

Practical PHP
and MySQL®

N E G U S L I V E L I N U X S E R I E S

Your practical, hands-on guides to getting
real results with free software

Books in the Negus Live Linux Series encourage and challenge
you to advance in the free software world. Boot the live DVD or
CD that comes with each book and watch the Linux system,
applications, and content described in the book come to life
before your eyes.

Start as a novice by trying out examples and finish as a profes-
sional, mastering the many topics covered in the series, from
building PHP/MySQL sites to customizing live CDs and more.
When you are finished, you will know how to use, customize, and
rebuild that free and open source software yourself.

Overseeing the series is Christopher Negus, bestselling author
of the Red Hat Linux Bible series, Linux Toys series, and the
signature book for this series, Live Linux CDs.

Practical PHP
and MySQL®

Building Eight Dynamic
Web Applications

Jono Bacon

N E G U S L I V E L I N U X S E R I E S

Upper Saddle River, NJ ■ Boston ■ Indianapolis ■ San Francisco

New York ■ Toronto ■ Montreal ■ London ■ Munich ■ Paris ■ Madrid

Cape Town ■ Sydney ■ Tokyo ■ Singapore ■ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data

Bacon, Jono.
Practical PHP and MySQL : building eight dynamic web applications / Jono Bacon.

p. cm.
Includes index.
ISBN 0-13-223997-3 (pbk. : alk. paper) 1. PHP (Computer program language) 2. MySQL

(Electronic resource) 3. Web site development. I. Title.
TK5105.888.B325 2007
005.13’3—dc22

2006027701

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0-13-223997-3
Text printed in the United States on recycled paper at R. R. Donnelley in Crawfordsville, Indiana.
First printing: November 2006

www.prenhallprofessional.com

To my family for their never-ending support…

This page intentionally left blank

vii

Contents

Foreword . xi

About the Author . xii

Acknowledgments. xiii

Introduction . 1
A Different Approach . 1

What You Need to Use This Book. 3

Conventions . 4

Onward. 4

CHAPTER 1 A New Approach. 5
The Technology. 6

How the Dynamic Web Works . 8

Summary . 12

CHAPTER 2 Getting Started with PHP and MySQL 15
Setting Up PHP and MySQL . 16

Getting Started with PHP . 17

Rolling in MySQL . 35

Connecting to MySQL in PHP. 45

Summary . 51

CHAPTER 3 Running the Projects . 53
About the Disc . 53

Running the Applications . 56

Using XAMPP . 57

Summary . 60

CHAPTER 4 Building a Weblog. 63
Project Overview: Blogtastic Use Case . 64

Building the Database . 65

Starting to Code . 68

Viewing Specific Entries . 82

Building the Category Browser . 92

Don’t Just Let Anyone Log In . 95

Rolling Your Own Categories . 102

Creating New Blog Entries . 103

Update a Blog Entry . 106

Summary . 110

CHAPTER 5 Discussion Forums . 111
Under the Hood . 111

Building Your Own Forums. 114

Before You Begin . 114

Creating the Database . 115

Creating the Site Design . 122

Displaying the Forums . 124

Managing User Logins . 133

Posts and Replies . 150

Creating Administrator-Specific Pages . 158

Summary . 167

CHAPTER 6 Creating a Shopping Cart . 169
Project Overview. 170

Building the Database . 171

Starting to Code . 175

Managing User Logins . 180

Displaying and Selecting Products . 184

Checking It Out . 196

Administrator Pages . 208

Summary . 216

vii i Contents

CHAPTER 7 Building an Online Auction Site. 219
Project Overview. 219

Building the Database . 220

Starting to Code . 223

Displaying Auction Items . 226

Dealing with Users . 240

Adding an Item . 243

Processing Auctions . 259

Scheduling the Page to Be Run . 262

Summary . 263

CHAPTER 8 Creating a Web-Based Calendar 265
Project Overview. 265

Building the Database . 266

Starting to Code . 267

Viewing Events . 277

Summary . 302

CHAPTER 9 FAQ Content Management System 303
Project Overview. 304

Building the Database . 305

Starting to Code . 310

Displaying Questions . 321

Dealing with Logins . 330

Adding and Moderating Questions . 341

Managing Subjects . 356

Managing Topics . 360

Subject Ownership . 364

Summary . 376

CHAPTER 10 Building a Re-Usable Project . 379
Project Overview. 380

Building the Database . 381

Using Directories Intelligently . 385

Starting to Code: Building the Backbone 386

Downloading Releases . 393

Viewing Screenshots . 396

Available Projects Viewer . 397

ixContents

Administering Projects . 398

Changing General Settings . 406

Managing Downloads. 407

Deleting Releases . 414

Managing Screenshots . 415

Deleting Images . 419

Adding a New Project . 420

Deploying the Application . 421

Summary . 424

CHAPTER 11 Building a News Web Site . 425
Project Overview. 425

Installing PEAR Packages . 426

Building the Database . 428

Starting to Code . 431

Handling User Logins . 440

Viewing and Rating Stories . 445

Managing Stories . 451

Managing Categories . 457

Creating Your Search Engine. 461

Summary . 467

APPENDIX A Web Site Design . 469
Project Overview. 469

Laying Out the Site . 471

Starting to Code . 474

Start Building the Stylesheet . 479

Formatting the Main <div> Items . 481

Creating an About Page . 487

Creating a Frequently Asked Questions Page 489

Formatting Tables. 492

Summary . 495

Index. 499

x Contents

xi

Foreword

Listen to podcasts by Jono Bacon and friends at LUG Radio (www.lugradio.org) and
you get a sense of both the spirit and thoughtfulness Jono brings to the open source
community. At one moment they speak seriously about hurdles in contributing code
to free software projects, while the next they offer a Monty Python-like discussion
on which Linux distribution each of them most resembles.

Practical PHP and MySQL reflects Jono’s commitment to the spirit of making
open source subjects accessible to everyone. The book carefully walks you through
the code for eight useful, dynamic Web applications. Projects are presented in a
playful way, like the forum project that touts horror movies that make you “hide
behind the couch.” And everything in the book can be run live, modified, saved,
and reused from the included live CD.

Although the tools you need to create Web content are readily available from
the open source community, having a skillful guide like Jono Bacon to help you
create dynamic Web applications from those tools is a real treat. The results form a
foundation for developing your own blogs, forums, shopping carts, and other Web
destinations that should significantly cut your startup time.

I am thrilled to have Jono Bacon’s Practical PHP and MySQL as one of the first
books in the Negus Live Linux Series. Its content perfectly suits the goals of
the series to put quality free and open source software covering various topics into
peoples’ hands so they can quickly get high-quality results. I hope you enjoy learn-
ing from this book as much as I have.

—Christopher Negus
Series Editor, Negus Live Linux Series

www.lugradio.org

xii

About the Author

Jono Bacon works for Canonical as the Ubuntu community manager and is an
established speaker, author, and regular contributor to the Open Source community.
As an author, Bacon co-authored Linux Desktop Hacks and the Official Ubuntu
Book, and has written more than 400 published articles in more than 14 publica-
tions. Bacon has also contributed as a columnist for Linux Format, Linux User &
Developer, and PC Plus, and is an O’Reilly Network weblog author.

In addition, Bacon is a regular contributor to Open Source in a range of pro-
jects, a lead developer on the Jokosher (www.jokosher.org) project, and one of the
co-founders of the popular LUGRadio (www.lugradio.org) podcast—a show with
more than 15,000 listeners and an annual event that pulls visitors from around the
world.

www.jokosher.org
www.lugradio.org

xii i

Acknowledgments

Writing thank-you lists is always hard, because I always end up leaving out some-
one important. I want to give thanks to the following people for their incredible sup-
port and help:

Susan Curtis, John and Pauline Bacon, Simon and Martin Bacon,
Banger and Frankie, Prentice Hall (Debra Williams-Cauley, Songlin Qiu),
LUGRadio (Stuart Langridge, Matthew Revell, Adrian Bradshaw),
OpenAdvantage (Paul Cooper, Elliot Smith, Scott Thompson), #php,
#mysql, and #lugradio on Freenode, the LUGRadio community,
Kai “Oswald” Seidler, and many more.

This page intentionally left blank

1

Introduction

Everyone is going nuts about the Web. Ever since we started getting creaky old
modems installed in our homes and businesses, the Web has become an increas-
ingly dominant part of our lives. With it we explore, shop, diagnose, entertain,
amuse, communicate, collaborate, and more. The Web is no longer a novelty item
that the few use to stretch their technical muscles; millions of people all over the
world are living their normal lives, with the Web playing a central role.

The popularity of the Web means interesting things for developers such as you.
The Web has not only presented a means to develop information-rich resources
such as IMDB, Wikipedia, and so on, but the Web also provides a real opportunity
to create online applications for doing everyday things, such as managing contacts,
balancing accounts, selling products or services, creating content, expressing opin-
ions, chatting, and much more. A worldwide audience awaits, and if you have the
technical chops, you can tap into this audience.

This is where PHP and MySQL swirl into play. In recent years, PHP and
MySQL have come together to form a unique and awesomely powerful platform.
With their roots in Open Source, these entirely free tools can be used to create
hugely functional, stable, enterprise-class Web sites. We can wax lyrical about PHP
and MySQL later, so let’s talk about what this book can do for you.

A DIFFERENT APPROACH

If you walk into the vast majority of bookstores and look for programming books,
they all use approximately the same format. These books tend to progressively and
linearly ramble through the subject and present a series of facts. This approach is

not too dissimilar to learning at school, where you are trained to retain facts and
skills, and it is up to you to apply those facts and skills to real-world scenarios.

Well, that’s all very dull isn’t it? Whenever I want to learn something, I want to
dig in straight away and get at the core of the subject and its application. When I
learned to play guitar, I wanted to play songs, not learn music theory; when I
learned to drive, I wanted to go places, not drive at 30 mph down a village road.
This book takes exactly that approach. Instead of teaching random programming
facts, you get to roll up your sleeves and start writing applications straight away.

This book starts with a brief introduction to the technology and then gives you a
quick primer in core PHP and MySQL skills—just enough to get you started writ-
ing an application. After this short primer (because no one likes reading primers),
you get straight into writing an application. This way, you don’t have to wade
through 200 pages of reading before you can get started writing an application.

After the primer in Chapter 2, you get to the applications. I have prepared a
menu of applications for your esteemed delectation:

■ Chapter 3, “Running the Projects.” The Live CD that accompanies this book
contains software projects, applications, and the LAMPP server. This chapter
provides information about the CD contents and how you operate the disc on
your computer.

■ Chapter 4, “Building a Weblog.” Plug into the weblog culture by creating a
weblog system. Here you can add posts, have your readers submit comments,
create different categories, and much more.

■ Chapter 5, “Discussion Forums.” Create a discussion forums Web site with
all the bling of the circus. You add forum categories, different forums,
threads and messages, user accounts, forum administration, and more.

■ Chapter 6, “Creating a Shopping Cart.” Open an online shop with this proj-
ect, in which you add support for products, create a shopping cart, take pay-
ment via checks/PayPal, support different accounts, and more.

■ Chapter 7, “Building an Online Auction Site.” Auction sites present an inter-
esting challenge, and in this chapter, you learn to support multiple accounts,
write a bidding engine, support uploaded images, add auction summaries,
and more.

■ Chapter 8, “Creating a Web-Based Calendar.” Don your orange sunglasses
and prepare to write the word Beta everywhere as you write an AJAX-driven
calendar. Here you learn how AJAX works, create a calendar interface, sup-
port different events, set up user logins, and more.

2 Practical PHP and MySQL

■ Chapter 9, “FAQ Content Management System.” In this chapter, you create a
Content Management System (CMS) for FAQs. Features include different
privilege levels for users, topic ownership, a submissions system, comment
support, and more.

■ Chapter 10, “Building a Re-Usable Project.” In this application, you create
an independent component that could be dropped into any Web site. This is
useful if you want to create projects for other developers to download and
use. This chapter discusses how to create a portable component and integrate
it into a separate site easily.

■ Chapter 11, “Building a News Web Site.” This project solidifies much of the
previous knowledge in the book and also looks at categorization, search sup-
port, and the use of the HTML_QuickForm PEAR extension.

■ Appendix A, “Web Site Design.” In this chapter you create a static Web site
and add features such as a FAQ page and an About page, and design the
pages with Cascading Style Sheets (CSS).

As each project progresses, you learn more and more skills that are useful in a
wide variety of PHP and MySQL Web applications.

WHAT YOU NEED TO USE THIS BOOK

If you are keen to get started, all you need is an enthusiasm to learn and a computer
running Linux, Windows, Mac OS X, or Solaris. Each of these different operating
systems supports PHP and MySQL, and as is explained later in the book, you can
fast-track installation of the required software by using an awesome tool called
XAMPP.

In addition to this core platform, it is recommended that you take plenty of time
to learn the different skills involved. Learning to code is like baking a cake—some-
times it takes shorter or longer for concepts to bake in your head and solidify. Con-
cepts that may seem obvious to some take a little longer to sink in with others, and
you should allow yourself plenty of time to learn these different skills at your own
pace.

Finally, it is recommended that you have a look around the Internet and join up
on some of the PHP/MySQL discussion forums and mailing lists. This will give you
a great support mechanism when you don’t understand certain concepts or need
more help.

3Introduction

CONVENTIONS

This book has a few different style conventions that are useful in helping you
develop the applications. Take a moment to get a quick understanding of these
conventions.

First, there are some type conventions:

■ Monospaced text. This style is used for technical items such as a command,
keyword, or function.

■ Italic text. Italic text is used for words being defined and filenames.

Throughout the book, you will find literally hundreds of code snippets that are
used to build your applications. They look like this:

if(x ==y) {
echo "hello world";

}

In some of the code snippets, you will see bold text like this:

if(x ==y) {
echo "hello world";
echo "this is extra code that has been added"

}

The bold line indicates a new line or a new section of code that is being added
to the snippet. The non-bold text gives an easy way of double-checking that the new
chunks of code are going in the right place.

ONWARD

You are at the beginning of an exciting journey, and in the tradition of the rest of the
book, I don’t want to waste any of your time unnecessarily. Sit down, plug yourself
in, and get ready to rock your world with PHP and MySQL. Avast!

4 Practical PHP and MySQL

5

A New Approach
C H A P T E R 1

Learning how to program has always been tough. Although a mind-boggling array of
documentation, tutorials, Web sites, videos, books, and other resources is available,
learning to program is still fundamentally difficult, particularly if you don’t wear
sandals and a ponytail.

One of the main reasons learning to code is so difficult is that code is typically
taught in an unnatural way. Most books and tutorials seem to follow a clear-cut path
of explaining the minor details of the language and then continuing to build upon
each detail to cover more complex concepts. This kind of tuition is akin to cram-
ming for exams—it is difficult to remember all of the separate bits of information in
the right order and how they relate to each other.

This book is different. Although most books follow the path just discussed, this
book shakes up things and changes the recipe. Instead of blinding you with 300
pages of science, this book focuses primarily on a number of real-world projects,
which you will write yourself. These projects span a range of Web applications, and
by learning how to write these different applications, you will gain not only a better
understanding of PHP and MySQL, but also you will get a stronger sense of how to
write real applications.

The projects that you will work on in this book include the following:

■ Generic Web site

■ Weblog

■ Auction site

■ Shopping cart

■ Discussion forums

■ Frequently Asked Questions (FAQ) management site

■ News site

■ Independent PHP application

■ Simple AJAX calendar

Each project provides the opportunity to learn new skills and focuses on spe-
cific challenges.

THE TECHNOLOGY

It should come as no surprise that the technology being used to build the Web
applications in this book uses PHP and MySQL. If you picked up this book in the
ASP section of your bookstore, I am afraid someone has played a cruel joke on you.

When put together, PHP and MySQL offer a compelling framework in which
you can develop powerful and flexible Web applications. The reason they work well
together is that each provides a comprehensive part of the Web development toolkit.
In building any Web application, the first thing you need is some form of language
in which to write dynamic pages and create features to handle dates, process data,
connect to resources, manage users, and perform other tasks. PHP steps up to solve
this problem. PHP is an incredibly flexible language with a huge array of function-
ality for solving common Web development challenges, many of which are covered
in the projects in this book. The second requirement is to have somewhere to store
the oodles of data that you will be displaying, updating, removing, modifying, and
otherwise showing off. A solution for this challenge is to use a database, and
MySQL provides a reliable and easy-to-use database that is well supported and
flexible.

Before looking at the architecture of how the Web works, however, this chapter
explores the tools of the trade in more detail.

PHP
PHP is a popular high-level scripting language used by a range of organizations and
developers. Originally developed as a small Perl project by Rasmus Lerdorf in late
1995, PHP was intended as a means to assist in developing his home page, and as
such he named it Personal Home Page (PHP) Tools.

When Lerdorf was contracted to work for the University of Toronto to build a
dial-up system for students to access the Internet, he had no means of connecting
Web sites to databases. To solve this problem, the enterprising Lerdorf replaced his

6 Practical PHP and MySQL

Perl code with a C wrapper that added the capability to connect his Web pages to a
MySQL database. As his small project grew, he gave away his changes on the Inter-
net as an Open Source project and cordially received improvements from other
programmers with an interest in PHP. The language was later renamed to the cur-
rent recursive acronym PHP: Hypertext Preprocessor by Zeev Suraski and Andi
Gutmans after they rewrote the parser in 1997. The software continued to develop
and now forms the comprehensive PHP platform we know today.

PHP provides a solid and well-defined programming language that includes
support for object-orientated programming, conditions, file handling, arithmetic,
and more. The language that PHP forms is similar in semantics to that of a shell
scripting language combined with the easier bits of the C language.

PHP subscribes to the batteries-included philosophy of programming lan-
guages and includes extensive support for a huge range of needs, such as cookies,
forms, sessions, include files, network sockets, e-mail, LDAP, IRC, and more. Data-
base support covers not only MySQL but many others, including but not limited to
PostgreSQL, Oracle, MS SQL, dBase, Sybase, and DB2. This flexible database sup-
port is useful if you ever need to port your application to a different database.

In addition to PHP’s capability as a Web scripting language, PHP also can be
used as a shell scripting language. This means that you can use a single language to
write Web applications and create shell scripts to manage your computers. You can
even use PHP for creating desktop applications. Although this usage was typically
one for the wiry-haired and zany part of the PHP demographic, more and more
developers are using it.

PHP also extends its batteries-included philosophy and includes support for
third-party functionality via the PHP Extension and Application Repository
(PEAR) library. PEAR works in a similar fashion to Perl CPAN modules and pro-
vides additional functionality that is easily available via a number of independent
modules built to solve specific problems. These special modules can be included in
your application to access this special functionality easily. For example, if you need
to send e-mail using your Web application, you can use the special PEAR mail
functionality that extends the included PHP mail support. This makes PHP better
at supporting third-party extensions and has resulted in a huge number of freely
available PEAR modules.

MySQL
MySQL is a powerful and comprehensive relational database server, which was
originally developed by David Axmark, Allan Larsson, and Michael “Monty” Wide-
nius. The commercial company they founded, MySQL AB, develops and markets

7CHAPTER 1 A New Approach

MySQL and associated products. Although the MySQL software originated as an
Open Source project, its creators were confident that they could run a business
using the product as a base. This business enables the developers to work full time
on the software, which in turn benefits both the Open Source community and com-
mercial users of MySQL. Both the open and commercial MySQL variants are func-
tionally the same; the only difference in the software is how it is licensed.
(Companies must buy a license if they want to deploy MySQL commercially in a
closed source application.) MySQL has enjoyed enormous popularity, and its cus-
tomers include Yahoo! Finance, MP3.com, Motorola, NASA, Silicon Graphics, and
Texas Instruments.

MySQL is a full-featured database and uses open standards, such as the ANSI
SQL 99 standard, for communicating with databases with Structured Query Lan-
guage (SQL). This standard provides a means to insert, update, and query informa-
tion in the database by using an industry standard language. This standard
language is used across database products, and like other products, MySQL sup-
ports a number of additional SQL statements. As well as being a standardized data-
base, MySQL is also multi-platform. This means that in addition to Linux, MySQL
also runs on other operating systems, such as Windows, Mac OS X, or BSD and
UNIX variants.

The database itself includes an interactive command-line client, which allows
you to communicate with the server. Although this client is useful, it’s a bit scary for
new users who are unfamiliar with command-line zen. Fortunately, a number of
graphical and Web-based clients can avoid the command-line encounter. (This
book uses the Web-based phpMyAdmin client extensively.) MySQL also has sup-
port for a number of programming languages to access and query the database. This
includes languages such as PHP, Python, Perl, C, C++, and Java, among others.
Although you may wish to initially use only PHP to query the database, multi-
language support is useful if you need to write modules and applications in differ-
ent languages in the future.

HOW THE DYNAMIC WEB WORKS

At its most fundamental level, the PHP and MySQL system provides a means to
allow dynamic content to be distributed to a networked device. This can be Uncle
Bob connecting to your Web site, a delivery service connecting wirelessly to its
tracking network, or you accessing your e-mail via the Web. Each of these different
solutions uses essentially the same software components that access each other
over different hardware contexts. The technical description for the type of program-
ming you are engaging in with PHP and MySQL is called client/server development.

8 Practical PHP and MySQL

To fully understand this concept, this chapter offers several examples and explains
how information is bounced between parts of the Web.

Imagine a Web site, any Web site. Go on—be exciting and imagine you are an
undercover spy who just so happens to have a Web site with your favorite spy-
related stuff. Assume that this Web site displays HTML code (the basic code that a
Web browser understands) and nothing else. The page contains only a list of spy-
related text, and there is no interactivity. You simply connect to www.thewebaddress-
ofthesite.com, and the Web site displays the information. Figure 1-1 shows the kind
of interaction involved with this example.

9CHAPTER 1 A New Approach

HTML Web Site

Apache Server Client

FIGURE 1-1
How a Web browser connects
to a Web site

In this example, the client connects to the Web server (in this case, an Apache
server) and requests an HTML page. When the client has connected, the Apache
server returns the requested page to the client. In this example, the Apache server
acts as a middleman for taking the requests and sending the responses back to the
client.

Figure 1-2 demonstrates the slightly more complex example of how an HTML
input form works.

Confirm

Send Form

Get Confirm

Submit Form

Request Form

Web Browser Apache and
HTML Site

FIGURE 1-2
How the client and server deal
with an HTML form

If you start at the bottom-right corner of this diagram, you can see that the very
first part is that the Web browser requests the HTML form. The Apache server then
responds and sends the form back to the browser. Next, the user fills in the form and
submits it back to the Apache server. Apache then sends a confirmation page back

www.thewebaddressofthesite.com
www.thewebaddressofthesite.com

to the client. By following the direction of the arrows, you can see how the process
works and how information is sent between the client and the server.

The next example, shown in Figure 1-3, demonstrates what happens when you
roll a database server into the mix. In this case, you not only are filling in the form
but you want to store the contents of the form in the database. For this to happen,
you need to include one extra step when the Web site receives the contents of the
form. The Web site must send out a confirmation page and put the data in the data-
base. Because putting the data in the database is a one-way process, no two-way
arrow is included in this figure.

The model shown in Figure 1-3 is virtually the same as before but with the extra
stage added. In addition to putting information into a database, you also need to be
able to retrieve information from the database to display the results. In Figure 1-4,
you get the client to request a form, fill in the request details (such as a search
form), and then query the database for the results and return them to the client.

10 Practical PHP and MySQL

ConfirmDatabase

Send Form

Get Confirm

Submit Form

Request Form

Web Browser Database Apache and
HTML Site

FIGURE 1-3
When a database
is thrown in, the
information flow is
a little different.

In this example, you begin by requesting the form from the server. The server
sends the form back to the browser, and the user fills in the information he needs
and submits the form. Next, the server receives the search string and requests from
the database the items that match the search term. The database then finds the data
and returns the relevant results to the server, which in turn sends the results to the
client.

The client/server examples described here use a fairly loose definition of the
different components (such as the database, server, and browser) in the models
shown. The reason for this is so that you can concentrate on how data flows between
the different major parts of the client/server system.

This last example (as shown in Figure 1-5) explains in detail how each step
works in terms of these components.

11CHAPTER 1 A New Approach

Database Web Browser Apache and
HTML Site

Find Data

Send Results

Request Data

Send Form

Submit Form

Request Form

Send Results

FIGURE 1-4
This is a common situation—the
user fills in a form and gets data
from the database.

Database Web Browser Apache and
HTML Site

Find Data

Send Results

Request Data

Send Form

Submit Form

Request Form

Send Results

5

6

7

2

3

1

4

FIGURE 1-5
Each number refers to a point
below.

1. The user types a Web address in a Web browser (the client) to access the site.
This connection also requests the HTML page containing the HTML form.

2. The browser connects to the Apache server, which has the HTML and PHP
files that form the Web site. Apache services the request (by following the
rules in its configuration file to find the relevant page and send it back) and
sends the client the Web page containing the HTML form.

3. The user fills in the form (in the Web browser) and submits the form to the
server.

4. The Apache server receives the submitted form and loads the relevant file
to handle the form submission. This file contains PHP code that is used to
connect to the database. This PHP code is passed to the PHP interpreter by
Apache and run by the interpreter. PHP connects to the MySQL database
(which may be on the same computer or another one; it doesn’t matter

which). When connected to the MySQL database, a request is made for the
information by using SQL, which is a language designed for communicating
with databases.

5. The MySQL database receives the SQL request and finds the information.
When the information is located, the result is sent back to the PHP script
that made the request.

6. The PHP script receives the result from the MySQL server and constructs
an HTML page with the results included before sending it back to the Web
browser client.

7. The Web browser receives the HTML result of the query and displays it to
the user.

Throughout this process, you’ll want to bear in mind a few key items. It is rec-
ommended that you read the following key points and then review the preceding
process to clarify any confusion.

To begin, the Web browser understands hypertext only; it does not understand
PHP. (Of course, the former is the assumption that one makes for all Web browsers
because they all are built to understand hypertext. Some browsers may understand
scripting languages such as JavaScript, but that example is out of the scope of this
discussion.) All communication to and from the Web browser is done in hypertext
(hence converting the results of the MySQL query to hypertext in Step 6). Another
point is that PHP is tightly linked with Apache on the server, and all database con-
nections/queries are executed by PHP. This tight integration involves the PHP
process being closely linked to Apache for high performance. PHP can be thought
of as the middle ground for accessing databases, files, XML, and so on, and this
middle ground sends everything out of the machine via Apache. MySQL should be
thought of purely as a data storage device that is useful only when something else
connects to it to add, remove, update, or request information. You can consider
MySQL as the equivalent of a hard disk for a computer; a hard disk is useful only if
there is software to access it and store data on it. PHP is the metaphorical equiva-
lent to this “software.”

SUMMARY

As with learning anything, PHP and MySQL development has a number of under-
lying concepts that need to be understood before you hit the nitty-gritty of the sub-
ject. The major concepts have been discussed in this chapter to provide a solid
foundation.

12 Practical PHP and MySQL

The next chapter moves on and teaches the core principles of PHP and MySQL.
You will discover the fundamental language bits and pieces, and then get straight
to writing an application. With each application, you will explore new concepts
and skills, and push your knowledge further, while always writing relevant Web
applications.

13CHAPTER 1 A New Approach

This page intentionally left blank

15

Getting Started with PHP
and MySQL

C H A P T E R 2

As the proud owner of Practical PHP and MySQL or a prospective owner rifling
though it in a bookstore—you will be pleased to know that this book consists of a
number of real-world Web applications that are built from scratch. Although the
main focus of the book is to teach you how to create these applications, it is impor-
tant to review some of the introductory aspects of learning PHP and MySQL. This
chapter provides a quick primer.

The intention of this chapter is not to be exhaustive, but to provide a solid intro-
duction to PHP and MySQL—enough to get you started writing applications. Many
PHP and MySQL books spend most of the time discussing abstract concepts that
don’t relate in any way, and you can often see the eyes of the readers physically
glazing over with sheer, unadulterated boredom. As a man who objects to any kind
of retina glazing, you won’t find this kind of content here. The grand plan is to show
you enough of PHP and MySQL to get started and then get on with the interesting
stuff: writing applications.

This chapter discusses core PHP language fundamentals such as loops and
variables and then moves on to cover how to create a database and access it from
PHP. The chapter concludes with coverage of sessions, a key technology used in
most Web applications. Although this chapter provides an introduction to these
concepts, the real action happens inside the applications you will write. Each proj-
ect provides a means to explore further into the many aspects of programming PHP
and MySQL Web applications, and the general ethos is of learning by doing instead
of learning by reading.

SETTING UP PHP AND MYSQL
When I started teaching people how to use PHP and MySQL, I would typically
teach it within the safe confines of a computer lab, complete with a network of per-
fectly set up and configured machines. My students would come to the course, learn
how to use the software, and leave incredibly excited about the potential that PHP
and MySQL gave them. Then, a few days later, I would start getting e-mails detail-
ing problems they were facing when installing PHP, MySQL, and Apache on Win-
dows, Linux, or Mac OS X. Although the computer lab was great for teaching the
software, the course back then did not cover installation—yet it was evidently such
a hurdle.

The problem is that PHP, Apache, and MySQL are really difficult to set up on
Windows. They are much easier to set up on Linux because the major distributions
typically include MySQL, Apache, and PHP packages, but on Windows it is a royal
pain in the nether region. Back then, I was somewhat stumped about what to do—
teaching the installation side of the software could take up a substantial amount of
time on the course.

Then, in a fit of pure genius, my colleague and friend Elliot Smith discovered
XAMPP (www.xampp.org/). XAMPP provides a complete PHP, Apache, and
MySQL Web development environment that can be installed by downloading,
unzipping, and running the software. XAMPP makes the installation dramatically
easier, and the software also includes a raft of additions and extras that are gen-
uinely useful, including PHP extensions, a Web front-end for MySQL (which is
used throughout the book), and more. XAMPP is freely available for Windows,
Linux, Mac OS X, and Solaris.

It is recommended that you use XAMPP for setting up the software if you have
never done it before. The following sections cover how to set up XAMPP on Win-
dows and Linux.

Setting Up XAMPP on Windows
To begin, download the latest XAMPP installer from www.xampp.org/. Double-click
the installer and follow the instructions. After installation, load the XAMPP Control
Panel by clicking Start > Programs > XAMPP.

Setting Up XAMPP on Linux
To begin, download the latest XAMPP release from www.xampp.org/. Next, copy
the installation file to /opt and then unzip it. If you don’t have an /opt directory,
create it with ‘mkdir /opt’ as the superuser. If you don’t have sudo installed on your

16 Practical PHP and MySQL

www.xampp.org/
www.xampp.org/
www.xampp.org/

computer, you can become the superuser by running ‘su’ and entering your super-
user password.

To copy the file to /opt:

foo@bar:~$ sudo cp xampp-linux-x.x-x.tar.gz /opt

To move to /opt and unzip the file:

foo@bar:~$ cd /opt
foo@bar:/opt$ sudo tar zxvf xampp-linux-x.x-x.tar.gz /opt

A stream of files is now unpacked into a directory called lampp. Currently, all of
this unpacking has been done as the superuser, yet you will want your normal user
account to be able to write to the htdocs directory, so change the permissions on the
directory:

foo@bar:/opt$ sudo chmod –R a+rw /opt/lampp/htdocs

You are now all set to run XAMPP:

foo@bar:/opt$ sudo /opt/lampp/lampp start

You can also stop XAMPP:

foo@bar:/opt$ sudo /opt/lampp/lampp stop

You can now save your PHP code in /opt/lampp/htdocs and access your new
XAMPP server in your Web browser at http://localhost/.

17CHAPTER 2 Getting Started with PHP and MySQL

N O T E
XAMPP Control Panel for Linux

Rather disappointed with the nice graphical XAMPP Control Panel for
Windows, I wrote one in Python for Linux, and it is now included with the
official XAMPP release. You can find it in /opt/lampp/share/xampp-
control-panel. Just run it like this:

foo@bar:/opt/lampp/share/xampp-control-panel$ sudo ./xampp-

control-panel

GETTING STARTED WITH PHP
PHP and HTML are good friends. Working side by side, the PHP and HTML pals
are so reliant on each other that it is virtually impossible to tear them apart.
Whenever you do any kind of Web development, you use PHP and HTML

http://localhost/

interchangeably on the vast majority of scripts that you write. Both your HTML and
PHP code will reside in any files that end in .php.

To begin, you’ll create a simple page that contains some HTML. Create a new
file, and call it 1.php. Add the following code in the file:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>

<title>Tough first script</title>
</head>
<body>

<h1>The very first script</h1>
<p>
This is the first script!
</p>

</body>
</html>

In this example, you are writing some HTML to construct a simple Web page.
This HTML first selects a suitable DOCTYPE (the dialect of HTML to use) and then
goes on to set the title of the page (the text in the window border) with the <title>
tag. Next, a large heading with the <h1> tag is added before then supplying the
memorable words This is the first script! inside a paragraph (indicated by the
<p> and </p> tags). If you have a burning ambition to change the memorable words
to something else, so be it.

18 Practical PHP and MySQL

N O T E
Running Your Code

When you create the files that store your code, make sure to place them in
the directory that your Web server reads for files. This directory is typically
called htdocs. If you are using XAMPP, this directory is called
/opt/lampp/htdocs on Linux, and in Windows it is the htdocs directory
inside the directory where you installed it.

To run your code, remember that http://localhost points to this htdocs
directory. As such, if you want to access 1.php, go to http://

localhost/1.php in your Web browser.

You may have noticed that this code has been stored in a file that has a
.php extension instead of the .htm or .html extension. This is because all PHP
scripts that you will use are ultimately converted into text that the Web browser can

http://localhost
http://localhost/1.php
http://localhost/1.php

understand. You should always remember that the Web browser has no idea what
PHP is. The Web browser understands text, HTML, and CSS only. It is the Web
server that runs PHP that does the job of processing the PHP before sending the
text, HTML, or CSS back to the browser.

Add a PHP block into your code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>

<title>Tough first script</title>
</head>
<body>

<h1>The very first script</h1>
<p>
This is the first script!
</p>
<p>
<?php

echo "This is PHP code";

?>
</p>

</body>
</html>

In this example, you created another paragraph block and added a PHP block
inside it. If you run the script again, you will see another line of text that displays in
your Web browser.

19CHAPTER 2 Getting Started with PHP and MySQL

Q U I C K T I P
In this book, the code shown in bold represents new code that is added to
your script.

When you want to use PHP code, encase the PHP commands within the <?php
and ?> tags. These two tags indicate the start and end points of a PHP block, and
anything between these tags will be fed to the PHP interpreter and digested. You
can think of these tags behaving in a similar way as the HTML <!— and —> comment
tags, where everything inside those tags is considered a comment.

Remember how the Web browser doesn’t understand PHP? To demonstrate this,
look at the source code in your Web browser (usually by clicking View > Source
Code). As you can see, there is no PHP in there. What happens is that the PHP

interpreter on the server reads any PHP commands, executes them, and spits out
HTML as the final output. In this example, the PHP echo command was used to
send the contents within the double quotes to the Web browser. Each command in
PHP ends in a semi-colon (;), and you can see it at the end of the echo command.

20 Practical PHP and MySQL

N O T E
Using HTML Within PHP

You can use HTML tags within the PHP echo statement. The purpose of an
echo statement is to send information to the browser, and if you want to
embed HTML tags or other content (such as CSS or JavaScript) that is read-
able by Web browsers, you are free to do so. For example, change the pre-
ceding echo line to this:

echo "This is PHP code";

In this line, you are using the HTML tag to make a part of the echo
statement bold. This is an incredibly useful and often used feature in PHP.

Remember that you can only put HTML tags inside legitimate PHP com-
mands. You can’t just dump HTML inside a PHP block like this:

<?php
Boogaloo with my didgeridoo

?>

Everything inside the <?php and ?> tags is expected to be PHP, and the
 tags are HTML (not PHP).

Using Variables
Variables are the bread and butter of any programming language. A variable is a
small portion of memory that stores a particular piece of information. Imagine for a
second that you have a cardboard box and a pen in your hand. You now decide to
store your favorite CD in the box. To better remember what is in it later, you write
‘favealbum’ on the front of the box. You now know that if you look at the box and see
‘favealbum,’ you will remember that you have your slightly embarrassing Lep-
rechaun Hits Volume 1 CD in there.

This is exactly how variables work, except that a variable stores information. In
your program, you can create a variable to store some information and then refer-
ence what is in that variable by the name of the variable itself. This is best
explained with an example.

Create a new file called simplevariable.php and add the following code:

<?php

$monkeys = 10;

echo "Number of monkeys: " . $monkeys;

?>

All variables in PHP begin with a dollar sign ($). In the preceding example, you
first create a variable called $monkeys and then used the = sign to set this to the
value 10. This is the common way to create a variable in PHP; you simply pick a
variable name out of thin air (in this example, my love of monkeys has been
indulged) and then set the variable to store a particular value. With $monkeys cre-
ated, you can now read the code and mentally replace $monkeys for the value 10
when you see it.

One important note at this point, particularly for those of you with prior experi-
ence in other programming languages, is that you do not need to indicate what type
a variable will be in PHP. In other languages (such as C/C++), you would need to
indicate that a variable containing a number is an integer variable. PHP is different
and figures out what the type is when you use the variable.

With the variable set, it is then used in the next line in which the echo com-
mand is used to first display Number of monkeys: and then the value of $monkeys is
displayed next to it. When you run the script, you should see the following output:

Number of monkeys: 10

This echo line uses a technique called concatenation. This bizarre-sounding
act provides a simple method of stringing together bits of text (called strings)
with the contents of variables. To do this, you use the . symbol (called the concate-
nation operator) to glue together whatever is on the left and right sides of the
dot, or period. In the preceding code, the part on the left side is the text Number of
monkeys: and the part on the right is the contents of the $monkeys variable.

Concatenation is an important but often slightly confusing topic. It does take a
little while to get used to, particularly when using more complex examples. As an
example of this, change the echo line above to the following line:

echo "You have " . $monkeys . " monkeys!";

In this line, you used the concatenation operator twice to glue an additional part
onto the line. If you read the line from left to right, you can see how You have is then
glued to the value of $monkeys (10), which is then glued to monkeys.

21CHAPTER 2 Getting Started with PHP and MySQL

PHP as a Simple Calculator
When you have the ability to create variables, you also have the ability to perform
some simple mathematic calculations on them. For those of you who shudder at the
thought of math, fear not; you will explore some of the common mathematical uses
you will need in PHP.

To begin, create a new file called simplemath.php and add the following code:

<?php

$cds = 50;
$tapes = 60;

$total = $cds + $tapes;

echo "You have " . $cds . " cds and " . $tapes
. " tapes with " . $total . " items!";

?>

In this example, you first created two variables, called $cds and $tapes, that
have numbers stored in them. (If you are reading this book in 2020, tapes were
items that stored music on them, a bit like your AstroDisks.) The sixth line of code
then uses the + sign to add the $cds and $tapes variables together and stores the
result in the $total variable. The final echo line then concatenates all of the vari-
ables into a single line that explains how many CDs and tapes there are and the
total number of items available.

A number of symbols can be used when performing math. Some of the most
common are covered in Table 2-1.

22 Practical PHP and MySQL

OPERATOR DESCRIPTION EXAMPLE

+ Addition $total = $cds + $tapes;

– Subtraction $total = $cds – $tapes;

* Multiplication $total = $cds * $tapes;

/ Division $total = $cds / $tapes;

TABLE 2-1 Math Operators in PHP

One of the great benefits of PHP has been its batteries-included approach to
functionality. To help solve a range of problems, a number of facilities and functions
are built right into PHP. For example, some numbers don’t divide easily. Imagine
that you need to split a range of news stories across a number of different pages. To

calculate how many pages you need, you can take the number of stories and the
number of entries you want on each page and then divide the number of stories by
this page size. The result of the calculation will give you how many pages you need.

Add the following code to a new file called simplemath2.php:

<?php

$stories = 43;
$pagesize = 8;

$pages = $stories / $pagesize;

echo "You will need " . $pages . " pages";

?>

When you run this script, you will see the result is 5.375 pages. Obviously, this
is no good because you need a whole number. To solve this problem, you can use
the floor() function to round the value down or the ceil() function to round up.

23CHAPTER 2 Getting Started with PHP and MySQL

N O T E
Functions? Huh?

If you are new to functions, they are fairly straightforward to understand.
A function is a chunk of code somewhere else that does something for you.
For example, the floor() function rounds something down for you. Some-
where, deep in the PHP machine, a chunk of code actually does the work of
rounding the value down. You can reference this functionality with the func-
tion name: floor().

To use a function, specify the name of the function and then include brack-
ets at the end. The brackets are used pass information to the function. For
example, floor() is pretty useless unless you send the function a value to
convert. You put this value inside the brackets. These values are called
parameters.

We will cover functions and how to roll your own later in this chapter.

Try the following code in simplemath3.php to see how this works:

<?php

$stories = 43;
$pagesize = 8;

$pages = $stories / $pagesize;

echo "Rounded down: " . floor($pages)
. " Rounded up: " . ceil($pages);

?>

To use these handy functions, you put the variable you want to convert between
the brackets in the function.

24 Practical PHP and MySQL

N O T E
No Batteries Required

As you learned in Chapter 1, PHP is very much a batteries-included lan-
guage and includes a huge range of functions that solve a huge range of
common challenges. Throughout this book, you will learn to use a range of
functions that are common in typical programming situations.

To find out more about a function, just visit www.php.net. Add the func-
tion after a slash, such as www.php.net/floor, to find out more about
floor().

Arrays
One of the most useful types of variable is an array. This special variable gives you
the ability to store more than one piece of information in a single variable. Imagine
that you are storing a list of your favorite choices in a program. You may want to
store the following choices:

Favorite Choice
Color Blue

Food Mexican

Pastime Swimming

Music Metal

In this list of things to store, a clear relationship exists between the item on the
left and the item on the right. This is called a key-value pair, or an associative
array. With one of these pairs, you have a key (such as Color) and a value that the
key is set to (such as Blue). Arrays are perfect for storing these relationships.

There are a few methods of creating arrays. The first is to use the following format:

$arr['Color'] = "Blue";
$arr['Food'] = "Mexican";

www.php.net
www.php.net/floor

In this example, you created a new array called $arr. Inside the brackets, you
specified the key that you wanted to set in the array and then passed the value in
the same way you created a normal variable. In the preceding two lines, you created
two entries in the array.

If you would prefer to use a function to create the array, use the following format:

$arr = array("Color" => "Blue", "Food" => "Mexican");

In this example, you used the array() function to specify the key and then the
matching value is specified after the => symbol. Commas separate each of the dif-
ferent entries in the array.

Arrays are used extensively when dealing with database information. You store
information from the database record in a row, and the key will be the field name.
This will make far more sense later when you connect to MySQL and bring some
data into PHP.

Loops
When you code in any programming language, it’s helpful to shut your eyes and
think of an imaginary stylus that moves through your program, pointing at the cur-
rent line of code. This stylus will start at the top of the script and move down, read-
ing each instruction in turn.

When this imaginary stylus hits a loop statement, the code in the loop section
will be repeated as long as a specific rule is adhered to. This rule is called a loop
condition. Loops are useful for such purposes as looping through rows from a data-
base, creating numbered lists, and more.

The for Loop
One of the most useful loops is the for loop. To see this in action, create a new file
called forloop.php and add the following code:

<?php

for($i=1; $i<10; $i++) {
echo $i . "
";

}t

?>

When you run this example, you should see the numbers 1 to 9 displayed each
on a separate line. The for loop is dependent on the three conditions inside the
brackets. These conditions are:

25CHAPTER 2 Getting Started with PHP and MySQL

$i = 1; This part is where the loop begins. In this case, the loop begins
with 1.

$i<10; This is where the loop finishes looping. In this example, the loop
will continue while $i is less than (indicated with the < operator)
10. This is why the loop loops until 9; the number 9 is less than
10, but the number 10 is not 10. If you wanted to loop from 1
to 10, you would change the operator to less-than-or-equal-to, or
$i<=10.

$i++ This final part determines how much the loop will increment each
time. In this example, $i++ is shorthand for $i = $i + 1. This
means that the loop will increment by 1 each time.

The for loop is particularly useful for repeating between a defined range of val-
ues. For example, you could use a for loop to populate a drop-down box that is used
to select the day part of a date of birth. You would use it to loop between 1 and 31 to
fill the box with possible day values.

The while Loop
The other type of loop that is used extensively in PHP is the while loop. A while is
particularly useful because it simply keeps looping while the loop condition is true.
This is commonly used to iterate through database records.

The while loops are difficult to demonstrate because they are most typically
used in real-world examples that uses code not yet covered in this book. To provide
a simple example, however, add the following code into a file called whileloop.php:

<?php

$age = 1;

while($age < 18) {
echo "You are age " . $age . " and still not an adult
";
$age++;

}

echo "You are now an adult!";

?>

In this example, you first created a variable, called $age, that is set to 1. You
then created a while loop that repeated the code between the { and } brackets while
$age is less than 18. Inside the while loop, a line is printed out indicating the cur-
rent age, and then the $age variable is incremented by 1 each time with the $age++
line. With this value increasing each time, the loop will loop 17 times. The loop will

26 Practical PHP and MySQL

not loop 18 times because 18 is not less than 18; it is equal to 18. Finally, a line is
displayed to indicate that adulthood has been reached.

An important point to note is what would happen if you left off the $age++ line.
If you create a while loop in which it loops while a particular condition is set, but
that condition never changes, an infinite loop will occur. This is never a good thing,
and you should always check your loop to ensure that it will eventually end when
you want it to. If you are running your scripts on somebody else’s server and get into
an infinite loop, you may get some angry emails. Always check that the while has
some means of ending.

You will revisit while loops later when you explore other facets of PHP pro-
gramming, particularly database development.

27CHAPTER 2 Getting Started with PHP and MySQL

W A R N I N G
Be Careful!

One common mistake you can make with a while loop is to set the loop
condition to something that doesn’t change, and as such, causes the while
loop to loop forever. This is known as an infinite loop. For example—don’t
run this—here is an example of an infinite loop:

<?php
$age =1;
while($age == 1) {
echo "Argh! Infinite loop!";
}
?>

Here, the loop cannot break out of the of $age being set to 1 and as such
loops forever. This causes an insane slowdown on your computer, and you
will probably need to restart your Web server or XAMPP if you are using it.

Ask Questions of Your Code
One of the most fundamental purposes of a programming language is to check a par-
ticular condition and respond where necessary. A good example of this is if you
were to type an age into a Web form, and you wanted to return a response based on
the user’s age. For example, you may want to respond to the user differently if she is
a child as opposed to an adult. This is a common theme among Web sites contain-
ing content that may be unsuitable for minors; the user is prompted to enter her age
and is denied access if the age is below a certain threshold.

There are two major types of conditional to explore here: the if and switch

blocks. The if statement is useful for asking a single question of a particular condi-
tion, whereas a switch is useful for checking whether a particular value meets any
one of a number of options.

The if Statement
The if statement is used extensively throughout PHP development. You use if to
check conditions across different pages in a variety of different ways. To get started,
you’ll first create a very simple example. Add this code to a file named if1.php:

<?php

$age = 21;

if($age == 21) {
echo "Congratulations!";

}

?>

In this example, you first created a variable called $age and set it to 21. You
then used the if statement to check if $age is equal to 21 and if it is, the text Con-
gratulations! is displayed in the browser. The magic in this statement happens
between the brackets. You may have noticed that two equals signs are used instead
of a single equals sign. This is important. When you use two equals signs in your
code, you are comparing the values on either side. In the preceding example, the
use of the two equals signs compares the $age variable and the value 21. If you use
a single equals sign, the variable on the left is set to the right value.

In the previous example, the if check was fairly straightforward. The problem
with the previous example, however, is that it only caters for a match. In many
cases, you need to check when the if does not match.

To achieve this, you can bolt on an else to the if block. This small addition will
execute some code when the if doesn’t match.

28 Practical PHP and MySQL

N O T E
Horrifically Ageist?

You may have noticed that many of the examples here are age related. This
can mean one of two things: I am either horrifically ageist or about to have
a mid-life crisis. Well it’s neither, drama fans. Age is just a great subject for
sample programs.

Add the following code to if2.php:

<?php

$age = 21;

if($age < 18) {
echo "Congratulations! You are a kid";

}
else {

echo "Just a normal age";
}

?>

In this example, you changed the if condition to check a range. In the condition
(within the brackets) the if checks to see whether the value of the $age variable is
less than 18. If it is, the if code is executed; if not, the else code is executed.

The switch Statement
Although the if statement is incredibly useful, it is only really practical for making
comparisons against single values. If you want to make a series of choices avail-
able, you would need to resort to a number of if statements to check whether each
choice has been selected. A switch prevents having all multiple if statements and
provides a single, clean method of achieving this.

Add the following code to switch.php:

<?php

$choice = 2;

switch($choice) {
case 1:

echo "You picked choice #1 - well done!";
break;

case 2:
echo "You picked choice #2 - well done!";

29CHAPTER 2 Getting Started with PHP and MySQL

T I P
Always Check for the Equals Signs

When you are new to a language, subtleties such as the == or = issue can
often trip you up. When you get errors in your code, always check to see
that you have used the correct equals signs.

break;

case 3:
echo "You picked choice #3 - well done!";

break;

default:
echo "You did not pick a valid choice!";

break;

}

?>

In this example, you first create a variable, called $choice, that is set to 2. This
variable is then fed into a switch statement that analyzes $choice. Within the
switch block are a series of case entries. The first case (case 1:) is applied if the
value of $choice is 1. If it is, the code between the case and the break statement is
executed. The other two case statements apply if $choice is equal to 2 or 3 respec-
tively. Finally, in all other cases, the default section will be executed.

The switch statements are very useful in examples such as this, when you need
to check whether the value is equal to a variety of different conditions.

Using Functions
Earlier you learned how to use the floor() and ceil() functions. These small but
useful facilities in PHP provide a handy method of solving specific, directed prob-
lems. In the case of floor(), if your problem is that you need to round something
down, floor() comes leaping to your assistance and provides a simple means of
converting the value.

PHP includes functions for a huge range of problems. Areas such as file han-
dling, arithmetic, validation, forms, XML, networking, and more are packed with
hundreds of functions for a wide variety of tasks. These functions have been
designed by the PHP developers to provide an easy way of solving these specific
tasks.

Although these functions exist in the PHP language, you also have the ability to
create your own functions. Rolling your own functions is typically useful when you
have specific processing that needs to be applied to something in your project. For
example, you may need to take a base price and then automatically add onto other
various costs until you reach your final price.

30 Practical PHP and MySQL

<?php

function calculatePrice($price) {
$manufacturingcosts = 10.50;
$pretax = $price + $manufacturingcosts;
$tax = ($pretax / 100) * 20;
$total = $pretax + $tax;

return $total;
}

echo calculatePrice(304);

?>

In this example, you created a function to add two primary costs onto the price.
First was a stock 10.50 manufacturing cost. Second was the 20% needed for the tax
office.

The first step is to create the outer shell of the function. On the first line, you
use the function keyword to create a new function called calculatePrice(). Inside
the brackets of the function, you include $price. This refers to a single parameter
that is being used by the function. This parameter is a channel in which you can
feed data into the function. When you actually use the function later in the exam-
ple, you will replace this parameter with whatever data you want to be processed.

Between the { and } brackets is the main body of the function. This is where the
actual processing occurs. Looking at the costs to add on, the first cost is manufac-
turing. To achieve this, you first create a new variable called $manufacturingcosts
and set this to 10.50. The next line creates a new variable called $pretax and adds
the value that is being passed into the function ($price) and the $manufacturing-
costs variable.

The next step is to calculate the right amount of tax. To do this, a new variable
called $tax is created, and then the calculation in brackets is made, the total of
which is divided by 20 to determine the final amount. This amount is then added to
the $pretax variable.

The final part of the function is the return $total line. The purpose of this line
is to specify which variable contains the result that the function has processed. By
using the return keyword, the function can now be used like any other function in
PHP and will output the processed data as you would expect. This return line sim-
ply sends back the result to the line that called the function.

Finally, the function is executed by passing 304 as the value to it. The result of
the function is echoed out to the screen. The result of 377.4 is then displayed; 377.4
is the value that was returned with the return line.

31CHAPTER 2 Getting Started with PHP and MySQL

Working with Forms
If you do any kind of Web development, you will come across forms in your daily
programming. These unsuspecting creatures reside on Web pages, suck information
from you through your fingers, and are then processed by a script on the server.

Dealing with forms involves two processes. First, the displayed form needs to
capture all the relevant information. Second, you read in the form and process it
when the user clicks the Submit button.

The first step is performed with HTML, to use the wide range of HTML form
elements to produce the form on the page. To get started, add the following code to
form1.php:

<form action="form1.php" method="POST">
Username <input type="text" name="username">

Password <input type="password" name="password">

<input type="submit" name="submitbutt" value="Login!">

</form>

In this example, you create a simple form that contains three different ele-
ments. These elements work together to create a login form.

On the first line, is the opening <form> tag. This tag takes two primary attrib-
utes. The first (action) needs to know the location of the script that will process the
form. In this example, the action contains the name of the file with the form in it
(form1.php), so the code to process the form is assumed to be in the same file.

The second attribute (method) can contain either GET or POST. This refers to how
the data will be transferred to the action script. These two types of method are very
different:

■ POST: When you use the POST method, the data entered into the form is trans-
ferred to the action behind the scenes. The user has no visual cue as to what
the data is; it will be transmitted non-visually. Although you cannot see it,
there are still methods of accessing POSTed data, so it should not be consid-
ered 100% secure.

■ GET: When you use the GET method, the data from the form is appended to the
end of the URL as a series of variables. For example, if you were to fill in the
preceding form and use the GET method, you would see http://localhost/
form1?username=jono&password=secretpass&submitbutt=Login%21 in the
address bar of your browser, assuming you typed jono and secretpass into
the form. When you use the GET method, be careful that no sensitive informa-
tion is displayed in the URL, such as a password!

32 Practical PHP and MySQL

http://localhost/form1?username=jono&password=secretpass&submitbutt=Login%21
http://localhost/form1?username=jono&password=secretpass&submitbutt=Login%21

After the <form> tag has been displayed, the next step is to display each form
element. The majority of form elements are added with the <input> tag and then
relevant options are selected with the type attribute in the <input> tag.

The first field added is a normal text box. This provides a single line box in
which the user can type some text. To select this type of element, use the text set-
ting in the type attribute. You also should give the tag a name attribute. You will use
the value of the name attribute to refer to the contents of the box later.

The second field added is a password box. When you use password in the type
field of the <input> tag, the box behaves the same as a text box, but it disguises the
data the user enters with stars or circles.

The final box added uses the submit type. This provides a clickable Submit
button that can be used when the user has clicked the form. The additional attrib-
ute passed to this tag is value; this pre-fills the widget with data. In the case of the
Submit button, the value attribute changes the text displayed on the button.

33CHAPTER 2 Getting Started with PHP and MySQL

N O T E
Web Editors

A number of Web editors help you to write HTML more efficiently. A good
example is a tool called Bluefish (http://bluefish.openoffice.nl) available
for Linux. With it you can use toolbar buttons to add form elements easily.
A number of handy editors like this are available all operating systems, such
as SciTE (http://www.scintilla.org/).

Processing the Form
Displaying a form and not processing it is just short of useless. To do anything use-
ful with the form data, you need to hook up the form to some PHP that can process
the data.

To process a form, follow these steps:

1. Determine whether the submit button variable exists. If the user has clicked
the button, you can make the assumption that the form has been displayed
and that the Submit button has been clicked.

2. If the Submit button has not been clicked, you should assume the form has
not been displayed yet, so you display it.

3. If the Submit button has been clicked, you then process the form.

http://bluefish.openoffice.nl
http://www.scintilla.org/

To demonstrate how this process works, create a new file called form2.php and
add the following code:

<?php

if($_POST['submitbutt']) {
echo "username: " . $_POST['username'] . "
";
echo "password: " . $_POST['password'] . "
";

}
else {
?>

<form action="form2.php" method="POST">
Username <input type="text" name="username">

Password <input type="password" name="password">

<input type="submit" name="submitbutt" value="Login!">

</form>

<?php
}

?>

When understanding this code, it helps to put yourself in the position of the
PHP interpreter and assume you have never sent the page before. The very start of
this example contains the if statement. This line checks to see if the Submit button
has been clicked. This is determined by checking if there is a GET variable with the
same name as the Submit button (submitbutt).

In PHP, a number of special commands can be used to access certain types of
variables. In this particular example, you are using $_POST['submitbutt'] to refer
to the submitbutt POST variable. If you were to use GET as the method, you also
could use $_GET['submitbutt'].

34 Practical PHP and MySQL

N O T E
Super What?

The $_GET and $_POST features in PHP are known as superglobals in PHP
lingo and they are used to access different types of information. As an
example, $_GET is used to access GET variables.

The if line simply checks to see if this variable exists. If the variable exists, the
contents of the other GET variables are then displayed on the screen by referencing
them in the same way. If the variable does not exist, you need to assume the form
has not been displayed yet, and the else is run. You can see how to actually break

out of PHP mode to display the form and then return back to PHP mode at the bot-
tom of the code to close off the else block with the final } bracket. This is the com-
mon way in which forms are displayed and processed. Using this method means
that you can keep your form processing and form tags on the same page for ease of
access.

To clarify this, these are the steps in which the form is processed:

1. The page is loaded and a check is made to see if the submitbutt POST vari-
able is present. Because you have not even seen the form yet, the answer is
no and so the code in the if block is skipped.

2. The else is executed, and the form is displayed.

3. The user enters some information and clicks the Submit button. The browser
then checks the action and accesses that page using the POST method.
Because the action specifies the same page name, the page is reloaded.

4. The page reloads, and the if again checks if there is a submitbutt POST

variable. This time there is, so the if code is executed and the username/
password details are displayed.

ROLLING IN MYSQL
At this point in your adventure into PHP and MySQL, the MySQL side of the bar-
gain has remained errant. Up until now, the focus has been on learning the core fun-
damental features behind the PHP language, but it is now time to shift this focus. It
is now time for MySQL.

A typical database consists of a number of different parts. These different parts
are outlined in Figure 2-1.

35CHAPTER 2 Getting Started with PHP and MySQL

Products

BizCorp Products Web Site

Categories

MySQL
Server

FIGURE 2-1
How a database works

The top level is the main MySQL Server. The server contains all of the other
parts in the diagram. Many people get confused by the term server and think that it
must be some kind of hardware. The word server actually has a dual meaning, refer-
ring to both hardware designed to serve things and software designed to serve
things. In the case of MySQL, we are referring to a software server.

Within the MySQL server, you then may have a number of databases. This is
another area in which newcomers to database development sometimes get con-
fused. When you use MySQL, you can actually have a number of databases within
the same server; you are not limited to just one. As such, you could run a single
MySQL installation on a computer and run databases for your main company, a
products database, and your Web site.

To now shift the focus to a specific database inside the server, you can see a
number of tables. Each database stores its data in a series of tables that can relate
to each other in different ways. Table 2-2 shows a typical table from a database.

36 Practical PHP and MySQL

FORENAME SURNAME

Craig Tucker

Lee Jordan

TABLE 2-2 An Example Database Table

Every table consists of rows and columns. In database parlance, columns are
referred to as fields, and rows are referred to as records. When you create data-
base tables, you define what kinds of information you want to store in your fields
(the columns), and then each entry in the database is stored as a record (the rows).

An Example: Product Database
In this example, you will create a database that stores product information. The
kind of information you want to store includes:

■ Product name

■ Category

■ Price

■ Product description

This content is very typical of the kind of information that you usually want to
put in a database. Before you create any database, it is a good idea to write down the
kind of data that you need to deal with; this makes it easier when designing your
tables.

Designing the Table Structure
With a clear understanding of the kind of data that needs to be stored, the next step
is to develop a table structure that is suitable for storing the data sensibly and with-
out reproducing data unnecessarily.

37CHAPTER 2 Getting Started with PHP and MySQL

N O T E
Learning Database Theory

It should be noted that database design is a huge subject, and there simply
isn’t the space in this book to provide a thorough explanation of database
design theory and referential integrity. If you are new to database design
and would like to understand how to design a solid database structure,
consult your local bookstore and take a look at one of the many books on
the subject.

In this example, you will use two tables to store the data: a products table and
a categories table. The products table will contain the following fields:

■ id

■ cat_id

■ product_name

■ description

■ price

Whenever you create a table, it is essential that you have a means of pulling out
a unique record. To do this, you need to be able to identify certain fields, or groups
of fields, that can assist you in adding uniqueness when pulling out a specific
record. For example, if you were storing a list of customers, you might think that
you could reference a unique record by searching for the name. This would not
work, however; a number of people share the same name and, hence, are not
unique. Another option is to search for the name AND the postal code. Again, this
would not work because there may be more than one person with the same name liv-
ing in the same postal code. This may be unlikely, but the point is that you should
not base this uniqueness judgment on likeliness—it absolutely must be unique.

The solution to this problem is to create an additional field that contains a
unique ID number for that record. Each time a new record is added to the database,
this number will be increased by 1, and as such you will have this unique ID by
which you can reference each record. MySQL includes support to make this unique
number very easy to implement. In the field list for the previous products table, the

very first field (the id field) stores this unique number. This unique field (be it a
unique number or some other unique field such as a username) is called a primary
key. You will use primary keys throughout the book.

The second field in the previous list is cat_id. This field is called a foreign
key and will be matched to the primary key of the categories table, discussed
next. The other fields in the table contain generic information about different
aspects of the product.

The categories table contains a series of fields that pertain to the different
types of product categories. This table includes the following fields:

■ id

■ category

As you can see, this table is rather simple, because the aim of the table is sim-
ply to provide a means to store information about the category. In this simple exam-
ple, you will just store the name of the category in the table as well as its primary
key field.

How the Tables Relate to Each Other
With the two tables designed, it now makes sense to discuss how they relate to each
other. The relationship that is created between the two tables is performed by
matching certain types of information. In these two tables, this match is made
between the id field in the categories table and the cat_id field in the products
table. If both fields contain the same number, a relationship exists.

When you add records to the products table, instead of adding the text name of
the category in the cat_id field, you instead store the id value associated with the
relevant category. For example, if the first category in the categories table is Swim-
ming and has an id of 1, you would store the number 1 in the cat_id field of the
products table for a swimming-related product. Later, when you write code to pull
information from the database, you can make use of these different relationships to
pull different types of information.

At this point, you may be wondering what the benefits are of separating this
information into separate tables. Why not just include the name of the category in
the field? There are various practical reasons for this separation, as follows:

■ The first benefit becomes obvious when you want to change the name of the
category. If you wanted to broaden the category from Swimming to Water

Activities, for example, you would need to go through each record and
change the field manually. If you used two tables to separate the data, you

38 Practical PHP and MySQL

would need to change only a single record to adjust the category, and then
the changes would be reflected in all related records.

■ If you use separate tables, you can associate more information with the cate-
gory. There is no reason you could not add extra fields in the categories
table later to add features such as a description of the category, category
icon, translated definitions, and more.

■ A big reason for extracting data into separate tables is ease of use. If you
have a single table with a huge number of fields, it looks a lot more complex
and difficult to deal with. It is better to have a number of simple, smaller
tables.

■ If you spread your data across a number of smaller tables, your database will
perform more efficiently, because it will not need to trudge through endless
amounts of irrelevant data.

Separating your information into different tables has a number of benefits, and
it is certainly the right way to develop database-driven applications. You will see
many examples of how this separation of data across tables works throughout the
book.

Creating the Database
The next step is to actually turn this theory into something you can see, touch, and
work with. To do this, you need to make use of your database client. In this exam-
ple, you will make use of phpMyAdmin, a tool included with XAMPP, to create the
database.

First, open your Web browser and connect to phpMyAdmin by accessing
http://localhost/phpmyadmin/. A login screen displays in response. If you have only
just installed MySQL, or XAMPP, use the username root with no password. If you
are working on a shared computer, change your root password by first connecting to
the server with the following command:

mysql -u root mysql

Now issue the following SQL query

SET PASSWORD FOR root@localhost=PASSWORD('chinnyraccoon');

Obviously, replace the password in the parentheses with your own password.

After you have logged into phpMyAdmin, you will see a frame on the left side of
the screen that is used to list databases and tables (nothing will be selected cur-
rently). In the main body of the screen is a box in which you can type a database

39CHAPTER 2 Getting Started with PHP and MySQL

http://localhost/phpmyadmin/

name to be created (see Figure 2-2). In this box, type productsdb and click the Cre-
ate button. You now see the productsdb database appear in the left frame. Ordinar-
ily, your tables are listed under the database name on the side, but no tables have
been created yet.

40 Practical PHP and MySQL

FIGURE 2-2 Creating a new database is simple in phpMyAdmin.

Creating the Tables
In the main body of the screen is a box that you can use to create a table. In this
box, type the name products and give it 5 fields. You will then be presented with
the table design screen. As shown in Figure 2-3, there are five rows with a number
of different boxes to configure each field in the table. The majority of these boxes
will be irrelevant in this simple example.

Before you create the fields, it’s necessary to discuss the concepts of types in
MySQL. In any kind of database programming, the kind of information you store
inside the database has different characteristics depending on what type of infor-
mation it is. For example, if you store a float in a database (a float is a number with
a decimal place, such as 21.45), more memory is required to store this type of infor-
mation than storing an integer (a whole number, such as 35). In addition to this, dif-
ferent numbers of have different ranges. For example, the TINYINT type in MySQL
can store any whole number between –128 and 127. As a contrast, the BIGINT data
type can store anything from –9223372036854775808 to 9223372036854775807.

In terms of memory usage and performance, there is the difference between
storing a 1-byte value with TINYINT and storing an 8-byte value with BIGINT.
Throughout this book, you will be using the major MySQL types extensively, and
each example will explain why the relevant data type has been selected. This
should give you a solid, practical idea of how different data types should be used.

Without further ado, it’s time now create the tables. In the first row of the Field
column, add id as the name of the field. In the second column (Type), select the
data type as MEDIUMINT; this will provide access for up to 8388607 products.
Remember that this id column requires a unique value for each product, so you
need to ensure that the data type is large enough to cater for the potential number of
products you will need. Continue along the row, and then select the Extra box and
select auto_increment from it. This option automatically fills the id field for you
when you add a record. With this option enabled, each new record is given a value
in the id column that is 1 larger than the id in the previous record. With
auto_increment set, you can effectively ignore the id field and it will look after
itself. The final option to set is the first radio button (it has an icon of a small key
and a table). By selecting this option, you are making the field the primary key, and
the database will not allow a duplicate value in this field. If you combine this option
and auto_increment as done here, you can be assured that you will have a reliably
unique primary key.

41CHAPTER 2 Getting Started with PHP and MySQL

FIGURE 2-3 The table design screen has a lot of options; use the scroll bar to
move along them.

Now, go through each row in turn and add the following fields:

■ cat_id: Add cat_id to the Field column and assign the type of TINYINT.
Having more than 127 categories is unlikely, so this is a suitable type. You
don’t need to provide a length.

■ product: Add product to the Field column and assign the type of VARCHAR.
You can use this type when you need to store fewer than 255 letters in the
field. You will need to supply a maximum length for the field when using the
VARCHAR type. Add 50 as the length; it is unlikely a product title will be
longer than 50 letters in size.

■ description: Add description to the Field column and assign the type TEXT.
You can use TEXT when you need to store potentially large chunks of text in a
field. You don’t need to supply a length.

■ price: Add price to the Field column and assign the type FLOAT. You can use
this type when you need to store numbers with a decimal place in them. You
don’t need to specify a length.

When you have configured your fields, click the Save button, and your table is
created. One of the most useful benefits of using phpMyAdmin is that the SQL that
is generated when you do something is always shown to you. This gives you a fan-
tastic idea of how SQL works by just having a casual look at the generated code
when you use phpMyAdmin. This SQL code will not make much sense right now,
but have a look over it to get a gist of what SQL looks like. SQL is used extensively
in the many projects later in the book, so it is advised you get used to reading
through SQL as soon as possible.

The generated SQL should look fairly similar to this:

CREATE TABLE 'products' (
'id' MEDIUMINT NOT NULL AUTO_INCREMENT ,
'cat_id' TINYINT NOT NULL ,
'product' VARCHAR(50) NOT NULL ,
'description' TEXT NOT NULL ,
'price' FLOAT NOT NULL ,
PRIMARY KEY ('id')
);

If you read the SQL from top to bottom, you will see how it is similar to English.
Although you will rarely write SQL manually to create tables (you normally just cre-
ate them in a client such as phpMyAdmin), the syntax to create a table is fairly
straightforward.

Now you need to create the second table. To do this, click the perfectproducts
link in the left frame. In the main body of the page, you can now create a new table

42 Practical PHP and MySQL

called categories and give it 2 fields. In the table design screen, add the following
fields:

■ id: Add if to the Field column and assign the type TINYINT. Now select
auto_increment from the Extra box and then select the Primary Key option
in the column with the small key icon at the top.

■ category: Add category to the Field column and assign the type VARCHAR.
Set the length to 30.

When you have added these fields, click the Save button. You are finished.

Adding Data to the Tables
With the tables complete, you are ready to load them with data. You will begin by
doing this manually in phpMyAdmin, but as you work through the book, you will
create forms to automate how the data is added to different tables.

First, you’ll add some data to the categories table. You need to add some cate-
gories first so that you can reference the relevant categories in the products table.
To add data, select the categories table from the tables list in the left frame. You
should now see a number of tabs appear in the main body of the screen at the top.
Click the Insert tab. You are taken to a screen in which you can add data into the
table, as shown in Figure 2-4.

43CHAPTER 2 Getting Started with PHP and MySQL

FIGURE 2-4 You can insert data two records at a time.

When adding information, you are given two sets of forms to add two records
into the table at a time. You don’t need to use both, but it is handy to have two forms
at the same time when entering test information, as you are doing here.

When you add the data, you don’t need to use any of the Function options. Also,
remember to not add anything into the id field; auto_increment will deal with that
for you. All you need to do is fill in a category in the Category field. Add the follow-
ing categories one at a time:

■ Swimming

■ Soccer

■ Baseball

■ Cricket

When you have added these records, click the Browse tab in the main body of
the page. You now see the table with the id values automatically filled in, as well as
the categories that you added (see Figure 2-5).

44 Practical PHP and MySQL

FIGURE 2-5 Click the Browse tab to see the records inside a particular table.

Now, fill some data in the products table. To do this, click the products table in
the left frame and then click the Insert tab again to add the following information
into the form:

■ In the first record, add 1 into the cat_id box (this puts this record in the
Swimming category) and then add any swimming-related product that you can
think of. (Be imaginative; it is always fun add some kind of ludicrous product
that gives you a chuckle when you deal with the record.) Add the price as a
proper price (such as 21.99), but do not add the currency symbol.

■ For the second record, add 3 to the cat_id box (this puts this record in the
Baseball category). Again, add fun product and add a normal price.

Feel free to add some more products, but remember to use the id from the
categories table in the cat_id field. This will ensure you are relating the two tables
properly.

CONNECTING TO MYSQL IN PHP
With some core PHP experience and a database development behind you, now is
the time to perform the all-important step of hooking the two together and connect-
ing to the database in PHP. This involves you creating the database connection,
then issuing a SQL query, and finally dealing with the results of the query in a way
that makes sense in your Web application.

To actually connect to MySQL, PHP provides built-in support to make the con-
nection, perform queries, and deal with the results. To do this, a number of PHP
functions, prefixed with mysql_, make the magic happen. Although these functions
are very useful, there may a case in the future when you want to be able to use any
one of a number of databases with your Web application. With this requirement,
you would need to use a third-party database abstraction library, such as
PEAR::DB or ADODB. If you know you will be using MySQL for a specific project,
however, the mysql_ range of functions is perfectly suitable.

Making the Connection
The first step is to actually make a connection to the database. This connection is
used to communicate with the database when sending queries and data back and
forth. To do this, you need to write some PHP that will pass the relevant authentica-
tion details to MySQL and, if you are authorized, give you a connection.

Create a new file called dbconnect.php and add the following code:

<?php

$dbhost = "localhost";
$dbuser = "root";
$dbpassword = "";

45CHAPTER 2 Getting Started with PHP and MySQL

$dbdatabase = "productsdb";

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

?>

The first four lines in the code create some variables that contain the relevant
pieces of information that are required to connect to a database. It is important to
remember that these four lines literally are just set a bunch of variables; no connec-
tion is made at this point. You can call these variables what you like, but you will
need to provide legitimate information for the host, username, password, and data-
base that you are using on the MySQL server.

After you set the variables, you can make the connection. This happens with
the $db = mysql_connect($dbhost, $dbuser, $dbpassword) line. This line uses
the mysql_connect() function to pass the host, username, and password variables to
the MySQL server and put the result of the connection in the $db variable. You then
use the $db variables as a pointer to the main connection. To keep the code simple,
this example does not involve any error checking; often you would check to see if
the connection is suitable and possibly display a suitable error message. Some pro-
grammers feel this is unnecessary as you will get a PHP error message anyway if the
connection is rejected, but if you implement your own errors, you can format and
reference your errors in a nicer way.

When the connection has been made, you need to select the database that you
want to use (remember, MySQL can have a number of different databases). This is
performed with the mysql_select_db() on the next line. Here you specify the vari-
able with the chosen database and also specify the connection ($db) that the data-
base should be selected from.

At this point, you are now connected. Any other MySQL-related connections on
this page will be applied to the connection that has just been created.

46 Practical PHP and MySQL

N O T E
Database Connections Are Per Page

The database connection you made does not span across other pages. You
need to include the connection details on each page that needs to access
MySQL. Of course, ways of making this more efficient will be covered later
in the book.

At this point, you are ready to start playing with the database on this page.

Querying the Database
When you want to get, set, or update information in the database, you use SQL
queries. You experimented with SQL a little earlier when you created your tables in
phpMyAdmin. Take a deep breath, as now you will be writing specific SQL queries
by hand. Don’t worry; that doesn’t sound nearly as scary as you may think.

Beneath the mysql_select_db line, add the following code (shown in bold):

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

$sql = "SELECT * FROM products;";
$result = mysql_query($sql);

The first line (the $sql line) simply sets another variable, but this one contains
the SQL for the query that you want to send to MySQL. SQL is a very simple and
effective language, and you will be using it throughout the book—with each piece
of SQL being fully explained as you go along. In this particular line, you are select-
ing all the rows from the products table. You can read the SQL line from left to right
to understand how it works:

First select (SELECT) everything (*) from (FROM) the products table
(products) and then end the query (;).

Every SQL statement should end with a semi-colon. Although you do not need
to explicitly add a semicolon in your PHP scripts, it is good form to do so. It just
keeps you in the habit of adding a semi-colon, particularly if you use the command-
line MySQL client.

47CHAPTER 2 Getting Started with PHP and MySQL

N O T E
Other Clients

There are a number of ways to talk to MySQL. Some of these are Web-
based (such as phpMyAdmin), some are graphical desktop applications
(such as the MySQL Control Center), and some are command-line based
(such as the mysql command).

At this point, the SQL has not actually been sent to the server; you have merely
created a variable that contains the query. The next line actually sends the query to
the database. The mysql_query() function is used to send the SQL (in the $sql
variable) to the database, and the results of the query is placed into the $result
variable.

Iterating Through the Results
Inside $result lies the holy grail, the motherland that is the result of your query.
Although $result contains the results, you can think of it as a big conjoined mess
of results. In its current form, $result is not all that useful, and to be really practi-
cal you need to iterate through each row from the query. If you loop through each
row, you can then display the relevant information on the page. This is the grand
plan.

Add the following code beneath the mysql_query line in your file:

$sql = "SELECT * FROM products;";
$result = mysql_query($sql);

while($row = mysql_fetch_assoc($result)) {
echo $row['product'];

}

In this chunk of code, you are using a while loop to iterate through each row in
the result set. This is performed by adding a loop condition that extracts each row
from $result by using mysql_fetch_assoc and then putting the row into the $row
variable.

The purpose of the mysql_fetch_assoc() function is to make an associative
array out of the results. This provides you with a convenient key-value (explained in
the “Arrays” section earlier) means of pulling out information. As such, if you need
to access the contents of the product field in the current row, you would use
$row['product'].

Consistency Across Pages with Sessions
One of the biggest challenges when doing any kind of Web development is main-
taining state across pages in a stateless Web. This grandiose statement basically
translates into “sharing information across different pages.” The reason for this dif-
ficulty is that each Web page you create essentially functions as an individual pro-
gram. When you build Web applications that span a number of different pages,
there is no implicit means of sharing information across these pages other than
using the GET and POST variables. Sessions change all of this.

Sessions offer a surprisingly simple and efficient means of literally sharing
variables across different pages. This is achieved with a number of PHP functions

48 Practical PHP and MySQL

that give you the ability to enable a page with sessions, create session variables,
and use these session variables in your scripts. Sessions can be used to share any
PHP variables you like across different pages.

Creating the Session
To use sessions, first add the session_start() function at the very beginning of
each page for which you want to use sessions. It is critically important that ses-
sion_start() is right at the beginning—no fancy HTML, no picture of your Aunt
Maud, and not even white space should come before it.

To demonstrate the importance of this, create a new file called sessions.php
and add the following code:

<?php
session_start();
?>

When you run the script, you will not see anything; the session support has
been happily built into your page. Now adjust the code and put a single white space
before the <?php tag:

<?php
session_start();
?>

When you make this tiny change, you are given a particularly venomous error
message:

Warning: session_start() [function.session-start]: Cannot send session
cookie - headers already sent by (output started at
/opt/lampp/htdocs/sites/startingchapter/sessions.php:1) in
/opt/lampp/htdocs/sites/startingchapter/sessions.php on line 3

The reason it is so important to not have anything before session_start() is
that the sessions framework makes use of the HTTP headers that form the mechan-
ics of the Web page. These special headers are pre-pended to each Web page and as
such, if you add any content before session_start(), the script will be trying to
send out content (such as the white space), then the headers, and then the main
content. This is not the way the Web works and, hence, PHP will shout at you in the
form of the previous warning message.

49CHAPTER 2 Getting Started with PHP and MySQL

Using Session Variables
Before you use a session variable, you need to register it. This is achieved with the
rather predictably named session_register() function. To use it, specify the name
of the variable to create inside the brackets. To demonstrate this, add the following
line of code to sessions.php after session_start():

session_register("userid");

This line registers with the session handling system that the userid variable
can be shared across pages. The next step is to actually set this variable to some-
thing useful. Add this line next:

$_SESSION['userid'] = 10;

In this line, you are using the special $_SESSION superglobal to reference the
userid variable. The $_SESSION syntax should look fairly familiar, as you used
$_GET and $_POST earlier to access GET and POST variables respectively.

50 Practical PHP and MySQL

N O T E
All About Headers

Every Web page on the Internet has some information called headers that
is invisible to most users. Headers store a number of pieces of information
that browsers care about. Here are some example headers:

GET / HTTP/1.
Host: www.yourfavewebsite.org
Connection: close
Accept-Encoding: gzip
Accept: text/xml,application/xml,application/xhtml+xml,
text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-gb,en;q=0.5
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-GB;
rv:1.8.0.3) Gecko/20060523 Ubuntu/dapper Firefox/1.5.0.3
Referer: http://www.someotherwebsite.net/

Beneath the headers lies the content. When you add content to the page,
the headers are added automatically. As such, when data is added to the
page, the headers are also sent and cannot be modified after they have
been sent.

When you use sessions, the sessions system modifies some of these head-
ers, and this is why you must add session_start() before any data is
added to the page.

To test whether your session variable is accessible on the second page, create a
file called sessions2.php, and add the following code:

<?php

session_start();

echo "The userid session variable is: " . $_SESSION['userid'];

?>

Remember to visit sessions.php first (so the variable is set) and then visit ses-
sions2.php to see that the variable is shared across the pages. To access the session
variables, you simply include session_start() on the page and then refer to the
variable with $_SESSION.

The session information is available while the browser is open. When the
browser window is closed, the session information is lost. Although this is often a
suitable means of destroying a session, sometimes you need to forcibly destroy the
session data on command. To do this, you can use the following command:

session_destroy();

All the session variables are then suitably deleted.

SUMMARY

This chapter explored some of the core concepts that need to be understood before
you can move on and start writing applications. Instead of spending hours covering
every nuance of PHP and MySQL, you have learned the fundamentals needed to
move on, and each application will present news skills, techniques, and ideas.

As with any programming language, or natural language for that matter, prac-
tice really does make perfect. Just reading how to do something in PHP and actu-
ally understanding it are often two separate things. A great way to get accustomed to
the language is to create lots of little scripts that test different aspects of the lan-
guage. These scripts are useful not only for learning, but also they can be a great
reference point further down the line when you have forgotten how to do something.

