in the listing opposite should produce
the same XML document as the one shown in the Creating XML with the DOM PHP
Extension section at the beginning of this chapter. If you want to print the resultant
XML document in HTML format, you might perform an XSL transformation before
outputting it. To achieve this, you might replace the last line of code in the script:

print $domxml->saveXML();

with the following lines:

 $domxsl = new DOMDocument();
 $domxsl->load('employees.xsl');
 $proc = new XSLTProcessor;
 $xsl = $proc->importStylesheet($domxsl);
 $rslt = $proc->transformToXml($domxml);
 print $rslt;

Assuming that you have created the employees.xsl stylesheet as discussed in the
Transforming and Processing XML with XSLT section earlier in this chapter, with the
above replacement, the XQuery.php script shown in the listing should produce the
HTML table as shown in the Transforming and Processing XML with XSLT
section earlier.

Breaking up XML into Relational Data
While the preceding example shows how to construct an XML representation over
relational data, the example in this section illustrates how you can shred XML data
back into relational data. This reverse operation can be useful if your application
works with relational data rather than XML, but the data which you work with, is
stored in XML format.

XML-Enabled Applications

[294]

Turning back to the employees XMLType table generated during the registration of
the employee.xsd XML schema discussed in the Using XML Schemas section, you
might use the SQL function XMLTable to shred the employee XML documents into
individual columns of a virtual table, as shown below:

CONN xmlusr/xmlusr
SELECT emps.empno,emps.ename, emps.salary FROM employees,
 XMLTable(
 'for $i in /EMPLOYEE
 return $i'
 PASSING OBJECT_VALUE
 COLUMNS empno NUMBER PATH '/EMPLOYEE/@id',
 ename VARCHAR2(30) PATH '/EMPLOYEE/ENAME',
 salary NUMBER PATH '/EMPLOYEE/SALARY') emps;

Assuming that you have followed the instructions in the preceding sections, the
output generated by the query shown in the listing might look like this:

EMPNO ENAME SALARY
----- ------------------------------ ----------
 100 King 24000
 101 Horka 25000
 303 Locke 7000
 304 Polonski 8200

In a real-world situation, in order to hide data complexity, you might find it useful
to build a view on the query shown in the listing, so that the people designing SQL
queries against that view have no idea they are dealing with data actually stored in
XML format.

Summary
When building XML-enabled PHP/Oracle applications, the database can not only be
used as an efficient means for storing XML data, but also to operate on any kind of
data that can be expressed in XML.

In this chapter you learned how to use XML techniques and technologies available
in PHP and Oracle when building XML-enabled PHP/Oracle applications. In
particular, you saw how to use PHP's XML extensions and how to take advantage of
Oracle XML DB, a set of Oracle XML technologies making Oracle Database an ideal
choice for data-driven XML applications.

By now you should have a good understanding of how you can use XML techniques
and technologies available in PHP and Oracle to build robust XML-enabled PHP
applications on Oracle Database. Armed with this knowledge, you will be able to
understand better XML Web Services discussed in the next chapter.

Web Services
Web Services is a powerful technology that enables different systems to
communicate with each other over the Internet in a uniform way, without having to
worry about implementation details. The most popular protocol for accessing web
services today is SOAP—a lightweight, XML-based, messaging protocol designed
for exchanging structured and typed information between distributed applications
over standard transport protocols, such as HTTP.

When developing a SOAP web service to expose the functionality of a PHP/Oracle
application, you have a number of choices. For example, you could employ the
PEAR::SOAP package or the PHP SOAP extension to implement a SOAP web service
in PHP while implementing its business logic partly in PHP and partly within the
database. As far as Oracle is concerned, you might, of course, implement the key
business logic of a SOAP web service within the database, while still having the
SOAP server implemented in PHP and, therefore, running on the web/PHP server.
Finally, you might implement a SOAP web service, including its business logic,
entirely within the database.

In this chapter you learn how to build a SOAP web service exposing the
functionality of a PHP/Oracle application, using the PHP SOAP extension and
Oracle XML technologies.

Exposing a PHP/Oracle Application as a
Web Service Using PHP SOAP Extension
PHP's SOAP extension is an implementation of the SOAP protocol for PHP. Written
in C, it provides a performance advantage over the PEAR::SOAP implementation,
which is written in PHP.

In the following sections, you will learn how to expose a PHP/Oracle application as
a web service with the help of PHP's SOAP extension.

Web Services

[296]

Communicating Using SOAP
As mentioned, SOAP is a messaging protocol. What this means is that SOAP clients
and SOAP servers interact by sending SOAP messages to each other.

A SOAP message is a SOAP-formatted XML document used to transport
information between SOAP-based interfaces. For more information on
SOAP, you can refer to the W3C SOAP Recommendation documents.
Links to the latest versions of these documents can be found at
http://www.w3.org/TR/soap/.

The following figure illustrates the general structure of a SOAP message.

As you can see in the figure, an XML document representing a SOAP message
includes two key elements, namely Header and Body, under the Envelope
root element.

While the body of a SOAP message contains the actual message payload, the SOAP
header is optional and is used to pass meta-information related to the processing
of the message itself. For example, the header might be used to supply security
measures to protect the data passed in the message body.

The most commonly used messaging pattern in SOAP is the RPC (Remote Procedure
Call) pattern, in which the client calls a remote function available on the server and
then gets the results back, sending requests and responses as SOAP messages.

Chapter 9

[297]

The following figure��� gives a conceptual depiction of how an RPC scenario works
with SOAP.

Database
server

business
logic

message
processing

response
message

request
message

message
processing

business
logic

SOAP client SOAP server

As you can see in the figure, the SOAP client initiates a communication with the
corresponding SOAP server by sending a SOAP request message, by which the client
invokes the required business logic component (in other words, it calls a remote
function) available on the server.

The server in turn processes the request message and then invokes the called
function. After performing the called function, the server generates a SOAP response
message and then sends it back to the client. The response message normally
contains the results produced by the invoked function or information about the fault
thrown by that function.

What you Need to Build a SOAP Web Service
When developing a web service, you normally use several technologies such as XML,
SOAP, XML Schema, and WSDL in a complementary way. This section outlines
which software components you need to build your own SOAP web service with
PHP's SOAP extension, and how these components interact with each other.

Web Services

[298]

The key components required to build a SOAP web service with PHP's SOAP
extension are listed in the following table:

Component Description
PHP's SOAP extension Written in C, the SOAP extension provides an efficient alternative

to the PEAR::SOAP package, which is written in PHP. The SOAP
extension supports WSDL, which simplifies the process of writing
SOAP servers and SOAP clients.

PHP class Normally you use a PHP class to encapsulate the web service
logic. For this purpose, you might use an existing class, adding
SoapFault class functionality to be able to use the PHP exception
mechanism to throw a SOAP fault.

WSDL document WSDL stands for Web Service Definition Language. When
developing a SOAP web service with the PHP SOAP extension,
you have to develop an accompanying WSDL file as well. In this
document, you describe the SOAP messages to be used when
interacting with the SOAP service.

While the above table gives a short functional description of each component needed
to build a SOAP web service with PHP SOAP extension, the following figure gives
you a high-level view of how these components interact with each other.

<?xml version=”1.0”?>

<SOAP-ENV:Envelope...

</SOAP-ENV:Envelope>

Database

Server

SOAP messages

SOAP client Querying

database

<?xml version=”1.0”?>

<SOAP-ENV:Envelope...

</SOAP-ENV:Envelope>

Another Web

Server

<?xml>
<definitions...

</definitions>

<?php
class...(

?>

WSDL

document

PHP handler

class

SOAP server

PHP SOAP extension

Web Server

PHP engine

For simplicity, the diagram shown in the figure illustrates only one SOAP client
interacting with the SOAP server. In reality, of course, there may be more than
one client requesting a SOAP server simultaneously. Although the SOAP server
presented in the figure is build upon the PHP SOAP extension, a SOAP client
interacting with this server may be built with other software and even running on
another operating system platform.

Chapter 9

[299]

Looking at the figure, notice the use of the WSDL document, which describes the
public interface to the server and is used by the client to determine what functions
are available on the server. The same WSDL document is used when creating a
SOAP server object. In this example, the WSDL describes the public methods of the
PHP handler, which is a custom class implementing the web service logic.

Building a SOAP Web Service on Top of a
PHP/Oracle Application
Now that you know which key components are required to build a SOAP web
service, it's time to look at an example that should give you an idea of how to expose
a PHP/Oracle application as a SOAP web service.

Suppose you want to expose the functionality of a po custom PHP class as a web
service. Let's say this class contains a placeOrder method that takes an XML
document representing a purchase order as its parameter and then sends it to the
database for validating it against a registered XML schema and storing it in
XML format.

Diagrammatically, this might look like ��������������������� the following figure�.

Extracting PO document

from SOAP envelope

PO document

wrapped in

SOAP envelope
Extracted PO

XML document placeNewOrder

PL/SQL function

po.xsd

XML schema

po

XML Type table

Validated PO
XML document

Processing PO document

with Xquery

<?php

class po {

function placeOrder() {

...

?>

<?xml ?>
<Envelope...

</Envelope> <?xml version=”1.0”?>
</xs:schema>

</xs:schema>

<?xml ?>
<Envelope...

BEGIN

END;

<?xml ?>

Web Server

1 3
2 4

5

6

SOAP server

Database Server

Oracle XML DB

Web Services

[300]

Here is the explanation of the steps in the previous figure:

Step 1: The SOAP server running on the web/PHP server receives a PO XML
document wrapped by the client in a SOAP envelope, and then extracts it.
Step 2: The po class's placeOrder method exposed by the SOAP web service
takes the PO XML document extracted in step 1 as its parameter.
Step 3: The placeOrder method then invokes the placeNewOrder PL/SQL
function, sending the extracted PO document as the parameter.
Step 4: The first thing that the placeNewOrder function does is to initiate
the process of validation of the XML PO document against the po.xsd
XML schema.
Step 5: The validated PO document is then processed with XQuery. During
this phase, the automatically generated PO's ID and some other information
are added to the document.
Step 6: Finally, the PO XML document is inserted into the po XMLType table.

In the next sections, you will see each of the above steps in detail, as the sample
application is built.

Although a SOAP client initiates a communication with the
corresponding SOAP server, you start building the sample discussed here
with the latter. It makes sense to do so, because the main focus here is
the server rather than the client. In this example, you need a very simple
client to be used only to test the server, once you've built the latter.

Building the Business Logic of a Web Service
Inside the Database
When implementing a SOAP web service that works as outlined in the above
scenario, you can start by creating the database objects implementing the web
service's business logic.

In the following sections, you create the placeNewOrder PL/SQL function that will
be invoked by the web service whenever a new PO arrives, and the PO XML schema
that will be used to validate arrived PO documents.

•

•

•

•

•

•

Chapter 9

[301]

Creating an XML Schema to Validate Incoming
Documents
You can start by creating and registering the PO XML schema within the database.
This schema will be used to validate all incoming PO XML documents. Moreover,
while registering the schema, Oracle will automatically create the po XMLType table
to be used for storing that documents.

Alternatively, you might embed a PO XML schema in the WSDL
document describing the web service, thus moving XML Schema
validation from the database server to the SOAP server, which in this
example, is implemented with the PHP SOAP extension and is therefore
running on the web/PHP server. Or you might use two XML schemas
simultaneously, performing validation at both the database server and
web/PHP server. However, in either case you should understand that
XML Schema validation consumes a great deal of processor time and
physical memory. So, in most cases, it is more efficient to perform XML
Schema validation within the database rather than at the web/PHP
server, since it allows you to take advantage of the XML-specific memory
optimizations provided by Oracle XML DB.

The following listing shows the code you need to execute from SQL*Plus in order
to create and register a po.xsd XML schema against the database. It is assumed that
you have the xmlusr/xmlusr database account created as discussed in the Storing
XML Data in the Database section in Chapter 8 XML-Enabled Applications.

CONN xmlusr/xmlusr;

BEGIN
 DBMS_XMLSCHEMA.registerschema(
 'po.xsd',
 '<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xdb="http://xmlns.oracle.com/xdb"
 xdb:storeVarrayAsTable="true" >
 <xs:element name="purchaseOrder" type="purchaseOrder_typ"
 xdb:defaultTable="PO"
 xdb:columnProps=
 “CONSTRAINT po_pkey PRIMARY KEY (XMLDATA.pono)"/>
 <xs:complexType name="purchaseOrder_typ" >
 <xs:sequence>
 <xs:element name="orderDate" type="xs:date" minOccurs="0"/>

Web Services

[302]

 <xs:element name="shipDate" type="xs:date" minOccurs="0"/>
 <xs:element name="shipTo" type="Address"/>
 <xs:element name="billTo" type="Address"/>
 <xs:element name="items" type="Items"/>
 </xs:sequence>
 <xs:attribute name="id" xdb:SQLName="PONO" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="[A-Z]{2}-\d{6}"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 <xs:complexType name="Address" >
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:element name="street" type="xs:string" />
 <xs:element name="city" type="xs:string" />
 <xs:element name="state" type="xs:string" />
 <xs:element name="zip">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="\d{5}"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="country" type="xs:NMTOKENS" fixed="US"/>
 </xs:complexType>
 <xs:complexType name="Items" >
 <xs:sequence>
 <xs:element name="item" minOccurs="0" maxOccurs="unbounded" >
 <xs:complexType>
 <xs:sequence>
 <xs:element name="partId" >
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="\d{3}"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="quantity" >
 <xs:simpleType>
 <xs:restriction base="xs:positiveInteger">

Chapter 9

[303]

 <xs:maxExclusive value="100"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="price" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>',
 TRUE,
 TRUE,
 FALSE,
 TRUE
);
END;
/

With the help of the xdb:defaultTable annotation, you specified that XML
documents compliant with the schema will be stored in the po XMLType table.
Another annotation in the purchaseOrder element, namely xdb:columnProps,
instructs Oracle to define a primary key on the pono attribute in the po XMLType
table. This guarantees the uniqueness of PO IDs within the documents stored in
the po XMLType table. In this case, you are able to refer to the pono attribute when
setting up the xdb:columnProps annotation because you explicitly specify the name
for that attribute with the help of the xdb:SQLName annotation. Also, you specify
a matching pattern that restricts the value of the pono attribute to a nine-character
string that begins with two capital letters followed by the dash character followed by
six digits.

Note that the orderDate and shipDate elements defined in the above schema have
attribute minOccurs set to 0. This means that these elements need not be present
in XML documents compliant with this XML schema. This allows you to validate
incoming PO XML documents, which actually should not contain these elements.
On the other hand, it doesn't prevent you from including them in resultant PO XML
documents to be stored in the po XMLType table based on this XML schema.

When defining the restriction for the quantity element, you specify that the
maximum allowed value for that element is 100. This means that an incoming PO
document cannot contain items whose quantity exceeds 100.

Web Services

[304]

As mentioned, during the registration of the PO XML schema as shown in the
previous listing, Oracle implicitly creates the po XMLType table based on that
XML schema. To make sure it has done so, you can issue the following query from
SQL*Plus, when connected as xmlusr/xmlusr:

DESC po

The above should produce the following output:

TABLE of SYS.XMLTYPE(XMLSchema “po.xsd" Element “purchaseOrder")
 STORAGE Object-relational TYPE “purchaseOrder_typ"

Using XML schemas is discussed in more detail in the section Using XML
Schemas in Chapter 8 XML-Enabled Applications.

Generating Unique IDs for Incoming Documents
Before you start developing PL/SQL code that will process incoming POs and
then insert resultant documents into the po table, you have to figure out which
mechanism will be used to generate unique IDs for incoming POs. Since the web
service discussed here is designed to receive PO documents from more than one
client, it is fairly obvious that generating IDs must be performed on the server side
rather than on the client.

As discussed in the preceding section, the last 6 characters in a PO ID are digits. To
guarantee uniqueness across generated PO IDs, the combination of those digits must
be unique for each generated ID. To achieve this, you might want to use a sequence
number generator that will generate unique sequential numbers. You might issue
the following statement from SQL*Plus to create such a sequence number generator
inside the database:

CONN xmlusr/xmlusr;

CREATE SEQUENCE orders_seq
START WITH 1
INCREMENT BY 1
MAXVALUE 999999
NOCYCLE;

With the help of the orders_seq sequence created above, you will be able to obtain
a sequential number to be used as part of the generated ID for an incoming PO
document. To do this, you can access the orders_seq's NEXTVAL pseudocolumn in an
SQL statement, as you will see in the next section.

