

Pro PHP-GTK

Scott Mattocks

6137ch00FM.qxd 3/14/06 1:52 PM Page i

Pro PHP-GTK

Copyright © 2006 by Scott Mattocks

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-613-5

ISBN-10: 1-59059-613-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore
Technical Reviewers: Christian Weiske, Steph Fox
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Matt Wade

Project Manager: Kylie Johnston
Copy Edit Manager: Nicole LeClerc
Copy Editors: Marilyn Smith, Jennifer Whipple
Assistant Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Kinetic Publishing Services, LLC
Proofreader: Dan Shaw
Indexer: Valerie Perry
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

6137ch00FM.qxd 3/14/06 1:52 PM Page ii

To my wife Cristina:
Thanks for giving me the courage to start this book

and for having the patience to let me finish.

6137ch00FM.qxd 3/14/06 1:52 PM Page iii

6137ch00FM.qxd 3/14/06 1:52 PM Page iv

Contents at a Glance

About the Author . xv

About the Technical Reviewer. xvii

Introduction. xix

■CHAPTER 1 Introducing PHP-GTK . 1

■CHAPTER 2 Installing PHP-GTK. 15

■CHAPTER 3 Understanding PHP-GTK Basics . 25

■CHAPTER 4 Handling Events and Signals . 39

■CHAPTER 5 Getting an Application Up and Running . 65

■CHAPTER 6 Laying Out Applications . 87

■CHAPTER 7 Displaying and Collecting Simple Data . 119

■CHAPTER 8 Using Multiline Text . 153

■CHAPTER 9 Working with Trees and Lists . 179

■CHAPTER 10 Scrolling . 219

■CHAPTER 11 Adding Menus and Toolbars . 231

■CHAPTER 12 Adding Images . 257

■CHAPTER 13 Drag-and-Drop . 269

■CHAPTER 14 Using Selectors & Dialogs. 281

■CHAPTER 15 Doing Background Work . 303

■CHAPTER 16 Changing the Look and Feel. 319

■CHAPTER 17 Distributing PHP-GTK Applications . 333

■INDEX . 347

v

6137ch00FM.qxd 3/14/06 1:52 PM Page v

6137ch00FM.qxd 3/14/06 1:52 PM Page vi

Contents

About the Author . xv

About the Technical Reviewer. xvii

Introduction. xix

■CHAPTER 1 Introducing PHP-GTK . 1

A Real-World Project . 1

GUI Applications. 2

What Is PHP? . 4

Object-Oriented PHP . 5

Exceptions. 7

PHP’s DOM and SOAP Extensions . 7

What Is GTK? . 7

What Is PHP-GTK?. 8

Why Use PHP-GTK?. 10

Further Resources . 12

Summary . 12

■CHAPTER 2 Installing PHP-GTK . 15

Prerequisites . 15

Installing PHP-GTK 2 on Windows . 16

Installing PHP-GTK 2 on Linux. 17

Using PEAR and PECL Packages. 20

Installing PEAR Packages . 21

Installing PECL Packages . 22

Running PHP-GTK Applications . 22

Summary . 23

vii

6137ch00FM.qxd 3/14/06 1:52 PM Page vii

■CHAPTER 3 Understanding PHP-GTK Basics. 25

Widgets and Objects . 25

The GtkObject Class . 25

Objects. 28

Widgets . 28

Parents and Children. 32

Containers . 32

Top-Level and Parent Widgets . 33

Adding and Removing Widgets . 33

Summary . 37

■CHAPTER 4 Handling Events and Signals . 39

Events and Signals . 39

Signal Handlers . 40

Interacting with Signal Handlers . 40

Creating Signal Handlers . 42

Blocking and Destroying Signal Handlers . 49

Listening for New Events . 55

Using the GtkEventBox Container . 56

Adding Events to a Widget . 58

Summary . 63

■CHAPTER 5 Getting an Application Up and Running 65

Windows and Other Top-Level Widgets . 65

Types of Windows . 66

Window Decorations . 67

Window Positioning and Sizing . 71

Getting and Setting the Window’s Height and Width 73

Centering a Window . 75

Maximizing Windows. 76

Setting the z-Index . 77

Modal Windows . 78

Window Titles . 79

The GTK Loop. 80

Starting the Loop . 80

Stopping the Loop . 81

Stepping Through the Loop . 81

Summary . 85

■CONTENTSviii

6137ch00FM.qxd 3/14/06 1:52 PM Page viii

■CHAPTER 6 Laying Out Applications . 87

The Sample Application Layout. 87

Frames . 88

Setting the Label Section . 89

Setting the Border Type . 90

Boxes. 91

Creating Vertical and Horizontal Boxes . 91

Packing Widgets into a Box . 91

Nesting Boxes. 94

Button Boxes. 97

Tables . 98

Constructing the Table . 100

Attaching Children . 101

Tables vs. Boxes. 103

Fixed Containers . 103

Putting Widgets in a Fixed Container . 105

Using Fixed Containers . 105

Notebooks. 106

Defining the Notebook . 110

Adding, Moving, and Removing Notebook Pages 111

Navigating Notebook Pages . 112

Decorating a Notebook . 115

Summary . 117

■CHAPTER 7 Displaying and Collecting Simple Data 119

Labels . 119

Simple Labels . 120

Complex Labels . 125

Entry Fields . 135

Input Box Size and Character Limits. 137

Automatic Completion. 137

Combo Boxes . 140

Flat Text Lists . 141

GtkComboBox with a Custom Model . 142

Scales . 142

Scale Adjustment . 143

Scale Precision. 143

Value Display . 143

■CONTENTS ix

6137ch00FM.qxd 3/14/06 1:52 PM Page ix

Spin Buttons . 145

Buttons . 146

Standard Buttons . 146

Stock Buttons . 147

Summary . 151

■CHAPTER 8 Using Multiline Text . 153

The Text-Editing Tool Set . 153

Text Marks . 154

Referencing Marks . 154

Creating Marks. 155

Moving Marks. 155

Iterators. 158

Creating Iterators . 159

Moving Iterators . 160

Tags and Tag Tables . 161

Creating Tags . 161

Adding Tags to the Tag Table . 164

Applying and Removing Tags. 166

Text Buffers . 166

Creating Text Buffers. 167

Adding Text to a Buffer . 167

Removing Text from a Buffer . 168

Copying and Pasting Text . 169

Text Views . 169

Using Multiple Views with a Single Buffer . 169

Scrolling in a View . 171

Setting the Buffer Appearance and Editability 171

Putting It All Together . 171

A Multiline Text Display Tool. 172

A Text-Editing Tool . 175

Summary . 178

■CHAPTER 9 Working with Trees and Lists . 179

Models. 179

The GtkListStore Model . 180

The GtkTreeStore Model . 188

Model Sorting . 191

Model Filtering . 194

■CONTENTSx

6137ch00FM.qxd 3/14/06 1:52 PM Page x

Views . 196

Cell Renderers . 196

View Columns. 197

Tree Views . 206

Row Selection. 207

Putting It All Together . 210

The News Article Tool . 210

The Product Tree . 215

Summary . 218

■CHAPTER 10 Scrolling . 219

Scrolled Windows . 219

Setting the Scrollbar Policy . 221

Controlling Child Placement. 222

Setting a Shadow. 223

View Ports . 224

Custom Scrolling . 225

Creating the Scrollbar . 226

Creating the Signal Handlers . 227

Summary . 230

■CHAPTER 11 Adding Menus and Toolbars. 231

Menus . 231

Creating Menu Bars. 232

Adding Menus. 233

Creating Menu Items. 235

Creating Tear-Off Menus. 243

Creating Context Menus . 245

Toolbars. 246

Creating a Toolbar . 247

Adding Tooltips . 249

Adding Tool Buttons. 250

Summary . 255

■CHAPTER 12 Adding Images . 257

Images. 257

Creating an Image Object. 257

Scaling Images. 262

Setting Transparency. 264

■CONTENTS xi

6137ch00FM.qxd 3/14/06 1:52 PM Page xi

Animations . 265

Widget Shaping . 265

Summary . 267

■CHAPTER 13 Drag-and-Drop . 269

Drag-and-Drop Destinations . 269

Setting the Drag Destination . 269

Handling the drag-data-received Signal . 272

Drag-and-Drop Sources . 274

Setting the Drag Source . 274

Handling the drag-data-get Signal . 276

Setting Drag Source Icons . 277

Summary . 279

■CHAPTER 14 Using Selectors & Dialogs . 281

Dialogs. 281

Displaying a Dialog . 284

Managing the User’s Response . 284

Adding Items to the Top of a Dialog . 286

Adding Items to the Bottom of a Dialog . 287

Selectors . 289

Color Selection Dialogs . 289

Signal Handlers . 290

Color Buttons . 291

Font Selection Dialogs. 293

Font Buttons . 294

File Chooser Dialogs . 296

File Selection . 297

About Dialogs . 300

Summary . 302

■CHAPTER 15 Doing Background Work. 303

Progress Bars. 303

Creating a Progress Bar . 304

Using set_orientation . 307

Iterating the Loop . 308

■CONTENTSxii

6137ch00FM.qxd 3/14/06 1:52 PM Page xii

Timeouts . 310

Adding a Timeout . 312

Removing a Timeout . 313

Idle Work . 315

Summary . 317

■CHAPTER 16 Changing the Look and Feel . 319

Resource Files . 319

Creating an RC File . 320

Applying the RC File to the Application . 322

Styles . 328

Modifying a Style . 328

Setting a Background Pixmap for a Style . 330

Summary . 332

■CHAPTER 17 Distributing PHP-GTK Applications . 333

Downloading and Installing an Application . 333

Setting Up the Channel Server . 334

Creating the Package . 335

Updating an Application . 338

Checking for Updates . 338

Obtaining the User’s Permission to Upgrade. 340

Performing the Upgrade . 342

Uninstalling an Application. 343

Using PHP Compilers . 345

Summary . 346

■INDEX . 347

■CONTENTS xiii

6137ch00FM.qxd 3/14/06 1:52 PM Page xiii

6137ch00FM.qxd 3/14/06 1:52 PM Page xiv

About the Author

■SCOTT MATTOCKS is a PHP developer with OnForce.com. Scott has been
working with PHP and PHP-GTK for almost his entire career. Not only has
Scott been working with these tools, but he has also been contributing back
to the community in many ways. Scott spent many hours to help improve
the first set of documentation for PHP-GTK and is listed as one of the authors
for the PHP-GTK 2 documentation. He has also contributed several PHP-GTK
classes to PEAR and added code to more traditional PEAR packages such as
PHPUnit and Console_Getargs. Scott can be contacted at scottmattocks@php.
net. Read more about what he’s up to at http://www.crisscott.com.

xv

6137ch00FM.qxd 3/14/06 1:52 PM Page xv

6137ch00FM.qxd 3/14/06 1:52 PM Page xvi

About the Technical Reviewer

■CHRISTIAN WEISKE is student of Information Technologies in Leipzig, Germany. He has been
a member of the PHP-GTK documentation team for several years and is a regular contributor
to the PEAR project.

In his spare time, Christian works on various PHP-GTK 2 tools, translates programs into his
native German language, and writes articles for PHP Magazine. He also works as a freelancer,
creating PHP-GTK applications for those who need them. You can reach him by email at
cweiske@cweiske.de or at his website, http://www.cweiske.de.

xvii

6137ch00FM.qxd 3/14/06 1:52 PM Page xvii

6137ch00FM.qxd 3/14/06 1:52 PM Page xviii

Introduction

The PHP-GTK extension is a powerful solution for creating stand-alone GUI applications. It
takes the benefits of programming with PHP and combines them with the visual capabilities
of GTK (the GIMP Toolkit). The goal of this book is to get you started developing your own
desktop applications with PHP-GTK.

This book isn’t just a rehashing of PHP-GTK’s documentation. There is really no point in
that. The documentation does a perfect job of providing an API reference. If you want to know
the interface for a given method, then the online documentation is the best place for you. If,
however, you want to know which is the best widget for displaying a list of airline reservations
that can be sorted by departure or arrival times, the documentation isn’t going to be much help.

Here, I’ll give you problem-based analysis of PHP-GTK, as opposed to the function-based
analysis you get with the documentation. I may refer you to the documentation from time to
time, because in some situations, it is the best resource around. But in other situations, the
documentation just isn’t designed to allow you to understand the why behind a decision.

I feel the best way to learn is by getting your hands dirty and experiencing things for yourself.
Throughout this book, I’ll ask you to implement the examples that I talk about to see for your-
self exactly what is happening. PHP-GTK is designed to interact with the user. You need to click
certain places in the application and drag things around the screen. Only when you see firsthand
how parts of a program react can you be ready to make an informed decision.

This book is packed full of examples and screenshots, but I beg you to not be satisfied with
just what I have provided. You should always be asking, “Well, what if I changed this part . . . ?”
The more you question what I am trying to explain, the deeper your understanding will be. If
you just read through this book, you will be ready to make some pretty decent applications.
But if you implement the examples and see what happens when you change a few values, there
won’t be anything you can’t accomplish within the limits of PHP-GTK.

Who This Book Is For
This book is intended for PHP developers of all skill levels who want to break free from the
web browser and create desktop applications. You’ll find it easier going if you’re familiar with
PHP 5.1 and are comfortable with the principles of object-oriented programming.

xix

6137ch00FM.qxd 3/14/06 1:52 PM Page xix

What You’ll Find in This Book
Pro PHP-GTK guides you through PHP-GTK’s key capabilities, beginning with an introduction
to fundamental aspects of building desktop applications and a discussion of how PHP-GTK
implements these features. Subsequent chapters explain how to lay out and manage widgets
such as windows, labels, buttons, and text fields; manage events to control the behavior of an
application; and accept and manipulate user input. You will also learn how to customize an
application’s look and feel, implement drag-and-drop capabilities, and package an application
for distribution to users.

Throughout the book, you’ll develop a real-world project to help you learn how to use
PHP-GTK to satisfy critical business needs. The source code for all of the examples is available
from the Source Code section of the Apress website (http://www.apress.com).

Here’s a quick rundown of the chapter contents:

• Chapter 1 discusses the basics of GUI, PHP, and PHP-GTK. It also introduces the sample
application you will work with throughout the book.

• Chapter 2 covers installing and configuring the software you need to begin developing
applications with PHP-GTK.

• Chapter 3 examines how the pieces of PHP-GTK interoperate to allow you to build
a complete working application.

• Chapter 4 goes over how a PHP-GTK application interacts with the user. These topics
are crucial to making an application react to both user and application requests.

• Chapter 5 talks about setting up the basics of an application. After that chapter, you’ll
have an application that brings up a window, shows some data, and shuts down cleanly.

• Chapter 6 deals with designing the application. It demonstrates how to lay out the
application so you can work on one piece at a time and add features as they are ready.

• Chapter 7 shows you how to display and collect simple data. You’ll start small with single
lines.

• Chapter 8 describes how to work with multiline text and PHP-GTK’s powerful text-editing
capabilities.

• Chapter 9 focuses on displaying large sets of data, like trees and lists, which often overflow
the space they are given.

• Chapter 10 goes over the details of making scrollable spaces on the screen to accommo-
date data that can’t be shown all at once.

• Chapter 11 looks at how to organize user tasks with menus and toolbars.

• Chapter 12 covers creating and displaying images.

• Chapter 13 tackles one of the more advanced features of PHP-GTK: drag-and-drop. It
will show you how to make objects on the screen draggable and allow other elements
on the screen to accept those objects.

■INTRODUCTIONxx

6137ch00FM.qxd 3/14/06 1:52 PM Page xx

• Chapter 14 provides information pertaining to selectors and dialogs. These are windows
that are used for things like selecting files or verifying that a user wants to delete some
data.

• Chapter 15 talks about ways to make applications more efficient by doing work in the
background. This allows the user to keep working while time-consuming processes are
handled by the application.

• Chapter 16 shows you how to change the look and feel of an application, not only to
customize the application, but also to improve its usability.

• Chapter 17 talks about how to get an application into the user’s hands. You’ll learn
about PHP “compilers” and different distribution methods.

■INTRODUCTION xxi

6137ch00FM.qxd 3/14/06 1:52 PM Page xxi

6137ch00FM.qxd 3/14/06 1:52 PM Page xxii

1

C H A P T E R 1

■ ■ ■

Introducing PHP-GTK

This book takes a problem-based approach to learning. Each chapter discusses a particular
issue, and then shows which tools can be used to solve that issue. You will also walk through
a real-world project to help you learn how to use PHP-GTK to develop a desktop application to
solve the problem of a fictional company. This first chapter introduces the sample project, and
then discusses the basics of graphical user interface (GUI) applications, PHP, and PHP-GTK.

A Real-World Project
Learning about programming through a book can sometimes be difficult. Oftentimes, a book
will break down the problems into such tiny pieces that it is hard to put them back together to
understand how they are related. You want to learn how to solve problems, not determine what
problems exist to be solved. Keeping that in mind, you are going to work with a real-world proj-
ect to help you learn how to use PHP-GTK to satisfy critical business needs. You are going to go
through the entire process of developing a desktop application for a fictional online retailer,
Crisscott, Inc. We will start out with a brief analysis of the retailer’s problem and move on to
designing a solution, then implementing the solution, and, finally, distributing and maintain-
ing the application.

I am not just going to throw a list of classes and methods at you, and expect you to be able
to put together an enterprise-level application. Instead, I am going to look at the problems and
help you make the right choices for solving them. I am not going to say, “If you find yourself in
situation A, use widget X.” That helps only if you are trying to do exactly what I have done before.
What happens if you find that you need a slightly different solution? By the time you’re finished
with this book, you will be able to recognize which tools are best for your needs, not mine.
You will be able to build a solution designed specifically to solve the problems you are facing.
Together, we will look at all the ways something can be done and discuss the advantages and
disadvantages of each.

In order to help keep us on the right track, this book is going to focus on the development
of a distributed product inventory management system, or PIMS, for Crisscott, Inc. At the
conclusion of the book, you will have an entire application that is ready for use in the real
world.

You will pretend to be a developer hired to help Crisscott, Inc. with product management
issues. You will assume that Crisscott is an online shop that sells goods for PHP-GTK program-
mers. Its products range from books, such as this one, to downloadable applications, such as
integrated development environments (IDEs) or documentation browsers.

6137ch01.qxd 3/14/06 1:58 PM Page 1

CHAPTER 1 ■ INTRODUCING PHP-GTK2

Crisscott is having a problem managing its product information. It sells products from
many different suppliers, all of which currently report their data and inventories in different
ways. Managing this data is a real problem for Crisscott. It has to spend too much time fixing
data problems and trying to track inventory. To solve this, Crisscott is putting the data in the
hands of the people who know it best, the suppliers. It wants to distribute a tool to all of its sup-
pliers that will allow them to quickly and easily make changes, add products, remove products,
and update inventory levels. If the tool isn’t easy to set up and use, the suppliers will never
accept it. Crisscott doesn’t just want to offload its work onto the suppliers; it wants to make life
easier for everyone. Preserving relationships with the suppliers is a high priority of the project.

The PIMS application must provide a user-friendly interface for updating product informa-
tion. It also needs to be compatible with any platform the suppliers are using and cannot be
dependent on the suppliers having any particular third-party software installed. The applica-
tion should allow the suppliers to work online or off. They must be able to edit data, save it,
and upload it later. The application needs to be able to grab data for the supplier from multi-
ple sources. It needs to get the latest information from Crisscott, pull information from a file,
or get data from a database. The application also needs to be easily updated when bug fixes
are found or new features are added. Finally, the application needs to be able to display news
and announcements that Crisscott may wish to pass on to its suppliers.

As you develop this application for Crisscott, Inc., you will learn how to use PHP-GTK to
make a seemingly difficult task relatively easy. You will analyze all the tools PHP-GTK provides
and determine when each tool is most suitable. You will also learn how PHP-GTK easily inter-
acts with “normal” PHP code. You will need to generate XML, get and display RSS news feeds
from a central location, send the product data to a web service using SOAP, connect to a local
database, and do many other tasks. It does not stop there, though. As with any project, develop-
ment is not the end of the line. Finally, we will discuss techniques for distributing and updating
the application once the implementation stage is finished.

GUI Applications
Applications involving a GUI have helped to bring computers to the masses. It is much easier to
click a button than it is to remember which command to type on a command line. GUI appli-
cations also make computers more usable by presenting information in an organized visual
context. Yet many people take for granted the computer applications they use on a daily basis.
All they know is that they type into a little box, hit the Send button, and, magically, Grandma
has an email message waiting for her. Few people ever stop to wonder how that Send button is
able to get that message from the box and send it to Granny, let alone how that button even got
on the screen. This chapter lays the groundwork for this book, helping you understand some
of the fundamental aspects of these GUI-based applications, introducing PHP and PHP-GTK,
and discussing what will be covered in later chapters.

Unlike web applications, which function within the context of a web browser, stand-alone
GUI applications function in their own context, and they are often developed to organize tasks
and data that might be too cumbersome or too confusing to represent through a web browser.
Analyzing and organizing complex data into an understandable format is the goal of most com-
puter applications. If the data were simple, you wouldn’t need a program to help you out. Think
about all the things you use GUI applications for on a daily basis. Web browsers, email clients,

6137ch01.qxd 3/14/06 1:58 PM Page 2

CHAPTER 1 ■ INTRODUCING PHP-GTK 3

Figure 1-1. WordPad, a text editing application written in C++

text editors, and even your file system browser are all GUI applications designed to present
data in a format that is more productive and easier to understand. Being able to create objects
on the screen that can help users get more out of their data is a powerful tool for any pro-
grammer. But you probably already know this. That is why you’ve got this book in your hands.
Either that or you really like the cover art.

Most people think GUI applications are only for large, complicated tasks and require com-
plex libraries that are only available for compiled languages such as C++ or Visual Basic .NET.
This simply isn’t true. GUI applications come in all sorts of different sizes and shapes. There
are simple applications such as calculators and clocks, and there are complex applications such
as Photoshop and PowerPoint. They also come in different languages, such as Java, C++, PHP,
and Python. Regardless of what they do or how they are written, GUI applications all share
a common goal: they represent tasks and data in a graphical way. Applications written in PHP-GTK
are no different. They are written to make complicated tasks easier to manage and understand.
Applications written with the PHP-GTK scripting language can be just as powerful as those
written in compiled languages.

Figures 1-1 and 1-2 show screenshots from two text-editing applications. The first image
you might recognize as WordPad, an application written in C++, from a typical Windows
installation. The second is Tulip, a text editor written with PHP-GTK. The two applications are
remarkably similar, even though the underlying technology is different.

6137ch01.qxd 3/14/06 1:58 PM Page 3

CHAPTER 1 ■ INTRODUCING PHP-GTK4

PHP-GTK is a powerful solution for creating stand-alone GUI applications. It takes the
benefits of programming with PHP and combines them with the visual capabilities of GTK. To
get the most out of PHP-GTK, you must understand the technologies that have been brought
together. In the next couple of sections, we will look at what pieces make up PHP-GTK.

What Is PHP?
According to the PHP documentation, PHP (a recursive acronym for PHP Hypertext Preprocessor)
is a widely used, open source, general-purpose scripting language that is especially suited for
web development and can be embedded into HTML. You may be thinking, “Well, if it is good
for web development, why am I reading about it in a book on desktop applications?” PHP may
have been developed with the Web in mind, but it is also a very powerful tool for other uses.
Using PHP, you can easily read and write from the file system, connect to a database, generate
PDF files, and even create images on the fly.

PHP was designed to make the life of web programmers easier. PHP code can be easily
embedded in HTML pages allowing for the display of dynamic content. The syntax of PHP is
very easy to understand, and therefore PHP has a very short learning curve. In many cases, a web
developer with little prior knowledge of PHP can be up and running with a simple dynamic
page in a matter of hours. Such a low barrier of entry has given PHP unprecedented acceptance

Figure 1-2. Tulip, a text editor written with PHP-GTK

6137ch01.qxd 3/14/06 1:58 PM Page 4

CHAPTER 1 ■ INTRODUCING PHP-GTK 5

in the open source community. Once people started realizing how easy it is to use PHP for web
development, they began to wonder why they couldn’t use it for other types of development.
So, as of version 4.2.0, PHP broke free from the Web with the introduction of the command-line
interface, or CLI.

The CLI allows scripts to be executed directly by the operating system without having to
be passed through a web server. I’ve written CLI scripts for parsing incoming email messages,
generating sales reports, and importing batches of product data. One of the most popular CLI
tools is the PEAR installer. PEAR shows how far PHP has come since its beginnings as a tool for
web development.

Part of what has made PHP so widely accepted is that it is an interpreted language. This
means that any system that has the PHP engine installed can run the same PHP script. (In
Chapter 17, we will throw that out the window and show how you don’t even need the PHP
engine.) This makes PHP a cross-platform language. A well-designed script written on a machine
with Linux installed will work just as well on a server running Windows. Please note that the script
must be “well-designed.” It is quite possible to write a script that won’t run on both a Linux and
a Windows server, but this is actually harder than writing a cross-platform script. PHP makes it
incredibly easy to create well-designed scripts and applications. It is up to you to make sure
you take advantage of these features.

Object-Oriented PHP
This book expects you to have at least a basic understanding of PHP already. You don’t need to
be a PHP master but you should at least be able to recognize valid syntax. PHP-GTK is heavily
object-oriented (OO). The release of PHP 5 has introduced a much more powerful object model
than its predecessor, allowing for cleaner, faster running code. Everything in PHP-GTK uses
objects in one way or another. If you aren’t instantiating a class and calling one of its methods,
then you are calling some class method statically. As a result, all of the code examples through-
out this book will be written in the OO programming style. As a quick refresher, consider
Listing 1-1.

Listing 1-1. Inheritance in PHP

<?php

class Ralph {

public $name = 'Ralph';

protected $suffix = 'Sr';

public function __construct()

{

echo 'My name is ' . $this->name . ' ' . $this->suffix . ".\n";

}

public function giveBirth()

{

echo "It's a boy!\n";

return new Ralph_Jr();

}

}

6137ch01.qxd 3/14/06 1:58 PM Page 5

CHAPTER 1 ■ INTRODUCING PHP-GTK6

class Ralph_Jr extends Ralph {

protected $suffix = 'Jr';

public function giveBirth()

{

throw new Exception('Ralph Jr. can\'t have kids!');

}

}

$senior = new Ralph();

$junior = $senior->giveBirth();

try {

$junior->giveBirth();

} catch (Exception $e) {

echo $e->getMessage() . "\n";

}

?>

My name is Ralph Sr.

It's a boy!

My name is Ralph Jr.

Ralph Jr. can't have kids!

■Note The code throughout this book was written and tested on Linux. Depending on your operating
system of choice, the code samples may require some minor changes such as using \r\n for newlines
instead of just \n.

This simple example defines two classes. The first class, Ralph, simply defines one public
member variable, one protected member variable, a constructor, and one method. When the
class is instantiated, it prints out a simple message. The second class, Ralph_Jr, extends the
first and redefines one of the class members. Ralph_Jr also redefines the giveBirth method.
For the purposes of this example, we aren’t instantiating Ralph_Jr directly. Instead, we are cre-
ating an object by calling a method of Ralph. Notice the difference in the output when you run
the example. The suffix on the names is different depending on the class you instantiate. Also,
Ralph is capable of having kids; Ralph_Jr is a bit too young.

■Note For more details on PHP 5, take a look at Beginning PHP 5 and MySQL 5: From Novice to Professional,
Second Edition by W. Jason Gilmore (Apress, 2006).

6137ch01.qxd 3/14/06 1:58 PM Page 6

CHAPTER 1 ■ INTRODUCING PHP-GTK 7

Exceptions
When we try to call the giveBirth method on Ralph_Jr, an exception is thrown. An exception is
an error-handling mechanism that requires the calling code to catch it and handle it. When
something unexpected happens, or some important piece of data is missing, well-designed
code should throw an exception. Exceptions are themselves objects and have methods and
properties, and can be instantiated and extended.

When calling code can possibly throw an exception (when connecting to a database, for
example), it is a good idea to wrap the code in a try-catch block. Look at the last few lines of
Listing 1-1. Before we call junior’s giveBirth method, we wrap it in a try block. This tells PHP
that there may be an exception thrown, and it should be ready in case that happens. When an
exception is thrown, execution will leave the try block and jump to the catch block.

You can have multiple catch blocks for a given try block. In our example, this catch block
will catch any Exception class instance or any exception class that extends the Exception class.
In our case, we are just going to output the message from the exception. Depending on the sit-
uation, you may want to take some more drastic measures, such as halting execution all together.

If you do not wrap code that can throw an exception in a try-catch block, the exception
will “bubble up” to the next level. If an exception bubbles all the way up and is never caught,
a fatal error will be thrown, and execution of the code will halt.

PHP’s DOM and SOAP Extensions
Aside from looking at simple object creation and access, we will also examine some of the PHP
extensions and wrappers around them. In particular, we will use the DOM and SOAP extensions
for PHP 5. The DOM extension makes reading and creating XML documents using SAX much
easier than the old callback method. The SOAP extension lets you access web services on remote
systems. The SOAP extension basically builds a SOAP client or server based on an XML document
that describes the web services known as a WSDL.

Don’t worry if you aren’t that familiar with DOM or SOAP. I won’t leave you high and dry.
When it comes time to put them into your application, I’ll show you how to use them. If you
just can’t wait that long, see the “Further Resources” section later in this chapter for some excel-
lent resources.

Throughout this book, we will also be making extensive use of some PEAR classes. Using
a PEAR class is no different from using any other PHP class. Installing the classes is what may
be new to you. The next chapter will show you how to install all of the extensions and PEAR
classes that we will be using throughout this book.

What Is GTK?
GTK is an acronym for the GIMP Toolkit (http://www.gtk.org/). It is a library of structures and
functions written in C to make developing GUI applications easier. GTK provides the tools to
create windows, buttons, and text that are viewable without the assistance of another program,
such as a web browser or a text editor.

GTK works with GDK, the GTK Drawing Kit, to interface with the underlying windowing
system. Having a separate code base for interacting with the operating system allows GTK to
support multiple operating systems. That is, by keeping the two code bases separate, GTK does
not have to worry about which operating system the code is running on. All of the windowing
system interactions are handled by GDK, leaving GTK free to specialize in the user interface.

6137ch01.qxd 3/14/06 1:58 PM Page 7

CHAPTER 1 ■ INTRODUCING PHP-GTK8

Along with the visual representations, GTK provides a means for interacting with the visual
objects that are created by making it possible to listen for and react to user-triggered events.
This means that instead of just having a pretty button, you have a clickable pretty button. Your
code can tell when a button is clicked and take a specific action. This is an important piece of
the programming puzzle. After all, users need to be able to make the application do something;
otherwise, they just have an image on the screen. Because of its importance, two entire chapters
are devoted to this feature. Chapter 3 explains how these structures relate to each other, and
Chapter 4 explains how to write code that interacts with them.

Just like PHP, GTK has undergone many iterations and releases. At the time of this writing,
GTK+ 2.8.10 was the most current stable release. GTK+ 2.x offers a much more powerful set of
tools than its predecessor. The most significant improvements over GTK+ 1.x are in its text
handling and representation abilities and its use of trees and lists. In fact, the main widget for
creating editable text in GTK+ 1.x is “broken” and will never be fixed. With the version 2 branch,
working with text is not only simpler, but also gives the developer greater control over how the
text looks and acts within the application. The latest offering also makes manipulating individual
elements of trees, lists, and tables less cumbersome than before. GTK+ 2.x gives the developer
greater control over atomic pieces of data that make up an application. When combined with
the advanced object model of PHP 5, GTK+ 2.x gives you a very powerful tool that is remark-
ably easy to use.

What Is PHP-GTK?
Simply put, PHP-GTK is a PHP wrapper for the GTK library. It allows the creation of stand-alone
GUI applications written in PHP. PHP-GTK makes it possible to call the GTK library functions
from the context of a PHP script by creating PHP classes and methods that hook into the native
C code at runtime. That sounds pretty complicated, so how about this for an answer: you can
create windows, buttons, text, images, and other objects on the screen using PHP. In more tra-
ditional PHP applications, the task of presentation falls on HTML and a web browser. With
PHP-GTK, it is possible to create stand-alone applications that do not need support from other
pieces of software, such as the PHP-GTK manual browser shown in Figure 1-3.

The presentation layer of an application is handled entirely by PHP, just like the rest of
the application. This isn’t to say that your presentation layer needs to be tied to your business
logic, just that the same engine takes care of both tasks. PHP-GTK 2, the version this book
focuses on, combines the power of GTK+ 2.6 with the ease of programming and advanced
object model of PHP 5.1. Listing 1-2 gives you a quick look at the syntax needed for creating
a PHP-GTK application.

6137ch01.qxd 3/14/06 1:58 PM Page 8

CHAPTER 1 ■ INTRODUCING PHP-GTK 9

Figure 1-3. A PHP-GTK documentation browser

Listing 1-2. A Simple PHP-GTK Application

<?php

$window = new GtkWindow();

$window->connect_object('destroy', array('gtk', 'main_quit'));

$dateTime = new GtkLabel(date('Y-m-d H:i:s'));

$window->add($dateTime);

$window->show_all();

gtk::main();

?>

While the ability to create objects on the screen is a nice feature of PHP-GTK, the ability
to interact with those objects supplies the real power. PHP-GTK allows you to define specific
actions that should take place in response to user events. This makes your applications more
than just pretty sets of data. It makes them functional. Being able to click buttons, drag objects,
and cut and paste text are the things that differentiate your application from just a PNG or
a JPEG image. PHP-GTK frees the typical PHP developer from the confines of the Web. It allows
interaction that a website just can’t offer. You can do a lot of great things with a website and
PHP, but there are some things that are better suited for a desktop application.

6137ch01.qxd 3/14/06 1:58 PM Page 9

CHAPTER 1 ■ INTRODUCING PHP-GTK10

Why Use PHP-GTK?
Now that you have a better understanding of exactly what PHP-GTK is, you are probably
asking yourself what you can use it for. The answer is anything and everything. I’ve seen
PHP-GTK applications such as the following:

• Content management system (CMS) tools

• Documentation browsers

• Internet relay chat (IRC) clients

• Network monitors

• News feed viewers

• Statistical analysis

• Text editors

The list goes on and on. For instance, if you don’t like the way your web browser handles
bookmarks, then create your own web browser. You can create a special calendar application
for your open source project. You can have it grab news feeds and important dates from a cen-
tral server to keep everyone up-to-date. PHP-GTK is limited only by the technologies on which
it is built. If PHP can handle the data and GTK can handle the display, then you can create your
application with PHP-GTK. I have yet to think of a situation where either fell short.

Of course, PHP-GTK is not always the right tool for the job, but it does expand the range
of possibilities for PHP and PHP developers. When someone approaches you with a problem,
such as collecting product registration information from thousands of users all over the world,
you probably say, “Easy, get yourself a website, a database, and a short PHP script.” But if some-
one were to say, “I need to be able to enter maintenance data in the field and create custom
invoices on the fly,” the typical PHP programmer may respond with, “OK. Go talk to that guy.”
A programmer with PHP-GTK in his programming toolbox will say, “No problem. Come back
this time tomorrow.” Alright, maybe not tomorrow, but you get my point. PHP-GTK makes
PHP and PHP developers more versatile.

PHP-GTK lets you accomplish tasks that you can’t do with PHP alone. A normal PHP appli-
cation is based on a send-and-response system. The user sends some data, and then the PHP
script does something with the data and responds with a new page. Some may argue that
PHP-GTK also uses this send-wait-receive method, and I can see how they might come to that
conclusion. But they are missing one important part. The user doesn’t have to be involved.
The application itself can do some work and change the presentation itself. There is no need
for the user to make any request. By clicking a button, the user can start some data processing
in action. The user is then free to go and do some other task. When the system is finished pro-
cessing the data, it can trigger an event that notifies the user, start some other process, or even
close the application.

Another reason to use PHP-GTK comes from PHP itself. PHP is remarkably simple to learn
and easy to code. Take a look at Listing 1-3. In five lines of code, I have loaded the extension,
created a window, set up the window for a clean shutdown, and displayed the window.

6137ch01.qxd 3/14/06 1:58 PM Page 10

CHAPTER 1 ■ INTRODUCING PHP-GTK 11

Listing 1-3. A Simple Application in PHP-GTK

<?php

$window = new GtkWindow();

$window->connect_object('destroy', array('gtk', 'main_quit'));

$window->show();

gtk::main();

?>

Now take a look at Listing 1-4. This does the same exact thing but it is written in Java using
the Swing package. The Java Swing example takes twice as many lines of code, plus the naming
conventions are restricted. In my opinion, PHP-GTK is one of the cleanest and easiest to write
languages around for making desktop applications.

Listing 1-4. A Simple Application in Java Swing

import javax.swing.*;

public class listing1_4 {

public static void createAndShowGUI() {

JFrame frame = new JFrame();

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setVisible(true);

}

public static void main(String[] args) {

javax.swing.SwingUtilities.invokeLater(

createAndShowGUI();

);

createAndShowGUI();

}

}

PHP-GTK is a powerful tool, but it isn’t perfectly suited for everything. Before spending
a lot of time developing your application, make sure PHP-GTK is really what you need. If it isn’t
obvious by looking at your problem whether a desktop application is the best solution, ask
yourself a few simple questions:

• Does the application need to work without the aid of another application such as a web
browser?

• Does the application need to be able to listen for and react to events from sources other
than the primary user?

• Does the application need to be run directly on the user’s computer?

If you answered no to all of these questions, then a desktop application may not be the
best solution for your problem.

6137ch01.qxd 3/14/06 1:58 PM Page 11

CHAPTER 1 ■ INTRODUCING PHP-GTK12

Even after deciding that you do need to develop a desktop application, you should make
sure that PHP-GTK is the best language to use. There are several other scripting language
wrappers for the GTK library, such as PyGTK (http://www.pygtk.org/) and Ruby-GNOME2
(http://ruby-gnome2.sourceforge.jp/). There are also other graphical libraries all together. As
I already mentioned, you could use Java Swing. You could also use Mozilla’s XUL.

Why do I use PHP-GTK? Because I am a PHP guy. I can write PHP code quickly and easily.
You may be better at writing Java code. By all means, use the language that you feel most com-
fortable with. If you stick around though, I will show you how easy it can be to create some
pretty neat pieces of software without too much struggle.

Further Resources
Before wrapping up this chapter, I want to make you aware of some other resources that
can help you write and debug your code. First and foremost there is the PHP-GTK website
(http://gtk.php.net/). Here, you will find the online API documentation. The documentation
describes every class and every function that exists in PHP-GTK. If you need to know which
parameters are optional for a given method, this is the place to go.

You will also find a wiki with some helpful tips and code snippets contributed by PHP-GTK
users from all over the world. The wiki also lists several sites dedicated to PHP-GTK that are in
languages other than English.

If you have trouble finding your answers directly on the site, take a look at the Resources
section. There, you will find the next great tool, the PHP-GTK general mailing list. Please don’t
ever hesitate to ask a question on this list. The worst thing that can happen is that someone
might send you a link to a previous thread that discusses the issue.

Another good place to turn for help is some of the regular PHP publications. Every so often,
PHP | Architect or PHP Magazine will publish an article relating to PHP-GTK. These are usually
aimed at entry PHP-GTK programmers to help people get started with GUI programming.

There are also several places online to find PHP-GTK code. One of the best resources, along
with the PHP-GTK wiki, is PEAR (http://pear.php.net). PEAR is a repository of high-quality,
well-documented PHP code. Few people realize that PEAR has several PHP-GTK classes. Later
in this book, we will take a look at some of these classes that can make your life a little easier. It
doesn’t get much easier than installing a class and being all set to go.

If you want some hard copy to read over, I recommend Beginning PHP 5 and MySQL 5:
From Novice to Professional, Second Edition by W. Jason Gilmore (Apress, 2006) and GTK+
Programming in C by Syd Logan (Prentice Hall, 2001).

Summary
Let’s recap what we have talked about so far. PHP-GTK is a powerful tool for creating stand-
alone GUI applications that can make presenting and interacting with data quick and easy.
PHP-GTK allows you to create applications that not only have excellent presentations, but also
listen for and react to user actions. PHP-GTK is capable of listening for actions because it is
a combination of the PHP language wrapped around the GTK library. The GTK library allows
you to create and interact with images on the screen. While PHP-GTK is an excellent choice for
some developers, it isn’t the only choice. Many other technologies are available for creating
GUI applications.

6137ch01.qxd 3/14/06 1:58 PM Page 12

CHAPTER 1 ■ INTRODUCING PHP-GTK 13

In walking through the development of a pretty complicated product inventory management
system for our fictional company, you will learn about all the tools that are available to a developer
and we will discuss which tools are best in which situations.

The next chapter talks about getting everything ready to start developing with PHP-GTK.
It covers installation and setup of all the software needed. It starts with GTK and PHP, and then
discusses downloading and installing the needed PEAR and PECL (http://pecl.php.net) packages.

6137ch01.qxd 3/14/06 1:58 PM Page 13

6137ch01.qxd 3/14/06 1:58 PM Page 14

Installing PHP-GTK

Before getting too involved in trying to understand how PHP-GTK works, it would be a good
idea to install it first. Installing PHP-GTK can be a tricky process because of all the different
pieces that make up the PHP-GTK extension. First, you need to install GTK, then PHP, then
PHP-GTK, and, finally, all of the classes and extensions you will need for your application. For
Windows users, most of what you need comes packed in the downloadable binary file. For Linux
users, it may be a little more difficult to find all of the necessary packages.

Prerequisites
Aside from PHP-GTK and its supporting packages, you need to set up a few other items before
the application is ready to go.

First, you will need some sort of development environment where you can edit files, install
new software, and basically have run of the file system. The development environment should
also have access to the Internet. As your product inventory management system (PIMS) appli-
cation starts to take form, you will want to test it. To do a full test, you will need to send and
receive data over HTTP and FTP.

You will also need access to a relational database. You will be creating tables and manipu-
lating data, so make sure you have the correct permissions. Which database system you use is
up to you, because you will be using PEAR::DB (http://pear.php.net/DB/), a database abstrac-
tion layer, which supports a wide range of database implementations. I prefer to use PostgreSQL
(http://www.postgresql.org/), but feel free to use any other database supported by PEAR::DB.

Last, but certainly not least, you will need a text editor or an integrated development
environment (IDE). Several options are available, and publicly endorsing one over another is
never a good idea. Emacs and vi usually come standard on most Linux distributions, and
WordPad usually does the trick on Windows systems. If you prefer an IDE, you might use Eclipse
or Zend Studio. Of course, there is also Tulip, which is written in PHP-GTK, as you saw in
Chapter 1.

With all of these requirements satisfied, you are now ready to install PHP-GTK.

15

C H A P T E R 2

■ ■ ■

6137ch02.qxd 3/14/06 2:00 PM Page 15

CHAPTER 2 ■ INSTALLING PHP-GTK16

Installing PHP-GTK 2 on Windows
As I mentioned at the beginning of this chapter, installing PHP-GTK on Windows is very simple.
Everything you need to get PHP-GTK up and running is all in one downloadable file.

Even if you don’t have PHP installed on your machine, you’ll be fine. The Windows version
of PHP-GTK comes with PHP included. Thanks to the work of Frank Kromann and Steph Fox,
all you need to do is download the precompiled binaries from the PHP-GTK website (http://
gtk.php.net/) and unzip the files to the proper location. If PHP 5 is already installed on your
computer, you should already have a c:\php5 directory. If not, you should create that directory.
After downloading and unpacking the files, simply copy the \php5 directory of the zip file to the
c:\php5 directory.

The last step in installing PHP-GTK on Windows is setting up the php.ini file. If PHP was
not previously installed on your machine, you can just copy \winnt\php.ini to c:\php5. If, on
the other hand, PHP (4 or 5) was installed, before adding the PHP-GTK files, be sure to back up
the php.ini, and don’t be so quick to copy things. Blindly replacing the php.ini file will erase
any specific configuration changes that were made to your original php.ini file.

Depending on how you typically use PHP, it may be a good idea to keep two separate INI
files to allow for different settings for web applications and desktop applications. For instance,
you may want to log PHP-GTK errors in a different file than web application errors. If you decide
to use only one php.ini file, be careful not to overwrite any changes in the original file. The
\winnt directory contains a php.ini-gtk file that has only the configuration directives related
to PHP-GTK. It is usually safe to append these directives to an existing php.ini file.

Once you have all of the files copied into the right place, you should try running a few tests.
Copy the \demos directory from the PHP-GTK zip file to the \php5 directory on your hard drive
and run the following command:

$> c:\php5\php c:\php5\demos\phpgtk2-demo.php

■Tip The preceding command should be entered at a command-line prompt. To bring up the command-line
prompt, click the Start button and then select Run. In the window that pops up, type cmd, and then press
Enter. This will bring up a DOS prompt. Type the command in the newly opened DOS and press Enter.

If all goes according to plan, you will see an application that demonstrates several features
of PHP-GTK 2, as shown in Figure 2-1.

■Note PHP 5.1 comes with a php_win.exe executable. Running PHP or PHP-GTK scripts with this command
does not pop up a console or DOS window. This executable can be associated with a particular extension
such as .phpw (the w stands for “windowed application”). Associating the executable with an extension makes
scripts executable by double-clicking them.

6137ch02.qxd 3/14/06 2:00 PM Page 16

CHAPTER 2 ■ INSTALLING PHP-GTK 17

Figure 2-1. The PHP-GTK demo application

The next section discusses installation on Linux systems. If you are a Windows user, you
can skip to the “Using PEAR and PECL Packages” section.

Installing PHP-GTK 2 on Linux
The first step in getting PHP-GTK running on a Linux system is installing GTK. Most systems
these days come with GTK+ 2.x already installed. Chances are your system already meets the
minimum requirements for PHP-GTK, which is GTK+ 2.6.0.

Before downloading and configuring anything, double-check that your system doesn’t
already have the necessary files. To verify that you have the right packages and versions, use
the pkg-config utility, which comes standard on most Linux distributions. Try running the fol-
lowing command:

$> pkg-config --modversion gtk+-2.0

If your version number is lower than 2.6.0, you will need to upgrade GTK before you can
go any further. If you see something to the effect of “Package gtk+-2.0 was not found . . .”, then
you’ll need to do a complete installation of GTK+ 2.

GTK has several dependencies, each of which must be installed before you can get GTK
working. Fortunately, there are no major conflicts with the dependencies for PHP-GTK. You
will need the following packages:

GNU make: Used to compile the source code into working executables. make uses makefiles,
written by the application developers, to determine which pieces of source code need to be
compiled and linked together to produce a working application like PHP-GTK. While there
are many different versions of make available, GTK installation requires some features of
GNU make that may not be available in other versions. See http://www.gnu.org for more
information about the GNU Project.

6137ch02.qxd 3/14/06 2:00 PM Page 17

CHAPTER 2 ■ INSTALLING PHP-GTK18

Glib: The base libraries for GTK. Glib provides the interfaces for things such as the object
system, the event loop, and threads. See http://www.gtk.org/ for more information about
the GIMP Toolkit and Glib.

Pango: Used for layout and rendering of text in GTK+ 2.0. Pango is responsible for font
handling and internationalizing text.

ATK: The Accessibility Toolkit, a set of interfaces designed to help applications interact with
assistive technologies such as screen readers and alternative input devices. ATK makes it
possible for visually impaired or handicapped users to get the most out of a GTK-based
application.

A few other dependencies exist, but the vast majority of Linux distributions will have
these files installed already. Still, some may be missing from your system. For all of these pack-
ages, including GTK, the source is freely available, and the installation process is pretty much
the same. If you need to install any of the dependencies, you should start at the top of the list
and work your way down. That will avoid any wasted time, since one of the packages may be
a dependency for some of the other packages. Once you have downloaded and unpacked the
source code, follow the typical installation procedure:

$> cd /path/to/package/dir/

$> ./configure

$> make

$> make install

Once all the packages are installed, use the pkg-config utility one more time. If everything
looks good, you are ready to move to the next step.

PHP-GTK 2 requires a working PHP 5.1+ installation. Installing PHP is very similar to
installing GTK, except you need to do a little extra configuration to get things set up right. Start
off by downloading and unpacking the source code for PHP 5.1 or higher. Once you have moved
to the PHP directory, you can start setting up the configuration.

PHP-GTK requires PHP to be compiled with CLI mode. CLI mode is enabled by default,
but some developers also like to explicitly disable CGI mode. Doing so helps to avoid some
confusion. If CGI mode is not disabled, two command-line executables will be created: one
for command-line scripts, php-cli, and the other for CGI scripts, php-cgi. If CGI is disabled,
only one executable will be created, php. Therefore, you need to pass the --disable-cgi option.

Next, add a few extensions you will need for development. For this book’s sample application,
we will be using the DOM XML extension, some variety of a relational database management
system (RDBMS), SOAP, and FTP. When you configure PHP, you need to make sure these features
are turned on. You also want to make sure that PEAR gets installed. A few of these options are
already set by default, but it doesn’t hurt to specify them again. When you configure PHP you
need to run the following command:

$> ./configure --with-pgsql --enable-soap --disable-cgi --enable-cli ➥

--enable-ftp --enable-dom --with-pear

Depending on the results of the configure command, you may need to specify a directory
for your RDBMS or PEAR installation. You may also need to specify the location of you LibXML
and zlib installations.

6137ch02.qxd 3/14/06 2:00 PM Page 18

CHAPTER 2 ■ INSTALLING PHP-GTK 19

To specify the location of a directory, you simply add the directory after the configure
command. For example, to tell configure that PEAR should be installed in /usr/share, you pass
--with-pear=/usr/share. The same can be done for your database or XML or zlib extensions.

Chances are you also want to use this same PHP installation for your web applications.
That’s not a problem. Just add the configure commands for your web server.

Once configure has run successfully, continue with the normal build process by running
make and then make install. As usual, you will probably need to have root permissions to run
make install.

■Note Different Linux distributions, package versions, and installation methods can put files in different
places. For instance, some systems may have MySQL installed in /usr/lib/, while others may have it
installed in /usr/local/lib/. The configure tool is usually pretty good about locating files, but some-
times it may need help finding the files on your particular system. That is why it may be necessary to pass
the path to an installation directory or extension, such as --with-libxml=/usr/lib.

So you have PHP 5.1 installed and GTK+ 2 ready to go. You can install PHP-GTK now, right?
Not exactly. While you could go ahead and install PHP-GTK, the installation would be some-
what limited. Don’t misunderstand. You could write some pretty nice applications with a basic
installation of PHP-GTK, but that would be like installing PHP without any database functions.
To get the most out of your PHP-GTK installation, you also need a few supporting packages.
You can install all of these packages using the typical configure, make, make install process.
The desired packages include the following:

Libglade-2.0: A package to help make designing the layout easier.

Scintilla: A powerful text-editing widget.

GdkPixbuf: A package for manipulating and drawing images in a GTK-based application.

GtkHTML: A widget for displaying HTML like a web browser. GtkHTML has a number of
dependencies. Make sure you install all of those first.

Once all of these packages are installed, it’s time to install PHP-GTK. As is the process with
most installations, first you need to download the sources and unpack them. Make sure you
have retrieved the correct version of PHP-GTK. Version 1 will not work with PHP 5 or GTK+ 2.

Building PHP-GTK is slightly different from most Linux installations. After downloading
the sources, you would normally run the configure command. With PHP-GTK, you must build
the configure utility first. To do this, run the buildconf command. This builds a configure util-
ity specifically tailored for your system. Next, run the configure command.

If you decided not to install any of the recommended support packages, you will need to
turn them off by using --disable-<feature>. If you did install these packages, turn them on
with --enable-<feature>. Next, run make and make install.

After running these commands, you will need to update the php.ini file. PHP must load the
PHP-GTK 2 extension so the applications can be run. If you don’t update the php.ini file, you’ll
get an error about nonexistent classes, such as GtkWindow. Simply add extension=php_gtk2.so
(or .dll for Windows) to the Extensions section of your php.ini file. Listing 2-1 shows what the
Extensions section looks like and has some simple instructions.

6137ch02.qxd 3/14/06 2:00 PM Page 19

CHAPTER 2 ■ INSTALLING PHP-GTK20

Listing 2-1. The Extensions Section of php.ini

;;;;;;;;;;;;;;;;;;;;;

; Dynamic Extensions ;

;;;;;;;;;;;;;;;;;;;;;;

;

; If you wish to have an extension loaded automatically, use the following

; syntax:

;

; extension=modulename.extension

;

; For example, on Windows:

;

; extension=msql.dll

;

; ... or under UNIX:

;

; extension=msql.so

;

; Note that it should be the name of the module only; no directory information

; needs to go here. Specify the location of the extension with the

; extension_dir directive above.

Next, test your installation by running one of the demo applications. You can do this by
running the following command:

$> php demos/phpgtk2-demo.php

Now that you have PHP-GTK up and running, you can install a few supporting packages.

Using PEAR and PECL Packages
Regardless of whether you are using Windows or Linux, the remainder of the installation process
is essentially the same. To make your life easier, you are going to use some PEAR packages.

PEAR packages are collections of PHP classes designed to be easily installed, upgraded,
and used by a wide range of users. They are aimed at solving a common problem in the best
and most general way possible. For instance, PEAR::DB is a PEAR package that allows a developer
to change the underlying database for an application without having to change more than one
line of code. You may be pondering the frequency in which you might swap out application
databases. Frankly, the answer is probably never. But if you’re planning on distributing appli-
cations to other users, it would be nice to offer users the flexibility of using their database of
choice. By using PEAR::DB, you can give users the freedom to use whichever database system
they like without requiring them to rewrite any parts of the application. We are going to use
PEAR::DB so the code you write will work just as well on a server running MySQL as it will on
a server running PostgreSQL. This will help make your applications easier to install and use,
because there will be fewer restrictions for the end user.

6137ch02.qxd 3/14/06 2:00 PM Page 20

CHAPTER 2 ■ INSTALLING PHP-GTK 21

Aside from providing cross-platform capabilities, many PEAR packages have solved com-
mon problems in a very efficient manner. The Gtk_FileDrop package makes it easy to add
drag-and-drop functionality to a PHP-GTK driven application. Using this package saves you
the trouble of having to reimplement that functionality every time you write an application.

PEAR packages are installed, updated, and removed using the PEAR installer, which is
a command-line utility bundled with PHP. Unless you specifically said not to install PEAR during
the PHP 5 installation process, you already have the PEAR installer and a few core packages on
your system. You can see which packages have been installed by running the following command:

$> pear list

You’ll see a list all of the packages that have been installed from the default channel
server, pear.php.net.

A channel is a server that offers PEAR-installable packages. To see which packages have
been installed from another server, you need to pass -c <channel> after the list command.
Just because a package is PEAR-installable doesn’t make it an official PEAR package. The only
real PEAR packages are those that come from the pear.php.net channel. Channels also have
short names to make life a little easier. The short name for pear.php.net is simply pear.

To install a package using the PEAR installer you simply type the following command:

$> pear install <channel>/<package_name>

Substitute the short or long channel for <channel> and the name of the package for
<package_name>. If you are installing a package from your default channel (usually pear), you
can leave out <channel>/ and just use the package name.

Installing PEAR Packages
First, make sure that all the current packages are up-to-date. To do this, execute the following
command:

$> pear upgrade-all

This will check for any packages that have new versions and will update them. PEAR pack-
ages are updated and released much more frequently than PHP, so there is a good chance that
one or more of your PEAR packages will need an upgrade.

Next, install a few additional packages. You will install only two now, but you will install
more as the need arises. You’ll install the following packages:

Mail_Mime: A package for sending MIME-encoded email. It makes creating and sending
complex email messages a breeze. Adding attachments or sending email with HTML and
plain text are relatively simple tasks with Mail_Mime.

Console_Getargs: A package designed for letting the user pass command-line arguments.
You will be using it to tell your application to start up in certain states or to provide help
for the user.

To install these packages, type this:

$> pear install -a Mail_Mime

$> pear install -a Console_Getargs

6137ch02.qxd 3/14/06 2:00 PM Page 21

CHAPTER 2 ■ INSTALLING PHP-GTK22

You don’t need to add the pear channel first because the PEAR installer defaults to the
pear channel. The -a flag tells the PEAR installer to also get all of the dependencies and install
them. Both of these commands should end with a message similar to this:

Install <package_name> ok

If you run into any trouble, execute pear help or pear help install for additional help.

Installing PECL Packages
Next, you want to install two PECL (pronounced “pickle”) packages. PECL packages are similar
to PEAR packages, in that they exist to solve common problems for a wide user base, but they
are not PHP code.

PECL packages are PHP extensions (just like PHP-GTK) that are written in C. PECL packages
are compiled once and loaded dynamically when PHP is run.

To install the PECL packages, use the PECL installer, which is exactly the same as the PEAR
installer, except that it defaults to the PECL channel. The PECL channel is pecl.php.net. Its
short name is pecl. Instead of typing pear install pecl/<package_name>, type this:

pecl install <package_name>

The first package, bcompiler, is used to turn PHP code into bytecode. This will allow your
application to run without requiring the user to install PHP first. This means that you can dis-
tribute your application without worrying about whether the user has done any setup work.
bcompiler can also make your code closed source instead of open source. Many businesses
rely on the sale of their software to stay in business. If they cannot protect their source code,
their business model will not be very effective.

The next package, pdflib, is a library for creating PDF files on the fly. We will use this package
to produce a catalog based on the supplier’s inventory information.

To build the packages, execute the following commands:

$> pecl install bcompiler

$> pecl install pdflib

With these commands, you should see much more output. You will see some configuration
messages, and in the end you should see an “Install OK” type message, just as in the PEAR
installations.

Running PHP-GTK Applications
You run PHP-GTK applications from the command line. You have already run at least one
PHP-GTK program if you ran the demo application to test the installation.

6137ch02.qxd 3/14/06 2:00 PM Page 22

CHAPTER 2 ■ INSTALLING PHP-GTK 23

Running a PHP-GTK application is just like running any other PHP command-line script.
For Linux systems, simply type the following:

$> php <filename>.php

For Windows systems, type this:

$> c:\php5\php.exe <filename>.php

PHP-GTK applications will freeze the console window unless you tell them to run in the
background. Usually, you do this by using & after the command.

You’ll find several demo applications in the /demos directory. Give them a try so you can
get a feel for how PHP-GTK programs are run, what they typically look like, and how users
interact with them.

Summary
This chapter was rather short, because there really isn’t too much to the PHP-GTK installation
process. You may have heard horror stories about people fighting with PHP-GTK for days before
getting it to install right, but those stories are about PHP-GTK 1. With that version, installation
was difficult at best. With PHP-GTK 2 those problems have largely been resolved and installa-
tion is much simpler.

Installation of the dependencies and supporting packages is also pretty straightforward.
Of course, there are a lot of configuration options you can set and plenty of customization, but
not all of that is necessary to get a smooth-running PHP-GTK 2 installation.

Now that everything is up and running, we can start looking at what makes PHP-GTK
work the way it does. Chapter 3 describes the basic building blocks of PHP-GTK. You will learn
about the base classes and how all of these classes interact with each other. Once you understand
how the pieces of your application interact with each other, you can look at how they interact
with the user.

6137ch02.qxd 3/14/06 2:00 PM Page 23

6137ch02.qxd 3/14/06 2:00 PM Page 24

6e067a1cf200c3b6e021f18882237192

Understanding PHP-GTK Basics

In the previous chapter, you installed and tested a PHP-GTK environment, setting the stage
for writing some code. However, before rushing into creating an application, you should
understand the basic relationships between PHP-GTK classes.

PHP-GTK is a complex hierarchy of classes. If you want to understand why your Save As
window isn’t showing up properly, you need to know what its base classes are doing.

Inheritance isn’t the only relationship in PHP-GTK. Classes can be wrappers around other
classes; some classes will have instances of another class as properties; and other classes may
exist only to manipulate other objects. It is important to know how these classes interact, because
changing one object can have a profound effect on many others.

PHP-GTK defines many class families, which are based on the libraries that the classes hook
into. The two most important families from a developer’s standpoint are Gdk and Gtk. The Gdk
family of classes consists of low-level classes that interact very closely with the windowing sys-
tem. These classes are responsible for displaying windows and showing colors on the screen.

The Gtk family is a grouping of higher-level objects. These objects represent application
components such as text, menus, or buttons.

The Gtk classes will often contain one or more Gdk classes as members. Although it does
happen, it is rare that a developer works directly with a Gdk class. In most cases, manipulation
of a Gdk instance is done through a Gtk class. The Gtk classes are the ones that create and man-
age the pieces of an application that you are used to seeing. If Gtk is the movie star of PHP-GTK,
Gdk is the personal assistant. Gdk does half of the work, while Gtk gets all of the attention.

Widgets and Objects
The Gtk family tree starts with one class: GtkObject. Every class in the Gtk family extends
GtkObject. Some classes extend directly from GtkObject, while others are grandchild classes.
Members of the Gtk family can basically be broken into two major groups: objects and widgets.

The GtkObject Class
GtkObject defines a few basic methods and declares a few signals (We’ll talk more about sig-
nals in the next chapter; for now, just keep in mind that a signal is used to let PHP-GKT know
that some important event has occurred). Having one base class is nice not only for the GTK
developers, but also for the users. We know that any class we instantiate that extends from
GtkObject will have these few methods that we can call when needed.

25

C H A P T E R 3

■ ■ ■

6137ch03.qxd 3/14/06 2:01 PM Page 25

CHAPTER 3 ■ UNDERSTANDING PHP-GTK BASICS26

Let’s take a look at what the class definition for this object might look like if it were written
in PHP. Then we can talk about how it works and what role it plays in our development. Take
a look at Listing 3-1.

Listing 3-1. Definition of GtkObject

<?php

class GtkObject {

private $flags;

private $refCounter;

public function destroy()

{

unset($this);

}

public function flags()

{

return $this->flags;

}

public function set_flags($flags)

{

$this->flags = $this->flags | $flags;

}

public function sink()

{

if (--$this->refCounter < 1) {

$this->destroy();

}

}

public function unset_flags($flags)

{

$this->flags = $this->flags & ~$flags;

}

}

?>

As you can see, the class defines a handful of public methods. These public methods are
available to all other classes in the Gtk family. Just because they are available, however, doesn’t
mean that you will ever use them. Most of the methods defined by GtkObject are used primarily
by PHP-GTK itself. We will still take a closer look at them, though, because it is important to
know why PHP-GTK calls them.

6137ch03.qxd 3/14/06 2:01 PM Page 26

The destroy Method
The destroy method is probably the only GtkObject method you will ever call explicitly in your
code. It does exactly what you would expect: destroys the object. This method will be overridden
by some classes that extend GtkObject.

Some classes, known as containers, exist just to group other objects logically and visually.
When you destroy a container, it will destroy all of the objects it contains. For instance, destroy-
ing the main window of your application will basically delete every class in your application.

The sink Method
The destroy method is called by PHP-GTK when an object is no longer needed. Determining
when an object is no longer needed (or wanted) is done in two ways.

The first way is by tracking the reference counter. The reference counter is the number of
objects (including the object itself) that reference a given object. When the reference counter
hits zero, it pretty much means that no one cares about the object anymore. Since no one
cares, PHP-GTK destroys the object. This type of action is pretty rare. The reference counter is
maintained using the sink method. Calling the sink method decrements the reference counter.
Usually, PHP-GTK does this during the execution of an application. Incrementing the counter
is always done by PHP-GTK. There is no method for “unsinking” an object.

The other way PHP-GTK knows that an object isn’t needed is when someone or something
tells it to kill the object. For example, let’s say an instance of class A contains an instance of
class B. When you destroy the class A instance, you no longer need the class B instance. While
object A is in the process of deconstructing, it is going to tell PHP-GTK to get rid of the class B
instance. Another example is when the user clicks the x in the upper-right corner of a window.
That tells your application that the user is finished using it. Under most circumstances, the
application will shut down. It does this by destroying the main window. When the main window
is destroyed, it destroys everything contained within it.

The flags, set_flags, and unset_flags Methods
The flags, set_flags, and unset_flags methods do exactly what their names suggest: they
return, set, and unset flags associated with an object, respectively. Flags are used to track
object attributes, such as whether or not the object is visible, or whether or not it can accept
drag-and-drop objects. They offer a simple way to track object properties without using a lot
of memory.

If you wanted to know the current status of an object, you could call the flags method
and compare the result to some known state. In practice, though, you probably won’t ever use
this method. Similarly, you probably won’t use the set_flags or unset_flags method either. In
fact, setting the flags doesn’t mean you have changed any object properties. Setting or unset-
ting flag values will likely just confuse your application.

On the other hand, PHP-GTK will use these methods. Before it does any operation that
requires the object to be in a certain state, such as displaying the object on the screen, it will
compare the current set of flags. If they aren’t right, PHP-GTK will call the method needed to
get the object in the right state. For instance, before a button can be shown on the screen, it
must be inside a window. PHP-GTK uses the flags method to quickly check if the button is
ready to go. Any method that changes an object’s state will call set_flags or unset_flags as
needed. The parameter that is passed to set_flags and unset_flags is an integer, and it’s used
to change the value of the object flags through bitwise operations. PHP-GTK will call set_flags

CHAPTER 3 ■ UNDERSTANDING PHP-GTK BASICS 27

6137ch03.qxd 3/14/06 2:01 PM Page 27

when you show or realize an object. PHP-GTK will call unset_flags when you hide that object
later. Before PHP-GTK does either of these operations, it will check the flags, using the flags
method, to verify whether it actually needs to do any work.

The object flags allow PHP-GTK to quickly and easily manage object properties. These few
simple methods are integral to being able to control and manipulate all of the classes that
inherit from GtkObject.

Objects
Objects are the classes that extend directly from GtkObject and their children, except for GtkWidget
and classes that extend from it, as described in the next section.

Objects are usually considered helper classes. They don’t have any visual components
that can be shown on the screen. A buffer for holding and manipulating text is an example of
an object.

Objects cannot receive direct user interactions. Since they have no visual components,
there is nothing for the user to click on or select.

Objects typically store data such as number ranges or text. They are used to encapsulate
data and provide a consistent interface for manipulating that data. It is much easier to pass
around a bundle of numbers than it is to pass around several numbers while trying to keep
them organized.

Widgets
Widgets are classes that extend from GtkWidget (which extends from GtkObject). Widgets tech-
nically are objects because they inherit from GtkObject, but they deserve special treatment in
the world of GTK.

Widgets are objects with visual representations and can react to user input. Widgets are
the classes you are familiar with through your use of GUI applications. A button is a widget, as
are labels, menus, and windows. Widgets are the objects with which your application’s users
will be directly interacting. They can listen for interaction events, such as user clicks, resizing,
and even dragging and dropping.

Widgets can be shown or hidden. They can be given keyboard focus or have it taken away.
You can also control the look and feel of an individual widget or all widgets of a certain type.

Widgets and objects need each other to make an application work. Data that no one can
see or interact with isn’t very useful. A button that doesn’t have a label or change any data
doesn’t do much good either. Widgets and objects must work together to make a successful
application.

Widgets, being visual objects, can be shown on the screen. This isn’t always what you
want, though, and it isn’t how they start. For instance, you may not want a button to show up
until the user enters some data in a text field. You don’t have to show the button until you are
ready. To help you manage what is shown and what isn’t, widgets have three basic states: real-
ized, unrealized, and shown. These three states represent the visual status of a widget, and
we’ll take a closer look at them here.

CHAPTER 3 ■ UNDERSTANDING PHP-GTK BASICS28

6137ch03.qxd 3/14/06 2:01 PM Page 28

■Note I apologize for the confusing naming conventions. It is true that all widgets are objects, but they are
a special and quite large subset of objects. Keep in mind that when I refer to objects in PHP-GTK, I am talk-
ing about those classes that do not inherit from GtkWidget.

The Realized State
A realized widget is a widget that has valid window and allocation properties. It isn’t yet visible on
the screen, but it is ready to be shown. The window property of a widget is a GdkWindow instance.
Remember that the Gdk classes are the ones that actually take care of the visual representations
on the screen. The allocation property, an instance of the GdkAllocation class, holds the loca-
tion and dimensions of a widget. It has value for the x and y coordinates, and the height and
width of the widget. The window and allocation properties are responsible for telling PHP-GTK
how the widget is going to be displayed and where.

The realized state may also be called the hidden state. This is because it is pretty similar to
a widget in the shown state, but it just isn’t shown on the screen. Only realized widgets can be
shown. Fortunately, the GtkWidget base class is smart enough to realize a widget before you try
to show it.

Listing 3-2 shows how you can move from one state to another.

Listing 3-2. Changing Widget States

<?php

$widget = new GtkWindow();

// If you try to grab the window before realizing

// the object, you will get nothing.

var_dump($widget->window);

var_dump($widget->flags());

$widget->realize();

// Now that the widget is realized, you can grab

// the window property.

var_dump($widget->window);

var_dump($widget->flags());

$widget->show();

// Showing and hiding a widget changes the value

// of its flags.

var_dump($widget->flags());

$widget->hide();

CHAPTER 3 ■ UNDERSTANDING PHP-GTK BASICS 29

6137ch03.qxd 3/14/06 2:01 PM Page 29

var_dump($widget->flags());

$widget->unrealize();

// Now that the widget is realized, you can grab

// the window property.

var_dump($widget->window);

var_dump($widget->flags());

?>

Some appropriately named methods help you change a widget’s state. The realize method
tells PHP-GTK to make room in memory for the widget, because you plan on showing it soon.
If you call the realize method of a widget, the widget will be moved into the realized state but
will be hidden; that is, PHP-GTK will assign it a valid GdkWindow and GdkAllocation. The widget
will not be displayed on the screen, though.

We talked earlier about how widgets may be members of other widgets and how the destroy
method can affect those members. The realize method can also have an effect on widgets
other than the calling widget. A widget cannot be realized until its parent widget is realized. If
you think about it logically, there is pretty good reason for this. Realizing a widget tells you
where it will be on the screen. But how can you know where it will be if you don’t know where
its parent will be? If you try to realize a widget whose parent hasn’t yet been realized, PHP-GTK
will help you out by realizing that parent also. It will do this recursively, all the way up to the
top-level widget, which is usually a window.

In most applications, the realize method doesn’t need to be called directly. The exception
is when you need to know where a widget will be on the screen or how much space it will take
up before it is displayed. For instance, say you wanted to print the dimensions of an image as
a caption. Before the image is displayed on the screen, you can get its size and location by call-
ing the realize method and then checking the value of its allocation property.

The Unrealized State
When you first create a widget, it is unrealized. Unrealized means that no memory has been
allocated for the visual parts of the widget. The unrealized widget doesn’t have a size, and it
doesn’t have a position. The most important thing to know about an unrealized widget is that
it doesn’t have a valid value for its window property. As noted in the previous example of print-
ing the dimensions of an image as a caption, you cannot get those dimensions from an unrealized
object.

Just as there is a realize method, there is an unrealize method. Calling unrealize removes
the widgets window and allocation properties. If a widget is shown when unrealize is called, it
will first be hidden, and then unrealized.

Just like the realize method, the unrealize method has an effect on widgets other than
the calling widget. If a widget that is unrealized has children, they will be unrealized, too. The
positioning and size information are no longer relevant if the parent doesn’t contain any posi-
tion or size information. These rules do not apply in reverse, however. Realizing a parent does
not realize the child, just as unrealizing the child does not unrealize the parent.

Look at the simple example in Listing 3-3. It shows how realizing and unrealizing have
a recursive effect on multiple widgets.

CHAPTER 3 ■ UNDERSTANDING PHP-GTK BASICS30

6137ch03.qxd 3/14/06 2:01 PM Page 30

Listing 3-3. Recursively Realizing and Unrealizing Widgets

<?php

$window = new GtkWindow();

var_dump($window->window);

var_dump($window->flags());

$button = new GtkButton();

$window->add($button);

$button->realize();

var_dump($window->window);

var_dump($window->flags());

$window->unrealize();

var_dump($button->window);

var_dump($button->flags());

?>

First, we show the window in its initial unrealized state. Then, after adding a button and
realizing the button, we check the window’s state again. The presence of a window property is
evidence that the window has been realized, even though we didn’t call the realize method
explicitly. Next, we show the button in its realized state, and then unrealize the window. When
we try to view the button’s window property again, it is gone.

The Shown State
To arrive at the shown state, all you need to do is call the show method of a widget. If the widget
hasn’t yet been realized, PHP-GTK will realize the widget first.

When you no longer want the widget to be shown, you can call the hide method. That will
move the widget back to the realized or hidden state. The widget will still have its window and
allocation properties, but will not be displayed on the screen.

Showing or hiding a widget doesn’t have quite the same recursive effect that realizing
a widget does. If you show a widget whose parent has not been shown, nothing seems to happen.
The parent isn’t realized, and neither is the child. PHP-GTK will queue up this request and show
the widget when the parent is ready.

Try changing the realize call in Listing 3-3 to a call to show. You will see that the window
property of our window object is still null. If you then change the unrealize call to show, you
will see that the window property for both the window and the button will be objects. Also try
showing the window without showing the button. That will demonstrate that showing widgets
is not recursive. The button is not shown unless you call show explicitly for the button; that is,
unless you use the show_all method.

The show_all method shows the calling widget, and then recursively shows all of the wid-
get’s children. The corollary to the show_all method is the hide_all method. Calling hide_all will
hide the calling widget and all of its children recursively. Keep in mind that hide and hide_all
are just moving the widget back to the realized state. They are not unrealizing the widgets. The
widget will still have its window and allocation properties.

CHAPTER 3 ■ UNDERSTANDING PHP-GTK BASICS 31

6137ch03.qxd 3/14/06 2:01 PM Page 31

Parents and Children
We’ve been talking a lot about parent widgets and child widgets, but we haven’t given this
relationship much attention. As you have seen from the previous examples, the parent-child
relationship is very important to any application. Making changes to a parent can have effects
that trickle down to many other pieces of the application. Understanding the implications of
making a change will save you countless hours of debugging.

In the parent-child relationship, a widget that has another widget as a member is a parent.
A widget that is a member of another is a child. The parent doesn’t just provide a place for the
child to hang out while waiting for the code to be executed. The parent provides a visual context
in which the child will appear. In some cases, the child widget exists only to assist the parent
with some critical function. The nodes of a tree, for instance, exist only to represent data in
the tree and don’t have a use elsewhere. Without the nodes, the tree would be useless. Without the
tree, the nodes would be unorganized and be almost impossible to manage.

Containers
While most widgets may be children, a few widgets may be parents. Only those widgets that
extend from the GtkContainer class may be parents. These widgets are called containers, of
which there are many types. Here are a few examples:

• Bin containers, such as GtkWindow, GtkFrame, and GtkButton, can have only one child at
a time.

• Box containers, such as GtkHBox and GtkVBox, display their children one after the other
in a given direction.

• Special containers, like GtkTable and GtkTree, manage their children in unique ways,
such as rows and columns for tables and nodes for trees.

How a container manages its children is often a function of how the container is used.
GtkWindow, for instance, is designed to provide a window for all the other widgets in the appli-
cation. It isn’t designed for laying out or organizing any data. Because of this, it accepts only
one child. It relies on the addition of a widget designed specifically to control the layout.

The GtkWindow class extends the GtkBin class. GtkBin is a specialized class for all containers
that accept only one child. Any class that inherits from GtkBin is known as a bin. If you try to
add two children to a bin, you get a warning message. Try executing Listing 3-4 by saving the
code to a file, and then running php filename.php. If you try running the example with a GtkHBox

instance instead of a GtkWindow instance, you won’t see the warning.

Listing 3-4. Adding Two Children to a Bin

<?php

$window = new GtkWindow();

$window->add(new GtkButton());

$window->add(new GtkButton());

/*

Prints a warning:

Gtk-WARNING **: Attempting to add a widget with type GtkButton to a

GtkWindow, but as a GtkBin subclass a GtkWindow can only contain one

CHAPTER 3 ■ UNDERSTANDING PHP-GTK BASICS32

6137ch03.qxd 3/14/06 2:01 PM Page 32

widget at a time; it already contains a widget of type GtkButton

*/

?>

The number of children that a container may have varies depending on the role of the
container. But the number of parents a widget may have is much more controlled.

Top-Level and Parent Widgets
A widget either may not have any parents or it may have one. Widgets that cannot have a par-
ent are called top-level widgets. GtkWindow is a top-level widget, because it doesn’t make sense
to put a window inside another widget. A window provides a framework for the application.
Putting a window inside another widget would be like putting your garage inside your car.

If a widget is not a top-level widget, it may have one and only one parent. Remember that
the parent not only keeps the children organized, but also provides a visual context for the child.
If a widget had two parents, it wouldn’t know where to show up. If you try to assign two parents
to a widget, as shown in Listing 3-5, a rather informative message will be printed to the terminal.
The message tells you exactly what you did wrong. You can’t put a widget directly into a container
while it is still inside another container. You can, however, put the first container into the second
with the child still in it, because each widget will still have only one parent.

Listing 3-5. Trying to Give a Widget Two Parents

<?php

// Create some containers.

$window = new GtkWindow();

$frame = new GtkFrame();

// Create our test widget.

$button = new GtkButton('Button');

// Try giving the widget two parents.

$window->add($button);

$frame->add($button);

/*

Prints a warning message:

Gtk-WARNING **: Attempting to add a widget with type GtkButton to a

container of type GtkFrame, but the widget is already inside a

container of type GtkWindow, the GTK+ FAQ at http://www.gtk.org/faq/

explains how to reparent a widget.

*/

?>

Adding a widget to a container doesn’t mean that the widget is stuck there, as you’ll learn next.

Adding and Removing Widgets
Containers and widgets have some handy methods to help you move widgets into and out of con-
tainers. Some are specialized for the container type, and we will cover those in later chapters. For
now, we will look at the methods that come with the base GtkContainer, GtkBin, and GtkWidget
classes.

CHAPTER 3 ■ UNDERSTANDING PHP-GTK BASICS 33

6137ch03.qxd 3/14/06 2:01 PM Page 33

The add, remove, and reparent Methods
You have already seen one of the methods for adding a child in some of the previous examples.
The appropriately named add method will take a widget and make it a child of the container.
add is a method of the base class GtkContainer. Because it is part of the base class, it needs to
be very generic. add doesn’t worry about placement or positioning; it simply puts the widget
into the container. It is up to the classes that extend GtkContainer to worry about positioning
and ordering. We will go into much more detail about how to lay out children inside a con-
tainer in Chapter 6.

The equally well-named remove method will remove a given widget from the container.
For both of these methods, you need to know the container and the widget that you want to
add or remove. With adding, obviously, you need to know which widget you want to add, but
removing may be different. You may just want to remove a bin’s child so that you can put
something else in that container.

Containers have a children method that returns the children of the container in an array.
There is also a get_children method which has the same result. Bins have an extra method for
getting the child. Since a bin can have only one child, it is kind of silly to return an array. You
can use the get_child method to return the container’s child widget. Once you know what is
in the container, you can then remove its contents.

If you just want to move a widget from one container to another, you don’t have to go
through the process of removing the widget from one container and adding it to the other.
There is a neat little helper method that makes changing the widget’s parent, or “reparenting”
the widget, a simple one-step process. The reparent method removes the widget from its current
parent container and adds it to the container that you pass as the method’s only parameter.
reparent does all of the dirty work for you behind the scenes.

■Tip If your container is a bin, you can also add a child using the set_child method. For bins, add and
set_child do the same thing, so I usually just stick with add all of the time to avoid confusion.

Let’s take a look at how you can control the parent-child relationship with container
methods. Listing 3-6 is a simple script that demonstrates the use of add, remove, and reparent.

Listing 3-6. Adding and Removing Widgets from a Container

<?php

function testForParent($widget)

{

$parent = $widget->get_parent();

echo 'The ' . get_class($widget) . ' has ';

if (isset($parent)) {

echo 'a ' . get_class($parent);

} else {

echo 'no';

}

CHAPTER 3 ■ UNDERSTANDING PHP-GTK BASICS34

6137ch03.qxd 3/14/06 2:01 PM Page 34

echo " parent.\n";

}

// Start with three widgets.

$window = new GtkWindow();

$frame = new GtkFrame('I am a frame');

$button = new GtkButton("I'm a button");

testForParent($button);

$frame->add($button)

testForParent($button);

// What if we want the button to be added directly to

// the window?

$frame->remove($button);

$window->add($button);

testForParent($button);

// Now switch it back to the frame.

$button->reparent($frame);

testForParent($button);

?>

The function at the top, testForParent, is used to show which type of container is the parent
of the widget that is passed in. You might use a method like this to figure out what role a widget
is playing in your application. Say you have a method that changes a label’s text. You may want
to know if the label is just text from the application or is part of a button. If it is part of a button,
you may want to shorten the text that you set for the label. It prints out a simple message that
tells the class of the widget you are testing and the class of its parent, if it has one. In the rest of
the script, we use this function to report the parent information every time we add, remove, or
reparent a widget.

When you run the script, you will see that the button starts off with no parent. This is what
you would expect, since we did the first test immediately after creating the button. Next, we call
the frame’s add method and pass in the button. When we test for the parent this time, the func-
tion tells us that the button has a frame for a parent. After removing the button from the frame
and adding it to the window, we test again. This time, as expected, the button’s parent is a win-
dow object. Finally, we add the button back to the frame using the reparent method. The test
again shows that the frame is the button’s parent.

Notice that when we moved the button to the window, we had to first remove it from the
frame. In this simple example, it isn’t that big of a deal, because we know which container is
the button’s parent. In a real-world situation, you probably won’t know which container is the
widget’s parent. You would probably need to use a function similar to testForParent, which
returns the parent container. Using reparent, all we needed to do was pass in the new parent
container. PHP-GTK took care of tracking down the old parent and removing the widget first.

CHAPTER 3 ■ UNDERSTANDING PHP-GTK BASICS 35

6137ch03.qxd 3/14/06 2:01 PM Page 35

The set_parent and unparent Methods
Adding a widget to a container using the add method isn’t the only way to accomplish the task.
A few methods that belong to widget can be used to create a parent-child relationship.

Calling set_parent and passing the container has a similar effect to calling the container’s
add method and passing the widget. It adds the calling widget as a child of the container. Simi-
larly, the unparent method will remove a child widget from its container. The unparent method
doesn’t need any parameters, because a widget can have only one parent.

These widget methods for controlling the parent-child relationship should be used with
caution. While it is true that they have the same effect on the widget, they also have some side
effects that can make debugging difficult. If you use set_parent to set a widget’s parent, trying
to remove the widget from the container using the container’s remove method will not work. If
you use add to assign a widget to a container, calling unparent will not work.

In short, if you set a widget’s parent with a widget method, you must remove the widget from
the container with a widget method. If you use a container method to add the widget, you must
use a container method to remove the widget. However, there is an exception to the rule. In
Listing 3-6, we used reparent to move the button back into the frame. reparent is really just
a shortcut method for calling remove on the widget’s parent container and then adding it to the
new container. Since reparent uses the container methods internally, you can’t use it when you
have used set_parent.

Listing 3-7 is a reworked version of Listing 3-6. It uses set_parent and unparent instead of
add and remove. At the end, there is a call to reparent.