51CHAPTER 2 Getting Started with PHP and MySQL

This page intentionally left blank

53

Running the Projects
C H A P T E R 3

This book is crammed full of projects, lots of delightfully delicious projects that
show you how to do interesting things with PHP and MySQL. Within each project
are pages and pages of source code that gradually build up each project. Although
you are more than welcome to sit there and carefully type each line as you go, we
figured you might want to just run the projects right away and see how they work.
Sound good? Well, you will be pleased to see that the shiny disc wedged into the
book provides you with hours of project-running enjoyment!

So what is on the disc? Well, the disc is called a Live CD, and it provides you
with a simple and easy means of running a complete operating system on your com-
puter without touching your existing hard disk in any way. The way it works is that
you pop the disc in the drive and boot from it. The computer then pretends that the
CD is a hard disk and runs the operating system like any other. This means that you
can play around with the system as much as you like, and it won’t touch your pre-
cious hard drive. Cool, huh?

ABOUT THE DISC

With most programming books, you often get a disc that contains the code from the
book. This handy supplement saves hours of laborious copying of code from the
book to your computer. Despite saving hours of typing, the code-on-the-disc
approach still makes the assumption that you actually have the software required to
run it. As such, if you know you want to learn something (such as PHP and MySQL),
but you don’t have the PHP and MySQL software to run the code, you are stumped.

Not so with this book. The Live CD not only contains the code for each of the
projects, but also includes a complete development environment in which to run

54 Practical PHP and MySQL

the code. You get PHP and MySQL, as well as Apache, phpMyAdmin, Mozilla Fire-
fox, PEAR modules, and much more—all neatly contained on the Linux operating
system.

Now, we know what you are thinking—“Oh, I need to go out and buy a new hard
disc, or I need to partition my existing disk, or I need to …” Relax. There is no need
to buy a new hard disk, no need to partition, and no need to worry. The entire sys-
tem runs from the CD.

Live CDs: A New Approach
In recent years, the Live CD has really taken off. The idea is simple: You take an
operating system (usually Linux), and instead of running it from a hard drive, you
run it from a CD or DVD. This provides a number of benefits. First, you can try out
an operating system without actually installing it. When you run the disc included
with this book, it won’t ever touch your hard drive. Because the system runs from
the CD, you can play around with it, break things, and experiment. Not only is your
hard drive completely safe, but you can also reboot the CD to get
the original system back at any time. Second, a Live CD provides a great way to
“take your system” with you; just put the disc in a drive of any computer and reboot
to run it.

Starting the System
Not all computers automatically attempt to boot from the CD/DVD drive when start-
ing. If you turn on your computer and see the CD/DVD drive light flicker, the com-
puter is looking for something to boot. In this case, put the Live CD in and reboot to
get started!

If the light did not flicker, you may need to enable booting from the CD/DVD
drive in your computer’s BIOS. To access the BIOS setup, your computer will have
a particular key or key combination to press to enter it. Common keys are F12 and
Del. I recommend that you refer to the manual for your computer or motherboard to
find out how to boot from the CD/DVD drive.

For best results, find a computer that has lots of RAM. Because a Live CD is a
read-only medium, areas that need to be written to for running the Linux system are
stored in RAM. So, for example, the live CD will boot faster and run better on a com-
puter with 1GB or more of RAM than it will on a computer with 256MB of RAM.

When your system is enabled to boot, pop the disc in the drive and reboot. After
a few seconds, the screen shown in Figure 3-1 should appear.

Press Enter to the start the system. Soon, you’ll see the desktop boot and the
splash screen appear, as shown in Figure 3-2.

55CHAPTER 3 Running the Projects

FIGURE 3-1 The bootup splash screen, lovingly customized for the
book!

FIGURE 3-2 The desktop loading

56 Practical PHP and MySQL

Finally, double-click the Start XAMPP icon. XAMPP starts in a terminal win-
dow, as shown in Figure 3-3.

FIGURE 3-3 Firing up XAMPP

RUNNING THE APPLICATIONS

Running the different applications included with the disc is simple—just double-
click one of the icons on the desktop to access that particular application. When
you double-click an application icon, Firefox opens and displays the application
that icon represents in the window. As an example, double-clicking the Forums
icon causes the Forums application to appear, as shown in Figure 3-4.

If you want to play with the source code to the applications, double-click the
Bluefish icon. When it loads, use the side panel to load the project that you want to
develop. Remember, all projects are stored in /opt/lampp/htdocs/sites, so be sure
to choose the right project inside that directory. Later, you can run the code from
those project directories by entering http://localhost/sites in the location box of your
Web browser on your Live CD.

http://localhost/sites

57CHAPTER 3 Running the Projects

FIGURE 3-4 Loading an application is as simple as double-clicking an icon.

USING XAMPP
Other than the operating system included on the Live CD, the most critical piece of
software is XAMPP. The XAMPP project provides the core pieces of software
required for LAMP development (Apache, MySQL, and PHP) in a single download-
able archive. As such, you can go to the XAMPP Web site (http://www.xampp.org),
download the latest version to your computer, unzip it, and run it; you now have a
complete LAMP system set up to do your development. This saves the hours of
tweaking and configuration and frustration with the non-trivial installation of the
separate Apache, MySQL, and PHP components.

Not only does XAMPP ease the installation of these components, but it also
includes a huge array of additional software, including phpMyAdmin (used to cre-
ate databases easily), PEAR modules (additional features in PHP), graphics
libraries, documentation, and much more. XAMPP really does provide a compre-
hensive and complete Web development platform.

Although you can just boot from the Live CD, start XAMPP, and access your
applications straight away in the Web browser, it will be useful to have a look at

http://www.xampp.org

58 Practical PHP and MySQL

some of the common features of XAMPP. The following sections cover these fea-
tures, so you can get to know the system.

Starting and Stopping
XAMPP installations in Linux are always installed to the /opt directory. Inside
the XAMPP directory is the lampp command, which can be used to start and stop
the XAMPP system. To start XAMPP, run the following command:

foo@bar: /opt/lampp $ sudo /opt/lampp/lampp start

Because XAMPP provides system services, you need to be the super-user to
run the command, the reason for using sudo. You can also stop XAMPP by using the
following:

foo@bar: /opt/lampp $ sudo /opt/lampp/lampp stop

You can stop and start XAMPP by using restart (this is the command that the
Start XAMPP icon on the desktop runs):

foo@bar: /opt/lampp $ sudo /opt/lampp/lampp restart

This command actually has a huge range of features available, and you can see
them all by running the command without any options:

foo@bar: /opt/lampp $ sudo /opt/lampp/lampp

Table 3-1 provides a list of some of the commands that may be of particular
interest for starting and stopping specific components.

When the XAMPP system is started, you can use the Web browser to view the
running server by visiting http://localhost. When you visit that page, you will see a
number of included Web pages that are part of the XAMPP system. These pages
provide a number of small example applications, links to other parts of the system,
and information about the running.

N O T E
Running XAMPP Elsewhere?

If you want to run the XAMPP included on the disc on a different operating
system, you can find a file called lampp.tgz in /opt. Just copy that file to a
Linux system, unzip it, and then run /opt/lampp/lampp, as shown in the fol-
lowing “Starting and Stopping” section.

http://localhost

59CHAPTER 3 Running the Projects

OPTION DESCRIPTION

lampp startapache Starts only Apache

lampp startmysql Starts only MySQL

lampp stopapache Stops only Apache

lampp stopmysql Stops only MySQL

lampp restartapache Stops and then restarts Apache

lampp restartmysql Stops and then restarts MySQL

TABLE 3-1 Options for starting and stopping different LAMPP components

Accessing phpMyAdmin
Included with XAMPP (and on the Live CD) is a powerful Web-based database edi-
tor called phpMyAdmin, available from http://localhost/phpmyadmin/. phpMyAd-
min will be used extensively throughout the book.

Switching PHP Versions
One of the nicest features in XAMPP is that it includes both PHP4 and PHP5 with
the release (in the future it will no doubt include PHP5 and PHP6). This makes
testing your application with different versions of PHP simple. Simply restart
XAMPP with the version you want to use.

To switch versions, pass the version to the lampp program. So, to start PHP4,
run the following:

foo@bar:/opt/lampp$ sudo /opt/lampp/lampp php4

To start PHP5, run the following:

foo@bar: /opt/lampp $ sudo /opt/lampp/lampp php5

These commands restart Apache with the version of PHP that you want to use.
You can also check which version of PHP you are running by using the following:

foo@bar: /opt/lampp $ sudo /opt/lampp/lampp phpstatus

http://localhost/phpmyadmin/

Backing Up
There are also techniques available for backups. After you create the backup
archive, you can copy it to the hard disk or a network server so you can keep the
backup permanently. (Remember that after you reboot, any changes you make will
disappear from the Live CD if you don’t somehow back those changes up to another
medium.) First, use the build XAMPP backup script. Make sure XAMPP is running
and then run the following:

foo@bar: /opt/lampp $ sudo /opt/lampp/lampp backup

This command backs up the databases and Web pages and then puts them in a
single script that you can run to restore the system. This script will be stored in
/opt/lampp/backup. To restore the backup, install a free XAMPP and run the fol-
lowing script, making sure to replace the filename for the filename of your backup
script:

foo@bar: /opt/lampp/backup $ sudo /opt/lampp/backup/xampp-backup-00-00-00.sh

The second technique backs up the entire XAMPP directory. To do this, first
shut down the XAMPP server by using lampp stop and then go to the /opt directory
and zip it up:

foo@bar: /opt $ sudo tar zcvf lamp.tgz lampp

To restore it, make sure you are on a Linux system and run the following:

foo@bar: /opt $ sudo tar zxvf lamp.tgz

SUMMARY

The Live CD included with the book provides a simple and easy way to get started
running the applications that you will write throughout the book. This disc is a great
example of how innovative open source software, such as the Ubuntu Live CD,
XAMPP, and the different LAMP components, make Web development easier and
more efficient. This is far nicer than a book with a drab floppy disk that contains a
few scant source code files.

The disc provides a great opportunity just in running the applications. But it is
also recommended that, when going through each of the projects, you carefully fol-
low how the code is built up—building up the source files manually by entering the
code is essential when learning PHP and MySQL. The aim of this book is not to get

60 Practical PHP and MySQL

61CHAPTER 3 Running the Projects

you to read a chapter and follow the code with your finger, but to instead write code,
run it, fix errors, and learn as you go. Just reading code and not actually typing it
and running it nearly always results in a less than great learning experience;
instead, in this book you learn by doing.

So, as much as this Live CD is a fantastic time-saver, don’t let it replace the
essential act of typing code from the book, running it, and fixing errors. That is
where the real learning happens.

This page intentionally left blank

63

Building a Weblog
C H A P T E R 4

One of the most talked about Internet phenomenon in recent times is that of the
Weblog (often shorted to blog). The concept of a blog—and the subsequent art of
blogging—is that you provide your own online diary or journal in which you can
scribe your thoughts for the world to see. The actual content that you pour into your
blog is completely up to you, and the blog can be as formal, or informal, as you like.
If you want to tell the world that your milk went bad and you need to pick up some
from the store, a blog is where you write all about it.

The blog-reading public is not just obsessed with milk-longevity-related
shenanigans, though. Although typically used as a vehicle to communicate thoughts
online, blogs have also become a primary means by which various people con-
nected to a hobby or project share what they are working on. This has been particu-
larly popular with Open Source developers who use their blogs to give their readers
a sneak peak of what’s to come in the software they hack.

Although the basic function of a blog is to store a series of blog posts (often
called entries), many blogs also include other features:

■ Commenting. Readers of the blog can often leave comments. This can add
real value to a blog, and conversations often strike up over varying subjects.

■ Categorization. Blogs are often separated into different categories. This
gives the blog author the ability to file entries into a specific section. This
also allows readers to read only the category that interests them.

■ Archives. Most blogs have some means of archiving and accessing previous
entries. With blogs becoming as relevant a medium as “normal” Web sites,
being able to access earlier entries is important.

In this project, you will build a blog that incorporates all of the preceding fea-
tures. Aren’t you lucky?

PROJECT OVERVIEW: BLOGTASTIC USE CASE

The blog application created in this chapter is rather niftily titled Blogtastic. To get
an overview of how to build the blog, here is a simple use case that demonstrates how
typical users would interact with the application. Use cases are very handy for help-
ing to visualize exactly how different interactions and content should be presented to
users. The following is a synopsis of the use case for the Blogtastic application:

John visits Pauline’s blog and, naturally, wants to see Pauline’s latest entry.
John is interested in reading the blog entry but would also like to see if any com-
ments have been posted in response to the entry. If the blog entry has comments,
the names of the commenters are added to the bottom of the blog, so John can see
who posted each comment.

To access the blog and any corresponding comments, John clicks the title of the
blog entry, and that specific entry (with comments) is displayed. In case John wants
to leave a comment, a form for him to express his views is conveniently available on
the same page. John fills outs the form and clicks the Submit button, after which the
page is reloaded with John’s comment added. John then whiles away the afternoon
perusing through older blog entries in the archived entries page.

Later that day, Pauline decides she wants to add a new blog entry. Pauline vis-
its a special page on the Web site where she can log in. As the blog’s author, some
additional options are made available only to her. Pauline can add a new blog entry
to a specific category, or she can even add a new category. Pauline adds a new entry
and then realizes she made a mistake. Fortunately, a special Edit button that she—
and only she—can see displays on the page. Pauline uses this button to correct her
mistake and avoid looking silly in front of John. Pauline secretly thinks she is bet-
ter than John.

This is a typical example of a blog, and in this project, you will pour all of the
preceding functionality into Blogtastic to match this use case.

64 Practical PHP and MySQL

BUILDING THE DATABASE

The first step in the Blogtastic project is to build the database. To begin, create a
new database in phpMyAdmin called blogtastic. Within this database, create four
tables:

65CHAPTER 4 Building a Weblog

N O T E
Take Your Time

Because this is the first database-driven project in this book, progress
through the chapter at a pace that is comfortable to you. If you come
across any concepts you don’t understand, take a moment to stop, visit
Google, and do some research to clear up the misunderstanding before you
continue. When learning a new technology, never plough on if you don’t
understand the concepts; you will only dig a bigger hole to fall into.

TABLE NAME WHAT THE TABLE STORES

categories Different blog categories

entries Blog postings

comments Comments on blog entries

logins Usernames and passwords

id
cat

entries
id
cat_id
dateposted
subject
body

logins
id
username
password

comments
id
blog_id
dateposted
name
comment

catetories FIGURE 4-1
Even for a simple application such as a
blogging engine, careful database design
will save a lot of work in the long run.

The schema of the tables is shown in Figure 4-1.

66 Practical PHP and MySQL

Figure 4-1 shows how the four tables relate to each other. The first relationship
is between the blog category (the categories table) and the blog entry (the entries
table). To reference the correct category, the same id from the categories table is
stored in the cat_id field of the entries table. In database parlance, the id field is
known as the primary key, and the cat_id field is known as the foreign key. If these
two values match, an explicit connection exists between the tables. In other words,
if you know the id of the category (stored in cat_id), you can run a query to pull out
the other category information (such as the name of the category) using that id. The
second relationship—between the entries table and the comments table—works in
exactly the same way; the id field from the entries table is connected to the blog_id
in the comments table. This connects each comment with the correct blog entry.

The final table is the logins table, which has no relationship to the others; the
table is used simply for logging each user into the application.

Implementing the Database
With the database design laid out, you can create the database tables. In phpMyAd-
min, follow the steps discussed in Chapter 2 to add new tables, using these details:

The categories Table
■ id. Make this a TINYINT (this type is used because there will not be many

categories) and turn on auto_increment in the Extras column. Set this field
as a primary key.

■ cat. Make this a VARCHAR. Because a category title longer than 20 letters is
unlikely, set the size to 20.

The entries Table
■ id. Make this an INT (several blog entries are possible) and turn on

auto_increment. Set this field as a primary key.

■ cat_id. Make this a TINYINT (the same type as the primary key it refer-
ences—id in the categories table).

■ dateposted. Use the DATETIME type. This data type stores the current date
and time in the international ISO standard format, which is pretty clunky, but
you can format the date later in PHP.

■ subject. Make this a VARCHAR. Unless your blog title is extremely long, set
the length of this field to 100.

■ body. Make this a TEXT field. If you ever want to store very large areas of text,
the TEXT type is a good choice. You don’t need to specify a length.

67CHAPTER 4 Building a Weblog

The comments Table
■ id. Make this an INT (several comments are likely). Turn on auto_increment

and set this field as a primary key.

■ blog_id. Make this an INT (the same type as the id field in the entries table,
to which it is related).

■ dateposted. Use the DATETIME type.

■ name. Make this a VARCHAR. Because comment titles longer than 50 charac-
ters is unlikely, set the length to 50.

■ comment. This is the main body of the comment. Set to the TEXT type.

The logins Table
■ id. Make this a TINYINT (there will be very few logins; possibly only one).

Turn on auto_increment and set this field as a primary key.

■ username. Make this a VARCHAR and give it a length of 10. (Enforcing a maxi-
mum length for the username is a common practice.)

■ password. Make this a VARCHAR and give it a length of 10. (As with usernames,
enforcing a maximum length for a password is a common practice.)

Inserting Sample Data
With the tables created, insert some initial data into them so that you can test the
code as you write it (again using phpMyAdmin). Remember that when you are
adding data to any of these tables, do not fill in a number in the id column; this
value will be handled by auto_increment.

Because this is the first project in the book, sample data has been add to the
tables for you to ensure that everything connects as expected. As you work through
the book and understand the database concepts in better detail, you can add addi-
tional sample data.

Sample Data for the categories Table
Add the following categories in this order: Life, Work, Music, and Food.

Sample Data for the entries Table
Add the information in Table 4-1 to the entries table.

Both entries reference the Life entry in the categories table, via the cat_id. In
the dateposted field, use the Function combo box to select the NOW option, which
fills the field with the date and time you add the entry to the table.

68 Practical PHP and MySQL

CAT_ID DATEPOSTED FIELD SUBJECT BODY

1 Select NOW from the
function box

Welcome to my blog! This is my very first
entry in my brand-
new blog.

1 Select NOW from the
function box

Great blog! I have decided this blog
is: Really cool!

TABLE 4-1 The sample data for the entries table enables you to follow along with
the rest of this chapter’s samples.

Sample Data for the comments Table
Add the information in Table 4-2 to the comments table.

BLOG_ID DATEPOSTED NAME COMMENT

In this table, reference the first blog entry (the one with the ‘Welcome to my
blog!’ subject) by supplying a value of 1 to the blog_id field.

Sample Data for the logins Table
In this table, add a single entry with a username and password of your choice. This
example includes a username of “jono” and a password of “bacon”.

STARTING TO CODE

Start out by creating your project configuration file. This configuration file makes
customization of the blog easy, for you or for other users who run it.

Create a new directory in htdocs on your computer. Inside this directory, create
a new file called config.php (as shown in Example 4-1):

CAT_ID DATEPOSTED FIELD SUBJECT BODY

1 Select NOW from the
function box

Bob Welcome!

1 Select NOW from the
function box

Jim Hope you have lots of
fun!

TABLE 4-2 The comments table has just a few sample comments, used for demon-
stration purposes.

69CHAPTER 4 Building a Weblog

T I P
You may have noticed that three of the configuration variables begin with
“config.” This distinguishes these variables from other, non-configuration-
related variables in your code and is a great way to remember what a partic-
ular variable is associated with.

N O T E
Configuration Files for Distributed Applications

If you plan on writing a Web application that you intend to distribute so
that others can download, install, and run it, easy configuration is essen-
tial. This is where a standard configuration file is useful. Settings that the
user may want to tweak can be kept out of the main code.

EXAMPLE 4-1 Using a configuration file makes customization and personalization
a piece of cake.

<?php

$dbhost = "localhost";
$dbuser = "root";
$dbpassword = "";
$dbdatabase = "blogtastic";

$config_blogname = "Funny old world";

$config_author = "Jono Bacon";

$config_basedir = "http://127.0.0.1/sites/blogtastic/";

?>

Most of this file is simple configuration. The first four lines should look familiar
to you; they are the normal database settings. You can change these to match your
own database setup.

Below the database settings, another three variables are set. The first one
($config_blogname) sets the name of the blog. The second variable
($config_author) enables the user to set his name as the author. The final variable
($config_basedir) refers to the location of the blog, in URL form. This variable is
particularly important and is used later in various parts of the code, specifically to
redirect to different pages.

Designing a User Interface
In the previous chapter, you created a generic Web site and made use of a number
of include() and require() functions to separate different parts of the site. This
application uses the same concepts to provide a consistent look and feel.

70 Practical PHP and MySQL

Creating the Header File
Create a file called header.php and add the code shown in Example 4-2.

EXAMPLE 4-2 This simple header file will be used across all pages.

<?php
require("config.php");
?>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title><?php echo $config_blogname; ?></title>
<link rel="stylesheet" href="stylesheet.css" type="text/css" />
</head>
<body>
<div id="header">
<h1><?php echo $config_blogname; ?></h1>
[home]
</div>

<div id="main">

There are a few important points to note about this code. Here, a PHP block is
opened at the top to include the config.php code in the page. The require()
function—as opposed to include()—has been used here, because config.php is
essential to the correct behavior of this page. If config.php does not exist, the entire
application breaks down during any database work.

Most of the HTML in this code should look fairly straightforward, but you might
have also spotted a small chunk of PHP in the <title> tag. In the title, the contents

N O T E
The stylesheet.css File

This project uses the stylesheet.css file created in Appendix A. Copy the file
to the current project directory to apply the stylesheet to the project.

71CHAPTER 4 Building a Weblog

of the $config_blogname variable from config.php is displayed (refer to Example
4-1); this adds the blog name for the blog in the title bar of the browser window.
This variable’s value is also repeated inside the first <div> within the <h1> tag. This
provides some basic (very, very basic!) branding.

The final addition to the code is a link beneath the <h1> tag to the main
page (index.php, which you’ll create shortly). To keep this project simple, links
to different parts of the site will appear in this header <div>. The last line of
code opens the main <div> in similar fashion to the Web site created in Appen-
dix A.

Creating the Footer File
With the yin of the header file complete, it is now time to create the yang of the
footer file. Create a new file called footer.php that looks like Example 4-3.

EXAMPLE 4-3 Like the header file, this footer will be shared across all pages.

</div>

<div id="footer">
© <?php echo $config_author; ?>
</div>
</body>
</html>

The first line of the file ends the main <div> that was opened at the end of the
header file (see Example 4-2 for the opening of this <div> tag). After this, you cre-
ate a footer <div> to contain a copyright symbol (achieved with the special ©
markup) and then add a small PHP block to (again) display the contents of a vari-
able from the config.php file. This gives the site suitable credit for whoever runs it.

You can test that your header and footer files work by creating a file called
index.php and adding the code in Example 4-4.

EXAMPLE 4-4 With a header and footer, actual site pages become very simple.

<?php

require("header.php");

require("footer.php");

?>

72 Practical PHP and MySQL

When you access the index.php page in your browser, you should see the simple
design shown in Figure 4-2.

Displaying a Blog Entry
You are now ready to begin crafting some code that actually resembles a blogging
application. With your database already loaded with sample content, the first logi-
cal step is to display the contents of the most recent blog entry. This involves creat-
ing a simple SQL query and then displaying the results of the query (the latest
entry) on the page.

Before you create the query, however, you need to add he code to connect to
the database. Within this particular application, database access occurs on every
page; therefore, adding the database connection code to the main header.php file
makes sense. This file is included in every page, so it is a logical home for the con-
nection code.

After the require("config.php") line of header.php, add the following lines
(which were explained in Chapter 2):

<?php
require("config.php");
$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);
?>

FIGURE 4-2 With a little configuration and a little HTML, the skeleton of the
application is in place.

73CHAPTER 4 Building a Weblog

Building the Query
To build the SQL query, think about the kind of information you want the database
to return. For the latest blog entry, you want all the information from the entries
table (such as the subject, body, and date the blog was posted), but you also need to
get the category to which the entry belongs.

The name of the category isn’t stored in the entries table, however; only the
cat_id is. With this in mind, you need to ask for all the information from the entries
table and also ask for the category name in which the category id matches the
cat_id from the entries table.

Here is the SQL you need:

SELECT entries.*, categories.cat FROM entries, categories
WHERE entries.cat_id = categories.id
ORDER BY dateposted DESC
LIMIT 1;

One of the great benefits of SQL is that you can read it fairly easily from left to
right. Additionally, if you lay out your SQL on separate lines, you easily see the four
main parts of the SQL query:

1. The command (first line)

2. The conditions under which the command is executed (second line)

3. Any ordering requirements (third line)

4. Any limits (fourth line)

If you read the SQL from the beginning to the end, this is what happens:

Select (SELECT) every field from the entries table (entries.*) and the cat
field from the categories table (categories.cat) with the condition (WHERE)
that the cat_id field from the entries table (entries.cat_id) is equal to (=)
the id field from the categories table (categories.id). Order the results by
(ORDER BY) the dateposted field in descending order (DESC) and only show a
single result (LIMIT 1).

The aim of the query is to limit the results that come back and return only the
last entry that was added to the database. Without the ORDER BY clause, the query
would bring back every entry in the order that it was added. By adding the ORDER BY
line, the results come back in descending date order (the last date is first). Finally,

74 Practical PHP and MySQL

to return only the latest entry (which is the first result from the query), you use
LIMIT 1 to return only a single record.

To run the query in your Web application, you need to first construct the SQL
query code inside a variable and then send it off to the database. When you get the
data back, you can access the row(s). Between the two require lines, add the fol-
lowing code to the index.php file:

<?php

require("header.php");

$sql = "SELECT entries.*, categories.cat FROM entries, categories
WHERE entries.cat_id = categories.id
ORDER BY dateposted DESC
LIMIT 1;";

$result = mysql_query($sql);
$row = mysql_fetch_assoc($result);

require("footer.php");

?>

The first added line constructs the SQL query and stores it in a variable called
$sql. To actually send the data to the MySQL server, use the mysql_query() func-
tion, which puts the result of the query in the $result variable. On the final line,
the mysql_fetch_assoc() function pulls the row out of $result and stores it in an
array.

Displaying the Entry
With the query result stored in the $row array, you just need to crack open the
array, pull out the data, and display it on your Web page. Refer to each field inside
the square brackets in the array (such as $row['subject'] for the subject field).

Add the following code after the mysql_fetch_assoc() line:

$row = mysql_fetch_assoc($result);
echo "<h2><a href='viewentry.php?id=" . $row['id']
. "'>" . $row['subject'] .

"</h2>
";
echo "<i>In <a href='viewcat.php?id=" . $row['cat_id']

A Q U I C K N O T E …
Because only one row is coming back, there is no need to use a while()
loop to iterate through the rows returned from the query. Recall that more
details on iterating through results are found in Chapter 2.

75CHAPTER 4 Building a Weblog

."'>" . $row['cat'] .
" - Posted on " . date("D jS F Y g.iA",

strtotime($row['dateposted'])) .
"</i>";

echo "<p>";
echo nl2br($row['body']);
echo "</p>";

require("footer.php");

?>

This code creates a second-level heading tag and, within it, a link to a page
called viewentry.php (which will be created later to view specific blog entries). To
show a blog entry, the page needs to be passed the id of the specific blog entry to
display. To achieve this, you add a question mark to the end of the filename and then
add the variable (such as id=1). This process results in a link such as
viewentry.php?id=1.

Instead of hard coding the value of the variable, however, use the contents of
$row['id'] (from the query) as the value. After you close the first part of the link
tag, append the subject from the query and then add the closing link tag. You will
see a number of these long, concatenated link tags in your programming, which can
be better understood with the aid of a table.

Table 4-3 shows how the HTML is gradually built, step by step. Remember that
the . glues these different parts together.

On the second line of code, another link is built in the same way; this link
points to a page called viewcat.php. Instead of the entry id being passed as a vari-
able, the category id is passed.

CODE HTML OUTPUT

<h2><a href='viewentry.php?id= <h2><a href='viewentry.php?id=

$row['id'] <h2><a href='viewentry.php?id=1

'> <h2>

$row['subject'] <h2>Wel-
come to my blog!

</h2> <h2>Wel-
come to my blog!</h2>

TABLE 4-3 It’s often easiest to view long strings of code as a series of individual
parts. On each line, the bolded text results from the code in the Code column.

76 Practical PHP and MySQL

DATE() SYMBOLS DATE

D Wed

D j Wed 6

D jS Wed 6th

D jS F Wed 6th April

D jS F Y Wed 6th April 2005

D jS F Y g Wed 6th April 2005 2

D jS F Y g. Wed 6th April 2005 2.

D jS F Y g.i Wed 6th April 2005 2.35

D jS F Y g.iA Wed 6th April 2005 2.35PM

TABLE 4-4 Each letter represents a portion of the date, as well as how to format
that date.

Next, the date is displayed. If you output an unformatted date from the data-
base, the date would look something like this:

2005-08-01 18:02:32

Notice that the preceding result is not in the most useful of formats. Use strto-
time() and date() to clean this up for human consumption.

The strtotime() function converts the date into a UNIX timestamp. This time-
stamp refers to the number of seconds since 12:00 a.m. on January 1, 1970. The
time is known as the Epoch, and when you have this number of seconds, you can
then feed it into the date() function to format those seconds into something more
useful.

The date() function converts this number of seconds into a readable date,
using several special format symbols (D jS F Y g.iA in this example). Each of these
symbols formats a particular part of the date and time. You can find out more about
these and other symbols in the PHP manual entry for dates at http://www.php.net/
date.

Table 4-4 gives an example for 2:35 p.m. on April 6, 2005.

Finally, in the last bit of the code, the body of the blog entry is presented. The
first of these three lines opens a paragraph tag, and the second actually outputs the

http://www.php.net/

77CHAPTER 4 Building a Weblog

FIGURE 4-3 Your blog entry is ready for the world to see.

content of the blog posting. You need to pass the contents of the database entry
through nl2br(). This useful little function converts any empty lines into legitimate
HTML
 tags. The final line closes off the paragraph tag. See the final result
in Figure 4-3.

Adding a Comments Summary
One of the planned features for this blog is the capability for visitors to add com-
ments to a blog entry. These comments should be visible on the viewentry.php page,
linked via the subject of the blog (which you just added to index.php).

When comments are posted to a blog entry, it’s helpful to provide a comments
summary. When comments have been posted, you can display the number of com-
ments and the names of the posters. It’s also useful to have the names of the posters
double as hyperlinks; that is, when you click the poster’s name, the application
jumps to that poster’s comment on the viewentry.php page.

After the code already in place in index.php, add the following lines:

echo nl2br($row['body']);
echo "</p>";

echo "<p>";

$commsql = "SELECT name FROM comments WHERE blog_id = " . $row['id'] .
" ORDER BY dateposted;";

$commresult = mysql_query($commsql);
$numrows_comm = mysql_num_rows($commresult);

require("footer.php");

?>

78 Practical PHP and MySQL

This chunk of code creates a new paragraph tag, and then a new SQL query to
select the name field from the comments table, where blog_id contains the id of the
current blog entry (stored in $row['id']). The entire query is ordered by date (using
the dateposted field). This query is then executed with the mysql_query() com-
mand, and the result is stored in $commresult.

On the final line, a new function called mysql_num_rows() is used to count how
many rows are returned from the query, and this number is stored in the
$numrows_comm variable. The mysql_num_rows() function is incredibly useful,
because you can use it to determine how to format the comments summary. If no
rows are returned, display 'No comments'; if 1 or more results are returned, display
the posters’ names:

$commsql = "SELECT name FROM comments WHERE blog_id = " . $row['id'] .
" ORDER BY dateposted;";

$commresult = mysql_query($commsql);
$numrows_comm = mysql_num_rows($commresult);
if($numrows_comm == 0) {
echo "<p>No comments.</p>";

}
else {
echo "(" . $numrows_comm . ") comments : ";
$i = 1;
while($commrow = mysql_fetch_assoc($commresult)) {
echo "<a href='viewentry.php?id=" . $row['id'] ."#comment" . $i .

"'>" . $commrow['name'] . " ";
$i++;

}
}
echo "</p>";

In this block of code, an if statement is used to check if $numrows_comm has 0

rows. If it does, No comments is echoed to the screen. If $numrows_comm is not equal
to 0, control moves into the else statement.

Inside the else, an echo line prints a bracket and then, in bold typeface, out-
puts the number of rows stored in $numrows_comm and finally outputs a closing
bracket and the word comments. If there were two comments, the output would be

(2) comments

The next step is to display each comment, as well as a link to that comment,
using an anchor.

The anchors used in viewentry.php are in the form #comment1, #comment2, and so
on. To add these numbered anchors in index.php, start at 1 and increment each time
a comment link is output.

79CHAPTER 4 Building a Weblog

ALL ABOUT ANCHORS

Anchors are handy methods of linking to different parts of a single page. To
reference an anchor, you add the name of the anchor to the URL. As an
example, linking to example.php#theory jumps to the theory anchor on the
example.php page. At some point in example.php, there should be something
like this:

Now, when example.php#theory is referenced, the page will jump to that tag.

N O T E
If you are using the sample detail discussed earlier in the chapter, you will
continue to see “No comments” because no comments are associated with
the second blog entry. To resolve this, use phpMyAdmin to add some
records to the comments table and specify a value of 2 in the blog_id field.

Back in the code, you’ll see that a variable called $i is created and set to 1.
Next, a while loop iterates through the rows. A link to viewentry.php is created, and
id=[<entry-id>] is added to each. In addition to the id being appended, the com-
ment anchor (such as #comment1) is added, using $i. Finally, the value of $i is
increased by 1, ready for use on the next link. The completed output should look
something like this (obviously with different names if you have added different
comments):

(2) comments : Jim Bob

You can see the comments shown in Figure 4-4.

Displaying Previous Blog Entries
It is often convenient to see the last five or so blog entries, so that if a user misses a
few entries, she can access them easily without having to dig through the archives.

First, create the query. Luckily, this query is the same as the one you used to
find the latest blog entry—the only difference being that instead of limiting the
results to a single entry, you limit the result set to five entries. Do this by changing
the LIMIT 1 line to LIMIT 1, 5. This ensures that you get records 0 to 4.

80 Practical PHP and MySQL

FIGURE 4-4 Displaying comments on the front page shows visitors that your blog
entries cause discussion and debate.

T I P
When you use LIMIT, the first record returned is marked as the zeroth. As
such, LIMIT 1,5 returns the first record through to the fifth. LIMIT 0, 1 is
synonymous with LIMIT 1.

Add the following code to your page:

echo "</p>";
$prevsql = "SELECT entries.*, categories.cat FROM entries, categories
WHERE entries.cat_id = categories.id
ORDER BY dateposted DESC
LIMIT 1, 5;";

$prevresult = mysql_query($prevsql);
$numrows_prev = mysql_num_rows($prevresult);

This query counts the number of rows returned so you can display the relevant
information. Now, add the code to display the results:

$numrows_prev = mysql_num_rows($prevresult);

if($numrows_prev == 0) {
echo "<p>No previous entries.</p>";

}
else {

81CHAPTER 4 Building a Weblog

echo "";

while($prevrow = mysql_fetch_assoc($prevresult)) {
echo "<a href='viewentry.php?id="

. $prevrow['id'] . "'>" . $prevrow ['subject']

. "";
}

}

echo "";

If no rows were returned in the query, the text No previous entries. is dis-
played. If rows are returned, the else block is executed and the previous entries are
displayed in an unordered list.

Inside the else block, use a while loop to iterate through the results from the
query to create the blog entry subjects with the and tags. The subject is
linked to viewentry.php with the relevant id appended as a variable in the link. The
end result is shown in Figure 4-5.

FIGURE 4-5 Including previous blog entries shows visitors that your blog gets
updated frequently.

82 Practical PHP and MySQL

VIEWING SPECIFIC ENTRIES

When index.php was created, three distinctive sections were added to the page:

■ Main blog entry

■ Number of comments

■ Previous blog entries

In the main blog entry and previous entry sections, you link to another page
called viewentry.php. The viewentry.php page has a number of important features:

■ The page displays the contents of the blog entry.

■ The page uses virtually the same code from index.php.

■ The need to create the anchors that were added to the comment names (and
links) in index.php.

■ The page provides a form to post comments about the blog entry.

■ The form is displayed, and when the user fills it in, the comment is added to
the database.

This page is an important step in building the blog, so without further ado, it’s
time to get going and do some coding!

Validating the Request URL
The first step for the viewentry.php page is to ensure it’s requested with valid date.
Whenever you work on a Web project, it is important to verify that any changeable

N O T E
Ordered and Unordered Lists

Within HTML, Web developers often use ordered and unordered lists to
create bullet points. To create a numbered list, you use the and

ordered list tags. To create an unnumbered bullet point list, use the
unordered and tags.

List items are placed inside and tags. An example of an
unordered list is shown as follows:

One item
Another item

83CHAPTER 4 Building a Weblog

N O T E
Validation, Step by Step

The reason you will validate only GET variables, and not other types of infor-
mation, is to make validation easier to learn. This application introduces
some basic concepts and keeps things simple. Later projects in the book
explore validation in more detail, and you can return to earlier projects and
apply these skills later.

information (such as the ID of an entry or comment) is legitimate. This verification
process is known as validation. In this project, validation is applied to only the
variables that are added to the address of the site. These variables are visible, and
the user can change them by editing the address in the browser.

Although GET variables can be set to letters or numbers, virtually every GET
variable in this book is set to a number. When you created index.php and the links
to viewentry.php, each of them included a GET variable that contained a numeric id.

To validate a numeric variable, feed it into a block of code that runs some sim-
ple tests. Add the following code to the beginning of viewentry.php:

<?php

require("config.php");

if(isset($_GET['id']) == TRUE) {
if(is_numeric($_GET['id']) == FALSE) {
$error = 1;

}

if($error == 1) {
header("Location: " . $config_basedir);

}
else {
$validentry = $_GET['id'];

}
}
else {
$validentry = 0;

}

The first line includes config.php. Unlike the previous example, header.php has
not been included (yet). If validation fails, you’ll redirect users to another page, so
there’s no need to show the HTML in header.php until these tests have passed.

The next line is the first if condition. The isset() function checks to see if the
GET variable exists. If it does, isset() returns TRUE; if not, validentry is set to 0.

84 Practical PHP and MySQL

N O T E
The Nasty World of SQL Injection

One of the risks of using GET variables is SQL injection. Imagine that you
have a SQL statement such as the following:

SELECT * FROM entries WHERE id = <id value>

and where <id value> is, you add the value from the GET variable:

$sql = “SELECT * FROM entries WHERE id = “ . $_GET[‘id’];”;

This code assumes that the value of id is numeric. If you don’t check for
this, a malicious user could try to inject SQL code into the query. Imagine
what would happen if the user added 1; DROP DATABASE blogtastic;. The
following SQL is now executed:

SELECT * FROM entries WHERE id = 1; DROP DATABASE blogtastic;

This code would result in a lost database (assuming the user had appropri-
ate permissions)! To protect against this risk, always ensure that numeric
GET values are actually numeric.

N O T E
Redirection Fun and Games

Redirection is when you automatically jump to another page on the Web
site. There are two main methods of redirecting to a page:

■ Use JavaScript. The problems with this technique are that not all
browsers fully support JavaScript, and users and network managers
can also turn off JavaScript.

■ Use HTTP headers. Use the HTTP headers that are present in every
Web page to change the current page. This technique is supported by
every browser, but it can occur only before any data is sent to the
client. This same restriction applies to sessions when you use ses-
sion_start() at the beginning of a page.

As a general rule, use HTTP headers for redirection, because of its availabil-
ity in all browsers and ease of use.

Assuming a variable is being sent, a check is made to ensure the value is
numeric; if someone sets the variable to “bananas,” for example, this is obviously
incorrect. The is_numeric() function tests the GET variable; if the result is false,
error is set to 1.

85CHAPTER 4 Building a Weblog

T I P
When using the Location header, you will need to provide a complete URL
such as http://www.foo.com/—as opposed to www.foo.com or foo.com.

N O T E
Don’t Confuse the User with Errors

When an invalid variable is detected, this script redirects to a legitimate
page instead of displaying an error message. When considering the usability
of your Web application, it generally makes sense to redirect rather than
report an error. Error messages are rarely useful to users, and anyone who
has the knowledge to adjust the GET variable on the URL is probably fully
aware that they are tampering with the application instead of using the
application. Automatically redirecting avoids potentially confusing the user
with error messages.

Next, if error is indeed equal to 1 (indicating a non-numeric value), the
header() command redirects to the main page. The header() command is passed
the Location header and the full location to redirect to (such as Location:
http://localhost/blogtastic/). In the code, the “Location:” text is added, and
then the location is picked out of the config_basedir variable from config.php.

If error is not set to 1, the validentry variable is set to the value of the GET
variable. With this validation in place, the code below the header() function runs
only with a valid GET variable.

Showing the Entry
With the validation complete, you can display the blog entry. This code looks very
similar to the code on index.php. First, add the header HTML:

require("header.php");

You now need to determine which type of query to run. Inside the validation
checking code, validentry is set to either 0 (if no variable was supplied) or to the
ID of the entry to view.

www.foo.com
http://localhost/blogtastic/
http://www.foo.com/
foo.com

86 Practical PHP and MySQL

If validentry is set to anything other than 0, the query is simple—ask for that
specific blog entry. If the value is 0, however, the query should load the latest blog
entry (the same behavior as index.php):

require("header.php");
if($validentry == 0) {
$sql = "SELECT entries.*, categories.cat FROM entries, categories " .

" WHERE entries.cat_id = categories.id " .
"ORDER BY dateposted DESC " .
" LIMIT 1;";

}
else {
$sql = "SELECT entries.*, categories.cat FROM entries, categories " .

"WHERE entries.cat_id = categories.id
AND entries.id = " . $validentry .

" ORDER BY dateposted DESC LIMIT 1;";
}

Send the query to to the database with the mysql_query() function:

else {
$sql = "SELECT entries.*, categories.cat FROM entries, categories " .

"WHERE entries.cat_id = categories.id
AND entries.id = " . $validentry .

" ORDER BY dateposted DESC LIMIT 1;";
}
$result = mysql_query($sql);

Now you can present the results to the user. This code is virtually identical to
the code that you wrote on index.php to present the blog entry. The only real differ-
ence is that the subject of the entry is not linked to anything.

$result = mysql_query($sql);

$row = mysql_fetch_assoc($result);
echo "<h2>" . $row['subject'] . "</h2>
";
echo "<i>In " .

$row ['cat'] ." - Posted on " .
date("D jS F Y g.iA", strtotime($row['dateposted'])) ."</i>";

echo "<p>";
echo nl2br($row['body']);
echo "</p>";

The main blog entry section is now complete.

Showing Blog Comments
To display the comments, first create a SQL query that will get the comments for the
current blog entry:

87CHAPTER 4 Building a Weblog

echo "</p>";

$commsql = "SELECT * FROM comments WHERE blog_id = " . $validentry .
" ORDER BY dateposted DESC;";

$commresult = mysql_query($commsql);
$numrows_comm = mysql_num_rows($commresult);

You count the number of rows again with mysql_num_rows() and use the value
to determine if any comments have been posted. If numrows_comm is equal to 0, the
text No comments is displayed; otherwise, the else block of code is executed.

$numrows_comm = mysql_num_rows($commresult);

if($numrows_comm == 0) {
echo "<p>No comments.</p>";

}
else {
$i = 1;

while($commrow = mysql_fetch_assoc($commresult)) {
echo "";
echo "<h3>Comment by " . $commrow['name'] . " on " .

date("D jS F Y g.iA",
strtotime($commrow['dateposted'])) . "</h3>";

echo $commrow['comment'];
$i++;

}
}

Inside the else, you perform two basic functions: display each comment and
then create an anchor on each one that can match up with the anchors referenced
by index.php.

At the top of the else block, you first set i to 1; this variable is used as a
counter to implement the anchors. Next, the while loop iterates through each com-
ment from the query and creates the anchor. A link is created with a name attribute
set to the text comment, with the value of i appended (resulting in, for example, com-
ment2). The main comment fields are then displayed in a similar way to the main
blog entry. Finally, the i variable is incremented by 1, preparing for the next com-
ment’s output.

Build the Comment Form
Allowing a user to add comments involves three distinct actions:

■ Display the form for adding comments.

■ Process the form and add its data to the database after the user clicks the
Submit button.

88 Practical PHP and MySQL

FIGURE 4-6 Forms are useful for allowing users to contribute comments.

■ Reload the page and show the new comment.

First, add the main form shown in Figure 4-6.

To do this, close off the PHP block at the bottom of the page with ?> and add the
following HTML:

echo $commrow['comment'];
$i++;

}
}

Q U I C K N O T E …
This functionality is a little more complex than the previous sections, largely
because you need to add some code to various parts of the page, instead of
just adding one line at a time to the end of your page.

89CHAPTER 4 Building a Weblog

N O T E
GET Variables Versus Hidden Form Fields

Another technique of sharing a variable between the form and the script
that processes it is to use the hidden form element:

<input type="hidden" name="example" value="21">

The value attribute of the form can then be accessed as a normal variable
with _GET or _POST in your PHP code.

?>

<h3>Leave a comment</h3>

<form action="<?php echo $SCRIPT_NAME
. "?id=" . $validentry; ?>" method="post">
<table>
<tr>
<td>Your name</td>
<td><input type="text" name="name"></td>

</tr>
<tr>
<td>Comments</td>
<td><textarea name="comment" rows="10" cols="50"></textarea></td>

</tr>
<tr>
<td></td>
<td><input type="submit" name="submit" value="Add comment"></td>

</tr>
</table>
</form>

This code creates a table that contains a number of form elements. In the
<form> tag, action specifies the page that will process the data from this form. As
shown here, you can use a special PHP variable called SCRIPT_NAME to reference
the name of the current file (in this case, viewentry.php). This reference is useful if
you later decide to change the filename of your script; you then don’t need to
change your code. The method attribute in the tag indicates whether you want to
submit your variables as POST or GET variables.

Inside the action attribute, the validentry variable is added as a GET variable.
When you process the data from the form, you need to indicate the ID of the blog
entry to which you are posting the comment.

The HTML in the preceding form itself is pretty self-explanatory.

90 Practical PHP and MySQL

N O T E
Don’t Blow Up Your Headers

When you use a header redirect, always ensure that no data is displayed on
the page before the header is sent—this includes white space. As a simple
example of how important this is, add a single space before the <?php
instruction and reload the page. You should now get a lot of “headers been
sent” errors. Whenever you see these errors, check that there are no erro-
neous letters or white space either in the page itself or within the files that
are included (such as config.php).

Processing forms on Web pages works in a rather backwards fashion. At the top
of your page—before showing any HTML—you need to check to see if the Submit
button has been clicked by checking for the _POST['submit'] variable. If this vari-
able exists, the user has submitted a form. If the variable does not exist, you should
assume that the user has not actually seen the form yet and, therefore, need to dis-
play it. It sounds crazy, but hang in there—it will all make sense momentarily.

Insert the following code after your validation code, before you include the
header.php file:

else {
$validentry = 0;

}

if($_POST['submit']) {
$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

$sql = "INSERT INTO comments(blog_id, dateposted,
name, comment) VALUES(" .

$validentry . ", NOW(), '" . $_POST['name']
. "', '" . $_POST['comment'] . "');";
mysql_query($sql);
header("Location: http://" . $HTTP_HOST
. $SCRIPT_NAME . "?id=" . $validentry);
}
else {
// code will go here

}

require("header.php");

The first line checks if the submit POST variable exists. For explanation pur-
poses, assume that the Submit button has been clicked and the variable exists. The
code then connects to the database. (Remember, you have not included header.php
yet, so no database connection is available.)

91CHAPTER 4 Building a Weblog

TABLE 4-5 The sql variable is built up into an INSERT statement

CONCATENATED ELEMENT SQL STATEMENT

INSERT INTO comments(blog_id,
dateposted, name, comment) VALUES(

INSERT INTO comments(blog_id,
dateposted, name, comment) VALUES(

validentry $INSERT INTO comments(blog_id,
dateposted, name, comment) VALUES(2

, NOW(), ' INSERT INTO comments(blog_id,
dateposted, name, comment)
VALUES(2, 2005-08-10 14:30:00, '

$_POST['name'] INSERT INTO comments(blog_id,
dateposted, name, comment)
VALUES(2, 2005-08-10, 'Bob Smith

', ' INSERT INTO comments(blog_id,
dateposted, name, comment)
VALUES(2, 2005-08-10, 'Bob Smith','

$_POST['comment'] INSERT INTO comments(blog_id,
dateposted, name, comment)
VALUES(2, 2005-08-10, 'Bob Smith',
'I really like your blog. Cool
stuff!

‘); INSERT INTO comments(blog_id,
dateposted, name, comment)
VALUES(2, 2005-08-10, 'Bob Smith',
'I really like your blog. Cool
stuff!');

The next line is the SQL query. This query inserts the data into the database
with an INSERT statement. A typical INSERT statement looks like this:

INSERT INTO table(field1, field2)
VALUES ('data for field 1', 'data for field 2');

When you construct the SQL statement in your sql variable, you concatenate
the various variables from the form that are accessed with _POST. To demonstrate
how this fits together, imagine that you are adding a comment to the blog entry with
2 as an ID, at 2:30 p.m. on August 10, 2005. Assume that the user types “Bob
Smith” as the name and “I really like your blog. Cool stuff!” as the comment. Table
4-5 demonstrates how the query is built.

92 Practical PHP and MySQL

The left column lists each part of the code; the right column shows how the con-
tent of the page is built up in the query. As you read the table, remember that num-
bers don’t need single quotes around them (such as the number in validentry) but
strings (letters and sentences) do.

One part of the code that will be new to you is NOW(). This is a special MySQL
function that provides the current date and time, and you will use NOW() to automat-
ically fill the dateposted field.

The next line in the code—mysql_query($sql);—performs the actual query.
You may have noticed that the line does not include a variable in which to store the
result, such as $result = mysql_query($sql). The reason is that the query is only
sent; no results are returned. The final line uses the header() function to redirect to
the current page.

Finally, the if block is closed, and the else begins (for cases when no Submit
button has been clicked). At the bottom of the page, add the closing code:

</table>
</form>

<?php
}
require("footer.php");
?>

In effect, then, the entire page of HTML is shown if the user didn’t reach
viewentry.php via clicking the Submit button (on the form on that same page!).

BUILDING THE CATEGORY BROWSER

Within a site powered by Blogtastic, a large number of blog entries is going to build.
With so much content available, it is important to have a means of easily browsing
this content. In this section, you create a useful page for users to browse the differ-
ent categories and see which blog entries have been posted in each category.

N O T E
Built-In MySQL Functions

MySQL provides a range of these functions, and you can explore them from
the comfort of phpMyAdmin. When you insert data, a Function drop-down
box lists these different MySQL functions. Experiment with them to get a
better idea of what they do.

93CHAPTER 4 Building a Weblog

FIGURE 4-7 Click any category to view the entries in that category.

If you think about how this page should be designed, it seems logical to list the
categories and let the user click on one to see any related blog entries (see Figure
4-7). This functionality is similar to a tree view in a file manager: The directories
are listed, and then you click one to see the files and subdirectories.

On index.php and viewentry.php, you made the category a link to a page called
viewcat.php, and the ID of the category was passed as an id GET variable. To get
started, create a new file called viewcat.php and add the following code:

require("config.php");

if(isset($_GET['id']) == TRUE) {
if(is_numeric($id) == FALSE) {
$error = 1;

}

94 Practical PHP and MySQL

if($error == 1) {
header("Location: " . $config_basedir . "/viewcat.php");

}
else {
$validcat = $_GET['id'];

}
}
else {
$validcat = 0;

}

This code should look familiar; it runs the id variable through the same valida-
tion tests used on viewentry.php. If no variable exists, validcat is set to 0, but if the
variable is indeed legitimate, validcat is set to the contents of the GET variable. If
the variable fails the test to check if it is numeric, the page redirects to itself but
without the id variable.

Select all of the records from the categories table:

else {
$validcat = 0;

}

$sql = "SELECT * FROM categories";
$result = mysql_query($sql);

while($row = mysql_fetch_assoc($result)) {

Add the following code to check each row of the result set and see if $validcat is
the same as the id variable. If it is, this means that the category is currently selected.

while($row = mysql_fetch_assoc($result)) {
if($validcat == $row['id']) {
echo "" . $row['cat'] . "
";

$entriessql = "SELECT * FROM entries WHERE cat_id = " . $validcat .
" ORDER BY dateposted DESC;";

$entriesres = mysql_query($entriessql);
$numrows_entries = mysql_num_rows($entriesres);

echo "";

As the while loop iterates through each row, the first line checks if validcat is
the same as the ID from the current row. If it is, the if block is executed. The first
line inside the if outputs the name of the category in bold, instead of a link.

The query on the next line gets all blog entries in which cat_id is equal to
validcat. These entries are requested in descending date order, so the most recent
entry will display at the top of the list. The query is then run, and the returned rows
are counted (to ensure that there are records to show). The final line starts the
unordered list block that contains the results.

95CHAPTER 4 Building a Weblog

Check to see if any rows exist for the current category and display the relevant
details:

echo "";
if($numrows_entries == 0) {
echo "No entries!";

}
else {
while($entriesrow = mysql_fetch_assoc($entriesres)) {
echo "" . date("D jS F Y g.iA", strtotime($entriesrow

['dateposted'])) .
" - " .
$entriesrow['subject'] ."";

}
}
echo "";

}

If numrows_entries has zero rows, the browser displays a list item with the text
No entries!. If there are rows, another while loop is opened to run through the
results. Inside this while, a list item that displays the date of the entry and a link to
viewentry.php (using the correct id value) is created. The subject of the post is the
body of the link.

Finally, you can display the currently unselected categories:

echo "";
}
else {
echo "" . $row['cat'] .

"
";
}

}

require("footer.php");

You now have a complete archive of blog entries organized by category!

DON’T JUST LET ANYONE LOG IN
Everything created so far in this project has been designed to be accessible by any-
one who stumbles across the blog. As such, these pages have no built-in security—
that is, the pages are not restricted to certain users. Because of the open nature and
accessibility of the site, it is recommended that only information suitable for public
consumption is present on these pages. You should avoid adding your credit card
number, personal information, or those embarrassing photos of you at a fancy dress
party. (That is how rumors get started.)

96 Practical PHP and MySQL

Allowing restricted access for the owner to add and remove content is an essen-
tial feature, however. Having to log into phpMyAdmin to add content is not an ideal
solution, so the master plan is to create pages to provide a convenient means of
adding content. You need to provide a way for someone to log in, and the login
details the user enters should match the ones in the logins table. You will use PHP
sessions (covered in Chapter 2) to track the user by sharing variables across differ-
ent pages. If the user successfully logs in, you can set a session variable and then
check to ensure that session variable exists on the restricted pages.

To begin, create a new file called login.php and add the login form:

<form action="<?php echo $SCRIPT_NAME ?>" method="post">

<table>
<tr>
<td>Username</td>
<td><input type="text" name="username"></td>

</tr>
<tr>
<td>Password</td>
<td><input type="password" name="password"></td>

</tr>
<tr>
<td></td>
<td><input type="submit" name="submit" value="Login!"></td>

</tr>
</table>
</form>

This form contains some familiar-looking text boxes (see Figure 4-8).

You may have noticed that the second <input> tag uses password as the type.
When you use this type of form element, the contents are disguised as stars or dots
to hide the password from nosey onlookers.

The next step is to process the form and check if the database contains the login
details. Before you do this, however, add the usual introductory code at the start of
the file (before any HTML):

<?php

session_start();

require("config.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

97CHAPTER 4 Building a Weblog

FIGURE 4-8 The login form looks like any other form.

N O T E
Forms Feel Insecure, Too

Although forms provide a means for people to securely identify themselves,
the passwords transmitted to the server for processing are sent as plain
text. This is a potential security risk inherent when using forms. The only
solution to this risk is to encrypt form data with JavaScript when the form
button is clicked, a technique beyond this project’s scope.

Add the code that checks if the Submit button has been clicked (again, from the
form you’ve already added):

mysql_select_db($dbdatabase, $db);

if($_POST['submit']) {

98 Practical PHP and MySQL

N O T E
Be Consistant When Naming Variables

Naming session variables in uppercase is not mandatory, but it’s useful
because this helps them to stand out in your code as different types of
variables.

$sql = "SELECT * FROM logins WHERE username = '" . $_POST['username'] .
"' AND password = '" . $_POST['password'] . "';";

$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

The SQL statement is created to check if the username in the logins table is
equal to the username box in the form and if the password field is equal to the
password box in the form. The query is then run, and the rows are counted. The
number of lines returned from the query indicates whether the details typed were
correct. If the details are correct, a single row is returned—no more, no less. If no
rows are returned, the details do not match.

Add the following code:

$numrows = mysql_num_rows($result);

if($numrows == 1) {
$row = mysql_fetch_assoc($result);
session_register("USERNAME");
session_register("USERID");

$_SESSION['USERNAME'] = $row['username'];
$_SESSION['USERID'] = $row['id'];

header("Location: " . $config_basedir);
}
else {
header("Location: " . $config_basedir . "/login.php?error=1");

}

In the case where the login details are valid, a new session is created.

When using PHP sessions, you must register your session variables. The
session_register() lines create two variables, called USERNAME and USERID.

99CHAPTER 4 Building a Weblog

The next two lines then use _SESSION (representing the user’s session infor-
mation) to use the variables and store information from the SQL query (the
username and the id) in them. The final line performs a header redirect to
index.php.

If the Submit button has not been clicked, a small chunk of code is run before
the form displays:

header("Location: " . $config_basedir . "/login.php?error=1");
}

}
else {

require("header.php");

if($_GET['error']) {
echo "Incorrect login, please try again!";

}
?>

Include the header.php file and then check to see if there is a GET variable
called error. If there is, the error message is displayed to indicate that the user
typed an invalid username or password.

At the bottom of the page, after the HTML, add the final bits of code:

}
require("footer.php");

Signing Out the User
With the user now able to log in, you also need to give him the ability to log out—
by destroying the session created on login. Create a new file called logout.php and
add the following code:

<?php

session_start();
session_destroy();

require("config.php");

header("Location: " . $config_basedir);

?>

100 Practical PHP and MySQL

To log out the user, just use the session_destroy() function to delete all the
registered session variables. The session is now destroyed, and the user is no longer
logged in. You can then perform a header redirect to index.php.

Adding Session Support to the Application
With the new member login capability, you can supercharge your current pages to
react differently when a member is logged in. The session variables created in the
login page can be checked, and you can add extra options where appropriate.

Bolting On Options in the Header File
The first file to edit is header.php. In login.php and logout.php, you added ses-
sion_start() at the beginning of the page. You will use session_start() in most of
your pages, so add it to the top of header.php:

<?php

session_start();

This file already contains a list of links that are available to different parts of
the site. When users are logged in, the Logout link should be visible; if they are not
logged in, the Login link should be visible. Add the following code inside the PHP
block under the categories link:

[categories]

<?php

if(isset($_SESSION['USERNAME']) == TRUE) {

N O T E
The Life and Death of a Session

When dealing with session-based code, you should always clear out any
sessions when testing your code. Apart from creating the logout.php script,
another option is to close the Web browser. Sessions will live only for the
duration that the browser is open, and when you close the browser (not
just the window), the session is lost.

When developing your code, closing your browser when you want to clear a
session can be quite frustrating. To relieve the pain, use the Web Developers
Toolbar extension that is available for Mozilla Firefox on all platforms.
Download it from the Mozilla Extensions Web site at http://extension-
room.mozdev.org.

http://extensionroom.mozdev.org
http://extensionroom.mozdev.org

101CHAPTER 4 Building a Weblog

FIGURE 4-9 Adding contextual links to administer the blog makes the application
easier to use.

echo "[logout]";
}
else {
echo "[login]";

}

The isset() function is used to check if the USERNAME session variable is set. If
it is, the Logout link is displayed; otherwise, the Login link is displayed.

Use the same method for adding additional links:

else {
echo "[login]";

}

if(isset($_SESSION['USERNAME']) == TRUE) {
echo " - ";
echo "[add entry]";
echo "[add category]";

}

?>

Adding Links to Update Blog Entries
When using Blogtastic, you will need to edit existing blog entries. Instead of just
adding an Edit Blog Entry link to header.php, it is more intuitive to add an Edit link
next to blog entry subjects. (Later in the project, you will create a file, called upda-
tentry.php, to edit the blog entry.) Using a similar technique of checking if the session
variable exists, add the following code in index.php, after the category and date line:

echo "<i>In " .
$row['cat'] ." - Posted on " . date("D jS F Y g.iA",
strtotime($row['dateposted'])) ."</i>";

if(isset($_SESSION['USERNAME']) == TRUE) {
echo " [edit]";

}

The updateentry.php file is passed an id variable that contains the ID of the
blog entry to edit. Copy this same block of code to viewentry.php, after the same line
where the date of the posting is listed. The links are displayed in Figure 4-9.

102 Practical PHP and MySQL

N O T E
Never Assume

It might seem impossible to get to this page without clicking a link, and
wouldn’t that imply the user has already logged in? Although this sounds
logical, someone could still type the URL directly. It’s always better to
explicitly check to ensure the user is logged in, rather than trust other pages
to do that job for you.

ROLLING YOUR OWN CATEGORIES

Adding blog categories is the next part of the game. This page is similar to the page
used to add comments.

First, create the form in a new file called addcat.php:

<form action="<?php echo $SCRIPT_NAME ?>" method="post">

<table>
<tr>
<td>Category</td>
<td><input type="text" name="cat"></td>

</tr>
<tr>
<td></td>
<td><input type="submit" name="submit" value="Add Entry!"></td>

</tr>
</table>
</form>

Add the usual lines of code at the start of the file, before any HTML:

<?php

session_start();

require("config.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

With this page available to restricted users only, you need to check if the user
is logged in. Do this by checking if one of the session variables exists; if it doesn’t,
redirect to another page:

if(isset($_SESSION['USERNAME']) == FALSE) {
header("Location: " . $config_basedir);

}

103CHAPTER 4 Building a Weblog

Add the logic for when the user clicks the Submit button:

if(isset($_SESSION['USERNAME']) == FALSE) {
header("Location: " . $config_basedir);

}

if($_POST['submit']) {
$sql = "INSERT INTO categories(cat) VALUES('" . $_POST['cat'] . "');";
mysql_query($sql);
header("Location: " . $config_basedir . " viewcat.php");

}
else {
require("header.php");

?>

Within this code, an INSERT query is created and sent to the database. After the
query is run, the browser redirects to the viewcat.php page to view the newly created
category.

Finally, close the else and include the footer.php file (all after the form):

<?php
}
require("footer.php");
?>

CREATING NEW BLOG ENTRIES

So far in Blogtastic, the capability to actually add a blog entry has been suspi-
ciously missing. This essential feature requires almost all of the techniques you’ve
seen so far, hence the delay. You are now ready, though, so it’s time to knock out this
page. The page behaves in a similar way to previous pages that added content, but
this page also includes a drop-down combo box that is used to select the category
under which the entry is filed.

Create a new file called addentry.php and start the form:

<h1>Add new entry</h1>
<form action="<?php echo $SCRIPT_NAME ?>" method="post">

<table>

Previously, you added the entire form first, but in this page, the very first form
control will be the special drop-down box just discussed:

104 Practical PHP and MySQL

<tr>
<td>Category</td>
<td>
<select name="cat">
<?php
$catsql = "SELECT * FROM categories;";
$catres = mysql_query($catsql);
while($catrow= mysql_fetch_assoc($catres)) {
echo "<option value='" . $catrow['id']

. "'>" . $catrow['cat'] . "</option>";
}

?>
</select>
</td>

</tr>

The drop-down combo box presents a visual box with a series of options that the
user can select. This involves two basic steps. First, create a <select> tag that con-
tains the items within the box. Each item is housed within <option> tags. In these
tags, add the text that you would like to appear in the box (in this case, the category
name) and a value attribute. This contains the value that is passed when the user
selects an item. Set this attribute to contain the ID of the category item.

In terms of making this work in code, the SQL query selects everything from the
categories table. A loop iterates through the categories that are returned in the
query. Within the while loop, the <option> tags are created, and the id from the
query is added to the value attribute.

Complete the rest of the form:

</select>
</td>

</tr>

<tr>
<td>Subject</td>
<td><input type="text" name="subject"></td>

</tr>
<tr>
<td>Body</td>
<td><textarea name="body" rows="10" cols="50"></textarea></td>

</tr>
<tr>
<td></td>
<td><input type="submit" name="submit" value="Add Entry!"></td>

</tr>
</table>
</form>

105CHAPTER 4 Building a Weblog

FIGURE 4-10 Adding new blog posts is simple.

The form is shown in Figure 4-10.

Move to the beginning of the file and add the boilerplate introductory code:

<?php

session_start();

require("config.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

if(isset($_SESSION['USERNAME']) == FALSE) {
header("Location: " . $config_basedir);

}

106 Practical PHP and MySQL

Add the logic that actually processes the form:

if(isset($_SESSION['USERNAME']) == FALSE) {
header("Location: " . $config_basedir);

}

if($_POST['submit']) {
$sql = "INSERT INTO entries(cat_id, dateposted, subject, body)

VALUES(" .
$_POST['cat'] . ", NOW(), '" . $_POST['subject'] . "', '" .
$_POST['body'] . "');";

mysql_query($sql);
header("Location: " . $config_basedir);

}
else {
require("header.php");

?>

This code creates an INSERT query that is very similar to the ones on previous
form-driven pages.

Finally, close the else block and add the footer.php code:

</tr>
</table>
</form>

<?php
}
require("footer.php");
?>

UPDATE A BLOG ENTRY

The final page is for updating blog entries. Earlier, when you added session support
to Blogtastic, you went through some of the pages and added links to edit a particu-
lar blog entry. The link to edit blog entries was for a page called updateentry.php,
which is passed an id variable. This ID indicates which record to update.

Instead of adding the form first, on this page you will work from the top to the
bottom.

First, add the boilerplate code:

<?php

session_start();

require("config.php");

107CHAPTER 4 Building a Weblog

if(isset($_SESSION['USERNAME']) == FALSE) {
header("Location: " . $config_basedir);

}

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

The next block of code is identical to the validation code written earlier:

if(isset($_GET['id']) == TRUE) {
if(is_numeric($id) == FALSE) {
$error = 1;

}

if($error == 1) {
header("Location: " . $config_basedir);

}
else {
$validentry = $_GET['id'];

}
}
else {
$validentry = 0;

}

Add the code to process the form:

else {
$validentry = 0;

}

if($_POST['submit']) {
$sql = "UPDATE entries SET cat_id = "
. $_POST['cat'] . ", subject = '" .

$_POST['subject'] ."', body = '"
. $_POST['body'] . "' WHERE id = " .

$validentry . ";";
mysql_query($sql);

header("Location: " . $config_basedir . "/viewentry.php?id=" .
$validentry);
}

The SQL query implements an UPDATE command that will update each field in
the database that has the id of validentry (the validated id variable). The UPDATE
query indicates which table to update (UPDATE entries) and then provides a number
of database field = form element sections. When the query is complete, another
header redirect takes the user to the viewentry.php page with the correct id variable.

108 Practical PHP and MySQL

If the Submit button has not been clicked, the details of the entry are grabbed
from MySQL so you can populate the form fields, starting with a query:

header("Location: " . $config_basedir
. "/viewentry.php?id=" . $validentry);
}
else {

require("header.php");

$fillsql = "SELECT * FROM entries WHERE id = " . $validentry . ";";
$fillres = mysql_query($fillsql);
$fillrow = mysql_fetch_assoc($fillres);

?>

Next, begin creating the form:

$fillrow = mysql_fetch_assoc($fillres);

?>

<h1>Update entry</h1>

<form action="<?php echo $SCRIPT_NAME . "?id="
. $validentry; ?>" method="post">

<table>

The first part of the form is the category field. You will need to have the chosen
category automatically selected when the page is loaded. To do this, add selected
at the end of the tag to be selected. An example of this in HTML is shown here (this
is not actually in the project code, so don’t add it):

<select name="example">
<option value="1">Option 1</option>
<option value="2" selected>Option 2</option>
<option value="3">Option 3</option>

</select>

To accomplish this, add the following code to your form:

<form action="<?php echo $SCRIPT_NAME . "?id=" . $validentry; ?>"
method="post">

<table>

<tr>
<td>Category</td>
<td>

109CHAPTER 4 Building a Weblog

<select name="cat">
<?php
$catsql = "SELECT * FROM categories;";
$catres = mysql_query($catsql);
while($catrow= mysql_fetch_assoc($catres)) {
echo "<option value='" . $catrow['id'] . "'";

if($catrow['id'] == $fillrow['cat_id']) {
echo " selected";

}

echo ">" . $catrow['cat'] . "</option>";
}

?>
</select>
</td>

</tr>

The query is run, and then the while loop iterates through each record. Inside
the while loop, the <option value=<id from the record> is first printed and then
a check is made to see if the category ID of the entry (fillrow['cat_id']) is the
same as the current category row ID (catrow['id']). If the values match, "
selected" (notice the space before the word) is added. After this, the rest of the line
is created: >category</option>.

In the remaining parts of the form, small PHP blocks add the information from the
query to the value attributes and between the <textarea> tags to populate the form:

</select>
</td>

</tr>

<tr>
<td>Subject</td>
<td><input type="text" name="subject"
value="<?php echo $fillrow['subject']; ?>">
</td>
</tr>
<tr>
<td>Body</td>
<td><textarea name="body" rows="10" cols="50">
<?php echo $fillrow['body']; ?></textarea></td>

</tr>
<tr>
<td></td>
<td><input type="submit" name="submit" value="Update Entry!"></td>

</tr>
</table>
</form>

110 Practical PHP and MySQL

FIGURE 4-11 Updating blog entries uses a similar interface to adding new entries.

Finally, close else and insert the footer:

<?php
}
require("footer.php");
?>

You can see the updated page in Figure 4-11.

SUMMARY

In this project, you created your first full-featured, database-driven Web application.
This application flexed your programming muscles, and covered an entire range of
essential techniques. This included using database queries, adding data to the data-
base, joining tables, updating records, performing validation, managing archived
data, separating code across different pages, and ensuring interface usability.

Aside from providing a fun project to work on, this project also provided a base
in which the rest of the projects in the book are based upon. You learned a number
of skills that will be refined and built upon as you continue though the book. This is
the start of an exciting journey, and reading this means that you have completed a
large and important step. Stretch your fingers, dust off your keyboard, grab a cup of
something hot, and get ready for the next project.

111

Discussion Forums
C H A P T E R 5

Discussion forums have become a fundamental part of the Internet. Within these
Web-based message boards, users discuss topics that are cogitated over by a close
community of contributors. And within these discussion forums, Internet users can
become part of a wider community. Discussion forums offer a compelling and inter-
esting challenge to code. Features such as creating categories, forums, and topics;
replying to messages; registering users; and more are common requirements.

After you’ve created a blog, writing the code behind a discussion board is a nat-
ural progression of your skills because it introduces the idea of two-way communi-
cation, as opposed to the relatively one-way perspective offered by a blog. As such,
this chapter provides an important step in your programming experience—every-
one should write some discussion forums at least once!

UNDER THE HOOD

Virtually all discussion forums have a very similar design that involves three pri-
mary entities: categories, forums, and topics. To explain this structure, take a look
at Figure 5-1.

This figure shows a typical phpBB (http://www.phpbb.com/) installation. phpBB
is a popular Open Source forums engine that adheres to these common usability
methods. In the figure, you can see a list of categories (only one—LUGRadio), and
the category has a number of forums (General Discussion, Ideas for the show, Mir-
rors, and LUGRadio Live). When you click a forum, the forum topics display, as
shown in Figure 5-2.

http://www.phpbb.com/

112 Practical PHP and MySQL

FIGURE 5-1 The front page of a phpBB forum

FIGURE 5-2 The topics list in the General Discussion forum

113CHAPTER 5 Discussion Forums

FIGURE 5-3 A discussion thread

Category

Forum

LUGRadio

General Discussion

Topic Help bring Linux to Africa

Original message

Reply

Reply

Messages

FIGURE 5-4
Discussion forums have a number
of distinctive layers.

This figure displays a list of the threads in the forum. A thread is a discussion
that starts with a specific topic. The originator of the thread posts a message, and
the subject of the thread is listed in this screen. To view the messages in a thread,
you click the thread. When you click a thread, a page similar to the one shown in
Figure 5-3 displays.

Forum software has a distinctive set of parts, which combine to create a system
that makes discussion easy. The challenge is to implement your own forum soft-
ware. Figure 5-4 shows how these different parts relate to each other.

BUILDING YOUR OWN FORUMS

In this project, you will concentrate on the essential features that should go into dis-
cussion forum software, including the ability

■ To display categories, forums, and topics.

■ To log in as an administrator.

■ For administrators to add categories and forums.

■ For administrators to delete categories, forums, and topics.

■ To log in as a user.

■ For users to register. When a user fills in the registration form, a verification
e-mail is sent.

■ For users to view a category and forums, and then click a forum to view the
topics. The user can also click a topic to view the thread.

■ For users to post new threads or reply to existing ones.

Although hundreds of extra features could go into this project, adding them
would take an entire book in itself. In this project, you build a core forums engine,
but you can, of course, build additional features into it afterward.

BEFORE YOU BEGIN

This project uses some additional chunks of CSS. Copy stylesheet.css to the
new project directory for this project and add the following lines to the end of
stylesheet.css:

table {
border: thin solid #cccccc;
background: #ffffff;

}

th {
letter-spacing: 2.5px;
background: #eeeeeee;
color: #000000;
text-transform: uppercase;
text-align: center;
border-top: thick solid #eeeeee;
border-bottom: thin solid #cccccc;

}

tr.head {
letter-spacing: 1.5px;

114 Practical PHP and MySQL

categories
id

name

admins
id

username
password

forums
id
cat_id
name
description

users
id

username
password

email
verifystring

active

topics
id
date
forum_id
user_id
subject

messages
id
date
topic_id
user_id
subject
body

FIGURE 5-5
Database infrastructure

115CHAPTER 5 Discussion Forums

background: #dddddd;
color: #000000;
text-transform: uppercase;
border-top: thick solid #eeeeee;
border-bottom: thin solid #cccccc;

}

tr.body {
background: #ffffff;
color: #000000;

}

td {
border: thin solid #cccccc;
padding: 10px;

}

CREATING THE DATABASE

Within this project, a variety of tables relate to each other in different ways to store
the different types of content discussed earlier. Figure 5-5 shows the database
infrastructure you will create.

116 Practical PHP and MySQL

This project contains six important tables:

TABLE NAME WHAT THE TABLE STORES

categories Three different categories.
forums The different forums that are part of the categories.
topics Details about the topics.
messages The messages of the discussion thread.
admins Login details for the site administrator.
users Details about the users who can post to the forums.

There is an important relationship among the categories, forums, topics, and
messages tables—each table stores the same id of the table to which it relates. For
example, the categories and forums tables are related by storing the id of the rele-
vant category in the cat_id field in the forums table.

Enforcing Relationships with InnoDB
When you create databases with MySQL, the MyISAM table type stores the data.
This non-transactional table engine does not enforce relationships between tables.
Imagine you have a table, called orders, that has a customer_id field that stores the
same value as the id from the customers table. If you delete a record from the cus-
tomers table, it would make sense to delete or update the respective entry in the
orders table; otherwise, the relationship would break and the order would reference
a customer who no longer exists.

With the default MyISAM table type, the database does not demand that these
potential inaccuracies are resolved, and you can remove the customer and have the
order refer to a non-existent customer. With MyISAM, the assumption is that you
enforce these relationships in your code.

In this project, however, you will use a different type of table: InnoDB. This
transaction-safe table can enforce these relationships. This not only gives you the
peace of mind that your relationships work, but also you can perform a cascading
delete, in which you delete one table and all of the related tables are also deleted.
Feel the power, my friends.

Although it’s a feature of MySQL, InnoDB is normally turned off by default
(check with your distribution to verify whether it is in fact turned off). To enable it,
load the my.cnf file (often found in the /etc directory on a Linux machine or inside
the MySQL directory on a Windows machine) and look for skip-innodb. Comment
out this option out by adding a # symbol:

#skip-innodb

Uncomment the other innodb lines so that the code looks something similar to
the following:

117CHAPTER 5 Discussion Forums

W A R N I N G !
When using transaction-safe tables such as InnoDB, be extremely careful
with cascading deletes. If you mistakenly enforce a relationship, you could
possibly lose data. This is typically quite rare because you need to deliber-
ately enforce the relationship, but you are now cordially warned.

N O T E
Setting the Table Type

Most of the tables need to have their table type set to InnoDB. In the table
design screen where you configure the fields, a control at the bottom
enables you to select the table type.

innodb_data_home_dir = /opt/lampp/var/mysql/
innodb_data_file_path = ibdata1:10M:autoextend
innodb_log_group_home_dir = /opt/lampp/var/mysql/
innodb_log_arch_dir = /opt/lampp/var/mysql/

After you have switched on innodb support, restart MySQL for the changes to
take effect.

Building the Database
Fire up phpMyAdmin and create a new database called forum. Now add each of the
tables below, complete with their fields:

The admins Table

■ id. Set this to a TINYINT, make it a primary key, and enable auto_increment.

■ username. Set this to VARCHAR with a length of 10 (a common length for
usernames).

■ password. Set this to VARCHAR with a length of 10.

The categories Table
■ id. Set this to a TINYINT, make it a primary key, and enable auto_increment.

■ name. Set this to VARCHAR with a length of 50.

■ Set the table type to InnoDB.

118 Practical PHP and MySQL

The forums Table
■ id. Set this to a TINYINT, make it a primary key, and enable auto_increment.

■ cat_id. Set this to TINYINT.

■ name. Set this to VARCHAR with a length of 30.

■ description. Set this to VARCHAR with a length of 255.

■ Set the table type to InnoDB.

The messages Table
■ id. Set this to a TINYINT, make it a primary key, and enable auto_increment.

■ date. Set this to DATETIME.

■ user_id. Set this to INT.

■ topic_id. Set this to INT.

■ subject. Set this to VARCHAR with a length of 100.

■ body. Set this to TEXT.

■ Set the table type to InnoDB.

The topics Table
■ id. Set this to a TINYINT, make it a primary key, and enable auto_increment.

■ date. Set this to DATETIME.

■ user_id. Set this to INT.

■ forum_id. Set this to TINYINT.

■ subject. Set this to VARCHAR with a length of 100.

■ Set the table type to InnoDB

The users Table
■ id. Set this to a TINYINT, make it a primary key, and enable auto_increment.

■ username. Set this to VARCHAR with a length of 10.

■ password. Set this to VARCHAR with a length of 10.

■ email. Set this to VARCHAR with a length of 100.

■ verifystring. Set this to VARCHAR with a length of 20.

■ active. Set this to TINYINT.

■ Set the table type to InnoDB.

When you create the tables, be sure to set the correct table type where
required. All of the tables, other than admin, need to be of the type InnoDB. If this
is not set correctly, some of the features coded later will not work.

119CHAPTER 5 Discussion Forums

At this point, the referential integrity between the tables has not been set, and
no referential integrity is enforced. Later in the project, you will add some SQL to
enforce it.

Adding Sample Data to the Database
When manually adding data to the database, you need to be careful that all the data
relates correctly; otherwise, the forums will break. To get started, add a user and
then add a few categories, forums, and topics.

The users Table
Add the details shown in Table 5-1 to the users table.

N O T E
Changing the Table Type After You Have Created It

If you want to change the table type for an existing table, click the Opera-
tions tab in phpMyAdmin and then use the box on that page to select a dif-
ferent table type.

N O T E
Don’t Fill in the id Field

When you add data to any of these tables, remember to leave the id field
blank; auto_increment will look after this for you.

FIELD VALUE

Username Johnsmith

Password Password

Email john@foo.com

Verifystring <leave blank>

Active 1

TABLE 5-1 A sample user

120 Practical PHP and MySQL

The categories Table
If you refer to Figure 5-4, the categories table is at the top of the tree of related
tables. You need to first add data to this table and then work your way to the other
tables. Add the two records in Table 5-2 to the table.

The forums Table
With some categories defined, use the id from those categories when adding the
forums. From the information in Table 5-3, create two forums in the Movies category
(which has an id of 1); do not add any forums to the Documentaries category.

Note here that you are referring to the Comedy category by putting its id into the
cat_id field in this table.

The topics Table
The topics and messages tables are intrinsically linked as a topic and cannot exist
without at least one message. The topics table contains only the subject of the topic

FIELD VALUE

Name Movies

Name Documentaties

TABLE 5-2 Sample categories

FIELD VALUE

Cat_id 1

name Comedy

description Films that make you laugh

Cat_id 1

name Horror

description Movies to hide behind the couch

TABLE 5-3 Sample forums

121CHAPTER 5 Discussion Forums

to be discussed; you need to create at least one message in the messages table. Add
the two topics from Table 5-4 to the Comedy category.