Chapter 9

[305]

Since an Oracle sequence is irrevocably incremented upon accessing its
NEXTVAL pseudocolumn, it is obvious that you have to generate the ID
for an incoming PO only if it has been successfully validated against the
PO XML schema created and registered as shown in the listing in the
preceding section.

In the above CREATE SEQUENCE statement, you used several clauses, which are
described in the following table.

Clause Description
START WITH Specifies the first sequential number to be generated upon

accessing the NEXTVAL pseudocolumn of the sequence. In this
example, you explicitly set this number to 1.

INCREMENT BY Specifies the interval between generated sequence numbers. In
this example, you explicitly set this interval to 1.

MAXVALUE Specifies the maximum allowed value for the sequence. You set
it to 999999 because the PO ID's pattern defined in the PO XML
schema requires that you use a six-digit number for the number
portion of a PO ID.

NOCYCLE Specifies that the sequence will not start a new cycle upon
reaching the maximum allowed value specified in the MAXVALUE
clause. In this case, this guarantees uniqueness across PO IDs.

Besides the clauses described in the table, there are a few other clauses that can be
used with the CREATE SEQUENCE statement. For detailed information, see Oracle
documentation: section CREATE SEQUENCE in chapter SQL Statements in the Oracle
Database SQL Reference manual.

Creating PL/SQL Subprograms Implementing the
Business Logic of the Web Service
Now that you have a sequence in hand, you are ready to develop PL/SQL code that
will be used to process incoming POs and then insert resultant documents into
the table.

For the purpose of this sample, you will create two PL/SQL functions, namely
placeNewOrder and transOrder. The placeNewOrder function will be invoked from
PHP code, taking an incoming PO document as the parameter. After validating the
incoming document, placeNewOrder invokes the transOrder function that will
transform that document to the resultant document. Then, placeNewOrder will save
the resultant document in the po XMLType table.

Web Services

[306]

You start by creating the transOrder PL/SQL function that will take an incoming
PO XML document as its parameter and then transform it to the resultant document.
To create the function from SQL*Plus, you can run the CREATE FUNCTION statement
shown below:

CONN xmlusr/xmlusr;

CREATE OR REPLACE FUNCTION transOrder (xmldoc XMLType)
RETURN XMLType
IS
 rsltdoc XMLType;
 ordid VARCHAR2(9);
 ordno VARCHAR2(6);
 orderDate DATE;
 shipDate DATE;
BEGIN
 ordid:='US-000000';
 SELECT orders_seq.nextval INTO ordno FROM DUAL;
 ordid:=SUBSTR(ordid, 1, 9-LENGTH(ordno))||ordno;
 orderDate:=SYSDATE;
 shipDate:=SYSDATE+1;
 SELECT XMLQuery(
 'for $p in $xmldoc/purchaseOrder
 return (<purchaseOrder
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="po.xsd"
 id="{$ordid}">
 {$orderDate,
 $shipDate,
 $p/shipTo,
 $p/billTo,
 $p/items}
 </purchaseOrder>)'
 PASSING xmldoc as “xmldoc",
 XMLElement(“ordid", ordid) AS “ordid",
 XMLElement(“orderDate", orderDate) AS “orderDate",
 XMLElement(“shipDate", shipDate) AS “shipDate"
 RETURNING CONTENT) INTO rsltdoc FROM DUAL;
 RETURN rsltdoc;
END;
/

As you can see, the transOrder PL/SQL function takes only a parameter that is of
type XMLType. Through this parameter, the function will receive an incoming PO to
be transformed into a resultant PO document.

Chapter 9

[307]

The executable part of the transOrder function starts with the code that generates
an ID for the PO document passed to the function as the parameter. The first PO ID
generated by this code should be: US-000001.

However, adding a generated ID to an incoming document is not the only thing
to take care of in this example. You also need to add the orderDate and shipDate
elements to the XML document representing an incoming PO, specifying appropriate
values for those elements. You set variable orderDate to the current date and
shipDate to the date of the next day. These variables then are passed to the XQuery
expression, which in turn is passed to the XMLQuery function as the argument.

In the return clause of the XQuery expression, you construct the resultant PO
document, which is then returned to the caller.

Using Oracle XQuery to query, construct, and transform XML is
discussed in more detail in the section Querying Data with Oracle XQuery
in Chapter 8 XML‑Enabled Applications.

Now that you have the transOrder function created, you can move on to the
placeNewOrder function. The following listing shows the SQL statement to be
executed from SQL*Plus to create this function.

CONN xmlusr/xmlusr;

CREATE OR REPLACE FUNCTION placeNewOrder (xmldoc IN XMLType,
 msg OUT VARCHAR2)
RETURN NUMBER
IS
 tmpxml XMLType;
 errcode NUMBER;
 errmesg VARCHAR2(256);
BEGIN
 tmpxml := xmldoc;
 XMLTYPE.schemaValidate(tmpxml);
 tmpxml:=transOrder(tmpxml);
 INSERT INTO po VALUES(tmpxml);
 COMMIT;
 msg:='Ok!';
 RETURN 1;
 EXCEPTION
 WHEN OTHERS THEN
 errcode := SQLCODE;
 errmesg := SUBSTR(SQLERRM, 1, 256);
 msg:= errcode || ': ' || errmesg;
 RETURN 0;
END;
/

Web Services

[308]

As you can see, the placeNewOrder PL/SQL function takes two parameters. The first
one, called xmldoc, is an input parameter of XMLType through which an incoming
PO document is passed to the function. The other one, called msg, is an output
parameter through which placeNewOrder tells the caller whether the incoming PO
has been successfully processed and inserted into the po XMLType table.

With the help of the XMLType schemaValidate method, you validate the incoming
PO against the PO XML schema created as shown in the listing in the Creating an
XML Schema to Validate Incoming Documents section earlier. If the incoming PO has
been successfully validated, you transform it into the resultant document with the
transOrder PL/SQL function created as shown in the listing at the beginning of
this section, and then insert it into the po XMLType table created by Oracle during
registering the PO XML schema.

If either the validation or insertion fails then control is transferred to the code in
the WHEN OTHERS THEN section in the exception-handling part of the placeNewOrder
PL/SQL function. This code sets the msg output parameter to an appropriate error
message string and returns 0 to the caller.

Although you created the placeNewOrder PL/SQL function to be called from PHP
code encapsulating the functionality of the PO web service discussed here, you can
test this function from SQL*Plus to make sure that everything works as expected
so far.

The following listing shows SQL and PL/SQL code that you might execute to test the
placeNewOrder PL/SQL function created as shown in the preceding listing.

CONN xmlusr/xmlusr;
VARIABLE rslt_msg VARCHAR2(300);

DECLARE
 rslt NUMBER;
BEGIN rslt:=placeNewOrder(XMLType('
<purchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="po.xsd" >
 <shipTo country="US">
 <name>Maya Silver</name>
 <street>5th West Street</street>
 <city>Shell Valley</city>
 <state>CA</state>
 <zip>90950</zip>
 </shipTo>
 <billTo country="US">
 <name>Jonathan Jamison</name>
 <street>277 Nevada Road</street>

Chapter 9

[309]

 <city>North Town</city>
 <state>CA</state>
 <zip>90952</zip>
 </billTo>
 <items>
 <item>
 <partId>948</partId>
 <quantity>3</quantity>
 <price>15.75</price>
 </item>
 <item>
 <partId>943</partId>
 <quantity>1</quantity>
 <price>34.95</price>
 </item>
 </items>
</purchaseOrder>'), :rslt_msg); END;
/
PRINT rslt_msg;

In the above listing, you start by declaring the rslt_msg bind variable that is used
in the next anonymous PL/SQL block to hold an output message produced by the
placeNewOrder function invoked in that PL/SQL block.

In the PL/SQL block, you call placeNewOrder, passing the PO XML document
as the first parameter. By setting the xsi:noNamespaceSchemaLocation attribute
of the purchaseOrder root element in the PO document to po.xsd, you explicitly
specify that this document is compliant with the po.xsd XML schema, created and
registered as discussed in the Creating an XML Schema to Validate Incoming Documents
section earlier.

The rslt_msg bind variable declared in the above listing is passed as the second
parameter to placeNewOrder when it is invoked within the PL/SQL block. Then,
you access the rslt_msg variable from SQL*Plus with the PRINT command,
displaying the resultant message that tells you whether the PO document has been
successfully validated and stored in the database. If everything is OK, you should see
the following output:

RSLT_MSG

Ok!

Web Services

[310]

Building a PHP Handler Class
As stated earlier, the placeNewOrder PL/SQL function discussed in the preceding
section will be invoked from PHP code encapsulating the web service functionality.
This PHP code passes an incoming PO document to the placeNewOrder function
as the parameter. placeNewOrder in turn processes that PO and then inserts the
resultant document into the po XMLType table, returning 1 on success or 0
on failure.

The following listing shows the po PHP class whose placeOrder method will be
exposed by the web service. This method encapsulates the web service functionality,
receiving an incoming PO from a web service client and then passing it to the
placeNewOrder PL/SQL function for further processing.

<?php
 //File po.php
 class po {
 function placeOrder($po) {
 if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/orcl')){
 throw new SoapFault(“Server","Failed to connect to database");
 };
 $sql = “BEGIN :rslt:=placeNewOrder(XMLType(:po).
 createSchemaBasedXML('po.xsd'), :msg); END;";
 $query = oci_parse($conn, $sql);
 oci_bind_by_name($query, ':rslt', $rslt);
 oci_bind_by_name($query, ':po', $po);
 oci_bind_by_name($query, ':msg', $msg, 300);
 if (!oci_execute($query)) {
 throw new SoapFault(“Server","Failed to execute query");
 };
 if ($rslt==0) {
 throw new SoapFault(“Server","Failed to validate
 or insert PO".$msg);
 };
 return $msg;
 }
 }
?>

In the above PHP code, you establish a connection to the database with the
oci_connect function. Upon failure to do so, you throw a SOAP exception, thus
informing the SOAP client about the error occurred.

Chapter 9

[311]

Like SoapServer and SoapClient, which are required to build a SOAP
server and SOAP client respectively, SoapFault is a predefined class
of the PHP SOAP extension, which is not enabled by default, however.
You can enable it with the configure option --enable-soap, or, if you
are a Windows user, append extension=php_soap.dll to the list of
extensions in the php.ini configuration file.

Note that the SQl string used in the placeOrder function contains three placeholders
for bind variables that are bound to those placeholders by using oci_bind_by_
name. As you might recall from the preceding section, the placeNewOrder PL/SQL
function takes two parameters—the first one is input, and the second is output.

However, the fact is that the oci_bind_by_name function doesn't let you specify
whether the bind variable is used for input or output—this is determined during
execution of the script. So, you bind each of the three bind variables to the
corresponding placeholder in the same general way, regardless of whether you are
dealing with the bind variable representing the input or output parameter of the
placeNewOrder function, or the rslt bind variable used to hold the return value of
the function.

However, it is important to note that there is a difference between the way binding
of input variables works and the way binding of output variables does. The fact is
that binding takes place before output variables are assigned their values generated
during execution of the SQL or PL/SQL statement.

So, your application has no idea about the length of the value that will be assigned
to an output bind variable, and allocates a small, actually 1-character, buffer for the
output value. If an output value is supposed to be greater than 1 character, you have
to explicitly set the maximum allowable length for this bind, specifying it as the
fourth parameter in the oci_bind_by_name function. In this sample application, for
example, you explicitly set the maximum length for the $msg bind variable to 300.
On the other hand, you don't specify the maximum length for the rslt bind variable
used to hold the return value of the placeNewOrder function. This is because the
placeNewOrder function returns either 0 or 1, a 1-digit value.

In contrast, input bind variables are set to their values before binding takes place,
which makes it possible for the application to automatically allocate the necessary
storage space for the bind. That is why in this sample you don't specify the
maximum length for the bind when binding the $po variable to the :po placeholder
representing the xmldoc input parameter of the placeNewOrder function.

Web Services

[312]

To gain a basic understanding of how to use bind variables in PHP scripts
interacting with Oracle via the OCI extension, you can refer to the Using
Bind Variables section in Chapter 2 PHP and Oracle Connection.

Using WSDL
The last piece of software you have to build before you can move on to create the
PHP code implementing the SOAP web server is a WSDL document describing the
web service to the clients that will use that service.

Web Service Definition Language (WSDL) is a standard way for SOAP
web services to describe themselves to their clients, providing all the
required information in an XML document. This document describes
support by the service operations, expected parameters, and what the
service returns.

Schematically, a WSDL document, which is actually an XML document, look like
the following:

<?xml version="1.0" ?>
<definitions ...>
 <types>
 ...
 </types>
 <message>
 ...
 </message>
 <portType>
 ...
 </portType>
 <binding>
 ...
 </binding>
 <service>
 ...
 </service>
</definitions>

Looking through this schematic representation, you may notice that the top-level
element of a WSDL document is named definitions that and contains a sequence
of other elements. For simplicity, the above representation shows only the top-level
child elements under the definitions root element. The key elements used in
WSDL documents are outlined in the following table:

Chapter 9

[313]

Element Description
definitions This is the root element of a WSDL document. Apart from the

elements describing the web service, this root element contains
several attributes declaring a number of namespaces.

types This element is optional. It contains data type definitions
normally described with XML Schema Definition Language
(XSD) type system. These data type definitions can be used then
to describe the payload data transmitted with the messages
through which the service interacts with its clients.

message A WSDL document may include several message elements, each
of which contains one or more part elements describing the data
that will be transmitted with the message.

portType This element contains one or more individual operations, each of
which is defined using an operation element.

operation Each operation element represents a certain action performed
by the web service, and includes an input message and output
message elements referring to an appropriate message element
defined earlier in the document, thus specifying the input and
output messages for the operation.

binding This element defines a concrete protocol and message format
for operations defined in the portType construct declared earlier
in the document. The binding element contains one or more
operation constructs, each of which corresponds to the particular
operation element defined in the portType construct.

service This element contains one or more ports, or endpoints, each of
which is defined with a port element.

port This element is used to associate a specific network address with
a binding defined with a binding element earlier in the document.
Essentially, it defines a communication endpoint operating on
the messages associated with the operations defined earlier in the
document.

As you can see, a WSDL description document has a standard structure
implemented in XML, containing everything a client of a SOAP web service needs to
know to be able to call that service.

For more information on WSDL, you can refer to the Web Services
Description Language (WSDL) W3C Note available at
http://www.w3.org/TR/wsdl.

Web Services

[314]

Having covered the fundamentals behind WSDL, let's now turn back to the sample
application discussed in the preceding sections. The following listing shows the
WSDL document describing the PO web service discussed in this chapter. It is
assumed that you save this document as the po.wsdl file in the same directory
where the SOAPServer.php script discussed in the next section will be located.

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poService"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="http://localhost/PHPOracleInAction/ch9/
po.wsdl">
 <message name="getPlaceOrderInput">
 <part name="body" element="xsd:string"/>
 </message>
 <message name="getPlaceOrderOutput">
 <part name="body" element="xsd:string"/>
 </message>
 <portType name="poServicePortType">
 <operation name="placeOrder">
 <input message="tns:getPlaceOrderInput"/>
 <output message="tns:getPlaceOrderOutput"/>
 </operation>
 </portType>
 <binding name="poServiceBinding" type="tns:poServicePortType">
 <soap:binding style="document" transport="http://schemas.
xmlsoap.org/soap/http"/>
 <operation name="placeOrder">
 <soap:operation soapAction="http://localhost/
PHPOracleInAction/ch9/placeOrder"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="poService">
 <port name="poServicePort" binding="tns:poServiceBinding">
 <soap:address location="http://localhost/PHPOracleInAction/
ch9/SOAPserver.php"/>
 </port>
 </service>
</definitions>

Chapter 9

[315]

You start by creating the definitions element along with a collection of the
namespaces that will be used within the document.

In this example, you don't use the types construct to define data types for the data
being communicated. Instead, you use native XML Schema types directly when
describing the message parts in the part elements defined within the message
constructs. In particular, you specify that the payload data in both the input and
output messages will be of standard XSD type xsd:string.

