

201 West 103rd Street
Indianapolis, Indiana 46290

B Y E X A M P L E

Toby Butzon

PHP

PHP By Example

Copyright© 2002 by Que
All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, with-
out written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the prepa-
ration of this book, the publisher and author assume no respon-
sibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained
herein.

International Standard Book Number: 0-7897-2568-1

Library of Congress Catalog Card Number: 2001090370

Printed in the United States of America

First Printing: November 2001

04 03 02 01 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trade-
marks or service marks have been appropriately capitalized. Que
cannot attest to the accuracy of this information. Use of a term
in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied.
The information provided is on an “as is” basis. The author and
the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising
from the information contained in this book.

Associate Publisher
Dean Miller

Senior Acquisitions Editor
Jenny L. Watson

Development Editor
Sean Dixon

Technical Editor
Robert Grieger

Managing Editor
Thomas F. Hayes

Project Editor
Karen S. Shields

Indexer
Chris Barrick

Proofreaders
Bob LaRoche
Jeannie Smith

Team Coordinator
Cindy Teeters

Interior Designer
Karen Ruggles

Cover Designer
Rader Design

Contents at a Glance

Introduction .1

Part I Getting Started with Programming in PHP 5
1 Welcome to PHP .6
2 Variables and Constants .28
3 Program Input and Output .48
4 Arithmetic .70
5 String Manipulation .88

Part II Control Structures 113
6 The if, elseif, and else Statements .114
7 The switch Statement .136
8 Using while and do-while .152
9 Using for and foreach .170

Part III Organization and Optimization of Your Program 185
10 Functions .186
11 Classes and Objects .214
12 Using Include Files .240

Part IV Advanced PHP Features 261
13 Creating Dynamic Content with PHP and a
MySQL Database .262
14 Using PHP for Password Protection .292
15 Allowing Visitors to Upload Files .314
16 Cookies .336
17 Putting It All Together .352

APPENDIX 373
A Debugging and Error Handling .374
Glossary .386
Index .394

iii

Table of Contents

Introduction .1

Part I Getting Started with Programming in HP 5
1 Welcome to PHP .6

Why PHP? .8
If You’re New to Programming… .10
Writing a Basic PHP Program .11

Programming Syntax .15
Good Style: Using Whitespace and Comments 17
How Embedded Programming Works 20

Server-Side Versus Client-Side Scripting .22
Running Your New Program .24

What If It Didn’t Work? .24
2 Variables and Constants .28

Introduction to Variables and Constants .30
Declaration and Assignment .32

Declaring Variables .32
Assigning Variables .33
Declaring a Constant .34
Deciding Whether to Use a Variable or Constant 35

Variable Types .36
Integers .36
Floating-Point Numbers .37
Arrays .37
Strings .39
Objects .41

Scope .42
Type Casting .43

Necessity of Type Casting .43
Syntax .43

Variable References .45
3 Program Input and Output .48

Revisiting Output .50
The echo Command .50
Using Here-doc .54

Using Short Tags .57
Here-doc Versus the Short Equals Tag59

Program Input .60
Get and Post Form Methods .61
Using Forms .65

4 Arithmetic .70
Basic Arithmetic .72

Positive and Negative Numbers .73
Unary and Binary Operators .74
Addition .74
Subtraction .75
Multiplication .76
Division .77
Modulus Division .77

Order of Operations .78
What’s Nesting? .81

Compound Operators .83
Patterns and Arithmetic .86

5 String Manipulation .88
Before We Begin .90
The String Concatenation Operator .90
String Functions .92

Extracting Substrings .92
Finding Substrings .96
Performing Basic String Replacements 98

Pattern Matching with Regular Expressions 100
Basic Pattern Matching .107
Replacements with Regular Expressions 109

Part II Control Structures 113
6 The if, elseif, and else Statements .114

Basic Conditionals .116
Using elseif and else Statements .120

Expressing Multiple Conditions .130
Short Circuit Evaluation .133

v

7 The switch Statement .136
Introducing the switch Statement .138

Using the switch Statement .139
Multiple Cases for the Same Code .144

Multifunction Pages .146
8 Using while and do-while .152

The while Statement .154
Syntax for while .155
Using while with a Counter .159
Computing Totals .161

The do-while Statement .164
do-while Syntax .164

The break and exit Statements .166
Breaking Loop Execution .166
Exiting a Program .168

What’s Next .169
9 Using for and foreach .170

The for Statement .172
Syntax .172

Examples .174
Comparing for and while .177
The foreach Statement .178

Basic Syntax .178
Examples .179
Syntax for Associative Arrays .181
Examples .182

Part III Organization and Optimization of Your Program 185
10 Functions .186

Understanding Functions .188
Function Definition .188
Calling a Function .191
Flow of Execution .191
Scope .192

Passing Values to and from Functions .193
Parameters .194
Returning a Value .199

vi

Referenced Parameters .204
Recursive Functions .209

What Is Recursion? .210
Understanding Recursion .210
Using Recursion .212

11 Classes and Objects .214
What Are Classes and Objects? .216

Defining a Class .217
Creating and Using an Object .218
Example: Creating a bank_account Class 220
The Constructor Function .224

Object-Oriented Programming Concepts 227
Black Boxing .227
Data Protection .228
Example: A Shopping Cart Class .228

serialize() and unserialize() .231
Subclasses and Inheritance .235

The extends Keyword .235
What’s Next .239

12 Using Include Files .240
Understanding include .242

include Syntax .242
Including PHP Code .243
Function and Variable Scope Between Include Files 244

Why Use includes? .245
Program Organization .245
Code Reuse .255

What’s Next .259

Part IV Advanced PHP Features 261
13 Creating Dynamic Content with PHP and a

MySQL Database .262
A Word about Databases .264
The Idea Behind Database-Driven Content 264

vii

Designing and Creating a Table in MySQL 266
MySQL’s Data Types .269
Creating a Table .277

Using MySQL to Make Your Web Site Come Alive279
Connecting with mysql_connect .280
Issuing SQL Commands to MySQL with mysql_query 282

14 Using PHP for Password Protection .292
Goals of Authentication with PHP .294
Setting Up the Basics .294

Setting Up a User Table .295
Getting the Username and Password295

Verifying the Username and Password .297
Making Sure the Username and Password Are
Correct .297
Responding to a Login Request .298
The Result .299

Practical Techniques .300
Adjusting the Login Logic .300
Including Protection .302
Logging In for a Session .304
Using Sessions .304
Applying Sessions to a Login Script 306

Using HTTP Header Authentication .308
Sending the HTTP WWW-Authenticate Header 308