The messages Table
With the topics created, create the required messages from Table 5-5 for them.

FIELD VALUE

Date Select NOW from the Functions box

User_id 1

Forum_id 1

Subject Classic comedy

Date Select NOW from the Functions box

User_id 1

Forum_id 1

Subject Fave comedy actor/actress

TABLE 5-4 Sample topics

FIELD VALUE

Date Select NOW from the Function box

User_id 1

Topic_id 1

subject Classic comedy

Body Which black and white comedies do you like?

Date Select NOW from the Function box

User_id 1

topic_id 2

Subject Fave comedy actor/actress

Body Who is your fave funny man/women?

TABLE 5-5 Sample messages

122 Practical PHP and MySQL

CREATING THE SITE DESIGN

The first step in writing the code is to create the design. Create a new file called
config.php and add the code shown in Example 5-1.

EXAMPLE 5-1 The configuration file stores settings about the site.

<?php

$dbhost = "localhost";
$dbuser = "root";
$dbpassword = "";
$dbdatabase = "forum";

// Add the name of the forums below
$config_forumsname = "CineForums";

// Add your name below
$config_admin = "Jono Bacon";
$config_adminemail = "jono AT jonobacon DOT org";

// Add the location of your forums below
$config_basedir = "http://127.0.0.1/sites/forums/";

?>

Inside this file, you specify the variables used when connecting to the database
as well as the variables used to configure the name and author of the site. In addi-
tion, $config_basedir contains the URL of forums; this will be used mainly when
performing redirects.

Now, build the header file. Create a new file called header.php and add the fol-
lowing code:

<?php

session_start();

require("config.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

?>

You first add session support with session_start() and then include the con-
figuration file. After this, you create the connection to the database.

123CHAPTER 5 Discussion Forums

Include the main HTML for the header:

?>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>

<title><?php echo $config_forumsname; ?></title>
<link rel="stylesheet" href="stylesheet.css" type="text/css" />

</head>
<body>
<div id="header">
<h1><?php echo $config_forumsname; ?></h1>
[Home]

The variables from config.php are used to set the title and name of the page.

Check the USERNAME session variable and display the relevant login/logout link:

<h1><?php echo $config_forumsname; ?></h1>
[Home]

<?php

if(isset($_SESSION['USERNAME']) == TRUE) {
echo "[Logout]";

}
else {

echo "[Login]";
echo "[Register]";

}

?>

Add a final option so that users can post new topics:

}

?>

[New Topic]
</div>
<div id="main">

With the header file complete, create a new file called footer.php and add the
footer code shown in Example 5-2.

124 Practical PHP and MySQL

EXAMPLE 5-2 The footer code is displayed at the bottom of the page.

</div>
<div id="footer">
© 2005 <?php echo "<a href='mailto:"
. $config_adminemail . "'>" .$config_admin . ""; ?>

</div>
</body>
</html>

A link is added to the footer with the email address and author name from
config.php.

DISPLAYING THE FORUMS

With the infrastructure complete, you can start to build the main forums code to
present the categories, forums, and topics on different pages. If you refer back to
the study of phpBB, you will see that the categories and forums are displayed on
one page and the topics are displayed on another page that displays when you click
a forum.

Creating the Front Page
The front page of the site displays the range of available forums. Create a file called
index.php and start by including header.php:

<?php

require("header.php");

Run a query to get all of the categories:

require("header.php");

$catsql = "SELECT * FROM categories;";
$catresult = mysql_query($catsql);

echo "<table cellspacing=0>";

while($catrow = mysql_fetch_assoc($catresult)) {
echo "<tr class='head'><td colspan=2>";
echo "" . $catrow['name'] . "</td>";
echo "<tr>";

After each category has been displayed, check if the current category has any
forums:

125CHAPTER 5 Discussion Forums

echo "<tr>";

$forumsql = "SELECT * FROM
forums WHERE cat_id = " . $catrow['id'] . ";";
$forumresult = mysql_query($forumsql);
$forumnumrows = mysql_num_rows($forumresult);
if($forumnumrows == 0) {

echo "<tr><td>No forums!</td></tr>";
}
else {

while($forumrow = mysql_fetch_assoc($forumresult)) {
echo "<tr>";
echo "<td>";

After performing the query to check for forums with each category, the number
of rows is counted and put it into $forumnumrows. The next line checks to see if this
variable contains 0 (no rows), and if it does, No forums! is added to the table. If
there are rows, the second while loop iterates through the list of forums to add each
one to the table:

echo "<td>";

echo "<a
href='viewforum.php?id="
. $forumrow['id'] . "'>" .
$forumrow['name'] . "";

echo "
<i>" . $forumrow['description'] . "</i>";
echo "</td>";
echo "</tr>";

}
}

A link to viewforum.php is created with the id of the forum added as a GET vari-
able. Below the link, the description is displayed.

Finally, end the first while, close the table, and include the footer file:

}
}

}

echo "</table>";

require("footer.php");

?>

126 Practical PHP and MySQL

The front page is now complete. This page provides a simple and familiar
means of displaying the categories and forums (see Figure 5-6).

Next, you create the viewforum.php page to display the topics inside a chosen
forum.

Viewing Forum Topics
This page has a simple purpose—to list the topics that are part of the forum, as well
as the number of replies to the topic, the name of the author, and the date the topic
was posted.

When this page is loaded, a GET variable called id has been passed to it. As
with any GET variable, it is a wise idea to validate it. Create a new file called viewfo-
rum.php and add the following code:

<?php

include("config.php");

if(isset($_GET['id']) == TRUE) {
if(is_numeric($_GET['id']) == FALSE) {

header("Location: " . $config_basedir);
}
$validforum = $_GET['id'];

FIGURE 5-6 This is what the user sees when they visit the front page of
the forums.

127CHAPTER 5 Discussion Forums

}
else {

header("Location: " . $config_basedir);
}

This code was used earlier perform the same kind of validation check.

Load the header.php file:

header("Location: " . $config_basedir);
}

require("header.php");

Before you display the topics, display some general information on the page so
that users know where they are in the site. This information includes the name of
the current forum and a breadcrumb trail.

To add this information, perform a query to get the name of the forum that has
the $validforum id and then display the name of the forum inside a second-level
heading:

require("header.php");

$forumsql = "SELECT * FROM forums WHERE id = " . $validforum . ";";
$forumresult = mysql_query($forumsql);
$forumrow = mysql_fetch_assoc($forumresult);

echo "<h2>" . $forumrow['name'] . "</h2>";

The next step is to create the breadcrumb trail. A breadcrumb trail provides a
series of links that shows the steps taken to get to the current page in the site. This
concept is particularly useful with sites that have a number of sections.

On this page, the breadcrumb trail is simple. Provide a link to return to the gen-
eral forums page:

N O T E
Breadcrumb Trails: Useful or Not?

Within the Web development community are differing views about whether
breadcrumb trails are actually useful. For some developers, a breadcrumb
trail is seen as a poor excuse for a site that is difficult to navigate. Other
developers, however, see the trail as a useful aid to navigation.

When you are designing your Web applications, think about the navigation
and whether a breadcrumb trail can help your users.

128 Practical PHP and MySQL

echo "<h2>" . $forumrow['name'] . "</h2>";

echo "" . $config_forumsname
. " forums

";

Add a link that allows the user to add a new topic to this forum:

echo "" . $config_forumsname
. " forums

";

echo "[New Topic]";
echo "

";

Now you need to display the topics inside this forum. Although this may sound
as simple as merely displaying all topics with the forum_id of $validforum, the
query is actually more complex.

On this page, you need to display a range of information, much of it from differ-
ent tables:

■ The topic name lives in the topics table.

■ The author name is in the users table that is linked by the user_id in the
topics table.

■ The date posted is in the topics table.

To make life more complicated, you also need to display the topic with the most
recent post at the top of the list. Organizing these topics is quite tough—the actual
posts are stored in the messages table and then joined to the topics table with
topic_id. As such, you need to order the displayed topics with the newest topic as
the message with the latest date from the messages table.

To solve this ordering problem, you will use a special function in MySQL called
MAX(). This function selects the latest dates from the messages table. In addition,
information from the topics and users table is selected. The messages and topics
tables are then linked in the WHERE clause.

Now sit back, hold your breath, and run this epic query:

echo "

";

$topicsql = "SELECT MAX(messages.date) AS maxdate,
topics.id AS topicid, topics.*, users.*
FROM messages, topics, users WHERE messages.topic_id
= topics.id AND topics.user_id = users.id AND
topics.forum_id = " . $validforum . " GROUP BY
messages.topic_id ORDER BY maxdate DESC;";
$topicresult = mysql_query($topicsql);
$topicnumrows = mysql_num_rows($topicresult);

129CHAPTER 5 Discussion Forums

If $topicsnumrows contains 0, there are no topics:

$topicnumrows = mysql_num_rows($topicresult);

if($topicnumrows == 0) {
echo "<table width='300px'><tr><td>No topics!</td></tr></table>";

}

This is cheating a little here. As you can see, you are creating a table to add a
single record. But you want the No topics text to appear nicely formatted in the
table. It is a slight cheat because you are not placing code further down the page
inside the other table. This is for reasons of clarity. It is important to make sure you
understand the code and not get wrapped up in table confusion.

If topics are present, you present them in a table. Create the table and table
headings:

if($topicnumrows == 0) {
echo "<table width='300px'><tr><td>No topics!</td></tr></table>";

}
else {

echo "<table class='forum'>";

echo "<tr>";
echo "<th>Topic</th>";
echo "<th>Replies</th>";
echo "<th>Author</th>";
echo "<th>Date Posted</th>";
echo "</tr>";

Just before you display the rows, run another query to count the number of mes-
sages for the topic in the current row:

echo "</tr>";

while($topicrow = mysql_fetch_assoc($topicresult)) {
$msgsql = "SELECT id FROM messages WHERE

topic_id = " . $topicrow['topicid'];
$msgresult = mysql_query($msgsql);
$msgnumrows = mysql_num_rows($msgresult);

Display the rows:

$msgresult = mysql_query($msgsql);
$msgnumrows = mysql_num_rows($msgresult);

130 Practical PHP and MySQL

echo "<tr>";
echo "<td>";
echo "

<a href='viewmessages.php?id="
. $topicrow['topicid'] . "'>"
. $topicrow['subject'] . "</td>";

echo "<td>" . $msgnumrows . "</td>";
echo "<td>" . $topicrow['username'] . "</td>";
echo "<td>" . date("D jS F Y g.iA", strtotime($topicrow['date']))

. "</td>";
echo "<tr>";

}

This code adds the subject of the topic and links it to viewmessages.php with the
id of the topic as a GET variable. The number of messages in the thread, the user-
name of the person who created the topic, and the topic date are also added.

Finally, close the table and add the footer:

echo "<tr>";
}

echo "</table>";
}
require("footer.php");

?>

With this code up and running, you can see the completed forum view in Figure
5-7. The project is really starting to come together now.

Viewing a Thread
It probably comes as no surprise that the next page is the one that displays the dis-
cussion threads associated with a topic. When you created viewforum.php, you
added a link to the topic subject to a page called viewmessages.php, which you will
create now.

Create a new file called viewmessages.php and run the GET variable through
some validation:

<?php

include("config.php");

if(isset($_GET['id']) == TRUE) {
if(is_numeric($_GET['id']) == FALSE) {

$error = 1;
}

131CHAPTER 5 Discussion Forums

FIGURE 5-7 Viewing a forum

if($error == 1) {
header("Location: " . $config_basedir);

}
else {

$validtopic = $_GET['id'];
}

}
else {

header("Location: " . $config_basedir);
}

require("header.php");

Add the name of the topic and the breadcrumb trail at the top of the page by
first selecting the subject of the current topic, the forum name, and the id of the
topic:

require("header.php");

$topicsql = "SELECT topics.subject,
topics.forum_id, forums.name FROM topics,
forums WHERE topics.forum_id = forums.id
AND topics.id = " . $validtopic . ";";
$topicresult = mysql_query($topicsql);

$topicrow = mysql_fetch_assoc($topicresult);

132 Practical PHP and MySQL

Add the subject of the topic:

$topicrow = mysql_fetch_assoc($topicresult);

echo "<h2>" . $topicrow['subject'] . "</h2>";

To create the breadcrumb trail, add a link to the main forums. Then use the
name of the forum from the query and link to the viewforum.php page:

echo "<h2>" . $topicrow['subject'] . "</h2>";

echo "" . $config_forumsname
. " forums -> <a href='viewforum.php?id="
. $topicrow['forum_id'] . "'>" . $topicrow['name']
. "

";

To display the messages that are part of the thread, create the query:

echo "" . $config_forumsname
. " forums -> <a href='viewforum.php?id="
. $topicrow['forum_id'] . "'>" . $topicrow['name']
. "

";

$threadsql = "SELECT messages.*, users.username
FROM messages, users WHERE messages.user_id
= users.id AND messages.topic_id = " . $validtopic
. " ORDER BY messages.date;";
$threadresult = mysql_query($threadsql);

In this code, you select all fields from the messages table and the username
from the users table and then join users.id and messages.user_id in which the
topic_id is equal to $validtopic.

Present the messages by looping through the results:

$threadresult = mysql_query($threadsql);

echo "<table>";

while($threadrow = mysql_fetch_assoc($threadresult)) {
echo "<tr><td>Posted by <i>"

. $threadrow['username'] . "</i> on "

. date("D jS F Y g.iA", strtotime($threadrow['date']))

. " - <i>" . $threadrow['subject']

. "</i></td></tr>";
echo "<tr><td>" . $threadrow['body']. "</td></tr>";
echo "<tr></tr>";

}

echo "<tr><td>[<a href='reply.php?id=" . $validtopic .
"'>reply]</td></tr>";
echo "</table>";

133CHAPTER 5 Discussion Forums

Finally, add footer.php:

echo "</table>";

require("footer.php");

?>

When you run this script and view a thread, the output should look like Figure 5-8.

MANAGING USER LOGINS

Within the context of a forum, identity is important. Users want to post messages
that come from them—not from a faceless anonymous user. In addition to normal
users, you also need to support administrator logins. The administrator can perform
tasks such as adding categories/forums and removing threads, forums, and cate-
gories. Luckily, PHP provides comprehensive support to make all of these require-
ments simple to add.

We are going to begin by building a User Registration system that will allow
new users to automate the process of applying for membership. We will also build
the requisite functionality to email the user a verification link they can click on to
confirm their account.

FIGURE 5-8 Viewing a thread

134 Practical PHP and MySQL

User Registrations
Before you support user and administrator logins, you first must create support on
the site for people to register a username. This page should authenticate users
automatically.

When a user registers, this is the process:

■ The user goes to the registration page and fills in a username, enters the
password twice, and types an email address.

■ The user is sent a verification email.

■ The user checks his email account and clicks the link in the email to verify
the registration.

■ The account is activated.

Implementing this process in code is straightforward:

■ The user goes to the registration page and fills in the details.

■ When the form is submitted, a check is made to see if the passwords match.
If they don’t, the user is asked to correct the form.

■ If the passwords match, the username is checked against the database to see
if the name has already been taken. If it has, the user is asked to choose
another username.

■ If the username has not been taken, a random string is generated and the
username, password, email address, and random string are added to the data-
base. Note that the “active” field in the database is left at 0 because the
account is currently inactive.

■ An email is constructed with a URL that has GET variables containing the
email address and random string. This email is then mailed to the address
provided by the user.

■ When the user clicks the link in the email, the page in the link checks the
database to see if there is a record with the email address and random string
provided. If there is, the active field is set to 1, and the account is activated.

To get started, create a new file called register.php and add the form:

<h2>Register</h2>
To register on the <?php echo

$config_forumsname; ?> forums, fill in the form below.
<form action="<?php echo $SCRIPT_NAME ?>" method="POST">
<table>
<tr>

<td>Username</td>

135CHAPTER 5 Discussion Forums

<td><input type="text" name="username"></td>
</tr>
<tr>

<td>Password</td>
<td><input type="password" name="password1"></td>

</tr>
<tr>

<td>Password (again)</td>
<td><input type="password" name="password2"></td>

</tr>
<tr>

<td>Email</td>
<td><input type="text" name="email"></td>

</tr>
<tr>

<td></td>
<td><input type="submit"

name="submit" value="Register!"></td>
</tr>
</table>
</form>

Move to the top of the file and add the code to process the form:

<?php

session_start();

require("config.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

After this introductory code, check if the Submit button has been clicked:

mysql_select_db($dbdatabase, $db);

if($_POST['submit']) {
if($_POST['password1'] == $_POST['password2']) {

$checksql = "SELECT * FROM users
WHERE username = '" . $_POST['username'] . "';";

$checkresult = mysql_query($checksql);
$checknumrows = mysql_num_rows($checkresult);

This codes checks to see if the password1 box and the password2 box have the
same password. If the passwords match, a query is made to see if the username field

136 Practical PHP and MySQL

in the users table matches the username box from the form. After the query is exe-
cuted, the number of rows is placed in a variable called $checknumrows.

See if there are any matches by checking the number of rows:

$checknumrows = mysql_num_rows($checkresult);

if($checknumrows == 1) {
header("Location: " . $config_basedir .

"register.php?error=taken");
}
else {

If there is a match to the username—the username already exists—a header
redirect is made to the same file, adding error=taken as a GET variable. This vari-
able is checked later to display an error message on the form. If no match is made,
the registration continues:

else {

for($i = 0; $i < 16; $i++) {
$randomstring .= chr(mt_rand(32,126));

}

This code generates a random string. The for loop loops 16 times, and each
time a random character is generated and added to a string that ultimately creates a
16-character string. The mt_rand() function generates a random number between
32 and 126, and then the chr() function converts this to a letter. The .= operator
appends the new character to whatever is already in $randomstring.

Create the variables to use when sending the verification email:

for($i = 0; $i < 16; $i++) {
$randomstring .= chr(mt_rand(32,126));

}

$verifyurl = "http://127.0.0.1/sites/forums/verify.php";
$verifystring = urlencode($randomstring);

N O T E
Quick Task: Remember to Check Those Variables!

In the preceding code snippet, you accessed the $_POST['username'] vari-
able directly. To improve security, you should run that variable through the
validation checks already discussed. Change this code to validate the
variable.

137CHAPTER 5 Discussion Forums

$verifyemail = urlencode($_POST['email']);
$validusername = $_POST['username'];

These variables store different types of information, which is added to the veri-
fication URL. The first variable ($verifyurl) contains the location of the verifica-
tion page, which you need to change to something relevant to your setup. The
second variable ($verifystring) uses urlencode() to convert $randomstring into
something that can be added to the address bar as a GET variable. The third variable
uses urlencode() on the email address, and the final variable stores the username.

Create a SQL query to insert the username, password, email address, and ver-
ifystring in the database while also setting the active field to 0 (inactive):

$validusername = $_POST['username'];

$sql = "INSERT INTO
users(username, password, email, verifystring,
active) VALUES('"

. $_POST['username']

. "', '" . $_POST['password1']

. "', '" . $_POST['email']

. "', '" . addslashes($randomstring)

. "', 0);";
mysql_query($sql);

Construct the email to send to the user for verification:

mysql_query($sql);

$mail_body=<<<_MAIL_

Hi $validusername,

N O T E
Using urlencode()

The urlencode() function ensures that a string can be used as a GET vari-
able on the URL. In addition to urlencode() is the urldecode() function,
which converts the encoded string back into its original form.

138 Practical PHP and MySQL

Please click on the following link to verify your new account:

$verifyurl?email=$verifyemail&verify=$verifystring

MAIL;

You construct the mail message by using heredoc syntax. This special technique
allows you to use <<< and an identifier (in this case, _MAIL_) to write a large chunk
of text without requiring double quotes, single quotes, and new lines. The block
ends when the identifier (_MAIL_) is added again. In the preceding snippet, the iden-
tifier is placed next to a variable declaration ($mail_body=) to add the heredoc text
to the variable. This is a useful method of adding large chunks of text to a variable.

Send the email:

MAIL;

mail($_POST['email'], $config_forumsname . " User
verification", $mail_body);

The mail() command sends the message. mail() has these three arguments:

■ Email address

■ Subject

■ Body of the message

In this code, the email address from the form ($_POST_['email']) is used as the
first argument, the forum name and User Verification are concatenated to make the
subject, and finally the text from the heredoc syntax is added as the third argument.

Finally, display a message to indicate that the email has been sent:

mail($_POST['email'],
$config_forumsname . " User verification",
$mail_body);

N O T E
Don’t Indent heredoc

When you use heredoc syntax, be sure to place the three angled brackets
before the identifier (such as <<<IDENTIFIER) and place both identifiers
at the start of a line (unless there is a variable before it, as in code in this
example).

139CHAPTER 5 Discussion Forums

N O T E
Sending Email from PHP

When sending email with the mail() command, you need a working mail
server running on your machine. If you are using Linux, a good mail server is
Postfix (http://www.postfix.org/), which is fairly easy to install and run.

If you are using Windows, you can specify a separate SMTP server for send-
ing mail. To do this, open php.ini and look for the SMTP option:

SMTP = your.mail.server

Although mail() is useful for sending simple emails, more complex
tasks such as sending attachments are better handled by the PEAR Mail
extension.

require("header.php");
echo "A link has been

emailed to the address you entered below.
Please follow the link in the email to validate
your account.";

}

Earlier in the code, an if statement checked if the form passwords matched.
Now, add the code that handles when they do not match:

echo "A link has been emailed
to the address you entered below. Please follow the
link in the email to validate your account.";

}
}
else {

header("Location: " . $config_basedir .
"register.php?error=pass");

}

A header redirect reloads the page and adds the error GET variable. (This
variable is discussed later.) Earlier in the code, you checked if the Submit button
was clicked. If it was, the code you just wrote is executed.

Add the else so that the form can be displayed if the submit POST variable was
not detected:

else {
header("Location: " . $config_basedir .

"register.php?error=pass");

http://www.postfix.org/

140 Practical PHP and MySQL

}
}
else {

Just before you display the HTML form, include the header file and then
process the error GET variable that is added when the page is redirected:

}
else {

require("header.php");

switch($_GET['error']) {
case "pass":

echo "Passwords do not match!";
break;

case "taken":
echo "Username taken, please use another.";

break;

case "no":
echo "Incorrect login details!";

break;

}
?>

<h2>Register</h2>
To register on the <?php echo $config_forumsname; ?> forums, fill in

the form below.
<form action="<?php echo $SCRIPT_NAME ?>" method="POST">

The variable is run through a switch statement to determine which error mes-
sage is displayed; this depends on the value of the variable.

Below the form, close the else block and add the footer:

</table>
</form>

N O T E
A Quick Task

We have deliberately not included any code here for validating the input in
the registration form. Add some validation checks to make the script rock
solid. This is a great time to practice adding validation to your code.

141CHAPTER 5 Discussion Forums

<?php
}

require("footer.php");

?>

Figure 5-9 shows the completed registration form. Now we need to write the
code that verifies the registration.

Verifying the Account
With the verification email sent, you can create the page to which the link in the
email points. This page simply decodes the GET variables (the urlencoded email and
verifystring variables) and then checks if a row in the database matches. If there
is a row, the account is activated by setting the active field in the users table to 1.

Create a new page called verify.php and add the initial code that decodes the
variables:

<?php

require("header.php");

$verifystring = urldecode($_GET['verify']);
$verifyemail = urldecode($_GET['email']);

FIGURE 5-9 The registration form

142 Practical PHP and MySQL

Create the query that checks if the values exist in the database:

$verifyemail = urldecode($_GET['email']);

$sql = "SELECT id FROM users WHERE verifystring
= '" . $verifystring . "' AND email = '" .
$verifyemail . "';";
$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

Check if a row is returned:

$numrows = mysql_num_rows($result);

if($numrows == 1) {
$row = mysql_fetch_assoc($result);

$sql = "UPDATE users SET active = 1 WHERE id = " . $row['id'];
$result = mysql_query($sql);

echo "Your account has now been verified.
You can now log in";
}

If one row is returned, a match exists between the clicked link and the record in
the table. When this occurs, an UPDATE query sets the active field to 1 with an id of
$row['id'].

If the query does not return one row, display an error:

echo "Your account has now been verified.
You can now log in";
}
else {

echo "This account could not be verified.";
}

Finally, add the footer:

echo "This account could not be verified.";
}

require("footer.php");

?>

Logging In Users
The process for building the login page is similar to the one in other projects—the
user types her details, the details are compared against the database, and then
some sessions are set up.

143CHAPTER 5 Discussion Forums

Create a new file called login.php and add the form:

<form action="<?php echo pf_script_with_get($SCRIPT_NAME); ?>"
method="post">

<table>
<tr>

<td>Username</td>
<td><input type="text" name="username"></td>

</tr>
<tr>

<td>Password</td>
<td><input type="password" name="password"></td>

</tr>
<tr>

<td></td>
<td><input type="submit" name="submit" value="Login!"></td>

</tr>
</table>
</form>
Don't have an account? Go and Register!

In the preceding code, you might have noticed something odd in the action
attribute of the <form> tag. A function called pf_script_with_get() has been used
to process the script name ($SCRIPT_NAME) to detect which GET variables are added
to the current page and then bolt them on to the action of the form. You need to add
the GET variable to the action if you want to access it in the code that processes the
form. This is fine if you know the name of the GET variable, but if the variables could
vary, you need to detect them and add them.

The reason you need this function is a result of the redirects. When a user
clicks a link that requires her to be logged in (such as the New Topic link), the site
should redirect to the login page. When the user has logged in, she should then be
redirected to the original link. This would be simple enough if there was just a sin-
gle GET variable (such as redirect=page.php), but if you are trying to add a topic to
a specific forum and are passing the Add Topic page an id, there are two GET vari-
ables—the page and the id of the forum. Instead of trying to hard code this, it
makes far more sense to detect which GET variables exist and add them automati-
cally to the action part of the forum.

The pf_script_with_get() function is a custom function. Create a file called
functions.php and add the following code:

<?php

function pf_script_with_get($script) {
$page = $script;
$page = $page . "?";

foreach($_GET as $key => $val) {

144 Practical PHP and MySQL

$page = $page . $key . "=" . $val . "&";
}

return substr($page, 0, strlen($page)-1);
}

?>

Within this function, you pass the function the page to get the GET variable from
($script). The first line sets $page to store the contents of $script, and the second
line appends a question mark to the page (for example, page.php?).

The function then pulls out the GET variables by using the foreach() function to
tear open the $_GET array and loop through it. In the foreach, you treat the key as
$key and the value as $val and then glue them together in the format key=val&.
Finally, you need to remove the final & from the link. To do this, use the substr()
function to pass it $page, determine the length with strlen(), and then remove the
last character (achieved with the –1 part).

With the function complete, process the form:

<?php

session_start();

require("config.php");
require("functions.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);
$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

if($_POST['submit']) {
$sql = "SELECT * FROM users WHERE username = '"
. $_POST['username'] . "' AND password = '"
. $_POST['password'] . "';";
$result = mysql_query($sql);
$numrows = mysql_num_rows($result);
$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

if($numrows == 1) {
$row = mysql_fetch_assoc($result);
if($row['active'] == 1) {

session_register("USERNAME");
session_register("USERID");

145CHAPTER 5 Discussion Forums

$_SESSION['USERNAME'] = $row['username'];
$_SESSION['USERID'] = $row['id'];

It’s now time to perform any necessary redirection. Remember that pages requir-
ing a user to be logged in redirect to the login page and then should be redirected to
the original page. To handle this redirection, the page that redirects to login.php will
also pass it the ref GET variable. This variable can have one of two possible values:

■ newpost. The user has tried to make a new post. This should redirect to
newtopic.php.

■ reply. The user has tried to reply to a post. This should redirect to reply.php.

The next block reacts to these different options:

$_SESSION['USERNAME'] = $row['username'];
$_SESSION['USERID'] = $row['id'];

switch($_GET['ref']) {
case "newpost":

if(isset($_GET['id']) == FALSE) {
header("Location: " . $config_basedir .

"/newtopic.php");
}
else {

header("Location: " . $config_basedir .
"/newtopic.php?id=" . $_GET['id']);

}
break;

case "reply":
if(isset($_GET['id']) == FALSE) {

header("Location: " . $config_basedir .
"/newtopic.php");

}
else {

header("Location: " . $config_basedir .
"/newtopic.php?id=" . $_GET['id']);

}
break;

default:
header("Location: " . $config_basedir);

break;
}

Finish the code to process the form:

default:

146 Practical PHP and MySQL

header("Location: " . $config_basedir);
break;

}
}
else {

require("header.php");
echo "This account is not verified yet. You were emailed a link

to verify the account. Please click on the link in the email to
continue.";

}
echo "This account is not verified yet. You were emailed a link

to verify the account. Please click on the link in the email to
continue.";

}
}
else {

header("Location: " . $config_basedir . "/login.php?error=1");
}

}

If a login error occurs, the page is redirected, and error=1 is added as a GET
variable. This can be used to add an error message:

else {
header("Location: " . $config_basedir . "/login.php?error=1");

}
}
else {

require("header.php");

if($_GET['error']) {
echo "Incorrect login, please try again!";

}

?>

<form action="<?php echo pf_script_with_get($SCRIPT_NAME); ?>"
method="post">

Finally, add the footer:

Don't have an account? Go and Register!

<?php
}
require("footer.php");
?>

147CHAPTER 5 Discussion Forums

Logging In the Administrator
The login page for the administrator is fundamentally the same as the preceding
page. Create a new file called admin.php and add the code shown in Example 5-3.

EXAMPLE 5-3 The administrator login page is virtually identical to the user
login page.

<?php

session_start();

require("config.php");
require("functions.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

if($_POST['submit']) {
$sql = "SELECT * FROM admins WHERE username = '" . $_POST['username']

. "' AND password = '" . $_POST['password'] . "';";

$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

if($numrows == 1) {
$row = mysql_fetch_assoc($result);

session_register("ADMIN");
$_SESSION['ADMIN'] = $row['username'];

switch($_GET['ref']) {
case "add":

header("Location: " . $config_basedir . "/addforum.php");
break;

case "cat":
header("Location: " . $config_basedir . "/addcat.php");

break;

case "del":
header("Location: " . $config_basedir);

break;

default:
header("Location: " . $config_basedir);

break;

continues

148 Practical PHP and MySQL

EXAMPLE 5-3 Continued

}
}
else {

header("Location: " . $config_basedir . "/admin.php?error=1");
}

}
else {

require("header.php");

echo "<h2>Admin login</h2>";

if($_GET['error']) {
echo "Incorrect login, please try again!";

}

?>

<form action="<?php echo pf_script_with
_get($SCRIPT_NAME); ?>" method="post">

<table>
<tr>

<td>Username</td>
<td><input type="text" name="username"></td>

</tr>
<tr>

<td>Password</td>
<td><input type="password" name="password"></td>

</tr>
<tr>

<td></td>
<td><input type="submit" name="submit" value="Login!"></td>

</tr>
</table>
</form>

<?php
}
require("footer.php");
?>

The code here differs in only two ways:

■ When the admin is successfully identified, the session variable registered is
ADMIN, as opposed to USERNAME.

149CHAPTER 5 Discussion Forums

■ The redirection trick (in which a user clicks a page that requires a login and
it redirects to the page after the login page) is also used here. The difference
is that the three options are add (redirects to addforum.php), cat (redirects to
addcat.php), and del (redirects to delete.php).

With the ability for an administrator to log in, add the administrator links above
the table on index.php:

<?php

require("header.php");

if(isset($_SESSION['ADMIN']) == TRUE) {
echo "[Add new category]";
echo "[Add new forum]";

}

$catsql = "SELECT * FROM categories;";
$catresult = mysql_query($catsql);

Another piece of code to add are the Login and Logout links in footer.php. The
same technique used in the header file for checking if the user is logged in and dis-
playing the relevant link is used here, but on this page, you check the ADMIN session
variable as opposed to the USERNAME variable:

<?php
© 2005 <?php echo "<a href='mailto:"
. $config_adminemail . "'>" .$config_admin
. ""; ?>

if(isset($_SESSION['ADMIN']) == TRUE) {
echo "[Logout]";

}
else {

echo "[Login]";
}

?>

Logging Out
With user and administration login pages complete, all that is left is to create the
logout links. To do this, you use virtually the same code for both the user and
administration logout pages, apart from the different ADMIN and USERNAME variables.
To log out the user or admin, you simply use session_unregister() to unregister
the relevant session variable.

150 Practical PHP and MySQL

For the user logout page, create a new file called logout.php and the following code:

<?php

session_start();
session_unregister("USERNAME");
require("config.php");

header("Location: " . $config_basedir);

?>

To create the admin Logout link, create a new page called adminlogout.php and
add the following code:

<?php

session_start();
session_unregister("ADMIN");

require("config.php");

header("Location: " . $config_basedir);

?>

POSTS AND REPLIES

A fundamental feature in the forum software is the capability to post new content to
a chosen forum or to reply to existing conversations. This process should be as sim-
ple and intuitive as possible, and it should be convenient to read a discussion and
then post a reply.

The process of posting a new message and replying are fairly similar. To post a
new message, a topic must first be created and then the id of the topic can be used
when creating the message. It is important to remember that a new thread must
include both a topic and a message. If you will create a reply, you simply need to
know the id of the existing topic and then add a new entry to the messages table.

Posting a New Topic
To post a new topic, the page must essentially have two potential ways of working:

■ The forum id is passed to the page as an id GET variable. This id can be
used to determine to which forum the topic will be added.

151CHAPTER 5 Discussion Forums

■ The user has clicked the main New Topic link in the header.php file, and as
such, no forum id is passed to the page. The New Topic page should display
a drop-down combo box on the form that contains a list of forums that the
user can select to post the topic

The only part of the page that is different is that no id is passed to it to deter-
mine whether the combo box with the forums should be displayed.

Create a new file called newtopic.php and add the following code:

<form action="<?php echo pf_script_with_get($SCRIPT_NAME); ?>"
method="post">

<table>
<?php

if($validforum) == 0) {
$forumssql = "SELECT * FROM forums ORDER BY name;";
$forumsresult = mysql_query($forumssql);

?>
<tr>

<td>Forum</td>
<td>
<select name="forum">
<?php
while($forumsrow = mysql_fetch_assoc($forumsresult)) {

echo "<option value='" . $forumsrow['id'] . "'>" .
$forumsrow['name'] . "</option>";

}
?>
</select>
</td>

</tr>
<?php
}
?>

<tr>
<td>Subject</td>
<td><input type="text" name="subject"></td>

</tr>
<tr>

<td>Body</td>
<td><textarea name="body" rows="10" cols="50"></textarea></td>

</tr>
<tr>

<td></td>
<td><input type="submit" name="submit" value="Post!"></td>

</tr>
</table>
</form>

152 Practical PHP and MySQL

The usual suspects are present in this forum: the subject, body, and Submit but-
ton. At the top of the form, a check is made to see if $validforum is equal to 0. If it
is, the combo box is created with the forums inside it. This $validforum variable is
the result of the usual validation that exists at the top of the page.

Again, the pf_script_with_get() function is used on this page.

Add the code at the top of the page:

<?php

session_start();

require("config.php");
require("functions.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

After this initial code, run a quick query to check if any forums exist:

mysql_select_db($dbdatabase, $db);

$forchecksql = "SELECT * FROM forums;";
$forcheckresult = mysql_query($forchecksql);
$forchecknumrows = mysql_num_rows($forcheckresult);

if($forchecknumrows == 0) {
header("Location: " . $config_basedir);

}

The if check redirects the page if there are no rows.

Validate the GET variable:

if($forchecknumrows == 0) {
header("Location: " . $config_basedir);

}

if(isset($_GET['id']) == TRUE) {
if(is_numeric($_GET['id']) == FALSE) {

$error = 1;
}

if($error == 1) {
header("Location: " . $config_basedir);

}
else {

153CHAPTER 5 Discussion Forums

$validforum = $_GET['id'];
}

}
else {

$validforum = 0;
}

Check if the user is logged in, and if not, deny access:

else {
$validforum = 0;

}

if(isset($_SESSION['USERNAME']) == FALSE) {
header("Location: " . $config_basedir . "/login.php?ref=newpost&id="

. $validforum);

Now you can process the form. You need to first check which SQL statement
you build:

■ If the page was passed an id GET variable, use $validforum in the INSERT
statement.

■ If the page was not passed the variable, use the id from the drop-down
combo box that was added to the form.

Here is the code:

if(isset($_SESSION['USERNAME']) == FALSE) {
header("Location: " . $config_basedir . "/login.php?ref=newpost&id="

. $validforum);
}

if($_POST['submit']) {
if($validforum == 0) {

$topicsql = "INSERT INTO topics(date, user_id, forum_id, subject)
VALUES(NOW()

, " . $_SESSION['USERID']
. ", " . $_POST['forum']
. ", '" . $_POST['subject']
. "');";

}
else {

$topicsql = "INSERT INTO
topics(date, user_id, forum_id, subject) VALUES(NOW()

, " . $_SESSION['USERID']
. ", " . $validforum
. ", '" . $_POST['subject']
. "');";

}

154 Practical PHP and MySQL

In this code, the if checks to see if $validforum is equal to 0 (no variable
passed to the page), and if it is, one SQL statement is defined; otherwise, the SQL
statement in the else is defined.

Run the query:

$topicsql = "INSERT INTO
topics(date, user_id, lastpostuser_id, forum_id,
subject) VALUES(NOW()

, " . $_SESSION['USERID']
. ", " . $_SESSION['USERID']
. ", " . $validforum
. ", '" . $_POST['subject']
. "');";

}

mysql_query($topicsql);
$topicid = mysql_insert_id();

This example uses a new function called mysql_insert_id(). This function
returns the generated id (the auto_increment id) from the last INSERT statement.

Build and execute the SQL for the messages table:

$topicid = mysql_insert_id();

$messagesql = "INSERT INTO messages(date,
user_id, topic_id, subject, body) VALUES(NOW()

, " . $_SESSION['USERID']
. ", " . mysql_insert_id()
. ", '" . $_POST['subject']
. "', '" . $_POST['body']
. "');";

mysql_query($messagesql);
header("Location: " . $config_basedir . "/viewmessages.php?id=" .

$topicid);
}

In this code, the page redirects to the viewmessages.php page and the id from
mysql_insert_id() is passed as a GET variable to it to display the new message.

Build the else part of the code that is executed when the submit POST variable
has not been detected:

155CHAPTER 5 Discussion Forums

header("Location: " . $config_basedir . "/viewmessages.php?id=" .
$topicid);
}
else {

require("header.php");

if($validforum != 0) {
$namesql = "SELECT name FROM forums ORDER BY name;";
$nameresult = mysql_query($namesql);
$namerow = mysql_fetch_assoc($nameresult);

echo "<h2>Post new message to the " . $namerow['name'] . "
forum</h2>";

}
else {

echo "<h2>Post a new message</h2>";
}

?>

<form action="<?php echo
pf_script_with_get($SCRIPT_NAME); ?>" method="post">
<table>

Here you check if the $validforum variable is not equal (!=) to 0 (a valid forum
id was passed to the page). This id is used to get the name of the forum and add the
heading Post new message to the <forum> forum. If $validforum is equal to 0 (no
valid id GET variable was posted to the page), the generic Post a new message
heading is added.

Finally, add the closing code:

</table>
</form>

<?php
}

require("footer.php");

?>

Your completed page for posting a new message can be seen in Figure 5-10.

156 Practical PHP and MySQL

FIGURE 5-10 Posting a new message

Replying to Threads
Writing a page to reply to threads is fairly simple. The page is passed the topic id as
an id GET variable, and this is used to take the content from the form and insert it
into the messages table.

Create a file called reply.php and add the form:

<form action="<?php echo
pf_script_with_get($SCRIPT_NAME); ?>" method="post">
<table>
<tr>

<td>Subject</td>
<td><input type="text" name="subject"></td>

</tr>
<tr>

<td>Body</td>
<td><textarea name="body" rows="10" cols="50"></textarea></td>

</tr>
<tr>

<td></td>
<td><input type="submit" name="submit" value="Post!"></td>

</tr>
</table>
</form>

157CHAPTER 5 Discussion Forums

Move to the start of the file and add the introductory code:

<?php

session_start();

require("config.php");
require("functions.php");

Run the id GET variable through the usual validation code:

require("config.php");
require("functions.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

if(isset($_GET['id']) == TRUE) {
if(is_numeric($_GET['id']) == FALSE) {

$error = 1;
}

if($error == 1) {
header("Location: " . $config_basedir);

}
else {

$validtopic = $_GET['id'];
}

}
else {

header("Location: " . $config_basedir);
}

Check that the user is logged in:

else {
header("Location: " . $config_basedir);

}

if(isset($_SESSION['USERNAME']) == FALSE) {
header("Location: " . $config_basedir . "/login.php?ref=reply&id=" .

$validtopic);
}

To process the form, run the INSERT query:

if(isset($_SESSION['USERNAME']) == FALSE) {
header("Location: " . $config_basedir . "/login.php?ref=reply&id=" .

$validtopic);
}

158 Practical PHP and MySQL

if($_POST['submit']) {
$messagesql = "INSERT INTO messages(date,

user_id, topic_id, subject, body) VALUES(NOW()
, " . $_SESSION['USERID']
. ", " . $validtopic
. ", '" . $_POST['subject']
. "', '" . $_POST['body']
. "');";

mysql_query($messagesql);
header("Location: " . $config_basedir . "/viewmessages.php?id=" .

$validtopic);
}

If the Submit button is not clicked, include the header file and display the form:

header("Location: " . $config_basedir . "/viewmessages.php?id=" .
$validtopic);
}
else {

require("header.php");

?>

<form action="<?php echo pf_script_with_get($SCRIPT_NAME); ?>"
method="post">

<table>

Finally, add the footer:

</table>
</form>

<?php
}

require("footer.php");

?>

CREATING ADMINISTRATOR-SPECIFIC PAGES

With the user-accessible pages complete, you can now create the administrator-
specific pages. These pages deal with the management of the forums and allow you
to add and remove categories, forums, and threads.

159CHAPTER 5 Discussion Forums

Incorporating these administrative features into the forums involves two steps.
First, for the addition of content, specific pages are created (addcat.php and addfo-
rum.php). Next, for the deletion of content, X links are added next to categories,
forums, and threads when the administrator is logged in. Clicking the link deletes
the content.

Adding Categories
This page is a simple form and inserts a query script. First, create a file called add-
cat.php and add the form:

<h2>Add a new category</h2>

<form action="<?php echo
pf_script_with_get($SCRIPT_NAME); ?>" method="post">
<table>
<tr>

<td>Category</td>
<td><input type="text" name="cat"></td>

</tr>
<tr>

<td></td>
<td><input type="submit"

name="submit" value="Add Category!"></td>
</tr>
</table>
</form>

Move to the top of the file and begin to add the code:

<?php

session_start();

require("config.php");
require("functions.php");

Determine if the user is logged in and can access this page:

require("functions.php");

if(isset($_SESSION['ADMIN']) == FALSE) {
header("Location: " . $config_basedir . "/admin.php?ref=cat");

}

Process the form:

if(isset($_SESSION['ADMIN']) == FALSE) {
header("Location: " . $config_basedir . "/admin.php?ref=cat");

160 Practical PHP and MySQL

}

if($_POST['submit']) {
$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

$catsql = "INSERT INTO categories(name) VALUES('" . $_POST['cat'] .
"');";

mysql_query($catsql);

header("Location: " . $config_basedir);
}

In this code, the database connection details are added and an INSERT query is
made to the categories table in which the data from the form is added. The query is
executed, and the page redirects.

Add the else that contains the form:

header("Location: " . $config_basedir);
}
else {

require("header.php");

?>

<h2>Add a new category</h2>

<form action="<?php echo
pf_script_with_get($SCRIPT_NAME); ?>" method="post">

Finally, after the form, add the closing code:

</table>
</form>

<?php
}

require("footer.php");

?>

Adding Forums
This page adds forums to a particular category. The logic behind this script is sim-
ple: You present the user with a form in which she can select a category from a
drop-down box. The data is then added to the forums table.

161CHAPTER 5 Discussion Forums

Create a new file called addforum.php and add the following code:

<h2>Add a new forum</h2>

<form action="<?php echo pf_script_with_get($SCRIPT_NAME); ?>"
method="post">

<table>
<?php

if($validforum == 0) {
$forumssql = "SELECT * FROM categories ORDER BY name;";
$forumsresult = mysql_query($forumssql);

?>
<tr>

<td>Forum</td>
<td>
<select name="cat">
<?php
while($forumsrow = mysql_fetch_assoc($forumsresult)) {

echo "<option value='"
. $forumsrow['id'] . "'>" . $forumsrow['name']
. "</option>";

}
?>
</select>
</td>

</tr>
<?php
}
?>

<tr>
<td>Name</td>
<td><input type="text" name="name"></td>

</tr>
<tr>

<td>Description</td>
<td><textarea name="description"

rows="10" cols="50"></textarea></td>
</tr>
<tr>

<td></td>
<td><input type="submit" name="submit"

value="Add Forum!"></td>
</tr>
</table>
</form>

Add the usual code at the start of the file:

<?php

162 Practical PHP and MySQL

session_start();

require("config.php");
require("functions.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);
$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

if(isset($_SESSION['ADMIN']) == FALSE) {
header("Location: " . $config_basedir . "/admin.php?ref=add");

}

To process the form, simply insert the data from the form into the database with
an INSERT statement:

if(isset($_SESSION['ADMIN']) == FALSE) {
header("Location: " . $config_basedir . "/admin.php?ref=add");

}

if($_POST['submit']) {
$topicsql = "INSERT INTO forums(cat_id, name, description) VALUES("

. $_POST['cat']

. ", '" . $_POST['name']

. "', '" . $_POST['description']

. "');";

mysql_query($topicsql);

header("Location: " . $config_basedir);
}

If the Submit button has not been clicked, the else is executed and the form
code occurs after the next block:

header("Location: " . $config_basedir);
}
else {

require("header.php");
?>

<h2>Add a new forum</h2>

<form action="<?php echo pf_script_with_get($SCRIPT_NAME); ?>"
method="post">

Finally, place the closing code below the form:

</table>
</form>

163CHAPTER 5 Discussion Forums

<?php
}

require("footer.php");

?>

Figure 5-11 shows the completed page for adding a forum.

Deleting
Deleting content from tables that are related can often be quite a challenge if the
relationships are not enforced by the database. When you delete a category, you
really want all dependent content, such as the forums and messages, to be deleted
also. When referential integrity is not enforced, a series of SQL statements are
needed to delete all dependent content.

At the start of the project, you used the InnoDB table type when creating your
tables. With this type of table, you can enforce referential integrity, but it is not cur-
rently switched on.

To turn on referential integrity, specify the relationships between the tables in
SQL. In this project, the intention is to allow all dependent records in other tables
to be deleted. This is called a cascading delete. Before writing the SQL to do this,
take a moment to understand how these relationships are defined:

FIGURE 5-11 Adding a forum

164 Practical PHP and MySQL

■ The topic_id field in the messages table stores the same value as the id field
in the topics table.

■ The forum_id field in the topics table stores the same value as the id field in
the forums table.

■ The cat_id field in the forums table stores the same value as the id field in
the categories table.

To create the first relationship, go to phpMyAdmin, click the SQL tab, and add
the following code:

ALTER TABLE messages ADD FOREIGN KEY(topic_id)
REFERENCES topics (id) ON DELETE CASCADE;

Here you change the messages table (ALTER TABLE messages) and specify that the
topic_id (ADD FOREIGN KEY (topic_id)) relates to the id field in the topics table
(REFERENCES topics (id)) with cascading deletes enabled (ON DELETE CASCADE).

Run a very similar statement, but with different tables and fields for the second
relationship:

ALTER TABLE topics ADD FOREIGN KEY(forum_id)
REFERENCES forums (id) ON DELETE CASCADE;

And, finally, for the third relationship:

ALTER TABLE forums ADD FOREIGN KEY(cat_id)
REFERENCES categories (id) ON DELETE CASCADE;

Before you write the SQL code to actually delete the records, you need to add
some controls for the administrator to select what to delete. To do this, you will put
a small X next to an item, and if the administrators clicks it, it will be deleted.

First, add a delete button just before the category is added. Fire up index.php
and look for the line in which the category is outputted. Just before the line, add the
following code:

while($catrow = mysql_fetch_assoc($catresult)) {
echo "<tr><td colspan=2>";

if($_SESSION['ADMIN']) {
echo

"[<a href='delete.php?func=cat&id="
. $forumrow['id'] . "'>X] - ";

}

echo "" . $catrow['name'] . "</td>";

165CHAPTER 5 Discussion Forums

This code links to a page that has two GET variables: func and id. The func
variable is passed either cat, forum, or thread as a value, and these options deter-
mine what is deleted. The second variable, id, provides the id of the resource to be
deleted.

Move further down where the forum is outputted and add the following code:

while($forumrow = mysql_fetch_assoc($forumresult)) {
echo "<tr>";
echo "<td>";

if($_SESSION['ADMIN']) {
echo

"[<a href='delete.php?func=forum&id="
. $forumrow['id'] . "'>X] - ";

}

echo "<a href='viewforum.php?id=" . $forumrow['id'] .
"'>" . $forumrow['name'] . "";

Finally, load viewforum.php and add the following code next to the thread:

echo "<tr>";
echo "<td>";

if($_SESSION['ADMIN']) {
echo "[<a href='delete.php?func=thread&id=" .

$topicrow['topicid'] . "?forum=" . $validforum . "'>X] - ";
}

echo "<a href='viewmessages.php?id=" .
$topicrow['topicid'] . "'>" . $topicrow['subject'] .
"</td>";

Create a new file called delete.php and add the following code:

<?php

include("config.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

Validate the id GET variable as usual:

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

if(isset($_GET['id']) == TRUE) {
if(is_numeric($_GET['id']) == FALSE) {

$error = 1;

166 Practical PHP and MySQL

}

if($error == 1) {
header("Location: " . $config_basedir);

}
else {

$validid = $_GET['id'];
}

}
else {

header("Location: " . $config_basedir);
}

To perform the delete, run the func GET variable through a switch statement to
determine what it is and then issue the relevant delete:

else {
header("Location: " . $config_basedir);

}

switch($_GET['func']) {
case "cat":

$delsql = "DELETE FROM categories
WHERE id = " . $validid . ";";

mysql_query($delsql);
header("Location: " . $config_basedir);

break;

case "forum":
$delsql = "DELETE FROM forums WHERE id = " . $validid . ";";
mysql_query($delsql);
header("Location: " . $config_basedir);

break;

case "thread":
$delsql = "DELETE FROM topics WHERE id = " . $validid . ";";
mysql_query($delsql);
header("Location: "

. $config_basedir . "/viewforum.php?id="

. $_GET['forum']);
break;

default:
header("Location: " . $config_basedir);

break;

}
?>

167CHAPTER 5 Discussion Forums

The delete SQL syntax is fairly simple: DELETE FROM <table> WHERE id = <the id
of the thing you want to delete>. After the delete is made, the page redirects to the
next level up in the page hierarchy. As an example, when you delete a topic, the
forum topics page will be deleted. See Figure 5-12.

SUMMARY

With another project completed, many essential topics have been worked on and
refined when building your forums. Every project you work on will provide a range
of specific challenges that will further your knowledge and experience with PHP
and MySQL, and the projects in this book have been chosen to explore these
skills.

In addition to learning new topics, the repetition of existing skills furthers your
understanding of these skills. As an example, each time you issue a SQL query, you
are cementing your knowledge of this element of PHP more and more. Before you
know it, you will no longer need to refer to the book or existing code to connect to
MySQL—you will be able to do it automatically.

Without further ado, it’s time for the next project.

FIGURE 5-12
Deleting content is simple.

T I P
In delete.php, when deleting a thread, you use $_GET['forum'] to redirect to
the forum page after the thread has been deleted. Don’t worry too much
about validating this variable; it does not reference data going into the
database and is merely used for displaying a page. If you are still concerned,
however, and to be doubly safe against SQL injection attacks, validate the
variable.

This page intentionally left blank

169

Creating a Shopping Cart
C H A P T E R 6

For many developers, the humble shopping cart holds a special place in their
hearts. Although PHP and MySQL are the fodder for a range of Web applications,
many developers learned their trade with the ambition to write the ubiquitous shop-
ping cart. If there is a Zen to Web development, it is likely to be experienced while
writing a shopping cart.

Although a common sight on the Web, shopping carts do come in a variety of
different flavors. The various incarnations typically differ in ways that are specific
to the type of business using the software. For example, the sale of items such as
books, CDs, and DVDs differs from the sale of cables, food, building materials, and
janitorial products. The core difference is quantity; you generally buy only a single
book or DVD at time, but it is not uncommon for a restaurant to buy 10 packs of
dinner rolls.

170 Practical PHP and MySQL

PROJECT OVERVIEW

In this project, you create the core features of a shopping cart. To get a clear idea of
how the project works, take a look at the following use case:

John needs to buy some teabags for his mobile café. He goes to a popular
online shop that was created by an owner of this very book. John does not
have a user account on the Web site but starts shopping anyway. He clicks
the Beverages category and sees the list of teabags. He clicks the Buy link
and is taken to another page, where he can choose the quantity. He selects
10 boxes of teabags and adds them to his shopping cart. The page now
refreshes, and he sees the contents of his shopping cart. John then buys cof-
fee, and his cart is updated again. John realizes he does not need the coffee
after all, so he clicks the X link to delete the coffee from his cart. John fin-
ishes choosing items and clicks the Go to the Checkout link. He is prompted
for his address, which he fills in, and is taken to the payment screen. John
can choose to pay with PayPal or by check. John clicks the PayPal button
and taken to the PayPal payment screen at paypal.com, where he pays for the
order.

Pauline needs some teabags, too. Pauline already has an account on the site,
so she logs in. She adds the items she needs to her cart and clicks the Go to
the Checkout link. At the address page, she can choose between a new
address and the address stored with her user account. She chooses the
account address and is taken to the payment screen. Pauline chooses to pay
by check and is given instructions about where to send the check and to
whom to make it payable.

Ken runs the Web site and wants to see all current orders. He logs in with his
administrator username and password and is provided with a list of orders.
Ken looks at each item, packages the order, and writes the address on the
parcel. To confirm the completion of the order, Ken clicks the Confirm Pay-
ment link. The order is now complete.

The shopping cart you build in this chapter satisfies all of the features dis-
cussed in the preceding use case, but there is still a huge scope for development.
Shopping carts can become huge and complex systems, and an entire book would
do the subject of building shopping carts justice. This project will provide a solid
foundation in which you can continue to build in extra features.

171CHAPTER 6 Creating a Shopping Cart

logins
id
customer_id
username
password

admins
id

username
password

customers
id
forename
surname
add1
add2
add3
postcode
phone
email
registered

delivery_addresses
id

forename
surname

add1
add2
add3

postcode
phone
email

orders
id

customer_id
registered

delivery_add_id
payment_type

date
status
session
total

order_items
id
order_id
product_id
quantity

products
id
cat_id
name
description
image
price

categories
id
name
description
image

FIGURE 6-1 The database schema revolves around the main orders table.

BUILDING THE DATABASE

The database you will create is shown in Figure 6-1.

This entire project fundamentally hinges on orders stored in the orders table.
This table relates to the customers (contains registered customer address details)
and delivery_addresses (contains unregistered and alternative addresses) tables.
Each product (stored in the products table) in the order is stored in the order_items
table. Other tables include logins (stores the registered user’s login details), cate-
gories (contains the categories that the products are part of), and admins (stores
administrator login details).

Implementing the Database
Start phpMyAdmin, create a new database called shoppingcart, and add the follow-
ing tables:

N O T E
Always Know Your Status

In the orders table is a field called status. The purpose of this field is to indi-
cate at what point in the shopping cart the user has progressed. This field
has four possible values:

0 The user is still adding items to her shopping cart.

1 The user has entered her address.

2 The user has paid for the item.

10 The administrator has confirmed the transaction and sent the item.

The admins Table
■ id. Make this a TINYINT (lots of users are possible) and turn on auto_

increment. Set this field as a primary key.

■ username. Make this a VARCHAR with a length of 10.

■ password. Make this a VARCHAR with a length of 10.

The categories Table
■ id. Make this a TINYINT (there will be few categories) and turn on

auto_increment in the Extras column. Make this field a primary key.

■ name. Make this a VARCHAR and set the size to 20. (It is unlikely a category
title will be longer than 20 letters.)

The customers Table
■ id. Make this an INT (lots of users are possible) and turn on auto_increment.

Set this field as a primary key.

■ forename. Make this a VARCHAR with a length of 50.

■ surname. Make this a VARCHAR with a length of 50.

■ add1. Make this a VARCHAR with a length of 50.

■ add2. Make this a VARCHAR with a length of 50.

■ add3. Make this a VARCHAR with a length of 50.

■ postcode. Make this a VARCHAR with a length of 10.

■ phone. Make this a VARCHAR with a length of 20.

■ email. Make this a VARCHAR with a length of 100.

■ registered. Make this a TINYINT.

172 Practical PHP and MySQL

173CHAPTER 6 Creating a Shopping Cart

The delivery_addresses Table
■ id. Make this an INT (lots of users are possible) and turn on auto_increment.

Set this field as a primary key.

■ forename. Make this a VARCHAR with a length of 50.

■ surname. Make this a VARCHAR with a length of 50.

■ add1. Make this a VARCHAR with a length of 50.

■ add2. Make this a VARCHAR with a length of 50.

■ add3. Make this a VARCHAR with a length of 50.

■ postcode. Make this a VARCHAR with a length of 10.

■ phone. Make this a VARCHAR with a length of 20.

■ email. Make this a VARCHAR with a length of 100.

The logins Table
■ id. Make this an INT (lots of users are possible) and turn on auto_increment.

Set this field as a primary key.

■ customer_id. Make this an INT.

■ username. Make this a VARCHAR with a length of 10.

■ password. Make this a VARCHAR with a length of 10.

The orderitems Table
■ id. Make this an INT (lots of items are possible) and turn on auto_increment.

Set this field as a primary key.

■ order_id. Make this an INT.

■ product_id. Make this an INT.

■ quantity. Make this an INT.

The orders Table
■ id. Make this an INT (lots of orders are possible) and turn on

auto_increment. Set this field as a primary key.

■ customer_id. Make this an INT.

■ registered. Make this an INT.

■ delivery_add_id. Make this an INT.

■ payment_type. Make this an INT.

■ date. Make this a DATETIME.

■ status. Make this a TINYINT.

■ session. Make this a VARCHAR and set the size to 50.

■ total. Make this a FLOAT.

The products Table
■ id. Make this an INT (lots of images are possible) and turn on auto_incre-

ment. Set this field as a primary key.

■ cat_id. Make this a TINYINT.

■ name. Make this a VARCHAR with a length of 100. It is likely there will be long
product names.

■ description. Make this a TEXT.

■ image. Make this a VARCHAR and set the size to 30.

■ price. Make this a FLOAT.

Insert Sample Data
With a solid set of tables ready to go, add some sample data to get started. Remem-
ber, do not fill in a number in the id column; this is handled by auto_increment.
Feel free to add your own sample data, or use the suggested information.

Sample Data for the admins Table
Create a username and password for the administrator. This example uses jono as
the username and bacon as the password.

Sample Data for the categories Table
Add two categories: beverages and cakes.

Sample Data for the customers Table
Add the following customers, as shown in Table 6-1.

174 Practical PHP and MySQL

FORENAME SURNAME ADD1 ADD2 ADD3 POSTAL

CODE

PHONE EMAIL REGISTERED

Craig Tucker 19, The

Grove

Ziggy

Road

Smalltown T3 TR4 01234

567890

craig@

hissite.com

1

Lee Jordan 19, Oak

Street

Booth

Road

Thistown T1 FG3 01234

098765

lee@lee-

tastic.com

1

TABLE 6-1 The customers and logins tables store details about registered users.

175CHAPTER 6 Creating a Shopping Cart

Sample Data for the logins Table
Add the login details from Table 6-2 for each customer.

Sample Data for the delivery_addresses Table
Leave this table empty.

Sample Data for the products Table
Add the products shown in Table 6-3 to the products table.

Sample Data for the orders Table
Leave this table empty.

Sample Data for the orderitems Table
Leave this table empty.

STARTING TO CODE

One of the challenges in creating a shopping cart is dealing with both registered
and unregistered users. For registered users, there is no problem because, when
adding information to the tables, you can use their IDs to track them. The challenge
arises with unregistered users. How do you track them?

CUSTOMER_ID USERNAME PASSWORD

1 Craig Tucker

2 Lee Jordan

TABLE 6-2 Make sure you match the customer_id field to the id field in the cus-
tomers table.

CAT_ID NAME DESCRIPTION IMAGE PRICE

1 Best Bags A quality pack of tea bags.
200 bags in each box.

<empty> 2.99

1 Best Orange Juice One gallon of quality
squeezed orange juice.

bestorange-
juice.jpg

0.90

TABLE 6-3 The image field contains the name of an image if it exists.

176 Practical PHP and MySQL

The solution is to use session IDs. When the user loads the first page with the
session_start() function, a special session ID is generated. This ID is unique to
that specific user and tracks which session variables are assigned to which user vis-
iting the site. Although you have not referred to the session ID before, in this proj-
ect you will use the session ID extensively.

Every time a user visits the shopping cart and adds his first item, an order is
added to the orders table. For registered users, the user’s id is added to the cus-
tomer_id field in the table. For unregistered users, the unique session id is added
to the session field. When this order has been added to the table, a session variable
called SESS_ORDERNUM is created with the id of the order. SESS_ORDERNUM can now be
used to track the order’s progress throughout the site.

To get started, build the usual configuration file that stores generic information
about the site. Create a new directory called shoppingcart and add the code shown
in Example 6-1 to config.php.

EXAMPLE 6-1 The configuration file is similar to the other projects in the
book.

<?php

$dbhost = "localhost";
$dbuser = "root";
$dbpassword = "";
$dbdatabase = "shoppingcart";

$config_basedir = "http://localhost/sites/shoppingcart/";

$config_sitename = "BidTastic Aucions";

?>

To make life easier when dealing with redirects, create a file called db.php that
contains just the database connection details, as shown in Example 6-2.

EXAMPLE 6-2 The db.php file will be included when you need a database con-
nection but don’t want to include header.php because of a redirect.

<?php

require("config.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

?>

177CHAPTER 6 Creating a Shopping Cart

Create header.php as shown in Example 6-3.

EXAMPLE 6-3 The header file adds the menu options, includes the sidebar,
and adds some login/logout links.

<?php

session_start();
if(isset($_SESSION['SESS_CHANGEID']) == TRUE)
{

session_unset();
session_regenerate_id();

}
require("config.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

?>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<head>

<title><?php echo $config_sitename; ?></title>
<link href="../stylesheet.css" rel="stylesheet">

</head>
<body>

<div id="header">
<h1><?php echo $config_sitename; ?></h1>
</div>
<div id="menu">

<a href="<?php echo $config_basedir; ?>">Home -
<a href="<?php echo $config_basedir;

?>showcart.php">View Basket/Checkout
</div>
<div id="container">

<div id="bar">
<?php

require("bar.php");
echo "<hr>";

if(isset($_SESSION['SESS_LOGGEDIN']) == TRUE)
{

echo "Logged in as " . $_SESSION['SESS_USERNAME']
. "
[<a href='" . $config_basedir
. "logout.php'>logout]";

}
else
{

continues

178 Practical PHP and MySQL

EXAMPLE 6-3 Continued

echo "<a href='"
. $config_basedir . "login.php'>Login";

}
?>

</div>

<div id="main">

Take a moment to review the following interesting points about header.php:

■ At the top of the file, a check is made for a session variable called
SESS_CHANGEID. If it exists, the session is unset (deleted) and the session id is
regenerated. Later, when the order is complete, SESS_CHANGEID is created
when the session system should be reset.

■ A check is made to see if the SESS_LOGGEDIN variable exists. If it does, it
indicates the user is currently logged in, and his username and a Logout link
are displayed. The username is stored in SESS_USERNAME; this variable is cre-
ated in login.php, which is covered later.

■ The same stylesheet.css file from the previous projects in the book is used here.

A file called bar.php is also included in the header file. This file contains the
list of categories shown in Example 6-4.

EXAMPLE 6-4 Although the code in bar.php could have been added to
header.php, you can use this file to cleanly add other content if needed.

<h1>Product Categories</h1>

<?php

$catsql = "SELECT * FROM categories;";
$catres = mysql_query($catsql);

while($catrow = mysql_fetch_assoc($catres))
{

echo "<a href='" . $config_basedir
. "/products.php?id=" . $catrow['id'] . "'>"
. $catrow['name'] . "";
}

?>

179CHAPTER 6 Creating a Shopping Cart

The code in bar.php performs a SELECT query to gather all the categories and
display them in an unordered list. Each category links to products.php, which is
created later.

Create footer.php and add the code shown in Example 6-5.

EXAMPLE 6-5 The footer file adds admin links when the administrator is
logged in.

<?php
echo "<p><i>All content on this site is © "

. $config_sitename . "</i></p>";

if($_SESSION['SESS_ADMINLOGGEDIN'] == 1)
{

echo "[admin]
[<a href='"
. $config_basedir
. "adminlogout.php'>admin logout]";
}

?>

</div>
</div>

</body>
</html>

Create the main index.php for site, using the code shown in Example 6-6.

EXAMPLE 6-6 It may come as a surprise to see such a minimal index.php file.
This file is really intended for generic information about the store.

<?php
require("header.php");

?>
<h1>Welcome!!</h1>
Welcome to the

<?php echo $config_sitename; ?> website.
Click on one of the pages to explore the site.
We have a wide range of different products
available.

<?php

require("footer.php");
?>

180 Practical PHP and MySQL

FIGURE 6-2 The main page provides a simple and clean interface for the
shopping cart.

With the main design complete, your browser should display something similar
to Figure 6-2.

MANAGING USER LOGINS

Users are a critical element in a shopping cart, and tracking both registered and
unregistered users is important. Many of the different scripts that form the site have
two strands of functionality: one if the user is logged in and one if not.

The login page is similar to the others in the book. Create a file called login.php
and add the form:

<form action="<?php echo $SCRIPT_NAME; ?>" method="POST">
<table>

<tr>
<td>Username</td>
<td><input type="textbox" name="userBox">

</tr>
<tr>

<td>Password</td>
<td><input type="password" name="passBox">

</tr>
<tr>

<td></td>
<td><input type="submit" name="submit" value="Log in">

181CHAPTER 6 Creating a Shopping Cart

</tr>
</table>
</form>

Move to the start of the file and begin adding the code:

<?php
session_start();
require("db.php");

if(isset($_SESSION['SESS_LOGGEDIN']) == TRUE) {
header("Location: " . $config_basedir);

}

A check is made to see if the user is already logged in. If so, there is no point in
loading the login page, so the page redirects to the base URL of the site.

Process the form:

if(isset($_SESSION['SESS_LOGGEDIN']) == TRUE) {
header("Location: " . $config_basedir);

}

if($_POST['submit'])
{

$loginsql = "SELECT * FROM logins
WHERE username = '" . $_POST['userBox']
. "' AND password = '" . $_POST['passBox']
. "'";

$loginres = mysql_query($loginsql);
$numrows = mysql_num_rows($loginres);

if($numrows == 1)
{

$loginrow = mysql_fetch_assoc($loginres);

session_register("SESS_LOGGEDIN");
session_register("SESS_USERNAME");
session_register("SESS_USERID");

$_SESSION['SESS_LOGGEDIN'] = 1;
$_SESSION['SESS_USERNAME'] = $loginrow['username'];
$_SESSION['SESS_USERID'] = $loginrow['id'];

$ordersql = "SELECT id FROM orders
WHERE customer_id = " . $_SESSION['SESS_USERID']
. " AND status < 2";

$orderres = mysql_query($ordersql);
$orderrow = mysql_fetch_assoc($orderres);

session_register("SESS_ORDERNUM");
$_SESSION['SESS_ORDERNUM'] = $orderrow['id'];

182 Practical PHP and MySQL

header("Location: " . $config_basedir);
}
else
{

header("Location: http://" . $HTTP_HOST
. $SCRIPT_NAME . "?error=1");

}
}

This code uses the same technique shown earlier for logging in a user. When a
successful login occurs, three session variables are created:

■ SESS_LOGGEDIN. Set to 1 to indicate the user is currently logged in.

■ SESS_USERNAME. Contains the username of the user.

■ SESS_USERID. Contains the id of the user.

In addition to these variables, a SELECT statement pulls the id from the orders
table, in which the customer_id field matches the id of the current user. Another
session variable called SESS_ORDERNUM is then set to the id returned from this query.
This process can have one of two outcomes:

■ No order exists. If no order exists in the orders table, SESS_ORDERNUM is not set
to anything.

■ An order exists. If an id is returned from the query, SESS_ORDERNUM is set to
this id. This is useful if the user was selecting items for the shopping cart
and then logged out. When the user logs in again, the shopping cart contains
the same items from the previous visit and the user can continue to select
items. This functionality provides some important continuity.

When the form is successfully submitted and the session variables are set, the
page redirects to the base URL of the site. The page will display the text Logged in
as <foo> in the sidebar.

Add the rest of the code:

header("Location: http://" . $HTTP_HOST
. $SCRIPT_NAME . "?error=1");

}
}

else
{

require("header.php");
?>

<h1>Customer Login</h1>
Please enter your username and password to

log into the websites. If you do not

183CHAPTER 6 Creating a Shopping Cart

have an account, you can get one for free by registering.

<p>

<?php
if($_GET['error']) {

echo "Incorrect username/password";
}

?>

<form action="<?php echo $SCRIPT_NAME; ?>" method="POST">
<table>

Finally, add the code after the form:

</table>
</form>

<?php
}

require("footer.php");
?>

The completed results should look similar to the page shown in Figure 6-3.

FIGURE 6-3 The completed login screen

184 Practical PHP and MySQL

Logging Out Users
The process of logging out a user is a little different from some of the earlier proj-
ects in the book. Instead of destroying the entire session with session_destroy(),
you instead un-register the user’s session variables. You can’t run
session_destroy() because it destroys the administrator’s login session when the
administrator is logged in as both a normal user and an admin.

Create logout.php and add the code:

<?php

session_start();

require("config.php");

session_unregister("SESS_LOGGEDIN");
session_unregister("SESS_USERNAME");
session_unregister("SESS_USERID");

header("Location: " . $config_basedir);
?>

DISPLAYING AND SELECTING PRODUCTS

The most central function of a shopping cart is to show the user a range of products
and allow her to choose products, adding them to the metaphorical shopping cart.
This involves a few different processes:

■ The user clicks a product category to view available products. To choose a
product, she clicks the Buy link.

■ Next, the user selects the quantity of items.

■ The page displays the current contents of the shopping cart and total price.
The user can also click the X symbols to delete any items from the cart and
recalculate the total.

The first step in this process is to display the available products within a cate-
gory. Before you begin creating the code, you need to use the pf_validate_num-
ber() function that you wrote in the forums project in Chapter 5. Create a new file
called functions.php and copy the code into it:

<?php
function pf_validate_number($value, $function, $redirect) {

if(isset($value) == TRUE) {
if(is_numeric($value) == FALSE) {

185CHAPTER 6 Creating a Shopping Cart

FIGURE 6-4
Each image should be 150×150 in size and saved
as a JPG.

$error = 1;
}

if($error == 1) {
header("Location: " . $redirect);

}
else {

$final = $value;
}

}
else {

if($function == 'redirect') {
header("Location: " . $redirect);

}

if($function == "value") {
$final = 0;

}
}

return $final;
}
?>

For this project, you should also create some product images, such as those
shown in Figure 6-4, for use with your shopping cart. You need to create at least one
image, called dummy.jpg, that can be loaded when no image exists for a product. If
you used the sample data earlier in this chapter, the image for the Best Orange
Juice product is called bestorangejuice.jpg.

Create a new file called products.php and start to add the code:

<?php
require("db.php");
require("functions.php");

$validid = pf_validate_number($_GET['id'],
"redirect", $config_basedir);

186 Practical PHP and MySQL

The pf_validate_number() function validates the category id GET variable
that is passed to the page. If no id GET variable exists, the function redirects to the
site’s base URL.

Select the products from the database:

$validid = pf_validate_number($_GET['id'],
"redirect", $config_basedir);

require("header.php");

$prodcatsql = "SELECT * FROM products WHERE
cat_id = " . $_GET['id'] . ";";
$prodcatres = mysql_query($prodcatsql);
$numrows = mysql_num_rows($prodcatres);

if($numrows == 0)
{

echo "<h1>No products</h1>";
echo "There are no products in this category.";

}

If a category has no products, the text No products is displayed on the page. (To
determine whether a category has projects, check if the number of rows returned is
0.) If a category contains products, a while() loop iterates through each row:

echo "There are no products in this category.";
}

else
{

echo "<table cellpadding='10'>";

while($prodrow = mysql_fetch_assoc($prodcatres))
{

echo "<tr>";
if(empty($prodrow['image'])) {

echo "<td><img
src='./productimages/dummy.jpg' alt='"
. $prodrow['name'] . "'></td>";

}
else {

echo "<td><img src='./productimages/" . $prodrow['image']
. "' alt='"
. $prodrow['name'] . "'></td>";

}

echo "<td>";
echo "<h2>" . $prodrow['name'] . "</h2>";
echo "<p>" . $prodrow['description'];

187CHAPTER 6 Creating a Shopping Cart

echo "<p>OUR PRICE: £"
. sprintf('%.2f', $prodrow['price']) . "";

echo "<p>[<a href='addtobasket.php?id="
. $prodrow['id'] . "'>buy]";

echo "</td>";
echo "</tr>";

}

echo "</table>";

The information about each product is displayed, and a Buy link is linked to
addtobasket.php. The link also passes the id of the product as a GET variable.

Finally, add the closing code:

echo "</table>";

}
require("footer.php");

?>

Adding the Item to the Cart
The purpose of addtobasket.php is to add the selected item to the orderitems table
and then redirect to a page that summarizes the items in the shopping cart.

The addtobasket.php page is quite a large script with lots of nested if state-
ments. This makes it fairly difficult to break down and discuss piece by piece, as
has been done with most other scripts. To make this easier to understand, add the
entire code to the file. You’ll run through it step by step at the end.

Create addtobasket.php and add the code:

<?php
session_start();

require("db.php");
require("functions.php");

$validid = pf_validate_number($_GET['id'],
"redirect", $config_basedir);

$prodsql = "SELECT * FROM products WHERE id = " . $_GET['id'] . ";";
$prodres = mysql_query($prodsql);
$numrows = mysql_num_rows($prodres);
$prodrow = mysql_fetch_assoc($prodres);

if($numrows == 0)
{

188 Practical PHP and MySQL

header("Location: " . $config_basedir);
}
else
{

if($_POST['submit'])
{

if($_SESSION['SESS_ORDERNUM'])
{

$itemsql = "INSERT INTO orderitems(order_id,
product_id, quantity) VALUES("

. $_SESSION['SESS_ORDERNUM'] . ", "
. $_GET['id'] . ", "

. $_POST['amountBox'] . ")";
mysql_query($itemsql);

}
else
{

if($_SESSION['SESS_LOGGEDIN'])
{

$sql = "INSERT INTO orders(customer_id,
registered, date) VALUES("

. $_SESSION['SESS_USERID'] . ", 1, NOW())";
mysql_query($sql);
session_register("SESS_ORDERNUM");
$_SESSION['SESS_ORDERNUM'] = mysql_insert_id();

$itemsql = "INSERT INTO
orderitems(order_id, product_id, quantity) VALUES("

. $_SESSION['SESS_ORDERNUM']
. ", " . $_GET['id'] . ", "

. $_POST['amountBox'] . ")";

mysql_query($itemsql);
}
else
{

$sql = "INSERT INTO orders(registered,
date, session) VALUES("

. "0, NOW(), '" . session_id() . "')";
mysql_query($sql);
session_register("SESS_ORDERNUM");
$_SESSION['SESS_ORDERNUM'] = mysql_insert_id();

$itemsql = "INSERT INTO
orderitems(order_id, product_id, quantity) VALUES("

. $_SESSION['SESS_ORDERNUM'] . ", " . $_GET['id'] . ", "
. $_POST['amountBox'] . ")";

189CHAPTER 6 Creating a Shopping Cart

mysql_query($itemsql);
}

}

$totalprice = $prodrow['price'] * $_POST['amountBox'] ;

$updsql = "UPDATE orders SET total = total + "
. $totalprice . " WHERE id = "
. $_SESSION['SESS_ORDERNUM'] . ";";

mysql_query($updres);

header("Location: " . $config_basedir . "showcart.php");
}
else
{

require("header.php");

echo "<form action='addtobasket.php?id="
. $_GET['id'] . "' method='POST'>";

echo "<table cellpadding='10'>";

echo "<tr>";
if(empty($prodrow['image'])) {

echo "<td><img
src='./productimages/dummy.jpg' width='50' alt='"
. $prodrow['name'] . "'></td>";

}
else {

echo "<td>
<img src='./productimages/" . $prodrow['image']
. "' width='50' alt='" . $prodrow['name']
. "'></td>";

}

echo "<td>" . $prodrow['name'] . "</td>";
echo "<td>Select Quantity <select name='amountBox'>";

for($i=1;$i<=100;$i++)
{

echo "<option>" . $i . "</option>";
}

echo "</select></td>";
echo "<td>£"

. sprintf('%.2f', $prodrow['price'])

190 Practical PHP and MySQL

. "</td>";
echo "<td><input type='submit'

name='submit' value='Add to basket'></td>";
echo "</tr>";

echo "</table>";
echo "</form>";

}
}

require("footer.php");
?>

To best explain this code, review the following bulleted points to see what hap-
pens. As you read each bullet, reference the code you typed into your editor. All
set? Here goes…

■ At the top of the page, a query returns the product with the id GET variable.
If no rows are returned, the page redirects to the site’s base URL.

■ The form is displayed and includes a drop-down select box that uses a for
loop to provide options from 1 to 100. In addition to the form, some product
information is displayed.

■ When the user submits the form, the page is reloaded and a check is made to
see if a SESS_ORDERNUM variable exists. If it does, this means an order is
already open and an INSERT statement adds the product id and quantity to
the orderitems table, in which the order_id is SESS_ORDERNUM.

■ If no SESS_ORDERNUM exists, an order must be created in the orders table
before you can add the item to the orderitems table. A check is then made to
see if the SESS_LOGGEDIN session variable exists. If it does, the user is already
logged in and an order is created before the item is added to the orderitems
table. If SESS_LOGGEDIN does not exist, the user is not currently logged in
(they possibly don’t have a user account). As such, an order is created in the
orders table (using session_id() to get the unique session id) and then the
item is added to the orderitems table.

■ The total field in the orders table is updated. This is performed by calculat-
ing the price multiplied by the quantity (the result is stored in $totalprice).

■ Finally, the page redirects to the cart summary page on showcart.php.

Before you click the Submit button, make sure your page looks similar to the
one shown in Figure 6-5.

191CHAPTER 6 Creating a Shopping Cart

FIGURE 6-5 The completed Add To Basket script

Displaying the Basket Summary
When the addtobasket.php script has finished processing, the page redirects to
showcart.php. This page provides a summary of the items added to the shopping cart.

Occasionally, you might need to display a summary of the items. To prevent
duplication of code, a function called showcart() has been created to display the
summary. Before you look at the function, create a new file called showcart.php and
add the following code, which uses the showcart()function:

<?php
session_start();

require("header.php");
require("functions.php");

echo "<h1>Your shopping cart</h1>";
showcart();

if(isset($_SESSION['SESS_ORDERNUM']) == TRUE) {
$sql = "SELECT * FROM orderitems WHERE

order_id = " . $_SESSION['SESS_ORDERNUM'] . ";";
$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

if($numrows >= 1) {
echo "<h2>

Go to the checkout</h2>";
}

}

require("footer.php");
?>

192 Practical PHP and MySQL

The showcart() function does not include a link to the checkout, because not
every page needs one. The block of code after the function call checks if an order
number is available and if so, a check is made to see if the cart contains any items.
If the cart contains one or more items, the checkout link is displayed.

Add the showcart() code to functions.php:

function showcart()
{

if($_SESSION['SESS_ORDERNUM'])
{

if($_SESSION['SESS_LOGGEDIN'])
{

$custsql = "SELECT id, status from
orders WHERE customer_id = "
. $_SESSION['SESS_USERID']
. " AND status < 2;";

$custres = mysql_query($custsql);
$custrow = mysql_fetch_assoc($custres);

The outer if check in the function determines if an order number exists. If it
does, a second if checks if the user is logged in. If this is the case, the query selects
the row from the orders table that has the user id for the user and in which the sta-
tus is 0 or 1. The query should return a single row only.