In the above WSDL, the operation defined within the portType construct refers to
the input message and output message defined earlier in the document. Later, within
the binding construct, you define another operation element with the same name
to specify the binding information for the operation.

In this example, the port element is used to associate the network address of the
SOAP server representing the PO web service with the poServiceBinding binding
defined with the binding element. To achieve this, you set the binding attribute of
the port element to poServiceBinding and then define the soap:address element
within the port element. With soap:address, you specify the URL of the PO web
service, so that a client can invoke the web server.

Creating a SOAP Server with PHP's SOAP
Extension
The next step in building the PO web service is to implement the SOAP server that
will be invoked by the clients using the service. Creating this SOAP server with the
PHP SOAP extension is simple. The following listing shows that you just need to
write four lines of code to implement the server.

<?php
 //File: SOAPServer.php
 require_once “po.php";
 $srv= new SoapServer(“po.wsdl");
 $srv->setClass(“po");
 $srv->handle();
?>

In the above script, you start by including the po.php file containing the po PHP
handler class whose method placeOrder will be exposed as the PO web service.

Further, you create a new SoapServer object, specifying the po.wsdl document
discussed in the preceding section. Also you set the po class located in the po.php file
as the handler class.

Web Services

[316]

Finally, you use the handle method to get the job done. Specifically, this method
processes a SOAP request received from the client, calls the placeOrder method of
the po class, and finally sends a response back to the client.

It is important to note that you must not run the SOAPServer.php script to make the
PO web service available for the clients. When executed, each client, based on the
information in the po.wsdl document, will run SOAPServer.php implicitly.

Building a SOAP Client to Test the SOAP
Server
Now that you have your SOAP server built and ready for action, it's time to test it
out. To do this, you might want to build a SOAP client that will connect to the
SOAP server and call the placeOrder exposed method, thus consuming your PO
web service.

Since a client of the PO web service is supposed to send a PO XML document to the
server, you might want to create such a document on disk, so that it can be reused
for testing purposes. For the purpose of this example, you might create the PO XML
document shown below, saving it as the po.xml file on disk.

<purchaseOrder>
 <shipTo country="US">
 <name>John Davidson</name>
 <street>11 Maple Road</street>
 <city>Fairfax</city>
 <state>VA</state>
 <zip>22030</zip>
 </shipTo>
 <billTo country="US">
 <name>John Davidson</name>
 <street>11 Maple Road</street>
 <city>Fairfax</city>
 <state>VA</state>
 <zip>22030</zip>
 </billTo>
 <items>
 <item>
 <partId>942</partId>
 <quantity>2</quantity>
 <price>75</price>
 </item>
 <item>

Chapter 9

[317]

 <partId>943</partId>
 <quantity>3</quantity>
 <price>34.95</price>
 </item>
 </items>
</purchaseOrder>

As you can see, the purchaseOrder root element in the PO XML document shown
in the listing doesn't contain the noNamespaceSchemaLocation attribute, thus
excluding information on the XML schema with which the document is compliant.
Although this makes it easier for the client to build such a PO document, it requires
the server to provide this information before processing that document anyway. In
this example, you use the XMLType createSchemaBasedXML method to explicitly
identify the XML schema, namely po.xsd, when transforming the po parameter of
the placeNewOrder PL/SQL function to XMLType.

Having the PO XML document shown in the above listing saved as po.xml, you
can now move on to the client script. Assuming that you have the SOAP extension
enabled, you can test the PO web service you have just built with the client script
shown in the listing below.

The client script shown below is implemented with the PHP SOAP
extension. However, it is interesting to note that since the SOAP
protocol is independent of any particular programming language and
implementation specifics, you are not limited to using the PHP SOAP
extension when implementing a SOAP client to interact with a SOAP web
service built with that PHP extension. Instead, you might, for example,
build a SOAP client with .NET or Java.

The client shown below wraps a purchase order document in a SOAP envelope and
sends it to the server. The server in turn extracts the purchase order from the SOAP
message and then processes the extracted document by the placeOrder method of
the po custom PHP class discussed in the Building a PHP Handler Class section earlier.

<?php
 //File: SoapClient.php
 $handle = fopen(“po.xml", “r");
 $po= fread($handle, filesize(“po.xml"));
 fclose($handle);
 $client = new SoapClient(“http://localhost/PHPOracleInAction/ch9/
po.wsdl");
 try {
 print($client->placeOrder($po));
 }
 catch (SoapFault $e) {

Web Services

[318]

 print $e->getMessage();
 }
?>

In the SoapClient.php script shown in the listing, you start by opening and then
reading from the po.xml file shown at the beginning of this section. In this example,
it is assumed that the po.xml file is located in the same directory where you saved
the SOAPClient.php script shown in the listing.

Next, you create a new SoapClient object in the WSDL mode, specifying the same
WSDL document specified when creating the SoapServer object in the SOAPServer.
php script discussed in the preceding section. The SoapClient object is then used
to call the placeOrder remote method exposed by the PO web service. You call
placeOrder within the try block, trapping possible SOAP fault responses sent by
the PHP handler in the catch block.

Now if you run the SoapClient.php script, it should invoke the placeOrder remote
method exposed by the PO web service, providing the PO XML document stored in
the po.xml file as the parameter. The PO web service in turn should validate this PO
document against the po.xsd XML schema created as discussed in the Creating an
XML Schema to Validate Incoming Documents section earlier in this chapter and then
insert the document into the po XMLType table created during registration of the
po.xsd XML schema. If everything is OK, the service returns an Ok! message to the
client, which in turn will post that message to your browser.

To make sure that the PO XML document has been successfully inserted into the po
XMLType table, you might connect to SQL*Plus as xmlusr/xmlusr and issue the
following query:

SET LONG 1000

SELECT * FROM po;

This should produce the following output:

SYS_NC_ROWINFO$
--
<purchaseOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="po.xsd" id="US-000001">
 <orderDate>2006-11-03</orderDate>
 <shipDate>2006-11-04</shipDate>
 <shipTo country="US">
 <name>John Davidson</name>
 <street>11 Maple Road</street>
 <city>Fairfax</city>
 <state>VA</state>

Chapter 9

[319]

 <zip>22030</zip>
 </shipTo>
 <billTo country="US">
 <name>John Davidson</name>
 <street>11 Maple Road</street>
 <city>Fairfax</city>
 <state>VA</state>
 <zip>22030</zip>
 </billTo>
 <items>
 <item>
 <partId>942</partId>
 <quantity>2</quantity>
 <price>75</price>
 </item>
 <item>
 <partId>943</partId>
 <quantity>3</quantity>
 <price>34.95</price>
 </item>
 </items>
</purchaseOrder>

As you can see, the above PO is not quite the same as the original PO shown at the
beginning of this section. In particular, the purchaseOrder root element in the above
document contains the noNamespaceSchemaLocation and id attributes specifying
the XML schema and generated PO ID respectively. Also the above document
contains the shipDate and orderDate elements that were not present in the
original PO.

Adding Security
One issue with the PO web service discussed in the preceding sections is that no
authentication is required when consuming this service. What this means is that
everyone may submit a PO document to the service, without having to provide any
credentials. However, in a real-world situation you might want only legitimate users
to be able to consume the service.

One simple way to achieve this could be to provide legitimate users with a token,
which they will then supply with a request message when consuming the service. A
significant disadvantage of this approach is that an unauthorized user may obtain
the token and then consume the service on behalf of a legitimate user.

Web Services

[320]

To work around this issue, you might use, in place of a fixed token, a hash generated
from the value of a particular element or elements in the PO document being passed
to the service. On the client, you might include that hash as a part in the SOAP
message body containing the PO document in the other part. The server in turn is
responsible for retrieving the hashed token from the message and checking whether
this hash corresponds to the PO that arrived in the same message. Depending on
the algorithm used to generate a hash, each new PO document may come with a
potentially different hashed token, which makes it harder for a malicious user to
illegally access the service.

As you can see, with the above approach, you don't even need to create and hold
security accounts in the database, since the security measures are incorporated in a
SOAP message itself, thus enabling message-level security.

As an alternative to including credentials in the SOAP message body,
you might include them in the SOAP message header. To achieve this
with the SOAP extension, you might use the following predefined classes:
SoapHeader, SoapParam, and SoapVar. A discussion of how to use
SOAP message headers to send secure messages, as well as a discussion
of how to implement WS-Security authentication is beyond the scope of
this chapter.

In the following sections, you learn how to implement a secure version of the PO
web service, based on the approach outlined above.

Implementing Authorization Logic Inside the
Database
Once the server has received a message containing a PO document and
corresponding hashed token, it has to make sure that the token actually conforms to
the document, and, thus, the sender is allowed or authorized to consume the service.
When implementing authorization logic, you have the usual two choices. You can
either implement it with PHP or inside the database with PL/SQL. This example
discusses the latter.

In this case, you might implement authorization logic inside the database in a single
PL/SQL subprogram that will check whether a supplied token actually conforms to
the document that arrived in the same message.

The following listing shows the code you need to execute from SQL*Plus to create
the checkCred PL/SQL procedure that takes the PO document and hashed token
extracted from the SOAP message that arrived, and verifies whether the token
corresponds with the document. If there is a mismatch, the checkCred procedure
throws an exception.

Chapter 9

[321]

CONN /as sysdba

GRANT EXECUTE ON dbms_crypto TO xmlusr;

CONN xmlusr/xmlusr;

CREATE OR REPLACE PROCEDURE checkCred (xmldoc XMLType, pswd VARCHAR2)
IS
 billName VARCHAR2(30);
 hashName VARCHAR2(40);
BEGIN
 SELECT extractValue(xmldoc, '/purchaseOrder/billTo/name')
 INTO billName FROM DUAL;
 hashName := DBMS_CRYPTO.HASH (
 UTL_I18N.STRING_TO_RAW (billName, 'AL32UTF8'),
 DBMS_CRYPTO.HASH_SH1);
 hashName:=NLS_LOWER(hashName);
 IF (hashName != pswd) THEN
 raise_application_error(-20101, 'Specified token is not valid');
 END IF;
END;
/

As you can see in the listing, the checkCred procedure takes two parameters. The
first one is used to pass a PO document as an XMLType, and the second one is used
to pass the token that goes along with that PO document.

In this example, you extract the value of element name specified under the billTo
construct in the PO and than hash that value using the hash function from the
DBMS_CRYPTO PL/SQL package. By specifying the DBMS_CRYPTO.HASH_SH1 constant
as the third parameter of the hash function, you instruct the function to use the
Secure Hash Algorithm (SHA) when generating the hash value.

The checkCred procedure shown in the listing is supposed to be invoked before
any processing of the PO document takes place. If checkCred determines that the
supplied token is not valid, it raises an exception that is supposed to be caught and
handled in the caller.

Now you can modify the placeNewOrder PL/SQL function created as discussed in
the Creating PL/SQL Subprograms Implementing the Business Logic of the Web Service
section earlier, so that it takes a hashed token as a parameter and then invokes the
checkCred function discussed above. For the purpose of this example, however, you
might create new PL/SQL function placeNewOrderSecure to be used in place of
placeNewOrder used in the preceding sample.

Web Services

[322]

The following listing shows the SQL statement that you might execute from
SQL*Plus to create the placeNewOrderSecure PL/SQL function. It is assumed that
you have the po.xsd PO XML schema created as discussed in the Creating an XML
Schema to Validate Incoming Documents section at the beginning of this chapter. Also
you must have the transOrder PL/SQL function created as discussed in the Creating
PL/SQL Subprograms Implementing the Business Logic of the Web Service section.

The PL/SQL function placeNewOrderSecure created as shown below will verify
whether the client is allowed to consume the service before performing any
processing of the incoming PO document.

CONN xmlusr/xmlusr;

CREATE OR REPLACE FUNCTION placeNewOrderSecure (xmldoc
 IN XMLType, pswd IN VARCHAR2, msg OUT VARCHAR2)
RETURN NUMBER
IS
 tmpxml XMLType;
 errcode NUMBER;
 errmesg VARCHAR2(256);
BEGIN
 tmpxml := xmldoc;
 checkCred(tmpxml, pswd);
 XMLTYPE.schemaValidate(tmpxml);
 tmpxml:=transOrder(tmpxml);
 INSERT INTO po VALUES(tmpxml);
 COMMIT;
 msg:='Ok!';
 RETURN 1;
 EXCEPTION
 WHEN OTHERS THEN
 errcode := SQLCODE;
 errmesg := SUBSTR(SQLERRM, 1, 256);
 msg:= errcode || ': ' || errmesg;
 RETURN 0;
END;
/

As you can see, the placeNewOrderSecure PL/SQL function takes two input
parameters where the second one is used to pass the hashed token that goes along
with the PO document passed as the first parameter.

Chapter 9

[323]

You invoke the checkCred function that verifies whether the token passed in the
second parameter corresponds with the PO document passed in the first parameter,
and generates an exception if the token doesn't conform to the document. In that
case, control transfers to the code in the WHEN OTHERS THEN section in which the msg
output parameter of the placeNeworderSecure PL/SQL function is set to the error
message issued.

Creating a PHP Handler Class
The placeNewOrderSecure PL/SQL function created in the preceding section
is supposed to be invoked from within a method of the PHP handler class
encapsulating the service functionality.

The following listing shows the po_sec PHP class whose placeOrderSecure
method will be exposed by the secure version of the PO web service. The po_sec
PHP class is a revision of the po class discussed in the Building a PHP Handler
Class section earlier. The placeOrderSecure method of the po_sec class takes an
incoming PO and a corresponding hashed token as parameters and then passes them
to the placeNewOrderSecure PL/SQL function for further processing.

<?php
 //File po_sec.php
 class po_sec {
 function placeOrderSecure($po, $pswd) {
 if(!$conn = oci_connect('xmlusr', 'xmlusr', '//localhost/orcl')){
 throw new SoapFault(“Server","Failed to connect to
 database");
 };
 $sql = “BEGIN :rslt:=placeNewOrderSecure(XMLType(:po).
createSchemaBasedXML
 ('po.xsd'), :pswd, :msg); END;";
 $query = oci_parse($conn, $sql);
 oci_bind_by_name($query, ':rslt', $rslt);
 oci_bind_by_name($query, ':po', $po);
 oci_bind_by_name($query, ':pswd', $pswd);
 oci_bind_by_name($query, ':msg', $msg, 300);
 if (!oci_execute($query)) {
 throw new SoapFault(“Server","Failed to execute query".$msg);
 };
 if ($rslt==0) {
 throw new SoapFault(“Server","Failed to validate or
 insert PO. “.$msg);
 };
 return $msg;
 }
 }
?>

Web Services

[324]

As you can see, the placeOrderSecure method takes two parameters. The first
passes an incoming PO document, while the other passes the hashed token
corresponding to that PO. What the placeOrderSecure method does is invoke
the placeNewOrderSecure PL/SQL function discussed in the preceding section,
transmitting the above parameters to that function.

If the checkCred PL/SQL procedure, which in turn is invoked from within the
placeNewOrderSecure PL/SQL function, determines that the supplied token
doesn't conform to the supplied PO document, it makes placeNewOrderSecure stop
execution, returning an appropriate error message. This message is then wrapped in
the SOAP fault message and thrown back to the client.

Creating a WSDL Document
Before moving on to creating the SOAP server for the secure version of PO web
service discussed here, you need to create the WSDL document describing
this service.

This document is shown below:

<?xml version="1.0" encoding="utf-8"?>
<definitions name ="poService"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="http://localhost/PHPOracleInAction/ch9/
po_sec.wsdl">
 <message name="getPlaceOrderInput">
 <part name="po" element="xsd:string"/>
 <part name="pswd" element="xsd:string"/>
 </message>
 <message name="getPlaceOrderOutput">
 <part name="body" element="xsd:string"/>
 </message>
 <portType name="poServicePortType">
 <operation name="placeOrderSecure">
 <input message="tns:getPlaceOrderInput"/>
 <output message="tns:getPlaceOrderOutput"/>
 </operation>
 </portType>
 <binding name="poServiceBinding" type="tns:poServicePortType">
 <soap:binding style="rpc"

Chapter 9

[325]

 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeOrderSecure">
 <soap:operation soapAction="http://localhost/
PHPOracleInAction/ch9/placeOrderSecure"/
 >
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="poService">
 <port name="poServicePort" binding="tns:poServiceBinding">
 <soap:address location="http://localhost/PHPOracleInAction/
ch9/SOAPServerSecure.php
 “/>
 </port>
 </service>
</definitions>

As you can see, the input message defined in this document consists of two parts:
po and pswd, indicating that the body of a message passed from a client to the server
will include a PO document and token.