Listing 3-7. Using set_parent and unparent

<?php

function testForParent($widget)

{

$parent = $widget->get_parent();

echo 'The ' . get_class($widget) . ' has ';

if (isset($parent)) {

echo 'a ' . get_class($parent);

} else {

echo 'no';

}

echo " parent.\n";

}

// Start with three widgets.

$window = new GtkWindow();

$frame = new GtkFrame('I am a frame');

$button = new GtkButton("I'm a button");

testForParent($button);

$button->set_parent($frame)

testForParent($button);

CHAPTER 3 ■ UNDERSTANDING PHP-GTK BASICS36

6137ch03.qxd 3/14/06 2:01 PM Page 36

// What if we want the button to be added directly to

// the window?

$button->unparent();

$button->set_parent($window);

testForParent($button);

$button->unparent();

testForParent($button);

$button->set_parent($frame);

// This line will throw an error message.

$button->reparent($window);

?>

As you can see, the call to reparent will throw an error, saying something to the effect that
you are trying to give a widget two parents. Since the button was added using set_parent, when
reparent calls the container’s remove method, nothing happens. Then when reparent calls add
on the new container, PHP-GTK balks, as it should. Under no circumstances can a widget have
two parents. Because of this little problem, I recommend that you use only add, remove, and
reparent. It will make your life just a little easier.

Summary
PHP-GTK is a well-structured hierarchy. The classes that make up PHP-GTK all have a rela-
tionship to one another and all depend on each other to make an application a success. Some
classes are designed to organize data (objects); others are created specifically to interact with
the user (widgets).

Aside from their class definitions, widgets also relate to each other through a parent-child
relationship. Containers provide a context for their child widgets and give them an area in which
to be displayed. The parent also plays a key role in whether or not the child is displayed at all.
The parent-child relationship is one of the key elements in the makeup of a PHP-GTK application.

In Chapter 4, we will look at another fundamental principle of PHP-GTK: events. We will
discuss what exactly an event-driven model is and how it is used in PHP-GTK. We will start to
look at how your application will be able to respond to the user’s actions. By the end of the
next chapter, you will have all of the pieces you need to make a fully interactive application.

CHAPTER 3 ■ UNDERSTANDING PHP-GTK BASICS 37

6137ch03.qxd 3/14/06 2:01 PM Page 37

6137ch03.qxd 3/14/06 2:01 PM Page 38

Handling Events and Signals

Web-based applications operate based on a request-driven architecture. The user requests
a piece of information, and the application returns it. The request is very specific and deliberate.
The user clicks a link, which tells the application, “I want to see the information contained on
the pages that this link points to.” That’s it. That is all a web application can do. With a request-
driven architecture, the application cannot do anything until the user submits a properly
formatted request.

An event-driven architecture, on the other hand, is one that can listen for and react to user
events other than simple requests. Event-driven architectures allow an application to do more
than simply present information. For instance, an event-driven system can offer fine-grained
control over how an application reacts to the user. An event-driven model allows the application
to react to events such as mouse clicks, key presses, or even changing the property of a certain
object. An event-driven system doesn’t even need the user to do anything. It can react to events
that it creates itself.

Events and Signals
Using PHP-GTK, you can easily react to user actions, or events. An event is just that. It is some-
thing that happens. Here are a few examples:

• Pressing a key, a key-press-event

• Changing a widget’s value, a value-change event

• Setting a widget’s parent, a parent-set event

• Pressing a mouse button, a button-press-event

• Releasing a mouse button, a button-release-event

Events can be triggered by either the user or the application. The beauty of PHP-GTK is
that it will recognize these events and tell you about them by firing a signal.

39

C H A P T E R 4

■ ■ ■

6137ch04.qxd 3/14/06 2:04 PM Page 39

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS40

A signal is an indication to your code that something has happened. You can set up your
application to let you know when something happens. You can instruct a widget to let you know
when a specific action occurred. Your application might say, “Hey, the user hit the Tab key. Didn’t
you want to do something when that happens?” Then you can check a widget’s value, hide
a section of the application, or do anything else you want. By listening for events and emitting
signals, your application interacts with the user.

Being able to quickly respond to a wide range of events makes PHP-GTK a very powerful
tool. It is the last fundamental piece that you need to begin working with PHP-GTK to create
interactive, stand-alone applications.

Signal Handlers
To make an application interactive, you not only need to listen for events, but you also need to
do something when the event occurs. Knowing that a button was clicked doesn’t really accom-
plish anything unless the code can also perform a specific reaction to the event. Reacting to an
event is done by “connecting” a piece of code, either a function or a method, to a signal.

If you connect a method to a signal, that method will be invoked every time the signal is
emitted. A method (or function) connected to a signal is known as a signal handler or callback.
A signal handler is the connection between a given method or function and a specific signal
emitted from a specific widget. Signal handlers are the key to making an application not only
listen for user interactions, but also to making the application react to them.

Interacting with Signal Handlers
Let’s look at a simple example that illustrates a signal handler. Listing 4-1 builds on the examples
in Chapter 3.

Listing 4-1. Creating a Signal Handler

<?php

function setParentFunction($widget)

{

// Get the widget's parent.

$parent = $widget->get_parent();

// Echo a message about the widget.

echo 'The ' . get_class($widget) . ' has ';

if (isset($parent)) {

// Echo the class of the parent widget.

echo 'a ' . get_class($parent);

} else {

// The widget doesn't have a parent.

echo 'no';

}

echo " parent.\n";

}

6137ch04.qxd 3/14/06 2:04 PM Page 40

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS 41

// Start with three widgets.

$window = new GtkWindow();

$frame = new GtkFrame('I am a frame');

$button = new GtkButton("I'm a button");

// Connect the event to our test function

$button->connect('parent-set', 'setParentFunction');

// Now set some parents.

// Note: I am using set_parent and unparent for example only

// you should always use add/remove/reparent.

$button->set_parent($window);

$button->unparent();

$frame->add($button);

$button->reparent($window);

?>

In this listing, we have three widgets. Two of them are containers (a window and a frame),
and the other is a button. At the top of the listing is a function that takes a widget as its only
argument. This function takes the widget passed in and reports what kind of widget was given
and the class of its parent, if it has one. This is pretty simple and shouldn’t be too confusing if
you understood the concepts presented in the previous chapter. The bottom half of code should
also be pretty easy to follow. The last few lines of code simply set, unset, and change the button’s
parent container.

The important piece for this example is the call to the connect method. The button’s connect
method is telling PHP-GTK that every time the button’s parent changes, we want to call the
setParentFunction function. More specifically, we are saying that every time this button emits
a parent-set signal—which happens whenever an event occurs that causes the button to be
added or removed from a container—we want to call setParentFunction.

When you run the code, you will see that you get five messages providing updates about
the button’s parent. Sometimes it says the button has a window for a parent; other times it says
the button has a frame; and sometimes it says that the button has no parent.

Notice that at no point did we explicitly call setParentFunction anywhere in the code.
PHP-GTK called the function for us when it found out that the button’s parent had been changed.
All we do is set up the signal handler and wait for the correct signal to be emitted.

Before digging into the details of how to create signal handlers, consider another example.
This time, instead of the code triggering the event, we will have the user click a button to trigger
the event. Listing 4-2 shows the source code. Give it a try and click the button a few times. Each
time you click the button, you should see a message telling you that the button was pressed.

Listing 4-2. Using a Signal Handler to React to User-Triggered Events

<?php

function buttonPressed($widget)

{

// Output a simple message indicating which type of widget was clicked.

echo 'The ' . get_class($widget) . " was clicked.\n";

}

6137ch04.qxd 3/14/06 2:04 PM Page 41

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS42

// Create a new window.

$window = new GtkWindow();

// Create a new button with the lable 'Click Me'.

$button = new GtkButton('Click Me');

// Create a signal handler for the clicked signal.

$button->connect('clicked', 'buttonPressed');

// Set up the window to close cleanly.

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

// Add the button to the window.

$window->add($button);

// Show the window and the button.

$window->show_all();

// Start the main loop.

Gtk::main();

?>

Alright, so that is how you interact with signal handlers, but how exactly do you create
them?

Creating Signal Handlers
You create signal handlers by using the connect family of methods. The connect methods connect
a specific signal to a specific method or function. Listing 4-2 includes two calls to connect
methods. The first is to a plain old connect, and the second is to connect_simple. Both methods
have the same result, they create a signal handler. However, you can use two other methods to
create signal handlers: connect_after and connect_simple_after. All of these methods take the
same arguments, but they create the handlers in slightly different ways. Let’s take a closer look
at each of these methods, so that you will understand the advantages of each method. We will
start with the simplest method: connect.

The connect Method
connect creates a signal handler by connecting the event that is passed as the first argument to
the function or method that is passed as the second argument. When connect calls the callback,
the widget that emitted the signal is automatically passed to the callback.

In both of the examples so far, the function expected a parameter called $widget to be
passed in, but we never called the function explicitly, so where did the parameter value come
from? It was passed automatically to the callback by PHP-GTK. How does PHP-GTK know which
widget emitted the signal? It knows because we connected a specific signal from a specific widget
to the callback. In Listing 4-2 it was the clicked signal from the $button instance of the GtkButton
class.

You may be wondering, “But if we connected a specific signal from a specific widget, why
do we need to pass in the widget that emitted the signal anyway? We already know which widget
emitted the signal.” For starters, having the widget passed in automatically saves us from having
to declare all of the widgets in our application that we want to use in the callback as globals.

6137ch04.qxd 3/14/06 2:04 PM Page 42

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS 43

Second, one of the basic principles of OO programming is code reuse. We can create one, two,
three, or ten thousand signal handlers that all call the same callback method. By passing in the
widget that emitted the signal, we have that widget there ready to be worked on, and we can take
the same action on a different widget.

Listing 4-3 is a slightly more complicated example, which demonstrates a much more OO
approach using two buttons and the same callback method.

Listing 4-3. Two Buttons Using the Same Callback

<?php

class ExtendedButton extends GtkButton {

// Text for one state of the button.

var $label1 = 'Click Me';

// Text for the other state of the button.

var $label2 = 'Thank You';

public function __construct()

{

// Call the parent constructor with the first label.

parent::__construct($this->label1);

}

public function changeLabel($button1, $button2)

{

// Change the label of the button that was pressed.

$button1->child->set_text($this->label2);

// Change the label of the other button.

$button2->child->set_text($this->label1);

}

}

// Start with four widgets.

$window = new GtkWindow();

$buttonBox = new GtkHButtonBox();

$buttonA = new ExtendedButton();

$buttonB = new ExtendedButton();

// Create a signal handler for buttonA's clicked signal.

// Pass buttonB as the second argument for changeLabel.

$buttonA->connect('clicked', array($buttonA, 'changeLabel'), $buttonB);

// Create a signal handler for buttonB's clicked signal.

// Pass buttonA as the second argument for changeLabel.

$buttonB->connect('clicked', array($buttonB, 'changeLabel'), $buttonA);

6137ch04.qxd 3/14/06 2:04 PM Page 43

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS44

Figure 4-1. A simple application with two buttons using the same callback

// Set up the window to close cleanly.

$window->connect_simple('destroy',

array('Gtk', 'main_quit'));

// Add the button box to the window.

$window->add($buttonBox);

// Add the buttons to the button box.

$buttonBox->add($buttonA);

$buttonBox->add($buttonB);

// Show the window and all of its children and grandchildren.

$window->show_all();

// Start the main loop.

Gtk::main();

?>

Figure 4-1 shows what this simple application looks like.

In this example, we are extending the GtkButton class to add some extra functionality. The
main part that we added is the changeLabel method. It expects two buttons and changes both
of their labels. The parts to focus on, however, are the two calls to connect.

Both calls to connect are connecting the clicked signal from a button to that button’s
changeLabel method. The first parameter, again, is the signal we are listening for. The second
parameter is an array. When most people see this, they think it is some kind of special PHP-GTK
syntax for registering callback methods of instances, but this is standard PHP syntax. By passing
an array with an object instance as the first element and a string as the second, we are telling
PHP to call the method identified by the second element of the object identified by the first
element. If we passed a class name string as the first element, PHP would try to call the method
statically.

The last argument that we passed to connect is an extra parameter that will be passed to
the callback. Any number of extra arguments can be passed to connect. The extra parameters
are passed in order to the callback after any arguments that are supplied automatically. In this
case, we are passing the other button. Each time you click a button, the other button is passed
to the callback as $button2.

6137ch04.qxd 3/14/06 2:04 PM Page 44

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS 45

■Note When extra parameters are passed to a connect call, they are evaluated at the time the initial call to
connect is processed. I have seen plenty of people spend hours trying to figure out why the value of a widget
is stuck at its startup value. Actually, it isn’t. They tried passing a method as an extra parameter to the callback.
If you need the real-time value from a widget, pass the entire widget and grab the value in your callback.

The connect_simple Method
Listing 4-3 is kind of silly when you think about it. We are passing an object to itself in order to
change its label. That doesn’t really make a whole lot of sense, but what choice do we have, since
the widget that emitted the signal is passed to the callback automatically? Well, that is where
connect_simple comes in.

connect_simple has the same result as connect, but it doesn’t pass the widget that emitted
the signal to the callback. Listing 4-3 can be reworked using connect_simple instead of connect
to make a more elegant application. I’ll leave that as an “exercise” and focus on something
slightly more interesting.

The widget that emitted the signal is not always the only thing passed to the callback auto-
matically. Depending on the signal emitted, other information may also be passed. For instance,
when a widget is added to a container, the container emits an add signal. When an add signal is
emitted, it tells PHP-GTK to pass not only the container that had something added to it, but also
the child that was added. If you create a signal handler for the add signal using connect, the
callback method must accept at least two parameters: the container and the child. If you create
a similar signal handler with connect_simple, the callback needs to accept only the child as an
argument. The container itself will not be passed. Using connect_simple doesn’t mean that no
arguments will be passed automatically. It just means that the widget that emitted the signal
will not be passed.

Listing 4-4 shows an example of using connect_simple. Try running it and see if you can
tell what is happening.

Listing 4-4. Using connect_simple to Reduce the Arguments for the Callback

<?php

class ExtendedContainer extends GtkHBox {

// A variable to keep track of the number of children.

public $counter = 0;

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Create a signal handler for the ExtendedContainer's add signal.

$this ->connect_simple('add', array($this, 'checkLimit'));

}

6137ch04.qxd 3/14/06 2:04 PM Page 45

public function checkLimit($child)

{

// Check to see how many children have been added so far.

if (++$this->counter > 1) {

echo "Whoa! Too many children.\n";

// Remove the newly added child.

$this->remove($child);

// Update the counter.

$this->counter--;

}

return;

}

public static function quit($msg)

{

echo $msg . "\n";

Gtk::main_quit();

}

}

// Create a new window.

$window = new GtkWindow();

// Create a new instance of the ExtendedContainer class.

$container = new ExtendedContainer();

// Create a button to put in the ExtendedContainer.

$button = new GtkButton('Close Window');

// Create a signal handler that will close the application when the

// button is clicked.

$button->connect_simple('clicked', array('ExtendedContainer', 'quit'), ➥

'Button Pressed');

// Create a signal handler that will call the container's quit method when

// the container is destroyed.

$window->connect_simple('destroy', array('ExtendedContainer', 'quit'), 'Window

Closed');

// Add the button to the container.

$container->add($button);

// Try to add a new label to the container also.

$container->add(new GtkLabel('label'));

// Add the container to the window.

$window->add($container);

// Show the window and its contents.

$window->show_all();

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS46

6137ch04.qxd 3/14/06 2:04 PM Page 46

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS 47

// Start the main loop.

Gtk::main();

?>

Here, we are extending the GtkHBox and basically turning it into a bin (a container that can
hold only one child). We’ve modified the class so that it can have only one child at a time. We
have created a signal handler that calls the checkLimit method whenever a child is added to
the container.

Even though we used connect_simple, we still need to be prepared to accept the new child
as an argument for our callback. The callback checks the number of children in the container,
and if it is too high, it prints a message, removes the child, and updates the counter.

We created two other signal handlers in this example. The first handler connects the clicked
signal of the button to the quit method of the container. The quit method is called statically
and expects one argument to be passed in. The clicked signal, by default, passes the button,
and only the button, that was clicked to the callback, but we used connect_simple so it doesn’t
pass anything. The argument that is passed in is the string that we passed as the third parame-
ter for our connect_simple call. When the method is called, it outputs a message and quits the
main GTK loop.

The other connect_simple call is similar. It connects the window’s destroy signal to the
statically called quit method. Just like the button’s clicked signal, a widget’s destroy signal
passes only the widget that emitted the signal. This time, when we created the signal handler,
we passed a different string as the message. When you run the code, try clicking the button
one time and the x in the upper-right corner of the window the next time. Both actions shut
down the application, but they produce different messages.

The connect_after and connect_simple_after Methods
Using connect_simple, you can make your callback methods a little simpler, but what about
controlling the order in which they are called? In our simple examples so far, we pretty much
know which signal handlers are going to be called first, because we know the order in which
they were created.

In real-life applications, however, the signal handlers may not be created in the order we
expect. Some of them may not be created until after the user selects some menu option. For
example, consider a text-editing application. Applications like OpenOffice.org and Microsoft
Word have real-time spell checking, which can highlight misspelled words as the user is typing
them. When you type a letter, there may be one signal handler that is used to put the words into
the document and another signal handler that checks for spelling errors. Obviously, you want
the letters to appear in the document before the application checks for spelling mistakes. To
help with this issue, PHP-GTK lets you separate signal handlers into two groups. The callbacks
in the first group will always be called before the callbacks in the second group. Using this strat-
egy, you can be certain that words will appear on the screen before they are spell-checked.

So far, we have been putting all of our signal handlers into one group using connect and
connect_simple. To put handlers into the group that is called after the first group, you need to
use two new methods: connect_after and connect_simple_after. These methods are identical
in form and function to connect and connect_simple, respectively, except that they ensure that
the callbacks will be put into the second group.

6137ch04.qxd 3/14/06 2:04 PM Page 47

Let’s look at a simple but practical example of why you might want to ensure that one sig-
nal handler is called before another. For our PIMS application, we will want to check that the
users have saved their work before allowing them to close the application. To do this, we will
create two signal handlers: one for the destroy signal and one for the delete-event signal. The
signal connected to the destroy signal will close the application, and the other signal handler
will check that all progress has been saved. Listing 4-5 presents the code.

Listing 4-5. Using connect_simple_after to Ensure a Callback Is Called Second

<?php

class Editor {

public $window;

public $button;

public $saved = false;

public function __construct()

{

// Create a new window.

$this->window = new GtkWindow();

// Create a button with the label 'Save'.

$this->button = new GtkButton('Save');

// Add the button to the window.

$this->window->add($this->button);

// Set up the window to close cleanly after the other signal

// handlers have been called.

$this->window->connect_simple_after('destroy', ➥

array('Gtk', 'main_quit'));

// Create a signal handler to check if the user has saved their

// work before allowing the application to be closed.

$this->window->connect_simple('delete-event', ➥

array($this, 'checkSaved'));

// Create a signal handler that calls the saveFile method when the

// user clicks the Save button.

$this->button->connect_simple('clicked', ➥

array($this, 'saveFile'));

}

public function start()

{

// Show the window and its contents.

$this->window->show_all();

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS48

6137ch04.qxd 3/14/06 2:04 PM Page 48

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS 49

// Start the main loop.

Gtk::main();

}

public function saveFile()

{

// For now, just set the saved flag to true.

$this->saved = true;

}

public function checkSaved()

{

// Check the value of the saved flag.

if (!$this->saved) {

// Echo a warning message.

echo "File not saved.\n";

// Return true to prevent the window from closing.

return true;

}

}

}

// Create a new editor.

$editor = new Editor();

// Start the application.

$editor->start();

?>

Because we don’t want to close the application until after we check that the user has saved
her work, we create the signal handler for the Gtk::main_quitmethod using connect_simple_after.
Now we are assured that the application will not exit until after our check has run.

Try running the application a few times. First, click the Save button before closing the
application. Next, close the application without clicking the Save button. The second time,
you will see a warning message appear in the terminal.

This listing doesn’t implement the entire process, but just enough to show the relationship
between signal handlers created with connect_simple and those created with connect_simple_
after. For now, we are just checking if the user has saved recently. In the next section, we will
prevent the application from closing if she hasn’t saved her work.

Blocking and Destroying Signal Handlers
Events are great because they let you interact with the user. But sometimes you may not want
the user to interact with your application.

6137ch04.qxd 3/14/06 2:04 PM Page 49

If you have ever developed an e-commerce website, you have undoubtedly run into the
problem of user impatience. We have all been guilty of it, too. You go to a website and try to
buy a book. You click the checkout button, but the site is slow to react. Well, maybe it didn’t
hear you the first time, so you click it again . . . and again. And before you know it, you have
just bought 12 copies of Harry Potter.

Nowadays, developers have gotten a bit wiser. Sure, you can’t make users more patient,
but you can take away their tools for self-destruction. For instance, these days, most sites take
you to some sort of processing page or simply remove the checkout button. That way, you can’t
do any more damage. That is what signal handler blocking is all about.

When you block a signal handler, you are saying, “I know I gave you the ability to click this
button before, but for right now, I am going to ignore any clicks I hear.” Blocking a signal handler
prevents the callback from being called when the signal is emitted. It doesn’t prevent the signal
from being emitted. It just prevents that signal from calling the particular callback. If you blocked
the signal completely, all of the signal handlers connected to it would be blocked as well.

In the previous section, you learned about creating signal handlers using the connect
method and its sister methods. I must apologize because I left out one minor detail. All four of
those methods return an integer value known as the signal handler ID. The number returned
is used to uniquely identify the signal handler just created. Each signal handler created will
return a different number, even if a second signal handler for the exact same widget, signal, and
method is created. Most of the time, the signal handler ID return value is just ignored because
the callback needs to be called reliably every time the event occurs. In some cases, however, you
may want to temporarily or permanently block a particular signal handler. In these cases,
you need to know the signal handler ID number.

Using a few methods, you can temporarily block a signal handler, bring it back “online,”
or destroy it all together. These are the block, unblock, disconnected, and is_connected methods.
Let’s look at how each of these works.

The block Method
Most aspects of an application are all about empowering the user; that is, when a feature is
added, it is often designed to be used. However, sometimes you need to take away features.
A feature may be disabled because the user hasn’t yet completed a given set of tasks, or per-
haps the system is busy processing information.

Blocking a signal handler takes some previously defined connection between a signal and
an event and temporarily disables it. It doesn’t kill the connection. It is just makes it temporar-
ily unavailable. Picture a drag race. Two cars are sitting at the starting line waiting for the green
light. Now let’s say that just as the green light turns on, a large bird flies in front of the car in lane
two, blocking the driver’s view. Since the driver doesn’t see the green light, he doesn’t hit the gas.
In our drag race, there is an event (the start of the race), a signal (the green light), an action (the
cars go down the track), and a signal handler (the driver). The car in lane one represents a nor-
mal connection. The event occurred, a signal was emitted, and the signal handler took action.
The car in lane two represents a blocked signal handler. The event occurred and the signal was
emitted, but the signal handler was not made aware of it. Therefore, the signal handler took no
action. The same things happen in PHP-GTK when a signal handler is blocked. Even though the
event occurs and the signal is emitted, the signal handler takes no action.

Blocking a signal handler in PHP-GTK is a pretty simple process. You call the block method,
passing the signal handler ID number, which is returned by the connect method. Listing 4-6
shows a simple example of blocking a signal handler.

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS50

6137ch04.qxd 3/14/06 2:04 PM Page 50

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS 51

Listing 4-6. Blocking a Signal Handler

<?php

class ClickOnce extends GtkButton {

public $handlerId;

public function __construct($label)

{

// Call the parent constructor

parent::__construct($label);

// Set up the signal handler and capture the handler id.

$this->handlerId = $this->connect_simple('clicked',

array($this, 'checkClicked'));

// Spit out the handler id.

var_dump($this->handlerId);

}

public function checkClicked()

{

// Change the label of the button.

$this->child->set_text('Thanks');

// Block the signal handler id.

$this->block($this->handlerId);

}

}

// Create a new window.

$window = new GtkWindow();

// Create a new ClickOnce button with the label 'Press Me'.

$button = new ClickOnce('Press Me');

// Add the buton to the window.

$window->add($button);

// Show the window and its contents.

$window->show_all();

// Set up the window to close cleanly.

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

// Start the main loop.

Gtk::main();

?>

6137ch04.qxd 3/14/06 2:04 PM Page 51

We start off by extending the GtkButton class to add some functionality. The constructor
does some setup work, including creating a signal handler for the clicked signal. Notice that
the return value of connect_simple is captured in the handlerId member variable. It is important
that this value isn’t ignored, because without it, there is no way to block the signal handler.

The class in the example is named ClickOnce because nothing happens the second,
third, or billionth time the button is clicked. When the user clicks the button the first time, the
checkClicked method will be called. checkClicked first changes the button’s label to say Thanks,
and then blocks the signal handler. With the signal handler blocked, checkClicked won’t be
called when the user clicks the button a second or third time. The signal is still being emitted,
but the handler is ignoring it because it is blocked.

The unblock Method
If blocking a signal handler is only temporary, then obviously there must be a way to unblock
a signal handler. Unblocking a signal handler simply means that the signal handler will begin
to call its callback method again the next time the signal is emitted.

When a signal handler is blocked, requests that come in are simply thrown out. Requests
are not queued up waiting to be processed. Unblocking a signal handler will not unleash a flood
of previous user actions that took place while the signal handler was blocked. Unblocking a signal
handler simply allows the callback method to be called when the given signal is emitted.

Unblocking a signal handler is as easy as blocking one. All it takes is the unblock method
and the signal handler ID number. Take a look at Listing 4-7, which extends the previous listing.

Listing 4-7. Unblocking a Signal Handler

<?php

class OnOff extends GtkButton {

// The id of the signal handler.

public $handlerId;

// A counter to show how many times the button has been pressed.

public $counter = 0;

public function __construct($label)

{

// Call the parent constructor

parent::__construct($label);

}

public function setUp($otherButton)

{

// Set up the signal handler.

$this->handlerId = $this->connect_simple('clicked',

array($this, 'turnOff'), $otherButton);

}

public function turnOff($otherButton)

{

// Turn this button off.

$this->block($this->handlerId);

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS52

6137ch04.qxd 3/14/06 2:04 PM Page 52

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS 53

// Change the text to process and add the number of times the

// button has been pressed.

$this->child->set_text('Processing (' . $this->counter++ . ')');

// Turn the other button on.

$otherButton->unblock($otherButton->handlerId);

// Change the text to press me and add the number of times the

// button has been pressed.

$otherButton->child->set_text('Press Me (' .

$otherButton->counter . ')');

}

}

// Create a new window.

$window = new GtkWindow();

// Create two new OnOff buttons.

$button1 = new OnOff('Press Me');

$button2 = new OnOff('Press Me');

// Create a new box to hold the buttons.

$box = new GtkHBox();

// Set up the connections.

$button1->setUp($button2);

$button2->setUp($button1);

// Add both buttons to the box.

$box->add($button1);

$box->add($button2);

// Add the box to the window.

$window->add($box);

// Show the window and its contents.

$window->show_all();

// Set up the window to close cleanly.

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

// Start the main loop.

Gtk::main();

?>

Figure 4-2 shows the simple application created by Listing 4-7.

6137ch04.qxd 3/14/06 2:04 PM Page 53

Figure 4-2. An application that blocks a signal handler when a button is pressed

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS54

In the previous example, we had a button that could be clicked only once. In this example,
we have two buttons. When clicked, each button will block its own signal handler, preventing
it from being clicked again. Each button will also unblock the other button’s signal handler.
Basically, when a button turns itself off, it turns the other button back on. This example brings
up two important points.

First, notice that we needed to change our class a little. Since each button is responsible
for the other, the call to connect_simple had to be moved outside the constructor. This is pretty
simple and should be obvious.

The other point is a little more subtle but also has to do with passing in the other button.
Notice the entire button, not just the handler ID, was passed to the callback. This isn’t because
the handler ID can change and we need to get its value in real time. As long as a signal handler
exists, its ID number will always be the same. The button was passed in because only the widget
that created the signal handler can block or unblock it. This wasn’t a big deal in Listing 4-6,
where there was only one widget, but here there are two widgets. If $button1 tried to block the
signal handler for $button2, a message saying something similar to the following would be
output to the screen:

GLib-GObject-WARNING **: gsignal.c:1768: ➥

instance '0xa3a1788' has no handler with id '6'

This requirement makes blocking and unblocking signal handlers a little more difficult.
Instead of simply maintaining a list of handler IDs, you must also maintain a relationship
between the handler and the widget that created it. Fortunately, using OO programming, this
isn’t too difficult.

■Note If you haven’t yet given Listing 4-7 a try, you really should. You will see a message about a handler
not being blocked yet. This is because every time a button is pressed, it tries to unblock the handler for the
other button. But when the first button is pressed, no handlers have been blocked yet. Obviously, a handler
can’t be unblocked if it isn’t blocked. Unfortunately, it is up to your application to keep track of whether or
not a signal handler has been blocked. You can keep track of this in your code using a simple Boolean flag.

The disconnect Method
Using the block method will temporarily disable a signal handler, which can be brought back
to life using the unblock method. Signal handlers don’t always need to be brought back, though.

Consider a demonstration version of a calendar application. The developers may have
decided that until the user pays the license fee, he may add only one event every time the appli-
cation is loaded. The user can still use the calendar but cannot add more events. In this case,

6137ch04.qxd 3/14/06 2:04 PM Page 54

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS 55

the application would have a signal handler that adds the event when the user clicks the New
Event button. After adding the first event, the signal handler should stop processing new event
requests. Unlike the previous examples, the application doesn’t want to allow the user to add
new events again. Instead of blocking the signal handler, the better solution is to get rid of it.

Connecting signal handlers is done with the connect method or one of its sister methods.
Disconnecting a signal handler is done using the disconnect method. disconnect will perma-
nently destroy the signal handler identified by the signal handler ID that is passed as the only
argument.

Once a signal handler is disconnected, it is not possible to bring it back. If you need the
functionality of that signal handler again, you must create a new signal handler. As with block
and unblock, only the widget that created the signal handler may destroy it.

The is_connected Method
The block, unblock, and disconnect methods all require that the widget that created the signal
handler be the one to block, unblock, or destroy it. Trying to use one of these methods on a signal
handler created by another widget produces a warning message that is difficult to hide. To avoid
such an error message, you can check that the signal handler belongs to the widget before trying
to block, unblock, or disconnect it. That is where the is_connected method comes into play.

By passing is_connected a signal handler ID, you can determine if the calling widget is the
owner of the signal handler. If the widget is the owner of the signal handler, is_connected returns
true, regardless of whether or not the signal handler has been blocked.

Remember that once a signal handler has been destroyed with disconnect, the signal
hander no longer exists, even though the callback still does. Calling is_connected and passing
the ID of a signal handler that has been disconnected will return false. See the following code
for a quick example.

if (!$this->is_connected($this->handlerId))

trigger_error('The signal handler is not connected.', E_USER_WARNING);

Listening for New Events
Each widget that is used in an application comes with a certain set of events that it watches for
by default. Depending on the function of the widget, the set of events can be greatly varied. In
most cases, the events that come with a widget are more than enough for any given task. But
sometimes the best widget for the job may not react to all of the events your application requires.
That is why PHP-GTK has the flexibility to allow widgets to listen for new events that they do
not listen for by default.

You can make a widget more responsive in two ways:

• Wrap the widget in a special container called a GtkEventBox. This container listens for
a wide range of events and can be used to make normally inactive widgets appear to
listen for events.

• Tell a widget to start listening for a particular set of events, such as making an image
clickable.

We’ll look at both techniques.

6137ch04.qxd 3/14/06 2:04 PM Page 55

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS56

Using the GtkEventBox Container
The easiest way to make a widget listen for a new event is to put the widget inside a GtkEventBox.
The GtkEventBox is designed specifically to hold a child widget and listen for a user event within
that child’s screen space. Unfortunately, the name GtkEventBox is a little misleading. It isn’t a box
at all—it’s a bin. As a bin, it can have only one child. This makes its life a little easier, since you
just need to worry about one child.

Normally, containers exist only to hold and align children. You can’t interact with them,
because the children take up all of the available screen space. The typical container might be
better thought of as a stand instead of a box. The stand is just big enough to hold the widget in
place but not big enough to be seen or touched. On the other hand, a GtkEventBox might be
considered more of a tight-fitting glass case. The event box holds the child widget but also wraps
around it. Now when you go to touch the widget inside, you hit the glass instead of the widget.
The glass case can now react to your actions.

In Listing 4-8, a GtkEventBox changes the label that appears in a window when the user
moves the mouse over it. Labels by themselves do not listen for any events by default. We are
simulating their responsiveness by putting them inside an event box.

Listing 4-8. Making a Widget More Responsive with GtkEventBox

<?php

class ChangingLabel extends GtkEventBox {

public $mouseOverLabel;

public $mouseOutLabel;

public function __construct($mouseOverText, $mouseOutText)

{

// Set up the labels.

$this->mouseOverLabel = new GtkLabel($mouseOverText);

$this->mouseOutLabel = new GtkLabel($mouseOutText);

// Call the parent constructor.

parent::__construct();

// Add the mouse out label to start.

$this->add($this->mouseOutLabel);

// Connect the mouse over and out events.

$this->connect_simple('enter-notify-event', array($this, ➥

'switchLabels'));

$this->connect_simple('leave-notify-event', array($this, ➥

'switchLabels'));

}

public function switchLabels()

{

// Check to see which label is currently set.

6137ch04.qxd 3/14/06 2:04 PM Page 56

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS 57

if ($this->child === $this->mouseOverLabel) {

// Remove the current label.

$this->remove($this->mouseOverLabel);

// Add the other label.

$this->add($this->mouseOutLabel);

} else {

// Remove the current label.

$this->remove($this->mouseOutLabel);

// Add the other label.

$this->add($this->mouseOverLabel);

}

// Make sure that the contents of the event box are shown.

$this->show_all();

}

}

// Create a window and add our new class to it.

$window = new GtkWindow();

$window->add(new ChangingLabel('Whoo Hoo!', 'Move the mouse here.'));

// Set up the window to close cleanly.

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

// Show the window and its contents.

$window->show_all();

// Start the main loop.

Gtk::main();

?>

The event box listens for mouse enter and leave events, called enter-notify-event and
leave-notify-event, respectively. These two events are triggered when the mouse enters or
leaves the screen space taken up by the child of the event box.

In this example, we have extended the GtkEventBox class. Our new version, ChangingLabel,
changes the event box’s child label when the mouse moves over the label area. When the mouse
moves out of the area again, the label returns to its original value.

It is important to understand that we are not making the labels listen for the mouse-over
events. The labels themselves have not changed; they are just as boring and unresponsive as
they were when they were created. It is the event box itself that is responding to the user’s actions.
We used the connect_simple method of our extended class, not of the labels.

Just to see what happens to a widget inside an event box, try changing the mouseOverLabel
widget from a GtkLabel to a GtkButton. Make sure to connect a method to the button’s clicked
signal. Then try clicking the button. GtkEventBox acts as an interceptor for all user-triggered
events. The button cannot be clicked anymore. When you put the mouse over the button and

6137ch04.qxd 3/14/06 2:04 PM Page 57

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS58

click, you are actually clicking the event box. You have basically put the button behind a glass
case. You can see it, but you can’t touch it.

■Note Listing 4-8 is just an example. In a real application, there would be no reason to put a GtkLabel

inside a GtkEventBox just to achieve a mouse-over effect. Chapter 16 shows a more appropriate method
for achieving a mouse-over effect.

Because putting a widget inside an event box basically cuts it off from the user, it may not
always be the best solution. Sometimes you need to keep the responsiveness of a widget. Also,
a GtkEventBox does not automatically listen for some events.

Adding Events to a Widget
A vast majority of the times a widget is used in an application, it already listens for all of the
signals that it will need. However, you may need to add another event to the set of events that
will cause a widget to react to the user. You have seen that using an event box can add func-
tionality to a widget, but that it also blocks off the widget from the user. If a widget needs to
listen for a new set of events and retain its current level of responsiveness, you can add new
events with the add_events method. add_events will make the widget listen for new signals
generated by the events that are passed to it.

Before adding events to a widget, you should know which events the widget already listens
for. Signal reflection—knowing which signals a widget listens for by default—is one of the built-
in features of PHP-GTK. Because signals are not part of PHP proper, the reflection class is not
able to grab or display them. Therefore, PHP-GTK must handle this on its own.

The signal_list_ids and signal_list_names methods list the IDs and names, respectively,
of the signals that a widget listens for immediately after it is constructed. These methods expect
either a class name or a class instance as the only parameter. Each returns an array of the signal
data. Both methods are defined by the GObject class and can be called statically. signal_list_ids
is not really that useful of a method. It can be used to programmatically compare a list of signal
IDs with the signals that a widget listens for, but using it requires you to know which signal names
match with which signal IDs. Usually, it is much easier to compare names. Using signal_list_names
is a little easier because you know the names of the signals. The names are the values that are
passed to connect.

Listing 4-9 shows the use of signal_list_names, as well as add_events. Before any new
events are added, the code checks to see that the events are not listed in the array returned by
signal_list_names. If not, the events are added. add_events is called with an integer passed as
the only argument. The integer value is used as a mask to tell PHP-GTK which events should be
captured by the widget. The values are more easily represented by Gdk constants. The masks
make it easy to do bitwise comparison and track all of the events that a widget listens for in
one value.

Listing 4-9. Using signal_list_names and add_events to Enhance an Entry’s Functionality

<?php

class EchoEntry extends GtkEntry {

6137ch04.qxd 3/14/06 2:04 PM Page 58

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS 59

public function __construct()

{

// Call the parent constructor.

parent::__construct();

}

public function addKeyPress()

{

// Loop through the signal the GtkEntry listens for.

foreach (GObject::signal_list_names('GtkEntry') as $signal) {

if ($signal == 'key-press-event') {

// If key-press-event is found, echo the name of the signal

// and return false. This should not happen since GtkEntry

// doesn't listen for key-press-event by default.

echo $signal . "\n";

return false;

}

}

// Make the entry listen for a key press.

$this->add_events(Gdk::KEY_PRESS_MASK);

// Create a signal handler for the key-press-event signal.

$this->connect_simple('key-press-event', array($this, 'echoText'));

return true;

}

public function echoText()

{

// Echo the current text of the entry.

echo $this->get_text() . "\n";

}

}

// Build some widgets

$window = new GtkWindow();

$vBox = new GtkVBox();

$label = new GtkLabel('Type something in the entry field');

$entry = new EchoEntry();

// Pack them all together.

$window->add($vBox);

$vBox->add($label);

$vBox->add($entry);

// Set up the window to close cleanly.

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

6137ch04.qxd 3/14/06 2:04 PM Page 59

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS60

// Show the window and its contents.

$window->show_all();

// Add the key-press-event signal to the signals that the EchoEntry listens

// for.

$entry->addKeyPress();

// Start the main loop.

Gtk::main();

?>

Figure 4-3 shows this simple application.

Notice in this example that the widget was realized, by calling show_all on the window,
before add_events was called. Recall from Chapter 3 that interaction with the operating system
is handled by Gdk. Since events are often notices from the operating system that something has
happened, Gdk is ultimately responsible for handling the events. Therefore, before any events
can be added to a widget, the widget must have its Gdk-related properties set, namely, GdkWindow
and GdkAllocation.

Also recall from Chapter 3 that the way to initialize a widget’s Gdk properties is to call realize.
Once the widget is realized, it is safe to call add_events. In this example, Gdk::KEY_PRESS_MASK
is passed to add_events. This will make the widget react when the user presses any key on the
keyboard while the entry has the keyboard focus (which is all of the time in this simple example).
After setting up the widget to listen for key press events, the key-press-event signal is connected
to the echoText method.

key-press-event is one of many event types that can be added. Table 4-1 summarizes the
event masks and the corresponding signals that will be emitted by each.

Table 4-1. Event Masks and Corresponding Signals

Event Mask Signal Description

EXPOSURE_MASK expose-event An event occurred that has to do with
exposing the widget, such as when it
is shown or hidden.

POINTER_MOTION_MASK motion-notify-event The mouse was moved within the
screen space of the widget.

POINTER_MOTION_HINT_MASK motion-notify-event The mouse was moved, and is still
moving, within the screen space of
the widget.

BUTTON_MOTION_MASK motion-notify-event The mouse was moved across the
screen space of the widget while one
of the mouse buttons was pressed.

Figure 4-3. A simple application that echoes the text entered

6137ch04.qxd 3/14/06 2:04 PM Page 60

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS 61

Event Mask Signal Description

BUTTON1_MOTION_MASK motion-notify-event The mouse was moved across the
screen space of the widget while the
first mouse button was pressed.

BUTTON2_MOTION_MASK motion-notify-event The mouse was moved across the
screen space of the widget while the
second mouse button was pressed.

BUTTON3_MOTION_MASK motion-notify-event The mouse was moved across the
screen space of the widget while the
third mouse button was pressed.

BUTTON_PRESS_MASK button-press-event A mouse button was pressed on the
widget.

BUTTON_RELEASE_MASK button-release-event A mouse button was released over top
of the widget.

KEY_PRESS_MASK key-press-event A keyboard key was pressed while the
widget had keyboard focus.

KEY_RELEASE_MASK key-release-event A keyboard key was released while the
widget had keyboard focus.

ENTER_NOTIFY_MASK enter-notify-event The mouse pointer has entered the
screen space of the widget.

LEAVE_NOTIFY_EVENT leave-notify-event The mouse pointer has left the screen
space of the widget.

FOCUS_CHANGE_MASK focus-in-event/ The widget has either had keyboard
focus-out-event focus given to it or taken away from it.

STRUCTURE_MASK map-event/unmap-event/ An event relating to the underlying
destroy-event/ properties of a widget occurred.
configure-event

PROPERTY_CHANGE_MASK property-notify-event A property of the widget has been
changed, such as $widget->style.

VISIBILITY_NOTIFY_MASK visibility-notify-event The widget has become visible or has
been hidden from view.

PROXIMITY_IN_MASK proximity-in-event The mouse pointer has come close to
the widget.

PROXIMITY_OUT_MASK proximity-out-event The mouse pointer has moved away
from the widget.

SUBSTRUCTURE_MASK map-event/unmap-event/ A change has been made to the
destroy-event/ underlying properties of one of the
configure-event widget’s children.
(from a child widget)

ALL_EVENTS_MASK All events This mask adds the ability to listen for
any and all of the event types.

In PHP-GTK 1, it was necessary to call add_events any time that a widget needed to listen
for a signal outside its default set. Fortunately, PHP-GTK 2 has taken a step forward and made
it much easier to add new event types. Instead of requiring you to go through the tedious process
detailed in Listing 4-9, PHP-GTK 2 will automatically call add_events for a widget when a signal
that the widget does not listen for is used in a call to connect or one of the other connect methods.
While Listing 4-9 is technically correct, and is an example of a best practice for adding events,
Listing 4-10 works just as well.

6137ch04.qxd 3/14/06 2:04 PM Page 61

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS62

Listing 4-10. A Simpler Approach to Adding Events

<?php

class EchoEntry extends GtkEntry {

public function __construct()

{

// Call the parent constructor.

parent::__construct();

}

public function addKeyPress()

{

// Create a signal handler for the key-press-event signal.

// add_events will be called automatically.

$this->connect_simple('key-press-event', array($this, 'echoText'));

}

public function echoText()

{

// Echo the current text of the entry.

echo $this->get_text() . "\n";

}

}

// Build some widgets

$window = new GtkWindow();

$vBox = new GtkVBox();

$label = new GtkLabel('Type something in the entry field');

$entry = new EchoEntry();

// Pack them all together.

$window->add($vBox);

$vBox->add($label);

$vBox->add($entry);

// Set up the window to close cleanly.

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

// Show the window and its contents.

$window->show_all();

// Create the signal handler for the key-press-event signal.

$entry->addKeyPress();

// Start the main loop.

Gtk::main();

?>

6137ch04.qxd 3/14/06 2:04 PM Page 62

CHAPTER 4 ■ HANDLING EVENTS AND SIGNALS 63

Summary
PHP-GTK gives an application the ability to react to the user quickly and efficiently. The system
of signals and events turns an unresponsive window on the screen into a functional and flexi-
ble application. Using the connect family of methods, user and system events emit signals that
trigger callback methods that can then perform a designated task. When a signal is connected
to a method, a signal handler is created. Signal handlers are the key to making an application
respond to the user. Signal handlers can be created, blocked, unblocked, or destroyed, allowing
for a constantly changing set of user-application interactions.

Now that we have covered all of the basics, in the next chapter, you’ll start creating a real
PHP-GTK application. Chapter 5 will focus on getting the Crisscott PIMS application off the
ground. The chapter will start with creating a GtkWindow to hold the application. Next, we will
look at setting some of the basic window properties and connections.

6137ch04.qxd 3/14/06 2:04 PM Page 63

6137ch04.qxd 3/14/06 2:04 PM Page 64

65

C H A P T E R 5

■ ■ ■

Getting an Application Up
and Running

Bringing a simple application to life can be a pretty easy process with PHP-GTK, but you
also have a lot of flexibility. For instance, instead of just displaying a window on the screen and
exiting, you can customize your application to place the window in a particular location, set
a specific size, set a certain title, and tailor a whole host of other features. More important than
any of these features, however, is making sure that the application starts and exits cleanly. In
this chapter, you will learn how to do all of this, but first you must understand exactly what
a window is.

Windows and Other Top-Level Widgets
All PHP-GTK widgets need to have a top-level widget. A top-level widget is one that is capable
of existing on its own without the need to be embedded within a parent widget. GtkWindow is
the most common top-level widget. Others include GtkFileChooserDialog, GtkAboutDialog,
GtkMessageDialog, and GtkColorSelectionDialog.

Each dialog widget has a specific purpose and is actually just a window containing other
widgets. A dialog is used to draw the user’s attention to something or to get confirmation of some
behavior. Figure 5-1 offers an example GtkMessageDialog widget, which is made up of an icon,
a label, and a button. All of these top-level widgets can exist alone, floating around the user’s screen.

Figure 5-1. A GtkMessageDialog widget

6137ch05.qxd 3/14/06 2:07 PM Page 65

Figure 5-2. A typical GtkWindow widget

Widgets that are not top level must be embedded within a top-level widget. They may be
nested several layers down, but the trail of widget parents must lead back to a top-level widget
eventually. If not, the widgets cannot be realized (displayed), which means they will never have
an impact on the application.

It is safe to say that the vast majority of PHP-GTK applications use a GtkWindow as the
main top-level widget, providing the framework for most applications. The window gives
everything else in the application a starting point and a frame of reference. The window is also
usually the controlling widget for the application. That isn’t to say that the window is how the
user controls the application, but the window is a sort of master widget for the application. For
instance, when widgets are shown, it is usually because show_all was called on the main window.
When the application is shut down, it is usually because the main window was destroyed.

Figure 5-2 is an example of a typical PHP-GTK application. The GtkWindow contains several
other widgets, including labels, a list, and a GtkNotebook (a widget that displays its information
on multiple tabs, as discussed in Chapter 6). The window provides a context for the rest of the
application. It gives the other pieces a structure in which they can be shown.

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING66

Types of Windows
GtkWindow widgets come in two varieties. The most commonly used version of GtkWindow is the
normal window with a border and title bar. The title bar usually contains the standard minimize,
maximize, and close buttons that appear in the upper-right corner, in addition to the application’s
title. Widgets within this type of window are nicely framed and easy to recognize as a group.

The other type of window is called a pop-up window. As you’ll soon learn, the naming is
a tad misleading, because it doesn’t represent what one typically thinks of as a pop-up window.
A pop-up window is the same as a regular GtkWindow, except that it doesn’t have a border or title
bar. The widgets inside a pop-up window appear to be floating free on the screen.

6137ch05.qxd 3/14/06 2:07 PM Page 66

Figure 5-3. A simple application with a Gtk::WINDOW_TOPLEVEL window

Figure 5-4. The same application with a Gtk::WINDOW_POPUP window

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING 67

You can determine the type of window when the window is constructed. The constructor
for GtkWindow takes one argument, which is the window type. The window type should be either
Gtk::WINDOW_TOPLEVEL or Gtk::WINDOW_POPUP. The following two lines show how to create each
type of window.

$window = new GtkWindow(Gtk::WINDOW_TOPLEVEL);

$window = new GtkWindow(Gtk::WINDOW_POPUP);

From a coding perspective, the argument passed to the constructor is the only difference
between these two types of windows. They are both the same class, and you can use the same
methods with both instances. If no value is passed to the constructor, the window will default
to a top-level window. Figures 5-3 and 5-4 show the same simple application, first as a normal
top-level window and next as a pop-up window.

The Gtk::WINDOW_POPUP type is not designed to be used when an application needs to hide
the border and title bar. It is designed to house pieces of an application that may not appear to
be windows at first glance.

For instance, menus need to appear in their own window on top of the existing application.
When a user clicks File in a typical application, the File menu appears, giving the user options
such as Open, Save, and Exit. The menu isn’t embedded in the application. It appears in front
of the rest of the application. This is because the menu is actually its own top-level window.
Obviously, you don’t want a border and title to appear in the application menus, so you use
a pop-up window.

Tooltips are another good example. Tooltips are the messages that appear when the mouse
hovers over an icon in the toolbar. For example, in many text editors, a disk icon appears in
the toolbar. Clicking the disk icon will save the file. Usually, if the mouse hovers over this icon,
a small text box that says “Save” will appear. The tooltip needs to appear over the current win-
dow, not within it. Therefore, the tooltip “pops up” in a new window. Do you see how pop-up
windows got their name now?

Window Decorations
A window that is displaying its border and title bar is considered decorated. A window that is
not showing the border and title bar is undecorated. All GtkWindow widgets of type Gtk::WINDOW_
TOPLEVEL are decorated by default.

6137ch05.qxd 3/14/06 2:07 PM Page 67

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING68

The proper way to remove a window’s border and title bar is to use the set_decorated
method. Passing false to set_decorated will turn the border and title bar off. Passing true will
turn them back on.

Note that turning off the borders will not make them instantly disappear. The borders will
remain until the window is redrawn. However, if set_decorated is called before the window is
displayed, the borders will be hidden (or displayed, depending on the argument passed
to set_decorated) when the window appears on the screen. If the window is displayed
before set_decorated is called, the borders will be shown until the GUI is updated.

Listing 5-1 shows a simple application (the same application as displayed in Figure 5-3)
that allows the user to turn the borders off and on. Notice that each time set_decorated is
called, hide_all and show_all are also called. This forces the window to be redrawn with the
new decorated value. In the “The GTK Loop” section later in this chapter, you’ll see a much
more elegant way to refresh the GUI.

Listing 5-1. Toggling Window Borders with set_decorated

<?php

function toggle($button, $window)

{

// Toggle the borders and title bar.

$window->set_decorated(!$window->get_decorated());

// Update the button.

if ($window->get_decorated()) {

$button->child->set_text('Off');

} else {

$button->child->set_text('On');

}

// Hide and show the window.

$window->hide_all();

$window->show_all();

}

// Create the widgets.

$window = new GtkWindow();

$vBox = new GtkVBox();

$label = new GtkLabel('Press the button to toggle the borders.');

$button = new GtkButton('Off');

// Put everything together.

$window->add($vBox);

$vBox->add($label);

$vBox->add($button);

// Call the toggle function when the button is clicked.

$button->connect('clicked', 'toggle', $window);

6137ch05.qxd 3/14/06 2:07 PM Page 68

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING 69

// Set up the application to close cleanly.

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

// Show all pieces of the application.

$window->show_all();

// Start up the main loop.

Gtk::main();

?>

Toggling window decorations is a little more common than it may seem at first glance. An
application in full-screen mode is basically an undecorated window that takes up the entire
screen space. More commonly, window decorations are removed to make a splash screen.

A splash screen is an undecorated window that appears while the main application is load-
ing. Splash screens are usually used to show the user an application’s progress during loading.
It is possible that the Crisscott PIMS application may take a few moments to load, so a splash
screen would probably be a good idea. This way, the user will know what the application is doing
while it loads. Listing 5-2 is a first run at a simple Crisscott PIMS splash screen.

Listing 5-2. A Simple Splash Screen

<?php

class Crisscott_SplashScreen extends GtkWindow {

// A widget to show a status message.

public $status;

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Turn off the window borders.

$this->set_decorated(false);

// Set the background color to white.

$style = $this->style->copy();

$style->bg[Gtk::STATE_NORMAL] = $style->white;

$this->set_style($style);

// Call a helper method to create the pieces of the splash screen.

$this->_populate();

// Set up the application to shut down cleanly.

$this->connect_simple('destroy', array('Gtk', 'main_quit'));

}

private function _populate()

{

6137ch05.qxd 3/14/06 2:07 PM Page 69

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING70

// Create the containers.

$frame = new GtkFrame();

$hBox = new GtkHBox();

$vBox = new GtkVBox();

// Set the shadow type.

$frame->set_shadow_type(Gtk::SHADOW_ETCHED_OUT);

// Create title label.

$titleText = 'Crisscott ' .

'Product Information Management System';

$title = new GtkLabel($titleText);

// Use markup to make the label blue and bold.

$title->set_use_markup(true);

// Create an initial status message.

$this->status = new GtkLabel('Initializing Main Window');

// Stack the labels vertically.

$vBox->pack_start($title, true, true, 10);

$vBox->pack_start($this->status, true, true, 10);

// Add a logo image.

$logoImg = GtkImage::new_from_file('Crisscott/images/logo.png');

// Put the image and the first box next to each other.

$hBox->pack_start($logoImg, false, false, 10);

$hBox->pack_start($vBox, false, false, 10);

// Put everything inside a frame.

$frame->add($hBox);

// Put the frame inside the window.

$this->add($frame);

}

public function start()

{

// Show all the pieces of the application

$this->show_all();

// Start the main loop.

Gtk::main();

}

}

6137ch05.qxd 3/14/06 2:07 PM Page 70

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING 71

Figure 5-5. An overly simple splash screen

// Instantiate the splash screen.

$splash = new Crisscott_SplashScreen();

// Start up the splash screen.

$splash->start();

?>

As shown in Figure 5-5, Listing 5-2 creates an undecorated window that gives some basic
information about the application. This version isn’t perfect, but it is a good start. The next
few sections introduce a few more tools to spice things up and make the splash screen look
a little more professional.

Window Positioning and Sizing
One of the problems with this version of the splash screen is that it appears wherever the operating
system wants it to appear. The location where the operating system puts the window usually
depends on what other windows are open at the time. Fortunately, PHP-GTK applications aren’t
slaves to the window manager.

An application can start up with its window anywhere on the screen you please. To accom-
plish this, you use the set_uposition method. set_uposition positions the window’s upper-left
corner x pixels from the left edge of the screen and y pixels from the top edge of the screen.
The x and y values are integers that are passed as arguments.

Rarely will you want an application to always appear in a fixed position, such as 300 pixels
from the top edge and 200 from the left. More likely, if the application is to be positioned at all,
you’ll want the application to appear some relative distance from the upper-left corner of the
screen, such as in the center of the screen.

Since it is impractical to expect all users of an application to have the same screen dimen-
sions, the screen height and width must be grabbed at runtime. To get values related to the user’s
screen, the code must call on GDK for a little help. Two static GDK methods return the needed
information: Gdk::screen_width and Gdk::screen_height provide the size of the screen in pixels.
Using these values, you can position an application so that it appears in the same relative
position for all users.

Listing 5-3 shows a slightly modified version of the splash screen’s constructor. This version
calls set_uposition, passing half of the screen width and half of the screen height. Therefore,
the window should be positioned in the center of the screen.

6137ch05.qxd 3/14/06 2:07 PM Page 71

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING72

Listing 5-3. Positioning a Window with set_uposition

<?php

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Turn off the window borders.

$this->set_decorated(false);

// Set the background color to white.

$style = $this->style->copy();

$style->bg[Gtk::STATE_NORMAL] = $style->white;

$this->set_style($style);

// Move the window to the center of the screen.

$this->set_uposition(Gdk::screen_width() / 2, Gdk::screen_height() / 2);

// Call a helper method to create the pieces of the splash screen.

$this->_populate();

// Set up the application to close cleanly.

$this->connect_simple('destroy', array('Gtk', 'main_quit'));

}

?>

■Tip The move method is a synonym for set_uposition. It takes the x and y coordinates for the upper-left
corner of the window and positions it there.

Figure 5-6 shows the new splash screen as it appears on the screen. After implementing
the new version of the splash screen, you’ll see that the result is better than before, but it is still
not perfect. The window does exactly what it is told: it puts the upper-left corner dead center in
the middle of the screen. It would be better if the center of the window appeared in the center
of the screen. To do this, you need to know the height and width of the window.

6137ch05.qxd 3/14/06 2:07 PM Page 72

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING 73

Figure 5-6. The splash screen almost centered on the screen

Getting and Setting the Window’s Height and Width
To center the window vertically on the screen, the upper-left corner of the window needs to be
moved down half the screen height and then back up half the window height. To center the
window horizontally, the window needs to move to the right half the screen width and then
moved back to the left half the window width. Unfortunately, there are no convenient methods
for obtaining the window’s height and width. However, you have two ways to obtain this
information.

The first method involves realizing the window and then grabbing the height and width
from the GdkAllocation property. This method is not so elegant, because it requires you to dig
around in the inner workings of a widget. It also requires the widget to be realized, which can
have unwanted effects, depending on the application configuration. For example, realizing the
window may trigger signal handlers before they need to be triggered. The following lines of code
show how to get the width of a widget from its GdkAllocation. Getting the height is very similar.

$widget->realize()

$width = $widget->allocation->width;

The second method for retrieving the screen size is to explicitly set the size and just remem-
ber it. This is not only easier, but it also provides more control over the application. You can set
the height and width by using set_size_request, passing these dimensions in as pixel values.
Again, you can use Gdk::screen_height and Gdk::screen_width if the window needs to be sized
relative to the user’s screen.

6137ch05.qxd 3/14/06 2:07 PM Page 73

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING74

When setting the window’s size for reasons other than positioning, you may not care if the
window has a specific width or height. If a window’s width is important but the height is not, set
the second parameter for set_size_request to -1. This tells PHP-GTK to allow the window to be
just tall enough to fit the window’s content vertically. Listing 5-4 shows the constructor method
for the splash screen again, but this time it uses set_size_request to move the window to the
middle of the screen.

Listing 5-4. Using set_size_request to Control the Window’s Position

<?php

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Turn off the window borders.

$this->set_decorated(false);

// Set the background color to white.

$style = $this->style->copy();

$style->bg[Gtk::STATE_NORMAL] = $style->white;

$this->set_style($style);

// Set size of the window.

$this->set_size_request(300, 100);

// Move the window to the center of the screen.

$width = Gdk::screen_width() / 2 – 150;

$height = Gdk::screen_height() / 2 – 50;

$this->set_uposition($width,$height);

// Call a helper method to create the pieces of the splash screen.

$this->_populate();

// Set up the application to close cleanly.

$this->connect_simple('destroy', array('Gtk', 'main_quit'));

}

?>

■Caution Calling set_size_request doesn’t just set the window’s current size. It also sets the window’s
minimum size. If a window is set to 300 pixels by 200 pixels, for example, users will not be able to adjust the
size of the window to make it any smaller, although they can make it larger. The application can still adjust
the window size by calling set_size_request again, but the new values will become the new limits.

6137ch05.qxd 3/14/06 2:07 PM Page 74

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING 75

Centering a Window
Using set_uposition and set_size_request, you can place a window in any desired location,
but this is a little cumbersome. If you need exact, absolute positioning of a window, these two
methods make a powerful team, but often you don’t need such a degree of control. More likely,
one of two relative positions is sufficient.

PHP-GTK provides a way to easily center the window on the screen or center the window
under the user’s mouse. The set_position method (note the missing u) will automatically set
the position for the window, and then adjust it based on the window’s height and width. When
you pass this method the Gtk::WIN_POS_CENTER constant, the window will be positioned in the
center of the screen. To position the window under the user’s mouse, call the same method
but pass Gtk::WIN_POS_MOUSE. Passing the Gtk::WIN_POS_CENTER_ALWAYS constant will force the
window back to the center of the screen whenever the window is redrawn.

Using set_position is much cleaner and easier than trying to do the math needed to position
the window yourself, but you can use it only to center the window or position it under the user’s
mouse. If the window needs to be positioned somewhere else, say relative to another window
that has already been created, you need to use set_uposition instead.

Listing 5-5 shows the splash screen centered using set_position.

Listing 5-5. Centering a Window with set_position

<?php

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Turn off the window borders.

$this->set_decorated(false);

// Set the background color to white.

$style = $this->style->copy();

$style->bg[Gtk::STATE_NORMAL] = $style->white;

$this->set_style($style);

// Set size of the window.

$this->set_size_request(300, 100);

// Move the window to the center of the screen.

$this->set_position(Gtk::WIN_POS_CENTER);

// Call a helper method to create the pieces of the splash screen.

$this->_populate();

// Set up the application to close cleanly.

$this->connect_simple('destroy', array('Gtk', 'main_quit'));

}

?>

6137ch05.qxd 3/14/06 2:07 PM Page 75

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING76

■Tip Even though Listing 5-5 doesn’t use the screen size for positioning, it is still considered good practice
to set the screen size anyway. It provides a cleaner, more consistent user experience. If the size is not set,
the window will default to the size of its contents.

Maximizing Windows
Just because a window’s size has been set once doesn’t mean that the window can’t undergo fur-
ther changes. It is always possible to change the window’s dimensions using set_size_request.
There are other ways to set the window size, however.

In most windowed applications, three icons reside in the upper-right corner of the title bar:

The first icon is used to minimize the application, and the last icon is used to close the
application. The middle icon is often represented in one state as a single box, and in another
state as two overlapping boxes. The middle icon is used to maximize the application; that is,
make the application take up the entire screen but maintain its borders and title bar.

Maximizing a window can be controlled by the application as well as by the user. The
maximize method will resize the application so that it fills the screen. maximize will not hide the
borders or title bar, so the usable space within the window is not actually the entire screen.
Taskbars and other fixtures can prevent the application from taking up the entire screen, but the
window will expand to take up as much space as it is allowed. Using maximize is pretty simple:

$window->maximize();

To make the area inside the window the same size as the user’s screen, the window
decorations need to be turned off. This could be done by calling set_decorated and maximize
in succession, but there is an easier way. The fullscreen method does exactly the same thing
as maximize, except it also turns off the window decorations. The area within the window will
now take up the entire area of the user’s screen. To see an example of full-screen mode in action,
open Internet Explorer and press F11. The page you’re viewing will take up the entire screen.

To return the window to its previous size and location, the application should call unmaximize
or unfullscreen. It may seem logical that calling fullscreen followed by unmaximize will turn
off the decorations, maximize the window, and then return it to its original size and position
without the decorations, but this doesn’t work. The only way to return a window that has been
maximized to its original size and location is to use unmaximize. The same goes for windows
for which you’ve called fullscreen. After calling fullscreen, the only way to get a window out
of full-screen mode is to call unfullscreen. Keep in mind that when a window is in full-screen
mode, the window is undecorated. Users cannot unfullscreen a window quite as easily as they
can unmaximize it.

6137ch05.qxd 3/14/06 2:07 PM Page 76

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING 77

Setting the Z-Index
One last piece to window positioning often goes overlooked. Most often, a computer screen is
thought of as a two-dimensional workspace. Positioning is normally considered in terms of x
and y coordinates. However, today’s modern windowed operating systems can display objects
in relation to each other with a z coordinate.

Windows can appear to be in front of or behind other windows in the application. This is
often referred to as the z-index. The greater the z-index, the closer to the user the window appears.
A window with a z-index of 1 will appear in front of a window with a z-index of 0, but behind a win-
dow with a z-index of 2.

With PHP-GTK, setting the z-index is either all or nothing. A window can be told to always
remain on top of all other windows, or it can be told to always remain below all other windows.
When a window is told to always remain on top of or below other windows, it doesn’t mean the
window must stay there for the life of the application. It means the window must remain on
top until the application tells it otherwise. If another application starts up, its window will appear
below the current window. If another window is maximized, it, too, will remain below the window
that was set to remain on top.

Telling a window to stay in front of all other windows is a simple matter of calling set_keep_
above and passing true as the only argument. If a window is already set to stay above all other
windows, passing false to set_keep_above will allow the window to slip behind other windows
again. The window will not instantly fall behind other windows on the screen, but newly created
or raised windows will have a greater z-index than the current application window.

The splash screen we’ve been working on in this chapter should always remain on top of
other windows until the main application window is ready to take over. Otherwise, important
messages may be missed. Other parts of the application may not be so important. For instance,
when the PIMS application transfers product data to the main server, it would be nice to keep
the user updated as to the overall progress, but forcing this information in front of other parts
of the application would be frustrating and detract from the more important parts of the
application. It would be better to keep information relating to background tasks in the back-
ground. Calling set_keep_below and passing true as the only argument forces the window to
have the lowest z-index of all the windows currently on the screen. Calling the same method
again but passing false will allow the window to slip in front of other windows again.

Listing 5-6 shows yet another slightly modified version of the splash screen. This version
looks exactly the same as the previous version, but uses set_keep_above to make sure that no
other windows appear in front of the splash screen. This way, all of the important messages
will be seen by the user, regardless of what else happens on the screen. When you run this exam-
ple, try to bring other windows in front of the splash screen.

Listing 5-6. Forcing a Window to Stay in Front of All Other Windows with set_keep_above

<?php

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Turn off the window borders.

$this->set_decorated(false);

6137ch05.qxd 3/14/06 2:07 PM Page 77

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING78

// Set the background color to white.

$style = $this->style->copy();

$style->bg[Gtk::STATE_NORMAL] = $style->white;

$this->set_style($style);

// Set size of the window.

$this->set_size_request(300, 100);

// Move the window to the center of the screen.

$this->set_position(Gtk::WIN_POS_CENTER);

// Keep the splash screen above all other windows.

$this->set_keep_above(true);

// Call a helper method to create the pieces of the splash screen.

$this->_populate();

// Set up the application to close cleanly.

$this->connect_simple('destroy', array('Gtk', 'main_quit'));

}

?>

■Tip Most splash screens don’t need to appear in the taskbar while the application is loading. You can
prevent the splash screen in Listing 5-6 from showing up in the taskbar by adding $this->set_skip_
taskbar_hint(true); to the constructor.

Modal Windows
A common reason for keeping a window on top of another is to make sure that the user takes
some action before continuing. For example, when a file is saved in a text editor, the user is
normally not allowed to edit the file while the save dialog window is open. This is because the
save dialog window is modal.

A modal window prevents the user from interacting with the other windows in the application
while the modal window is open. You can make a window modal by passing true to set_modal.

Modal windows should usually remain on top of the other windows in the application. You
can tell the window manager to keep the modal window above the parent window by making
the modal window transient for the parent. Making one window transient for another makes
the window manager aware that the two windows are related and that one is the parent of the
other. The following two lines of code would make the window $window2 modal and transient
for window $window1.

$window2->set_modal(true);

$window2->set_transient_for($window1);

Now that $window2 is modal and transient for $window1, the window manager will keep
$window2 on top of $window1. Also, the user will not be able to interact with $window1 until
$window2 has been closed by the application or the user.

6137ch05.qxd 3/14/06 2:07 PM Page 78

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING 79

■Tip A transient window may not have much meaning without its parent. Therefore, the transient window
may be destroyed when the parent is destroyed. $window2->set_destroy_with_parent(true) would
close $window2 if the user or application closed $window1 while $window2 was still open.

Window Titles
When a window is decorated, it will have a title bar. The title bar is used to identify the appli-
cation. The title is also used as the text that appears in the taskbar on most modern operating
systems.

If a title is not set for a window, the title will default to the name of the file that was executed.
For example, if you executed the command php example.php, the window’s title would be example.
php. This is true even if the window itself is created in another file. Setting the title to the name
of the application is usually much better than using the default.

Setting the title on a window that isn’t decorated still has its purpose. The title will appear
in the taskbar and when the user tries to switch applications using Alt+Tab.

You can set the window title by using the set_title method. set_title expects one string
argument and sets the title to that value. Listing 5-7 implements a new window that will be
decorated and have its title set. This listing will become the basis for the Crisscott PIMS
application. This new window combines several of the methods discussed so far, including
set_title and maximize.

Listing 5-7. Setting the Title and Maximizing a Decorated Window

<?php

class Crisscott_MainWindow extends GtkWindow {

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Set the size of the window.

$this->set_size_request(500, 300);

// Move the window to the center of the screen.

$this->set_position(Gtk::WIN_POS_CENTER);

// Add a title to the window.

$this->set_title('Criscott PIMS');

// Maximize the window.

$this->maximize();

// Set up the application to shut down cleanly.

$this->connect_simple('destroy', array('Gtk', 'main_quit'));

}

}

?>

6137ch05.qxd 3/14/06 2:07 PM Page 79

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING80

Notice that even though the window is maximized, the size is still set. This ensures that the
window will be a reasonable size if it is unmaximized.

The GTK Loop
So far, you have seen several examples of simple applications, but as of yet, we haven’t really
discussed what makes a piece of code a working PHP-GTK application. Close inspection of the
code shown so far reveals that all of the listings that create windows on the screen have a few
lines of code in common: the show_all, main, and main_quit methods. These few lines are
essential to any working PHP-GTK application, as they’re responsible for starting up and shut-
ting down the application.

As you’ve already learned, show_all displays the main window on the screen and also dis-
plays the widgets contained in the window. The main and main_quit methods are arguably the
two most important methods in PHP-GTK, and we’ll cover them here.

Starting the Loop
An application created with PHP-GTK is able to continuously react to user events because it
runs in a continuous loop. Every fraction of a second, PHP-GTK checks to see if any events
have occurred, emits any needed signals, and calls any needed callback methods. It does this
repeatedly for as long as the application is running. This repeated action is what makes PHP-GTK
work the way it does.

Several of the examples you’ve seen so far include a call to Gtk::main, which starts the
GTK loop. This begins the process of listening for events and calling callbacks.

The GTK loop is similar to any other PHP loop, but it does have some fundamental differ-
ences. For instance, in a script, any code that appears after the call to Gtk::main will not be
executed until the loop finishes. This is what one would expect from a for or a while loop.
However, unlike the typical looping structures, what occurs during the loop can change drasti-
cally. The loop is interactive and, depending on what events occur, one iteration may crunch
a large set of numbers while the next may do nothing at all. Program execution may take
a wildly different path during each iteration, but in the end, execution always comes back to
the loop.

The loop will continue indefinitely until the application exits the loop. Exiting the loop is
accomplished by calling the Gtk::main_quit method. Gtk::main_quit emits a sort of internal
signal that tells PHP-GTK it is time to stop the continuous looping. When the loop exits, execu-
tion of the script continues.

In most OO applications, the call to Gtk::main is wrapped within a class method called
start or something similar. Doing so allows the application one last chance to execute any
code or check some values before the loop is started.

Regardless of how Gtk::main is called, there is one important thing to remember for every
application: before Gtk::main is called, the main window for the application should at least
call show, if not show_all. Remember that Gtk::main starts the main GTK loop. The loop allows
the application to be interactive, but if the code hasn’t shown the window, there is no way for
the user to interact with the application. Since the program is executing in a loop, the program
cannot get inside and make any changes. Therefore, if the window isn’t shown before the loop
is started, the application is stuck.

6137ch05.qxd 3/14/06 2:07 PM Page 80

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING 81

Stopping the Loop
Stopping the loop is a simple matter of calling Gtk::main_quit, but deciding how to call it is
not quite as simple. While the call to Gtk::main is usually done automatically when the script
is run, the call to exit the loop is normally done in reaction to a user event. Automatically shut-
ting down the application probably isn’t the best idea, so most applications usually wait for the
user to close the window or select an exit option from a menu.

Since shutting down an application is normally triggered by the user, Gtk::main_quit is
used as a callback for the destroy signal of the top-level window. Take a look at the listings in
this chapter so far. Every one of them has the following line (except Listing 5-1, which contains
a similar line):

$this->connect_simple('destroy', array('Gtk', 'main_quit'));

This line says that when the main application is destroyed, the loop should exit. This method
simply kills the loop. No checks are run to verify that users want to close the application or to
give them one last chance to save their work. For most simple applications, this is probably
enough. Others may need to wrap the call to Gtk::main_quit inside another method or create
two signal handlers for the destroy signal, as you saw in Chapter 4.

Calling Gtk:main_quit while the last widget is being destroyed is essential. If all widgets
are destroyed before the loop exits, there will be no way to call Gtk::main_quit from within the
loop. As you saw with Gtk::main, if you are outside the main loop, you cannot interact with it.
If there is no way to interact with the loop, there is no way to stop it. If the loop can’t be stopped,
the script can’t be stropped. If the main loop is stopped before all of the widgets are destroyed,
it will be up to the script that called Gtk::main to clean up the other widgets.

Creating a signal handler that calls Gtk::main_quit, or a wrapper method, is really the
best practice for terminating the GTK loop.

Stepping Through the Loop
GTK loops may be nested, meaning one loop may start up another. For each call to Gtk::main,
there must be a call to Gtk::main_quit. Each call to Gtk::main_quit exits one level of looping.
To be honest, I have yet to encounter a case where nested loops are needed, but they are possible.

Much more likely is the chance that only one iteration of the loop should be executed.
In effect, running one iteration of the loop updates the application GUI. This might be done to
update a progress bar while the application is involved in some long process, such as uploading
a file via FTP. To execute only one iteration of the loop, use the Gtk::main_iteration method.

The splash screen we’ve been developing in this chapter can make excellent use of method-
ically stepping through the loop. Each time some part of the application setup starts or completes,
such as connecting to the database, the splash screen can be updated so that the user knows
exactly what is happening. Unfortunately, Gtk::main_iteration doesn’t quite do the trick by
itself. It needs help from another method called Gtk::events_pending.

The Gtk::events_pending method tells PHP-GTK if any events that need to be handled have
happened since the last iteration of the loop. When Gtk::events_pending is used in a while loop,
along with Gtk::main_iteration, the GUI will be updated anytime something has happened,
such as a label’s value being changed. If an iteration of the GTK loop goes by without anything
significant happening, the while loop will be terminated.

6137ch05.qxd 3/14/06 2:07 PM Page 81

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING82

Listing 5-8 is a combination of the previous two listings. This example puts the splash screen
to work. First, the splash screen is created and shown. When the splash screen is instantiated,
we create a signal handler that will call the startMainWindow method when the splash screen is
shown. Since the show signal cannot be emitted until the main GTK loop starts up, this signal
handler is basically a way to set up a method call so that it happens as soon as the loop begins
executing. It is kind of a way to cheat and get inside the loop before the loop starts. When called,
the startMainWindow method instantiates a Crisscott_MainWindow instance and calls a few setup
methods. In between each method, a new status message is set, and the GUI is updated by
calling Gtk::main_iteration. The simple while loop found with each Gtk::main_iteration call
makes checks to see if something has happened since the last iteration that needs to be handled.

Listing 5-8. Using Gtk::main_iteration to Update the GUI

<?php

class Crisscott_SplashScreen extends GtkWindow {

public $status;

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Turn off the window borders.

$this->set_decorated(false);

// Set the background color to white.

$style = $this->style->copy();

$style->bg[Gtk::STATE_NORMAL] = $style->white;

$this->set_style($style);

// Set the size of the window.

$this->set_size_request(300, 100);

// Move the window to the center of the screen.

$this->set_position(Gtk::WIN_POS_CENTER);

// Keep the splash screen above all other windows.

$this->set_keep_above(true);

// Call a helper method to create the pieces of the splash screen.

$this->_populate();

// Set up the application to shut down cleanly.

$this->connect_simple_after('show', array($this, 'startMainWindow'));

}

private function _populate()

{

6137ch05.qxd 3/14/06 2:07 PM Page 82

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING 83

// Create the containers.

$frame = new GtkFrame();

$hBox = new GtkHBox();

$vBox = new GtkVBox();

// Set the shadow type.

$frame->set_shadow_type(Gtk::SHADOW_ETCHED_OUT);

// Create title label.

$titleText = 'Crisscott ' .

'Product Information Management System';

$title = new GtkLabel($titleText);

// Use markup to make the label blue and bold.

$title->set_use_markup(true);

// Create an initial status message.

$this->status = new GtkLabel('Initializing Main Window');

// Stack the labels vertically.

$vBox->pack_start($title, true, true, 10);

$vBox->pack_start($this->status, true, true, 10);

// Add a logo image.

$logoImg = GtkImage::new_from_file('Crisscott/images/logo.png');

// Put the image and the first box next to each other.

$hBox->pack_start($logoImg, false, false, 10);

$hBox->pack_start($vBox, false, false, 10);

// Put everything inside a frame.

$frame->add($hBox);

// Put the frame inside the window.

}

public function start()

{

// Show all the pieces of the application

$this->show_all();

// Start the main loop.

Gtk::main();

}

public function startMainWindow()

{

// Create an instance of the main window.

$main = new Crisscott_MainWindow();

6137ch05.qxd 3/14/06 2:07 PM Page 83

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING84

// Update the status message.

$this->status->set_text('Connecting to server...');

// Update the GUI.

while (Gtk::events_pending()) Gtk::main_iteration();

// Try connecting to the server.

if ($main->connectToServer()) {

// Update the status message.

$this->status->set_text('Connecting to server... OK');

}

// Update the GUI.

while (Gtk::events_pending()) Gtk::main_iteration();

sleep(1);

// Update the status message.

$this->status->set_text('Connecting to local database...');

while (Gtk::events_pending()) Gtk::main_iteration();

// Try connecting to the local database.

if ($main->connectToLocalDB()) {

// Update the status message.

$this->status->set_text('Connecting to local database... OK');

}

// Update the GUI.

while (Gtk::events_pending()) Gtk::main_iteration();

$main->show_all();

// Update the GUI.

while (Gtk::events_pending()) Gtk::main_iteration();

sleep(1);

// Hide the splash screen.

$this->hide();

}

}

class Crisscott_MainWindow extends GtkWindow {

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Set the size of the window.

$this->set_size_request(500, 300);

// Move the window to the center of the screen.

$this->set_position(Gtk::WIN_POS_CENTER);

6137ch05.qxd 3/14/06 2:07 PM Page 84

CHAPTER 5 ■ GETTING AN APPLICATION UP AND RUNNING 85

// Add a title to the window.

$this->set_title('Criscott PIMS');

// Maximize the window.

$this->maximize();

// Set up the application to shut down cleanly.

$this->connect_simple('destroy', array('Gtk', 'main_quit'));

}

// ...

}

// Create a new splash screen instance.

$splash = new Crisscott_SplashScreen();

// Start up the application.

$splash->start();

?>

Now that the two windows are combined into one application, you get a more complete
view of how the splash works. From the user’s perspective, when Listing 5-8 is executed, the
splash screen appears, a few messages flash by, the main window for the application loads, and
then the splash screen disappears. The sleep calls are just temporary and give a more realistic
user experience. This approach is much more user-friendly than just loading the application
without notifying the user that something is happening.

We will update both of these classes as the application continues to take form, but for right
now, these should be sufficient.

Summary
This chapter looked at what it takes to get an application up and running. We paid a great deal
of attention to setting up the main application window because it is the starting point of most
applications. The high level of customization possible for a window allows you a great degree
of control over how the application looks and behaves. While the customizations that can be
done to a window may not have a huge effect on the overall function of the application, they do
have a significant impact on the user experience, and that can be just as important.

Another very important factor in starting up an application is the GTK loop. The GTK loop
continuously cycles while an application is running, checking for user interactions and events
from the operating system. Without the GTK loop, an application would not be able to react to
the user. A noninteractive application doesn’t do anyone much good.

In the next chapter, we will continue to bring the PIMS application to life. Now that we have
a main window, we can start putting widgets inside. Chapter 6 will focus on the wide variety of
containers that are available and highlight which containers are best for holding certain types
of widgets. At the end of the next chapter, our PIMS application will be ready to get to work
managing some product data.

6137ch05.qxd 3/14/06 2:07 PM Page 85

6137ch05.qxd 3/14/06 2:07 PM Page 86

Laying Out Applications

In the previous chapter, we looked at creating and setting up windows to provide a frame-
work for an application. In this chapter, we will begin looking at how to add other widgets to
the newly created windows.

PHTP-GTK provides various specialty widgets that give you control over not only their
placement within the container, but also how they react when the container is resized. This
chapter introduces the GtkFrame, GtkVBox, GtkHBox, GtkButtonBox, GtkTable, GtkFixed, and
GtkNotebook widgets. We will also begin to implement the Crisscott PIMS application, focusing
on setting up the application so that the functional pieces can just be dropped into place.

The Sample Application Layout
The Crisscott PIMS application needs to have the following elements as part of the main window:

• A menu for opening and saving files, changing settings, and so on

• A toolbar for quick access to commonly used commands

• An area for navigating to individual products

• An area to display a summary of the current inventory data

• An area to display a summary of the currently selected product

• An area to display news and important messages

• An area for adding and editing product information

• An area for displaying status messages

Adding these eight areas to the window is more involved than it appears. We need to do
more than simply decide which pieces go where. We need to consider the relative size and
importance of each section, as well as whether or not an area should be able to shrink or grow
with the application. These decisions are often made by considering what the final product
might look like and how it will be used.

For instance, what type of information will the news section include? Will it just show
headlines, or will it also display article bodies? If the news section will show summaries of the
articles, or even the full articles, it will need to be much larger than it would if it were to simply
show headlines. This decision of how to size and place the news section will have a significant

87

C H A P T E R 6

■ ■ ■

6137ch06.qxd 3/14/06 2:09 PM Page 87

CHAPTER 6 ■ LAYING OUT APPLICATIONS88

Figure 6-1. One possible layout for the PIMS application

impact on the user experience. Whereas a large prominently displayed news section will draw
the user’s attention, it is more likely that Crisscott, Inc. wants the suppliers to remain focused
on the product information instead of the news and updates.

Figure 6-1 shows one possible skeleton layout for the PIMS application. Different inter-
pretations of the importance and role of each section of the application will result in widely
varied final products, but the layout in Figure 6-1 is what we will try to achieve by the end of
this chapter.

Discussion of application layout revolves mainly around containers, which provide the
framework and structure for the application by holding and positioning the other elements on
the screen. The choice of which container to use depends greatly on the needs of the application
and can vary from one section of the application to another. Before deciding which route to go,
you must determine levels of priority for the program. Influencing factors are the expected
size of the application’s window, whether or not certain elements should shrink or grow when
the window changes size, and the space between elements on the screen.

Frames
A GtkFrame widget is a simple container that exists mostly for decoration purposes, but also
allows related content to be grouped together on the screen. GtkFrame widgets are bin containers,
meaning they can contain only one child widget. As far as providing structure for an application,
a GtkFrame plays no role. However, it is useful for enhancing usability.