The main query to grab the item details is now ready to run:

$custrow = mysql_fetch_assoc($custres);

$itemssql = "SELECT products.*, orderitems.*, orderitems.id AS
itemid FROM products, orderitems WHERE orderitems.product_id =
products.id AND order_id = " . $custrow['id'];

$itemsres = mysql_query($itemssql);
$itemnumrows = mysql_num_rows($itemsres);

}

If no user is logged in, a similar SELECT query is made to get the order number,
but the match is made on the current session id. After this query, the list of items is
returned:

$itemnumrows = mysql_num_rows($itemsres);
}

else
{

$custsql = "SELECT id, status from orders
WHERE session = '" . session_id()

193CHAPTER 6 Creating a Shopping Cart

. "' AND status < 2;";
$custres = mysql_query($custsql);
$custrow = mysql_fetch_assoc($custres);

$itemssql = "SELECT products.*,
orderitems.*, orderitems.id AS itemid
FROM products, orderitems WHERE
orderitems.product_id = products.id AND
order_id = " . $custrow['id'];

$itemsres = mysql_query($itemssql);
$itemnumrows = mysql_num_rows($itemsres);

If no SESS_ORDERNUM variable is available, the $itemnumrows variable is set to 0:

$itemnumrows = mysql_num_rows($itemsres);

}
}
else
{

$itemnumrows = 0;
}

This code checks $itemnumrows to see what value it contains. If the value is 0, a
message displays to indicate the cart is empty:

$itemnumrows = 0;
}

if($itemnumrows == 0)
{

echo "You have not added anything to your shopping cart yet.";
}

If $itemnumrows has a value, the items are displayed:

echo "You have not added anything to your shopping cart yet.";
}

else
{

echo "<table cellpadding='10'>";
echo "<tr>";

echo "<td></td>";
echo "<td>Item</td>";
echo "<td>Quantity</td>";
echo "<td>Unit Price</td>";
echo "<td>Total Price</td>";
echo "<td></td>";

echo "</tr>";

194 Practical PHP and MySQL

while($itemsrow = mysql_fetch_assoc($itemsres))
{

$quantitytotal =
$itemsrow['price'] * $itemsrow['quantity'];

echo "<tr>";

if(empty($itemsrow['image'])) {
echo "<td><img

src='./productimages/dummy.jpg' width='50' alt='"
. $itemsrow['name'] . "'></td>";

}
else {

echo "<td><img src='./productimages/" .
$itemsrow['image'] . "' width='50' alt='"
. $itemsrow['name'] . "'></td>";

}

echo "<td>" . $itemsrow['name'] . "</td>";
echo "<td>" . $itemsrow['quantity'] . "</td>";
echo "<td>£"

. sprintf('%.2f', $itemsrow['price'])

. "</td>";
echo "<td>£"

. sprintf('%.2f', $quantitytotal) . "</td>";
echo "<td>[<a href='"

. $config_basedir . "delete.php?id="

. $itemsrow['itemid'] . "'>X]</td>";
echo "</tr>";

$total = $total + $quantitytotal;
$totalsql = "UPDATE orders SET total = "

. $total . " WHERE id = "

. $_SESSION['SESS_ORDERNUM'];
$totalres = mysql_query($totalsql);

}

echo "<tr>";
echo "<td></td>";
echo "<td></td>";
echo "<td></td>";
echo "<td>TOTAL</td>";
echo "<td>£"

. sprintf('%.2f', $total) . "</td>";
echo "<td></td>";

echo "</tr>";

echo "</table>";

echo "<p>Go to the checkout</p>";

}
}

195CHAPTER 6 Creating a Shopping Cart

Deleting Items
The showcart() function contains a link to delete.php, in which you can remove an
item from the shopping cart. By clicking the link, the item is removed from the
orderitems table, and the total price in the orders table is updated.

Create delete.php and begin adding the code:

<?php

require("config.php");
require("db.php");
require("functions.php");

$validid = pf_validate_number($_GET['id'],
"redirect", $config_basedir . "showcart.php");

$itemsql = "SELECT * FROM orderitems WHERE id = "
. $_GET['id'] . ";";
$itemres = mysql_query($itemsql);
$numrows = mysql_num_rows($itemres);

if($numrows == 0) {
header("Location: " . $config_basedir . "showcart.php");

}

$itemrow = mysql_fetch_assoc($itemres);

In this code, the query pulls the item from the orderitems table, and the number
of rows returned is checked. This check prevents someone modifying the URL and
adding delete.php?id=73 if there is no item with an id of 73. If no rows are
returned, a header redirect jumps to showcart.php. If a row is returned, the script
continues:

$itemrow = mysql_fetch_assoc($itemres);

$prodsql = "SELECT price FROM products
WHERE id = " . $itemrow['product_id'] . ";";
$prodres = mysql_query($prodsql);
$prodrow = mysql_fetch_assoc($prodres);

$sql = "DELETE FROM orderitems WHERE id = " . $_GET['id'];
mysql_query($sql);

In this block, the price of the product is selected first and then a separate query
removes the item from orderitems.

Update the orders table with the new total price:

196 Practical PHP and MySQL

FIGURE 6-6 The shopping cart summary displays a current list of items and the
ability to remove them.

mysql_query($sql);

$totalprice = $prodrow['price'] * $itemrow['quantity'] ;

$updsql = "UPDATE orders SET total = total - "
. $totalprice . " WHERE id = "
. $_SESSION['SESS_ORDERNUM'] . ";";
mysql_query($updres);

header("Location: " . $config_basedir . "/showcart.php");

?>

With the cart summary function and pages complete, your browser should show
something similar to the page shown in Figure 6-6.

CHECKING IT OUT

After the user has finished adding items to his shopping cart, the checkout process
can begin. This process involves two steps:

■ Prompt the user for a delivery address. If the user is already logged in, he
should be asked if he wants to use the address he registered or use a differ-
ent address. All addresses should be validated.

■ Prompt the user to choose a payment method, either PayPal or a check.

197CHAPTER 6 Creating a Shopping Cart

Create checkout-address.php and add the form:

require("header.php");
echo "<h1>Add a delivery address</h1>";

if(isset($_GET['error']) == TRUE) {
echo "Please fill in the missing

information from the form";
}

echo "<form action='" . $SCRIPT_NAME . "' method='POST'>";

if($_SESSION['SESS_LOGGEDIN'])
{
?>
<input type="radio" name="addselecBox"

value="1" checked>Use the address from my
account</input>

<input type="radio" name="addselecBox"

value="2">Use the address below:</input>

<?php
}

?>
<table>
<tr>

<td>Forename</td>
<td><input type="text" name="forenameBox"></td>

</tr>
<tr>

<td>Surname</td>
<td><input type="text" name="surnameBox"></td>

</tr>
<tr>

<td>House Number, Street</td>
<td><input type="text" name="add1Box"></td>

</tr>
<tr>

<td>Town/City</td>
<td><input type="text" name="add2Box"></td>

</tr>
<tr>

<td>County</td>
<td><input type="text" name="add3Box"></td>

</tr>
<tr>

<td>Postcode</td>
<td><input type="text" name="postcodeBox"></td>

</tr>
<tr>

<td>Phone</td>
<td><input type="text" name="phoneBox"></td>

198 Practical PHP and MySQL

N O T E
Remember that the status can be any of the following values:

0 The user is still shopping.

1 The user has completed the address entry.

2 The user has paid.

10 The administrator has confirmed the order.

</tr>
<tr>

<td>Email</td>
<td><input type="text" name="emailBox"></td>

</tr>
<tr>

<td></td>
<td><input type="submit" name="submit"

value="Add Address (press only once)"></td>
</tr>
</table>

</form>

Before the form is displayed, an if checks if an error GET variable exists. If it
does, an error message is displayed. The script then checks if the user is logged in,
and if so, two radio buttons are added so that the user can choose between the
address he registered and a different address.

Move to the start of the file and add the following code:

<?php
session_start();
require("db.php");

$statussql = "SELECT status FROM orders WHERE id = " .
$_SESSION['SESS_ORDERNUM'];

$statusres = mysql_query($statussql);
$statusrow = mysql_fetch_assoc($statusres);
$status = $statusrow['status'];

The first step is to determine the current status of the order. If the user has
already been through the address stage of the checkout process, redirect the page to
the payment screen. Obtain the status by searching for a record in the orders table
that matches SESS_ORDERNUM. Then, set the $status variable to the correct status.

If the status is set to 1, the user has already entered an address and the page
redirects to the payment screen. If the status is 2 or higher, the order has been com-
pleted. Redirect the page to the base URL of the site:

199CHAPTER 6 Creating a Shopping Cart

$status = $statusrow['status'];

if($status == 1) {
header(“Location: “ . $config_basedir . “checkout-pay.php”);

}

if($status >= 2) {
header(“Location: “ . $config_basedir);

}

Begin processing the form:

if($status >= 2) {
header("Location: " . $config_basedir);

}

if($_POST[‘submit’])
{

if($_SESSION[‘SESS_LOGGEDIN’])
{

if($_POST[‘addselecBox’] == 2)
{

if(empty($_POST[‘forenameBox’]) ||
empty($_POST[‘surnameBox’]) ||
empty($_POST[‘add1Box’]) ||
empty($_POST[‘add2Box’]) ||
empty($_POST[‘add3Box’]) ||
empty($_POST[‘postcodeBox’]) ||
empty($_POST[‘phoneBox’]) ||
empty($_POST[‘emailBox’]))

{
header(“Location: “ . $basedir . “checkout-

address.php?error=1”);
exit;

}

The first nested if checks if the user is logged in. A check is then made to
see if the user selected the second radio button (Use the address below). If so,
the form fields are checked to see if they are empty. If they are, the page is
reloaded with the error GET variable so that the error message can be dis-
played.

If the form is not empty, add the address to the delivery_addresses table and
update the orders table:

exit;
}

$addsql = "INSERT INTO
delivery_addresses(forename, surname, add1,
add2, add3, postcode, phone, email)

200 Practical PHP and MySQL

VALUES('"
. strip_tags(addslashes(

$_POST['forenameBox'])) . "', '"
. strip_tags(addslashes(

$_POST['surnameBox'])) . "', '"
. strip_tags(addslashes(

$_POST['add1Box'])) . "', '"
. strip_tags(addslashes(

$_POST['add2Box'])) . "', '"
. strip_tags(addslashes(

$_POST['add3Box'])) . "', '"
. strip_tags(addslashes(

$_POST['postcodeBox'])) . "', '"
. strip_tags(addslashes(

$_POST['phoneBox'])) . "', '"
. strip_tags(addslashes(

$_POST['emailBox'])) . "')";

mysql_query($addsql);

$setaddsql = "UPDATE orders SET
delivery_add_id = " . mysql_insert_id() . ",
status = 1 WHERE id = "
. $_SESSION['SESS_ORDERNUM'];

mysql_query($setaddsql);

header("Location: "
. $config_basedir . "checkout-pay.php");

}

The delivery_addresses table contains a list of addresses for unregistered
users and registered users who select a different address. When the information
is added to the table, the strip_tags() function removes any HTML tags that
may have been added, and the addslashes() function escapes any quotes.
Finally, the orders table is updated with the id of the record from
delivery_addresses, and the status is changed to 1. When this is complete, the
page redirects to checkout-pay.php.

If the user is logged in but selects the address on file, the orders table is
updated also:

header("Location: "
. $config_basedir . "checkout-pay.php");

}

else
{

$custsql = "UPDATE orders SET
delivery_add_id = 0, status = 1 WHERE id = " .
$_SESSION['SESS_ORDERNUM'];

mysql_query($custsql);

201CHAPTER 6 Creating a Shopping Cart

header("Location: " . $config_basedir
. "checkout-pay.php");

}
}

If no user is logged in, the form is validated and the address is added to the
database:

header("Location: " . $config_basedir
. "checkout-pay.php");

}
}

else
{

if(empty($_POST['forenameBox']) ||
empty($_POST['surnameBox']) ||
empty($_POST['add1Box']) ||
empty($_POST['add2Box']) ||
empty($_POST['add3Box']) ||
empty($_POST['postcodeBox']) ||
empty($_POST['phoneBox']) ||
empty($_POST['emailBox']))

{
header("Location: " . "checkout-address.php?error=1");
exit;

}

$addsql = "INSERT INTO
delivery_addresses(forename, surname, add1,
add2, add3, postcode, phone, email)

VALUES('"
. $_POST['forenameBox'] . "', '"
. $_POST['surnameBox'] . "', '"
. $_POST['add1Box'] . "', '"
. $_POST['add2Box'] . "', '"
. $_POST['add3Box'] . "', '"
. $_POST['postcodeBox'] . "', '"
. $_POST['phoneBox'] . "', '"
. $_POST['emailBox'] . "')";

mysql_query($addsql);

$setaddsql = "UPDATE orders
SET delivery_add_id = " . mysql_insert_id()
. ", status = 1 WHERE session = '"
. session_id() . "'";

mysql_query($setaddsql);

header("Location: " . $config_basedir . "checkout-pay.php");
}

}

202 Practical PHP and MySQL

In this block of code, the address is added to the delivery_addresses table, and
the orders table is updated with the delivery_addresses id and the status is set to 1.

Begin the form block:

header("Location: " . $config_basedir . "checkout-pay.php");
}

}

else
{

require("header.php");
echo "<h1>Add a delivery address</h1>";

Finally, add the code after the form:

</table>
</form>

<?php
}
require("footer.php");

?>

With the address code complete, your browser should display a page similar to
Figure 6-7—when a user is logged in.

FIGURE 6-7 When the user is logged in, the radio buttons prompt users which
address to use.

203CHAPTER 6 Creating a Shopping Cart

Paying
The final part of the checkout process is to take payment. Dealing with payments on
a Web site can take a variety of different routes: PayPal, NOCHEX, Worldpay, and
more. This project offers two payment methods: PayPal and checks. These two meth-
ods demonstrate how to deal with automatic (PayPal) and manual (check) purchases.

Create a new file called checkout-pay.php and add the form:

<h2>Select a payment method</h2>
<form action='checkout-pay.php' method='POST'>
<table cellspacing=10>
<tr>

<td><h3>PayPal</h3></td>
<td>
This site uses PayPal to accept

Switch/Visa/Mastercard cards. No PayPal account
is required - you simply fill in your credit
card details

and the correct payment will be taken from your account.
</td>
<td><input type="submit"

name="paypalsubmit" value="Pay with PayPal"></td>
</tr>
<tr>

<td><h3>Cheque</h3></td>
<td>
If you would like to pay by cheque, you

can post the cheque for the final
amount to the office.
</td>
<td><input type="submit"

name="chequesubmit" value="Pay by cheque"></td>
</tr>
</table>
</form>

This simple form provides two Submit buttons only—one to pay by PayPal and
the other to pay by check. Processing the form involves two main sections—one for
PayPal and one for the check.

At the top of the file, begin adding the code:

<?php
session_start();

require("db.php");
require("functions.php");

If the user clicks the PayPal button, process the order:

require("functions.php");

204 Practical PHP and MySQL

if($_POST['paypalsubmit'])
{

$upsql = "UPDATE orders SET status = 2, payment
_type = 1 WHERE id = " . $_SESSION['SESS_ORDERNUM'];

$upres = mysql_query($upsql);

$itemssql = "SELECT total FROM orders WHERE
id = " . $_SESSION['SESS_ORDERNUM'];

$itemsres = mysql_query($itemssql);
$row = mysql_fetch_assoc($itemsres);

The orders table is updated to reflect the completion of the order. The status
field is changed to 2 and the payment_type field is set to 1 (PayPal). A query then
gets the total price from the order so that the PayPal link can be constructed later.

Reset the order session:

$row = mysql_fetch_assoc($itemsres);

if($_SESSION['SESS_LOGGEDIN'])
{

unset($_SESSION['SESS_ORDERNUM']);
}
else
{

session_register("SESS_CHANGEID");
$_SESSION['SESS_CHANGEID'] = 1;

}

If the user is logged in, the SESS_ORDERNUM session variable is removed with
unset(). If not, a new session variable called SESS_CHANGEID is created. The next
time header.php is loaded, the code at the top of header.php will regenerate the new
session and id.

Redirect to www.paypal.com with the payment details:

$_SESSION['SESS_CHANGEID'] = 1;
}

header("Location: https://www.paypal.com/
cgi-bin/webscr?cmd=_xclick&business=
you%40youraddress.com&item_name="
. urlencode($config_sitename)
. "+Order&item_number=PROD" . $row['id']
."&amount=" . urlencode(sprintf('%.2f',
$row['total'])) . "&no_note=1¤cy_code=GBP&lc=GB&
submit.x=41&submit.y=15");

}

www.paypal.com

205CHAPTER 6 Creating a Shopping Cart

PAYPAL VARIABLE SETTING DESCRIPTION

business "you%40youraddress.com&" The name of the business running
the site.

item_name urlencode($config_site-
name) . “+Order”

A small name for the order—in
this case, ‘<sitename> Order’.

item_number “PROD” . $row[‘id’] A product code. Here you con-
catenate ‘PROD’ and the order
number (PROD12, for example).

amount urlencode(sprintf(‘%.2f’
, $row[‘total’]))

The amount of the order.

no_note 1 The no_note variable specifies
whether the customer should
specify a note with the payment.
Setting this to 1 indicates that no
note is required.

currency_code GBP The currency type for the
transaction.

lc GB The locale of the transaction.

TABLE 6-4 PayPal variables, explained

On this line, a series of GET variables pass data to the PayPal Web site. These
GET variables are reserved words that PayPal can use to process the order. Table
6-4 explains the purpose of each variable.

It is important to remember that any textual information transmitted as a GET
variable should be run through urlencode() to escape nonstandard characters.

Start writing the code to process a check payment. The code is similar to the
PayPal code.

header("Location: https://www.paypal.com/
cgi-bin/webscr?cmd=_xclick&business=you%40
youraddress.com&item_name="
. urlencode($config_sitename)
. "+Order&item_number=PROD" . $row['id']
."&amount=" . urlencode(sprintf('%.2f',
$row['total'])) . "&no_note=1¤cy
_code=GBP&lc=GB&submit.x=41&submit.y=15");

206 Practical PHP and MySQL

}

else if($_POST['chequesubmit'])
{

$upsql = "UPDATE orders SET status = 2,
payment_type = 2 WHERE id = "
. $_SESSION['SESS_ORDERNUM'];

$upres = mysql_query($upsql);

Here you again update the orders table, but this time the payment_type is 2

instead of 1.

Reset the order as you did previously:

$upres = mysql_query($upsql);

if($_SESSION['SESS_LOGGEDIN'])
{

unset($_SESSION['SESS_ORDERNUM']);
}
else
{

session_register("SESS_CHANGEID");
$_SESSION['SESS_CHANGEID'] = 1;

}

Finally, display the details of where the user should send the check:

$_SESSION['SESS_CHANGEID'] = 1;
}

require("header.php");
?>

<h1>Paying by cheque</h1>
Please make your cheque payable to

<?php echo $config_sitename; ?>.
<p>
Send the cheque to:
<p>
<?php echo $config_sitename; ?>

22, This Place,

This town,

This county,

FG43 F3D.

<?php
}

The processing is now complete

Open the block to display the form. Before you reach the form, however, add the
showcart() function to summarize the current cart:

207CHAPTER 6 Creating a Shopping Cart

<?php
}

else
{

require("header.php");
echo "<h1>Payment</h1>";
showcart();

?>

<h2>Select a payment method</h2>
<form action='checkout-pay.php' method='POST'>

Finally, add the closing code:

</table>
</form>

<?php
}

require("footer.php");
?>

Your brand-new, home-grown payment screen should now resemble Figure 6-8.

FIGURE 6-8 The finished payment screen

208 Practical PHP and MySQL

ADMINISTRATOR PAGES

The administration side of the shopping cart is very simple. The primary function
for the admin is to view and confirm completed orders. When an order has been
confirmed, the administrator has successfully sent out the product.

The first step is to provide an administrator login. Create a new file called
adminlogin.php and add the following code:

<?php
session_start();

require("db.php");

if(isset($_SESSION['SESS_ADMINLOGGEDIN']) == TRUE) {
header("Location: " . $config_basedir);

}

if($_POST['submit'])
{

$loginsql = "SELECT * FROM admins WHERE
username = '" . $_POST['userBox'] . "' AND
password = '" . $_POST['passBox'] . "'";

$loginres = mysql_query($loginsql);
$numrows = mysql_num_rows($loginres);

if($numrows == 1)
{

$loginrow = mysql_fetch_assoc($loginres);

session_register("SESS_ADMINLOGGEDIN");

$_SESSION['SESS_ADMINLOGGEDIN'] = 1;

header("Location: " . $config_basedir . "adminorders.php");

}
else
{

header("Location: "
. $config_basedir
. "adminlogin.php?error=1");

}
}
else
{

require("header.php");

echo "<h1>Admin Login</h1>";

209CHAPTER 6 Creating a Shopping Cart

if($_GET['error'] == 1) {
echo "Incorrect username/password!";

}
?>

<p>
<form action="<?php echo $SCRIPT_NAME; ?>" method="POST">
<table>

<tr>
<td>Username</td>
<td><input type="textbox" name="userBox">

</tr>
<tr>

<td>Password</td>
<td><input type="password" name="passBox">

</tr>
<tr>

<td></td>
<td><input type="submit" name="submit" value="Log in">

</tr>
</table>
</form>

<?php
}

require("footer.php");
?>

Much of this code should look familiar to you. When the admin has successfully
logged in, the SESS_ADMINLOGGEDIN variable is created.

Logging Out the Administrator
To log out the administrator, create a file called adminlogout.php and add the fol-
lowing code:

<?php

session_start();

require("config.php");

session_unregister("SESS_ADMINLOGGEDIN");

header("Location: " . $config_basedir);
?>

210 Practical PHP and MySQL

As with the normal user logout, you unregister the variable—as opposed to
destroying the entire session. This prevents against the administrator being logged
out completely when logged in as both an admin and a user.

Managing Completed Orders
The main administrator page shows the list of completed orders. The purpose of
this page is to enable an admin to see which orders need products mailed. The
admin can then create the package and confirm the order after it has been
mailed.

This page is fairly straightforward; it simply outputs data from some tables. The
script has two primary states: either displaying orders or confirming them. The
default page displays the orders. If you pass the page func=conf GET variable and
the order number, the order will be confirmed.

Create a new file called adminorders.php and begin adding the code:

<?php
session_start();

require("config.php");
require("db.php");
require("functions.php");

if(isset($_SESSION['SESS_ADMINLOGGEDIN']) == FALSE) {
header("Location: " . $config_basedir);

}

After the usual introductory code, make a check to see if the func GET variable
exists:

if(isset($_GET['func']) == TRUE) {

if($_GET['func'] != "conf") {
header("Location: " . $config_basedir);

}

$validid = pf_validate_number($_GET['id'],
"redirect", $config_basedir);

$funcsql = "UPDATE orders SET
status = 10 WHERE id = " . $_GET['id'];

mysql_query($funcsql);

header("Location: " . $config_basedir . "adminorders.php");
}

211CHAPTER 6 Creating a Shopping Cart

If the func GET variable exists, the page redirects when the variable is set to
anything other than conf; this prevents against a SQL injection attack. Next, the id

GET variable is validated. The order is finally confirmed by updating the orders table
and setting the status field to 10. The page then redirects to the orders summary.

If no func GET variable exists, set the page to display completed orders:

else {
require("header.php");
echo "<h1>Outstanding orders</h1>";
$orderssql = "SELECT * FROM orders WHERE status = 2";
$ordersres = mysql_query($orderssql);
$numrows = mysql_num_rows($ordersres);

if($numrows == 0)
{

echo "No orders";
}
else
{

echo "<table cellspacing=10>";

while($row = mysql_fetch_assoc($ordersres))
{

echo "<tr>";
echo "<td>[<a

href='adminorderdetails.php?id=" . $row['id']
. "'>View]</td>";

echo "<td>"
. date("D jS F Y g.iA", strtotime($row['date']))
. "</td>";

echo "<td>";

if($row['registered'] == 1)
{

echo "Registered Customer";
}
else
{

echo "Non-Registered Customer";
}

echo "</td>";

echo "<td>£" . sprintf('%.2f',
$row['total']) . "</td>";

echo "<td>";

if($row['payment_type'] == 1)
{

212 Practical PHP and MySQL

echo "PayPal";
}
else
{

echo "Cheque";
}

echo "</td>";

echo "<td><a
href='adminorders.php?func=conf&id=" . $row['id']
. "'>Confirm Payment</td>";

echo "</tr>";
}

echo "</table>";
}

}

require("footer.php");
?>

If all went well, the completed orders summary should look similar to the page
shown Figure 6-9.

FIGURE 6-9 The outstanding orders page provides a simple means of viewing
orders that need products sent out.

213CHAPTER 6 Creating a Shopping Cart

Viewing a Specific Order
For the administrator to get the postal address for a particular order, she needs to
view the specific details for the order. This next page lists the order information
(order number, address, products purchased, payment method, and so on).

Create a new file called adminorderdetails.php and add the following code:

<?php

session_start();

require("config.php");
require("functions.php");

if(isset($_SESSION['SESS_ADMINLOGGEDIN']) == FALSE) {
header("Location: " . $basedir);

}

$validid = pf_validate_number($_GET['id'],
"redirect", $config_basedir . "adminorders.php");

require("header.php");

echo "<h1>Order Details</h1>";
echo "<— go back

to the main orders screen";

$ordsql = "SELECT * from orders WHERE id = " . $validid;
$ordres = mysql_query($ordsql);
$ordrow = mysql_fetch_assoc($ordres);

echo "<table cellpadding=10>";
echo "<tr><td>Order Number

</td><td>" . $ordrow['id'] . "</td>";
echo "<tr><td>Date of order

</td><td>" . date('D jS F Y g.iA',
strtotime($ordrow['date'])) . "</td>";
echo "<tr><td>Payment Type</td><td>";
if($ordrow['payment_type'] == 1)
{

echo "PayPal";
}
else
{

echo "Cheque";
}
echo "</td>";
echo "</table>";

214 Practical PHP and MySQL

if($ordrow['delivery_add_id'] == 0)
{

$addsql = "SELECT * FROM customers
WHERE id = " . $ordrow['customer_id'];

$addres = mysql_query($addsql);
}
else
{

$addsql = "SELECT * FROM delivery_addresses
WHERE id = " . $ordrow['delivery_add_id'];

$addres = mysql_query($addsql);
}

$addrow = mysql_fetch_assoc($addres);

echo "<table cellpadding=10>";
echo "<tr>";
echo "<td>Address</td>";
echo "<td>" . $addrow['forename'] . " "

. $addrow['surname'] . "
";
echo $addrow['add1'] . "
";
echo $addrow['add2'] . "
";
echo $addrow['add3'] . "
";
echo $addrow['postcode'] . "
";

echo "
";

if($ordrow['delivery_add_id'] == 0)
{

echo "<i>Address from member account</i>";
}
else
{

echo "<i>Different delivery address</i>";
}

echo "</td></tr>";
echo "<tr><td>Phone</td><td>"

. $addrow['phone'] . "</td></tr>";
echo "<tr><td>Email</td>

<td>"
. $addrow['email'] . "</td></tr>";
echo "</table>";

$itemssql = "SELECT products.*, orderitems.*,
orderitems.id AS itemid FROM products, orderitems
WHERE orderitems.product_id = products.id AND order
_id = " . $validid;

$itemsres = mysql_query($itemssql);
$itemnumrows = mysql_num_rows($itemsres);

215CHAPTER 6 Creating a Shopping Cart

echo "<h1>Products Purchased</h1>";

echo "<table cellpadding=10>";
echo "<th></th>";
echo "<th>Product</th>";
echo "<th>Quantity</th>";
echo "<th>Price</th>";
echo "<th>Total</th>";

while($itemsrow = mysql_fetch_assoc($itemsres))
{

$quantitytotal = $itemsrow['price']
* $itemsrow['quantity'];

echo "<tr>";

if(empty($itemsrow['image'])) {
echo "<td><img

src='./productimages/dummy.jpg' width='50' alt='"
. $itemsrow['name'] . "'></td>";

}
else {

echo "<td><img src='./productimages/"
. $itemsrow['image'] . "' width='50' alt='"
. $itemsrow['name'] . "'></td>";

}

echo "<td>" . $itemsrow['name'] . "</td>";
echo "<td>" . $itemsrow['quantity'] . " x </td>";
echo "<td>£" . sprintf('%.2f',

$itemsrow['price']) . "</td>";
echo "<td>£" . sprintf('%.2f',

$quantitytotal) . "</td>";

echo "</tr>";

}

echo "<tr>";
echo "<td></td>";
echo "<td></td>";
echo "<td></td>";
echo "<td>TOTAL</td>";
echo "<td>£" . sprintf('%.2f', $total)

. "</td>";
echo "</tr>";

echo "</table>";

require("footer.php");
?>

216 Practical PHP and MySQL

FIGURE 6-10 The order summary in the admin interface

This code should look familiar you to you; it simply displays details from the
orders, orderitems, and delivery_addresses tables.

The completed page should look like the one shown in Figure 6-10.

SUMMARY

Within this project, a number of different skills are tied together to create a consis-
tent product. Although you scratched only the surface of the possible features you
could add to a shopping cart system, you developed the core functionality. You
could make a huge range of possible additions, including the following:

■ Send confirmation emails to the user and the admin when an order is complete.

■ Provide a random product box on the front page. This could be used to dis-
play an image of a product to attract users.

217CHAPTER 6 Creating a Shopping Cart

■ Create a ratings system in which users can review a product.

■ Create a comments and reviews system so that users can leave their thoughts
on how effective a product is.

■ Create sales reports.

You can develop each of these possible additions by using the skills already
covered in this book. Just sit back, sketch an initial idea of how to code the feature,
and then hack it in.

This page intentionally left blank

219

Building an Online
Auction Site

C H A P T E R 7

If you wander around the Internet, you will likely find only a handful of people who
have never visited or used eBay. This popular auction site has become part and par-
cel of Internet life for many users, and an afternoon can be easily whiled away
browsing for all sorts of items.

In this chapter, you will create your own auction site. Rather than creating a
successor to eBay, the aim of this project is to teach you many of the concepts
involved in coding an auction site. And many of these concepts come in handy
when working with other projects. An example of this is the core feature of dealing
with bids. You can apply the same logic used to deal with bidding to online voting
sites, polls, quizzes, and more. As such, the benefit of this chapter is not so much
the product you have at the end, but the journey you traveled to create it.

PROJECT OVERVIEW

This project implements the following core features of an auction site:

■ The page displays a series of different categories for different types of items.

■ On the front page, a list of items will be available for all categories. The user
can click a category name to view items within it. Only items before the bid
deadline are displayed.

■ The user can register and log in to the site.

■ The user can view an item—complete with pictures—and place a bid.

■ The users can add items—complete with pictures—to the site.

■ When an auction is complete, the owner of the item and the winning bidder
receive email messages that include the details of the closing auction.

220 Practical PHP and MySQL

categories
id

category items
id
cat_id
user_id
name
startingprice
description
dateends
endnotified

users
id

username
password

email
verifystring

active

images
id
item_id
name

bids
id
item_id
amount
user_id

FIGURE 7-1 The entire database
schema revolves around the items
table.

From the outset, an auction site seems quite straightforward to build. In reality,
there are a few interesting challenges that can test the scope of your PHP and SQL
knowledge. As such, this project will add some useful new skills to your toolbox.

BUILDING THE DATABASE

The database you use in this project is relatively straightforward and includes five
tables. These tables are shown in Figure 7-1.

Each table in the database is related to the items table, which provides informa-
tion about an item on the site. Within the items table, you also reference the cate-
gories table (to determine the category to which the item belongs), the users table (to
specify which user added the item), the bids table (to store each bid made for par-
ticular item), and the images table (to store images added to the items).

Implementing the Database
Fire up phpMyAdmin. Create a new database called auction and add the following
tables:

The categories Table
■ id. Make this a TINYINT (there will not be many categories) and turn on

auto_increment in the Extras column. Make this field a primary key.

■ cat. Make this a VARCHAR and set the size to 20. It is unlikely a category title
will be longer than 20 letters.

The users Table
■ id. Make this an INT (several users are possible) and turn on

auto_increment. Set this field as a primary key.

■ username. Make this a VARCHAR with a length of 10.

221CHAPTER 7 Building an Online Auction Site

■ password. Make this a VARCHAR with a length of 10.

■ email. Make this a VARCHAR with a length of 100. You would be surprised by
the length of some governmental email addresses!

■ verifystring. Make this a VARCHAR with a length of 20.

■ active. Make this a TINYINT.

The items Table
■ id. Make this an INT (several items are possible) and turn on

auto_increment. Make this field a primary key.

■ user_id. Make this an INT.

■ cat_id. Make this a TINYINT.

■ name. Make this a VARCHAR with a length of 100. It is common for item titles to
be quite long.

■ startingprice. Make this a FLOAT. You use this type for store prices that
have a decimal point (such as $22.90); FLOAT supports the decimal point.

■ description. Make this a TEXT.

■ dateends. Make this a DATETIME.

■ endnotified. Make this a TINYINT.

The bids Table
■ id. Make this an INT (several bids are possible). Turn on auto_increment.

Make this field a primary key.

■ item_id. Make this an INT.

■ amount. Make this a FLOAT for store prices that have a decimal point.

■ user_id. Make this an INT.

The images Table
■ id. Make this an INT (several images are possible). Turn on auto_increment.

Make this field a primary key.

■ item_id. Make this an INT.

■ name. Make this a VARCHAR with a length of 100. Long image filenames are
likely.

Insert Sample Data
With the tables created, it is useful to fill some initial data into some tables for test-
ing the code as you write. Remember that when you are adding data to any of these
tables not to fill in a number in the id column; this is handled by auto_increment.

USER_ID CAT_ID NAME STARTINGPRICE DESCRIPTION DATEENDS ENDNOTIFIED

1 1 Web
Develop-
ment
Laptop

200.00 A quality
Web devel-
opment
laptop.

Add a
date
in the
future.

0

1 1 56k
Modem

39.99 Brand-new
56k modem.

Add a
date
in the
future

0

TABLE 7-1 Data for the items table

USERNAME PASSWORD EMAIL VERIFYSTRING ACTIVE

johnsmith password john@smith.com 1

bob password foo@bar.com 1

TABLE 7-2 Two users are added to the users table.

Sample Data for the categories Table
Add the following categories in this order: Computing, Musical Instruments.

Sample Data for the items Table
Add the information shown in Table 7-1 to the items table.

222 Practical PHP and MySQL

In this example, you are referencing the first entry from the categories table
(Computing) in the cat_id and a reference to a user in the users table (with the
user_id field). This creates the relationship between the tables.

Sample Data for the users Table
Add the information shown in Table 7-2 to the users table.

Sample Data for the bids and images Tables
Leave these tables empty.

223CHAPTER 7 Building an Online Auction Site

STARTING TO CODE

First, create the usual configuration file to store generic information about the site
(as seen in Example 7-1). Create it in a new directory and call it config.php.

EXAMPLE 7-1 This configuration file stores general information about the
site.

<?php

$dbhost = “localhost”;
$dbuser = “root”;
$dbpassword = “”;
$dbdatabase = “auction”;

// Add your name below
$config_admin = “Jono Bacon”;
$config_adminemail = “jono AT jonobacon DOT org”;

// Add the location of your forums below
$config_basedir = “http://localhost/sites/auction/”;

// The currency used on the auction
$config_currency = “$”;
?>

Most of these settings will be familiar to you now. The only addition to the file is
the $config_currency variable, which stores the currency type that the site uses
(such as dollars, pounds, euros, and so on). You can use this variable to easily
switch to a different currency if your lucrative auction empire grows.

Build another simple structure in which to wrap your pages. Create a file called
header.php and add the code shown in Example 7-2.

EXAMPLE 7-2 The header code presents the top portion of the site design.

<?php

session_start();

require(“config.php”);

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

?>

continues

224 Practical PHP and MySQL

EXAMPLE 7-2 Continued.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01
Transitional//EN” “http://www.w3.org/TR/html4/loose.dtd”>
<html>
<head>

<title><?php echo $config_forumsname; ?></title>
<link rel=”stylesheet” href=”stylesheet.css” type=”text/css” />

</head>
<body>
<div id=”header”>
<h1>BidTastic Auctions</h1>
<div id=”menu”>
Home
<?php

if(isset($_SESSION[‘USERNAME’]) == TRUE) {
echo “Logout”;

}
else {

echo “Login”;
}

?>

New Item
</div>
<div id=”container”>

<div id=”bar”>
<?php require(“bar.php”); ?>

</div>

<div id=”main”>

This header file is virtually identical to the ones you created in previous proj-
ects.

Create footer.php, as shown in Example 7-3.

EXAMPLE 7-3 The footer code for the site

<p>© <?php echo “<a href=’mailto:”
. $config_adminemail . “‘>” .$config_admin
. “”; ?></p>
</div>
</div>
</body>
</html>

225CHAPTER 7 Building an Online Auction Site

The final file to create before beginning the code for the auction is
functions.php. In this project, you use the pf_script_with_get() function that you
used in the forums project, but you will also create another snazzy function called
pf_validate_number(). Copy functions.php from the forums project and add the
code shown in Example 7-4 after the pf_script_with_get() function.

EXAMPLE 7-4 The pf_validate_number() function validates a number and either
returns 0 or redirects.

return substr($page, 0, strlen($page)-1);
}

function pf_validate_number($value, $function, $redirect) {
if(isset($value) == TRUE) {

if(is_numeric($value) == FALSE) {
$error = 1;

}

if($error == 1) {
header(“Location: “ . $redirect);

}
else {

$final = $value;
}

}
else {

if($function == ‘redirect’) {
header(“Location: “ . $redirect);

}

if($function == “value”) {
$final = 0;

}
}

return $final;
}

?>

This function takes the number validation code that you wrote in previous
pages and wraps it inside a function. This makes the files less cluttered because
any reproduced code can be stored away in a function you can call.

The function takes three options. The first option passes the value that you want
validated to the function. You set the second option to either redirect or value.

226 Practical PHP and MySQL

FIGURE 7-2 The sidebar is an ideal area to include a categories list.

If you pass redirect, the third option is used as the page to redirect to when the
value to validate fails. If you pass the function value, zero (0) is returned from the
function if the variable to validate is invalid.

DISPLAYING AUCTION ITEMS

The first challenge is to create a list of auction categories and a list of auction items.
These lists will look similar to the ones shown in Figure 7-2.

This process involves creating a drill-down so that when the user clicks an
item, he can view more information about it on a separate page.

The items table is where most of the action happens. Inside this table, the typi-
cal details such as item name, description, and starting price are stored. (Each auc-
tion needs a starting price, even if that starting price is 0.) The dateends field is
particularly important and indicates the date when the auction finishes; this is used
extensively later. The final field (endnotified) is irrelevant for creating the item
listing page. This field is used later when you send emails summarizing the final
price and bidder for the item. You can ignore this field for the moment.

227CHAPTER 7 Building an Online Auction Site

N O T E
The Rights and Wrongs of Drill-Downs

The primary aim of a drill-down is to provide a summarized list of items,
each of which can be clicked to provide more information. This technique is
a useful means of organizing information effectively throughout a site.

When using drill-downs, you need to think about what information to sum-
marize in the list. In many cases this is fairly obvious, but in some cases you
may need to do a little research to get a clear idea of the information that
people primarily look for on a Web site.

Displaying the Categories
To make the categories appear on the left sidebar as a bullet point list, add the fol-
lowing code to bar.php:

require(“header.php”);

$catsql = “SELECT * FROM categories ORDER BY category ASC;”;
$catresult = mysql_query($catsql);

echo “<h1>Categories</h1>”;
echo “”;

echo “View All”;
while($catrow = mysql_fetch_assoc($catresult)) {

echo “<a href=’index.php?id=”
. $catrow[‘id’] . “‘>” . $catrow[‘category’]
. “”;
}

echo “”;

The query selects everything from the categories table in alphabetical order. An
unordered list houses the categories, and the first entry (View All) is added; this
entry links to index.php with no id GET variable. With the pf_validate_number()
function added earlier, if no id GET variable exists, $validid is set to 0; this is what
happens when the user clicks View All. Next, the while loop iterates through the
categories and creates a link to index.php, in which the category id is passed as a
GET variable (again, called id). The categories list is now complete.

Viewing the Items in a Category
The front page of the Web site displays the list of available items. The vast majority
of people who visit an auctions site want to instantly find the range of items offered,
so it makes sense to put this information on the front page.

228 Practical PHP and MySQL

Create a file called index.php and add the following code:

<?php

require(“config.php”);
require(“functions.php”);

One of the planned features for index.php is to list a range of categories that
users can click to see the items in that category. To create this functionality, the cat-
egories are listed as a series of links, and each link is passed the category id as a
GET variable (called id). Use the pf_validate_number() function to validate this
variable:

require(“functions.php”);

$validid = pf_validate_number($_GET[‘id’], “value”, $config_basedir);

To begin displaying information on the page, add the header.php code:

$validid = pf_validate_number($_GET[‘id’], “value”, $config_basedir);

require(“header.php”);

When displaying auction items on the main page, you need a different query
depending on whether the id GET variable is present. If it is not, the user clicked
View All, and no category is selected, so the page should display all of the items. If
the id GET variable is present, only the items within that category should be dis-
played. When you used the pf_validate_number() function, you used the value
option as the second argument so that the function returns 0 if no id GET variable
exists.

Check what $validid is set to so that you can determine which SQL query is used:

require(“header.php”);

if($validid == 0) {
$sql = “SELECT items.* FROM items WHERE dateends > NOW()”;

}
else {

$sql = “SELECT * FROM items WHERE dateends > NOW()
AND cat_id = “ . $validid . “;”;
}
$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

If $validid is equal to 0, those items from the items table where dateends is
greater than (newer than) the current date and time (NOW()) are selected. If $vali-
did is set to a value, the items from the items table that are newer than the current
date and where cat_id matches the value of $validid is selected.

229CHAPTER 7 Building an Online Auction Site

Create a new <div> and add a table to list the items:

$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

echo “<h1>Items available</h1>”;
echo “<table cellpadding=’5’>”;
echo “<tr>”;

echo “<th>Image</th>”;
echo “<th>Item</th>”;
echo “<th>Bids</th>”;
echo “<th>Price</th>”;

echo “</tr>”;

Determine if any items are available by checking the value of $numrows:

echo “<th>Bids</th>”;
echo “<th>Price</th>”;

echo “</tr>”;

if($numrows == 0) {
echo “<tr><td colspan=4>No items!</td></tr>”;

}

If $numrows is equal to 0 (no rows were returned), the text No items! is displayed
in the table.

If items were returned and $numrows is greater than 0, you can iterate through
each item and display them in the table:

if($numrows == 0) {
echo “<tr><td colspan=4>No items!</td></tr>”;

}
else {

while($row = mysql_fetch_assoc($result)) {

$imagesql = “SELECT * FROM images WHERE
item_id = “ . $row[‘id’] . “ LIMIT 1”;

$imageresult = mysql_query($imagesql);
$imagenumrows = mysql_num_rows($imageresult);

echo “<tr>”;
if($imagenumrows == 0) {

echo “<td>No image</td>”;
}
else {

$imagerow = mysql_fetch_assoc($imageresult);
echo “<td><img src=’./images/”

. $imagerow[‘name’] . “‘ width=’100’></td>”;
}

230 Practical PHP and MySQL

The while loop to iterates through the results. Inside the loop, a query selects a
single record from the images table in which item_id matches the id from the cur-
rent row. The table row is then opened, and a check is made to see if $imagenumrows
is equal to 0. If it is, the text No image is displayed in the table. If $imagenumrows is
not equal to 0, a row is extracted from the result of the image query and an image tag
is constructed. When the image tag is created, ./images/ and then the name of the
image from the table is added to the src attribute. This appends the images direc-
tory to the current directory. Much of this code will make more sense later when you
write the functionality to upload images.

Add the next column, which contains the item name, to the table:

echo “<td><img src=’./images/”
. $imagerow[‘name’] . “‘ width=’100’></td>”;

}

echo “<td>”;
echo “<a href=’itemdetails.php?id=”

. $row[‘id’] . “‘>” . $row[‘name’] . “”;
if($_SESSION[‘USERID’] == $row[‘user_id’]) {

echo “ - [<a href=’edititem.php?id=”
. $row[‘id’] . “‘>edit]”;

}
echo “</td>”;

This code adds the name of the item from the first query. You make the item a
link to itemdetails.php (which provides more details about the item), appending the
id of the item as an id GET variable. The if statement also checks to see if a ses-
sion variable called USERID is equal to user_id from the row. If it is, the current user
logged in is the user who added the item, and an edit link is added. The edit link
links to a page called edititem.php that, predictably, edits the current item.

Add another column to display the number of bids and the highest bid:

echo “</td>”;

$bidsql = “SELECT item_id, MAX(amount) AS
highestbid, COUNT(id) AS numberofbids FROM bids
WHERE item_id=” . $row[‘id’] . “ GROUP BY item_id;”;

$bidresult = mysql_query($bidsql);
$bidrow = mysql_fetch_assoc($bidresult);
$bidnumrows = mysql_num_rows($bidresult);

echo “<td>”;
if($bidnumrows == 0) {

echo “0”;
}
else {

231CHAPTER 7 Building an Online Auction Site

N O T E
Dealing with Currencies

When dealing with monetary units such as prices, quotes, figures, and
other numbers, never include the currency sign in the database. Currency is
really just an additional piece of information that gives the number a con-
text. If you want the currency symbol in the database, store the number and
symbol as a VARCHAR.

Storing the price as a number and without the symbol allows you to do
things such as taxes, addition expenses, currency conversion, and other
calculations.

echo $bidrow[‘numberofbids’] . “</td>”;
}

echo “<td>” . $config_currency;

if($bidnumrows == 0) {
echo sprintf(‘%.2f’, $row[‘startingprice’]);

}
else {

echo sprintf(‘%.2f’, $bidrow[‘highestbid’]);
}
echo “</td>”;

This query uses a few MySQL functions to determine the highest bid and the
number of bids. To better explain this, read the SQL from left to right:

Select (SELECT) the item_id (item_id), use the MySQL MAX() function to find
the highest value within the amount field and alias the field as highest bid
(MAX(amount) AS highestbid). Use the MySQL COUNT() function to count
the number of records and alias the field as numberofbids (COUNT(id) AS
numberofbids) from the bids table (FROM bids), in which the item_id is equal
to $row[‘id’] (WHERE item_id = $row[‘id’]), and group the records by
item_id (GROUP BY item_id;).

If no rows are returned from the query, 0 is added to the table; otherwise, the
value of numberofbids is added. $bidnumrows does not return 0 when no rows exist
because if there are no bids, there are no entries in the bids table to count with the
COUNT() function. As such, nothing is returned. Always remember in programming
that 0 is a value, and it is often different to the concept of nothing.

The next column is the latest price. Before a value is displayed, the currency is
added from the $config_currency field.

232 Practical PHP and MySQL

N O T E
Formatting Prices

When you use a FLOAT to store a price in the database, the trailing zeros are
removed by default. To reformat the price with zeros, use the PHP function
sprintf(). The function takes two arguments: the formatting string and
the value to format. The formatting string takes a value such as %.2f, which
asks for two decimal places (.2) on a floating point number (f).

If $bidnumrows has no rows, the startingprice field from the first query is dis-
played (if there are no bids, the starting price should be displayed). If there are
bids, the highest bid is displayed ($bidrow[‘highestbid’]) from the last query.
Both prices are formatted.

Finally, display and format the dateends field:

}
echo “</td>”;

echo “<td>” . date(“D jS F Y g.iA”,
strtotime($row[‘dateends’])) . “</td>”;

echo “</tr>”;
}

}

echo “</table>”;
require(“footer.php”);

?>

Viewing Item Details and Placing Bids
The next page is linked from the name of the item on the page you just created. This
script has two primary purposes:

■ To display information about the item, including images of it.

■ To allow a user to bid on the item.

To place a bid, you need to check if the user is logged in, and if so, display a
form into which she can type a bid amount. The page then checks that the amount
is legitimate and adds the bid to the bids table.

233CHAPTER 7 Building an Online Auction Site

Create a new file called itemdetails.php and add the usual introductory code:

<?php

session_start();

include(“config.php”);
include(“functions.php”);

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

$validid = pf_validate_number($_GET[‘id’], “redirect”, $config_basedir);

Create a query to grab the item information:

$validid = pf_validate_number($_GET[‘id’], “redirect”,
$config_basedir);

require(“header.php”);

$itemsql = “SELECT UNIX_TIMESTAMP(dateends) AS dateepoch,
items.* FROM items WHERE id = “ . $validid . “;”;
$itemresult = mysql_query($itemsql);

$itemrow = mysql_fetch_assoc($itemresult);

In index.php, only items that were newer than the date and time were returned
by the MySQL NOW() function. For completeness, the page checks this with PHP
rather than MySQL.

Inside the query, the UNIX_TIMESTAMP() command converts the dateends field
into the number of seconds since the epoch. The query is then executed, and a row
is stored in the $itemrow array.

Check to see if the current item has ended:

$itemrow = mysql_fetch_assoc($itemresult);

$nowepoch = mktime();
$rowepoch = $itemrow[‘dateepoch’];

if($rowepoch > $nowepoch) {
$VALIDAUCTION = 1;

}

The mktime() function stores the seconds since the epoch for the current time
in the $nowepoch variable. The $rowepoch variable then stores the epoch returned
from the row. A check is made to see if $rowepoch is greater than $nowepoch and if

234 Practical PHP and MySQL

so, a variable called $VALIDAUCTION is set to 1 (the capitalization of the variable is
used only to make it stand out in the code). $VALIDAUCTION is checked later to deter-
mine if the auction is valid (still available to bid on).

Add the name of the item in a second-level heading tag:

if($rowepoch > $nowepoch) {
$VALIDAUCTION = 1;

}

echo “<h2>” . $itemrow[‘name’] . “</h2>”;

Now run a query to get any images that are associated with an item:

echo “<h2>” . $itemrow[‘name’] . “</h2>”;

$imagesql = “SELECT * FROM images WHERE item_id = “ . $validid . “;”;
$imageresult = mysql_query($imagesql);
$imagenumrows = mysql_num_rows($imageresult);

The next query returns the highest bid and the number of bids for the item:

$imagenumrows = mysql_num_rows($imageresult);

$bidsql = “SELECT item_id, MAX(amount) AS highestbid,
COUNT(id) AS number_of_bids FROM bids WHERE item_id=”
. $validid . “ GROUP BY item_id;”;
$bidresult = mysql_query($bidsql);
$bidnumrows = mysql_num_rows($bidresult);

The preceding query is similar to the one used on index.php to get the same
information.

Display the information from the queries:

$bidnumrows = mysql_num_rows($bidresult);

echo “<p>”;

if($bidnumrows == 0) {
echo “This item has had no bids

- Starting Price: “ . $config_currency
. sprintf(‘%.2f’, $itemrow[‘startingprice’]);
}
else {

$bidrow = mysql_fetch_assoc($bidresult);

235CHAPTER 7 Building an Online Auction Site

echo “Number Of Bids: “
. $bidrow[‘number_of_bids’] . “
- Current Price: “ . $config_currency
. sprintf(‘%.2f’, $bidrow[‘highestbid’]);
}

If no rows are counted in $bidnumrows, the page displays not only with text that
indicate no bids were placed but also with the starting price. When rows are pres-
ent, the page displays both the number of bids and the highest bid price.

Display the date when the auction ends:

echo “Number Of Bids: “
. $bidrow[‘number_of_bids’] . “
- Current Price: “ . $config_currency
. sprintf(‘%.2f’, $bidrow[‘highestbid’]);
}

echo “ - Auction ends: “
. date(“D jS F Y g.iA”, $rowepoch);

Display any images of the item:

echo “ - Auction ends: “
. date(“D jS F Y g.iA”, $rowepoch);

echo “</p>”;

if($imagenumrows == 0) {
echo “No images.”;

}
else {

while($imagerow = mysql_fetch_assoc($imageresult)) {
echo “”;

}
}

The $imagenumrows variable is checked to see if any rows were returned. If not,
the text No images displays. If rows were returned, the while loop displays each image.

Add the item description. Use the nl2br() function to ensure that any white-
space lines are added:

}
}

echo “<p>” . nl2br($itemrow[‘description’]) . “</p>”;

236 Practical PHP and MySQL

You can now start work on adding the bid entry box. This functionality should
be available only if the user is logged in. First, display a heading to indicate the
bidding area:

echo “<p>” . nl2br($itemrow[‘description’]) . “</p>”;

echo “”;
echo “<h2>Bid for this item</h2>”;

The anchor in this code is used when the user is not logged in, clicks the link to
log in, and is then redirected to the bidding area.

To see if the user is logged in, check the USERNAME session variable:

echo “<h3>Bid for this item</h3>”;

if(isset($_SESSION[‘USERNAME’]) == FALSE) {
echo “To bid, you need to log in. Login

here.”;
}

If the user is not logged in and the isset() functions returns FALSE, the user
can click the link to log in. The login link adds the id of the item and a variable
called ref as GET variables. This is the same technique used in the forums
project.

Run the code if the user is logged in:

echo “To bid, you need to log in. Login
here.”;
}
else {

if($VALIDAUCTION == 1) {
echo “Enter the bid amount into the box below.”;
echo “<p>”;

switch($_GET[‘error’]) {
case “lowprice”:

echo “The bid entered is too low.
Please enter another price.”;

break;

case “letter”:
echo “The value entered is not a number.”;

break;
}

?>

237CHAPTER 7 Building an Online Auction Site

If $VALIDAUCTION is equal to 1, a switch statement checks the value of the error
GET variable, and the page displays the relevant error.

Add the form:

break;
}

?>

<form action=”<?php echo pf_script_with_get($SCRIPT_NAME);
?>” method=”post”>

<table>
<tr>

<td><input type=”text” name=”bid”></td>
<td><input type=”submit” name=”submit” value=”Bid!”></td>

</tr>
</table>
</form>

If $VALIDAUCTION is not set to 1, inform the user that the auction has ended:

</table>
</form>

<?php
}
else {

echo “This auction has now ended.”;
}

After the bid box, it is helpful to list a history of bids and the users who placed them:

echo “This auction has now ended.”;
}

$historysql = “SELECT bids.amount, users.username FROM bids,
users WHERE bids.user_id = users.id AND item_id = “
. $validid . “ ORDER BY amount DESC”;
$historyresult = mysql_query($historysql);
$historynumrows = mysql_num_rows($historyresult);

if($historynumrows >= 1) {
echo “<h2>Bid History</h2>”;
echo “”;

while($historyrow = mysql_fetch_assoc($historyresult)) {
echo “” . $historyrow[‘username’] . “ - “ .

$config_currency . sprintf(‘%.2f’, $historyrow[‘amount’]) . “”;
}

echo “”;
}

238 Practical PHP and MySQL

The preceding code creates a query to return the bid amount and username in
descending order. Then a check is made to see if the number of rows is equal to or
greater than (>=) 1. If it is, the bid history is displayed.

Finally, add the footer:

echo “”;
}

}
require(“footer.php”);

?>

With the main page complete, add the code that processes the bids. Add this
code at the start of itemdetails.php:

$validid = pf_validate_number($_GET[‘id’], “redirect”, $config_basedir);

if($_POST[‘submit’]) {
if(is_numeric($_POST[‘bid’]) == FALSE) {

header(“Location: “ . $config_basedir
. “itemdetails.php?id=” . $validid . “&error=letter”);
}

A check is made to see if the bid is numerical. If it isn’t, the page redirects.

Add the following queries to get some information before the bid is accepted:

header(“Location: “ . $config_basedir
. “/itemdetails.php?id=” . $validid . “&error=letter”);
}

$theitemsql = “SELECT * FROM items WHERE id = “ . $validid . “;”;
$theitemresult = mysql_query($theitemsql);
$theitemrow = mysql_fetch_assoc($theitemresult);

$checkbidsql = “SELECT item_id, max(amount) AS
highestbid, count(id) AS number_of_bids FROM
bids WHERE item_id=” . $validid . “ GROUP BY item_id;”;
$checkbidresult = mysql_query($checkbidsql);
$checkbidnumrows = mysql_num_rows($checkbidresult);

Check to see if any bids are returned:

$checkbidresult = mysql_query($checkbidsql);
$checkbidnumrows = mysql_num_rows($checkbidresult);

if($checkbidnumrows == 0) {
if($theitemrow[‘startingprice’] > $_POST[‘bid’]) {

header(“Location: “ . $config_basedir
. “itemdetails.php?id=” . $validid . “&error=lowprice#bidbox”);

}
}

239CHAPTER 7 Building an Online Auction Site

If no rows were returned, it means the entered bid is the first bid entered (no
others bids have been previously entered). Next, a check is made to see if the start-
ing price is greater than the entered bid. If it is, a header redirect is made to the
same page, but the error GET variable is added with a value of lowprice.

When previous bids exist, ensure the current highest bid is not higher than the
entered bid:

}
}
else {

$checkbidrow = mysql_fetch_assoc($checkbidresult);

if($checkbidrow[‘highestbid’] > $_POST[‘bid’]) {
header(“Location: “ . $config_basedir . “itemdetails.php?id=” .

$validid . “&error=lowprice#bidbox”);
}

}

If highestbid is higher than the bid entered, a header redirect is made.

With the checks out of the way, run the INSERT query to actually add the bid to
the bids table:

header(“Location: “ . $config_basedir
. “/itemdetails.php?id=” . $validid
. “&error=lowprice#bidbox”);

}

$inssql = “INSERT INTO bids(item_id, amount, user_id) VALUES(“
. $validid
. “, “ . $_POST[‘bid’]
. “, “ . $_SESSION[‘USERID’]
. “);”;

mysql_query($inssql);

Close the block and prepare to add the rest of the code:

. “);”;
mysql_query($inssql);

header(“Location: “ . $config_basedir
. “itemdetails.php?id=” . $validid);
}
else {

Finally, at the bottom of the file, add a curly bracket to close the else block:

echo “”;
}

}
}

require(“footer.php”);

240 Practical PHP and MySQL

FIGURE 7-3 When the user is logged in, the bid box and bid history are
shown.

The completed page should resemble something similar to Figure 7-3.

DEALING WITH USERS

Like many of the other projects in this book, you need to add functionality so that
users can log in to access various portions of the site. The process of logging in
users is virtually identical to the login.php script from the forums project. The only
differences are the referrer types for dealing with the ref GET variable. See Exam-
ple 7-5.

EXAMPLE 7-5 The user login page

<?php

session_start();

require(“config.php”);
require(“functions.php”);

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

if($_POST[‘submit’]) {

241CHAPTER 7 Building an Online Auction Site

$sql = “SELECT * FROM users WHERE username = ‘“
. $_POST[‘username’] . “‘ AND password = ‘“
. $_POST[‘password’] . “‘;”;

$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

if($numrows == 1) {
$row = mysql_fetch_assoc($result);

if($row[‘active’] == 1) {
session_register(“USERNAME”);
session_register(“USERID”);

$_SESSION[‘USERNAME’] = $row[‘username’];
$_SESSION[‘USERID’] = $row[‘id’];

switch($_GET[‘ref’]) {
case “addbid”:

header(“Location: “ . $config_basedir
. “/itemdetails.php?id=” . $_GET[‘id’] . “#bidbox”);

break;

case “newitem”:
header(“Location: “ . $config_basedir . “/newitem.php”);

break;

case “images”:
header(“Location: “ . $config_basedir

. “/addimages.php?id=” . $_GET[‘id’]);
break;

default:
header(“Location: “ . $config_basedir);

break;
}

}
else {

require(“header.php”);
echo “This account is not verified yet. You were

emailed a link to verify the account. Please click on the
link in the email to continue.”;

}
}
else {

header(“Location: “ . $config_basedir . “/login.php?error=1”);
}

}
else {

require(“header.php”);

echo “<h1>Login</h1>”; continues

242 Practical PHP and MySQL

EXAMPLE 7-5 Continued.

if($_GET[‘error’]) {
echo “Incorrect login, please try again!”;

}

?>
<form action=”<?php echo
pf_script_with_get($SCRIPT_NAME); ?>” method=”post”>

<table>
<tr>

<td>Username</td>
<td><input type=”text” name=”username”></td>

</tr>
<tr>

<td>Password</td>
<td><input type=”password” name=”password”></td>

</tr>
<tr>

<td></td>
<td><input type=”submit” name=”submit” value=”Login!”></td>

</tr>
</table>
</form>
Don’t have an account? Go and Register!
<?php
}
require(“footer.php”);
?>

The completed login page should look similar to the one shown in Figure 7-4.

Logging Out
The logout page, logout.php, is also the same. See Example 7-6.

EXAMPLE 7-6 Logging users out

<?php

session_start();
session_unregister(“USERNAME”);
require(“config.php”);

header(“Location: “ . $config_basedir);

?>

243CHAPTER 7 Building an Online Auction Site

FIGURE 7-4 The login beast looks similar to most others.

User Registration
The user registration code is also the same as in the forums project. Copy the regis-
ter.php and validate.php files to the current project and change the relevant parts.

ADDING AN ITEM

Adding an item to the auction site is a fairly simple two-step process. The first step
is to present the user with a form that adds the item information to the database (see
Figure 7-5). When this is complete, the second step is to allow the user to upload
images that can be displayed with the item.

The form prompts the user for the following information:

■ Category in which the item is included. This will be in the form of a drop-
down combo box, with the categories listed.

■ Name of the item.

■ Item description.

■ Ending date of the auction. This will be presented as a number of combo
boxes for the different parts of the date. This will include one for the day,
month and year, as well as hour and minutes.

■ Starting price.

244 Practical PHP and MySQL

FIGURE 7-5 The first step of adding an item involves filling in the item
details.

Create a new file called newitem.php and add the form:

<h1>Add a new item</h1>
Step 1 - Add your item details.
<p>
<?php

switch($_GET[‘error’]) {
case “date”:

echo “Invalid date – please
choose another!”;

break;
}

?>
</p>
<form action=”<?php echo

pf_script_with_get($SCRIPT_NAME); ?>” method=”post”>
<table>
<?php

$catsql = “SELECT * FROM categories ORDER BY category;”;
$catresult = mysql_query($catsql);

?>
<tr>

<td>Category</td>
<td>
<select name=”cat”>

245CHAPTER 7 Building an Online Auction Site

<?php
while($catrow = mysql_fetch_assoc($catresult)) {

echo “<option value=’”
. $catrow[‘id’] . “‘>” . $catrow[‘category’]
. “</option>”;

}
?>
</select>
</td>

</tr>
<tr>

<td>Item name</td>
<td><input type=”text” name=”name”></td>

</tr>
<tr>

<td>Item description</td>
<td><textarea name=”description” rows=”10”

cols=”50”></textarea></td>
</tr>
<tr>

<td>Ending date</td>
<td>
<table>

<tr>
<td>Day</td>
<td>Month</td>
<td>Year</td>
<td>Hour</td>
<td>Minute</td>

</tr>
<tr>

<td>
<select name=”day”>
<?php

for($i=1;$i<=31;$i++) {
echo “<option>” . $i . “</option>”;

}
?>
</select>
</td>
<td>
<select name=”month”>
<?php

for($i=1;$i<=12;$i++) {
echo “<option>” . $i . “</option>”;

}
?>
</select>
</td>
<td>
<select name=”year”>
<?php

246 Practical PHP and MySQL

for($i=2005;$i<=2008;$i++) {
echo “<option>” . $i . “</option>”;

}
?>
</select>
</td>
<td>
<select name=”hour”>
<?php

for($i=0;$i<=23;$i++) {
echo “<option>” . sprintf(“%02d”,$i) . “</option>”;

}
?>
</select>
</td>
<td>
<select name=”minute”>
<?php

for($i=0;$i<=60;$i++) {
echo “<option>” . sprintf(“%02d”,$i) . “</option>”;

}
?>
</select>
</td>

</tr>
</table>
</td>

</tr>
<tr>

<td>Price</td>
<td><?php echo $config_currency; ?><input type=”text”

name=”price”></td>
</tr>
<tr>

<td></td>
<td><input type=”submit” name=”submit” value=”Post!”></td>

</tr>
</table>
</form>

The majority of this form should look straightforward by now. The only new fea-
ture is the date ending boxes. Inside these select boxes, a series of for loops loop
from the minimum to maximum values (such as 1 to 31 for the day).

Start adding the code to process the form. Add the following code before the form:

<?php

session_start();

require(“config.php”);
require(“functions.php”);

247CHAPTER 7 Building an Online Auction Site

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

After this initial code, protect the page from people who are not logged in. Use
the usual trick of checking to see if a USERNAME session variable exists:

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

if(isset($_SESSION[‘USERNAME’]) == FALSE) {
header(“Location: “ . $config_basedir . “/login.php?ref=newitem”);

}

Begin processing the form:

if(isset($_SESSION[‘USERNAME’]) == FALSE) {
header(“Location: “ . $config_basedir . “/login.php?ref=newitem”);

}

if($_POST[‘submit’]) {
$validdate = checkdate($_POST[‘month’], $_POST[‘day’],

$_POST[‘year’]);

After you check to see if the Submit button has been clicked, you use a spe-
cial function called checkdate(). This PHP function is passed a month, day,
and year in numbers and determines whether the combination of values is a
valid date. This function is useful for determining invalid dates such as Febru-
ary 31, 2005. In this new line of code, the variables from the form are passed to
the function. If the date is valid, the function returns TRUE; if not, the function
returns FALSE.

Next, you check the result of the function and act accordingly. First, check to
see if the date is valid:

if($_POST[‘submit’]) {
$validdate = checkdate($_POST[‘month’], $_POST[‘day’],

$_POST[‘year’]);

if($validdate == TRUE) {
$concatdate = $_POST[‘year’]

. “-” . sprintf(“%02d”, $_POST[‘day’])

. “-” . sprintf(“%02d”, $_POST[‘month’])

. “ “ . $_POST[‘hour’]

. “:” . $_POST[‘minute’]

. “:00”;

If the date is valid, the numbers are concatenated to form a valid MySQL date.
MySQL dates come in the form 0000-00-00 00:00 (year, month, day, hour, minute).
Imagine that the user selected 10 as the day, 12 as the month, 2005 as the year, 11

248 Practical PHP and MySQL

as the hour, and 30 as the minute. With these numbers, the valid date would be
2005-12-10 11:30. The sprintf() function (which you used earlier to pad prices
with zeros) was used again, this time to ensure that single digits have a leading zero
(so 1 would become 01 and so on). This is important for the date to be a valid
MySQL date.

Construct the query to insert the data:

$concatdate = $_POST[‘year’]
. “-” . sprintf(“%02d”, $_POST[‘day’])
. “-” . sprintf(“%02d”, $_POST[‘month’])
. “ “ . $_POST[‘hour’]
. “:” . $_POST[‘minute’]
. “:00”;

$itemsql = “INSERT INTO items(user_id, cat_id, name,
startingprice, description, dateends) VALUES(“

. $_SESSION[‘USERID’]

. “, “ . $_POST[‘cat’]

. “, ‘“ . addslashes($_POST[‘name’])

. “‘, “ . $_POST[‘price’]

. “, ‘“ . addslashes($_POST[‘description’])

. “‘, ‘“ . $concatdate

. “‘);”;

mysql_query($itemsql);
$itemid = mysql_insert_id();

header(“Location: “ . $config_basedir
. “/addimages.php?id=” . $itemid);
}

Within the query, a new function called addslashes() was wrapped around the
boxes that accept input in the form of letters. This helps to prevent input errors.

Finally, a header redirect jumps to the addimages.php page and passes it a GET
variable, called id, with the insert id.

Earlier in the code, you made a check to see if the date was valid. If the date
was invalid, reload the page and pass the error flag:

header(“Location: “ . $config_basedir . “/addimages.php?id=” .
$itemid);

}
else {

header(“Location: “ . $config_basedir .
“/newitem.php?error=date”);

}
}

249CHAPTER 7 Building an Online Auction Site

N O T E
The Risks with Input

When you accept any kind of input from a user, there is a risk that the input
could break the query. The most common breakage occurs when a user
types a single quotation mark, because the quotation mark ends the input
and anything after the second quotation mark is ignored. Imagine that the
user types ‘Tim O’Chin’. The query would be as follows:

INSERT INTO users(name) VALUES(‘Tim O’Chin’);

In this query, the second quotation mark (in O’Chin) ends the input and
causes a SQL error.

In your projects, it is unlikely that you have encountered this error. This is
because a feature called magic_quotes is likely to be turned on in your
php.ini file. With this feature, any quotation marks accepted from a form
are automatically escaped. The act of escaping a quotation mark happens
when you use a forward slash to make the quotation mark legitimate. As
such, a properly escaped query would be:

INSERT INTO users(name) VALUES(‘Tim O\’Chin’);

You can run this project with magic_quotes turned off if you wrap your
data withaddslashes(); this function escapes the quotation marks.

After closing the main if block, begin the else that displays the form:

}
}
else {

require(“header.php”);
?>

<h1>Add a new item</h1>
Step 1 - Add your item details.

After the form, add the closing curly bracket and footer code:

</table>
</form>

<?php
}

require(“footer.php”);

?>

250 Practical PHP and MySQL

Adding the Images
Being able to upload images is a common and useful skill used when developing
Web sites. The basic technique is as follows:

1. Provide a form the user can use to select an image.

2. When the user clicks the Submit button, transfer the image to a temporary
location on the server. Inside this location, give the file a random, temporary
filename.

3. Check that the image is valid and copy it to a specific directory on the Web
server.

4. Add the name of the image and the id of the item it is associated with to the
images table.

With this process complete, you can iterate through the images table for items
with the same id and then add the filename to the image HTML tag from the table.

Create a new file called addimages.php and add the following form:

<form enctype=”multipart/form-data” action=”<?php
pf_script_with_get($SCRIPT_NAME); ?>” method=”POST”>
<input type=”hidden” name=”MAX_FILE_SIZE” value=”3000000”>

<table>
<tr>

<td>Image to upload</td>
<td><input name=”userfile” type=”file”></td>

</tr>
<tr>

<td colspan=”2”><input type=”submit” name=”submit”
value=”Upload File”></td>
</tr>
</table>
</form>
When you have finished adding photos, go and
<a href=”<?php echo “itemdetails.php?id=”
. $validid; ?>”>see your item!

Within the form tag, you created a new attribute, called enctype, that ensures
the form submits the image data in an understandable format. The first <input> tag
creates a special hidden form element that can be used to store hidden information
and variables in the form. In this example, the hidden element stores the maximum
size of the image. The second input element is a userfile type and adds a browse
button that the user can click to select the image to upload. The preceding code
also adds a Submit button.

251CHAPTER 7 Building an Online Auction Site

Jump to the beginning of the page (before the form) and start adding the code to
process the form:

<?php

session_start();

include(“config.php”);
include(“functions.php”);

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);
$validid = pf_validate_number($_GET[‘id’], “redirect”, “index.php”);

After the usual introductory code, protect the page from users who are not
logged in:

$validid = pf_validate_number($_GET[‘id’], “redirect”, “index.php”);

if(isset($_SESSION[‘USERNAME’]) == FALSE) {
header(“Location: “ . $HOST_NAME

. “login.php?ref=images&id=” . $validid);
}

Select the user_id from the items table for the current item. This is required so
you can check that the owner of the item—not a random user—is accessing the page.

if(isset($_SESSION[‘USERNAME’]) == FALSE) {
header(“Location: “ . $HOST_NAME

. “login.php?ref=images&id=” . $validid);
}

$theitemsql = “SELECT user_id FROM items WHERE id = “ . $validid . “;”;
$theitemresult = mysql_query($theitemsql);
$theitemrow = mysql_fetch_assoc($theitemresult);

Check if the current user owns the item by checking if the data from the query
matches the USERID session variable. If not, redirect the user:

$theitemresult = mysql_query($theitemsql);
$theitemrow = mysql_fetch_assoc($theitemresult);

if($theitemrow[‘user_id’] != $_SESSION[‘USERID’]) {
header(“Location: “ . $config_basedir);

}

To process the form, you use a new PHP superglobal called $_FILES, which you
can used to access uploaded files. When a file is uploaded, it contains a number of
different attributes, such as the file name, size, type, and so on.

252 Practical PHP and MySQL

N O T E
Poking at $_FILES

If you want to see what is in the $_FILES array, or any other variable or array
for that matter, use print_r():

print_r($_FILES);

To access specific information from a specific array, use the following
format:

$_FILES[‘array’][‘item’]

For example, you could refer to the filename of the file in the userfile box
that you added by using:

$_FILES[‘userfile’][‘name’]

Before the file is authorized, you will run the file through a series of validation
checks to ensure that a file was actually uploaded, that it is a legitimate photo, and
that the size is not too large. First, check that a file was uploaded:

if($theitemrow[‘user_id’] != $_SESSION[‘USERID’]) {
header(“Location: “ . $config_basedir);

}

if($_POST[‘submit’]) {
if($_FILES[‘userfile’][‘name’] == ‘’) {

header(“Location: “ . $HOST_NAME . $SCRIPT_NAME
. “?error=nophoto”);
}

This code checks to see if the name information in the $_FILES array has a value.
If it does not, the page reloads with an appended error variable.

Now you can run a further set of tests. First, check to see if the size is legitimate
(not zero):

header(“Location: “ . $HOST_NAME . $SCRIPT_NAME
. “?error=nophoto”);
}
elseif($_FILES[‘userfile’][‘size’] == 0) {

header(“Location: “ . $HOST_NAME . $SCRIPT_NAME
. “?error=photoprob”);
}

253CHAPTER 7 Building an Online Auction Site

Check that the size is not greater than the maximum file size set in the hidden
field:

header(“Location: “ . $HOST_NAME . $SCRIPT_NAME
. “?error=photoprob”);
}
elseif($_FILES[‘userfile’][‘size’] > $MAX_FILE_SIZE) {

header(“Location: “ . $HOST_NAME . $SCRIPT_NAME
. “?error=large”);
}

Run the PHP getimagesize() function to determine how the image size. If this
returns FALSE, the image is invalid. Remember that the exclamation mark in the
elseif means NOT:

header(“Location: “ . $HOST_NAME . $SCRIPT_NAME
. “?error=large”);
}
elseif(!getimagesize($_FILES[‘userfile’][‘tmp_name’])) {

header(“Location: “ . $HOST_NAME . $SCRIPT_NAME
. “?error=invalid”);
}

If this battery of tests does not cause the page to reload with an error, the image
is legitimate and the file can be copied to a safe directory.

First, specify the safe directory for images:

header(“Location: “ . $HOST_NAME . $SCRIPT_NAME
. “?error=invalid”);
}
else {

$uploaddir = “/opt/lampp/htdocs/sites/auction/images/”;
$uploadfile = $uploaddir . $_FILES[‘userfile’][‘name’];

N O T E
Temporary Means Temporary

When you upload the image with the form, the file is stored in a temporary
directory. This directory really is temporary and is likely to be cleaned out
regularly or on reboot.

Configure this directory inside php.ini by setting the upload_tmp_dir option
in php.ini.

254 Practical PHP and MySQL

You create a variable called $uploaddir, which should point to a legitimate
location inside the main project directory. Create a new directory called images
with read and write access permissions and change $uploaddir to your directory.
The second line concatenates this directory and adds the file name. The $upload-
dir variable needs a trailing forward slash (/) to ensure that the image name is con-
catenated correctly.

Copy the file and add the name to the database:

$uploaddir = “/opt/lampp/htdocs/sites/auction/images/”;
$uploadfile = $uploaddir . $_FILES[‘userfile’][‘name’];

if(move_uploaded_file($_FILES[‘userfile’][‘tmp_name’],
$uploadfile)) {

$inssql = “INSERT INTO images(item_id, name)
VALUES(“ . $validid . “, ‘“ . $_FILES[‘userfile’][‘name’]
. “‘)”;

mysql_query($inssql);

header(“Location: “ . $HOST_NAME . $SCRIPT_NAME
. “?id=” . $validid);

}

The move_uploaded_file() function moves the file by passing it the name of
the temporary file ($_FILES[‘userfile’][‘tmp_name’]), the destination, and the
name it will be saved as ($uploadfile). You then insert the filename and item_id
into the images table and reload the page.

If for some reason move_uploaded_file() fails (such as incorrect file permis-
sions), display an error message:

header(“Location: “ . $HOST_NAME . $SCRIPT_NAME
. “?id=” . $validid);

}
else {

echo ‘There was a problem uploading your file.
’;
}

}
}

With the processing complete, you can now display the existing images before
the form. You can also display any error messages that resulted from the earlier tests.

Select all of the records from the images table with the current item id (stored in
$validid):

}
}

}

255CHAPTER 7 Building an Online Auction Site

else {
require(“header.php”);

$imagessql = “SELECT * FROM images WHERE item_id = “ . $validid
. “;”;
$imagesresult = mysql_query($imagessql);
$imagesnumrows = mysql_num_rows($imagesresult);

Display the images:

$imagesresult = mysql_query($imagessql);
$imagesnumrows = mysql_num_rows($imagesresult);

echo “<h1>Current images</h1>”;

if($imagesnumrows == 0) {
echo “No images.”;

}
else {

echo “<table>”;
while($imagesrow = mysql_fetch_assoc($imagesresult)) {

echo “<tr>”;
echo “<td><img src=’” . $config_basedir . “/images/”

. $imagesrow[‘name’] . “‘ width=’100’></td>”;
echo “<td>[<a href=’deleteimage.php?image_id=”

. $imagesrow[‘id’] . “&item_id=” . $validid

. “‘>delete]</td>”;
echo “</tr>”;

}
echo “</table>”;

If no rows are returned, the text No images is displayed; otherwise, a table is
created and a while loop iterates through the images. In addition to displaying the
image, a link is made to a page called delete.php, and the id of both the image and
item are added to the link as GET variables.

After the images are displayed, the form is displayed. Just before the form code,
add a switch statement to display the errors:

}
echo “</table>”;

}
switch($_GET[‘error’]) {

case “empty”:
echo ‘You did not select anything.’;

break;

case “nophoto”:
echo ‘You did not select a photo to upload.’;

break;

256 Practical PHP and MySQL

case “photoprob”:
echo ‘There appears to be a problem with the

photo you are uploading’;
break;

case “large”:
echo ‘The photo you selected is too large’;

break;

case “invalid”:
echo ‘The photo you selected is not a valid image file’;

break;
}

?>

Finally, add the closing curly bracket after the form and add the footer file:

When you have finished adding photos, go and
<a href=”<?php echo “itemdetails.php?id=”
. $validid; ?>”>see your item!

<?php
}

require(“footer.php”);
?>

The completed page is shown in Figure 7-6.

Deleting an Image
In this section, you create the Delete page that was created in the previous script.

When the user clicks the Delete link, the delete.php page prompts you to verify
that you want to delete the image. With this message, there will be two Submit but-
tons, with either Yes and No written on them. You can then check which Submit
button has been clicked and respond accordingly:

■ If the user clicks the Yes button, the image is deleted, the record is removed
from the images table, and the page redirects to addimages.php.

■ If the user clicks the No button, the page redirects to addimages.php.

The first step is to add the form. Create a new page called deleteimage.php and
the following code:

<h2>Delete image?</h2>
<form action=”<?php echo

pf_script_with_get($SCRIPT_NAME); ?>” method=”post”>

257CHAPTER 7 Building an Online Auction Site

FIGURE 7-6 An item can have a number of images attached to it.

Are you sure you want to delete this image?
<p>
<input type=”submit” name=”submityes”

value=”Yes”> <input type=”submit” name=”submitno” value=”No”>
</p>
</form>

An important point to note about that the form is that the two submit buttons in
the preceding code have different names: submityes and submitno.

Move to the top of the page and add the initial code to process the form:

<?php

require(“config.php”);
require(“functions.php”);

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

$validimageid = pf_validate_number($_GET[‘image_id’], “redirect”,
$config_basedir);
$validitemid = pf_validate_number($_GET[‘item_id’], “redirect”,
$config_basedir);

258 Practical PHP and MySQL

Check to see if the Yes button was clicked (submityes):

$validimageid = pf_validate_number($_GET[‘image_id’],
“redirect”, $config_basedir);
$validitemid = pf_validate_number($_GET[‘item_id’],
“redirect”, $config_basedir);

if($_POST[‘submityes’]) {

$imagesql = “SELECT name FROM images WHERE id = “ . $validimageid;
$imageresult = mysql_query($imagesql);
$imagerow = mysql_fetch_assoc($imageresult);

unlink(“./images/” . $imagerow[‘name’]);

$delsql = “DELETE FROM images WHERE id = “ . $validimageid;
mysql_query($delsql);

header(“Location: “ . $config_basedir
. “addimages.php?id=” . $validitemid);

}

If the Yes button is clicked, the query selects the name of the image from the
images table with the id of $validimageid. After the query is run, the unlink()
command physically deletes the file. Finally, the DELETE query removes the record,
and the page is redirected.