What’s Next .312
15 Allowing Visitors to Upload Files .314

File Upload Process Overview .316
Creating a File Upload Form .317
Handling the File Upload Request .319

File Upload Criteria .319
What to Do with the Uploaded File 322
Storing the File in a Database .326

What’s Next .333

viii

16 Cookies .336
Cookie Overview .337

How Cookies Work .338
Setting Cookies .339

Setting a Simple Cookie .339
Having More Control over Your Cookies 341
The Lifetime of a Cookie .341
Restricting Access to a Certain Path 344
Keeping Cookies Within Your Domain 346
Requiring Secure Transmission of Sensitive Cookie Data . .347
Deleting a Cookie .348
Privacy and Security Concerns .349
The Cookie Virus Myth .349
But Cookies Will Snoop Through My Personal Data… 350
Using Cookies Ethically .350

What’s Next .351
17 Putting It All Together .352

Writing a Full Program .354
Planning Your Guestbook .354
Creating a Program Specification Outline 355
Organizing Your Program’s Files .356

Setting Up the Database .363
The Guestbook Program .364
What’s Next .371

Appendixes 373
A Debugging and Error Handling .374

Understanding Error Messages .375
Correcting Errors .376

Variable Tracking .378
Using a Boolean Debugging Constant 380
Using Multiple Debugging Levels .381

Glossary .386
Index .394

ix

About the Author
Toby Butzon is an experienced developer with a unique interest in Web pro-
gramming. His constant use of Web scripting for many years has given him a
thorough understanding of the subject. Being primarily self-taught, he knows
which programming concepts are more difficult than others and has developed
methods of teaching those concepts to minimize any difficulties for those new to
programming.

Toby is fluent in scripting languages such as PHP, ASP, and Perl, and he works
comfortably in C/C++ on both Windows and Linux. He also has experience
designing databases for Microsoft SQL Server and MySQL. Integrating data-
bases into Web sites is so common for him that it’s almost second nature (right
behind coding some good ol’ PHP).

x

Dedication
For Mom and Dad. Thanks.

Acknowledgments
The people at Que are the ones who really made this book come together. Jenny
Watson helped keep me on schedule and did a great job of prodding me when I
wasn’t (which was most of the time). Sean Dixon helped by reading over my
original chapters and helping me make things more understandable. He also did
an excellent job of speaking out from a reader’s perspective to ensure things
make sense to novices and experts alike. Bob Grieger also read over each and
every chapter, checking for inaccuracies and mistakes in all of my code and text.
He helped to correct quite a few problems; without him, this book would have
had several very confusing areas. I know there are other people at Que who are
part of the process that I haven’t mentioned. Everyone at Que has been very
responsive to my needs; they’ve shown that they are, indeed, dedicated to their
work. They’ve been a great pleasure to work with. Thanks for making this
process enjoyable and being so helpful along the way.

My gratitude also goes to my family, who has done a great job of supporting me
through this process. They’ve endured all my long nights, and (sadly enough)
won’t be seeing too much of my zombie-like just-finished-a-chapter state any-
more. (I’m sure they’ll get over it!) My family has also offered lots of encourage-
ment when the chapter I was working on didn’t seem to go anywhere forever;
eventually I always finished it, but their gentle push was a lot of help.

Thanks to Paul and Darby Luce, Jane Butzon, Cory Butzon, and all my other
friends and family. The book is finally finished!

xi

Introduction

About This Book
If you already have a good understanding of HTML, and now you want to make
your Web pages do more, then this book is for you!

This book is written to teach Web designers who have never programmed before
or who have little experience programming how to program in PHP. Along the
way, you will pick up important concepts such as object-oriented programming
and the creation of database-driven Web sites. If you are a Web designer and
you want to increase your skills and knowledge of Web programming, this book
is an excellent place to start.

This book will lead you through explanations of all the concepts involved in pro-
gramming Web applications in PHP. You will learn to write your own Web pro-
grams, and, because a constant emphasis is placed on important coding
practices, your code will be high quality. To an employer, high-quality code is an
important skill that all programmers should have. Understanding coding style
and other common practices will also make you more productive, meaning you’ll
spend less time correcting errors and more time getting work done.

Finally, by reading this book, you will catch hints related to Web programming
that will bring you much closer to being a knowledgeable PHP programmer,
rather than just a beginner. Being self-taught, I’ve spent many, many hours in
discussion groups, chat rooms, and mailing lists—not to mention browsing PHP-
related Web sites, articles, and the PHP Manual—to learn PHP and the tricks of
the PHP community. The hints and tricks I have learned have been interspersed
as appropriate throughout this book. Needless to say, the tips you will find in this
book would take months to learn about on your own—especially because a lot of
the time you don’t even know specifically what you’re looking for.

Chapter by Chapter
Part I of this book, “Getting Started with Programming in PHP,” introduces you to
the beginning concepts of PHP programming. In Chapter 1, “Welcome to PHP,”
you’ll create your first PHP program by following simple step-by-step instructions.
If your program doesn’t work right away, don’t worry—a troubleshooting proce-
dure is included to help you pinpoint and eradicate the problem.

Chapters 2 through 5 continue teaching you the basics. You’ll learn about vari-
ables and constants, program input and output, performing arithmetic, and
doing basic string manipulation (separating “Butzon, Toby” into “Toby” and
“Butzon” for example).

Part II, “Control Structures,” introduces you to the beginnings of programming
logic. Chapter 6, “The if, elseif, and else Statements,” will teach you about
conditions and conditional statements such as if, else, and elseif. When you
get to Chapter 7, “The switch Statement,” you’ll learn about another type of
control structure called the switch statement. Chapters 8, “Using while and do-
while,” and 9, “Using for and foreach,” will introduce you to the while and for
looping statements (respectively) and their relatives, do-while and foreach.

Part III, “Organization and Optimization of Your Program,” will teach you the
organizational techniques that will make coding and maintenance of your pro-
grams more understandable and efficient. Chapter 10, “Functions,” teaches you
about writing programs as sets of functions, making your code cleaner and more
maintainable. Then you’ll be introduced to object-oriented programming in
Chapter 11, “Classes and Objects,” as classes and objects are introduced.
Finally, Chapter 12, “Using include Files,” will wrap up the organization-
focused part of the book by teaching you how to divide your programs into mul-
tiple, logical files. You’ll also learn how to create function and class libraries,
which will be useful whenever you create code that can be reused.