Since the input message defined in the document consists of more than one part, you
set the style attribute of the soap:binding element to rpc, thus specifying that each
contained operation is RPC-oriented.

It is assumed that you save the WSDL document shown in the listing as the po_sec.
wsdl file in the same directory in which you will save the SOAPServerSecure.php
script shown below:

<?php
 //File: SOAPServerSecure.php
 require_once “po_sec.php";
 $srv= new SoapServer(“po_sec.wsdl");
 $srv->setClass(“po_sec");
 $srv->handle();
?>

As you can see, the SOAPServerSecure.php script shown in the listing differs from
SOAPServer.php discussed in the Creating a SOAP Server with PHP's SOAP Extension
section earlier only in that it contains references to other files.

Web Services

[326]

Creating a Client Script
Now, to test the newly created secure PO web service, you need to build the
client that will connect to the server and call the placeOrderSecure method, thus
consuming the service.

The client below might be used to test the secure version of the PO web service
discussed in this chapter.

<?php
 //File: SoapClientSecure.php
 $handle = fopen(“po.xml", “r");
 $po= fread($handle, filesize(“po.xml"));
 fclose($handle);
 $xmlpo = simplexml_load_string($po);
 $billName = $xmlpo->shipTo->name;
 $pswd=sha1($billName);
 $client = new SoapClient(“http://localhost/PHPOracleInAction/ch9/
 po_sec.wsdl");
 try {
 print($client->placeOrderSecure($po, $pswd));
 }
 catch (SoapFault $e) {
 print $e->getMessage();
 }
?>

In this example, you use the SimpleXML extension, enabled by default in PHP 5, to
work with the PO XML document. After the po.xml document is loaded from disk,
you load it into a SimpleXML object using the simplexml_load_string function.
Next, you access the purchaseOrder/shipTo/name element in the PO XML
document and then hash the extracted value with the sha1 PHP hashing function.

From the user's point of view, the secure PO web service discussed here
behaves in the same way as the PO web service discussed earlier in this chapter.
Assuming that you have the po.xml document as shown at the beginning of the
Building a SOAP Client to Test the SOAP Server section earlier, you can execute the
SoapClientSecure.php script to test the newly created service. If everything is OK,
your browser should yield an Ok! message.

Chapter 9

[327]

Summary
Web Services is a popular technology that makes it possible for developers to expose
application's functionality over the Web, enabling computer systems implemented
on any software platform to communicate with each other. As a developer, you
should not necessarily build new code when it comes to implementing the business
logic of a web service. Instead, you can easily add a web service to an existing
application, thus reusing well-written pieces of existing code.

In this chapter, you learned how to build a simple web service, using the PHP SOAP
extension and Oracle XML technologies. You also saw a simple way to secure a web
service so that only legitimate users can consume it.

AJAX-Based Applications
As you learned in the preceding chapters, if you want to have an efficient PHP/
Oracle application, you have to think about how to effectively distribute the
application processing between the web/PHP server and the Oracle database server
and try to find some optimal balance point.

However, besides the web/PHP server and the Oracle database server, there may
be another player in the field of application processing, namely the browser. With
the help of browser-side technologies such as JavaScript and AJAX—an acronym
for Asynchronous JavaScript and XML—you might achieve better performance
by moving some application processing from the above-mentioned servers to the
browser. More importantly though, using these technologies allows you to update
the content viewed by the user in the browser without reloading the entire page, thus
producing more responsive solutions.

This chapter explains how AJAX and some other client-side (browser-side) JavaScript
technologies can be used along with the Oracle database technologies as well as PHP
features to improve the responsiveness of PHP/Oracle applications.

Building AJAX-Based PHP/Oracle
Applications
Sometimes, the processing performed by your PHP/Oracle application may take
time, making the user wait until the database server produces the results and then
the web/PHP server sends them to the browser. To get through that problem, you
might incorporate rich, interactive UIs into your application, allowing the user to
keep working with the page displayed in the browser while the web/PHP and
database servers are still working in the background on preparing the results to
return. This is where the AJAX technologies may come in very handy.

AJAX-Based Applications

[330]

AJAX is a new, yet effective approach to web development, employing a
combination of technologies, such as JavaScript, XML and DOM, which,
when used together, makes it possible for a browser to asynchronously
interact with the web server, significantly improving the responsiveness
of your application. You can think of AJAX as providing a way to
dynamically modify a certain portion of the page displayed in the
browser, without having to perform the whole page reload.

In the following sections, you learn how you might improve the responsiveness of a
PHP/Oracle application with AJAX.

AJAX Interactions
As mentioned, using browser-side technologies such as JavaScript and AJAX allows
you to move some application processing to the browser, thereby reducing the
network traffic as well as the load on the web/PHP and database servers. However,
the real power of AJAX lies in the fact that the JavaScript in an AJAX-based
application can interact with the web server asynchronously, thus enabling users
to continue working with the page displayed while waiting for a response to the
request made to the web server.

Schematically, an AJAX-based PHP/Oracle application might look like ����the
following figure�.

Web Browser Web Server

Calling PHP
asynchronously

Querying
database

PHP engineJavaScript
Engine

XML HttpRequest
object

<?php

?>
Database
Server

As you can see in the figure, JavaScript code executed on the web browser
asynchronously calls PHP code, using the XMLHttpRequest built-in JavaScript object.

To be able to run an AJAX-based application, the user must use a
JavaScript-enabled browser supporting the XMLHttpRequest object.
You will see this JavaScript object in action in the section Using the
XMLHttpRequest JavaScript Object later.

Chapter 10

[331]

The PHP code called from the browser, in turn, interacts with the database server
as needed, returning the results back to the browser. The most important thing to
note about the interaction between the browser and web/PHP server is that it is
performed in the background, without causing the whole page to be reloaded
and redrawn.

Going one step further in improving the responsiveness of your
application, you might cache database result sets on the web server, using
techniques discussed in Chapter 7 Caching. In that case, the PHP script
invoked by the JavaScript code performed on the browser could actually
retrieve database data from the local cache on the web server, rather than
from the database.

Designing an AJAX/PHP/Oracle Monitoring
Application
While using AJAX can significantly improve the responsiveness of your application,
it's important to understand that AJAX as a technology is not a magic bullet that is
appropriate for any situation. Using AJAX can be useful only in those applications
where you perform dynamic page processing, updating part of a page rather than
the whole page.

Consider a monitoring application that is supposed to display some rapidly
changing information, automatically updating the page viewed by a user after a
given period of time. Say, for example, you need to create an application that makes
the database calculate the number of orders inserted into an orders table for today
as well as their total amount, automatically redisplaying the results after a 30-second
period of time.

The page generated by the above application might look like ��������������������� the following figure�.

AJAX-Based Applications

[332]

Using AJAX is quite appropriate in this application, since this makes it possible to
avoid a full reload of the application page every 30 seconds, allowing the user to
continue viewing the page while a successive request is sent and processed, and then
a response is received.

Using a 30-second interval between successive requests to the database here implies
that the requested data may change quickly. In this particular example, this means
that new orders are inserted into the orders table very often. Of course, this doesn't
mean that new orders arrive in equal time intervals and each new request necessarily
returns a different result—you may have no new order for, say, 5 minutes, and then
a bunch of them arrive in another 30 seconds. So, it would be a good idea to send a
real request to the database only if a change on the requested data has occurred, and
satisfy the request from the local cache of the web/PHP server otherwise. To achieve
this, you might implement a caching system based on the Oracle Database Change
Notification feature, as discussed in Chapter 7 Caching.

The following figure�� gives you a high-level view of how the above
application works.

Web Browser

1

2

3

4<html>
...
<script ... >

</script>
...

</html>

Web/PHP Server Database Server

Local
cache

<?php

?>

Database Change
Notification

Orders table

Here is the explanation of the steps in the figure:

Step 1: The JavaScript running in the browser makes an asynchronous call to
the web/PHP server every 30 seconds, invoking the PHP script that returns
the most recent figures to be displayed.
Step 2: The PHP script invoked in step 1 tries to retrieve the data from the
local cache of the web server.
Step 3: If the local cache is empty, the PHP script issues a query against the
database, making it calculate the latest figures, based on the data stored in
the orders table.

•

•

•

Chapter 10

[333]

Step 4: The Oracle change notification mechanism, which is working in the
background, invokes the PHP script emptying the local cache of the web
server, in response to changing data in the orders table.

In the following 0 sections, you will learn how to build an application that works as
described in the above scenario.

Building Blocks of an AJAX-Based Solution
Now you are ready to move on and create the building blocks that will work
together, making the AJAX-based PHP/Oracle application described in the
preceding section. To start with, you might create the required data structures that
will be used by the application.

Creating the Data Structures
As you might have guessed, the sample application discussed here will use
information calculated based on the data stored in an orders database table. So, you
might create a new database schema ajax/ajax, a new table orders in that schema,
and then populate the newly created orders table with data.

The following listing contains the SQL script that you can run from SQL*Plus to
accomplish the above tasks.

CONN /as sysdba

CREATE USER ajax IDENTIFIED BY ajax;

GRANT connect, resource TO ajax;

CONN ajax/ajax;

CREATE TABLE orders(
 ordno NUMBER PRIMARY KEY,
 orddate DATE,
 total NUMBER(10,2)
);

INSERT INTO orders VALUES
(1024, '14-nov-2006', 180.50);

INSERT INTO orders VALUES
(1025, '15-nov-2006', 3480.00);

INSERT INTO orders VALUES
(1026, '15-nov-2006', 1700.75);

COMMIT;

•

AJAX-Based Applications

[334]

Building the PHP Script that will Process AJAX
Requests
The next step in building the sample is to create the PHP script that will process the
AJAX requests issued by the sample's main page. The following listing shows the
code for such a script. The getOrdersTotal.php script shown below is designed to
process AJAX GET requests that will be issued by the main page of the sample.

<?php
 //File:getOrdersTotal.php
 $dat = '15-nov-2006';
 if(!$dbConn = oci_connect('ajax', 'ajax', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);
 };
 $strSQL = "SELECT TO_CHAR(SYSDATE, 'HH:MI:SS') time, count(*) num,
 SUM(total) total FROM orders WHERE orddate= :dat";
 $stmt = oci_parse($dbConn,$strSQL);
 oci_bind_by_name($stmt, ':dat', $dat);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' . $err['message'],
 E_USER_ERROR);
 };
 oci_fetch($stmt);
 $rslt[0] = oci_result($stmt, 'TIME');
 $rslt[1] = oci_result($stmt, 'NUM');
 $rslt[2] = oci_result($stmt, 'TOTAL');
 print $rslt[0]."/".
 $rslt[1]."/".
 $rslt[2];
?>

As you can see, the SQL statement issued from within the script retrieves the
following information:

The current time set for the operating system on which the database server
is running
The total number of orders inserted into the orders table for the day specified
in $dat
The total amount of the orders inserted into the orders table for the day
specified in $dat

•

•

•

Chapter 10

[335]

In this simple example, you use a certain date, namely 15-nov-2006, in the WHERE
clause of the query, since you have a few orders with this date inserted into the
orders table, as discussed in the preceding section. However, in a real-world
situation you might use the date specified by the user and passed to the script, or, if
you are interested in generating today's report, you might rewrite the WHERE clause
as follows:

WHERE orddate= TRUNC(SYSDATE)

The condition in the above WHERE clause ensures that only rows inserted today
are selected.

In this example, you use an array to hold the query results returned by the
oci_result function. Then, the script concatenates these results in a single string,
using "/" as the delimiter, and outputs it with print.

You might be wondering why you would want to return the results as a single
string in this script. The reasons for this will become clear when you read the next
section Using the XMLHttpRequest JavaScript Object, which explains how to build the
JavaScript code that will make asynchronous calls to the getOrdersTotal.php script
discussed here, processing the results returned as a single string.

Using the XMLHttpRequest JavaScript Object
XMLHttpRequest—a standard JavaScript class allowing browsers to make
asynchronous requests to a web server—lies at the heart of AJAX. As mentioned,
users of an AJAX-based application must use a JavaScript-enabled browser
supporting the XMLHttpRequest object.

A good overview of the XMLHttpRequest class can be found at http://developer.
apple.com/internet/webcontent/xmlhttpreq.html. You can also visit the
AJAX page on the Mozilla Developer Center at http://developer.mozilla.
org/en/docs/AJAX, on which you will find comprehensive examples on using
XMLHttpRequest.

One problem with creating an instance of the XMLHttpRequest class is that it is
implemented a bit differently in different browsers. In particular, creating an
XMLHttpRequest class's instance may have a different syntax depending on the
browser. So, you might find it useful to create a custom JavaScript function that will
wrap the code for creating an instance of the XMLHttpRequest class.

AJAX-Based Applications

[336]

The following listing shows such a JavaScript function. It is assumed that you save it
in the ajax.js file in a folder that will be used to hold all other sample application
files, including the PHP script files discussed in the following sections.

//File: ajax.js
var req = null;
function initRequest() {
 if (!req) {
 try {
 req = new XMLHttpRequest();
 }
 catch (e) {
 try {
 req = new ActiveXObject('MSXML2.XMLHTTP');
 }
 catch (e) {
 try {
 req = new ActiveXObject('Microsoft.XMLHTTP');
 }
 catch (e) {
 req = null;
 }
 }
 }
 }
 }

Let's take a closer look at how the above script works.

You start by declaring the req variable, initially setting it to null. This variable is then
used to hold an instance of the XMLHttpRequest class supported now by most of the
popular web browsers.

First, you try to create an instance of the XMLHttpRequest class. This should
work for Mozilla and Safari browsers. However, it doesn't work for Internet
Explorer where XMLHttpRequest is implemented as an ActiveX object. In that
case, you create an instance of XMLHttpRequest with the following code: new
ActiveXObject('MSXML2.XMLHTTP') or, in case of failure, with the following: new
ActiveXObject('Microsoft.XMLHTTP'). If all of the above attempts to create an
XMLHttpRequest object fail, you set the req variable to null again.

Although there are differences in creating an XMLHttpRequest instance
between Internet Explorer and other major browsers, this object, once
created, behaves in the same way, regardless of the browser it is created in.

Chapter 10

[337]

Now that you can create an instance of the XMLHttpRequest object, you are ready
for the next step: building the JavaScript code that will use that instance to make an
asynchronous request to the web/PHP server.

This JavaScript code is shown below. You have to save it in a separate file called
ordersTotal.js in the same directory as the ajax.js script shown in the preceding
listing. The JavaScript code shown below makes an asynchronous call to the
getOrdersTotal.php script discussed in the Building the PHP Script that will Process
AJAX Requests section every 30 seconds.

//File: ordersTotal.js
function getOrdersTotal() {
 initRequest();
 req.open("GET", "getOrdersTotal.php?temp="+new Date().
 getTime(), true);
 req.onreadystatechange = updateOrdersTotal;
 req.send(null);
 }
 window.onload = getOrdersTotal;
 function updateOrdersTotal() {
 if (req.readyState == 4) {
 var ordersInfo = req.responseText;
 var param = ordersInfo.split("/");
 var curTime = document.getElementById("currentTime");
 var ordNumber = document.getElementById("ordersNumber");
 var ordTotal = document.getElementById("ordersTotal");
 if (curTime.firstChild) {
 curTime.removeChild(curTime.firstChild);
 }
 curTime.appendChild(document.createTextNode(param[0]));
 if (ordNumber.firstChild) {
 ordNumber.removeChild(ordNumber.firstChild);
 }
 ordNumber.appendChild(document.createTextNode(param[1]));
 if (ordTotal.firstChild) {
 ordTotal.removeChild(ordTotal.firstChild);
 }
 ordTotal.appendChild(document.createTextNode(param[2]));
 var tmId = setTimeout(getOrdersTotal, 30000);
 }
 }

To figure out how the above JavaScript works, let's take a closer look at its code,
walking through it step by step.