If the No button is clicked, the page redirects to addimages.php:

header(“Location: “ . $config_basedir . “addimages.php?id=”
. $validitemid);

}
elseif($_POST[‘submitno’]) {

header(“Location: “ . $config_basedir . “addimages.php?id=”
. $validitemid);
}

Display the form:

else {
require(“header.php”);

?>

<h2>Delete image?</h2>
<form action=”<?php

echo pf_script_with_get($SCRIPT_NAME); ?>” method=”post”>

Finally, at the bottom of the file, add the closing code:

259CHAPTER 7 Building an Online Auction Site

</p>
</form>

<?php
}
require(“footer.php”);
?>

PROCESSING AUCTIONS

With most auction sites, when an auction ends, email messages are sent to the
owner of the item and the winning bidder (if there is one) to indicate the result of
the auction. This message typically includes the name of the item and the details of
the owner/winner, depending on which email is sent. The challenge with this fea-
ture is in sending the emails when the auction has finished. PHP and MySQL do not
include features to specify a particular time at which a piece of code should be exe-
cuted. So how do you do it?

The solution is to first create a page that determines which auctions have ended
and sent the emails. To ensure processing is kept to a minimum, the endnotified
field in the items table is set to 1 when an item has been processed. As such, you
can search for items with an enddate older than NOW() in which endnotifed is 0.
This page can be used to process all auctions by simply running it.

To solve the problem of processing the auctions when they have finished, you
can use a scheduled tasks tool such as cron (Linux) or Windows Scheduler (Win-
dows) to schedule that the page is accessed approximately every five minutes. You
can use the wget command-line tool to do this.

Create a page called processauctions.php and run a query to select all the items:

<?php

require(“config.php”);
require(“header.php”);

$itemssql = “SELECT users.username, users.email, items.id,
items.name FROM items, users WHERE dateends < NOW() AND
items.user_id = users.id AND endnotified = 0;”;
$itemsresult = mysql_query($itemssql);

This query selects the username, email, item id, and name for all records in
which dateends is in the past and in which endnotified is set to 0. Each record
returned is an ended auction.

260 Practical PHP and MySQL

Iterate through the records:

$itemssql = “SELECT users.username, users.email, items.id,
items.name FROM items, users WHERE dateends < NOW() AND
items.user_id = users.id AND endnotified = 0;”;
$itemsresult = mysql_query($itemssql);

while($itemsrow = mysql_fetch_assoc($itemsresult)) {
$bidssql = “SELECT bids.amount, users.username,

users.email FROM bids, users WHERE bids.user_id = users.id
AND item_id = “ . $itemsrow[‘id’] . “ ORDER BY amount
DESC LIMIT 1;”;
$bidsresult = mysql_query($bidssql);
$bidsnumrows = mysql_num_rows($bidsresult);

For each ended auction, a check is made to see if any bids were placed, and the
highest amount and username and email address of the highest bidder is returned.
The query works by asking for the username, email, and bid amount for a record in
which item_id is equal to $itemsrow[‘id’]. Each record is ordered in descending
order by amount and returns only a single row (LIMIT 1). Ordering in descending
order and only returning one row returns the latest entry in the table. This is a nice
alternative to using the MAX() function to determine the highest price.

With the data gathered, now you can construct and send the emails. To generate
the mails, use the heredoc syntax that was discussed in Chapter 5. When using this
syntax, you cannot use arrays inside it. Instead, extract data into normal variables:

$bidsresult = mysql_query($bidssql);
$bidsnumrows = mysql_num_rows($bidsresult);

$own_owner = $itemsrow[‘username’];
$own_email = $itemsrow[‘email’];
$own_name = $itemsrow[‘name’];

There are three possible scenarios in which emails need to be sent. You would
send them to

■ The owner of the auction to indicate that no bids were made on the item.

■ The owner to indicate the highest bidder and the bidder’s contact details.

■ The winning bidder to indicate the owner of the auction.

First, create the one that is sent to the owner indicating that no bids were made.
To see if there were any bids, check if the $bidsnumrows has a value. If not, create
the following email message:

$own_email = $itemsrow[‘email’];
$own_name = $itemsrow[‘name’];

261CHAPTER 7 Building an Online Auction Site

if($bidsnumrows == 0) {
$owner_body=<<<_OWNER_

Hi $own_owner,

Sorry, but your item ‘$own_name’, did not have any bids placed with it.

OWNER;

mail($own_email, “Your item ‘“ . $own_name
. “‘ did not sell”, $owner_body);
}

If there were rows in the bids table, construct the other two types of email
message:

mail($own_email, “Your item ‘“ . $own_name
. “‘ did not sell”, $owner_body);
}
else {
echo “item with bids” . $itemsrow[‘id’];

$bidsrow = mysql_fetch_assoc($bidsresult);

$own_highestbid = $bidsrow[‘amount’];

$win_winner = $bidsrow[‘username’];
$win_email = $bidsrow[‘email’];

$owner_body=<<<_OWNER_

Hi $own_owner,

Congratulations! The auction for your item ‘$own_name’,
has completed with a winning bid
of $config_currency$own_highestbid bidded by $win_winner!

Bid details:

Item: $own_name
Amount: $config_currency$own_highestbid
Winning bidder: $win_winner ($win_email)

It is recommended that you contact the winning bidder within 3 days.

OWNER;

$winner_body=<<<_WINNER_

Hi $win_winner,

Congratulations! Your bid of $config_currency$own_highestbid for
the item ‘$own_name’ was the highest bid!

262 Practical PHP and MySQL

Bid details:

Item: $own_name
Amount: $config_currency$own_highestbid
Owner: $own_owner ($own_email)

It is recommended that you contact the owner of the item within 3 days.

WINNER;

mail($own_email, “Your item ‘“ . $own_name
. “‘ has sold”, $owner_body);

mail($win_email, “You won item ‘“ . $own_name
. “‘!”, $winner_body);

Update the items table and set endnotified to 1 to indicate that the auction has
been processed:

mail($own_email, “Your item ‘“ . $own_name
. “‘ has sold”, $owner_body);

mail($win_email, “You won item ‘“ . $own_name
. “‘!”, $winner_body);
}

$updsql = “UPDATE items SET endnotified = 1 WHERE id = “ .
$itemsrow[‘id’];

echo $updsql;
mysql_query($updsql);

}

Finally, add the footer code:

mysql_query($updsql);
}

require(“footer.php”);

?>

SCHEDULING THE PAGE TO BE RUN

To schedule the page to be run at regular intervals, use the wget download utility to
perform the visit. The wget utility is mainly used for downloading files, so on Linux
you will need to send any output to /dev/null:

foo@bar:~$ wget –-delete-after
http://localhost/auction/processauctions.php

http://localhost/auction/processauctions.php

263CHAPTER 7 Building an Online Auction Site

To schedule this to occur at regular intervals, add the following line to a cron
job. First, load the crontab with the following:

foo@bar:~$ crontab –e

To run the command every five minutes, add the following line to the crontab:

*/5 * * * * wget —delete-after
http://localhost/auction/processauctions.php

You can set this in Windows by using the Schedule Tasks option in the Control
Panel. Inside this dialog box, select the program to run and specify the time.

Be sure to change the URL to one that is relevant to your computer.

SUMMARY

In this project, you explored a number of different challenges and problems faced
with writing an auction site. This project has been useful for practicing skills for
checking dates, dealing with prices, and running queries to summarize data from
the database.

Many more possibilities exist for adding more functionality, and as you learn
more and more features in PHP, you can return to this project to enhance different
parts of the code. An example of this is the form handling. In this project, you delib-
erately processed the forms manually to learn how to use addslashes() to handle
user input. In a later project, you will use HTML_QuickForm to manage the forms.

T I P
Another possibility is to add an administration section with tools to man-
age the auction site in the same way we have developed administration sec-
tions in previous projects. Each project in this book is not intended to be a
complete, finished application, and there is plenty of scope to add addi-
tional features and improve the projects in different ways. Simply use your
imagination and fill in the gaps where needed. This is part of the fun of
software development—when you know the technology, the sky is the limit.
Good luck!

http://localhost/auction/processauctions.php

This page intentionally left blank

265

Creating a Web-Based
Calendar

C H A P T E R 8

For most of us, life is increasingly busy. Unless you made a few million in the stock
market and now live aboard a gold-plated yacht, keeping your meetings, social
events, dentist appointments, and basket weaving club meetings straight is a daily
struggle.

In this project, you will create a Web-based calendar to help with these strug-
gles. The project implements everything you need to manage your life—the ability
to view months at a time, display event information, and add new events. Although
simple in concept, calendars offer a number of interesting challenges for develop-
ers. To make the project even more interesting, you explore Ajax, a technology set
that provides for highly dynamic Web sites that function much like desktop appli-
cations. Plug yourself in, stretch those fingers, and get ready!

PROJECT OVERVIEW

To get a clear idea of how the project will work, take a look at the following use case:

Susan has a terrible memory. Although she is extremely popular among her
friends and co-workers, Susan often accepts invitations to parties and events
and then promptly forgets about them. After one too many missed dinner
appointments, she decides to use a Web-based calendar, one she can access
from any Web browser, anywhere in the world.

Susan goes to her calendar and enters her login details. After she success-
fully logs in, she can see the current month, as well as each of the events she
booked for that month—all located on the correct day. The calendar’s sidebar

266 Practical PHP and MySQL

events
id
date
starttime
endtime
name
description

users
id
username
password

FIGURE 8-1
To say that the database in this project is simple is
quite an understatement!

also includes a list of the events occurring in the near future. To view infor-
mation about a specific event, Susan clicks the event name, and the details
appear (also in the calendar sidebar).

Susan realizes that she added an event for the coming Saturday, which she
needs to cancel. To delete it, she clicks the X button next to event. The cal-
endar is updated, and the event disappears.

Susan now needs to add a new event (her dachshund’s training class) to the
calendar. She clicks on the day that the class is scheduled, and the sidebar is
redrawn with a form that she can fill in. She adds the name of the event, the
start and end times, and a short description. She then clicks the Add Event
button, and the calendar refreshes, displaying the new event.

BUILDING THE DATABASE

The database you will create is shown in Figure 8-1.

With only two tables in the project (neither of which are related), this is an
incredibly simple database to set up. The events table contains a list of the events
in the calendar, and the users table contains the user logins.

Implementing the Database
Start phpMyAdmin. Create a new database called simplecal and add the following
tables.

The events Table
■ id. Make this an INT (several events are possible) and turn on auto_incre-

ment. Set this field as a primary key.

■ date. Make this a DATE.

■ starttime. Make this a TIME.

■ endtime. Make this a TIME.

■ name. Make this a VARCHAR with a length of 50.

■ description. Make this a TEXT.

267CHAPTER 8 Creating a Web-Based Calendar

TABLE 8-1 Sample events make it easier to check if the calendar works.

DATE STARTTIME ENDTIME NAME DESCRIPTION

2007-10-14 12:00:00 14:00:00 Meeting with
Emily

Important meet-
ing to discuss
future projects.

2007-10-14 18:00:00 19:30:00 Meal with Lee Meal with Lee
to celebrate
working
together.

2007-11-20 08:30:00 09:30:00 Working
breakfast

Meeting with
Cliff to talk
shop.

The logins Table
■ id. Make this a TINYINT and turn on auto_increment. Set this field as a

primary key.

■ username. Make this a VARCHAR with a length of 10.

■ password. Make this a VARCHAR with a length of 10.

Insert Sample Data
In this section, you add some sample data to get started. Remember, do not fill in a
number in the id column; auto_increment takes care of this for you. Feel free to
add your own sample data or use the data shown in Table 8-1.

Sample Data for the events Table
Add the sample events from Table 8-1.

Sample Data for the logins Table
Add a username and password for the logins table (and keep the password handy!).

STARTING TO CODE

First, you need to take care of the site template, style, and some utility functions.
Then you can move into login screens and the actual calendar pages and scripts.

268 Practical PHP and MySQL

Site Layout and Style
As you’ve done in previous chapters, the first step is to create the configuration,
header, and footer files. Create a new directory called simplecal. Now copy the
db.php file from previous projects to the simplecal directory. Next, create a new file
called config.php, the contents of which are shown in Example 8-1.

EXAMPLE 8-1 A simple configuration file

<?php

$dbhost = "localhost";
$dbuser = "root";
$dbpassword = "";
$dbdatabase = "simplecal";

$config_name = "James Hillchin's Calendar";

$config_basedir = "http://localhost/sites/simplecal/";

?>

Just as config.php was used in previous projects, the same stylesheet from
previous projects is used here. You will need to make a few additions at the
bottom, however. Create a new file called stylesheet.css and add the code shown in
Example 8-2.

EXAMPLE 8-2 The additional elements in the stylesheet are used to
customize the calendar view.

body {
font-family: "trebuchet ms", verdana, sans-serif;
font-size: 12px;
line-height: 1.5em;
color: #333;
background: #ffffff;
margin: 0;
padding: 0;
text-align: center;
width: 100%;

}

p {
margin-top: 10px;

}

h3 {

269CHAPTER 8 Creating a Web-Based Calendar

font: bold 140% trebuchet ms, sans-serif;
letter-spacing: 5px;
margin-bottom: 0;
color: #000000;

}

hr {
color: #eee;
background-color: #000;
height: 2px;

}

a:link {
text-decoration: none;
color: #000;

}

a:visited {
text-decoration: none;
color: #000;

}

a:hover, a:active {
text-decoration: none;
color: #000;

}

img {
border: 0;

}

#container {
position: absolute;
top: 85px;
left: 0px;
background: #ffffff;
margin: 0 auto 0 auto;
border-bottom: 1px solid #eee;
text-align: left;
width: 100%;
height: 100%;

}

#menu {
font-family: "trebuchet ms", verdana, sans-serif;
font-size: 14px;
font-weight: bold;
position: absolute;
height: 27px;
top: 60px;

continues

270 Practical PHP and MySQL

EXAMPLE 8-2 Continued.

left: 0px;
width: 100%;
padding: 0px;
color: #000000;
background-color: #eee

}

#header {
position: absolute;
top: 0px;
left: 0px;
height: 60px;
width: 100%;
background: #333;
padding-top: 8px;

}

#header h1 {
font-size: 30px;
text-transform: uppercase;
letter-spacing: 0.3em;
color: #fff;

}

#main {
margin: 5px 5px 5px 5px;
padding: 5px 5px 5px 5px;
background: #FFFFFF;

}

#bar {
float: left;
width: 200px;
background: #eee;
z-index: 1;
padding: 10px;
margin-right: 30px;
height: 100%;

}

#bar h1 {
font-size: 12px;
text-transform: uppercase;
letter-spacing: 0.3em;

}

/* ———- calendar specific styles ———— */

271CHAPTER 8 Creating a Web-Based Calendar

a.cal_date:link {
text-decoration:none;color:white;
display:block;width:100%;height:100%;
}

a.cal_date:visited {
text-decoration:none;color:white;display:block;width:100%;
height:100%;
}

a.cal_date:hover {
text-decoration:none;color:white;display:block;width:100%;
height:100%;
}

a.cal_date:active {
text-decoration:none;color:white;display:block;width:100%;
height:100%;
}

a.cal:link {
text-decoration:none;color:red;display:block;
height:100%;background:white;padding:3px;
}

a.cal:visited {
text-decoration:none;color:red;
display:block;width:100%;height:100%;background:white;
padding:3px;
}

a.cal:hover {
text-decoration:none;color:white;
display:block;width:100%;height:100%;background:#dddddd;
border: thin solid black;padding:0px;
}

a.cal:active {
text-decoration:none;color:red;
display:block;width:100%;height:100%;background:white;
padding:3px;
}

a.event:link {
text-decoration:none;color:blue;width:100%;
background:lightblue;padding:3px;}

a.event:visited {
text-decoration:none;color:blue;width:100%;
background:lightblue;padding:3px;
}

continues

272 Practical PHP and MySQL

EXAMPLE 8-2 Continued.

a.deleteevent:link {
text-decoration:none;color:blue;background:red;
padding:3px;border:thin solid black;
}

a.deleteevent:visited {
text-decoration:none;color:blue;background:red;
padding:3px;border:thin solid black;
}

table.cal {
border: thin solid black;

}

th.cal {
background: #000000;
color: #ffffff;

}

td.cal_date {
background: #333333;
color: #ffffff;

}

td.cal {
}

span.datepicker {
font-family: "trebuchet ms", verdana, sans-serif;
font-size: 18px;
font-weight: bold;
text-align: center;

}

#login {
font-family: "trebuchet ms", verdana, sans-serif;
font-size: 12px;
border: thin solid black;
width: 300px;
margin: 20px auto 0 auto;
background: #eeeeee;
padding: 10px;

}

Create header.php and add the header code shown in Example 8-3.

273CHAPTER 8 Creating a Web-Based Calendar

EXAMPLE 8-3 With the exception of a few additions, the header file is very
similar to those used in previous projects.

<?php

session_start();

require("config.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

?>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>

<title><?php echo $config_name; ?></title>
<script language="javascript" type="text/javascript"

src="./internal_request.js">
</script>
<link href="stylesheet.css" rel="stylesheet">

</head>
<body>
<div id="header">
<h1><?php echo $config_name; ?></h1>
</div>

<div id="menu">
•
<a href="<?php echo $config_basedir; ?>">This month
•
<a href="<?php echo $config_basedir; ?>/logout.php">Logout
•

</div>
<div id="container">

<div id="bar">
<?php require("bar.php"); ?>

</div>

In this code, there is one distinctive addition:

<script language="javascript" type="text/javascript"
src="./internal_request.js">

</script>

This snippet of code includes a special JavaScript file, which contains functions
that you’ll use in several portions of the calendar site. Like in other projects, bar.php
is included in the header file. This file is covered in depth later in the chapter.

274 Practical PHP and MySQL

Add the small but perfectly formed footer code to footer.php, as shown in Exam-
ple 8-4.

EXAMPLE 8-4 The footer file closes off the main content <div> and the body
and html tags.

</div>
</body>
</html>

The final file to create—at least in this startup phase—is functions.php. Add
the pf_validate_function() code from a previous project to the file, as shown in
Example 8-5.

EXAMPLE 8-5 The pf_validate_number() function is used again to validate
GET variables.

<?php

function pf_validate_number($value, $function, $redirect) {
if(isset($value) == TRUE) {

if(is_numeric($value) == FALSE) {
$error = 1;

}

if($error == 1) {
header("Location: " . $redirect);

}
else {

$final = $value;
}

}
else {

if($function == 'redirect') {
header("Location: " . $redirect);

}

if($function == "value") {
$final = 0;

}
}

return $final;
}

?>

275CHAPTER 8 Creating a Web-Based Calendar

Building the Login Screen
For the purposes of this project, the calendar is intended to be a private Web appli-
cation for use by a single person. To ensure that other people do not snoop around
the calendar, you’ll protect it with a login page. This login page takes a username
and password, and then redirects you to the main calendar page after a successful
login.

This page is no different from the code used in previous login pages. The only
difference is the name of the session variable: LOGGEDIN. Create a new file called
index.php and add the code from Example 8-6.

EXAMPLE 8-6 The login page is virtually identical to the login code from pre-
vious projects.

<?php
session_start();

require("db.php");

if(isset($_SESSION['LOGGEDIN']) == TRUE) {
header("Location: " . $config_basedir . "view.php");

}

if($_POST['submit'])
{

$loginsql = "SELECT * FROM logins WHERE username = '"
. $_POST['userBox'] . "' AND password = '"
. $_POST['passBox'] . "'";

$loginres = mysql_query($loginsql);
$numrows = mysql_num_rows($loginres);

if($numrows == 1)
{

$loginrow = mysql_fetch_assoc($loginres);

session_register("LOGGEDIN");

$_SESSION['LOGGEDIN'] = 1;

header("Location: " . $config_basedir . "view.php");
}
else
{

header("Location: http://" . $HTTP_HOST
. $SCRIPT_NAME . "?error=1");

}
}

continues

276 Practical PHP and MySQL

EXAMPLE 8-6 Continued

else
{

?>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>

<title></title>
<link href="stylesheet.css" rel="stylesheet">

</head>
<body>

<div id="login">

<h1>Calendar Login</h1>
Please enter your username and password to log on.
<p>

<?php
if($_GET['error']) {

echo "Incorrect username/password";
}

?>

<form action="<?php echo $SCRIPT_NAME; ?>" method="POST">
<table>

<tr>
<td>Username</td>
<td><input type="text" name="userBox">

</tr>
<tr>

<td>Password</td>
<td><input type="password" name="passBox">

</tr>
<tr>

<td></td>
<td><input type="submit" name="submit" value="Log in">

</tr>
</table>
</form>

</div>
<?php

}

?>

277CHAPTER 8 Creating a Web-Based Calendar

FIGURE 8-2 Because you don’t want just anyone looking at your events, a login
screen—with its own unique look and feel—protects the calendar.

Some HTML is included in the file because the page does not include the
header and footer template files. This results in the login page looking quite a bit
different from the rest of the site; however, this is an intentional difference, rather
than an accidental one. Having the login page look substantially different from the
rest of an application makes users aware that they should pay special attention to
the unique-looking page. The completed login page should resemble something
similar to the page shown in Figure 8-2.

VIEWING EVENTS

The vast majority of calendars have a very similar interface. This interface typically
includes a view of the entire month, with each day shown with its date. Usually, the
days are represented as squares, and events on those days are positioned inside
the squares. And, for usability, each day’s events are normally listed in chronologi-
cal order. Because this design has worked for so long, we’ll stick with it here.
Figure 8-3 shows the user interface for the calendar.

278 Practical PHP and MySQL

Two primary elements comprise the interface: the main calendar view and the
sidebar. Each of these interface areas has several key functions.

The key functions of the main calendar are as follows:

■ Displays a month, as well as the days of the week and the dates for each day.

■ Displays the events within a given month.

■ Allows the user to click an event and view information about that event.

■ Allows the user to add events by clicking any open space for a given day.

The key functions of the sidebar are as follows:

■ Displays the current month’s name and year. The user can use the arrows to
choose previous or future months.

■ Allows the user to click an event in the main calendar to display the event
information in the sidebar.

■ Allows the user to add a new event and displays the new event form in the
sidebar.

■ Displays a list of upcoming events.

FIGURE 8-3 The calendar interface provides a simple means of viewing and
deleting events in any given month.

279CHAPTER 8 Creating a Web-Based Calendar

In previous projects, you accessed each piece of project functionality by load-
ing different pages. For example, the New Topic page was used to add a new post to
the forums project. In this project, however, the Web interface doesn’t need to
change much, even when accessing different features. A calendar will always be
visible, and the sidebar will always display different types of information. There-
fore, there’s no need to create multiple pages. This further simplifies the applica-
tion, which is never a bad thing.

To make the calendar even more dynamic, you will use an exciting technology
called Ajax to prevent the need for refreshing the entire page when you want to
access new functionality.

All About Ajax
Ajax, which is sometimes referred to as Asynchronous JavaScript and XML, is an
exciting technology that has been taking the Web development world by storm. Ajax
has been largely spurred on by some innovative uses of the technology by Google
with Gmail (http://mail.google.com) and Google Maps (http://maps.google.com).

The idea behind Ajax is that you can send requests to a server, as you normally
do; but instead of refreshing the entire page, you use JavaScript to update only a
portion of the page. As a result, Web applications aren’t constantly forcing users to
wait for entirely new pages to be loaded in their browsers; the application feels
more like a desktop program.

A good example of this is Google’s Gmail application. To compose a new mes-
sage, you type the first few letters of the email address into a form. After you type
the first few letters, a new window prompts you to select from a list of email
addresses of people you have already emailed. In the background, Gmail is using
Ajax to grab the list of email addresses from the server and present this list—with-
out sending a new HTML page to the browser. Ajax offers you a fantastic way of pro-
viding a more dynamic experience for your users.

Ajax is not a singular new technology, but instead a combination of a range of
technologies. These include the following:

■ HTML

■ CSS

■ Document Object Model (or DOM)

■ JavaScript

■ XML HTTP Requests

http://mail.google.com
http://maps.google.com

280 Practical PHP and MySQL

In this project, you use Ajax to refresh a specific part of the calendar sidebar—
preventing the need to refresh the entire screen. This makes the application feel
smoother and allows you to flex your Ajax muscles.

How Ajax Works
Before discussing how to actually implement an Ajax application, it’s helpful to
take a minute to understand how Ajax works at a conceptual level. This is best
explained with a diagram, as shown in Figure 8-4.

Five distinct steps typically occur in Ajax requests. To demonstrate this, the
following list describes how Ajax is applied when the user clicks an event in the
calendar:

1. The user clicks an event in which he is interested. Instead of the link con-
necting to another HTML or PHP page, it triggers a JavaScript function.

2. The JavaScript function connects to a script that can handle the request. The
function also requests that it be notified as soon as that request is answered
(it does this by registering a handler to the response).

3. The PHP script that handles the request processes it and connects to the
database to get the required information about the specified event.

4. When the script has gathered the event information, it responds to the
JavaScript handler registered in Step 2. This handler—which now contains

Meeting about . . .X

Database

1

2

4

5

3

PHP
Page

function ()

handler ()

FIGURE 8-4
Ajax takes a number of different
steps between a user clicking a
link and the page being updated.

281CHAPTER 8 Creating a Web-Based Calendar

the event information—replaces the area in the sidebar with the event data
from Step 3.

Easy enough, right? Time to put these steps into action.

Creating the Sidebar
The sidebar contains three main areas, each of which is then added to bar.php
(which was loaded in header.php; refer to Example 8-3).

Dealing with Dates
The first area of the sidebar displays the name and year of the month being viewed,
and also provides arrows to allow the user to select the previous or next month.
These arrows link to view.php and pass it a date GET variable with the month in the
format <month>-<year>, such as view.php?date=10-2005 (for October 2005).

The left arrow (go to the previous month) simply subtracts 1 from the current
month, and the right arrow adds 1 to the month (to go to the next month). You also
need to provide some code to deal with January and December. If the user is look-
ing at 1-2005 (January 2005), the left arrow should link to 12-2004 (December
2004). Likewise, the right arrow for 12-2005 should link to 1-2006.

With all this in mind, create bar.php and add the following code:

<?php

if(isset($_GET['date']) == TRUE) {
$explodeddate = explode("-", $_GET['date']);
$month = $explodeddate[0];
$year = $explodeddate[1];
$numdays = date("t", mktime(0, 0, 0, $month, 1, $year));

}
else {

$month = date("n", mktime());
$numdays = date("t", mktime());
$year = date("Y", mktime());

}

If a date GET variable exists, you can view the relevant month. If the variable
does not exist, the script uses the current month (this latter case occurs the first
time the application is opened in a session).

If a date is present, the code uses explode() to tear open the date and put the
month in $month and the year in $year. The number of days is calculated by feed-
ing $month and $year into the mktime() function. This function takes a number of
arguments:

282 Practical PHP and MySQL

The result of the function is run through date(), and the number of days is
returned.

Use the same technique to create the date label (such as July 2006) that is dis-
played in the sidebar:

$numdays = date("t", mktime());
$year = date("Y", mktime());

}

$displaydate = date("F Y", mktime(0, 0, 0, $month, 1, $year));

Calculate the previous date (for when the user clicks on the left arrow):

<?php

...

$displaydate = date("F Y", mktime(0, 0, 0, $month, 1, $year));

if($month == 1) {
$prevdate = "12-" . ($year-1);

}
else {

$prevdate = ($month-1) . "-" . $year;
}

If the month is January, the date is set to December in the previous year. Other-
wise, 1 is subtracted from the month.

Repeat for the “next month” arrow, by adding 1 to the month and then dealing
with the December special case:

$displaydate = date("F Y", mktime(0, 0, 0, $month, 1, $year));

if($month == 1) {
$prevdate = "12-" . ($year-1);

}
else {

$prevdate = ($month-1) . "-" . $year;
}

if($month == 12) {
$nextdate = "1-" . ($year+1);

}
else {

mktime(0, 0, 0, $month, 1, $year);

hour minute second month day year

283CHAPTER 8 Creating a Web-Based Calendar

$nextdate = ($month+1) . "-" . $year;
}

Display the date:

echo "";
echo "← ";
echo $displaydate;
echo " → ";
echo "";

echo "
";
?>

In this code, the date GET variable is constructed for the current page. The
links are applied to two arrows, which are shown using the ← and →

HTML entities.

Preparing for Ajax
With the date picker complete, add the second component of the sidebar:

<div id="eventcage">
<p>To view event information here, click on the item in the
calendar.</p>
</div>

This creates a <div> called an event cage. This is the area of the sidebar that is
replaced later by the Ajax requests.

Displaying Upcoming Events
Add the third component for the sidebar:

<?php

echo "<h1>Latest Events</h1>";

N O T E
Use HTML Entities Where Possible

A wide range of special symbols is available as HTML entities. These sym-
bols can be used by referencing the entity code in your HTML, as you just
did with the arrows. For a complete list of available entities, see
http://www.htmlhelp.com/reference/html40/entities/.

You should always use HTML entities whenever possible, because entities
can prevent the need for unnecessary graphics. Entities also improve the
accessibility and performance of the Web application.

http://www.htmlhelp.com/reference/html40/entities/

284 Practical PHP and MySQL

echo "";
$nearsql = "SELECT * FROM events WHERE date >= NOW()

ORDER BY starttime;";
$nearres = mysql_query($nearsql);
$nearnumrows = mysql_num_rows($nearres);

if($nearnumrows == 0) {
echo "No events!";

}
else {

while($nearrow = mysql_fetch_assoc($nearres)) {
echo "<a href='#' onclick='getEvent("

. $nearrow['id'] . ")'>" . $nearrow['name'] . " (<i>"

. $nearrow['date'] . "</i>)";
}

}

echo "";

?>

Here, a fairly simple SELECT query is issued to return all events that are from
the current day onward. A check is made to see if no rows are returned. If this is the
case, the text No events! is displayed. Otherwise, a link is added to runs the
getEvent() JavaScript function (which you’ll review in detail shortly).

Example 8-7 shows the completed sidebar code.

EXAMPLE 8-7 The sidebar handles months, event details, and upcoming
events.

<?php

if(isset($_GET['date']) == TRUE) {
$explodeddate = explode("-", $_GET['date']);
$month = $explodeddate[0];
$year = $explodeddate[1];
$numdays = date("t", mktime(0, 0, 0, $month, 1, $year));

}
else {

$month = date("n", mktime());
$numdays = date("t", mktime());
$year = date("Y", mktime());

}

$displaydate = date("F Y", mktime(0, 0, 0, $month, 1, $year));

if($month == 1) {

285CHAPTER 8 Creating a Web-Based Calendar

$prevdate = "12-" . ($year-1);
}
else {

$prevdate = ($month-1) . "-" . $year;
}

if($month == 12) {
$nextdate = "1-" . ($year+1);

}
else {

$nextdate = ($month+1) . "-" . $year;
}

echo "";
echo "← ";
echo $displaydate;
echo " → ";
echo "";

echo "
";
?>

<div id="eventcage">
<p>To view event information here, click on the item in
the calendar.</p>
</div>

<?php

echo "<h1>Latest Events</h1>";

echo "";
$nearsql = "SELECT * FROM events WHERE date >= NOW()

ORDER BY starttime;";
$nearres = mysql_query($nearsql);
$nearnumrows = mysql_num_rows($nearres);

if($nearnumrows == 0) {
echo "No events!";

}
else {

while($nearrow = mysql_fetch_assoc($nearres)) {
echo "<a href='#' onclick='getEvent(" . $nearrow['id']

. ")'>" . $nearrow['name'] . " (<i>" . $nearrow['date'] .
"</i>)";

}
}

echo "";

?>

286 Practical PHP and MySQL

The Calendar View
The main calendar view displays a calendar month and lists any events for that
month on the appropriate day.

Constructing a calendar month involves creating a number of rows, as shown in
Figure 8-5.

To build something like this, you first need to create a table and then add each
row, one by one. The weekdays are table headings, and then you gradually build up
each row of individual days.

Create a new file called view.php and add this code:

<?php

session_start();

require("config.php");

if(isset($_SESSION['LOGGEDIN']) == FALSE) {
header("Location: " . $config_basedir);

}

N O T E
Fair Warning

Building a calendar view is a surprisingly tricky piece of code to write. If you
lose track of the logic, you will spend hours trying to understand why you
are getting slightly different results than you expected. The trick is to build
up the calendar step by step.

FIGURE 8-5 The calendar view contains a number of rows, including the week-
days, the dates, and an area in which events are located.

287CHAPTER 8 Creating a Web-Based Calendar

After you have protected the page from any users not logged in, create a small
function:

<?php

session_start();

require("config.php");

if(isset($_SESSION['LOGGEDIN']) == FALSE) {
header("Location: " . $config_basedir);

}

function short_event($name) {
$final = "";
$final = (substr($name, 0, 12) . "...");

return $final;
}

This function shortens the name of the event that is added to a calendar day.
With your Working Breakfast event, the name is shorted to Working Brea… on the
calendar. This will keep the event to a single line. To do this, the function uses sub-
str() to cut out the first 12 letters and then append … to the end of the string.

Continue adding code:

return $final;
}

require("header.php");

if($_GET['error']) {
echo "<script>newEvent('" . $_GET['eventdate'] . "', 1)</script>";

}

This code if checks to see if an error GET variable exists. If so, a <script> tag
is added. This block is intended for when the user has entered a new event into the
form later. If the form contains errors, the page is reloaded and the <script> tag
runs the newEvent() JavaScript function. This function is passed two arguments:
the date and an error code. (newEvent()is discussed in detail later in this chapter.)

Create the variables and add the table headings:

if($_GET['error']) {
echo "<script>newEvent('" . $_GET['eventdate'] . "', 1)</script>";

}

$cols = 7;
$weekday = date("w", mktime(0, 0, 0, $month, 1, $year));

288 Practical PHP and MySQL

$numrows = ceil(($numdays + $weekday) / $cols);

echo "
";
echo "<table class='cal' cellspacing=0 cellpadding=5 border=1>";
echo "<tr>";
echo "<th class='cal'>Sunday</th>";
echo "<th class='cal'>Monday</th>";
echo "<th class='cal'>Tuesday</th>";
echo "<th class='cal'>Wednesday</th>";
echo "<th class='cal'>Thursday</th>";
echo "<th class='cal'>Friday</th>";
echo "<th class='cal'>Saturday</th>";
echo "</tr>";

$counter = 1;
$newcounter = 1;

The first three lines set up some essential variables. You first specify the number
of columns in the $cols variable—you are using 7, one for each day. Next, the
$weekday variable returns the number of the day in the week for the first of the month.
For example, if the day is Friday, it is the sixth day and the function returns 5.

The $numrows variable takes the $numdays variable from bar.php, adds the
$weekday, and divides by the number of columns (7). The reason you add $weekday
to $numdays is to pad out the days remaining from the previous month. Referring to
Figure 8-5, you can see that the month begins on Friday, but the Sunday to Thurs-
day days do not contain any dates. By adding $weekday, you set the amount of days
that are padded. In this example, Friday returns 5, and if you count from left to right
(starting with 0), you get Friday.

After setting these variables, the table headings are added and, finally, two
variables are set to 1. These variables will be used as counters later in the code.

Now you can add the first row of cells that add the date for a given day. Before
you begin adding the actual dates, pad out the days before the first of the month:

N O T E
Counting from Zero

Many functions in PHP begin counting at zero. When you code and get
results that are just slightly different (such as 8 cells appearing instead of 7),
it could be because you have assumed that a function begins counting at 1.
Although this can be the case, most functions begin at 0.

289CHAPTER 8 Creating a Web-Based Calendar

$counter = 1;
$newcounter = 1;

echo "<tr>";

$daysleft = 6 - $weekday—;

for($f=0;$f<=$weekday;$f++) {
echo "<td class='cal_date' width='110' height='10'>";
echo "</td>";

}

Here, you calculate the days left by removing $weekday— ($weekday minus 1)
from 6 (the number of days in a week—remember, this function starts at 0). The rea-
son $weekday minus 1 is taken into account is that the weekday is counted from 0
instead of 1.

Add the remaining days for the first row:

echo "</td>";
}

for($f=0;$f<=$daysleft;$f++) {
echo "<td class='cal_date' width='100' height='10'>";

$display = date("jS", mktime(0, 0, 0, $month, $counter, $year));

$todayday = date("d");
$todaymonth = date("n");
$todayyear = date("Y");

if($counter == $todayday AND $month == $todaymonth AND
$year == $todayyear) {

echo "TODAY " . $display . "";
}
else {

echo $display;
}

echo "</td>";
$counter++;

}

echo "</tr>";

Inside the loop, the $display variable is created by using date() to store the
formatted date. The $todayday, $todaymonth, and $todayyear variables are then
filled with the relevant parts of today’s date. Next, a check is made to see if today’s
details match the respective $counter, $month, and $year variables created earlier.

290 Practical PHP and MySQL

If so, TODAY is added to the cell to indicate the current day. Otherwise, only the date
is displayed.

Before you add the cells that contain the events, pad out the days before the
first of the month:

}

echo "</tr>";

echo "<tr>";
for($f=0;$f<=$weekday;$f++) {

echo "<td class='cal' width='110' height='10'>";
if($newcounter <= $numdays) {
}

echo "</td>";
}

For the remaining cells on the first row, grab the events from the database and
display them:

echo "</td>";
}

for($f=0;$f<=$daysleft;$f++) {
echo "<td class='cal' width='110' height='40'>";

$date = $year . "-" . $month . "-" . $newcounter;
echo "<a class='cal' href='#' onclick=\"newEvent('"

. $date . "')\">";

$eventsql = "SELECT * FROM events WHERE date = '"
. $date . "';";

$eventres = mysql_query($eventsql);

while($eventrow = mysql_fetch_assoc($eventres)) {
echo "<a class='deleteevent' href='delete.php?id="

. $eventrow['id'] . "' onclick=\"return confirm('Are you
sure you want to delete `" . $eventrow['name'] ."`?');\">X";

echo "<a class='event' href='#'
onclick='getEvent(" . $eventrow['id'] . ")'>"
. short_event($eventrow['name']) . "
";

}
echo "</td>";
$newcounter++;

}

echo "</tr>";

291CHAPTER 8 Creating a Web-Based Calendar

This code creates a variable called $date that stores the date for the current cell
in the format YYYY-MM-DD (the same format in which MySQL stores dates). Next,
a link is added that loads the Javascript newEvent() function when the link is
clicked. This link does not contain anything; the stylesheet formats it to take up the
space of the cell and gives it a gray background.

Next, the query grabs the events for the current day (passing it $date), and the
while loop adds two links. The first links to delete.php, but the link also uses the
Javascript confirm() function in the onclick handler to prompt the user to delete
the current event. If the user clicks the OK button, the link continues. If the user
clicks Cancel, the link is cancelled.

The second link displays the event and uses the short_event() function, cre-
ated earlier, to show the first 12 letters of the event in the cell. This link runs the
Javascript getEvent() function when clicked. After the links are added, the $new-
counter variable is incremented to reflect the next date.

To fill in the rest of the rows, an outer for loop loops through each row. Inside
the for, repeat the same code:

$newcounter++;
}

echo "</tr>";

for($i=1;$i<=($numrows-1);$i++) {

echo "<tr>";

for($a=0;$a<=($cols-1);$a++) {

echo "<td class='cal_date' width='110' height='10'>";

$display = date("jS", mktime(0, 0, 0, $month, $counter,
$year));

$todayday = date("d");
$todaymonth = date("n");
$todayyear = date("Y");

if($counter == $todayday AND $month == $todaymonth AND
$year == $todayyear) {

echo "TODAY " . $display . "";
}
else {

echo $display;
}

echo "</td>";

292 Practical PHP and MySQL

$counter++;
}

echo "</tr>";

echo "<tr>";

for($aa=1;$aa<=$cols;$aa++) {
echo "<td class='cal' width='110' height='40'>";
if($newcounter <= $numdays) {

$date = $year . "-" . $month . "-" . $newcounter;
echo "<a class='cal' href='#' onclick=\"newEvent('" . $date

. "')\">";

$eventsql = "SELECT * FROM events WHERE date = '" . $date
. "';";

$eventres = mysql_query($eventsql);

while($eventrow = mysql_fetch_assoc($eventres)) {
echo "<a class='deleteevent' href='delete.php?id="

. $eventrow['id'] . "' onclick=\"return confirm('Are you sure
you want to delete `" . $eventrow['name'] ."`?');\">X";

echo "<a class='event' href='#' onclick='getEvent("
. $eventrow['id'] . ")'>" . short_event($eventrow['name'])
. "
";

}

}
echo "</td>";
$newcounter++;

}

echo "</tr>";
}

Finally, close the table and add the footer:

}

echo "</tr>";
}

echo "</table>";

require("footer.php");

?>

With the page complete, you can use the arrows in the sidebar to jump to differ-
ent months, and the events that you added to the events table are visible. The next
challenge is to make the links in the calendar actually do something.

293CHAPTER 8 Creating a Web-Based Calendar

Fill In the Ajax Functionality
When you added the links for new and existing events to the main calendar view,
they loaded the newEvent() and getEvent() JavaScript functions. You will create
them now.

Way back when you created the header.php file, you included the following
chunk of code at the top:

<script language="javascript" type="text/javascript"
src="./internal_request.js">

</script>

This code includes the internal_request.js file, which contains some JavaScript
code. By including this file at the top of the header file, the code inside the file is
accessible from any script that includes header.php (similar in concept to including
files in PHP). This file will contain the newEvent() and getEvent() functions.

Before you can perform any Ajax requests, you need to create an XML HTTP
request object that transports your requests around. This object is used to transport
data from the client (the browser) to the server using XML. With it, you tunnel data
through between the client and server and then update the page dynamically.

Unfortunately, the Microsoft and Netscape/Mozilla browsers have different
objects. To determine which object is loaded, you can detect the browser and create
the relevant object.

Create a new file called internal_request.js and add the function shown in
Example 8-8. Remember that this file contains JavaScript, not PHP.

EXAMPLE 8-8 This function loads the right XML HTTP request object for the
browser.

function createRequestObject(){
var request_o;
var browser = navigator.appName;
if(browser == "Microsoft Internet Explorer"){

request_o = new ActiveXObject("Microsoft.XMLHTTP");
} else{

request_o = new XMLHttpRequest();
}
return request_o;

}

The first line creates a new variable called request_o. The next line detects the
name of the Web browser and stores it in the browser variable. An if then checks if

294 Practical PHP and MySQL

the browser is Microsoft Internet Explorer and sets request_o to the relevant
ActiveX object. Otherwise, request_o is set to the Netscape/Mozilla object.

Run the function to instantiate the object:

var http = createRequestObject();

At this point, you now have a working XML HTTP request object available. You
can begin adding the functions that were called earlier in the main calendar view.

Viewing Event Information
If the user clicks an event, the details should appear in the sidebar. The event
link calls the getEvent() function (shown in Example 8-9), so add it to internal_
request.js.

EXAMPLE 8-9 This function loads the page to request the event details from
the database.

function getEvent(eventid){
http.open('get', 'internal_request.php?action=getevent&id='

+ eventid);
http.onreadystatechange = handleEvent;
http.send(null);

}

The first line uses the open() method from the XML HTTP request object to
open the page to deal with the request. This method takes two arguments. The first
is the mechanics of how the request is submitted (GET or POST). Second, you spec-
ify the script to deal with the request. In this line, you access internal_request.php
(not to be confused with internal_request.js) and pass it a GET variable called id.
This variable is set to the number that is passed to the function.

When the request has been made, you indicate which method should deal with
the response; the second line specifies handleEvent as this method. Finally, the
third line actually sends the data. Null is passed to the send() method, because you
are using GET (if you used POST, you would use a value other than null).

Add the handletEvent() method to deal with the result of the request:

function handleEvent(){
if(http.readyState == 4){

var response = http.responseText;
document.getElementById('eventcage').innerHTML = response;

}
}

295CHAPTER 8 Creating a Web-Based Calendar

On the first line, you check the status of the request. The readyState method
can return one of five possible status codes. These codes are shown in Table 8-2.

If the returned code is 4 (Finished), the returned text from the query (referred to
with responseText) is stored in a variable called response. You now use the getEle-
mentById method to refer to the eventcage <div> in the sidebar and use the inner-
HTML method to change the contents of the <div> to the contents of the response
variable.

As shown in Example 8-10, create the internal_request.php page that you
referred to earlier in the getEvent() function.

EXAMPLE 8-10 This code simply requests the record that matches the id
GET variable.

<?php

session_start();

require("db.php");
require("config.php");

if(isset($_SESSION['LOGGEDIN']) == FALSE) {
header("Location: " . $config_basedir);

}

if($_GET['action'] == 'getevent'){
$sql = "SELECT * FROM events WHERE id = " . $_GET['id'] . ";";
$result = mysql_query($sql);
$row = mysql_fetch_assoc($result);

echo "<h1>Event Details</h1>";

CODE MEANING

0 Uninitialized

1 Loading

2 Loaded

3 Interactive

4 Finished

TABLE 8-2 Use readyState to check which status code the request currently has.

continues

296 Practical PHP and MySQL

EXAMPLE 8-10 Continued.

echo $row['name'];
echo "<p>" . $row['description'] . "</p>";
echo "<p>Date: " . date("D jS F Y",

strtotime($row['date'])) . "
";
echo "Time: " . $row['starttime']

. " - " . $row['endtime'] . "</p>";
}

?>

Within this script, you check to see if the action GET variable is equal to
getevent. The action variable is used to distinguish among different features on
page. You could create another block of code for a different action.

Within the if, the record from the events table with the same id as the id GET
variable is returned and displayed. When this functionality is complete, the event
information is displayed in the sidebar when the user clicks an item, as shown in
Figure 8-6.

FIGURE 8-6 The dynamic nature of Ajax is not given justice by a static screen-
shot, but rest assured, it makes the application feel much sleeker.

297CHAPTER 8 Creating a Web-Based Calendar

Adding a New Event
The mechanics of adding a new event to the calendar is handled in a very similar
way to viewing event information—a function is loaded, the request is made, and
the eventcage <div> from bar.php is updated.

Figure 8-7 shows the interface for this feature.

The first step is to implement the function that is called in the link that you
added to the main calendar view in view.php. Load internal_request.js and add the
function shown in Example 8-11.

EXAMPLE 8-11 This function uses open() to load the script that displays the
form.

function newEvent(eventdate, error){
http.open('get', 'neweventform.php?date=' + eventdate + "&error=" +

error);
http.onreadystatechange = handleNewEvent;
http.send(null);

}

FIGURE 8-7 When the user hovers over some empty space in a cell, the back-
ground appears gray; the user can then click to access the New Event form.

298 Practical PHP and MySQL

This function works in a virtually identical fashion to getEvent(), which was
covered earlier. The request, however, loads the form (stored in neweventform.php).
The function also passes an error code to the page. The handler for this request is
handleNewEvent.

Add the handler below the newEvent() function to internal_request.js:

function handleNewEvent(){
if(http.readyState == 4){

var response = http.responseText;
document.getElementById('eventcage').innerHTML = response;

}
}

This handler works in exactly the same way as the handleEvent() function.

Create the neweventform.php file and add the form, as shown in Example 8-12.

EXAMPLE 8-12 The Start Time and End Time form controls use for loops to
generate the available options.

<?php

if($_GET['error'] == 1) {
echo "<p>There is an error in the form. Please

correct it and re-submit.</p>";
}

?>
<h1>Add a new event</h1>
<form action="processnewevent.php?date=<?php echo $_GET['date']; ?>"
method="POST">
<table>
<tr>

<td>Date</td>
<td>
<?php echo "" . date("D jS F Y",

strtotime($_GET['date'])) . ""; ?>
<input type="hidden" name="date" value="

<?php echo $_GET['date']; ?>">
</td>

</tr>
<tr>

<td>Name</td>
<td><input type="text" name="name" size="15"></td>

</tr>
<tr>

<td>Start Time</td>
<td>
<select name="starthour">
<?php

299CHAPTER 8 Creating a Web-Based Calendar

for($i=0;$i<=23;$i++) {
echo "<option value=" . sprintf("%02d", $i) . ">"

. sprintf("%02d", $i) . "</option>";
}

?>
</select>

<select name="startminute">
<?php

for($i=0;$i<=60;$i++) {
echo "<option value=" . sprintf("%02d", $i) . ">"

. sprintf("%02d", $i) . "</option>";
}

?>
</select>

</td>
</tr>
<tr>

<td>End Time</td>
<td>
<select name="endhour">
<?php

for($i=0;$i<=23;$i++) {
echo "<option value=" . sprintf("%02d", $i) . ">"

. sprintf("%02d", $i) . "</option>";
}

?>
</select>

<select name="endminute">
<?php

for($i=0;$i<=60;$i++) {
echo "<option value=" . sprintf("%02d", $i) . ">"

. sprintf("%02d", $i) . "</option>";
}

?>
</select>

</td>
</tr>
<tr>

<td>Description</td>
<td><textarea cols="15" rows="10" name="description"></textarea></td>

</tr>
<tr>

<td></td>
<td><input type="submit" name="submit" value="Add Event"></td>

</tr>
</table>
</form>

300 Practical PHP and MySQL

At the top of the form, a check is made to see if the error GET variable is avail-
able. If it is, an error message is displayed.

The script to process the form is processnewevent.php. Create this file and begin
adding the following code:

<?php
require("db.php");

if(empty($_POST['name'])) {
$error = 1;

}

if(empty($_POST['description'])) {
$error = 1;

}

if($_POST['starthour'] > $_POST['endhour']) {
$error = 1;

}

if($_POST['starthour'] == $_POST['endhour']) {
$error = 1;

}

if($error == 1) {
header("Location: " . $config_basedir

. "view.php?error=1&eventdate=" . $_GET['date']);
exit;

}

This batch of if statements perform some validation checks. These checks
work similarly to previous validation examples—if a check fails, the $error vari-
able is created and the page redirects. The checks are made to ensure that the end
time is not earlier than the start time and that the start and end time are not the
same. A check is also made to ensure that the text boxes are not empty.

Prepare the variables:

if($error == 1) {
header("Location: " . $config_basedir .

"view.php?error=1&eventdate=" . $_GET['date']);
exit;

}

301CHAPTER 8 Creating a Web-Based Calendar

$elements = explode("-", $_POST['date']);
$redirectdate = $elements[1] . "-" . $elements[0];

$finalstart = $_POST['starthour'] . ":" . $_POST['startminute']
. ":00";
$finalend = $_POST['endhour'] . ":" . $_POST['endminute'] . ":00";

The first line in this block uses explode() to fill the $elements array with the
different parts of the date. The second line constructs a variable with just the month
and year elements (these elements are used when browsing the months, such as
with the arrows in the sidebar).

The second two lines format the times in a format that can work in the TIME
database field. This field requires the 00:00:00 format, so each line concatenates
the form elements into this format.

Insert the data and use $redirectdate to redirect to the month to which the
date was added:

$finalstart = $_POST['starthour'] . ":" . $_POST['startminute']
. ":00";
$finalend = $_POST['endhour'] . ":" . $_POST['endminute'] . ":00";

$inssql = "INSERT INTO events(date, starttime, endtime, name,
description) VALUES("
. "'" . $_POST['date']
. "', '" . $finalstart
. "', '" . $finalend
. "', '" . addslashes($_POST['name'])
. "', '" . addslashes($_POST['description'])
. "');";

mysql_query($inssql);

header("Location: " . $config_basedir . "view.php?date="
. $redirectdate);

?>

The feature is now complete.

Deleting Events
Deleting an event happens when the user clicks the red X block next to an event.
Create a new file called delete.php and add the code shown in Example 8-13.

302 Practical PHP and MySQL

EXAMPLE 8-13 To delete an event, remove the record from the database.

<?php

require("db.php");

$sql = "DELETE FROM events WHERE id = " . $_GET['id'];
mysql_query($sql);

echo "<script>javascript: history.go(-1)</script>";

?>

The usual code for deleting an event from the database is shown here. Then you
use a different type of redirect, this time using JavaScript. You could use one of the
other types of redirect; this one was used to show you another option.

SUMMARY

In this project, you created a different type of Web application. Unlike the publicly
hosted and accessible applications elsewhere in the book, this project involved cre-
ating something used by a single person. This application was also more like a tra-
ditional application than some of the other projects, largely due to the Ajax
functionality.

Ajax has become a key Web development technology, and the skills you
explored here will help you to create more dynamic and flexible Web applications.

303

FAQ Content Management
System

C H A P T E R 9

If you attend any reasonably large IT conference, one of the buzzwords you are
likely to hear tossed around the shop floor is content management. The buzzword
and its vehicle of choice, the Content Management System (CMS), refer to Web
applications that provide a simple and effective means of managing content.

Building a CMS is not a walk in the park. The major challenge that you face is
in presenting all of the necessary tools needed to manage the content in a way that
is simple but comprehensive. Many CMSs also deal with different types of users
(admins, normal users, moderators, and so on), so you also need to provide a secure
and consistent permissions system.

In this chapter, you carefully step over the fear and doubt, and take the chal-
lenge head on. Prepare yourselves to build a fully buzzword-compliant CMS.

N O T E
Learn by Doing It Wrong

The project in this chapter was one that I developed some years ago as an
independent CMS. Although I released the code on the Internet in an alpha
state, the project was largely unfinished and still needed additional work to
complete the application.

While preparing for this chapter, I took the original code, corrected it, and
completed it. This process involved fixing all of the nasty nested tables and
other bad programming habits that I picked up while learning PHP. Although
fixing the code involved practically rewriting it, the process was a satisfying
example of the progress I made since the project was originally written.

I recommend you regularly revisit your old projects and give them a spring-
cleaning. If nothing else, it will provide a satisfying reminder of the progress
you are making in your development.

304 Practical PHP and MySQL

PROJECT OVERVIEW

In this chapter, you will create a CMS for Frequently Asked Questions (FAQ) lists.
The questions are typically displayed as links, which in turn display the answer to
the question.

To get a better feel for the project, you first explore a number of use cases that
better explain the different types of functionality:

Bill goes to the FAQ Web site and wants to find out more about PHP. When
the site loads, he can see a list of subjects in the sidebar. One of the subjects
is PHP, so Bill clicks the link and the page displays a list of topics that are
part of the PHP subject. Bill then clicks one of the topics, Variables, and a
list of related questions is displayed, with a short summary of the answers.
Bill chooses one of the questions; the page now displays the question, the
answer, and some related comments. As he reads the question, Bill decides
he would like to post a comment. He logs into the site with his username and
password and then returns to the question. A form is now displayed under
the comments, so Bill enters his thoughts into the form and submits it. The
comment now appears on the page.

This use case demonstrates how a typical user can come to the site, browse the
content, and add comments to a question. The sidebar acts as a mechanism to nav-
igate between the subjects and topics, and the main content (the questions) is dis-
played on the body of the page.

To make the site as community-oriented as possible, users should be able to
own a subject and manage how content is added to that subject:

Ade takes a look at the PHP subject information page on the Web site. The
page displays who owns the subject, but he notes that it currently has no
owner. Because Ade is currently logged in, a link appears that allows him to
propose himself as a new owner for the subject. He clicks the link and is
taken to a page where he can enter the reasons he should be chosen as the
owner.

Later, the administrator logs in and reviews the list of submitted ownership
requests. She views Ade’s request and decides that Ade is a suitable owner.
She accepts Ade’s request, and an email indicating his successful applica-
tion is sent to him automatically.

305CHAPTER 9 FAQ Content Management System

Another key use case describes how to add and remove content from the project:

Now that Ade is the new owner of the PHP subject, he can add topics and
questions. When Ade logs in, the new subject appears in his Control Panel (a
page with information about his account). Ade can now use the Add Topic
and Add Questions page to add content to the subject.

While Bill is browsing the PHP subject, he can also add questions by click-
ing the Add Question link on the subject information page. When Bill sub-
mits a question, it is held for moderation so that either Ade or the
administrator can allow it.

Ade logs into the site and looks at the questions held for moderation. Inside
the page, he can view the question details, and accept or deny it. He clicks
the Accept link to make the question live.

These use cases have identified the core feature requirements for the applica-
tion. When you build, you might find it useful to reread these use cases to get a bet-
ter idea of how the application should work.

BUILDING THE DATABASE

The database you will create is shown in Figure 9-1.

The four core tables are subject, topics, questions, and comments. These related
tables also hook up with the users table, which stores user accounts. The mod_sub-
owner table stores ownership requests.

Implementing the Database
Start phpMyAdmin. Create a new database called faq and add the following tables:

The admins Table
■ id. Make this an TINYINT (few admins are necessary) and turn on

auto_increment. Set this field as a primary key.

■ username. Make this a VARCHAR with a length of 10.

■ password. Make this a VARCHAR with a length of 10.

306 Practical PHP and MySQL

subjects
id

subject
blurb

owner_id

id
username
password
email

topics
id
subject_id
name

id
topic_id
question
answer

addedby_id
dateadded
active

comments
id
question_id
title
comment
user_id

mod_subowner
id

sub_id
user_id
reasons

users

questions

admins
id

username
password

FIGURE 9-1 The relationship of content over four tables
(subjects, topics, questions, comments) is similar to the
forums project.

N O T E
Active and Inactive Questions

The active field lives inside the questions table. This field identifies whether
the question is live. If the field contains 0, the question is currently being
held for moderation. If the field is set to 1, the question is live.

When a user who does not own the subject submits a question, active is
set to 0 (requires moderation). When the owner adds a question, active is
set to 1. When a question to be moderated is accepted, active is changed
from 0 to 1.

The comments Table
■ id. Make this a BIGINT (several comments are possible) and turn on

auto_increment in the Extras column. Set this field as a primary key.

■ question_id. Make this an INT.

■ title_id. Make this a VARCHAR and set the size to 20.

■ comment. Make this a TEXT.

■ user_id. Make this an INT.

■ For this table, select the InnoDB table type.

307CHAPTER 9 FAQ Content Management System

The mod_subowner Table
■ id. Make this an INT (several requests are possible) and turn on auto_incre-

ment. Set this field as a primary key.

■ sub_id. Make this an INT.

■ user_id. Make this an INT.

■ reasons . Make this a TEXT.

The questions Table
■ id. Make this an INT (several questions are possible) and turn on

auto_increment. Set this field as a primary key.

■ topic_id. Make this an INT.

■ question. Make this a VARCHAR with a length of 50.

■ answer. Make this a TEXT.

■ addedby_id. Make this an INT.

■ dateadded. Make this a DATETIME.

■ active. Make this a TINYINT.

■ For this table, select the InnoDB table type.

The subjects Table
■ id. Make this an INT (several subjects are possible) and turn on auto_incre-

ment. Set this field as a primary key.

■ subject. Make this a VARCHAR with a length of 20.

■ blurb. Make this a TEXT.

■ owner_id. Make this an INT.

■ For this table, select the InnoDB table type.

The topics Table
■ id. Make this an INT (several topics are possible) and turn on auto_incre-

ment. Set this field as a primary key.

■ subject_id. Make this an INT.

■ name. Make this a VARCHAR with a length of 20.

■ For this table, select the InnoDB table type.

308 Practical PHP and MySQL

The users Table
■ id. Make this an INT (several orders are possible) and turn on auto_incre-

ment. Set this field as a primary key.

■ username. Make this a VARCHAR and set the size to 10.

■ password. Make this a VARCHAR and set the size to 10.

■ email. Make this a VARCHAR and set the size to 50.

Creating the Table Relationships
With so many different types of content and sub-content (subjects -> topics ->
questions -> comments), you need to support cascading deletes. Cascading deletes
were first covered in the forums project in Chapter 5.

In phpMyAdmin, click the SQL tab and add the following three queries separately:

ALTER TABLE comments ADD FOREIGN KEY(question_id)
REFERENCES questions (id) ON DELETE CASCADE;

ALTER TABLE questions ADD FOREIGN KEY(topic_id)
REFERENCES topics (id) ON DELETE CASCADE;

ALTER TABLE topics ADD FOREIGN KEY(subject_id)
REFERENCES subjects (id) ON DELETE CASCADE;

When you now delete data, all dependent information from other tables is
removed also.

Inserting Sample Data
With a solid set of tables ready to go, you’re ready to add some sample data.
Remember, do not fill in a number in the id column; auto_increment takes care of
this for you. Feel free to add your own sample data or the data used in this example.

Sample Data for the admins Table
Create a username and password for the administrator. This example uses admin as
the username and password as the password.

Sample Data for the users Table
Create usernames, passwords, and email addresses for the users. This project uses
bill and password for one user, and ade and password for another. Add email
addresses that actually work for each sample user; you use the email address to
send ownership accept or deny emails to the user.

309CHAPTER 9 FAQ Content Management System

SUBJECT BLURB OWNER_ID

PHP <add your own blurb> 0

MySQL <add your own blurb> 2

TABLE 9-1 The subjects table contains the major subject areas.

TOPIC_ID QUESTION ANSWER ADDEDBY_ID DATEADDED ACTIVE

1 How do you
define variables?

<add your own
answer>

1 NOW() 1

1 Why are PHP
variables not
given a type?

<add your own
answer>

1 NOW() 1

TABLE 9-3 The active field indicates whether a question is live.

SUBJECT_ID NAME

1 Variables

1 Functions

TABLE 9-2 The topics table stores subcategories inside the subject.

Sample Data for the subjects, topics, questions, and comments Tables
When adding sample data to these tables, you need to ensure that the relationships
among them are correct; otherwise, the database logic in the project will break.

First, add a few subjects to the subjects table, as shown in Table 9-1.

In the preceding table, you gave the PHP subject an owner_id of 0, which means
that the subject has no owner and is therefore available for ownership. The second
user owns the second subject.

Add the content to the topics table, as shown in Table 9-2.

In this case, you added two topics, both of which are in the first subject (PHP).

Add the questions to the questions table, as shown in Table 9-3.

When adding these questions, select NOW from the Functions combo box in the
dateadded field. The active field indicates whether the question is live. If this field

310 Practical PHP and MySQL

is set to another value (typically 0), the question is awaiting moderation from the
owner of the subject.

Finally, add a comment for the first question in the comments table, as shown in
Table 9-4.

Sample Data for the mod_subowner Table
Leave this table empty.

STARTING TO CODE

To get started, create a new project directory and create the config/header/footer
and main index files. First, copy db.php from a previous project to the current direc-
tory and then create a new file called config.php and add the code shown in Exam-
ple 9-1.

EXAMPLE 9-1 The configuration file is virtually the same as in previous proj-
ects.

<?php

$dbhost = "localhost";
$dbuser ="root";
$dbpassword = "";
$dbdatabase = "faq";

$config_basedir = "http://localhost/sites/faq/";

$config_sitename = "You ask the questions";
?>

QUESTION_ID TITLE COMMENT USER_ID

1 Book recommendation If you want to learn about vari-
ables in more detail, refer to
Variable Foo Machine by Foo Bar.

2

TABLE 9-4 Comments are a useful way to provide additional information for a
question.

311CHAPTER 9 FAQ Content Management System

Create header.php and add the code shown in Example 9-2.

EXAMPLE 9-2 The header file lays out the usual array of <div> elements.

<?php

require("config.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

?>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title><?php echo $config_sitename; ?></title>
<link href="stylesheet.css" rel="stylesheet">

</head>
<body>
<div id="header">

<?php echo "<h1>" . $config_sitename . "</h1>"; ?>
</div>

<div id="menu">
•
Home
•
<?php
if($_SESSION['SESS_USERNAME']) {

echo "Logout";
}
else {

echo "Login";
}
?>
•

</div>
<div id="container">
<div id="bar">
<?php
require("bar.php");
?>
</div>

<div id="main">

Create footer.php and add the remaining code, as shown in Example 9-3.

312 Practical PHP and MySQL

EXAMPLE 9-3 The footer file

</div>
</div>
</body>
</html>

A More Involved Sidebar
The sidebar contains a number of different elements for different parts of the site.
This file is built up step by step as you work through the project and cover the dif-
ferent sections. The first task is to present the Subject and Topic lists, as discussed
in the use cases.

The subjects are presented in a list. When the user clicks a subject, index.php
is reloaded with a subject GET variable that contains the id of the subject. Later in
the code, you check to see if this variable exists and if so display the list of topics.
The first time the page is loaded (no subject variable), only the subjects are dis-
played, but when the user has clicked the subject (subject variable is now avail-
able), the topics are displayed.

Create bar.php and begin adding the code:

<?php

$subsql = "SELECT * FROM subjects";
$subres = mysql_query($subsql);

echo "<h1>Subjects</h1>";

echo "<table>";

while($subrow = mysql_fetch_assoc($subres)) {
echo "<tr>";
echo "<td width='5%'>";

if($subrow['id'] == $_GET['subject']) {
echo "•";

}

echo "</td>";
echo "<td><a href='index.php?subject=" . $subrow['id'] .

"'>" . $subrow['subject'] . "</td>";

This code selects the subjects and then creates a table in which to display
them. Using a table instead of an unordered list enables you to display a dot next to
the currently selected subject. Inside the while loop, a check is made in the first

313CHAPTER 9 FAQ Content Management System

cell to see if the id from the current row is the same as the subject GET variable. If
it is, a dot is displayed (with the • HTML entity). In the next table cell, the
link is created.

A check is now made to see if an admin is logged in and if so, a delete link (X)
is added:

echo "</td>";
echo "<td><a href='index.php?subject=" . $subrow['id']

. "'>" . $subrow['subject'] . "</td>";

if($_SESSION['SESS_ADMINUSER']) {
echo "<td>[<a href='deletesubject.php?subject=" .

$subrow['id'] . "'>X]</td>";
}

Finally, close the row, while loop, and table:

echo "<td>[<a href='deletesubject.php?subject="
. $subrow['id'] . "'>X]</td>";

}

echo "</tr>";
}

echo "</table>";

With the subjects list complete, add the topics:

echo "</table>";

if(isset($_GET['subject'])) {
$topsql = "SELECT * FROM topics WHERE subject_id = "

. $_GET['subject'] . ";";
$topres = mysql_query($topsql);

echo "<h1>Topics</h1>";

if(mysql_num_rows($topres) == 0) {
echo "No topics!";

}

echo "<table width='100%'>";

while($toprow = mysql_fetch_assoc($topres)) {
echo "<tr>";
echo "<td width='5%'>";

if($toprow['id'] == $_GET['topic']) {
echo "•";

}

314 Practical PHP and MySQL

echo "</td>";

echo "<td><a href='questions.php?subject="
. $subject . "&topic=" . $toprow['id'] . "'>"
. $toprow['name'] . "</td>";

if($_SESSION['SESS_ADMINUSER']) {
echo "<td>[<a href='deletetopic.php?subject="

. $toprow['subject_id'] . "&topic=" . $toprow['id']

. "'>X]</td>";
}

echo "</tr>";
}

echo "</table>";
}

?>

A check is made to see if the subject GET variable is present. If it exists, the
same mechanism is used to display the list of topics, and each topic links to ques-
tions.php, in which the subject and topic are passed.

Creating the Functions
In this project, you use two functions that you create yourself:

■ pf_fix_slashes(). This function provides a more intelligent method of
ensuring that quotes are properly escaped when adding information to the
database.

■ pf_check_number(). This funtion is a variant of the pf_validate_number()
function used in previous projects. This version checks if the variable is
valid but does not perform any redirection.

Create a new file called functions.php and add the first function:

<?php

function pf_fix_slashes($string) {
if (get_magic_quotes_gpc() == 1) {

return($string);
}
else {

return(addslashes($string));
}

}

315CHAPTER 9 FAQ Content Management System

In previous projects, you used addslashes() to escape quotes in user input des-
tined for the database. Although this works fine, the function makes the assumption
that the magic_quotes_gpc option in php.ini is turned off. If the option is turned on
and you use addslashes(), additional slashes are added in front of the slashes that
were added by magic_quotes_gpc. The result is a visible slash added to your data.

To solve this problem, the new function uses the get_magic_quotes_gpc() to
check if the feature is turned on or off. If the function returns 1 or TRUE, magic
quotes is turned on and the normal string is returned. If magic quotes are turned off,
the string is run through addslashes() and then returned. This new function
ensures that your application can work with magic quotes turned on or off and
requires no modification. Sweet, no?

The next function to roll in is pf_check_number():

function pf_check_number($value) {
if(isset($value) == FALSE) {

$error = 1;
}

if(is_numeric($value) == FALSE) {
$error = 1;

}

if($error == 1) {
return FALSE;

}
else {

return TRUE;
}

}

?>

This function is virtually identical to the pf_validate_number() function used
in previous projects, but the if check on $error returns FALSE if there is an error
and TRUE if there is not.

N O T E
Why Use This Slightly Different Function?

Some of the pages in this project have two personalities: one that is trig-
gered with a GET variable and one without. If you used pf_validate_num-
ber() in these pages, the personality that does not need the GET variable
would fail (pf_validate_number() checks if the variable is present) and
redirect to another page.

The pf_check_number() function does not include the redirect functionality.
As such, the function can be used to validate a GET variable if it is present.

316 Practical PHP and MySQL

Building the Main Page
The next page to create is index.php. This script has two main functions:

■ If the page is not passed a subject GET variable, the page displays the last
10 questions.

■ If the page does have a subject GET variable, information about that spe-
cific subject is displayed. This information includes both the name and
description of the subject, as well as some statistical information about the
number of topics and questions.

Create the file and begin adding the code:

<?php

session_start();

require("config.php");
require("functions.php");

if($_GET['subject']) {
if(pf_check_number($_GET['subject']) == TRUE) {

$validsub = $_GET['subject'];
}
else {

header("Location: " . $config_basedir);
}

}

require("header.php");

You checked if the subject GET variable is present and if so, it is run through
pf_check_number(). If it passes the validation (and returns TRUE), $validsub is set
to the number. Otherwise, the page re-directs.

Now check if the subject GET variable is present and if so, display the infor-
mation about the subject:

require("header.php");

if($_GET['subject']) {

$subsql = "SELECT users.username, subjects.* FROM subjects
LEFT JOIN users ON subjects.owner_id = users.id
WHERE subjects.id = " . $validsub . ";";

$subresult = mysql_query($subsql);
$subrow = mysql_fetch_assoc($subresult);

echo "<h1>" . $subrow['subject'] . " Summary</h1>";

317CHAPTER 9 FAQ Content Management System

A query is created to gather the subject information and the username that
maps to the subjects.owner_id field. In previous projects the join was made using
the WHERE clause in the SQL, but here you are using the LEFT JOIN syntax. The fol-
lowing paragraph describes how the syntax works:

Select the username and subject information (SELECT users.username,
subjects.*) from the subjects table (FROM subjects) and then join the
subjects and users tables (LEFT JOIN users) with the relevant condition
(ON subjects.owner_id = users.id) in which the subject id is the same
as $validsub (WHERE subjects.id = $validsub).

When writing joins, you can use a variety of different types of join (INNER,
OUTER, LEFT, and RIGHT), with INNER and LEFT as the most common variants. An
INNER join connects tables with the conditions that you specify. A LEFT join per-
forms the same process but also fills in any mismatched fields with NULL values.

Check the data returned to see if the subject has an owner. If 0 is returned, no
owner exists:

echo "<h1>" . $subrow['subject'] . " Summary</h1>";

if($subrow['owner_id'] == 0) {
echo "This subject has no owner.";

If the subject has no owner, check to see if a user is logged in and display a link
to the subject ownership page:

if($subrow['owner_id'] == 0) {
echo "This subject has no owner.";

N O T E
Using the LEFT Join on this Page

The reason for using the LEFT join on this page is important. If the subjects
table has an owner_id set to something other than 0, an INNER or LEFT join
can relate the owner_id to the user id in the users table. If, however, the sub-
ject has no owner and the owner_id is set to 0, an INNER join fails because no
user with the id 0 exists in the users table. When you use a LEFT join, this mis-
match still returns the data, but the mismatched information is set to NULL.

In this project, you use a combination of joins that use the JOIN and WHERE

syntax. This ensures that you are exposed to both methods of creating
joins.

318 Practical PHP and MySQL

if($_SESSION['SESS_USERNAME']) {
echo " If you would like to apply to own this subject,

click <a href='applysubowner.php?subject=" . $subject
. "'>here.";

}
}

If the query returns an owner, display the username:

echo " If you would like to apply to own this subject,
click <a href='applysubowner.php?subject=" . $subject
. "'>here.";

}
}

else {
echo "This subject is owned by " .

$subrow['username'] . ".";
}

Display the blurb for the subject in italic tags:

echo "This subject is owned by " .
$subrow['username'] . ".";

}

echo "<p><i>" . $subrow['blurb'] . "</i></p>";

The next step is to gather some statistical information about the subject. Count
the number of topics and questions included within the subject:

echo "<p><i>" . $subrow['blurb'] . "</i></p>";

$topsql = "SELECT count(distinct(topics.id)) AS numtopics,
count(questions.id) AS numquestions FROM subjects LEFT JOIN
topics ON subjects.id = topics.subject_id LEFT JOIN questions
ON topics.id = questions.topic_id WHERE subjects.id = "
. $validsub . " AND active = 1;";

$topresult = mysql_query($topsql);
$toprow = mysql_fetch_assoc($topresult);

To gather this information, you performed a single large query. The following
paragraph describes how the query works:

Select (SELECT) the number of distinctive topic ids (count(distinct
(topics.id)) AS numtopics) and the number of question ids (count
(questions.id) AS numquestions) from the subjects table (FROM subjects).
Join the table with topics (LEFT JOIN topics), in which the subject id is the

319CHAPTER 9 FAQ Content Management System

same as the subject_id field in the topics table (ON subjects.id = topics.

subject_id), and then join this to the questions table (LEFT JOIN questions),
in which the topic id is equal to the topic_id field in the questions table
(ON topics.id = questions.topic_id) where the whole query has the subject
id of $validsub (WHERE subjects.id = $validsub) and the question is active
(AND active = 1).

Display the results of the query in a table:

$toprow = mysql_fetch_assoc($topresult);

echo "<table class='visible' cellspacing=0 cellpadding=5>";
echo "<tr><th class='visible' colspan=2>Statistics</th></tr>";
echo "<tr>";
echo "<td>Total Topics</td><td>" . $toprow['numtopics']

. "</td>";
echo "</tr>";
echo "<tr>";
echo "<td>Total Questions</td><td>" . $toprow['numquestions']

. "</td>";
echo "</tr>";
echo "</table>";

}

This section should look like Figure 9-2 when it’s finished.

FIGURE 9-2 The sidebar displays the relevant topics for the subject.

320 Practical PHP and MySQL

N O T E
Remember…

When performing queries, remember to only return records only where the
active field is set to 1. If this field is set to 0, the question is awaiting moder-
ation. You will learn more about the question moderation system later in
the project.

If no subject GET variable exists, display the latest 10 questions:

echo "</table>";
}
else
{

$latqsql = "SELECT questions.id, question, subject
FROM subjects, questions, topics WHERE questions.topic_id =
topics.id AND topics.subject_id = subjects.id AND active = 1
ORDER BY questions.dateadded DESC;";

$latqresult = mysql_query($latqsql);
$latqnumrows = mysql_num_rows($latqresult);

echo "<h1>Latest Questions</h1>";

if($latqnumrows == 0) {
echo "No questions!";

}
else {

echo "";

while($latqrow = mysql_fetch_assoc($latqresult)) {
echo "<a href='answer.php?id=" . $latqrow['id'] .

"'>" . $latqrow['question'] . " (<i>" . $latqrow['subject'] .
"</i>)";

}

echo "";
}

}

Each question links to answer.php and passes the id of the question to it.

Finally, add the footer file:

echo "";
}

}

require("footer.php");

?>

321CHAPTER 9 FAQ Content Management System

FIGURE 9-3 The interface provides a simple way to begin using the application.

This functionality should look similar to the page shown in Figure 9-3.

DISPLAYING QUESTIONS

Questions and answers are the lifeblood of a FAQ site, and in this section, you create
the code to display them. The functionality is spread across two pages. The first page
(questions.php) displays a summary of the questions inside the topic, and the second
page (answer.php) displays the answer and comments for that specific question.

Displaying Question Summary
Create a file called questions.php and start adding the code:

<?php
session_start();
require("functions.php");

if(pf_check_number($_GET['topic']) == TRUE) {
$validtopic = $_GET['topic'];

}
else {

header("Location: " . $config_basedir);
}

322 Practical PHP and MySQL

FIGURE 9-4 The question summary provides a nice way to show the first line of
the question.

if(pf_check_number($_GET['subject']) == TRUE) {
$validsubject = $_GET['subject'];

}
else {

header("Location: " . $config_basedir);
}

In this block, you first validate the topic and submit GET variables. If the val-
idation fails, the page redirects to the site’s base page.

Each question on this page includes a short summary of the answer, as shown in
Figure 9-4.

To create this short summary, you create a small function called
question_summary():

header("Location: " . $config_basedir);
}

function question_summary($question) {
$final = "";
$final = (substr($question, 0, 80) . "...");

return $final;
}

The question_summary() function is similar to the short_event() function that
was created in the calendar project in the preceding chapter. The function uses
substr() to cut out the first 80 letters, and then appends ….

Perform the query:

return $final;
}

require("header.php");

echo "<h1>Questions</h1>";

$qsql = "SELECT * FROM questions WHERE topic_id = "
. $validtopic . " AND active = 1;";
$qresult = mysql_query($qsql);
$numrows = mysql_num_rows($qresult);

323CHAPTER 9 FAQ Content Management System

If no records were returned, display No Questions:

$numrows = mysql_num_rows($qresult);

if($numrows == 0) {
echo "No Questions";

}

Display the questions in the table:

echo "No Questions";
}
else {

echo "<table cellspacing=0 cellpadding=5>";

while($qrow = mysql_fetch_assoc($qresult)) {
echo "<tr>";

echo "<td><a href='answer.php?id=" . $qrow['id']
. "'>" . $qrow['question'] . "</td>";

echo "<td><i>" . question_summary($qrow['answer'])
. "</i></td>";

if($_SESSION['SESS_ADMINUSER'] AND $numrows >= 1) {
echo "<td><a href='deletequestion.php?topic="

. $validtopic . "&subject=" . $validsubject . "&questionid="

. $qrow['id'] . "'>Delete Question</td>";
}

echo "</tr>";
}

echo "</table>";
}

A while loop iterates through each question returned and then displays the
question and summary. If the administrator is logged in, a Delete Question link is
added also.

Finally, if the user is logged in, add a link to add a new question:

echo "</table>";
}

if($_SESSION['SESS_USERNAME'])
{

echo "<h2>Options</h2>";
echo "

Add a question";
}

require("footer.php");

?>

324 Practical PHP and MySQL

FIGURE 9-5 Displaying the questions

The current page should look similar to the one shown in Figure 9-5.

Showing a Specific Question
It is now time to create the page to display the answer for a specific question. This
page not only displays the question and the answer, but also displays comments that
users have contributed to the question. If the user is logged in, you display the com-
ment addition form; otherwise, you display only the comments themselves.

The following list describes the four major sections of code you’ll add on this page:

1. The first section of code checks if the Submit button was clicked (if the form
was displayed) and adds the comment to the database. This code is useful
only if the user logs in and adds a comment; otherwise, the code is ignored.

2. The second section displays the question and answer.

3. The third section displays the comments under the question.

4. Finally, a check is made to see if the user is logged in and if so, the form is
displayed.

The final interface, when the user is not logged in, looks like the page shown in
Figure 9-6.

325CHAPTER 9 FAQ Content Management System

FIGURE 9-6 The interface used to view the question is simple and clear.

Create a file called answer.php and begin by adding the code to perform valida-
tion on the id GET variable:

<?php

session_start();

require("db.php");
require("functions.php");

if(pf_check_number($_GET['id']) == TRUE) {
$validid = $_GET['id'];

}
else {

header("Location: " . $config_basedir);
}

Begin writing the first chunk of code (processing the form):

header("Location: " . $config_basedir);
}

if($_POST['submit']) {
$qsql = "INSERT INTO comments(question_id, title, comment,

user_id) VALUES('"
. $validid

326 Practical PHP and MySQL

. "','" . pf_fix_slashes($_POST['titleBox'])

. "','" . pf_fix_slashes($_POST['commentBox'])

. "', '" . $SESS_USERID

. "')";

mysql_query($qsql);
header("Location: " . $config_basedir . "answer.php?id="

. $validid);
}

The preceding query uses the pf_fix_slashes() function from functions.php to
safely add the information from the form to the database.