6137ch06.qxd 3/14/06 2:09 PM Page 88

CHAPTER 6 ■ LAYING OUT APPLICATIONS 89

Figure 6-2. GtkFrames in action

The GtkFrame has a thin border and a label at the top. The border helps to group the frame’s
contents as a single unit. The label is most often used to describe the contents of the
frame.

Most containers do not take up space or have any size without having children added
first, but because GtkFrame has a border and a label, it is able to take up screen space on its
own. This makes GtkFrame an excellent choice as a placeholder during development. Through-
out the next several sections, we’ll use frames to hold the place of application elements while
we develop the layout. Figure 6-2 shows GtkFrames in action as part of the PHP-GTK 2 demo
application.

Creating and using a GtkFrame is simple. The constructor takes the label to be displayed.
You can add a child with the add method.

Setting the Label Section
While frames may be simple, they are flexible. Even though technically GtkFrame is a bin con-
tainer, it is really more of a bin-and-a-half, because the label section of the frame can be set
with either a string value or a widget.

You can add any type of widget as the frame’s label. This opens up a whole world of
possibilities—both good and bad. For example, adding a button to the frame’s label area
can increase the functionality of an application but can also distort the layout. So, you need to
understand exactly what may happen if you add a widget as the frame’s label.

To add a widget as the label, call set_label_widget and pass the new label widget. If all
you want is a simple string, you can call set_label, passing the new label string. The following
line uses set_label to change a frame’s label from its current value to the string 'Buttons'.

$frame->set_label('Buttons');

6137ch06.qxd 3/14/06 2:09 PM Page 89

CHAPTER 6 ■ LAYING OUT APPLICATIONS90

Figure 6-3. Several GtkFrames with different alignments and border types

And to set the frame’s label to a GtkButton, you can use the following:

$frame->set_label_widget(new GtkButton('Click Me'));

You can also move the label around within the top edge of the frame, aligning it both hori-
zontally and vertically. By using set_label_align, you can move the label left or right and up
or down. The two values passed to set_label_align determine the label’s relative distance from
the upper-left corner of the frame. The values must be decimal numbers between zero and one,
inclusive. The numbers represent a percentage of the frame’s width. If .5 is passed as the first
argument, the label will appear centered along the top edge of the frame. If 1 is passed, the label
will be aligned to the right. The second argument determines the vertical positioning. A value
of 0 means the label’s top edge will align with the top border. A value of 1 means that the label’s
bottom edge will align with the top border. If the alignment is not specifically set, the frame’s label
will be left aligned and vertically centered. This is equivalent to calling set_label_align(0, .5).

Setting the Border Type
Aside from allowing you to change the label and reposition it, GtkFrame also lets you control
the border that is displayed. You can set five border types:

• Gtk::SHADOW_NONE: No border will be visible.

• Gtk::SHADOW_IN: The border is beveled inward.

• Gtk::SHADOW_OUT: The border is beveled outward.

• Gtk::SHADOW_ETCHED_IN: A thin, inward border surrounds the frame.

• Gtk::SHADOW_ETCHED_OUT: A thin, outward border surrounds the frame.

To set the frame’s border, use set_shadow_type. By default, a frame’s border is set to
Gtk::SHADOW_ETCHED_IN. Figure 6-3 shows five simple frames with varying borders and label
positions.

6137ch06.qxd 3/14/06 2:09 PM Page 90

CHAPTER 6 ■ LAYING OUT APPLICATIONS 91

Boxes
The box container is one of the simplest types of containers available to PHP-GTK, and it is
also one of the most versatile. PHP-GTK offers three types of box containers, each designed to
fulfill a specific need:

• GtkVBox: Used to display widgets in a vertical column.

• GtkHBox: Used to display widgets in a horizontal row.

• GtkButtonBox: Used to display a set of buttons.

Creating Vertical and Horizontal Boxes
GtkVBox and GtkHBox are probably the two most commonly used containers in PHP-GTK.
Their simplicity and ability to be nested makes them extremely powerful tools for laying out
an application. Part of the power in these two classes is that they are not picky about what types
of widgets are added to them, meaning any widget that does not require a specific type of parent
can be added to a GtkVBox or GtkHBox. This includes buttons, labels, trees, text entries, and even
other boxes. In fact, after creating the main application window, most applications immediately
add either a GtkVBox of GtkHBox to the main GtkWindow, and then add boxes within the box.
Actually, that is the fastest way to achieve the layout shown earlier in Figure 6-1.

Let’s start from the outside and work our way in. Remember from the previous chapter that
almost all applications start with a GtkWindow. Also remember that GtkWindow is a bin, meaning
that it can have only one child directly. Therefore, to place more than one widget inside a win-
dow, the window’s only child must be a container. The container can then take one or more
children, which themselves can be containers, and so on. Nesting containers allows an appli-
cation to be built up from a single-child widget to a collection of containers and children that
work together as an application. The quickest way to fill a window with multiple widgets is to
add a widget that is not a bin—namely, a GtkVBox or GtkHBox.

Look at Figure 6-1 again. We can break down the application into four main rows. The
first two are the menu and toolbar. The last row is the status bar. The third row is everything in
between. While rows tend to make you think of horizontal displays, rows are actually created
by stacking items one on top of another vertically. Since the rows are elements stacked verti-
cally, they must be packed into a GtkVBox.

Packing Widgets into a Box
While to most people, the terms packing and adding may have the same meaning, in the PHP-GTK
world, packing has a slightly different connotation. Think about how you get ready for a vaca-
tion. Sure you add items to your suitcase, but things are not just haphazardly thrown in. They
are placed neatly and with a purpose. The items are packed, not just added. The same thing
can be said about adding widgets to a box. They can be simply added, but more commonly
they are packed. This means that their order is carefully considered and thought is given to
how they will react within the container.

You pack widgets into a box by using the pack_start method. Each call to pack_start adds
its widget to the container, starting at the top and working down toward the bottom of the box.
The first call to pack_start places its widget at the top of the box, the second call to pack_start
adds the widget passed as the second element from the top, and so on. There is no limit to
how many elements can be added this way.

6137ch06.qxd 3/14/06 2:09 PM Page 91

CHAPTER 6 ■ LAYING OUT APPLICATIONS92

A similar method is called pack_end. It works in the same way as pack_start, except that the
widgets are packed from the bottom up. The first element added with pack_end will be the last
element in the container, the second element added with pack_end will be the second to last ele-
ment in the container, and so on.

Regardless of what order the method calls are made, elements added to a GtkVBox with
pack_start will always appear above elements added with pack_end.

Listing 6-1 shows the code that will create four rows within our sample application’s win-
dow. GtkFrame widgets are used as temporary placeholders. The frames are packed using the
pack_start method.

Listing 6-1. Creating Rows Within a Window

<?php

class Crisscott_MainWindow extends GtkWindow {

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Set the size of the window.

$this->set_size_request(500, 300);

// Position the window.

$this->set_position(Gtk::WIN_POS_CENTER);

// Give the window a title.

$this->set_title('Criscott PIMS');

// Add window's children

$this->_populate();

// Make the window expand to the limits of the screen.

$this->maximize();

// Set up the application to close cleanly.

$this->connect_object('destroy', array('Gtk', 'main_quit'));

}

private function _populate()

{

// Create a vertical box.

$vb1 = new GtkVBox();

// Pack some frames in the box.

$vb1->pack_start(new GtkFrame('MENU'), false, false, 0);

$vb1->pack_start(new GtkFrame('TOOLBAR'), false, false, 0);

$vb1->pack_start(new GtkFrame('MAIN'), true, true, 0);

$vb1->pack_start(new GtkFrame('STATUS'), false, false, 0);

6137ch06.qxd 3/14/06 2:09 PM Page 92

CHAPTER 6 ■ LAYING OUT APPLICATIONS 93

// Add the box to the window.

$this->add($vb1);

}

// ...

}

?>

A closer look at the calls to pack_start shows that there are four arguments passed,
instead of just the widget that is added. The following three optional parameters allow
pack_start and pack_end to be more powerful than the generic add method:

• expand: A Boolean value that determines whether or not the widget will take up all of
the space available to it.

• fill: A Boolean value that determines whether or not the widget will shrink and grow
along with its parent.

• padding: The amount of padding, in pixels, that will surround the child widget.

As I mentioned, packing implies consideration of how widgets will react within their par-
ent container. A child widget will be given the opportunity to interact with its parent container
at two times: first, when the child is added, and then when the container is resized. When these
events occur, the children of the container will be given the opportunity to automatically adjust
their size or the amount of space each occupies within the box.

When a widget is packed into a box, by default, it tries to take up as much room as is avail-
able. Also by default, the widget will try to resize itself to fill in that space. Taking up space and
filling in space are not necessarily the same thing.

Taking up space simply means that the widget reserves a given amount of space for itself.
It tells other widgets, “This area is mine. Stay out!”

Filling up the space means that the widget shrinks or grows to fit within the space it has
reserved. If the widget is only 50 pixels square, but the space available is 100 pixels wide by 200
pixels high, the widget will try to expand to fit the 100 × 200 space. When more than one widget
wants to take up all the space available, just as with children on a long car trip, the parent steps
in. The parent splits up the available space evenly among the children that want to occupy as
much screen space as possible.

The second and third arguments to the pack_start and pack_end methods determine
whether a widget may reserve the maximum amount of available space, known as expanding,
or resize itself to fill the space allotted to it, known as filling, respectively. By default, both of
these arguments are passed as true. This means that when a widget is packed into a box, it will
be automatically resized to be as big as the box and other children will allow.

However, in cases where a widget has been specifically sized, allowing the widget to fill
the available space may have undesired effects. Passing false as the second argument tells the
container that the given child widget does not want more space than it needs to display its
content. Passing false as the third argument tells the application that the widget being packed
should not be resized to fill the space available. Both of these requests are honored when the
child is packed and when the container is resized. If when the child was packed, it was allowed
to fill the available space, it will resize itself again when the container is resized and more (or
less) space is available.

6137ch06.qxd 3/14/06 2:09 PM Page 93

CHAPTER 6 ■ LAYING OUT APPLICATIONS94

Figure 6-4. Different padding values

In Listing 6-1, most parts of the application should take up as little space as needed to
allow for the more important pieces to be the focus of the application. That is why only the
frame labeled MAIN is allowed to expand and fill the space available to it. All other sections of
the application are forced to remain just large enough to show their contents.

■Tip All boxes have a set_homogeneous method, which makes the box’s children share the space
equally. This is the same as setting all of the fill arguments (the third argument) to true for every widget
packed into the box. If set_homogeneous is passed true, all children will share the space equally, regard-
less of what options were passed when the widget is packed.

The final argument that may be passed to pack_start and pack_end is an integer that defines
the amount of padding that will surround the child widget. The padding that surrounds a child
is given in pixels. In a box container, padding exists only in the direction of the box. So, for
a GtkVBox, padding will appear only above and below the child widget. For a GtkHBox, padding
will appear only to the left and right of the widget. Padding between widgets does not collapse.
If widget A is packed with a padding of 10 pixels and widget B is packed with a padding of 20
pixels, the total space between the two widgets will be 30 pixels. Figure 6-4 shows several widg-
ets packed into a GtkHBox with different padding values. In Listing 6-1, the maximum amount
of screen space is used by setting all of the padding to 0.

Nesting Boxes
Nesting boxes is the practice of putting one box inside another box. Box classes are highly
specialized, as this makes managing their children easier. While specialization may be good
for managing children, it makes layout a little more difficult. For instance, creating rows or
columns is easy, but creating rows and columns with boxes requires a little patience and planning.

To create rows within a column, a GtkVBox must be placed inside a GtkHBox. To create
columns within a row, simply do the opposite—put a GtkHBox inside GtkVBox. While this may
not sound very complicated, it can become quite difficult to track all the different boxes when
the levels go beyond one or two deep.

Listing 6-2 shows a reworked version of the _populate method used in Listing 6-1. The new
method uses GtkVBox and GtkHBox widgets nested inside one another to add more sections to
the application.

Listing 6-2. Nesting Boxes

<?php

//...

private function _populate()

{

6137ch06.qxd 3/14/06 2:09 PM Page 94

CHAPTER 6 ■ LAYING OUT APPLICATIONS 95

// Create several boxes for nesting.

$vb1 = new GtkVBox();

$vb2 = new GtkVBox();

$vb3 = new GtkVBox();

$hb1 = new GtkHBox();

$hb2 = new GtkHBox();

// Add some frames to the first vBox.

$vb1->pack_start(new GtkFrame('MENU'), false, false, 0);

$vb1->pack_start(new GtkFrame('TOOLBAR'), false, false, 0);

// Nest an hBox inside the vBox.

$vb1->pack_start($hb1);

// Add another frame after the hBox.

$vb1->pack_start(new GtkFrame('STATUS'), false, false, 0);

// Nest a vBox inside the hBox

$hb1->pack_start($vb2, false, false, 0);

// Nest another vBox inside the hBox.

$hb1->pack_start($vb3);

// Pack some frames into one of the nested vBoxes.

$vb2->pack_start(new GtkFrame('PRODUCT TREE'));

$vb2->pack_start(new GtkFrame('NEWS'));

// Set the size of the vBox.

$vb2->set_size_request(150, -1);

// Nest an hBox inside one of the nested vBoxes.

$vb3->pack_start($hb2, false, false, 0);

// Add a frame after the nested box.

$vb3->pack_start(new GtkFrame('EDITING PRODUCTS'));

// Add a few frames to the nested hBox.

$hb2->pack_start(new GtkFrame('PRODUCT SUMMARY'));

$hb2->pack_start(new GtkFrame('INVENTORY SUMMARY'));

// Set the nested hBox's size.

$hb2->set_size_request(-1, 150);

// Add the vBox to the window.

$this->add($vb1);

}

// ...

?>

6137ch06.qxd 3/14/06 2:09 PM Page 95

CHAPTER 6 ■ LAYING OUT APPLICATIONS96

Figure 6-5 shows the new layout using nested boxes.

In Listing 6-2, the third row, which used to have a title of MAIN, is now split into two columns.
The third row was changed from a simple frame to a GtkHBox. A GtkHBox was used because the
application needs to display things next to each other horizontally. By placing two GtkVBox
widgets next to each other, you can create columns.

The items packed into the GtkVBox widgets will be separated distinctly into items on the
left and items on the right. Notice that the first GtkVBox packed is told not to expand or fill. The
box also has its size explicitly set using set_size_request. The combination of proper packing
and set_size_request ensures that the box will appear just as you intended. The box will not
shrink or grow within its parent box, and its size is not dependent on other children in the
container.

Within each of the two columns are two rows. Since $vb2, the column on the left, is very
simple, two frames are added directly to the GtkVBox. $vb3, on the other hand is slightly more

Figure 6-5. Using nested boxes for layout

6137ch06.qxd 3/14/06 2:09 PM Page 96

CHAPTER 6 ■ LAYING OUT APPLICATIONS 97

complex. Its first row contains two columns again. Once again, the rows are created by nesting
GtkHBox widgets inside the GtkVBox.

Pay close attention to when and how the extra arguments for pack_start are used in this
listing. Try switching the values from true to false and vice versa, and add a little (or a lot) of
padding here and there. Changing one Boolean value can have a huge impact on the rest of
the application.

■Note In Listing 6-2, because the child box was packed into a GtkHBox, the expand and fill arguments
apply only in the horizontal direction. The vertical expand and fill arguments trickle down from the parent
when it was packed into the GtkVBox. Since the parent was told that it may expand and fill within the GtkVBox,
the child will shrink and grow vertically depending on the size of its parent.

Button Boxes
The application isn’t quite ready to start adding buttons, but this is a good point to discuss
button boxes. GtkButtonBox is a descendant of GtkBox, just like GtkVBox and GtkHBox. The dif-
ference is that button boxes can use special layouts that are often helpful when displaying
a group of buttons.

There are two varieties of GtkButtonBox: GtkVButtonBox and GtkHButtonBox. Each type func-
tions in the same way as its regular box counterpart. Widgets are packed into a GtkButtonBox

using pack_start and pack_end.
The advantage to using a button box is in the set_layout method. set_layout determines

how the buttons will be shown within the box. The layout can be one of four values:

• spread: The buttons will be distributed evenly in the box.

• edge: The buttons will be as far apart as possible. The first button will be against the
beginning edge of the box, and the last button will be against the ending edge of the box.
All of the buttons in between will be as far apart from each other as they can.

• start: The buttons appear toward the starting edge of the box.

• end: The buttons appear toward the ending edge of the box.

For a better understanding of how to use button boxes, take a look at phpgtk2-demo.php,
located in the demos directory of the PHP-GTK source. The button box demo shows the many
different layouts of a GtkButtonBox, as you can see in Figure 6-6.

6137ch06.qxd 3/14/06 2:09 PM Page 97

CHAPTER 6 ■ LAYING OUT APPLICATIONS98

Tables
It is often possible to achieve the desired layout of an application using nested boxes, but set-
ting up the application and keeping things organized gets more and more difficult as the levels
of nesting get deeper. As with most things in life, there is more than one way to reach the same
result.

GtkTable is a container class designed specifically for laying out an application, unlike its
HTML counterpart, which is designed for organizing data. A GtkTable can be used to more eas-
ily display widgets in rows and columns. A GtkTable container is similar to a table in HTML. It
has rows and columns made up of individual cells, and each cell can span more than one row
and/or column. While the contents of each cell are independent, the dimensions of a row or
column are determined by the largest cell in that row or column.

Listing 6-3 is an implementation of the _populate method from the earlier listings, but it
uses a GtkTable instead of nested boxes. At first glance, the new version appears to be quite
complicated because of all of the integers floating around, but once these numbers are explained,
the picture clears up rather quickly.

Figure 6-6. The different layouts of button boxes

6137ch06.qxd 3/14/06 2:09 PM Page 98

CHAPTER 6 ■ LAYING OUT APPLICATIONS 99

Listing 6-3. Laying Out an Application Using GtkTable

<?php

// ...

private function _populate()

{

// Create a new table with 5 rows and 3 columns.

$table = new GtkTable(5, 3);

// Make it easier to set both expand and fill at the same time.

$expandFill = Gtk::EXPAND|Gtk::FILL;

// Attach two frames to the table.

$table->attach(new GtkFrame('MENU'), 0, 2, 0, 1, $expandFill, 0, 0, 0);

$table->attach(new GtkFrame('TOOLBAR'), 0, 2, 1, 2, $expandFill, 0, 0, 0);

// Create a new frame and set its size.

$productTree = new GtkFrame('PRODUCT TREE');

$productTree->set_size_request(150, -1);

// Attach the frame to the table.

$table->attach($productTree, 0, 1, 2, 3, 0, $expandFill, 0, 0);

// Create a new frame and set its size.

$news = new GtkFrame('NEWS');

$news->set_size_request(150, -1);

// Attach the frame to the table.

$table->attach($news, 0, 1, 3, 4, 0, $expandFill, 0, 0);

// Create a subtable.

$table2 = new GtkTable(2, 2);

// Create a new frame and set its size.

$productSummary = new GtkFrame('PRODUCT SUMMARY');

$productSummary->set_size_request(-1, 150);

// Attach the frame to the subtable.

$table2->attach($productSummary, 0, 1, 0, 1, $expandFill, 0, 1, 1);

// Create a new frame and set its size.

$inventorySummary = new GtkFrame('INVENTORY SUMMARY');

$inventorySummary->set_size_request(-1, 150);

// Attach the frame to the subtable.

$table2->attach($inventorySummary, 1, 2, 0, 1, $expandFill, 0, 1, 1);

$table2->attach(new GtkFrame('EDITING PRODUCTS'), 0, 2, 1, 2,

$expandFill, $expandFill, 1, 1);

6137ch06.qxd 3/14/06 2:09 PM Page 99

CHAPTER 6 ■ LAYING OUT APPLICATIONS100

// Attach the subtable to the main table.

$table->attach($table2, 1, 2, 2, 4, $expandFill, $expandFill, 0, 0);

// Attach another frame to the main table.

$table->attach(new GtkFrame('STATUS'), 0, 2, 4, 5, $expandFill, 0, 0, 0);

// Add the table to the window.

$this->add($table);

}

// ...

?>

Figure 6-7 gives an idea of what the end result of this section looks like. Notice that even
though the code has changed, the result is the same.

Constructing the Table
The first step in using a GtkTable is to create a new instance. The constructor for a GtkTable

widget takes three optional parameters.

Figure 6-7. The Crisscott PIMS application using a GtkTable for layout

6137ch06.qxd 3/14/06 2:09 PM Page 100

CHAPTER 6 ■ LAYING OUT APPLICATIONS 101

• rows: The number of rows the table should have initially. The value must be an integer
between 1 and 65535, inclusive. It defaults to 1.

• columns: The number of columns the table should have initially. The value must be an
integer between 1 and 65535, inclusive. It defaults to 1.

• homogeneous: A Boolean value that if set to true will force all cells to be the same size. It
defaults to false.

The first two parameters are the number of rows and columns that the table should have.
If at some point the table needs an additional row or column, you can easily change the
dimensions of the table using resize. resize sets the new number of rows and columns to
the two integer values passed. In both the constructor and resize, the first argument is the
number of rows and the second argument is the number of columns.

■Note It isn’t strictly necessary to resize the table when a new row or column is added. If a child is added
into a cell that doesn’t exist, the row and/or column needed for that cell will be added automatically.

The final argument for the GtkTable constructor is the Boolean homogeneous value. This
value defaults to false and has the same effect that set_homogeneous has for boxes. If the
homogeneous argument is set to true, all cells in the table will be the same size. In Listing 6-3,
the table is created with five rows and three columns, for a total of fifteen cells. No value is passed
to tell the table whether or not the cells should be homogeneous, so they will default to being
as tall as the tallest cell in their row and as wide as the widest cell in their column. The height
and width of the largest cell in a row or column are determined by the cell’s content.

Attaching Children
The next step in laying out the application is adding children to the table. Just as boxes have
their own terminology for adding children, so does GtkTable. In a table, children are not added—
they are attached, and this is accomplished with the attach method.

Attaching a child gives greater control over the location and the way the child reacts within
the table. The first priority in attaching a child to a table is putting it in the right place. When
putting a widget in a table, all four sides of the widget must be specifically positioned. The
attach method takes a whopping nine arguments:

• child: The widget to be added to the table.

• col_start: The starting column to attach the child to.

• col_end: The ending column to attach the child to.

• row_start: The starting row to attach the child to.

• row_end: The ending row to attach the child to.

• x_options: Whether or not the child should expand and fill in the x direction.

• y_options: Whether or not the child should expand and fill in the y direction.

6137ch06.qxd 3/14/06 2:09 PM Page 101

CHAPTER 6 ■ LAYING OUT APPLICATIONS102

• x_padding: The amount of padding on the left and right of the child widget.

• y_padding: The amount of padding on the top and bottom of the child widget.

The first argument to attach is the widget that will be added to the table. The other arguments
specify the child’s placement within the cell, whether it expands and fills, and its padding.

Cell Placement
After the child argument, the next four arguments to the attach method correspond to the
four sides of the child widget. The col_start argument tells the table in which column the left
side of the child should start. If the col_start argument is 0, the child will be in the leftmost
column. If the col_start argument is 1, the child will start in the second column. The col_end
argument tells the table where the child should stop. The value passed is one greater than the
column in which the widget should end.

For instance, if a child should be in only the first column of a table, the col_start and
col_end arguments should be 0 and 1. If a child should span the second and third columns,
the col_start and col_end arguments should be 1 and 3. This tells the table that the child
should start in column 1 (rows and columns are indexed starting with 0, just like most things
in programming) and end before column 3.

The row_start and row_end arguments to attach are similar to col_start and col_end,
except they determine the row or rows that the child will occupy.

The first call to attach in Listing 6-3 places a GtkFrame in the first row of the table, spanning
all three columns. This is done by telling the child to start in column 0 and end just before col-
umn 3. The child is also told to start in row 0 and end just before row 1. With these four values,
you can place a child in any cell and have it span as many rows and/or columns as needed.

Expanding and Filling
Assigning a widget to a cell in a table is only half the goal. The other half involves explaining
how the widget should react within the table. Similar to packing items in boxes, attaching
widgets to a table also involves determining whether or not the child should expand and fill
the maximum amount of space available.

With boxes, the space for each element is either part of a row (GtkHBox) or part of a column
(GtkVBox). A table cell is the intersection of both a row and a column. Therefore, the expand and
fill attributes need to be set for both the row, or x-axis, and column, or y-axis.

The x_options argument passed to attach tells the table whether the child should expand
and/or fill the cell in the x direction. The value passed should be made up of one or more con-
stant values. If the widget should expand but not fill the cell, the value should be Gtk::EXPAND.
If the widget should fill the cell but not expand, the value should be set to Gtk::FILL. If the
widget should both expand and fill the cell, the value should be Gtk::EXPAND|Gtk::FILL.

The y_options argument sets the same values for the y-axis. Passing 0 to either of these
values tells the table not to allow the child to expand or fill the cell in that direction. By default,
a child will expand and fill a cell in both directions. In Listing 6-3, the menu and toolbar frames
are told to expand and fill their cells only along the x-axis. The product tree frame is told to
expand and fill only along the y-axis. Because the product tree frame is set to 150 pixels wide
and is told not to expand or fill on the x-axis, it will always remain 150 pixels wide. The height

6137ch06.qxd 3/14/06 2:09 PM Page 102

CHAPTER 6 ■ LAYING OUT APPLICATIONS 103

of the frame is set to -1, which means that its height is not to be strictly controlled. Coupled with
the expand and fill properties for the y-axis, this allows the frame to stretch when the window
is resized.

Padding
The final task when attaching a widget to a table is setting the amount of padding that each
cell should have. When packing a widget in a box, the padding is set equally on two sides to
the value of the last argument passed to pack_start or pack_end (which two sides depends on
the type of box). When attaching a widget to a table, padding can be set for both the x and y
directions, just as with the expand and fill properties.

The x_padding and y_padding arguments passed to attach determine the x and y padding,
respectively. If either of these values is omitted, the padding for that direction will default to
5 pixels.

Tables vs. Boxes
You can use tables and boxes in a similar manner to create similar output. Listing 6-3 even has
a table nested inside another table to show how similar the two can be. Despite their similarities,
GtkTable is often a better choice when setting up an application.

Using tables gives you more control over the placement of children within the application
than creating the layout with boxes. With tables, it is possible to have a good idea of where the
widgets will appear before the application starts up. Boxes usually require much more trial
and error.

Tables also lend themselves better to more readable code. It is easy to tell where in the
application a table cell will be by looking at the row and column to which it is attached. With
boxes, it is usually more difficult and requires a little bit of tracing through the code.

While tables may have several advantages over boxes, they are not the only other choice.
An alternative is to use a fixed container, as described next.

Fixed Containers
GtkTable is very effective in lining up widgets into rows and columns. But sometimes the
relationships between children in the same row or column can be a problem, because the
dimensions of a cell in a table are determined by the largest cell in a cell’s row and column. That
is where GtkFixed comes in.

Like GtkTable, GtkFixed allows for precise positioning, but it does not strictly align elements
with each other. The elements in a GtkFixed container have no influence on one another. The
height and width of a given child do not depend on another element, because each child is
placed independently of the other children.

A GtkFixed widget is similar to a bulletin board. Each child is put in a specific location and
stays there, somewhat oblivious to its surroundings. Free-form layout is quick and easy with
a GtkFixed widget. Simply put a widget in its place, and that is it.

Listing 6-4 re-creates Figure 6-1, but this time uses a GtkFixed container instead of boxes
or tables. The end result is exactly the same in appearance.

6137ch06.qxd 3/14/06 2:09 PM Page 103

CHAPTER 6 ■ LAYING OUT APPLICATIONS104

Listing 6-4. Using GtkFixed to Lay Out the Application

<?php

// ...

private function _populate()

{

// Create a GtkFixed container.

$fixed = new GtkFixed();

// Create a frame, set its size, and put it in the fixed container.

$menu = new GtkFrame('MENU');

$menu->set_size_request(GDK::screen_width() - 10, -1);

$fixed->put($menu, 0, 0);

// Create a frame, set its size, and put it in the fixed container.

$toolbar = new GtkFrame('TOOLBAR');

$toolbar->set_size_request(GDK::screen_width() - 10, -1);

$fixed->put($toolbar, 0, 18);

// Create a frame, set its size, and put it in the fixed container.

$pTree = new GtkFrame('PRODUCT TREE');

$pTree->set_size_request(150, GDK::screen_height() / 2 - 54);

$fixed->put($pTree, 0, 36);

// Create a frame, set its size, and put it in the fixed container.

$news = new GtkFrame('NEWS');

$news->set_size_request(150, GDK::screen_height() / 2 - 54);

$fixed->put($news, 0, GDK::screen_height() / 2 - 18);

// Create a frame, set its size, and put it in the fixed container.

$status = new GtkFrame('STATUS');

$status->set_size_request(GDK::screen_width() - 10, -1);

$fixed->put($status, 0, GDK::screen_height() - 72);

// Create a frame, set its size, and put it in the fixed container.

$pSummary = new GtkFrame('PRODUCT SUMMARY');

$pSummary->set_size_request(GDK::screen_width() / 2 - 90, 150);

$fixed->put($pSummary, 152, 36);

// Create a frame, set its size, and put it in the fixed container.

$iSummary = new GtkFrame('INVENTORY SUMMARY');

$iSummary->set_size_request(GDK::screen_width() / 2 - 75, 150);

$fixed->put($iSummary, GDK::screen_width() / 2 - 90 + 154, 36);

6137ch06.qxd 3/14/06 2:09 PM Page 104

CHAPTER 6 ■ LAYING OUT APPLICATIONS 105

// Create a frame, set its size, and put it in the fixed container.

$edit = new GtkFrame('EDIT PRODUCTS');

$edit->set_size_request(GDK::screen_width() - 150, GDK::screen_height() - 262);

$fixed->put($edit, 152, 190);

// Add the fixed container to the window.

$this->add($fixed);

}

// ...

?>

To create this version of the application, each child widget needs to be sized and placed
individually. This is different from the other examples. In the previous two listings, only a few
widgets were specifically sized, and even then, it was either their height or width, not both.

With a GtkFixed, children are not able to react to their surroundings. Children cannot
expand or fill an area. They simply get put into the container and remain there. Therefore, if
a child should take up a certain amount of the screen space, its size must be explicitly set.

Putting Widgets in a Fixed Container
When you use boxes, you pack widgets, which implies that the widgets are added to the con-
tainer one after another. When you use tables, you attach widgets, which implies that they
become part of the table. When you use a fixed container, the widgets are put, which implies
that a location was selected and the widget was placed in that specific spot.

To put a widget into a GtkFixed container, call the put method and pass the x and y
coordinates for the upper-left corner of the child. The child will be put directly into the con-
tainer at the location given. Its size will remain the same as it was before it was added. If the
container is resized, the child will not change. It will still be x pixels from the left and y pixels
from the top of the container.

In Listing 6-4, each element is sized and put individually. Calculating the position for
a given element can be difficult and often requires some advance knowledge of the other chil-
dren in the container.

Using Fixed Containers
Fine-grained control is the strong point of GtkFixed; however, as the name implies, flexibility
is its weakness. Listing 6-4 is admittedly a poor use of GtkFixed. The PIMS application does
not need such complete control over the application layout. Instead, it needs less control and
more flexibility.

Run the application using the _populate method from Listing 6-4. When the application
has loaded, try unmaximizing or resizing the window. The elements within the GtkFixed do
not resize. As you can see in Figure 6-8, the product edit area quickly gets cut off when the
window is resized even slightly smaller. This obviously is a bad design.

6137ch06.qxd 3/14/06 2:09 PM Page 105

CHAPTER 6 ■ LAYING OUT APPLICATIONS106

GtkFixed has its uses, but laying out a large application probably isn’t one of them. GtkFixed
should instead be used in places where position is much more important than size or where the
container cannot be resized. For instance, the splash screen might make good use of a GtkFixed

container. The user cannot resize the window, and the splash screen will likely show a corporate
logo. Corporations often have specific rules about their logos, which define sizes and distances
between the logo and other elements. A GtkFixed container can be used to ensure that the
corporate rules are followed.

For the Crisscott PIMS application, Listing 6-3 is probably the best solution. Because of
the complexity of the layout, the box approach is just too much work to keep organized. The
desire to keep the application highly usable and flexible rules out the GtkFixed approach.

Notebooks
Now that the general layout for the application is set, it is time to think about how to best fit all
the varying pieces into the limited real estate. For several parts of the application, this is a sim-
ple matter. The menu goes in the area we blocked out for the menu, and the news section goes
where the news frame is. But the main reason for building this application is not to show a menu
or to distribute news; it is to manage product data. That means we are going to need one or
more areas to modify product data and other information. Trying to show all of the tools in the
product-editing area at the same time would be difficult at best. Additionally, it would make
the application rather confusing to use.

One approach could be to make the product-editing area scroll to give elements more
room, but that wouldn’t really improve the usability. A more helpful approach would be to
show only one set of tools at a time. Tools that are not in use should be hidden to avoid confu-
sion and brought to the forefront when needed. Hiding and displaying groups of widgets may

Figure 6-8. An example of the issues inherent in GtkFixed

6137ch06.qxd 3/14/06 2:09 PM Page 106

CHAPTER 6 ■ LAYING OUT APPLICATIONS 107

sound difficult, but there is a highly specialized container widget that makes it easy. That
widget is GtkNotebook.

Figure 6-9 shows the PHP-GTK 2 Dev_Inspector (http://cweiske.de/phpgtk2_devinspector.
htm). This application uses a GtkNotebook widget to organize reflection data.

GtkNotebook is a container that organizes its children into pages. Each page is itself a bin
container and can hold one child. What makes GtkNotebook so powerful is that at any given
time, a specific page can be brought to the front of the screen. Only the selected page will be
seen by the user. All other pages will remain intact but out of view. The GtkNotebook can have
tabs that allow the user to select a given page, or the tabs can be hidden. If the tabs are hidden,
the application will control which page is currently displayed.

GtkNotebook is very good for organizing groups of widgets into task-oriented blocks. Being
able to control which group of widgets is currently visible also allows you to force the user to
step through a process in an ordered manner. The user will not be able to skip ahead, because
the next step is not yet available.

GtkNotebook should be thought of more as a three-ring binder than an actual notebook. It
consists of pages that can be added, removed, and reordered. The GtkNotebook can have all of
its pages marked, or tabbed, or the tabs can be hidden. If the tabs are visible, a user can click
one to jump to that page. The tabs can also be moved to any side of the page.

A GtkNotebook widget can have as many pages as needed. Each page holds any arbitrary
data and exists independently of the other pages. While the notebook may have more than
one child page, the pages themselves are bins and may only have one child each. Just as with
GtkWindow and GtkFrame, to have more than one widget show up in the page, another container
must be added as the page’s child.

In the Crisscott PIMS application, the main area in the application will serve multiple
purposes. It will be used to add and edit product information, update supplier data, transmit
inventory data, and perform a few other tasks. Figure 6-10 shows what the application will

Figure 6-9. GtkNotebook in the PHP-GTK 2 Dev_Inspector

6137ch06.qxd 3/14/06 2:09 PM Page 107

CHAPTER 6 ■ LAYING OUT APPLICATIONS108

look like with the GtkNotebook widget added. To keep these tasks organized, the main area will
use GtkNotebook, with each task assigned to one or more pages. This approach will maximize
the amount of space available and will also help improve usability by forcing the user to focus
on one task at a time.

The amount of effort that must be put into organizing widgets with GtkNotebook is consid-
erably less than trying to group, hide, and show widgets by hand. In Listing 6-5, the GtkFrame
widget that was labeled EDITING PRODUCTS has been replaced with a custom object that extends
GtkNotebook. The custom class helps to make the PIMS-specific organization a little easier.
Note also that the notebook is stored as a member variable. This is because items will need to
be added, removed, and accessed by other parts of the application.

Listing 6-5. Adding GtkNotebook to the Application

<?php

// ...

private function _populate()

{

// Create a new table.

$table = new GtkTable(5, 3);

Figure 6-10. The PIMS application with a simple notebook

6137ch06.qxd 3/14/06 2:09 PM Page 108

CHAPTER 6 ■ LAYING OUT APPLICATIONS 109

// Make it easier to set both expand and fill at the same time.

$expandFill = Gtk::EXPAND|Gtk::FILL;

// Attach a few frames to the table.

$table->attach(new GtkFrame('MENU'), 0, 2, 0, 1, $expandFill, 0, 0, 0);

$table->attach(new GtkFrame('TOOLBAR'), 0, 2, 1, 2, $expandFill, 0, 0, 0);

// Create a new frame and set its size.

$productTree = new GtkFrame('PRODUCT TREE');

$productTree->set_size_request(150, -1);

// Attach the frame to the table.

$table->attach($productTree, 0, 1, 2, 3, 0, $expandFill, 0, 0);

// Create a new frame and set its size.

$news = new GtkFrame('NEWS');

$news->set_size_request(150, -1);

// Attach the frame to the table.

$table->attach($news, 0, 1, 3, 4, 0, $expandFill, 0, 0);

// Create a new subtable.

$table2 = new GtkTable(2, 2);

// Create a new frame and set its size.

$productSummary = new GtkFrame('PRODUCT SUMMARY');

$productSummary->set_size_request(-1, 150);

// Attach the frame to the subtable.

$table2->attach($productSummary, 0, 1, 0, 1, $expandFill, 0, 1, 1);

// Create a new frame and set its size.

$inventorySummary = new GtkFrame('INVENTORY SUMMARY');

$inventorySummary->set_size_request(-1, 150);

// Attach the frame to the subtable.

$table2->attach($inventorySummary, 1, 2, 0, 1, $expandFill, 0, 1, 1);

// Create a new instance of the main notebook.

require_once 'Crisscott/MainNotebook.php';

$this->mainNotebook = new Crisscott_MainNotebook();

// Attach the notebook to the subtable.

$table2->attach($this->mainNotebook, 0, 2, 1, 2,

$expandFill, $expandFill, 1, 1);

// Attach the subtable to the main table.

$table->attach($table2, 1, 2, 2, 4, $expandFill, $expandFill, 0, 0);

6137ch06.qxd 3/14/06 2:09 PM Page 109

CHAPTER 6 ■ LAYING OUT APPLICATIONS110

// Attach a new frame to the main table.

$table->attach(new GtkFrame('STATUS'), 0, 2, 4, 5, $expandFill, 0, 0, 0);

// Add the table to the window.

$this->add($table);

}

// ...

?>

Defining the Notebook
The next step is defining the Crisscott_MainNotebook class. To start, the notebook will be very
simple and use the default settings. Then we will look at customizing the notebook to better
suit our needs.

Listing 6-6 is a first run at putting the notebook together. The Crisscott_MainNotebook class
is a simple wrapper around GtkNotebook that adds a few pages and tracks them using an array.
The constructor for GtkNotebook takes no arguments and returns a notebook that has no pages.
The idea behind the Crisscott_MainNotebook class is just to make development a little more
organized. Each page is given a text label, which is also used as the array index. Now instead of
having to search for a page by number, you can search a small array by its label.

Listing 6-6. Organizing Tools with GtkNotebook

<?php

class Crisscott_MainNotebook extends GtkNotebook {

public $pages = array();

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Create an array of tab labels.

$titles = array(

'Product Summary',

'Product Details',

'Author Summary',

'Author Details',

'Supplier',

'Preview',

'Transmit',

'Inventory Summary',

'News Story'

);

// Add a page for each element in the array and put

// it in the pages array for easier access later.

6137ch06.qxd 3/14/06 2:09 PM Page 110

CHAPTER 6 ■ LAYING OUT APPLICATIONS 111

foreach ($titles as $title) {

$pageNum = $this->append_page(new GtkVBox(), new GtkLabel($title));

$page = $this->get_nth_page($pageNum);

$this->pages[$title] = $page;

}

}

}

?>

Adding, Moving, and Removing Notebook Pages
Each page of a notebook has two elements: the tab and the content. The page tab is usually
a string that describes the contents of the page. The tab is the main method by which a user
will select a page. The content of the page can be anything. Usually, the content that is added
directly to the page is some sort of container.

A page can be added at the beginning of a notebook, at the end of a notebook, or anywhere
in between using the methods prepend_page, append_page, and insert_page, respectively. All
require a widget for the page body and a widget for the page tab. In Listing 6-6, several pages
are appended to the notebook. Each page is added in turn to the back of the notebook with
append_page. The pages could have just as easily been added to the front of the notebook
with prepend_page. To insert a page in any arbitrary position, use insert_page, passing the body
widget, the tab widget, and the page position. Pages are indexed starting from 0, so the first
page in the notebook is actually page 0.

When a page is added to a GtkNotebook widget, its page index is returned. The value
returned from append_page is always the total number of pages minus one. The return value from
prepend_page is always 0. The return value from insert_page is not always the same as the
position passed to it. If a page is inserted with a position of 12 but there are only eight pages in
the notebook, the new page will be added as the last page. The page indexes are always collapsed.
For example, the newly inserted page may be inserted in position 12, but it will immediately
be moved to position 8. If no position value is passed to insert_page, the position will default
to –1, which means the page should be appended to the back of the notebook. The value that
will be returned will be the same as if append_page were used.

Knowing the page index is useful because you can use it to retrieve a page from the notebook.
Listing 6-6 uses the get_nth_page method to return the page body widget after it has been added
to the notebook. This is done to make accessing the page contents easier later on.

Once the page is found, it can then be used to grab the label or the label text.
get_tab_label takes a notebook child, usually returned by get_nth_page, and returns the tab
widget. get_tab_label_text will return just the text string for the same page if passed the
same child widget. Just as you can get a tab label or its text, you can set a tab label or its text.
set_tab_label and set_tab_label_text work in much same way as their get counterparts.
Each expects a widget that has already been prepended, appended, or inserted into the note-
book as the first argument and either a tab widget or a string of text to be set as the tab label.
The index of a page is the key to being able to make changes.

■Tip To get the total number of pages, use get_n_pages. Keep in mind that this is the total number of
pages, not the index of the last page. The index of the last page is get_n_pages() - 1.

6137ch06.qxd 3/14/06 2:09 PM Page 111

CHAPTER 6 ■ LAYING OUT APPLICATIONS112

While the index of a page is the key to accessing the page, the index may change. If a new
page is prepended or inserted in front of a given page, the index will be incremented. If a page
in front of a given page is removed or moved to the back of the notebook, the page’s index will
be decremented. To get the index of a specific child, use the page_num method. page_num takes
a widget as the only argument and returns the page index. Regrabbing the index this way
comes in handy when pages in the notebook are moved.

You can reorder pages by using the reorder_child method. reorder_child takes the child
given as the first argument and puts it in the position given by the second argument. The page
that previously occupied the position will be moved backward in the notebook. If the position
passed to reorder_child is greater than the total number of pages, the page will be moved to
the back of the notebook.

You can also remove pages from the notebook. To do this, call remove_page and pass the
page index.

Whenever either the reorder_child or remove_page method is called, the pages are rein-
dexed. This means, for example, that the page that was previously in position 5 may now be in
position 4, 5, or 6, even though that particular page was never moved. Because of this reindexing,
the code in Listing 6-6 uses a separate array with associative keys to keep track of the pages.
Without this separate array, finding a particular page may require cycling through all the pages
in the notebook.

Navigating Notebook Pages
In reality, a GtkNotebook widget can do only three things: go back one page, go forward one
page, or jump to a particular page. What makes GtkNotebook such an excellent tool is the num-
ber of ways in which these three simple tasks can be accomplished. The most obvious method
to get from one page to another is by clicking the tab for a given page. This is a simple user
interaction and requires no special programming.

GtkNotebook containers are powerful because of their ability to bring a particular group of
widgets to the front while hiding all others. While showing and hiding groups is a nice feature,
it is the ease with which the top page can be changed that makes GtkNotebook so powerful.

In some cases, an application may need to display a given page of the notebook. For
instance, when a user wants to edit a product in the Crisscott PIMS application, the page that
is currently being shown should be hidden, and the product-editing page should be brought
to the screen. Likewise, if there were a page specifically for error messages, that page would be
shown whenever an error is encountered.

Moving to the Next, Previous, or Specific Page
Another reason to change a page automatically is to step through a process. GtkNotebook
makes it easy to move through a series of steps that together make up one complete process.
The way to step through something is to complete the requirements for one page, and then go
to the next. Moving to the next page is done by calling next_page. The next_page method hides
the current page and shows the page with the next index. The previous_page method is similar
to next_page, except it goes to the previous page. If there is not a previous page, the first page
is shown again. Neither next_page nor previous_page will cycle around the pages.

Listing 6-7 rewrites the constructor of the Crisscott_MainNotebook class and adds two
buttons to each page. One is connected to the previous_page method, while the other is con-
nected to the next_page method.

6137ch06.qxd 3/14/06 2:09 PM Page 112

CHAPTER 6 ■ LAYING OUT APPLICATIONS 113

■Tip If next_page is called and the last page of the GtkNotebook is already being shown, nothing hap-
pens. This can be shown by creating a signal handler for the switch-page signal and trying to go past the
end of the GtkNotebook. When trying to go beyond the last page, the signal handler will not be called.

Listing 6-7. Moving to the Next or Previous Page

<?php

// ...

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Create an array of tab labels.

$titles = array(

'Product Summary',

'Product Details',

'Author Summary',

'Author Details',

'Supplier',

'Preview',

'Transmit',

'Inventory Summary',

'News Story'

);

// Add a page for each element in the array and

// put it in the pages array for easier access

// later.

foreach ($titles as $title) {

$pageNum = $this->append_page(new GtkVBox(), new GtkLabel($title));

$page = $this->get_nth_page($pageNum);

$this->pages[$title] = $page;

// Create a previous page button.

$button = new GtkButton('PREVIOUS');

// Create a signal handler that will bring the previous page to the

// front of the notebook when the button is clicked.

$button->connect_object('clicked', array($this, 'prev_page'));

// Pack the button into the page.

$page->pack_start($button, false, false);

6137ch06.qxd 3/14/06 2:09 PM Page 113

CHAPTER 6 ■ LAYING OUT APPLICATIONS114

// Create a next button.

$button = new GtkButton('NEXT');

// Create a signal handler that will bring the next page to the front of the

// notebook when the button is clicked.

$button->connect_object('clicked', array($this, 'next_page'));

// Pack the button into the page.

$page->pack_start($button, false, false);

}

}

// ...

?>

Moving to the next or previous page is good enough for stepping through a process, but
there are cases when relative movements are not enough. Sometimes it is necessary to jump
to a particular page. To jump to a particular page, use set_current_page. When passed an integer,
set_current_page will bring the page with that index to the screen. If an index of -1 is passed,
the last page will be shown.

set_current_page has a corresponding get_current_page method. This method returns
the page index of the page that is currently visible. Listing 6-8 shows a method that can be
connected to any signal, such as the clicked signal of a button, and jumps to a random page
in the notebook. This method is not all that practical, but it does show how the $pages array
can be used with set_current_page to easily navigate to any page in the notebook.

Listing 6-8. A Method for Jumping to a Random Page

<?php

public function goToRandomPage()

{

// Pick an array key at random and jump to that page.

$rndIndex = array_rand($this->pages);

$this->set_current_page($this->page_num($this->pages[$rndIndex]));

}

?>

So, to summarize, the following methods can be used to access pages in GtkNotebook:

• prev_page: Brings the previous page to the front of the notebook.

• next_page: Brings the next page to the front of the notebook.

• set_current_page: Brings the page with the given index to the front of the notebook.

Using a Pop-Up Menu
Navigating in a notebook is easy because of the many ways there are to get from one page to
another. Not only are there plenty of class methods to switch pages, but there are also multiple
ways for the user to get from one page to the next.

6137ch06.qxd 3/14/06 2:09 PM Page 114

CHAPTER 6 ■ LAYING OUT APPLICATIONS 115

Normally, a user clicks the page’s tab to bring that page to the front of the screen, but if
the notebook is set up properly, another method may be available to the user. If popup_enable
is called, a menu will pop up when the user right-clicks in the tab area. This pop-up menu will
have an entry for each page in the notebook. When a user selects an entry from this menu,
a built-in signal handler is fired and shows the corresponding page. To see this menu, the user
doesn’t actually need to click a tab. If there is empty space in the tab area, the user can click there
as well. If at some point the menu is no longer needed or shouldn’t be available, popup_disable
will make the menu unavailable.

By default, the text that is used for the pop-up menu is copied from the tab label. If you
want to use different text or a different type of widget for a particular page in the menu, use
the *_page_menu methods. You can prepend, append, and insert pages with the methods discussed
earlier, but you can also perform the same tasks with the menu sister methods: prepend_page_menu,
append_page_menu, and insert_page_menu. The *_page_menu methods can take an additional
parameter that is not available with their nonmenu counterparts: a widget that will be used as
the menu label. The widget for the menu is usually a GtkLabel widget, but it could be any type
of widget.

At this point, you might be thinking, “What is the point of having a pop-up menu when
the user can just click one of the tabs?” That is a valid question and one that will be answered
in the next section.

Decorating a Notebook
The power of GtkNotebook is not only in the way it shows and hides different pages, but also
in the amount of customization it allows. Having tabs at the top of the notebook may not work
for an application. You can put the tabs at the bottom. If that doesn’t work, you can move the
tabs to one of the sides. You can even get rid of them entirely. Maybe that isn’t good enough.
Maybe all of the tabs need to be the same size. Maybe the tabs need some padding. Or there
may even be too many tabs to show at once. GtkNotebook has methods to help with each of
these situations.

First, let’s tackle moving the tabs away from the top of the notebook.

Repositioning the Tabs
Having the tabs at the top of the notebook may be popular on web pages, but many desktop
applications move the tabs to another side. For instance, Microsoft Excel uses tabs at the bottom
of the notebook for accessing worksheets within a workbook.

Repositioning the tabs is a simple matter of calling set_tab_pos and passing a GtkPositionType.
A GtkPositionType is just a constant value that defines a position such as top, right, bottom,
or left. The names of the constants are Gtk::POS_TOP, Gtk::POS_RIGHT, Gtk::POS_BOTTOM, and
Gtk::POS_LEFT. When the tabs are moved to another side of the notebook, they keep their order
and orientation; that is, on the left and right the tab for the first page is on the top, and the tab
for the last page is on the bottom.

Because the tabs keep their orientation, moving the tabs to the left or right of the note-
book may not have the desired effect. The tabs will appear to stick out from the side of the
notebook instead of lying along it. This may be nice if the notebook has many pages, but in
most cases, it won’t be the intended result. It is possible to make the tabs lay flat against the side
of the notebook by angling text so that it will run vertically, as discussed in the next chapter.

6137ch06.qxd 3/14/06 2:09 PM Page 115

CHAPTER 6 ■ LAYING OUT APPLICATIONS116

Hiding the Tabs
Just because you’re using GtkNotebook doesn’t mean that you must show the tabs. When using
a notebook to control a user’s movement through a step-by-step process, it probably isn’t
a good idea to allow the user to jump around using the notebook tabs. In that case, you may
want to hide the tabs.

When the tabs are hidden, all built-in user navigation is taken away. Because the pop-up
menu requires the user to click the tab area, if the tabs are hidden, there is no way for the user
to access the menu.

You turn off the tabs by calling the set_show_tabs method and passing false. Passing true
to the method turns the tabs back on. Unfortunately, with GtkNotebook, it is either all or nothing.
There is no way to turn off a particular tab while leaving the rest visible.

Adjusting the Border and Sizing the Tabs
The all-or-nothing rule applies to other aspects of tabs as well. You can adjust the padding, or
border, around the contents of a tab on all four sides. The border can be changed for the top
and bottom independently of the left and right, but individual sides cannot be manipulated.
Also, setting the tab border changes the border for all tabs, not just the tab for a specific page.

To change the border on all four sides of every tab at once, use set_tab_border. To change
the border for just the left and right, use set_tab_hborder. To change the padding on the top
and bottom of the tabs, use set_tab_vborder. All three methods take one argument that defines
the number of pixels of padding that should be set. The default border for all sides of the tabs
is 2 pixels.

Setting a larger border value will increase the dimensions of all tabs, regardless of their
contents. Normally, the contents of the tab determine its width because the tab shrinks to fit
the contents so that it takes up as little space as possible. Using set_homogeneous_tabs and
passing true, will make all of the tabs the same width. The space that is available for the tabs
will be divided equally and shared by every tab. The border on the left and right (or top and
bottom depending on where the tabs have been positioned) will be automatically adjusted. If
a new page is added to the notebook, the tabs will be readjusted to account for the new tab.
When set_homogeneous tabs is passed true, all tabs will be the same size. This is true even if
one tab’s text is much longer than the text on the rest of the tabs. If one tab takes up more than
its fair share of real estate, the width of that tab (plus any border) will become the new width
of all tabs.

But how can the width of the tabs be more than the width of the notebook? Normally, the
notebook simply stretches to accommodate the extra width, but this can lead to unwanted
results. Depending on how the notebook was added to its parent container, it may stretch out
the window and throw off the layout. If the notebook isn’t able to stretch the window, one or
more of the tabs may simply be cut off and not be accessible to the user. This is obviously
a problem, but not one without a solution.

Using Scrolling Tabs
The set_scrollable method sounds like it would make the pages within a notebook scroll
when the contents are too much to show on one screen, but that is not quite what it does.
set_scrollable applies only to the tab area of the notebook.

Calling set_scrollable and passing true will allow some of the tabs to be hidden yet
accessible through the use of two scrolling icons. Take a look at Figure 6-11. Notice the two

6137ch06.qxd 3/14/06 2:09 PM Page 116

CHAPTER 6 ■ LAYING OUT APPLICATIONS 117

icons to the left and right of the tabs. Clicking one of these arrows will select the next page in
the notebook. If the tab for the next page is hidden, the tabs will be shifted so that the new
current page’s tab is shown. In fact, any time a page is shown, the tabs will be shifted so that
the tab for that page is shown. This is where the pop-up menu comes in handy again. Scrolling
through the pages requires the users to move one by one through every page until they reach
their destination. Using the pop-up, the users can quickly jump directly to the desired page.

The Crisscott PIMS application can certainly make good use of GtkNotebook. There are
several distinct and independent tools that the application will have that can benefit from the
organization GtkNotebook offers. The tools in the application need to be somewhat controlled,
so the tabs should probably be hidden. Other features, such as buttons or menus, can serve to
bring pages to the screen when they are needed.

Summary
Containers are arguably the most essential pieces of an application. They provide structure
and organization for an application. Aside from these two very important features, you simply
can’t build a PHP-GTK application without using at least one container.

In this chapter, you learned how to lay out an application through the use of containers.
There is the fast and free method of using boxes, which is good for smaller applications with
less rigid design constraints. Then there is the extremely structured GtkFixed approach, where

Figure 6-11. GtkNotebook with scrolling tabs

6137ch06.qxd 3/14/06 2:09 PM Page 117

CHAPTER 6 ■ LAYING OUT APPLICATIONS118

everything has a place and that place doesn’t change. And there is a compromise between the
two using GtkTable. GtkTable provides a good balance between structure and flexibility. Widgets
are easy to align, but are also free to shrink or grow as the application needs.

Finally, we looked at GtkNotebook. This handy widget makes organizing an application
a snap. Tools within the application can be organized into pages, which can then be accessed
in a variety of ways.

The choice of which container to use for a particular piece of an application plays a very
big role in how it will interact with the rest of the application and the user.

In the next chapter, we will begin to look at entering and displaying data. The chapter will
focus on how to collect data from the user and return it to be shown in the application. Finally,
the application will go from a static window on the screen to an interactive program capable
of collecting, analyzing, and presenting data. By the end of the next chapter, we will have an
application by all definitions of the word.

6137ch06.qxd 3/14/06 2:09 PM Page 118

Displaying and Collecting
Simple Data

Now that there is a place for all the pieces of our application, it is time to start implementing
some of the core features. The most essential feature of our PIMS application is the ability to
create and modify product data. This requires the application to be able to present the user
with some data and also to accept data input by the user.

This chapter will focus on the different ways that you can present and collect smaller pieces
of information. First, we will look at how to communicate simple messages using labels. Then
we will examine how to collect data from the user using text entries, combo boxes, scales, and
spin buttons. Finally, we will cover how to add buttons to indicate data processing should begin.

Labels
GtkLabel is the simplest widget for displaying data. It is used primarily, as the name suggests,
to label other parts of the application. Many widgets create GtkLabel widgets automatically
when certain methods are passed a string. For instance, GtkFrame takes a string on construc-
tion and creates a GtkLabel widget to label the frame.

Labels come in handy when you want to identify text-entry fields or sections of an appli-
cation, or when you want to print some simple text to the screen. Other, more complicated
widgets for text display can be overkill when you need to show only a handful of words.

Just because GtkLabel excels at simple text display doesn’t mean that it isn’t versatile. In its
simplest form, a label can just pass a string to the constructor and then add it to a container.
However, you can also do the following with a label:

• Use a label with marked-up text.

• Make a label selectable.

• Have a label rotate text.

• Have a label automatically shorten text that is beyond a certain length.

GtkLabel widgets come in two main forms: simple and complex.

119

C H A P T E R 7

■ ■ ■

6137ch07.qxd 3/14/06 2:10 PM Page 119

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA120

Simple Labels
In most circumstances, a label is used to identify some other piece of an application, and
standard text reading from left to right is all that is needed. That is what GtkLabel creates by
default: a plain label. Simple labels do not contain any markup or mnemonics, are not auto-
matically truncated, are not selectable, and do not appear at an angle. It may sound like there
are not many simple label features to discuss, but you can set the label’s line wrap, width, and
alignment. In fact, simple labels are sufficient for the needs of most applications.

As with every widget you’ve seen so far, discussion of GtkLabel begins with the construc-
tor. The constructor for GtkLabel is very simple. All that is required is the string that the label
should show. Once constructed, the label can be placed into a container and shown on the screen.
Nothing else needs to be done. Of course, that doesn’t mean that nothing else can be done.

Setting and Getting Text
Labels may be simple widgets for displaying small pieces of information, but that doesn’t mean
they must be static. You can change a label’s text at any time. set_text will change the label’s
value from its current state to the text passed in.

The value that the label should be changed to may often depend on the label’s current value.
To get the current value, use the appropriately named get_text method. Because there is no
method for appending text, get_text is often used as a sort of .= operator; that is, it is called
inside set_text. Here is an example:

$label->set_text($label->get_text() . ' text to append.');

get_text has other valuable uses when the label is used within another widget. For instance,
you may be able to determine which of several buttons was clicked by looking at the value of
the button’s label.

■Tip A better way to determine which button was clicked is to give the button a name using set_name. Later,
you can use get_name to determine which button the user clicked. Using set_name and get_name allows
a button to be identified even when the label changes.

The remaining features pertaining to simple use of GtkLabel all deal with how the text is
displayed.

Wrapping Label Text
GtkLabel is useful to display a small amount of text, but small amount is a relative term.
Specifically, this means text that does not contain any hard line breaks. This could be anything
from one or two words to an entire paragraph. The number of lines a block of text requires
depends not only on the length of the string, but also on the properties of the GtkLabel widget.

By default, all labels contain one line of text only. The dimensions of the label stretch to fit
the text on one line. If the label’s size has been set with set_size_request or the label’s size is
restricted by its parent container, the text will be cut off. The best way to avoid this is to wrap
the text to the next line when it exceeds the label’s width.

6137ch07.qxd 3/14/06 2:10 PM Page 120

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 121

Allowing a label to wrap text is a simple matter of calling set_line_wrap and passing it the
value of true. This tells the widget to wrap the text at the last possible word break to avoid cutting
off text. Passing false to set_line_wrap will put the label back into single-line mode.

Even if the text is allowed to wrap lines, some characters may still get cut off. If a single word
is too large for the widget to display within its constraints, the word will appear on its own line,
but characters will still be hidden. set_line_wrap is not absolute. The label will make a best effort
attempt to wrap the text and make it as readable as possible, but there are other label methods
and settings that can override set_line_wrap or cause it to behave unexpectedly.

Setting the Label’s Width
A GtkLabel widget’s width may be set explicitly in pixels using set_size_request, or may be
requested as a number of characters. The key word in that last sentence is requested. Using
set_max_width_chars, you can set a requested size of the label widget. The label will be sized to
the given number of characters, provided no other method or setting has made a conflicting
size request.

The width is not set in stone. By resizing the widget, it is possible to show more charac-
ters than were originally requested. Frankly, set_max_width_chars really should be named,
set_max_chars_to_show, because it tells the label not that each line should be n characters
long, but that only n characters of the string should be shown. However, because it shows
only a certain number of characters from the string and does not set the label’s dimensions,
set_max_width_chars doesn’t work quite as one would expect. set_max_width_chars sets the
label’s dimensions so that only one line of at most n characters is shown.

Setting the width in characters allows an application to limit the size of the message a label
displays. It helps to prevent individual characters from being cut in half, although characters
may still be truncated in some cases. In many cases, it is better to show only part of a word
instead of part of a letter. But, keep in mind that using set_max_width_chars implicitly forces
a label to be one line only.

■Tip If a label doesn’t fit within the allotted space, an alternative is to have it show an ellipsis. See the
“Ellipsizing Text” section later in this chapter for details.

As with most set methods in PHP-GTK, set_max_width_chars has a corresponding
get_max_width_chars. As you would expect, it returns the requested maximum width in char-
acters for the label. If set_max_width_chars was not called, -1 will be returned.

Aligning Text in a GtkLabel
Whether text appears on one line or thirty lines, you can control the way it aligns within the
label by using set_justify. set_justify expects one of the following justification type con-
stants to be passed as the only argument:

• Gtk::JUSTIFY_LEFT

• Gtk::JUSTIFY_RIGHT

• Gtk::JUSTIFY_CENTER

• Gtk::JUSTIFY_FILL

6137ch07.qxd 3/14/06 2:10 PM Page 121

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA122

Figure 7-1. The product summary area of the PIMS application

The first three are self-explanatory, but Gtk::JUSTIFY_FILL may not be so obvious. In word
processing applications, such as OpenOffice.org Writer and Microsoft Word, this setting is more
commonly known as justified. Characters on both the left and right sides of the block of text
will appear flush with the margins.

When you use set_justify by itself or with set_line_wrap, the results are rather predictable.
But when you throw set_max_width_chars into the mix, the labels may not behave quite as you
would expect. When set_justify is used with set_max_width_chars, the label may appear to
be misaligned. This is just another side effect of the conflicting efforts of the two methods.
set_justify and set_max_width_chars (or set_width_chars) should not be used together.

Using Simple Labels
The product summary section of the PIMS application is designed to display a brief summary
of a product selected from the product tree. Figure 7-1 shows the product summary section.
Displaying a summary first allows the users to double-check that the product they selected is
actually the product they want to edit.

The product summary is a simple tool that displays five small pieces of information: the
product name, type, group, price, and a thumbnail image (if it is available). The first four items
are perfect candidates for simple labels.

Listing 7-1 is an implementation of Crisscott_Tools_ProductSummary. This class is
responsible for showing the product summary. For now, a GtkFrame is used as a placeholder for
the thumbnail. The product summary area actually contains eight GtkLabel widgets: four for
the data items, and four to tell the users what those data items represent.

Listing 7-1. Simple Labels in the Product Summary Section

<?php

class Crisscott_Tools_ProductSummary extends GtkTable {

public $productName;

public $productType;

public $productGroup;

public $productPrice;

public $productImage;

6137ch07.qxd 3/14/06 2:10 PM Page 122

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 123

public function __construct($product = NULL)

{

// First call the parent constructor.

// Create four rows and three columns.

parent::__construct(4, 3);

// Create labels for the attributes.

$name = new GtkLabel('Name');

$type = new GtkLabel('Type');

$group = new GtkLabel('Group');

$price = new GtkLabel('Price');

// Set the width of each label to create a uniform appearance.

$name->set_size_request(50, -1);

$type->set_size_request(50, -1);

$group->set_size_request(50, -1);

$price->set_size_request(50, -1);

// Next align each label within the parent container.

$name->set_alignment(0, .5);

$type->set_alignment(0, .5);

$group->set_alignment(0, .5);

$price->set_alignment(0, .5);

// Attach them to the table.

$expandFill = Gtk::EXPAND|Gtk::FILL;

$this->attach($name, 0, 1, 0, 1, 0, $expandFill);

$this->attach($type, 0, 1, 1, 2, 0, $expandFill);

$this->attach($group, 0, 1, 2, 3, 0, $expandFill);

$this->attach($price, 0, 1, 3, 4, 0, $expandFill);

// Create the labels for the attributes.

$this->productName = new GtkLabel();

$this->productType = new GtkLabel();

$this->productGroup = new GtkLabel();

$this->productPrice = new GtkLabel();

// Allow the labels to wrap.

$this->productName->set_line_wrap(true);

$this->productType->set_line_wrap(true);

$this->productGroup->set_line_wrap(true);

$this->productPrice->set_line_wrap(true);

// Left align them.

$this->productName->set_alignment(0, .5);

$this->productType->set_alignment(0, .5);

$this->productGroup->set_alignment(0, .5);

$this->productPrice->set_alignment(0, .5);

6137ch07.qxd 3/14/06 2:10 PM Page 123

// Attach them to the table.

$this->attach($this->productName, 1, 2, 0, 1);

$this->attach($this->productType, 1, 2, 1, 2);

$this->attach($this->productGroup, 1, 2, 2, 3);

$this->attach($this->productPrice, 1, 2, 3, 4);

// Attach a placeholder for the image.

$this->productImage = new GtkFrame('Image');

// The image's size can be fixed.

$this->productImage->set_size_request(100, 100);

$this->attach($this->productImage, 2, 3, 0, 4, 0, $expandFill);

// Now that everything is set up, summarize the product.

if (!empty($product)) {

$this->displaySummary($product);

}

}

public function displaySummary(Crisscott_Product $product)

{

// Set the attribute labels to the values of the product.

$this->productName->set_text($product->name);

$this->productType->set_text($product->type);

$this->productGroup->set_text($product->group);

$this->productPrice->set_text($product->price);

}

}

?>

Most of the lines in Listing 7-1 actually deal with setting up the product summary area.
The area is laid out using a GtkTable, which requires quite a few lines to get things where we
want them (as you learned in the previous chapter). Relatively few lines actually deal with
GtkLabels.

In the constructor, eight labels are created. Four are saved as class members so that they
can be accessed more easily later. These four represent the product information. These four
labels are also set to allow their text to wrap lines using set_line_wrap. This will help if a prod-
uct has a rather long name, or even a short name if the window has been resized considerably
smaller. The other four labels in the constructor are used to identify each piece of information.
In this project, the text within these labels will not change. Therefore, there is not much point
in holding on to them as member variables.

Notice the use of the set_alignment method with these labels. set_alignment is a method
of GtkMisc. GtkMisc is the parent class to GtkLabel. set_alignment does not align the text within
the label, but instead aligns the label within its parent container. This method functions just the
same as the set_label_align method of GtkFrame, which was discussed in the previous chapter.

The only other lines in Listing 7-1 that deal with GtkLabel are within the displaySummary
method. When a new product is to be displayed in the summary area, this method changes
the label text. The Crisscott_Product class has a property for each label in the summary area.
This method simply grabs those values and uses set_text to update the label.

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA124

6137ch07.qxd 3/14/06 2:10 PM Page 124

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 125

Simple labels serve their purpose well. They are easy to create and use. They offer a mod-
est yet powerful set of features, which makes them a perfect fit for most uses. Previous listings
(especially those dealing with GtkNotebook) have shown how useful GtkLabel widgets can be in
their default state.

The next section deals with complex labels, which go beyond simple line wrap and justifi-
cation settings. These labels expand on the features you’ve seen so far. In the listings that follow,
notice how some of the simple features of GtkLabel are used in conjunction with some of the
more advanced features.

Complex Labels
Complex labels use some of the more advanced features that GtkLabel has to offer. These fea-
tures include the ability to automatically shorten text that doesn’t fit in a given area, show text
at an angle, provide markup, and make text selectable. Using these features, you can trans-
form a label into colorful, powerful text.

Complex labels can call more attention to a message. Consider how error messages are
often displayed. A simple label would probably get lost in the application, but text that is big,
bold, and red stands out and gets noticed. When displaying a table of data, complex labels
may also come in handy. Instead of displaying column headers horizontally, they can be dis-
played vertically. This will improve readability by allowing all of the columns to be shown at
once. We’ll use some complex labels in our PIMS application.

Using Pango for Markup
Pango is a package used by GTK to help internationalize and mark up text. You can use Pango
to format text, similar to how you use HTML. Pango can make pieces of text bold, colored,
underlined, and so on. For a listing of Pango markup elements, visit http://www.pango.org.

We’ll use Pango to mark up labels used in one of our PIMS application’s tools: the contrib-
utor editing tool. This tool provides a way for the user to manage information related to people
or businesses that help to create, produce, or distribute an item. Because this tool allows the
user to enter information, it will need a way to notify the user if some data is not valid. Using
Pango, we can easily format the text of the label to draw attention to pieces of information that
may have invalid data, as shown in Figure 7-2.

Figure 7-2. Using a bold label to indicate an error

6137ch07.qxd 3/14/06 2:10 PM Page 125

Listing 7-2 is the first step in creating the contributor editing tool (ContributorEdit). It
simply lays out the application and adds labels for all of the properties that the tool will allow
the user to edit. Some of the information, such as the contributor’s address, is not really impor-
tant for Crisscott’s business, but it is put in the application as a value-added feature for the end
users. If they can manage contributor information in the same place as they manage their
products, the users are more likely to adopt the application more quickly.

Listing 7-2. Using Pango to Make a Label Red

<?php

class Crisscott_Tools_ContributorEdit extends GtkTable {

const ERROR_MARKUP_OPEN = '';

const ERROR_MARKUP_CLOSE = '';

public $contributor;

private $firstNameLabel;

private $middleNameLabel;

private $lastNameLabel;

private $websiteLabel;

private $emailLabel;

private $street1Label;

private $street2Label;

private $cityLabel;

private $stateLabel;

private $countryLabel;

private $postalLabel;

public function __construct($contributor = null)

{

// Call the parent constructor.

parent::__construct(7, 4);

// Lay out the tool.

$this->_layoutTool();

// Connect the needed callbacks.

// Prepopulate the fields if a contributor is given.

if (!empty($contributor) && is_a($contributor, 'Crisscott_Contributor')) {

$this->populateFields($contributor);

}

}

private function _layoutTool()

{

// First create the labels that identify the fields.

$this->firstNameLabel = new GtkLabel('First Name');

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA126

6137ch07.qxd 3/14/06 2:10 PM Page 126

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 127

$this->middleNameLabel = new GtkLabel('Middle Name');

$this->lastNameLabel = new GtkLabel('Last Name');

$this->emailLabel = new GtkLabel('Email Address');

// Continue for the rest of the labels...

// Next add the labels to the table.

// The labels will be added in two columns.

// First column.

$this->attach($this->firstNameLabel, 0, 1, 0, 1, Gtk::FILL, 0);

$this->attach($this->middleNameLabel, 0, 1, 1, 2, Gtk::FILL, 0);

$this->attach($this->lastNameLabel, 0, 1, 2, 3, Gtk::FILL, 0);

$this->attach($this->emailLabel, 0, 1, 3, 4, Gtk::FILL, 0);

$this->attach($this->websiteLabel, 0, 1, 4, 5, Gtk::FILL, 0);

// Second column.

$this->attach($this->street1Label, 2, 3, 0, 1, Gtk::FILL, 0);

$this->attach($this->street2Label, 2, 3, 1, 2, Gtk::FILL, 0);

$this->attach($this->cityLabel, 2, 3, 2, 3, Gtk::FILL, 0);

$this->attach($this->stateLabel, 2, 3, 3, 4, Gtk::FILL, 0);

$this->attach($this->countryLabel, 2, 3, 4, 5, Gtk::FILL, 0);

$this->attach($this->postalLabel, 2, 3, 5, 6, Gtk::FILL, 0);

// Right align all of the labels.

$this->firstNameLabel->set_alignment(1, .5);

$this->middleNameLabel->set_alignment(1, .5);

$this->lastNameLabel->set_alignment(1, .5);

$this->emailLabel->set_alignment(1, .5);

// Continue for the rest of the labels...

}

public function reportError(GtkLabel $label)

{

$label->set_label(self::ERROR_MARKUP_OPEN .

$label->get_label() .

self::ERROR_MARKUP_CLOSE);

}

public function clearError(GtkLabel $label)

{

$text = $label->get_label();

$text = str_replace(self::ERROR_MARKUP_OPEN, '', $text);

$text = str_replace(self::ERROR_MARKUP_CLOSE, '', $text);

$label->set_label($text);

$label->set_use_markup(true);

}

}

?>

6137ch07.qxd 3/14/06 2:10 PM Page 127

Each label in Listing 7-2 is created in the same way as all the other labels you’ve seen so
far. In fact, when the labels are added to their parent table, they are still just simple labels. The
reportError and clearError methods of Crisscott_Tools_ContributorEdit take the simple
labels and turn them into complex labels by adding and removing Pango markup.

Once the user has entered and submitted the contributor’s values, the contributor editing
tool will assign the values to the contributor and try to validate the new data. If the data is not
valid, the label that identifies that piece of data will be made red using the reportError method.
The reportError method adds Pango markup to the text of the label. The Pango markup that is
added is , which colors the text within the tags red.

Adding markup to a label is not quite enough. If the code stopped at just adding markup,
the label’s text would not change color. Instead, the characters of the tags would be shown
directly in the label. The label must be told that it has Pango markup in order to format the
text properly. To inform the label that its text contains markup tags, we call the set_use_markup
method. Passing true to this method treats markup elements as formatting tags. If false is
passed, any markup elements will be treated as regular characters. You can find out if a label is
using markup by calling the get_use_markup method.

By making a label red when all others are black, the user’s attention will be immediately
drawn to that section of the screen. This quickly notifies the user that something is not right.

Removing Markup
The whole point of highlighting a label is to let the user know that something needs to be
fixed. When the user has successfully fixed the data in question, the text should be returned to
normal. This will give the user a visual cue that the particular piece of data is now valid. You
can remove the markup from a GtkLabel widget in a few different ways. Passing false to
set_use_markup is not one of them. Remember that this will just tell the label to treat the tags as
normal text. This means that the email label will end up showing
Email Address instead of Email Address. This is obviously not acceptable.

One method that will work is to use the get_label method, strip the tags using regular
expressions, and set the text again using either set_text or set_label. The get_label method
is very similar to the get_text method. When used with simple labels, the two methods are
exactly the same. get_text actually returns the text as it appears on the screen. get_label, on
the other hand, returns the text as it was set. Any embedded markup or mnemonics (also known
as shortcuts, as described shortly) will be stripped out of the label when get_text is called.
get_label will preserve these elements and return them along with the label text.

The set_text method implicitly turns off markup in the label. When set_text is called,
set_use_markup is passed false automatically. Using set_label preserves the value that has
previously been passed to set_use_markup.

Another slightly less complicated way to strip out the formatting is to take advantage of
the fact that get_text returns the text as it appears on the screen, and use its return value as
the argument to set_label. This works nicely if the only special treatment the text has under-
gone is Pango formatting.

The clearError method of Listing 7-2 takes a middle-ground approach by replacing the
previously defined markup constants with empty strings. It isn’t as powerful as a regular
expression, but it is much easier to read and serves our needs nicely.

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA128

6137ch07.qxd 3/14/06 2:10 PM Page 128

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 129

Ellipsizing Text
You can accommodate large labels in several ways, such as by wrapping lines and allowing the
label’s parent container to shrink and grow. But at some point, these options may not be enough.
It may be necessary to lose some characters from the label.

Ellipsizing text is not the process of shaping text into an ellipse. Ellipsizing text means remov-
ing characters and replacing them with three periods, or an ellipsis. An ellipsis implies that there
is more to the text, but it cannot be shown at the moment.

GtkLabel can automatically determine if its text is too big for the given area, and if so,
drop some characters and replace them with an ellipsis. Calling set_ellipsize will tell the
label to ellipsize the text if it is too large to fit in its parent container. set_ellipsize needs one
argument that tells the label which characters should be dropped:

• Pango::ELLIPSIZE_START: Tells the label to put the ellipsis at the beginning of the label
and to preserve the characters at the end of the label.

• Pango::ELLIPSIZE_END: Preserves the characters at the beginning of the label and puts
the ellipsis at the end of the label.

• Pango::ELLIPSIZE_MIDDLE: Drops characters from the middle of the label and keeps
those at the beginning and the end.

• Pango::ELLIPSIZE_NONE: Turns off ellipsization.

Figure 7-3 shows a label in each of the four ellipsization modes.

Adding Mnemonics
As far as PHP-GTK is concerned, mnemonic is just a fancy word for shortcut key. A mnemonic
associates a specific key combination with a particular widget. For instance, most applications
have a File menu that can be activated by pressing Alt+F. This shortcut is known as a mnemonic.
Mnemonics give the user more options for accessing different elements of an application.

Why on earth is there a section on mnemonics in a discussion about labels? What is the
point in having a shortcut for a label? While it is true that labels don’t really do anything, they
do identify other pieces of information. Since labels are the identifiers, it makes sense to use
them to present the shortcuts to the user.

Figure 7-3. Ellipsized text

6137ch07.qxd 3/14/06 2:10 PM Page 129

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA130

Mnemonics are identified by underlining a given character in the label. The character that
is underlined is the key that must be pressed along with the Alt key to activate the mnemonic.
That is why, in most applications, the letter F is underlined in the File menu. It tells the user
that pressing Alt+F will activate the menu.

You can set up a mnemonic in two ways. First, you can add the mnemonic when you con-
struct the label. An optional second argument to the GtkLabel constructor is a Boolean value
that tells the constructor whether the label should be created with a mnemonic shortcut. To
indicate which key should be used as the shortcut, use an underscore. The shortcut key will be
the character after the underscore. For example, if the label is created with the string "_Name",
the shortcut will be Alt+N. If the string is "N_ame", the shortcut would be Alt+A. When the label
is shown on the screen, the shortcut character will be underlined.

The second way to create a mnemonic is to use set_markup_with_mnemonic (which implic-
itly sets use_markup to true) or set_text_with_mnemonic. These two methods will set the label’s
text and inform the application that a mnemonic should be created. Again, an underscore in
the string passed to one of these methods indicates which key is the shortcut.

The association of labels and other widgets often goes beyond just the label saying what
information the other widget is holding. A label can also be set up so that activating its mnemonic
fires a signal in another widget. If the label is part of a button, a menu item, or a notebook tab,
the mnemonic will be automatically associated with that button, menu item, or notebook page.
Therefore, when the user presses the mnemonic key combination, the button will be clicked or
the page will be selected.

If the label is not inside a widget that will automatically connect with the mnemonic,
as is the case with the ContributorEdit tool, you can assign a mnemonic widget by using
set_mnemonic_widget. This method tells PHP-GTK that when the mnemonic is activated, the
mnemonic widget’s mnemonic_activate signal should be emitted. If a signal handler has been
created for this signal, the callback will be called when the shortcut key is pressed.

In Listing 7-3, which is a modified and abbreviated version of the previous listing,
a mnemonic is set up so that when the user presses Alt+N, the GtkEntry for the contributor’s
first name is given focus. This is the default action when an entry is assigned as the mnemonic
widget.

Listing 7-3. Assigning a Mnemonic Widget

<?php

private function _layoutTool()

{

// First create the labels that identify the fields.

$this->firstNameLabel = new GtkLabel('First _Name');

// Continue for the rest of the labels...

// Next add the labels to the table.

// The labels will be added in two columns.

// First column.

$this->attach($this->firstNameLabel, 0, 1, 0, 1, Gtk::FILL, 0);

// ...

6137ch07.qxd 3/14/06 2:10 PM Page 130

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 131

// Second column.

$this->attach($this->street1Label, 2, 3, 0, 1, Gtk::FILL, 0);

//...

// Right align all of the labels.

//...

// Next create all of the data collection widgets.

$this->firstNameEntry = new GtkEntry();

// Add the entry to the table.

$this->attach($this->firstNameEntry, 1, 2, 0, 1, 0, 0);

// Make the entry the mnemonic widget.

$this->firstNameLabel->set_mnemonic_widget($this->firstNameEntry);

}

?>

■Caution Creating a label with two underscores does not give the label two mnemonic keys. It just
makes things confusing. The first underscore will be used as the mnemonic, but the character after the
second underscore will also be underlined. This means that constructing a label with GtkLabel('_Nam_e')
will produce a label whose mnemonic key is Alt+N but has the e underlined as well as the N. This will defi-
nitely confuse the users.

Earlier, in the discussion of Pango markup, I mentioned that using get_text was not the
best way to grab a label’s text. This is because it strips out Pango formatting and mnemonics.
Using get_label preserves the mnemonics. get_label returns the same string that was used to
create the label. Just because the return value from a label has an underscore in it doesn’t mean
that the label has a mnemonic key assigned.

By using set_use_underline, you can force a label to treat the label text literally. If false is
passed to set_use_underline, any underscores in the text will appear as underscores instead
of underlines. get_use_underline returns a Boolean indicating whether or not the underscore
in a label represents a mnemonic key value. Also, just because get_use_underline returns true
doesn’t mean that there is a mnemonic associated with the label. It simply means that if the
label’s text has an underscore, it will be used to create a mnemonic key.

To determine if a mnemonic is associated with the label, and if so, which key activates it
and which widget it works on, use a combination of get_label, get_use_underline, and
get_mnemonic_widget (the opposite of set_mnemonic_widget).

Creating Angled Text
Angled text is any text that is not perfectly horizontal. (Technically, all text is angled, but in
GTK 2, angled text refers to any text with an angle other than zero.) Putting text on an angle
can improve the use of space in an application. For example, you might use angled text for

6137ch07.qxd 3/14/06 2:10 PM Page 131

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA132

Figure 7-4. Using angled text in column headings

notebook tabs that run along the side of the pages, column headers in tables, and image cred-
its that appear alongside an image instead of underneath it.

Angled text comes with a few caveats. It is not possible to angle text that has an ellipsize
mode other than Pango::ELLIPSIZE_NONE. GTK cannot handle rendering both ellipsized and
angled text. Therefore, PHP-GTK can’t handle it. Another thing to be careful of when using
angled text is that it may not wrap lines. These two rules together mean that angled text that is
too long for its container will be cut off.

We’ll use angled text in another one of our PIMS application’s tools: the category summary
tool (CategorySummary). This tool provides a quick look at the products in the inventory grouped
by category. Product categories are groups of similar products, such as books or downloadable
software. The category summary tool is a table that shows information, such as the number of
items in a category, the average price, the average weight, and so on. The categories are listed
on the left as row headings, and the category specs are listed along the top as column headings,
as shown in Figure 7-4.

Listing 7-4 shows the code for the category summary tool.

Listing 7-4. Angling Text in a GtkLabel

<?php

class Crisscott_Tools_CategorySummary extends GtkTable {

private $lastRow = 0;

public function __construct($inventory = null)

{

// Call the parent constructor.

// Don't pass any rows or columns because we want the

// table to grow as we add data.

parent::__construct();

6137ch07.qxd 3/14/06 2:10 PM Page 132

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 133

// Attach the column headers.