AJAX-Based Applications

[338]

In the first line of code in the getOrdersTotal JavaScript function shown in the
listing, you call the initRequest function from the ajax.js script created as shown
in the preceding listing. This function, when invoked, creates the req object, which is
nothing but an instance of the XMLHttpRequest JavaScript class.

Once you've got an instance of XMLHttpRequest, you can call its open method to
initialize a connection to the web/PHP server, passing three parameters to this
method. You set the first parameter to GET, thus telling the browser to use the GET
HTTP request method when interacting with the web/PHP server. You pass the
name of the PHP script that will be requested as the second parameter. The path to
the PHP script is not specified in this particular example, since this script is assumed
to be located in the same folder as the page that will use the ordersTotal.js
JavaScript discussed here.

Also notice the use of the dummy URL parameter temp within the second
argument of the open method. You set this parameter to the current date and time,
appending it to the request URL in order to get around Internet Explorer's caching.
Using this simple technique guarantees uniqueness of request URLs made with
XMLHttpRequest, preventing the browser from using its caching table when dealing
with those URLs. From an end-user perspective, this ensures that the application
always displays the most recent information rather than out-of-date data taken from
the browser's caching table.

As an alternative to the above technique, you might use the setRequestHeader
method of the XMLHttpRequest class, setting the If-Modified-Since header to
some past date. In that case, the getOrdersTotal JavaScript function discussed here
might look like the following:

function getOrdersTotal() {
 initRequest();
 req.open("GET", "getOrdersTotal.php", true);
 req.onreadystatechange = updateOrdersTotal;
 req.setRequestHeader("If-Modified-Since", "Thu,
 25 Nov 2004 00:00:00 GMT");
 req.send(null);
 }

Finally, by setting the last parameter of the open method to true, you explicitly
specify that the request to the web/PHP server will be asynchronous.

After calling the open method of the req object, you have to specify a
JavaScript function that will be invoked by the browser when it receives a
response from the getOrdersTotal.php script. To achieve this, you have to
set the onreadystatechange property of the req object to the name of that
JavaScript function. In this particular example, you set onreadystatechange to
updateOrdersTotal, which is defined later in this same script.

Chapter 10

[339]

Now you can send the request to the web/PHP server by invoking the send method
of the req object. Since you don't need to pass any data to the server along with a
GET request, you set the send method's parameter to null.

Now that you have the getOrdersTotal JavaScript function defined, you can
call it. By setting the onload event property of the window JavaScript object to
getOrdersTotal, you tell the browser to invoke this JavaScript function upon
completion of loading a page containing the ordersTotal.js script.

The next step is to define a updateOrdersTotal JavaScript function, which
you specify to be called by the browser when it receives a response from the
getOrdersTotal.php script. However, note that the browser will invoke
updateOrdersTotal, every time the request's state changes. That is why, when
implementing this function, you first have to make sure that the function has been
invoked upon changing the request's state to the one that indicates that the response
from the getOrdersTotal.php script has been loaded and, therefore, the request is
completed. To achieve this, you check whether the readyState property of the req
object representing an instance of XMLHttpRequest is set to 4, which indicates just
the above state.

Through the responseText property of the XMLHttpRequest instance used here, you
gain access to the result string returned by the getOrdersTotal.php script. Then,
you use the split method of the string standard JavaScript object to cut up this
result string into pieces, based on the / delimiter, storing the resulting pieces into
an array.

As you might recall from the Building the PHP Script that will Process
AJAX Requests section, the getOrdersTotal.php script concatenates
its results into a single string, using / as a delimiter. Here, you extract
those results from the result string. Based on using the GET HTTP request
method, this technique is appropriate when you deal with small portions
of data to be sent between the web/PHP server and the browser. If you
need to send a large amount of data, though, you should use a POST
request, which is also appropriate when you need to send formatted or
sensitive data. Using AJAX POST HTTP requests will be discussed later in
this chapter.

Now that you have the results returned by the getOrdersTotal.php script, you can
update the document loaded in the browser. The first step toward it is to assign each
HTML element that you want to update to a JavaScript variable. Then, you update
the values of those elements through the associated variables.

Finally, you use the standard JavaScript function setTimeout to invoke the
getOrdersTotal function defined earlier in this same script at a 30 second interval.

AJAX-Based Applications

[340]

Actually, setTimeout executes a JavaScript function specified as the
first parameter only once. However, in this particular example, the
getOrdersTotal function passed as the first argument to setTimeout,
in turn, invokes the updateOrdersTotal function, which then calls
setTimeout again, thus ensuring that getOrdersTotal will be
invoked again in 30 seconds time.

Putting It All Together
Now you are ready to build the main application page that will use AJAX to
asynchronously communicate with the web/PHP server. The following listing
shows the source code for such a page. Save this code in the ordersReport.php file
in the same folder in which you saved all the script files discussed in the preceding
sections.

After the page generated by the code shown in the listing is loaded in a browser,
the JavaScript invokes the getOrdersTotal.php script every 30 seconds to retrieve
the most recent results from the database, updating the content on the page without
performing a full reload.

<html>
 <head>
 <title>Orders report</title>
 <style type="text/css">
 body {
 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
 font-size: small;
 }
 table {
 border: 2px solid black;
 border-collapse: collapse;
 }
 td, th {
 border: 2px dotted grey;
 padding: .8em;
 }
 td {
 text-align: left;
 }
 th {
 text-align: right;
 background-color: #cccccc;
 }
 </style>

Chapter 10

[341]

 <script type="text/javascript" src="ajax.js"> </script>
 <script type="text/javascript" src="ordersTotal.js"> </script>
 </head>
 <body>
 <h1>Today's Orders report</h1>
 <table>
 <tr><th>Current time</th>
 <td></td></tr>
 <tr><th>Number of orders placed</th>
 <td></td></tr>
 <tr><th>Total amount of orders</th>
 <td></td></tr>
 </table>
 </body>
</html>

The style section is used here to put CSS styles in the page, thus improving the look
and feel of it.

For detailed information about CSS, you can refer to the W3C's page on
CSS at http://www.w3.org/Style/CSS.

Then, you include the JavaScript code discussed in the preceding section. To achieve
this, you create two <script> tags, setting their src attributes to ajax.js and
ordersTotal.js respectively.

Now if you run the script shown in the above listing, it should produce a page that
looks like the one as shown in the figure in Designing an AJAX/PHP/Oracle Monitoring
Applications section in the earlier in this chapter.

Next, you might want to make sure that the page generated is automatically updated
in 30 seconds time, displaying the most recent information about the orders stored in
the orders database table. So, you might insert a new order or orders into that table
and then check to see what happens. For example, you might insert new orders into
the orders table from SQL*Plus by issuing the statements shown below:

CONN ajax/ajax;

INSERT INTO orders VALUES
(1027, '15-nov-2006', 134.50);

INSERT INTO orders VALUES
(1028, '15-nov-2006', 1020.00);

COMMIT;

AJAX-Based Applications

[342]

With that done, you can switch you focus back to the window in which the browser
is displaying the page produced by the ordersReport.php script earlier. After a
while, you should notice that the content on the page has been updated, though
without full reloading.

Using Caching to Further Improve Responsiveness
Now that you have a working AJAX-based PHP/Oracle application, you might take
the next, actually an optional, step towards improving application responsiveness
and implement a caching system that will cache the information coming from the
database on the web/PHP server. To be efficient, that caching system must update
the cache immediately after changing the data in the orders table.

To implement such a caching system, you might use the PEAR::Cache_Lite package
in conjunction with the Oracle database change notification feature, as discussed in
Chapter 7 Caching.

As you might recall from Chapter 7, to make use of the database change notification
feature, you have to perform the following two general tasks. First, you have to
create a notification handler, a PL/SQL subprogram, which will be executed in
response to a change notification. Then, you have to register any query on the
orders table, so that the notification handler is invoked whenever a transaction
changes the orders table and commits. For full detail on how the above tasks can
be implemented, you can go back to Chapter 7 Caching, to the section Using Database
Change Notification.

Implementing Master/Detail Solutions
with AJAX
The sample application discussed in the preceding sections is a basic example, of
course. Nevertheless, it shows you how to use the XMLHttpRequest JavaScript class
to make asynchronous calls to PHP/Oracle scripts.

In the following sections, you will build a more complex sample application showing
how to make a PHP/Oracle application more responsive and dynamic with the help
of AJAX.

Chapter 10

[343]

Planning a Master/Detail Solution that uses
AJAX
In the preceding sample, you use AJAX to automatically update a page displaying
some rapidly changing data stored in the database, actually updating a few numbers
on the page. Of course, you might use AJAX to solve more complicated tasks. For
example, you might implement an AJAX-based solution that makes the database
generate blocks of well‑formed HTML code and then dynamically insert those
blocks in the browser's HTML tree, significantly updating the loaded page without
actually performing a full reload. Fortunately, Oracle database provides tools that
can be used to generate an HTML representation of SQL data; for example, XQuery
discussed in Chapter 8 XML-Enabled Applications, section Querying Data with
Oracle XQuery.

The following figure gives you a high-level view of how the above application
might work.

Web Browser

Issuing
an XQuery
query

Posting an
asynchronous

call

Sending
HTML to
browser

Returning
results
in HTML

Database Server

PHP engine<html>
...
<script ... >

</script>
...
<body>

</body>
</html>

<?php

?>

Oracle XQuery
engine

<DIV>

</DIV>

<DIV>

</DIV>

Web Server

1 2

34

As you might guess, each arrow in the figure represents a certain step in the
interactions within the application. Here is the explanation of the steps:

Step 1: The JavaScript running in the browser posts an asynchronous call to
the PHP script on the web/PHP server.
Step 2: The PHP script invoked in step 1 issues an XQuery query against
the database.
Step 3: Based on the XQuery issued by the PHP script in step 2, the database
constructs HTML code from SQL data and then returns it back to the
PHP script.

•

•

•

AJAX-Based Applications

[344]

Step 4: The HTML code constructed in step 3 is returned to the JavaScript
running in the browser, and then is inserted directly into the browser's
HTML tree, thus dynamically updating the page displayed in the browser.

The above scenario might be used in an application that allows a user to view
master/detail data, displaying details on demand. For example, the detail
description of an item presented on the page will be downloaded from the database
and then displayed on the page only if the user clicks a Full Description link related
to that item.

In the following sections, you will learn how to build such an application.

Building the Sample Application
For simplicity, the sample application discussed here will have only one page,
through which a user will be able to view master/detail information retrieved from
the database. In particular, the sample's page, when loaded, will display a list of
articles stored in an articles database table, much in the way a WWW search engine
displays links to the articles that match the criteria specified, along with a short
description for each item. However, unlike a page generated by a search engine, a
page produced by the sample application will contain a Full Description link for each
article displayed, allowing a user to asynchronously download additional information
about an article of interest from the articles and resources database tables, and
then add this information to the page without performing a full reload.

When loaded, the sample's page might look like the following figure.

•

Chapter 10

[345]

If a user clicks a Full Description link on the page shown in the figure, the browser
in turn should output a corresponding Full Description section, inserting it after the
Full Description link clicked. The updated page might look like the following figure.

To roll up the Full Description section, the user should click the Full Description
link again.

Now that you have seen what the sample application's page should look like and
how it should behave, it's time to move on and build the application.

AJAX-Based Applications

[346]

Creating the Data Structures
As mentioned, the sample application discussed here will use the data stored
in articles and resources database tables. The article table is supposed to
hold information about the articles that will be displayed on the sample's page.
The information stored in the resources table will be used to fill up the Further
Reading column when generating the full description section for an article.

The following listing contains the SQL statements that you might issue from
SQL*Plus to create the articles table, and then populate it with data.

CONN ajax/ajax;

CREATE TABLE articles(
 artno NUMBER PRIMARY KEY,
 url VARCHAR2(100),
 title VARCHAR2(100),
 author VARCHAR2(50),
 pubdate DATE,
 shortdesc VARCHAR2(300),
 fulldesc VARCHAR2(2000)
);

INSERT INTO articles VALUES(
1,
'http://localhost/articles/AJAXPHPOracle.html',
'Improving responsiveness of PHP/Oracle applications with AJAX',
'Yuli Vasiliev',
'25-nov-2006',
'This article discusses how to improve responsiveness of Oracle-driven
PHP apps using AJAX as well as some other JavaScript technologies that
make it possible for you to dynamically modify documents loaded into
the browser, without performing a full reload.',
'When building PHP/Oracle applications, we are used to distribute
application processing between the Web/PHP server and Oracle database
server, trying to find some optimal balance point. This article is
going to demonstrate that there is another player on the field, namely
the browser, focusing on how AJAX and some other client-side (browser-
side) JavaScript technologies can be used along with the Oracle
Database technologies as well as the PHP features to improve the
responsiveness of PHP/Oracle applications.'
);

INSERT INTO articles VALUES(
2,
'http://localhost/articles/PHPWebServicesOnOracle.html',

Chapter 10

[347]

'Building PHP Web Services on Top of Oracle',
'Yuli Vasiliev',
'25-nov-2006',
'The intent of this article is to demonstrate the use of various
technologies and tools, such as XML, SOAP, WSDL, PL/SQL, when building
a Web service that is highly dependent on the data stored in an Oracle
database.',
'The PHP SOAP extension can serve as a good alternative to PEAR::SOAP.
As compared with PEAR::SOAP that is written in PHP, the SOAP extension
has more features and is written in C; thus, another advantage of
using the SOAP extension is speed. By implementing the business logic
of the Web service inside the database, you can reduce overhead for
cross-tier data communication. This can be particularly useful if your
Web service is highly dependent on the data stored in the database.'
);

COMMIT;

Now that you have the articles table created and populated with some records
representing articles, you can create the resources table and populate it with links
to additional resources each of which is to be related to a certain article stored in
the articles table.

To create the resources table and then populate it with data, you might issue the
SQL statements shown below:

CONN ajax/ajax;

CREATE TABLE resources(
 resno NUMBER PRIMARY KEY,
 artno NUMBER REFERENCES articles(artno),
 url VARCHAR2(100),
 title VARCHAR2(100)
);

INSERT INTO resources VALUES(
1,
1,
'http://developer.mozilla.org/en/docs/AJAX',
'AJAX page on Mozilla Developer Center'
);

INSERT INTO resources VALUES(
2,
1,
'http://developer.apple.com/internet/webcontent/xmlhttpreq.html',

AJAX-Based Applications

[348]

'Overview of the XMLHttpRequest class'
);

INSERT INTO resources VALUES(
3,
1,
'http://developer.mozilla.org/en/docs/JavaScript',
'JavaScript page on Mozilla Developer Center'
);
INSERT INTO resources VALUES(
4,
2,
'http://www.w3.org/TR/soap/',
'W3C SOAP Recommendation documents'
);

COMMIT;

When creating the resources table, you define and enable a foreign key on the
artno column that references the primary key defined on the artno column of the
articles table, thus establishing a parent/child relationship between articles and
resources tables.

Generating HTML with Oracle XQuery
As you learned in Chapter 8 XML-Enabled Applications, section Querying Data with
Oracle XQuery, Oracle XQuery can be used to perform various tasks involved in
developing XML-enabled database-driven applications, including constructing XML
or HTML from SQL data.

The following listing contains the source code for the getFullDesc.php script that
issues an XQuery query returning HTML code generated from the data stored in
the articles and resources tables set up in the preceding section. This script will
be asynchronously called whenever a user clicks a Full Description link on a page
generated by the sample.

<?php
 //File:getFullDesc.php
 if (isset($_POST['artid'])) {
 $artid=$_POST['artid'];
 if(!$dbConn = oci_connect('ajax', 'ajax', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);

Chapter 10

[349]

 };
 $sql='SELECT XMLQuery('."'".
 'for $i in ora:view("articles")/ROW
 where $i/ARTNO = $artno
 return (
 <div class="fulldesc">
 <p>{xs:string($i/FULLDESC)}</p>
 <h3>Further Reading</h3>
 <ul type="square"> {
 for $j in ora:view("resources")/ROW
 where $i/ARTNO = $j/ARTNO
 return (
 {xs:string($j/
TITLE)}
)
 } </div>)'."'".
 'PASSING XMLElement("artno", :artno) AS "artno"
 RETURNING CONTENT) AS FULLDESC FROM DUAL';
 $stmt = oci_parse($dbConn,$sql);
 oci_bind_by_name($stmt, ':artno', $artid);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' .
 $err['message'], E_USER_ERROR);
 };
 oci_fetch($stmt);
 $fullDesc = oci_result($stmt, 'FULLDESC');
 print $fullDesc;
 }
?>

In the first line of the script, you check to see if the artid POST variable has been
passed in. If so, you set the $artid variable to the value of the artid POST variable
and then proceed to connect to the database in order to retrieve the full description
of the article whose artno is equal to the value in the $artid variable.