If no Submit button is clicked (either the form was not displayed or the form
was displayed but the user had not used it), begin to display the question and
answer:

header("Location: " . $config_basedir . "answer.php?id="
. $validid);
}
else {

require("header.php");

$qsql = "SELECT questions.question, questions.dateadded,
questions.answer, users.username FROM questions, users WHERE
addedby_id = users.id AND questions.id = " . $_GET['id']
. " AND active = 1;";

$qresult = mysql_query($qsql);
$qrow = mysql_fetch_assoc($qresult);

In the preceding query, you used a join to gather the question details. The join
returns the username from the users table, in which questions.addedby_id and
users.id are the same.

If no results are returned, tell the user:

$qrow = mysql_fetch_assoc($qresult);

if(mysql_num_rows($qresult) == 0) {
echo "No Questions";

}

Otherwise, display the question and answer details:

echo "No Questions";
}
else {

echo "<h1>" . $qrow['question'] . "</h1>";

327CHAPTER 9 FAQ Content Management System

echo "Added by " . $qrow['username']
. " on " . date("D jS F Y g.iA",
strtotime($qrow['dateadded']));

echo "<p>";
echo $qrow['answer'];
echo "</p>";

Add the code to display the comments for the question:

echo "</p>";

$csql = "SELECT comments.title, comments.comment,
users.username FROM comments, users WHERE comments.user_id =
users.id AND question_id = " . $validid . ";";

$cresult = mysql_query($csql);

In this code, you created a query to gather the comment details and the user-
name of the contributor.

Loop through the comments:

$cresult = mysql_query($csql);

echo "<table class='visible' width='100%' cellspacing=0
cellpadding=5>";

echo "<tr><th class='visible' colspan=2>Comments about
this question</th></tr>";

if(mysql_num_rows($cresult) == 0) {
echo "<tr><td colspan=2>No

comments!</td></tr>";
}
else {

while($crow = mysql_fetch_assoc($cresult))
{

echo "<tr>";
echo "<td width='15%'>"

. $crow['title'] . " by <i>" . $crow['username']

. "</i></td>";
echo "<td>" . $crow['comment'] . "</td>";
echo "</tr>";

}
}

echo "</table>";

The comments are displayed in a table with two columns.

328 Practical PHP and MySQL

Check to see if the user is logged in. If so, display the form:

echo "</table>";

if($_SESSION['SESS_USERNAME']) {
echo "<h2>Add a comment</h2>";
echo "<form action='answer.php?id=" . $_GET['id']

. "' method='POST'>";
echo "<table width='100%'>";
echo "<tr>";
echo "<td>Title</td>";
echo "<td><input type='text' name='titleBox'></td>";
echo "</tr>";
echo "<tr>";
echo "<td>Comment</td>";
echo "<td><textarea rows=10 cols=50

name='commentBox'></textarea></td>";
echo "</tr>";
echo "<tr>";
echo "<td></td>";
echo "<td><input type='submit'

name='submit'value='Post Comment'></td>";
echo "</tr>";
echo "</table>";
echo "</form>";

}

If the user is not logged in, display a message:

echo "</form>";
}

else {
echo "<p>• You cannot post as you are

Anonymous. Please login
</p>";

}

Finally, add the closing code:

echo "<p>• You cannot post as you are
Anonymous. Please login
</p>";

}

}
}

require("footer.php");
?>

329CHAPTER 9 FAQ Content Management System

N O T E
By the Way…

In this project, many of the pages have sections that are not laid out in a lin-
ear (top-to-bottom) fashion. To fully understand how these different parts
fit together, re-read the preceding section and refer to the code on the
screen.

With the four major sections added, the page is now complete. If you have the
time, run through this section again to familiarize yourself with how the different
sections fit together.

Updating the Sidebar
Eagle-eyed readers who were looking over Figure 9-6 at the start of this section will
have noticed that the sidebar displays other questions in the same topic. This fea-
ture was added to ease navigation between different questions in the same topic. It
is likely that readers of a topic will want to read most, or even all, of the questions
in the current topic.

Load bar.php and move to the beginning of the file to add the code:

<?php

if(basename($SCRIPT_NAME) == "answer.php") {
echo "<h1>Other questions</h1>";
$subsql = "SELECT topic_id FROM questions WHERE id = "

. $_GET['id'] . ";";
$subresult = mysql_query($subsql);
$subrow = mysql_fetch_assoc($subresult);

$othersql = "SELECT id, question FROM questions WHERE
topic_id = " . $subrow['topic_id'] . " AND active = 1;";

$otherresult = mysql_query($othersql);

The first query returns the topic that the current question is a part of, and the
second query returns the questions inside that topic.

Display the questions:

$otherresult = mysql_query($othersql);

echo "<table width='100%'>";

while($otherrow = mysql_fetch_assoc($otherresult)) {
echo "<tr>";

330 Practical PHP and MySQL

echo "<td width='5%'>";

if($otherrow['id'] == $_GET['id']) {
echo "•";

}

echo "<td>"
. $otherrow['question'] . "</td>";

echo "</tr>";
}

echo "</table>";
}
else {

$subsql = "SELECT * FROM subjects";
$subres = mysql_query($subsql);

}

DEALING WITH LOGINS

In any CMS, users need to be properly managed. Different systems have different
user requirements, ranging from simple user logins to multi-user, layered permis-
sions systems. Having a properly designed plan of how users will be managed, who
can access what, and what kind of restrictions are in place is essential.

The user management system in this project is fairly simple. The system has
two types of users: normal users and administrators. Normal users and
administrators are different primarily in the capabilities that they offer (administra-
tors can naturally manage many more parts of the system).

Normal User Logins
The vast majority of users on the system are normal users. A normal user can per-
form the following actions:

■ Browse subjects, topics, and questions

■ Leave a comment for a particular question

■ Submit a question to be included in a topic

When a user submits a question for inclusion in a topic, the subject’s owner or
administrators can moderate the question. Any user can own a subject; she can
apply to own an orphaned subject, and the administrator will accept or deny the
request. This method of applying for subject ownership will be developed later.

331CHAPTER 9 FAQ Content Management System

N O T E
Hiding the Administrator Login screen

Those of you with a penchant for small detail may have noticed that figures
in this chapter have no link to an Administrator login page. This is a delib-
erate and enforced decision to improve the security of the site.

If you are providing the opportunity for an administrator to log into the
site, don’t provide a link to the login page. If a link is available, the vermin
of the Internet may descend on it and try to fake a login. By hiding the link,
the aforementioned vermin need to find the login page before they can try
to crack it. This may be frustrating enough for many of them to give up.

This technique should by no means be your only security solution, but every
little bit helps.

Always remember that security is about a number of small steps and not
just one large step. A number of different measures, large and small, can
help improve your site’s security.

First, build the login page. Create a new file called login.php and add the code
shown in Example 9-4.

EXAMPLE 9-4 This code is virtually the same as previous login pages.

<?php

session_start();

require("config.php");

if($_SESSION['SESS_USERNAME']) {
header("Location: " . $config_basedir . "userhome.php");

}

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

if($_POST['submit']) {
$sql = "SELECT * FROM users WHERE username = '"

. $_POST['username'] . "' AND password = '"

. $_POST['password'] . "';";

$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

if($numrows == 1) {
continues

332 Practical PHP and MySQL

EXAMPLE 9-4 Continued.

$row = mysql_fetch_assoc($result);

session_register("SESS_USERNAME");
session_register("SESS_USERID");

$SESS_USERNAME = $_POST['username'];
$SESS_USERID = $row['id'];

header("Location: " . $config_basedir
. "userhome.php");

}
else {

header("Location: " . $config_basedir
. "/login.php?error=1");

}
}
else {

require("header.php");

if($_GET['error']) {
echo "Incorrect login, please try again!";
}

?>
<h1>Login</h1>

<form action="<?php echo $SCRIPT_NAME ?>" method="post">

<table>
<tr>
<td>Username</td>
<td><input type="text" name="username"></td>
</tr>
<tr>
<td>Password</td>
<td><input type="password" name="password"></td>
</tr>
<tr>
<td></td>
<td><input type="submit" name="submit" value="Login!"></td>
</tr>
</table>
</form>

<?php

}

require("footer.php");

?>

333CHAPTER 9 FAQ Content Management System

When the user has successfully logged in, two session variables are created:
SESS_USERNAME and SESS_USERID. These variables are used throughout the code to
check if a user is logged in and refer to the user’s username and id. Before you can
actually log in, though, you need to create the user’s control panel.

Displaying the Control Panel
When the user has successfully logged into the system, the page redirects to a con-
trol panel that shows a number of options available to that specific user. This page
looks like the one shown in Figure 9-7.

This page provides links to a number of different features related to an owned
subject. These features include the ability to add questions, remove ownership, and
moderate submitted questions. This functionality is spread over a number of pages,
which are discussed later.

Create a new file called userhome.php and add the following code:

<?php

session_start();

require("config.php");

FIGURE 9-7 The control panel provides a place to show relevant options for
specific users.

334 Practical PHP and MySQL

N O T E
Say It with Usability

One of the most critical concepts in good usability is feedback.

Whenever a user completes a task on the system (such as logging in), be
sure to always provide feedback that gives that user confidence that she
successfully completed the task. This is particularly important in a net-
worked environment, such as the Web, because of several possible snags
between your computer and the Web server.

if(!$_SESSION['SESS_USERNAME']) {
header("Location: " . $config_basedir . "login.php");

}

require("header.php");

You first protect the page from users who are not logged in. If the SESS_USER-
NAME variable does not exist, the page redirects.

Specify which user is logged in:

require("header.php");

echo "<h1>Control Panel</h1>";
echo "Welcome " . $_SESSION['SESS_USERNAME']
. " [logout]";

Adding a message, such as “Welcome Bob,” so that the user knows he logged in
correctly can improve a user’s confidence with the site.

Perform a query to gather the subjects that the user owns:

echo "Welcome " . $_SESSION['SESS_USERNAME']
. " [logout]";

echo "<h2>Subjects Owned</h2>";

$ownsql = "SELECT * FROM subjects WHERE owner_id ="
. $_SESSION['SESS_USERID'] . ";";
$ownres = mysql_query($ownsql);

In this query, you used the SESS_USERID session variable to refer to the current
user’s user id. Setting a session variable with this information is a useful method of
accessing the value without having to add another SQL query. As long as the user is

335CHAPTER 9 FAQ Content Management System

logged in, this number never changes, so it makes sense to store the value in a ses-
sion variable.

Check to see if any rows were returned and if so, display the subjects:

$ownres = mysql_query($ownsql);

if(mysql_num_rows($ownres) >= 1)
{

echo "";

while($ownrow = mysql_fetch_assoc($ownres)) {
echo "<a href='index.php?subject="

. $ownrow['id'] . "'>" . $ownrow['subject'] . "
-
Add a question • <a href='removesubown.php?subject="
. $ownrow['id'] . "'>Remove ownership";

}

echo "";

echo "Add a topic";
echo " • ";
echo "

Moderate submitted questions";
}
else
{

echo "No subjects are owned";
}

Each subject that is outputted includes a link to remove the ownership and, as
such, orphans the subject. At the bottom of the list of owner subjects, a link is
added to moderate questions that appear within the listed subjects.

Finally, add the footer file:

echo "No subjects are owned";
}

require("footer.php");

?>

Logging Out
Create a file called userlogout.php and add the code to log the user out, as shown in
Example 9-5.

336 Practical PHP and MySQL

EXAMPLE 9-5 The logout code unregisters the user’s session variables.

<?php

session_start();
require("config.php");

session_unregister('SESS_USERNAME');
session_unregister('SESS_USERID');

header("Location: " . $config_basedir . "index.php");
?>

To prevent logging out both the user and admin out when both are logged in,
this code does not destroy the session. The script simply unregisters the session
variables, and they become inactive, logging out the user.

Adding Feedback in the Sidebar
When a user logs into a Web site, it is always useful to clearly indicate in the login
status. The natural place to indicate this is in the sidebar. Fire up bar.php and add
the following code at the start of the file:

<?php

if($_SESSION['SESS_USERNAME']) {
echo "<table class='visible' width='100%'cellspacing=0

cellpadding=5>";
echo "<tr><th class='visible'>Login details</th></tr>";
echo "<tr><td>";
echo "Logged in as " . $_SESSION['SESS_USERNAME']

. "";
echo "";
echo "View my Control Panel";
echo "Logout";
echo "";
echo "</td></tr>";
echo "</table>";

}

if(basename($SCRIPT_NAME) == "answer.php") {
echo "<h1>Other questions</h1>";

In this code, you indicate the name of the user that is logged in and provide a
link to the control panel. This provides a handy method of identifying that the user
is logged in as well as accessing the control panel at any time.

337CHAPTER 9 FAQ Content Management System

Administrator Logins
Aside from the different session variables, administrator logins are very similar to
user logins. In an eerily familiar fashion (OK, not that eerie), you will create the
login page first.

Add the code shown in Example 9-6 to adminlogin.php.

EXAMPLE 9-6 The admin login page is virtually identical to the normal user
login page.

<?php

session_start();

require("db.php");

if($_SESSION['SESS_ADMINUSER']) {
header("Location: " . $config_basedir . "adminhome.php");

}

if($_POST['submit']) {

$sql = "SELECT * FROM admins WHERE username = '"
. $_POST['username'] . "' AND password = '" .
$_POST['password'] . "';";

$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

if($numrows == 1) {
$row = mysql_fetch_assoc($result);

session_register("SESS_ADMIN");
session_register("SESS_ADMINUSER");
session_register("SESS_ADMINID");

$SESS_ADMINUSER = $_POST['username'];
$SESS_ADMINID = $qow['id'];

header("Location: " . $config_basedir . "adminhome.php");
}
else {

header("Location: " . $config_basedir
. "/adminlogin.php?error=1");

}
}
else {

continues

338 Practical PHP and MySQL

EXAMPLE 9-6 Continued.

require("header.php");

echo "<h1>Admin Login</h1>";

if($_GET['error']) {
echo "<p>Incorrect login, please try again!</p>";
}

?>
<form action="<?php echo $SCRIPT_NAME ?>" method="post">

<table>
<tr>
<td>Username</td>
<td><input type="text" name="username"></td>
</tr>
<tr>
<td>Password</td>
<td><input type="password" name="password"></td>
</tr>
<tr>
<td></td>
<td><input type="submit" name="submit" value="Login!"></td>
</tr>
</table>
</form>

<?php
}

require("footer.php");

?>

In this file, you use the SESS_ADMINUSER and SESS_ADMINID session variables to
identify that the administrator is logged in.

Logout
Create adminlogout.php and add the logout code shown in Example 9-7.

Again, you unregister the relevant session variables.

339CHAPTER 9 FAQ Content Management System

EXAMPLE 9-7 Guess what? This code is quite similar to the normal user
logout code.

<?php

session_start();

require("config.php");

session_unregister('SESS_ADMINUSER');
session_unregister('SESS_ADMINID');

header("Location: " . $config_basedir);

?>

Becoming an Admin and Playing With More Toys
Although the adminlogin.php and adminlogout.php pages are very similar to their
normal user counterparts, the administrator gets a lot more toys in his control
center. The administrator is able to perform the following tasks, which the normal
user cannot:

■ Add subjects

■ Add topics

■ Moderate submitted questions

■ Moderate subject ownership requests

Create a new file called adminhome.php and add the code shown in Example 9-8.

EXAMPLE 9-8 The admin home includes special admin-only options, such as
adding subjects and moderating ownership requests.

<?php

session_start();

if(isset($_SESSION['SESS_ADMINUSER']) == FALSE) {
header("Location: " . $config_basedir . "adminlogin.php");

}

require("header.php");
echo "<h1>Admin Panel</h1>";
echo "Welcome " . $_SESSION['SESS_ADMINUSER']

. " [logout]";
continues

340 Practical PHP and MySQL

EXAMPLE 9-8 Continued.

?>
<table border="0" cellspacing="5" cellpadding="5">
<tr>
<td>Add a subject</td>
<td>Add a new subject</td>

</tr>
<tr>
<td>Add a topic</td>
<td>Add a new topic</td>

</tr>
<tr>
<td>

Moderated Questions</td>
<td>Authorize or Reject submitted questions</td>

</tr>
<tr>
<td>

Subject Ownership Requests</td>
<td>Authorize or Reject submitted questions</td>

</tr>
</table>

<?php
require("footer.php");

?>

To keep the project simple, administrator functionality has been limited to
these core areas. Of course, you could implement many other features, such as the
ability to do the following:

■ View site statistics

■ Configure site-wide options

■ Manage the site content

Adding More Feedback to That Sidebar
The same technique that you used to display a box in the sidebar when the user is
logged in will be used to show when the administrator is logged in. Add the follow-
ing code to bar.php:

echo "</td></tr>";
echo "</table>";

}

if($_SESSION['SESS_ADMINUSER']) {

341CHAPTER 9 FAQ Content Management System

FIGURE 9-8 The admin panel includes the admin-logged-in box in the sidebar.

echo "<table class='visible' width='100%'cellspacing=0
cellpadding=5>";

echo "<tr><th class='visible'>Login details</th></tr>";
echo "<tr><td>";
echo "Logged in as " . $_SESSION['SESS_ADMINUSER']

. "";
echo "";
echo "View my Admin Panel";
echo "Logout";
echo "";
echo "</td></tr>";
echo "</table>";

}

The completed administrator page should look something similar to the page
shown in Figure 9-8.

ADDING AND MODERATING QUESTIONS

One of the most difficult challenges to overcome when installing and using a CMS
is generating new content. Imagine the following situation:

Bob Scratchings installs a CMS with the aim of providing lots of interesting
content. For a few weeks, Bob spends each night religiously updating the
site, but as the weeks roll into months, he spends less and less time on it.

342 Practical PHP and MySQL

FIGURE 9-9
If known, the name of the topic is
added to the form.

Before long, the site never gets updated and becomes another dusty, old,
unmaintained husk on the Internet.

To solve this problem, you need to encourage site users to become involved and
contribute content themselves. With this in mind, you will add functionality to
allow any user to submit questions. The owner of the subject (another contributor)
can moderate the wheat from the chaff. This will encourage some community spirit.

Adding Questions
When adding questions to a topic, the script needs to take into account two possible
modes of operation:

■ If the user is the subject owner, the question should be added instantly to the
range of available questions for the subject.

■ If the user is not the owner of the subject, the submitted question should be
held for moderation by the subject owner.

The logistics of handling which questions are intended for moderation is simply
a case of adjusting the active field in the questions table. If this field is set to 0, the
question requires moderation; if it is set to 1, the question is live.

In addition to handling these questions differently, this script can also be used
in two possible places. When browsing the topics, the topic view contains a link to
add a question. In this case, the script is passed the id of the topic to which the ques-
tion is added. The selected topic is displayed on the form, as shown in Figure 9-9.

The user’s control panel also provides a link to add a question to a subject. In
this case, the topic is not known, and the script provides a list of topics from the
subject, as shown in Figure 9-10.

343CHAPTER 9 FAQ Content Management System

FIGURE 9-10
If the topic is not known, the user can
select it from the combo box.

N O T E
What About No Topics?

If no topics are available in the subject, and the subject owner tries to add a
question, the script should prompt the owner to first add a topic. This fail-
safe technique is used in the code for this project.

Create a new file called addquestion.php and add the following code:

<?php

session_start();

require("db.php");
require("functions.php");

Only logged-in users should use this page, so check if a user is logged in and
then redirect any users who are trying to post questions but have not logged in:

require("functions.php");

if(!$_SESSION['SESS_USERNAME']) {
header("Location: " . $config_basedir . "login.php");

}

344 Practical PHP and MySQL

Validate the GET variables:

header("Location: " . $config_basedir . "login.php");
}

if(pf_check_number($_GET['subject']) == TRUE) {
$validsubject = $_GET['subject'];

}
else {

header("Location: " . $config_basedir);
}

if(isset($_GET['topic']) == TRUE) {
if(is_numeric($_GET['topic']) == TRUE) {

$validtopic = $_GET['topic'];
}
else {

header("Location: " . $config_basedir);
}

}

The subject and topic GET variables are validated. If they fail, the page
redirects.

Begin adding the code for the form displayed to the user. First, add the queries
to pull in the subject and topic information displayed in the form:

header("Location: " . $config_basedir);
}

}

require("header.php");

$subsql = "SELECT * FROM subjects WHERE id = "
. $validsubject . ";";

$subq = mysql_query($subsql);
$subrow = mysql_fetch_assoc($subq);

$toplistsql = "SELECT * FROM topics WHERE subject_id = "
. $validsubject . " ORDER BY name ASC;";

$toplistresult = mysql_query($toplistsql);
$toplistnumrows = mysql_num_rows($toplistresult);

Check if any topics are available:

$toplistnumrows = mysql_num_rows($toplistresult);

echo "<h1>Add a new question</h1>";

if($_SESSION['SESS_USERID'] == $subrow['owner_id']) {
if($toplistnumrows == 0) {

$notopics = TRUE;

345CHAPTER 9 FAQ Content Management System

}
}

This code checks if the current user is the owner of the subject and then checks
if the number of topics returned was 0. If the number is indeed 0, the $notopics
variable is set to TRUE. The only time you display the list of topics is when the user
is the owner of the subject, so you check the number of topics returned.

If no topics exist, a subject has been added (but there are no topics inside it).
Instruct the user to create some topics:

$notopics = TRUE;
}

}

if($notopics == TRUE) {
echo "No topics have been created. Click

here to create one!";
}

Start a table and begin creating the interface:

echo "No topics have been created. Click here to create one!";

}
else {

echo "<p>";
echo "<form action='addquestion.php?subject="

. $validsubject . "' method='POST'>";
echo "<table cellpadding=5>";
echo "<tr>";
echo "<td>Subject</td>";
echo "<td>" . $subrow['subject']

. "</td>";
echo "</tr>";
echo "<tr>";
echo "<td>Topic</td>";
echo "<td>";

In this block, you create the form in a table and then add the name of the sub-
ject from the query to a row in the table.

The next row in the table should display the topic if it is known (if a topic GET
variable exists) or display a drop-down box with the topics in the subject if only the sub-
ject is known. You achieve this by checking that the $validtopic variable is present:

echo "<td>Topic</td>";
echo "<td>";

if(!$validtopic) {
echo "<select name='topic'>";

346 Practical PHP and MySQL

N O T E
Using Hidden Form Elements

Hidden form elements are particularly useful in situations where you need
to refer to a value but the page could behave in different ways. By using the
hidden form element, you can place a value in the form and then later refer
to it with the normal $_GET or $_POST array.

while($toplistrow =
mysql_fetch_assoc($toplistresult)) {

echo "<option value='"
. $toplistrow['id'] . "'>" . $toplistrow['name']
. "</option>";

}

echo "</select>";
}

If the variable is unavailable, the combo box is added and the while loop adds
each topic. If the variable is available, display the topic:

echo "</select>";
}
else {

$topsql = "SELECT * FROM topics WHERE id = "
. $validtopic . ";";

$topq = mysql_query($topsql);
$toprow = mysql_fetch_assoc($topq);

echo "" . $toprow['name'] . "";
echo "<input type='hidden' name='topic' value='"

. $toprow['id'] . "'>";
}

A query first grabs the name of the topic and then displays the name in the cell.
In addition, a hidden form element is added to the page so that you can refer to the
id of the selected topic with $_POST['topic'] regardless of whether the combo box
or topic name were displayed.

Add the form input elements:

echo "<input type='hidden' name='topic' value='"
. $toprow['id'] . "'>";

}

echo "</td>";

347CHAPTER 9 FAQ Content Management System

echo "</tr>";
echo "<tr>";
echo "<td>Question</td>";
echo "<td><input type='text' name='question'></td>";
echo "</tr>";
echo "<tr>";
echo "<td>Answer</td>";
echo "<td><textarea name='answer' rows=10

cols=50></textarea></td>";
echo "</tr>";
echo "<tr>";
echo "<td colspan=2><input type='submit' name='submit'

value='Add Question'></td>";
echo "</tr>";
echo "</table>";
echo "</form>";

}

With the form complete, you can add the code to process it. This involves the
usual step of checking if the Submit button was clicked and processing the form
accordingly. Seasoned veterans who have completed previous projects in the book
will expect the form display code to be encased in an else block, which is exactly
what happens.

At the beginning of the file, adding the processing code after the validation
code:

header("Location: " . $config_basedir);
}

}

if($_POST['submit']) {
$authsql = "SELECT * FROM subjects WHERE id = " . $validsubject

. " AND owner_id = " . $_SESSION['SESS_USERID'] . ";";
$authresult = mysql_query($authsql);
$authnumrows = mysql_num_rows($authresult);

When processing the code, check if the current user is the owner of the
subject—this affects whether the question needs to be moderated. This block of
code sends a query to the database to determine the status of the user.

Check if any results were returned:

$authnumrows = mysql_num_rows($authresult);

if($authnumrows == 1) {
$qsql = "INSERT INTO questions(topic_id, question, answer,

addedby_id, dateadded, active) VALUES("
. $_POST['topic']
. ", '" . pf_fix_slashes($_POST['question'])

. "', '" . pf_fix_slashes($_POST['answer'])

348 Practical PHP and MySQL

. "', " . $_SESSION['SESS_USERID']
. ", NOW()"
. ", 1);";
$qresult = mysql_query($qsql);

header("Location: " . $config_basedir . "answer.php?id="
. mysql_insert_id());
}

If a row was returned, the current user is the owner of the subject. An INSERT
query is created to add the data to the questions table, and active is set to 1 (the
question is live).

Add the code that is run when the current user is not the subject owner:

header("Location: " . $config_basedir . "answer.php?id=" .
mysql_insert_id());

}
else {

$qsql = "INSERT INTO questions(topic_id, question, answer,
addedby_id, dateadded, active) VALUES("

. $_POST['topic']

. ", '" . pf_fix_slashes($_POST['question'])

. "', '" . pf_fix_slashes($_POST['answer'])
. "', " . $_SESSION['SESS_USERID']

. ", NOW()"

. ", 0);";

$qresult = mysql_query($qsql);

require("header.php");

echo "<h1>Awaiting moderation</h1>";
echo "Your question requires moderator approval before it is

posted.";
}

}

In this block, the same query is performed, but active is set to 0 so that the
question can be moderated. A message informs the user of this moderation process.

Open the main else that encases the form display code:

echo "Your question requires moderator approval before it
is posted.";
}

}
else {

Finally, after the form display code, add the closing footer:

}

349CHAPTER 9 FAQ Content Management System

FIGURE 9-11 Moderating questions is as simple as choosing
one of three options: Details, Allow, or Deny.

require("footer.php");

?>

Affirm Some Power and Moderate Some Questions
Question moderation is open to both the site administrator and the owner of the
subject to which the question was added. To make this process as simple as possi-
ble, the added questions are listed as shown in Figure 9-11.

Each question has three possible options: to view the details, or to allow or deny
the question.

This script has a number of different personalities. To access the different
pieces of functionality, the page is passed a func GET variable, which is then run
through a switch statement that has five possible outcomes:

■ main. This section displays the summary of the questions, as seen in Fig-
ure 9-11.

■ details. When the user clicks the Details link, this section is loaded and
displays the details about the question.

■ allow. If the user clicks the Allow link, this section sets the question status
to live.

■ deny. If the user rejects the question and clicks the Deny link, this section
prompts the user—with Yes and No options—to be sure he wants to deny the
question.

■ denyconf. If the Yes option is clicked, the question is deleted.

Create a new file called adminmodquestions.php and add the following code:

350 Practical PHP and MySQL

<?php

session_start();

require("db.php");
require("functions.php");

function set_validid() {
if(pf_check_number($_GET['id']) == TRUE) {

return $_GET['id'];
}
else {

header("Location: " . $config_basedir);
}

}

switch($_GET['func'])
{

You created a function called set_validid(), which validates the id GET vari-
able. This function is created because not every block of the switch (such as the
main block) needs an id variable.

The main Block
Create each of the blocks inside the switch, starting with main:

switch($_GET['func'])
{

case "main":
require("header.php");

To gather the questions required for moderation, the query is different for the
administrator and for a normal user. For the administrator, you simply need to view
all questions that require moderation:

case "main":
require("header.php");

if($_SESSION['SESS_ADMINUSER']) {
$modqsql = "SELECT questions.*, users.username FROM users

INNER JOIN questions on questions.addedby_id=users.id INNER JOIN
topics on questions.topic_id=topics.id INNER JOIN subjects on
topics.subject_id=subjects.id WHERE questions.active = 0;";

}

An inner join is used to get the username of the person who submitted the ques-
tion. All questions in which active is set to 0 are returned.

351CHAPTER 9 FAQ Content Management System

For a normal user, only the questions within the subject(s) that he owns should
be returned:

$modqsql = "SELECT questions.*, users.username FROM users
INNER JOIN questions on questions.addedby_id=users.id INNER JOIN
topics on questions.topic_id=topics.id INNER JOIN subjects on
topics.subject_id=subjects.id WHERE questions.active = 0;";

}
else {

$modqsql = "SELECT questions.*, users.username FROM users
inner join questions on questions.addedby_id=users.id inner join
topics on questions.topic_id=topics.id inner join subjects on
topics.subject_id=subjects.id WHERE questions.active = 0 AND
subjects.owner_id = " . $_SESSION['SESS_USERID'] . ";";

}

Run the relevant query:

$modqsql = "SELECT questions.*, users.username FROM users
inner join questions on questions.addedby_id=users.id inner join
topics on questions.topic_id=topics.id inner join subjects on
topics.subject_id=subjects.id WHERE questions.active = 0 AND
subjects.owner_id = " . $_SESSION['SESS_USERID'] . ";";

}

$modresult = mysql_query($modqsql);

Create a table and add the table headings:

$modresult = mysql_query($modqsql);

echo "<h1>Questions submitted for moderation</h1>";
echo "<table cellspacing='0' cellpadding='5'>";
echo "<tr>";
echo "<th>Subject</th>";
echo "<th>Topic</th>";
echo "<th>Question</th>";
echo "<th>Submitted By</th>";
echo "<td></td>";
echo "<td></td>";
echo "<td></td>";
echo "</tr>";

If the query returns no results, there are no questions to moderate:

echo "<td></td>";
echo "</tr>";

if(mysql_num_rows($modresult) == 0) {
echo "<tr>";

352 Practical PHP and MySQL

echo "<td colspan=7>No questions to moderate</td>";
echo "</tr>";

}

If there are rows to moderate, display the questions:

echo "</tr>";
}

while($row = mysql_fetch_assoc($modresult)) {
$subsql = "SELECT topics.name, subjects.subject FROM topics,

subjects WHERE topics.subject_id = subjects.id AND topics.id = "
. $row['topic_id'] . ";";

$subresult = mysql_query($subsql);
$subrow = mysql_fetch_assoc($subresult);

echo "<tr>";
echo "<td>" . $subrow['subject'] . "</td>";
echo "<td>" . $subrow['name'] . "</td>";
echo "<td>" . $row['question'] . "</td>";
echo "<td>" . $row['username'] . "</td>";
echo "<td><a href='adminmodquestions.php?func=details&id="

. $row['id'] . "'>Details</td>";
echo "<td><a href='adminmodquestions.php?func=allow&id="

. $row['id'] . "'>Allow</td>";
echo "<td><a href='adminmodquestions.php?func=deny&id="

. $row['id'] . "'>Deny</td>";

echo "</tr>";
}
echo "</table>";

break;

This block displays the results from the query and adds the Details, Allow, and
Deny links. Each link adds the func GET variable and the relevant switch block to
which the link points to (for example, func=details accesses the details block), as
well as the id of the question (for example, id=2).

The details Block
The details block displays details about the current question. This block is pre-
sented like the block shown in Figure 9-12.

Add the following code:

echo "</table>";
break;

case "details":
require("header.php");

353CHAPTER 9 FAQ Content Management System

FIGURE 9-12 The details link provides a convenient way of viewing the answer to
the question.

$validid = set_validid();

$sql = "SELECT questions.*, topics.name, subjects.subject FROM
questions INNER JOIN topics ON questions.topic_id = topics.id INNER
JOIN subjects ON topics.subject_id = subjects.id
WHERE questions.id = " . $validid . ";";

$result = mysql_query($sql);
$row = mysql_fetch_assoc($result);

You first run this query to gather the details about the submitted question. This
query performs an inner join to gather the question details, the topic name, and the
subject name.

Display the gathered information:

$row = mysql_fetch_assoc($result);

echo "<h1>Submitted question details</h1>";
echo "<table border='0' cellspacing='0' cellpadding='5'>";
echo "<tr>";

echo "<td>Subject</td>";
echo "<td>" . $row['subject'] . "</td>";

echo "</tr>";
echo "<tr>";

echo "<td>Topic</td>";
echo "<td>" . $row['name'] . "</td>";

echo "</tr>";
echo "<tr>";

echo "<td>Question</td>";
echo "<td>" . $row['question'] . "</td>";

echo "</tr>";
echo "<tr>";

echo "<td>Answer</td>";
echo "<td>" . $row['answer'] . "</td>";

echo "</tr>";
echo "<tr>";

echo "<td colspan=2>";

354 Practical PHP and MySQL

FIGURE 9-13 Before denying a question, be sure this is what
the user wants.

echo "⇐
Back to questions";

echo " • ";
echo "<a href='adminmodquestions.php?func=allow&id="

. $row['id'] . "'>Allow ";
echo " • ";
echo " <a href='adminmodquestions.php?func=deny&id="

. $row['id'] . "'>Deny";
echo "</td>";

echo "</tr>";
echo "</table>";

break;

The allow Block
To accept a question, add the allow block:

echo "</table>";
break;

case "allow":
$validid = set_validid();

$modqsql = "UPDATE questions SET active = 1 WHERE id = "
. $validid . ";";

$modqq = mysql_query($modqsql);

header("Location: " . $config_basedir
. "adminmodquestions.php?func=main");
break;

This block updates the question and sets the active field to 1 to make the ques-
tion live. The page then redirects to the main block of adminmodquestions.php.

The deny Block
To deny a question, the process is split into two parts. The first part asks the user if
she is sure that she wants to reject the question. See Figure 9-13.

Add the code for this section:

355CHAPTER 9 FAQ Content Management System

header("Location: " . $config_basedir .
"adminmodquestions.php?func=main");

break;

case "deny":
require("header.php");

$validid = set_validid();

echo "<h1>Are you sure that you want to reject this
question?</h1>";

echo "<p>[<a href='" . $SCRIPT_NAME . "?func=denyconf&id="
. $validid . "'>Yes] [<a href='" . $SCRIPT_NAME
. "?func=main'>No]";
break;

This block provides two links. The No link simply links back to the main sec-
tion of the current script, and the Yes link links to the denyconf section.

The denyconf Block
To confirm the cold, hard reality of denying a question, add the denyconf block:

echo "<p>[<a href='" . $SCRIPT_NAME . "?func=denyconf&id="
. $validid . "'>Yes] [<a href='" . $SCRIPT_NAME
. "?func=main'>No]";
break;

case "denyconf":
$validid = set_validid();

$delsql = "DELETE FROM questions WHERE id = " . $_GET['id']
. ";";

$delq = mysql_query($delsql);

header("Location: " . $config_basedir
. "adminmodquestions.php?func=main");
break;

This block deletes the question from the questions table and then redirects back
to the main section to display the other moderated questions.

Finally, close the switch and add the footer file:

header("Location: " . $config_basedir
. "adminmodquestions.php?func=main");
break;

}

require("footer.php");
?>

356 Practical PHP and MySQL

MANAGING SUBJECTS

Subjects are the core foundation of the content that this project manages, and are
very similar to Categories in the blog project in Chapter 4. Managing subjects is
something that you naturally only want the administrator to be able to do. If you
were to give a regular user the run of the subjects, anything could happen.

The capabilities to add and delete subjects are important pieces of functional-
ity to create, but deleting is a capability with which you should take special care.
By using InnoDB tables in MySQL, any accidental deletions of a subject cause all
of the child topics and questions to be deleted also. As such, be very careful when
working through this section.

Adding Subjects
Adding a subject to the database is as simple as creating a form and adding the con-
tents of the form to the database. Create a new file called addsubject.php and add
the following code:

<h1>Add a new subject</h1>

<form action="<?php echo $SCRIPT_NAME; ?>" method="post">
<table cellpadding="5">
<tr>

<td>Subject</td>
<td><input type="text" name="subject"></td>

</tr>
<tr>

<td>Owner</td>
<td>

This code adds a form and a table to lay out the form elements. After adding the
subject text box, display a combo box so that a subject owner can be chosen:

<td>Owner</td>
<td>

<select name="owner">
<option value="0">—- No Owner —-</option>

<?php
$sql = "SELECT * FROM users ORDER BY username ASC;";
$result = mysql_query($sql);

while($row = mysql_fetch_assoc($result)) {
echo "<option value='" . $row['id'] . "'>"

. $row['username'] . "</option>";
}

?>
</select>

357CHAPTER 9 FAQ Content Management System

A select box is created, and the first entry (which returns the value 0) is added
to provide a No Owner option. The other entries in the select box are added from the
query.

Complete the form:

?>
</select>
</td>

</tr>
<tr>

<td>Description Blurb</td>
<td><textarea name="blurb" cols=50 rows=10></textarea></td>

</tr>
<tr>

<td></td>
<td><input type="submit" name="submit" value="Add Subject!"></td>

</tr>
</table>
</form>

With the form finished, it’s time to process it. Jump to the start of the file and
add the following code:

<?php

session_start();

require("db.php");
require("functions.php");

if(isset($_SESSION['SESS_ADMINUSER']) == FALSE) {
header("Location: " . $config_basedir . "adminlogin.php");

}

You first protect the page so that only the administrator can access it. Check if
the Submit button was clicked and begin the processing:

header("Location: " . $config_basedir . "adminlogin.php");
}

if($_POST['submit']) {
$subsql = "INSERT INTO subjects(subject, blurb, owner_id) VALUES("

. "'" . pf_fix_slashes($_POST['subject'])

. "', '" . pf_fix_slashes($_POST['blurb'])

. "'," . $_POST['owner']

. ");";
mysql_query($subsql);
header("Location: " . $config_basedir);

}

358 Practical PHP and MySQL

FIGURE 9-14
If No Owner is selected, 0 is added to
the owner_id field in the questions
table.

Inside this block an INSERT statement adds the form data to the database. Add
the else that encases the main form:

header("Location: " . $config_basedir);
}

else {
require("header.php");

?>
<h1>Add a new subject</h1>

<form action="<?php echo $SCRIPT_NAME; ?>" method="post">

Finally, after the form, close the else and add the footer file:

</table>
</form>

<?php
}

require("footer.php");

?>

The completed page should look like the one shown in Figure 9-14.

Deleting Subjects
When logged in as an administrator, a user deletes content by clicking the little X
links. These links hook up with a page to delete the type of content the X is next to.
If you take a look at the list of subjects, you will see that the X next to each subject
links to deletesubject.php and passes the script the id of the subject to be deleted.

359CHAPTER 9 FAQ Content Management System

N O T E
Cascading Fun and Games

Remember that when a subject is deleted, all topics and questions within
that subject are deleted also. The code for the cascading delete was added
when you set up your tables.

When deletesubject.php is first loaded, the user is prompted to confirm that he
wants to delete the subject. If he clicks the Yes link, the page reloads but includes
a conf GET variable. If this variable is present, the subject is deleted.

Create deletesubject.php and add the following code:

<?php
session_start();

require("db.php");
require("functions.php");

if($_SESSION['SESS_ADMIN']) {
header("Location: " . $config_basedir);

}

if(pf_check_number($_GET['subject']) == TRUE) {
$validsubject = $_GET['subject'];

}
else {

header("Location: " . $config_basedir);
}

First, the code validates the subject GET variable that was passed to the page.
Next a check is made to see if the conf GET variable exists (remember that this is
added when the user confirms deletion of the subject):

header("Location: " . $config_basedir);
}

if($_GET['conf']) {
$delsql = "DELETE FROM subjects WHERE id = " . $validsubject . ";";
mysql_query($delsql);

360 Practical PHP and MySQL

header("Location: " . $config_basedir);
}
else {

require("header.php");
echo "<h1>Are you sure you want to delete this subject?</h1>";
echo "<p>[<a href='" . $SCRIPT_NAME . "?conf=1&subject="

. $validsubject . "'>Yes] [<a href='" . $config_basedir

. "'>No]";
}

If the variable exists, the subject is deleted and the page redirects back to the
base page. Otherwise, the question is displayed.

Finally, add the footer file:

echo "<p>[<a href='" . $SCRIPT_NAME . "?conf=1&subject=" .
$validsubject . "'>Yes] [No]";
}

require("footer.php");

?>

MANAGING TOPICS

When adding topics to the system, the script needs to work both for normal users
who own subjects and for the administrator. The practical differences between a
normal user and the admin are mainly in the subjects to which they have access.
The administrator can choose any subject to add to a topic, whereas a normal user
can choose only the subjects he owns.

Adding Topics
Create a new file called addtopic.php and start the form:

<h1>Add a new topic</h1>

<form action="<?php echo $SCRIPT_NAME; ?>" method="post">
<table cellpadding="5">
<tr>

<td>Subject</td>

To display the selection of subjects in the combo box, add the following code:

<td>Subject</td>
<td>
<?php

if($_SESSION['SESS_ADMINUSER']) {

361CHAPTER 9 FAQ Content Management System

$sql = "SELECT * FROM subjects ORDER BY subject ASC;";
$result = mysql_query($sql);

}
else {

$sql = "SELECT * FROM subjects WHERE owner_id = "
. $_SESSION['SESS_USERID'] . " ORDER BY subject ASC;";

$result = mysql_query($sql);
}

echo "<select name='subject'>";

while($row = mysql_fetch_assoc($result)) {
echo "<option value='" . $row['id'] . "'>"

. $row['subject'] . "</option>";
}

echo "</select>";
?>

In this code, a check is made to see if the administrator is logged in. If he is, all
subjects are displayed; otherwise, only the subjects owned by the current user are
displayed.

Complete the rest of the form:

echo "</select>";
?>

</td>
</tr>
<tr>

<td>Topic</td>
<td><input type="text" name="name"></td>

</tr>
<tr>

<td></td>
<td><input type="submit" name="submit" value="Add Subject!"></td>

</tr>
</table>
</form>

With the form ready, jump to the beginning of the file and add the following code:

<?php

session_start();

require("db.php");
require("functions.php");

362 Practical PHP and MySQL

You now need to protect this file from unauthorized use. This is more challeng-
ing because both the administrator and users who own subjects can use the file.
Unauthorized users include people not logged in and those users who don’t own a
subject.

The solution is to perform checks to see if the current user is a valid user. If the
user is a valid user, the $auth variable is set to 1. After these tests, the $auth vari-
able is checked. If $auth is not equal to 1, the page is redirected.

Add the checks:

require("functions.php");

if(isset($_SESSION['SESS_ADMINUSER']) == TRUE) {
$auth = 1;

}

if(isset($_SESSION['SESS_USERNAME']) == TRUE) {
$authsql = "SELECT * FROM subjects WHERE owner_id = "

. $_SESSION['SESS_USERID'] . " ORDER BY subject ASC;";
$authresult = mysql_query($authsql);
$authnumrows = mysql_num_rows($authresult);

if($authnumrows >= 1) {
$auth = 1;

}
}

The first check identifies whether the administrator is logged in. If he is, $auth
is set to 1. The next check identifies whether a user is logged in and then performs
a query to see that user owns any subjects. If the query returns one or more rows,
$auth is set to 1.

Check the value of $auth:

$auth = 1;
}

}

if($auth != 1) {
header("Location: " . $config_basedir);

}

If $auth is not equal (!=) to 1, the page redirects.

363CHAPTER 9 FAQ Content Management System

Process the form:

header("Location: " . $config_basedir);
}

if($_POST['submit']) {
$sql = "INSERT INTO topics(subject_id, name) VALUES("

. "'" . $_POST['subject']

. "', '" . pf_fix_slashes($_POST['name'])

. "');";
mysql_query($sql);
header("Location: " . $config_basedir . "index.php?subject="

. $_POST['subject']);
}
else {

require("header.php");

?>

<h1>Add a new topic</h1>

<form action="<?php echo $SCRIPT_NAME; ?>" method="post">

This block uses a simple INSERT statement to add the values to the database.
The page then redirects to index.php and passes it the subject GET variable to dis-
play the subject information.

After the form, close the else block and add the footer file:

</table>
</form>

<?php
}

require("footer.php");

?>

Getting Rid of Topics
Deleting a topic is virtually identical to deleting a subject. The X next to the topic
links to deletetopic.php and the code is very similar (see Example 9-9).

364 Practical PHP and MySQL

EXAMPLE 9-9 The delete topic code is very similar to deleting a subject.

<?php

session_start();

require("db.php");
require("functions.php");

if(isset($_SESSION['SESS_ADMINUSER']) == FALSE) {
header("Location: " . $config_basedir);

}

if(pf_check_number($_GET['topic']) == TRUE) {
$validtopic = $_GET['topic'];

}
else {

header("Location: " . $config_basedir);
}

if($_GET['conf']) {
$delsql = "DELETE FROM topics WHERE id = " . $validtopic . ";";
mysql_query($delsql);

header("Location: " . $config_basedir);
}
else {

require("header.php");
echo "<h1>Are you sure you want to delete this topic?</h1>";
echo "<p>[<a href='" . $SCRIPT_NAME . "?conf=1&topic="

. $validtopic . "'>Yes] [<a href='" . $config_basedir

. "'>No]";
}

require("footer.php");

?>

SUBJECT OWNERSHIP

Subject ownership is a key feature in this project. Not only does it encourage users
to roll up their sleeves and get involved, it also decentralizes the source of the con-
tent so that a range of different users can maintain the site.

In this part of the project, you manage ownership requests, request moderation,
and the removal of ownership. Three scripts manage these different needs.

365CHAPTER 9 FAQ Content Management System

FIGURE 9-15 Any user is welcome to apply for ownership of a subject.

Applying for Ownership of a Subject
If a subject in the system has no owner, the subject information page contains a link
that invites users to apply for ownership of the event. When this link is clicked, the
user is presented with the page shown in Figure 9-15.

This page is very simple. The user types the reasons she feels that she should
be trusted to own the page and then clicks the Submit (Apply!) button. The page
then informs the applicant that a response will be emailed when the administrator
has made a decision.

Create a new file called applysubowner.php and start adding the code:

<?php

session_start();

require("config.php");
require("functions.php");

366 Practical PHP and MySQL

if(pf_check_number($_GET['subject']) == TRUE) {
$validsubject = $_GET['subject'];

}
else {

header("Location: " . $config_basedir);
}

require("header.php");

The file begins by validating the subject GET variable.

Add the code to process the form, which consists of a single text box:

require("header.php");

if($_POST['submit']) {
$appsql = "SELECT * FROM mod_subowner WHERE sub_id = "

. $validsubject . " AND user_id = '" . $_SESSION['SESS_USERID']

. "';";
$appresult = mysql_query($appsql);

if(mysql_num_rows($appresult) == 0) {
$inssql = "INSERT INTO mod_subowner(sub_id, user_id, reasons)

VALUES(" . $_GET['subject'] . "," . $_SESSION['SESS_USERID'] . ",'"
. pf_fix_slashes($_POST['reasons']) . "');";

mysql_query($inssql);

echo "<h1>Application Submitted</h1>";
echo "Your application has been submitted. You will be

emailed with the decision.";
}
else {

echo "<h1>Already Applied</h1>";
echo "<p>You have already made an application for this

subject.</p>";
}

}

In this block, a check is first made to see if the current user has already applied
for ownership. If the query returns no rows, this is the first application and a query
is constructed to add the user id, subject id, and reasons to the mod_subowner
table.

If the query returns one or more rows, the user has already applied for owner-
ship and a message is displayed to indicate this.

Now you can begin to display the form. Before you do this, perform a query to
grab the name of the subject:

echo "<p>You have already made an application for this
subject.</p>";

367CHAPTER 9 FAQ Content Management System

}
}
else {

$subsql = "SELECT subject FROM subjects WHERE id = "
. $validsubject . ";";
$subresult = mysql_query($subsql);
$subrow = mysql_fetch_assoc($subresult);

?>

The name of the subject from this query is used in the text of the page.

Add this text and the form:

$subrow = mysql_fetch_assoc($subresult);
?>

<h1>Application for ownership of <i><?php echo $subrow['subject'];
?></i></h1>
<p>You have applied to maintain the subject <?php echo

$subrow['subject']; ?>.</p>
<p>
The procedure to apply to own a subject is as follows:

Fill in is Subject Ownership application form.
The contents of this form will be submitted to the site

adminstrator approval.
You will be notified in your Account Homepage of the

administrators decision.

</p>
<p>
When you fill out the Reasons box below, it is advised that you

indicate why you should be given
the ownership of the subject. What can you bring to the subject

in terms of time and knowledge? Can
you ensure the subject questions are clear and well structured?
</p>
<form action="applysubowner.php?subject=<?php echo $validsubject;

?>" method="POST">
<table cellpadding=5 cellspacing=5>
<tr>
<td>Reasons</td>
<td><textarea name="reasons" cols="50" rows="10"></textarea></td>
</tr>
<tr>
<td></td>
<td><input type="submit" name="submit" value="Apply!"></td>
</tr>
</table>
</form>

368 Practical PHP and MySQL

FIGURE 9-16 The administrator can easily tend to requests.

With the form complete, add the closing code:

</table>
</form>

<?php
}

require("footer.php");

?>

Moderating Ownership Requests
Moderation of the subject ownership requests is very similar to the moderation of
the questions earlier in the project. The administrator is presented with a list of
requests, which he can accept or deny, as shown in Figure 9-16.

In the question moderation script, the func GET variable was used to choose
which mode the page was working in. A switch statement checked this variable,
and the relevant code was executed.

369CHAPTER 9 FAQ Content Management System

The same technique is used in this page, which includes the following four
sections:

■ main. This section displays the ownership requests.

■ allow. If the Allow link is clicked, this section is run and authorizes the own-
ership request.

■ deny. If the Deny link is clicked, this section prompts the administrator to be
sure that he wants to deny the request.

■ denyconf. If the administrator clicks the Yes link in the deny section, the
denyconf section deletes the request from the database.

Create a new file called adminmodsubown.php and add the following code:

<?php

session_start();

if(!$_SESSION['SESS_ADMINUSER']) {
header("Location: " . $config_basedir);

}

require("db.php");
require("functions.php");

function set_validid() {
if(pf_check_number($_GET['id']) == TRUE) {

return $_GET['id'];
}
else {

header("Location: " . $config_basedir);
}

}

You again create a function to manage the validation across the different switch
blocks. This works the same as in the question moderation script.

Open the switch statement:

header("Location: " . $config_basedir);
}

}

switch($_GET['func']) {

370 Practical PHP and MySQL

The main Block
The first block to add is main, which displays the list of ownership requests. This list
of requests allows the user to see who wants to have ownership of a particular subject.

switch($_GET['func']) {

case "main":
require("header.php");

$subssql = "SELECT subjects.subject, subjects.id FROM subjects
INNER JOIN mod_subowner ON subjects.id = mod_subowner.sub_id
GROUP BY subjects.id;";

$subsresult = mysql_query($subssql);
$subsnumrows = mysql_num_rows($subsresult);

echo "<h1>Subjects and Ownership</h1>";

This code runs a query to gather the names of all the subjects that have had
ownership requests. If the query returns no rows, display a message:

echo "<h1>Subjects and Ownership</h1>";

if($subsnumrows == 0) {
echo "No requests have been made.";

}

If rows are returned, execute the else:

echo "No requests have been made.";
}
else {

while($subsrow = mysql_fetch_assoc($subsresult)) {
$reqsql = "SELECT users.id AS userid, users.username,

mod_subowner.* FROM users INNER JOIN mod_subowner ON
mod_subowner.user_id = users.id WHERE mod_subowner.sub_id = "
. $subsrow['id'] . ";";

$reqresult = mysql_query($reqsql);

A while loop is opened to loop through each subject. A second query performs
a join to get the usernames for the ownership requests.

Start a table to hold the content:

$reqresult = mysql_query($reqsql);

echo "<table class='visible' cellpadding=10
cellspacing=0>";

371CHAPTER 9 FAQ Content Management System

echo "<tr><th class'visible' colspan='4'>
Ownership requests for <i>" . $subsrow['subject']
. "</i></th></tr>";

Create another while loop to loop through the second query’s set of results:

echo "<tr><th class'visible' colspan='4'>
Ownership requests for <i>" . $subsrow['subject']
. "</i></th></tr>";

while($reqrow = mysql_fetch_assoc($reqresult)) {
echo "<tr>";
echo "<td>Requested by "

. $reqrow['username'] . "</td>";
echo "<td>" . $reqrow['reasons'] . "</td>";
echo "<td><a href='" . $SCRIPT_NAME

. "?func=accept&id=" . $reqrow['id'] . "'>Accept</td>";
echo "<td><a href='" . $SCRIPT_NAME

. "?func=deny&id=" . $reqrow['id'] . "'>Deny</td>";
echo "</tr>";

}

echo "</table>";
echo "
";

}
}

break;

The combination of the second while inside the first while means that for each
subject, the ownership requests will be grouped in a table. This makes choosing the
best request much easier.

The accept Block
Accepting an ownership request involves three steps:

■ The user is sent an email to indicate she has been chosen as the new subject
owner.

■ The subjects table is updated with the id of the new owner.

■ All entries in the mod_subown table for that particular subject are deleted.
This ensures any competing applications for ownership are removed.

Add the following code:

372 Practical PHP and MySQL

}
break;

case "accept":

$validid = set_validid();
$sql = "SELECT mod_subowner.sub_id, subjects.subject,

users.id AS userid, users.username, users.email FROM
mod_subowner INNER JOIN subjects ON
mod_subowner.sub_id = subjects.id LEFT JOIN users ON
mod_subowner.user_id = users.id WHERE mod_subowner.id = "
. $validid . ";";

$result = mysql_query($sql);
$row = mysql_fetch_assoc($result);
$numrows = mysql_num_rows($result);

This query selects the subject id, subject name, user id, username, and email
address that correlate to the subject id and owner id in the mod_subown table. This
query involves two joins. The first join connects the mod_subowner and subjects
tables, and the second join connects the mod_subowner and users tables.

To send the email, the same technique from the Auctions project covered in
Chapter 7 is used. First, copy the array variables into some normal variables to add
the information to the body of the email:

$numrows = mysql_num_rows($result);

$mail_username = $row['username'];
$mail_email = $row['email'];
$mail_subject = $row['subject'];

Construct the email using heredoc syntax:

$mail_subject = $row['subject'];

$mail_body=<<<_MESSAGE_

Hi $mail_username,

I am pleased to inform you that you have been accepted as the new
owner of the '$mail_subject' subject.

When you next log into '$config_sitename' you will see the subject
in your Control Panel.

Kind regards,

$config_sitename Administrator

MESSAGE;

373CHAPTER 9 FAQ Content Management System

Use the mail() command to send the email message:

$config_sitename Administrator

MESSAGE;

mail($mail_email, "Ownership request for " . $mail_subject
. " accepted!", $mail_body);

The mail() function sends the email to the address in $mail_email, with the
subject Ownership request for <subject> accepted! and $mail_body (the here-
doc text) as the body of the message.

Update the subjects table to change the owner_id field to the id of the new owner:

mail($mail_email, "Ownership request for " . $mail_subject . "
accepted!", $mail_body);

$addsql = "UPDATE subjects SET owner_id = " . $row['userid']
. " WHERE id = " . $row['sub_id'] . ";";

mysql_query($addsql);

Finally, delete all entries in the mod_subowner table with the same subject as
the winning request:

mysql_query($addsql);

$delsql = "DELETE FROM mod_subowner WHERE sub_id = "
. $row['sub_id'] . ";";

mysql_query($delsql);

header("Location: " . $config_basedir
. "adminmodsubown.php?func=main");
break;

The deny Block
The deny block is identical to the deny block in the question moderation script:

header("Location: " . $config_basedir
. "adminmodsubown.php?func=main");
break;

case "deny":
$validid = set_validid();

require("header.php");
echo "<h1>Are you sure that you want to deny this request?</h1>";

374 Practical PHP and MySQL

echo "<p>[<a href='adminmodsubown.php?func=denyconf&id="
. $validid . "'>Yes]
[No]";
break;

This code prompts the user to confirm whether he wants to deny the request. If
the user clicks No, the page redirects to the main section; otherwise, it redirects to
the denyconf section.

The denyconf Block
To deny the ownership request, the code follows two steps:

1. Send an email to the user to let him know that his request was denied.

2. Delete the request from the mod_subowner table.

This section borrows heavily from the allow section. The code simply changes
the text of the email body that is sent and the content to be deleted:

echo "<p>[<a href='adminmodsubown.php?func=denyconf&id="
. $validid . "'>Yes]
[No]";
break;

case "denyconf":
$validid = set_validid();

$sql = "SELECT mod_subowner.sub_id, subjects.subject, users.id
AS userid, users.username, users.email FROM mod_subowner
INNER JOIN subjects ON mod_subowner.sub_id = subjects.id
LEFT JOIN users ON mod_subowner.user_id = users.id
WHERE mod_subowner.id = " . $validid . ";";

$result = mysql_query($sql);
$row = mysql_fetch_assoc($result);
$numrows = mysql_num_rows($result);

$mail_username = $row['username'];
$mail_email = $row['email'];
$mail_subject = $row['subject'];

$mail_body=<<<_MESSAGE_

Hi $mail_username,

I am writing to inform you that your request for ownership of
the '$mail_subject' subject has been declined.

Better luck next time!

375CHAPTER 9 FAQ Content Management System

Kind regards,

$config_sitename Administrator

MESSAGE;

mail($mail_email, "Ownership request for " . $mail_subject
. " denied!", $mail_body);

$delsql = "DELETE FROM mod_subowner WHERE id = " . $validid
. ";";

mysql_query($delsql);

header("Location: " . $config_basedir
. "adminmodsubown.php?func=main");
break;

With the sections complete, close the switch block and add the footer file:

header("Location: " . $config_basedir
. "adminmodsubown.php?func=main");
break;

}

require("footer.php");

?>

Removing Ownership
At some point in the future, it is likely that an owner of a subject may not have the
time or inclination to continue contributing. In this case, you want to ensure that an
owner can easily orphan a subject if needed.

To make this as simple as possible, in the control panel you add an option to
remove ownership, as seen in Figure 9-17.

To orphan the subject, the subject id passed to the page is used to run a
query to change the owner_id field in the subjects table to 0. Before this query
happens, however, another confirmation question is displayed to prevent any
accidents.

FIGURE 9-17
The remove ownership link
is passed the subject id.

376 Practical PHP and MySQL

The code used in this script is virtually the same as in deletesubject.php. Create
a new file called removesubown.php and add the code shown in Example 9-10.

EXAMPLE 9-10 To orphan the subject, set the owner_id field to 0.

<?php

session_start();

require("db.php");
require("functions.php");

if(!$_SESSION['SESS_USERNAME']) {
header("Location: " . $config_basedir . "login.php");

}

if(pf_check_number($_GET['subject']) == TRUE) {
$validsubject = $_GET['subject'];

}
else {

header("Location: " . $config_basedir);
}

if($_GET['conf']) {
$updsql = "UPDATE subjects SET owner_id = 0 WHERE id = " .

$validsubject . ";";
mysql_query($updsql);

header("Location: " . $config_basedir . "userhome.php");
}
else {

require("header.php");

echo "<h1>Are you sure that you want to drop this subject?</h1>";
echo "<p>[<a href='removesubown.php?conf=1&subject="

. $validsubject . "'>Yes] [No]";
}

require("footer.php");

?>

SUMMARY

Writing a CMS is no simple job, and getting this far is a real achievement in your
learning (unless of course, you jumped to this page to experience the glory without
doing any of the work). This project involved a number of different segments, and fit-
ting these together and maintaining an easy-to-use application was a real challenge.

377CHAPTER 9 FAQ Content Management System

Like design, CMSs are never finished; they are only abandoned. This project,
however, still has many features that could be implemented. To continue your
development, see if you can add the following features:

■ Content editing. Write functionality that enable users to edit subjects, topics,
and questions.

■ Inter-user messaging. It would be useful if one user could send a message to
another.

■ The capability to delete questions and comments. Extend the deletion of con-
tent to delete questions and comments.

■ The capability to merge comments into questions. When questions become
directly useful to the answer of the question, it would be useful to have an
easy-to-use system for merging comments into the main answer.

This page intentionally left blank

379

Building a Re-Usable Project
C H A P T E R 1 0

Life is increasingly difficult for Web developers. With the deluge of people getting
online and using the Internet for more and more purposes, Web developers have
more being asked of them than ever before. This not only means a wider range of
applications are required, but also the complexity of the development is growing,
too. It is not uncommon for even the smallest business to have a large, complex Web
application that drives its primary business requirements.

One of the solutions to this problem is to write re-usable code. Those of you who
have been rattling around the IT industry for a few years are likely to be familiar
with the re-usable buzzword, and in many situations it does actually make sense.

The following list describes a few ways to re-use existing code in your
application:

■ PEAR. The PHP Extension and Applications Repository (PEAR) provides a
huge directory of extensions that can be easily installed and used. Each
PEAR module is written in PHP.

■ PECL. The PHP Extension Community Library (PECL) includes a range of
PHP extensions that need to be compiled. These extensions offer entirely
new functionality to PHP and are very fast.

■ Other pre-built applications. Many people release zipped-up projects that
can be unzipped into your Web application to satisfy some specific function-
ality. An example of this is the Magpie RSS parser.

In this chapter, you will write an application that is designed to be dropped into
existing Web sites. Along the way, you will explore the plethora of challenges that
comes with writing software that is easy to install, re-use, and implement.

380 Practical PHP and MySQL

PROJECT OVERVIEW

For many developers, it is not uncommon to write little tools that solve very specific
tasks. These small tools often don’t warrant their own SourceForge account or even
a complex project management system such as Trac (http://www.edgewall.com/
trac/). Instead, the ideal solution includes a simple means to download the program
and view screenshots. To satisfy these requirements, you will create the phphome-
project tool. Oh, the power.

When viewing a project inside the application, users will be able to view the
following:

■ Available projects.

■ The range of versions and download releases inside each version.

■ Screenshots.

These are the core features that the majority of Web surfers look for when
exploring software.

To make the application re-usable, some thought needs to go into how it works
and how easy it is to set up. It is difficult, if not impossible, to write a re-usable
application without first sitting down and getting a strong idea of how the different
pieces fit together.

The basic concept in this application is that each project has its own project
directory (such as www.foo.com/projects/myproject/ or www.foo.com/projects/
myotherproject/). The site administrator creates these project directories manually.

When a new project is created, two actions occur:

■ The new project is added to the database.

■ The project directory is created and populated with the files for viewing and
maintaining the content.

To be as flexible as possible, it should be very simple to drop this application
into an existing Web site—as simple as including a single file into a normal Web
page (such as <?php require("thisapp.php"); ?>). But how do you cram all the
functionality into a single page without it becoming horrifically complex and
bloated?

The solution to the problem is shown in Figure 10-1.

To best explain this process, the following list what happens from the moment
the user accesses the Web site:

■ The user accesses the www.mysite.com/projects/myproject/ Web address, and
the index.php file is loaded. Between the header and footer files, a file called
project-main.php is included.

www.foo.com/projects/myproject/
www.foo.com/projects/myotherproject/
www.foo.com/projects/myotherproject/
www.mysite.com/projects/myproject/
http://www.edgewall.com/trac/
http://www.edgewall.com/trac/

381CHAPTER 10 Building a Re-Usable Project

index.php

project-main.php

Browser

download.php

index.php

download.php

project-main.php
• Downloads
• Screenshots

FIGURE 10-1 Embedding pages inside pages promotes
re-usability.

■ The project-main.php files checks to see if a func GET variable exists. If so, a
switch statement includes the relevant file. If the user clicks the Download
link, for example, func=download is appended as a GET variable.

■ Inside the switch statement in project-main.php, the relevant file is included.
In the case of func=download, download.php is included; it contains the code
to display the available downloads.

With the main index.php file including project-main.php, which in turn includes
a file such as download.php, the eventual download functionality is displayed to the
user in the index.php file. This makes it easier to spread the features across differ-
ent pages, and the URL looks clean and consistent.

BUILDING THE DATABASE

The database you will create is shown in Figure 10-2.

A project inside the application lives in homeproject_projects. Releases of the
project are organized in versions (stored in homeproject_releaseversions), and the
actual releases (the downloaded files) are described in homeproject_releasefiles.
Each entry in homeproject_releasefiles refers to its parent version from homeproject_
releaseversions. In addition to the parent version, a release file also stores the type

382 Practical PHP and MySQL

homeproject_screenshots
id

project_id
name

homeproject_releaseversions
id

project_id
version

homeproject_releasefiles
id
type_id
date
version_id
filename

homeproject_releasetypes
id
type

homeproject_projects
id

name
about

pathname

FIGURE 10-2 The database is fairly straightforward.

N O T E
Making Your Tables Stand Out

The reusable component uses the same database as the application that is
hosting it. To indicate which tables are which, each table in the reusable
component project uses the prefix homeproject_. This is an intentional
choice so that when this application is deployed in an existing Web site, the
tables that are part of the application can be identified easily. As an exam-
ple, take a look at the following list of tables:

■ admins

■ customers

■ blogentries

■ homeproject_projects

■ homeproject_releaseversions

You can quite easily identify which tables are part of the application.

of release (such as a Debian Package, RPM, Windows ZIP, Mac OS X disk image,
and so on) from the homeproject_releasetypes table. Finally, thehomeproject_
screenshots table stores the names of the screenshots for each release.

383CHAPTER 10 Building a Re-Usable Project

Implementing the Database
Start phpMyAdmin. Create a new database called phphomeproject and add the fol-
lowing tables:

The homeproject_projects Table
■ id. Make this an MEDIUMINT and turn on auto_increment. Set this field as a

primary key.

■ name. Make this a VARCHAR with a length of 100.

■ about. Make this a TEXT.

■ pathname. Make this a VARCHAR with a length of 30.

The homeproject_releaseversions Table
■ id. Make this an INT and turn on auto_increment in the Extras column. Set

this field as a primary key.

■ project_id. Make this an INT.

■ version. Make this a VARCHAR and set the size to 20.

The homeproject_releasetypes Table
■ id. Make this a TINYNT and turn on auto_increment. Set this field as a Pri-

mary Key.

■ type. Make this a VARCHAR and set the size to 20.

The homeproject_releasefiles Table
■ id. Make this an INT (there could be lots of questions) and turn on

auto_increment. Set this field as a primary key.

■ type_id. Make this an TINYINT.

■ date. Make this a DATETIME.

■ version_id. Make this an INT.

■ filename. Make this a VARCHAR with a length of 50.

The homeproject_screenshots Table
■ id. Make this an INT (there could be lots of subjects) and turn on

auto_increment. Set this field as a primary key.

■ project_id. Make this an INT.

■ name. Make this a VARCHAR with a length of 50.

384 Practical PHP and MySQL

NAME ABOUT PATHNAME

My Project This is an example project that demon-
strates how a project is managed inside
this re-usable project management
application.

myproject

TABLE 10-1 This table contains the main project details.

PROJECT_ID VERSION

1 0.1

1 0.2

TABLE 10-2 Because a version number could have multiple releases, store the
version numbers in a dedicated table.

Inserting Sample Data
With a solid set of tables ready to go, you can now add some sample data. Remem-
ber, do not fill in a number in the id column, which auto_increment does for you
automatically. Feel free to add your own sample data, or use the suggested informa-
tion described in the following sections.

Sample Data for the homeproject_projects Table
Add a project such as the one shown in Table 10-1.

The pathname field provides a unique string to refer to the project. This is
used in a few parts of the Web application—most notably in the URL, such as
localhost/sites/homeproject/<pathname>/.

Sample Data for the homeproject_releaseversions Table
Add version numbers as shown in Table 10-2.

Sample Data for the homeproject_releasetypes Table
Add three records, using the following names:

■ Tarball

■ Debian Package

■ Windows ZIP

385CHAPTER 10 Building a Re-Usable Project

Sample Data for the homeproject_releasefiles Table
Add two records to this table, using the correct version_id and type_id. The file-
name field should contain the name of the release file (such as myrelease.tar.gz).
When you later create the releases directory, remember to place a file in the direc-
tory with the same filename.

Sample Data for the homeproject_screenshots Table
Add a few records into the table, using the correct project_id. The name field should
contain the name of the screenshot (such as myscreenshot.png). When you create the
screenshots directory later, remember to include images with the same name.

USING DIRECTORIES INTELLIGENTLY

Unlike previous projects in the book, phphomeproject makes extensive use of
directories to determine specific types of functionality. The project has three main
directories: base, admin, and project.

The base directory, such as www.mysite.com/projects, is the base projects
directory on the Web site. This directory contains the different files that form
phphomeproject. This directory also includes an index.php file, which lists the proj-
ects on the server so that the user can select which project to view.

A project directory, such as www.mysite.com/projects/myproject, is a subdirec-
tory inside the base directory. This directory contains a single index.php file (which
includes the files from the base directory, as shown in Figure 10-1). The project
also contains two subdirectories: releases (which stores software releases) and
screenshots (which stores screenshots).

The admin directory is the directory the site administrator uses to adjust project
settings. This directory is also found within the base directory, such as
www.mysite.com/projects/admin, and contains a number of files for managing the site.

Creating the Directories
First, create the base directory and call it homeproject. Then create the admin
subdirectory.

For each project you also need to create a subdirectory inside homeproject. The
name of the directory should be the same as the pathname field in the homeproject_
projects table. If you added the My Project record as was done in this example, cre-
ate a directory called myproject. Inside myproject create the releases and screen-
shots subdirectories. Be sure that both releases and screenshots have write access to
them.

www.mysite.com/projects
www.mysite.com/projects/myproject
www.mysite.com/projects/admin

Parent
|
|
-----Subdir1
|
-----Subdir2
 |
 |
 -----Subsubdir1
 |
 -----Subsubdir2

N O T E
A Quick Reminder…

When you added data to the tables, you also added some release and
screenshot records. Remember to add these files and screenshots to the
releases and screenshots directories, respectively.

386 Practical PHP and MySQL

You should now have the following directories:

homeproject

admin

myproject

releases

screenshots

STARTING TO CODE: BUILDING THE BACKBONE

Developing phphomeproject requires two core areas:

■ Viewable project information. This is the area that Web site visitors see. Visi-
tors can view project information, downloads, and screenshots.

■ Project administration. This is the interface for configuration projects; only
the site administrator accesses this interface.

In this project, you will implement the project viewing area first and then move
on to create the administration area. Before you begin, you will create some of the
structural files (configuration file, functions, and so on).

Because this project is available as a re-usable component, you should use
a separate configuration file for the settings specific to the project. Inside the
homeproject directory, create phphomeproject.php and then add the code shown in
Example 10-1.

387CHAPTER 10 Building a Re-Usable Project

EXAMPLE 10-1 The configuration file is separate from the main configura-
tion file of your Web site.

<?php

$dbhost = "localhost";
$dbuser = "root";
$dbpassword = "";
$dbdatabase = "phphomeproject";

$config_headerfile = "http://localhost/sites/homeproject/header.php";
$config_footerfile = "http://localhost/sites/homeproject/footer.php";

$config_projecturl = "http://localhost/sites/homeproject/";
$config_projectdir = "/opt/lampp/htdocs/sites/homeproject/";

$config_projectadminbasedir =
"http://localhost/sites/homeproject/admin/";
$config_projectadminfilename = "admin.php";

$config_projectscreenshotthumbsize = 300;
?>

In addition to the normal database settings, this configuration file includes a
number of other options:

■ $config_headerfile and $config_footerfile. The location of the header
and footer files in the Web application.

■ $config_projecturl. The URL where you can find phphomeproject.

■ $config_projectdir. The directory that includes phphomeproject. Use this
directory when copying new releases and screenshots to the releases and
screenshots directories.

■ $config_projectadminbasedir. The location of the admin directory.

■ $config_projectadminfilename. The name of the file (such as admin.php)
used to access the admin functionality.

■ $config_projectscreenshotthumbsize. The width to which thumbnails
should be set when viewing screenshots.

It is important to remember that you are developing phphomeproject in a sepa-
rate directory, which is independent of an existing Web site. When phphomeproject
is deployed in an application, these settings need to be changed to reflect the exist-
ing site (for example, changing $config_projecturl to http://www.mysite.com/proj-
ects/). You will deploy the site later in the chapter.

http://www.mysite.com/projects/
http://www.mysite.com/projects/

388 Practical PHP and MySQL

Accessing the Database
In the base directory (phphomeproject), create db.php and add the connection code
shown in Example 10-2.

EXAMPLE 10-2 This file is no different from other projects.

<?php

require("phphomeprojectconfig.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

?>

Creating the Functions
This project uses two custom functions in addition to pf_fix_slashes() and
pf_check_number() from previous projects. In the base directory, create a new file
called functions.php and add the configuration file:

<?php

require("phphomeprojectconfig.php");

Add pf_protect_nonadmin_page():

require("phphomeprojectconfig.php");

function pf_protect_nonadmin_page() {
if(basename($_SERVER['SCRIPT_NAME']) != "index.php") {

echo "<h1>Error</h1>";
echo "You cannot access this page directly. Please go to the

main project pages directly.";
exit;

}
}

The pf_protect_nonadmin_page() function protects individual pages from
direct access. If you refer to Figure 10-1, you can see that a page such as down-
load.php is included in project-main.php, which is in turn included in index.php.
Naturally, you don’t want users to access download.php directly. This function sim-
ply checks to see if the name of the current page is different from index.php. If so,
an error is displayed. Currently, this function is hard coded to index.php, so you
might want to adjust this code to work with files not called index.php.

389CHAPTER 10 Building a Re-Usable Project

N O T E
Understanding Variable Scope

Variable scope is a problem that confuses many newcomers to a language.
The basic concept is that a variable is accessible within the scope of what-
ever block in which it was created. This is fine in most scripts because the
variable was created outside of a function and is therefore accessible by
anything.

When you use a function, however, only the function knows about the vari-
able created inside it. To access the variable outside the function, you need
to add this line before you use it:

global <variablename>

The variable is now accessible.

Use a similar technique to protect the admin pages:

exit;
}

}

function pf_protect_admin_page() {
global $config_projectadminfilename;

if(basename($_SERVER['SCRIPT_NAME'])
!= $config_projectadminfilename) {

echo "<h1>Error</h1>";
echo "You cannot access this page directly. Please

go to the admin pages directly.";
exit;

}
}

The only difference here is that the function checks what the name of the admin
page is set to. You can’t assume that the admin page should be called index.php,
because the index.php file in an admin directory may administer a different part of
the site. To solve this problem, the function refers to the $config_projectadmin-
filename setting in the configuration file.

The first line of the function uses the global keyword to access a variable out-
side the scope of the function, and the variable is checked in the if statement.

Add the functions you already know and love:

390 Practical PHP and MySQL

exit;
}

}

function pf_fix_slashes($string) {
if (get_magic_quotes_gpc() == 1) {

return($string);
}
else {

return(addslashes($string));
}

}

function pf_check_number($value) {
if(isset($value) == FALSE) {

$error = 1;
}

if(is_numeric($value) == FALSE) {
$error = 1;

}

if($error == 1) {
return FALSE;

}
else {

return TRUE;
}

}

?>

The Main Project
Jump to a project’s directory (such as the myproject directory) and from the code in
Example 10-3, create index.php.

EXAMPLE 10-3 This file loads in project_main.php, which manages which fea-
tures are loaded.

<?php
$project = substr(dirname($SCRIPT_NAME),

strrpos(dirname($SCRIPT_NAME), "/") + 1);

require("../phphomeprojectconfig.php");
require("../project_bar.php");

require("../project_main.php");

?>

391CHAPTER 10 Building a Re-Usable Project

N O T E
Deploying phphomeproject

The site administrator uses the phphomeproject file to deploy phphome-
project inside an existing Web application. The admin simply includes
project_bar.php in the side menu bar code (such as bar.php in previous proj-
ects) and then includes project_main.php in the main body of the page.

The first line in this file grabs the name of the current project. To do this, the
project path name is cut out of the URL (for example, cutting out myproject from
www.mysite.com/projects/myproject/). This can be used later to gather information
about the project.

Three files are then included: the main configuration file (phphomeprojectcon-
fig.php), the menu options (project_bar.php), and the main application page (project_
main.php). These files are accessed from the preceding directory by including the
prefix ../ with each file.

In the next sections, you will create the files that you have just included.

Viewing Menu Options
Create project_bar.php and add the menu options with the code in Example 10-4.

EXAMPLE 10-4 This file can be deployed in an existing design to display the
menu anywhere easily.

<h1>Options</h1>

Home
Download
Screenshots

This file contains a simple unordered list with the different options. Each
option links to index.php but passes a different setting to the func GET variable.
This variable is processed by project_main.php, and the relevant functionality is
displayed.

www.mysite.com/projects/myproject/

392 Practical PHP and MySQL

Accessing the Project’s Features
When a user clicks one of the menu options, project_main.php acts the middleman,
pulls off the func variable, and serves the correct page.

To do this, func is run through a switch statement. The switch provides case

blocks for the different options available. If no func variable is present, or if func
contains something that a case block does not satisfy, the default block is executed.

Create project_main.php in the base directory and begin adding the code:

<?php
require("db.php");

$projsql = "SELECT * FROM homeproject_projects WHERE
pathname = '" . $project . "';";
$projresult = mysql_query($projsql);
$projrow = mysql_fetch_assoc($projresult);

Here you run a query to select any projects in which pathname is equal to the
directory name held in $project ($project was created in index.php).

Set up the variables:

$projrow = mysql_fetch_assoc($projresult);

$project_id = $projrow['id'];
$project_name = $projrow['name'];

Two variables (user later) are created to store the project id and name.

Open the switch and add the first case block:

$project_name = $projrow['name'];

switch($_GET['func']) {
case "download":

require("download.php");
break;

If the user clicks the Download link, func is set to download and the block is
executed. The download.php page is included inside the block.

Add a similar block for the Screenshots link:

break;

case "screenshots":
require("screenshots.php");

break;

393CHAPTER 10 Building a Re-Usable Project

FIGURE 10-3 The rather uninteresting design can be replaced when the applica-
tion is deployed in an existing site with its existing design.

Add the default block that catches any other situation:

break;

default:
$sql = "SELECT * FROM homeproject_projects

WHERE pathname = '" . $project . "';";
$result = mysql_query($sql);
$row = mysql_fetch_assoc($result);

echo "<h1>" . $row['name'] . "</h1>";
echo "<p>" . $row['about'] . "</p>";

break;

You construct a query that returns the project and then simply prints the name
of the project and displays the description.

Finally, close the switch:

break;

}
?>

When you view My Project, you should be presented with a vision not vastly
different from the one shown Figure 10-3.

DOWNLOADING RELEASES

Releases are by far the most important aspect in a software project. If your releases
are difficult to access, unstable, or unusable, it is unlikely that many people will
bother to download and use them.

The application manages releases in a very simple way, as shown in Figure 10-4.

394 Practical PHP and MySQL

FIGURE 10-4
Accessing releases is
simple.

The releases are grouped by version numbers, and each available download is
displayed as one of the different types of packages (Tarball, Debian Package, Win-
dows ZIP, and so on).

Create download.php and begin adding the code:

<?php
require("project_functions.php");
pf_protect_nonadmin_page();

You first include the project_functions.php file and then use pf_protect_
nonadmin_page() to protect the page from direct use.

Run a query to grab the release versions:

pf_protect_nonadmin_page();

$versql = "SELECT * FROM homeproject_releaseversions WHERE
project_id = " . $project_id . " ORDER BY id DESC;";

$verresult = mysql_query($versql);

echo "<h1>Download</h1>";

In this case, you ask for all versions in which the id field matches $project_id
(set in project_main.php) and then order the results in descending (reverse) order.
You use descending order because it is likely that the most recently added versions
are the latest versions.

Iterate through each version, displaying the version number as you go:

echo "<h1>Download</h1>";

while($verrow = mysql_fetch_assoc($verresult)) {
echo "<h2>" . $verrow['version'] . "</h2>";

395CHAPTER 10 Building a Re-Usable Project

Run a query to gather the releases for each version:

echo "<h2>" . $verrow['version'] . "</h2>";

$relsql = "SELECT homeproject_releasefiles.filename,
homeproject_releasefiles.date, homeproject_releasetypes.type FROM
homeproject_releaseversions INNER JOIN homeproject_releasefiles ON
homeproject_releasefiles.version_id = homeproject_releaseversions.id
INNER JOIN homeproject_releasetypes ON
homeproject_releasefiles.type_id = homeproject_releasetypes.id WHERE
homeproject_releaseversions.id = " . $verrow['id'];

$relresult = mysql_query($relsql);
$relnumrows = mysql_num_rows($relresult);

This query performs two inner joins, connecting the homeproject_releaseversions
table to the homeproject_releasefiles table and then to the homeproject_releasetypes
table. The query returns the filename, date, and type of the release.