$this->attachColHeaders();

// If an inventory was passed, add the data to the table.

if (!empty($inventory)) {

$this->summarizeInventory($inventory);

}

}

public function summarizeInventory(Crisscott_Inventory $inventory)

{

// Clear out the table.

$this->clear();

// Reattach the headers.

$this->attachColHeaders();

// Add a row for each category.

foreach ($inventory->categories as $category) {

$this->summarizeCategory($category);

}

}

protected function attachColHeaders()

{

require_once 'Crisscott/Category.php';

foreach (Crisscott_Category::getCategorySpecs() as $key => $spec) {

$label = new GtkLabel($spec);

$label->set_angle(90);

$label->set_alignment(.5, 1);

// Leave the first cell empty.

$this->attach($label, $key + 1, $key + 2, 0, 1, 0, Gtk::FILL, 10, 10);

}

// Increment the last row.

$this->lastRow++;

}

public function summarizeCategory(Crisscott_Category $category)

{

// First attach the category name.

$nameLabel = new GtkLabel($category->name);

$nameLabel->set_alignment(0, .5);

$this->attach($nameLabel, 0, 1, $this->lastRow,

$this->lastRow + 1, Gtk::FILL, 0, 10, 10);

6137ch07.qxd 3/14/06 2:10 PM Page 133

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA134

// Next attach the spec values.

foreach (Crisscott_Category::getCategorySpecs() as $key => $spec) {

$value = $category->getSpecValueByName($spec);

$this->attach(new GtkLabel($value), $key + 1, $key + 2,

$this->lastRow, $this->lastRow + 1,

0, 0, 1, 1);

}

// Increment the last row.

$this->lastRow++;

}

protected function clear()

{

foreach ($this->get_children() as $child) {

$this->remove($child);

}

// Reset the last row.

$this->lastRow = 0;

}

}

?>

To create the CategorySummary table, we add a GtkLabel for each specification. Next, we set
the label’s angle to 90 degrees using set_angle. The set_angle method takes a float as its only
argument and sets the label to that angle. Setting an angle of 90 makes the label read from
bottom to top. Setting an angle of 270 makes the label read from top to bottom. Setting an
angle of –90 degrees has the same effect as setting an angle of 270 degrees.

After the angle is set, we attach each label to the table. There is no need to worry about
the specs being cut off, because the labels are allowed to shrink or expand as needed within
their table cells. After the column headers are in place, we add each category to the table along
with a value for each column.

Aligning labels can be a little tricky when they are set on an angle. Setting the justification
for a label is a little confusing if the label is on an angle of 90 degrees or more. The justification
is relative to the text of the label, not to the rest of the application. That is, when a label has an
angle of 90 degrees, a justification of Gtk::JUSTIFY_LEFT will cause the text to be aligned to the
left of the label as expected, but the left side of the label is actually now parallel to the bottom
edge of the screen. When a label has an angle of 180 degrees, the left side of the label is on the
right side of the application.

Another factor in aligning labels that becomes more apparent when text is angled is how
the label fills or expands within its parent container. Justification tells a label how to align itself
within the space available. If a label is not allowed to expand to fill a box or table cell, all justi-
fication settings will appear to have the same effect. This is more obvious with angled text because
a right justification will appear to be the same as a left justification, unless the label is allowed
to at least fill the cell or box, if not also expand.

While justification may be relative to the label’s text, alignment of the label itself is relative
to the parent container. As you can see in Figure 7-4, the CategorySummary tool has a row of

6137ch07.qxd 3/14/06 2:10 PM Page 134

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 135

column headers along the top of the table. Each of these labels is set up so that its first character
is aligned with the bottom edge of the table row. This was done by not only allowing the labels
to fill the table cells, but also by telling them to align themselves as low as possible within their
parent container. Notice how the expand and fill settings, justification, and alignment are used
in Listing 7-4 to create the application shown in Figure 7-4.

Entry Fields
Displaying information is very important in applications, but most applications are not really
considered complete unless they can also collect information from users. One of the easiest
ways to collect information from a user is through the GtkEntry widget. GtkEntry is a simple
text box, very similar to an HTML input element where the type is set to text.

GtkEntry collects one line of text input. GtkEntry is very useful for getting information such
as product titles, people’s names, and parts of an address (like the street address and the city).
GtkEntry may be simple and versatile, but it is not always the best solution for collecting data.
You should not use it when you have a predetermined set of acceptable values, such as ranges
of numbers. Other widgets—such as GtkComboBox, GtkVScale, GtkHScale, and GtkSpinButton—
are a better fit for those types of tasks, as discussed later in this chapter.

In our PIMS application’s contributor editing tool, we will add GtkEntry fields to allow users
to input data, as shown in Figure 7-5. If the contributor already has information for a specific
field, the GtkEntry will be prepopulated with the correct data. The users are then free to mod-
ify any data they wish. When they are finished, the data will be submitted, and the contributor
will be updated.

Listing 7-5 shows the updated version of the code.

Listing 7-5. ContributorEdit Tool with GtkEntry Fields

<?php

private function _layoutTool()

{

// First create the labels that identify the fields.

$this->firstNameLabel = new GtkLabel('First Name');

// ...

Figure 7-5. The updated Crisscott contributor editing tool

6137ch07.qxd 3/14/06 2:10 PM Page 135

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA136

// Next add the labels to the table.

// The labels will be added in two columns.

// First column.

$this->attach($this->firstNameLabel, 0, 1, 0, 1, Gtk::FILL, 0);

// ...

// Right align all of the labels.

$this->firstNameLabel->set_alignment(1, .5);

// ...

// Turn on markup

$this->firstNameLabel->set_use_markup(true);

// ...

// Next create all of the data collection widgets.

$this->firstNameEntry = new GtkEntry();

$this->middleNameEntry = new GtkEntry();

$this->lastNameEntry = new GtkEntry();

$this->emailEntry = new GtkEntry();

$this->websiteEntry = new GtkEntry();

$this->street1Entry = new GtkEntry();

$this->street2Entry = new GtkEntry();

$this->cityEntry = new GtkEntry();

$this->stateEntry = new GtkEntry();

$this->countryEntry = new GtkEntry();

$this->postalEntry = new GtkEntry();

// Next add the entries to the table.

// The entries will be added in two columns.

// First column.

$this->attach($this->firstNameEntry, 1, 2, 0, 1, 0, 0);

$this->attach($this->middleNameEntry, 1, 2, 1, 2, 0, 0);

$this->attach($this->lastNameEntry, 1, 2, 2, 3, 0, 0);

$this->attach($this->emailEntry, 1, 2, 3, 4, 0, 0);

$this->attach($this->websiteEntry, 1, 2, 4, 5, 0, 0);

// Second column.

$this->attach($this->street1Entry, 3, 4, 0, 1, 0, 0);

$this->attach($this->street2Entry, 3, 4, 1, 2, 0, 0);

$this->attach($this->cityEntry, 3, 4, 2, 3, 0, 0);

$this->attach($this->stateEntry, 3, 4, 3, 4, 0, 0);

$this->attach($this->countryEntry, 3, 4, 4, 5, 0, 0);

$this->attach($this->postalEntry, 3, 4, 5, 6, 0, 0);

}

?>

6137ch07.qxd 3/14/06 2:10 PM Page 136

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 137

After the labels that identify the individual fields are created and added to the table, GtkEntry
widgets are created for all of the contributor values. The constructor of GtkEntry is simple; it
doesn’t take any arguments and returns a ready-to-use GtkEntry widget.

It is standard practice to put entry widgets to the right of the labels that describe them.
This is how users most often encounter input forms like this. Sticking with this standard inter-
face design practice will make the application less confusing for the end user.

The last part of setting up this tool is populating the entry fields with contributor data. If
a contributor object is passed to the constructor of ContributorEdit, it will be passed to the
populateFields method. The populateFields method can be called at any time to load a new
contributor. This method grabs values from the contributor object and calls set_text, which
works just as it does for labels. It takes a string argument and sets that as the text in the entry
field. After all of the entries have their new values, the method makes sure to assign the con-
tributor that those labels came from as a member variable. This will allow the application to
make changes to the contributor or restore the entry values if needed.

set_text is not the only way to control a GtkEntry widget. Two other methods for adding
text to an entry are append_text and prepend_text. The two methods insert text at the beginning
and end of the current entry text, respectively.

■Caution While append_text and prepend_text are very useful, they are deprecated in GTK 2. They
should be used with caution, as they may disappear in the future.

Input Box Size and Character Limits
As with GtkLabel, you can also control the number of characters displayed in a GtkEntry input
box. set_width_chars sets the width of the input box to the given size in characters. If 10 is
passed, the input box will be ten characters wide. This does not mean that the entry cannot
accept more then ten characters, but that only ten characters will fit in the visible area. Any
additional characters will be pushed out of view to the left or right, but will not be dropped
from the entry’s value.

To set a character limit on the text value of the entry, use set_max_length. The set_max_length
method puts a limit on the number of characters that make up the entry’s text. If the maximum
length of an entry is set to 10, and a user tries to enter eleven characters, the eleventh character
will be ignored. Similarly, if the application itself tries to call set_text with a string more than
ten characters long, all characters beyond the tenth will be dropped.

Remember the difference between the two methods. Characters over the limit set by
set_width_chars are simply hidden from sight. Characters over the limit imposed by
set_max_length are completely ignored or dropped.

Automatic Completion
GtkEntry widgets are excellent tools for allowing users to enter data that cannot necessarily be
constrained. Unfortunately, the free-form nature of GtkEntry can sometimes also be a burden.
For example, consider the State entry field in the contributor editing tool. While the names of
states don’t change that often, you wouldn’t try to gather a list of all the states, provinces, coun-
ties, or parishes in all countries of the world. Therefore, the application must let the user enter

6137ch07.qxd 3/14/06 2:10 PM Page 137

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA138

Figure 7-6. GtkEntryCompletion in action

values using a GtkEntry widget. This can lead to some very messy data input. There is no guar-
antee that the users of an application know how to spell Saskatchewan. Fortunately, you can
help users supply the correct data.

GtkEntryCompletion is an object that can be associated with a GtkEntry. It tries to match
what the user is typing to a predefined list of suggested values, as shown in Figure 7-6. Using
a GtkEntryCompletion object can help to reduce the number of errors entered by the user.

GtkEntryCompletion is a helper object, not a widget. It makes no sense to think of
a GtkEntryCompletion without an associated GtkEntry.

GtkEntryCompletion is not an end-all solution. It guides the users in the right direction
when entering text, but does not force them to pick one of the suggested values. You should
use it when there is a set of likely values for a GtkEntry field, but the set of possible values is
not finite. The data that is taken from the GtkEntry field must still be checked for invalid val-
ues or characters, especially if the data is to be inserted into a database.

GtkEntryCompletion provides a list of suggested values using a GtkListStore. We’ll take
a closer look at GtkListStore in Chapter 9. For now, you just need to know that GtkListStore is
a list of data values and is the main support behind GtkEntryCompletion.

Listing 7-6 shows the code that adds the GtkEntryCompletion to the stateEntry of
ContributorEdit.

Listing 7-6. Creating and Associating a GtkEntryCompletion Object

<?php

private function _layoutTool()

{

// ...

// Help the user out with the state by using a GtkEntryCompletion.

$stateCompletion = new GtkEntryCompletion();

$stateCompletion->set_model(self::createStateList());

$stateCompletion->set_text_column(0);

$this->stateEntry->set_completion($stateCompletion);

$stateCompletion->set_inline_completion(true);

// ...

}

6137ch07.qxd 3/14/06 2:10 PM Page 138

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 139

public static function createStateList()

{

$listStore = new GtkListStore(Gtk::TYPE_STRING);

$iter = $listStore->append();

$listStore->set($iter, 0, 'Alabama');

$iter = $listStore->append();

$listStore->set($iter, 0, 'Alaska');

$iter = $listStore->append();

$listStore->set($iter, 0, 'Arizona');

$iter = $listStore->append();

$listStore->set($iter, 0, 'Arkansas');

$iter = $listStore->append();

$listStore->set($iter, 0, 'California');

$iter = $listStore->append();

$listStore->set($iter, 0, 'Colorado');

// ...

return $listStore;

}

?>

The first step, as always, is to create the object. The constructor for GtkEntryCompletion
does not take any arguments.

The next step is to set a model for the entry completion using set_model. A model is
a structured data object. It manages a set of data as a tree or list. In Listing 7-6, the data model
being used is a list. The list is created in the createStateList method. This method instantiates
a GtkListStore object and adds a value for each state or province that should be suggested.
Again, the details of how the GtkListStore object works are discussed in Chapter 9.

Once the list is created and set as the model, the entry completion is told where in the
model to look for the completion values. In Listing 7-6, there is only one column of data, so
the entry completion must look in column 0. This is done using the set_text_column method.

Finally, the entry completion is associated with the GtkEntry for the state. If the user types
the letter a in the state entry, he will see something similar to the example shown earlier in
Figure 7-6.

Setting the Number of Characters for a Match
GtkEntryCompletion performs a case-insensitive string comparison to find possible matches.
That means that if the user enters a, he will see the same list of suggestions as he would if he
had entered A.

The default behavior is to check on every character that is entered. For some lists, in which
many values begin with the same few characters, trying to come up with suggested values after
only one or two characters have been entered will likely return too many values to be useful,
and will probably slow down the application. It is possible to override the default behavior by
using set_minimum_key_length. This method changes the number of characters that must be
entered before the application tries to find a match for the entry’s value.

6137ch07.qxd 3/14/06 2:10 PM Page 139

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA140

Using Inline Completion
Another default behavior of GtkEntry is to show suggestions in a pop-up window, like the one
shown in Figure 7-6. The pop-up window shows up below the entry. But you don’t need to use
a pop-up window to guide the user in the right direction. You can turn it off by passing false
to set_popup_completion. What is the point of a GtkEntryCompletion without a pop-up list of
suggestions? The user can be urged to enter certain characters by using inline completion.

You activate inline completion by passing true to set_inline_completion. For instance, if
you have ever used Microsoft Excel, you have probably seen an example of inline completion.
Inline completion automatically appends one or more characters to the entry value when at
least one matching value is found. The characters that are added are selected, so that the user
will overwrite them with the next character typed; the user can continue typing if the value is
incorrect. The characters that are added to the entry value depend on the matching items in
the list.

With a pop-up completion, comparisons are made with only what the user has entered so
far. Inline completion, on the other hand, looks ahead to see what the user could type next. For
example, if a user types a into the state entry, a pop-up window would show all states that
begin with the letter A. Inline completion has only one line to work with. The user could type
an l or an r next. Therefore, inline completion does not know which characters to append. If
the user types an l next, the inline completion can make a suggestion. The only values in the
list that begin with Al also begin with Ala. It is likely that the user is trying to enter either Alaska
or Alabama. Therefore, the inline completion will append an a to the entry. If the user types
Alab, the inline completion will find only one match and set the entry’s value to Alabama,
with the last three characters highlighted. By pressing Enter, the user will select the comple-
tion text, and the entry’s value will be set to Alabama.

■Caution If GtkEntryCompletion is set to use inline completion, the value passed to
set_minimum_key_length will be ignored. This may affect performance if the list of possible completions
is very large.

Combo Boxes
GtkEntry is a free-form text-entry tool. This means that users can enter any text they like. Of
course, the application should check the value to make sure that it not only matches some
expected value or pattern, but also that the user is not trying to do something malicious, like
perform SQL injection. As noted earlier, sometimes GtkEntry is not the best way to collect data
from users. GtkComboBox is a widget that, similar to an HTML select element, provides a list of
values from which the user can select. The user may not type in a freehand value. Using
a GtkComboBox constrains the user to a given set of possible values. In cases where valid input
values can be defined by finite set of data, GtkComboBox is a much better data-entry tool than
GtkEntry.

A combo box can show any sort of data, including images, and can show the choices as
a flat list or a hierarchical tree. However, in most cases, a combo box just shows a flat list of
strings.

6137ch07.qxd 3/14/06 2:10 PM Page 140

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 141

Like GtkEntryCompletion, GtkComboBox uses a model to manage data. This means that the
list of possible values needs to be kept in a GtkListStore or a GtkTreeStore. The model that is
chosen for the combo box dictates how the list of values will be shown. If a GtkListStore is used,
the combo box will show the values as a flat list. If a GtkTreeStore is used, the list will be shown
as a hierarchical structure. Figure 7-7 shows the difference between the two model views.

Working with a GtkComboBox is the same, regardless of which model is used. Here, we will
look at using a list store and also using a combo box without a model. We’ll discuss creating
and manipulating models in Chapter 9.

Flat Text Lists
As noted, most frequently, GtkComboBox is used to show a simple, flat list of text values. Because
most combo boxes are string lists, PHP-GTK provides a few helper methods to make your life
a little easier. These methods are designed specifically for GtkComboBox widgets that show a flat
text list; they do not work with those that contain multiple levels or values that are not text
strings. What is special about this type of combo box is that PHP-GTK knows exactly what the
model looks like because PHP-GTK created it. Therefore, you do not need to manage the model.

The most important method when creating a flat text combo box is the static constructor.
GtkComboBox::new_text returns a combo box that can hold only one level of strings. The combo
box that is returned will be set up so that the other helper methods can work on it properly.

To add values, call prepend_text, append_text, or insert_text. These three methods work
only on combo boxes that have been created with the new_text constructor. PHP-GTK will
create the list item and place it properly in the GtkListStore that has been automatically
created. prepend_text and append_text add values to the beginning and end of the list, while
insert_text puts the string in a specific location. insert_text expects the position first, followed
by the string to insert. To remove a value from the list, call remove_text and pass the position
of the item that should be removed.

After the user has selected a value from the combo box, you can get the string that the
user selected by using the get_active_text method.

Listing 7-7 shows how easy it is to create a flat text combo box using new_text.

Listing 7-7. Creating a Flat Text GtkComboBox

<?php

private function _layoutTool()

{

// ...

Figure 7-7. Two types of GtkComboBox widgets: GtkListStore gives a flat list (left), and GtkTreeStore
presents a hierarchical structure (right)

6137ch07.qxd 3/14/06 2:10 PM Page 141

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA142

// The country should be a combo box.

$this->countryComboBox = GtkComboBox::new_text();

$this->countryComboBox->append_text('United States');

$this->countryComboBox->prepend_text('Canada');

$this->countryComboBox->insert_text(1, 'United Kingdom');

$this->countryComboBox->set_active(0);

// ...

}

?>

GtkComboBox with a Custom Model
Occasionally, you may want to manage a GtkComboBox’s model instead of letting PHP-GTK take
care of it. Perhaps the model has already been created by some class, or the model may not be
a flat text list.

When a combo box generated with new_text will not work, you must use the more generic
version of GtkComboBox. This version requires you to manage the model independently of the
combo box, but offers more flexibility in the model that is accepted.

You can create a GtkComboBox without using new_text by using the classic new GtkComboBox
constructor. This method of constructing a combo box returns a combo box with no model. It
is just a shell that is ready to be filled.

Once you’ve created a combo box, you can set or change its model by using set_model.
The value given to set_model must represent either a list or a tree; otherwise, a nasty error will
be thrown.

Optionally, you can pass a model to the constructor. In this case, it will return a GtkComboBox

that already has its mode initialized to the model that is passed in.
Managing the model, including getting and setting the active, or selected item, is your

responsibility. You can do that using the methods explained in Chapter 9.

Scales
GtkEntry is excellent for collecting text, and GtkComboBox is good for choosing a value from list,
but how does an application collect numerical data? Sure, numerical data could be entered in
a GtkEntry field, but that would allow the users to enter any values they like. Using a GtkComboBox

to allow the user to select a number between one and one hundred is impractical. Fortunately,
PHP-GTK provides widgets designed specifically to allow the user to specify a numeric value.
One of those is the scale, or specifically GtkHScale and GtkVScale.

Scales allow the user to select a value within a range by sliding the widget back and forth
or up and down. Scrollbars are scales that allow the user to select a relative position of the screen
that should be shown. When not used as scrollbars, scales, also known as sliders, are used to
visually represent a range of numbers. The values that the scale represents can be integers or
floating-point values, and they can have any arbitrary precision that PHP allows.

Scales come in two varieties: horizontal and vertical, as shown in Figure 7-8. Both are
controlled and behave exactly the same way. The only difference is in how they are shown on
the screen.

6137ch07.qxd 3/14/06 2:10 PM Page 142

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 143

Figure 7-8. GtkHScale and GtkVScale

GtkHScale, the horizontal variety, and GtkVScale, the vertical type, are both descendants
of GtkScale, which is itself a descendant of GtkRange, a class that extends GtkWidget. This rela-
tively deep ancestry allows each level to focus on specific functionality.

Scales themselves are strictly display widgets. The scale’s role is to give the user a visual
representation of the value and allow the value to be changed. The scale also controls the precision
of the adjustment. Management of the numerical values is handled by a helper object called
GtkAdjustment. In fact, the only methods specific to GtkHScale and GtkVScale are the construc-
tors. The standard constructor, new GtkHScale, takes a GtkAdjustment as the only argument.

Scale Adjustment
GtkAdjustment is an object that sets bounds for a range of numbers and also sets the rules for
which numbers within those bounds are considered valid values. When an adjustment is created,
it must be given five numbers: the initial value, the lower boundary, the upper boundary, the
step increment, and the page increment. The value of the adjustment must always be greater
than or equal to the lower boundary and less than or equal to the upper boundary. The step
increment is the amount the value will be changed when small changes are made. The page
increment is used to make moving through the values quicker. It is the amount the value will
change when the adjustment is paged.

Paging is what happens when you click the empty space in a scrollbar instead of the arrow
at the end. Paging changes the value of the adjustment by a large increment. The adjustment
listens to the widget it is helping and makes sure that the value stays within the boundaries.

Scale Precision
Using set_digits, the number of decimal places will be set to the integer value passed in.
Passing 0 to set_digits makes the value of the adjustment always stay an integer. get_digits
returns the precision. The default precision for scales is one decimal place.

The precision of the adjustment’s value is the same as the precision that is shown on the
label next to the scale, unless the value is set programmatically. If you set the value program-
matically, the value may have any precision, regardless of how many digits are displayed.

Value Display
The slider also controls whether the value appears next to the slider and where the value is
shown. set_draw_value takes a Boolean value as the only argument and turns the label on or
off. By default, the label is shown on top of the scale.

6137ch07.qxd 3/14/06 2:10 PM Page 143

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA144

You can set where the label is shown by using set_value_pos, which expects a GtkPositionType.
Listing 7-8 shows the code that was used to create Figure 7-8. Here, set_value_pos is used to
move the label of the GtkVScale to the right side of the slider. When possible, the label stays
next to the slider. This happens by default for horizontal scales, but doesn’t happen for vertical
scales unless the label is moved to the left or right.

The methods to get and set the value of the scale are inherited from GtkRange. These two
methods are given the rather appropriate names get_value and set_value.

Listing 7-8. Using GtkHScale and GtkVScale

<?php

function echoValue($scale)

{

echo $scale->get_value() . "\n";

}

$window = new GtkWindow();

$window->set_size_request(150, 150);

$hScale = new GtkHScale(new GtkAdjustment(4, 0, 10, 1, 2));

$hScale->connect('value-changed', 'echoValue');

$vScale = new GtkVScale(new GtkAdjustment(4, 0, 10, 1, 2));

$vScale->connect('value-changed', 'echoValue');

$vScale->set_value_pos(Gtk::POS_LEFT);

$hBox = new GtkHBox();

$vBox1 = new GtkVBox();

$vBox2 = new GtkVBox();

$window->add($hBox);

$hBox->pack_start($vBox1);

$hBox->pack_start($vBox2);

$vBox1->pack_start(new GtkLabel('GtkHScale'), false, false);

$vBox1->pack_start($hScale, false, false);

$vBox2->pack_start(new GtkLabel('GtkVScale'), false, false);

$vBox2->pack_start($vScale);

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

$window->show_all();

Gtk::main();

?>

6137ch07.qxd 3/14/06 2:10 PM Page 144

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 145

Spin Buttons
The other widget specifically designed to display and collect numerical values is GtkSpinButton.
GtkSpinButton is a descendant of GtkEntry.

GtkSpinButton shows its value in an entry field and gives the user controls to increase or
decrease the value. Clicking the up or down arrow changes the value. GtkSpinButton uses an
adjustment to manage its value, just as scales do. The only difference between a scale and a spin
button is how the value is shown and manipulated.

A spin button is useful when there is limited space to put a widget. In general, spin buttons
take up less room than sliders. Of course, sliders can be crammed into any space that spin
buttons can, but the less space there is, the less usable a scale becomes.

Creating a spin button is similar to creating a scale. It expects an adjustment as the first
argument, but unlike scales, a spin button also expects the climb rate and the precision in the
constructor. The climb rate is how fast the value will change when the user presses the up or
down arrow. The higher the climb rate, the faster the value will change. When the range is large
and the precision is relatively small, the climb rate should be high, so that users do not need to
click the up arrow too long to get to the value they need. A slower climb rate is useful when the
precision is not so great, because the users will move through the values rather quickly.

Listing 7-9 shows the basic usage of a GtkSpinButton. The output of this code is shown in
Figure 7-9.

Listing 7-9. Creating and Using a GtkSpinButton

<?php

function echoValue($spinButton)

{

echo $spinButton->get_value() . "\n";

}

$window = new GtkWindow();

$window->set_size_request(100, 100);

$spin = new GtkSpinButton(new GtkAdjustment(4, 0, 10, 1, 2), 1, 0);

$spin->connect('changed', 'echoValue');

$vBox = new GtkVBox();

$window->add($vBox);

$vBox->pack_start(new GtkLabel('GtkSpinButton'), false, false);

$vBox->pack_start($spin, false, false);

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

$window->show_all();

Gtk::main();

?>

6137ch07.qxd 3/14/06 2:10 PM Page 145

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA146

Figure 7-9. A typical GtkSpinButton

Buttons
After users have been prompted for information using GtkLabel widgets and have entered
information using GtkEntry widgets, they must be able to notify the application that the infor-
mation is ready for processing. This is where GtkButton comes in.

GtkButton is designed to tell the application to begin some process—whether it is collect-
ing values that have been supplied by the user, shutting down the application, or anything in
between. Buttons are not very useful unless they do something when the user takes an action.
The main function of a button is to act as a messenger. The message is transmitted through
the use of signal handlers. The most commonly connected event is the clicked event, but
buttons are capable of listening for a wide range of user actions.

GtkButton is a unique type of widget. Technically, it is a container, but it reacts to user
interactions. Most containers do not actually take up space on the screen, and are therefore
not able to be clicked, selected, or otherwise accessed by the user. But GtkButton is specifically
designed to be accessed by an application’s user. GtkButton is a bin container that holds only
a GtkLabel about 70 percent of the time. The other 30 percent of the time, a GtkButton will hold
an image or an image and a label. While it is possible to put any non-top-level widget inside
a button, it is hard to imagine why an application would need to do that.

Buttons can be simple, containing only a simple label, or they can be complex with icons
and mnemonics. A button can be a generic stock button, or it can be so unique that it has
a customized shape. (Chapter 12 will go into the details of changing a button’s shape). GtkButton
is simple but essential. It is hard to imagine any large application that doesn’t make use of but-
tons. The role that buttons play is very specialized. Because of this, constructing a button has
been highly specialized. There are two constructor methods for GtkButton: new GtkButton and
GtkButton::new_from_stock.

Standard Buttons
A standard empty button, which can contain any widget, can be instantiated in the same way
most widgets can: with new GtkButton. You can also create buttons with text already added.

By passing a string as the only argument, the button will automatically create a label widget
and add it as the button’s child. If you need to access the label the button is created, use the
get_label method.

Another typical use of GtkButton involves a GtkLabel with a mnemonic. Instead of creat-
ing a button with a label, and then grabbing the label and adding a mnemonic, you can create
a button with a mnemonic label automatically. Simply adding an underscore to the button
constructor creates a button and uses the string (which should have an underscore to indicate

6137ch07.qxd 3/14/06 2:10 PM Page 146

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 147

the mnemonic key) to create a mnemonic label and assign the button as the mnemonic widget.
The following is an example of creating a button with a mnemonic label:

$button = new GtkButton('_Click Me');

Stock Buttons
The other method for creating buttons takes advantage of the fact that many applications will
need the same type of button. For instance, it is not unlikely that an application will provide
a form that the user should fill in. After the user fills in the form, the application must be told
that the data is ready for processing. This is usually done with a button that has an OK or Sub-
mit label. Since this type of button is so prevalent in PHP-GTK, it exists as one of many stock
buttons.

Stock buttons are ready-made buttons that have a default image and label. The label will
also often have a mnemonic. PHP-GTK offers dozens of stock buttons that represent common
application tasks.

Creating Stock Buttons
You use GtkButton::new_from_stock to create a stock button. This method takes a string that
identifies which stock button should be returned. To see a list of all stock buttons and the
strings that can be used to create them, fire up the stock item browser from the PHP-GTK
/demos directory.

The Crisscott PIMS application’s contributor editing tool is a perfect example of a form
that can use stock buttons. Listing 7-10 expands on the ContributorEdit class and adds Save
and Undo buttons.

Listing 7-10. Using Stock Buttons

<?php

private function _layoutTool()

{

// See Listing 7-5 for the rest of this method.

// Add the save and clear buttons.

$save = GtkButton::new_from_stock('Gtk::STOCK_SAVE');

$reset = GtkButton::new_from_stock('Gtk::STOCK_UNDO);

// Create signal handlers for the buttons.

$save->connect_simple('clicked', array($this, 'saveContributor'));

$reset->connect_simple('clicked', array($this, 'resetContributor'));

// Attach the buttons to the table.

$this->attach($reset, 0, 1, 6, 7, 0, 0);

$this->attach($save, 3, 4, 6, 7, 0, 0);

}

?>

6137ch07.qxd 3/14/06 2:10 PM Page 147

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA148

Figure 7-10. Using stock buttons

Figure 7-10 shows the buttons added to the form.

Adding buttons to the ContributorEdit tool is relatively easy. Each button is created
using the static GtkButton::new_from_stock method. The first button is a stock Save button. In
Figure 7-10, it is the button on the right. The second button is a stock Undo button. Undo is
the best choice available for resetting the tool’s entry fields.

Both buttons are automatically created with icons, labels, and mnemonic shortcuts. The
mnemonic for the button’s label will trigger the clicked signal of the button automatically.
After the buttons are created, it is essential that their clicked signal is connected to a method.
If no signal handler is created, nothing will happen when the button is clicked or the mnemonic
shortcut is activated. The final step is to attach the buttons to the table.

Connecting Buttons to a Signal Handler
Having buttons in an application is not very useful unless the buttons are connected to some
signal handler. When a button is clicked, it fires a signal handler that tells the application to
grab some specific data and do something with it, such as store the data in a database, add
a few values together, or send data to a server.

The ContributorEdit tool’s buttons are each connected to a signal handler so that some-
thing happens when one of them is clicked. Listing 7-11 shows the methods that are used as
callback for the two buttons.

6137ch07.qxd 3/14/06 2:10 PM Page 148

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 149

Listing 7-11. Resetting and Saving Contributor Data

<?php

public function resetContributor()

{

// Make sure we have a contributor already.

if (!isset($this->contributor)) {

require_once 'Crisscott/Contributor.php';

$this->contributor = new Crisscott_Contributor();

}

// Reset the fields to the original value.

$this->populateFields($this->contributor);

}

public function saveContributor()

{

// First grab all of the values.

$this->contributor->firstName = $this->firstNameEntry->get_text();

$this->contributor->middleName = $this->firstNameEntry->get_text();

$this->contributor->lastName = $this->lastNameEntry->get_text();

$this->contributor->website = $this->websiteEntry->get_text();

$this->contributor->email = $this->emailEntry->get_text();

$this->contributor->street1 = $this->street1Entry->get_text();

$this->contributor->street1 = $this->street1Entry->get_text();

$this->contributor->city = $this->cityEntry->get_text();

$this->contributor->state = $this->stateEntry->get_text();

$this->contributor->country = $this->countryCombo->get_active_text();

$this->contributor->postal = $this->postalEntry->get_text();

// Next validate the data.

$valid = $this->contributor->validate();

// Create a map of all the values and labels.

$labelMap = array('firstName' => $this->firsNameLabel,

'middleName' => $this->middleNameLabel,

'lastName' => $this->lastNameLabel,

'website' => $this->websiteLabel,

'email' => $this->emailLabel,

'street1' => $this->street1Label,

'street2' => $this->street2Label,

'city' => $this->cityLabel,

'state' => $this->stateLabel,

'country' => $this->countryLabel,

'zip' => $this->zipLabel

);

6137ch07.qxd 3/14/06 2:10 PM Page 149

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA150

// Reset all of the labels.

foreach ($labelMap as $label) {

$this->clearError($label);

}

// If there are invalid values, mark up the labels.

if (is_array($valid)) {

foreach ($valid as $labelKey) {

$this->reportError($labelMap[$labelKey]);

}

// Saving the data was not successful.

return false;

}

// Try to save the data.

return $this->contributor->save();

}

?>

The Undo button is connected to the resetContributor method of the ContributorEdit
class. This method simply overwrites the current GtkEntry values with the values from the last
Contributor instance that was passed in. Instead of rewriting the code to populate the fields,
the populateFields method is just reused.

The Save button is connected to the saveContributor method. This callback method is
slightly more complicated. saveContributor has three jobs to perform. First, it must grab the
current values from the GtkEntry elements. This is done by calling get_value on each entry
and assigning it to a member of the current contributor instance. After all of the information
has been collected, the information is validated. Validating the information is the responsibil-
ity of the Crisscott_Contributor class, as is the third step, which is to save the contributor
data to the database.

While validating the contributor information is the responsibility of the Crisscott_Contributor
class, making the user aware of the invalid data is the job of the ContributorEdit tool. If all the
data given to the contributor is not valid, an array indicating which data values failed to validate
is returned; otherwise, the validate method returns true. For each value that is returned
in the array, the saveContributor method calls the reportError method. The reportError
method, the same method shown in Listing 7-2, simply adds Pango markup to the label, which
identifies the bad data. In order to reduce confusion, error markup is cleared from all labels
before any new markup is added. This way, if the user fixed a previously bad data value, it will
no longer be marked as invalid.

6137ch07.qxd 3/14/06 2:10 PM Page 150

CHAPTER 7 ■ DISPLAYING AND COLLECTING SIMPLE DATA 151

Summary
This chapter has explained how to display and collect small amounts of data. GtkLabel can be
used to deliver simple text messages or to add formatting to a string of text, making it stand out.
Labels can be used to report errors, give instructions, and identify other pieces of the application.
Labels are most often used to identify the information that is being collected from the user.

GtkEntry is useful to collect simple text strings from the user. GtkEntry is a free-form widget.
The users can enter any value they like. You can use the GtkEntryCompletion helper widget to
give the user hints for entering values that the application expects.

GtkComboBox can restrict the set of possible values. The user is only allowed to select from
a given set of values, and therefore cannot enter anything the application isn’t expecting.

When numerical data is needed, GtkHScale, GtkVScale, and GtkSpinButton are useful.
They are designed specifically to display and collect numerical values.

Finally, when all data has been presented and collected from the user, you can use buttons
to indicate that data processing should begin.

This chapter showed ways to communicate simple messages. All of these tools allow the
application and the user to communicate effectively.

Chapter 8 goes into the details of displaying, editing, formatting, and collecting large
amounts of text. With the tools in the next chapter, the Crisscott PIMS application will be able
to collect product descriptions and display large amounts of text like RSS news feeds. Editing
large amounts of text can be tricky, but the next chapter will give you the tools to make rather
complicated changes to a block of text, including copying and pasting blocks of text to and
from the clipboard.

6137ch07.qxd 3/14/06 2:10 PM Page 151

6137ch07.qxd 3/14/06 2:10 PM Page 152

153

C H A P T E R 8

■ ■ ■

Using Multiline Text

Labels and entries are excellent widgets for displaying small amounts of text, but they are not
suitable for larger blocks of text. Their limitations are due to the inherent complications that
arise as a block of text grows. While the features of GtkLabel are impressive, its capabilities are
unsatisfactory for text blocks such as help pages. GtkEntry obviously doesn’t fill all of a user’s
needs when it comes to text editing, since it allows the user to edit only one simple line of text.

Fortunately, PHP-GTK takes full advantage of the text-editing abilities of GTK+ 2.0, so you
have other options for handling text. Using the powerful text-editing features introduced in this
chapter, you can build applications capable of creating, manipulating, and displaying large
blocks of text with relative ease. Additionally, you can provide end users with the ability to cre-
ate their own equally complex blocks of text.

The Text-Editing Tool Set
One significant distinction between simple text and multiline text is the way that PHP-GTK
handles larger text blocks. One widget, GtkLabel, handles the display of small amounts of text,
and another widget, GtkEntry, handles editing. However, for larger amounts of text, both the
display and editing are handled by the same collection of widgets and objects.

Each piece involved in multiline text is highly specialized. One object, GtkTextBuffer, holds
the text that will be displayed or edited. GtkTextView is a specialized widget for presenting the
text to the user. Finally, three other objects—GtkTextMark, GtkTextIter, and GtkTextTag—are
used to identify and manipulate groups of characters within the block of text. Combined, these
five components make for one very powerful text-editing tool set. The combination of these tools
can produce something similar to Figure 8-1.

6137ch08.qxd 3/14/06 2:12 PM Page 153

CHAPTER 8 ■ USING MULTIL INE TEXT154

Figure 8-1. An example of multiline text in an application

To understand how these tools work together, it is best to start by looking at the objects
that work behind the scenes to set up the text display.

Text Marks
The simplest part of the PHP-GTK text-editing tool set is the GtkTextMark object. In this con-
text, a mark indicates position. A mark is a location within a block of text that can be used as
a point of reference. A mark always references a position located either between two charac-
ters or at the beginning or end of the buffer. It never points to a specific character in the text.

Marks are used to preserve locations in a block of text even when the text changes. If the
text surrounding a mark is deleted, the mark will still remain. If new text is added at the mark,
the mark will reside either to the left or right of the newly inserted text. Which side the mark
ends up on depends on its gravity.

A mark with left gravity will reside at the beginning of the newly inserted text; a mark with
right gravity will reside at the end of the new text. Even though a mark might have right grav-
ity, it could appear to the left of newly inserted text. This is because the gravity is with respect
to the direction in which the text is written. For instance, Hebrew text appears from right to
left. A mark with right gravity appears at the end of newly inserted text, which in the case of
Hebrew, would be on the left.

Referencing Marks
All text buffers are created with two marks:

• The insertion point, or the point where text will be inserted in the buffer

• The selection bound, which is the block of currently selected characters in the buffer

6137ch08.qxd 3/14/06 2:12 PM Page 154

CHAPTER 8 ■ USING MULTIL INE TEXT 155

The text selection is bound on one end by the insertion point and on the other end by the
selection bound. If there are no characters located between the insertion point and the selection
bound, then no text is selected and the two marks must point to the same location. Furthermore,
both of these marks have right gravity, meaning that when new text is inserted into a buffer, both
marks will remain at the end of the text unless they are specifically moved.

To make these marks easier to reference, they’re named insert and selection_bound. By
moving the insert mark, you can change the position that new text will be inserted. If the two
marks are separated, the text between them will be selected. When the user selects a block of
text, the two marks will be separated. The selection_bound will be at the beginning of the text,
and the insert marker will be at the end.

Creating Marks
Marks may exist on their own, but they are not very useful unless they are associated with
a GtkTextBuffer. Most of the methods related to marks are actually text buffer methods. Marks
also often require the help of another text-editing tool, GtkTextIter. Both GtkTextBuffer and
GtkTextIter are discussed in their own sections later in this chapter.

To create a mark requires a method from GtkTextBuffer and the help of a GtkTextIter.
The following line demonstrates how to create a text mark:

$mark = $buffer->create_mark('endParagraph1', $iter, false);

The create_mark method of GtkTextBuffer returns a GtkTextMark object. create_mark expects
three arguments: a name for the mark, a GtkTextIter, and whether or not the mark should have
left gravity. In this example, the mark has the name endParagraph1. This name will allow you to
easily access the mark later. The name may be null. If so, the mark will be anonymous, meaning
that while it will not be possible to reference the mark by name, it will be much easier to create
on the fly, because mark names within a buffer must be unique. The second argument, $iter,
must come from the buffer that called create_mark. By passing false as the last argument, the
newly created mark will have right gravity. If text is inserted at the location of this mark, the mark
will remain to the right of the text.

Once a mark has been created, it may be retrieved either as the return value from
create_mark or by using get_mark. The get_mark method takes a mark name as the only argu-
ment and returns the GtkTextMark object identified by that name. Obviously, anonymous marks
cannot be returned from this method.

A mark may be removed from a buffer using either delete_mark or delete_mark_by_name.
These two methods do not actually delete the mark; they just remove it from its current buffer.
delete_mark expects a GtkTextMark instance as its only argument. delete_mark_by_name expects
the name of a GtkTextMark.

Moving Marks
You can move a mark with either move_mark or move_mark_by_name. Both of these methods
belong to GtkTextBuffer and require the help of a GtkTextIter. The move_mark method expects
a GtkTextMark object as the first argument. The move_mark_by_name method expects the mark’s
name. The second argument to both methods must be a valid GtkTextIter from the same
buffer as the mark.

6137ch08.qxd 3/14/06 2:12 PM Page 155

CHAPTER 8 ■ USING MULTIL INE TEXT156

Because moving the insert and selection_bound marks separately selects a region of text,
which fires signals and may cause one or more callbacks to be called, there is a special method
for moving these two marks together. The place_cursor method or GtkTextBuffer will move
both the insert and selection_bound markers to the location at the same time. The location
that the marks will be moved to is designated by a GtkTextIter, passed as the only argument.

Even if the end goal is to select a region of text, moving the two marks independently may
not be the best idea. Every time either an insert or a selection_bound mark is moved, the text
between the two marks is selected. This means that moving the two marks separately selects
two regions of text, because one region is selected each time one of the marks is moved. The
GtkTextBuffer method select_range moves both the insert and selection_bound marks simulta-
neously, but to two different places within the text buffer. Using this method selects only one
region of text because both marks are moved together. The two arguments for this method are
both GtkTextIter objects. The first argument specifies the new location of the insert marker;
the second pinpoints the location of the selection_bound marker. Listing 8-1 shows an exam-
ple of how not to move the cursor and select a region of text.

Listing 8-1. The Wrong Way to Move insert and selection_bound in a GtkTextBuffer

<?php

function printSelected($buffer, $iter, $mark)

{

// Get the mark that wasn't moved.

if ($mark == $buffer->get_mark('insert')) {

$mark2 = $buffer->get_mark('selection_bound');

} else {

$mark2 = $buffer->get_mark('insert');

}

// Get the iter at the other mark.

$iter2 = $buffer->get_iter_at_offset(0);

$buffer->get_iter_at_mark($iter2, $mark2);

// Print the text between the two iters.

echo 'SELECTION: ' . $buffer->get_text($iter, $iter2) . "\n";

}

// Create a GtkTextView.

$text = new GtkTextView();

// Get the buffer from the view.

$buffer = $text->get_buffer();

// Add some text.

$buffer->set_text('Moving a mark is done with either move_mark or ' .

'move_mark_by_name.');

// Connect the printSelected method.

$buffer->connect('mark-set', 'printSelected');

6137ch08.qxd 3/14/06 2:12 PM Page 156

CHAPTER 8 ■ USING MULTIL INE TEXT 157

// How NOT to move the cursor to the beginning of the text.

echo "Move to start\n";

$buffer->move_mark_by_name('insert', $buffer->get_start_iter());

$buffer->move_mark_by_name('selection_bound', $buffer->get_start_iter());

// How NOT to select a range of text.

echo "Select range\n";

$buffer->move_mark_by_name('selection_bound', $buffer->get_iter_at_offset(7));

$buffer->move_mark_by_name('insert', $buffer->get_iter_at_offset(16));

?>

Notice in Listing 8-1 that the selection_bound and insert markers are moved separately.
The connection to the printSelected method gives a clue as to why moving the two marks
separately is not such a good idea. Each time move_mark_by_name is called, a mark-set signal is
fired, and the printSelected function is called. The following is the output of Listing 8-1.
Notice that there are twice as many lines as you would expect. This is because the callback is
called when each mark is moved.

Move to start

SELECTION: Moving a mark is done with either move_mark or move_mark_by_name.

SELECTION:

Select Range

SELECTION:

SELECTION: a mark is

Instead of moving the two marks separately, it is better to move them at the same time. This
prevents the signal handler from being called twice. Using place_cursor and select_range
moves both the insert and selection_bound marks at the same time, as shown in Listing 8-2.

Listing 8-2. The Right Way to Move insert and selection_bound in a GtkTextBuffer

<?php

function printSelected($buffer, $iter, $mark)

{

// Get the mark that wasn't moved.

if ($mark == $buffer->get_mark('insert')) {

$mark2 = $buffer->get_mark('selection_bound');

} else {

$mark2 = $buffer->get_mark('insert');

}

// Get the iter at the other mark.

$iter2 = $buffer->get_iter_at_offset(0);

$buffer->get_iter_at_mark($iter2, $mark2);

// Print the text between the two iters.

echo 'SELECTION: ' . $buffer->get_text($iter, $iter2) . "\n";

}

6137ch08.qxd 3/14/06 2:12 PM Page 157

CHAPTER 8 ■ USING MULTIL INE TEXT158

// Create a GtkTextView.

$text = new GtkTextView();

// Get the buffer from the view.

$buffer = $text->get_buffer();

// Add some text.

$buffer->set_text('Moving a mark is done with either move_mark or ' .

'move_mark_by_name.');

// Connect the printSelected method.

$buffer->connect('mark-set', 'printSelected');

// The better way to move the cursor to the beginning of the text.

echo "Move to start\n";

$buffer->place_cursor($buffer->get_start_iter());

// The better way to select a range of text.

echo "Select range\n";

$buffer->select_range($buffer->get_iter_at_offset(7),

$buffer->get_iter_at_offset(16));

?>

This example uses place_cursor to move the selection_bound and insert markers to the
same place simultaneously. At the end of Listing 8-2, a range of text is selected. Instead of
moving the selection_bound and insert markers separately, select_range is used to move
both marks at once.

The following is the output from this listing. It is much more along the lines of what you
would expect. Notice that when the two marks are moved, no text is selected. The mark-set
signal is still fired, but only once. The same is true when select_range is called—mark-set is
fired only once instead of twice.

Move to start

SELECTION:

Select Range

SELECTION: a mark is

Iterators
Several of the methods that manipulate GtkTextMarks require the help of another object called
GtkTextIter, also known as an iterator. GtkTextIter is similar to GtkTextMark in that it is used
to mark a position in a text buffer. The main difference between the two objects is that text itera-
tors are not permanent. If the text in a buffer is changed, all of the iterators are no longer valid.
Unlike marks, which point to a location between two characters, iterators point to a specific byte
in a text buffer, or the beginning or end of the buffer. Iterators indicate where marks should be
created or moved.

The position of an iterator is defined by either an offset or an index. An offset is the number
of characters between a position and the start of the buffer. An index is the number of bytes

6137ch08.qxd 3/14/06 2:12 PM Page 158

CHAPTER 8 ■ USING MULTIL INE TEXT 159

between a position and the start of the buffer. If the buffer contains only ASCII characters, an
offset of 8 points to the same location has an index of 8. Text in PHP-GTK is represented using
the UTF-8 character set, which means that characters may be represented with two bytes.
Therefore, if a buffer consists of Unicode characters, an offset of 8 may point to a different
position than an index of 8.

Usually, offsets are used more than indexes, because an index can point to a position
between two bytes of one character. Manipulating text by indexes can be dangerous because
an iterator may be placed in between two bytes of a given character.

Creating Iterators
Just like marks, iterator objects are created by using GtkTextBuffer. GtkTextIter cannot be
instantiated directly, but instead must be returned from a GtkTextBuffer method. The two
most commonly used methods for getting iterator instances are get_iter_at_offset and
get_iter_at_mark. get_iter_at_offset expects an offset as the only argument and returns an
iterator that points to that offset. get_iter_at_mark returns an iterator at the given mark.

Two handy convenience methods are get_start_iter and get_end_iter, which return
iterators for the start and end of the buffer, respectively. The start and end of the buffer are
excellent reference points from which to start. Listing 8-3 shows several different ways to cre-
ate and access iterators.

Listing 8-3. Creating and Moving GtkTextIter Objects

<?php

// Create a GtkTextView.

$text = new GtkTextView();

// Get the buffer from the view.

$buffer = $text->get_buffer();

// Add some text.

$buffer->set_text('Moving a mark is done with either move_mark or ' .

'move_mark_by_name.');

// Get the fifth word from the buffer.

$iter = $buffer->get_start_iter();

$iter->forward_word_ends(5);

$iter2 = $buffer->get_iter_at_offset($iter->get_offset());

$iter->backward_word_start();

echo $buffer->get_text($iter, $iter2) . "\n";

// Get the second to last word.

$iter = $buffer->get_end_iter();

$iter->backward_word_starts(2);

$iter2 = $buffer->get_iter_at_offset($iter->get_offset());

$iter2->forward_word_end();

echo $buffer->get_text($iter, $iter2) . "\n";

6137ch08.qxd 3/14/06 2:12 PM Page 159

CHAPTER 8 ■ USING MULTIL INE TEXT160

// Figure out how many characters are between the third and sixth words.

$iter = $buffer->get_start_iter();

$iter->forward_word_ends(3);

$endThird = $iter->get_offset();

$iter->forward_word_ends(3);

echo 'There are ' . ($iter->get_offset() - $endThird) . ' ';

echo "characters between the third and sixth words.\n";

// Check to see if the end of the first sentence is the end of the buffer.

$iter = $buffer->get_start_iter();

$iter->forward_sentence_end();

if ($iter == $buffer->get_end_iter()) {

echo "The buffer only contains one sentence.\n";

} else {

echo "The buffer contains more than one sentence.\n";

}

// Count the words in the buffer.

$iter = $buffer->get_start_iter();

$count = 0;

while($iter->forward_word_end()) $count++;

echo 'There are ' . $count . " words in the buffer.\n";

?>

All of this iterator manipulation creates the following output:

done

by

There are 13 characters between the third and sixth words.

The buffer only contains one sentence.

There are 14 words in the buffer.

Aside from being used to define locations and ranges, iterators can return a lot of informa-
tion about the text. You can use iterators to determine if a location is at the beginning or end
of the buffer, a line, a sentence, or a word. The is_start and is_end methods return true if the
iterator represents the start or end of the buffer, respectively. The starts_line, starts_sentence,
and starts_word methods will return true if the iterator is at the start of a line, sentence, or
word. Corresponding methods called ends_line, ends_sentence, and ends_word return true if
the iterator points to the end of a line, sentence, or word.

If an iterator is not at the start or end of a word, then it is inside a word. You can test this by
using the inside_word method. A similar method called inside_sentence returns true if the
iterator is inside a sentence. The break between words and sentences is determined by Pango.

Moving Iterators
Iterators are not necessarily static. You can move them forward or backward by a given number
of characters using forward_chars and backward_chars. These two methods expect an integer
number of characters to move the iterator. If the iterator should be moved only one character

6137ch08.qxd 3/14/06 2:12 PM Page 160

CHAPTER 8 ■ USING MULTIL INE TEXT 161

in either direction, use forward_char and backward_char without any arguments. (Notice that
the latter two methods are missing an s on the end, indicating that they will move the iterator
only one character.)

To move the iterator to the next word in the buffer, you could use a loop to move the iterator
forward one character at a time and check if the iterator points to the start of a word at each
iteration. Fortunately, such a loop isn’t necessary. There is a much easier way to jump to the
next word. Not only can Pango be used to determine if an iterator points to the start or end of
a word, but it can also be used to navigate to a certain number of words from a given location.

The forward_word_ends method will move an iterator forward the given number of
word ends. Similar methods are available for moving forward by only one word, moving
backward by one or more words, and moving forward and backward by lines and sentences:
forward_word_end, backward_word_ends, forward_line_ends, backward_sentence_ends, and so
on. Moving forward always goes to the end of the unit of text. The methods for moving backward
always go to the start of a text unit. All of these methods return false if there is no next or pre-
vious line, sentence, word, or character; they return true if the iterator has moved. This makes
looping through a buffer easy.

Listing 8-3 shows several of these methods in action, including a loop that counts the
words in the buffer. Notice how even though an iterator is moved, it is still always possible to
get an iterator that points to the original location. This is because iterators are simply pointers
to a location. Changing the location that an iterator points to has no effect on the buffer itself.

Tags and Tag Tables
Tags allow buffer text to be marked up much like HTML. For instance, you can use tags to
change the background color of a block of text, make the text bold, adjust the spacing around
the text, and even prevent the user from editing the text. To apply formatting to a range of text
within a buffer, you use GtkTextTag, which is a GtkTextBuffer helper object.

Tags can also be used together on the same or overlapping ranges of text, meaning that
one tag can be used to make text bold, while another tag is used to make it red. When the two
tags overlap, the text affected by both tags will be bold and red.

To be used in a buffer, a tag must be a member of that buffer’s tag table. The GtkTextTagTable
object is designed to keep tags organized. Each buffer has a tag table, which can be shared
among buffers, and only tags from that table may be used in the buffer.

Creating Tags
You can create a tag in two ways. The first method involves instantiating GtkTextTag using the
new operator. The second involves returning a tag from the GtkTextBuffer method create_tag.
Both of these methods can take an optional string as the tag name, which you can use later to
reference the tag.

Tags have a large list of properties that you can set to modify the appearance of a range of
text. Table 8-1 shows the properties that can be set, as well as the property type and an example
of each.

6137ch08.qxd 3/14/06 2:12 PM Page 161

CHAPTER 8 ■ USING MULTIL INE TEXT162

Table 8-1. The Properties of GtkTextTag

Property Type Example

background string #FFFFFF

background-full-height boolean true

background-full-height-set boolean true

background-gdk GdkColor new GdkColor()

background-set boolean true

background-stipple GdkPixmap GdkPixmap::new_from_file()

background-stipple-set boolean true

direction GtkTextDirection Gtk::TEXT_DIR_LTR

editable boolean true

editable-set boolean true

family string Arial

family-set boolean true

font string Arial Bold 10

font-desc PangoFontDescription Pango::font_description_
from_string('Serif 15')

foreground string #0000FF

foreground-gdk GdkColor new GdkColor()

foreground-set boolean true

foreground-stipple GdkPixmap GdkPixmap::new_from_file()

foreground-stipple-set boolean true

indent integer 8

indent-set boolean true

invisible boolean true

invisible-set boolean true

justification GtkJustification Gtk::JUSTIFY_LEFT

justification-set boolean true

language string EN

language-set boolean true

left-margin integer 5

left-margin-set boolean true

paragraph-background string #FFFFFF

paragraph-background-gdk GdkColor new GdkColor()

paragraph-background-set boolean true

pixels-above-lines integer 4

pixels-above-lines-set boolean true

pixels-below-lines integer 4

pixels-below-lines-set boolean true

pixels-inside-wrap integer 4

6137ch08.qxd 3/14/06 2:12 PM Page 162

CHAPTER 8 ■ USING MULTIL INE TEXT 163

Property Type Example

pixels-inside-wrap-set boolean true

right-margin integer 4

right-margin-set boolean true

rise integer 4

rise-set boolean true

scale float 1.5

scale-set boolean true

size integer 2

size-points float 1.5

size-set boolean true

stretch PangoStretch Pango::STRETCH_NORMAL

stretch-set boolean true

strikethrough boolean true

strikethrough-set boolean true

style PangoStyle Pango::STYLE_ITALIC

style-set boolean true

tabs PangoTabArray new PangoTabArray(3)

tabs-set boolean true

underline PangoUnderline Pango::UNDERLINE_NONE

underline-set boolean true

variant PangoVariant Pango::VARIANT_SMALL_CAPS

variant-set boolean true

weight integer Pango::WEIGHT_BOLD

weight-set boolean true

wrap-mode GtkWrapMode Gtk::WRAP_WORD

wrap-mode-set boolean true

Listing 8-4 shows how to create and manipulate a GtkTextTag object.

Listing 8-4. Creating a GtkTextTag

<?php

// Create a named tag.

$tag = new GtkTextTag('red_italic');

// Set the foreground color.

$tag->set_property('foreground', '#FF0000');

// Set the style.

$tag->set_property('style', Pango::STYLE_ITALIC);

?>

6137ch08.qxd 3/14/06 2:12 PM Page 163

CHAPTER 8 ■ USING MULTIL INE TEXT164

First, a tag is created using the new operator. When created, the tag is given the name
red_italic. This will make referencing the tag easier down the road. Next, a few properties of
the tag are set using the set_property method. The foreground color of the tag is set to bright
red. When this tag is applied across a range of text, the text will be shown in red instead of
black. Lastly, the style property is set to Pango::STYLE_ITALIC. The text that the tag is applied
across will be made italic. Of course, nothing will happen until the tag is applied to a region of
text. But first, it needs to go in the text buffer’s tag table.

Adding Tags to the Tag Table
Before a tag can be used in a buffer, it must be added to the buffer’s tag table. A buffer’s tag
table is returned from the get_tag_table method. You add a tag to a table with the add method,
which expects the tag as the only argument.

The remove method will remove a tag from a table. A tag that is not part of a tag table is
pretty useless. If a tag is removed from one table, it should be added to another.

Tags that have a name can be retrieved from the tag table using the lookup method. lookup
will return the tag with the given name. Not all tags have names, however. Just as with marks,
creating tags on the fly is usually done anonymously.

Trying to locate an anonymous tag is a little more difficult. The foreach method of
GtkTextTagTable will loop through all of the tags in the table and pass each tag to a callback
method. The callback will be called once for every tag in the table. It is up to the function to
decide what to do with the tags. The example in Listing 8-5 uses foreach to locate all of the
tags that make text bold.

Listing 8-5. Finding Named and Anonymous GtkTextTag Objects

<?

function checkForBold($tag)

{

global $bold;

if ($tag->weight == Pango::WEIGHT_BOLD) {

$bold[] = $tag;

}

}

// Create an array to hold the bold tags.

$bold = array();

// Create a GtkTextView.

$text = new GtkTextView();

// Get the buffer from the view.

$buffer = $text->get_buffer();

6137ch08.qxd 3/14/06 2:12 PM Page 164

CHAPTER 8 ■ USING MULTIL INE TEXT 165

// Add some text.

$buffer->set_text('Moving a mark is done with either move_mark or ' .

'move_mark_by_name.');

// Get the buffer's tag table.

$table = $buffer->get_tag_table();

// Create a new tag and set some properties.

$tag = new GtkTextTag();

$tag->set_property('foreground', 'red');

$tag->set_property('background', 'gray');

// Add the tag to the table.

$table->add($tag);

// Create a new tag and set some properties.

$tag = new GtkTextTag();

$tag->set_property('weight', Pango::WEIGHT_BOLD);

// Add the tag to the table.

$table->add($tag);

// Create a new tag and set some properties.

$tag = new GtkTextTag();

$tag->set_property('foreground', 'blue');

$tag->set_property('weight', Pango::WEIGHT_NORMAL);

// Add the tag to the table.

$table->add($tag);

// Create a new tag and set some properties.

$tag = new GtkTextTag();

$tag->set_property('font', 'Arial Bold 10');

// Add the tag to the table.

$table->add($tag);

// Call checkForBold on all tags in the table.

$table->foreach('checkForBold');

var_dump($bold);

?>

In this simple example, four tags are created and added to the tag table. Then the
checkForBold method is passed to foreach. The checkForBold tag checks the tag’s weight
property. If the weight is set to Pango::WEIGHT_BOLD, the tag is added to a global array called
bold. While the tags in the bold array still don’t have names, they are much easier to access.

6137ch08.qxd 3/14/06 2:12 PM Page 165

CHAPTER 8 ■ USING MULTIL INE TEXT166

Applying and Removing Tags
After a GtkTextTag has been created and added to a GtkTextTagTable, the tag can be applied to
a region of text. Applying tags is the responsibility of GtkTextBuffer.

There are two methods for applying tags: apply_tag and apply_tag_by_name. Both methods
have the same effect, but as apply_tag_by_name implies, this method uses a tag name instead
of the tag itself. Tags are applied over a range of text identified by two GtkTextIters. The second
argument to apply_tag or apply_tag_by_name is the iterator that indicates where the tag’s effects
begin. The third argument is an iterator that identifies where the tag’s effects will stop.

Because one tag may be applied to several ranges of text, removing a tag also requires
starting and ending iterators. The syntax for remove_tag and remove_tag_by_name is the same
as add_tag and add_tag_by_name. Removing a tag from the buffer simply means that it will no
longer have an effect over the given range of text. The tag will still be part of the buffer’s tag
table and will still work across any other ranges to which it has been applied.

■Tip To remove all tags from a given range in a buffer, use remove_all_tags. remove_all_tags takes
two iterators and removes all of the tags that have been applied to the text between them.

As stated earlier, you can apply multiple tags to a given range of text. This can be somewhat
problematic when two tags define conflicting values. To help alleviate this problem, you can
give tags priority. Each tag in a table has its own unique priority level. Tags with a higher priority
will take precedence over tags with lower priority when the same attribute is set by both over
the same range of text. No two tags can ever have the same priority in the same tag table, so only
one value will be set for a given range. You can determine the priority level of a tag by using the
get_priority method. To set the priority, use the set_priority method. Priorities are measured
as integers. A tag with a priority of 5 will take precedence over a tag with a priority of 3. The fol-
lowing line is a quick and easy way to make sure that one tag has a higher priority than another.

$tag1->set_priority($tag2->get_priority() + 1);

Text Buffers
Text editing has two main parts: the widget for display and the text itself. The text is contained
in an object called GtkTextBuffer.

The buffer is a manager; its main task is to keep the tags, marks, and iterators organized.
The text buffer inserts objects or other text into the current text block, or removes objects or
text from the current text block. Part of this job also entails returning information about the
objects or pieces of text that make up the buffer. So far, you have seen many of the ways that
GtkTextBuffer can be used to manipulate iterators, marks, and tags. This section will focus on
using GtkTextBuffer to modify a block of text.

6137ch08.qxd 3/14/06 2:12 PM Page 166

CHAPTER 8 ■ USING MULTIL INE TEXT 167

Creating Text Buffers
Text buffers are similar to the tree models that are used with GtkComboBox and GtkEntryCompletion.
Text buffers are simply the data behind a view component. It doesn’t make much sense to talk
about text buffers without an associated GtkTextView. That is why most of the time, a text buffer
isn’t instantiated directly. Instead, it is created automatically when GtkTextView is instantiated.

While it is perfectly acceptable to create a GtkTextBuffer with new GtkTextBuffer, it is usu-
ally easier to grab the buffer that is created when the GtkTextView object is created. The buffer
can be retrieved using the get_buffer method of GtkTextView. If a buffer is created with the
new operator, it must be added to a view before it can be useful. Buffers returned from get_buffer
are already associated with a GtkTextView.

Adding Text to a Buffer
Once the buffer has been created, the next thing you are likely to do is try to add some text.
Inserting or deleting text requires the help of at least one iterator or mark. The buffer cannot
be manipulated unless it knows where the modifications are supposed to take place.

The most common place text will be inserted is at the cursor. The cursor is just another
name for the insert mark. You can add text at the current cursor position with insert_at_cursor,
which expects a string of text as the only argument. The string will be inserted into the buffer
at the location of the insert marker. After the text is inserted, the insert mark will be to the
right of the last character inserted, because the insert mark has right gravity.

If you need to insert a block of text at a location other than the insert mark, use the insert
method. The insert method is similar to insert_at_cursor, except it doesn’t have a location
automatically defined. You must give the location of the insertion using a GtkTextIter. The itera-
tor must be the first argument, followed by the text string and the optional length of the string.
This line of code will insert the string "Howdy" after the fifth character of a buffer:

$buffer->insert($buffer->get_iter_at_offset(5), "Howdy", -1);

■Note Moving the cursor was discussed in the “Moving Marks” section of this chapter. Refer to Listing 8-2
for a quick refresher in using place_cursor.

You can also insert text and apply tags to it at the same time. insert_with_tags, just like
insert, expects an iterator and a string of text. However, insert_with_tags can take a variable-
length list of tags as optional parameters. The tags will be applied across the text that is inserted.
If tags are passed to insert_with_tags, pass -1 as the third argument to hold the place of the
length parameter. If you know the names of the tags that should be applied, add the tags using
insert_with_tags_by_name, which works just like insert_with_tags but expects names instead
of GtkTextTag instances.

6137ch08.qxd 3/14/06 2:12 PM Page 167

CHAPTER 8 ■ USING MULTIL INE TEXT168

Removing Text from a Buffer
You can also remove text from the buffer. Removing text requires the help of two iterators. The
first iterator indicates the first character to be removed, and the second iterator points to the
last character to be removed. All of the characters between the two iterators will also be removed
from the buffer. The two iterators must be passed to the delete method. It doesn’t matter if the
second iterator comes before the first. The underlying GTK method that manipulates the buffer
is smart enough to reorder the iterators.

You may want to delete the entire contents of a buffer and replace them with something
else. Instead of using delete followed by insert, you can do this in one shot by using set_text.
The set_text method clears the buffer and inserts the text passed as the only argument. In
Listing 8-6, text is inserted into a buffer and then more text is inserted with some tags. After
that, the first word is removed.

Listing 8-6. Modifying Text in a Buffer Using GtkTextTag

<?php

// Create a GtkTextView.

$text = new GtkTextView();

// Get the buffer from the view.

$buffer = $text->get_buffer();

// Add some text.

$buffer->insert_at_cursor('Moving a mark is done with either ', -1);

// Create some tags.

$tag = new GtkTextTag();

$tag->foreground = 'red';

$tag2 = new GtkTextTag();

$tag2->weight = Pango::WEIGHT_BOLD;

// Add them to the tag table.

$table = $buffer->get_tag_table();

$table->add($tag);

$table->add($tag2);

// Insert some text as red and bold.

$buffer->insert_with_tags($buffer->get_end_iter(),

'move_mark or move_mark_by_name.', -1,

$tag, $tag2);

// Get an iter for the end of the first word.

$firstWord = $buffer->get_start_iter();

$firstWord->forward_word_end();

// Remove the first word.

$buffer->delete($buffer->get_start_iter(), $firstWord);

6137ch08.qxd 3/14/06 2:12 PM Page 168

CHAPTER 8 ■ USING MULTIL INE TEXT 169

$window = new GtkWindow();

$window->add($text);

$window->show_all();

gtk::main();

?>

Figure 8-2 shows the end result of Listing 8-6.

Copying and Pasting Text
Another way to modify a buffer is to copy and paste text. You can use insert_range to copy
a range or text and insert it at another point in the buffer. insert_range not only copies the
text, but it also brings the tags that have been applied to the text as well.

insert_range uses three iterators to copy and paste the text. The first denotes the location
where the text will be inserted. The next two denote the start and end points of the range that
will be copied.

Using insert_range, you can even copy text between two buffers. If the last two iterators
are both from another buffer, the text and tags from the second buffer will be copied to the
first buffer. Before text can be copied between two different buffers, the two buffers must use
the same tag table. This is because tags can be applied to a buffer only if they are in the buffer’s
tag table.

When a buffer is modified, all of the iterators from that buffer become invalid. It cannot
be reliably known that a buffer still points to the same place it did before the buffer was modi-
fied, so to be safe, GTK invalidates all outstanding iterators every time the buffer changes.
Some methods, such as insert and remove, automatically regrab the iterators so it appears as
though they are still valid, but the iterators are actually new.

GtkTextBuffer keeps track of whether or not the text has been edited using get_modified
and set_modified. Any time the buffer is modified, set_modified is automatically called and
passed true. When the text buffer is saved to disk or reaches some known stable state, the
code should pass false to set_modified.

Text Views
The final piece of the multiline text puzzle is GtkTextView. GtkTextView is a widget specially
designed to display a GtkTextBuffer. GtkTextView not only shows a buffer, but also allows the
user to modify the buffer.

Using Multiple Views with a Single Buffer
One text view may show only one text buffer, but the same buffer may be shown by multiple
views. If one buffer is shared by two views, changes made in one view are immediately shown

Figure 8-2. Text in a buffer with tags applied

6137ch08.qxd 3/14/06 2:12 PM Page 169

in the other. You have already seen how to get a buffer using get_buffer. If a buffer was cre-
ated from another view or using the new operator, you can add the buffer to a GtkTextView

using set_buffer.
Why would anyone need to call set_buffer if all views come with a buffer already? Well,

for starters, it is easier to swap out buffers than it is to swap GtkTextView widgets. Also, multiple
views can show the same buffer. Instead of maintaining a block of text in two separate places, it
can be held in one buffer and shown in two places. Listing 8-7 offers a short example of one
buffer being shown (and possibly edited) in two views.

Listing 8-7. Showing a Buffer in Two Views

<?php

// Create two GtkTextViews.

$text = new GtkTextView();

$text2 = new GtkTextView();

// Get the buffer from the view.

$buffer = $text->get_buffer();

// Set the buffer as the buffer for the second view.

$text2->set_buffer($buffer);

// Add some text.

$buffer->insert_at_cursor('Moving a mark is done with either ' .

'move_mark or move_mark_by_name.', -1);

// Create a window and a box.

$window = new GtkWindow();

$vBox = new GtkVBox();

// Add the text views.

$window->add($vBox);

$vBox->pack_start($text);

$vBox->pack_start($text2);

// Show the application.

$window->show_all();

gtk::main();

?>

Figure 8-3 shows this code in action.

CHAPTER 8 ■ USING MULTIL INE TEXT170

Figure 8-3. One buffer in two views

6137ch08.qxd 3/14/06 2:12 PM Page 170

CHAPTER 8 ■ USING MULTIL INE TEXT 171

■Tip Showing a buffer in two places may allow the buffer to be edited in two places, depending on the
setup of each GtkTextView. Try running Listing 8-7 and editing the text in either of the views. Notice how
editing one causes the text in the other to change.

Scrolling in a View
The role of GtkTextView is to display a buffer. This includes showing particular parts of the
buffer and setting the display properties. Sometimes, the buffer will be too large to fit in the
view. This means that not all of the buffer will be shown at one time. The text in the view can
be scrolled so that a given mark or iterator is visible.

scroll_to_mark moves the text so that the given mark is on the screen. The mark is not
the only argument to scroll_to_mark. The second argument is an imaginary margin that will
be applied to the text view. The margin is a percentage of the screen by which the edges will be
moved toward the center. A value of 0 means that the margins will be at the edges of the text
view. A value of 0.5 (or 50 percent of the height and width) means that the view will have an
effective size of zero. If the margin is set to 0.5, the mark will be scrolled to the center of the
view. The third argument to scroll_to_mark tells the method whether or not to pay attention
to the next two arguments. If the third argument is false, the fourth and fifth arguments are
ignored. If it is true, then the fourth and fifth arguments dictate where within the available
space the mark will be scrolled to. The scroll_to_iter method works just like scroll_to_mark,
but it expects the first argument to be an iterator instead of a mark.

Setting the Buffer Appearance and Editability
The other responsibility of GtkTextView is to control how the buffer is shown and how the
buffer appears and how the user interacts with it.

You can set a view’s default margins with set_left_margin and set_right_margin. Both
methods expect the size of the margins in pixels. Tags in a buffer can override these margins.

Another way to set how the buffer appears is to set the default justification for a view.
set_justification expects a justification type and can also be overridden by a buffer’s tags.

Whether or not a buffer in a given view can even be edited is controlled by set_editable.
Passing false prevents the user from editing the buffer in the view that calls set_editable.
set_overwrite can be used to make all user edits overwrite text instead of inserting it when
modifying a buffer.

All of these attributes are set on a view level. A buffer that is shared among multiple views
may look and act differently, depending on the settings for each view that shows the buffer.

Putting It All Together
Finally, all of the pieces are in place for the Crisscott PIMS application to make use of multiline
text. One tool that will use GtkTextView is the news article tool, which shows news and update
messages. The messages come into the application via an RSS feed. The headlines are displayed
in the News frame on the left side of the application. When a user clicks a headline, the body
of the message is shown in the News Story tab of the main application notebook. This tool is
primarily used for displaying multiline text.

6137ch08.qxd 3/14/06 2:12 PM Page 171

A tool that will allow the user to edit multiline text is the product editing tool. This tool allows
the user to update all of the information for a product, including the description. The description
can be more than one line of text, and therefore needs a GtkTextView to be edited properly.

A Multiline Text Display Tool
First, let’s look at the News Story tab. Listing 8-8 shows the code for this tab.

Listing 8-8. The News Article Tool

<?php

class Crisscott_Tools_NewsArticle extends GtkVBox {

public $headline;

public $view;

public $buffer;

public function __construct($text = NULL)

{

// Call the parent constructor.

parent::__construct();

// Lay out the tool.

$this->_layout();

}

private function _layout()

{

// Create a label for the headline.

$this->headline = new GtkLabel();

// Create a view for the article.

$this->view = new GtkTextView();

// Get the buffer from the view.

$this->buffer = $this->view->get_buffer();

// Get a tag for making text bold and dark blue.

$this->tag = new GtkTextTag();

// Set the tag properties

// Make the tag part of the buffers tag table.

$tagTable = $this->buffer->get_tag_table();

$tagTable->add($this->tag);

// The text in this view should not be editable.

$this->view->set_editable(false);

CHAPTER 8 ■ USING MULTIL INE TEXT172

6137ch08.qxd 3/14/06 2:12 PM Page 172

CHAPTER 8 ■ USING MULTIL INE TEXT 173

// Since the users can't edit the text, there is not point in

// letting them see the cursor.

$this->view->set_cursor_visible(false);

// Pack everything together.

$this->pack_start($this->headline, false, false, 5);

$this->pack_start($this->view);

}

public function setArticle($headline, $text)

{

// Set the headline.

$this->setHeadline($headline);

// Set the body.

$this->setBody($text);

}

public function setHeadline($headline)

{

// Add some markup to make the headline appear like

// a headline.

$headline = '' . $headline;

$headline.= '';

// Set the text of the headline label.

$this->headline->set_text($headline);

// Make sure the headline is set to use the markup that was added.

$this->headline->set_use_markup(true);

}

public function setBody($body)

{

// Do some special formatting of any instances of

// Crisscott found in the article body.

$lastCrisscott = 0;

while ($pos = strpos($body, 'Crisscott', $lastCrisscott)) {

$wordStart = $this->buffer->get_iter_at_offset($pos);

$wordEnd = $this->buffer->get_iter_at_offset($pos);

$wordEnd->forward_word_end();

// Apply the tag.

$this->buffer->apply_tag($this->tag, $wordStart, $wordEnd);

// Update the strpos offset.

$lastCrisscott = $pos;

}

6137ch08.qxd 3/14/06 2:12 PM Page 173

Figure 8-4. The news article tool in action

// Set the article text in the buffer.

$this->buffer->set_text($body);

}

}

?>

This tab displays two pieces of information: the headline and the story body. The two
parts are packed together in a GtkVbox. The headline is shown at the top of the tool, where you
would expect a headline to be. The headline is a GtkLabel because a headline is just one line.
When the headline text is set using setHeadline, it is wrapped in Pango markup. This markup
will make the headline appear larger and bolder than the article.

The body of the story is a combination of a GtkTextView and a GtkTextBuffer. The _layout
method creates all the pieces of this tool. First, the label for the headline is created. Next, the
GtkTextView is created and the buffer is grabbed from the view using get_buffer. A tag is also cre-
ated for later use. This tag is set to make text appear bold and dark blue. This tag will be used as a sort
of marketing tool. Anytime that “Crisscott” appears in the article body, the tag will be applied. The
last step of the _layout method is to make the sure that the user cannot edit the article body. This
is done by passing false to set_editable. No matter what text is applied to the buffer, the view will
not allow it to be edited by the user. Since the text in the view cannot be edited, there is little point
in letting the user see the cursor. The cursor is turned off by passing false to set_cursor_visible.

Figure 8-4 shows what the application looks like with an article in place.

CHAPTER 8 ■ USING MULTIL INE TEXT174

6137ch08.qxd 3/14/06 2:12 PM Page 174

CHAPTER 8 ■ USING MULTIL INE TEXT 175

A Text-Editing Tool
Most of the product editing tool (ProductEdit) is built of GtkLabel, GtkEntry, GtkSpinButton,
and GtkComboBox widgets, but the product description cannot be properly edited with these
tools. The product description needs a GtkTextView in order to allow the user to edit multiple
lines of text. The difference between this text view and the news article tool is that this view is
to be used for editing a buffer. The text within this view can be changed and saved.

Listing 8-9 shows a slightly abbreviated version of the ProductEdit tool. The repetitive
building of all the labels, entries, and combo boxes has been removed to make the code related
to GtkTextView easier to follow.

Listing 8-9. Setting Up a GtkTextView for Editing a Buffer

<?php

class Crisscott_Tools_ProductEdit extends GtkTable {

// ...

public $descView;

//...

private function _layout()

{

// ...

// Create the description text view.

$this->descView = new GtkTextView();

// ...

// Set the size of the text view also.

$this->descView->set_size_request(300, 300);

// Force the text to wrap lines.

$this->descView->set_wrap_mode(Gtk::WRAP_WORD);

// ...

// Attach the description widgets.

$this->attachWithAlign($this->descLabel, 2, 3, 0, 1, Gtk::FILL, 0);

$this->attachWithAlign($this->descView, 2, 4, 1, 10, Gtk::FILL, 0);

// Attach the buttons.

$this->attachWithAlign($reset, 0, 1, 10, 11, Gtk::FILL, 0);

$this->attachWithAlign($save, 3, 4, 10, 11, Gtk::FILL, 0);

}

6137ch08.qxd 3/14/06 2:12 PM Page 175

/**

* Attaches a widget to the table inside a GtkAlignment.

*

* This method makes it easy to left align items within a table.

* Simply call this method as you would call attach.

*/

public function attachWithAlign($widget, $row1, $row2, $col1, $col2, $xEF, $yEF)

{

$align = new GtkAlignment(0,0,0,.5);

$align->add($widget);

$this->attach($align, $row1, $row2, $col1, $col2, $xEF, $yEF);

}

// ...

public function resetProduct()

{

// ...

// Set the description buffer text.

$buffer = $this->descView->get_buffer();

$buffer->set_text($this->product->description, -1);

}

// ...

public function saveProduct()

{

// ...

// Get the description from the buffer.

$this->product->description = $this->descView->get_buffer()->get_text();

// ...

// Try to save the data.

if ($this->product->save()) {

// Mark the buffer as saved.

$this->descView->get_buffer()->set_modified(false);

} else {

return false;

}

}

}

?>

The text view in the ProductEdit tool is created in the _layout method. Only the view is
stored as a member variable because the buffer can be accessed when needed using get_buffer.

CHAPTER 8 ■ USING MULTIL INE TEXT176

6137ch08.qxd 3/14/06 2:12 PM Page 176

CHAPTER 8 ■ USING MULTIL INE TEXT 177

The view is sized to 300 pixels square using set_size_request to give the user enough space to
type a fairly lengthy description.

Immediately after the text view is sized, the wrap mode is set. The wrap mode determines
how the view reacts when the buffer contains more text than can be shown on one line. In this
example, the wrap mode is set to Gtk::WRAP_WORD. This means that text will be broken between
words and wrapped to the next line. Other options are Gtk::WRAP_NONE, which means the text
will not wrap; Gtk::WRAP_CHAR, which breaks the text characters; and Gtk::WRAP_WORD_CHAR, which
will first try to break the text between words and then characters if needed.

After the view is set up, it is added to the GtkTable that lays out the tool. Because of the
text view’s size, it is set to span several rows and columns.

The resetProduct method of the ProductEdit tool is used to set the values of all the data-
collection widgets in the tool. The values are taken from the current product.

The last two lines of this method set up the text view. The second-to-last line grabs the
buffer from the view. The last line sets the text in the buffer using set_text. Any text that was
previously set in the buffer is erased when the new text is set.

The last method in this example that deals directly with the text view is saveProduct. This
method is the opposite of resetProduct. The description of the current product is set by calling
get_text on the text view’s buffer.

After all of the product attributes are set, the new data is validated. If any of the product
attributes don’t validate, the labels for those attributes are highlighted using Pango markup. If
all of the product attributes validate, the product data is saved. If the data is saved properly,
the buffer is marked as unmodified. This is done by passing false to set_modified. The end
result of all this code is shown in Figure 8-5.

Figure 8-5. The ProductEdit tool

6137ch08.qxd 3/14/06 2:12 PM Page 177

CHAPTER 8 ■ USING MULTIL INE TEXT178

Summary
Multiline text is a powerful tool, not only for displaying large amounts of text, but also for
collecting large amounts of data from the user. Using multiline text can be simple or rather
complex. If plain black text is all you need, you can easily set up a GtkTextView with a buffer. If
the text needs to be formatted or modified, GtkTextIter, GtkTextMark, and GtkTextTag allow that
to happen. All of these widgets and objects make for a well-designed and specialized tool set.

Text is not the only type of data that comes in large quantities. There are other types of large
data sets, such as arrays and trees, that cannot be properly displayed with any of the tools seen
so far. In Chapter 9, we will look at how to display large amounts of data. We will look at using
trees and lists as the models behind several different ways to display data. Among the types of
data that our sample application will display are a list of news headlines and a sortable and
expandable list of products.

6137ch08.qxd 3/14/06 2:12 PM Page 178

Working with Trees and Lists

In the past two chapters, you’ve learned how to display and edit both small and large blocks
of text. Yet there is still another type of data that requires special handling: collections. Collec-
tions are made up of several elements grouped using data structures such as arrays, lists, and
trees. For a collection, you may need to show the relationship between individual elements,
sort the collection, and filter certain values. The tools that have been introduced so far cannot
easily fulfill these needs.

PHP-GTK handles collections of data in a manner similar to how it manages multiline
text. One group of objects organizes the data, while another concentrates on the display. This
allows you to show one set of data in multiple ways at the same time. Without this separation
of responsibility, each piece of the application that wanted to gather information from a data
set would have to create and manage its own instance of the data. Using models to manage the
data and views to handle the display allows for more flexibility with less code.

You can use several models to represent data. First, we will examine the unique uses of
each type of model. Then we will look at how to use these models to view the collection of data
depending on the needs of the application.

Models
Collections of data can be organized into trees. A tree is a set of data in which the elements
have a parent-child relationship. This relationship may be obvious as it is with a directory list-
ing, or it may be more subtle, such as an array. In a directory listing, a directory is a parent and
its files and subdirectories are its children. An array is really a list with multiple columns and
elements. A list is just a tree in which each element has at most one child.

Keeping track of this type of data is the responsibility of two types of models: GtkListStore
and GtkTreeStore. Each object represents data as a set of rows, where a row is one element in
the list or tree but may contain more than one value. This is because a model may have many
columns. Each column in a row represents one atomic piece of data. With both trees and lists,
data can be prepended, inserted, and appended to a collection. The difference is that elements
in trees may have children, but elements in lists cannot. The main objective of both models is
the same, but lists are less complex and therefore easier to work with.