After a connection has been established, you define and then issue an XQuery
against the database. You start the FLWOR expression in the XQuery with the for
clause, which defines a loop iterating over the rows in the articles table. However,
the condition specified in the where clause limits this loop to only one iteration.
Specifically, it instructs Oracle to retrieve the information on the article of interest.

In the return clause of the FLWOR expression, you generate the HTML fragment that
will be returned by the XQuery. The root element in this fragment is an HTML div
tag with the class attribute set to fulldesc.

AJAX-Based Applications

[350]

When it comes to including links to resources related to the article of interest, you
define an inner for loop that will iterate over the resources table's rows that satisfy
the condition in the where clause.

Using the PASSING clause of the XMLQuery function, you pass the $artid variable to
the XQuery as a context item, which is used in the where clause to define the article
of interest.

After you fetch and then retrieve the HTML code generated by the XQuery query,
you send that HTML to the caller, in the way you usually do when it comes to
printing out results generated by a script.

Sending Post Requests with AJAX
Now that you have the getFullDesc.php script that will be invoked whenever
a user clicks a Full Description link on the sample's page, you need to create the
JavaScript that, in fact, will invoke getFullDesc.php.

The following listing shows the source code for such a JavaScript script. Save
this code in the fullDesc.js file in the same folder in which you saved the
getFullDesc.php script discussed in the preceding section. The following JavaScript
code makes an asynchronous call to the getFullDesc.php script, and then
dynamically embeds the retrieved HTML code into the page displayed.

//File: fullDesc.js
function setFullDesc (artid) {
 var thisFullDesc = document.getElementById('fullDesc'+artid);
 var thisArticle = document.getElementById('article'+artid);
 if (!thisFullDesc){
 initRequest();
 req.open("POST", "getFullDesc.php?temp="+new Date().
 getTime(), true);
 req.onreadystatechange = function(){
 if (req.readyState == 4) {
 var fullDescHTML = req.responseText;
 var newFullDesc = document.createElement("div");
 newFullDesc.setAttribute("id", "fullDesc"+artid);
 newFullDesc.innerHTML=fullDescHTML;
 thisArticle.appendChild(newFullDesc);
 }
 };
 req.setRequestHeader("Content-Type",
 "application/x-www-form-urlencoded");
 req.send("artid=" + artid);
 } else {

Chapter 10

[351]

 thisArticle.removeChild(thisFullDesc);
 }
}

As you can see, the setFullDesc function defined in this JavaScript takes
one parameter, namely artid. This parameter is then posted along with the
XMLHttpRequest request to the getFullDesc.php script, as a POST parameter
specifying the article of interest.

With the help of the getElementById method of the JavaScript document object
representing the page displayed by the browser, you assign the HTML element
representing the article of interest to a thisArticle JavaScript variable. Also, you
assign the HTML element representing the Full Description section related to the
article of interest to a thisFullDesc variable.

As you will learn a bit later, the HTML element whose ID is "article"+artid, and
which is assigned to the thisArticle JavaScript variable here will be actually a div
HTML element wrapping other HTML elements used to display information about
the article of interest. And the element assigned to the thisFullDesc variable in this
script will be actually another div HTML element generated dynamically.

When the user clicks a Full Description link on the sample's page, the JavaScript
checks to see if the full description information on the article of interest has been
displayed. To discover this, you simply check to see if the HTML element assigned
to the thisFullDesc variable exists. If so, this means that the user likely wants to
roll up the full description section. In that case, you remove this section. Otherwise,
you create an instance of the XMLHttpRequest class and then make an asynchronous
request to the web/PHP server, invoking the getFullDesc.php script discussed in
the preceding section.

When initializing a connection to the web/PHP server, you set the first parameter
of the open method to POST, thus telling the browser to use the POST HTTP request
method when interacting with the web/PHP server.

After you get a response from the web/PHP server, you access the request object's
responseText property to get the results returned by the getFullDesc.php script.
As you might recall from the preceding section, the getFullDesc.php script returns
a full description for the specified article in HTML format.

Now that you have the full description of the article of interest as HTML, all you
need to do is dynamically embed this HTML into the document loaded in the
browser, so that the full description section appears under the Full Description link
clicked by the user. To achieve this, you first create a div HTML element that will be
used as a container for the HTML received. Then, you set the innerHTML property of
the newly created div element to that HTML code. Finally, you insert

AJAX-Based Applications

[352]

the div element into the page as the last child of the HTML element assigned to the
thisArticle variable. By doing so, you, in fact, directly embed the HTML generated
by the database into the loaded page, dynamically updating it.

Since you are sending a POST request to the web/PHP server, you set the
Content-Type header for the request to application/x-www-form-urlencoded.

In this particular example, the send method takes one parameter to be posted with
the request. Specifically, you post the ID of the article for which you want to get a
full description.

Styling with CSS
Before moving on to create the PHP script that will generate the page to be accessed
by a user, you might want to define CSS styles that will be used to improve the look
and feel of that page. In the preceding example, you simply put CSS styles inside
the style HTML tag of the sample application's page. In this example, you will put
them in a separate file.

The following listing shows the CSS styles that might be used for the sample
discussed here. Save this code in the styles.css file in the same folder in which you
saved the script files discussed in the preceding sections.

body {
 font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
 font-size: small;
}
h3, a {
 font-size: 1em;
}
p {
 font-family: Arial, Helvetica, sans-serif;
 font-size: .8em;

}
.fulldesc {
 background:#ccc;
}

.desclink {
 font-size: 0.7em;
 background:#ccc;
}

Chapter 10

[353]

Putting It All Together
Now you are ready to build the PHP script that will generate the sample
application's page. The listing below shows the source code for such a script. Save
this code in the articles.php file in the same folder in which you saved the script
files discussed in the preceding sections.

<?php
 //File:articles.php
 if(!$dbConn = oci_connect('ajax', 'ajax', '//localhost/orcl')) {
 $err = oci_error();
 trigger_error('Could not establish a connection: ' .
 $err['message'], E_USER_ERROR);
 };
 $sql='SELECT artno, url, title, shortdesc FROM articles';
 $stmt = oci_parse($dbConn,$sql);
 if (!oci_execute($stmt)) {
 $err = oci_error($stmt);
 trigger_error('Query failed: ' .
 $err['message'], E_USER_ERROR);
 };
?>
<html>
 <head>
 <title>Articles on PHP and Oracle</title>
 <link rel="stylesheet" type="text/css" href="styles.css" />
 <script type="text/javascript" src="ajax.js"> </script>
 <script type="text/javascript" src="fullDesc.js"> </script>
 </head>
 <body>
 <h2>Articles on PHP and Oracle</h2>
 <table cellpadding = "8">
 <?php
 while ($emp = oci_fetch_array($stmt, OCI_ASSOC)) {
 print '<tr>';
 print '<td valign ="top">'.$emp['ARTNO'].'</td>';
 print '<td>'.
 '<div id="article'.$emp['ARTNO'].'">'.
 ''.$emp['TITLE'].''.
 '<p>'.$emp['SHORTDESC'].'</p>'.
 '<a href="#" onclick="setFullDesc('.$emp['ARTNO'].')"
 class = "desclink">Full Description'.
 '</div>'.
 '</td>';
 print '</tr>';

AJAX-Based Applications

[354]

 }
 ?>
 </table>
 </body>
</html>

The SELECT statement used in this script will return the information on all the
articles stored in the articles table. After this statement is executed, you fetch and
display its results in the while loop, styling and formatting the output as specified in
the styles.css defined in the preceding section.

Now if you run the script shown in the listing, you should see a page something like
the one shown in the figure at the beginning of the Building the Sample Application
section earlier in this chapter. Then, if you click a Full Description link on this page,
the browser should output a corresponding Full Description section, inserting it
after the Full Description link clicked. The updated page might look like the figure
at the end of the Building the Sample Application section. You can always remove a
Full Description section by clicking the Full Description link above that section.

Summary
As you learned in this chapter, using AJAX is a great way to improve the
responsiveness of PHP/Oracle applications, making them more dynamic and
interactive, and faster to respond to user actions. In particular, you saw an example
of an AJAX-based PHP/Oracle application whose page automatically updates
itself at a certain time interval, displaying the most recent data retrieved from the
database. The other sample application discussed in this chapter demonstrated
how you might benefit from using AJAX in a PHP/Oracle application that provides
access to master/detail information stored in the database, retrieving and displaying
details on demand.

However, it's important to understand that the AJAX approach to web development
is not a magic bullet that is appropriate for any situation. Before you start building
an AJAX‑based solution or begin ajaxifying an existing one, the first thing you have
to consider is whether AJAX is appropriate for the application you're working on.
Using AJAX can be useful in applications where you need to perform dynamic page
processing, updating part of a page rather than the whole page, while still allowing
the user to work with the page being updated.

Installing PHP and
Oracle Software

To follow the examples provided throughout this book, you need to have a few
pieces of software installed and working properly, so that you have the following
servers up and running in your system:

Oracle database server
Web/PHP server

To achieve this, you have to install the following software components:

Oracle Database Server software
Oracle database
SQL command-line tool to interact with the database
Oracle Client libraries
Web server with activated support for PHP

While Chapter 1 briefly discusses the above software components, this appendix
provides a quick-and-dirty guide to obtaining, installing, and configuring them to
work together.

Installing Oracle Database Software
As discussed in Chapter 1 Getting Started with PHP and Oracle in the Obtaining Oracle
Database Software section, although most of the Oracle products are available on a
commercial basis, you can download them from Oracle Technology Network at
http://www.oracle.com/technology/software/index.html for free. Then, you
can use the downloaded software for free while developing and prototyping your
applications, and buy the license only for those Oracle products that will be used in
your final product.

•
•

•
•
•
•
•

Installing PHP and Oracle Software

[356]

The Oracle Technology Network Developer License can be found at
http://www.oracle.com/technology/software/htdocs/
devlic.html.

As you learned in Chapter 1 in the section Choosing Between Oracle Database Editions,
Oracle Database is available in several editions. An important thing to consider when
choosing between Oracle Database editions is what edition best suits your needs
and budget.

Once you have decided which edition of Oracle Database to use, it's time to
download the appropriate installation archive file and then walk through the
installation process. The following section describes the basic installation steps for
Oracle Database 10g Enterprise/Standard editions on both Windows and Unix
systems. It is followed by a section that describes the basic installation steps for
Oracle Database 10g Express Edition.

For detailed information on how to install Oracle Database software,
see Oracle documentation: Oracle Database Installation Guide for your
operating system platform. Oracle documentation is available from the
documentation section of the OTN website at: http://www.oracle.
com/technology/documentation/index.html.

Installing Oracle Database Enterprise/
Standard Editions
Once you have downloaded the installation archive file, you can extract it on your
hard disk and then start the installation.

Most installation steps are common to all operating system platforms and involve
running the Oracle Universal Installer, a Java-based graphical user interface tool that
is used to install and remove Oracle software.

Here are the basic installation steps for Oracle Database 10g Enterprise/Standard
Editions. By following these steps, you will not only install Oracle Database Server
software but also an Oracle database, Oracle Client libraries, and SQL*Plus—an SQL
command-line tool to interact with the database.

Log on to the computer as a user with the administrative privileges so that
you can install Oracle Database software and run the database.
Navigate to the directory where you downloaded the installation archive file,
extract it, and then execute setup.exe to start Oracle Universal Installer on
Windows. On Linux, run the following command: $./runInstaller

•

•

Appendix A

[357]

The following figure shows what the first screen of the Oracle Universal Installer
looks like on Windows.

On the first screen of the Oracle Universal Installer, select either Basic
Installation to quickly install Oracle Database software or Advanced
Installation to have advanced installation choices.

Selecting the Advanced Installation option allows you to customize your
installation. For information about advanced installation choices, see
Oracle Database Installation Guide for your platform.

From now on, it is assumed that you have chosen the Basic Installation option.

On the same screen, specify the full path to the directory where you want to
install the database.

•

•

Installing PHP and Oracle Software

[358]

On the same screen, choose what database product you want to install:
Enterprise Edition, Standard Edition, Personal Edition, or Custom
Installation.
On the same screen, check the Create Starter Database box to create a
database during installation. This option is available on this screen when you
select Basic Installation. Having checked the Create Starter Database box,
you have to specify the Global Database Name and the password for the
SYS, SYSTEM, SYSMAN, and DBSNMP administrator accounts.

A global database name consists of the database name and database
domain, and must be unique within the same network. So, you may find
it convenient to use the network domain name as the database domain,
but generally speaking you don't have to follow this rule. For simple
cases, you need not specify a database domain at all—you may use only
the database name.

On the same screen, click Next to continue.
(For Unix and Linux only) On the Specify Inventory Directory and
Credentials screen, specify the full path to a directory for installation
files and make sure to specify an operating system group that has "write"
permission to this directory.

This screen appears only during the first installation of Oracle software on
this computer.

On the Product-Specific Prerequisite Checks screen, make sure that your system
meets the minimum requirements for installing the chosen products. Once all the
checks have been successfully completed, click Next to continue.

You can proceed with the installation only if the status of each check
performed in this stage is Succeeded or Warning.

On the summary screen, review the installation information and click the
Install button to start the installation. This opens the Install screen that
shows installation progress.
On the Configuration Assistants screen, review the status information
for the configuration assistants that are started automatically and used to
configure the software and create a database.

•

•

•

•

•

•

Appendix A

[359]

(For Unix and Linux only) On the Execute Configuration Scripts screen, read
the instructions and then run the scripts mentioned on this screen as the
root user.
On the End screen, note the information and exit the Installer.

That is it. Your database is up and ready for use now.

Installing Oracle Database Express Edition
(XE)
If you want to use an Oracle database for free even in the final product, consider
Oracle Database Express Edition—a lightweight Oracle database that is free to
develop, deploy, and distribute. This section describes the basic installation steps for
this Oracle Database edition.

One word of warning before you proceed with ������������������������ Oracle Database Express
Edition. Note that some Oracle Database features are not available in this
lightweight edition of Oracle Database. For example, the XQuery feature
discussed in Chapter 8 in the Querying Data with Oracle XQuery section
is not available in Oracle Database XE. Also, the Oracle Virtual Private
Database (VPD) feature discussed in Chapter 6 in the Row-Level
Security Using VPD section is available only in Enterprise Edition of
Oracle Database.

Once you have completed the following installation steps, you will have an Oracle
Database XE Server (including an Oracle database), Oracle Database XE Client, and
SQL*Plus installed on your computer.

Installing Oracle Database XE on Windows
Here are the installation steps for Oracle Database 10g Express Edition on Windows:

Log in to Windows as a user of the Administrators group.
Make sure that the ORACLE_HOME environment variable is not set in your
system. Otherwise delete it. This can be done from the System Properties
dialog, which can be invoked from Control Panel|System.
Double-click the Oracle Database XE installation executable downloaded
from OTN to run Oracle Database XE Server installer.

•

•

•

•

•

Installing PHP and Oracle Software

[360]

The following figure�� shows what the screen of the Oracle Database XE Server
installer looks like after you run it.

In the Welcome window of the Wizard, click Next.
In the License Agreement window, click I accept and then click Next.
In the Choose Destination Location window, choose the directory for
installation and click Next.
If at least one of the following port numbers: 1521, 2030, 8080 is already in
use in your system, you will be prompted to enter an available port number.
Otherwise, the above numbers will be used automatically.
In the Specify Database Passwords window, enter the passwords for the SYS
and SYSTEM database accounts and click Next.
In the Summary window, click Install to proceed to installation, or Back to
turn back and modify the settings.
After the installation is complete, click Finish.

•

•

•

•

•

•

•

Appendix A

[361]

That is it. Your database is up and ready for use now.