The final part of this book, Part IV, “Advanced PHP Features,” will teach you
about generally useful features of PHP that aren’t typically built-in features of
other languages. In PHP, building database-driven Web sites is easy with inte-
grated MySQL support (Chapter 13, “Creating Dynamic Content with PHP and
a MySQL Database,”). A discussion of how to password-protect areas of your
Web site with PHP is covered in Chapter 14, “Using PHP for Password
Protection,” and Chapter 15, “Allowing Visitors to Upload Files,” teaches you
how to create a program to let users upload certain files to your server (within
the restrictions you set, of course). Finally, Chapter 16, “Cookies,” will teach you
about cookies, as well as dispel some common myths about them.

The final chapter of this book, “Putting It All Together,” is specially designed to
help tie the concepts you have learned together into one final program. The pro-
gram is a basic guestbook implementation that teaches you how to approach the
creation of a Web program. Besides the programming concepts and style you
have been taught in the rest of the chapters, this chapter also approaches con-
cepts such as the file system organization of a PHP program and adopting a
uniform program layout with header and footer include files.

What You’ll Need
Before you begin reading Chapter 1, you will need to have access to a PHP-
enabled Web server. If you don’t, don’t fret—you can set up one on your own
workstation. Although it’s not a good idea to host a Web site on your computer
because your personal workstation won’t be up as reliably as a dedicated server,
you can still use a server on your own machine to run your programs and verify
that they work.

2 Introduction

This is what you will need to write PHP programs:

• A Web server. It doesn’t really matter what type of Web server you use. If
you already have access to a PHP-enabled, dedicated Web server, then you
already have this requirement taken care of.

If you don’t have access to a dedicated Web server, you still have other
options. Windows users are advised to get PHPTriad at
www.phpgeek.com/phptriad. Users of Unix-based systems should install
Apache if it’s not already installed. Apache is available at www.apache.org.

• PHP. The PHP interpreter is necessary so you can run your PHP pro-
grams. Users of PHPTriad for Windows can skip this step; PHPTriad
installs a Web server, PHP, and even MySQL all in one step.

For those who don’t already have PHP installed, go to www.php.net/manual
and read the appropriate instructions for your operating system.

• A good text editor. Many people prefer the basic text editors that come with
their operating system, such as vi or Notepad. However, GUI-based editors
seem to be easier for most people to work with. Many editors for Windows ful-
fill the needs of a PHP programmer. Among these are Edit Plus (http://www.
editplus.com), HomeSite (http://www.allaire.com/Products/HomeSite), and
HTML-Kit (http://www.chami.com/html-kit). Other editors are available, but
generally speaking, you should avoid WYSIWYG (what you see is what you
get) editors. Chapter 1 will show you that many WYSIWYG editors tend to
mangle your code.

After you have a Web server with PHP installed and a good text editor on your
workstation, you’re ready to go.

What’s Next?
The first chapter will take you into the world of PHP. You’ll see how and where
you begin to write your code, and before you have finished reading, you will
have an opportunity to write a working PHP program. You will then use that
program to test and make sure that your Web server and PHP are working
properly. If they aren’t, don’t worry—a troubleshooter can help you fix the prob-
lem.

Get ready to start programming!

3Introduction

Part I

Getting Started with Programming in PHP

Welcome to PHP

Variables and Constants

Program Input and Output

Arithmetic

String Manipulation

1

Welcome to PHP
Web programming is so common today that many of us don’t even think
about it. You visit Web sites with feedback forms, online catalogs, and many
other features that simply look cool, if nothing else. You might have even
created the design for a page that incorporates some of these features, but
now you want to do some programming of your own.

As you are introduced to programming and PHP in this chapter, you soon
find that programming need not be intimidating or particularly difficult; it’s
all a matter of going through certain processes.

This chapter teaches you the following:

• PHP’s advantages over other languages

• Common uses for PHP

• The main parts of a PHP program

• How to express a task in a programming language

• Basic PHP syntax

• How to program with style

• How to run your first PHP program

Why PHP?
PHP is an excellent choice for Web programming. It has many advantages
over other languages, including other Web-oriented languages. To get a
very general understanding of how the common Web programming lan-
guages compare, let’s compare them.

ASP is Microsoft’s Web programming environment. (It’s not a language
itself because it allows the programmer to choose from a few actual lan-
guages, such as VBScript or JScript.) ASP is simple, but too simple for pro-
grams that use complex logic or algorithms.

T I P
An algorithm is a formula-like method for accomplishing a particular task. Here’s a sim-
ple example: Some bank accounts use the last four digits of a person’s Social Security
number as his PIN number. An algorithm could be formed to create this PIN number
based on the already-known Social Security number.

Besides ASP’s over-simplicity, many companies find it hard to budget for
the expense of Microsoft licenses. Without even considering hardware costs,
a Microsoft server could cost thousands of dollars in licensing, whereas a
comparable Unix-based operating system running PHP could be free.

T I P
Many people new to open source software find the idea of free software hard to
believe. However, once you’ve spent some time looking into it, you realize how much
open source software makes sense. In addition to open source software being free, it
is generally updated and patched more frequently, and it’s usually easy to find help
from other users and even from the developers of the software.

You may be interested in visiting http://www.OpenSource.org for more information.

Another language well known for its use on the Web is Sun Microsystems’
Java. Java is praised for being platform-independent (a program written
in Java can be run on virtually any computer without having to make any
modifications to the program).

N O T E
The term platform means the same thing as operating system. Some examples include
Windows, Solaris, Linux, FreeBSD, and NetWare.

Although Java does have its advantages, it has serious downsides in devel-
opment time, development cost, and execution speed. Java development is
time-consuming because projects in Java must follow strict rules (imposed
by Java) that require extensive planning. In addition to high development

8 Chapter 1: Welcome to PHP

time, the cost is also high because Java developers are expensive to hire.
The cost is therefore potentially much higher than it would be if the project
were done in another language. Even after the project is built, a program
written in Java takes longer to run than one written in one of the other
languages to which we’re comparing.

Overall, when compared to Java, PHP comes out with flying colors. It is not
unheard of for a Java project to take two or three times the time to develop
compared to a similar project in PHP. On top of that, the final program
runs on a wide array of platforms (like Java), except the PHP program runs
faster.

Another language commonly used for writing Web programs is Perl (practi-
cal extraction and report language). Perl, like PHP, is an open-source pro-
ject developed to run on many platforms. In fact, Perl has been around
longer than PHP. Before PHP, Perl was generally accepted as the best Web
programming language. However, during the past few years, PHP has
earned a reputation for being better than Perl for Web programming
because PHP provides a vast number of features as part of PHP itself,
whereas you would have to download separate modules to get the same
functionality in Perl. This leads to problems when programs are transferred
from one system to another because the modules have to be downloaded
from Perl’s exhaustive (and confusing) module archive known as CPAN.