179

C H A P T E R 9

■ ■ ■

6137ch09.qxd 3/14/06 2:14 PM Page 179

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS180

The GtkListStore Model
GtkListStore represents a tree of order one, meaning that each element has at most one child.
Restricting each element to having only one child makes managing the data a little easier than
when there are multiple children. Lists can put data only before or after another piece of data.
It is not possible for two pieces of data to occupy the same level in a list. This may sound like
a strange restriction to impose on a set of data, but it makes life easier. Lists are well suited as
the data behind widgets like GtkComboBox and GtkEntryCompletion, where one value should
follow another. In fact, in Chapter 7, we used a GtkListStore to populate both types of widgets.
Listing 9-1 shows the portion of GtkEntryCompletion example from Chapter 7 (Listing 7-6) that
creates a simple GtkListStore.

Listing 9-1. Creating a Simple GtkListStore

<?php

// ...

public static function createStateList()

{

// Create a new list store.

$listStore = new GtkListStore(GTK::TYPE_STRING);

// Get an iterator for appending a value.

$iter = $listStore->append();

// Append a value.

$listStore->set($iter, 0, 'Alabama');

// Get an iterator for appending a value.

$iter = $listStore->append();

// Append a value.

$listStore->set($iter, 0, 'Alaska');

// Get an iterator for appending a value.

$iter = $listStore->append();

// Append a value.

$listStore->set($iter, 0, 'Arizona');

// Get an iterator for appending a value.

$iter = $listStore->append();

// Append a value.

$listStore->set($iter, 0, 'Arkansas');

// Get an iterator for appending a value.

$iter = $listStore->append();

// Append a value.

$listStore->set($iter, 0, 'California');

// Get an iterator for appending a value.

$iter = $listStore->append();

// Append a value.

$listStore->set($iter, 0, 'Colorado');

// ...

6137ch09.qxd 3/14/06 2:14 PM Page 180

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 181

return $listStore;

}

// ...

?>

The first step is creating the list store, which represents the model in the Model-View-
Controller (MVC) design pattern. This is done in typical PHP fashion using the new operator.
In Listing 9-1, one argument is passed to the constructor. The constructor expects a variable list
of arguments. Each argument passed in corresponds to a column in the list. The value that is
passed for each column defines the expected data type for that column. It may seem odd to have
to explicitly give the column type in a loosely typed language, but keep in mind that PHP-GTK
is based on GTK+ which is written in C, a strictly typed language. Providing the data type helps
the view component determine the best way to show the data and keeps memory usage under
control.

There are many acceptable column types, but not all of them are relevant to PHP-GTK.
The following are the relevant values:

• Gtk::TYPE_BOOLEAN: For values that have only two states, such as on/off or true/false.

• Gtk::TYPE_LONG: For integers.

• Gtk::TYPE_DOUBLE: For floating-point values, like 1.234.

• Gtk::TYPE_STRING: For text values or values that should be treated like text, such as
“crissscott” or “321”.

• Gtk::TYPE_OBJECT: For objects that extend from GObject, like GtkObject or GtkButton.

• Gtk::TYPE_PHP_VALUE: For any PHP data type, including user-defined classes, arrays,
integers and even resource handles like those used for database connections.

■Note If a column is set to type Gtk::TYPE_OBJECT, the value in the column must be a descendant of
GObject. You may use your own custom classes only if they extend GObject or some descendant of that
class, such as GtkObject or GtkWidget.

Adding Data to a List
After you’ve created the list with all of its column types, the next task is to add data. First, you
add a row to the list, and then you set the data for the row.

After a row is added, the position of the new row is identified by an iterator. This type of itera-
tor is similar to the iterator described in Chapter 8 (GtkTextIter) in that it identifies a location.
In this case, the iterator is an instance of GtkTreeIter. GtkTreeIter cannot be instantiated
directly using the new operator. GtkTreeIter has two methods: copy and free. The only method
you’re likely to call is copy. This method simply makes another instance of GtkTreeIter that
points to the same location.

6137ch09.qxd 3/14/06 2:14 PM Page 181

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS182

You can add rows to the list by using the following methods:

• append: Adds a new row to the end of the list, as in Listing 9-1. The return value is an
iterator that points to the newly added row.

• prepend: Puts the new row at the beginning of the list. prepend also returns an iterator
pointing to the new row.

• insert: Allows you to insert data into a list at an arbitrary position. insert takes a list
position and returns an iterator that points to that position.

The iterators returned from these three methods can then be used to set the new row’s
data. Listing 9-2 presents code similar to the previous listing, but uses prepend and insert in
addition to append.

Listing 9-2. Another Example of Creating a GtkListStore

<?php

// Create a list store.

$listStore = new GtkListStore(Gtk::TYPE_STRING, Gtk::TYPE_LONG, Gtk::TYPE_DOUBLE);

// Add some product data.

$iter = $listStore->append();

$listStore->set($iter, 0, 'Crisscott T-Shirts', 1, 10, 2, 19.95);

$iter = $listStore->prepend();

$listStore->set($iter, 0, 'PHP-GTK Bumper Stickers', 1, 37, 2, 1.99);

$iter = $listStore->prepend();

$listStore->set($iter, 0, 'Pro PHP-GTK', 1, 23, 2, 44.95);

$iter = $listStore->insert(2);

$listStore->set($iter, 0, 'Crisscott Pencils', 2, .99, 1, 18);

// Create a view to show the list.

$view = new GtkTreeView();

$view->set_model($listStore);

// Create a column for the product name.

$column = new GtkTreeViewColumn();

$column->set_title('Product Name');

$view->insert_column($column, 0);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 0);

// Create a column for the inventory quantity.

$column = new GtkTreeViewColumn();

$column->set_title('Inventory');

$view->insert_column($column, 1);

6137ch09.qxd 3/14/06 2:14 PM Page 182

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 183

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 1);

// Create a column for the price.

$column = new GtkTreeViewColumn();

$column->set_title('Price');

$view->insert_column($column, 2);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 2);

// Create a window and show everything.

$window = new GtkWindow();

$window->add($view);

$window->show_all();

$window->connect_simple('destroy', array('Gtk', 'main_quit'));Gtk::main();

?>

You then set the values of the row by using set, which expects an iterator as the first argu-
ment followed by one or more column-value pairs. In Listing 9-2, each call to append and
prepend is followed by a call to set. In this example, the list has three columns: one for a prod-
uct name, one for the current inventory, and one for the price. The types for the columns are
Gtk::TYPE_STRING, Gtk::TYPE_LONG, and Gtk::TYPE_DOUBLE, respectively.

In each call to set, the first argument is the iterator that identifies the row. The second
argument is 0. This means that the next argument passed in will be a value that should be put
in column 0 of the row pointed to by the iterator. The next argument is the value that will be
assigned to column 0 of the given row. The fourth argument defines the column in which the
data value passed as the fifth argument should be placed. The last two arguments follow the same
pattern. It doesn’t matter in which order the column numbers appear (as can be seen in the last
call to set), but each column number must be followed with some data. When executed,
Listing 9-2 produces Figure 9-1.

Figure 9-1. A list with three columns

6137ch09.qxd 3/14/06 2:14 PM Page 183

Rather than calling set after append, prepend, or insert, as in Listing 9-2, sometimes you can
pass the values for the row to these methods. You pass the column values as an array. Listing 9-3
produces the same result as the previous listing but is a little cleaner, making it easier to maintain.

Listing 9-3. Setting a Row Using append, prepend, and insert

<?php

// Create a list store.

$listStore = new GtkListStore(Gtk::TYPE_STRING, Gtk::TYPE_LONG, Gtk::TYPE_DOUBLE);

// Add some product data.

$listStore->append(array('Crisscott T-Shirts', 10, 19.95));

$listStore->prepend(array('PHP-GTK Bumper Stickers', 37, 1.99));

$listStore->prepend(array('Pro PHP-GTK', 23, 44.95));

$pencils = array('Crisscott Pencils', 18, .99);

$listStore->insert(2, $pencils);

// Create a view to show the list.

$view = new GtkTreeView();

$view->set_model($listStore);

// Create columns for each type of data.

$column = new GtkTreeViewColumn();

$column->set_title('Product Name');

$view->insert_column($column, 0);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 0);

// Create columns for each type of data.

$column = new GtkTreeViewColumn();

$column->set_title('Inventory');

$view->insert_column($column, 1);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 1);

// Create columns for each type of data.

$column = new GtkTreeViewColumn();

$column->set_title('Price');

$view->insert_column($column, 2);

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS184

6137ch09.qxd 3/14/06 2:14 PM Page 184

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 185

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 2);

// Create a window and show everything.

$window = new GtkWindow();

$window->add($view);

$window->show_all();

$window->connect_simple('destroy', array('Gtk', 'main_quit'));Gtk::main();

?>

You can create the column values array at the time of the call or, as is the case with the call
to insert in Listing 9-3, you can use an array that was already initialized somewhere else in the
code. When passing data in as an array, the order of the array is important. The indexes are used
to place the data in the proper column. The value with index 2 will be assigned to column 2.
The return value from these methods can still be valuable, even though data has already been
assigned. You can use the iterator returned to reference a particularly significant piece of data
or to overwrite the data later by using set.

The append, prepend, and insert methods are ideal if a row needs to be inserted into a specific
location in a list. However, sometimes you may need to add a row in a relative position. For
example, the list in Listing 9-3 has Crisscott T-Shirts and Crisscott Pencils. Let’s say that pencils
should always appear in the list right after T-shirts. With a small list such as this, it is easy to
manage the order, but with a larger list, it will be much more difficult to keep track of the ele-
ments’ order. This is where the insert_before and insert_after methods come in handy. Like
the insert method, these two methods add rows not based on an index, but rather on other
elements in the list. Each method takes an iterator as the first argument and an optional list of
row values as the second argument. The value is an iterator pointing to the new row. The row
for Crisscott Pencils could be added with code like this:

$shirts = $listStore->insert(3, array('Crisscott T-Shirts', 10, 19.95));

$pencils = $listStore->insert_after($shirts, array('Crisscott Pencils', 18, .99));

Keep in mind that lists are not static. Just because the pencil data was inserted after the
T-shirt data, it doesn’t have to stay there. New values can be added to the list, and existing
values can be removed or moved.

Removing Data from a List
Removing elements is easy. Simply pass an iterator pointing to the row that should be removed
to the remove method. After removing a row, the iterator passed to remove will be modified to
point to the next row in the list. If there are no more rows in the list, the iterator will be invali-
dated, which means that the iterator no longer points to an existing row.

You could test the iterator using iter_is_valid, but it’s a rather slow method. It may be
useful for debugging applications during the development process, but it is not recommended
for production code. Alternatively, you can simply check the return value of remove. If the
iterator can be pointed to the next row, remove will return true. If there are no more rows, remove
returns false.

6137ch09.qxd 3/14/06 2:14 PM Page 185

You can remove all of the rows from a list from a given point with an empty while loop,
like this:

while($listStore->remove($iter)) ;

To remove all rows from a GtkListStore, use the clear method.

Repositioning Rows
Moving rows that have already been added to a list is similar to inserting a row before or after
another row. When a row is moved, it goes to a position relative to another row. The methods
move_before and move_after each expect two iterators as arguments. The first iterator is the row
that should be moved. The row will be moved before or after the row identified by the second
iterator.

You can also swap rows. Passing two iterators to the swap method switches the position of
the two iterators.

Moving and swapping rows should be done with caution. It isn’t necessary to reorder rows
in a model to make them appear in a particular order on the screen. The view that shows a model
can sort the values and display them in a particular order without disturbing the underlying
model, as described in the “Model Sorting” section later in this chapter. Changing the order of
the rows in a GtkListStore will impact all of the views that show the list.

Getting a Value from a List
Now that the values in the list are set, the list can be displayed, as in Listing 9-3, or used as the
model behind a widget such as GtkComboBox. Eventually, the application will probably need to
get a value back from the list, such as when the user makes a selection.

To get a value back from the list requires the same information that was used to set the
value: an iterator and a column number. If the iterator returned from append, prepend, or insert
was captured, getting the value is straightforward. Simply call get_value and pass the iterator
followed by the column number. The value in the given column of the row identified by the
iterator will be returned.

Searching a List
In some cases, it may be necessary to traverse the list looking for a particular value. You can
move through a list by using either the foreach method (not to be confused with the foreach
loop construct) or by grabbing the iterators one by one in a loop.

foreach is similar to array_walk. foreach takes a callback method and an optional array of
data. When foreach is called, each element in the list is passed to the callback method along
with the list, a path to the element, and the array of data, if it is given. The elements are passed
to the callback in a depth-first manner. As far as lists are concerned, depth-first means starting
from the first element and working toward the last. foreach will keep passing elements to the
callback until it returns true. A return value of true means that the callback has found what it
is looking for and there is no point in processing the rest of the list elements. If the callback
returns false, or some value that evaluates to false such as zero, the callback will be called
again and passed the next element in the list. If the callback is designed to process all elements
of a list, it should never return true.

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS186

6137ch09.qxd 3/14/06 2:14 PM Page 186

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 187

Listing 9-4 shows how to use foreach to find all of the products that should probably be
reordered soon. foreach is called and given the checkInventory function as the callback. The
checkInventory function looks at the value of the second column for the given row. If the quan-
tity in stock is less than 15, the item is reordered. Notice that regardless of whether or not the
item needs to be reordered, the checkInventory method returns false.

Listing 9-4. Checking the Values of All Rows in a List

<?php

function checkInventory($model, $path, $iter, $userData = null)

{

if ($model->get_value($iter, 1) < 15) {

echo 'Marking for reordering ' . $model->get_value($iter, 0) . "\r\n";

}

return false;

}

// Create a list store.

$listStore = new GtkListStore(Gtk::TYPE_STRING, Gtk::TYPE_LONG, Gtk::TYPE_DOUBLE);

// Add some product data.

$listStore->append(array('Crisscott T-Shirts', 10, 19.95));

$listStore->prepend(array('PHP-GTK Bumper Stickers', 37, 1.99));

$listStore->prepend(array('Pro PHP-GTK', 23, 44.95));

$pencils = array('Crisscott Pencils', 18, .99);

$listStore->insert(2, $pencils);

$listStore->foreach('checkInventory');

?>

Listing 9-4 is just an example of how to use the foreach method. Creating a list just to iterate
through the rows is pretty silly. The foreach method comes in handy when the data is already
stored in a GtkListStore. Why would the data already be in a list store? Well, it may be used for
display in some other part of the application, or the list may have been created by the user
through the application’s interface. The user may drag-and-drop product data from one piece
of the application to another.

The other way to move through a list is by grabbing the iterators one by one in a loop. Looping
through the iterators requires a starting point. The beginning of the list is a good place to start,
and getting the first iterator is pretty easy—just use get_iter_first. Once the first iterator is
found, getting the next iterator in the list is a simple matter of calling iter_next. If there is no
next iterator in the list, iter_next will return false. You can use these two methods together to
move through a list one element at a time. The following for loop will move through a GtkListStore

one element at a time.

6137ch09.qxd 3/14/06 2:14 PM Page 187

for ($iter = $listStore->get_iter_first(), $continue = true;

$continue;

$continue = $listStore->iter_next($iter)

) {

// Do something to each element.

}

The GtkTreeStore Model
Data cannot always be properly represented as a list, because a list constrains each row of data
to be related to only two others: its predecessor and its successor. However, in some cases, one
row of data may have more than one child. Consider a family tree. A person will have one parent
row consisting of two columns (one for the mother and one for the father), but a person may have
one or more children. Each child in the list may also have one or more children. When this
relationship is mapped out, it begins to look like a tree with branches and leaves (rows with no
children). In PHP-GTK, a relationship of this nature is stored in an object called GtkTreeStore.

Adding Rows to a Tree
GtkTreeStore is very similar to GtkListStore. The main difference is that when a row is added
to a tree, a parent row can be given. The methods for adding rows to a tree are the same as those
for adding rows to a list. All of the GtkTreeStore methods take as the first argument an iterator
that points to the row that will become the new row’s parent. Listing 9-5 shows how to assign
a parent row when inserting data.

Listing 9-5. Adding Rows to a Tree

<?php

// Create a tree store.

$treeStore = new GtkTreeStore(Gtk::TYPE_STRING, Gtk::TYPE_LONG, Gtk::TYPE_DOUBLE);

// Add two top level rows.

// Capture the return value so that children can be added.

$csMerch = $treeStore->append(null, array('Crisscott', null, null));

$phpGtkMerch = $treeStore->append(null, array('PHP-GTK', null, null));

// Add a child row to csMerch.

// Again capture the return value so that children can be added.

$tShirts = $treeStore->append($csMerch, array('T-Shirts', 10, 19.95));

// Add three children to tShirts.

$treeStore->append($tShirts, array('Small', 3, 19.95));

$treeStore->append($tShirts, array('Medium', 5, 19.95));

$treeStore->append($tShirts, array('Large', 2, 19.95));

// Add another child to csMerch.

// Capture the return value so that children can be added.

$pencils = $treeStore->append($csMerch, array(' Pencils', 18, .99));

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS188

6137ch09.qxd 3/14/06 2:14 PM Page 188

Figure 9-2. Data represented with a GtkTreeStore

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 189

// Add two children to pencils

$treeStore->append($pencils, array('Blue', 9, .99));

$treeStore->append($pencils, array('White', 9, .99));

// Add two children to phpGtkMerch.

$treeStore->prepend($phpGtkMerch, array('PHP-GTK Bumper Stickers', 37, 1.99));

$treeStore->prepend($phpGtkMerch, array('Pro PHP-GTK', 23, 44.95));

// Continue building the view and showing the tree...

?>

Figure 9-2 shows the result of this listing.

Moving Through a Tree
Because trees can have multiple levels, moving through all of the rows can be a little more dif-
ficult than moving through list rows. Like GtkListStore, GtkTreeStore has a foreach method
that moves through the model in a depth-first manner. This means that instead of moving to
a row’s sibling, foreach will move to the row’s children. Only when there are no more descen-
dants will the original row’s sibling be passed to the callback.

You can easily move through a list with a for loop, but this isn’t as simple with a tree. The for
loop shown previously uses iter_next to get the next iterator in the list. With trees, iter_next
returns the next iterator at the current level. The next iterator at a given level is a sibling, not
a child. This means that iter_next will never return a row’s child. Therefore, it is not possible
to traverse the tree with this method. Instead, you must use a recursive function, such as the
one in Listing 9-6.

Listing 9-6. Traversing a Tree with a Recursive Function

<?php

function traverseTree($tree, $iter, $parent, $childNum)

{

6137ch09.qxd 3/14/06 2:14 PM Page 189

$dashes = '';

// Print two dashes for each level.

for($i = 0; $i < $tree->iter_depth($iter); ++$i) {

$dashes.= '--';

}

// Print out the value of the first column.

echo $dashes . ' ' . $tree->get_value($iter, 0) . "\n";

// Go to the children of this iterator.

if ($tree->iter_has_child($iter)) {

// The current iterator is the new parent.

$newParent = $iter->copy();

// Get the first child iterator.

$tree->iter_nth_child($iter, $newParent, 0);

// Call the function again.

traverseTree($tree, $iter, $newParent, 0);

} elseif ($childNum < $tree->iter_n_children($parent) - 1) {

// Go to the next child.

if ($tree->iter_nth_child($iter, $parent, $childNum + 1)) {

traverseTree($tree, $iter, $parent, $childNum + 1);

}

} elseif ($tree->iter_next($parent)) {

// Go to the parent's sibling.

traverseTree($tree, $parent, $iter, $childNum + 1);

} else {

// Get the parent of the parent.

if ($tree->iter_parent($iter, $parent)) {

// Go to the next iterator.

$tree->iter_next($iter);

// Go to that iterator's parent.

$tree->iter_parent($parent, $iter);

if ($tree->iter_is_valid($iter)) {

traverseTree($tree, $iter, $parent, $childNum);

}

}

}

}

?>

In Listing 9-6, the traverseTree function uses several of the GtkTreeStore methods to
determine if an iterator has children and to get the next child. iter_has_child takes an iterator
and returns true if the iterator has at least one child. iter_n_children returns the number of
children for an iterator. iter_nth_child returns the child of an iterator at position n. Finally,
iter_parent sets the first iterator passed to the parent of the second. As you can see, with trees,
using the foreach method is much easier than devising a for loop.

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS190

6137ch09.qxd 3/14/06 2:14 PM Page 190

Figure 9-3. One tree sorted two ways

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 191

Model Sorting
Trees and lists can be sorted to make data easier to find. Of course, you could sort the model
itself, but this would affect every view that shows the data. Sorting the model itself is also very
resource-intensive. Sorting just the view requires much less work, as it simply reorders a few
references.

Using GtkTreeModelSort allows you to wrap a model and sort the data. Wrapping the model
means that the underlying model can be shown in different ways without changing the original
data. For example, Figure 9-3 shows two views of the same data. The view on the left shows the
data sorted by the Product Name column in descending order, and the view on the right shows
the same data sorted by the Price column in ascending order. When sorting trees, the data is
sorted at each level. This means that each element of the tree is sorted against its sibling elements,
not its children.

Wrapping a model using GtkTreeModelSort is rather easy, consisting of two basic steps:

• Create an instance of GtkTreeModelSort using the new operator. GtkTreeModelSort
expects the model to be wrapped as the only argument.

• Set up the sort model so that it can be sorted. This means setting the column that should
be sorted and the order in which it should be sorted, using set_sort_column_id. This
method expects the column ID as the first argument and the sort type as the second.
The sort type must be either Gtk::SORT_ASCENDING or Gtk::SORT_DESCENDING.

Listing 9-7 shows the code that was used to create Figure 9-3. The relevant lines are shown
in bold.

Listing 9-7. Creating Two Sortable Trees from One Tree

<?php

// Build the tree....

6137ch09.qxd 3/14/06 2:14 PM Page 191

// Create one sortable tree.

$sortable = new GtkTreeModelSort($treeStore);

$sortable->set_sort_column_id(0, Gtk::SORT_DESCENDING);

// Create the other sortable tree.

$sortable2 = new GtkTreeModelSort($treeStore);

$sortable2->set_sort_column_id(2, Gtk::SORT_ASCENDING);

// Create a view to show the tree.

$view = new GtkTreeView();

$view->set_model($sortable);

// Create columns for each type of data.

$column = new GtkTreeViewColumn();

$column->set_title('Product Name');

$view->insert_column($column, 0);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 0);

// Create columns for each type of data.

$column = new GtkTreeViewColumn();

$column->set_title('Inventory');

$view->insert_column($column, 1);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 1);

// Create columns for each type of data.

$column = new GtkTreeViewColumn();

$column->set_title('Price');

$view->insert_column($column, 2);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 2);

// Create a view to show the tree.

$view2 = new GtkTreeView();

$view2->set_model($sortable2);

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS192

6137ch09.qxd 3/14/06 2:14 PM Page 192

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 193

// Create columns for each type of data.

$column = new GtkTreeViewColumn();

$column->set_title('Product Name');

$view2->insert_column($column, 0);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 0);

// Create columns for each type of data.

$column = new GtkTreeViewColumn();

$column->set_title('Inventory');

$view2->insert_column($column, 1);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 1);

// Create columns for each type of data.

$column = new GtkTreeViewColumn();

$column->set_title('Price');

$view2->insert_column($column, 2);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 2);

// Create a window and a box to show everything.

$window = new GtkWindow();

$hBox = new GtkHBox();

// Pack the two views into the box.

$window->add($hBox);

$hBox->pack_start($view);

$hBox->pack_start($view2);

$window->show_all();

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

Gtk::main();

?>

As you can see, creating a sortable tree is pretty easy once the original tree has been created.

6137ch09.qxd 3/14/06 2:14 PM Page 193

Model Filtering
Just as a model can be sorted before it is shown, so can it be filtered. Filtering a model hides
rows based on a column value or a callback. Filtering out rows is done in much the same way
as sorting them. Using GtkTreeModelFilter, you can wrap the model and hide rows. This
allows the model to be used in other places in the application without losing any of its data.

For example, you could use one model to represent all of the products in the database.
This model could be wrapped by a GtkTreeModelFilter in one piece of the application to show
only the items in stock, while in another piece of the application, the model could be wrapped
to filter out all but the most expensive product in each category. The same model could even
be sorted by price and then filtered to show only those products whose name begins with C.

Listing 9-8 filters a model based on a Boolean column.

Listing 9-8. Filtering a Model Using GtkTreeFilter

<?php

// Create a tree store.

$treeStore = new GtkTreeStore(Gtk::TYPE_STRING, Gtk::TYPE_LONG,

Gtk::TYPE_DOUBLE, Gtk::TYPE_BOOLEAN);

// Add some product data.

$csMerch = $treeStore->append(null, array('Crisscott', null, null, true));

$phpGtkMerch = $treeStore->append(null, array('PHP-GTK', null, null, false));

$tShirts = $treeStore->append($csMerch, array('T-Shirts', 10, 19.95, false));

$treeStore->append($tShirts, array('Small', 3, 19.95, true));

$treeStore->append($tShirts, array('Medium', 5, 19.95, true));

$treeStore->append($tShirts, array('Large', 2, 19.95, true));

$pencils = $treeStore->append($csMerch, array(' Pencils', 18, .99, true));

$treeStore->append($pencils, array('Blue', 9, .99, true));

$treeStore->append($pencils, array('White', 9, .99, true));

$treeStore->append($phpGtkMerch, array('PHP-GTK Bumper Stickers', 37, 1.99, true));

$treeStore->append($phpGtkMerch, array('Pro PHP-GTK', 23, 44.95, true));

// Get a filtered model.

$filtered = $treeStore->filter_new();

// Only show rows that have column three set to true.

$filtered->set_visible_column(3);

// Create a view to show the tree.

$view = new GtkTreeView();

$view->set_model($filtered);

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS194

6137ch09.qxd 3/14/06 2:14 PM Page 194

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 195

// Create columns for each type of data.

$column = new GtkTreeViewColumn();

$column->set_title('Product Name');

$view->insert_column($column, 0);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 0);

// Create columns for each type of data.

$column = new GtkTreeViewColumn();

$column->set_title('Inventory');

$view->insert_column($column, 1);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 1);

// Create columns for each type of data.

$column = new GtkTreeViewColumn();

$column->set_title('Price');

$view->insert_column($column, 2);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 2);

// Create a window and show everything.

$window = new GtkWindow();

$window->add($view);

$window->show_all();

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

Gtk::main();

?>

Figure 9-4 shows the result of this filtering.

6137ch09.qxd 3/14/06 2:14 PM Page 195

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS196

You can rewrap models wrapped by another filter or sort model. This multilayering allows
for incredible flexibility from a single data collection.

Views
In general, data is modeled using a GtkListStore or GtkTreeStore so that it can be shown in at
least one part of the application. You can show a model with many widgets. Some are designed
for specific purposes, like GtkComboBox and GtkEntryCompletion, but GtkTreeView is the widget
most often associated with a model.

GtkTreeView is a generic widget for showing a model and allowing a user to select a row.
Despite the name, a tree view is equally well suited for showing a list—after all, a list is really
just a simpler version of a tree. GtkTreeView can display any model, even one that has been
wrapped many times by a filter or a sort model. You can use multiple views for the same
model without disturbing the underlying data. This type of data reuse allows for incredible
flexibility within an application.

■Note PHP-GTK 1 had separate widgets for displaying lists and trees. PHP-GTK 2 has only one widget—
GtkTreeView. Because a list is really just a tree of one level, GtkTreeView can display lists and trees
equally well.

A GtkTreeView is the visual representation of a data model, but it cannot fulfill all of the
responsibility of displaying the data by itself. GtkTreeView requires the help of GtkTreeViewColumn
and GtkCellRenderer. These two classes break down the task of showing a model’s data to allow
even greater flexibility. GtkTreeViewColumn manages the display properties for a given column
in a model. GtkCellRenderer is a base class that is extended in many ways to show different
types of data within an individual cell of a row. Together, these three pieces provide an incredibly
versatile tool for displaying trees and lists. Let’s start at the bottom of the hierarchy and work
our way up.

Cell Renderers
Cells are the containers that hold individual pieces of data within a view. A cell is one column
within one row of a model. A cell renderer is the class that manages the display of a column or
a single piece of data.

Figure 9-4. A filtered model

6137ch09.qxd 3/14/06 2:14 PM Page 196

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 197

Before a column can be displayed, it must be assigned a cell renderer. Without the renderer,
there is no way to consistently show the data in the column. Cell renderers are used to format
numbers and align and color display values. They determine how the column’s values will be
shown.

Before a renderer can be applied, the type of renderer must be selected. Cell renderers
exist for text, progress bars, images, and toggle buttons. Each type of renderer shows its data in
a different way:

• GtkCellRendererText: Used for rendering text or values that should be treated like text,
such as monetary values.

• GtkCellRendererProgress: Used for graphically showing progress or percentage values.

• GtkCellRendererPixbuf: Used for displaying images.

• GtkCellRendererToggle: Used for showing on/off or true/false values.

Each type of cell renderer has a specific purpose, which can be easily inferred from its
name. GtkCellRendererText is the most commonly used renderer, but doesn’t always fit the
bill. If a value of a column should just be printed in the row, then a GtkCellRendererText is the
best fit for that column. However, if the value of a column represents whether or not a product
is available, for example, then a GtkCellRendererToggle works better.

Once you’ve specified the renderer type, you instantiate it using the new operator. That is
really all there is to do for cell renderers. The only renderer with methods that are likely to be
called in an application is GtkCellRendererToggle.

By default, GtkCellRendererToggle displays its value as a check box. You can change the
value display to a radio button by passing true to the set_radio method. You can also change
the value of the cell by using the set_active method. If set_active is passed true, the cell will
be toggled. This will change the value of the data in the model.

You can see examples of using GtkCellRendererText in Listings 9-2, 9-3, 9-7, and 9-8. For
an example of several different types of cell renderers in action, see Listing 9-9 (coming up
shortly).

View Columns
One level up from the cell renderer is the column. Whereas GtkCellRenderer determines how
data is shown in a cell, GtkTreeViewColumn determines how the cells are displayed within the
entire column. GtkTreeViewColumn is responsible for managing the column header in the view
and the display of the column in the model. It manages attributes such as the width of the col-
umn, whether or not the column is visible, and the spacing around cells.

Every column in a model that is to be shown in the view must have a GtkTreeViewColumn

associated with it. You create columns by using new GtkTreeViewColumn. After you instantiate
a column, you insert it into a view by using the insert_column method of GtkTreeView.

Setting the Column Header
One of the responsibilities of GtkTreeViewColumn is setting the header for the column. You set the
column title that will appear by using set_title. If you do not call set_title, the cell for the header
will be empty. A header block will still appear at the top of the column, but it will not have any text
in it. But note that whether or not the header appears at all is set by the view, not the column.

6137ch09.qxd 3/14/06 2:14 PM Page 197

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS198

The header doesn’t have to be a label; it can be any widget that you would like to use. If
you need to use something other than a simple label, call the set_widget method to set the
given widget as the column header. There are no restrictions on what type of widget you can
add as the header, but keep in mind what effect setting the widget as the header can have on
the usability of your application.

Setting the Column Display Properties
Another responsibility of GtkTreeViewColumn is setting the display properties for the column. The
most drastic attribute that can be set is the column’s visibility, controlled by using set_visible.
As you would expect, passing true to set_visible will make the column appear in the view,
and passing false will hide the column.

For example, you may want to allow users to click a column header to hide a column con-
taining data they are not particularly interested in at the moment. Listing 9-9 shows how to use
set_visible with the clicked signal. By default, set_clickable is false, so clicking a column
header has no effect. Passing true to set_clickable causes the column to emit the clicked
signal when a user clicks the header.

Listing 9-9. Controlling the Display Properties of a GtkTreeViewColumn

<?

function hideColumn($column)

{

// Toggle the visibility of the column.

$column->set_visible(!$column->get_visible());

}

// Create a tree store.

$treeStore = new GtkTreeStore(Gtk::TYPE_STRING, Gtk::TYPE_LONG, Gtk::TYPE_DOUBLE);

// Add some product data...

// Create a view to show the tree.

$view = new GtkTreeView();

$view->set_model($treeStore);

// Create columns for each type of data.

$column = new GtkTreeViewColumn();

$column->set_title('Product Name');

$view->insert_column($column, 0);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 0);

6137ch09.qxd 3/14/06 2:14 PM Page 198

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 199

// Make the column resizable by the user.

$column->set_resizable(true);

$column->set_sort_column_id(0);

// Create columns for each type of data.

$column2 = new GtkTreeViewColumn();

$column2->set_title('Inventory');

$view->insert_column($column2, 1);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererProgress();

$column2->pack_start($cell_renderer, true);

$column2->set_attributes($cell_renderer, 'value', 2);

// Make column2 resizable by the user.

$column2->set_resizable(true);

$column2->set_reorderable(true);

// Allow the user to hide the inventory column.

$column2->set_clickable(true);

$column2->connect('clicked', 'hideColumn');

$column->set_sort_column_id(0);

// Create columns for each type of data.

$column3 = new GtkTreeViewColumn();

$column3->set_title('Price');

$view->insert_column($column3, 2);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column3->pack_start($cell_renderer, true);

$column3->set_attributes($cell_renderer, 'text', 2);

// Allow the user to resize the column.

$column3->set_resizable(true);

$column3->set_reorderable(true);

$column3->set_sort_column_id(2);

// Create a window and show everything.

$window = new GtkWindow();

$window->add($view);

$window->show_all();

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

Gtk::main();

?>

6137ch09.qxd 3/14/06 2:14 PM Page 199

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS200

In Listing 9-9, the clicked signal is used to toggle the visibility of the column. Why is the
visibility toggled instead of just set to false? Good question. Once the column is hidden, the user
can’t click it again, so toggling the visibility doesn’t help the user that much. It does make life
easier on the application, though. Clicking the header isn’t the only way to emit the clicked
signal. It can also be emitted programmatically by using the clicked method, which will call
the signal handler connected to the clicked signal. For example, the application may have
a reset button that goes through all of the columns in a view and checks their current visibility.
If the column is hidden, the application could just call the clicked method to make the column
visible again.

Listing 9-9 also shows a few other GtkTreeViewColumn methods in action. The columns in
the view are set to automatically resize whenever the view of the model is changed. You can set
the sizing rules by using set_sizing. This method expects one of the following arguments:

• Gtk::TREE_VIEW_COLUMN_GROW_ONLY: The column will automatically widen to accommodate
the largest cell but will never shrink, even if the widest cell is hidden.

• Gtk::TREE_VIEW_COLUMN_AUTOSIZE: The column will automatically resize to fit the widest
cell in the column. This is the setting in Listing 9-9.

• Gtk::TREE_VIEW_COLUMN_FIXED: The column will not change size unless explicitly told to
do so by the user or the application.

The user can control the size of the column by dragging the outer edge of the column header.
Before the user can resize the column, however, the column must be configured properly. The
column will be resizable by the user if true is passed to the set_resizable method.

The application can control the size of a column with the help of several methods. You can
set the minimum and maximum width of the column by using set_min_width and set_max_width,
respectively. You can assign the column a fixed width by using set_fixed_width. Each of these
methods requires the number of pixels for the width of the column.

Figure 9-5. The product tree with the Inventory column hidden

Figure 9-5 shows the result of Listing 9-9 after the user has clicked the Inventory column
to hide it.

6137ch09.qxd 3/14/06 2:14 PM Page 200

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 201

■Caution If you set the sizing of a column to Gtk::TREE_VIEW_COLUMN_FIXED, make sure to set the size
using set_fixed_width. Otherwise, the column will have a fixed size of zero and will look like it was left
out of the view.

Another column attribute that is set in Listing 9-9 is the reorderable attribute. This property
of a GtkTreeViewColumn defines whether or not a user may reorder the columns by dragging the
column header before or after another column. By default, a user may not reorder the columns.
To allow this, pass true to set_reorderable. A reorderable column can be moved to any posi-
tion in a view. It may even bump columns that have not been made reorderable. There is no
way to prevent a user from moving a column to any particular position, but moving a column
will cause the view to emit the columns-changed signal. You can set up a view to move a column
out of a particular position when a column is moved, as explained in the “Setting GtkTreeView
Display Properties” section later in this chapter.

Reordering Rows
The GtkTreeViewColumn is also responsible for ordering rows. Because GtkListStore and
GtkTreeStore implement the GtkTreeSortable interface, columns are able to sort the model
without help from any other classes.

As you’ve seen, the default settings for a column restrict the user’s options pretty tightly.
The user cannot resize the column, hide a column, or reorder the columns. Nor can the user
sort the model by clicking the header.

Sorting by a particular column is an extremely useful feature, especially when a tree or list
is rather large. Setting up a column in the model to be sorted in the view is actually pretty easy.
All it takes is calling set_sort_column_id. This method expects a column number indicating on
which column the rows will be sorted. Allowing the user to sort the model by clicking the header
of a column requires the column to be clickable. Calling set_sort_column_id automatically
makes a column clickable. But be careful, as this can have unforeseen consequences, such as
allowing a column to be hidden.

■Note Sorting the data is just visual. The underlying model itself has not changed.

In Listing 9-9, each column is set to sort on itself. This is the most common way to sort
a column, although it is not required. Applications just tend to be easier to use when clicking
a column sorts the data by the values in that column. When a column is sorted, a triangle will
appear in the header for that column, indicating the direction that the data has been sorted.
A triangle pointing down indicates normal sort order, or ascending order. A triangle pointing
up indicates that the data has been sorted in reverse order. If you don’t want to show an indica-
tor when the rows are sorted by a particular column, simply pass false to set_sort_indicator.
Figure 9-6 shows the code in Listing 9-9 with the model sorted by price in reverse order and
with the Inventory column hidden.

6137ch09.qxd 3/14/06 2:14 PM Page 201

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS202

Note that a column that is hidden cannot sort a view of the model. In Listing 9-9, column
1 (the Inventory column) is set up so that clicking the header hides the column. Once the col-
umn is hidden, it will not sort the view of the model. The column can still be used to sort other
views of the model, but its values aren’t available to this view until it is shown again.

Adding Cell Renderers
All of the customizations that can be done to a column are basically meaningless unless the
column has at least one cell renderer associated with it. Remember that the cell renderer is the
class that decides how to show the data.

A column is a special type of container. It is designed to hold only GtkCellRenderer descen-
dants. It may seem odd at first, but a column may hold more than one cell renderer. This will
create two cells within each row of the column. This is helpful in cases where the same type of
data may be represented in different ways. For example, it may be helpful to show not only the
total number of a product sold, but also how that number relates to other products in the same
category. This would allow the user to see at a glance the popularity of a product.

You add cell renderers to a column using either pack_end or pack_start. These methods
are similar to the GtkVBox and GtkHBox methods of the same name (discussed in Chapter 6),
but they have only one optional parameter. This optional argument is a Boolean value that
controls whether or not the cell will expand to fill the column. Passing true means the cell
with take up as much room as possible; passing false means the cell will use only the space
needed.

After you’ve added a cell renderer to a column, the column must tell the cell renderer not
only where to get the data that should be used, but also what to use it for. This is done using
add_attribute or set_attributes. add_attribute takes a cell renderer, an attribute, and a col-
umn number. This method will tell the cell renderer to take the value from the given column
and use it as the value for the attribute. set_attributes, which has been used in earlier listings,
is a way to set many attributes at once. This method takes a cell renderer and one or more
attribute column pairs. An attribute column pair is an attribute name followed by the column
from which the value for that attribute should be taken.

Figure 9-6. Various adjustments to GtkTreeViewColumn display properties

6137ch09.qxd 3/14/06 2:14 PM Page 202

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 203

You can tell a cell renderer to get its display values by using a callback method.
set_cell_data_func sets a function or method that will be called before the cell is rendered.
The callback should set the cell properties. set_cell_data_func expects the cell renderer for
the column, followed by the callback and an optional array of other data that should be passed
to the callback. The callback should expect to be passed the column the cell renderer is in, the
cell renderer, the data model, an iterator pointing to the row being rendered, and the optional
user data.

In Listing 9-10, the first column’s cell renderer is told to use the value from the first column
as the value for the text attribute of the cell renderer. This is how the cells know to display the
title as the cell’s data. The other two columns are told to get their display values not from a spe-
cific column, but instead to use a callback method. The function percentageInventory is used
to set the value attribute of GtkCellRendererProgress renderer for column 1. The value that is
set is the relative inventory of the given product. This callback also changes another attribute
of the cell. If the inventory is below ten, the cell’s background color is set to red. This would be
useful to indicate to the user that a product might need to be reordered soon.

Listing 9-10. Using GtkCellRendererProgress and set_cell_data_func

<?php

function percentageInventory($column, $renderer, $model, $iter, $totalInventory)

{

// Get the inventory for the individual row.

$inventory = $model->get_value($iter, 1);

// Set the value property of the cell renderer.

$renderer->set_property('value', $inventory / $totalInventory * 100);

// Check to see if the inventory level is low.

if ($inventory < 10) {

// Make the cell background red.

$renderer->set_property('cell-background', '#F00');

} else {

$renderer->set_property('cell-background', 'white');

}

}

function formatPrice($column, $renderer, $model, $iter)

{

$price = $model->get_value($iter, 2);

$renderer->set_propperty('text', number_format($value, 2));

}

// Create a tree store.

$treeStore = new GtkTreeStore(Gtk::TYPE_STRING, Gtk::TYPE_LONG, Gtk::TYPE_DOUBLE);

// Add some product data.

$csMerch = $treeStore->append(null, array('Crisscott', null, null));

$phpGtkMerch = $treeStore->append(null, array('PHP-GTK', null, null));

6137ch09.qxd 3/14/06 2:14 PM Page 203

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS204

$tShirts = $treeStore->append($csMerch, array('T-Shirts', 10, 19.95));

$treeStore->append($tShirts, array('Small', 3, 19.95));

$treeStore->append($tShirts, array('Medium', 5, 19.95));

$treeStore->append($tShirts, array('Large', 2, 19.95));

$pencils = $treeStore->append($csMerch, array('Pencils', 18, .99));

$treeStore->append($pencils, array('Blue', 9, .99));

$treeStore->append($pencils, array('White', 9, .99));

$treeStore->append($phpGtkMerch, array('PHP-GTK Bumper Stickers', 37, 1.99));

$treeStore->append($phpGtkMerch, array('Pro PHP-GTK', 23, 44.95));

// Create a view to show the tree.

$view = new GtkTreeView();

$view->set_model($treeStore);

// Create columns for each type of data.

$column = new GtkTreeViewColumn();

$column->set_title('Product Name');

$view->insert_column($column, 0);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column->pack_start($cell_renderer, true);

$column->set_attributes($cell_renderer, 'text', 0);

// Make the column resizable by the user.

$column->set_resizable(true);

$column->set_sort_column_id(0);

// Create columns for each type of data.

$column2 = new GtkTreeViewColumn();

$column2->set_title('Inventory');

$view->insert_column($column2, 1);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererProgress();

$column2->pack_start($cell_renderer, true);

// Take greater control of how the data is displayed.

$column2->set_cell_data_func($cell_renderer, 'percentageInventory', 88);

// Allow the user to resize the column

$column2->set_resizable(true);

$column2->set_reorderable(true);

6137ch09.qxd 3/14/06 2:14 PM Page 204

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 205

Figure 9-7. Setting column display values

// Create columns for each type of data.

$column3 = new GtkTreeViewColumn();

$column3->set_title('Price');

$view->insert_column($column3, 2);

// Create a renderer for the column.

$cell_renderer = new GtkCellRendererText();

$column3->pack_start($cell_renderer, true);

$column3->set_cell_data_func($cell_renderer, 'formatPrice');

// Allow the user to resize the column.

$column3->set_resizable(true);

$column3->set_reorderable(true);

$column3->set_sort_column_id(2);

// Create a window and show everything.

$window = new GtkWindow();

$window->add($view);

$window->show_all();

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

Gtk::main();

?>

Figure 9-7 shows what effect this has on the cell.

You may have noticed in the figures shown so far that the value of the price displays with
far too many decimal places. This is because the GtkCellRendererText instance for the Price
column was left to translate the floating-point value of the price into a string all on its own. In
order to make the price value appear in a more common monetary format, the application
needs to take control by setting the cell’s display properties. Just as with the previous column,
set_cell_data_func is used to control how the data is displayed in the Price column. Instead
of generating new data based on a column value like percentageInventory, the formatPrice
callback simply reformats the data before it is set as the cell’s text attribute.

6137ch09.qxd 3/14/06 2:14 PM Page 205

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS206

Tree Views
Finally, we come to GtkTreeView. This is the first (and only) widget discussed in this chapter.
GtkTreeView is the class that puts everything together and makes the list or tree visible in the
application.

As with most things in PHP-GTK, GtkTreeView can be very simple to use, but it also allows
a great deal of flexibility. The primary role of GtkTreeView is to display a tree or list, but it can
also be used to control some of the display properties of the model and to allow the user to select
an item. While lists and trees are useful by themselves to model data, GtkTreeView makes them
usable by the application’s user.

Most of the listings you’ve seen so far have used GtkTreeView in a very simple way. A view
was instantiated using the new operator, and a model was set by calling set_model or the model
was passed on construction. Then a few columns were created and inserted into the view. This
basic usage should be pretty straightforward by now.

Two methods that you haven’t seen yet are append_column and remove_column, but there
isn’t anything mysterious about these methods. They both expect a column as the only argument
and do what their name suggests. (What is somewhat mysterious is that there is no method to
prepend a column.)

Setting GtkTreeView Display Properties
When it comes to displaying a model, GtkTreeView is king. GtkTreeViewColumn can set some
display properties such as the column header title and whether or not a header can be clicked
or reordered, but the view can override some settings and make others basically useless.

For starters, it doesn’t matter what settings a column has made for its header if the header
is not visible. The GtkTreeView method set_headers_visible will hide the headers altogether if
it is passed true.

Also, the view has the final say over the size of a column. It doesn’t matter what the column’s
sizing was set to if the view calls columns_autosize. This method forces all columns to adjust
their size to fit the widest cell.

Another column property that the view can control is the ability to reorder columns. Recall
that a column can be moved to another position in the view if set_reorderable is passed true.
The reality is that the column may be moved only if the view allows it, which it does by
default. But you can override this by using GtkTreeView’s set_reorderable method. If the
view’s set_reorderable method is passed false, any reordering the individual columns may
permit will be disallowed by the view.

Allowing the view to have control over the columns is more about convenience than any-
thing else. It is much easier to call one method on a view than to call one method for each of
the columns.

Navigating the Model
The whole point of creating a GtkTreeView is to allow the user to see a collection of data, but
sometimes the data may be too large or complex to show all at once in an understandable man-
ner. For this reason, by default, GtkTreeView starts with the rows collapsed—child rows are not
shown.

6137ch09.qxd 3/14/06 2:14 PM Page 206

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 207

When the view is originally shown, only the top-level rows are visible. If the row has children,
an expander icon will be shown next to the row. The expander is normally an arrow or a box
with a plus sign in it, depending on the user’s settings. When the user clicks the expander, the
children of the given row will be shown. Clicking the expander again will hide the children, or
collapse the row. All of this collapsing and expanding can make it difficult to find elements within
a model. That is why GtkTreeView has plenty of methods to help navigate a model.

Navigating to a specific row normally requires the help of data structure known as
a GtkTreePath. A GtkTreePath is really just an array, but it is an array with a special purpose.
The elements in a GtkTreePath indicate how to get to a specific row. Think of GtkTreePath as
a road map for a tree. The first element in the array tells which top-level row to start with. The
next element says which child of the given top-level row to go to. The third array element says
which child of the row pointed to by the first two elements to go to. Figure 9-6 is a visual repre-
sentation of the tree that has been used through most of this chapter. The path for getting to
large Crisscott T-Shirts would look like array(0 ,0 ,2).

Using a GtkTreePath, it is possible to find any row in a model. That makes GtkTreePath
perfect for navigating a tree.

A quick way to bring the user to a certain row is expand to that row. What this means is to
start at the beginning of a path and expand each row until the row at the end of the path has
been expanded. You can expand all of the rows in a path by using expand_to_path, which expects
a GtkTreePath as the only argument.

If you want to expand only the row pointed to by the path, use expand_row. The same row
can be collapsed again by passing the path to collapse_row.

Another method, set_cursor, lets you set the cursor to a given cell. Setting a cursor on
a cell will give it the keyboard focus and select the cell’s row. set_cursor needs a path to a row
and a column. Before the cursor can be set to a given row, the row must be visible. It is a good
idea to call expand_to_path before calling set_cursor.

Row Selection
Once a row is selected, either by the application (using set_cursor) or by the user, an applica-
tion will likely want to do something with the selected row. GtkTreeSelection is an object that
is automatically created as part of a view. It cannot be instantiated directly, because it cannot
exist without a GtkTreeView. GtkTreeSelection is designed to make it easy to select one or more
rows and determine which rows have been selected. Because GtkTreeSelection is part of the
view, there can be many selections for the same model. Each selection may have different rows
selected. Getting the selection for a model is as easy as calling get_selection on a view.

Setting the Selection Mode
The selection not only manages the currently selected rows, but also controls how many
rows may be selected at one time. The selection mode defines how many rows may be selected.
You set the selection mode by passing one of the following selection mode constants to
GtkTreeSelection’s set_mode method:

6137ch09.qxd 3/14/06 2:14 PM Page 207

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS208

• Gtk::SELECTION_NONE: No rows of the tree may be selected (none mode).

• Gtk::SELECTION_SINGLE: At most, one row may be selected at a time (single mode).

• Gtk::SELECTION_BROWSE: One row, and only one row, must always be selected (browse
mode).

• Gtk_SELECTION_MULTIPLE: One or more rows may be selected at a time (multiple mode).

Depending on the selection mode, a user may or may not be allowed to select one or more
rows in a view using the mouse or keyboard. If the selection mode is none, then the rest of this
section doesn’t really apply. Setting the selection mode to none basically locks the view to be dis-
play only. Not even the application can select a row. Browse mode means that once one row has
been selected, one row must always be selected. With single or multiple mode, a row may be
unselected by holding down the Ctrl key and clicking the row (or by using the methods discussed
in the next section). Browse mode is similar to single mode in that only one row may be selected
at a time, but a row may not be unselected except by selecting another row. Once a selection
has been made, there will always be a selection. Listing 9-11 shows a selection being set to
Gtk::SELECT_MULTIPLE.

Listing 9-11. Setting the Selection Mode

<?php

function unbold($selection)

{

// Get the selected rows.

list($model, $paths) = $selection->get_selected_rows();

foreach ($paths as $path) {

// Unbold the selected rows.

$iter = $model->get_iter($path);

$model->set($iter, 3, Pango::WEIGHT_NORMAL);

}

}

// ...

// Create a tree store.

$treeStore = new GtkTreeStore(Gtk::TYPE_STRING, Gtk::TYPE_LONG,

Gtk::TYPE_DOUBLE, Gtk::TYPE_LONG);

// Continue with tree setup...

// Create a view to show the tree.

$view = new GtkTreeView($treeStore);

// Set up the columns...

// Set the selection mode to multiple.

$view->get_selection()->set_mode(Gtk::SELECTION_MULTIPLE);

6137ch09.qxd 3/14/06 2:14 PM Page 208

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 209

Figure 9-8. A GtkTreeView that allows multiple selections

// Connect a callback to the selection's changed signal.

$selection = $view->get_selection();

$selection->connect('changed', 'unbold');

// Continue with column setup...

?>

Figure 9-8 shows what the code in Listing 9-11 produces after the user has selected a few rows.

Selecting and Unselecting Rows
If the selection mode is something other than Gtk::SELECTION_NONE, then rows may be selected
by the user and the application. An application may use several methods to select a row, but
not all of the methods will work all of the time. For instance, the select_all method will attempt
to select all of the rows in a view, but if the selection mode is not Gtk::SELECTION_MULTIPLE, not
only will the method fail, but an error will be thrown that looks something like this:

Gtk-CRITICAL **: gtk_tree_selection_select_all: assertion `selection->type ==

GTK_SELECTION_MULTIPLE’ failed

Another method that works only when the selection is in multiple mode is select_range.
select_range takes two paths as arguments and selects both rows and all of the rows between
them. Obviously, there will be problems selecting a range of rows if the selection mode is
none, single, or browse. Some methods will work as expected for most modes. These include
methods that unselect rows and methods that select a single row.

Unselecting rows can be done by path, by iterator, by range, or by unselecting all currently
selected rows. unselect_path and unselect_iter take the arguments you would expect and
unselect the given row. If the row is not currently selected, nothing happens. unselect_range
works just like select_range. It takes two paths and unselects both rows and everything in
between. unselect_all takes no arguments and unselects all rows. None of these methods will
work if the selection mode is Gtk::SELECTION_BROWSE. The only way to unselect a row in browse
mode is to select a different row.

6137ch09.qxd 3/14/06 2:14 PM Page 209

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS210

You can select a single row by using either select_iter or select_path. These two meth-
ods select the row identified by the argument passed in. Keep in mind that selecting a row in
browse mode automatically unselects the current row.

The selection mode is one way to control the selection, but there is a method that allows
very fine control over which rows in a view may be selected. A function or method may be defined
to determine if a row may be selected or unselected. The callback should accept the model, the
path to the row in question, a Boolean value indicating whether or not the row is currently
selected, and an array of user data. If the callback returns true, the row’s state will be toggled.
This means that if the row was selected, it will be unselected and vice versa. If the callback
returns false, the row will stay as it is. To set the callback, use set_select_function. The call-
back will be called anytime a row’s state might change, which could be caused by the user or
the application. Calling select_all will fire the callback once for every row in the model (as
long as the selection is in multiple mode).

Once a selection has been made, you can determine the currently selected rows by calling
get_selected_rows. This method returns an array that contains the model and information about
which rows were selected. In the array that is returned, the first element is always the tree or list.
The second element is an array of paths. There will be one path for each row that is selected.
The application can then do as it pleases with this information.

One way to process the selected rows rather easily is to use a callback. selected_foreach
will set up a callback that will be called for every selected row every time the selection changes.
selected_foreach requires only the callback and an optional array of data that should be passed
to the callback. The callback itself should accept the model, a path, and an iterator, as well as the
optional array. Both the path and iterator will point to the current row. Basically, selected_foreach
creates a signal handler for the changed signal. The changed signal is emitted anytime a row is
selected or unselected, whether by the user or by the application.

Putting It All Together
Two tools in the Crisscott PIMS application can take advantage of the flexibility of GtkTreeView.
As mentioned in the previous chapter, the news article tool shows the text of articles that come
into the application via an RSS feed. Now you’ll see how to set this up. Another segment of the
application that makes good use of GtkTreeView is the product tree above the News frame.

The News Article Tool
In Chapter 8, we set up the news article tool to show a given article, but no mention was made
of how the article was selected. If you recall from the original mockup of the application, there
is a News section in the lower-left corner of the application. This section has been set aside to
show a list of news articles that have been pulled in from an RSS feed. The idea is that the RSS
feed will be checked periodically, and headlines will be shown in the small News section. When
the user selects a headline, the main body of the article will be shown in the area to the right.
There are three steps to this plan:

1. Parse the RSS feed for the news items.

2. Display a list (or tree) of news items that can be selected one at a time.

3. Display the selected article.

6137ch09.qxd 3/14/06 2:14 PM Page 210

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 211

Figure 9-9. The application with a news feed and article displayed

In the end, the news article tool will end up looking like Figure 9-9.

Parsing the RSS Feed
The first step will be handled in the Crisscott_Tools_News class with the help of PEAR::XML_RSS,
which is a package designed specifically to deal with RSS feeds. You can install this package
using the PEAR installer, like so:

$> pear install pear/XML_RSS

When the news items are parsed out of the feed, they are put into a model. Listing 9-12
shows the code to take the RSS feed and turn it into a usable model.

Listing 9-12. Turning an RSS Feed into a GtkListStore

<?php

// Create the feed parser.

require_once 'XML/RSS.php';

$rss = new XML_RSS('http://gtk.php.net/news.rss');

// Parse the RSS feed.

$rss->parse();

6137ch09.qxd 3/14/06 2:14 PM Page 211

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS212

// Create a model to store the items.

$listStore = new GtkListStore(Gtk::TYPE_STRING, Gtk::TYPE_STRING, Gtk::TYPE_STRING,

Gtk::TYPE_LONG);

// Add a row for each item in the feed.

foreach ($rss->getItems() as $item) {

$rowData = array($item['title'], $item['date'], $item['description'],

Pango::WEIGHT_BOLD);

$listStore->append($rowData);

}

?>

For each item in the feed, a new row is appended to the model. The model itself has four
columns: the headline, the date, the article body, and an integer that marks whether or not the
article has been viewed. This last column can be used to format the headlines in the list for arti-
cles that have not yet been read. The value of column 3 will be used as the font weight. A value
of Pango::WEIGHT_BOLD, or 800, means that the headline will be bold. Pango::WEIGHT_NORMAL, or
400, will make the headline the normal font weight and will signify that the article has already
been viewed. The column will not be shown in the final view and neither will the date. The
date is added to the model to make it easy to sort the news items.

Because the articles in an RSS news feed don’t have any direct relation to each other, a list
is used instead of a tree. This makes the code easier to understand and maintain.

Building the View and Selecting the Article
The second step involves building the view. The view should show the headlines in reverse
chronological order and should allow only one article to be selected at a time. Additionally,
there is no way to clear an article from the news article tool. Therefore, the currently selected
article should not be allowed to be unselected unless another row is selected.

To show the list in reverse chronological order, the list will be wrapped in a GtkTreeModelSort

object, which will then be added to the view. The GtkTreeSelection from the view will be set to
browse mode so that one article will always be selected. The changed signal of GtkTreeSelection
will be used to load the currently selected article into the news article tool. When the article is
loaded, it is also marked as read in column 3 by setting the value to Pango::WEIGHT_NORMAL.

Listing 9-13 shows the code for the step of showing an article, as well as the third step,
which is just one method call to showArticle in the callback connected to the changed signal.
See Figure 9-9, shown earlier, for the results.

Listing 9-13. Creating the View and Displaying Articles

<?php

class Crisscott_Tools_NewsFeed extends GtkTreeView {

// A singleton instance of the class.

public static $instance;

// The PEAR::XML_RSS parser.

public $rss;

6137ch09.qxd 3/14/06 2:14 PM Page 212

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 213

public function __construct($handle = null)

{

// Call the parent constructor.

parent::__construct();

// Create the parser.

require_once 'XML/RSS.php';

$this->rss = new XML_RSS();

// Set the input if given.

if (isset($handle)) {

$this->setInput($handle);

}

// Add the tree column.

$this->addColumn();

// Set up the selection to load a selected item.

// When the user picks a headline, the changed signal will be emitted.

$selection = $this->get_selection();

$selection->connect('changed', array($this, 'loadArticle'));

}

public function setInput($handle)

{

$this->rss->setInput($handle);

}

public function createList()

{

// Parse the feed.

$this->rss->parse();

// Create a list store with four columns.

$listStore = new GtkListStore(Gtk::TYPE_STRING,

Gtk::TYPE_STRING,

Gtk::TYPE_STRING,

Gtk::TYPE_LONG

);

// Add a row for each item in the feed.

foreach ($this->rss->getItems() as $item) {

// Add the title, the release date, and the description

// and make the headline bold.

$rowData = array($item['title'],

$item['dc:date'],

$item['description'],

Pango::WEIGHT_BOLD

6137ch09.qxd 3/14/06 2:14 PM Page 213

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS214

);

// Add the row to the end of the list.

$listStore->append($rowData);

}

// Return the list.

return $listStore;

}

public function showList()

{

// Add the list to the view.

$this->set_model($this->createList());

}

protected function addColumn()

{

// Create the column.

$column = new GtkTreeViewColumn();

$column->set_title('News');

// Create a cell renderer.

$cellRenderer = new GtkCellRendererText();

// Pack the cell renderer.

$column->pack_start($cellRenderer, true);

// The text of the cell should be taken from column 0.

$column->add_attribute($cellRenderer, 'text', 0);

// The font weight should be taken from column 3.

$column->add_attribute($cellRenderer, 'weight', 3);

// Sort the column by date (the value in column 1).

$column->set_sort_column_id(1);

// Add the column to the tree.

$this->append_column($column);

}

public function loadArticle($selection)

{

// Unbold the selected item to indicate that it has been read.

// The font weight is stored in column 3.

list($model, $iter) = $selection->get_selected();

$model->set($iter, 3, Pango::WEIGHT_NORMAL);

// Get a singleton news article tool.

require_once 'Crisscott/Tools/NewsArticle.php';

$newsArticle = Crisscott_Tools_NewsArticle::singleton();

6137ch09.qxd 3/14/06 2:14 PM Page 214

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 215

// Set the article.

// The headline is found in column 0.

$headline = $model->get_value($iter, 0);

// The body of the article is found in column 2.

$body = $model->get_value($iter, 2);

// Add both parts of the article.

$newsArticle->setArticle($headline, $body);

// Bring the news story tab to the front.

require_once 'Crisscott/MainNotebook.php';

$notebook = Crisscott_MainNotebook::singleton();

// Get the page index.

$index = array_search('News Story', array_keys($notebook->pages));

// Make the news story page move to the front of the notebook.

$notebook->set_current_page($index);

}

public static function singleton()

{

// Check to see if the class has been instantiated already.

if (!isset(self::$instance)) {

// Create a new instance.

$class = __CLASS__;

self::$instance = new $class;

}

// Return the static instance.

return self::$instance;

}

}

?>

The Product Tree
The product tree section provides a quick and easy way for the user to select one product out
of the entire inventory. The products are organized into a tree with the product categories as
the top-level rows. Each category then has a child for product in that category.

When a category is selected, nothing will happen, because the callback will just return
immediately, but when a product is selected, it will be loaded into the product summary sec-
tion. A product will be added to the product editing tool when the user drags it into the main
section of the application, but that is a topic for discussion in Chapter 13.

Just as with the news articles, once the product summary section has been populated, there
should be no way to unpopulate it. This means that the product tree selection should be set to
browse mode. In Listing 9-14, the tree is built using a Crisscott_Inventory object. The tree stores
only the essential data needed to show and organize the information. If products objects were
instantiated for each item in the inventory, the application would consume a large amount of
memory. After the model is created, the view is set up in a very similar way to the previous

6137ch09.qxd 3/14/06 2:14 PM Page 215

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS216

example. Finally, a callback is associated with the changed signal of the tree’s selection object.
The callback simply instantiates a product and passes it along to the ProductSummary tool.

Listing 9-14. Setting Up the Products Section

<?php

class Crisscott_Tools_ProductTree extends GtkTreeView {

public static $instance;

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Add/update the model.

$this->updateModel();

}

public function updateModel()

{

// Create and set the model.

$this->set_model($this->_createModel());

// Next set up the view column and cell renderer.

$this->_setupColumn();

// Finally, set up the selection.

$this->_setupSelection();

}

private function _createModel()

{

// Set up the model.

// Each row should have the row name and the product_id.

// If the row is a category the product_id should be zero.

$model = new GtkTreeStore(Gtk::TYPE_STRING, Gtk::TYPE_LONG);

// Get a singleton of the Inventory object.

require_once 'Crisscott/Inventory.php';

$inventory = Crisscott_Inventory::singleton();

// Add all of the categories.

foreach ($inventory->categories as $category) {

$catIter = $model->append(null, array($category->name, 0));

// Add all of the products for the category.

foreach ($category->getProducts() as $product) {

$model->append($catIter, array($product['product_name'],

6137ch09.qxd 3/14/06 2:14 PM Page 216

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS 217

$product['product_id']));

}

}

return $model;

}

private function _setupColumn()

{

// Add the name column.

$column = new GtkTreeViewColumn();

$column->set_title('Products');

// Create a renderer for the column.

$cellRenderer = new GtkCellRendererText();

$column->pack_start($cellRenderer, true);

$column->add_attribute($cellRenderer, 'text', 0);

// Make the column sort on the product name.

$column->set_sort_column_id(0);

// Insert the column.

$this->insert_column($column, 0);

}

private function _setupSelection()

{

// Get the selection object.

$selection = $this->get_selection();

// Set the selection to browse mode.

$selection->set_mode(Gtk::SELECTION_BROWSE);

// Create a signal handler to process the selection.

$selection->connect('changed', array($this, 'sendToSummary'));

}

public function sendToSummary($selection)

{

// Get the selected row.

list($model, $iter) = $selection->get_selected();

// Create a product.

require_once 'Crisscott/Product.php';

$product = new Crisscott_Product($model->get_value($iter, 1));

6137ch09.qxd 3/14/06 2:14 PM Page 217

CHAPTER 9 ■ WORKING WITH TREES AND L ISTS218

// Get the singleton product summary.

require_once 'Crisscott/Tools/ProductSummary.php';

$productSummary = Crisscott_Tools_ProductSummary::singleton();

$productSummary->displaySummary($product);

}

public static function singleton()

{

if (!isset(self::$instance)) {

$class = __CLASS__;

self::$instance = new $class;

}

return self::$instance;

}

}

?>

Summary
Trees and lists by themselves are relatively simple objects for modeling, rather than complex
data structures. A tree or list can take a collection of data and make it easy to navigate and
access individual elements. The organized nature of these models allows them to be used in
a myriad of ways when combined with GtkTreeView and its associated objects. The specializa-
tion and abstraction of responsibility of these classes make for a very powerful tool set that
can provide almost endless flexibility when it comes to how a model should be displayed and
accessed.

Now that you have seen how to work with large collections of data, you’ll want to know
how to display all of that data in a small space. Chapter 10 discusses how to make a section of
an application scroll so that the user can access data that cannot fit in the space given for a tool.
No longer will the sections of the application be restricted by the size of a container or the user’s
screen. An endless amount of space will be made available for any piece of the application that
needs it by providing scrollbars for both the horizontal and vertical axes.

6137ch09.qxd 3/14/06 2:14 PM Page 218

219

C H A P T E R 1 0

■ ■ ■

Scrolling

A t this point, the Crisscott PIMS application has several tools that may contain large amounts
of data. Unfortunately, none of them currently provides a graceful way to handle this data when
it exceeds the boundaries of the tool. For instance, if the data contained within the product tree
exceeds the space provided by the tree, rows and characters just get pushed out of the visible
area. Other tools may stretch to accommodate the oversized data. While this approach doesn’t
hide data from the user, it can interfere with the layout of the rest of the application, which may
be more damaging than hiding values. A better solution enables a tool to extend its data beyond
its visible borders, but remain accessible to the users. This is the role of scrolling widgets.

GtkScrolledWindow and GtkViewPort are widgets specifically designed to make data accessi-
ble even though it has outgrown its available space within the application. These two widgets
provide a means to access data in another widget that is not currently within the widget’s visi-
ble area. Additionally, you can customize scrolling for a particular widget.

Throughout this chapter, we will examine ways to use scrolling to make better use of the
space available in the PIMS application.

Scrolled Windows
Some widgets have been designed with scrolling in mind. These widgets, including GtkTreeView
and GtkTextView, will likely display large amounts of data. For example, a tree or list could show
many rows from a database. A GtkTextView widget may display a lengthy press release or report.
In order to make either of those documents fit on one screen, the font would have to be very
small, likely rendering the document unreadable. Instead of asking developers to squeeze data
into a restricted space, the designers of these widgets have given them native scrolling support.

Native scrolling support means that the widgets can accept scrollbars and will allow the
scrollbars to control which part of the widget is shown in the visible area. GtkScrolledWindow
provides the scrollbars that these widgets need.

GtkScrolledWindow is a bin container, a descendant of GtkBin. The scrollbars that it provides
make it easier for users to access different parts of the child widget.

For instance, consider Figure 10-1, which depicts the product tree without scrollbars. It is
impossible to see all the rows of the tree at once, and there is nothing to indicate to the user
that the contents of the view are scrollable.

6137ch10.qxd 3/14/06 2:16 PM Page 219

CHAPTER 10 ■ SCROLLING220

Figure 10-1. A GtkTreeView without scrollbars

Figure 10-2. A GtkTreeView with scrollbars

On the other hand, Figure 10-2 displays the product tree after it has been added to
a GtkScrolledWindow. While this doesn’t make it possible to see all the rows at once (actually,
the scrollbars take up space, making even less information visible), it does make it clear that
the contents of the window can be scrolled.

Adding scrollbars to those widgets that have native scrollbar support is relatively easy.
Listing 10-1 presents an excerpt from an updated version of the Crisscott_MainWindow class.
In previous iterations of this class, the Crisscott_Tools_ProductTree instance was attached
directly to the table. In this example, the instance is added to a GtkScrolledWindow, which is
then attached to the table.

Listing 10-1. Adding Scrollbars to a GtkTreeView

<?php

// ...

// Get a singleton instance of the product tree.

require_once 'Crisscott/Tools/ProductTree.php';

$productTree = Crisscott_Tools_ProductTree::singleton();

6137ch10.qxd 3/14/06 2:16 PM Page 220

CHAPTER 10 ■ SCROLLING 221

// Create a scrolled window for the product tree.

$scrolledWindow = new GtkScrolledWindow();

// Set the size of the scrolled window.

$scrolledWindow->set_size_request(150, 150);

// Set the scrollbar policy.

$scrolledWindow->set_policy(Gtk::POLICY_NEVER, Gtk::POLICY_AUTOMATIC);

// Add the product tree to the scrolled window.

$scrolledWindow->add($productTree);

// Attach the scrolled window to the tree.

$table->attach($scrolledWindow, 0, 1, 2, 3, 0, $expandFill, 0, 0);

// ...

?>

Notice that the scrolled window, rather than the product tree instance, is sized. This is
because the scrollbars are added to the outside of the scrolled window’s child widget. If the
product tree were sized to 150 pixels wide and then added to the scrolled window, the layout
of the application would be distorted.

In the simplest scrolling use case, adding the child is all that needs to be done. But, as you
can see in Listing 10-1, some customizations may be made.

Setting the Scrollbar Policy
One of the most common customizations for a GtkScrolledWindow is setting the scrollbar policy.
The scrollbar policy determines when scrollbars will appear in the scrolled window. The default
is to always show both the horizontal and vertical scrollbars, but this can be changed.

Three policy rules can be applied to horizontal and vertical scrollbars individually:

• Gtk::POLICY_ALWAYS: The scrollbar should be shown, regardless of whether or not there
is enough information to scroll in the given direction.

• Gtk::POLICY_AUTOMATIC: The scrolled window shows the scrollbar only when it is needed.

• Gtk::POLICY_NEVER: The scrollbar will never be shown.

You can set the policies for a scrolled window with set_policy. The first argument that
set_policy expects is the policy for the horizontal scrollbar, and the second argument is for
the vertical scrollbar. The code in Listing 10-1 sets the policy for the horizontal scrollbar to
Gtk::POLICY_NEVER, while the vertical scrollbar is set to Gtk::POLICY_AUTOMATIC. The horizontal
scrollbar is not needed because the cell renderer for the tree is told to ellipsize the cell text.
Even if the policy were set to automatic, the scrollbar would never be shown because the child
widget will not expand horizontally.

Not only is it possible to set whether the scrollbars appear in a GtkScrolledWindow, but
you can also control where they appear in relation to the child widget.

6137ch10.qxd 3/14/06 2:16 PM Page 221

Figure 10-3. Different child placements in a GtkScrolledWindow

Controlling Child Placement
Technically speaking, the position of the scrollbars is not changeable, but the placement of the
child can be controlled. You can position the child in one of four places relative to the scroll-
bars: Gtk::CORNER_TOP_LEFT (the default), Gtk::CORNER_TOP_RIGHT, Gtk::CORNER_BOTTOM_LEFT,
and Gtk::CORNER_BOTTOM_RIGHT. Figure 10-3 shows the effect each of these placements has on
a scrolled window.

CHAPTER 10 ■ SCROLLING222

Setting the placement is a simple matter of passing one of the position types to set_placement.
Listing 10-2 shows the code that was used to create Figure 10-3.

Listing 10-2. Setting Child Placements in a GtkScrolledWindow

<?php

// Create and set up a window.

$window = new GtkWindow();

$window->connect_simple('destroy', array('gtk', 'main_quit'));

// Add a table to the window.

$table = new GtkTable(2, 2);

$window->add($table);

// Create four scrolled windows.

$sw1 = new GtkScrolledWindow();

$sw2 = new GtkScrolledWindow();

$sw3 = new GtkScrolledWindow();

$sw4 = new GtkScrolledWindow();

// Set each window to a different position.

$sw1->set_placement(Gtk::CORNER_TOP_LEFT);

$sw2->set_placement(Gtk::CORNER_TOP_RIGHT);

$sw3->set_placement(Gtk::CORNER_BOTTOM_LEFT);

$sw4->set_placement(Gtk::CORNER_BOTTOM_RIGHT);

// Create four frames.

$frame1 = new GtkFrame('TOP_LEFT');

6137ch10.qxd 3/14/06 2:16 PM Page 222

Figure 10-4. Different shadow types in a GtkScrolledWindow

CHAPTER 10 ■ SCROLLING 223

$frame2 = new GtkFrame('TOP_RIGHT');

$frame3 = new GtkFrame('BOTTOM_LEFT');

$frame4 = new GtkFrame('BOTTOM_RIGHT');

// Add the scrolled windows to the frames.

$frame1->add($sw1);

$frame2->add($sw2);

$frame3->add($sw3);

$frame4->add($sw4);

// Attach the frames to the table.

$table->attach($frame1, 0, 1, 0, 1);

$table->attach($frame2, 1, 2, 0, 1);

$table->attach($frame3, 0, 1, 1, 2);

$table->attach($frame4, 1, 2, 1, 2);

// Show everything.

$window->show_all();

gtk::main();

?>

In this example, four scrolled windows are created and added to four frames. Each frame
is then attached to a table. Each of the four frames is given a different placement by calling
set_placement. Along with set_policy, set_placement gives a great degree of control over how
and where scrollbars appear in a scrolled window.

Setting a Shadow
The final customization that you can make to a GtkScrolledWindow is to set a shadow around
the child widget. Setting a shadow around a scrolled window’s child widget helps it to stand
out a little from the rest of the application.

You can set the shadow by using set_shadow_type and passing a shadow type constant.
These constants are the same as the constants used to set the border on a frame: Gtk::SHADOW_
IN, Gtk::SHADOW_OUT, Gtk::SHADOW_ETCHED_IN, and Gtk::SHADOW_ETCHED_OUT. Figure 10-4 shows
what each of these shadow types looks like. As you can see from the different windows, the
name of the shadow type refers to the position of the window, not the scrollbars.

6137ch10.qxd 3/14/06 2:16 PM Page 223

CHAPTER 10 ■ SCROLLING224

View Ports
Just because a widget doesn’t have native scrollbar support doesn’t mean that it can’t be scrolled.
Widgets other than GtkTreeView and GtkTextView can extend over their bounds. Containers in
particular tend to expand more than the developers originally intended. Unfortunately, widgets
without native scrollbar support cannot be added to a GtkScrolledWindow. That is where
GtkViewPort steps in.

GtkViewPort is a widget that has native scrollbar support, designed to hold other widgets
and make them scrollable. GtkViewPort is a bin container that provides the tools needed to
allow its child to be scrolled. You can use the view port within a scrolled window to add scroll-
bars that determine which part of the child should be shown.

By themselves, view ports do not make a widget scrollable. GtkViewPort is simply a con-
tainer that implements native scrollbar support, meaning that adding a widget to a view port
doesn’t accomplish much unless the view port is then added to GtkScrolledWindow.

Creating and using a GtkViewPort is rather easy. Listing 10-3 shows the code needed to
add a table to a view port.

Listing 10-3. Adding Scrollbars Using a GtkViewPort

<?php

// Create and set up a window.

$window = new GtkWindow();

$window->connect_simple('destroy', array('gtk', 'main_quit'));

// Add a table to the window.

$table = new GtkTable(1, 1);

// Add some stuff to the table that will make it large.

$label = new GtkLabel('This is a rather long label. Hopefully ' .

'the table will scroll now.');

// Attach the label.

$table->attach($label, 0, 1, 0, 1);

// Create the view port.

$viewPort = new GtkViewPort();

// Create the scrolled window.

$sWindow = new GtkScrolledWindow();

// Add the table to the view port.

$viewPort->add($table);

// Add the view port to the scrolled window.

$sWindow->add($viewPort);

// Add the scrolled window to the main window.

$window->add($sWindow);

6137ch10.qxd 3/14/06 2:16 PM Page 224

CHAPTER 10 ■ SCROLLING 225

Figure 10-5. A GtkTable inside a GtkViewPort

// Show everything.

$window->show_all();

gtk::main();

?>

■Tip Adding scrolling capabilities to a widget doesn’t even have to be as complicated as Listing 10-3. The
steps of creating a view port and adding it to a scrolled window can be consolidated. GtkScrolledWindow
has a method named add_with_viewport. This method takes a widget and creates a view port for it auto-
matically. The widget is then added to the view port, and the view port is added to the scrolled window.

Only two lines are required to add scrollbars to the table. The first adds the table to the view
port, and the second adds the view port to a scrolled window. The rest of the code in the exam-
ple, aside from instantiating the view port and scrolled window, is set up for creating a table that
will need to scroll. You determine if and where the scrollbars will appear in the view port in the
same way as you do for the tree view, as described in the previous section. Figure 10-5 shows
the result of running this code.

■Note GtkViewPort automatically adds a shadow to its child widget of type Gtk::SHADOW_IN.
You can change this by calling set_shadow_type on the view port. You can also set a shadow for the
GtkScrolledWindow in which the view port resides. This will cause a double border effect.

Custom Scrolling
Everything in PHP-GTK is designed to give flexibility to the developer. Scrolling is no excep-
tion. You have total control over how a widget reacts when the user clicks a scrollbar. In fact,
you don’t even need to use a scrolled window or a view port.

When you use a scrolled window, the widget inside must listen to the scrolled window,
but the way that a scrolled window controls a widget may be undesirable. For instance, scroll-
ing the product tree in the previous examples moves the window by fractions of a row each
time the user clicks the scroll arrows. Showing a fraction of a row isn’t very helpful to the user.
It would be better if the widget scrolled by whole rows, so that the user sees the entire text of

6137ch10.qxd 3/14/06 2:16 PM Page 225

CHAPTER 10 ■ SCROLLING226

the first row. That is why GtkScrollbar widgets exist as their own classes and are not built into
GtkScrolledWindow.

Let’s take a look at what it takes to implement custom scrolling for the Crisscott_Tools_
ProductTree class. To provide scrolling for a widget requires a little bit of insight into how
scrollbars actually work.

Creating the Scrollbar
GtkScrollbar is an abstract class that provides the basics for GtkHScrollbar and GtkVScrollbar.
Scrollbars are only the visual component to scrolling. They work in conjunction with
a GtkAdjustment. The adjustment manages the value and bounds of the scrollbar, while the
scrollbar provides the visual representation of the value and communicates with the user.
Every scrollbar has an adjustment that keeps track of the value and makes sure that the value
stays within a certain range. The adjustment should be passed to the scrollbar on construction.

Listing 10-4 shows how to create a vertical scrollbar. Instantiating the scrollbar is the easy
part. It’s creating the adjustment that can be tricky.

Listing 10-4. Creating a GtkVScrollbar

<?php

// Create an array consisting of the tree path.

function createPathArray($model, $path, $iter, $pathArray)

{

$pathArray[0][] = $path;

return false;

}

// Create a reasonably sized window to display the view.

$window = new GtkWindow();

$window->set_size_request(150, 150);

$window->connect_simple('destroy', array('gtk', 'main_quit'));

// First create a model and view.

require_once 'Crisscott/Tools/ProductTree.php';

$view = Crisscott_Tools_ProductTree::singleton();

$view->expand_all();

// Make the headers unclickable.

$view->set_headers_clickable(false);

$pathArray = array();

$view->get_model()->foreach('createPathArray', array(&$pathArray));

// Create the special vscrollbar.

$lower = $value = 0;

$upper = count($pathArray);

$step = 1;

$page = 6;

$size = 1;

6137ch10.qxd 3/14/06 2:16 PM Page 226

CHAPTER 10 ■ SCROLLING 227

// Create the adjustment and add it to a scrollbar.

$adj = new GtkAdjustment($value, $lower, $upper, $step, $page, $size);

$vScroll = new GtkVScrollbar($adj)

?>

An adjustment is nothing more than a collection of numbers that determine how the
scrollbar will appear and function. Listing 10-4 shows how these values are collected from
the product tree. An adjustment requires six numbers:

• value: The value is simply set to 0 because the initial view should start at the beginning.
The value of the adjustment is used to mark a tree path as selected. Look at the call to
foreach on the view’s model. The callback builds an array of tree paths. Because foreach
works in a depth-first manner, the array will be built with the first row shown as the first
element and the last row shown as the last element. Changing the scrollbar’s value to 5
will scroll to the path defined by the array element with an index of 5.

• lower: The lower bound is set to 0 because that is the lowest index in the array.

• upper: The upper bound is set to the number of elements in the array.

• step: The step size is the amount the value should change when the user clicks the
arrows in the scrollbar. This is set to 1.

• page: The page increment is the amount the value should change when the user clicks
the empty space in the scrollbar. This is set to 6. This means that the selected row will
be six rows up or down when the user pages the view.

• size: The page size is set to 1 so that the scrollbar is allowed to move through the entire list.

With these settings, the custom scrollbar is now ready to control the tree view.

Creating the Signal Handlers
To make the newly created scrollbar control the GtkTreeView, you need a few signal handlers.
Listing 10-5 creates a signal handler for the scrollbar created in the previous listing. This signal
handler connects the adjustment’s value-changed signal to the scrollView function.

Listing 10-5. Creating the Signal Handler That Makes the View Scroll

<?php

// Function to scroll to and select a top level row.

function scrollView($adj, $view, $pathArray)

{

// Create a path to a top level row.

$path = $pathArray[$adj->get_value()];

// Set the cursor at that path.

$view->set_cursor($path, $view->get_column(0), false);

// Grab focus so that the cell is selected.

$view->grab_focus();

}

6137ch10.qxd 3/14/06 2:16 PM Page 227

CHAPTER 10 ■ SCROLLING228

// Connect the scrollbar to the view so that it scrolls.

$adj->connect('value_changed', 'scrollView', $view, $pathArray);

$adj->value_changed();

?>

By default, the callback is passed the adjustment whose value has been changed. The call
to connect in this example also passes the view and the array of tree paths created earlier.
When the value-changed signal is fired and the callback is called, the cursor of the view is set
to the path with the index equal to the adjustment’s value. Notice also that the view is told to
grab the keyboard focus. This is because the row cannot be selected unless the view has the
focus. After the signal handler is created, the value_changed method of the adjustment is
called. This method forces the adjustment to emit the value-changed signal whether or not its
value has actually changed. Calling value_changed calls the callback method and selects the
first row in the view.

It is important not only that the scrollbar communicates with the target widget, but also
that the target widget communicates with the scrollbar. If the user selects a different row than
the one selected by scrolling, the scrollbar’s value needs to be updated so that when the user
wants to scroll again, the scrollbar picks up from where the user left off. The scrollbar also
needs to know when a row has been added or removed. Changing the model will require
changing the adjustment bounds.