Installing Oracle Database XE on Linux
Here are the installation steps for Oracle Database 10g Express Edition on Linux:

Log in to your computer as root.
Change directory to the one in which you downloaded the Oracle Database
XE oracle-xe-10.2.0.1-1.0.i386.rpm installation executable and install the RPM:
$ rpm -ivh oracle-xe-10.2.0.1-1.0.i386.rpm

When prompted, run the following command to configure the database:
$ /etc/init.d/oracle-xe configure

When entering configuration information, accept the default port numbers
for the Oracle Database XE graphical user interface and Oracle database
listener: 8080 and 1521 respectively. Also, enter and confirm the passwords
for the SYS and SYSTEM default user accounts.

If, when configuring the database, you select Yes to the question
of whether you want the database to automatically start along
with the computer, then the database is up and ready for use now.
Otherwise you have to start it manually as follows:
$ /etc/init.d/oracle-xe start

Installing Apache HTTP Server
Before you can install PHP, you must have a web server installed and working
in your system. Although PHP has support for most of the web servers worth
mentioning, Apache/PHP remains the most popular combination
among developers.

The Apache HTTP server is distributed under the Apache License, a free
software/open-source license whose current version can be found on the licenses
page of the Apache website at: http://www.apache.org/licenses/.

You can download the Apache HTTP server from the download page of the Apache
website at: http://httpd.apache.org/download.cgi.

As mentioned in Chapter 1 in the Apache HTTP Server section, Oracle recommends
that you install a web server on another machine but on the same network as the
database server. However, for simplicity you can have both the Oracle database
server and web server on the same machine.

•

•

•

•

Installing PHP and Oracle Software

[362]

In fact, installing Apache is a very easy process: On Windows, if you have
downloaded the version of Apache for Windows with the .msi extension (the
recommended way), you just run the Apache .msi file and then follow the wizard. On
Unix-like systems, once you have downloaded a source version of the Apache HTTP
server, you perform standard operations that you normally deal with when it comes
to installing new software from sources: extract, configure, compile, and install.

Once you have Apache installed and configured, you can start it. On Windows,
Apache is normally run as a service. You can configure service startup by choosing
Automatic, Manual, or Disabled. On Unix-like systems, Apache, the httpd
program, is run as a demon. It is recommended that you use the apachectl control
script to invoke the httpd executable:

/usr/local/apache2/bin/apachectl start

To make sure that your web server is up and running on your machine, open your
web browser to the URL http://localhost/.

The following figure shows what the default page of Apache web server looks like.

Appendix A

[363]

Now that you have your web server up and running, you can move on to the next
step, obtaining and installing PHP.

Installing PHP
The current recommended releases of PHP are available for download from the
downloads page of the php.net site at:

http://www.php.net/downloads.php

From this page, you can download the latest stable release of PHP 5 and then follow
the steps below to install PHP in your system. For further assistance along the way,
you may consult the Installation and Configuration manual available on the php.net
web site at: http://www.php.net/manual/install.php. Alternatively, you might
read the install.txt file that is shipped with PHP.

Installing PHP on Windows
Here are the basic installation steps for PHP 5 on Windows:

Extract the distribution file into the c:\php directory.
Add the C:\php directory to the PATH to make php5ts.dll available to the
web server modules.
Rename php.ini-recommended to php.ini.
In php.ini, set the doc_root to your htdocs directory of Apache.
For example:

	 doc_root = c:\Program Files\Apache Group\Apache2\htdocs

In the Apache httpd.conf configuration file, to install PHP as an Apache
module, insert the following two lines:

	 LoadModule php5_module “c:/php/php5apache2.dll”
	 AddType application/x-httpd-php .php

In the Apache httpd.conf configuration file, configure the path to php.ini:
	 PHPIniDir “C:/php”

Restart Apache.

As an alternative to the above manual installation, you might use the Windows PHP
installer that is also available from the downloads page of the php.net website.

•

•

•

•

•

•

•

Installing PHP and Oracle Software

[364]

Although the Windows PHP installer is the fastest way to make PHP
work, it doesn't allow you to set every option as you might want to. So,
using the installer isn't the recommended method for installing PHP.

Once you have PHP installed on your Windows system, you might want to set some
extensions for added functionality. It is important to note that many extensions are
built into the Windows version of PHP. To use these extensions, you just uncomment
them in the php.ini configuration file—no additional DLLs are required. However,
some of the extensions require extra DLLs to work. For example, the PHP OCI8
extension needs the Oracle Client libraries.

Installing PHP on Unix-Like Systems
Here are basic installation steps for PHP 5 on Unix-like systems:

Extract the distribution file:
	 # gunzip php-5xx.tar.gz
	 # tar -xvf php-5xx.tar

Change dir to the directory containing the PHP sources:
	 # cd php-5xx

Configure your PHP installation:
	 # ./configure --with-apxs2=/usr/local/apache2/bin/apxs

You cannot configure PHP to support the PHP OCI8 extension until you
install the Oracle Client libraries required to run OCI applications (unless
you have PHP and Oracle installed on the same computer). You'll need to
recompile PHP for OCI8 support once you have these libraries installed.
See the Oracle Instant Client section for details.

Compile and then install PHP:
	 # make
	 # make install

•

•

•

•

Appendix A

[365]

Set up php.ini.
	 # cp php.ini-dist /usr/local/lib/php.ini

Edit the httpd.conf Apache configuration file to load the PHP module
into Apache:

	 LoadModule php5_module modules/libphp5.so

In httpd.conf, add handlers for files with the .php and .phps extensions:
	 AddType application/x-httpd-php .php
	 AddType application/x-httpd-php-source .phps

Restart Apache:
	 # usr/local/apache2/bin/apachectl start

By now you should have a working Apache/PHP web server.

Testing PHP
Once you have finished the installation steps, you might want to test PHP. The
easiest way to make sure that PHP works properly is by using the following simple
PHP script:

<?php
 phpinfo();
?>

Save this script as phptest.php in the htdocs directory of Apache and then run it in
your browser by opening the following URL:

http://yourservername/phptest.php

•

•

•

•

Installing PHP and Oracle Software

[366]

Provided your Apache/PHP web server is up and running, the phptest.php
script should output a large amount of information about the current state of PHP.
Graphically it might look like the following figure.

As expected, the phpinfo output doesn't contain an OCI8 section—we have installed
PHP without OCI8 support. The next section discusses how to add the OCI8 support
to an existing installation of PHP.

Bridging the Gap Between Oracle and
PHP
By now you should have an Oracle database and Apache/PHP web server installed
and working. However, before you can start developing PHP/Oracle applications,
you have to enable the OCI8 extension in your PHP installation.

Appendix A

[367]

Oracle Instant Client
If you have both the database and web server installed on the same computer then
you already have all the required Oracle components—no Instant Client is required,
and so you can skip to the next section Enabling the OCI8 Extension in an Existing PHP
Installation.

However, if you have the database and web server installed on different computers,
you will need to install another piece of software, which will bridge the gap between
Oracle and PHP. Specifically, you have to install the Oracle client libraries needed by
the PHP OCI8 extension.

Consider Oracle Instant Client, a package containing Oracle client libraries required
to run OCI, OCCI, and JDBC-OCI applications. Note that Oracle Instant Client comes
with a free license for both development and production environments.

You can download a copy of Oracle Instant Client specific to your platform from the
Instant Client web page on OTN at:

http://www.oracle.com/technology/tech/oci/instantclient/
instantclient.html

From the above page, you should download the Basic Instant Client Package that
includes all the files required to run OCI, OCCI, and JDBC-OCI applications.

On Windows, perform the following steps to install the Instant Client Package:

Download a copy of Oracle Instant Client from OTN.
Unzip the package into a single directory in your file system.
Add the path to the directory in which you unzipped the libraries to the
PATH environment variable.

On UNIX-like platforms, perform the following steps:

Download a copy of Oracle Instant Client from OTN.
Unzip the package into a single directory in your file system.
Set LD_LIBRARY_PATH to the directory in which you unzipped
the libraries.

Once you perform the above steps, you can move on and enable the OCI8 extension
in your PHP installation.

•

•

•

•

•

•

Installing PHP and Oracle Software

[368]

Enabling the OCI8 Extension in an Existing
PHP Installation
On Windows, perform the following steps to enable the OCI8 extension in your
existing PHP installation:

In php.ini, uncomment the OCI8 extension line:
	 extension=php_oci8.dll

In php.ini, set the extension_dir directive to the directory in which
php_oci8.dll resides:

	 extension_dir= c:\php\ext

Restart Apache.

On UNIX-like platforms, perform the following installation steps:

Run configure with Apache2 and OCI8 support:
	 # cd php-5xx
	 # ./configure --with-apxs2=/usr/local/apache2/bin/apxs \
	 --with-config-file-path=$HOME/apache/conf \
	 --with-oci8-instant-client=/home/instantclient10_2 \
	 --enable-sigchild

Rebuild PHP:
	 # make
	 # make install

Restart Apache:
	 /usr/local/apache2/bin/apachectl start

To make sure that the OCI8 extension was successfully enabled, you might run the
testphp.php script discussed in the Testing PHP section earlier in this appendix.
This time the output should include the OCI8 section verifying that OCI8 support
is enabled.

Installing SQL*Plus Instant Client
Most of the examples in this book assume that you will use SQL*Plus when it comes
to performing database administration or creating database objects. Note that
SQL*Plus is installed by default when you install the Oracle Database software. So,
if you are going to use a local database, you don't need to install SQL*Plus since
you already have it. Otherwise, you might take advantage of SQL*Plus Instant
Client—the SQL*Plus command-line tool that allows you to communicate with a
remote database.

•

•

•

•

•

•

Appendix A

[369]

To install SQL*Plus Instant Client on your computer, perform the following steps:
Download the SQL*Plus Instant Client Package specific to your platform
from the Instant Client web page on OTN at:

	 http://www.oracle.com/technology/tech/oci/instantclient/
	 instantclient.html

Unzip the package to the same directory where you unzipped the Basic
Instant Client Package files.
Optionally, set a user environment variable NLS_LANG to an
appropriate value.

The NLS_LANG parameter is composed of three optional components:
language, territory, and character set. To specify it, you use the following
syntax: NLS_LANG = language_territory.charset. NLS_LANG
defaults to AMERICAN_AMERICA.US7ASCII. For information about
supported NLS_LANG settings, see Oracle documentation: Oracle Database
Globalization Support Guide.

That is it. Now you can use SQL*Plus Instant Client to connect to a remote database.

Installing Zend Core for Oracle
As mentioned in Chapter 1, section Zend Core for Oracle, you might significantly
speed up and simplify the process of making PHP and Oracle software work
together by taking advantage of Zend Core for Oracle, a pre-built stack that
delivers a rapid development and deployment foundation for Oracle-driven PHP
applications, saving you the trouble of separately downloading and installing the
required pieces of software.

Once you have completed the following installation steps, you will have a Web/PHP
server ready to work with your Oracle database.

Installing Zend Core for Oracle on Windows
Here are the installation steps for Zend Core for Oracle on Windows:

Log in to your computer as a user of the Administrators group.
Download Zend Core for Oracle from Zend Network. You can start by
visiting the following page:

	 https://www.zend.com/core/oem_registration.php?access_
	 code=OracleDB

•

•

•

•

•

Installing PHP and Oracle Software

[370]

After you have downloaded the Zend Core for Oracle package, double-click
it to start the installation wizard.
In the Welcome window, click Next.
In the License Agreement window, select I accept … and click Next.
In the Setup Type window, you can choose either Complete or Custom
setup options. If you select Complete, all of the Zend Core for Oracle
components will be installed. Otherwise, you will be able to choose a folder
for Zend Core for Oracle installation and components to install. Click Next
to continue.
In the Web Server Selection window, select the web server to be used. It is
recommended that you select the default Apache installed on your computer.
Then, click Next.
In the Web Server API window, accept the recommended Server API and
click Next.
In the Extension Association window, choose the extensions that will be
associated with the Core PHP installation and click Next.
In the Password window, enter a password for accessing the Zend Core for
Oracle GUI and click Next.
In the Ready to Install the Program window, click Install to start installation.
In the Installation Complete window, choose Yes for the restart option and
click Finish to complete the installation and restart the computer.

That is it. Now you should have a Web/PHP that is server ready to work with your
Oracle database.

Installing Zend Core for Oracle on Linux
Here are the installation steps for Zend Core for Oracle on Linux:

Log in to your computer as root.
Download Zend Core for Oracle from Zend Network. You can start by
visiting the following page:

	 https://www.zend.com/core/oem_registration.php?access_
	 code=OracleDB

After you have downloaded the package, extract Zend Core for Oracle:
	 $ tar -zxf ZendCoreForOracle-v1.3.1-Linux-x86.tar.gz

Change directory to ZendCoreForOracle-v1.3.1-Linux-x86:
	 $ cd ZendCoreForOracle-v1.3.1-Linux-x86

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Appendix A

[371]

Start installation:
	 ./install

In the Welcome screen, click OK to continue.
In the License Agreement screen, click exit. Then, click Yes to accept the
license agreement and continue with the installation.
When prompted, choose the directory for installing Zend Core for Oracle and
click OK.
In the next screen, enter a password for accessing the Zend Core for Oracle
GUI and click OK.
When prompted, select the web server for Zend Core installation and click
OK. It is recommended that you select the default Apache installed on
your computer.
In the next screen, accept the selected installation method for the PHP on the
web server and click OK.
In the next screen, select a virtual server for the Zend Core GUI and click OK.
When prompted, select to restart the web server to apply the changes.
In the final screen, click Exit to complete the installation and restart the
web server.

That is it. Now you should have a Web/PHP that is server ready to work with your
Oracle database.

•

•

•

•

•

•

•

•

•

•

Index
Symbols
%ROWTYPE attributes 173

A
ACID rules

about 91
atomicity 91
consistency 91
durability 92
isolation 92

ADOdb 51
advantages, PHP/Oracle

flexibility 6
performance 7
robustness 7
simplicity 6

AJAX-based applications
AJAX interactions 330, 331
building 329
building blocks 333
monitoring application, creating 331, 332

Apache HTTP server
installing 361, 362

application, building
about 23
database, connecting to 26, 27
results, displaying 28, 29
results, fetching 28, 29
SQL statement, issuing 28

atomicity 91
autonomous transactions 118

B
building blocks, AJAX-based applications

caching, for responsiveness improving 342

data structures, creating 333
master/detail AJAX solution 342
PHP script, AJAX requests processing 334
XMLHttpRequest JavaScript object 335-339

business logic, building
incoming documents, validating 301-303
inside database 300
PL/SQL subprograms, creating 305-309
unique IDs, for incoming documents

304, 305
XML schema, for validating incoming

documents 301-303
business logic, implementing

components, interacting 61
data, processing 58
data, processing advantages 59
PL/SQL subprograms, creating 305-309
types 60, 61

C
caching

about 205
database server queries 206
notification-based caching 229
Oracle and PHP based 205
Oracle application contexts, using 210
PHP caching mechanism 222

classes
extending 138
PHP classes, interacting with Oracle 123

classes, extending
about 138
Auth package 139-141
Auth package, customizing 144, 145
Auth package, securing pages 141-143
compact client code, building 146, 147

[374]

standard classes, customizing 144-147
standard classes, using 139-143

complex SQL statements
join queries, using 66-68
Oracle SQL functions, employing 62-66
using 62
views 69-72

concurrent update issues
about 113
locking issues 114, 115
lost updates 115-118

consistency 91

D
database, conntecting

easy connect method 27
local naming method 26

database server queries, caching
about 206
blind variables 208-210
shared pool chache hits, increasing 208-210
SQL statements, processing 206-208

data processing
about 57
business logic, implementing 58
complex SQL statements, using 62
stored subprograms, using 73
triggers, using 83
versus Oracle SQL functions 62-65

durability 92

E
error handling

about 42
exception, using 44
oci_error, using 42
trigger_error, using 43

event driven communication 155, 156
exception handling

about 132
class, modifying for exceptions 133-135
error types 136-138
working 133

G
GROUP BY clause 66

H
hashing

about 186
algorithms 188
authentication system, modifying 188-190
MD5, algorithms 188
passwords 186-188
SHA-1, algorithms 188