The last language to compare PHP to is C. C has been around for a long
time; it has been used in a variety of computers, from mainframes to con-
sumer PCs. The problems creating a Web program in C are obvious if you
know C. To develop a Web program in C, you have to develop all of the
basic functionality of Web programming (such as collecting the data from
HTML forms) before you can even begin to think about the actual task at
hand. Since PHP provides for all the common (and many uncommon) Web
programming tasks, writing such a program in PHP allows the programmer
to get straight to the point.

You could write volumes on PHP’s advantages over other programming lan-
guages when it comes to Web programming. There are many, many articles
on the Internet comparing PHP to Java, Perl, ASP, and others. Once you’ve
earned some experience programming in PHP, you might find yourself try-
ing to convince your client or employer to allow you to use it instead of
another language. If that problem arises, you should find plenty of helpful
information by doing a Web search.

PHP has an unlimited number of uses. The original version was used solely
to track who was viewing the creator’s résumé. Over time, however, that
simple tracking program evolved into a language of its own.

9Why PHP?

T I P
If you’re interested in knowing how PHP came to be what it is today, I recommend
visiting http://php.net/manual/en/intro-history.php, where you will find a brief
history of the language.

PHP’s primary use certainly isn’t to track résumés anymore; it has grown
to be able to do that and just about anything else. To giveyou a better idea
of what PHP can do, here are some of its common uses:

• Feedback forms

• Shopping carts and other types of e-commerce systems

• User registration, access control, and management for online subscrip-
tion services

• Guest books

• Discussion and message boards

If You’re New to Programming…
If you’ve never written a computer program before, the whole idea may be
quite intimidating. Most programmers will probably tell you (if they aren’t
embarrassed to admit it) that they were intimidated when they began.
However, the programming process isn’t all that difficult and, contrary to
popular belief, you don’t have to have an extremely high IQ to be good at it.

When you write a program, your main goal is to translate your idea into a
language that the computer can understand. For example, if you were
teaching a person how to cook hamburgers, you would first describe the
process of forming the ground beef into patties. Then, you would tell the
person how to put the burgers on the grill, how long to leave them there,
and finally how to remove them.

Of course, just because you can describe the process of making hamburgers
doesn’t mean PHP is going to be cooking anything for you anytime soon.
The point is, if you can describe a process like I just described making ham-
burgers, you can write a program.

Writing a PHP program is simply the process of describing to PHP how to
do something. By the time you’ve finished reading this book, you will
understand all the concepts behind writing a PHP program. Those concepts
are like the words and sentences used to describe hamburgers. The more
you read this book, the more “words” you will understand, and the better
you will be able to “describe” your task to PHP. Thus, you will learn to

10 Chapter 1: Welcome to PHP

write PHP programs to suit whatever need or idea you have, and soon it
won’t be any more intimidating than telling someone how to cook
hamburgers.

Some programming problems might be very complex when examined as a
whole. For example, creating a shopping cart is definitely not a simple task.
However, a shopping cart can be broken into a few smaller tasks. Those
tasks might include adding and removing items, which are both tasks that
can break into even smaller tasks. You will find that any task, no matter
how complex, can be broken into smaller ones until each task is simple
enough that breaking it down further is unnecessary. This process is
explained in more detail when you begin creating programs with more com-
plexity (especially in Chapter 17, “Putting It All Together,” when we walk
through the whole process of creating a complex program step-by-step).

Writing a Basic PHP Program
Before we get into an actual program, let’s take a look at the steps we’ll
take to create one. The steps aren’t complicated; in fact, they’re basically
the same as the steps you use when creating an HTML page and publishing
it to your server.

Unlike creating an HTML page, creating a PHP program requires that you
actually work with the source code of the file as opposed to a “what you see
is what you get” (WYSIWYG) approach. If you’re used to using a
WYSIWYG program (such as Microsoft FrontPage, Macromedia Dream-
Weaver, or Microsoft Word), it may take you some time to get used to look-
ing at the source code.

The good news is there’s no reason that you can’t continue to use a WYSI-
WYG editor to create an HTML design for your program. However, you may
be disappointed to find that many WYSIWYG editors mangle or even delete
vital PHP code from your files. For this reason, it is important to find out
how your particular editor handles PHP code. If you want to test your
WYSIWYG to see how it handles PHP code, create a new file, naming it
with a .php extension. Then, switch to your editor’s source view or open the
file in a separate program, such as Notepad and enter the program shown
in the first example later in the chapter, making sure not to make any
mistakes.

When you’re finished, save the file and switch back to the WYSIWYG edi-
tor. If you see your PHP code, work around it and type a few lines of text.
If you want, add some common elements that you include in your Web
pages, such as tables and images. Save the file again and close all the
open editors.

11Writing a Basic PHP Program

Now, open the file in Notepad and look at the PHP code. Look for any
changes, including changes in the way the code is formatted, special char-
acters that have been converted into codes (such as < to <), and code
that has been completely removed.

You will probably find that the PHP code has been changed in some way.
Because PHP is sensitive to some of the changes a WYSIWYG editor might
make, it’s almost impossible to use a WYSIWYG editor once you’ve started
adding PHP code. The PHP community won’t tell you that using a WYSI-
WYG editor is a sign of weakness; doing so can speed things up a lot
sometimes.

For now, try using a plain-text editor when you’re reading and experiment-
ing with the examples in this book. When you’re comfortable with that, feel
free to try it with whatever editor you want. By that time, you’ll be able to
recognize code that the editor has mangled, and you’ll have an easier time
finding what works best for you.

Regardless of how your current editor handles PHP code, if you are using a
WYSIWYG editor, I suggest that you use an editor such as Notepad or one
of the many free syntax-highlighting editors out there. Using one of these
programs will ensure that your code stays just as you typed it (WYSIWYG
editors tend to reformat things as they see fit, which isn’t desirable when
coding PHP). Even if your editor passed the test, if it’s not a strictly text-
based (not WYSIWYG) editor, you might find yourself running into prob-
lems later.

Here is the process you might use in creating and viewing an HTML file:

1. Create your HTML file (add text, tables, images, or sounds).

2. Save your HTML file as filename.html.

3. Use an FTP program to upload your file to the Web server.

4. Point your browser to the address of the file on your Web server (for
example, http://www.example.com/filename.html).

The process you would use to create a PHP program is much the same:

1. Create your HTML file (containing text, tables, images, or sounds) and
insert PHP code where desired.

2. Save your PHP file as filename.php.

3. Use an FTP program to upload your file to the Web server.

4. Point your browser to the address of the file on your Web server (such
as http://www.example.com/filename.php).

12 Chapter 1: Welcome to PHP

The process of creating a PHP program isn’t much different from the
process you follow to create a regular HTML page.