Display the results:

$relnumrows = mysql_num_rows($relresult);

echo "";

if($relnumrows == 0) {
echo "No releases!";

}
else {

while($relrow = mysql_fetch_assoc($relresult)) {
echo "<a href='releases/"

. $relrow['filename'] . "'>Download the " . $relrow['type']

. " (<i>Released " . date("D jS F Y g.iA",
strtotime($relrow['date'])) . "</i>)";

}
}

If the query returns no rows, No releases! is displayed. Otherwise, each
release is displayed as a link to the file in the releases subdirectory.

Finally, close the unordered list and the version while:

}
}

echo "";
}

?>

396 Practical PHP and MySQL

VIEWING SCREENSHOTS

If the user clicks the Screenshots link, the func GET variable contains screenshots
and screenshots.php is loaded into project_main.php.

Create screenshots.php and add the code shown in Example 10-5.

EXAMPLE 10-5 Displaying screenshots is as simple as iterating through the
query results.

<?php
require("project_functions.php");
pf_protect_nonadmin_page();

$sql = "SELECT * FROM homeproject_screenshots WHERE
project_id = " . $project_id . ";";

$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

echo "<h1>" . $project_name . " Screenshots</h1>";
if($numrows == 0) {

echo "No screenshots!";
}
else {

while($row = mysql_fetch_assoc($result)) {
echo "<img

src='./screenshots/" . $row['name'] . "' width='" .
$config_projectscreenshotthumbsize . "'>";

echo "

";
}

}
?>

The first few lines protect the file from direct access (as you did earlier) and
then a query gathers all screenshots for the current project. A check is made to see
if any rows were returned. If none came back, No screenshots! is displayed; other-
wise, the images are listed. Each image displays at the width set in $config_pro-
jectscreenshotthumbsize and links to the full-size image.

With a couple of screenshots available, you should see something similar to
Figure 10-5 in your browser.

397CHAPTER 10 Building a Re-Usable Project

FIGURE 10-5 Screenshots are reduced in size visually to fit
more on the page.

AVAILABLE PROJECTS VIEWER

So far in your development, the user needs to specify the pathname of the project so
that he can go to www.mysite.com/projects/<projectname> to view it. It would be
useful to provide a simple page that sits in the www.mysite.com/projects/ directory
to display a list of projects available for viewing.

Create index.php in the directory and add the code shown in Example 10-6.

EXAMPLE 10-6 This page is a useful starting point for showcasing
your projects.

<?php

require("phphomeprojectconfig.php");

if(file_exists($config_headerfile)) {
include($config_headerfile);

}

require("db.php");

echo "<h1>Projects</h1>";
echo "<p>I have created the following project(s):</p>";

www.mysite.com/projects/
www.mysite.com/projects/

398 Practical PHP and MySQL

N O T E
Checking If a File Exists

The file_exists() function is used to check if header/footer files exist at
the location specified in the project configuration file (phphomeproject.php).
If they do exist, they are included.

Remember throughout this project that you are not assuming that
header/footer files exist; as such, you need to check their availability.

$projsql = "SELECT * FROM homeproject_projects;";
$projresult = mysql_query($projsql);

while($projrow = mysql_fetch_assoc($projresult)) {
echo "<h2>" . $projrow['name'] . "</h2>";
echo "<p>" . $projrow['about'] . "</p>";
echo "<p>• <a href='" . $config_projecturl . "/"

. $projrow['pathname'] . "'>View this project</p>";
}

if(file_exists($config_headerfile)) {
include($config_footerfile);

}
?>

The code performs a query to gather all available projects and then displays the
name of each project as well as some information and a link to the project informa-
tion page. The URL to the project page is constructed by concatenating the pro-
jectname and $config_projecturl variables.

ADMINISTERING PROJECTS

With the viewing of projects complete, you can now focus on creating the ability to
administer a project. These administration pages are similar to previous projects in
the book—a series of Web forms that add information to the database.

Before you begin, create an admin directory inside the main project directory.
All of the administration files are created in this new directory.

Create a new file called admin.php and then add the huge amount of code
shown in Example 10-7.

399CHAPTER 10 Building a Re-Usable Project

N O T E
Dealing with Header Files

In this project, there has been no assumption that header/footer files exist.
Although they have no impact on the code if unavailable, when they do
exist, the header redirects are a little tricky.

If you were to include the header file before you include project_admin.php in
admin.php and then click the Downloads link, an error would occur. This
happens when you have added the download and as such the page tries to
redirect.

To manage this problem, include the header file in the individual blocks in
project_admin.php.

EXAMPLE 10-7 OK, I was lying about the huge amount of code....

<?php

require("project_admin.php");

?>

This file simply includes the project_admin.php file. In the previous sections,
you included project_main.php and then used that file as a middleman to manage
which files are loaded for which menu options. The same technique is used here.

Create project_admin.php and start adding the code:

<?php

session_start();

require("../phphomeprojectconfig.php");
require_once("../project_functions.php");

pf_protect_admin_page();

require("../db.php");

You first include the config, functions, and database settings and then protect
the page.

400 Practical PHP and MySQL

Add a few functions that are specific to the page:

require("../db.php");

function menu_options() {
$projsql = "SELECT * FROM homeproject_projects WHERE

id = " . $_SESSION['SESS_PROJECTID'] . ";";
$projresult = mysql_query($projsql);
$projrow = mysql_fetch_assoc($projresult);

echo "<p>";
echo "" . $projrow['name'] . "

Administration";
echo "
";
echo "<a href='" . $SCRIPT_NAME

. "?func=general'>General";
echo " • ";
echo "<a href='" . $SCRIPT_NAME

. "?func=downloads'>Manage Downloads";
echo " • ";
echo "

Add New Project";
echo " • ";
echo "<a href='" . $SCRIPT_NAME

. "?func=screenshots'>Manage Screenshots";
echo " • ";
echo "<a href='" . $SCRIPT_NAME

. "?func=changeproject'>Admin Another Project";
echo "</p>";

}

This function simply displays the admin menu options. When a user clicks an
option, such as the General option, the resulting page is loaded. This page has two
functionalities: displaying the form and then processing it. For most pages that
process a form, the page should redirect when the processing is complete. If the
menu options are displayed, the page cannot redirect because content has already
been sent and you are treated to the delightful “headers already sent” error message.

To solve this problem, the menu options are dropped into the menu_options()

function, and the function is used when a form is not being processed. Each menu
option in the function simply passes the func GET variable the relevant case

block name.

Add a second function:

echo "</p>";
}

401CHAPTER 10 Building a Re-Usable Project

function include_header() {
global $config_headerfile;
if(file_exists($config_headerfile)) {

include($config_headerfile);
}

}

The function checks if $config_headerfile points to a legitimate file and then
includes it if the file exists. This function is used in the different blocks inside the
switch later. This function avoids the same problem of content already being sent
when the page redirects.

In addition to the func GET variable, the id GET variable is used when choos-
ing which project to administer. Validate this variable:

}
}

if($_GET['id']) {
if(is_numeric($_GET['id']) == TRUE) {
$validid = $_GET['id'];

}
else {

header("Location: " . $config_projecturl);
}

}

Begin processing func:

}
}

switch($_GET['func']) {

For the user to be able to edit the general settings, use the following block:

switch($_GET['func']) {

case "general":
include_header();
menu_options();
require("project_admingeneral.php");
exit;

break;

In this block, the header file and menu is added and then the project_
admingeneral.php is included.

402 Practical PHP and MySQL

Add the downloads block:

break;

case "downloads":
if(!$_POST) {

include_header();
menu_options();

}

require("project_admindownloads.php");
break;

Here a check is made to see if any POST variables are present ($_POST vari-
ables indicate the form has been submitted). If the form has not been submitted
(no POST variables are present), the header file and menu options are added. As
such, if the form is submitted, the header/menu are not posted so that the page can
redirect.

Add the new project block:

break;

case "newproject":
if(!$_POST) {

include_header();
}
require("project_adminnewproject.php");

break;

Add the block for deleting releases:

break;

case "deleterelease":
if(isset($_GET['conf']) == FALSE) {

include_header();
menu_options();

}
require("project_admindeleterelease.php");

break;

The project_admindeleterelease.php page that is loaded here does not include a
form to delete a release. The user is instead asked a confirmation question. If she
responds with yes, the conf GET variable is added to the URL. As such, the header
file and menu should be displayed only when there is no conf GET variable.

Add the screenshots block:

403CHAPTER 10 Building a Re-Usable Project

break;

case "screenshots":
if(!$_POST) {

include_header();
menu_options();

}
require("project_adminaddscreenshot.php");

break;

Add the delete screenshots block:

break;

case "deletescreenshot":
if(isset($_GET['conf']) == FALSE) {

include_header();
menu_options();

}
require("project_admindeletescreenshot.php");

break;

If no legitimate setting was passed to the func GET variable, the default

block is entered. This code asks the user which project she would like to
administer.

When a user has selected a project, the SESS_PROJECTID and SESS_PROJECTPATH

session variables are created. These variables track the project in which the user is
interested. First, check to see if SESS_PROJECTID is already set and a project already
chosen:

break;

default:
if($_SESSION['SESS_PROJECTID']) {

header("Location: " . $config_projectadminbasedir
. basename($SCRIPT_NAME) . "?func=main");

}

If the variable exists, the page simply redirects to the main block. If the variable
does not exist, ask the user to choose a project:

header("Location: " . $config_projectadminbasedir
. basename($SCRIPT_NAME) . "?func=main");

}
else {

include_header();
echo "<h1>Choose a project</h1>";
echo "<p>Which project would you like to administer?</p>";

404 Practical PHP and MySQL

$projsql = "SELECT * FROM homeproject_projects;";
$projresult = mysql_query($projsql);
$projnumrows = mysql_num_rows($projresult);

Here you perform a query to gather the available projects.

Check if any rows were returned:

$projnumrows = mysql_num_rows($projresult);

if($projnumrows == 0) {
echo "<p>No projects!</p>";

}

If no rows are returned, there are no projects on the system. If projects exist,
display them to the user:

echo "<p>No projects!</p>";
}
else {

echo "";

while($projrow = mysql_fetch_assoc($projresult)) {
echo "<a href='" . $SCRIPT_NAME

. "?func=setproject&id=" . $projrow['id'] . "'>" . $projrow['name']

. "";
}
echo "";

}

Each project links to the setproject block and passes the id of project as the
id GET variable.

If the user wants to create a new project, add a link to do so:

echo "";
}

echo "
Create a new project";

}
break;

}

Add the setproject block:

break;
}

case "setproject":
$pathsql = "SELECT * FROM homeproject_projects WHERE id = "

. $validid . ";";

405CHAPTER 10 Building a Re-Usable Project

$pathresult = mysql_query($pathsql);
$pathrow = mysql_fetch_assoc($pathresult);

session_register("SESS_PROJECTID");
session_register("SESS_PROJECTPATH");

$_SESSION['SESS_PROJECTID'] = $validid;
$_SESSION['SESS_PROJECTPATH'] = $pathrow['pathname'];

header("Location: " . $config_projectadminbasedir
. basename($SCRIPT_NAME) . "?func=main");

break;

Here a query returns the record from homeprojects_projects, with the id passed
in the id GET variable. The session variables are then created, and the page redi-
rects to the main block.

Add the changeproject block:

break;

case "changeproject":
session_destroy();
header("Location: " . $config_projectadminbasedir

. basename($SCRIPT_NAME));
break;

When the user clicks the Admin Another Project option, the session is destroyed
and the page redirects to allow another project to be chosen.

Finally, add the main block:

break;

case "main":
include_header();
$projsql = "SELECT * FROM homeproject_projects WHERE id = "

. $_SESSION['SESS_PROJECTID'] . ";";
$projresult = mysql_query($projsql);

$projrow = mysql_fetch_assoc($projresult);
echo "<h1>" . $projrow['name'] . " Administration</h1>";

menu_options();
exit;

break;

This code simply displays the name of the project to be administered.

406 Practical PHP and MySQL

CHANGING GENERAL SETTINGS

Every project in the application includes some simple general settings. These
include the project name, pathname, and description. This page provides a form
with the existing details filled in and then updates the database entry.

Create project_admingeneral.php and add the code shown in Example 10-8.

EXAMPLE 10-8 This page is your common-or-garden form and database
script.

<?php
require_once("../project_functions.php");
pf_protect_admin_page();

$sql = "SELECT * FROM homeproject_projects WHERE id = "
. $_SESSION['SESS_PROJECTID'] . ";";
$result = mysql_query($sql);
$row = mysql_fetch_assoc($result);

if($_POST['submit']) {
$updsql = "UPDATE homeproject_projects SET"

. " name = '" . pf_fix_slashes($_POST['name']) . "'"

. ", about = '" . pf_fix_slashes($_POST['about']) . "'"

. ", pathname = '" . pf_fix_slashes($_POST['pathname']) . "'"

. " WHERE id =" . $_SESSION['SESS_PROJECTID'] . ";";
mysql_query($updsql);
echo "<h1>Updated</h1>";
echo "Project settings have been updated.";

}
else {

?>
<h1>Project Information</h1>
<form action="<?php echo $SCRIPT_NAME; ?>?func=general"

method="POST">
<table>
<tr>

<td>Project Name</td>
<td><input type="text" name="name" value="<?php echo

$row['name'] ?>"></td>
</tr>
<tr>

<td>Path Name</td>
<td><input type="text" name="pathname" value="<?php echo

$row['pathname'] ?>"></td>
</tr>
<tr>

<td>Description</td>

407CHAPTER 10 Building a Re-Usable Project

FIGURE 10-6 A simple form makes it possible to change project settings.

<td><textarea name="about" rows="10" cols="50"><?php echo
$row['about'] ?></textarea></td>

</tr>
<tr>

<td></td>
<td><input type="submit" name="submit" value="Modify

details"></td>
</tr>

</table>
</form>

<?php
}

?>

The completed form should look like as shown in Figure 10-6.

MANAGING DOWNLOADS

Possibly the most important feature to administer in a project is the capability to
view the different versions and available downloads. Not only is this an essential
feature, but also it is quite complex because the same pages presents two different
types of functionality (managing versions and managing releases). Before you start
coding the page, step back and identify how the feature should work. This will
make understanding the code easier.

Administering downloads is performed in the interface shown in Figure 10-7.

408 Practical PHP and MySQL

FIGURE 10-8 The version form appears inside the interface.

FIGURE 10-9 Adding releases is as simple as clicking the link and filling in
the form.

FIGURE 10-7 A simple interface allows you to manage ver-
sions and releases in a single page.

Inside the table, you can see the version numbers, releases, and links to add a
new content. Instead of clicking a link and being directed to a different page to add
the version or release, it makes better sense to replace the link with the form. As
such, when you click the Add a New Version link, you see the result shown in Fig-
ure 10-8.

Similarly, when you click the Add a New Release link, you see the result shown
in Figure 10-9.

409CHAPTER 10 Building a Re-Usable Project

The complexity in the code does not specifically lie in difficult or complex
statements but in lots of nested blocks checking different conditions and respond-
ing accordingly. It is recommended that you add the entire code first and then
reread the instructions of how it works.

Create a new file called project_admindownloads.php and begin adding the
code. Begin by displaying the interface shown in Figure 10-7 (you can process the
forms later):

$versql = "SELECT * FROM homeproject_releaseversions WHERE
project_id = " . $_SESSION['SESS_PROJECTID'] . " ORDER BY id DESC;";

$verresult = mysql_query($versql);
$vernumrows = mysql_num_rows($verresult);

echo "<h1>Manage Downloads</h1>";

You begin by selecting all of the versions associated with the current project.
Open the table and add the first row:

echo "<h1>Manage Downloads</h1>";

echo "<table border=1 cellpadding=5>";

echo "<tr><td colspan=3>";

The first row can contain either the Add a New Version link or the form to add
the version. If the user clicks the link, an addver GET variable is sent to the page.
As such, check if this variable exists. If it does, display the form; otherwise, display
the link:

echo "<tr><td colspan=3>";

if($_GET['addver']) {
echo "<form action='" . $SCRIPT_NAME . "?func=downloads'

method='POST'>";
echo "New Release Number: ";
echo "<input type='text' name='version'>";
echo "<input type='submit' value='Add' name='versubmit'>";
echo "</form>";

}
else {

echo "
Add a New Version";

}

echo "</td></tr>";

With the first row complete, iterate through the versions. First, check if any ver-
sions were returned from the query:

410 Practical PHP and MySQL

N O T E
Get the Right Submit Button

The Submit button in the form is named versubmit. This page has two Sub-
mit buttons (one for the version and one for the releases), and you need to
be able to distinguish which one is clicked.

echo "</td></tr>";

if($vernumrows == 0) {
echo "<tr><td colspan=2>This project has no versions

or releases.</td></tr>";
}

If no rows are present, a message indicates that no versions or releases exist. If
rows are presents, display them:

echo "<tr><td colspan=2>This project has no versions
or releases.</td></tr>";

}
else {

while($verrow = mysql_fetch_assoc($verresult)) {
echo "<tr>";
echo "<td>" . $verrow['version']

. "</td>";
echo "<td>";

$relsql = "SELECT homeproject_releasefiles.id,
homeproject_releasefiles.filename, homeproject_releasefiles.date,
homeproject_releasetypes.type FROM homeproject_releaseversions INNER
JOIN homeproject_releasefiles ON homeproject_releasefiles.version_id
= homeproject_releaseversions.id INNER JOIN homeproject_releasetypes
ON homeproject_releasefiles.type_id = homeproject_releasetypes.id
WHERE homeproject_releaseversions.id = " . $verrow['id'];

$relresult = mysql_query($relsql);
$relnumrows = mysql_num_rows($relresult);

In this case, you add the version number in the first cell and then run a query to
gather the releases available for that version. This query returns the id, filename,
date, and type for each version by performing an inner join to hook together the
homeproject_releaseversions, homeproject_releasefiles, and homeproject_releasetypes
tables.

Check if any releases are returned and display them accordingly:

$relnumrows = mysql_num_rows($relresult);

if($relnumrows == 0) {

411CHAPTER 10 Building a Re-Usable Project

echo "No releases!";
}
else {

while($relrow = mysql_fetch_assoc($relresult)) {
echo "[<a href='" . $SCRIPT_NAME

. "?func=deleterelease&relid=" . $relrow['id'] . "'>X]
" . $relrow['type']
. "
";

}
}
echo "</td>";

Next to each release, an X link is added so that the user can delete a release.
This links to the deleterelease block and passes the id of the release. (This block
is discussed later.)

In the third cell, either an Add a New Release link or the form is displayed.
When the link is clicked, an addrelver GET variable is added to the address bar
that is set to the version id. If the version id for the current row is the same as the
value as addrelver, the link on the current row was clicked. As such, you need to
display the form:

echo "</td>";

echo "<td>";

if($_GET['addrelver'] == $verrow['id']) {
$typessql = "SELECT * FROM homeproject_releasetypes;";
$typesresult = mysql_query($typessql);

echo "<form action='" . $SCRIPT_NAME
. "?func=downloads&ver=" . $verrow['id'] . "' method='POST'
enctype='multipart/form-data'>";

echo "<select name='type'>";

while($typesrow = mysql_fetch_assoc($typesresult)) {
echo "<option value=" . $typesrow['id'] . ">"

. $typesrow['type'] . "</option>";
}

echo "</select>";
echo "<input type='file' name='releasefile'>";
echo "<input type='submit' value='Add'

name='relsubmit'>";
echo "</form>";

}
else {

echo "<a href='" . $SCRIPT_NAME
. "?func=downloads&addrelver=" . $verrow['id']
. "'>Add a New Release";

}

412 Practical PHP and MySQL

When the form is displayed, the select box contains a list of the types from the
homeproject_releasetypes table. The Submit button is called relsubmit so that you
can determine whether the user clicked the version or release Submit button.

Close the remaining code:

echo "<a href='" . $SCRIPT_NAME
. "?func=downloads&addrelver=" . $verrow['id']
. "'>Add a New Release";

}

echo "</td>";
echo "</tr>";

}
echo "<table>";
}

With the main interface portions complete, you can focus on processing the
form. Jump to the start of the file and begin adding the code:

<?php
require_once("../project_functions.php");
pf_protect_admin_page();

$uploaddir = $config_projectdir . $_SESSION['SESS_PROJECTPATH']
. "/releases/";

After protecting the page, you set a variable called $uploaddir. This variable
specifies the location where releases are uploaded. You want to upload files to
the releases directory inside the project directory so that you can concatenate the
$config_projectdir and SESS_PROJECTPATH variables and then add the releases

directory.

Begin processing the version form:

$uploaddir = $config_projectdir . $_SESSION['SESS_PROJECTPATH']
. "/releases/";

if($_POST['versubmit']) {
$addsql = "INSERT INTO homeproject_releaseversions(project_id,

version) VALUES("
. $_SESSION['SESS_PROJECTID']
. ", '" . $_POST['version'] . "')";

mysql_query($addsql);
header("Location: " . $config_projectadminbasedir

. basename($SCRIPT_NAME) . "?func=downloads");
}

413CHAPTER 10 Building a Re-Usable Project

This code runs an INSERT query to add the version to the database. The page
then redirects to the same page, reloading it.

Process the release form:

header("Location: " . $config_projectadminbasedir
. basename($SCRIPT_NAME) . "?func=downloads");
}

elseif($_POST['relsubmit']) {
$uploadfile = $uploaddir . basename($_FILES['releasefile']

['name']);

if(move_uploaded_file($_FILES['releasefile']['tmp_name'],
$uploadfile)) {

$addsql = "INSERT INTO homeproject_releasefiles(type_id, date,
version_id, filename) VALUES("

. $_POST['type']

. ", NOW()"

. ", " . $_GET['ver']

. ", '" . $_FILES['releasefile']['name']

. "')";
mysql_query($addsql);
header("Location: " . $config_projectadminbasedir

. basename($SCRIPT_NAME) . "?func=downloads");
}
else {

echo "Possible file upload attack!\n";
}

To process the form, you need to copy the file to the releases directory and add
the releases to the database. The $uploadfile variable adds the name of the file to
$uploaddir and then move_uploaded_file() attempts to copy the file from the tem-
porary location to the releases directory. This process works in exactly the same
way as copying image uploads (discussed in the Auction project earlier in this
book).

With the processing complete, add the else that contains the code to draw the
interface:

echo "Possible file upload attack!\n";
}

}
else {

$versql = "SELECT * FROM homeproject_releaseversions
WHERE project_id = " . $_SESSION['SESS_PROJECTID']
. " ORDER BY id DESC;";

414 Practical PHP and MySQL

Finally, close the form:

echo "<table>";
}

}
?>

DELETING RELEASES

The code for deleting releases is virtually the same as deleting content in other
projects. The only difference is that you also need to remove the file.

Create project_admindeleterelease.php and add the code shown in Example 10-9.

EXAMPLE 10-9 Deleting releases involves removing the file, removing the
database record, and then redirecting.

<?php

require_once("../project_functions.php");
pf_protect_admin_page();

if(pf_check_number($_GET['relid']) == TRUE) {
$validrelid = $_GET['relid'];

}
else {

header("Location: " . $config_projectadminbasedir);
}

if($_GET['conf']) {
$uploaddir = $config_projectdir . $_SESSION['SESS_PROJECTPATH']

. "/releases/";

$filesql = "SELECT filename FROM homeproject_releasefiles WHERE
id = " . $validrelid . ";";
$fileresult = mysql_query($filesql);
$filerow = mysql_fetch_assoc($fileresult);

$fullfile = $uploaddir . $filerow['filename'];

if(file_exists($fullfile) == TRUE) {
unlink($fullfile);

$delsql = "DELETE FROM homeproject_releasefiles WHERE id = "
. $validrelid . ";";

mysql_query($delsql);

415CHAPTER 10 Building a Re-Usable Project

N O T E
Check for Permissions

You can improve the current code by adding some error checking to see if
the file can be removed. If there are incorrect permissions, this could cause
a problem, and you might want to put up an error message.

header("Location: " . $config_projectadminbasedir
. basename($SCRIPT_NAME) . "?func=downloads");
}
else {

echo "<h1>File does not exist</h1>";
echo "The file you tried to delete does not exist.";

}

}
else {

echo "<h1>Are you sure you want to delete this release?</h1>";
echo "<p>[<a href='" . $SCRIPT_NAME

. "?func=deleterelease&conf=1&relid="

. $validrelid . "'>Yes] [<a href='"

. $SCRIPT_NAME . "?func=main'>No]";
}

?>

When the file is loaded, the user is asked to confirm that he wants to delete the
release. If he clicks Yes, the page adds the conf GET variable and links to itself.
When the page is reloaded, a check is made to see if the file exists (using
file_exists()). If the file exists, it removed using unlink(), and the record is
deleted from the database. Finally, the page redirects to the Downloads page.

MANAGING SCREENSHOTS

Managing screenshots works in a similar way to the release management—albeit
with a different interface. Those of you who have worked through the auctions proj-
ect earlier in this book will be pleased to know that the functionality is virtually
identical. As such, when working through the next few pages, you can reference the
auctions code to see how it all fits together.

The interface for adding and deleting images is simple and can be seen in
Figure 10-10.

416 Practical PHP and MySQL

FIGURE 10-10
Adding and removing images is only a
couple of clicks away.

The Browse button can be used to upload an image for the current project, and the
Delete links can be used to blitz the image if no one likes it or if you accidentally
upload pictures of your dog.

Create project_adminaddscreenshot.php and add the form:

<form enctype="multipart/form-data" action="<?php echo $SCRIPT_NAME;
?>?func=screenshots" method="POST">
<table>
<tr>

<td>Image to upload</td>
<td><input name="userfile" type="file"></td>

</tr>
<tr>

<td colspan=2><input type="submit" name="submit" value="Upload
File"></td>
</tr>
</table>
</form>

The form includes the expected browse box and a Submit button. Jump to the
start of the file and protect the page:

<?php

require_once("../project_functions.php");
pf_protect_admin_page();

Add the form-processing code:

pf_protect_admin_page();

if($_POST['submit']) {
if($_FILES['userfile']['name'] == '') {

header("Location: " . $HOST_NAME . $SCRIPT_NAME
. "?func=screenshots&error=nophoto");
}
elseif($_FILES['userfile']['size'] == 0) {

header("Location: " . $HOST_NAME . $SCRIPT_NAME
. "?func=screenshots&error=photoprob");

417CHAPTER 10 Building a Re-Usable Project

}
elseif(!getimagesize($_FILES['userfile']['tmp_name'])) {

header("Location: " . $HOST_NAME . $SCRIPT_NAME
. "?func=screenshots&error=invalid");
}
else {

$uploaddir = $config_projectdir . $_SESSION['SESS_PROJECTPATH']
. "/screenshots/";

$uploadfile = $uploaddir . $_FILES['userfile']['name'];
if(move_uploaded_file($_FILES['userfile']['tmp_name'],

$uploadfile)) {
$inssql = "INSERT INTO homeproject_screenshots(project_id,

name) VALUES(" . $_SESSION['SESS_PROJECTID'] . ", '"
. $_FILES['userfile']['name'] . "')";

mysql_query($inssql);

header("Location: " . $HOST_NAME . $SCRIPT_NAME
. "?func=screenshots");

}
else {

echo 'There was a problem uploading your file.
';
}

}
}

The code runs the uploaded image through the checks and then copies it to the
upload directory (the screenshots directory in the current project’s path). The page
finally redirects to the same page.

Add the else, but before you display the form, run a query to display the exist-
ing screenshots:

}
}

}
else {

$imagessql = "SELECT * FROM homeproject_screenshots WHERE project_id
= " . $_SESSION['SESS_PROJECTID'] . ";";

$imagesresult = mysql_query($imagessql);
$imagesnumrows = mysql_num_rows($imagesresult);
echo "<h1>Current images</h1>";

if($imagesnumrows == 0) {
echo "No images.";

}
else {

echo "<table>";
while($imagesrow = mysql_fetch_assoc($imagesresult)) {

echo "<tr>";
echo "<td><img src='" . $config_projecturl .

$_SESSION['SESS_PROJECTPATH'] . "/screenshots/" . $imagesrow['name']
. "' width='100'></td>";

418 Practical PHP and MySQL

echo "<td>[<a href='" . basename($SCRIPT_NAME)
. "?func=deletescreenshot&imageid=" . $imagesrow['id']
. "'>delete]</td>";

echo "</tr>";
}
echo "</table>";

}

Add the error checking, which is triggered when the uploaded image fails one
of the tests:

echo "</table>";
}

switch($_GET['error']) {
case "empty":

echo '<p>You did not select anything.</p>';
break;

case "nophoto":
echo '<p>You did not select a photo to upload.</p>';

break;

case "photoprob":
echo '<p>There appears to be a problem with the photo you

are uploading</p>';
break;

case "large":
echo '<p>The photo you selected is too large</p>';

break;

case "invalid":
echo '<p>The photo you selected is not a valid image

file</p>';
break;

}

?>

<form enctype="multipart/form-data" action="<?php echo $SCRIPT_NAME;
?>?func=screenshots" method="POST">

Finally, add the closing code:

</form>

<?php
}

?>

419CHAPTER 10 Building a Re-Usable Project

For a detailed explanation of image uploads, refer to the Auction project cov-
ered in Chapter 7.

DELETING IMAGES

The process of deleting images in this project works virtually identically to previous
scripts that delete items. Again, this delete code not only deletes the record from
the database, but also it removes the file.

Create project_deletescreenshot.php and add the code shown in Example 10-10.

EXAMPLE 10-10 Don’t you just love deleting stuff? Maybe it’s just me….

<?php

require_once("../project_functions.php");
pf_protect_admin_page();

if(pf_check_number($_GET['imageid']) == TRUE) {
$validimageid = $_GET['imageid'];

}
else {

header("Location: " . $config_projectadminbasedir);
}

if($_GET['conf']) {

$imagesql = "SELECT * FROM homeproject_screenshots WHERE id = "
. $validimageid;
$imageresult = mysql_query($imagesql);
$imagerow = mysql_fetch_assoc($imageresult);

unlink($config_projectdir . $_SESSION['SESS_PROJECTPATH']
. "/screenshots/" . $imagerow['name']);

$delsql = "DELETE FROM homeproject_screenshots WHERE id = "
. $validimageid;
mysql_query($delsql);

header("Location: " . $config_projectadminbaseurl
. basename($SCRIPT_NAME) . "?func=screenshots");

}
else {

continues

420 Practical PHP and MySQL

EXAMPLE 10-10 Continued.

echo "<h2>Delete image?</h2>";
echo "<form action=" . $SCRIPT_NAME . "?func=deletescreenshot'

method='post'>";
echo "<p>Are you sure you want to delete this image?</p>";
echo "<p>";
echo "<a href=" . $SCRIPT_NAME

. "?func=deletescreenshot&conf=1&imageid=" . $validimageid

. ">Yes / No";

echo "</p>";
echo "</form>";

}

?>

ADDING A NEW PROJECT

Adding a new project is as simple as displaying a form and then adding the infor-
mation to the database. Create project_adminnewproject.php and add the code
shown in Example 10-11.

EXAMPLE 10-11 Adding a new project is important when you create the next
Quake.

<?php
require_once("../project_functions.php");
pf_protect_admin_page();

if($_POST['submit']) {
$inssql = "INSERT INTO homeproject_projects(name, about,

pathname) VALUES("
. "'" . pf_fix_slashes($_POST['name'])
. "', '" . pf_fix_slashes($_POST['about'])
. "', '" . pf_fix_slashes($_POST['pathname'])
. "');";

mysql_query($inssql);
header("Location: " . $config_projectadminbasedir

. basename($SCRIPT_NAME));
}
else {

?>
<h1>New Project</h1>
<form action="<?php echo $SCRIPT_NAME; ?>?func=newproject"

method="POST">

421CHAPTER 10 Building a Re-Usable Project

<table>
<tr>

<td>Project Name</td>
<td><input type="text" name="name" value="<?php echo

$row['name'] ?>"></td>
</tr>
<tr>

<td>Path Name</td>
<td><input type="text" name="pathname" value="<?php echo

$row['pathname'] ?>"></td>
</tr>
<tr>

<td>Description</td>
<td><textarea name="about" rows="10" cols="50"><?php echo

$row['about'] ?></textarea></td>
</tr>
<tr>

<td></td>
<td><input type="submit" name="submit" value="Modify

details"></td>
</tr>

</table>
</form>

<?php
}

?>

When the form is processed, the information is added to the homeproject_
projects table.

DEPLOYING THE APPLICATION

Throughout the development of this project, the code has been developed in some-
thing of a vacuum. Sitting in its own dedicated directory, the project has not been
put to the test inside an existing Web application.

To test how easily it embeds into an existing project, copy the Generic Web site
project (from Chapter 3, “Web Site Design”) to a directory called genericwith-
projects. Now copy all of the project code to a subdirectory inside genericwith-
projects called projects.

The first step is to adjust phphomeprojectconfig.php for the new settings, as
shown in Example 10-12.

422 Practical PHP and MySQL

EXAMPLE 10-12 Change the path and URL-related settings.

<?php

$dbhost = "localhost";
$dbuser = "root";
$dbpassword = "";
$dbdatabase = "phphomeproject";

$config_headerfile =
"http://localhost/sites/genericwithprojects/header.php";
$config_footerfile =
"http://localhost/sites/genericwithprojects/footer.php";

$config_projecturl =
"http://localhost/sites/genericwithprojects/projects/";
$config_projectdir =
"/opt/lampp/htdocs/sites/genericwithprojects/projects/";

$config_projectadminbasedir =
"http://localhost/sites/genericwithprojects/projects/admin/";
$config_projectadminfilename = "admin.php";

$config_projectscreenshotthumbsize = 300;
?>

The primary lines changed in this file are the lines that refer to a path or URL.
These settings should be changed to reflect the new location.

Jump into a project directory (such as the myproject subdirectory) and edit
index.php with the code in Example 10-13.

EXAMPLE 10-13 Add the header and footer files to merge in the stylesheet
and design.

<?php

require("../../header.php");

require("../phphomeprojectconfig.php");

$project = substr(dirname($SCRIPT_NAME),
strrpos(dirname($SCRIPT_NAME), "/") + 1);

423CHAPTER 10 Building a Re-Usable Project

require("../project_main.php");

require("../../footer.php");

?>

Inside this directory, you include the header and footer files with a relative
location (../../). You use a relative location so that you can include bar.php in the
current directory. If you hard code the path of the header/footer files, the header file
would include bar.php from that directory as opposed to the current one.

In index.php you have also taken out the line that includes project_bar.php so that
you can put it in bar.php. Create bar.php from the code in Example 10-14 and add it.

EXAMPLE 10-14 Adding the menu options to the sidebar makes the project feel
more integrated.

<?php
require("../project_bar.php");

?>

The project is now set up, with very little effort. Take a look at Figures 10-11
and 10-12 to see the project in action.

FIGURE 10-11 When you deploy the project inside an existing application, the
project seamlessly integrates.

SUMMARY

Creating re-usable Web applications is a tough job. The challenge is not only in
satisfying the day-to-day tasks such security, functionality, and good program-
ming, but also in remembering at every turn that the project can work in any num-
ber of different situations. Complex projects often have to make a strong
compromise between ease of setup and ease of use, sometimes sacrificing either
or both.

Hopefully this chapter has provided a firm foundation and plenty of food for
thought for creating your own re-usable applications. With PHP and MySQL fully
ingrained in Open Source culture, it is very common to write re-usable applications
such as this one. Re-using existing code not only improves the application but also
eases the creation of large chunks of code.

424 Practical PHP and MySQL

FIGURE 10-12 The admin interface works well inside the existing design.

425

Building a News Web Site
C H A P T E R 1 1

With the rapid spread of the Internet, news has become an essential resource, read-
ily available at your fingertips. With the click of a search engine, it is possible to
expose yourself to both general and niche news that covers virtually any subject.

Although the design may seem complex at first, news sites are fundamentally
simple database-driven Web sites. News stories and categories are typically stored
in a database, and this information is formatted and presented to readers in a usable
and attractive way.

In this chapter you will create your own news site, one that is craftily con-
structed to satisfy a few core goals. This chapter aims to

■ Cement much of the fun and games covered previously in the book.

■ Help you explore the powerful PEAR framework and use one of the many
PEAR modules.

Right, then. Let’s get this show on the road….

PROJECT OVERVIEW

You may not know about it yet, but Read All About It is going to be the hottest
new news Web site—and you are, coincidentally, its founder. In this chapter, you
breathe life into Read All About It.

426 Practical PHP and MySQL

N O T E
For You XAMPP Users…

If you are using the XAMPP system, you can safely ignore this section.
XAMPP includes a range of PEAR modules, including HTML_QuickForm.

Although this project does not scratch the complexity and depth of Web sites
such as those for BBC News or CNN, a number of new concepts to explore and fea-
tures to build makes this simple site a worthwhile project:

■ Easy forms. The HTML_QuickForm PEAR extension eases the creation and
validation of forms.

■ Menus and submenus. The main navigation area includes a number of menu
options. When the user clicks a menu, submenus display with more options.

■ Search capabilities. A search feature that hunts through the content on the
site for a search term and presents a list of matches.

■ Paging. Don’t frustrate users with a huge page with hundreds of search
results; split the results across a number of different pages.

■ Password encryption. Increase site security by storing encrypted passwords
in the database. This stops people from snooping out passwords either in the
database or by using malicious trickery to sniff out plain-text passwords.

These five features develop essential skills you can bolt onto any of the projects
already covered in this book.

INSTALLING PEAR PACKAGES

The PEAR framework provides a stack of different PHP extensions that ease and
automate the production of your sites. You can find PEAR packages for Web serv-
ices, XML, validation, form handling, and tons of other areas, and the huge and
sprawling PEAR community constantly piles more and more packages into the sys-
tem every week.

The Read All About It site makes extensive use of the HTML_QuickForm PEAR
extension. This package eases how you create forms in your scripts. With the exten-
sion, you can easily create forms, apply validation rules, manage how the form is
processed, and implement various other features. Although HTML_QuickForm
needs to be installed before you begin coding, the PEAR framework is fortunately
clever enough to easily manage the installation and use of extensions.

427CHAPTER 11 Building a News Web Site

To install PEAR, you run a script for PHP that automatically downloads and
installs the framework. However, you need to download the framework before you
download the PEAR extensions you want.

Because running this script is slightly different for each operating system, this
section addresses the installation for each.

For Windows, go to the directory where you installed PHP (such as C:/PHP) and
run the following command:

PHP go-pear.org

In Linux, run the following command in a terminal or xterm (you need the Lynx
Web browser installed to do this):

foo@bar:~$ lynx –source go-pear.org | php

In Mac OS X, run the following command in the Terminal:

curl go-pear.org | sudo php

When you run each of these commands, you are prompted to answer a number
of questions. Simply use the default answer for each, including when prompted to
modify php.ini—the script should keep other parts of php.ini intact. When the
installation program is complete, the PEAR command-line tool becomes available
to manage your PEAR packages. In Windows, you may need to be inside your PHP
directory to run the command, but on Linux and Mac OS X, you should be able to
run it from anywhere. In Linux and Mac OS X, you need to be the super-user to use
the command.

Using PEAR simply involves passing different options to the pear program. As
an example, to view the installed packages on your system, run this:

pear list

If you have a number of installed packages (if you are running XAMPP with its
default set of PEAR extensions, for example), you should see something similar to
the following:

Installed packages:
===================
Package Version State
Archive_Tar 1.1 stable
Crypt_RC4 1.0.2 stable
Crypt_Xtea 1.0 stable
DB 1.6.2 stable
DBA 1.0 stable
DB_DataObject 1.2 stable
Date 1.3 stable

428 Practical PHP and MySQL

N O T E
For You XAMPP Users…

You will actually see a lot more packages if you use XAMPP. This example
here has been trimmed to save space.

cat_relate
id

parent_id
child_id

categories
id
category
parent

id
cat_id

poster_id
dateposted
subject
body

stories
id
story_id
user_id
rating

ratings

id
username
password
level

users

FIGURE 11-1 The database in this project is fairly simple.

FSM 1.2.1 stable
File 1.0.3 stable
HTML_QuickForm 3.1.1 stable
HTML_Common 1.2.1 stable
MDB 1.1.3 stable
PEAR 1.3.5 stable
PEAR_Info 1.0.6 stable
PEAR_PackageFileManager 1.0 stable
PHPUnit 0.6.2 stable
XML_Util 0.5.1 stable
XML_fo2pdf 0.98 stable
XML_image2svg 0.1 stable

To install HTML_QuickForm, run this command:

pear install –a HTML_QuickForm

You should then see two packages: HTML_QuickForm and HTML_Common. The
HTML_QuickForm package depends on HTML_Common; hence, both are installed.

You are now ready to use HTML_QuickForm. Easy, no?

BUILDING THE DATABASE

The database you will create is unveiled in Figure 11-1.

The database requirements for the project are simple. The categories table
rather predictably stores a series of categories. In this table, the parent field speci-
fies whether the category is a top-level parent field. These fields, which can contain

429CHAPTER 11 Building a News Web Site

subcategories, are displayed in the navigation bar. The cat_relate table specifies
the relationships between different categories by connecting a parent id and child
id to form the relationship. This will become clearer later in this chapter when you
add categories.

Implementing the Database
Start phpMyAdmin, create a new database called news, and add the following tables:

The categories Table
■ id. Make this a SMALLINT and turn on auto_increment in the Extras column.

Set this field a primary key.

■ category. Make this a VARCHAR and set the size to 20.

■ parent. Make this a TINYINT.

The cat_relate Table
■ id. Make this a SMALLINT and turn on auto_increment. Set this field as a pri-

mary key.

■ parent_id. Make this a SMALLINT.

■ child_id. Make this a SMALLINT.

The users Table
■ id. Make this an INT and turn on auto_increment. Set this field as a pri-

mary key.

■ username. Make this a VARCHAR and set the size to 10.

■ password. Make this a VARCHAR and set the size to 32. In this project,
passwords are encrypted to a 32-character-long value.

■ level. Make this a TINYINT.

The stories Table
■ id. Make this an INT (several questions are possible) and turn on

auto_increment. Set this field as a primary key.

■ cat_id. Make this a SMALLINT.

■ poster_id. Make this a SMALLINT.

■ dateposted. Make this a DATETIME.

■ subject. Make this a VARCHAR with a length of 50.

■ body. Make this a TEXT.

430 Practical PHP and MySQL

PARENT_ID CHILD_ID

1 3

TABLE 11-2 Only relationships between sub- and parent categories are added to
this table.

The ratings Table
■ id. Make this an INT and turn on auto_increment. Set this field as a pri-

mary key.

■ user_id. Make this an INT.

■ story_id. Make this an INT.

■ rating. Make this a TINYINT.

Inserting Sample Data
With a solid set of tables ready to go, add some sample data. Remember, do not fill
in a number in the id column; this will be handled by auto_increment. Feel free to
add your own sample data or use the suggested information.

Sample Data for the categories Table
Create the three categories shown in Table 11-1. Feel free to use your own cate-
gories if you prefer.

The parent field determines if the category is a top-level category. In this case,
there are two top-level categories (Music and Fashion) and one subcategory (Rock).

Sample Data for the cat_relate Table
This table shown in Table 11-2 contains the relationships between the sub- and
parent categories. This table contains only one entry, which creates the relationship
between the Music top-level and the Rock subcategory.

TABLE 11-1 The parent field is used later when building the menu.

CATEGORY PARENT

Music 1

Fashion 1

Rock 0

431CHAPTER 11 Building a News Web Site

CAT_ID POSTER_ID DATEPOSTED SUBJECT BODY

3 1 NOW() Rock music get-
ting more popular

With the huge push toward
metal and nu-metal, rock
music is also sharing in the
winnings. Bands still popular
from the late ‘60s are report-
ing surges in record sales.
The true test is whether this
popularity can be sustained
or whether it is simply a fad.
Only time will tell.

TABLE 11-3 In the poster_id field, add the id of one of the users in the users
table.

Sample Data for the users Table
Add three users to the table. In this project, encrypted passwords are used for the
users. When you add the user in phpMyAdmin, select MD5 from the Functions
drop-down box to encrypt the password. The fully encrypted string takes up 32
characters.

In the level field, give one user the level 0, another user the level 1, and yet
another user the level 10. The level determines what the user can do on the site:

0 The user can browse content and rate stories only.

1 The user can post stories.

10 This is the administrator. She can do anything, such as add sto-
ries, delete content, or add and remove categories.

Sample Data for the stories Table
This table contains the stories that are on the site (see Table 11-3). Add as many
stories as you like, with at least one for good measure.

Sample Data for the ratings Table
Leave this table empty.

STARTING TO CODE

By this point, you can probably guess the first step. That’s right—you need to cre-
ate the header, footer, and config files. Create a directory called readallaboutit in
your webroot and start with the configuration file.

432 Practical PHP and MySQL

Create config.php and add the code shown in Example 11-1.

EXAMPLE 11-1 Nothing new here; just the same ‘ol config file.

<?php

$dbhost = "localhost";
$dbuser = "root";
$dbpassword = "";
$dbdatabase = "news";

$config_basedir = "http://localhost/sites/readallaboutit/";

?>

Create db.php and add the database connection code in Example 11-2.

EXAMPLE 11-2 This is the same connection code used in previous projects.

<?php
require("config.php");

$db = mysql_connect($dbhost, $dbuser, $dbpassword);
mysql_select_db($dbdatabase, $db);

?>

In this project, you use the functions file from previous projects. Copy it over or
create functions.php and add the same code from Example 11-3.

EXAMPLE 11-3 These functions add slashes to input and validate numeric
GET variables.

<?php

function pf_fix_slashes($string) {
if (get_magic_quotes_gpc() == 1) {

return($string);
}
else {

return(addslashes($string));
}

}

function pf_check_number($value) {
if(isset($value) == FALSE) {

$error = 1;
}

433CHAPTER 11 Building a News Web Site

if(is_numeric($value) == FALSE) {
$error = 1;

}

if($error == 1) {
return FALSE;

}
else {

return TRUE;
}

}

?>

Create header.php and add the header code from Example 11-4.

EXAMPLE 11-4 The header file does nothing particularly fancy.

<?php
session_start();
require("config.php");

?>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<head>

<title><?php echo $config_sitename; ?></title>
<link href="stylesheet.css" rel="stylesheet">

</head>
<body>

<div id="header">
<h1>Read All About It</h1>
</div>
<div id="menu">

<a href="<?php echo $config_basedir; ?>">Home
</div>
<div id="container">

<div id="bar">
<?php

require("bar.php");
?>

</div>

<div id="main">

The header file is straightforward; it creates the usual <div> tags for the design.

434 Practical PHP and MySQL

Building the Menu Structure
The menu structure of the site is very important. The menu contains a number of
categories that expand to show subcategories when clicked. Both parent and sub-
categories can be used to display stories within the category, with the parent show-
ing all of the child stories. For example, the Music category shows all of the Rock
and Pop stories, but the Rock subcategory shows only Rock stories.

To create a submenu, you track which parent (top-level categories) and child
(sub-options) categories have been clicked. When the category is selected, two ses-
sion variables store these values.

The menu is best placed in the sidebar, so create bar.php and start adding
the code:

<?php
session_start();

require("db.php");

After adding session support and including the database connection, create a
query to return the top-level categories:

require("db.php");

echo "<h1>Topics</h1>";

$sql = "SELECT * FROM categories WHERE parent = 1;";
$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

if($numrows == 0) {
echo "<p>No categories</p>";

}

The query returns all categories in which the parent field stores 1. If no rows are
returned, the text No categories is displayed. Otherwise, you need to display them:

echo "<p>No categories</p>";
}
else {

while($row = mysql_fetch_assoc($result)) {
if($_SESSION['SESS_USERLEVEL'] == 10) {

echo "[X] ";
}
echo ""

. $row['category'] . "
";

435CHAPTER 11 Building a News Web Site

A while loop iterates through each row and displays each option as a link to
index.php. This page is passed the id of the parent category. If the user is logged
in with a level of 10 (administrator), a delete link is added to the left of the
category.

Create a query to return the subcategories:

echo ""
. $row['category'] . "
";

if($row['id'] == $_SESSION['SESS_PARENT']) {
$childsql = "SELECT categories.id, categories.category

FROM categories INNER JOIN cat_relate
ON categories.id = cat_relate.child_id
WHERE cat_relate.parent_id = " . $_SESSION['SESS_PARENT'] . ";";

$childresult = mysql_query($childsql);

This query performs a join that returns the subcategories that have relation-
ships with the parent category.

Iterate through the returned results:

$childresult = mysql_query($childsql);

while($childrow = mysql_fetch_assoc($childresult)) {
if($_SESSION['SESS_USERLEVEL'] == 10) {

echo "<a href='deletecat.php?id=" . $childrow['id']
. "'>[X] ";

}

echo " • <a href='index.php?parentcat=" . $row['id']
. "&childcat=" . $childrow['id'] . "'>" . $childrow['category']
. "
";

}

The results are displayed to the user, and a delete link is again added if the user
level is 10.

Close the code in bar.php:

echo " • <a href='index.php?parentcat=" . $row['id'] .
"&childcat=" . $childrow['id'] . "'>" . $childrow['category'] .
"
";

}
}

}
}
?>

Finally, add the footer code shown in Example 11-5.

436 Practical PHP and MySQL

EXAMPLE 11-5 The footer code closes off the <div> areas.

</div>
</div>
</body>
</html>

Creating the Main Page
Our main page will be index.php, and it serves three primary purposes:

■ Set the session variables to the parent and child categories currently
selected.

■ When a category is selected, display a summary of the available stories.

■ When no category is selected, display the latest news stories.

GET variables that are passed to the page determine which functionality is
loaded. If no GET variables are present, the latest stories are displayed. If the page
is passed a parentcat variable, the stories for that category are displayed. If both
the parentcat and childcat variables are present, the stories for the child category
are displayed.

Create index.php and begin by creating the parent/child session variables, val-
idating the GET variables and assigning them to the SESS_PARENT or SESS_CHILD

session variables, as shown in Example 11-6.

<?php

require("db.php");

session_register("SESS_PARENT");
session_register("SESS_CHILD");

if(isset($_GET['parentcat']) && isset($_GET['childcat'])) {
if(is_numeric($_GET['parentcat'])) {

$_SESSION['SESS_PARENT'] = $_GET['parentcat'];
}

if(is_numeric($_GET['childcat'])) {
$currentcat = $_GET['childcat'];

$_SESSION['SESS_CHILD'] = $_GET['childcat'];
}

}
else if(isset($_GET['parentcat'])) {

if(is_numeric($_GET['parentcat'])) {

437CHAPTER 11 Building a News Web Site

$currentcat = $_GET['parentcat'];

$_SESSION['SESS_PARENT'] = $_GET['parentcat'];
$_SESSION['SESS_CHILD'] = 0;

}
}
else {

$currentcat = 0;
}

A check is made to see if both variables are present. When present, the vari-
ables are checked if they are numeric, in which case the session variables are
assigned the value of each GET variable. The same process applies if only the par-
entcat GET variable is available.

The $currentcat variable determines the current category. There are three pos-
sible options:

■ If only the parentcat variable exists, $currentcat is set to the value of
parentcat.

■ If the childcat variable is present, $currentcat is set to the value of childcat.

■ If no variables are present, $currentcat is set to 0.

Check if $currentcat is set to 0. If so, create a query to return the latest five
stories:

$currentcat = 0;
}

require("header.php");

if($currentcat == 0) {
$sql = "SELECT * FROM stories ORDER BY dateposted DESC LIMIT 5;";

}

If $currentcat is set to a category, run a query to determine what the parent
field is set to:

$sql = "SELECT * FROM stories ORDER BY dateposted DESC LIMIT 5;";
}
else {

$parentsql = "SELECT parent FROM categories WHERE id = "
. $currentcat . ";";
$parentres = mysql_query($parentsql);
$parentrow = mysql_fetch_assoc($parentres);

438 Practical PHP and MySQL

Now check if parent is set to 1. If it is, the user has clicked a category that can
contain a number of subcategories. When this happens, display all the stories in the
parent category as well as all of the subcategories. If the selected category is not a
parent, return the stories for that specific category. Add the SQL for this:

$parentres = mysql_query($parentsql);
$parentrow = mysql_fetch_assoc($parentres);

if($parentrow['parent'] == 1) {
$sql = sprintf("SELECT stories.* FROM stories INNER JOIN

cat_relate ON stories.cat_id = cat_relate.child_id WHERE
cat_relate.parent_id = %d UNION SELECT stories.* FROM stories WHERE
stories.cat_id = %d;" , $currentcat, $currentcat);
}
else {

$sql = "SELECT * FROM stories WHERE cat_id = " . $currentcat .
";";

}
}

If the category is a parent, a large query is constructed to return all the sto-
ries. This query is really two queries that are cleverly stuck together. The first
part (SELECT stories.* FROM stories INNER JOIN cat_relate ON

stories.cat_id = cat_relate.child_id WHERE cat_relate.parent_id = <id>)
uses a join to get all stories where parent_id is set to $currentcat. The second
part (SELECT stories.* FROM stories WHERE stories.cat_id = <id>) selects sto-
ries that are a parent category.

The two parts are wedged together in the same query by using the UNION key-
word, which hooks together two queries that use the same types of columns. This
can be useful in cases such as this one, when you need to perform two SELECT
queries on the same tables.

This large query is constructed inside the sprintf() function, which is used
when you want to replace part of a string with another string or variable. In this case,
you want to add $currentcat at the right points in the query. To do this, the %d (called
a type specifier) in the string is replaced by the variables indicated at the end of
sprintf()—in this case, $currentcat. Different types of variables use different type
specifiers, and you can indulge your type specifier curiosity at www.php.net/sprintf.

In the else, a query is constructed if the selected category is not a parent, and
it simply returns the stories for that specific category.

Run the relevant query:

www.php.net/sprintf

439CHAPTER 11 Building a News Web Site

$sql = "SELECT * FROM stories WHERE cat_id = " . $currentcat
. ";";
}

}

$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

With a juicy set of results at your disposal, display them to the user:

$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

if($numrows == 0) {
echo "<h1>No Stories</h1>";
echo "<p>There are currently no stories in this category. </p>";

}
else {

while($row = mysql_fetch_assoc($result)) {
if($_SESSION['SESS_USERLEVEL'] == 10) {

echo "<a href='deletestory.php?id=" . $row['id']
. "'>[X] ";

}

echo "<a href='viewstory.php?id=" . $row['id']
. "'>"
. $row['subject']
. "
";

echo date("D jS F Y g.iA", strtotime($row['dateposted']));

echo "<p>" . $row['body'] . "</p>";
}

}

Finally, add the closing code:

echo "<p>" . $row['body'] . "</p>";
}

}

require("footer.php");

?>

The result of your efforts should look similar to the page shown in Figure 11-2.

440 Practical PHP and MySQL

FIGURE 11-2 The interface is simple and efficient, but will be added to later in
the chapter.

HANDLING USER LOGINS

Like many other projects in this book, user login functionality is an essential
feature. The code and functionality for user logins in this project is also virtu-
ally identical to the code in the other projects in this book. Much of this should
be familiar to you, but if not, head back and play with some of the previous
projects.

The core difference with this login incarnation is that you used encrypted pass-
words when you added the users. When the user was created, the MD5() MySQL
command was used to hash the password. To validate the user who types his user-
name and password into the login form, you first hash the password entered into the
form and then compare both hashed passwords. If they match, the password is
valid.

Create userlogin.php and add the form:

<form action="<?php echo $SCRIPT_NAME ?>" method="post">
<table>
<tr>
<td>Username</td>
<td><input type="text" name="username"></td>
</tr>
<tr>
<td>Password</td>
<td><input type="password" name="password"></td>

441CHAPTER 11 Building a News Web Site

</tr>
<tr>
<td></td>
<td><input type="submit" name="submit" value="Login!"></td>
</tr>
</table>
</form>

The form prompts the user for a username and password. When the user clicks
the Submit button, the page redirects to itself to process the data.

Jump to the top of the file and add some include statements and a check for an
existing login before processing the form:

<?php

session_start();

require("config.php");
require("db.php");
require("functions.php");

if($_SESSION['SESS_USERNAME']) {
header("Location: " . $config_basedir . "userhome.php");

}

If the SESS_USERNAME session variable is available, the page redirects to another
script that can contain options (although you don’t create userhome.php in this
project, it could be used as the user’s control panel).

Begin processing the form:

header("Location: " . $config_basedir . "userhome.php");
}

if($_POST['submit']) {

$sql = "SELECT * FROM users WHERE username = '"
. pf_fix_slashes($_POST['username']) . "' AND password = '"
. md5(pf_fix_slashes($_POST['password'])) . "'";

$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

The query compares the username and password entered with the records in the
users table. When constructing the query, the md5() PHP command is used to first
hash the password so that the hashed passwords (the existing passwords in the table
and the password just typed into the form) can be compared.

442 Practical PHP and MySQL

Check if any results were returned:

$result = mysql_query($sql);
$numrows = mysql_num_rows($result);

if($numrows == 1) {
$row = mysql_fetch_assoc($result);

session_register("SESS_USERNAME");
session_register("SESS_USERID");
session_register("SESS_USERLEVEL");

$_SESSION['SESS_USERNAME'] = $row['username'];
$_SESSION['SESS_USERID'] = $row['id'];
$_SESSION['SESS_USERLEVEL'] = $row['level'];

header("Location: " . $config_basedir);
}
else {

header("Location: " . $config_basedir
. "/userlogin.php?error=1");
}

}

If a row is returned, the session variables are registered and set. Otherwise, the
page reloads with an error GET variable.

Display the error before the form is displayed:

header("Location: " . $config_basedir
. "/userlogin.php?error=1");
}

}
else {

require("header.php");

echo "<h1>Login</h1>";

if($_GET['error']) {
echo "<p>Incorrect login, please try again!</p>";

}

?>

<form action="<?php echo $SCRIPT_NAME ?>" method="post">
<table>
<tr>

Finally, close the script after the form:

443CHAPTER 11 Building a News Web Site

</tr>
</table>
</form>

<?php

}

require("footer.php");

?>

Logging Out Users
To log out a user, unregister the three sessions created in the login page. Remember
that the menu bar uses sessions to track which options are currently selected, so
you can’t simply destroy the session. Add the following code from Example 11-6 to
userlogout.php.

EXAMPLE 11-6 Don’t destroy the session, because the menu uses session
variables.

<?php

session_start();

require("config.php");

session_unregister("SESS_USERNAME");
session_unregister("SESS_USERID");
session_unregister("SESS_USERLEVEL");

header("Location: " . $config_basedir);

?>

Updating the Sidebar
If a user is logged in, you will want to add a box in the sidebar to indicate that the
user is logged in and then also list options available to him. Like some of the previ-
ous projects, this appears as a box similar to the one shown in Figure 11-3.

444 Practical PHP and MySQL

Fire up bar.php, jump to the top of the file, and add the code shown in
Example 11-7.

EXAMPLE 11-7 The “visible” class can be used with the table styles shown in
the Generic Web sites project.

<?php
session_start();

require("db.php");

echo "<table class='visible' width='100%'cellspacing=0 cellpadding=5>";
echo "<tr><th class='visible'>Login details</th></tr>";
echo "<tr><td>";

if($_SESSION['SESS_USERNAME']) {
echo "Logged in as " . $_SESSION['SESS_USERNAME']

. " - Logout";

echo "<p>";

if($_SESSION['SESS_USERLEVEL'] > 1) {
echo "Post a new story
";

}

if($_SESSION['SESS_USERLEVEL'] == 10) {
echo "Add a new Category
";

}

echo "<p>";
}
else {

FIGURE 11-3
The sidebar displays the
options available to the user.

445CHAPTER 11 Building a News Web Site

echo "Login";
}

echo "</td></tr>";
echo "</table>";

echo "<h1>Topics</h1>";

$sql = "SELECT * FROM categories WHERE parent = 1;";

The options in the table are dependent on the level of user logged in. Any level
1 users or above can add stories. If the user is the admin (level 10), he can add cat-
egories. (You create the addstory.php and addcat.php pages later).

VIEWING AND RATING STORIES

When the user clicks a category and views the list of available stories, each story’s
subject links to the page with the full story text. This page not only views the full
story, but also includes a feature to allow users who are logged in to rate the story.
Now you know if your editors are writing rubbish stories or not.

Ratings are specifically limited to logged-in users. The reason for this limita-
tion is subtle but important. You need to prevent trigger-happy users from voting for
the same story more than once. To prevent such abuse, you somehow need to track
whether the user has voted. To solve this problem, a number of options are at your
disposal, each with advantages and disadvantages:

■ Track the user by his session ID. You could store the current session ID in a
table and prevent more than one vote from the same ID. This session ID will
reliably track a unique user currently viewing the Web site. The problem is
that the user could restart the browser to generate a new session ID, thus foil-
ing your system.

■ Use cookies. Cookies allow you to store a tiny text file, which you can use to
store a small amount of information, on the user’s hard disk. The problem
with this technique is that the cookies are deleted when the user clears his
history so that Aunt Maud doesn’t come across any visited Web sites that
would make her blush.

■ Only allow voting by users who are logged in. This technique provides a solid
means of tracking the user, and there is no way the rating system can be
forged. The obvious disadvantage of this method is that the user needs to reg-
ister with yet another Web site.

446 Practical PHP and MySQL

FIGURE 11-4
The ratings system consists of
three images.

Technical decisions such as this are often difficult, with no clear solution avail-
able. To ensure that the ratings system remains entirely accurate and free from
abuse, you will use the third technique—requiring users to log in.

Before you start writing the code, you should first create some images that can
visually depict average ratings of the story. These images should be fairly small
(around 20x20 pixels) and convey the three states shown in Figure 11-4.

After the average rating has been calculated, it is rounded to the nearest 0.5
(such as 7.5 or 8.0). To display the rating, 10 images are displayed, using the pre-
ceding images where needed. As an example, an average rating of 8 would have 8
full and 2 off images. A rating of 6.5 would have 5 full, 1 half, and 3 off images.

Start building the page by creating viewstory.php and then add the introductory
and validation code:

<?php

require("config.php");
require("functions.php");

if(pf_check_number($_GET['id']) == TRUE) {
$validid = $_GET['id'];

}
else {

header("Location: " . $config_basedir);
}

require("header.php");

Before getting to the ratings, you need to display the main story text. Run a
query to gather this information and then display it:

}

require("header.php");

$sql = "SELECT * FROM stories WHERE id = " . $validid . ";";
$result = mysql_query($sql);

447CHAPTER 11 Building a News Web Site

$row = mysql_fetch_assoc($result);

echo "<h1>" . $row['subject'] . "</h1>";
echo date("D jS F Y g.iA", strtotime($row['dateposted'])) . "
";
echo nl2br($row['body']);

When displaying the information, the date is formatted into a readable state
and the nl2br() function converts empty lines in the body text to
 tags. This
conversion ensures that the blank lines in the original text are retained.

When a story is rated, the ratings table stores the score. Using this table, get the
number of ratings as well as the average rating for the story:

echo date("D jS F Y g.iA", strtotime($row['dateposted'])) . "
";
echo nl2br($row['body']);

$avgsql = "SELECT COUNT(id) AS number, AVG(rating) AS avg FROM ratings
WHERE story_id = " . $validid . ";";
$avgresult = mysql_query($avgsql);
$avgrow = mysql_fetch_assoc($avgresult);

echo "<p>";
echo "Rating ";

This query uses the COUNT() and AVG() MySQL functions to return the number
of votes and the average. The AVG() function returns the average of the field that
you specify. In this case, you want the average of the ratings field.

There is a good possibility that not every story has a rating, however, so you
need to account for this:

echo "<p>";
echo "Rating ";

if($avgrow['number'] == 0) {
echo "No ratings!";

}

If ratings exist, round the average up or down as necessary:

echo "No ratings!";
}
else {

$a = (round($avgrow['avg'] * 2) / 2)

This line rounds the average with round(), multiplies the result by 2, and then
divides by 2 to determine the final rating. This simple little mathematical trick is a
good way to get the final value.

448 Practical PHP and MySQL

Determine if the final result is a 0.5 figure (such as 7.5, as opposed to 8):

else {
$a = (round($avgrow['avg'] * 2) / 2) . "
";

$a *= 10;

if($a%5 == 0 && $a%10 !=) {
$range = ($a / 10) - 0.5;

}
else {

$range = $a / 10;
}

To calculate if we have .5 value in $a (such as 6.5), first multiply the value of $a
by 10 ($a *= 10), and then inside the bracks of the if statement check if $a can be
divided by five. If it does, $a is divided by 10 to get to its original value, and 0.5 is
subtracted. The resulting $range variable indicates the number of full images to
display.

Create a for loop to display each image:

$range = $a / 10;
}

for($i=1;$i<=$range;$i++) {
echo "<img src='" . $config_basedir

. "siteimages/rating_full.png'>";
}

The for loops between 1 and the value inside $range and then displays
rating_full.png each time.

Check if the average is a float again, to see if the half-on image should be
added:

echo "<img src='" . $config_basedir
. "siteimages/rating_full.png'>";
}

if($a%5 == 0 && $a%10 !=) {
echo "<img src='" . $config_basedir

. "siteimages/rating_half.png'>";
}

$a = $a / 10;

Calculate how many off images should be displayed by removing the rounded
average from 10:

449CHAPTER 11 Building a News Web Site

FIGURE 11-5
In this example, the score is 8
out of 10.

echo "<img src='" . $config_basedir
. "siteimages/rating_half.png'>";
}

$a = $a / 10;
$remain = 10 - $a;

for($r=1;$r<=$remain;$r++) {
echo "<img src='" . $config_basedir

. "siteimages/rating_off.png'>";
}

}
echo "
";

The completed ratings display should look similar to the one shown in Figure 11-5.

After the rating images, add the code to allow logged-in users to vote:

}
echo "
";

echo "Rate this story: ";

if($_SESSION['SESS_USERNAME']) {
for($i=1;$i<=10;$i++) {

echo "<a href='ratestory.php?id=" . $validid . "&rating="
. $i . "'>" . $i . " ";
}

}
else {

echo "To vote, please log in.";
}

If the user is logged in, a for loop creates 10 links from 1 to 10, each one
linking to ratestory.php and passing it the id of the story and the number of the
rating.

Finally, add the closing code:

echo "To vote, please log in.";
}

echo "</p>";
require("footer.php");

?>

450 Practical PHP and MySQL

Performing the Rating
When the user clicks one of the rating numbers, ratestory.php adds the rating to the
database. This script is fairly simple and includes a small amount of error checking.

Create ratestory.php. First, include the usual files and validate the GET variables:

<?php

require("db.php");
require("functions.php");

if(pf_check_number($_GET['id']) == TRUE) {
$validid = $_GET['id'];

}
else {

header("Location: " . $config_basedir);
}

if(pf_check_number($_GET['rating']) == TRUE) {
$validrating = $_GET['rating'];

}
else {

header("Location: " . $config_basedir);
}

require("header.php");

This script must be passed the id and rating GET variables. If the variables
are not present or are not numeric, the page redirects.

Check if the user has already voted:

}

require("header.php");

$checksql = "SELECT * FROM ratings WHERE user_id = "
. $_SESSION['SESS_USERID'] . " AND story_id = "
. $validid . ";";
$checkresult = mysql_query($checksql);
$checknumrows = mysql_num_rows($checkresult);

The query checks if the user’s id is in the ratings table for the current story. If it
is, display a message that lets the user know he has voted already:

$checkresult = mysql_query($checksql);
$checknumrows = mysql_num_rows($checkresult);

if($checknumrows == 1) {
echo "<h1>Already voted</h1>";

451CHAPTER 11 Building a News Web Site

N O T E
Why Use the Traditional Procedural Method?

OOP is a huge and varied subject, and although PHP can be used for OOP,
this book resorts to the traditional procedural method of development
because it is simpler to understand and use. In addition, the OOP way of
creating PHP scripts is not used as extensively as the procedural method.

echo "<p>You have already voted for this story.</p>";
}

If the user has not yet voted, add the rating to the table:

echo "<p>You have already voted for this story.</p>";
}
else {

$inssql = "INSERT INTO ratings(user_id, story_id, rating) VALUES("
. $_SESSION['SESS_USERID']. "," . $validid . "," . $validrating
. ");";
mysql_query($inssql);

echo "<h1>Thankyou!</h1>";
echo "<p>Thankyou for your vote.</p>";

}
?>

MANAGING STORIES

To ease the creation and processing of forms, HTML_QuickForm is used.
HTML_QuickForm simplifies the display and validation of forms and also has the
side benefit of reducing the amount of code in your script, making the code look a
little neater.

HTML_QuickForm makes use of a technique called Object Oriented Program-
ming (OOP). The idea of OOP is that you have a series of classes that describe com-
mon types of operation, and you can use these classes as blueprints to create an
object. Imagine you were a higher being and able to create a farm full of animals.
You might have class called Mammal that creates and object with the characteristics
of a mammal. You might have another class called Dog that inherits the Mammal class
but adds the characteristics unique to a Dog. This is the basis of how OOP works. In
a technical context, you may have a class called Button that specifies very general
button concepts and then have different PushButton and ToggleButton classes that
inherit Button.

452 Practical PHP and MySQL

HTML_QuickForm works in a similar way to normal form processing, albeit in
a slightly different way:

■ Include the HTML_QuickForm class.

■ Create a HTML_QuickForm object.

■ Create the form elements.

■ Create validation rules.

■ Display the form and specify which function should process it.

Although HTML_QuickForm may seem a little unusual at first, after you have
written a few scripts that use it, you will find it very handy in a number of situations.

Adding Stories
Adding stories involves creating a fairly common form that takes in information and
puts it in the database. Create addstory.php and begin including your files:

<?php
session_start();

require("config.php");
require("functions.php");
require("db.php");

In addition to the usual include files, include HTML_QuickForm:

require("db.php");
require_once 'HTML/QuickForm.php';

When you installed the PEAR module, php.ini was updated to ensure that PHP
could easily find PEAR extensions, hence being able to use HTML/QuickForm.php
as the location and file.

Protect the page by locking out anyone who does not have the user level 1 or
above:

require_once 'HTML/QuickForm.php';

if($_SESSION['SESS_USERLEVEL'] < 1) {
header("Location:" . $config_basedir);

}

Next, create an object from the HTML_QuickForm class:

453CHAPTER 11 Building a News Web Site

header("Location:" . $config_basedir);
}

$form = new HTML_QuickForm('firstForm');

This line creates an object called $form that is an HTML_QuickForm object.
This object has a range of methods available to it, and you can find out more about
them at http://pear.php.net/package/HTML_QuickForm/docs.

To create a form, you need to add the usual text boxes and Submit button, and
also a select box with the list of categories from which the user can select. When
manually creating the forms, you add a <select> tag and then loop through the
results of a query to add the contents of the <select> box.

When using HTML_QuickForm, the process is slightly different. You need to
perform the query and then build up an array containing the items. This array is
added to the form later.

Add the code to build the array:

$form = new HTML_QuickForm('firstForm');

$catsql = "SELECT id, category FROM categories ORDER BY category;";
$catres = mysql_query($catsql);

while($catrow = mysql_fetch_assoc($catres)) {
$catarr[$catrow['id']] = $catrow['category'];

}

You first create the query, and the while loop creates the array. The array key
(the part in the square brackets) is set to the id, and the value is set to the category
name. For example, if you had the categories Music (with an id of 1) and Fashion
(with the id of 2U), the array would look like this:

$catarr[1] = "Music"
$cattarr[2] = "Fashion"

Create the form element and load the array:

$catarr[$catrow['id']] = $catrow['category'];
}

$s =& $form->createElement('select','cat_id','Category ');
$s->loadArray($catarr);
$form->addElement($s);

The first line uses the createElement() HTML_QuickForm method on
the $form object. Methods in OOP development are accessed with -> (such as

http://pear.php.net/package/HTML_QuickForm/docs

454 Practical PHP and MySQL

$object->method()). The createElement() method takes three parameters. The
first specifies the type of form element (in this case, select is a select box). The
next parameter is the name you want to refer to the form element as. Finally, the
third parameter is the label that should appear next to the form element.

In the first line, the =& symbol is used to create a reference. A reference is used
to take the code on the right of the symbol and make the variable on the left refer to
it. As such, $s refers to the form element.

The second line uses the loadArray() function to load the select box with the
values in $catarr. The select box is now complete. The next step is to add the com-
pleted select element to the form. This happens on the third line, with the addEle-
ment() method.

Create the other form elements:

$s->loadArray($catarr);
$form->addElement($s);

$form->addElement('text', 'subject', 'Subject', array('size' =>
50, 'maxlength' => 255));
$form->addElement('textarea', 'body', 'Comment:', array('size' =>
50, 'maxlength' => 255, 'rows' => 20, 'cols' => 80));
$form->addElement('submit', null, 'Add Story!');

The first line creates a text box (using the text element type) with the name
subject. The fourth parameter includes an array of additional options to specify the
size and length of the box. The next two lines add a textarea box for the body of the
story and, finally, a Submit button.

Add the processing rules:

$form->addElement('submit', null, 'Add Story!');

$form->addRule('subject', 'Please enter a subject', 'required', null,
'client');
$form->addRule('body', 'Add some body text', 'required', null,
'client');

These two lines add validation rules that ensure users cannot submit empty
form elements. The first parameter specifies which form element to apply the rule
to, and the second parameter is the error message that is displayed when the rule
fails. The third parameter is the type of rule you want to use. HTML_QuickForm
includes a range of different rules, and in this case, the required rule enforces
typed input. A nice feature of HTML_QuickForm is that when you add a required
rule, a small red star appears next to the form elements that must receive input.
Nifty, no?

455CHAPTER 11 Building a News Web Site

The final two parameters are both optional. The fourth can be used to specify
extra rule information (this is unnecessary here, so null is specified), and the fifth
indicates whether the client or server should process the form. When you use
client, error messages are displayed in a Javascript pop-up box—another nice fea-
ture in HTML_QuickForm.

With the form complete and validation added, add the code that determines
how the form is processed:

$form->addRule('subject', 'Please enter a subject', 'required', null,
'client');
$form->addRule('body', 'Add some body text', 'required', null,
'client');

if($form->validate()) {
$form->freeze();
$form->process("process_data", false);

$insertid = mysql_insert_id();

header("Location: " . $config_basedir . "viewstory.php?id="
. $insertid);
}

This if block checks to see if the form validates by running the validate()
method. If this is the case, the form is first frozen with freeze() to prevent any fur-
ther user input. The process() function then indicates which function should be
used to process the form. This function specifies the name of the function (in this
case process_data(); remember to leave off the () brackets), and the false param-
eter specifies whether uploaded files should be processed (in this case, not).

After process_data() is run, the id from the INSERT query is stored in
$insertid and used in the header() to redirect to viewstory.php with the correct
id.

The preceding code assumes that the form has been submitted and validates. If
not, display the form:

header("Location: " . $config_basedir . "viewstory.php?id="
. $insertid);
}
else {

require("header.php");
echo "<h1>Add story</h1>";

$form->display();
}

Here you use the display() method to display the form for the user.

456 Practical PHP and MySQL

The final chunk of code to add is process_data()—the function that processes
the form:

$form->display();
}

function process_data ($values) {
$sql = "INSERT INTO stories(cat_id, poster_id, dateposted, subject,

body) VALUES("
. $values['cat_id']
. ", " . $_SESSION['SESS_USERID']
. ", NOW()"
. ", '" . pf_fix_slashes($values['subject']) . "'"
. ", '" . pf_fix_slashes($values['body'])
. "');";

$result = mysql_query($sql);
}

This function is passed the values from the form as the $values array. Inside
this array, you use the data as you would with $_GET or $_POST, such as
$values['subject'] instead of $_POST['subject']. The function inserts the data
from the form into the stories table.

Finally, add footer.php:

require("footer.php");

?>

Deleting Stories
Deleting stories works virtually identically to the previous delete scripts you have
written. Create deletestory.php and add the code shown in Example 11-8.

EXAMPLE 11-8 Deleting entries works the same way as previous delete
scripts.

<?php

session_start();

require("config.php");
require("db.php");
require("functions.php");

if($_SESSION['SESS_USERLEVEL'] != 10) {
header("Location: " . $config_basedir);

}

457CHAPTER 11 Building a News Web Site

if(pf_check_number($_GET['id']) == TRUE) {
$validid = $_GET['id'];

}
else {

header("Location: " . $config_basedir);
}
if($_GET['conf']) {

$delsql = "DELETE FROM stories WHERE id = " . $validid . ";";
mysql_query($delsql);

header("Location: " . $config_basedir);
}
else {

require("header.php");
echo "<h1>Are you sure you want to delete this question?</h1>";
echo "<p>[<a href='" . $SCRIPT_NAME . "?conf=1&id=" . $validid .

"'>Yes] [No]</p>";
}

require("footer.php");

?>

Like previous scripts, the code asks the user to confirm he wants to delete the
story and then appends a conf GET variable that is checked. If present, the record
is removed.

MANAGING CATEGORIES

Adding and removing categories is important within the scope of this project, and
only the administrator of the site should have access to this capability. Adding cat-
egories also uses HTML_QuickForm, and the code is very similar to the story addi-
tion example you have just created.

Create addcat.php. Begin by including the other files and protecting the page:

<?php
session_start();

require("config.php");
require("functions.php");
require("db.php");
require_once 'HTML/QuickForm.php';

if($_SESSION['SESS_USERLEVEL'] != 10) {
header("Location:" . $config_basedir);

}

458 Practical PHP and MySQL

When protecting the page, you want to allow users with a level of 10 only
(admins have this level).

Create an HTML_QuickForm object:

header("Location:" . $config_basedir);
}

$form = new HTML_QuickForm('catform');

Build an array of parent categories to add to a select box on the form:

$form = new HTML_QuickForm('catform');

$catsql = "SELECT id, category FROM categories WHERE
parent = 1 ORDER BY category;";
$catres = mysql_query($catsql);

$catarr[0] = "— No Parent —";

while($catrow = mysql_fetch_assoc($catres)) {
$catarr[$catrow['id']] = $catrow['category'];

}

$s =& $form->createElement('select','cat_id','Parent Category ');
$s->loadArray($catarr,'cat');

This code works like the code in addstory.php but with a couple of important
differences. First, you want to have only parent categories listed in the select box so
that you can create a subcategory. The second difference is that the first array ele-
ment (0) displays — No Parent — in the select box. If this is chosen, you make the
new category a parent category.

Create the other form elements, add validation rules, and add the code to deter-
mine how the form is processed:

$s =& $form->createElement('select','cat_id','Parent Category ');
$s->loadArray($catarr,'cat');

$form->addElement($s);
$form->addElement('text', 'category', 'Category',

array('size' => 20, 'maxlength' => 100));
$form->addElement('submit', null, 'Add Story!');

$form->applyFilter('name', 'trim');
$form->addRule('category', 'Please enter a category',

'required', null, 'client');

if ($form->validate()) {
$form->freeze();
$form->process("process_data", false);

459CHAPTER 11 Building a News Web Site

header("Location: " . $config_basedir);
}
else {

require("header.php");
echo "<h1>Add a category</h1>";
echo "<p>Select the parent category that the new category

is part of. If you want to create a new parent category, use
the <tt>— No Parent —</tt> option.</p>";

$form->display();
}

In this script, the code is also processed by the process_data() function. This
function has two possible ways of working:

■ If the — No Parent — option is selected, the query inserts the category and
sets the parent field to 1.

■ If a parent category is chosen, the new category is added (parent is left as 0)
and an entry is added to cat_relate to specify the relationship between the
parent and the new category.

Add the code to implement these two possibilities:

$form->display();
}

function process_data ($values) {
require("db.php");

if($values['cat_id'] == 0) {
$sql = "INSERT INTO categories(category, parent)

VALUES('" . pf_fix_slashes($values['category']) . "', 1);";
$result = mysql_query($sql);

}
else {

$sql = "INSERT INTO categories(category, parent)
VALUES('" . pf_fix_slashes($values['category']) . "', 0);";

$result = mysql_query($sql);
$insertid = mysql_insert_id();

$relatesql = "INSERT INTO cat_relate(parent_id, child_id)
VALUES(" . $values['cat_id'] . ", " . $insertid . ");";

$relateresult = mysql_query($relatesql);
}

}

Finally, add the footer.php file:

require("footer.php");

?>

460 Practical PHP and MySQL

Deleting Categories
To delete the category, run through the same deletion process as covered previously.
Create deletecat.php and add the code shown in Example 11-9.

EXAMPLE 11-9 Again, deleting categories is already familiar. Isn’t life great when
it’s predictable?