Listing 10-6 creates the signal handler to make sure that the adjustment stays in sync with
the widget. It listens for the changed signal from GtkTreeSelection. The changed signal is emit-
ted whenever the selection of the view may have changed. The changed signal can be emitted
even though nothing has changed in the view. This isn’t that big of a deal in most cases, including
Listing 10-6.

Listing 10-6. Creating the Signal Handler That Keeps the Widget and Adjustment Synchronized

<?php

// Update the scrollbar based on the adjustment.

function setScrollValue($selection, $adj, $pathArray)

{

list($model, $iter) = $selection->get_selected();

$path = $model->get_path($iter);

$adj->set_value(array_search($path, $pathArray));

}

// Connect the selection to the scrollbar.

$view->get_selection()->connect('changed', 'setScrollValue', $adj, $pathArray);

?>

In Listing 10-6, the changed signal is connected to the setScrollValue. Whenever the selected
row might have changed, setScrollValue will be called and passed the selection, the adjust-
ment, and the array of tree paths. setScrollValue then looks for the selected path in the tree
path array and sets the adjustment’s value to the array index. This signal handler makes sure
that the adjustment and target widget are always in sync if the user navigates using the view
instead of the scrollbar.

6137ch10.qxd 3/14/06 2:16 PM Page 228

CHAPTER 10 ■ SCROLLING 229

Finally, the adjustment must be modified every time the model is updated. This calls for
three more signal handlers: one for when a row is added to the model, one for when a row is
removed from the model, and one for when the rows are reordered. When each of these actions
occurs, the array of tree paths must be updated to accurately represent the model.

Listing 10-7 begins by first defining a method to create the tree path array. Next, three
signal handlers are created: one each for when rows are inserted, deleted, or reordered.

Listing 10-7. Creating the Signal Handlers to Keep the Model and the Adjustment Synchronized

<?php

// Update the adjustment to keep in sync with the model.

function updateArrayAdj($model, $array, $adjustment)

{

// Rebuild the array.

$model()->foreach('createPathArray', array(&$pathArray));

// Update the adjustment.

$adjustment->upper = count($array);

}

// Rebuild the array when a new row is added.

$view->get_model()->connect_simple('row-inserted', 'updateArrayAdj',

$view->get_model(), $pathArray, $adj);

$view->get_model()->connect_simple('row-deleted', 'updateArrayAdj',

$view->get_model(), $pathArray, $adj);

$view->get_model()->connect_simple('rows-reordered', 'updateArrayAdj',

$view->get_model(), $pathArray, $adj);

?>

■Tip The scrolling that has been implemented in the preceding examples requires the tree to be fully
expanded. It would be a good idea when implementing this in a real-world application to scroll only to the
rows that are visible or to expand the hidden rows automatically.

These signal handlers connect their respective signals to the createTreePathArray method.
It is easier in this case to maintain one method that re-creates the array each time than it is to
create three methods that modify the array. If the model becomes very large, this approach may
need to be reworked slightly, but for purposes of this example, it works just fine. These three
signal handlers ensure that the model and the adjustment stay synchronized when the model
is modified.

In summary, when setting up custom scrolling for a widget, you must take three steps:

1. Set up the adjustment to properly represent the target widget (Listing 10-5).

2. Create a signal handler to scroll the target widget when the adjustment’s value changes
(Listing 10-6).

3. Create one or more signal handlers to make sure that the target widget and the adjust-
ment stay synchronized (Listing 10-7).

6137ch10.qxd 3/14/06 2:16 PM Page 229

CHAPTER 10 ■ SCROLLING230

It isn’t difficult to accomplish these three steps and override the built-in scrolling abilities
of many widgets or those added to a view port.

The ability to control how a widget is scrolled is more powerful than it may first appear.
Aside from controlling what data appears on the screen, implementing custom scrolling also
allows the scrollbar to be separated from the target widget. The scrollbar in the preceding
examples is not physically attached to the tree view. It could be placed on the other side of the
application. And you don’t even need to use a GtkHScrollbar or GtkVScrollbar for this function-
ality. As long as the adjustment’s value can be modified, you could use anything as the scrollbar.
For example, a GtkSpinButton could easily be set up to act as a type of scrollbar.

Summary
This chapter was relatively short. Scrolling in PHP-GTK 2 is typically easy to implement. Those
widgets that have native scrollbar support can be added to a GtkScrolledWindow. Those that
don’t can be added to a GtkViewPort. These two widgets can satisfy most scrolling needs.

When a scrolled window or a view port just isn’t enough, you can customize scrolling for
a particular widget. The three steps for creating custom scrollbars are to set up a GtkAdjustment

properly, make the adjustment scroll the target widget, and keep the adjustment and the
target widget synchronized.

GtkScrolledWindow and GtkViewPort provide ease of use, while custom scrolling allows for
near limitless flexibility.

In Chapter 11, we will add the final components to the main application window. First, we
will add the menus that will provide interfaces for many of the applications features, such as
saving data, transmitting the information to the Crisscott server, and quitting the application.
Then we will move on to adding a toolbar. The toolbar will make some of the actions easily
accessible by providing clickable icons that will call certain signal handlers. With these two
features in place, the usability of the application will be greatly enhanced.

6137ch10.qxd 3/14/06 2:16 PM Page 230

231

C H A P T E R 1 1

■ ■ ■

Adding Menus and Toolbars

The final major pieces of the Crisscott PIMS user interface are the menus and toolbars. Menus
and toolbars are widgets that provide a means for the user to initiate some action, such as sav-
ing a document, closing an application, or copying a block of text. Menus and toolbars are
essentially different ways of representing a group of tasks. Menus dynamically hide and show
a hierarchical grouping of actions; toolbars tend to be more static. Regardless of whether an
action is represented in a menu or a toolbar, the idea is basically to allow the user to activate
a segment of the application code.

In this chapter, you will learn how to create several types of menus and how to set up tool-
bars with various types of buttons. First, let’s look at how to create menus, and then we will get
into working with toolbars.

Menus
Menus are widgets responsible for organizing user tasks. Most GUI applications will have at
least File and Help menus.

What makes a menu different from a toolbar is that a menu provides a hierarchical struc-
ture and can hide most of the actions when they are not needed. This makes menus perfect for
organizing the user actions in an application, especially those actions that are not used very
frequently. Because menus hide the actions when not in use, they can pack a lot of functionality
into a relatively small space. In fact, menus can even be set up to detach from the application or
seemingly appear out of nowhere.

Let’s start with adding a rather simple menu to the Crisscott PIMS application. This menu
will allow the users to close the application, save their work, and perform a few other tasks. By
the end of this section, the menu will evolve into the menu shown in Figure 11-1.

6137ch11.qxd 3/14/06 2:18 PM Page 231

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS232

Figure 11-1. A full-featured menu

Figure 11-2. A menu bar (GtkMenuBar)

Creating Menu Bars
The most familiar part of an application menu is the menu bar. This is the persistent piece of
the menu that doesn’t change. Figure 11-2 shows a simple menu bar.

GtkMenuBar is a specialized container that holds GtkMenuItem items. A menu bar simply
organizes the menu items. GtkMenuBar is a child class of GtkMenuShell, which provides a few
methods for adding menu items. GtkMenuBar provides two methods for determining how the
newly added items will be shown.

In Listing 11-1, three menu items are added to a menu bar:

• A Help menu item appended to (added to the end of) the menu bar using the append
method

• A File menu item prepended to (added to the beginning of) the menu bar using the
prepend method

• An Edit menu item added in the second position in the menu bar using the insert
method

Listing 11-1. Adding Items to GtkMenuBar

<?php

// Create a menu bar.

$menuBar = new GtkMenuBar();

6137ch11.qxd 3/14/06 2:18 PM Page 232

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS 233

// Create a help menu item.

$help = new GtkMenuItem('Help');

// Append it to the menu bar.

$menuBar->append($help);

// Create a file menu item.

$file = new GtkMenuItem('File');

// Prepend it to the menu bar.

$menuBar->prepend($file);

// Create an edit menu item.

$edit = new GtkMenuItem('Edit');

// Insert it into the menu bar.

$menuBar->insert($edit, 1);

?>

As you can see, the append, prepend, and insert methods each take a GtkMenuItem and add
it to the menu bar.

Adding Menus
GtkMenu is similar to GtkMenuBar in that it also extends GtkMenuShell. A GtkMenu is a container
that can accept only GtkMenuItem widgets. Whereas a GtkMenuBar is a static fixture, a GtkMenu is
not always visible. GtkMenu is often used as a submenu for a menu item (more on menu items
in the next section).

Normally, when a menu item from a menu bar is activated, a GtkMenu widget drops down.
If a menu item from a GtkMenu is activated, sometimes another GtkMenu pops up. Think of your
favorite web browser. Most web browsers have a menu bar at the top with items like File, Edit,
and Help. When you click one of those items, a menu drops down with more options. Depending
on which browser you use, you may have a View menu with a Zoom or Text Zoom option. In the
Mozilla Firefox browser, the Text Zoom option pops up another menu with different zoom options.
Both the drop-down and pop-up menus are examples of GtkMenu.

You create a GtkMenu instance by using the new operator. When a GtkMenu is created, it is
automatically placed inside a GtkWindow. This window is not a top-level window, but rather
a pop-up window. This means that when a menu is created, it should not be added to any other
container widgets. Doing so will produce an error message. (Refer to Chapter 5 if you need to
review the difference between a pop-up and top-level window.)

After a GtkMenu is created, menu items should be added. You add items to a GtkMenu in the
same way that you add items to a GtkMenuBar—by using append, prepend, and insert. GtkMenu
also has one additional method for adding menu items called attach.

The attach method functions very similarly to that of GtkTable. Using attach allows you
to create menus with multiple rows and columns. Its first argument is the menu item to attach.
The next four arguments are the same as those in GtkTable::attach. They define the four rows
and columns to which to attach the menu item. Listing 11-2 shows how to attach a menu item.

6137ch11.qxd 3/14/06 2:18 PM Page 233

Listing 11-2. Creating a GtkMenu Widget and Attaching GtkMenuItem Items

<?php

// Create a menu bar.

$menuBar = new GtkMenuBar();

// Create a help menu item.

$help = new GtkMenuItem('Help');

// Append it to the menu bar.

$menuBar->append($help);

// Create a file menu item.

$file = new GtkMenuItem('File');

// Prepend it to the menu bar.

$menuBar->prepend($file);

// Create a menu.

$fileMenu = new GtkMenu();

// Create four menu items to be added to the file menu.

$new = new GtkMenuItem('New');

$open = new GtkMenuItem('Open');

$save = new GtkMenuItem('Save');

$edit = new GtkMenuItem('Edit');

// Attach the four items to the menu.

$fileMenu->attach($new, 0, 1, 0, 1);

$fileMenu->attach($open, 1, 2, 0, 1);

$fileMenu->attach($save, 0, 1, 1, 2);

$fileMenu->attach($edit, 1, 2, 1, 2);

// Add the file menu to the file item.

$file->set_submenu($fileMenu);

// Create an edit menu item.

$edit = new GtkMenuItem('Edit');

// Insert it into the menu bar.

$menuBar->insert($edit, 1);

// Create a window and add the menu.

$window = new GtkWindow();

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

$window->add($menuBar);

$window->show_all();

Gtk::main();

?>

Figure 11-3 shows the menu that Listing 11-2 produces. Notice how the menu items in the
File menu are positioned in two columns instead of just one.

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS234

6137ch11.qxd 3/14/06 2:18 PM Page 234

Figure 11-3. GtkMenu with two columns of GtkMenuItem items

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS 235

Creating Menu Items
The real power of menus is in GtkMenuItem. Menu items are the selectable icons and text of the
menu. GtkMenuItem widgets are the only valid children of GtkMenu and GtkMenuBar. GtkMenuItem
is itself a container. It is a descendant of GtkBin, which was first discussed in Chapter 3. This
means that it can take one child widget.

Creating menu items is pretty simple. Listing 11-3 creates a menu bar with three menu
items.

Listing 11-3. Creating GtkMenuItem Items

<?php

// Create a menu bar.

$menuBar = new GtkMenuBar();

// Create a file menu item.

$file = new GtkMenuItem();

$file->add(new GtkLabel('File'));

// Prepend it to the menu bar.

$menuBar->prepend($file);

// Create an edit menu item.

$edit = new GtkMenuItem('Edit');

// Insert it into the menu bar.

$menuBar->append($edit);

// Create a help menu item.

$help = new GtkMenuItem('_Help');

// Append it to the menu bar.

$menuBar->append($help);

// Create a window and add the menu.

$window = new GtkWindow();

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

$window->add($menuBar);

$window->show_all();

Gtk::main();

?>

6137ch11.qxd 3/14/06 2:18 PM Page 235

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS236

The first menu item is created using the new operator with no arguments. After it is created,
a GtkLabel with the text 'File' is added. The second menu item is created by passing the menu
item’s label text, 'Edit', at the time of construction. The third menu item is created in a simi-
lar manner to the second. The label is passed on construction, but it is also given a mnemonic.
Recall from Chapter 7 that a mnemonic is a keyboard shortcut. Therefore, the text passed for
the third menu item is '_Help'. This means that pressing Alt+H will activate the Help menu.

■Tip By default, the label for a GtkMenuItem is left justified. You can make the label right justified by
passing true to set_right_justified for that menu item.

A menu item’s primary responsibility is to handle events from the user. Menu items are used
to trigger events. When a menu item is clicked, or activated, one of two things usually happens:
either some programmatic action is initiated or a submenu appears. Regardless of what the
menu item is configured to do, its action is triggered by the activate signal. The activate signal
is emitted when the menu item is clicked (or the activate method is called). If the menu item
consists of a submenu, PHP-GTK will automatically create a signal handler that shows the
submenu when the item is clicked. If there is no submenu, you must create a signal handler to
call the method associated with the menu item.

Adding Submenus
Take a look at Listing 11-4, which contains the initial code for the Crisscott PIMS application.
First, the menu bar parent constructor is called. Next, two menu items are added to the menu
bar. Both items are created with mnemonics to make activating them a little easier. At this
stage, activating the items would do nothing. There are no signal handlers created and there
are no submenus. Therefore, the next step is to create and add a submenu. The submenu is
created by using the new operator and adding a few menu items. Then, set_submenu is called
on the File menu item. Another submenu is created and added to the Help menu.

Listing 11-4. Adding Submenus to GtkMenuItem

<?php

class Crisscott_Tools_Menu extends GtkMenuBar {

public $file;

public $help;

public function __construct()

{

// Call the parent constructor.

parent::__construct();

6137ch11.qxd 3/14/06 2:18 PM Page 236

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS 237

// Add two menu items.

$this->file = new GtkMenuItem('_File');

$this->append($this->file);

$this->help = new GtkMenuItem('_Help');

$this->append($this->help);

// Create the submenus.

$this->createSubMenus();

}

protected function createSubMenus()

{

// Create the file menu and items.

$fileMenu = new GtkMenu();

$new = new GtkMenuItem('New');

$open = new GtkMenuItem('Open');

$save = new GtkMenuItem('Save');

$quit = new GtkMenuItem('Quit');

// Add the four items to the file menu.

$fileMenu->append($new);

$fileMenu->append($open);

$fileMenu->append($save);

$fileMenu->append($quit);

// Create the help menu and items.

$helpMenu = new GtkMenu();

$help = new GtkMenuItem('Help');

$about = new GtkMenuItem('About');

// Add both items to the help menu.

$helpMenu->append($help);

$helpMenu->append($about);

// Make the two menus submenus for the menu items.

$this->file->set_submenu($fileMenu);

$this->help->set_submenu($helpMenu);

}

}

?>

Now when one of the menu bar’s menu items is activated, the attached submenu will
drop down. Figure 11-4 shows the menu bar when the File menu has been activated.

6137ch11.qxd 3/14/06 2:18 PM Page 237

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS238

Creating a Signal Handler for a Menu Item
When activated, a GtkMenuItem doesn’t have to pop up a GtkMenu. Instead, it can initiate some
method call. This is done by connecting the activate signal of the menu item to a callback.

For example, the Quit menu item in the Crisscott_Tools_Menu class should shut down the
application. It should check that the user has saved the work, and then close the application.
Listing 11-5 shows the rather simple code for creating the signal handler responsible for clos-
ing the application.

Listing 11-5. Creating a Signal Handler for GtkMenuItem

<?php

class Crisscott_Tools_Menu extends GtkMenuBar {

//...

protected function createSubMenus()

{

// Create the file menu and items.

$fileMenu = new GtkMenu();

// ...

$quit = new GtkMenuItem('Quit');

// Add the four items to the file menu.

// ...

$fileMenu->append($quit);

// Connect some signal handlers.

$quit->connect_simple('activate', array('Crisscott_MainWindow', 'quit'));

// ...

}

}

Figure 11-4. An activated menu item (GtkMenuItem) with a submenu

6137ch11.qxd 3/14/06 2:18 PM Page 238

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS 239

Figure 11-5. The four specialized GtkMenuItem subclasses

class Crisscott_MainWindow extends GtkWindow {

// ...

static public function quit()

{

// Check to see if the data has been modified

// or sent. If it is modified or not sent, don't

// exit.

if (!self::$modified && self::$sent) {

Gtk::main_quit();

return true;

}

return false;

}

}

?>

The callback method first checks a few flags in the main application window before clos-
ing the window. If the flags don’t show that the user has saved the work and sent the data off to
the Crisscott server, the main loop is not exited. In Chapter 14, we will expand this callback to
pop up a dialog box, instead of just exiting without closing the window.

Using Separator, Image, Check, and Radio Menu Items
Menu items can also improve usability by adhering to standards that users are accustomed to
seeing on application menus. Instead of requiring developers to modify the menu item or create
their own version of standard items, PHP-GTK provides four specialized menu item classes that
you can use: GtkSeparatorMenuItem, GtkImageMenuItem, GtkCheckMenuItem, and GtkRadioMenuItem.
Figure 11-5 shows what each of these items looks like.

6137ch11.qxd 3/14/06 2:18 PM Page 239

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS240

The classes create the following types of menu items:

Image menu item: The first items in the menu shown in Figure 11-5 are image menu items.
An image menu item is an instance of GtkImageMenuItem. A GtkImageMenuItem provides
a label like a regular menu item, but also provides a place for a small icon to be shown
next to the label. Once created, an image menu item functions just like a regular menu
item. It can be activated and can even contain a submenu.

Separator menu item: The simplest class, GtkSeparatorMenuItem, creates a separator item.
A separator item is not designed to be activated like other menu items. Instead, it is merely
decorative. The menu shown in Figure 11-5 has three separator items. They are the lines
that break up the three groups of other menu items.

Check menu item: The next items in Figure 11-5 are a group of check menu items, created
with GtkCheckMenuItem. Menu items can not only initiate an action, but they can also rep-
resent a current state. A GtkCheckMenuItem is used when the action it initiates is represented
by a Boolean state, such as turning on or off an application feature. A check menu item is
similar to an image menu item in that it may have an image displayed to the left of the
item text. However, the image cannot be set by the developer. The image is a check mark
that is toggled every time the menu item is activated. The check mark indicates the menu
item’s state. If the check mark is visible, the menu item is “on.” If the check mark is not vis-
ible, the menu item is “off.”

Radio menu item: The other type of menu item is GtkRadioMenuItem, which is a descendant
of GtkCheckMenuItem. The difference between the two is that if a radio menu item is associ-
ated with another radio menu item, only one of the menu items may be checked at a time.
If one radio menu item is checked and another in its group is activated, the first becomes
unchecked. A group of radio menu items is useful to control a collection of mutually exclu-
sive application features. For instance, Figure 11-5 uses radio menu items for Quiet, Normal,
and Verbose options. These control how much output an application produces. Obviously,
an application cannot be quiet and verbose at the same time.

Listing 11-6 shows how the menu items shown in Figure 11-5 were created.

Listing 11-6. Creating Specialized Menu Items

<?php

protected function createSubMenus()

{

// Create the file menu and items.

$fileMenu = new GtkMenu();

$new = new GtkImageMenuItem(Gtk::STOCK_NEW);

$open = new GtkImageMenuItem(Gtk::STOCK_OPEN);

$send = new GtkImageMenuItem('Send');

$send->set_image(GtkImage::new_from_file('Crisscott/images/menuItem.png'));

$save = new GtkMenuItem('Save');

$quit = new GtkMenuItem('Quit');

// Add the four items to the file menu.

$fileMenu->append($new);

6137ch11.qxd 3/14/06 2:18 PM Page 240

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS 241

$fileMenu->append($open);

$fileMenu->append($send);

// Add a separator.

$fileMenu->append(new GtkSeparatorMenuItem());

// Add some check items.

$server = new GtkCheckMenuItem('Connect to Server');

$database = new GtkCheckMenuItem('Connect to Database');

$fileMenu->append($server);

$fileMenu->append($database);

// Add a separator.

$fileMenu->append(new GtkSeparatorMenuItem());

// Add three noise levels.

$quiet = new GtkRadioMenuItem(null, 'Quiet');

$normal = new GtkRadioMenuItem($quiet, 'Normal');

$verbose = new GtkRadioMenuItem($quiet, 'Verbose');

$fileMenu->append($quiet);

$fileMenu->append($normal);

$fileMenu->append($verbose);

// Add a separator.

$fileMenu->append(new GtkSeparatorMenuItem());

// Finish off the menu.

$fileMenu->append($save);

$fileMenu->append($quit);

// Connect some signal handlers.

$quit->connect_simple('activate', array('Crisscott_MainWindow', 'quit'));

// Create the help menu and items.

$helpMenu = new GtkMenu();

$help = new GtkMenuItem('Help');

$about = new GtkMenuItem('About');

// Add both items to the help menu.

$helpMenu->append($help);

$helpMenu->append($about);

// Make the two menus submenus for the menu items.

$this->file->set_submenu($fileMenu);

$this->help->set_submenu($helpMenu);

}

?>

6137ch11.qxd 3/14/06 2:18 PM Page 241

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS242

In most cases, GtkImageMenuItem items are created the same way as the first two in
Listing 11-6—from a stock ID. The static constructor new_from_stock takes a stock ID such as
Gtk::STOCK_SAVE or Gtk::STOCK_QUIT. While creating an image menu item from stock is con-
venient, it is not the only way to do this. The last image menu item created in Listing 11-6 is
a custom menu item used to send the inventory data to the Crisscott server. The menu item
is first created with just a label by passing the string 'Send' to the constructor. Next, an image is
set using set_image. The end result is a menu item with the Crisscott logo to the left of the label.

A GtkSeparatorMenuItem item comes next. Separator items cannot be activated by the
user, but they can be activated by the application. Using GtkSeparatorMenuItem for anything
other than decoration and to improve usability, while technically possible, is probably not the
best programming practice.

Next in Listing 11-6 are the GtkCheckMenuItem items. When a GtkCheckMenuItem is created,
a signal handler is automatically created. This signal handler connects the activate signal to
an internal method, which toggles the check mark. The basic functionality of this method is to
pass the opposite of get_active to set_active, which takes a Boolean value. If that value is
true, the signal handler makes the check mark visible. If the value is false, the check mark will
be hidden. set_active comes in handy if the state of the menu item doesn’t reflect the current
state of the application. This is possible if, for example, a new file is loaded and it has a differ-
ent setting than the previous file.

The last type of menu item in Listing 11-6 is GtkRadioMenuItem. When a GtkRadioMenuItem

item is created, the first argument the constructor expects is another GtkRadioMenuItem. Notice
in Listing 11-6 that the first radio menu item passes null as the first argument to the constructor.
The other two menu items pass the first menu item as their first argument. Doing so makes the
three radio menu items related. If one is activated, the other two will be deactivated.

These four menu item types allow you to build some very powerful menus with relative
ease. Of course, these classes can be extended to make very custom menus. Listing 11-7 is an
example of a class that extends GtkImageMenuItem.

Listing 11-7. Creating a Custom Menu Item

<?php

class CrisscottCheckMenuItem extends GtkImageMenuItem {

protected $active = true;

public function __construct($label)

{

// Call the parent constructor.

parent::__construct($label);

// Create the signal handler that will toggle the image.

$this->connect_simple('activate', array($this, 'toggle'));

// Toggle the item to get into a known state.

$this->toggle();

}

6137ch11.qxd 3/14/06 2:18 PM Page 242

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS 243

public function toggle()

{

// Determine the state.

if ($this->active) {

$image = GtkImage::new_from_file('Crisscott/images/menuItemGrey.png');

} else {

$image = GtkImage::new_from_file('Crisscott/images/menuItem.png');

}

$this->set_image($image);

// Toggle the state.

$this->active = !$this->active;

}

}

?>

The class CrisscottCheckMenuItem creates a menu item similar to a GtkCheckMenuItem, but
uses two versions of the Crisscott logo to indicate the menu item’s state. A grayscale version is
used to indicate the item is off, and a full-color version indicates that the item is on. The class
doesn’t do anything too complicated. It simply creates a signal handler for the activate signal.
The callback for this signal handler checks a flag that tracks the state and updates the image
accordingly. When this class is put to work in an application, it should be treated in the same
way as GtkCheckMenuItem. Because it extends GtkImageMenuItem, it can be added directly to a menu
or menu bar. Also, you can create other signal handlers for the activate signal to initiate the
programmatic action a normal check menu item would produce.

Creating Tear-Off Menus
One more type of menu item behaves quite differently from the others. GtkTearoffMenuItem is
a tear-off menu item that doesn’t display any state information or call some application method.
Instead, it detaches its parent menu from the application. A tear-off menu item is shown as
a dotted line when the menu is activated. When the menu item is activated, the menu will detach
from its parent and appear in its own window. When the tear-off menu item is activated again,
the menu will disappear and reattach to its original parent. Figure 11-6 shows both states of
a menu with a tear-off item.

Figure 11-6. The two states of a tear-off menu

6137ch11.qxd 3/14/06 2:18 PM Page 243

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS244

A tear-off menu is useful when a set of menu options needs to be accessed several times
during the course of using an application. With a tear-off menu, the users don’t have to dig
through several levels of menu items to get to the items they need to use most often. When
a menu is torn off, not only is it given its own top-level window, but that window is also set to
be above all other application windows. This means that the menu will always be easily acces-
sible until it is reattached.

Listing 11-8 is the code used to create the tear-off menu shown in Figure 11-6. The menu
that is able to be torn off is the New menu item’s submenu. Making this a tear-off menu allows
the user to quickly access the menu items for creating new products, categories, and contacts.

Listing 11-8. Creating a Tear-Off Menu

<?php

protected function createSubMenus()

{

// ...

// Create a submenu for the new item.

$newMenu = new GtkMenu();

$product = new GtkMenuItem('Product');

$category = new GtkMenuItem('Category');

$contrib = new GtkMenuItem('Contributor');

// Make the new menu detachable.

$newMenu->append(new GtkTearoffMenuItem());

$newMenu->append($product);

$newMenu->append($category);

$newMenu->append($contrib);

// Set the title of the new menu.

$newMenu->set_title('New');

// Set the submenu.

$new->set_submenu($newMenu);

// ...

}

?>

Making the menu detachable is a simple matter of adding GtkTearoffMenuItem. Once the
menu item has been added, PHP-GTK will take care of the rest.

One feature that is useful for menus that can be torn off is the set_title method. This
method takes a string that will be set to the title of the new window when the menu is detached.
The title will help the user to identify the new window. If the menu item is created using a stock
ID, as is the case in Listing 11-8, the title is set automatically.

6137ch11.qxd 3/14/06 2:18 PM Page 244

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS 245

Creating Context Menus
So far, the menus that we have looked at all start from a menu bar. Even though the menu
might have been several levels down or may have been detached, to access it, the user would
need to activate an item from a menu bar. As you might suspect, there are other ways to bring
up a menu.

In most web browsers, you can right-click a web page to bring up a menu with options
such as Save or View Source. This type of menu is called a context menu because it comes from
and relates to the context of the application. Technically, these menus are no different from any
of the GtkMenu widgets you have seen so far. What is different is the method in which the menus
are accessed. Instead of starting from some static object on the screen, such as a menu bar,
context menus appear to pop up out of nowhere.

Creating a context menu is the same as creating a regular menu. The difference is that
a context menu must be popped up using a signal handler. Listing 11-9 shows how a signal
handler might be created for a pop-up menu, as well as a callback that can be used to bring
the menu to the screen.

Listing 11-9. Making a Context Menu Pop Up

<?php

function popupContext($widget, $event, $menu)

{

// Make sure the event was a button press.

if ($event->type == Gdk::BUTTON_PRESS) {

// See if button three was pressed.

if ($event->button == 3) {

// Pop up the menu.

$menu->popup(null, null, null, $event->button, $event->time);

return true;

}

}

return false;

}

$contextMenu = new GtkMenu();

// Set up the menu...

$contextArea = new GtkTextView();

$contextArea->connect('button-press-event', 'popupContext', $contextMenu);

// ...

?>

Notice that the signal handler is not created by the menu itself. The idea is that the user
clicks some other part of the application to bring up the menu. Creating the signal handler
with the menu object would require the user to click the menu to pop it up. Obviously, that
isn’t possible.

6137ch11.qxd 3/14/06 2:18 PM Page 245

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS246

Figure 11-7. A context menu in action

The callback in Listing 11-9 will be called whenever a button-press-event signal is emitted.
Because there are not individual signals for each mouse button, the callback must check to see
which button was pressed. This is done by checking the button property of the event object
that is automatically passed. In this case, the context menu should be shown only when but-
ton 3 is pressed. If button 3 is pressed, the callback then calls the popup method of the menu
that has been passed in.

Because popup serves two purposes (user-generated code and system-generated code like
GtkMenu widgets), a few arguments are required, but they are not really useful as far as context
menus go. The first three arguments to popup are all passed as null because they don’t make
much sense for context menus. These arguments are used to position the menu in relation to
a parent menu and are used by PHP-GTK to bring up child menus. The last two arguments are
information about the event that triggered the callback. The second-to-last argument is the
number of the button that was pressed to trigger the event. If the callback was triggered by
some event other than a button-press-event, this argument should be set to 0. The last argu-
ment is the time that the event occurred. The time is taken rather easily from the event’s time
property.

There is no need for a callback to hide the menu, as this is done automatically when the
user clicks somewhere else in the application or activates a menu item (unless that menu item
brings up a submenu, in which case the menu will remain visible until the submenu is closed).

Setting up a context menu is pretty simple. In all of Listing 11-9, only one GtkMenu method
is called. The callback in this example can be easily applied to any context menu in the application.

Figure 11-7 shows what this simple application looks like with the context menu.

Toolbars
A toolbar is similar to a menu in that it exists to give users the ability to initiate some set of
predefined actions. Most web browsers have a toolbar near the top of the application that pro-
vides items for moving forward or backward in the page history, go to the home page, and print
the current page. Another similarity is that GtkToolbar is a special container that can hold only
one type of child. In the case of GtkToolbar, the only acceptable widget is GtkToolItem or one
of its descendants.

One of the main differences between GtkMenu and GtkToolbar is that a toolbar is generally
static. The items in a toolbar do not need to be popped up from another item, as is usually the
case with a menu. That isn’t to say that a toolbar can’t change or be dynamic. In fact, a toolbar
can include items that have menus, can have context menus, and can even be detached from
the application.

6137ch11.qxd 3/14/06 2:18 PM Page 246

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS 247

Figure 11-8. Two GtkToolbar instances

Creating a Toolbar
Adding a toolbar to an application first requires instantiating GtkToolbar. GtkToolbar is the
container that is used to lay out and display a collection of GtkToolItem items. The items in
a toolbar are displayed one after another. The items that are shown in the toolbar will remain
visible and easily accessible. This makes a toolbar a good place to put items for actions that
the user is likely to need often. For instance, a Save button is one of the most common items
found in a toolbar.

Figure 11-8 shows two instances of GtkToolbar. Both toolbars have the same items, but
one toolbar orients them horizontally and the other vertically.

Creating a toolbar is easy. Simply instantiate a new object using the new operator; the
constructor doesn’t take any parameters. The more interesting methods of GtkToolbar control
how the toolbar is displayed and how it manages the items. As shown in Figure 11-8, a toolbar
can display items either horizontally or vertically. You can control the direction in which the items
appear by using the set_orientation method. set_orientation takes either a Gtk::ORIENTATION_

HORIZONTAL or Gtk::ORIENTATION_VERTICAL argument and displays the items accordingly.
Regardless of how the items are shown, they may not all fit on the toolbar. When there isn’t

enough room, an overflow menu holds the toolbar items that cannot be shown in the space
allotted. An overflow menu looks like a toolbar button with an arrow. You can turn off the
overflow menu by passing false to set_show_arrow. If the overflow menu is turned off, the extra
items will not be shown.

Listing 11-10 shows how to create a toolbar that shows its items vertically and disables the
overflow menu.

Listing 11-10. Creating a Vertical Toolbar Without an Overflow Menu

<?php

$window = new GtkWindow();

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

6137ch11.qxd 3/14/06 2:18 PM Page 247

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS248

// Create a vertical toolbar.

$vToolBar = new GtkToolbar();

$vToolBar->set_orientation(Gtk::ORIENTATION_VERTICAL);

// Turn off the overflow.

$vToolBar->set_show_arrow(false);

// Set the toolbar to show icons next to text.

$vToolBar->set_style(Gtk::TOOLBAR_BOTH_HORIZ);

// Add a new item.

$new = GtkToolButton::new_from_stock(Gtk::STOCK_NEW);

$vToolBar->add($new);

// Add an open item.

$open = GtkToolButton::new_from_stock(Gtk::STOCK_OPEN);

$vToolBar->add($open);

// Add a save item.

$save = GtkToolButton::new_from_stock(Gtk::STOCK_SAVE);

$vToolBar->add($save);

// Add a copy item.

$copy = GtkToolButton::new_from_stock(Gtk::STOCK_COPY);

$vToolBar->add($copy);

// Pack the toolbar into a box.

$hBox = new GtkHBox();

$hBox->pack_start($vToolBar, false, false);

// Show everything.

$window->add($hBox);

$window->show_all();

Gtk::main();

?>

A toolbar shows toolbar items, which can include both icons and text. The toolbar can
control which parts of the item are shown; that is, the toolbar can show only the items, only
the text, or both. You can control which piece of the item is shown by using the set_style
method. set_style takes a toolbar style as the only argument, as follows:

• Gtk::TOOLBAR_ICONS: Shows only the icons of the items.

• Gtk::TOOLBAR_TEXT: Shows only the text of the items.

• Gtk::TOOLBAR_BOTH: Displays the text beneath the icon.

• Gtk::TOOLBAR_BOTH_HORIZ: Displays the text to the right of the icon.

In Listing 11-10, the toolbar is set to display both text and icons horizontally.

6137ch11.qxd 3/14/06 2:18 PM Page 248

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS 249

■Caution If the toolbar style is not overridden using set_style, the user’s system preferences will be
used. Keep in mind that by using set_style, you are overriding the user’s preferred display style.

Adding Tooltips
When a toolbar is set to show only the item icons, it can be difficult for a user to know exactly
what clicking the icon will do. You can help users by adding tooltips. A tooltip is a small label
that pops up to provide a more verbose description of an object.

You can apply a tooltip to many different type of widgets, as long as the widget has its own
GtkWindow. You create tooltips by first instantiating a new GtkTooltips object. A GtkTooltips

object is a group of tooltips. Next, you add a tooltip to the group for each toolbar item using
set_tip. The set_tip method takes the item the tip is for, the tip to be shown, and an optional
string containing more information that might be helpful for the user.

Unfortunately, tooltips for toolbar items are created slightly differently than they are for
most widgets. GtkToolItem does not have its own GtkWindow. This means that it cannot receive
enter and leave events. Without these events, it is impossible for an application to know when
to show a tooltip. Fortunately, the widgets within a GtkToolItem item can receive enter and leave
events. This means that they can be used to show the tooltip. Instead of requiring users to dig
through the children of the tool item, GtkToolItem provides a method that makes it much easier
to assign a tooltip to a button. The set_tooltip method takes a GtkTooltips object and a string
as arguments. The string is the tooltip to be displayed.

Listing 11-11 creates a toolbar and adds tooltips for each item.

Listing 11-11. Creating a Toolbar with Tooltips

<?php

$window = new GtkWindow();

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

// Create a horizontal toolbar.

$hToolBar = new GtkToolbar();

// Add a new item.

$new = GtkToolButton::new_from_stock(Gtk::STOCK_NEW);

$hToolBar->add($new);

// Add an open item.

$open = GtkToolButton::new_from_stock(Gtk::STOCK_OPEN);

$hToolBar->add($open);

// Add a save item.

$save = GtkToolButton::new_from_stock(Gtk::STOCK_SAVE);

$hToolBar->add($save);

6137ch11.qxd 3/14/06 2:18 PM Page 249

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS250

Figure 11-9. A toolbar with tooltips

// Add a copy item.

$copy = GtkToolButton::new_from_stock(Gtk::STOCK_COPY);

$hToolBar->add($copy);

// Add tooltips.

$tooltips = new GtkTooltips();

// Create a tooltip for each item.

$new->set_tooltip($tooltips, 'New', 'Creates a new product.');

$open->set_tooltip($tooltips, 'Open', 'Open an existing inventory file.');

$save->set_tooltip($tooltips, 'Save', 'Saves the current inventory.');

$copy->set_tooltip($tooltips, 'Copy', 'Copies a product.');

// Make sure the toolbar is set to display tooltips.

$hToolBar->set_tooltips(true);

// Only show the icons, not the text.

$hToolBar->set_style(Gtk::TOOLBAR_ICONS);

// Pack the toolbar into a box.

$vBox = new GtkVBox();

$vBox->pack_start($hToolBar, false, false);

// Show everything.

$window->add($vBox);

$window->show_all();

Gtk::main();

?>

Figure 11-9 shows what this toolbar looks like with the tooltip for the Save item displayed.

Adding Tool Buttons
As with menus, the real workhorse of toolbars is not the container but the items that go in it.
The only items allowed in a GtkToolbar are those that extend GtkToolItem. The most powerful
of these objects is the GtkToolButton. A tool button is basically an icon with a label that can be
added to a toolbar. Tool buttons are clickable and are most often used to initiate some program-
matic action, just as menu items are used.

6137ch11.qxd 3/14/06 2:18 PM Page 250

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS 251

The easiest way to create a tool button is to use a stock ID. Just as menu items and buttons
can be created from stock items, so can toolbar items. Using stock items makes it easy to adhere
to common practices that will help users to use and understand the application. You create
a stock tool button by calling the static constructor new_from_stock and passing a stock ID such
as Gtk::STOCK_SAVE.

After you’ve created a tool button, you can add it to a toolbar by passing it to the toolbar’s
add method. However, adding a tool button to a toolbar is not the last step. At this point, if the
user were to click the button, nothing would happen. You must create a signal handler that
connects the button’s clicked signal to a callback.

Listing 11-12 shows the code that creates a stock item, adds it to a toolbar, and creates
a signal handler.

Listing 11-12. Creating a Stock Tool Button and an Appropriate Signal Handler

<?php

// Create a new toolbar.

$toolbar = new GtkToolbar();

// Add a stock quit item.

$quit = GtkToolButton::new_from_stock(Gtk::STOCK_QUIT);

$toolbar->add($quit);

// Create a signal handler.

$quit->connect_simple('clicked', array('Gtk', 'main_quit'));

?>

Creating Custom Tool Buttons
You don’t have to create tool buttons from stock. To create a unique tool button, just add an
icon and label to an empty tool button. Listing 11-13 creates a custom Send tool button using
a Crisscott logo icon. The button will be used in the application to allow the users to transmit
their inventory data to the Crisscott server.

Listing 11-13. Creating a Custom Tool Button

<?php

// Create a new toolbar.

$toolbar = new GtkToolbar();

// Create an empty button.

$crisscott = new GtkToggleToolButton();

// Add an icon.

$icon = GtkImage::new_from_file('Crisscott/images/menuItemGrey.png');

$crisscott->set_icon_widget($icon);

// Create a special label.

$crisscottLabel = new GtkLabel('Send data to Crisscott');

$crisscottLabel->set_ellipsize(Pango::ELLIPSIZE_START);

6137ch11.qxd 3/14/06 2:18 PM Page 251

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS252

Figure 11-10. A toolbar with several types of tool buttons

// Set the label widget.

$crisscott->set_label_widget($crisscottLabel);

// Add the tool button.

$toolbar->add($crisscott);

?>

Creating the button is a simple three-step process:

1. Create an empty tool button using the new operator and passing no arguments.

2. Add an icon by passing a small Crisscott logo image to set_icon_image.

3. Add a label with set_label.

The label could have been set to a widget instead of a string using set_label_widget. In
most cases, when set_label_widget is called, it is to create a more interesting text label, not to
add a button or a container, although adding a button or container is possible. For instance, you
could add a GtkLabel with an ellipsization mode set to allow the label to take up less space.
This would allow the toolbar to show more items without resorting to an overflow menu.

Using Menu, Toggle, and Radio Tool Buttons
As with menu items, PHP-GTK provides a few specialized toolbar widgets, which can expand
a toolbar item or represent a state. The classes are GtkMenuToolButton, GtkToggleToolButton,
and GtkRadioMenuItem. Figure 11-10 shows these types of tool buttons.

The classes create the following types of tool buttons:

Menu tool button: GtkMenuToolButton is just like a normal tool button, but also has an
additional “mini-button” attached to the side or bottom. The mini-button is represented
with an arrow, which pops up a GtkMenu widget when clicked. A menu tool button is useful
to group similar actions into one button. In Figure 11-10, the New button is a menu tool
button.

Toggle tool button: GtkToggleToolButton is similar to GtkCheckMenuItem. GtkToggleToolButton
uses a shadow and a color change to indicate the state of the button. When the button is
active, the background will be darker and a drop shadow will be added. When the button
is not active, the background will match the rest of the toolbar and the border will not be
shown. This visual representation works equally as well regardless of the toolbar style (whether
the buttons show only text, only icons, or both). In Figure 11-10, the Send button is a toggle
tool button.

6137ch11.qxd 3/14/06 2:18 PM Page 252

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS 253

Radio tool button: GtkRadioToolButton is similar to GtkRadioMenuItem in that only one of
a group of buttons may be active at any given time. When activated, a GtkRadioToolButton

button will deactivate the other button in the group that is currently activated. In Figure 11-10,
the Sort Asc and Sort Desc buttons are radio tool buttons.

Listing 11-14 shows how the toolbar buttons shown in Figure 11-10 were created.

Listing 11-14. Creating a GtkToolbar Widget with Several Types of Tool Buttons

<?php

class Crisscott_Tools_Toolbar extends GtkToolbar {

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Create the submenus.

$this->createButtons();

}

protected function createButtons()

{

// Create a button to make new products, categories and

// contributors.

$img = GtkImage::new_from_stock(Gtk::STOCK_NEW,

Gtk::ICON_SIZE_SMALL_TOOLBAR);

$new = new GtkMenuToolButton($img, 'New');

$newMenu = new GtkMenu();

// Create the menu items.

$product = new GtkMenuItem('Product');

$newMenu->append($product);

$category = new GtkMenuItem('Category');

$newMenu->append($category);

$contrib = new GtkMenuItem('Contributor');

$newMenu->append($contrib);

// Set the menu as the menu for the new button.

$newMenu->show_all();

$new->set_menu($newMenu);

// Add the button to the toolbar.

$this->add($new);

// Create the signal handlers for the new menu.

require_once 'Crisscott/MainWindow.php';

$application = Crisscott_MainWindow::singleton();

6137ch11.qxd 3/14/06 2:18 PM Page 253

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS254

$new->connect_simple('clicked', array($application, 'newProduct'));

$product->connect_simple('activate', array($application, 'newProduct'));

$category->connect_simple('activate', array($application, 'newCategory'));

$contrib->connect_simple('activate', array($application, 'newContrib'));

// Create a toggle button that will connect to the database.

$database = GtkToggleToolButton::new_from_stock(Gtk::STOCK_CONNECT);

$database->set_label('Connect to Database');

// Add the button to the toolbar.

$this->add($database);

// Create two buttons for sorting the product list.

$sortA = new GtkRadioToolButton(null, 'Ascending');

$sortA->set_icon_widget(GtkImage::new_from_stock(Gtk::STOCK_SORT_ASCENDING,

Gtk::ICON_SIZE_LARGE_TOOLBAR));

$sortA->set_label('Sort Asc');

$sortD = new GtkRadioToolButton($sortA, 'Descending');

$sortD->set_icon_widget(GtkImage::new_from_stock(Gtk::STOCK_SORT_DESCENDING,

Gtk::ICON_SIZE_LARGE_TOOLBAR));

$sortD->set_label('Sort Desc');

// Add the two buttons.

$this->add($sortA);

$this->add($sortD);

}

}

?>

Listing 11-14 creates one button with a menu that allows the user to create a new product,
category, or contributor. First, the menu button is created using the new operator. The icon and
text are passed to the constructor. Afterward, the menu is created and added with set_menu.
Signal handlers need to be created for all of the menu items as well as for the button itself. It is
a good idea to connect the button to the same callback as one of the menu items, because the
user will most likely expect something to happen when the button is clicked.

Next is the GtkToggleToolButton. Note that you could change the icon associated with
a toggle button to represent different states of the button by extending GtkToggleToolButton
and creating a signal handler for the toggled signal.

The last type of toolbar button shown in Listing 11-14 is GtkRadioToolButton, created using
the new operator. When instantiated, a radio button requires one of the other buttons in the group
or null. In Listing 11-14, the first radio button is given null as the first argument. The second
button is given the first button to make a group.

The toolbar created in Listing 11-14 and shown in Figure 11-10 will be used as the PIMS
application’s toolbar.

6137ch11.qxd 3/14/06 2:18 PM Page 254

CHAPTER 11 ■ ADDING MENUS AND TOOLBARS 255

■Note The only other type of widget that can be added to a toolbar is GtkSeparatorToolItem. A separator
item doesn’t normally serve any purpose except to visually group tool items. For example, a group of radio tool
buttons might be surrounded by two separator items to make it clear that they are one radio group.

Summary
Menus and toolbars provide ways for users to trigger actions in an application. They provide
structured ways to represent abstract user tasks. A menu provides a hierarchical method for
organizing tasks into several groups, while a toolbar creates a more persistent means to show
tasks with an icon, a label, or both. When either a menu item or a tool button is clicked, or acti-
vated, it usually triggers some action or pops up another menu. While a toolbar is mostly static
and is constantly shown, menus can appear from almost any location. When a menu seem-
ingly appears from nowhere with options relating to a particular piece of the application, the
menu is known as a context menu. Menus can also be detached from the application. Using
a GtkTearoffMenuItem, it is possible to put a menu in its own top-level window that can then
be moved around the user’s desktop.

Several listings in this chapter used images to create icons for menu items or toolbar but-
tons but didn’t provide any explanation. Chapter 12 goes into the details of using images in an
application. Not only will the next chapter look at how to display images of varying types, but
it will also go into the details of creating images on the fly and using images to shape other
widgets. Using images, the PIMS application can take on a unique look and feel.

6137ch11.qxd 3/14/06 2:18 PM Page 255

6137ch11.qxd 3/14/06 2:18 PM Page 256

257

C H A P T E R 1 2

■ ■ ■

Adding Images

As the old saying goes, “A picture is worth a thousand words.” The same holds true for GUI
applications. Sometimes the best way to get an idea across is to use an image instead of text.
Furthermore, adding images can give the application a unique look and feel. For instance, in
our sample application, adding a logo to the Crisscott splash screen uniquely identifies the
application as a Crisscott product.

In Chapter 11, you saw how to create menu items and toolbar buttons from stock images,
which are widely understood for certain functions. In this chapter, we will look at how to use
images in the Crisscott PIMS application not only to enhance usability and present data, but
also to shape the application itself.

Images
GtkImage is a widget that displays an image—any image that can be loaded into memory. It may
be a product photo, a company logo, or a stock image. GtkImage is a descendant of GtkMisc
(introduced in Chapter 7), which means that an image can be aligned and given padding just
like a label. But before you can assign an alignment or padding, you must create a GtkImage

object.

Creating an Image Object
Images can be created from many sources and data types. For each of these types, PHP-GTK
provides a function to load the image.

Referencing the File Location
The most commonly used method for loading an image is to reference its location. Several
examples in previous chapters have shown the use of GtkImage::new_from_file. This static
constructor takes a path to a file and returns a GtkImage.

You can open most common file types, such as JPEG, PNG, and BMP, with new_from_file.
If the file cannot be found or opened, a default broken image icon will be returned instead.
Depending on the user’s system, a broken image icon may look like Figure 12-1. If it is important
for the application to know whether or not the image was loaded successfully, you should use
another method to add the image.

6137ch12.qxd 3/14/06 2:29 PM Page 257

CHAPTER 12 ■ ADDING IMAGES258

Figure 12-1. A broken image icon

Using a Stock ID
In previous examples, you have seen how to create images for buttons and menu items by using
stock IDs. A stock ID is a shortcut that identifies a commonly used image. You can also create
a regular image from a stock ID by using new_from_stock. This static constructor takes the stock
ID plus a size. The size is defined by a GtkIconSize constant. Stock images come in different sizes
so that they can be used for different purposes. Each use has its own size constant, as follows:

• Gtk::ICON_SIZE_MENU: A small image normally used in menus.

• Gtk::ICON_SIZE_SMALL_TOOLBAR: A small version of the icon used for toolbars.

• Gtk::ICON_SIZE_LARGE_TOOLBAR: A larger version of the toolbar icon.

• Gtk::ICON_SIZE_BUTTON: The version normally used for buttons.

• Gtk::ICON_SIZE_DND: The icon size used when an item is dragged.

• Gtk::ICON_SIZE_DIALOG: The version normally used in dialog windows.

Using a Pixel Buffer
Another way to create an image is from data in memory. An image stored in memory can usu-
ally be found in a GdkPixbuf. A pixel buffer (or pixbuf) is simply a representation of the image
in memory. It cannot be displayed on its own; it is just data. You can put an image into a pixbuf
when an application is started to allow commonly used images to be loaded more quickly.

A pixbuf can be created from a file, just as an image can be created. To create a pixbuf
from a file, call the static constructor new_from_file and pass a file path. Listing 12-1 creates
a pixbuf from a file and then creates an image from the pixbuf using the static constructor
new_from_pixbuf.

Listing 12-1. Loading an Image into a GdkPixbuf and Then a GtkImage

<?php

// Create a window to display the image.

$window = new GtkWindow();

// Close the application cleanly.

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

// Load a pixbuf from a file.

$pb = GdkPixbuf::new_from_file('Crisscott/images/logo.png');

6137ch12.qxd 3/14/06 2:29 PM Page 258

CHAPTER 12 ■ ADDING IMAGES 259

// Create the image from the pixbuf.

$image = GtkImage::new_from_pixbuf($pb);

// Add the image to the window.

$window->add($image);

// Show the image and the window.

$window->show_all();

// Start the main loop.

Gtk::main();

?>

Using GdkPixbuf and GtkImage, we can now add product images to the Crisscott PIMS
application. Product images should appear in two places: in the product summary area and in
the product editing tool.

Listing 12-2 shows the code added to the Crisscott_Tools_ProductEdit class to allow the
user to add or change a product image. The added lines include a GtkEntry for entering the path
to the image file and the code to display the images. In this example, the creation of the pixbuf
is wrapped in a try/catch block. That is because if the file for the pixbuf is not found, an excep-
tion will be thrown. This allows the application to detect a failure to load an image.

Listing 12-2. Adding Product Images to the Application

<?php

// The added lines from the product summary area.

class Crisscott_Tools_ProductSummary extends GtkTable {

// ...

public function displaySummary(Crisscott_Product $product)

{

// Set the product.

$this->product = $product;

// Set the attribute labels to the values of the product.

$this->productName->set_text($product->name);

$this->productType->set_text($product->type);

// Get the category information.

require_once 'Crisscott/Inventory.php';

$inv = Crisscott_Inventory::singleton();

$cat = $inv->getCategoryById($product->categoryId);

// Set the category name.

$this->productCategory->set_text($cat->name);

// Set the product price.

$this->productPrice->set_text($product->price);

// Remove the current product image.

$this->productImage->remove($this->productImage->get_child());

6137ch12.qxd 3/14/06 2:29 PM Page 259

CHAPTER 12 ■ ADDING IMAGES260

// Try to add the product image.

try {

// Create a pixbuf.

$pixbuf = GdkPixbuf::new_from_file($product->imagePath);

// Create an image from the pixbuf.

$this->productImage->add(GtkImage::new_from_pixbuf($pixbuf));

// Show the image.

$this->productImage->show_all();

} catch (Exception $e) {

// Just fail silently.

}

}

// ...

}

class Crisscott_Tools_ProductEdit extends GtkTable {

// ...

private function _layout()

{

// Set up the data entry widgets.

// ...

$this->imageContainer = new GtkFrame();

$this->imagePathEntry = new GtkEntry();

// ...

// Set up the labels.

// ...

$this->imageLabel = new GtkLabel('Image');

// Set the labels' size.

// ...

$this->imageLabel->set_size_request(100, -1);

// ...

// Next align each label within the parent container.

// ...

$this->imageLabel->set_alignment(0, .5);

// Make all of the labels use markup.

// ...

$this->imageLabel->set_use_markup(true);

// ...

6137ch12.qxd 3/14/06 2:29 PM Page 260

CHAPTER 12 ■ ADDING IMAGES 261

// Attach the image widgets.

$this->attachWithAlign($this->imageContainer, 2, 4, 0, 4, Gtk::FILL, 0);

$this->attachWithAlign($this->imageLabel, 2, 4, 4, 5, Gtk::FILL, 0);

$this->attachWithAlign($this->imagePathEntry, 3, 4, 4, 5, Gtk::FILL, 0);

// ...

}

public function resetProduct()

{

// Make sure that there is a product.

if (!isset($this->product)) {

require_once 'Crisscott/Product.php';

$this->product = new Crisscott_Product();

}

// Update the tools in the widget.

// ...

$this->imagePathEntry->set_text($this->product->imagePath);

// Remove the current image.

$this->imageContainer->remove($this->imageContainer->get_child());

// Try to load the product image.

try {

// Load the image into a pixbuf.

$pixbuf = GdkPixbuf::new_from_file($this->product->imagePath);

// Load the pixbuf into an image.

$this->imageContainer->add(GtkImage::new_from_pixbuf($pixbuf));

// Show the image.

$this->imageContainer->show_all();

} catch (Exception $e) {

// Fail silently.

// The product object will verify if the image exists.

}

// ...

}

}

?>

Figure 12-2 shows the new version of the application. In Chapter 14, we will expand on
this even further to make it easier to find a valid file path.

6137ch12.qxd 3/14/06 2:29 PM Page 261

CHAPTER 12 ■ ADDING IMAGES262

Figure 12-2. Product images in the application

Note that in Figure 12-2, the image in the product summary area is not quite right. The
image is cropped because it doesn’t fit in the area provided. Instead of resizing the application
to fit the image, it is more reasonable to resize the image to fit the application.

Scaling Images
Resizing an image is also known as scaling. The quick and easy way to scale a GdkPixbuf is by
using scale_simple. scale_simple takes a pixbuf, a new height, and a new width, and returns
a new pixbuf with the given dimensions.

■Caution scale_simple scales the buffer exactly as it is told. It does not respect the aspect ratio of the
original buffer. Make sure that the new dimensions you choose do not distort the buffer beyond your accept-
able limits.

scale_simple also requires one more argument, which tells GDK how to create the new
image. Each of the following methods tells the pixbuf to scale the new image in a different
manner, using a different algorithm. The faster the algorithm, the lower the quality of the
scaled image.

6137ch12.qxd 3/14/06 2:29 PM Page 262

CHAPTER 12 ■ ADDING IMAGES 263

• Gdk::INTERP_NEAREST: This is the fastest way to scale an image, but the quality of the
new image will likely be unacceptable, especially when making the image smaller.

• Gdk::INTERP_HYPER: This produces the best-quality image, but may be too slow for some
applications or for large images.

• Gdk::INTERP_TILES: This method is probably best when you are not certain if the buffer
is being scaled up or being scaled down. It resembles Gdk::INTERP_NEAREST when scaling
up and Gdk::INTERP_BILINEAR when scaling down.

• Gdk::INTERP_BILINEAR: This offers the best balance of quality and speed.

In Listing 12-3, the product image for the product summary area is scaled to fit in the 100
× 100 pixel area set aside for the image.

Listing 12-3. Scaling a GdkPixbuf

<?php

class Crisscott_Tools_ProductSummary extends GtkTable {

// ...

public function displaySummary(Crisscott_Product $product)

{

// ...

// Remove the current product image.

$this->productImage->remove($this->productImage->get_child());

// Try to add the product image.

try {

// Create a pixbuf.

$pixbuf = GdkPixbuf::new_from_file($product->imagePath);

// Scale the image.

$pixbuf = $pixbuf->scale_simple(80, 100, Gdk::INTERP_BILINEAR);

// Create an image from the pixbuf.

$this->productImage->add(GtkImage::new_from_pixbuf($pixbuf));

// Show the image.

$this->productImage->show_all();

} catch (Exception $e) {

// Just fail silently.

}

}

// ...

}

?>

Figure 12-3 shows the product summary area with the scaled image.

6137ch12.qxd 3/14/06 2:29 PM Page 263

CHAPTER 12 ■ ADDING IMAGES264

■Tip Another method for scaling an image is named scale. scale is a very powerful method for manipu-
lating images. Like scale_simple, it scales an image, but it also can take a portion of the new image and
paste it onto an existing image. This method allows for some rather creative image manipulations, but is a little
too complicated for use in most applications. For more details about using scale, consult the GdkPixbuf
documentation at http://gtk.org.

Setting Transparency
Images can not only define visible pixels, but they also can define pixels that cannot be seen.
These pixels are transparent. Transparent pixels allow the user to see through parts of an image.
Transparent pixels are useful in cases where an image is a unique shape and you do not want
to have a solid-colored background.

For example, let’s say that the products can be rated from zero to five stars based on how
well they sell. In order to make the application look clean and professional, the star icons
depicting the rating should appear in the application without a background. The actual data
that defines an image always defines a rectangular region. To show only the star shape, you
can make some of the pixels in the rectangular region transparent and leave the pixels that
represent the star as opaque.

Most graphic editors, like The GIMP and Photoshop, allow you to create an image with
transparent pixels built in. GdkPixbuf will respect transparent pixels that are built into an image
file. However, it is sometime necessary to work with images that have been created without
transparency. This doesn’t present too much of a problem, because you can add transparency
to any GdkPixbuf that doesn’t have transparency already. You do this by creating an alpha channel
for the GdkPixbuf. An alpha channel defines a particular color in an image to make transparent.
The following line makes all white pixels in an image transparent:

$newPixbuf = $pixbuf->add_alpha_channel(true, 255, 255, 255);

The first argument to add_alpha_channel is a Boolean that tells the pixbuf to make the
color transparent. The next three arguments define the color to make transparent. The color
values here are 8-bit values for red, green, and blue (as opposed to the 16-bit values used by
GdkColor). Now when the image shown, all white pixels will be transparent, and the color of
the widget behind the image (usually a GtkButton or GtkWindow) will show through.

Figure 12-3. A scaled product image

6137ch12.qxd 3/14/06 2:29 PM Page 264

CHAPTER 12 ■ ADDING IMAGES 265

Figure 12-4. A GtkTextView with pieces missing

Animations
Static images are not the only type of images that you can use with PHP-GTK. You can also
load animations. An animation is a series of static images where the images are displayed one
after another.

An animation is useful to draw attention to an image. Something moving on the screen
will be much more eye-catching than a static image. An animation can also be used as a sort
of progress indicator. While work is being performed, you can display an animation. When the
work is done, the animation can be replaced with a static image again.

Working with animations is just like working with static images. In fact, an animation (most
likely in .gif format) can even be loaded with GtkImage::new_from_file. When an animation is
loaded into a GtkImage, it creates a GdkPixbufAnimation instead of a regular GdkPixbuf. A GtkImage

that contains an animation can be added to a container just like any other widget.

Widget Shaping
You can use images for more than just adding pictures to an application. Using images, you
can define shapes that you can then apply to windows and other widgets. An image can be
used to turn a normal rectangular button into a symbol such as a plus sign, a star, or any other
shape.

Setting a widget’s shape is like trimming the widget using a stencil. The stencil defines
which parts should be left and which parts should be removed. After the stencil is applied, all
that is left of the widget are the parts the stencil did not say to trim.

For example, Figure 12-4 shows a GtkTextView that has been modified to remove some
parts from the middle. Notice how only the display of the widget is affected, not the actual
shape of the widget. The text still flows as if the GtkTextView were square.

■Caution Users often associate particular shapes with specific actions. For instance, they often expect
buttons and entries to be rectangular. Make sure that your modifications will have a positive impact on the
usability of the application before straying from the customary shapes and sizes.

6137ch12.qxd 3/14/06 2:29 PM Page 265

CHAPTER 12 ■ ADDING IMAGES266

To shape a widget, you use a pixel map (pixmap) in combination with a bitmap. GdkPixmap
is another format for storing image data in memory. The difference between a pixmap and
a pixbuf is that a pixmap can be drawn onto by other GDK objects.

A GdkPixmap is basically a way to map colors to a given pixel. The number of bits used to
represent each color in the pixmap is called the depth. The greater the depth, the more colors
a pixmap contains. One of the values that can be represented in a pixmap is transparency.
Transparent pixels are basically pixels that do not exist. GdkBitmap, also known as a bitmask, is
pixmap that has a depth of 1. In a bitmap, each bit does not represent a color, but rather indicates
an on or off state. Pixels that are off are transparent. When a bitmap is laid over a GtkWindow, the
bits that are off will not allow the window to show through. This is how a widget is shaped.

The window in Figure 12-4 was created from the code in Listing 12-4.

Listing 12-4. Changing the Shape of a GtkWindow

<?php

// Create a window.

$window = new GtkWindow();

// Set up the window to exit cleanly.

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

// Create a pixbuf from an image file.

$pb = GdkPixbuf::new_from_file('Crisscott/images/inverse.png');

// Get the objects that will shape the widget.

list($pixmap, $mask) = $pb->render_pixmap_and_mask();

// Create a GtkTextView and add some text.

$text = new GtkTextView();

$text->get_buffer()->set_text('This is a test. There is a whole ' .

'in the middle of this text view widget.');

// Wrap the text.

$text->set_wrap_mode(Gtk::WRAP_WORD);

// Change the shape of the text view.

$text->shape_combine_mask($mask, 0, 0);

// Add the text view to the window.

$window->add($text);

// Show the window and image.

$window->show_all();

// Start the main loop.

Gtk::main();

?>

The first step in creating the “see-through” text view is to create a regular GtkWindow. Next,
a pixbuf is created from an image file. After the pixbuf is created, it is used to generate two
objects, one of which will be used as the stencil for shaping the window. The GdkPixbuf

6137ch12.qxd 3/14/06 2:29 PM Page 266

CHAPTER 12 ■ ADDING IMAGES 267

method render_pixmap_and_mask takes no arguments and returns an array containing
a GdkPixmap and a GdkBitmap.

The GdkBitmap is then passed to the window’s shape_combine_mask method. This method
applies the mask to the GtkTextView, starting from the offset given by the last two arguments.
In this case, the mask is not offset because both the x offset (second argument) and y offset
(last argument) are 0. The rest of the example is pretty standard. The text view is added to the
window, the window is shown, and the main loop is started.

Summary
Images are an essential for almost all applications. Simply displaying an image is rather easy.
Once created, a GtkImage can be added to any container. All of the methods for GtkImage are
either constructors for creating the image from different sources or methods for setting the
contents of a previously created image.

To work with the contents of an image, you must edit a pixel buffer, or pixbuf. GdkPixbuf
stores an image and allows the image to be manipulated. A pixbuf can be scaled to a different
size or turned into a pixel map (pixmap) and bitmask. You can use a GdkBitmap to give widgets
a custom shape. This way, the use of images in an application not only makes the application
more visually appealing, but can also shape the application itself.

Chapter 13 looks at what it takes to allow users to drag objects in an application and move
them to another part of the application. This is known as drag-and-drop. You will learn not only
how to make an item draggable, but also how to make a widget accept or reject items for dropping.

6137ch12.qxd 3/14/06 2:29 PM Page 267

6137ch12.qxd 3/14/06 2:29 PM Page 268

269

C H A P T E R 1 3

■ ■ ■

Drag-and-Drop

Drag-and-drop, or DnD for short, refers to using the mouse to move an element on the screen
to another location. Most people are familiar with DnD—moving an icon from one place on
their desktop to another, dragging a file from one folder to another, and so on.

But DnD is not just about moving files around the file system. It is actually a metaphor for
interprocess communication. This means that DnD is a way for the user to supply a particular
piece of an application with information that is stored in a different part of the application or
comes from an entirely different process. For example, most web browsers will display an HTML
file when you drag it from your desktop and drop it over an open browser window.

Adding DnD to an application can help make its use more intuitive. DnD makes the answer
to “How do I get this data from here to there?” as simple as “Drag it and drop it.”

There are two parts to every DnD operation. First there is the source, or the item being
dragged, and then there is the destination, which is the place the item will be dropped. Of the
two, creating a destination is easier and so, we will consider that task first.

Drag-and-Drop Destinations
A destination is a widget that is configured to accept the information provided by dropped data
and do something with it. Any widget can be a destination for a drop. For example, a GtkEntry

widget used to collect the path of an image file may be configured to accept image files that are
dropped onto it. This allows users to drag an image file from their file system onto the widget.
Depending on the setup of the GtkEntry, the path to the file may be set as the GtkEntry’s text,
or maybe the image will be loaded into another widget.

Setting the Drag Destination
A few usability enhancements can be added to the Crisscott PIMS application by way of DnD.
To start, let’s look at what it takes to allow users to add product images simply by dragging an
icon from their desktop and dropping it in the product editing tool’s image path GtkEntry widget.
Listing 13-1 shows the code that sets the GtkEntry as a drop location.

6137ch13.qxd 3/14/06 2:30 PM Page 269

CHAPTER 13 ■ DRAG-AND-DROP270

Listing 13-1. Making a GtkEntry Accept Drops

<?php

class Crisscott_Tools_ProductEdit extends GtkTable {

// ...

private function _layout()

{

// Set up the data entry widgets.

$this->nameEntry = new GtkEntry();

// ...

$this->imagePathEntry = new GtkEntry();

// Make the image path entry accept file drops.

$this->acceptDrops($this->imagePathEntry);

}

public function acceptDrops($widget)

{

// Set the widget as a drop location.

$widget->drag_dest_set(Gtk::DEST_DEFAULT_ALL,

array(array('text/uri-list', 0, 0)),

Gdk::ACTION_COPY | Gdk::ACTION_MOVE

);

// Connect the drag-data-received signal.

$widget->connect('drag-data-received', array($this, 'dragDataReceived'));

}

// ...

}

?>

Making a widget accept drops is a pretty quick process. Calling the drag_dest_set method
of GtkWidget is all it takes to make a widget accept drops. The method takes three arguments:

• flags: Flags that indicate what should happen when data is dragged over the widget.

• targets: An array that determines the drop types the widget will accept.

• actions: The possible actions the destination can take when data is dropped.

Drag Destination Flags
The first argument to drag_dest_set (flags) is bitmask of values that determines how the
widget should react when potential drop data is dragged over the widget. The following are
the possible flag values:

6137ch13.qxd 3/14/06 2:30 PM Page 270

CHAPTER 13 ■ DRAG-AND-DROP 271

• Gtk::DEST_DEFAULT_MOTION: Causes the widget to check to see if data being dragged over
the widget is acceptable to be dropped onto the widget.

• Gtk::DEST_DEFAULT_HIGHLIGHT: Causes the widget to be highlighted while acceptable
drop data is held over the widget.

• Gtk::DEST_DEFAULT_DROP: Causes the widget to call drag_get_data when acceptable data
is dropped on the widget.

• Gtk::DEST_DEFAULT_ALL: Combines all three flags. Gtk::DEST_DEFAULT_ALL is used a vast
majority of time.

In Listing 13-1, the flag value passed to drag_dest_set is Gtk::DEST_DEFAULT_ALL.

Drag Destination Targets
The second argument to drag_dest_set (targets) is an array of targets that the widget should
accept. The targets are not specific items, but rather types of items. Each element of the array
is called a target entry. Each target entry is itself an array consisting of a string and two integers.

The string indicates the MIME type of the data that is acceptable to drop in the destination
widget. Listing 13-1 sets this to text/uri-list. This means that only lists of URIs (strings that
give the location of files either on the local host or on a remote machine) are allowed to be
dropped on the widget. When a file from the user’s desktop is dragged over the widget, the
data type will be text/uri-list. This means that the user can drag an icon onto the widget
and it will respond when the data is dropped. If other types of data, such as highlighted text
from a website (text/plain), are dropped onto the widget, the data will be ignored.

The second element of a target entry array is a flag that can be used to further restrict the
data that may be dropped onto the widget. In Listing 13-1, this value is set to 0 because no
other restrictions are needed. However, it could be set to either of the following:

• Gtk::TARGET_SAME_APP: Only data dragged from within the same application as the des-
tination widget will be accepted. For example, using this value will mean that the user
may not drag items from the desktop and drop them onto the destination widget.

• Gtk::TARGET_SAME_WIDGET: Only data from the same widget will be accepted as drop
data. This value is useful for widgets such as GtkTextView. It can be used to allow text to
be moved within the widget but restrict text from being pulled in from outside resources.

The final element of the target entry array is an integer used to identify the entry type.
This value will be passed to any callbacks used to handle the DnD events. The value should be
unique for each target entry. Using the integer ID is faster than comparing the data types, and
its main purpose it to save time.

Drag Destination Actions
The last argument of dest_drag_set (actions) is a bitmask value that defines what the destina-
tion widget should do with the dragged data. As in Listing 13-1, the values may be combined
to allow more than one type of action to happen when data is dropped. Possible values for this
argument are any combination of the following:

6137ch13.qxd 3/14/06 2:30 PM Page 271

CHAPTER 13 ■ DRAG-AND-DROP272

• Gdk::ACTION_COPY: Copy the dragged data. The location of a file should be copied when
a file is dragged onto the destination widget.

• Gdk::ACTION_MOVE: Move the data from the drag source to the destination. For example,
when dragging text from one part of a GtkTextView to another, it should be moved not
copied.

• Gdk::ACTION_LINK: Add a link to the data. Note that this is useful only if the source and
destination agree on what it means.

• Gdk::ACTION_PRIVATE: Indicate to the source that the destination will do something with
the data that the source will not understand.

• Gdk::ACTION_ASK: Ask the user what to do with the data. This is useful only if the source
allows multiple actions that the destination accepts.

Calling drag_dest_set is all that is needed to make a widget accept drops. Of course, that
is not all there is to DnD. Once a widget accepts drops, it must be set up to do something with
the data. That is what we will look at next.

■Note A widget can be unset as a drag destination using drag_dest_unset. Calling this method will clear
any drag destination information set using drag_dest_set. This is useful to limit the number of times a widget
is allowed to accept dragged data.

Handling the drag-data-received Signal
When data is dropped onto a drag destination, the drag-data-received signal is emitted. This
signal indicates not only that data was dropped on the widget, but also that it matches one of
the target entry arrays used when setting up the destination. When this signal is fired, the
application should do something with the drag data. Listing 13-2 shows the creation of the signal
handler and the signal handler itself.

Listing 13-2. Creating a drag-data-received Signal Handler

<?php

class Crisscott_Tools_ProductEdit extends GtkTable {

// ...

public function acceptDrops($widget)

{

// Set the widget as a drop location.

$widget->drag_dest_set(Gtk::DEST_DEFAULT_ALL,

array(array('text/uri-list', 0, 0)),

Gdk::ACTION_COPY | Gdk::ACTION_MOVE

);

6137ch13.qxd 3/14/06 2:30 PM Page 272

CHAPTER 13 ■ DRAG-AND-DROP 273

// Connect the drag-data-received signal.

$widget->connect('drag-data-received', array($this, 'dragDataReceived'));

}

public function dragDataReceived($widget, $context, $x, $y, $data,

$info, $time, $userData)

{

// Get the dropped file's path.

$path = trim($data->data);

// Strip off the "file://localhost/" from the path.

// See the CAUTION note below!

$path = substr($path, 17);

// Check the mime type to make sure the file is an image.

if (strpos(mime_content_type($path), 'image') === false) {

return false;

}

// Set the current product's image path.

$this->product->imagePath = $path;

// Reset the product.

$this->resetProduct();

}

// ...

}

?>

■Caution File URIs are seldom implemented correctly. The correct format is file://hostname/path/
to/file. Because of the many different implementations of this URI, it is a good idea to do a few checks to
make sure that the data points to an actual file. Take a look at PEAR::Gtk_FileDrop (http://pear.php.
net/package/Gtk_FileDrop) for a more complete example of working with file URIs. For a quick and easy
way to set a destination to accept file drops, check out PEAR::Gtk2_FileDrop (http://pear.php.net/
package/Gtk2_FileDrop).

The signal handler created in Listing 13-2 is set up to receive eight arguments:

• destWidget: The destination widget where data was dropped. This is passed because the
signal handler was created with connect, rather than connect_simple.

• context: The drag context—information related to the data being dropped. The drag
context is an object that contains information such as the action that will happen
(Gdk::ACTION_COPY, Gdk::ACTION_MOVE, and so on), the data types offered by the drag source,
and the GdkWindow of the source and destination widgets.

6137ch13.qxd 3/14/06 2:30 PM Page 273

CHAPTER 13 ■ DRAG-AND-DROP274

• x: The horizontal coordinate of the cursor position when the data is dropped.

• y: The vertical coordinate of the cursor position when the data is dropped.

• data: An object containing information about the dragged data.

• info: The target entry ID number.

• time: The timestamp of the event.

• userData: An optional array of user data passed to the callback.

The data argument is a GtkSelectionData object, which contains information about the
dropped data. In Listing 13-2, the only property that is used is the data property, which contains
the data that is dropped. In the case of Listing 13-2, this is the path to the file that is dropped on
the GtkEntry. The path is a URI that pinpoints the file that was dropped on the widget. Notice
that a little work is needed to obtain a usable value. First, the string "file://localhost" needs
to be stripped off the beginning of the path. (Don’t forget that the file URI needs to point to an
actual file!) Next, any white space must also be removed from the end of the path.

■Tip If multiple data types are accepted by the destination, you can check the type of the dropped data by
inspecting the type property of the GtkSelectionData object. However, if an appropriate ID was set in the
target entry, it is easier to simply check the info argument.

Drag-and-Drop Sources
Just as widgets can accept data that has been dropped onto them, they can also be used to
provide data by being dragged. Users may try to drag a list item to make it part of another list,
or they may drag a product to a part of the application, expecting that the application will allow
them to edit that product’s data. A widget that can be dragged from one part of the application
to another, or even to another application, is called a DnD source.

Setting the Drag Source
Listing 13-3 shows the Crisscott PIMS application’s product summary tool being turned into
a drag source.

Listing 13-3. Turning a Widget into a Drag Source

<?php

class Crisscott_MainWindow extends GtkWindow {

// ...

private function _populate()

{

// Create the layout table.

$table = new GtkTable(5, 3);

6137ch13.qxd 3/14/06 2:30 PM Page 274

CHAPTER 13 ■ DRAG-AND-DROP 275

// A shortcut for setting both the expand and fill properties.

$expandFill = Gtk::EXPAND|Gtk::FILL;

// ...

// Create a frame to hold the product summary tool.

$productSummary = new GtkFrame('PRODUCT SUMMARY');

$productSummary->set_size_request(-1, 150);

// Add the product summary tool.

require_once 'Crisscott/Tools/ProductSummary.php';

$this->productSummary = Crisscott_Tools_ProductSummary::singleton();

$productSummary->add($this->productSummary);

// Make the widget a drag source.

// It must be wrapped in a GtkEventBox.

$eb = new GtkEventBox();

// The data will be plain text and the user must use

// the first mouse button to drag.

$eb->drag_source_set(Gdk::BUTTON1_MASK, array(array('text/plain', 0, 0)),

Gdk::ACTION_COPY);

// Create a signal handler to get the appropriate data.

$eb->connect('drag-data-get',

array($this, 'getSummaryDragData'),

$this->productSummary);

// Add the product summary to the event box.

$eb->add($this->productSummary);

// ...

}

// ...

}

?>

One of the key things to notice about Listing 13-3 is that the ProductSummary tool itself is
not made a drag source. This is because no-window widgets—those without a GdkWindow—
cannot be made into drag sources. Because the ProductSummary tool extends GtkTable, it must
be wrapped inside a GtkEventBox if it is to be used as a drag source. This is not usually a big
deal for most applications.

Making a widget DnD source is very similar to making a widget a DnD destination. You
use the drag_source_set method, which takes three arguments:

6137ch13.qxd 3/14/06 2:30 PM Page 275

CHAPTER 13 ■ DRAG-AND-DROP276

• buttonMask: A bitmask of buttons that will initiate the drag operation.

• targets: An array that determines the drop types the widget will accept.

• actions: The possible actions the destination can take when data is dropped.

Drag Source Button Masks
The first argument to drag_source_set (buttonMask) is a mask of buttons that can be used to
start the drag operation. This bitmask determines which mouse buttons the user must hold
down in order to drag the widget. The bitmask should be a combination of one or more of the
masks for each button, as follows:

• Gdk::BUTTON1_MASK: The first mouse button.

• Gdk::BUTTON2_MASK: The second mouse button.

• Gdk::BUTTON3_MASK: The third mouse button.

• Gdk::BUTTON4_MASK: The fourth mouse button.

• Gdk::BUTTON5_MASK: The fifth mouse button.

For example, to allow either the first or second mouse button to be used to start a drag
operation, use Gdk::BUTTON1_MASK | Gdk::BUTTON2_MASK.

■Note PHP-GTK has support for mice with up to five buttons, but most users’ mice have only three buttons.
You should carefully consider your target audience before deciding to restrict drag operations to the fourth or
fifth mouse button.

Drag Source Targets and Actions
The next two arguments to drag_source_set are an array of targets and a bitmask of possible
actions. These two arguments take the same form as the corresponding arguments for
drag_dest_set. The targets argument is an array of target entries and defines the ways that
the data for the source may be represented. The actions bitmask determines what will happen
to the data when it is dropped.

Handling the drag-data-get Signal
Notice also that a signal handler is created for the drag-data-get signal. This signal is emitted
when the data is dropped. The callback should be used to set the data that will be passed on to
the drag destination. The data is set by modifying the GtkSelectionData object that is passed in as
one of the callback arguments. Listing 13-4 shows a callback that is connected to the drag-data-get
signal. It expects the same arguments as the signal handler used for the drag-data-received
signal (Listing 13-2).

6137ch13.qxd 3/14/06 2:30 PM Page 276

CHAPTER 13 ■ DRAG-AND-DROP 277

Listing 13-4. Setting Drag Data

<?php

class Crisscott_MainWindow extends GtkWindow {

// ...

private function _populate()

{

// ...

// Create a signal handler to get the appropriate data.

$eb->connect('drag-data-get',

array($this, 'getSummaryDragData'),

$this->productSummary)

// ...

}

public function getSummaryDragData($widget, $context, $selection,

$info, $time, $summary)

{

// Set the product id as the selection's data value.

$selection->set_text($summary->product->productId);

}

// ...

}

?>

In Listing 13-4, the set_text method is used to set the data property of the GtkSelectionData
object to the product ID of the ProductSummary tool’s current product. When the GtkSelectionData
object is passed on to the drag destination, the product ID can be retrieved from the data property
of the selection object.

Setting Drag Source Icons
When data is dragged from one place to another, the cursor turns into an icon representing
the type of data being moved. Normally, this is determined by the target entry value of the
drag source, but you can control which icon appears. This adds another level of customization
to an application. For example, if the drag source is a Crisscott product, the drag icon could be
set to a small version of the Crisscott logo. This lets the users know that they are moving prod-
uct data and not just an image or chunk of text.

Setting a custom icon is a simple matter of passing a GdkPixbuf object to a widget’s
drag_source_set_icon_pixbuf. Listing 13-5 shows a simple example.

6137ch13.qxd 3/14/06 2:30 PM Page 277

CHAPTER 13 ■ DRAG-AND-DROP278

Listing 13-5. Setting a Custom Drag Source Icon

<?php

class Crisscott_MainWindow extends GtkWindow {

// ...

private function _populate()

{

// ...

// Make the widget a drag source.

// It must be wrapped in a GtkEventBox.

$eb = new GtkEventBox();

// Set a drag source icon.

$pixbuf = GdkPixbuf::new_from_file('Crisscott/images/menuItem.png');

$eb->drag_source_set_icon_pixbuf($pixbuf);

// ...

}

// ...

}

?>

In this example, a new pixbuf is created using GdkPixbuf::new_from_file and is passed
directly to drag_source_set_icon_pixbuf. When the source is dragged, the cursor changes to
a small Crisscott logo. The end result can be seen in Figure 13-1.

6137ch13.qxd 3/14/06 2:30 PM Page 278

CHAPTER 13 ■ DRAG-AND-DROP 279

Figure 13-1. A custom drag source icon

Summary
To receive drop data, a widget must be set as a destination. This is a simple matter of calling
drag_dest_set. Of course, the widget must also be set up to handle the incoming data, and that
can be done by creating a signal handler for the drag-data-received signal. A source of drop
data is created using drag_source_set. The data that a source gives to the destination needs to
be set in the signal handler for the drag-data-get signal.

DnD is a powerful means to make an application more intuitive. It allows users to achieve
complex operations by simply dragging data from one place to another. DnD can be used to
communicate data from one part of an application to another or to send and receive data from
other applications. DnD empowers users to move or copy data by picking it up and dropping
it in another location, just as they would move a piece of paper from their desk to their filing
cabinet.

In Chapter 14, we will look at other ways to collect data from the user in the form of selectors
and dialogs. These are windows that pop up and present the users with a message or ask them
to make a choice. Selectors and dialogs allow the application to break specialized tasks out from
the rest of the application to maximize space and hide functionality that isn’t always needed.

6137ch13.qxd 3/14/06 2:30 PM Page 279

6137ch13.qxd 3/14/06 2:30 PM Page 280

281

C H A P T E R 1 4

■ ■ ■

Using Selectors & Dialogs

User decisions are ultimately responsible for determining the course of an application’s
actions. For instance, a user is often prompted to confirm a pending action, such as closing
a file without saving, or choosing a particular value such as a filename or color. Normally, such
prompts do not need to appear within the interface but will appear in their own window, pre-
venting the user from interacting with other parts of the application until the request has been
satisfied. Prompts that pose a specific question are known as dialogs, while those that ask the
user to make a selection are known as selectors. For example, the prompt to confirm the closure
of a file without first saving it is known as a dialog, while the prompt to choose a specific filename
is a selector.

PHP-GTK 2 offers several widgets that make the process of creating and displaying dialogs
and selectors rather simple. Dialogs and selectors are really just GtkWindows, which are already
filled with a collection of widgets and emit certain signals. Instead of building a window and
filling it with buttons, labels, and lists, a developer can instantiate one of the dialog or selector
widgets, provide a few hints as to what the contents should be, and wait for the pop-up to return
information regarding the user’s choice. This chapter examines what is required to set up and
communicate with the many types of dialogs and selectors available in PHP-GTK 2.