C A U T I O N
Many FTP servers (primarily those on Unix-based systems) require you to use a certain
FTP “mode”: either binary (for images, sounds, and other non-ASCII files) or ASCII (for
plain-text files, such as HTML, PHP, and TXT).

Although the FTP transfer appears to be successful, a program transferred in binary
mode may not run at all. If this happens, you will receive a “500 Internal Error”
response from the server.

Now that you’ve seen the overall process, let’s take a look at our first PHP
program. After reading the following example, you’ll learn what separates it
from a normal HTML file, how to upload it to your Web server, and what
the page should look like viewed in your browser.
<!-- File: ch01ex01.php -->
<html>
<head><title>PHP By Example :: Chapter 1 :: Example 1</title></head>
<body bgcolor=”white” text=”black”>
<h4>PHP By Example :: Chapter 1 :: Example 1</h4>

<?php
/* Display a text message */

echo “Hello, world! This is my first PHP program.”;

?>

</body>
</html>

This file looks a lot like a regular HTML file. Notice that the file has HTML
tags typical of those you would find in any HTML file. In fact, if you disre-
gard everything between the <?php and ?> tags, you might as well rename
this file with an .html extension.

However, this file does contain PHP code, so it must be named with a .php
extension. The PHP code lies between the PHP tags (<?php and ?>) as
shown in Figure 1.1. The command between the PHP tags is echo (PHP’s
word for “add the following text to the page”) followed by the text to display.
The output, which will be shown soon, looks just as if the text after echo
had been in an HTML file itself and no PHP code ever existed.

13Writing a Basic PHP Program

E X A M P L E

Figure 1.1: This diagram shows the different parts of a basic PHP
program.

Before we look at the output, let’s upload this file to a Web server and run
it. Follow the process outlined previously to write the program, save it as a
PHP file (with a .php extension), and upload it to your Web server.

C A U T I O N
Don’t forget you shouldn’t be typing the previous code into a WYSIWYG program such
as Microsoft Word or FrontPage. If you do, the code will probably show up in your Web
browser just as it appeared previously. Instead, use a plain-text editor such as Notepad.

Once your program is uploaded to your Web server, type its address into
your browser. You should get a page back that looks very similar to the
screenshot in Figure 1.2.

14 Chapter 1: Welcome to PHP

<!--File: ch01ex01.php -->
<html>
<head><title>PHP By Example :: Chapter 1 :: Example 1/title></head>
<body bgcolor="white" text="black">
<h4>PHP By Example :: Chapter 1 :: Example 1</h4>

<?php
/* Display a text message */

echo "Hello, world! This is my first PHP program.";

?>

</body>
</html>

HTML

PHP

START TAG

END TAG

CODE /
COMMANDS

HTML

Figure 1.2: This is what you should see in your browser when you go to the
address of your new program.

Programming Syntax
When you accessed the program you just uploaded with your browser, the
PHP program went through a process before it was returned to the browser.
The process performed the PHP commands within the file; in this case, that
was a single echo statement. Figure 1.3 shows what happens when a
request is made for a PHP file.

15Writing a Basic PHP Program

Web Server

Web Browser

Returns file Requests file

Returns file with results
from PHP code included

Passes along information
about the request

PHP
Processes file

Figure 1.3: Unlike HTML files, PHP files are routed through a special
process that performs the PHP commands within the file before it is
returned.

The PHP interpreter (or parser) is the program that performs the process-
ing mentioned previously. It reads the PHP program file and executes the
commands it understands. (If PHP happens to find a command it doesn’t
understand, it stops parsing the file and sends an error message back to
the browser.)

N O T E
Just as “interpreter” and “parser” are interchangeable terms to refer to the PHP inter-
preter, “interprets” and “parses” may be used interchangeably to refer to the process
PHP performs when it processes a PHP file.

T I P
If you are an administrator for the Web server you’re using, you may be interested in
knowing that the executable file you installed (a Windows EXE or DLL, or an Apache
module or CGI binary on Unix-based systems) is the PHP interpreter.

Every time a request for a particular PHP file is made to a Web server, the
PHP interpreter must process the file prior to returning anything to the
browser. Because PHP must interpret a PHP program every time that pro-
gram runs, it is known as a scripting language.

This is quite different from a compiled language, such as C or C++, which is
only interpreted from a human-readable form once; a C program is simply
translated into machine code (code that is processed directly by the com-
puter’s processor).

T I P
In a very strict sense, parsing is the process of splitting commands into smaller seg-
ments, whereas interpreting is the process of actually comparing those segments to
known commands in order to actually perform the correct command.

Since PHP has to interpret the commands included within a program, the
commands must be given in such a way that PHP understands them. For
example, if someone walked up to you and asked you in German for the
time, you probably wouldn’t know what he was talking about (unless you
know German or the person pointed to his wrist). Likewise, if I walked up
to you and said, “Is time it what?” you probably wouldn’t know what I was
talking about, even though I used English words.

PHP has similar limitations. A statement (the construction of commands
and certain characters to make a sentence that PHP will understand) must
be given using the correct commands. For example, the command show text
has no meaning in PHP; you must instead use a command PHP recognizes,
such as echo. Also, just as you must put your words in the correct order to
talk to another person in English, you must format the statements you give
PHP so that they follow the format PHP expects.

Syntax, then, is the process of putting together statements that PHP will be
able to interpret and carry out. Examples of this are PHP’s opening and
closing tags. PHP only parses code that is between PHP tags. Anything else
in the file is returned as part of the HTML page, just as seen earlier in the
first example.

Here’s another example. The following statement does not work, even
though the command is part of PHP’s language:
echo “This won’t work.”

The statement won’t work because it doesn’t follow a basic syntax rule that
requires all statements to be terminated with a semicolon. Some special
statements must have the semicolon left out, but not many. (The ones that
do will be pointed out as we come to them.) For now, just remember that

16 Chapter 1: Welcome to PHP

E X A M P L E

statements should end with a semicolon. The following statement is a cor-
rected version of the preceding line of code:
echo “This works!”;

You may notice that leaving the semicolon off a single statement doesn’t
cause PHP to display an error message. This is a feature of PHP to make it
easier to insert a single echo statement. To see the error when you try to
run the first echo statement, copy the statement to two separate lines so it
looks like this:
echo “This won’t work.”
echo “This won’t work.”

The code will not run and PHP will return an error because there isn’t a
semicolon separating the statements.