I
isolation 92

J
join queries

about 66
using 66-68

M
master/detail AJAX solution

building 344, 345
CSS 352
data structures, creating 346-348
HTML generating, Oracle XQuery used

348, 349
implementing 342
planning 343, 344
post request, sending 350, 351

MySQL
advantages 8

N
notification-based caching

database change, notification 231
implementing 229
notification, changing 234
notification handler, building 234-236
notification handler, query registration

creating 236, 237

[375]

notification messages, auditing 231
PEAR::Cache_Lite 238-241
PL/SQL procedure 232, 233
testing 238

O
objects, interacting

about 147
aggregation 150-154
composition 148-150

OCI8 extension. See PHP OCI8 extension
Oracle application contexts, caching

about 210
global application context, creating 212-214
global application context data,

manipulating 214-218
global application context data, resetting

219-222
Oracle connecting, OCI8 used

about 36
connect string, defining 37
function 38, 39

Oracle database
about 11
Apache HTTP server, installing 361-363
choosing 11, 12
enterprise/standard edition, installing

356-359
express edition, installing 359
express edition on Linux, installing 361
express edition on Windows, installing

359, 360
installing 9, 355
software, obtaining 12, 13

Oracle Instant Client
about 15
installing 367

Oracle object-relational features
about 157
application creation, simplifying 161, 162
business logic, implementing 158-160
Oracle object types, using 157, 158

Oracle SQL*Plus. See SQL*Plus
Oracle SQL functions

aggregate functions 65
GROUP BY clause 66

versus PHP data processing 62-65
Oracle XML DB repository

resources accessing, SQL used 286, 287
resources manipulating, PL/SQL used

285, 286
standard internet protocols 287-289
using 284

P
PDO 52
PEARDB

about 49, 50
ideal situation 51

PHP
Apache HTTP server 13, 14
caching mechanism 222
installing 363
installing, on Unix-like systems 364, 365
installing, on Windows 363, 364
obtaining 15
PHP 4, need for 14
testing 365, 366

PHP/Oracle
advantages 6
appliaction, controling trasactions 96-99
appliaction, creating 23
caching 205
JavaServer Faces 8
MySQL 8
Oracle Instant Client 15, 16
Oracle SQL*Plus, using 17
prerequisites 9
transaction, working of 93, 95
XML processing 243
Zend Core for Oracle 16

PHP/Oracle application as web service
business logic, building 300
communicating, SOAP used 296, 297
PHP handler class, building 310, 311
security 319
SOAP client, creating 316-319
SOAP server, creating 315
SOAP web service, building 299, 300
WSDL, using 312-315

PHP aaplications, on Oracle
about 261

[376]

Oracle XML DB repository 284
relational data accessing, XMLType views

used 275
transactions, handling 289
XML data manipulating, Oracle used 262

PHP caching mechanism
about 222
cached data, updating 227, 228
chaching function calls 223-226
chaching strategy, choosing 223

PHP classes, interacting with Oracle
about 123
application blocks, building 124-129
custom class, creating 125-127
custom class, testing 127, 128
exception handling 132-138
implementing 130, 131
PHP 5 128, 129
reusability 132

PHP OCI8 extension
about 31
enabling 368
functions for transaction isolation

consideration 110-113
library, creating 53, 54
need for 32
Oracle, connecting to 36-39
results, fetching 44
SQL statements, executing 42
SQL statements, parsing 39-42
SQL statements, processing 32-35

PL/SQL packages
database data, accessing 169

prerequisites, PHP/Oracle
software 9

R
relational data, accessing

DML operations, performing 280-284
XMLType views, using 276, 277
XMLType views, XML schema-based

277- 280
results fetching, OCI8 used

all rows, fetching 47, 48
next row, fetching 46
OCI8 functions 45

S
security, PHP/Oracle applications. See also

security, web services
%ROWTYPE attribute, using 173, 174
about 164
authentication system, testing 176, 177
custom storage container, building 175, 176
data, separating 165
PL/SQL packages 169-172
resources, protecting 182-185
table functions 169-172
three database schemas 168, 169
two database schemas 166, 167
user authorizing, identity based 178
user information holding, package variables

used 179, 181
user information holding, sessions used

179
users, authenticating 164, 165
views 191
VPD 201

security, web services. See also security,
PHP/Oracle applications

about 319
authorization logic, implementing 320-322
client script, creating 326
PHP handler class, creating 323
WSDL document, creating 324, 325

SOAP as web service
PHP/Oracle application 299, 300
prerequisites 297, 298

software prerequisites 21, 22
SQL

processing statements, OCI8 used 32-35
SQL*Plus

about 17
database, connecting to 18, 19
installing 368, 369
need for 17
scripts, running 20

SQL statements, OCI8
blind variables, using 40-42
error handling 42
executing 42
executing, preparing for 39

stored subprograms

[377]

about 73, 74
advantages 75
calling 82
calling, from trigger 85, 86
creating 80, 81
ideal situation 76-79

T
transactional code, developing

code, moving to database 105-109
PHP transactions, controlling 99-105
statement level rollbacks 106-109
triggers, using 105, 106

transaction isolation considerations
about 109
autonomous transactions 118
concurrent update issues 113-118
OCI8 functions, choosing 110-113

transactions 91
about 90
ACID rules 91
handling 289
isolation considerations 109
Oracle, working in 92
overview 89
PHP/Oracle, working in 93-96
transactional code 99

triggers
creating 84, 85
firing 85
stored procedures, calling 85, 86
using 83

V
view

about 69
advantages 69, 70
data complexity, hiding 70, 71
WHERE clause 71, 72

views
column-level security, implementing

192-195
column values, masking 195
column values, masking with DECODE

function 195-198
database access, setting up 191, 192

row-level security, implementing 198-201
Virtual Private Database. See VPD
VPD

row-level security, implementing 201-204

W
web services

about 295
business logic, building 300
security 319
SOAP web service 299

WHERE clause 71

X
XML data manipulating, Oracle used

about 262
database storage options 263, 264
XML data, retrieving 272-275
XML schemas 267-271
XMLType, using 265, 266

XML processing, with Oracle
about 254
database, moving into 257, 258
Oracle SQL/XML generation functions,

using 254-256
XML data, sorting 258, 259
XSLT transformations, performing 260, 261

XML processing, with PHP
DOM document querying, XPath used 247
PHP extension 244
XML creating, DOM PHP extension used

245, 246
XSLT used 248-254

XQuery
data, querying 290
XML, breaking into relational data 293
XML, constructing 291, 292

Z
Zend Core for Oracle

about 16
features 16
installing 369
installing, on Linux 370, 371
installing, on Windows 369, 370

	PHP Oracle Web Development
	Table of Contents
	Preface
	Chapter 1: Getting Started with PHP and Oracle
	Why PHP and Oracle?
	Simplicity and Flexibility
	Performance
	Robustness

	Exploring PHP and Oracle Alternatives
	PHP and MySQL
	JSF and Oracle

	What You Need to Start
	Pieces of Software Required
	Oracle Database Considerations
	Understanding the Oracle Database
	Choosing Between Oracle Database Editions
	Obtaining Oracle Database Software

	PHP Considerations
	Apache HTTP Server
	Why PHP 5
	Obtaining PHP

	Making PHP and Oracle Work Together
	Oracle Instant Client
	Zend Core for Oracle

	Using Oracle SQL*Plus
	Why Use SQL*Plus in PHP/Oracle Development?
	Connecting to a Database with SQL*Plus
	Running Scripts in SQL*Plus

	Putting It All Together

	Creating Your First PHP/Oracle Application
	Connecting to a Database
	Using the Local Naming Method
	Using the Easy Connect Method

	Issuing an SQL Statement Against the Database
	Fetching and Displaying Results

	Summary

	Chapter 2: PHP and Oracle Connection
	Introducing the PHP OCI8 Extension
	Why Use OCI8 Extension
	Processing SQL Statements with OCI8

	Connecting to Oracle with OCI8
	Defining a Connection String
	OCI8 Functions for Connecting to Oracle

	Parsing and Executing SQL Statements with OCI8
	Preparing SQL Statements for Execution
	Using Bind Variables
	Executing SQL Statements
	Handling Errors
	Using the oci_error Function
	Using the trigger_error Function
	Using Exceptions

	Fetching Results with OCI8
	OCI8 Functions for Fetching
	Fetching the Next Row
	Fetching All the Rows

	Alternatives to PHP OCI8 Extension
	Using PEAR DB
	Using ADOdb
	Using PDO
	Creating Your Own Library on Top of OCI8

	Summary

	Chapter 3: Data Processing
	Implementing the Business Logic of a PHP/Oracle Application
	When to Move the Data to the Processing
	Advantages of Moving the Processing to the Data
	Ways of Implementing Business Logic Inside the Database
	Interaction between Components Implementing Business Logic

	Using Complex SQL Statements
	Employing Oracle SQL Functions in Queries
	Oracle SQL Functions versus PHP Data Processing
	Aggregate Functions
	The GROUP BY Clause

	Using Join Queries
	Taking Advantage of Views
	The Key Benefits of Using Views
	Hiding Data Complexity with Views
	Using the WHERE Clause

	Using Stored Subprograms
	What are Stored Subprograms?
	Advantages of Stored Subprograms
	An Example of When to Use a Stored Subprogram
	Creating Stored Subprograms
	Calling Stored Subprograms from PHP

	Using Triggers
	Creating Triggers
	Firing Triggers
	Calling Stored Procedures from a Trigger

	Summary

	Chapter 4: Transactions
	Overview of Transactions
	What is a Transaction?
	What are ACID Rules?
	How Transactions Work in Oracle
	Using Transactions in PHP/Oracle Applications
	Structuring a PHP/Oracle Application to Control Transactions

	Developing Transactional Code
	Controlling Transactions from PHP
	Moving Transactional Code to the Database
	Using Triggers
	Dealing with Statement-Level Rollbacks

	Transaction Isolation Considerations
	What OCI8 Connection Function to Choose
	Concurrent Update Issues
	Locking Issues
	Lost Updates

	Autonomous Transactions

	Summary

	Chapter 5: Object-Oriented Approach
	Implementing PHP Classes to Interact with Oracle
	Building Blocks of Applications
	Creating a Custom PHP Class from Scratch
	Testing the Newly Created Class
	Taking Advantage of PHP 5's Object-Oriented Features

	Functionality and Implementation
	Reusability
	Handling Exceptions
	Modifying an Existing Class to use Exceptions
	Distinguishing between Different Error Types
	Are Exceptions Necessarily Errors?

	Extending Existing Classes
	Using Standard Classes
	PEAR::Auth in Action
	Securing Pages with PEAR::Auth

	Customizing Standard Classes
	Customizing PEAR::Auth
	Building More Compact Client Code

	Interactions between Objects
	Composition
	Aggregation

	Event-Driven Communication
	Using Oracle Object-Relational Features
	Using Oracle Object Types
	Implementing Business Logic with Methods of Oracle Objects
	Using Oracle Objects to Simplify Application Creation

	Summary

	Chapter 6: Security
	Securing PHP/Oracle Applications
	Authenticating Users
	Separating Security Management and Data
	Using Two Database Schemas to Improve Security
	Using Three Database Schemas to Improve Security
	Employing PL/SQL Packages and Table Functions to Securely Access Database Data
	Using the %ROWTYPE Attribute
	Building a Custom Storage Container for the PEAR::Auth Class
	Testing the Authentication System

	Performing Authorization Based on the User Identity
	Using Sessions to Hold Information about the Authenticated User
	Holding a User's Information in Package Variables
	Protecting Resources Based on Information about the Authenticated User

	Hashing
	Hashing Passwords
	Modifying an Authentication System to Use Hashing

	Setting Up Fine-Grained Access with Database Views
	Implementing Column-Level Security with Views
	Masking the Column Values Returned to the Application
	Using the DECODE Function

	Implementing Row-Level Security with Views

	Using VPD to Implement Row-Level Security
	Summary

	Chapter 7: Caching
	Caching Data with Oracle and PHP
	Caching Queries on the Database Server
	Processing SQL Statements
	Using Bind Variables to Increase the Probability of Shared Pool Cache Hits

	Using Oracle's Application Contexts for Caching
	Creating a Global Application Context
	Manipulating Data Held in a Global Context
	Resetting Values in a Global Context

	Caching Mechanisms Available in PHP
	Choosing a Caching Strategy
	Caching Function Calls with the PEAR::Cache_Lite Package
	Updating Cached Data

	Implementing Notification-Based Caching
	Using Database Change Notification
	Auditing Notification Messages
	Building a PL/SQL Procedure Sending Notifications to the Web Server
	Performing Configuration Steps Required for Change Notification
	Building the Notification Handler
	Creating a Query Registration for the Notification Handler
	Quick Test

	Implementing Notification-Based Caching with PEAR::Cache_Lite

	Summary

	Chapter 8: XML-Enabled Applications
	Processing XML in PHP/Oracle Applications
	Processing XML Data with PHP
	Creating XML with the DOM PHP Extension
	Querying a DOM Document with XPath
	Transforming and Processing XML with XSLT

	Performing XML Processing inside the Database
	Using Oracle SQL/XML Generation Functions
	Moving All the XML Processing into the Database
	Storing XML Data in the Database
	Performing XSLT Transformations inside the Database

	Building PHP Applications on Oracle XML DB
	Using Oracle Database for Storing, Modifying, and Retrieving XML Data
	Database Storage Options for XML Data in Oracle Database
	Using XMLType for Handling XML Data in the Database
	Using XML Schemas
	Retrieving XML Data

	Accessing Relational Data Through XMLType Views
	Using XMLType Views
	Creating XML Schema-Based XMLType Views
	Performing DML Operations on XML Schema-Based XMLType Views

	Using Oracle XML DB Repository
	Manipulating Repository Resources with PL/SQL
	Accessing Repository Resources with SQL
	Taking Advantage of Standard Internet Protocols

	Handling Transactions

	Querying Data with Oracle XQuery
	Using XQuery to Construct XML from Relational Data
	Breaking up XML into Relational Data

	Summary

	Chapter 9: Web Services
	Exposing a PHP/Oracle Application as a Web Service Using PHP SOAP Extension
	Communicating Using SOAP
	What you Need to Build a SOAP Web Service
	Building a SOAP Web Service on Top of a PHP/Oracle Application
	Building the Business Logic of a Web Service Inside the Database
	Creating an XML Schema to Validate Incoming Documents
	Generating Unique IDs for Incoming Documents
	Creating PL/SQL Subprograms Implementing the Business Logic of the Web Service

	Building a PHP Handler Class
	Using WSDL
	Creating a SOAP Server with PHP's SOAP Extension
	Building a SOAP Client to Test the SOAP Server

	Adding Security
	Implementing Authorization Logic Inside the Database
	Creating a PHP Handler Class
	Creating a WSDL Document
	Creating a Client Script

	Summary

	Chapter 10: AJAX-Based Applications
	Building AJAX-Based PHP/Oracle Applications
	AJAX Interactions
	Designing an AJAX/PHP/Oracle Monitoring Application
	Building Blocks of an AJAX-Based Solution
	Creating the Data Structures
	Building the PHP Script that will Process AJAX Requests
	Using the XMLHttpRequest JavaScript Object
	Putting It All Together
	Using Caching to Further Improve Responsiveness

	Implementing Master/Detail Solutions with AJAX
	Planning a Master/Detail Solution that uses AJAX
	Building the Sample Application
	Creating the Data Structures
	Generating HTML with Oracle XQuery
	Sending Post Requests with AJAX
	Styling with CSS
	Putting It All Together

	Summary

	Appendix A: Installing PHP and Oracle Software
	Installing Oracle Database Software
	Installing Oracle Database Enterprise/Standard Editions
	Installing Oracle Database Express Edition (XE)
	Installing Oracle Database XE on Windows
	Installing Oracle Database XE on Linux

	Installing Apache HTTP Server

	Installing PHP
	Installing PHP on Windows
	Installing PHP on Unix-Like Systems
	Testing PHP

	Bridging the Gap Between Oracle and PHP
	Oracle Instant Client
	Enabling the OCI8 Extension in an Existing PHP Installation
	Installing SQL*Plus Instant Client

	Installing Zend Core for Oracle
	Installing Zend Core for Oracle on Windows
	Installing Zend Core for Oracle on Linux

	Index