Dialogs
GtkDialog is a widget designed to prompt the user to answer a question using a top-level window
that displays a message, providing a means for the user to respond. An example of such a win-
dow is presented in Figure 14-1. The dialog asks the user to confirm that they want to close the
application even though their work has not been saved. Note that these windows are made up
of two pieces: the top with the message or question, and the bottom containing buttons that
allow the user to provide some sort of feedback.

Figure 14-1. A simple GtkDialog window

6137ch14.qxd 3/14/06 2:33 PM Page 281

Listing 14-1 contains the code used to create the dialog in Figure 14-1. This listing only
shows the code that actually instantiates the class. Later examples will show how to use the
dialog in an application.

Listing 14-1. Creating a GtkDialog

<?php

// Set up the options for the dialog

$dialogOptions = 0;

// Make the dialog modal.

$dialogOptions = $dialogOptions | Gtk::DIALOG_MODAL;

// Destroy the dialog if the parent window is destroyed.

$dialogOptions = $dialogOptions | Gtk::DIALOG_DESTROY_WITH_PARENT;

// Don't show a horizontal separator between the two parts.

$dialogOptions = $dialogOptions | Gtk::DIALOG_NO_SEPARATOR;

// Set up the buttons.

$dialogButtons = array();

// Add a stock "No" button and make its response "No".

$dialogButtons[] = Gtk::STOCK_NO;

$dialogButtons[] = Gtk::RESPONSE_NO;

// Add a stock "Yes" button and make its response "Yes".

$dialogButtons[] = Gtk::STOCK_YES;

$dialogButtons[] = Gtk::RESPONSE_YES;

// Create the dialog.

$dialog = new GtkDialog('Confirm Exit', null, $dialogOptions, $dialogButtons);

// Add the warning message.

$dialog->vbox->pack_start(new GtkLabel('Are you sure you want to exit?'));

?>

A GtkDialog requires four pieces of information when it is created. The first is a string that
will be used as the title for the dialog window. In Listing 14-1, the title is “Confirm Exit.” The
dialog window in Figure 14-1 shows the title in the title bar of the window. The next argument
for the GtkDialog constructor is the parent window. This is a GtkWindow from which the dialog
was generated. If a GtkWindow is passed, the dialog will be associated with that window. When
it appears on the screen it will appear over the parent window. Depending on the value passed
as the third argument, the dialog can also be modal for the parent, meaning that the user must
answer the dialog’s question before continuing with the main application. If the value for the
second argument is null, the dialog will not be associated with any particular window. It will

CHAPTER 14 ■ USING SELECTORS & DIALOGS282

6137ch14.qxd 3/14/06 2:33 PM Page 282

CHAPTER 14 ■ USING SELECTORS & DIALOGS 283

pop up in the center of the screen and will not be able to restrict the user from interacting with
the original window.

The third argument passed to the GtkDialog constructor is an integer that determines the
properties of the new dialog. There are three properties that can be set with this value. In
Listing 14-1 all are set to on:

• Gtk::DIALOG_MODAL: This value determines whether the dialog will be modal. If the dialog
is modal, the parent window may not be accessed until the dialog has been closed.

• Gtk::DIALOG_DESTROY_WITH_PARENT: If destroy with parent is turned on, the dialog window
will be destroyed when the parent window is destroyed.

• Gtk::DIALOG_NO_SEPARATOR: This is a horizontal decoration line that can appear
between the two sections of a dialog. Listing 14-1 sets the dialog to be modal and to be
destroyed with its parent. The separator is turned off.

The final argument for the GtkDialog constructor is an array of buttons and responses. In
Listing 14-1 the array consists of four constants. The first and third elements are stock button IDs.
The GtkDialog constructor will turn these IDs into buttons. The second and fourth elements
are responses. The array that is passed as the last argument to the constructor must have an
even number of elements and the elements must alternate between strings for buttons, and
integers for responses. If the string is a stock ID, a stock button will be created; otherwise,
the string will be used as the label for a new button. The response for each button can be any
integer value but there are a few values that are already defined.

Table 14-1 shows the constants for these values along with their integer values. All of the
predefined response values are negative. This doesn’t mean they should be interpreted as false.
These values are negative as a convenience for the developer. Any positive response value can
be set for a button without the fear that it will be interpreted as a predefined response. In
Listing 14-1, two buttons are added, one for no and one for yes. Each is given a corresponding
response value.

Table 14-1. Predefined GtkDialog Responses

Constant Integer Value

Gtk::RESPONSE_NONE -1

Gtk::RESPONSE_REJECT -2

Gtk::RESPONSE_ACCEPT -3

Gtk::RESPONSE_DELETE_EVENT -4

Gtk::RESPONSE_OK -5

Gtk::RESPONSE_CANCEL -6

Gtk::RESPONSE_CLOSE -7

Gtk::RESPONSE_YES -8

Gtk::RESPONSE_NO -9

Gtk::RESPONSE_APPLY -10

Gtk::RESPONSE_HELP -11

6137ch14.qxd 3/14/06 2:33 PM Page 283

■Note The return value from a GtkDialog will be Gtk::RESPONSE_DELETE_EVENT if the dialog is closed
without clicking a button. This might be because its parent window was destroyed or because the user clicked
the X in the upper right-hand corner.

Displaying a Dialog
After a GtkDialog is created, it remains hidden until needed. A dialog is normally shown in
response to some user action. This means that some sort of signal handler is responsible for
creating and displaying the dialog. Just like any other widget, the dialog can be shown using
show or show_all (show_all is probably the better choice for most applications). Calling show_all
will cause the window to appear and, depending on the settings, may block the user from
accessing the parent window. When the user clicks one of the dialog buttons or exits the dialog
window, the dialog will fire a response signal. A signal handler should be created to capture the
user’s response.

Managing the User’s Response
When a dialog is set to be modal, the user may not interact with the rest of the application
until he or she has closed the dialog, either by clicking a button or by closing the window. This
essentially blocks the rest of the application until the dialog is closed. There is a slightly more
elegant way to block the main window while a dialog is visible. The run method of GtkDialog
creates a separate GTK loop just for the dialog. This loop is inside the initial main loop. Until
the dialog is closed, nothing will happen in the main loop. When the dialog is closed, run will
return the response ID for the button that is clicked, or Gtk::RESPONSE_NONE if the dialog is
closed. While run will call show on the dialog, it will not show the children. It is up to the appli-
cation to show the children before calling run.

Listing 14-2 shows the run method in action. In this example, the quit method of
Crisscott_MainWindow uses a GtkDialog to confirm the closing of the window if the user hasn’t
saved the current inventory and transmitted to the Crisscott server.

Listing 14-2. Verifying the User's Action with a GtkDialog

<?php

class Crisscott_MainWindow extends GtkWindow {

// ...

static public function quit()

{

// Check to see if the data has been modified

// or sent. If it is modified or not sent, don't

// exit.

if (self::$modified || !self::$sent) {

// Create a dialog to make sure the user wants to quit.

// Set up the options for the dialog

$dialogOptions = 0;

CHAPTER 14 ■ USING SELECTORS & DIALOGS284

6137ch14.qxd 3/14/06 2:33 PM Page 284

CHAPTER 14 ■ USING SELECTORS & DIALOGS 285

// Make the dialog modal.

$dialogOptions = $dialogOptions | Gtk::DIALOG_MODAL;

// Destroy the dialog if the parent window is destroyed.

$dialogOptions = $dialogOptions | Gtk::DIALOG_DESTROY_WITH_PARENT;

// Don't show a horizontal separator between the two parts.

$dialogOptions = $dialogOptions | Gtk::DIALOG_NO_SEPARATOR;

// Set up the buttons.

$dialogButtons = array();

// Add a stock "No" button and make its response "No".

$dialogButtons[] = Gtk::STOCK_NO;

$dialogButtons[] = Gtk::RESPONSE_NO;

// Add a stock "Yes" button and make its response "Yes".

$dialogButtons[] = Gtk::STOCK_YES;

$dialogButtons[] = Gtk::RESPONSE_YES;

// Create the dialog.

$dialog = new GtkDialog('Confirm Exit', $window,

$dialogOptions, $dialogButtons);

// Add a question to the top part of the dialog.

$message = "The current inventory has not been saved\n";

$message.= "and transmitted to Crisscott. Are you sure\n";

$message.= "you would like to quit?\n";

$label = new GtkLabel($message);

$dialog->vbox->pack_start($label);

// Show the top part of the dialog (The bottom

// will be shown automatically).

$dialog->vbox->show_all();

// Run the dialog and check the response.

if ($dialog->run() !== Gtk::RESPONSE_YES) {

// Destroy the dialog and return false.

$dialog->destroy();

return false;

}

}

// Exit the application.

Gtk::main_quit();

return true;

}

}

?>

6137ch14.qxd 3/14/06 2:33 PM Page 285

Adding Items to the Top of a Dialog
The top section of a GtkDialog is just a GtkVBox. As seen in the two previous examples, the box
can be accessed as the vbox property of the dialog. Any widget can be packed into the dialog’s
vbox. It is common practice to pack an icon into the vbox. This icon can help to draw the user’s
attention and give him an idea of what the message is about before he has a chance to read
the message. In Listing 14-3, a stock warning icon is added to the dialog.

Listing 14-3. Adding a Stock Image to a GtkDialog

<?php

class Crisscott_MainWindow extends GtkWindow {

// ...

static public function quit()

{

// Check to see if the data has been modified

// or sent. If it is modified or not sent, don't

// exit.

if (self::$modified || !self::$sent) {

// Create a dialog to make sure the user wants to quit.

// Set up the options for the dialog

// ...

// Set up the buttons.

// ...

// Create the dialog.

$dialog = new GtkDialog('Confirm Exit', $window, $dialogOptions,

$dialogButtons);

// Add an image and a question to the top part of the dialog.

$hBox = new GtkHBox();

$dialog->vbox->pack_start($hBox);

// Pack a stock warning image.

$warning = GtkImage::new_from_stock(Gtk::STOCK_DIALOG_WARNING,

Gtk::ICON_SIZE_DIALOG);

$hBox->pack_start($warning, false, false, 5);

$message = "The current inventory has not been saved\n";

$message.= "and transmitted to Crisscott. Are you sure\n";

$message.= "you would like to quit?\n";

$label = new GtkLabel($message);

$label->set_line_wrap();

$hBox->pack_start($label);

CHAPTER 14 ■ USING SELECTORS & DIALOGS286

6137ch14.qxd 3/14/06 2:33 PM Page 286

Figure 14-2. A GtkDialog with a Stock Image

CHAPTER 14 ■ USING SELECTORS & DIALOGS 287

// Show the top part of the dialog (The bottom

// will be shown automatically).

$dialog->vbox->show_all();

// Run the dialog and check the response.

if ($dialog->run() !== Gtk::RESPONSE_YES) {

$dialog->destroy();

return false;

}

}

// Exit the application.

gtk::main_quit();

return true;

}

}

?>

In order to make the dialog appear as it does in Figure 14-2, you must first pack
a GtkHBox into the dialog’s vbox. Then add the icon and the label to the hbox. Figure 14-2
shows the Gtk::STOCK_DIALOG_WARNING image.

When the image is created from the stock ID, it is given the appropriate size, Gtk::ICON
_SIZE_DIALOG. There are four other stock images specifically designed for GtkDialog windows.
They are Gtk::STOCK_DIALOG_AUTHENTICATION, Gtk::STOCK_DIALOG_ERROR, Gtk::STOCK_DIALOG
_INFO, and Gtk::STOCK_DIALOG_QUESTION. Each of these simply creates a different icon that will
be displayed in the dialog window. They offer a visual queue to help the user quickly understand
the dialog’s message. You can see these icons by starting up the stock-browser2.php demo that
comes with the PHP-GTK 2 source or Window binaries.

Adding Items to the Bottom of a Dialog
Just as items can be added to the top section of a dialog, they can be added to the bottom section,
which is also known as the action area. The action area can be accessed as the action_area
property of a dialog. The action area is really just a GtkHButtonBox, and should only be used to
hold buttons for the dialog even though it is possible to add any widget to a button box. You can
add buttons using the button box methods of add, pack_start or pack_end, which were discussed
in Chapter 6. Unfortunately, these methods only add the button to the box. They do not allow
the button to close the dialog and emit the response signal with a response ID.

6137ch14.qxd 3/14/06 2:33 PM Page 287

CHAPTER 14 ■ USING SELECTORS & DIALOGS288

While the application could create the needed signal handlers, there is a better way to add
items to the action area. The proper way to add a button to a GtkDialog is by using one of the
following:

• add_button: The add_button method takes a string and an integer as arguments. The
string should be either a stock ID or the label for a new button. The integer should be
the response ID for the new button. These arguments are similar to those given in the
array that is the last argument to the GtkDialog constructor.

• add_buttons: This adds multiple buttons to the action area at once. It takes only one
argument, an array which is of the same format as the array passed to the GtkDialog
constructor. The elements must be alternating strings and integers. The strings will be
used to create the buttons and the integers will be the response IDs.

• add_action_widget: This takes two arguments—a widget and a response ID. The widget
must be “activatable.” This means that the widget must be able to emit the activate sig-
nal. Activatable widgets include buttons, entries, and menu items. Listing 14-4 shows
an example using add_action_widget.

Listing 14-4. Adding a Button to a GtkDialog Using add_action_widget

<?php

class Crisscott_MainWindow extends GtkWindow {

// ...

static public function quit()

{

// Check to see if the data has been modified

// or sent. If it is modified or not sent, don't

// exit.

if (self::$modified || !self::$sent) {

// Create a dialog to make sure the user wants to quit.

// Set up the options for the dialog

// ...

// Set up the buttons.

// ...

// Create the dialog.

$dialog = new GtkDialog('Confirm Exit', $window, $dialogOptions);

// Add the buttons to the action area.

$noButton = GtkButton::new_from_stock(Gtk::STOCK_NO);

$yesButton = GtkButton::new_from_stock(Gtk::STOCK_YES);

$dialog->add_action_widget($noButton, Gtk::RESPONSE_NO);

$dialog->add_action_widget($yesButton, Gtk::RESPONSE_YES);

// ...

}

6137ch14.qxd 3/14/06 2:33 PM Page 288

CHAPTER 14 ■ USING SELECTORS & DIALOGS 289

}

}

?>

A GtkDialog is an excellent tool for prompting the user for some information. It is flexible
and easy to use. One of the drawbacks to a GtkDialog is its simplicity. Getting more than just
a simple response from a dialog is difficult. Luckily, there are some classes that act like dialogs
but are slightly more powerful.

Selectors
Selectors are more complex versions of dialogs. Like dialogs they are top-level windows, but
unlike dialogs, selectors return something other than an integer response. Selectors can be
used to return such things as fonts, colors, or file paths. Selectors also come with buttons that
can be used to launch the dialog window.

Color Selection Dialogs
Some applications may need to allow the user to select a color. A GtkColorSelectionDialog

widget is a dialog window with a GtkColorSelection widget in the dialog vbox. The action
area is packed with three buttons. Figure 14-3 shows a GtkColorSelectionDialog in action.
A GtkColorSelection allows a user to pick a color using one of five methods. The large color
wheel on the left of the window allows the user to select a color by clicking in the triangle in
the center of the wheel. If the desired color can’t be found in the triangle, clicking the outer
ring will change the colors in the triangle. Below the color wheel is a small window showing
the original color and the current selection. To the right of this window is an eyedropper tool.
The eyedropper can be used to select a color from any part of the screen. On the right of the
dialog window, there are three methods to identify a color. The color can be named using
a hue, a saturation, a value combination, an RGB value, or a hex value. The buttons packed
into the action area are a cancel button and an OK button.

Figure 14-3. A GtkColorSelectionDialog

6137ch14.qxd 3/14/06 2:33 PM Page 289

CHAPTER 14 ■ USING SELECTORS & DIALOGS290

Figure 14-4. A GtkColorSelection with an opacity control and a color palette

Creating and showing a GtkColorSelectionDialog isn’t all there is to the story. You can access
the color selection from the dialog via the colorsel property and then set the properties for the
color selection. Additionally, there are two extra tools you can add to the default color selection.
You can add an opacity tool by passing true to set_has_opacity_control. The opacity control
determines how transparent the selected color will be. The other tool you can add is a color
palette, which is a selection of colors. You can add a palette by passing true to set_has_palette.
Figure 14-4 shows a GtkColorSelection with an opacity control and a color palette.

Signal Handlers
Once you’ve created the color selection interface, you should create the signal handlers. With-
out them, the color selection will not be very useful. The signal handlers should be connected
to the three buttons in the action area. The buttons can be accessed using the ok_button,
cancel_button, and help_button properties. Listing 14-5 shows what the signal handlers may
look like. The signal handler connected to the cancel button simply closes the dialog window.
The signal handler for the help button calls a method that will open up a new window with
helpful information. The OK button is connected to a method that can be used to grab the
color from the color selection. The get_current_color method of GtkColorSelection returns
a GdkColor object. This object can be used to determine the transparent color of a GdkPixmap

among other things.

Listing 14-5. Creating Signal Handlers for a GtkColorSelection

<?php

// Create and show the color dialog.

$color = new GtkColorSelectionDialog('Color Chooser');

$color->show_all();

// Create a signal handler for the cancel button.

$color->cancel_button->connect_simple('clicked', array($color, 'destroy'));

6137ch14.qxd 3/14/06 2:33 PM Page 290

CHAPTER 14 ■ USING SELECTORS & DIALOGS 291

// Create a signal handler to show a help window.

$color->help_button->connect_simple('clicked', 'showHelp');

// Create a signal handler to grab the selected color.

$color->ok_button->connect_simple('clicked', 'getColor', $color);

?>

Color Buttons
Setting up a GtkColorSelectionDialog can be a somewhat tedious process. First, all of the
properties for the GtkColorSelection must be set. Then signal handlers must be created for
each of the buttons. For more complicated uses, this flexibility is very helpful; but for more
typical uses, such as selecting color for a block of text, the needs are much simpler. All that
needs to be returned is a color. There is no need for a help window or a color palette. To make
life a little easier there is GtkColorButton, a subclass of GtkButton, which displays a color swatch.
When clicked, the button starts up a GtkColorSelectionDialog. After the user selects a color, the
dialog is closed and the new color is shown in the button. The dialog that appears is slightly
different from a normal GtkColorSelectionDialog. It has no help button. Also, the OK and
cancel buttons are already connected to appropriate signal handlers. When the user clicks the
cancel button, the dialog is closed. When the user clicks the OK button, a color-set signal is fired.
In Listing 14-6, the color-set signal is connected to a method that applies a tag to a block of text.
The color button’s get_color method grabs the color shown in the button.

Listing 14-6. Using GtkColorButton

<?php

function applyTag($colorButton, $text)

{

// Create a color object to hold the color.

$color = new GdkColor();

// Get the color from the button.

$colorButton->get_color($color);

// Create a new tag to modify the text.

$tag = new GtkTextTag();

// Set the tag color.

$tag->set_property('foreground-gdk', $color);

// Get the buffer.

$buffer = $text->get_buffer();

// Get iters for the start and end of the selection.

$selectionStart = $buffer->get_start_iter();

$selectionEnd = $buffer->get_start_iter();

6137ch14.qxd 3/14/06 2:33 PM Page 291

CHAPTER 14 ■ USING SELECTORS & DIALOGS292

// Get the iters at the start and end of the selection.

$buffer->get_iter_at_mark($selectionStart, $buffer->get_insert());

$buffer->get_iter_at_mark($selectionEnd, $buffer->get_selection_bound());

// Add the tag to the buffer's tag table.

$buffer->get_tag_table()->add($tag);

// Apply the tag.

$buffer->apply_tag($tag, $selectionStart, $selectionEnd);

}

// Create a window and set it to close cleanly.

$window = new GtkWindow();

$window->connect_simple('destroy', array('gtk', 'main_quit'));

// Create a vBox to hold the window's contents.

$vBox = new GtkVBox();

// Create an hBox to hold the buttons.

$hBox = new GtkHBox();

// Create the color button and pack it into the hBox.

$color = new GtkColorButton();

$hBox->pack_start($color, false, false);

// Pack the hBox into the vBox.

$vBox->pack_start($hBox, false, false, 3);

// Create the text view.

$text = new GtkTextView();

$text->set_size_request(300, 300);

// Create a signal handler for the color button.

$color->connect('color-set', 'applyTag', $text);

// Add the text view to the vBox.

$vBox->pack_start($text);

// Add the vBox to the window and show everything.

$window->add($vBox);

$window->show_all();

gtk::main();

?>

Figure 14-5 shows a simple text editor that makes use of GtkColorButton. The image also
shows the dialog that GtkColorButton pops up.

6137ch14.qxd 3/14/06 2:33 PM Page 292

CHAPTER 14 ■ USING SELECTORS & DIALOGS 293

Figure 14-5. GtkColorButton in a very simple text editor

Font Selection Dialogs
GtkFontSelectionDialog is a widget designed to provide a consistent interface for selecting
text fonts. A GtkFontSelectionDialog is similar to a GtkColorSelectionDialog. It is simply
a GtkDialog window that is prepopulated with widgets needed to perform a given task. In this
case, the task is selecting a font and its attributes. The top portion of a GtkFontSelectionDialog

is a GtkFontSelection widget. A GtkFontSelection contains widgets needed to select the font
family, style (bold, italic, etc.), and size. The GtkFontSelection also has an area to preview the
selected font. The action area of the font selection dialog has a cancel button, an apply but-
ton, and an OK button. Just like GtkColorSelectionDialog, the buttons in the action area of
a GtkFontSelectionDialog must be connected to signal handlers. Listing 14-7 creates a font
selection dialog and the appropriate signal handlers.

Listing 14-7. Creating a GtkFontSelectionDialog

<?php

// Create a font dialog.

$fontDialog = new GtkFontSelectionDialog('Font Selection');

// Create a signal handler for the cancel button.

$fontDialog->cancel_button->connect_simple('clicked',

array($fontDialog, 'destroy'));

// Create a signal handler to apply the font.

$fontDialog->apply_button->connect_simple('clicked', 'applyTag', $textBuffer);

// Create a signal handler to apply the font.

$fontDialog->ok_button->connect_simple('clicked', 'applyTag', $textBuffer);

6137ch14.qxd 3/14/06 2:33 PM Page 293

CHAPTER 14 ■ USING SELECTORS & DIALOGS294

// Create a signal handler to close the dialog.

$fontDialog->ok_button->connect_simple('clicked', array($fontDialog, 'destroy'));

// Show the dialog.

$fontDialog->show_all();

?>

The callbacks are not implemented in this example, but they aren’t that complicated. The
apply button and OK button both apply the font to a text buffer. The difference between the
two is that the OK button closes the dialog, and the apply button leaves it open. The dialog
created in Listing 14-7 can be seen in Figure 14-6.

You can access the GtkFontSelection widget of a GtkFontSelectionDialog via the fontsel
property. A GtkFontSelection widget has a few methods you can call to customize the tool.
First, you can select the default font by using the set_font_name method. This method will
preselect a font family name if it is available on the user’s system. The text used to preview the
font is also configurable. The set_preview_text method takes a string and puts it in the preview
area of the GtkFontSelection widget. This method is particularly handy if the user is setting
a font over a selection of text. The selected text can be set in the preview area to give users
a better idea of the change they are about to make.

Font Buttons
Creating a GtkFontSelectionDialog and setting up all the signal handlers can be just as
tedious as with a GtkColorSelectionDialog. Using a GtkFontButton is an easy way to set up
a GtkFontSelection. A font button can display the font family, style, and size of the currently
selected font. When clicked, the button will launch a font selection dialog. The dialog created
by the button will have all the signal handlers for the buttons created. The only signal handler
that needs to be set up by the developer is the font-set signal. This signal is emitted when the
user clicks the apply or OK buttons.

Figure 14-6. A GtkFontSelectionDialog

6137ch14.qxd 3/14/06 2:33 PM Page 294

CHAPTER 14 ■ USING SELECTORS & DIALOGS 295

Listing 14-8 shows a callback method that could be connected to a font button’s font-set
signal to change the font of a selected region of text in a GtkTextBuffer. The font-set signal
automatically passes the font button to the callback. The selected font can be returned using
get_font_name. This method returns the font family, style, and size as one string. The value
of get_font_name is then used to set the font property of a GtkTextTag object. This tag is then
applied across the selection to modify the font of the text.

Listing 14-8. A Callback for a GtkFontButton’s Font-Set Signal

<?php

function applyTag($fontButton, $text)

{

// Create a new tag to modify the text.

$tag = new GtkTextTag();

// Set the tag font.

$tag->set_property('font', $fontButton->get_font());

// Get the buffer.

$buffer = $text->get_buffer();

// Get iters for the start and end of the selection.

$selectionStart = $buffer->get_start_iter();

$selectionEnd = $buffer->get_start_iter();

// Get the iters at the start and end of the selection.

$buffer->get_iter_at_mark($selectionStart, $buffer->get_insert());

$buffer->get_iter_at_mark($selectionEnd, $buffer->get_selection_bound());

// Add the tag to the buffer's tag table.

$buffer->get_tag_table()->add($tag);

// Apply the tag.

$buffer->apply_tag($tag, $selectionStart, $selectionEnd);

}

?>

By default, a font button displays the font family and size of the currently selected font.
The display properties of the button can be controlled. The style (bold, italic, etc.) can be
added to the button’s label by passing true to set_show_style. Passing false to this method will
turn the style off again. Passing false to set_show_size will hide the size in the button’s label.
The size can be shown again by passing true to the same method. In addition to showing the font
description, you can control the font of the button’s label. A button can be told to use the cur-
rently selected font, style, or size in its label.

In Figure 14-7, the GtkFontButton is told to use the font and style that has been selected.
This is done using the set_use_font method. This method expects a Boolean value and changes
the font and style of the button’s label if it is given true. The button’s label will not use the selected

6137ch14.qxd 3/14/06 2:33 PM Page 295

CHAPTER 14 ■ USING SELECTORS & DIALOGS296

size unless true is passed to set_use_size. Be careful when using set_use_size because the
button can become unreadable or distort the appearance of the application, depending on
how it is packed into its parent container.

File Chooser Dialogs
GtkColorSelectionDialog and GtkFontSelectionDialog are rather specialized widgets. They
are most commonly used with text editing applications or pieces of an application that can
edit text. GtkFileChooserDialog, on the other hand, has much broader appeal. Many different
types of applications will need to access the file system in one way or another. For example, an
application may need to open or save files, or an email client might need to attach a file to
a message. These actions require the user to select a file and tell the application where it can
be found. This is the purpose of GtkFileChooserDialog. It provides an interface for the user to
browse the file system and pick one or more files.

A GtkFileChooserDialog is very similar to the other selectors. It consists of a dialog window
that has the top portion populated with a GtkFileChooserWidget. The action area is prepopu-
lated with different buttons depending on the intended use of the dialog. When a file chooser
dialog is created it expects not only a title and a parent window but also an action type. The action
type defines the expected behavior of the dialog. The different types are Gtk::FILE_CHOOSE_ACTION_
OPEN, Gtk::FILE_CHOOSER_ACTION_SAVE, Gtk::FILE_CHOOSER_ACTION_SELECT_FOLDER, and Gtk::FILE_
CHOOSER_ACTION_CREATE_FOLDER.

Figure 14-8 shows a save and an open file chooser dialog. The create folder and select
folder dialogs are very similar in appearance. After passing the action type, the constructor for
GtkFileChooserDialog expects an array of buttons and responses. These buttons and their
responses will be added to the action area. Signal handlers should be created for these just as
with the other selector dialogs.

Just as with the other selector widgets, there is a button that makes using a file selector
quite easy. GtkFileChooserButton will launch a GtkFileChooserDialog. The constructor for the
button requires a title for the dialog window and an action type. A GtkFileChooserButton can
only accept Gtk::FILE_CHOOSER_ACTION_OPEN and Gtk::FILE_CHOOSER_ACTION_SELECT_FOLDER as
its action type. This means that a file chooser button can only be used to open files or folders.
It cannot be used to save files or create folders. Figure 14-9 shows what a GtkFileChooserButton

might look like in an application. To determine which filename is selected, a signal handler
needs to be created for the open button of the dialog. The dialog can be accessed using the
dialog property. A GtkFileChooserButton is a quick and easy way to set up a file chooser.

Figure 14-7. A GtkFontButton set to use the selected font and style

6137ch14.qxd 3/14/06 2:33 PM Page 296

CHAPTER 14 ■ USING SELECTORS & DIALOGS 297

Figure 14-8. Two types of GtkFileChooserDialog

Figure 14-9. A GtkFileChooserButton

File Selection
A GtkFileChooserDialog is a very specialized tool for allowing users to select a file. Its form and
function changes depending on what the dialog will be used for. A more practical and standard
approach to allow the user to select a file from the file system is to use a GtkFileSelection. This
selector is much more similar to the other types of selectors we have seen so far. The interface,
which can be seen in Figure 14-10, is probably more recognizable and easier to use.

6137ch14.qxd 3/14/06 2:33 PM Page 297

CHAPTER 14 ■ USING SELECTORS & DIALOGS298

Unlike the other types of selectors, there is no single class in the dialog’s vbox. Instead, the
top section of the dialog is made up of several different widgets that together provide the func-
tionality needed to let the user select a file. You can directly access the elements that make up
both the top section and the action area. This allows for the easy creation of signal handlers.
Table 14-2 shows the properties you can access in a GtkFileSelection.

Table 14-2. GtkFileSelection Properties

Property Description

ok_button The dialog’s OK button. A signal handler should be connected to this
button to get the filename.

cancel_button The dialog’s cancel button. A signal handler should be connected to
this button to close the dialog.

fileop_c_dir A button to allow the user to create a directory. No signal handler needs
to be created.

fileop_del_file A button to allow the user to delete a file. No signal handler needs to be
created.

fileop_ren_file A button to allow the user to rename a file. No signal handler needs to
be created.

fileop_dialog The GtkDialog holding all the other widgets.

history_pulldown A GtkOptionMenu showing the directory history.

As you can see by the list of properties, a GtkFileSelection allows the user to do much
more than select a file. The file operation buttons that appear at the top of the dialog can be
used to create directories, delete files or directories, and rename files or directories. This amount
of freedom may be undesirable in some circumstances. Therefore, these buttons can be hidden
from the user by calling hide_fileop_buttons. Calling show_fileop_buttons will show these

Figure 14-10. A GtkFileSelection

6137ch14.qxd 3/14/06 2:33 PM Page 298

CHAPTER 14 ■ USING SELECTORS & DIALOGS 299

buttons again. If the buttons are left visible, not much else needs to be done. The buttons
come equipped with the signal handlers needed to perform their specified tasks. Of course, a new
signal handler could be created if, for instance, the application wants to know when a new direc-
tory is created. If the application has a tree view of the file system, knowing when a new
directory is created or deleted would allow the application to know when to rebuild the under-
lying model.

Listing 14-9 presents the code from the Crisscott_MainWindow class. The code is used to
retrieve a filename that contains the XML for an inventory. This example is only for the file
open function. Saving files requires a different dialog. A GtkFileSelection is created and then
run using the run method. The return value of the run method is checked to see if a file was
selected. The filename is taken from the dialog using the get_filename method. If the file can-
not be found, a new dialog is popped up and the open method is called again. If the filename
is valid, a static method for the main window is called to load the information found in the
given file.

Listing 14-9. Connecting a GtkFileSelection for Opening a File

<?php

class Crisscott_MainWindow extends GtkWindow {

// ...

public function open()

{

// Create the file selection dialog.

$fileSelection = new GtkFileSelection('Open');

// Make sure that only one file is selected.

$fileSelection->set_select_multiple(false);

// Filter the files for XML files.

$fileSelection->complete('*.xml');

// Show the dialog and run it.

$fileSelection->show_all();

if ($fileSelection->run() == Gtk::RESPONSE_OK) {

// Make sure the file exists.

if (@is_readable($fileSelection->get_filename())) {

// Load the file.

self::loadFile($fileSelection->get_filename());

} else {

// Pop up a dialog warning...

// ...

// Run this method again.

self::open();

}

}

}

}

?>

6137ch14.qxd 3/14/06 2:33 PM Page 299

CHAPTER 14 ■ USING SELECTORS & DIALOGS300

In Listing 14-9, two adjustments are made to the file selection before it is shown.
First, the file selection is told not to allow multiple selections. This is done by passing false to
set_select_multiple. This is really just a precaution because selection of multiple files is dis-
abled by default. Next, a pattern is set using the complete method. The pattern is used to check
for a possible default filename. If a file matches the pattern, it will be selected by default. If
there is more than one file that matches the pattern, those files will be the only ones listed in
the files list of the dialog. In Listing 14-9 the pattern is set to *.xml. This will limit the initial list
of files to only XML files.

About Dialogs
The final dialog we will consider in this chapter is GtkAboutDialog. It presents information
about the application in a pop-up window but doesn’t ask any questions. A GtkAboutDialog is
normally popped up from an about menu item in the help menu. The about dialog shows
information, such as the application name and version, the copyright, and the application
authors. Listing 14-10 shows the code that creates the Crisscott about dialog. The end result of
this code can be seen in Figure 14-11.

Listing 14-10. The GtkAboutDialog for the Crisscott PIMS Application

<?php

class Crisscott_AboutDialog extends GtkAboutDialog {

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Set the elements of the dialog.

$this->init();

}

public function init()

{

// Set the logo image.

$this->set_logo(GdkPixbuf::new_from_file('Crisscott/images/logo.png'));

// Set the application name.

$this->set_name('Crisscott PIMS');

// Set the copyright notice.

$this->set_copyright('2005 Crisscott, Inc.');

// Set the license.

$this->set_license(file_get_contents('Crisscott/license.txt'));

// Set the URL to the Crisscott website.

$this->set_website('http://www.crisscott.com/');

// Set the version number.

$this->set_version('1.0.0');

// Set the description of the application.

6137ch14.qxd 3/14/06 2:33 PM Page 300

CHAPTER 14 ■ USING SELECTORS & DIALOGS 301

$this->set_comments('An application to manage product information ' .

'for distribution through Crisscott.com');

}

}

?>

The preceding listing sets the many different parts of the about dialog. The first thing that
is set is the logo. The logo is set with set_logo that expects a GdkPixbuf as the only argument.
Next, the name of the application is set using set_name. The copyright information is set using
set_copyright. The license is set using set_license. The copyright and license methods expect
a string as the only argument. There are several different pieces of information that can be set
and each has its own method:

• set_name: Sets the name of the application.

• set_copyright: Sets the copyright notice.

• set_comments: Adds a description of the application.

• set_license: Adds a line describing the license the application is released under. It adds
a button to the dialog that opens another window with the contents of the license.

• set_website: Can be used to add a URL where more information can be found.

• set_website_label: Sets a string used as the text for the website link. If no label is set,
the link defaults to the URL.

• set_authors: Adds each author in the given array to the list of authors.

• set_artists: Adds each artist in the given array to the list of artists.

• set_documenters: Adds each documenter in the given array to the list of documenters.

• set_translator_credits: Adds a line for the translator who worked on the current language
version.

Figure 14-11. The Crisscott about dialog

6137ch14.qxd 3/14/06 2:33 PM Page 301

CHAPTER 14 ■ USING SELECTORS & DIALOGS302

Summary
Dialogs and selectors allow large functional components to be hidden until needed. These
components can be used to confirm a user’s action or to gather more complicated information,
such as colors, fonts, and filenames. Using a dialog is a simple matter of showing the dialog and
connecting the needed signal handlers. In some cases, it is possible to automate the process
using a specially designed button. Color, font, and file selectors have buttons that can open up
the dialog and connect most of the signal handlers. When a button is used, normally, only one
signal handler needs to be created. This signal handler can then return the needed value.

Dialogs and selectors are the last major functional widgets I will talk about. Chapter 15 talks
about doing work in the background. It will show how to allow the user to continue working
while an application does other work. You will also see how to report the progress of background
tasks using progress bars. Finally, you will see how to repeat tasks over an interval of time.
Chapter 15 makes the Crisscott PIMS application more automated.

6137ch14.qxd 3/14/06 2:33 PM Page 302

303

C H A P T E R 1 5

■ ■ ■

Doing Background Work

A typical Web-based application uses a very rigid process for communicating with the user.
The user makes a request and the server sends a response. In a Web-based application the
server can’t initiate contact with the user, whereas a GUI application can notify the user when
an event has occurred. This simple distinction allows for one of the more interesting features
of PHP-GTK: background work.

Background work goes on while the user is working on something else, allowing for much
greater efficiency. Contrast this with a Web application where the user must wait for each, often
time-consuming, process. For example, consider a travel website. When a user submits a search
request for airline tickets, normally a graphic is loaded asking the user to be patient while the
search is conducted. Until the user is taken to the results page, he or she can’t access any other
information. But in a GUI application, long running processes can occur behind the scenes
while the user continues to work. When the process is finished, the application can notify the
user. In this chapter we will see how to allow the user to continue working while the application
is doing work in the background.

Progress Bars
Before discussing the details of how an application can perform background work, it is a good
idea to discuss how the user will be notified of the application’s progress. One method, as we
have seen with the splash screen, is to offer continuously updated messages in the interface.
Another method is to use a progress bar. GtkProgressBar is a widget designed to keep the user
informed about the status of a long running process. The process can be anything that has
a definite beginning and end, such as uploading a file, writing information to a database, or
even collecting information from the user in several steps. If the progress of something can be
measured, then a GtkProgressBar can relay that information to the user.

Progress bars can be used to display information about two distinct types of processes:

• Progress mode: This mode describes a process where the amount of work completed, as
well as the total amount of work to be completed, is known. To tell the user how much
work has been done and how much work is left to do, the progress bar grows from one
end to the other.

• Activity mode: This mode can only tell the user that work is in progress. When the
progress bar is in activity mode, the bar bounces back and forth. Activity mode is useful
if, for example, the application is waiting for a response from a remote server.

6137ch15.qxd 3/14/06 2:34 PM Page 303

CHAPTER 15 ■ DOING BACKGROUND WORK304

Figure 15-1. A GtkProgressBar in progress mode and in activity mode

Figure 15-1 shows an example of each type of progress bar.

Creating a Progress Bar
Creating a progress bar is a simple matter of using the new operator, regardless of the type of
progress bar you need. The type of progress bar that is used is decided at runtime and is dependent
upon which GtkProgressBar method is called.

For progress mode, the set_fraction method is called. With set_fraction a fraction of the
progress bar between zero and one (inclusive) is filled. When called repeatedly, set_fraction
makes the progress bar appear to grow or shrink from one end to the other.

You can put a progress bar into activity mode by calling the pulse method, which takes no
arguments. This method moves the bar one pulse step, which is the relative distance the activity
indicator will travel with each pulse. The pulse step can be set using the appropriately named
set_pulse_step method. This method takes one argument, which is similar to the value passed
to set_fraction. The value passed to set_pulse_step must be a number between zero and one
(inclusive) and will determine how far the indicator will move with each pulse. For example, if
the value passed to set_pulse_step is .2, each pulse will cause the indicator to move one-fifth
of the total length of the progress bar. After five pulses, the indicator would reach the end of
the progress bar. The next pulse will cause the indicator to move one-fifth of the way back toward
the beginning of the progress bar.

■Note If there is not a full step between the indicator and the end of the progress bar, the indicator will
only move to the end of the progress bar. It will not rebound in the opposite direction in a single step.

Listing 15-1 is a class that sends product data to the Crisscott server using a SOAP interface.
In this class, data is transmitted one product at a time. This allows the method to know how much
work has been done and to update the progress bar after sending the data for each product. The
progress bar will be displayed in progress mode because the set_fraction method is being
called. Notice also the call to the set_text method of the progress bar. The set_text method
superimposes text over the progress bar. The text appears centered over the entire progress bar,
not just the portion that has been filled in.

Listing 15-1. Creating and Updating a GtkProgressBar

<?php

class Crisscott_Tools_ProgressDialog extends GtkDialog {

public $progress;

6137ch15.qxd 3/14/06 2:34 PM Page 304

CHAPTER 15 ■ DOING BACKGROUND WORK 305

public function __construct($title = 'Progress', $parent = null)

{

// Set up the flags for the dialog.

$flags = Gtk::DIALOG_NO_SEPARATOR;

// Set up the buttons for the action area.

// We only want one button, close.

$buttons = array(Gtk::STOCK_CLOSE, Gtk::RESPONSE_CLOSE);

// Call the parent constructor.

parent::__construct($title, $parent, $flags, $buttons);

// Any response should close the dialog.

$this->connect_simple('response', array($this, 'destroy'));

// Add a progress bar.

$this->progress = new GtkProgressBar();

$this->vbox->pack_start($this->progress);

}

}

class Crisscott_Inventory {

// ...

public static function transmitInventory()

{

// Create a SOAP client.

require_once 'Crisscott/SOAPClient.php';

$soap = new Crisscott_SOAPClient();

// Collect all of the products.

$products = self::getAllProducts();

// Create a progress dialog for showing the progress.

require_once 'Crisscott/Tools/ProgressDialog.php';

$dialog = new Crisscott_Tools_ProgressDialog('Sending Inventory');

// Show the progress dialog.

$dialog->show_all();

// We need to know the total to know the percentage complete.

$total = count($products);

// Transmit each product one at a time.

foreach ($products as $key => $product) {

6137ch15.qxd 3/14/06 2:34 PM Page 305

$soap->sendProduct($product);

// Update the progress bar.

$percentComplete = ($key + 1) / $total;

$dialog->progress->set_fraction($percentComplete);

// Display the percentage as a string over the bar.

$percentComplete = round($percentComplete * 100, 0);

$dialog->progress->set_text($percentComplete . '%');

}

}

public static function getAllProducts()

{

$products = array();

// Loop through categories in the inventory.

foreach (self::$instance->categories as $category) {

// Loop through the products in each category.

foreach ($category->products as $product) {

$products[] = $product;

}

}

return $products;

}

}

?>

In this example, the text is used as another way to communicate with the user. The super-
imposed text shows the percentage of the work completed. It doesn’t have to simply reiterate
the progress; it could be a string that identifies what the progress bar is indicating. For example,
it might show “Uploading Products.” The text message could also be the current action being
taken, similar to the text message in the splash screen. An example of the progress dialog can
be seen in Figure 15-2.

As with most text displayed in PHP-GTK, the text shown on a progress bar may extend
beyond its boundaries. When a GtkLabel is too large for the area it is being shown in, it can be
ellipsized to trim off some characters and indicate to the user that some information is being
lost. The same can be done for the text in a GtkProgressBar. The set_ellipsize method takes
a Pango ellipsization mode constant (like those used for labels seen in Chapter 4) and ellipsizes
the text if needed. Ellipsizing the text on a progress bar comes in particularly handy when the
orientation of the progress bar has been changed.

CHAPTER 15 ■ DOING BACKGROUND WORK306

6137ch15.qxd 3/14/06 2:34 PM Page 306

Figure 15-2. A progress bar in a dialog pop-up

CHAPTER 15 ■ DOING BACKGROUND WORK 307

Using set_orientation
A progress bar doesn’t have to move from left to right. Using set_orientation, the progress bar
can be set to move from right to left, which isn’t much of an advantage, especially for progress bars
in activity mode, or from top to bottom or bottom to top. The value passed to set_orientation
determines which way the progress indicator will move or grow. Passing Gtk::PROGRESS_LEFT_
TO_RIGHT makes the progress bar move from left to right, which is the default. A value of
Gtk::PROGRESS_RIGHT_TO_LEFT will cause the progress bar to behave the opposite. Gtk::PROGRESS_
TOP_TO_BOTTOM or Gtk::PROGRESS_BOTTOM_TO_TOP will make the progress bar move or grow ver-
tically. You can only change the orientation by using set_orientation. Any text added using
set_text will still be presented horizontally. This is when set_ellipsize is helpful. Any string
more than a few characters long will quickly overextend the standard width of a vertically
displayed GtkProgressBar.

Progress bars are a very nice way to let the user know that some task, which may take a while,
is in progress. However, in order to be truly useful, a progress bar must update incrementally.
A progress bar that sits still and then suddenly shows the work is done with no intermediate
steps doesn’t offer much assistance to the user. Updating the progress bar in the middle of a func-
tion or loop is only slightly better. Yes, the progress bar may indicate several steps of progress, but
the user isn’t able to interact with the application until the function or loop exits. In order to
allow the progress bar to be updated and to keep the GUI responsive, a long running task must
be broken into discrete chunks. Each chunk can then be executed and the GUI can be updated.
The next few sections show how to ask the application to do work without locking up the GUI.

6137ch15.qxd 3/14/06 2:34 PM Page 307

Iterating the Loop
One way to keep the GUI active and up-to-date is to take a break every once in a while and run
an iteration of the main loop. We have seen examples of this in previous chapters. The splash
screen made use of this concept by updating the GUI between method calls. Recall the follow-
ing line from the Crisscott_SplashScreen class discussed in Chapter 5:

while (Gtk::events_pending()) { Gtk::main_iteration(); }

The PHP-GTK main loop is capable of processing one event on each iteration. The previ-
ous code performs two tasks. First, it checks the event queue. Every time an event occurs, it is
added to the event queue. If one or more events are in the event queue, Gtk::events_pending
returns true, whereas if the event queue is empty, Gtk::events_pending returns false, meaning
that all events have been handled. If the user adds an event to the event queue, it will remain
there until it is processed by the main loop.

Every time PHP-GTK starts an iteration of the main loop, it checks the event queue to
determine whether there are any events that need to be processed. If the event queue is not
empty, an event is shifted off the queue and handled. If the queue is empty, the application
will wait until an event is placed on the queue. Normally, the main loop cycles on its own
without any help from the application. However, during a long running process it is a good
idea to let the application update the GUI. Gtk::main_iteration is used to force the applica-
tion to iterate the main loop once and return to the current code. Handling all of the events in
the event queue is a simple matter of iterating through the loop until there are no events left.
A while loop can be used to tell the application to check for and handle any events before con-
tinuing with the rest of the currently executing code.

Adding this loop to the transmitInventory method shown in Listing 15-1 is all that is
required to make the progress bar update in real time. Listing 15-2 shows exactly where it
should be added. The while loop is added right after the progress bar is updated. This makes
sure that the new progress is shown right away. With this addition, when the transmitInventory
method is called, the user will not only be shown the progress of the transfer, but will also be
able to continue working with the rest of the application. For instance, the user can open menus,
click buttons, and even make changes to the inventory data while it is being sent.

Listing 15-2. Updating the GUI While Data Is Being Transmitted

<?php

class Crisscott_Inventory {

// ...

// A flag that indicates products are being transmitted.

static public $transmitting = false;

public static function transmitInventory()

{

// Create a SOAP client.

require_once 'Crisscott/SOAPClient.php';

$soap = new Crisscott_SOAPClient();

CHAPTER 15 ■ DOING BACKGROUND WORK308

6137ch15.qxd 3/14/06 2:34 PM Page 308

CHAPTER 15 ■ DOING BACKGROUND WORK 309

// Collect all of the products.

$products = self::getAllProducts();

// Create a progress dialog for showing the progress.

require_once 'Crisscott/Tools/ProgressDialog.php';

$dialog = new Crisscott_Tools_ProgressDialog('Sending Inventory');

// Show the progress dialog.

$dialog->show_all();

// Set a flag that indicates transmission has started.

self::$transmitting = true;

// We need to know the total to know the percentage complete.

$total = count($products);

// Transmit each product one at a time.

foreach ($products as $key => $product) {

$soap->sendProduct($product);

// Update the progress bar.

$percentComplete = ($key + 1) / $total;

$dialog->progress->set_fraction($percentComplete);

// Display the percentage as a string over the bar.

$percentComplete = round($percentComplete * 100, 0);

$dialog->progress->set_text($percentComplete . '%');

// Update the GUI.

while (Gtk::events_pending()) { Gtk::main_iteration(); }

}

// Unset the flag, now that transmitting has finished.

self::$transmitting = false;

}

// ...

?>

Of course, allowing the user to change the inventory while it is being modified is probably not
the best idea. That is why a flag (the static property $transmitting) is set before the loop starts and
unset after the loop finishes. The Crisscott_Product class can check this flag before allowing the
user to make any changes. Listing 15-3 shows the code that can be used to alert the user that data
is being transmitted and should not be changed. To get the user’s attention a dialog is popped up.

Listing 15-3. Alerting the User When Products Are Being Updated and Transmitted at the Same Time

<?php

class Crisscott_Tools_ProductEdit extends GtkTable {

// ...

6137ch15.qxd 3/14/06 2:34 PM Page 309

public function saveProduct()

{

// Don't save the product if data is being transmitted.

require_once 'Crisscott/Inventory.php';

if (Crisscott_Inventory::$transmitting) {

// Dialog flags.

$flags = Gtk::DIALOG_MODAL | Gtk::DIALOG_DESTROY_WITH_PARENT;

// Create the message.

$message = "Products cannot be updated while\n";

$message.= "data is being transmitted.";

// Popup a dialog to alert the user.

$dialog = new GtkMessageDialog(null, $flags,

Gtk::MESSAGE_WARNING,

Gtk::BUTTONS_CLOSE, $message);

// Close the dialog when the user clicks the button.

$dialog->connect_simple('response',

array($dialog, 'destroy'));

// Run the dialog.

$dialog->run();

// Return false to indicate that the product wasn't updated.

return false;

}

// ...

}

// ...

}

?>

Timeouts
Using Gtk::main_iteration allows a function or a method to take a short break and return
control to the main loop. Yet one of the drawbacks to using Gtk::events_pending and
Gtk::main_iteration is that the application must explicitly call these two methods. Basically the
developer is playing the role of PHP-GTK. Instead of letting the application manage itself,
the developer has added hints forcing the application to stop working and update the GUI. If
the work to be done can be broken up into several smaller chunks, the application can take
back the responsibility of managing the GUI and user interactions. This lets the application
focus on the issue it was meant to solve.

Transmitting an entire inventory listing to the Crisscott server simply involves transmit-
ting information regarding all of the products. However, instead of sending all the products
during one method call, as shown in Listing 15-1, each product can be sent individually.

CHAPTER 15 ■ DOING BACKGROUND WORK310

6137ch15.qxd 3/14/06 2:34 PM Page 310

CHAPTER 15 ■ DOING BACKGROUND WORK 311

Listing 15-4 modifies the Crisscott_Inventory class slightly, this time using a class to send
products one at a time rather than using a foreach loop to cycle through the inventory. Each
time the transmitInventory method is called, a new product is sent to the server. When all the
products have been sent, transmitInventory returns false. The method returns true while
there are still products that haven’t been sent.

Listing 15-4. Breaking Up transmitInventory to Send One Product at a Time

<?php

class Crisscott_Inventory {

// ...

public static $products;

public static $currentProduct = 0;

public static function transmitInventory()

{

// Create a SOAP client.

require_once 'Crisscott/SOAPClient.php';

$soap = new Crisscott_SOAPClient();

// Collect all of the products.

if (empty(self::$products)) {

self::getAllProducts();

}

// Create a progress dialog for showing the progress. (From Listing 15-1)

require_once 'Crisscott/Tools/ProgressDialog.php';

$dialog = Crisscott_Tools_ProgressDialog::singleton('Sending Inventory');

// Show the progress dialog.

$dialog->show_all();

// We need to know the total to know the percentage complete.

$total = count(self::$products);

// Transmit the current product.

$soap->sendProduct(self::$products[self::$currentProduct]);

// Update the progress bar.

$percentComplete = (++self::$currentProduct) / $total;

$dialog->progress->set_fraction($percentComplete);

// Display the percentage as a string over the bar.

$percentComplete = round($percentComplete * 100, 0);

$dialog->progress->set_text($percentComplete . '%');

6137ch15.qxd 3/14/06 2:34 PM Page 311

// Return true if there are more products to send.

$count = count(self::$products);

if (self::$products[self::$currentProduct] == self::$products[$count – 1]) {

$dialog->destroy();

return false;

} else {

return true;

}

}

public static function getAllProducts()

{

self::$products = array();

// Loop through categories in the inventory.

foreach (self::$instance->categories as $category) {

// Loop through the products in each category.

foreach ($category->products as $product) {

self::$products[] = $product;

}

}

}

}

?>

Breaking up the process of sending the inventory data means you don’t have to worry
about inserting any code that isn’t directly related to sending data. This makes the code
cleaner and easier to maintain. It also makes the code more portable. This class can now be
used with some other type of front end because it doesn’t have any code specific to PHP-GTK.

Adding a Timeout
Having nice clean code is great but isn’t very useful unless there is a way to call it. Something
needs to be set up that will call transmitInventory periodically to make sure the next product
gets sent to the server. To do this, we will use timeouts. A timeout is a way to call a method at
regular intervals. A timeout is similar to a signal handler in which the event is the passing of
a certain amount of time. Created using timeout_add, the first argument is the number of mil-
liseconds between calls to the callback method. The second argument is the callback itself.

timeout_add can also take a variable list of arguments that will be passed to the callback.
For example, Listing 15-5 shows how a timeout can be set up to call transmitInventory. In this
case, transmitInventory is called every half second until the timeout is removed or the callback
returns a value that can’t evaluate to true. This is why Listing 15-4 returns true while there are
more products to send. Doing so ensures that the callback will be called again. When there are
no more products left to send, false is returned. This stops the callback from being called.

CHAPTER 15 ■ DOING BACKGROUND WORK312

6137ch15.qxd 3/14/06 2:34 PM Page 312

CHAPTER 15 ■ DOING BACKGROUND WORK 313

Listing 15-5. Calling transmitInventory with a Timeout

<?php

require_once 'Crisscott/Inventory.php';

Gtk::timeout_add(500, array('Crisscott_Inventory', 'transmitInventory'));

?>

Removing a Timeout
When a timeout is added, it returns an ID number, similar to a signal handler ID. The number
uniquely identifies the created timeout. This allows an application to keep track of the time-
outs that are created, but, more importantly, it allows a timeout to be removed. When this
value is passed to timeout_remove it is similar to destroying a signal handler. The callback will
not be called anymore. In most cases, using timeout_remove isn’t necessary because the func-
tion can simply return false if it should not be called again. But sometimes there may be other
forces at work. For example, the user may decide to stop sending data in the middle of trans-
mitting the inventory.

In Listing 15-6, the creation and removal of a timeout is controlled by a GtkToggleToolButton.

Listing 15-6. Creating and Destroying a Timeout at the User’s Request

<?php

class Crisscott_Tools_Toolbar extends GtkToolbar {

// ...

protected function createButtons()

{

// Create a button to make new products, categories and

// contributors.

// ...

// Create the signal handlers for the new menu.

// ...

// Create a button that will transmit the inventory.

$send = new GtkToggleToolButton();

// Identify the button with a Crisscott logo.

$icon = GtkImage::new_from_file('Crisscott/images/menuItem.png');

$send->set_icon_widget($icon);

// Label the button "Send".

$send->set_label('Send');

// Add the button to the toolbar.

$this->add($send);

6137ch15.qxd 3/14/06 2:34 PM Page 313

// Connect a method to start and stop sending the data.

$send->connect_simple('toggled', array($this, 'toggleTransmit'), $send);

// Create two buttons for sorting the product list.

// ...

}

public function toggleTransmit(GtkToolButton $button)

{

// Check to see if data is currently being transmitted.

require_once 'Crisscott/Inventory.php';

if (isset(Crisscott_Inventory::$transmitId)) {

// Remove the timeout.

Gtk::timeout_remove(Crisscott_Inventory::$transmitId);

// Remove the handler ID.

Crisscott_Inventory::$transmitId = null;

// Hide the dialog.

require_once 'Crisscott/Tools/ProgressDialog.php';

$dialog = Crisscott_Tools_ProgressDialog::singleton();

$dialog->hide_all();

// Turn off the button.

$button->set_active(false);

} else {

// Create a new timeout and capture the handler ID.

$tid = Gtk::timeout_add(500, array('Crisscott_Inventory',

'transmitInventory'));

Crisscott_Inventory::$transmitId = $tid;

// Make sure the button is active.

$button->set_active(true);

}

}

}

?>

This example will be applied to the PIMS application so the user can simply click on
a button or menu item to start sending data to the Crisscott server. When the user switches
the button on, a timeout is created that calls the transmitInventory method. When the user
clicks the button again, the timeout is removed. Figure 15-3 is a screenshot with the toggle
button depressed and the progress dialog visible.

CHAPTER 15 ■ DOING BACKGROUND WORK314

6137ch15.qxd 3/14/06 2:34 PM Page 314

Figure 15-3. The PIMS application in the middle of transmitting data

CHAPTER 15 ■ DOING BACKGROUND WORK 315

Idle Work
One of the drawbacks to using a timeout is the rigidity with which the callback is called. It will
be called every time at the interval defined so long as the callback returns true and the timeout
is not removed. It doesn’t matter what else needs to be done; the callback will be called. This
can be somewhat troublesome if the response time of the application is very important. During
iterations when the callback is called, the application must first process one event from the event
queue then call the callback. Other events in the queue will have to wait until after the callback
has finished processing. It might be nicer to only call the callback when there are no events
pending, but timeouts don’t care about what is going on around them.

Fortunately, Gtk::idle_add is at your disposal. It is similar to Gtk::timeout_add in that it
sets up a callback, but it only sets up a callback when there is nothing else to do. There is no
scheduled time interval for an idle callback. idle_add only requires one argument, the callback.
Other optional arguments may be passed also. These values will be passed to the callback each
time it is called.

Listing 15-7 is a modified version of Listing 15-6, using idle_add instead of timeout_add.
On every iteration of the main loop, the event queue will be checked. If there are events in the
queue, they will be handled. If there are no events in the queue, the callback will be called. This
is a better use of resources and increases the response time for the user. Instead of automatically
calling the callback every half second, it is only called when the user (or application) is not
doing anything else.

6137ch15.qxd 3/14/06 2:34 PM Page 315

CHAPTER 15 ■ DOING BACKGROUND WORK316

Listing 15-7. Creating and Destroying an Idle Callback

<?php

class Crisscott_Tools_Toolbar extends GtkToolbar {

// ...

public function toggleTransmit(GtkToolButton $button)

{

// Check to see if data is currently being transmitted.

require_once 'Crisscott/Inventory.php';

if (isset(Crisscott_Inventory::$transmitId)) {

// Remove the idle.

Gtk::idle_remove(Crisscott_Inventory::$transmitId);

// Remove the handler ID.

Crisscott_Inventory::$transmitId = null;

// Hide the dialog.

require_once 'Crisscott/Tools/ProgressDialog.php';

$dialog = Crisscott_Tools_ProgressDialog::singleton();

$dialog->hide_all();

// Turn of the button.

$button->set_active(false);

} else {

// Create a new idle and capture the handler ID.

$tid = Gtk::idle_add(array('Crisscott_Inventory', 'transmitInventory'));

Crisscott_Inventory::$transmitId = $tid;

// Make sure the button is active.

$button->set_active(true);

}

}

}

?>

Notice in Listing 15-7 that the return value of idle_add is captured in a variable. This value
is just like that returned from timeout_add or any of the connect methods. It is used to identify
the new handler that was just created. This value is passed to idle_remove when the button is
toggled off. This is the only way to destroy an idle callback. Unlike a timeout callback, return-
ing false will not stop the method from being called again.

6137ch15.qxd 3/14/06 2:34 PM Page 316

CHAPTER 15 ■ DOING BACKGROUND WORK 317

Summary
Forcing a user to wait while a long running process completes is not only a waste of resources
but can leave the user confused and frustrated. Most users are not patient enough to understand
that their mouse click can’t be processed because there is a method in the middle of running.
They simply want the application to do its work in the background while they continue with
theirs. Allowing the interface to be updated and handle user events is much more effective for
long running processes. By using Gtk::events_pending paired with Gtk::main_iteration certain
points in a method can be designated to allow the application to be updated. Using Gtk::
timeout_add allows the application to manage the display itself by calling a method at regular
intervals. While the method is not processing, the GUI can be updated and interacted with.
Gtk:idle_add goes one step further by only calling the method when there are no events to
process. Gtk::idle_add makes the user the priority. Anytime they trigger an event, their event
is handled. The callback is only processed after all the events have been taken care of.

Now that you have most of the substance for your application defined, Chapter 16 will
look at style. Changing the look and feel of an application allows it to take on a more personal
appearance. Changing colors of certain widgets is not always about style; it can also serve
a rather practical purpose, such as indicating that something has gone wrong or pointing the
user in the right direction. Chapter 16 shows how to change the appearance of a widget, groups
of widgets, or the entire application.

6137ch15.qxd 3/14/06 2:34 PM Page 317

6137ch15.qxd 3/14/06 2:34 PM Page 318

319

C H A P T E R 1 6

■ ■ ■

Changing the Look and Feel

So far, we’ve focused on how widgets and objects function. Yet in order for an application to
be truly successful, you’ll also need to spend some time tweaking how it looks. While appear-
ance may not seem to be as important as function, the look and feel of an application sometimes
has a greater impact on usability than the widgets it uses. For example, making a widget stand
out by changing its color or using a mouse-over effect can draw the users’ attention and let
them know that the widget serves some important purpose.

In general, changing the appearance of an application provides a level of uniqueness that
will separate your application from others like it. And it just makes your application look cool!
Let’s face it, making the application look good can sometimes be just as important as making
it work properly. For instance, in Chapter 12, you learned how to use a mask to change the shape
of a widget. Perhaps this could be vital to the function of an application, but in most cases, it
just makes the application appear more interesting. Even though shaping a widget doesn’t have
much practical use, I’ll have to admit that it is my favorite feature in PHP-GTK.

In this chapter, we will look at how to affect the appearance of an application. First, we will
look at resource files, which are a sort of style sheet similar to CSS, but intended for a client-
based application. Then we will discuss GtkStyle, an object that controls its parent widget’s
appearance. While working through this chapter, try to keep in mind not only how these tech-
niques can make an application look good, but also how they can impact the usability of an
application.

Resource Files
Resource files are used to define how individual widgets, groups of widgets, or a widget class
appear. A resource file (RC file) is an external file that is parsed at runtime and functions like
a CSS file referenced in an HTML document. An RC file defines rules that determine which
widgets should be modified from their default appearance and specifies how they should be
modified.

6137ch16.qxd 3/14/06 2:41 PM Page 319

CHAPTER 16 ■ CHANGING THE LOOK AND FEEL320

The RC files are listed in the variable $_ENV['GTK2_RC_FILES']. The value of $_ENV['GTK2_RC_
FILES'] defaults to /usr/local/etc/gtk-2.0/gtkrc (C:\Program Files\Common Files\gtkrc on
Windows systems) and .gtkrc-2.0 in the user’s home directory. These files are created by GTK.

To modify the appearance of widgets, you need to create an RC file that will be parsed
when the application starts up. By default, at least one RC file is always parsed when the appli-
cation starts. With RC files, when two or more rules match the same widget, the last rule is the
one that is applied. So any RC file parsed at runtime will override the matching rules in any RC
file parsed so far.

Creating an RC File
An RC file is just a text file that contains RC style rules and definitions. An RC file can be edited
with any text editor.

Listing 16-1 is a simple RC file that sets some display properties for the splash screen.
Using this file allows the display settings to be removed from the splash screen code and put
into a separate file. Now to change the look and feel, you simply change the RC file instead of
editing the code. This is another example of separation of work, which makes it easier to
maintain your applications.

Listing 16-1. The Contents of an RC File

style "crisscott-splash"

{

bg[NORMAL] = "#FFFFFF"

fg[NORMAL] = "#0A0A6A"

fg[ACTIVE] = "#FFFFFF"

bg[ACTIVE] = "#0A0A6A"

font_name = "Arial Bold 10"

}

widget "splash*" style:highest "crisscott-splash"

Let’s take a closer look at the RC file in Listing 16-1. The first ten lines are a style definition,
and the last line is a style rule.

Style Definition
The style definition defines how the different properties of a widget will appear. The first line
in Listing 16-1 defines a style named crisscott-splash by using the keyword style followed
by a quoted name. Next, the RC file sets different display properties. Table 16-1 shows the
properties that you can modify with an RC file style definition.

6137ch16.qxd 3/14/06 2:41 PM Page 320

Table 16-1. Resource File Style Properties

Property Description Example

bg[state] The background color of the widget bg[ACTIVE] = { "#0A0A06" }

fg[state] The foreground color of the widget fg[ACTIVE] = { "#FFFFFF" }

base[state] The background color of editable text base[NORMAL] = { "#FFFFFF" }
(GtkEntry, GtkTextView, and so on)

text[state] The color of editable text (GtkEntry, text[NORMAL] = { "#000000" }
GtkTextView, and so on)

xthickness Horizontal padding in pixels xthickness = { 3 }

ythickness Vertical padding in pixels ythickness = { 3 }

bg_pixmap[state] Background image to be used bg[INSENSITIVE] = "image.png"
instead of a color

font_name The Pango font name to use for all text font_name = "Arial Bold 10"

stock[stockId] Used to create a stock item for use in stock["myStock"] =
buttons, menu items, and so on { {"stockButton.png",

*, *, "gtk-button"} }

engine Used to set properties for the engine "bluecurve"
theme engine { contrast = 1.0 }

class::property Used to set a default value for the GtkScrollbar::min_slider
given property of the given class _length = 30

Of these properties, bg, fg, base, text, and bg_pixmap can have different values for each
state, as follows:

• NORMAL: The state of a widget when no other state applies.

• ACTIVE: The state for a widget such as a GtkRadioToolButton that has been selected.

• PRELIGHT: The state for a widget such as a button or menu item that the user has moved
the mouse over. Setting a value for this state creates an effect similar to a mouse-over
effect in an HTML document.

• SELECTED: The state used when data is selected. For example, it’s used for the selection
in a GtkTextView or the selected elements in a GtkTreeView.

• INSENSITIVE: The state of a widget that has had false passed to set_sensitive.

In the crisscott-splash style, the background in the NORMAL state is set to white. The fore-
ground in the NORMAL state is set to a dark blue. When a widget is in the ACTIVE state, the colors
for the background and foreground are switched.

The last property set in the style definition is the font name to be used. In this case, the
font is set to 10-point bold Arial.

Style Rules
The last line in Listing 16-1 is a style rule that defines which styles apply to which widgets:

widget "splash*" style:highest "crisscott-splash"

CHAPTER 16 ■ CHANGING THE LOOK AND FEEL 321

6137ch16.qxd 3/14/06 2:41 PM Page 321

A style rule has two pieces: the rule type and path, followed by the style that is to be
applied.

The rule type can be class, widget, or widget_class. The rule type defines which widgets
will match the rule, as follows:

• class: The rule will match parts of the GUI based on the name of the class, such as
GtkButton or GtkBox. A class rule means that widgets of a given class will be used.

• widget: The rule will match parts of the GUI based on a name applied to a widget using
set_name. A widget rule means that widgets matching a path of named widgets will be used.

• widget_class: The rule will match parts of the GUI based on a path of widget class names.
If a widget_class rule is defined, widgets matching a path of classes will be used.

The class rules are pretty simple. They are created by using the keyword class followed
by a quoted class name, such as "GtkButton" or "GtkBox", as the path. However, the widget and
widget_class rules require a more complicated path element.

A widget rule’s path must consist of widget names. You assign widget names by using the
set_name method. The path to a button named myButton inside a GtkHBox named myHBox inside
a window named myWindow would look like this: "myWindow.myHBox.myButton".

A widget_class path is similar, except that each element must be a class name. The same
button used in the previous example would be reached by the class path of "GtkWindow.GtkHBox.
GtkButton". The difference between the two is that the widget path will match any widget that
follows the names in the path. Say a label was added to the same GtkHBox and given the name
myButton (names don’t need to be unique). Using the widget_class path, the label and the but-
ton would have the same rule applied to them. On the other hand, if the class path were used,
the label would not have the style applied, but any other button in any GtkHBox in any window
would.

To make rules more generic, you can use the wildcards * and ? to take the place of either
a class or a name. For example, *.GtkButton will match any path that ends in GtkButton.

In Listing 16-1, the style will be applied to any widget named splash, as well as any widgets
contained at any level within a widget named splash.

The second half of the style rule determines what should be applied to the widgets that
match the given path. Listing 16-1 applies the style named "crisscott-splash". In this rule,
the keyword style is followed by a colon and a priority. The priority is optional. In this case,
the priority is set to highest. Other values, in order of priority, are rc, theme, application, gtk,
and lowest. The priority setting is useful when multiple rules may apply to the same widget.
Normally, if two styles that set different values for the same property are applied to the same
widget, the style defined later takes priority. By manually setting the priority, you can override
this behavior.

Applying the RC File to the Application
Now that this RC file has been defined, it must be applied to the application. Listing 16-2
shows the splash screen code before and after it has been modified to use the RC file.

CHAPTER 16 ■ CHANGING THE LOOK AND FEEL322

6137ch16.qxd 3/14/06 2:41 PM Page 322

Listing 16-2. Crisscott_SplashScreen Before and After Using an RC File

<?php

/*** BEFORE ***/

class Crisscott_SplashScreen extends GtkWindow {

// A label to display the status message.

public $status;

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Turn off the window borders and title bar.

$this->set_decorated(false);

// Center the window.

$this->set_position(Gtk::WIN_POS_CENTER);

// Set the background using a style.

$style = $this->style->copy();

// Make the background white.

$style->bg[Gtk::STATE_NORMAL] = $style->white;

// Set the style.

$this->set_style($style);

// Fill the window with the needed pieces.

$this->_populate();

// Make the window stay above other windows.

$this->set_keep_above(true);

// Call a method when the class is shown.

$this->connect_simple_after('show', array($this, 'startMainWindow'));

}

private function _populate()

{

// Create the needed pieces.

$frame = new GtkFrame();

$hBox = new GtkHBox();

$vBox = new GtkVBox();

$logoBox = new GtkHBox();

$statusBox = new GtkHBox();

// Set the shadow type for the splash screen.

$frame->set_shadow_type(Gtk::SHADOW_ETCHED_OUT);

CHAPTER 16 ■ CHANGING THE LOOK AND FEEL 323

6137ch16.qxd 3/14/06 2:41 PM Page 323

CHAPTER 16 ■ CHANGING THE LOOK AND FEEL324

// Create a label for the title.

// Mark up the text to change its color to dark blue.

$title = new GtkLabel('' .

'Crisscott Product Information Management ' .

'System');

// Tell the label widget that the text contains Pango markup.

$title->set_use_markup(true);

// Finish creating the elements and packing everything...

}

// ...

}

/*** AFTER ***/

class Crisscott_SplashScreen extends GtkWindow {

// A label to display the status message.

public $status;

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Turn off the window borders and title bar.

$this->set_decorated(false);

// Center the window.

$this->set_position(Gtk::WIN_POS_CENTER);

// Set the name for rules in the RC file.

$this->set_name('splash');

// Fill the window with the needed pieces.

$this->_populate();

// Make the window stay above other windows.

$this->set_keep_above(true);

// Call a method when the class is shown.

$this->connect_simple_after('show', array($this, 'startMainWindow'));

// Parse the application's RC file.

// The path to the RC file is a constant defined by the Crisscott_MainWindow class.

require_once 'Crisscott/MainWindow.php';

// The RC file is the same as Listing 16-1.

Gtk::rc_parse(Crisscott_MainWindow::RC_PATH);

}

6137ch16.qxd 3/14/06 2:41 PM Page 324

CHAPTER 16 ■ CHANGING THE LOOK AND FEEL 325

private function _populate()

{

// Create the needed pieces.

$frame = new GtkFrame();

$hBox = new GtkHBox();

$vBox = new GtkVBox();

$logoBox = new GtkHBox();

$statusBox = new GtkHBox();

// Set the shadow type for the splash screen.

$frame->set_shadow_type(Gtk::SHADOW_ETCHED_OUT);

// Create a label for the title.

$title = new GtkLabel('Crisscott Product Information Management System');

// Finish creating the elements and packing everything...

}

// ...

}

?>

In the before section of Listing 16-2, the class manually sets a GtkStyle object to make the
window background white. The “Styles” section later in this chapter describes how to use
GtkStyle objects. The text color is set using Pango markup (see Chapter 7 for a refresher on Pango
markup).

In the after section of Listing 16-2, the GtkStyle and Pango markup are removed and two
lines are added. The first line gives the window object the name splash. This widget will now
match the style rule defined in the RC file. The second line parses the RC file. While the end
result of the after section is the same as the before section, the difference, aside from the cleaner
code, is that you can now update the style of the splash screen without modifying the PHP code.

Figure 16-1 shows the new splash screen. Notice that it isn’t much different from the pre-
vious version.

Because the application’s look and feel is no longer hard-coded into the application, it is
even possible to change the styles on the fly. You could allow users to edit resource files to suit
their personal preferences. If an RC file is edited, Gtk::rc_reparse_all should be called. If the
modification time of any RC file that has been parsed previously has changed, all files will be
reparsed. You can determine whether the files were reparsed by the return value. Gtk::rc_reparse_all

Figure 16-1. The splash screen using an RC file

6137ch16.qxd 3/14/06 2:41 PM Page 325

returns true if the files were reread and false if they were not or if there was an error
rereading the files.

As another example, Listing 16-3 shows an RC file that uses different types of style rules
and some more interesting style definitions.

Listing 16-3. Another Resource File

Set a path to find images.

pixmap_path "/home/scott/authoring/Apress/Crisscott/images"

A style for the splash screen.

style "crisscott-splash"

{

Make the background white and the text blue.

bg[NORMAL] = "#FFFFFF"

fg[NORMAL] = "#0A0A6A"

Set the font.

font_name = "Arial Bold 10"

}

The main style builds off of the splash screen style.

style "crisscott-main" = "crisscott-splash"

{

Make active elements the opposite of normal elements.

fg[ACTIVE] = "#FFFFFF"

bg[ACTIVE] = "#0A0A6A"

Do the same for selected elements.

bg[SELECTED] = "#0A0A06"

fg[SELECTED] = "#FFFFFF"

base[SELECTED] = "#0A0A06"

text[SELECTED] = "#FFFFFF"

Give insensitive elements a checkered background.

bg_pixmap[INSENSITIVE] = "insensitiveCheckered.png"

We don't need the font to be bold anymore.

font_name = "Arial 10"

}

Make all widgets use the crisscott-main style.

class "*" style "crisscott-main"

Any widget named or inside of a widget named splash.

widget "splash*" style "crisscott-splash"

Notice the addition of comments in Listing 16-3. Comments must begin with the hash
character (#). Any text following the hash character will be ignored.

CHAPTER 16 ■ CHANGING THE LOOK AND FEEL326

6137ch16.qxd 3/14/06 2:41 PM Page 326

CHAPTER 16 ■ CHANGING THE LOOK AND FEEL 327

The next addition to this file is a pixmap_path value, which tells the application where to
look for any images that are used in the RC file. A pixmap_path definition begins with the key-
word pixmap_path. The value that follows must be a collection of absolute paths separated by
colons (or semicolons on Windows systems). Relative paths are not allowed in pixmap_path
value. It functions and looks just like the include_path in a php.ini file.

Next in Listing 16-3 is a style definition for the splash screen. This isn’t much different from List-
ing 16-1, except the colors for the active state have been removed. There isn’t much point in defining
anything for the active state of the splash screen because none of the widgets can be activated.

After this, another style is defined. This style, crisscott-main, builds on the crisscott-splash
style. Instead of redefining the same properties, this style uses those already defined by a pre-
vious style. That is why the definition has = crisscott-splash. This means that the style being
defined should inherit properties from the style specified after the equal sign. Properties that
are inherited can be overridden. This can be seen in the definition of the font_name property.
Even though it was defined in the parent style, it is overridden in the crisscott-main style. This
style definition sets a few other properties besides the font name. The most unique of these is
bg_pixmap. This property defines an image to be used as the background for a given state. This
example sets the background of widgets that have been made insensitive to a simple checkered
pattern. The image will be tiled across the background of the widget.

The crisscott-main style is applied to all widgets in the application by using a wildcard
for the class name in the class rule. All widgets in the application will match this rule.

Figure 16-2 shows what the Crisscott PIMS application looks like after the RC file in
Listing 16-3 has been applied.

Figure 16-2. The Crisscott PIMS application after the new RC file has been applied

6137ch16.qxd 3/14/06 2:41 PM Page 327

The RC file in Listing 16-3 isn’t very complex. It defines only two styles and two rules. It
isn’t one that I would recommend applying to the PIMS application, but it does serve as a good
example of how an application can be changed by loading an RC file.

In a more realistic application development environment, one team member might cre-
ate the RC file while other developers worked on producing the rest of the application. When
both sides were finished, the RC file could simply be plugged into the application to see the
final product.

Styles
While RC files are well suited for defining styles that can be applied to a broad range of widgets,
you might want to create styles on the fly or apply them to specific widgets regardless of their
path. To solve this problem, PHP-GTK offers the GtkStyle class.

All widgets have a style property that is a GtkStyle object. When an object is cre-
ated, a GtkStyle class is created at the same time. The GtkStyle object defines the look
and feel for its parent widget. Because GtkStyle objects are created at runtime and are attached
to individual widgets, they are excellent for modifying the look and feel of widgets on the fly.

Modifying a Style
You can use GtkStyle to control the way a widget is displayed on the screen. You can access
a widget’s GtkStyle object in two ways: through the style property of a widget using
$widget->style or by using the get_style method. The get_style method returns the style
property of the calling widget. The get_style method is part of the GtkWidget class; therefore,
all widgets can use it.

The style that comes with a widget cannot be modified directly. Instead, it must be
replaced. To do this, you create a new style. To create a new style, use the new operator or the
copy method of an existing style. The copy method returns a copy of the calling style. This is
useful if you want to make changes to a style without having to set all of the style properties.

A style that is built along with a widget will have some properties already set. When the
style is created, the properties from the applied RC files are used to populate the GtkStyle
object.

Regardless of how a GtkStyle object was created, you can modify it by writing to its properties.
A GtkStyle object has all of the same properties available to it that an RC style definition does.

Listing 16-4 presents a small example that shows how to copy a style, modify it, and reapply
it to a button. In this example, the style is copied from the button using the copy method.

Listing 16-4. Copying, Modifying, and Applying a GtkStyle Object

<?php

class Crisscott_Tools_ProductEdit extends GtkTable {

// ...

private function _layout()

{

// ...

CHAPTER 16 ■ CHANGING THE LOOK AND FEEL328

6137ch16.qxd 3/14/06 2:41 PM Page 328

CHAPTER 16 ■ CHANGING THE LOOK AND FEEL 329

// We need save and cancel buttons.

$save = GtkButton::new_from_stock('gtk-save');

$reset = GtkButton::new_from_stock('gtk-undo');

// Modify the button's style.

$style = $save->style->copy();

// Change the normal state.

// Set the background color to dark blue.

$blue = new GdkColor::parse('#0A0A6A');

$style->bg[Gtk::STATE_NORMAL] = $blue;

// Make the prelight color white.

$style->bg[Gtk::STATE_PRELIGHT] = $style->white;

// Set the style.

$save->set_style($style);

// The label inside the button must be changed too.

$style = new GtkStyle();

// Change the normal and prelight states.

$style->fg[Gtk::STATE_NORMAL] = $style->white;

$style->fg[Gtk::STATE_PRELIGHT] = $blue;

// Root through the button's children and grandchildren.

foreach ($save->get_child()->get_children() as $child) {

foreach($child->get_children() as $c) {

// Set the style.

$c->set_style($style);

}

}

// Connect the buttons to useful methods.

// ...

}

}

?>

In Listing 16-4, after the style is copied, the background of the button in the normal state
is changed to dark blue. When assigning colors to a GtkStyle property, simple strings are not
enough. Instead, you need to use a GdkColor object. A GdkColor object is a helper object that
defines a color for the screen. You create a new GdkColor by using the new operator and provid-
ing RGB values. The values must be an integer in the range of 0 to 65535. This allows for a wide
range of colors because each color value is represented by 16 bits instead of the normal 8 bits.
Calculating these values can be quite difficult, however, especially for developers used to using
hex values, as in HTML. In Listing 16-4, the color is created in a slightly easier manner. Instead
of figuring out the integer RGB values for dark blue, a GdkColor object is created using the static

6137ch16.qxd 3/14/06 2:41 PM Page 329

Figure 16-3. A button with a modified style applied

Gdk::parse method. This method can take a string representation of a color, such as #0A0A6A
for dark blue, as used here, or #FF0000 for red, and will return a GdkColor object. The string in
this case is a hexadecimal value.

Properties that have multiple states, such as bg (used in this example), fg, and text, are
represented by arrays. You can access each state by using a different array index. To access the
value for the normal state, Listing 16-4 uses Gtk::STATE_NORMAL. If you wanted to modify
the active state, you would use Gtk::STATE_ACTIVE as the array index. The other states follow the
same pattern.

Next, Listing 16-4 changes the prelight background to white. Styles have two properties,
black and white, which can be used as shortcuts when defining colors for other properties. In
Listing 16-4, the prelight background is set to be the same color as the style’s white property.

Then the style for the button is set. Notice that set_style is used to set the button’s style.
Trying to assign a value to the style property will not work.

Simply setting the button’s style, and not the style of its children, is not quite enough for
this example. The idea here is that the button will stand out. To do this, the style is set so that
the background color is dark blue. Unfortunately, if you stopped here, the button’s label would
be the same color as the background, making it impossible to read. To rectify the situation, the
label’s style must also be changed. This is a complicated process that requires digging through
the children and grandchildren of the button. In this case, using an RC style rule, as described
in the previous section, would be a better way to achieve the desired effect.

Figure 16-3 shows the new look of the button after the modified style has been applied.

CHAPTER 16 ■ CHANGING THE LOOK AND FEEL330

Setting a Background Pixmap for a Style
As when assigning colors to a GtkStyle property, the bg_pixmap property also requires more
than just a string pointing to a file. bg_pixmap must be assigned a GdkPixmap object. Recall from
Chapter 12 that a pixmap can be returned by calling render_pixmap_and_mask on a GdkPixbuf

object.
Listing 16-5 shows a small example that sets the background pixmap for a style. In this

example, a checkered pattern is used for widgets that are insensitive.

6137ch16.qxd 3/14/06 2:41 PM Page 330

CHAPTER 16 ■ CHANGING THE LOOK AND FEEL 331

Listing 16-5. Setting the Background Pixmap for a GtkStyle

<?php

// Create a window and set it up to shut down

// cleanly.

$window = new GtkWindow();

$window->connect_simple('destroy', array('Gtk', 'main_quit'));

// Create a new style object.

$style = new GtkStyle();

// Create a pixbuf.

$file = 'Crisscott/images/insensitiveCheckered.png';

$pixbuf = GdkPixbuf::new_from_file($file);

// Get a pixmap from the pixbuf.

list($pixmap) = $pixbuf->render_pixmap_and_mask();

// Assign the pixmap to the normal bg_pixmap.

$style->bg_pixmap[Gtk::STATE_INSENSITIVE] = $pixmap;

// Create two buttons.