Good Style: Using Whitespace and Comments
You may be curious why PHP requires a semicolon at the end of every
statement. The answer is that semicolons allow other aspects of PHP code
to be more flexible. By signaling the end of a command with a semicolon
instead of a new line, new lines can be added or taken out of the code with-
out affecting the code itself. In fact, new lines are only a portion of what
can be changed without changing what the interpreter sees when it
processes the file.

Whitespace—all spaces, tabs, and line breaks—is left to be used at the dis-
cretion and preference of the programmer. This may seem trivial at first,
but think about the difference the indentation in an outline makes; the
indentation divides topics into subtopics and even subtopics under the
subtopics into separate sections. Take a look at the following example,
which contains no whitespace.
<?php
/* ch01ex02.php – an example of code with no whitespace */
echo”Hithere.”;echo”Thisprogramhasnowhitespace”;echo”It’salmostimpossibletoread.”;
?>

N O T E
Although the line with all of the echo statements contains no whitespace, the program
file as a whole does. The line breaks have been left to separate the PHP tags, the com-
ment, and all the echo statements so at least the purpose of the program is easily
decipherable.

You can see how hard it would be to read line after line of code like
that. This code should be split into separate lines, with one for each
echo statement.

17Writing a Basic PHP Program

E X A M P L E

By placing curiouscode on the same line, a new line, or a few blank lines
apart, a programmer can group certain parts of his code together and sepa-
rate other parts. This helps him keep up with how he divided a certain task
into smaller, simpler tasks.

Spaces or tabs can be used in PHP to create the same kind of clarity and
organization found in an outline as mentioned before. The following exam-
ple demonstrates this principle:
<?php
/* ch01ex03.php – program to show usefulness of indenting */

if ($gotPHP) {
echo “Got PHP?”;

if ($PHPMustache) {
echo “ :)”;

}
}

?>

Even though you haven’t really learned anything about the statements this
program uses, you can easily see how everything follows a form similar to
that of an outline. Also, the separation of

echo “Got PHP?”;

and
if ($PHPMustache) {

by a blank line signifies that the statements serve two different purposes.

As you curiousread this book, keep whitespace in mind. Think about what
makes code easy to understand or hard to understand. Read the statements
in each example as it is presented and then go back and look at how it’s for-
matted. Good style in coding PHP is just as important as knowing the syn-
tax; if your code is formatted into logical sets of statements, no one will
have to break it down on his own as he reads it.

The other curiousvery useful element of style is commenting. Comments are
descriptions, notes, and other information enclosed in a special character
sequence that tells the parser to ignore whatever is within. Therefore, com-
ments are treated the same way as whitespace; they are completely ignored
by PHP.

Comments can be done either of two ways: single line or multiline. The one
you pick depends on what you want to comment out. The following example
is a file header using multiline comments that might be found in a PHP
program file:

18 Chapter 1: Welcome to PHP

E X A M P L E

E X A M P L E

<?php
/* +---+

| example_file.php – serves as a good example |
+---+
| REVISIONS: |
| 2001.02.19 Minor bug fixes |
| 2001.01.10 Original release |
+---+
| AUTHORS: |
| Toby Butzon |
+---+ */

echo “This is Example_Program 1.0”;

?>

As demonstrated in this example, to create a multiline comment, the pro-
grammer must enclose all of his comment text within /* and */.

T I P
Multiline comments can be used to comment out a block of code you don’t want PHP to
evaluate. Simply place a /* before the code and a */ after the code and PHP will
ignore it.

The other comments that are available are single-line comments. These
comments are used to comment out everything from the comment marker,
which is //, to the end of the line.

C A U T I O N
Although single-line comments may appear within a block of commented-out code, multi-
line comments are not allowed within multiline comments. Doing so would cause PHP
to stop ignoring the commented text immediately after the first */ instead of after the
second one, as the programmer intends.

You can find a few different examples of single line comments in the follow-
ing code:
<?php
// File: example_file.php

echo “This is an example file!”; // Show some text

/* Don’t plead insanity anymore

// Plead insanity
echo “This program did not consciously commit the crime, therefore it pleads
insanity.”;

19Writing a Basic PHP Program

*/

?>

The first comment found is a very short file header that tells the file’s
name. Following it there is a comment describing the action taken by the
first echo command. Comments such as this can help clarify things, but use
them with discretion. The comment has no good use in this case because it
doesn’t say anything we can’t pick up directly from the statement.
Generally, use a comment if you (or someone else who might read your
code) don’t immediately understand the code when you look at it.

Following that we have a multiline comment that is commenting out a
block of code that we wanted to stop from being processed by PHP. PHP
will therefore ignore the last echo statement. Notice that it’s perfectly legal
to have a single-line comment within multiline comments.

Take note of how comments are used and make use of them in your own
code. It’s much easier to read a comment and know what something does
rather than having to read the code and figure it out step-by-step. With
that in mind, use comments liberally to explain what your programs are
doing.

How Embedded Programming Works
Before now, I’ve only mentioned that PHP code must be enclosed in the
<?php and ?> PHP tags. Using tags to separate PHP code and HTML code
within the same file allows programming code to be mixed directly with
information that is going to be sent to the browser just as it is. This makes
PHP an embedded programming language because PHP code is embedded
directly in HTML code.

This concept is relatively new: Before languages like PHP, programs had no
real need to display data using a structured formatting language as com-
plex as HTML. Information displayed on the screen was usually just let-
ters, numbers, and spaces, without many colors, sizes, or other formatting
markups.

Since PHP was made for Web programming, it is intended to be used with
HTML, which significantly increases the amount of information that has to
be sent back to the browser. Not only does PHP have to send back the infor-
mation the user sees, but also the markup tags required to format the
information correctly.

To make the mixing of information and markup tags simpler, PHP code is
embedded directly in the HTML page where the information is desired. The

20 Chapter 1: Welcome to PHP

example at the beginning of this chapter demonstrates this concept quite
clearly; the program is mostly regular HTML code, but PHP is also used to
insert some information.

Embedded programming will make your job as a programmer much easier;
you can add programming where you need it and use regular HTML the
rest of the time. However, be sure to enclose your PHP code in PHP tags or
your code will not be parsed, but rather displayed on the HTML page.