<?php

session_start();

require("config.php");
require("db.php");
require("functions.php");

if($_SESSION['SESS_USERLEVEL'] != 10) {
header("Location: " . $config_basedir);

}

if(pf_check_number($_GET['id']) == TRUE) {
$validid = $_GET['id'];

}
else {

header("Location: " . $config_basedir);
}

if($_GET['conf']) {
$parentsql = "SELECT parent FROM categories WHERE id = "

. $validid . ";";
$parentresult = mysql_query($parentsql);
$parentrow = mysql_fetch_assoc($parentresult);

if($parentrow['parent'] == 1) {
$delparentsql = "DELETE FROM categories WHERE id = " . $validid

. ";";
mysql_query($delparentsql);

$delchildsql = "DELETE categories.* FROM categories
INNER JOIN cat_relate ON cat_relate.child_id = categories.id
WHERE cat_relate.parent_id = " . $validid . ";";

mysql_query($delchildsql);

$delrelsql = "DELETE FROM cat_relate WHERE parent_id = "
. $validid . ";";

mysql_query($delrelsql);
}
else {

$delsql = "DELETE FROM categories WHERE id = " . $validid . ";";

461CHAPTER 11 Building a News Web Site

mysql_query($delsql);

$relsql = "DELETE FROM cat_relate WHERE child_id = " . $validid
. ";";

mysql_query($relsql);
}

header("Location: " . $config_basedir);
}
else {

require("header.php");
echo "<h1>Are you sure you want to delete this question?</h1>";
echo "<p>[<a href='" . $SCRIPT_NAME . "?conf=1&id=" . $validid

. "'>Yes] [No]</p>";
}

require("footer.php");

?>

CREATING YOUR SEARCH ENGINE

Search engines are a common feature of most Web sites, but they are essential for
sites that catalogue a large quantity of information. With a search engine, users can
effectively find anything they want easily.

Search engines are notoriously complex applications to write. Not only do you
need to ensure the search term entered by the user brings back the correct results,
but also the search engine may need to be usable in different ways. In addition, the
results may need to be returned by order of relevance, special symbols may need to
be supported in the search, and the whole process needs to work quickly. If users
experience a huge delay between clicking the Search button and getting the results,
she will likely get bored and leave. You can see how Google makes its money.

Another interesting challenge with a search engine is how you order the results.
If you search for “rock” at a music Web site, hundreds or thousands of results may
be returned. To make this information easily digestible, the results should be dis-
played as a series of pages, each of which contains a portion of the results. This tech-
nique is called paging and is an essential skill when building the perfect Web site.

There are different methods of handling your search, and you could spend your
entire life making the search work well. In this project, you create a simple search
engine that is suitable for small sites. A huge site with millions of records would
need to use an alternative solution, using relevance results (MySQL can provide
relevance figures for searches).

462 Practical PHP and MySQL

N O T E
Optimizing the Database

Optimizing your search engine is coupled closely with the size of a Web site.
Aside from providing a suitable search, database optimization is essential
for larger sites. When the number of records enters the thousands, hun-
dreds of thousands, or millions, you should dedicate some time seriously
researching database optimization.

A useful technique for optimizing the database is to index it. Creating an
index builds a reference of the data and can be used by searches to return
the results quicker. Take a look at http://www.mysql.com/ for details about
optimization.

The first step is to create a box in which users can type search terms. From a
usability perspective, this search box should always be visible for two reasons:

■ A search box is a safety net for the user. If he starts getting lost on a large
Web site, the search box provides a simple, single-shot way of finding what
he needs.

■ Searching is a familiar concept to all modern computer users. The advent
and popularity of Google has made the search box a familiar sight and a
required component for a Web site.

To implement the search box, use HTML_QuickForm and specify a different
page to process the form results. Open bar.php and put the search box in the
sidebar:

echo "<h1>Search</h1>";

$searchform = new HTML_QuickForm('searchform', 'get', 'search.php');

$searchform->addElement('text', 'searchterms', 'Search', array('size'
=> 20, 'maxlength' => 50));
$searchform->addElement('submit', null, 'Search!');

$searchform->applyFilter('name', 'trim');
$searchform->addRule('searchterms', 'Enter a search term', 'required',
null, 'client');

$searchform->display();

http://www.mysql.com/

463CHAPTER 11 Building a News Web Site

N O T E
Use GET for Search Boxes

When building a search box, use GET as opposed to POST when the user
submits the form. This can be useful for those users who want to modify
the URL to change the search term, a feature often used by external sites
that want to trigger your search engine from their site.

When the HTML_QuickForm object is created, the third parameter
(search.php) indicates which page should process the form. The code then adds
and displays the search box and Submit button.

Create search.php and start adding the code:

<?php
require("db.php");
require("header.php");

function short_description($des) {
$final = "";
$final = (substr($des, 0, 200) . "...");

echo "<p>" . strip_tags($final) . "</p>";
}

You first create the short_description() function, a function borrowed from
the calendar project. When this function is passed some text, it provides a summary.

Grab the search terms and put them in an array:

echo "<p>" . strip_tags($final) . "</p>";
}

$terms = explode(" ", urldecode($_GET['searchterms']));

Here you use explode() to separate each search term and fill the array. Each
term is separated by a white-space space, and the results are placed in the $terms
array. The urldecode() function is used to translate the encoding URL characters
into readable text.

The next step is to build the search query. Building the query involves stringing
together a series of parts for each search term. A search with three words might look
like the following:

SELECT id, subject, body FROM stories WHERE body LIKE '%push%' AND body
LIKE '%popular%' AND body LIKE '%sharing%'

464 Practical PHP and MySQL

In this example, you select the id, subject, and body from the stories table and
use the LIKE SQL statement to look for the terms inside the body field. The % signs
indicate a wildcard on either side of each search term. This means that a search for
“more” would return more, nevermore, and more. Each search term needs to have
AND body = <term> appended.

Write the code to generate and run the query:

$terms = explode(" ", urldecode($_GET['searchterms']));

$query = "SELECT id, subject, body FROM stories WHERE body LIKE '%"
. $terms[0] . "%'";

for($i=1; $i<count($terms); $i++) {
$query = $query." AND body LIKE '%". $terms[$i] . "%'";

}

$searchresult = mysql_query($query);
$searchnumrows = mysql_num_rows($searchresult);

The first line builds up the first part of the query, and the for loops through the
remaining entries, adding each one in turn. The final two lines execute the query
and count the number of lines returned.

After gathering the search results, you need to display them. As discussed ear-
lier, paging is used to display the results one page at a time. To implement paging,
determine the number of pages and the number of results per page:

$searchnumrows = mysql_num_rows($searchresult);

$pagesize = 2;
$numpages = ceil($searchnumrows / $pagesize);

In this example, the number of results per page is set to 2 because the database
probably has few entries. When more data is available, $pagesize can be set to a
higher figure, and the script automatically adjusts the number of displayed results
and available pages. The $numpages function divides the number of results returned
by the page size and then rounds it up with ceil().

To display the correct page of results, append a pageGET variable and use its value
to display the correct range of results. Check if this variable exists and ensure it is valid:

$pagesize = 2;
$numpages = ceil($searchnumrows / $pagesize);

if(!$_GET['page']) {
$validpage = 1;

}
else {

465CHAPTER 11 Building a News Web Site

if(is_numeric($_GET['page']] == TRUE) {
$validpage = $_GET['page'];

}
else {

$validpage = 1;
}

}

If the variable does exist and is numeric, $validpage is set to the value of page.
If page does not exist or is not numeric, it defaults to the value 1, the first page.

Display some information about the search:

$validpage = 1;
}

}

echo "<h1>Search Results</h1>";
echo "<p>Search for ";

foreach($terms as $key) {
echo "<u>" . $key . "</u> ";

}

echo " has " . $searchnumrows . " results</p>";

Here you use the foreach command to iterate through each element in the
$terms array and display each term inside <u> underline tags. You also display the
number of results.

The next step is to display the actual results. First, check if there were no results:

echo " has " . $searchnumrows . " results</p>";

if($searchnumrows == 0) {
echo "<h2>No Results</h2>";

}

Display the number of the current page and the total number of pages:

echo "<h2>No Results</h2>";
}
else {

echo "Page " . $validpage . " of " . $numpages;
echo "<p>";

To display the correct set of results, the LIMIT SQL command is used to dis-
play a range of results. LIMIT works by indicating the starting result number and
then the number of following results to display. As an example LIMIT 0, 10 would
display the first 10 results. LIMIT 10, 10 would display the second 10 results.

466 Practical PHP and MySQL

The first number next to the LIMIT keyword determines where the page begins,
and this changes depending on the current page number (indicated by $validpage).
This calculation is simple:

echo "<p>";

$offset = ($validpage - 1) * $pagesize;

Here you simply subtract 1 from $validpage because the LIMIT keyword begins
at 0 and not 1. Then you multiply the value by the page size. This indicated the cor-
rect range.

Gather the results for this range:

$offset = ($validpage - 1) * $pagesize;

$pagesql = $query . " ORDER BY dateposted DESC LIMIT " . $offset
. ", " . $pagesize . ";";
$pageres = mysql_query($pagesql);
$pagenumrows = mysql_num_rows($pageres);

while($pagerow = mysql_fetch_assoc($pageres)) {
echo "<h2>"

. $pagerow['subject'] . "</h2>";
echo "Posted on " . date('D jS F Y',

strtotime($pagerow['date']));
short_description($pagerow['body']);

}

Here you construct the query and add the LIMIT section with the offset. The
results are then displayed, using short_description() to show the shortened story
description.

To make the different pages easy to navigate, provide a series of links that users
can click to choose the page they want:

short_description($pagerow['body']);
}

echo "<p>";
echo "Pages: ";

for($i=1; $i <= $numpages; $i++) {
if($i == $validpage) {

echo "•" . $i . "• ";
}
else {
echo "<a href='search.php?term=" . $_GET['term'] . "&page=" . $i .

"'>" . $i . "" . " ";
}

}

467CHAPTER 11 Building a News Web Site

N O T E
For Those About to Hit the Big Time…

Remember that when you have a lot more stories, you can change the
$pagesize variable to a larger page size—the script adjusts automatically.

This code uses a for to loop between 1 and the value of $numpages and to dis-
play the number. A check is made to see if the current number in the loop is equal
to the current page (stored in $validpage). If so, the number is displayed in bold
without a link. Any other number is displayed as a link to search.php with the page
GET variable added.

Finally, include the footer file:

}
}

}
require("footer.php");
?>

SUMMARY

In this project, you have rattled down a familiar road, but cemented many of the
concepts and techniques explored previously in the book. In addition, you rolled in
some new skills by using HTML_QuickForm. The assumption is that this project
has been more of a breeze than previous ones. If you found it a piece of cake, rest
assured that PHP is solidifying nicely in your head. Before long you will be creating
your own awesome sites.

Well, this is the last project in the book. If you started at the beginning and
worked through each project in turn, you have been on a long and expansive jour-
ney through PHP and MySQL application development. You have learned a variety
of techniques, refined key skills, learned about the opportunities and risks that the
Web offers, and so much more. All in all, you have had a solid grounding in PHP
and MySQL development.

Although this is all nice and warm and fuzzy, the real challenge begins now.
You essentially have two options after you put this book down. On one hand, you
can feel content that you “learned PHP and MySQL” and not return to the book or
write any new code. This is a bad idea. Knowledge only cements in the brain if it is
used and reused and tested in different scenarios and contexts. The better option is
to keep writing more code, keep improving the applications, and keep the cogs of
PHP and MySQL turning. There are hundreds of potential ideas and applications

you could write with the knowledge that you have just learned and invested in. Now
is the time to make use of it—it will not only result in cool new applications, but it
will make you a better developer. If you are stuck for things to code, why not
contribute to one of the hundreds of open-source PHP and MySQL applications
out there?

Good luck, and I wish you all the best for your future development!

468 Practical PHP and MySQL

469

Web Site Design
A P P E N D I X A

Design is a complex science, particularly if you lack any artistic talent. For many,
the challenge of creating a visually appealing Web site is one marred with the
uncomfortable feeling that despite your best efforts, the resulting design will look
ugly, blocky, and predictable.

Although those who lack artistic chops are unlikely to give leading Web design-
ers a run for their money, there is still a lot you can achieve by following some
basic design principles. Many of the most popular and usable sites on the Internet
have clean and effective designs driven by a series of simple yet powerful design
decisions.

In this chapter, you will explore how to build some attractive and usable
designs. These designs provide simple and consistent site layouts that your visitors
will find usable. Good usability is, after all, the big win in good design.

PROJECT OVERVIEW

In ye old days of the Web, design was really secondary to content. The majority of
Web sites looked plain and simple. Most design was performed using the limited set
of HTML tags available in the early days of the Web.

As the Web grew larger and sites had more and more pages, the challenge of
managing a consistent design became apparent. When a fresh design was created
for a site, the task of the unlucky Web developer was to go through each and every
page on the site and apply the new design changes. For sites with hundreds of Web
pages, this was a mundane and error-prone task. Since those dim and distant days,
Cascading Style Sheets (CSS) has burst onto the scene and dramatically eased how
design is handled.

CSS allows you to centralize the design in your Web site. Instead of applying
the design via HTML tags, you create a special style sheet file that is loaded by
each page on the site. With CSS, you can dramatically change the design of the
entire site by changing a single file.

In this project, you will create and style a simple home page. The project covers
a range of common design requirements, including general page design, and styling
lists, headings, and tables. The stylesheet that you create in this chapter will be the
basis for the rest of the projects in the book, as well, showing you how CSS can be
applied not only across several pages, but also across entire Web applications.

To demonstrate how CSS can drastically change a page’s design, take a look at
the simple page shown in Figure A-1. The page is rather dull, uninteresting, and
plain.

470 Practical PHP and MySQL

FIGURE A-1 Pages that don’t use CSS (or some other means of style) look boring.

When you link the stylesheet that is developed in this chapter, you get the more
interesting page shown in Figure A-2.

With the addition of a single stylesheet, the page changes significantly. In addi-
tion to simple font and color issues, CSS is also used for positioning information on
different parts of the page.

A key goal when designing with CSS is that you should not need to touch the
HTML code. The aim of CSS is that you can change the entire design of a site by
changing a single stylesheet, making design both simple and scalable throughout
the site.

471APPENDIX A Web Site Design

FIGURE A-2 A little CSS makes a world of difference; the simple page suddenly
looks clean and organized, instead of bland and clunky.

T I P
In addition to good CSS design, you’ll have to resist the urge to add “just a
little bit” of style in your HTML—leave those font and align tags and attrib-
utes behind.

LAYING OUT THE SITE

When you create a CSS-driven design, you use HTML to specify the purpose of dif-
ferent parts of the page. At the top of the page, for example, you may want an area
that contains the name of the site. To outline this area, you use the HTML <div> tag
to identify it.

The purpose of the <div> tag is to define an area on the page that is used for a
specific purpose. The <div> areas specify not only major areas, such as headers or
sidebars, but also smaller areas, such as box-outs (separate boxes filled with infor-
mation) that contain additional information. Inside the <div> and </div> tags, the
relevant code for that area is added.

It is important that the <div> areas are added in the same order as the page
flows. If for some reason the CSS file is unavailable, the correct ordering of the
<div> areas still provides the correct page structure, albeit without any design. This
is particularly important for supporting devices, such as phones and PDAs, that do
not have full support for CSS.

For example, if you want to include a header area, a main content area, and a
footer area, you could use the following <div> tags (note that order matters here):

<div id="header">
</div>

<div id="main">
</div>

<div id="footer">
</div>

When creating <div> tags, you can name them with the id or class attributes.
Although both of these two attributes reference the <div> area from the stylesheet to
style them, id and class have different purposes. If you use the id attribute, you
can use only one <div> by that name on the page. If you use the class attribute, you
can use more than one <div> by that name on the page. As such, use the id attrib-
ute for major areas, such as the header, main section, and footer, and use the class
attribute for page “furniture” (the different parts of a page), such as box-outs, which
could appear multiple times.

The first step, before you even think about creating any code, is to get an idea
of how your page will be structured. Start by knowing the basic sections of your
pages. If you look at Figure A-3, you can see several distinct areas:

■ At the top of the page is a consistent gray area that contains the name of the
site.

■ Below the top area is a menu bar.

■ A gray sidebar is on the left side of the page. This area is useful for informa-
tion relevant to the main content.

■ The main body of the page is where the content will be displayed.

472 Practical PHP and MySQL

With an idea of these different areas and how they are positioned on the screen,
you can create a map of which <div> areas are needed and how they will be laid out,
as shown in Figure A-3.

473APPENDIX A Web Site Design

CSS VERSUS TABLES

Many newcomers to Web development begin by using a tool such as Macro-
media Dreamweaver (now owned by Adobe) to graphically nest invisible
tables inside other invisible tables to create complex page designs. Although
this technique works, using CSS and <div> tags offers a number of advan-
tages:

■ Improved accessibility. Nested tables are more difficult to understand
and display in tools such as screen readers.

■ Improved readability. If the CSS file is not present, the order of the con-
tent still makes sense.

■ Improved searching. Search engines rank <div>-driven sites higher than
sites that use nested tables. Search engines generally cannot understand
tables very well (especially nested ones) and because of this often rank
them lower than sites without extensive table usage.

Using <div> tags is acknowledged by leading developers as the best practice
for modern Web development, and with such benefits as those mentioned
here, why not?

FIGURE A-3
Creating a map of where
the <div> tags are located is
useful to get a clear idea of
how your page should be laid
out in HTML.

The top two <div> areas are the header and menu bars. Below these areas is the
container <div> (indicated by the dotted line), which contains the bar and main
<div> areas. The container area identifies where the major content on the page is
displayed, and the two nested areas identify the two different areas of the container.

474 Practical PHP and MySQL

T I P
The header area is typically used for consistent branding. If you go to virtu-
ally any Web site, you will see the logo or name of the Web site at the top of
every page. This is purpose of the header area in this project.

STARTING TO CODE

Before you get started creating your HTML and CSS, you need to create a tiny PHP
configuration file for the project. Every project that you create in this book includes
one of these special configuration files. Although it is unnecessary to create a con-
figuration file for your projects, it can be useful to have a single place to store proj-
ect-wide settings, such as the location and name of the site, database settings,
preferences, and more. If you plan to reproduce settings in different parts of your
project, it makes sense to specify them once in a single configuration file.

First, create a new directory called genericsite inside your htdocs directory.
This directory will store your project code.

T I P
It is a good idea to keep each project in a separate subdirectory inside the
htdocs directory. This makes it simple to access the different projects.

Inside the genericsite subdirectory, create a new file called config.php and
add the settings shown in Example A-1 here.

EXAMPLE A-1 The configuration file is useful to store important settings for
the project.

<?php

$config_sitename = "Jinny's Homepage";

$config_basedir = "http://localhost/sites/genericsite/";

?>

Within this file, you set two variables that are used throughout the project. The
first one of these, $config_sitename, contains the name of the Web site—in this
case, Jinny's Homepage. The second setting specifies the Internet location of the
Web site, which is used to reference other files on the site. This second variable is
typically used as a reference point for links and is discussed in more detail later.

To see an example of this, create a file called header.php and add the following
header code:

<?php

require("config.php");

?>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML
4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<head>

<title><?php echo $config_sitename; ?></title>
<link href="stylesheet.css" rel="stylesheet">

</head>
<body>

In this example, you set the title of the page by displaying the value of the $con-
fig_sitename variable in the <title> tag. You then include stylesheet.css file in
the <link> tag (stylesheet.css is where the design for your site is created). Later,
you will create stylesheet.css to add style and formatting to the site.

Next, begin adding the <div> blocks. First, add the header <div>:

</head>
<body>

<div id="header">
<h1><?php echo $config_sitename; ?></h1>
</div>

When adding a <div> tag, you use the id or class attribute to indicate the name
of the <div> area. All tags and content between the opening and closing <div> tags
are considered a part of that <div> and are formatted accordingly.

id Versus class
The id and class attributes in <div> tags have two very different purposes:

■ Use id if the <div> tag name is unique. This typically occurs with major sec-
tions in which there is only ever one section. For example, this project only
has one header, menu, container, and footer and, hence, uses the id attribute.

475APPENDIX A Web Site Design

■ Use class when there may be more than one <div> with that name. This
could be used for repeating areas such as box-outs. For example, the text you
are reading this sentence in a sidebar. If the book were formatted in HTML,
this box-out would have a class attribute, because several box-outs are
spread throughout the book.

Bearing these points in mind, the <div> you just added uses an id attribute
because only one header <div> is present. The <div> area contains the name of the
site from the $config_sitename variable in config.php.

Now, create the menu:

<h1><?php echo $config_sitename; ?></h1>
</div>

<div id="menu">
<a href="<?php echo $config_basedir; ?>">Home
•
<a href="<?php echo $config_basedir; ?>about.php">About
•
<a href="<?php echo $config_basedir; ?>faq.php">FAQ
•
<a href="<?php echo $config_basedir; ?>tech.php">Technical

Details
</div>

This <div> adds a number of links to different pages on the site. Each link is
prefixed with the address of site (stored in the $config_basedir variable). Using the
variable as a prefix, you can guarantee that each page links to the correct Web
address where the pages are stored. This solves common problems that can occur
when just specifying the page filename.

Add the main body of the site:

<a href="<?php echo $config_basedir; ?>tech.php">Technical
Details

</div>

<div id="container">
<div id="bar">

<?php
require("bar.php");

?>
</div>

The container <div> first includes the bar <div>. Inside the bar, you include
bar.php. You will create bar.php in a later section.

Add the main <div>:

476 Practical PHP and MySQL

</div>

<div id="main">

Create a file called footer.php and add the closing code (see Example A-2).

EXAMPLE A-2 The footer file is very simple.

</div>
</div>

</body>
</html>

The footer code has the closing main and container <div> tags, as well as the
closing <body> and <html> tags.

477APPENDIX A Web Site Design

N O T E
Wedging In Your Content

If you look at the bottom of the header file and the top of the footer file,
you can see that the opening main <div> is at the end of the header file, and
the closing main <div> is at the top of the footer file. If you now include the
header.php file at the top of a script and include the footer.php at the bot-
tom, all content in-between will appear in the main <div>. This is what you
will do in all of the projects.

The next step is to add the code for the side bar. This side bar is included in the
bar <div> in header.php. Create a new file called bar.php and add the following
code (shown in Example A-3).

EXAMPLE A-3 The side bar contains some simple information and a photo.

<h1>Mug Shot</h1>

<h1>Details</h1>

I am a workaholic
I have two dogs called Banger and Frankie
My favorite colour is blue

This file references a photo of the owner of the site; therefore, you will need to
create a 180×180 image and name it photo.jpg. Feel free to use any photo you like.
You can also change the list items to match your own tastes and personal details.

478 Practical PHP and MySQL

N O T E
Unordered and Ordered Lists

In bar.php, you create an unordered list, and it displays as bullet points.
You can also use an ordered list by using the tag (you still add
items inside the tag). An ordered list uses numbers instead of bullet points,
such as:

1. One item.

2. Another item.

3. Guess what? Another item.

4. And one more.

Next, create the main page, or front page, for the site. Create a new file called
index.php and add the following code shown in Example A-4.

EXAMPLE A-4 The front page of the Web site contains a number of different
HTML elements, but there is still no formatting; CSS will handle that task.

<?php
require("header.php");

?>
<h1>Welcome!!</h1>
<p>
Welcome to my website!
</p>
<p>
On this website, you can find a load of information about me
and the different things I am interested in. You can also find
out about my <i>superb</i> dogs and what they like to do.
</p>
<p>
On this website you can find out about:

My interests
My dogs
My website

</p>

<?php

require("footer.php");
?>

Inside this file you include a few paragraphs in <p> tags. If you want to create
valid HTML, it is important that each paragraph is within both the opening <p> and
closing </p> tags (just like with other tags such as <i> and).

479APPENDIX A Web Site Design

N O T E
 Versus

As you wander the streets of the Internet learning about PHP and MySQL,
you may see some people use the tag instead of and wonder
what the difference is. Surely they both just indicate bold text, right? Well,
not so much.

The tag is intended to add strong emphasis to the text it is applied
to, whereas the tag is intended to simply make text bold. This can cause
an issue with some accessibility tools such as screen readers. If you want to
ensure that your code works well on all browsers and devices, including
accessibility software, use the tag.

START BUILDING THE STYLESHEET

The main focus of this chapter is to cover how the CSS stylesheet is created. To
make this as simple as possible, you will build up the stylesheet step by step.

To begin, create a new file called stylesheet.css and add the following block:

body {
font-family: "trebuchet ms", verdana, sans-serif;
font-size: 12px;
line-height: 1.5em;
color: #333;
background: #ffffff;
margin: 0;
padding: 0;
text-align: center;
width: 100%;

}

Inside a stylesheet, a series of blocks apply style elements to different parts of
the HTML. In the preceding code, you apply the style instructions inside the curly
brackets associated with the <body> HTML tag. The text before the first curly
bracket indicates which tag is formatted.

Within the block live a number of style definitions, with the name on the left
(such as font-size) and the setting on the right (such as 12px). Each line ends with
a semi-colon (;). The CSS specification published by the World Wide Web Consor-
tium (W3C) provides a range of style definitions that you can use to format your
HTML.

The first step is to set the font characteristics. The first instruction (font-
family) describes the font to be used. You should specify three fonts separated by
commas in order of preference. If a font name includes a space, put the font name
in quotes (such as "trebuchet ms"). It is also advisable to always use sans-serif as
the third font option because all computers come with a sans-serif typeface. Next,
font-size (rather unsurprisingly) specifies the font size. The size is specified in
pixels by using px. As such, 12px refers to a font 12 pixels in size.

CSS provides a lot of different methods for setting sizes. Table A-1 shows the
common types.

480 Practical PHP and MySQL

MEASUREMENT DESCRIPTION

Px This is the pixel size, relative to the size of the resolution of the page.

Em This size is relative to the height of the font.

Ex This size, used infrequently, is relative to the size of the letter X.

TABLE A-1 The Major Measurement Types Are All Relative to Something Else

The next element (line-height) determines the distance between lines of text.
The value here is specified in em, which sets the size relative to the font size set
earlier.

The next two elements (color and background) specify the color of the font
(color) and the color of the background of the page (background).

The next two attributes (margin and padding) specify the space around an
object (margin) or space around the content inside an object (padding). Finally,
text-align indicates how the text is justified, and width simply specifies the width
as a percentage. Setting the width value to 100% displays the item at the full width of
the page.

FORMATTING THE MAIN <div> ITEMS

With the generic body section complete, you can move on to formatting each of the
main <div> areas. As you format each <div>, you create formatting rules for the dif-
ferent tags inside it. For example, the <h1> tag should be formatted one way in the
header section and differently in the side bar.

Aside from formatting the color, text, and other aspects of each <div>, you can
also specify how each <div> is positioned on the page. You can use the static,
absolute, relative, or fixed methods of positioning, with absolute and relative

being the most common:

■ Absolute: The position of the <div> is hard-coded to a specific area. With
this type, you categorically state where the <div> is by providing coordinates.

481APPENDIX A Web Site Design

N O T E
Colors in CSS and HTML

Colors are referenced in hexadecimal, or hex, codes. Each code consists of
a number of letters that range between 0 and F (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,
B, C, D, E, F). Each element ranges from the lowest value (0) to the highest
value (F). Colors in HTML and CSS are usually expressed with a pound sym-
bol (#) and six letters or numbers—for example, #FA34EE.

The position of the letters indicates which color the letters refer to. The first
two (#00____) are red, the second two (#__00__) are green, and the third
two (#____00) are blue. By combining the three color types and the varia-
tion between 0 and F, you can get a huge range of different colors.

A shorthand method for specifying a code is also available with a single let-
ter for each of the three colors—for example, #FFF.

The majority of paint and photo retouching applications, as well as most
Web editors, enable you to pick a color graphically and get the hex code.

N O T E
Browser Differences

Some browsers deal with the margin and width properties in different ways.
The main problem is with Internet Explorer, as it treats the measurements in
margin and padding instructions differently. For details about these issues,
see http://positioniseverything.net.

http://positioniseverything.net

■ Relative: The position of the <div> is relative to other <divs>s. As such, if
one <div> moves, another <div> may move also because this <div> is relative
to the position of other <div>s on the page.

In this project, you will use absolute positioning to specifically position a <div>
on a part of the page. This is a reliable method of ensuring that your <div> elements
are all located in the correct part of the page. If you were to use relative position-
ing, the position would always be relative to the <div> items around the <div> in
question.

In the next sections, you will work through the different <div> areas.

The Header
The header simply displays the name of the home page in large uppercase letters.
Figure A-4 shows what the final formatting looks like.

482 Practical PHP and MySQL

FIGURE A-4 The header of the home page

Add the following code to the stylesheet:

#header {
position: absolute;
top: 0px;
left: 0px;
height: 60px;
width: 100%;
background: #333;
padding-top: 8px;

}

If you refer to the header <div> that you added in header.php, you used the id
property to name the <div>. To reference a <div> that uses the id attribute, you
need to prefix the CSS block with a hash (#).

You first specify to use absolute positioning and then indicate the position of
the top-left coordinate of the <div> with the top and left properties. Setting both of
these properties to 0 positions the <div> in the top-left corner of the screen. The
inclusion of the height element indicates that the <div> should be 60 pixels high
and take up the full width of the browser (set with width).

To style the coloring of the <div>, you set the background color to a dark gray.
You also set the padding-top property to add some space before the text at the top
of the <div>.

The header contains a <h1> tag that you can style:

#header h1 {
font-size: 30px;
text-transform: uppercase;
letter-spacing: 0.3em;
color: #fff;

}

In this example, you set the font-size and color and then used the text-
transform feature to convert all the text inside the <h1> to uppercase letters. The
letter-spacing instruction then sets the size of the spacing between the different
letters.

The Menu
Now you can create the menu. This will look similar to Figure A-5.

483APPENDIX A Web Site Design

FIGURE A-5 The menu bar provides a list of links separated by bullet points.

Add the following block to the stylesheet:

#menu {
font-family: "trebuchet ms", verdana, sans-serif;
font-size: 14px;
font-weight: bold;
position: absolute;
height: 27px;
top: 60px;
left: 0px;
width: 100%;
padding: 0px;
color: #000000;
background-color: #eee

}

After setting font and size characteristics, the font-weight property is used to
make the font bold. The positioning of the <div> is started 60 pixels from the top of
the page, which positions it just below the header. Finally, you set the background
color to be #eee (light gray).

Inside the menu <div> are a number of links. Add the following to style these
links:

a:link {
text-decoration: none;
color: #000;

}

Here you simply set the color of the link. The a:link part of the block applies
the style to an available link. In addition to the link type, you can also add the
visited and hover types:

a:visited {
text-decoration: none;
border-bottom: 1px dotted #369;
color: #000;

}

a:hover, a:active {
text-decoration: none;
border-bottom: 1px solid #036;
color: #000;

}

These blocks look very similar to the first link style. The only addition is the
border-bottom property.

The border CSS instruction applies a border to the edge of the object that you
are formatting. The instruction takes three parameters: thickness, line type, and
color. For example, you would use border: thin solid black; to add a thin black
continuous line around the object or border: thick dashed #ffffff; to add a thick
white dashed line. If you want to style only a part of the border, use the border-top,
border-bottom, border-left, and border-right properties.

The visited link uses a dotted border, and the hover uses a solid border.

Styling the Container and Content
If you look at how the <div> elements are laid out, you can see a main container
<div> that houses the main and bar <div> areas. Figure A-6 shows the bar and main
content on the page.

The first style is the container:

#container {
position: absolute;
top: 85px;
left: 0px;
background: #ffffff;
margin: 0 auto 0 auto;
text-align: left;
width: 100%;
height: 100%;

}

484 Practical PHP and MySQL

In this style block, you position the container 85 pixels from the top of the
screen (taking into account the total height of both the header and menu <div>
areas). The background of the container is set to white, and the text is aligned to the
left with text-align. The width and height are set to 100% to take up the full space
inside the browser.

Styling the Side Bar
Add the bar style webblog:

#bar {
float: left;
width: 200px;
background: #eee;
padding: 10px;
margin-right: 30px;
height: 100%;

}

You first set the float property to left. This property specifies that you want
the content on the right to float around the edge of the area being styled. In this
case, you float the bar <div> so that the main <div> appears on the right.

In addition to the float, the width is set to 200 pixels, and the background color
is set to light gray. You also set a margin of 30 pixels on the right side, which adds
some space between the bar and the main content.

Inside the bar is an image. Some browsers automatically put a rather ugly bor-
der around the image, so add a style definition to remove it:

img {
border: 0;

}

485APPENDIX A Web Site Design

FIGURE A-6 The container holds the bar on the left and the main content in the
body of the page.

In the HTML for the page, you use <h1> tags in the header, bar, and main <div>
areas. Each of these different areas need to format <h1> tags differently.

486 Practical PHP and MySQL

N O T E
The Same Tag—So Many Different Meanings

Always remember to style an HTML tag relative to its context. As such,
when you add the <h1> tag to the side bar, you are saying,“This text should
use the largest font size for this area.” Although you might be tempted to
simply use <h3> tags as the largest font size in the side bar to avoid creating
different styles, this is certainly not the right way to do it.

Apply a style definition to the <h1> tags that are in the bar:

#bar h1 {
font-size: 12px;
text-transform: uppercase;
letter-spacing: 0.3em;

}

For the largest heading in the side bar, the size of the font is set to 12 pixels, and
the text is converted to uppercase letters. Minimal character spacing is also applied
to ensure that the text stands out as a heading in the side bar and looks sufficiently
different to a heading in the main content of the page.

Styling the Main Body of the Page
Add the main <div> style definition:

#main {
margin: 15px 15px 15px 240px;
padding: 15px 15px 15px 15px;
background: #FFFFFF;

}

Inside this <div>, you simply apply some margins and padding. Remember that
the content is positioned to the right because you set float: left; in the bar style
definition.

CREATING AN ABOUT PAGE

Many Web sites have an About page that provides details about the site and its
intended purpose. Create a new file called about.php and add the following code,
as shown in Example A-5. (Feel free to replace the Latin with your own language, or
make up new Latin!)

EXAMPLE A-5 The About page contains a number of paragraphs and different
types of heading.

<?php

require("header.php");
?>

<h1>About Me</h1>
<p>
Eu lobortis, vero. Facilisi nulla dignissim vero augue praesent,

iriure ipsum.Nostrud volutpat facilisi wisi eum veniam, elit facilisis,
accumsan te, eum facilisi vulputate in nulla, facilisi dolore ea.
Lobortis volutpat duis tation nonummy duis minim feugiat hendrerit duis
consequat velit enim enim ea feugait nulla. Tincidunt iriure blandit ut
eum. Nisl vero velit eum tincidunt, nonummy. Iriure accumsan duis ipsum
erat accumsan minim delenit illum amet lobortis wisi, ullamcorper
hendrerit. Qui ut odio odio ipsum.

</p>
<p>
Enim molestie eu, augue illum ad augue, feugait eum eu, nisl. Magna

ullamcorper, sed luptatum dolor. Veniam sit diam quis adipiscing. Nibh
vulputate, ullamcorper duis dignissim et vel. Suscipit, et minim
feugiat esse ex autem commodo consequat dignissim lorem eros quis ut
feugait iusto, duis dolore. Vulputate nulla consequat ea eum enim duis
blandit enim et exerci et erat elit, dolore ea nulla suscipit. Et
blandit, duis. Duis delenit wisi ut dolore, at magna.

487APPENDIX A Web Site Design

N O T E
Getting Excited?

At this point, you may be getting quite excited about CSS, and there may
well be a temptation to become something of a trendy Web person.
On behalf of the entire IT community, we all ask that you don’t resort to
orange sunglasses, spiky hair, and creating Web sites with the word beta in
the corner. Thanks.

continues

EXAMPLE A-5 Continued.

</p>
<h2>More details</h2>
<p>
Ut duis molestie nostrud vel, eros, sit dolor feugait esse aliquip

amet, wisi consequat ullamcorper ut minim. Blandit et at adipiscing,
laoreet, aliquip. Duis tation dolor dignissim ex nisl praesent et
lobortis feugiat. Augue laoreet luptatum commodo, hendrerit in diam vel
aliquip facilisi, in et enim duis et qui, ut in. Duis tincidunt wisi
facilisi autem augue. In duis, lorem feugait. Ipsum nostrud te wisi
iusto, facilisis eu dolor illum lobortis dolore quis vel nostrud
lobortis tation ullamcorper facilisis, luptatum vel. Tincidunt quis sit
luptatum. Vulputate wisi, vel. Odio qui vel facilisis eu eu adipiscing
erat facilisi dolor commodo aliquip.

</p>
<h3>Even more</h3>
<p>
Nisl, consequat consequat, odio praesent exerci delenit ut duis

accumsan delenit nulla suscipit. Nisl tincidunt veniam enim dolore.
Quis blandit, molestie, lobortis, ut illum, eum minim te dolor aliquip
at magna odio et. Feugait ea augue dolore delenit ea nulla hendrerit
exerci feugiat eum dolore accumsan feugiat blandit. Tation, duis autem,
illum dolore dolore, autem eros elit lobortis vero in facilisi
dignissim vero, ullamcorper nostrud iriure ipsum. Eu, volutpat ea wisi
eum nibh delenit wisi velit duis vulputate et ut suscipit amet
consectetuer erat enim. Qui veniam in molestie dolore veniam
ullamcorper eum. Et ut, quis ad te aliquip nibh, consequat nisl feugait
consequat iriure qui aliquam ad ex ipsum. Luptatum dignissim accumsan
commodo, commodo laoreet eu augue nulla facilisi in velit nulla quis
te. Nostrud nulla praesent.

</p>

<?php
require("footer.php");

?>

Here you use three different types of heading tags: <h1>, <h2>, and <h3>.
Although the tags do not have any styles applied, you can see how they use the font
and color properties from the body style definition. The page should look similar to
Figure A-7.

The heading font sizes retain the original size characteristics from the heading
tags, but the font type and color change as a result of the body stylesheet settings.

488 Practical PHP and MySQL

CREATING A FREQUENTLY ASKED QUESTIONS PAGE

A common type of page on many sites is a Frequently Asked Questions (FAQ) page.
This page contains a list of questions, each of which is a link. When a link is
clicked, the page jumps to the location of the answer, found lower down on the page.
The answer typically includes another link to jump back to the list of questions at
the top of the page. This method of jumping between different parts of the page is
achieved by using HTML anchors.

Create a new file called faq.php and add the following code:

<?php

require("header.php");
?>

<h1>Frequently Asked Questions</h1>

Ipsum, eu consectetuer, praesent ad,
lobortis veniam.

Autem illum suscipit volutpat exerci
adipiscing in lorem.

Luptatum suscipit
Qui veniam accumsan tincidunt veniam
At iriure amet et odio

489APPENDIX A Web Site Design

FIGURE A-7 Different headings are useful in many situations.

In this example, you create a bullet point list that includes a number of links.
Each link is given a number preceded by a hash (such as #3). The hash refers to an
anchor on the page.

Add the first answer:

<h2>Ipsum, eu consectetuer, praesent ad, lobortis veniam</h2>
<p>
Ipsum, eu consectetuer, praesent ad, lobortis veniam. Vulputate laoreet
dignissim, veniam dolor. Dolor ad in odio aliquip ea diam augue. Wisi
delenit, tation nulla dolore exerci. Molestie adipiscing in et velit
praesent. Dolor autem velit, dolore, dignissim te blandit eros. Wisi
lobortis nisl hendrerit exerci dignissim vel augue facilisi iriure.
Consequat nulla praesent, lorem augue eum duis ex augue. Vulputate
suscipit vulputate ut aliquip ad consectetuer ut eros.
</p>
<p>Back to the top</p>

At the beginning of this code, you can see the link tags and their name attrib-
utes. Inside them, you add the anchors that the question links jump to. In this case,
you are adding a number. As such, when you click the first question in the list, the
browser jumps to the link with the number 1 in the name attribute. At the end of the
code is another link to return to the top. If you look above the top questions, you can
also see the anchor tag ().

Add the remaining questions for the list:

<h2>Autem illum suscipit volutpat exerci adipiscing in lorem.</h2>
<p>
Autem illum suscipit volutpat exerci adipiscing in lorem. Nulla nostrum
lobortis tation ullamcorper. Eum tation vel feugait euismod dignissim
feugiat, iusto iriure in commodo illum consequat dolor eros vel
luptatum minim. Accumsan, ullamcorper iriure ut diam aliquam consequat
at nisl adipiscing praesent. Exerci augue duis ad ex aliquam, eros,
dolore consequat vel esse esse euismod dolor commodo ad, tation qui
quis dolore. Dolore velit duis, esse et vel eros sit dolor feugait esse
aliquip autem ut commodo dignissim, ut eros quis. Ut at consectetuer
laoreet aliquip eu tation dolor dignissim ex nisl. In et lobortis
feugiat facilisis laoreet luptatum commodo hendrerit in sed, vel
aliquip facilisi in, et enim duis et. Magna praesent in minim velit
facilisis, facilisi autem augue hendrerit lobortis. At, feugait
aliquip. Consequat te ut iusto facilisis eu. Vulputate consequat
aliquam nulla nibh nostrud, tincidunt aliquam aliquip, dolore dolor,
aliquip consequat sit feugait augue.
</p>
<p>Back to the top</p>

490 Practical PHP and MySQL

<h2>Luptatum suscipit</h2>
<p>
Luptatum suscipit, qui in elit odio lobortis consequat nulla enim
consequat ea blandit, ex consequat wisi erat, luptatum. Iusto, velit
nonummy nostrud delenit ut dolor accumsan tincidunt autem suscipit duis
nisl, veniam enim dolore te nonummy, ut suscipit. Laoreet ea eum ódio
magna wisi ut eum ea tation quis facilisi. Ullamcorper ut illum aliquip
feugiat feugait hendrerit. Augue volutpat veniam commodo amet duis
blandit odio, duis duis magna nulla dolore, at ipsum velit. Vulputate
vero iusto nulla elit ipsum, augue, blandit iriure iriure feugiat,
consequat facilisi accumsan consectetuer suscipit dolore. Esse blandit
enim, nibh amet illum molestie hendrerit, minim vero eum. Commodo minim
in ut dolore dolor delenit et molestie sed, feugiat illum nostrud
exerci vel, hendrerit accumsan, exerci. Aliquip duis volutpat vulputate
ut odio quis ut nisl. Eum et autem feugait nulla consequat sit, minim
esse duis ad diam vel dignissim. Feugiat augue praesent iriure iriure
ut. Eum, facilisi, iriure et, vel aliquip accumsan tincidunt, dolor
praesent et te augue hendrerit in vero iusto sit.
</p>
<p>Back to the top</p>

<h2>Qui veniam accumsan tincidunt veniam</h2>
<p>
Qui veniam accumsan tincidunt veniam elit molestie sed vel ullamcorper
duis duis ipsum, ut nostrud delenit feugait, nulla dolore. Luptatum
feugiat consequat accumsan duis magna eum molestie delenit ut, ódio
duis minim delenit, blandit nostrud. Lobortis blandit ut dolore
consequat. Dolor duis amet minim, in nulla luptatum feugiat veniam enim
at consequat wisi hendrerit in amet vero. Enim, ex ea, feugait suscipit
minim qui ea illum luptatum accumsan illum nulla, enim. Facilisis ut
dolor nibh qui ullamcorper et facilisi accumsan, blandit odio odio
magna iusto nonummy. Consectetuer nostrud minim delenit wisi facilisis
et vel blandit illum at feugait feugiat nostrud duis ut in. Dolor ex
minim nisl illum dolore vulputate wisi, elit euismod tation nonummy
consequat molestie nisl feugait luptatum dignissim. Consequat iusto
odio nostrud at illum, consequat dolor amet vel luptatum, amet et
ullamcorper odio ut qui feugait.
</p>
<p>Back to the top</p>

<h2>At iriure amet et odio</h2>
<p>
At iriure amet et odio exerci te nulla velit aliquip dignissim ut esse,
volutpat, magna blandit praesent hendrerit, sed. Sit praesent suscipit
facilisi vero nibh. Delenit exerci, commodo suscipit ad ut augue, augue
sed vulputate tation augue. Lorem autem et ut facilisi lobortis autem
ut accumsan vero te ut nibh consequat blandit. Dolore dolore iriure in
dolore ad delenit ipsum commodo dignissim accumsan commodo comodo
molestie eu augue nulla. Dolor veniam velit nulla accumsan te,

491APPENDIX A Web Site Design

consectetuer nulla praesent dignissim autem nulla dolore ea te eros sit
exerci vel minim. Iriure eum diam dolor duis luptatum dolor in wisi et
ut iusto adipiscing illum. Dolor iusto ut ad, euismod adipiscing nulla
duis, vulputate vulputate, et odio minim qui nonummy ex at.
</p>
<p>Back to the top</p>

<?php
require("footer.php");

?>

The final page should resemble something similar to the Web page shown in
Figure A-8.

492 Practical PHP and MySQL

FIGURE A-8 Frequently asked questions are useful for providing clear and concise
answers to common questions.

FORMATTING TABLES

Tables are an important part of many pages, and they are useful for showing sum-
marized chunks of information. It is important to remember to use tables only for
what they are intended: showing tabular information. Many beginners can’t resist
the temptation to use tables to store information that really should be destined for a
<div>—and as explained earlier, there are many reasons to avoid nested tables.
The best approach is to think about how tables are displayed in books. If your infor-
mation was inside a book, for example, and would likely be in a table, use a table.
If not, use something else, such as a <div>.

In this section, you will create a table like the one in Figure A-9.

493APPENDIX A Web Site Design

FIGURE A-9
The table is mainly styled in
the table headings.

Most of the formatting applied to this table is in the table heading. To divide the
heading and main content of the table, a thick gray border appears at the top and a
thin gray line appears at the bottom.

Create a page called tech.php and add some introductory information:

<?php

require("header.php");
?>

<h1>Technical Details</h1>
<p>
Nisl, consequat consequat, odio praesent exerci delenit ut duis

accumsan delenit nulla suscipit. Nisl tincidunt veniam enim dolore.
Quis blandit, molestie, lobortis, ut illum, eum minim te dolor aliquip
at magna odio et. Feugait ea augue dolore delenit ea nulla hendrerit
exerci feugiat eum dolore accumsan feugiat blandit. Tation, duis autem,
illum dolore dolore, autem eros elit lobortis vero in facilisi
dignissim vero, ullamcorper nostrud iriure ipsum. Eu, volutpat ea wisi
eum nibh delenit wisi velit duis vulputate et ut suscipit amet
consectetuer erat enim. Qui veniam in molestie dolore veniam
ullamcorper eum. Et ut, quis ad te aliquip nibh, consequat nisl feugait
consequat iriure qui aliquam ad ex ipsum. Luptatum dignissim accumsan
commodo, commodo laoreet eu augue nulla facilisi in velit nulla quis
te. Nostrud nulla praesent.

</p>

Add the following table:

<table cellspacing="0" cellpadding="10">
<tr>

<th>Tool</th>
<th>Version</th>
<th>Description</th>

</tr>
<tr>

<td>PHP</td>
<td>4.x and 5.x</td>
<td>Scripting language for web applications</td>

</tr>

<tr>
<td>MySQL</td>
<td>4.x</td>
<td>Powerful database system</td>

</tr>
</table>

The table structure is the same as the one shown in Table A-2.

494 Practical PHP and MySQL

TOOL VERSION DESCRIPTION

PHP 4.x and 5.x Scripting language for web applications

MySQL 4.x Powerful database system

TABLE A-2 A Sample Table

Inside the <table> tag is a series of <tr> tags, which represents table rows. In
the first row, three <th> tags add the table headings. In the remaining rows, the
main cells are added with <td> (table dimension) tags.

Finally, add the footer file:

<?php
require("footer.php");

?>

To apply the styles, you can theoretically style any of the different table tags
(<table>, <th>, <tr>, and <td>). First, style the table:

table {
border: thin solid #cccccc;
background: #ffffff;

}

The main visual style you are adding here is a thin solid light gray border
around the edge of the table. Now style the table headings:

th {
letter-spacing: 2.5px;
background: #eeeeeee;
color: #000000;
text-transform: uppercase;
text-align: center;
border-top: thick solid #eeeeee;
border-bottom: thin solid #cccccc;

}

For the table heading font, you style the text as uppercase (text-transform),
add some letter spacing (letter-spacing), align the text to the center (text-align),
and set the color to black (color).

You also style the top and bottom border of the table heading cells. The top is
set to a thick solid gray line, and the bottom border of the cells is set to a slightly
darker thin gray line.

SUMMARY

Within this project, the main focus has been on creating a complete stylesheet. The
stylesheet you created will be applied to all the projects throughout the rest of the
book. The only styles that have been left out are the table styles, because many of
the other projects style tables in different ways. The Calendar and Forms projects
have very different table styles, for example.

Example A-6 shows the complete stylesheet that is used elsewhere in the book:

EXAMPLE A-6 The completed stylesheet will prevent the need to create a new
CSS file for each project.

body {
font-family: "trebuchet ms", verdana, sans-serif;
font-size: 12px;
line-height: 1.5em;
color: #333;
background: #ffffff;
margin: 0;
padding: 0;
text-align: center;
width: 100%;

}

p {
margin-top: 10px;

}

a:link {
text-decoration: none;
color: #000;

}

a:visited {
text-decoration: none;
border-bottom: 1px dotted #369;
color: #000;

}

495APPENDIX A Web Site Design

continues

EXAMPLE A-6 Continued.

a:hover, a:active {
text-decoration: none;
border-bottom: 1px solid #036;
color: #000;

}

img {
border: 0;

}

#container {
position: absolute;
top: 85px;
left: 0px;
background: #ffffff;
margin: 0 auto 0 auto;
text-align: left;
width: 100%;
height: 100%;

}

#menu {
font-family: "trebuchet ms", verdana, sans-serif;
font-size: 14px;
font-weight: bold;
position: absolute;
height: 27px;
top: 60px;
left: 0px;
width: 100%;
padding: 0px;
color: #000000;
background-color: #eee

}

#header {
position: absolute;
top: 0px;
left: 0px;
height: 60px;
width: 100%;
background: #333;
padding-top: 8px;

}

#header h1 {

496 Practical PHP and MySQL

font-size: 30px;
text-transform: uppercase;
letter-spacing: 0.3em;
color: #fff;

}

#main {
margin: 15px 15px 15px 240px;
padding: 15px 15px 15px 15px;
background: #FFFFFF;

}

#bar {
float: left;
width: 200px;
background: #eee;
z-index: 1;
padding: 10px;
margin-right: 30px;
height: 100%;

}

#bar h1 {
font-size: 12px;
text-transform: uppercase;
letter-spacing: 0.3em;

}

CSS design is one that can be mastered with practice. It is recommended that
you experiment with the many different aspects of CSS to get used to its syntax and
mechanics. A number of online resources are available for perfecting your designs:

■ CSS Zen Garden: www.csszengarden.com

■ A List Apart: www.alistapart.com

■ Position Is Everything: www.positioniseverything.net

■ Dive Into Accessibility: http://diveintoaccessibility.org

497APPENDIX A Web Site Design

www.csszengarden.com
www.alistapart.com
www.positioniseverything.net
http://diveintoaccessibility.org

This page intentionally left blank

499

Index

A
About pages, creating, 487-488
accept block, modifying ownership

requests, 371-373
accessing

databases, re-usable code, 388
phpMyAdmin, 59
project features, re-usable code,

392-393
accounts, verifying for discussion

forums, 141-142
addcat.php, 457
addimages.php file (auction site),

248-251
adding

categories
to discussion forums, 159-160
to news Web sites, 457-459

comments summaries to blogs, 77-79
data to tables in MySQL, 43-45
events, Web-based calendars, 297-301
feedback

in sidebars, 336
to sidebars, 340-341

forums to discussion forums, 160-163
links to update blog entries, 101
new projects, re-usable code, 420-421

products to shopping carts, 187-190
questions to CMS for Frequently Asked

Questions, 341-349
stories to news Web sites, 452-456
subjects, CMS for Frequently Asked

Questions, 356-358
topics, CMS for Frequently Asked

Questions, 360-363
addslashes(), 200, 248, 315
addsubject.php, 356
addtopic.php, 360
administering projects, re-usable code,

398-405
administrator login screens, hiding, 331
administrator logins, CMS for Fre-

quently Asked Questions, 337-338
administrator pages, shopping carts,

208-209
logging out administrators, 209-210
managing completed orders, 210-212
viewing specific orders, 213-216

administrator-specific pages, discussion
forums, 158

adding categories, 159-160
adding forums, 160-163
deleting, 163-167

administrators, 330
becoming an admin, 339-340
logging in, for discussion forums,

147-149
adminlogin.php, 208
adminlogout.php, 209
adminmodsubown.php, 369
adminorderdetails.php, 213
adminorders.php, 210
admins table, shopping carts, 172
Ajax, 279-281

preparing for, 283
Web-based calendars, 293-294

allow, 369
allow block, 354
anchors, 79, 489
applications

deploying with re-usable code, 421-424
online auction site. See auction site
running, from Live CD 56

applying for subject ownership, CMS for
Frequently Asked Questions, 365-368

applysubowner.php, 365
archives, 63
arrays

associative arrays, 24
$_FILES, 251-252
PHP, 24-25

associative array, 24
auction categories

displaying, 227
viewing item details, 232-235
viewing items in, 227-232

auction site
auction categories

displaying, 227
viewing item details, 232-235
viewing items in, 227-232

bids
displaying, 230-232
placing, 236-240

currencies, 231

database, 220
bids table, 221-222
categories table, 220-222
images table, 221-222
items table, 221-222, 226
sample data, inserting, 221-222
users table, 220-222

files
addimages.php, 248-251
bar.php, 227
config.php, 223
delete.php, 256-259
edititem.php, 230-231
footer.php, 224
functions.php, 225-226
header.php, 223-224
index.php, 228
itemdetails.php, 230, 233, 238
login.php, 240-243
logout.php, 242
newitem.php, 244-246
processauctions.php, 259-262
register.php, 243
validate.php, 243

images, adding, 250-256
input risks, 249
items

adding, 243, 246-249
deleting, 256-259
viewing, 227-232
viewing details about, 232-240

overview of, 219-220
price formatting, 232
processing auctions, 259-263
user login page, 240-243
user logout page, 242
user registration, 243

available projects viewer, 397-398
AVG() function, 447

B
 tag, 479
backing up, XAMPP, 60

500 Index

bar.php, Web-based calendars, 281
bar.php file (auction site), 227
basket summary, displaying (shopping

carts), 191-194
$bidnumrows variable, 231
bids (auction site)

displaying, 230-232
placing, 236-240

bids table (auction site), 221-222
blog comments, showing, 86-87
blog entries

creating, 103-106
displaying, 72-77
updating, 106-110

blogs, 63
adding

categories, 102-103
links to update blog entries, 101

building
category browser, 92-95
comment forms, 87-92
databases, 65-66

comments summaries, adding, 77-79
configuration files, 68-69
creating new entries, 103-106
displaying

entries, 72-77
previous blog entries, 79-81

footer files, 71-72
header files, 70-71
implementing databases, 66-67
inserting sample data, 67-68
security, 95

adding session support, 100-101
restricting access, 96-99
signing out users, 99-100

updating blog entries, 106-110
user interfaces, designing, 70-72
viewing specific entries, 82

showing blog comments, 86-87
showing entries, 85-86
validating request URL, 82-85

Blogtastic 64
adding

categories, 102-103
comment summaries, 77-79

building
the category browser, 92-95
databases, 65-66

configuration files, 68-69
creating new entries, 103-106
designing user interfaces, 70-72
displaying blog entries, 72-77

building queries, 73-74
displaying previous blog entries, 79-81
footer files, 71-72
header files, 70-71
implementing databases, 66-67
inserting sample data, 67-68
security, 95

adding session support, 100-101
restricting access, 96-99
signing out users, 99-100

updating blog entries, 106-110
viewing specific entries, 82

building comment forms, 87-92
showing blog comments, 86-87
showing entries, 85-86
validating request URL, 82-85

booting from CD/DVD drive, 54-56
breadcrumb trail, 127

creating, 132

C
calculators, PHP 22-24
calendar view, Web-based calendars,

286-292
calendars. See Web-based calendars
cascading delete, 163
Cascading Style Sheets. See CSS
categories

adding
to blogs, 102-103
to discussion forums, 159-160

managing on news Web sites, 457-461

501Index

categories (auction site)
displaying, 227
viewing items in, 227-232

categories table
discussion forums, 120
shopping carts, 172

categories table (auction site), 220-222
categorization, 63
category browser, creating (for

Blogtastic), 92-95
CD/DVD, booting from 54, 56
ceil() function 23, 464
changing general settings, re-usable

code, 406-407
checkdate(), 247
checkout process, shopping carts,

196-202
paying, 203-207

checkout-address.php, 197
checkout-pay.php, 203
client/server development, 8
CMS (Content Management System), 303
CMS for Frequently Asked Questions

adding
feedback in sidebars, 336
questions, 341-349

building the database, 305-310
configuration files, creating, 310
displaying questions, 321

question summaries, 321-324
showing specific questions, 324-329
updating sidebars, 329-330

footer files, creating, 311-312, 320
functions, creating, 314-315
header files, creating, 311
logging out, 335-338
logins, 330

administrator logins, 337-338
normal user logins, 330-333

main pages, creating, 316-320
moderating questions, 349-355
project overview, 304-305
sidebars, 312-314

subject ownership, 364
applying for, 365-368
moderating ownership requests,

368-375
removing, 375-376

subjects, 356-360
topics, 360-364

colors in CSS and HTML, 481
comment forms, building for blogs,

87-92
commenting, 63
comments summaries, adding to

Blogtastic, 77-79
concatenation, 21
concatenation operator, 21
config.php files, auction site, 223
configuration files, 474-479

Blogtastic, 68-69
creating for

news Web sites, 432
CMS for Frequently Asked Ques-

tions, 310
shopping carts, 176-180

connecting to MySQL in PHP, 45-46
consistency across pages with

sessions, 48-51
iterating through results, 48
querying the database, 47

consistency across pages with sessions,
connecting to MySQL in PHP, 48-51

content management, 303
Content Management System (CMS), 303
control panels, displaying after login,

333-335
COUNT(), 231, 447
createElement(), 453
crontab, auction processing (schedul-

ing), 263
CSS (Cascading Style Sheets), 469-471

About pages, creating, 487-488
Colors, 481
formatting main div items, 481-486

502 Index

Frequently Asked Questions pages,
creating, 489-492

laying out Web sites, 471-474
stylesheets, creating, 479-480
versus tables, 473

currencies, 231
customers table, shopping carts, 172

D
data, inserting sample data (blogs),

67-68
database optitmization, 462
databases

accessing for re-usable code, 388
auction site database, 220-222
building for

Blogtastic project, 65-66
re-usable code, 381
shopping carts, 171-175
Web-based calendars, 266-267

CMS for Frequently Asked Questions.
See CMS for Frequently Asked
Questions

creating
for discussion forums, 115-221
in MySQL, 39-40

implementing
for Blogtastic project, 66-67
re-usable code, 383

inserting sample data
for Blogtastic project, 67-68
re-usable code, 384-385

news Web sites. See news Web sites
date(), 76
delete.php, discussion forums, 167
delete.php file (auction site), 256-259
deletesubject.php, 358-359
deletetopic.php, 363
deleting

auction items, 256-259
categories from news Web sites,

460-461
discussion forums, 163-167

events, Web-based calendars, 301-302
images, 419-420
items from shopping carts, 195-196
releases, 414-415
stories from news Web sites, 456-457
subjects, CMS for Frequently Asked

Questions, 358-360
topics, CMS for Frequently Asked

Questions, 363-364
delivery_addresses table, shopping

carts, 173
deny, 369
deny block, 354

modifying ownership requests, 373-374
denyconf, 369
denyconf block, 355

modifying ownership requests, 374-375
deploying applications, re-usable code,

421-424
design for Web-based calendars, 268-272

footer files, 274
header files, 273
pf validate number(), 274

designing
sites for discussion forums, 122-124
table structures, MySQL, 37-38
user interfaces, Blogtastic, 70-72

details block, 352-354
directories, e-usable code, 385-386
discussion forums

administrator-specific pages, 158
adding categories, 159-160
adding forums, 160-163
deleting, 163-167

creating the database, 115-118
adding sample data to the data-

base, 119-121
InnoDB, 116

displaying forums, 124
creating the front page, 124-126
viewing forum topics, 126-130
viewing threads, 130-133

features to be included in, 114

503Index

managing user logins, 133
logging in administrators, 147-149
logging in users, 142-146
logging out, 149-150
user registrations, 134-141
verifying accounts, 141-142

overview of, 111-113
posting new topics, 150-155
replying to threads, 156-158
site design, 122-124

display() method, 455
displaying

auction categories, 227
auction details, 232-235
auction items, 227-232
bids (auction site), 230-232
blog entries, Blogtastic, 72-77
control panels, after login, 333-335
discussion forums, 124

creating the front page, 124-126
viewing forum topics, 126-130
viewing threads, 130-133

events, Web-based calendars, 283-285
previous blog entries, Blogtastic, 79-81
products (shopping carts), 184-187

basket summary, 191-194
questions in CMS for Frequently Asked

Questions, 321
question summaries, 321-324
showing specific questions, 324-329
updating sidebars, 329-330

div items, formatting, 481-482
headers, 482-483
menus, 483-484
styling containers and content, 484-486

<div> tag, 471, 475-476
downloading releases, 393-395
downloads, managing, 407-414
drill-downs, 227

E
edititem.php file (auction site), 230-231
entries, 63

showing, viewing specific blog entries,
85-86

error messages, 85
events

adding Web-based calendars, 297-301
deleting Web-based calendars, 301-302
displaying in Web-based calendars,

283-285
viewing event information, Web-based

calendars, 294-296
viewing in Web-based calendars,

277-279
Ajax, 279-281, 293-301
calendar view, 286-292
sidebars, 281-285

examples
product databases, 36

adding data to tables, 43-45
creating the database, 39-40
creating the tables, 40-43
designing table structures, 37-38
table relationships, 38-39

stylesheet, 495-497
explode(), 281, 463

F
FAQ (Frequently Asked Questions),

CMS. See CMS for Frequently Asked
Questions

feedback, 334
adding

in sidebars, 336
to sidebars, 340-341

file_exists(), 398
files

auction site. See auction site, files
footer files for blogs, 71-72
header files for blogs, 70-71
php.ini, upload_tmp_dir option, 253

$_FILES array, 251-252
floats, 40
floor(), 23

504 Index

font characteristics, creating stylesheets
in CSS, 480

footer files
Blogtastic, 71-72
creating

for CMS for Frequently Asked
Questions, 311-312, 320

for news Web sites, 435
for Web-based calendars, 274

footer.php files, auction site, 224
for loop, PHP, 25-26
foreach command, 465
formatting

div items, 481-486
tables, 492-495

forms, PHP, 32-33
processing forms, 33-35

forum topics, viewing, 126-130
forums

adding to discussion forums, 160-163
discussion forums. See discussion

forums
forums table, discussion forums, 120
freeze(), 455
Frequently Asked Questions pages,

creating, 489-492
functions

addslashes(), 200, 248, 315
AVG(), 447
ceil(), 23
cell(), 464
checkdate(), 247
COUNT(), 231, 447
createElement(), 453
creating for

for CMS for Frequently Asked
Questions, 314-315

re-usable code, 388-390
date(), 76
explode(), 281, 463
file_exists(), 398
floor(), 23
freeze(), 455

getimagesize(), 253
is numeric(), 84
isset(), 83
loadArray(), 454
MAX(), 231
menu_options(), 400
mktime(), 233
move_uploaded_file(), 254
mysql insert id(), 154
mysql num rows(), 78
nl2br(), 235
NOW(), 233
pf check number(), 314-315
pf fix slashes(), 314, 326
pf protect nonadmin page(), 388
pf script with get(), 143
pf validate number(), 186, 315

Web-based calendars, 274
pf_script_with_get(,) 225
pf_validate_number(), 225-228
PHP, 30-31
print_r(), 252
process_data(), 455, 459
session destroy(), 100
session_register(), 50
session_start(), 49
set validid(), 350
short_description(), 463
showcart(), 191, 195
sprintf(), 232
strip tags(), 200
strtotime(), 76
UNIX_TIMESTAMP(), 233
urldecode(), 463

functions.php file (auction site), 225-226

G
general settings, changing for re-usable

code, 406-407
GET method, 32
GET variables, validating, 83
getimagesize() function, 253

505Index

H
handleEvent(), 294
header files

Blogtastic, 70-71
creating

for CMS for Frequently Asked
Questions, 311

for news Web sites, 433
for Web-based calendars, 273
re-usable code, 399

header.php files, auction site, 223-224
headers, formatting div items, 482-483
heredoc syntax, 138
hiding administrator login screens, 331
HTML

colors, 481
PHP and, 17-20

HTML_QuickForm
adding

categories, 457-459
stories to news Web sites, 452-456

deleting stories from news Web sites,
456-457

installing, 428
managing stories on news Web sites,

451-452

I
if statement, PHP, 28-29
$imagenumrows variable, 230
images. See also screenshots

adding to auction sites, 250-256
deleting, 419-420

images table (auction site), 221-222
implementing

databases
blogs, 66-67
for CMS for Frequently Asked

Questions 305-308
news Web sites, 429-430
re-usable code, 383

for shopping cart, 171-174
for Web-based calendars, 266-267

search boxes, 462
index.php, testing header and footer

files, 71
index.php file (auction site), 228
InnoDB, 116
input (user), risks of, 249
inserting sample data

for CMS for Frequently Asked Ques-
tions, 308-310

news Web sites, 430-431
re-usable code, 384-385

installing
HTML_QuickForm, 428
MySQL, 16-17
PEAR packages, 426-427
PHP, 16-17

internal_request.js, 293
is numeric() function, 84
isset() function, 83
itemdetails.php file (auction site), 230,

233, 238
items (auction site)

adding, 243, 246-249
deleting, 256-259
displaying, 227-232
viewing details about, 232-235

items table (auction site), 221-222, 226
iterating through results, connecting to

MySQL in PHP, 48

K
key-value pair, 24
keywords, UNION, 438

L
languages

MySQL. See MySQL
PHP. See PHP

Lerdorf, Rasmus, 6
links, adding to update blog entries, 101
Linux, setting up XAMPP, 16-17

506 Index

Live CD, 53-54
phpMyAdmin, accessing, 59
running applications, 56
starting the system, 54-56
XAMPP, 57-58

loadArray(), 454
logging in administrators, discussion

forums, 147-149
logging in users

auction site, 240-243
discussion forums, 142-146

logging out
administrators, shopping carts,

209-210
CMS for Frequently Asked Questions,

335-338
of discussion forums, 149-150
preventing, 336
from shopping carts, 184
users, news Web sites, 443

logging out users, auction site, 242
login screens, for Web-based calendars,

275-277
login.php file (auction site), 240-243
logins

administrator login screens,
hiding, 331

CMS for Frequently Asked
Questions, 330-338

user logins, news Web sites, 440-442
logins table, shopping carts, 173
logout.php file (auction site), 242
loops, PHP, 25-27

M
mail() command, 138
main, 369
main block

creating, 350-352
modifying ownership requests, 370-371

main pages, creating
for CMS for Frequently Asked Ques-

tions, 316-320
for news Web sites, 436-440

managing
completed orders, shopping carts,

210-212
downloads, re-usable code, 407-414
screenshots, 415-419
user logins (shopping carts), 181-183

logging out users, 184
math operators, PHP, 22
MAX() function, 231
menu options, viewing in re-usable

code, 391
menu structures, creating for news Web

sites, 434-435
menus, formatting div items, 483-484
menu_options() function, 400
messages table, discussion forums, 121
methods

display(), 455
GET, 32
POST, 32
validate(), 455

mktime() function, 233
moderating

questions, to CMS for Frequently
Asked Questions, 349-355

subject ownership, CMS for Frequently
Asked Questions, 368-375

move_uploaded_file() function, 254
MyISAM, 116
MySQL, 6-8, 35-36

connecting in PHP, 45-46
consistency across pages with ses-

sions, 48-51
iterating through results, 48
querying the database, 47

creating databases, 39-40
creating tables, 40-43
examples, product databases. See

examples, product databases
installing, 16-17
table relationships, 38-39
table structures, designing, 37-38
tables, adding data to, 43-45

507Index

mysql insert id() function, 154
mysql num rows() function, 78

N
newitem.php file (auction site), 244-246
news Web sites, 425

adding stories, 452-456
building databases, 428-431
configuration files, creating, 432
deleting stories, 456-457
footer files, creating, 435
header files, creating, 433
installing

HTML_QuickForm, 428
PEAR packages, 426-427

main pages, creating, 436-440
managing

categories, 457-461
stories, HTML_QuickForm,

451-452
menu structures, creating, 434-435
project overview, 425-426
search engines, 461-467
user logins, 440-445
viewing and rating stories, 445-449

nl2br() function, 235
non-transactional tables, 116
normal user logins, CMS for Frequently

Asked Questions, 330-333
normal users, 330
NOW(), 92, 233
$numrows variable, 229

O
online auction site. See auction site
operators, math operators (PHP), 22
optimizing databases, 462
orderitems table, shopping carts, 173
orders table, shopping carts, 173

P
<p> tags, 479
pages

About pages, 487-488
Frequently Asked Questions pages,

489-492
styling, 486

paging, 464
paying, checkout process (shopping

carts), 203-207
PayPal, variables, 205
PEAR (PHP Extension and Applications

Repository), 379
PEAR packages, installing, 426-427
PECL (PHP Extension Community

Library), 379
performing ratings, news Web sites,

450-451
permissions, checking for, 415
pf check number(), 314-315
pf fix slashes(), 314, 326
pf protect nonadmin page(), 388
pf script with get(), 143
pf validate number(), 186, 315

for Web-based calendars, 274
pf_script_with_get(), 225
pf_validate_number(), 225-226, 228
PHP, 6-7

Arrays, 24-25
asking questions of code, 27-30
connecting to MySQL, 45-51
forms, 32-35
functions, 30-31
history of, 6
HTML and, 17-20
Installing, 16-17
Loops, 25-27
math operators, 22
switching versions, XAMPP, 59
variables, 20-21

PHP Extension and Applications Repos-
itory (PEAR), 379

508 Index

PHP Extension Community Library
(PECL), 379

php.ini file, upload_tmp_dir option, 253
phphomeproject, 385
phpMyAdmin, accessing, 59
placing bids (auction site), 236-240
POST method, 32
posting new topics in discussion forums,

150-155
preventing logging out, 336
prices, formatting, 232
print_r(), 252
processauctions.php file (auction site),

259-262
processing forms, PHP, 33-35
processing auctions, 259-263
process_data(), 455, 459
products, displaying and selecting (shop-

ping carts), 184-187
adding items to carts, 187-190
deleting items, 195-196
displaying basket summary, 191-194

products table, shopping carts, 174
project features, accessing in re-usable

code, 392-393
projects

adding new projects, re-usable code,
420-421

administering, 398-405
Blogtastic. See Blogtastic
online auction site. See auction site

Q
queries, building to display blog entries,

73-74
querying the database, connecting to

MySQL in PHP, 47
questions (CMS for Frequently Asked

Questions)
adding, 341-349
displaying, 321

question summaries, 321-324

showing specific questions, 324-329
updating sidebars, 329-330

moderating, 349-355

R
rating news stories, 445-449

performing ratings, 450-451
re-usable code, 379

adding new projects, 420-421
administering projects, 398-405
available project viewer, 397-398
building the database, 381-385
changing general settings, 406-407
deleting

images, 419-420
releases, 414-415

deploying applications, 421-424
directories, 385-386
downloading releases, 393-395
header files, 399
managing

screenshots, 415-419
downloads, 407-414

project overview, 380-381
starting to code, 386-387

accessing project features, 392-393
accessing the database, 388
creating functions, 388-390
main project, 390-391
viewing menu options, 391

viewing screenshots, 396-397
redirection, 84
register.php file (auction site), 243
registering users, auction site, 243
relationships

table relationships, 308
tables, MySQL, 38-39

releases
deleting, 414-415
downloading, 393-395

removesubown.php, 376
removing subject ownership, 375-376

509Index

replying to threads, discussion forums,
156-158

request URL, validating, 82-85
restricting access to blogs, 96-99
risks of user input, 249
running applications from Live CD, 56

S
sample data

adding to databases, discussion forums,
119-121

databases, for Web-based
calendars, 267

inserting
for CMS for Frequently Asked

Questions, 308-310
in news Web sites, 430-431

inserting in databases, for shopping
carts, 174-175

scheduling, auction processing, 262-263
screenshots. See also images

managing, 415-419
viewing, 396-397

search boxes, 462
search engines, news Web sites, 461-467
security

discussion forums. See discussion
forums

for blogs, 95
adding session support, 100-101
restricting access, 96-99
signing out users, 99-100

selecting products (shopping carts),
184-190

session destroy(), 100
session IDs, shopping carts, 176
session variables, 50
sessions

consistency across pages, 48-51
creating, 49

session_register(), 50
session_start(), 49
set validid(), 350

shopping carts, 169
administrator pages, 208-209

logging out, 209-210
managing completed orders,

210-212
viewing specific orders, 213-216

building the database, 171-175
checkout process, 196-202

paying, 203-207
configuration files, 176-180
displaying and selecting products,

184-187
adding items to the cart, 187-190
deleting items, 195-196
displaying basket summary,

191-194
managing user logins, 181-183

logging out users, 184
overview of project, 170
session IDs, 176
status, 172

short_description(), 463
showcart(), 191, 195
side bars, styling, 485-486
sidebars

adding
feedback in, 336
feedback to, 340-341

creating for CMS for Frequently Asked
Questions, 312-314

updating in CMS for Frequently Asked
Questions, 329-330

updating after login, news Web sites,
443-445

Web-based calendars, 281-285
site design, discussion forums, 122-124
site layout for Web-based calendars,

268-272
footer files, 274
header files, 273
pf validate number(), 274

Smith, Elliot, 16
sprintf(), 232

510 Index

starting XAMPP, 58
statements, PHP, 28-30
status, shopping carts, 172
stopping XAMPP, 58
stories

adding to news Web sites, 452-456
deleting from news Web sites, 456-457
managing on news Web sites,

HTML_QuickForm, 451-452
strip tags(), 200
 tag, 479
strtotime(), 76
style for Web-based calendars, 268-272

footer files, 274
header files, 273
pf validate number(), 274

stylesheets
creating in CSS, 479-480
example, 495-497

styling, 484-486
subject ownership, CMS for Frequently

Asked Questions, 364
applying for, 365-368
moderating ownership requests,
368-375
removing, 375-376

subjects, CMS for Frequently Asked
Questions, 356-360

Submit button, 410
switch statement, PHP, 29-30
switching PHP versions, XAMPP, 59

T
table relationships, creating for CMS for

Frequently Asked Questions, 308
<table> tag, 494
tables

adding data to in MySQL, 43-45
auction site database 220-222, 226
creating in MySQL, 40-43
versus CSS, 473
formatting, 492-495
non-transactional tables, 116

relationships in MySQL, 38-39
transaction-safe tables, 116

tables structures, designing in MySQL,
37-38

tags
, 479
<div>, 471, 475-476
<p>, 479
, 479
<table>, 494

threads
replying in discussion forums, 156-158
viewing, 130-133

topics
CMS for Frequently Asked Questions,

360-364
posting new topics in discussion

forums, 150-155
topics table, discussion forums, 120
transaction-safe tables, 116
type specifiers, 438

U
UNION keyword, 438
UNIX_TIMESTAMP() function, 233
UPDATE command, 107
updating sidebars

CMS for Frequently Asked Questions,
329-330

news Web sites, 443-445
upload_tmp_dir option (php.ini), 253
$uploaddir variable, 254
urldecode(), 463
use cases, 64
user interfaces, designing for blogs,

70-72
user logins

managing for discussion forums, 133
logging in administrators, 147-149
logging in users, 142-146
logging out, 149-150
user registrations, 134-141
verifying accounts, 141-142

511Index

managing in shopping carts, 180-184
news Web sites, 440-445

user registrations, discussion forums,
134-141

users
logging in

auction site, 240-243
for discussion forums, 142-146

logging out, auction site, 242
registering, auction site, 243
user input, risks of, 249

users table, discussion forums, 119
users table (auction site), 220-222

V
validate() method, 455
validate.php file (auction site), 243
validating request URL, viewing specific

blog entries, 82-85
$validforum variable, 154-155
$validid variable, 228
variable scope, 389
variables

$bidnumrows, 231
$imagenumrows, 230
$numrows, 229
$uploaddir, 254
$validid, 228
GET, validating, 83
PayPal, 205
PHP, 20-21
session variables, 50
valid forum variable, 154-155

verifying accounts, discussion forums,
141-142

viewing
event information, Web-based calen-

dars, 294-296
events (Web-based calendars), 277-278

Ajax 280, 293-294, 296-301
calendar view, 286-292
sidebars, 281-285

forum topics, 126-130
menu options, re-usable code, 391
news stories, 445-449
screenshots, 396-397
specific entries (Blogtastic), 82

building comment forms, 87-92
showing blog comments, 86-87
showing entries, 85-86
validating request URL, 82-85

specific orders, shopping carts,
213-216

threads, discussion forums, 130-133

W
Web, how it works, 8-12
Web-based calendars, 265

building databases, 266
implementing databases, 266-267
inserting sample data, 267

deleting events, 301-302
login screens, 275-277
project overview, 265-266
site layout and styles, 268-272

footer files, 274
header files, 273
pf validate number(), 274

viewing events, 277-278
Ajax, 280, 293-301
calendar view, 286-292
sidebars, 281-285

Web sites, laying out with CSS, 471-474
while loop, PHP, 26-27
Windows, setting up XAMPP, 16

X
XAMPP, 16

backing up, 60
Live CD, 57-58
setting up

on Linux, 16-17
on Windows, 16

starting and stopping, 58

512 Index

	Contents
	Foreword
	About the Author
	Acknowledgments
	Introduction
	A Different Approach
	What You Need to Use This Book
	Conventions
	Onward

	CHAPTER 1 A New Approach
	The Technology
	How the Dynamic Web Works
	Summary

	CHAPTER 2 Getting Started with PHP and MySQL
	Setting Up PHP and MySQL
	Getting Started with PHP
	Rolling in MySQL
	Connecting to MySQL in PHP
	Summary

	CHAPTER 3 Running the Projects
	About the Disc
	Running the Applications
	Using XAMPP
	Summary

	CHAPTER 4 Building a Weblog
	Project Overview: Blogtastic Use Case
	Building the Database
	Starting to Code
	Viewing Specific Entries
	Building the Category Browser
	Don’t Just Let Anyone Log In
	Rolling Your Own Categories
	Creating New Blog Entries
	Update a Blog Entry
	Summary

	CHAPTER 5 Discussion Forums
	Under the Hood
	Building Your Own Forums
	Before You Begin
	Creating the Database
	Creating the Site Design
	Displaying the Forums
	Managing User Logins
	Posts and Replies
	Creating Administrator-Specific Pages
	Summary

	CHAPTER 6 Creating a Shopping Cart
	Project Overview
	Building the Database
	Starting to Code
	Managing User Logins
	Displaying and Selecting Products
	Checking It Out
	Administrator Pages
	Summary

	CHAPTER 7 Building an Online Auction Site
	Project Overview
	Building the Database
	Starting to Code
	Displaying Auction Items
	Dealing with Users
	Adding an Item
	Processing Auctions
	Scheduling the Page to Be Run
	Summary

	CHAPTER 8 Creating a Web-Based Calendar
	Project Overview
	Building the Database
	Starting to Code
	Viewing Events
	Summary

	CHAPTER 9 FAQ Content Management System
	Project Overview
	Building the Database
	Starting to Code
	Displaying Questions
	Dealing with Logins
	Adding and Moderating Questions
	Managing Subjects
	Managing Topics
	Subject Ownership
	Summary

	CHAPTER 10 Building a Re-Usable Project
	Project Overview
	Building the Database
	Using Directories Intelligently
	Starting to Code: Building the Backbone
	Downloading Releases
	Viewing Screenshots
	Available Projects Viewer
	Administering Projects
	Changing General Settings
	Managing Downloads
	Deleting Releases
	Managing Screenshots
	Deleting Images
	Adding a New Project
	Deploying the Application
	Summary

	CHAPTER 11 Building a News Web Site
	Project Overview
	Installing PEAR Packages
	Building the Database
	Starting to Code
	Handling User Logins
	Viewing and Rating Stories
	Managing Stories
	Managing Categories
	Creating Your Search Engine
	Summary

	APPENDIX A: Web Site Design
	Project Overview
	Laying Out the Site
	Starting to Code
	Start Building the Stylesheet
	Formatting the Main <div> Items
	Creating an About Page
	Creating a Frequently Asked Questions Page
	Formatting Tables
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