$button1 = new GtkButton('Active');

$button2 = new GtkButton('Inactive');

// Set the style for both buttons.

$button1->set_style($style);

$button2->set_style($style);

// Make button two inactive.

$button2->set_sensitive(false);

// Add a button box to the window.

$buttonBox = new GtkHButtonBox();

$window->add($buttonBox);

// Add the buttons to the box.

$buttonBox->pack_start($button1);

$buttonBox->pack_start($button2);

// Show the window and start the main loop.

$window->show_all();

Gtk::main();

?>

Figure 16-4 shows the result of this small script. One button appears normally, while the
other (which has been made insensitive using set_sensitive) has a checkered background.

6137ch16.qxd 3/14/06 2:41 PM Page 331

CHAPTER 16 ■ CHANGING THE LOOK AND FEEL332

Figure 16-4. Using GtkStyle to Change a Background Pixmap

Summary
Even the most unique application can end up with an appearance that is ordinary and rou-
tine. Modifying the look and feel of an application can not only give it life, but also improve its
usability. Changing a widget’s appearance by using RC files or GtkStyle objects can make
a widget stand out, so that it is more noticeable, or can give the user clues about the state of
the widget.

In an RC file, definitions and rules are set up similar to a CSS file in an HTML page. The
rules determine which styles will be applied to each widget. GtkStyle objects are similar, but
are used for real-time style modifications. Using a GtkStyle object allows a widget to change
colors or fonts based on an event. Regardless of how styles are applied, they provide a level of
customization that can enhance the application.

This and the previous chapters have taken you through the process of building an applica-
tion. But simply creating an application is not enough. The application must be distributed to
its various users, and those users must be able to install and update the application as needed.
In the next, and final, chapter we will look at ways to distribute the application to many users
even if they don’t have PHP-GTK installed. You will also learn a few strategies for automatically
updating the application behind the scenes.

6137ch16.qxd 3/14/06 2:41 PM Page 332

333

C H A P T E R 1 7

■ ■ ■

Distributing PHP-GTK
Applications

Developing an application is only part of a project’s life cycle. Unless the application is designed
purely for individual use, it will also need to be distributed to the end user. After all, an appli-
cation cannot be considered successful unless someone is making good use of it.

When you’re considering how to offer an application to the end user, the deciding factor
should be which method will allow the most people to install it with a minimum of fuss. By far,
the most widely available means to distribute a PHP application is using PEAR. While it may not
be the best solution for all applications, it is available to almost everyone who uses PHP-GTK
applications and therefore will be the focus of this chapter. At the end of the chapter, we’ll take
a quick look at using a PHP-GTK “compiler” to distribute a single executable file.

Downloading and Installing an Application
These days, simply offering a zip file for the user to download may not be enough. While it is
the simplest way to distribute an application, it requires the end user to select the right location
and move files around. Users want, and in some cases need, applications that are easily instal-
lable without requiring them to move files from place to place or extract archives.

Another issue that many users struggle with is dependencies. Requiring the user to
install a long chain of dependencies will almost surely result in some level of frustration.
While depending on other packages can make a developer’s life much easier, asking the
user to manually download and install the dependencies could discourage widespread
adoption of your application.

To hide much of the installation tedium, consider using PEAR, available for both Windows
and Linux environments and bundled with most PHP installations. Any application can be
packaged using PEAR and distributed using the Chiara_PEAR_Server package. The flexibility of
the PEAR package format allows the application to be installed painlessly, while at the same
time letting users customize the application to fit their preferences. Users can specify where
the application will be installed and can even make substitutions in the installed code. This
gives the users control over the installation process without requiring them to do a lot of work.

6137ch17.qxd 3/14/06 2:42 PM Page 333

CHAPTER 17 ■ DISTRIBUTING PHP-GTK APPLICATIONS334

Setting Up the Channel Server
The first step in distributing an application using PEAR is to configure a channel server. A channel
server is a web interface that allows the user to browse, download, and install packages. It also
provides an interface for the PEAR installer that helps to make sure the user installs the most
recent version of a package.

A channel server consists of two components: a MySQL database and a web server. Once
these two requirements are met, installation is a simple two-step process. First, install the package
using the PEAR installer, using the following commands:

$> pear channel-discover pear.chiaraquartet.com

$> pear install -a chiara/Chiara_PEAR_Server

The first command gathers information from the Chiara channel server and makes its
packages available to the local PEAR installer. The Chiara channel server is a PEAR channel
server maintained by Greg Beaver, the maintainer of the PEAR installer. This server is used to
distribute the channel server application. The second command installs the Chiara_PEAR_
Server package. The -a flag tells the PEAR installer to also download and install any depend-
encies needed for the channel server package. These two steps are similar to those users will
need to follow to download packages on your channel server.

■Note The -a flag should have triggered the installation of the CRTX_PEAR_Server_Frontend package.
This package provides a web interface for the channel server. If it was not installed automatically, you should
install it.

Next, you’ll need to configure the server by running the post-install scripts. As the name
implies, post-install scripts are PHP scripts that are run after the package is installed. These
scripts are often used to configure a package specifically for the user who has installed the
package. In the case of the channel server, post-install scripts are used to configure the data-
base and set up the file that describes the new server. To run the post-install scripts, issue the
following command:

$> pear run-scripts chiara/Chiara_PEAR_Server

You will then be prompted to answer about a dozen questions. When all of the questions
have been answered, the new channel server will be ready. You will be able to reach the adminis-
tration pages via a web browser on your local host.

6137ch17.qxd 3/14/06 2:42 PM Page 334

CHAPTER 17 ■ DISTRIBUTING PHP-GTK APPLICATIONS 335

Creating the Package
The package is the file that the users will download and install on their computer. A package
contains all of the files needed for the application in addition to an XML file that tells the PEAR
installer where to place each file. When a user installs a package, the PEAR installer downloads
and unpacks the package file. Then it reads the XML file and moves the files to their proper
location according to the instructions found in the XML file. After that, the application is
ready for use.

To package the application, you need to create the XML file that tells the PEAR installer where
to place each file, called the package.xml file. You can create this file in a few different ways:

• Write it by hand. This can be a long process even for applications that consist of only
a few files. If an application has many files, creating the XML by hand quickly becomes
impractical.

• Use the PEAR_PackageFileManager class. This PEAR package provides a class to help
create and update package.xml files. While this approach is definitely easier than cre-
ating the XML by hand, it requires a new script to be written for each application that is
packaged. Creating the individual scripts saves only a little time over writing the XML
by hand.

• Use one of the GUI front ends for the PEAR_PackageFileManager. The PEAR_
PackageFileManager_GUI_Gtk2 application is a PHP-GTK 2 wrapper around the
PEAR_PackageFileManager class.

■Tip There is also a PEAR_PackageFileManager_GUI_Web front end for creating package.xml files via
a web browser.

Since it’s the easiest way to create a package XML file, we’ll go through the steps of using
PEAR_PackageFileManager_GUI_Gtk2 (http://pear.php.net/package/PEAR_PackageFileManager_
GUI_Gtk2).

The first step in using PEAR_PackageFileManager_GUI_Gtk2 is to enter the information
about the application, as shown in Figure 17-1. You’ll need to tell the package file where to find
the application files. You can click the browse buttons next to the Package File Directory and
Package Output Directory fields to browse to the correct directories. Next, enter the name of
the package. This is the name by which users will download and install the application. The
third piece of information you need to supply is the base installation directory. This is the
directory where the files will be installed. The final two fields on this page are for a summary
and a description of the package. The channel server will display these pieces of information
when the user is browsing the website.

6137ch17.qxd 3/14/06 2:42 PM Page 335

CHAPTER 17 ■ DISTRIBUTING PHP-GTK APPLICATIONS336

Figure 17-1. The first page of the PEAR_PackageFileManager_GUI_Gtk2 application

The next step in creating a package.xml file is to provide a list of maintainers. A maintainer
is someone who has in some way contributed to the package. To add a maintainer, simply enter
a handle (or user name), a real name, an email address, and a role for the maintainer, as shown
in Figure 17-2. Those maintainers who are designated as leads can release new versions of the
package. Other roles are used to give credit to and provide contact information for those people
who have helped develop the package.

Once you’ve added all of the maintainers, there are only a few remaining steps to complete.
The first is to save the XML (select File ➤ Save). This will create two files: package.xml and
package2.xml. The package.xml file is used by earlier versions of PEAR and allows for relatively
simple installations. package2.xml is used by newer versions of PEAR and allows for greater flexi-
bility, including handling dependencies from other channel servers.

6137ch17.qxd 3/14/06 2:42 PM Page 336

CHAPTER 17 ■ DISTRIBUTING PHP-GTK APPLICATIONS 337

Figure 17-2. The Maintainers page of the PEAR_PackageFileManager_GUI_Gtk application

Next, the application needs to be packaged. Packaging the file is a simple matter of issuing
the following command:

$> pear package package2.xml

This command will create a gzipped tar archive (.tgz). This file is called a package file and
contains all of the information PEAR needs to install the application.

The last step is to upload the new package file to the channel server using the administra-
tor interface provided by Chiara_PEAR_Server. Once the package has been uploaded, users can
download and install the application.

■Note The PEAR package XML format is very powerful. You can use different elements and attributes to
control how an individual file is handled at installation. The PEAR_PackageFileManager_GUI_Gtk2 appli-
cation can create the XML needed for most of these customizations. For more details, refer to the PEAR
manual (http://pear.php.net/manual/en/guide.developers.package2.php).

Users can now install the application by first discovering your channel server and then
telling PEAR to install the application:

$> pear channel-discover <your channel server>

$> pear install <your channel server>/<application>

■Tip The Gnope installer (http://www.gnope.org) is an open source application used to install PHP-GTK.
Because this application is open source, anyone is free to take the code and modify it to suit their needs.
Visit the forums on the Gnope website for more information.

6137ch17.qxd 3/14/06 2:42 PM Page 337

Updating an Application
Most applications will need to be updated at some point in their life cycle. Even if an applica-
tion is completely bug-free on its first release, new features will probably need to be added
somewhere down the road. Providing a way for the user to easily update the application will
help to ensure that the user always has the latest and greatest version of the application.

You can handle application updates in two ways. First, an application can simply require
the user to manually install the latest version. For instance, if PEAR was used to install the
application, the user can simply type:

$> pear upgrade <channel>/<application>

The other method for updating an application is to automate the process and upgrade the
application behind the scenes. Applications that require a manual update process are much
less likely to remain up-to-date than those that are updated automatically. Automating the
update process not only makes life easier on the user, but also makes life easier on the support
team, because there are likely to be fewer versions of an application in wide distribution at
one time.

Automatically updating an application is a four-step process:

1. Determine if an upgrade is needed.

2. If an upgrade is needed, obtain the user’s permission.

3. Download the new version.

4. Install the new version.

Just as PEAR is the easiest way to reliably distribute an application, it is also the easiest
way to automatically update an application. Here, we’ll look at how to use PEAR to check for
a new version of the application and download and install it if needed.

Checking for Updates
Checking to see if the application needs to be updated is normally done when the application
is started. At some point during the startup process (usually the very beginning), a request can
be made to the channel server to see if an upgrade is needed. If the package is listed on a PEAR
channel server, then the tools for checking for an upgrade are already in place. Using them is
just a matter of knowing which classes are needed and which methods to call.

Listing 17-1 shows just how easy it is to check for a new version of the Crisscott PIMS
application. This code is added to the splash screen to ensure that the new version check is
done every time the application is started.

Listing 17-1. Checking for a New Version of a Package

<?php

class Crisscott_SplashScreen extends GtkWindow {

// ...

public function startMainWindow()

{

CHAPTER 17 ■ DISTRIBUTING PHP-GTK APPLICATIONS338

6137ch17.qxd 3/14/06 2:42 PM Page 338

CHAPTER 17 ■ DISTRIBUTING PHP-GTK APPLICATIONS 339

// Update the GUI.

while (gtk::events_pending()) gtk::main_iteration();

// Give the user enough time to at least see the message.

// Check for a new version first.

$newVersion = $this->checkNewVersion();

if ($newVersion === true) {

$this->status->set_text('New Version');

// A new version was found!

$this->askForInstall();

} else {

// Let the user know what happened.

$this->status->set_text($newVersion);

}

// ...

}

public function checkNewVersion()

{

// Create a config object.

require_once 'PEAR/Config.php';

$config = new PEAR_Config();

// Get the config's registry object.

$reg = $config->getRegistry();

// Parse the package name.

$parsed = $reg->parsePackageName('crisscott/Crisscott_PIMS');

// Check for errors.

if (PEAR::isError($parsed)) {

return 'Error: ' . $parsed->getMessage();

}

// Get a PEAR_Remote instance.

$r = $config->getRemote();

// Get the package info.

$info = $r->call('package.info', $parsed['package']);

// Check to make sure the package was found.

if (PEAR::isError($info)) {

return 'Could not find package on server. Unable to ' .

'automatically update.';

}

6137ch17.qxd 3/14/06 2:42 PM Page 339

Figure 17-3. A dialog window requesting permission to upgrade the application

// Get the installed version of the package.

$instVersion = $reg->packageInfo($parsed['package'], 'version',

$parsed['channel']);

if (version_compare(reset(array_keys($info['releases'])),

$instVersion,

'>')

) {

return true;

} else {

return 'No updates found.';

}

}

// ...

}

?>

This small piece of code uses the same classes that the PEAR installer uses to upgrade
packages. The first step is to create a PEAR_Config instance. PEAR_Config manages the user’s
preferences and helps to instantiate other classes properly.

Once the PEAR_Config object is created, it is used to create a PEAR_Registry object using
getRegistry. You can use the PEAR_Registry object to access information about packages that
are already installed on the user’s computer. In this case, it is used to verify that the name of
the package to be updated is valid and parse it into different segments.

After parsing the package name (crisscott/Crisscott_PIMS) into a channel and package
name, a PEAR_Remote object is created by calling the PEAR_Config object’s getRemote method.
PEAR_Remote allows the code to access the remote server and query for package information.
Passing package.info to the remote object’s call method returns a host of information about
the package. The relevant information in this case is the version number. If the version number
on the channel server is greater than the installed version (which is returned from the registry
object’s packageInfo method), then a new version of the package is available.

Obtaining the User’s Permission to Upgrade
If a new version of the application is available, the responsible thing to do is to ask the user for
permission before upgrading the application. As you may have guessed, the best way to ask
permission is to use a GtkDialog, as shown in Figure 17-3. The dialog window displays a mes-
sage and two buttons. If the user clicks the Yes button, the application will be upgraded. If the
user clicks No or closes the dialog window, the application is not updated and will be loaded
as usual.

CHAPTER 17 ■ DISTRIBUTING PHP-GTK APPLICATIONS340

6137ch17.qxd 3/14/06 2:42 PM Page 340

CHAPTER 17 ■ DISTRIBUTING PHP-GTK APPLICATIONS 341

Listing 17-2 shows the code used to create the dialog window shown in Figure 17-3.

Listing 17-2. A Dialog to Ask Permission Before Upgrading the Application

<?php

class Crisscott_SplashScreen extends GtkWindow {

// ...

public function askForInstall()

{

// Set up the flags for the dialog.

$flags = Gtk::DIALOG_NO_SEPARATOR;

// Set up the buttons for the action area.

// We only want one button, close.

$buttons = array(Gtk::STOCK_NO, Gtk::RESPONSE_NO,

Gtk::STOCK_YES, Gtk::RESPONSE_YES);

// Call the parent constructor.

$dialog = new GtkDialog('New Version Available', null, $flags, $buttons);

// Set a message as the dialog label.

$dialog->vbox->add(new GtkLabel("A new version is available. \n" .

'Would you like to download and install it now?'));

// Show the dialog.

$dialog->show_all();

// Any response should close the dialog.

$dialog->connect_simple_after('response', array($dialog, 'destroy'));

// If the user clicks the X in the corner, close the dialog.

$dialog->connect_simple('destroy', array($dialog, 'destroy'));

// Run the dialog and check the response.

if ($dialog->run() === Gtk::RESPONSE_YES) {

// The user wants to update the application.

if ($this->doUpdate()) {

// Let the user know that the application must be restarted.

$this->status->set_text('The application must be restarted.');

// Update the message and give the user some time to read it.

while (gtk::events_pending()) gtk::main_iteration();

sleep(2);

6137ch17.qxd 3/14/06 2:42 PM Page 341

// Quit the application so that the user must restart.

exit;

} else {

// There was a problem.

// Let the user know but continue with the startup.

$this->status->set_text('Error uploading application.');

while (gtk::events_pending()) gtk::main_iteration();

}

}

}

// ...

?>

Performing the Upgrade
The final step is to actually upgrade the application, as shown in Listing 17-3. Just as with the
two previous listings, Listing 17-3 takes advantage of the classes and methods provided by PEAR.

Listing 17-3. Upgrading the Application

<?php

class Crisscott_SplashScreen extends GtkWindow {

// ...

public function doUpdate()

{

// Create a config object.

require_once 'PEAR/Config.php';

$config = new PEAR_Config();

// Create a command object to do the upgrade.

require_once 'PEAR/Command.php';

$upgrade = PEAR_Command::factory('upgrade', $config);

// Try to upgrade the application.

$result = $upgrade->doInstall('upgrade', array(),

array('crisscott/Crisscott_PIMS'));

// Return true if the upgrade was successful.

return !PEAR::isError($result);

}

}

?>

The first step in upgrading the application is to create a PEAR_Config instance. Again, this
class holds user-defined configuration settings. Next, a PEAR_Command instance is created with
the PEAR_Command::factory methods. This method requires the name of a command and the
configuration object created earlier. It will return an object capable of completing the upgrade.

CHAPTER 17 ■ DISTRIBUTING PHP-GTK APPLICATIONS342

6137ch17.qxd 3/14/06 2:42 PM Page 342

CHAPTER 17 ■ DISTRIBUTING PHP-GTK APPLICATIONS 343

The call to the doInstall method tells the command object to upgrade the application. If the
process is successful, the doInstall method will return true. If an error occurs, the method
will return a PEAR_Error object.

Uninstalling an Application
Part of being a responsible developer is not only providing an easy way to install an application,
but also providing an easy way to uninstall an application. Regardless of how wonderful an
application is, people may need to remove it from their computer. Unfortunately, in too many
cases, this requires the users to manually remove all of the files associated with the application.
To make life easier on the end user, all applications should come with a way to uninstall them.

The method used for uninstalling an application usually depends on the method that was
used to install it in the first place. Some installation tools have the ability to remove a previously
installed package. For example, any package installed with PEAR can be uninstalled by simply
issuing an uninstall command, like this:

$> pear uninstall crisscott/Crisscott_PIMS

This command will remove all files that came in the original package. Files that were added
by the application later, such as data files or custom resource files, will not be removed.

Of course, as with the upgrade step, this simple PEAR command can be integrated into the
application. Alternatively, you can create a separate smaller application as an uninstaller.
Listing 17-4 is a simple yet effective application that prompts the user for confirmation and
then uninstalls the application if requested, by using the classes provided by PEAR.

Listing 17-4. An Uninstall Application

<?php

class Uninstall extends GtkDialog {

public function __construct()

{

// Set up the flags for the dialog.

$flags = Gtk::DIALOG_NO_SEPARATOR;

// Set up the buttons for the action area.

// We only want one button, close.

$buttons = array(Gtk::STOCK_NO, Gtk::RESPONSE_NO,

Gtk::STOCK_YES, Gtk::RESPONSE_YES);

// Call the parent constructor.

parent::__construct('Uninstall Crisscott PIMS', null, $flags, $buttons);

// Any response should close the dialog.

$this->connect_simple('response', array($this, 'destroy'));

// The static properties must also be unset.

$this->connect_simple('destroy', array($this, 'destroy'));

6137ch17.qxd 3/14/06 2:42 PM Page 343

CHAPTER 17 ■ DISTRIBUTING PHP-GTK APPLICATIONS344

// Add an image and a question to the top part of the dialog.

$hBox = new GtkHBox();

$dialog->vbox->pack_start($hBox);

// Pack a stock warning image.

$warning = GtkImage::new_from_stock(Gtk::STOCK_DIALOG_WARNING,

Gtk::ICON_SIZE_DIALOG);

$hBox->pack_start($warning, false, false, 5);

// Add a message

$message = new GtkLabel('Are you sure you want to remove the ' .

'Crisscott PIMS application?');

$message->set_line_wrap();

$hBox->pack_start($message);

}

public function run()

{

// Show the dialog.

$this->show_all();

// Run the dialog and wait for the response.

if (parent::run() === Gtk::RESPONSE_YES) {

// Uninstall the application.

$this->_doUninstall();

}

}

private function _doUninstall()

{

// Create a config object.

require_once 'PEAR/Config.php';

$config = new PEAR_Config();

// Create a command object.

require_once 'PEAR/Command.php';

$uninstall = PEAR_Command::factory('uninstall', $config);

// Uninstall the application.

$result = $uninstall->doInstall('uninstall', array(),

array('crisscott/Crisscott_PIMS'));

// Report any errors.

if (PEAR::isError($result)) {

echo $result->getMessage() . "\n";

}

}

}

6137ch17.qxd 3/14/06 2:42 PM Page 344

CHAPTER 17 ■ DISTRIBUTING PHP-GTK APPLICATIONS 345

// Create an uninstall instance

$unInst = new UnInstall();

// Run the dialog.

$unInst->run();

?>

Using PHP Compilers
All PHP-GTK applications have one thing in common: they need PHP-GTK in order to work.
This can make it difficult to distribute an application to users who do not have PHP-GTK
installed on their computers. The users must download and install PHP-GTK before attempt-
ing to run a PHP-GTK application. As you saw in Chapter 2, this can sometimes be a difficult
process. One solution is to use a PHP “compiler.”

A PHP compiler is an application that takes PHP code and turns it into an executable pro-
gram. Once compiled, a PHP script can be run by any user, regardless of whether or not they
have PHP installed.

A few different PHP compilers are available. Some are commercial applications such as
Roadsend’s Compiler for PHP (http://www.roadsend.com) and PriadoBlender, but there is one
open source, freely available PHP compiler called bcompiler (http://pecl.php.net).

Unfortunately, as of the time of this writing, most of these applications or extensions do
not work well enough with PHP-GTK 2 to allow a thorough description of their use. However,
Roadsend’s Compiler for PHP does allow a majority of applications to be compiled into
executables.

Roadsend’s Compiler for PHP is available as a command-line application on Linux and as
both a command-line application and GUI front end on Windows. Since the command-line
application is available on both major platforms, we will focus on that version here. PHP
Compiler can turn PHP-GTK source code into an executable with one command:

$> pcc --gui Crisscott/run.php

This command creates a file named run. This file can be executed on any system that has
PHP-GTK installed. Of course, this is not quite what we are looking for. Our end goal is to cre-
ate an application that can be run without installing PHP-GTK. To do this, you need to use the
following command:

$> pcc --gui --static Crisscott/run.php

This command produces a file with the same name. However, this file, which is much larger
than the previous version, includes the PHP and GTK binaries necessary to run without PHP-GTK
being installed.

■Note I strongly encourage everyone to give these compilers a try and provide as much feedback for the
developers as possible. A fully functioning PHP-GTK 2 compiler will allow applications to reach a much
greater audience. In the end, a little time spent testing can help to create a better product for everyone.

6137ch17.qxd 3/14/06 2:42 PM Page 345

CHAPTER 17 ■ DISTRIBUTING PHP-GTK APPLICATIONS346

Summary
Distribution of an application is arguably just as critical as its development and testing. The
decision to use one distribution method over another depends greatly on the target users and
the goals of the project. If the target users are PHP-GTK developers, then a relatively simple
distribution method, such as a channel server, is appropriate, because PHP-GTK does not need
to be distributed along with the package. Other groups of users are likely to need PHP-GTK to
be distributed and installed along with the application. With any luck, these users will not have
to wait much longer for a fully functional PHP compiler.

6137ch17.qxd 3/14/06 2:42 PM Page 346

■Symbols
(comments), using with RC files, 326
& (ampersand), using with PHP-GTK

applications, 23
* (asterisk) wildcard, using with style rules,

322
_ (underscore), using with mnemonics,

131

■A
-a flag, using with PEAR installer, 334
about dialogs, using, 300–301
action area of dialogs, adding items to,

287, 289
ACTIVE value, using with style definitions,

321
Activity mode

putting progress bars into, 304
using progress bars with, 303

add method
vs. pack_start and pack_end methods,

93
using with tags and tag tables, 164
using with tool buttons, 251
using with widgets, 34

add signal, emitting, 45
add_action_widget, adding buttons to

GtkDialog with, 288
add_attribute, using with cell renderers

and view columns, 202
add_events method

calling in PHP-GTK 1, 61
using with widgets, 58, 60
adjustments, applying to scrollbars, 227

aligning labels, 134
allocation property, using with widgets in

realized state, 29
alpha channel, creating for GdkPixbuf, 264
ampersand (&), using with PHP-GTK

applications, 23
angled text, creating in complex labels,

132, 134
animations, working with, 265
append method, using with GtkListStore

model, 182

append_page method, using with
notebooks, 111

append_text method, using with GtkEntry
widget, 137

application distribution
creating package for, 335, 337
setting up channel server for, 334

applications. See also Crisscott PIMS
application

applying RC (resource) files to, 322,
328

downloading and installing, 333, 337
laying out with tables, 98, 100
minimizing and closing, 76
uninstalling, 343, 345
updating, 338, 342
apply_tag method, using, 166

apply_tag_by_name method, using, 166
arrays

for GtkDialog constructor, 283
representing properties with multiple

states with, 330
returning for signal data, 58
using with signal handlers, 44

article, selecting with news article tool,
212, 215

asterisk (*) wildcard, using with style rules,
322

ATK (Accessibility Toolkit) package,
description of, 18

attach method
arguments for, 101
using with GtkMenu, 233

■B
background pixmaps

changing with GtkStyle, 331
setting for styles, 330, 332

backward_chars method, moving iterators
with, 160

base[state] property, using with resource
files, 321

bcompiler package
using with PECL, 22
website, 345

Index

347

6137chIDX.qxd 3/14/06 2:44 PM Page 347

bg[state] property, using with resource
files, 321

bg_pixmap[state] property, using with
resource files, 321

bin containers
examples of, 32
turning GtkHBox into, 47
using set_child method with, 34

bitmask, GdkBitmap as, 266
block method, using with signal

handlers, 50, 52
border type, setting for frames, 90

borders
adjusting for tabs, 116
manipulating for windows, 68–69

box containers
behavior of widgets in, 93
button boxes, 97
creating vertical and horizontal boxes, 91
examples of, 32
nesting, 94, 96–97
packing widgets into, 91, 94
sizing, 96
vs. tables, 103
types of, 91
using set_homogeneous method with,

94
Browse mode, setting for row selection,

208
buffer text, using tags with, 161
buffers, creating text buffers with

marks, 155
buffers. See also text buffers

buildconf command, building
configure utility for Linux with, 19

button boxes, features of, 97
button masks, using with drag sources,

276
button-press-event signal, emitting, 246
buttons. See also GtkButton widgets

adding to GtkDialog using
add_action_widget, 288

adding toGtkDialog, 288
connecting clicked signal of button to

quit method of container, 47
connecting signal handlers to, 290
connecting to signal handlers, 148, 150
for file operation, 298–299
naming with get_name, 120
parent of, 35
passing to callbacks, 54
setting styles for, 330
using callback method with, 43–44
using signal handlers with, 54

■C
callback arguments, reducing with

connect_simple, 45, 47
callback method, using with two buttons,

43–44
callbacks

calling in timeouts, 315
passing buttons to, 54
catch blocks, using with try blocks, 7

CategorySummary tool, using angled text
in, 132, 134

c:\php5 directory, creating in Windows, 16
cell renderers

adding to view columns, 202, 205
using with views, 196–197

cells
assigning widgets to, 102
setting cursors on, 207
setting padding for, 103
CGI mode, disabling, 18

changed signal
connecting to setScrollValue, 228
using with selected rows, 210
changeLabel method, adding to

GtkButton class, 44
ChangingLabel class, using with events,

57
channel servers, setting up for application

distribution, 334
channels, relationship to PEAR packages,

21
check menu item, explanation of, 240
checkClicked method, calling for signal

handler, 52
Chiara channel server, gathering

information from, 334
child argument, using with attach

method, 102
child placement, controlling for

scrollbars, 222–223
child widgets

defining padding for, 94
explanation of, 32
managing with containers, 32

children, attaching to tables, 101, 103
children method, using with container

widgets, 34
class rule type, using with style rules, 322
class:: property, using with resource files,

321
clearError method, removing markup

from complex labels with, 128
CLI (command-line interface),

relationship to PHP, 5, 18

■INDEX348

6137chIDX.qxd 3/14/06 2:44 PM Page 348

clicked signal
connecting to quit method of

container, 47
creating signal handler for, 52
using set_visible with for view columns,

198, 200
ClickOnce class, using with signal

handlers, 52
cmd, bringing up DOS prompt with, 16
color palette, adding, 290
color selection interface

creating signal handlers for, 290
using, 289

colors, assigning to GtkStyle property,
329

colorsel property, accessing color
selection with, 290

column display properties, setting with
view columns, 198, 201

column headers, setting with
GtkTreeViewColumn, 197

column headings, using angled text in,
132, 134

column size, controlling in view columns,
200

column types, using with GtkListStore
model, 181

columns, 197. See also view columns
creating within rows, 94
reordering, 206
sorting by, 201

columns parameter, using with GtkTable
widget, 101. See also view
columns

col_start argument, using with attach
method, 102

combo boxes. See GtkComboBox widgets
command line, running PHP-GTK

applications from, 22
command-line prompt, bringing up, 16
comments (#), using with RC files, 326
compilers, using PHP compilers, 345
complex labels. See also simple labels

adding mnemonics to, 129, 131
converting simple labels to, 128
creating angled text in, 131–132, 134
ellipsizing text in, 129
removing markup from, 128
using GtkLabel with, 125
using Pango with, 125, 128

configure command, running in Linux,
18–19

connect call, passing extra parameters to,
45

connect methods
creating signal handlers with, 42, 49
using with add signal, 45
using with signal handlers, 41

connect_after method, using with signal
handlers, 47, 49

connect_simple method, using with signal
handlers, 45, 47

connect_simple_after method, using with
signal handlers, 47

console window, freezing with PHP-GTK
applications, 23

Console_Getargs package, installing, 21
container methods, controlling parent-

child relationship with, 34
container widgets

overview of, 32–33
removing contents of, 34
using signal handlers with, 41
using testForParent function with, 35

containers
fixed containers, 103, 105
relationship to GtkObject class, 27

content of notebook pages, explanation
of, 111

context menus, creating, 245–246
contributor editing tool, using GtkEntry

fields with, 137
ContributorEdit class

adding Submit and Undo buttons to,
148

expanding for Submit and Undo
buttons, 147–148

ContributorEdit tool
adding buttons to, 148
creating with Pango, 126, 128
using GtkEntry fields with, 135

createStateList method, using with entry
fields, 139

createTreePathArray method, connecting
signals to, 229

create_mark method of GtkTextBuffer,
using with marks, 155

Crisscott PIMS application. See also
applications

adding GtkNotebook widget to, 107
adding menu to, 231, 234
adding Submit and Undo buttons to,

147–148
basis for, 79
checking for new version of, 338, 340
GtkAboutDialog for, 300–301
main-window elements for, 87–88
overview of, 1–2

■INDEX 349

Find it faster at http://superindex.apress.com
/

6137chIDX.qxd 3/14/06 2:44 PM Page 349

product summary section of, 122
RC file included in, 327
rows in, 91
transmitting data in, 314
using multiline text in, 171, 174

Crisscott PIMS splash screen, code for, 69,
71

Crisscott server, transmitting inventory
listing to, 310

Crisscott, Inc., description of PIMS for,
1–2

crisscott-main style, defining, 327
crisscott-splash style, creating, 320
CrisscottCheckMenuItem class, menu

item created by, 243
Crisscott_Inventory object, building

product tree with, 215, 218
Crisscott_MainNotebook class

defining, 110
rewriting to add buttons to notebook

pages, 112, 114
Crisscott_MainWindow instance,

instantiating, 82
Crisscott_Tools_ProductEdit class,

modifying for product image, 259
Crisscott_Tools_ProductTree class,

implementing custom scrolling
for, 226, 230

Crisscott_Tools_ProductTree instance,
attaching to GtkScrolledWindow,
220

cursor position, adding text at, 167
cursors, setting on cells, 207

■D
data

adding to lists in GtkListStore model,
181, 185

displaying with GtkLabel, 119
removing from lists in GtkListStore

model, 185
decorated window

explanation of, 67
maximizing and setting title for, 79

delete-event signal, creating signal
handler for, 48–49

delete_mark method, using, 155
delete_mark_by_name method, using,

155
demo applications

accessing, 23
running for Linux installations, 20

destroy method, using with GtkObject
class, 27

destroy signal
connecting to quit method, 47
creating signal handler for, 48–49

dialog widgets, explanation of, 65
dialogs. See also GtkDialog widgets

adding items to bottoms of, 287, 289
adding items to tops of, 286–287
color selection dialogs, 289
creating, 282–283
displaying, 284
file chooser dialogs, 296
font selection dialogs, 293–294
GtkAboutDialog, 300–301
managing users’ responses to, 284, 286
vs. selectors, 281

directory location, specifying in Linux, 19
disconnect method, using with signal

handlers, 54
DnD (drag-and-drop)

overview of, 269
setting drag destination for, 269–270

DnD destinations, overview of, 269
DnD sources, setting drag source, 274, 276
doInstall method, calling for application

upgrade, 343
DOM extensions, using with PHP 5, 7
DOS prompt, bringing up, 16
drag destination

actions, 271–272
flags, 270
targets, 271

drag source
button masks, 276
icons, 277–278
setting for DnD, 274, 276
targets and actions, 276

drag-data-get signal, handling, 276–277
drag-data-received signal, handling, 272,

274
drag_source_set method, arguments of,

275
drag_source_set_icon_pixbuf, passing

GdkPixBuf object to, 277–278
dropped DnD data, checking type of, 274
drops, acceptance by widgets, 270

■E
echoText method, connecting key-press-

event to, 60
edge layout, using with button boxes, 97
ellipsizing text, explanation of, 129
end layout, using with button boxes, 97
engine property, using with resource files,

321

■INDEX350

6137chIDX.qxd 3/14/06 2:44 PM Page 350

enter-notify-event, listening for, 57
entry completion, setting model for, 139
entry fields. See GtkEntry widgets
error messages, using complex labels

with, 125
event boxes, behavior of widgets in, 57
event masks, signals corresponding to, 60
event- vs. request-driven architecture,

39
events

adding, 62–63
adding to widgets, 58, 62
listening for, 55, 63
reacting to, 39–40
triggering, 39
triggering with menu items, 236

exceptions, throwing, 7
expand parameter, using with pack_start

and pack_end methods, 93
Extensions section of your php.ini file,

example of, 19

■F
fg[state] property, using with resource

files, 321
Figures

GtkScrolledWindow child placements,
222

angled text in column headings, 132
broken image icon, 258
buffer in two views, 170
button boxes, 98
button with modified style applied, 330
buttons using same callback, 44
column display values, 205
context menu, 246
Crisscott about dialog, 301
Crisscott contributor editing tool

updated, 135
Crisscott PIMS application after RC file

is applied, 327
drag source icon, 279
ellipsized text, 129
filtered model, 196
Gtk::WINDOW_POPUP window, 67
Gtk::WINDOW_TOPLEVEL window, 67
GtkColorButton in text editor, 293
GtkColorSelection with opacity control

and color palette, 290
GtkColorSelectionDialog, 289
GtkComboBox widgets, 141
GtkDialog window, 281
GtkDialog with stock image, 287
GtkEntryCompletion, 138

GtkFileChooserButton, 297
GtkFileChooserDialogs, 297
GtkFileSelection, 298
GtkFixed issues, 106
GtkFontButton set to use selected font

and style, 296
GtkFontSelectionDialog, 294
GtkFrames, 89
GtkHScale and GtkVScale, 143
GtkMenu with two columns of

GtkMenuItem items, 235
GtkMenuItem subclasses, 239
GtkMessage dialog widget, 65
GtkNotebook in PHP-GTK 2

Dev_Inspector, 107
GtkNotebook with scrolling tabs, 117
GtkProgressBar in progress mode and

activity mode, 304
GtkScrolledWindow shadow types, 223
GtkSpinButton, 146
GtkStyle changes background pixmap,

332
GtkTable inside GtkViewPort, 225
GtkTable used for layout of Crisscott

PIMS application, 100
GtkTextView with pieces missing, 265
GtkToolbar instances, 247
GtkTreeStore representing data, 189
GtkTreeView allowing multiple

selections, 209
GtkTreeView with scrollbars, 220
GtkTreeView without scrollbars, 220
GtkTreeViewColumn display

properties, 202
GtkWindow widget, 66
list with three columns in GtkListStore

model, 183
Maintainers page of

PEAR_PackageFileManager_GUI_
Gtk application, 337

menu, 232
menu bar (GtkMenuBar), 232
menu item (GtkMenuItem) activated

with submenu, 238
multiline text, 154
nested boxes used for layout, 96
news article tool, 174
padding values, 94
Pango using red label to indicate error,

125
PEAR_PackageFileManager_GUI_Gtk2

application first page, 336
permission request to upgrade

application, 340

■INDEX 351

Find it faster at http://superindex.apress.com
/

6137chIDX.qxd 3/14/06 2:44 PM Page 351

PHP-GTK demo application, 17
PHP-GTK documentation browser, 9
PIMS application layout, 88
PIMS application transmitting data, 315
PIMS application with simple

notebook, 108
product images in application, 262
product summary area of PIMS

application, 122
product tree with Inventory column

hidden, 200
ProductEdit tool, 177
progress bar in dialog pop-up, 307
scaled product image, 264
splash file using RC file, 325
splash screen, 71
splash screen almost centered on

screen, 73
stock buttons, 148
tear-off menu states, 243
text entered is echoed, 60
toolbar with tool buttons, 252
toolbar with tooltips, 250
tree sorting, 191
Tulip text editor written with PHP-GTK,

4
WordPad text editor written in C++, 3

file chooser dialogs, using, 296
file location, referencing for images, 257
file selection, implementing, 297–298, 300
fill parameter, using with pack_start and

pack_end methods, 93
filtering models, 194, 196
fixed containers

overview of, 103, 105
placing widgets in, 105
using, 105–106

flag, using with iterated loop, 309
flags method, using with GtkObject class,

27
flat text lists, showing with GtkComboBox

widgets, 141–142
font buttons, using, 294, 296
font selection dialogs, using, 293–294
font_name property, using with resource

files, 321
for loop, searching GtkListStore with, 187
foreach method

traversing lists with, 186–187
using with tags and tag tables, 164

forward_chars method, moving iterators
with, 160

forward_word_ends method, using with
iterators, 161

frames
features of, 88
packing, 92
setting border type for, 90
setting label section for, 89

fullscreen method vs. maximize method,
76

functions. See methods

■G
GDK (GTK Drawing Kit), relationship to

GTK, 7
Gdk constants, using with events, 58
Gdk properties, initializing for widgets, 60
GdkAllocation property, getting width of

widget from, 73
GdkBitmap, passing to shape_combine_

mask method, 267
GdkBitmap bitmask, depth of, 266
Gdk::screen_height method, sizing

screens with, 71
Gdk::screen_width method, sizing screens

with, 71
GdkColor object

creating, 329
returning, 290

GdkPixbuf object
creating alpha channel for, 264
loading image into, 259
passing to drag_source_set_icon_

pixbuf, 277
scaling, 262

GdkPixbuf package
contents of, 258
description of, 19

GdkPixmap, using with images, 266
GetTextTag objects, finding and naming,

164–165
get_child method, using with bin

containers, 34
get_current_page method, using with

notebook pages, 114
get_digits, using with scales, 143
get_end_iter method, using with iterators,

159–160
get_filename method, using with file

selection, 299
get_iter_first, searching lists with, 187
get_label method

grabbing label text with, 131
using to remove markup from complex

labels, 128
get_mark method, retrieving marks with,

155

■INDEX352

6137chIDX.qxd 3/14/06 2:44 PM Page 352

get_nth_page method, using with
notebook pages, 111

get_n_pages, using with notebook pages,
111

get_selected_rows method, using, 210
get_start_iter method, using with

iterators, 159–160
get_tab_label, using with notebook pages,

111
get_tag_table method, using with tags,

164
get_text method

vs. get_label method, 128
using with labels, 120

giveBirth method, redefining in Ralph_Jr
class, 6

Glib package, description of, 18
GLib-GObject-WARNING **\

message
receiving, 54

Gnope installer website, 337
GNU make package, description of, 17
GNU Project website, 17
GTK (GIMP Toolkit), overview of, 7–8
Gtk classes, explanation of, 25
Gtk family tree, position of GtkObject

class in, 25
GTK library, scripting language wrappers

for, 12
GTK loops

exiting, 80
nesting, 81
starting, 80
stepping through, 81, 85
stopping, 81

GtkAboutDialog, using, 300–301
GtkAdjustment object

using with GtkScrollbar, 226
using with scales, 143

GtkBin class, extending with GtkWindow
class, 32

GtkButton class
adding changeLabel method to, 44
extending to block signal handlers,

52
GtkButton widgets. See also buttons

creating stock buttons with, 147, 150
overview of, 146
using with standard buttons, 146

GtkButtonBox, varieties of, 97
GtkCellRenderer descendants, holding in

columns, 202
GtkCellRenderer, using with GtkTreeView,

196

GtkCheckMenuItem
description of, 240
explanation of, 242

Gtk::events_pending, drawback of, 310
Gtk::idle_add, setting up timeout callback

with, 315
Gtk::main_iteration, drawback of, 310
Gtk::rc_reparse_all, calling for edited RC

files, 325
Gtk::events_pending method, effect of,

81
Gtk::main, starting main GTK loop with,

80
Gtk::main_iteration method, iterating

GTK loop with, 81
Gtk::main_quit

calling, 81
stopping GTK loop with, 81

Gtk::WINDOW_POPUP type, explanation
of, 67

GtkColorSelectionDialog widget,
description of, 289

GtkColorSelectionDialog, setting up, 291,
293

GtkComboBox widgets
using, 140, 142
with custom model, 142

GtkContainer base class, add method of,
34

GtkDialog, asking user permission for
upgrade with, 340

GtkDialog responses, 283
GtkDialog widgets. See also dialogs

adding buttons to, 288
creating, 282
information required by, 282
pros and cons of, 289
return value from, 284
using run method of, 284

GtkEntry widgets
associating GtkEntryCompletion

objects with, 138
collecting user information with, 135,

140
controlling, 137
dropping icon in, 269–270
as free-form text-entry tools, 140
uses for, 137
using inline completion with, 140
using with mnemonics, 130

GtkEntryCompletion object
associating with GtkEntry, 138
performing case-insensitive string

comparison with, 139

■INDEX 353

Find it faster at http://superindex.apress.com
/

6137chIDX.qxd 3/14/06 2:44 PM Page 353

GtkEventBox class, extending to listen for
events, 57

GtkEventBox container, wrapping widgets
in, 56, 58

GtkFileChooserButton, using, 296
GtkFileChooserDialog widget, using,

296–297
GtkFileSelection properties, 298
GtkFileSelection widget, using, 297, 300
GtkFixed widgets

strengths and weaknesses of, 105
using, 103, 105

GtkFontButton,using, 294
GtkFontSelection widget, accessing, 294
GtkFontSelectionDialog widget,

description of, 293
GtkFrame widgets

explanation of, 88
placing in first row of table, 102
using as temporary placeholders, 92

GtkHBox widgets
description of, 91
extending for use with signal handlers, 47
nesting, 94, 96
packing into dialog vbox, 287
widgets packed into, 94

GtkHScale and GtkVScale, collecting
numerical data with, 142, 144

GtkHTML package, description of, 19
GtkImage widget

displaying images with, 257
loading image into, 259

GtkImageMenuItem, description of, 240
GtkLabel widgets. See also labels

aligning text in, 121
displaying data with, 119
removing markup from, 128
using with complex labels, 125

GtkListStore model
adding data to list in, 181, 185
getting values from lists in, 186
instantiating for entry fields, 139
removing data from lists in, 185
repositioning rows in, 186
searching lists in, 186–187
turning RSS feed into, 211
using, 180–181

GtkMenu container
adding, 233–234
vs. GtkToolbar, 246

GtkMenuBar container, creating, 232
GtkMenuItem

adding submenus to, 236–237
creating signal handler for, 238

left justification of labels for, 236
subclasses of, 239

GtkMenuToolButton, description of, 252
GtkMessageDialog widget, example of,

65
GtkMisc parent class, set_alignment

method of, 124
GtkNotebook widget

accessing notebook pages in, 114
behavior of, 112
example of, 66
explanation of, 107
organizing reflection data with, 107
power of, 115

GtkObject class
destroy method of, 27
flags method of, 27
objects related to, 28
overview of, 25–26
set_flags method of, 27
sink method of, 27
unset_flags method of, 27

GtkPositionType, passing for notebooks,
115

GtkProgressBar widget, using, 303, 306
GtkRadioMenuItem

description of, 240
explanation of, 242

GtkRadioToolButton
description of, 253

GtkScrollbar as abstract class, description
of, 226

GtkScrolledWindow
attaching Crisscott_Tools_ProductTree

instance to, 220
child placements in, 222
description of, 219
setting scrollbar policy for, 221
setting shadow around child widget of,

223
GtkSelectionData object, using with drag-

data-received signal handler, 274
GtkSeparatorMenuItem

description of, 240
explanation of, 242

GtkSeparatorToolItem widget, adding to
toolbars, 255

GtkSpinButton widgets, using, 145–146
GtkStyle class, using, 328, 331
GtkStyle object, setting, 325
GtkStyle property, assigning colors to, 329
GtkTable widget

explanation of, 98
parameters for constructor of, 100

■INDEX354

6137chIDX.qxd 3/14/06 2:44 PM Page 354

GtkTearoffMenuItem, description of, 243
GtkTextBuffer widget

applying tags with, 166
creating iterators with, 159
description of, 166
right way to move insert and

selection_bound marks in,
157–158

using with GtkTextView, 174
using select_range method with, 156
wrong way to move insert and

selection_bound marks in,
156–157

GtkTextIter object
comparing to GtkTextMark, 158
using with marks, 155

GtkTextMark object, returning, 155
GtkTextTag object

creating and manipulating, 163
modifying text in buffers with, 168
properties of, 161, 163

GtkTextView widget
controlling buffer appearance with,

171
purpose of, 171
using, 169, 171
using with GtkTextBuffer, 174
using with text buffers, 167

GtkToggleToolButton
controlling timeout with, 313–314
description of, 252, 254

GtkToolbar widget
creating tool buttons for, 253–254
description of, 246
instantiating, 247
items allowed in, 250

GtkToolButton, description of, 250
GtkTooltips object, instantiating, 249
GtkTreeModelFilter, using, 194
GtkTreePath, navigating rows with, 207
GtkTreeSelection object, selecting rows

with, 207, 209
GtkTreeStore model

adding rows to trees with, 188
moving through trees with, 189–190
using, 188

GtkTreeView widget
adding scrollbars to, 220
controlling with signal handlers, 227,

230
description of, 196
expanding collapsed rows in, 206
setting display properties for, 206
using, 206–207

GtkTreeViewColumn
controlling display properties of, 198,

200
reorderable attribute of, 201
reordering rows with, 201
using, 197
using with GtkTreeView, 196

GtkVBox widgets
creating rows within columns with, 94
description of, 91
nesting, 94, 96
padding, 94
using with dialogs, 286

GtkViewPort widget, native scrollbar
support in, 224. See also scrollbars

GtkWindow widget
extending GtkBin class with, 32
relationship to box containers, 91
as top-level widget, 33
types of, 66–67
using with GtkDialog, 282
using as top-level widget, 66
using in widget shaping, 266

Gtk_FileDrop package, description of, 21
GUI (graphical user interface), keeping

active by iterating main loop, 308
GUI applications, overview of, 2, 4

■H
hidden state, overview of, 29–30
hide method, calling for widgets, 31
hide_all, calling with set_decorated, 68
hide_fileop_buttons, calling for file

selection, 298
homogeneous parameter, using with

GtkTable widget, 101
horizontal box containers, creating, 91
horizontal scrollbars, applying policy

rules to, 221

■I
idle callback, creating and destroying,

315–316
idle_add, using with timeouts, 315
IDs and names, listing with signal_list_ids

and signal_list_names methods, 58
image menu item, explanation of, 240
image objects, creating, 257, 262
images

displaying with GtkImage widget, 257
loading intoGdkPixbuf and GtkImage,

258
referencing file locations for, 257
scaling, 262–263

■INDEX 355

Find it faster at http://superindex.apress.com
/

6137chIDX.qxd 3/14/06 2:44 PM Page 355

setting transparency for, 264
using pixel buffers with, 258, 262
using stock IDs with, 258
widget shaping with, 265, 267

indexes
defining iterator position by, 158
getting for notebook pages, 112

inheritance in PHP code sample, 5–6
INI files, maintaining two versions of,

16
inline completion, activating for entry

fields, 140
INSENSITIVE value, using with style

definitions, 321
insert markers

moving with selection_bound markers,
156

moving separately from
selection_bound marker, 157

referencing, 155
insert method, using with GtkListStore

model, 182
insert_at_cursor, using with text, 167
insert_before and insert_after methods,

using in GtkListStore model, 185
insert_page method, using with

notebooks, 111
insert_range method, copying text with,

169
insert_with_tags, using with text, 167
inside_sentence method, using with

iterators, 160
installing

PHP-GTK on Windows, 16–17
PEAR packages, 21–22
PECL packages, 22
PHP-GTK 2 on Linux, 17–20
prerequisites for, 15

integer values, using as masks with events,
58

interpreted language, PHP as, 5
inventory listing, transmitting to Crisscott

server, 310
is_connected method, using with signal

handlers, 55
is_end method, using with iterators, 160
is_start method, using with iterators,

160
iterators

creating, 159–160
grabbing to search lists, 187
moving, 160–161
testing in GtkListStore model, 185

■J
Java Swing application, example of, 11
justification, setting for labels, 134

■K
key-press-event signal, connecting to

echoText method, 60

■L
label and label text, grabbing with

notebook pages, 111
label section, setting for frames, 89
label text

grabbing with get_label, 131
setting and getting, 120
wrapping, 120–121

label width, setting, 121
labels. See also GtkLabel widgets

changing with GtkEevntBox container,
56–57

displaying with GtkLabel widget, 119
setting justification for, 134
uses for, 120
using complex labels, 125, 134–135
using simple labels, 122, 125

_layout method, using with ProductEdit
tool, 176

leave-notify-event, listening for, 57
Libglade-2.0 package, description of, 19
Linux

installing PHP-GTK 2 on, 17, 20
location of files in, 19

list store, creating, 181
Listings

adding and removing widgets from
containers, 34–35

alerting user during product update
and transmission, 309–310

append, prepend, and insert used to set
rows, 184–185

application upgrade, 342
assigning mnemonic widget, 130
blocking signal handler, 51–52
buffer in two views, 170
button added to GtkDialog using

add_action_widget, 288
buttons using same callback, 43–44
checking for new version of package,

338, 340
checking values for all rows in list, 187
children added to bin container, 32
connect_simple reduces arguments for

callback, 45, 47

■INDEX356

6137chIDX.qxd 3/14/06 2:44 PM Page 356

connect_simple_after ensures callback
is called second, 48–49

context menu pop up, 245
ContributorEdit tool with GtkEntry

fields, 135, 137
Crisscott_SplashScreen before and after

using RC file, 323, 325
custom tool button, 251–252
drag data, 277
drag source icon, 278
drag-data-received signal handler,

272–273
events added, 62–63
Extensions section of php.ini, 20
filtering model using GtkTreeFilter,

194–195
flat text GtkComboBox, 141
GdkPixbuf scaling, 263
GrkDialog, 282
GtkAboutDialog for Crisscott PIMS

application, 300–301
GtkCellRendererProgress and

set_cell_data_func, 203, 205
Gtk::main_iteration updates GUI,

82, 85
GtkColorButton, 291–293
GtkDialog containing stock image,

286–287
GtkDialog verifies user’s action, 284,

286
GtkEntry accept drops, 270
GtkEntryCompletion object completion

and association, 138–139
GtkFileSelection connected for opening

file, 299
GtkFixed used to lay out application,

104–105
GtkFontButton font-set signal,

295
GtkFontSelectionDialog, 293
GtkHScale and GtkVScale,

144–145
GtkListStore, 180, 182–183
GtkMenu widget and GtkMenuItem

items, 234–235
GtkMenuBar items, 232
GtkMenuItem items, 235
GtkNotebook added to application, 108,

110
GtkNotebook organizing tools, 110
GtkObject definition, 26
GtkProgressBar created and updated,

304, 306

GtkScrolledWindow child placements,
222–223

GtkSpinButton, 145–146
GtkStyle background pixmap,

331–332
GtkStyle object copied, modified, and

applied, 328–330
GtkTable used to layout applications,

99–100
GtkTextIter objects created and moved,

159–160
GtkTextTag objects, 163, 164–165
GtkTextTag used to modify text in

buffer, 168
GtkTextView set up for editing buffer,

175, 177
GtkToolbar widget with tool buttons,

253–254
GtkTreeViewColumn display

properties, 198, 200
GtkViewPort adds scrollbars,

224–225
GtkVScrollbar, 226–227
GtkWindow reshaped, 266
GUI update during data transmission,

308–309
idle callback created and destroyed,

316
image loaded into GdkPixBuf and

GtkImage, 258
inheritance in PHP, 5–6
Java Swing application, 11
menu item customization, 242–243
menu items, 240, 242
method for jumping to random

notebook page, 114
moving to next or previous notebook

page, 113–114
nesting boxes, 94, 96
News Article Tool, 172, 174
Pango makes label red, 126, 128
permission request before upgrading

application, 341–342
PHP-GTK application, 9, 11
product images added to application,

259, 261
products section for product tree, 216,

218
RC (resource) file, 326
RC file contents, 320
realizing and unrealizing widgets, 31
resetting and saving contributor data,

149–150

■INDEX 357

Find it faster at http://superindex.apress.com
/

6137chIDX.qxd 3/14/06 2:44 PM Page 357

right way to move insert and
selection_bound in GtkTextBuffer,
157–158

rows created within window, 92–93
RSS feed turned into GtkListStore, 211
scrollbars added to GtkTreeView, 220
selection mode for rows, 208–209
setting title and maximizing decorated

window, 79
set_keep_above used with windows,

77–78
set_parent and unparent, 36–37
set_size_request used to control

window position, 74–75
signal handler, 40–41
signal handler for GtkMenuItem, 238
signal handler keeps widget and

adjustment synchronized, 228
signal handler makes view scroll, 227
signal handlers for GtkColorSelection,

290
signal handlers keep model and

adjustment synchronized, 229
signal handlers reacting to user-

triggered events, 41–42
signal_list_names and add_events

enhance entry’s functionality, 58,
60

sortable trees created from one tree,
191, 194

splash screen, 69, 71
stock tool button and signal handler,

251
submenus added to GtkMenuItem,

236–237
tear-off menu, 244
text in buffer with tags applied, 169
timeout created and destroyed at user’s

request, 313–314
toolbar with tooltips, 249–251
transmitInventory broken up to send

one product at a time, 311–312
transmitInventory with timeout, 313
tree traversal with recursive function,

189–190
tree with rows added, 188
unblocking signal handler, 52, 54
uninstall application, 343, 345
vertical toolbar without overflow menu,

247–248
view and displayed articles using news

article tool, 212, 215
widget and two parents, 33

widget response improved with
GtkEventBox, 56–57

widget state changes, 29–30
widget turned into drag source,

274–275
window borders toggled with

set_decorated, 68–69
window centered with set_position, 75
window positioned with set_uposition,

72
wrong way to move insert and

selection_bound in GtkTextBuffer,
156–157

lists
getting values from GtkListStore model,

186
managing data in, 180
removing data from GtkListStore

model, 181, 185
removing rows from, 186
searching in GtkListStore model,

186–187
showing with tree views, 196

loops, iterating main loop, 308, 310

■M
Mail_Mime PEAR package, installing, 21
main loop, running iteration of, 308–310
main window

blocking while dialog is visible, 284
of Crisscott PIMS application, elements

of, 87
maintainers, providing for package.xml

file, 336
makefiles, using with Linux, 17
marks

creating, 155
creating text buffers with, 154
definition of, 154
moving, 155, 158
moving simultaneously, 157–158
overview of, 154
removing, 155
uses of, 154

markup, removing from complex labels,
128

masks, using integer values as, 58
maximize method, using with windows, 76
menu bars

adding menu items to, 236
creating, 232–233

menu buttons, using, 252
menu item classes, examples of, 239

■INDEX358

6137chIDX.qxd 3/14/06 2:44 PM Page 358

menu items
adding submenus to, 236–237
adding to menu bars, 232
creating, 235, 243
creating signal handlers for, 238–239
purpose of, 236
types of, 240

menus
adding, 233–234
creating context menus, 245–246
creating tear-off menus, 243–244
making detachable, 244
relationship to pop-up windows, 67
vs. toolbars, 231

messages, using complex labels with,
125

methods, connection to signals, 40
mnemonic labels, including on buttons,

146
mnemonics, adding to complex labels,

129, 131
modal windows, overview of, 78
models. See also trees

displaying with GtkTreeView, 206
filtering, 194, 196
GtkListStore model, 180, 187
GtkTreeStore model, 188, 190
setting for entry completion, 139
sorting, 191, 193
wrapping, 191

mouse buttons, determining for drag
source button masks, 276

mouse events, listening for, 57
move method vs. set_uposition, 72
move_before and move_after methods,

using in GtkListStore model, 186
move_mark method, using, 155
move_mark_by_name method, using,

155
multiline text

editing, 172
example of, 154

MVC (Model-View-Controller) design
pattern, using with GtkListStore,
181

■N
names and IDs, listing with signal_list_ids

and signal_list_names methods, 58
native scrolling support

explanation of, 219
implementing with GtkViewPort

widget, 224
nesting boxes, 94, 96–97

new GtkButton, instantiating standard
buttons with, 146

new GtkComboBox constructor, using
with GtkComboX widget, 142

new operator
creating GtkMenu instance with, 233
creating menu buttons with, 254
creating menu items with, 236
creating tags with, 164
using with GtkRadioToolButton, 254
using with progress bars, 304

news article tool
building view and selecting article with,

212, 215
checking RSS feed with, 210, 215
parsing RSS feed with, 211

News Story tab, code for, 172, 174
new_from_file static constructor, using

with pixbufs, 258
new_from_stock constructor

description of, 242
using with tool buttons, 251

next_page method, calling for notebook
pages, 112–113

NORMAL value, using with style
definitions, 321

notebook pages
accessing in GtkNotebook, 114
adding, moving, and removing, 111–112
grabbing label and label text with, 111
indexes of, 112
jumping to, 114
moving to next, previous, or specific

pages, 112, 114
navigating, 112
removing, 112
reordering, 112

notebooks
decorating, 115
defining, 110
hiding tabs in, 116
overview of, 106, 110
repositioning tabs in, 115
using pop-up menus with, 114
using scrolling tabs with, 116

null, using with radio buttons, 254
numerical data, collecting with GtkHScale

and GtkVScale, 142, 144

■O
object-oriented PHP, overview of, 5–6
objects

determining need for, 27
exceptions as, 7

■INDEX 359

Find it faster at http://superindex.apress.com
/

6137chIDX.qxd 3/14/06 2:44 PM Page 359

killing, 27
relationship to GtkObject, 28
widgets as, 28

offset, defining iterator position by, 158
opacity tool, adding, 290
order one tree, explanation of, 180
overflow menus, using with toolbars, 247

■P
package file, creating, 337
“Package gtk+-2.0 was not found . . .” error

message, displaying, 17
package.xml file, creating, 335–336
packages

bcompiler for PECL, 22
creating for application distribution,

335, 337
Gtk_FileDrop, 21
installing PECL packages, 22
installing with PEAR installer, 334
pdflib for PECL, 22
PEAR, 20
PEAR and PECL, 20
requirements for installation on Linux, 17
turning on and off, 19
uninstalling, 343

pack_end and pack_start, adding cell
renderers to columns with, 202

pack_end method
vs. add method, 93
using with boxes, 92

pack_start method
vs. add method, 93
arguments passed in, 93
calling for boxes, 91
using with nested boxes, 97

padding
changing on top and bottom of tabs, 116
defining for child widgets, 94
setting for cells, 103
values for boxes, 94

padding parameter, using with pack_start
and pack_end methods, 93

page tab, using on notebook pages, 111
$pages array, using with set_current_page,

114
paging, relationship to scale adjustment,

143
Pango

description of, 18
marking up text with, 125, 128, 325

parent widgets
explanation of, 32
overview of, 33

setting, 36
using reparent method with, 34

parent-child relationship, controlling with
container methods, 34–35

pdflib package, using with PECL, 22
PEAR installer, installing packages with,

21, 334
PEAR manual website, 337
PEAR packages

explanation of, 20
features of, 333
installing, 21–22
updating applications automatically

with, 338, 340
PEAR website, 12
PEAR::DB website, 15
PEAR::Gtk2_FileDrop website, 273
PEAR::Gtk_FileDrop website, 273
PEAR::XML_RSS package, using with news

article tool, 211
PEAR_Command instance, creating for

application upgrades, 342
PEAR_Config instance, creating, 340,

342
PEAR_PackageFileManager_GUI_Gtk2

website, 335
PECL packages, installing, 22
PHP (PHP Hypertext Preprocessor)

and exceptions, 7
DOM and SOAP extensions for, 7
object-oriented PHP, 5–6
overview of, 4–5

PHP 5, resource for, 6
PHP compilers, using, 345
PHP-GTK

overview of, 8–9
reasons for use of, 10, 12
website, 12

PHP-GTK 2 Dev_Inspector websites,
107

PHP-GTK applications, running from
command line, 22

PHP-GTK applications. See applications
PHP-GTK code, finding online, 12
php.ini file

setting up for Windows, 16
updating for Linux, 19

php.ini-gtk file, contents of, 16
php_win.exe executable, running scripts

with, 16
PIMS application for Crisscott. See

Crisscott PIMS application
PIMS application. See Crisscott PIMS

application

■INDEX360

6137chIDX.qxd 3/14/06 2:44 PM Page 360

pixbuf
using in widget shaping, 266
using with images, 262

pixels, sizing screens in, 71
pixmaps

changing background pixmap with
GtkStyle, 332

shaping widgets with, 266
pixmap_path value, including in RC file,

327
place_cursor, using with insert and

selection_bound marks, 157–158
policy rules, setting for horizontal and

vertical scrollbars, 221
pop-up menus, using with notebook

pages, 114
pop-up windows

displaying below entries, 140
versus GtkWindow, 66

_populate method
modifying, 94
modifying for nested boxes, 94
modifying for tables, 98

populateFields method, using with
ContributorEdit tool, 137

popup method, calling for context menus,
246

popup_disable, calling for notebook
pages, 115

popup_enable, calling for notebook
pages, 115

post-install scripts, configuring channel
servers with, 334

PostgreSQL website, 15
prelight background, changing, 330
PRELIGHT value, using with style

definitions, 321
prepend method, using with GtkListStore

model, 182
prepend_page method, using with

notebooks, 111
prepend_text method

using with GtkEntry tool, 137
using with GtkEtnry widget, 137

presentation layer, handling by PHP, 8
previous_page method, using with

notebook pages, 112
priority level, determining for tags, 166
product editing tool, using with multiline

text, 172
product images, adding by dragging, 269
product summary section

of Crisscott PIMS application, 122
with simple labels, 122, 124

product summary tool, turning into drag
source, 274–275

product tree, creating, 215, 218
ProductEdit tool, abbreviated version of,

175–176
progress bars

creating, 304, 306
using, 303
using set_orientation with, 307

Progress mode, using progress bars with,
303

public methods, defining with GtkObject
class, 26

pulse method, calling for progress bars,
304

pulse step, setting for progress bars, 304
PyGTK scripting language wrapper for

GTK library, website for, 12

■Q
quit method

connecting clicked signal of button to,
47

connecting destroy signal to, 47

■R
radio buttons

instantiating, 254
using, 253

radio menu item, explanation of, 240
Ralph class, defining in inheritance

example in PHP, 6
RC (resource) files

applying to applications, 322, 328
creating, 320, 322
editing, 325
including in Crisscott PIMS application,

327
overview of, 319
style definition in, 320–321
style rules in, 321–322
using with splash screen, 325

realize method
changing to show method, 31
using with realized widget state, 30

realized widget state, overview of, 29–30
reference counter, tracking for objects, 27
remove method

vs. reparent method, 36
using with tags and tag tables, 164
using with widgets, 34

remove_page, using with notebooks, 112
remove_tag method, using, 166
remove_tag_by_name method, using, 166

■INDEX 361

Find it faster at http://superindex.apress.com
/

6137chIDX.qxd 3/14/06 2:44 PM Page 361

renderers. See cell renderers
reorderable attribute, using with view

columns, 201
reorder_child method, using with

notebook pages, 112
reparent method

vs. remove method, 36
using with widgets, 34

reportError method
using with buttons and signal handlers,

150
using with complex labels, 128

request-driven architecture, significance
to web-based applications, 39

resize, changing table dimensions with,
101

resource file style properties, examples of,
321

resources
for PHP 5, 6
for writing and debugging code, 12

Roadsend’s Compiler for PHP website, 345
rows

adding in relative position in
GtkListStore model, 185

adding to lists in GtkListStore model,
182

adding to trees, 188
creating within columns with GtkVBox,

94
expanding, 207
in Crisscott PIMS application, 91
navigating with GtkTreePath, 207
removing from lists, 186
reordering in view columns, 201–202
repositioning in GtkListStore model,

186
selecting and unselecting, 209–210
setting selection mode for, 207, 209
swapping in GtkListStore model, 186

rows parameter, using with GtkTable
widget, 101

row_end argument, using with attach
method, 102

row_start argument, using with attach
method, 102

RSS feed, checking with news article tool,
210, 215

Ruby-GNOME2 scripting language
wrapper for GTK library

website, 12
rule types, using with style rules, 322
run method of GtkDialog, using, 284, 286

■S
sample application. See Crisscott PIMS

application
Save button, connecting to

saveContributor method, 150
scale method, using with images, 264
scales, GtkHScale and GtkVScale, 142, 144
Scintilla package, description of, 19
screen size, retrieving for windows, 73
screens, sizing in pixels, 71
scrollbar policy, setting for

GtkScrolledWindow, 221
scrollbars. See also GtkViewPort widget

adding to widgets with native scrollbar
support, 220

adding with GtkViewPort widget,
224–225

controlling placement child placement
for, 222–223

creating for
Crisscott_Tools_ProductTree class,
226–227

providing with GtkScrolledWindow, 219
scrolled windows

creating, 223
overview of, 219, 223
sizing, 221

scrolling, customizing, 225, 230
scrolling capabilities, adding to widgets,

225
scrolling tabs, using with notebooks, 116
scrollView function, connecting value-

changed signal to, 227
scroll_to_mark method, using with text

views, 171
SELECTED value, using with style

definitions, 321
selected_foreach, processing selected

rows with, 210
selection mode, setting for rows, 207, 209
selection_bound markers

moving insert markers with, 156
moving separately from insert marker,

157
referencing, 155

selectors
color buttons, 291–292
color selection dialogs, 289–290
vs. dialogs, 281
file chooser dialogs, 296
file selection, 297, 300
font buttons, 294, 296

■INDEX362

6137chIDX.qxd 3/14/06 2:44 PM Page 362

font selection dialogs, 293–294
signal handlers, 290

select_iter or select_path, selecting single
rows with, 210

select_range, using with insert and
selection_bound marks, 157–158

select_range method
moving marks with, 156
using with rows, 209

separator items
adding to toolbars, 255
explanation of, 240

servers, displaying PEAR packages
installed from, 21

set, calling in GtkListStore model, 183
setParentFunction function, calling in

relation to signal handlers, 41
setScrollValue, connecting changed signal

to, 228
set_* options for about dialog,

descriptions of, 301
set_alignment method, using with labels,

124
set_attribute, using with cell renderers

and view columns, 202
set_buffer, calling, 170
set_cell_data_func callback method, using

with cell renderers and view
columns, 203

set_child method, using with bin
containers, 34

set_current_page method, jumping to
notebook pages with, 114

set_cursor method, setting cursors to cells
with, 207

set_decorated, calling for windows, 68
set_digits, using with scales, 143
set_draw_value, using with scales, 143
set_editable method, using with text

views, 171
set_ellipsize, calling for complex labels,

129
set_flags method, using with GtkObject

class, 27
set_fraction method, using with progress

mode, 304
set_homogeneous method, using with box

containers, 94
set_homogeneous_tabs, setting tab width

with, 116
set_justification method, using with text

views and buffers, 171

set_justify, using with GtkLabel widgets,
122

set_keep_above, calling for windows, 77
set_label_align, using with frames, 90
set_label_widget

calling, 89
using with custom tool buttons, 252

set_layout method, using with button
boxes, 97

set_left_margin method, using with text
buffers, 171

set_line_wrap
calling for labels, 121
using with GtkLabel widgets, 122
using with labels, 124

set_markup_with_mnemonic, using with
complex labels, 130

set_max_length
vs. set_width_chars, 137
using with GtkEntry input boxes, 137

set_max_width_chars, using with labels,
121

set_minimum_key_length method, using
with entry fields, 139

set_mnemonic_widget, assigning
mnemonic widget with, 130

set_model
using with entry fields, 139
using with GtkComboBox widgets, 142

set_name, naming buttons with, 120
set_orientation method

using with progress bars, 307
using with toolbars, 247

set_overwrite method, using with text, 171
set_parent method, using with widgets,

36–37
set_placement, using with

GtkScrolledWindow, 223
set_policy, using with scrolled windows,

221
set_popup_completion, using with entry

fields, 140
set_position method

centering splash screen with, 75
passing Gtk::WIN_POS_CENTER

constant to, 75
set_priority method, using with tags, 166
set_property method, using with tags, 164
set_right_margin method, using with text

buffers, 171
set_scrollable, using with notebook tabs,

116

■INDEX 363

Find it faster at http://superindex.apress.com
/

6137chIDX.qxd 3/14/06 2:44 PM Page 363

set_select_function, using with rows, 210
set_select_multiple, passing false to, 300
set_shadow_type

calling on view ports, 225
setting frame borders with, 90
using with GtkScrolledWindow, 223

set_show_tabs method, turning off
notebook tabs with, 116

set_size_request
sizing boxes with, 96
using with windows, 73–75

set_sizing method, using with view
columns, 200

set_sort_column_id, calling for view
columns, 201

set_style method, using with toolbars, 248
set_tab_border, using with notebooks, 116
set_tab_label_text, using with notebook

pages, 111
set_tab_pos, calling for notebooks, 115
set_text, using with GtkEntry input boxes,

137
set_text method

clearing text buffers with, 168
turning off markup of complex labels

with, 128
using with labels, 120

set_text_column method, using with entry
fields, 139

set_title method
setting column titles with, 197
using with window titles, 79

set_tooltip method, using, 249
set_uposition method

calling for splash screen, 71
vs. move method, 72
using with windows, 71

set_use_markup method, using with
complex labels, 128

set_use_size, using with font buttons, 296
set_use_underline, using with complex

labels, 131
set_value_pos, using with scales, 144
set_visible, using with view columns, 198,

200
set_width_chars methods

vs. set_max_length method, 137
using with GtkEntry input boxes, 137

shadows
preventing from being added to child

widgets, 225
setting for GtkScrolledWindow, 223

shape_combine_mask method, passing
GdkBitmap to, 267

shown widget state, overview of, 31
show_all

calling for widgets, 60
calling with set_decorated, 68
using with dialogs, 284

signal handlers
blocking and destroying, 49, 55
calling order of, 48–49
comparing to timeouts, 312
connecting, 55
connecting buttons to, 148, 150
creating, 42, 49
creating for color selection interface,

290
creating for custom scrollbar, 227, 230
creating for menu items, 238–239
creating for startMainWindow method,

82
creating for tool buttons, 251
drag-data-get signal handler, 276–277
drag-data-received signal handler,

272–273
interacting with, 40, 42
overview of, 40

signal reflection, explanation of, 58
signals

connecting to createTreePathArray
method, 229

definition of, 40
event masks related to, 60

signal_list_ids method, explanation of, 58
signal_list_names method, explanation of,

58
simple labels. See also complex labels

converting to complex labels, 128
using, 122, 125

sink method, using with GtkObject class,
27

sizing rules, setting in view columns, 200
sliders, using with scales, 143
SOAP extensions, using with PHP 5, 7
sort order, identifying, 201
sorting models, 191, 193
special containers, examples of, 32
spin buttons, using, 145–146
splash screens

centering with set_positoin, 75
definition of, 69
implementing, 82, 85
preventing from appearing in taskbar,

78
setting display properties for, 320
using RC file with, 325

spread layout, using with button boxes, 97

■INDEX364

6137chIDX.qxd 3/14/06 2:44 PM Page 364

start layout, using with button boxes, 97
startMainWindow method

calling with signal handler, 82
instantiating Crisscott_MainWindow

instance with, 82
stock IDs

using with images, 258
using with tool buttons, 251

stock images
adding to GtkDialog, 286–287
size constants for, 258

stock[stockId] property, using with
resource files, 321

style definition, including in RC (resource)
file, 320–321

style property, setting for tags, 164
style rules, including in RC (resource) files,

322
styles

modifying, 328, 330
properties of, 330
setting background pixmaps for,

330–331
setting for buttons, 330

submenus, adding to menu items,
236–237

Submit button, adding to Crisscott PIMS
application, 147–148

Swing application, example of, 11
syntax for PHP-GTK application

example of, 8

■T
tab width, setting, 116
table cells. See cells
table dimensions, changing, 101
tables

attaching children to, 101, 103
vs. boxes, 103
constructing, 100–101
overview of, 98, 100
placing GtkFrames in, 102

tabs
adjusting border of, 116
changing borders for, 116
changing padding on top and bottom

of, 116
hiding in notebooks, 116
repositioning in notebooks, 115
sizing, 116
using scrolling tabs with notebooks, 116

tags
adding to tag tables, 164–165
applying and removing, 166

creating, 161, 164
determining priority levels of, 166
using with buffer text, 161

tear-off menus, creating, 243–244
testForParent function, using with

container widgets, 35
text

adding to text buffers, 167
aligning in GtkLabel widgets, 121
copying and pasting, 169
editing multiline text, 172
ellipsizing in complex labels, 129
marking up and internationalizing, 125,

128
using tags with buffer text, 161

text buffers. See also buffers
creating, 167
creating with marks, 155
removing text from, 168–169
setting appearance and editability for,

171
text display tool, example of, 172, 174
text editing, 166
text editing tool, 166

example of, 175, 177
using GtkColorButton with, 292

text information, returning with iterators,
160

text lists, displaying flat text lists with
GtkComboBox widgets,
141–142

text marks. See marks
text views. See also views

scrolling in, 171
setting editability for, 171
using with single buffer, 169–170

text-editing tool set, overview of, 153
text[state] property, using with resource

files, 321
timeouts

adding, 312
comparing to signal handlers, 312
drawback of, 315
removing, 313–314
using, 310, 312

toggle buttons, using, 252
tool buttons

adding, 250, 254
customizing, 251–252

toolbar widgets, examples of, 252, 254
toolbars

creating, 247–248
vs. menus, 231
using overflow menus with, 247

■INDEX 365

Find it faster at http://superindex.apress.com
/

6137chIDX.qxd 3/14/06 2:44 PM Page 365

tooltips
adding, 249–250
relationship to pop-up windows, 67

top-level widgets, overview of, 33, 65, 71
transient windows, creating, 78
transmitInventory method

adding loop to, 308
calling, 311
calling periodically, 312
calling periodically with timeout, 312

$transmitting static property, using with
loop iteration, 309

transparency
applying to colors, 290
setting for images, 264

traverseTree function, using in
GtkTreeStore model, 190

tree path array, creating for custom
scrollbar, 229

tree views
controlling with custom scrollbar, 227,

230
showing lists with, 196
using, 206–207

trees. See also models
adding rows to, 188
moving through, 189–190
organizing data into, 179
product tree, 215, 218

try-catch blocks, wrapping code in, 7
Tulip versus WordPad, 3

■U
unblock method, using with signal

handlers, 52, 54
underscore (_), using with mnemonics,

131
Undo button

adding to Crisscott PIMS application,
147–148

connecting to resetContributor method
of ContributorEdit class, 150

uninstall command, using with
applications, 343

unparent method, using with widgets,
36–37

unrealized widget state, overview of,
30–31

unselect_path and unselect_iter, using
with rows, 209

unset_flags method, using with GtkObject
class, 27

URIs, correct format for, 273

user actions, responding to with event
boxes, 57

user information, collecting with
GtkEngry widget, 135, 140

user interactions, using signal handlers
with, 40

user permission, obtaining for upgrade,
340, 342

user response to dialogs, managing, 284,
286

user-triggered events, using signal
handlers with, 41

UTF-8 character set, significance of, 159

■V
value-changed signal, connecting to

scrollView function, 227
vbox

packing GtkHBox into, 287
packing widgets into, 286

vertical box containers, creating, 91
vertical scrollbars

applying policy rules to, 221
creating, 226–227

view columns. See also columns
adding cell renderers to, 202, 205
reordering rows in, 201–202
setting column display properties with,

198, 201
setting column headers with, 197
setting sizing rules in, 200
using, 197

view ports, native scrollbar support in, 224
views. See also text views

building for news article tool, 212, 215
sorting, 191, 193
using, 196
using cell renderers with, 196–197

visibility, toggling in view columns, 200

■W
websites

bcompiler, 345
GIMP Toolkit, 18
Glib, 18
Gnope installer, 337
GNU Project, 17
GTK (GIMP Toolkit), 7
pango markup elements, 125
PEAR, 12
PEAR manual, 337
PEAR::DB, 15
PEAR::Gtk2_FileDrop, 273

■INDEX366

6137chIDX.qxd 3/14/06 2:44 PM Page 366

PEAR::Gtk_FileDrop, 273
PEAR_PackageFileManager_GUI_Gtk2,

335
PHP-GTK, 12
PHP-GTK 2 Dev Inspector, 107
PostgreSQL, 15
PyGTK scripting language wrapper for

GTK library, 12
Roadsend’s Compiler for PHP, 345
Ruby-GNOME2 scripting language

wrapper for GTK library, 12
while loop, removing rows from lists with,

186
widget appearance. See RC (resource) files
$widget parameter, relationship to

connect method for signal
handlers, 42

widget rule type, using with style rules,
322

widget shaping, performing with images,
265–267

widget states
realized state, 29–30
shown state, 31
unrealized state, 30–31

widgets
accepting drops for, 270
adding and removing, 33, 37
adding as frame labels, 89
adding events to, 58, 62
adding scrolling capabilities to, 225
as children and parents, 32
as visual objects, 28
assigning to cells, 102
behavior in boxes, 93
calling hide method for, 31
expanding and filling, 93
getting widths of, 73
hiding and displaying groups of, 106
improving responsiveness of, 55
initializing Gdk properties for, 60
moving between containers, 34
organizing into task-oriented blocks,

107
packing into box containers, 91, 94
packing into GtkHBox, 94
parent limitation of, 37
parent-child relationship of, 32
placing in fixed containers, 105
relationship to GtkObject class, 28
restricting data dropped into, 271
setting up custom scrolling for, 229
shaping with pixmaps, 266

top-level and parent widgets, 33
top-level widgets, 65, 71
unsetting as drag destinations, 272
using set_parent method with, 36–37
using signal handlers with, 41
using unparent method with, 36–37
wrapping in GtkEventBox containers,

56, 58
widget_class rule type, using with style

rules, 322
wildcards, using with style rules, 322
window decorations

overview of, 67, 71
toggling, 69
turning off, 76

window property
null setting used with, 31
relationship to unrealized widget state,

31
using with widgets in realized state, 29

window titles, setting, 79–80
Windows, installing PHP-GTK 2 on,

16–17
windows

centering, 75–76
centering on screen, 73
creating rows within, 92–93
creating undecorated windows, 71
getting and setting height and width

for, 73, 75
making transparent, 78
maximizing, 76
modal windows, 78
positioning and sizing, 71, 78
realizing, 73
redrawing with new decorated values,

68
relationship to top-level widgets, 65, 71
removing borders and title bars from,

68
returning to previous size and location,

76
setting z-index for, 77–78

WordPad versus Tulip, 3

■X
XML files, using with PEAR installer, 335
xthickness property, using with resource

files, 321
x_options argument, using with attach

method, 102
x_padding argument, using with attach

method, 103

■INDEX 367

Find it faster at http://superindex.apress.com
/

6137chIDX.qxd 3/14/06 2:44 PM Page 367

■Y
ythickness property, using with resource

files, 321
y_options argument, using with attach

method, 102
y_padding argument, using with attach

method, 103

■Z
z-index, setting for windows, 77–78

■INDEX368

6137chIDX.qxd 3/14/06 2:44 PM Page 368

FIND IT FAST
with the Apress SuperIndex ™

Quickly Find Out What the Experts Know

L eading by innovation, Apress now offers you its SuperIndex™, a turbocharged

companion to the fine index in this book. The Apress SuperIndex™ is a keyword

and phrase-enabled search tool that lets you search through the entire Apress library.

Powered by dtSearch™, it delivers results instantly.

Instead of paging through a book or a PDF, you can electronically access the topic

of your choice from a vast array of Apress titles. The Apress SuperIndex™ is the

perfect tool to find critical snippets of code or an obscure reference. The Apress

SuperIndex™ enables all users to harness essential information and data from the

best minds in technology.

No registration is required, and the Apress SuperIndex™ is free to use.

1 Thorough and comprehensive searches of over 300 titles

2 No registration required

3 Instantaneous results

4 A single destination to find what you need

5 Engineered for speed and accuracy

6 Will spare your time, application, and anxiety level

Search now: http://superindex.apress.com

6137chIDX.qxd 3/14/06 2:44 PM Page 370

	Pro PHP-GTK
	Contents
	CHAPTER 1 Introducing PHP-GTK
	CHAPTER 2 Installing PHP-GTK.
	CHAPTER 3 Understanding PHP-GTK Basics
	CHAPTER 4 Handling Events and Signals
	CHAPTER 5 Getting an Application Up and Running
	CHAPTER 6 Laying Out Applications
	CHAPTER 7 Displaying and Collecting Simple Data
	CHAPTER 8 Using Multiline Text
	CHAPTER 9 Working with Trees and Lists.
	CHAPTER 10 Scrolling
	CHAPTER 11 Adding Menus and Toolbars
	CHAPTER 12 Adding Images
	CHAPTER 13 Drag-and-Drop
	CHAPTER 14 Using Selectors & Dialogs.
	CHAPTER 15 Doing Background Work
	CHAPTER 16 Changing the Look and Feel.
	CHAPTER 17 Distributing PHP-GTK Applications
	INDEX