The following program provides another example of embedded program-
ming:
<?php
/* File: hello_world.php – displays “Hello, World!” */
?>

<html>
<head><title>Hello, World!</title></head>
<body bgcolor=”white” text=”black”>

Hello,
<?php

// Send “World!” to the visitor’s browser
echo “World!”;

?>

</body>
</html>

When this file is accessed through a Web server, the PHP interpreter will
process the file line by line from the top to bottom. Thus, the information
before the opening PHP tag is sent to the browser, along with the result of
the echo statement. The Web browser receives an HTML file that looks like
this:
<html>
<head><title>Hello, World!</title></head>
<body bgcolor=”white” text=”black”>

Hello, World!

</body>
</html>

The browser then displays the file just as it would any other HTML file.

21Writing a Basic PHP Program

E X A M P L E

T I P
As mentioned before, a single echo statement doesn’t have to be terminated with a
semicolon to be understood by PHP. However, you may want to come back and add
more statements later. For this reason, it’s a good idea to consistently include the
semicolon, regardless of its necessity.

N O T E
As you’ve already learned, programming commands are often referred to as statements.
Similarly, you will learn later that related statements may come together to form a
clause. Such a clause would typically be used to account for the possibility of multiple
conditions. This concept will be discussed in more detail in Part 2 of this book.

Server-Side Versus Client-Side Scripting
As already explained, PHP code is processed at the Web server before any-
thing is returned to the browser. This is referred to as server-side process-
ing. Most Web programming works this way: PHP, ASP, Perl, C, and others.

However, a few languages are processed by the browser after it receives the
page. This is called client-side processing. The most common example of
this is JavaScript.

T I P
Despite the similarity in their names, Java and JavaScript are far from being the same.
Many Web developers are familiar with JavaScript, but this does not make them Java
programmers. It’s important to remember that these languages are not the same.

This can lead to an interesting problem with logic. The following example
demonstrates what I mean:
<script language=”JavaScript”>

if (testCondition())
{

<?php
echo “The condition was true!”;
?>

} else {
<?php
echo “The condition was not true.”;
?>

}

</script>

22 Chapter 1: Welcome to PHP

E X A M P L E

Many times the programmer of such a segment expects only one of the echo
statements to execute. However, both will execute, and the page will be left
with JavaScript that will generate errors (because the information in the
echo statements is not valid JavaScript code). If this is a little unclear, read
on; the following demonstration should clear things up for you.

N O T E
If you’re not familiar with JavaScript, don’t worry. The important concept behind this dis-
cussion is that PHP, being a server-side language, will be evaluated before the
JavaScript, which is a client-side language. This won’t be an issue if you don’t use a
client-side scripting language like JavaScript.

The resulting code from the previous snippet follows; notice that the
JavaScript has been left intact and untouched, but the PHP code has been
evaluated. PHP ignores the JavaScript code completely:
<script language=”JavaScript”>

if (testCondition())
{

The condition was true!
} else {

The condition was not true.
}

</script>

As you can see, this code will cause JavaScript errors when executed. Be
cautious when combining PHP and JavaScript code: It can be done, but it
must be done with attention to the fact that the PHP will always be evalu-
ated without regard for the JavaScript. To successfully combine the two, it’s
generally necessary to output JavaScript code with PHP.

The following example does just that:
<script language=”JavaScript”>

if (testCondition())
{

<?php
echo “document.write(‘The condition was true!’);”;
?>

} else {
<?php
echo “document.write(‘The condition was not true.’);”;
?>

}

</script>

23Server-Side Versus Client-Side Scripting

As you can see, doing this gets complicated very quickly, so it’s best to avoid
combining PHP and JavaScript. However, the resulting code below shows
you that this will work.
<script language=”JavaScript”>

if (testCondition())
{

document.write(‘The condition was true!’);
} else {

document.write(‘The condition was not true.’);
}

</script>

Running Your New Program
Following the same procedure outlined at the beginning of this chapter, try
running this program.

If your program doesn’t display “Hello, World!” in your browser, go through
the next section and try to eliminate reasons why the program might not
run.

T I P
A good directory structure should use general categories and narrow those categories
through subdirectories. Such a directory structure, if followed consistently, will keep you
from ever searching for a file. You will be able to find a file in less than thirty seconds
every time.

Mirroring your directory structure on your Web server is also a good sign of organiza-
tion. The idea is to create a “web root” folder on your hard drive and have it mirror the
root public directory on your Web server. Doing this enables you to transfer a copy of
your whole Web site between your server and hard drive without worrying about the files
being organized differently.

What If It Didn’t Work?
There are quite a few things that could be going wrong, but this section
provides a comprehensive list of reasons why your program may not be run-
ning. The following is a list of things that might have gone wrong; find the
one that describes the behavior of your problem and jump ahead to the
appropriate heading.

• A Save As dialog box appears.

• The page comes up, but the PHP code doesn’t appear to have executed.

24 Chapter 1: Welcome to PHP

• The PHP code appears directly in the browser.

• A “404 File Not Found” or a “CGI Error—The specified CGI applica-
tion misbehaved by not returning a complete set of HTTP headers”
message appears.

• A “Parse error” message appears.

A SAVE AS DIALOG BOX APPEARS

If this occurs, PHP is not installed correctly or the file is misnamed. It
occurs because the Web server doesn’t recognize the file as a PHP file, but
rather as an unknown file type. Since most unknown file types (Zip files,
for example) are to be downloaded and not processed, the server is sending
the file just as it is to be downloaded by the browser. This surely isn’t the
behavior we want.

To fix this, first check to make sure you named your file with a .php exten-
sion. If you didn’t, rename it with the Rename command in your FTP client.
If you chose to rename the copy on your local hard drive, make sure you
transfer the file to the server. Try accessing the page again and see if the
problem is solved; if not, repeat the process with .php3, .php4, and .phtml.

It is very possible that none of those will work. In that case, the problem is
most likely that your Web server doesn’t have PHP installed or PHP is con-
figured incorrectly. Get in touch with the server administrator to find out if
PHP is installed, and, if so, what the correct extension is. If the extension is
one that you’ve already tried, explain to the administrators that the exten-
sion isn’t working and see if they can help you find out why.

If you are your server administrator, you may need help with checking your
configuration; first check the PHP manual (http://www.PHP.net/manual/). If
you still have trouble, you may find help on the PHP installation mailing
list. Send an email to php-install@lists.php.net including information
about your server such as operating system, Web server, and the version of
PHP you’re trying to install. The list members will be happy to help.

THE PHP CODE DOESN’T APPEAR TO HAVE EXECUTED

If this is the case, you will see only the parts of the page that were outside
of the PHP tags. Specifically, you will see “Hello,” printed on the page, but
“World!” will be missing. If you use your browser’s View Source command,
you will notice that the PHP code appears in your HTML source just like it
did in your editor. This means that the file was returned just like a normal
HTML file (without any server-side processing).

25Running Your New Program

Check to make sure that your file is named with an appropriate extension
(such as .php); this is the most common reason the PHP code wouldn’t
execute.

If that fails, read through the section describing what to do if the Save As
dialog box appeared; the problem must be that .php isn’t associated with
PHP in the Web server’s configuration. That section will help you
straighten out your Web server’s configuration.

THE PHP CODE APPEARS DIRECTLY IN THE BROWSER

This is because you entered the code into a WYSIWYG editor such as
FrontPage or DreamWeaver. As you entered the code, the editor converted
key parts of it (such as the <?php tag) into text using HTML special charac-
ter codes (so, the result would be <?php). Although you see <?php in your
browser, if you look at the source code (using your browser’s View Source
command), you will notice that the version with the special character codes
is used.

To correct this, enter the code in a text-only editor, such as Notepad or
PHPEd. (See Appendix A for more information about editors.)

A “404 FILE NOT FOUND” OR “CGI ERROR” MESSAGE APPEARS

The first of these may seem obvious, but it’s not always so obvious if you
use Notepad to create your PHP file. One of the problems with using
Notepad is its preference for .txt extensions; even if you give your file a
.php extension, Notepad adds a .txt.

When the Web server tries to find the .php file you requested, the file isn’t
there because it’s really named .php.txt. In most cases, the server would
then return a “404 File Not Found” error, but if PHP is installed as a CGI
filter, you might get the latter message about incomplete HTTP headers
being returned.

In either case, rename the file to .php and try again.

A “PARSE ERROR” MESSAGE APPEARS

This message, mentioned briefly before, means PHP doesn’t know how to
interpret something inside of the PHP tags. This isn’t at all uncommon.

For the example shown previously, it probably means you mistyped some-
thing. Go back and check to make sure the files match exactly, line for line.
Check to ensure that the same quotes are used (double quotes are not the
same as two single quotes).

26 Chapter 1: Welcome to PHP

The parse error will be accompanied by a helpful message explaining
exactly why your program isn’t running. Check the line that PHP mentions
for possible errors, and then check the lines around it.

For more help with this process, see the section on debugging in
Appendix A.

What’s Next
You should now have a clear understanding of how PHP processes a PHP
file. You should also have a basic understanding of PHP’s syntax, including
how to use the PHP tags, how and when to use comments, and the impor-
tance of statement termination with semicolons.

In the next chapter, you will begin with discussions of variables, variable
types, and constants. With this new knowledge, you will be able to store
any information you want in the computer’s memory in order to manipulate
it and send the results back to the browser, which we will discuss in the
coming chapters.

27What’s Next

2

Variables and Constants
Now that you know the basics of creating a PHP program, it’s time to learn
about all the things a program can do. Essentially, all programs exchange
and manipulate data. For example, the information from a Web site’s feed-
back form might be collected and sent via e-mail to the Webmaster. The
data from the form would be stored in variables, which could then be used
to send the form data in an e-mail.

Thus, you have seen one basic use for variables and constants. Any data
that a program works with is stored in variables and constants. So, as we
explore the way your program will work with data in this chapter and the
chapters ahead, we’ll start with variables and constants, the storage units
for all data.

This chapter teaches you the following:

• How to declare variables and constants

• Naming techniques

• Types and type casting

• Scope

• References

Introduction to Variables and Constants
A program contains two basic things: commands and values. The commands
all have certain tasks they perform; the values are the information that the
tasks are performed with. Until now, all your programs have used literal
values; that is, any time a value has been specified, it has been hard coded
into the program.

For example, take a look at an echo statement found in Chapter 1,
“Welcome to PHP”:
echo “World!”;

This statement performs the echo command (which we know inserts text)
using the literal value given after it (“World!”).

N O T E
A literal is a value that you give explicitly within a program. For example, 5, 5.5, and
“World!” are all literals.

The point of a program isn’t to say “World!” all the time. That could be
accomplished with a regular HTML page. The whole point of writing a pro-
gram is to have a uniform task performed with whatever information is
specified. For example, you might want it to be able to say “Earth” instead
of “World.”

Let’s consider what you’re planning to do. You know the program should
output something, either way. Thus, you know you want the program to do
something like this:
echo something;

You just don’t know what something is. To specify what something is, use a
variable. A variable is a name that represents a value. The value of a vari-
able may change throughout a program, or it may stay the same once it’s
set.

For example, you might use a variable called $strText to insert whatever
text is being used for a particular execution of the program.

N O T E
The name $strText is preceded by a dollar sign because that’s how PHP recognizes it
as a variable.

Also, if you’re curious, the str prefix is an abbreviation for “string” (the type of data will
be character string); it’s purpose is a matter of style, only.

Don’t worry about it right now; we’ll discuss data types and style conventions related to
variables later in this chapter.

30 Chapter 2: Variables and Constants

The following program uses the variable $strText, instead of a literal:
<?php
/* ch02ex01.php – “Hello, (something)!” variable demonstration */

// Input (will be discussed in Chapter 3)
// $strText is set to the value specified in the URL
$strText = $HTTP_GET_VARS[‘strText’];

echo ““Hello, $strText!”;

?>

T I P
For now, don’t be too distracted by the line that says:

$strText = $HTTP_GET_VARS[‘strText’];

This statement takes whatever value is specified in the URL and stores it in $strText;
since it’s more related to program input, we won’t discuss it further until Chapter 3,
“Program Input and Output (I/O).”

Try running this program with the following URLs (replacing www.
example.com/path/ with the appropriate address for this program):

• http://www.example.com/path/ch02ex01.php?strText=World

• http://www.example.com/path/ch02ex01.php?strText=Earth

• http://www.example.com/path/ch02ex01.php?strText=
PHP%20Programmer

The output changes each time you run the program, depending on what
URL you specify. Although this program is very basic, it shows the definite
usefulness of variables.

T I P
The URLs shown aren’t as complex as they might seem; we’ll pick these apart and dis-
cuss them in Chapter 3. For now, notice that in each URL, a different value is specified
for strText, and when you enter each URL, the program displays the corresponding
value.

It is important to note that although variables and constants serve the
same purpose, they aren’t at all identical.

Whereas, the value of a variable might change any number of times
throughout the execution of a program, constants are values that will never
change (and in fact can’t change) during the execution of the program.

31Introduction to Variables and Constants

E X A M P L E

Constants are often used to set program options. For instance, a constant
named DEBUG might be used to determine how much information should be
given to the visitor if something goes wrong—either a simple error message
to tell the visitor there’s a problem or a detailed error message to help the
programmer resolve problems within the script.

Declaration and Assignment
Declaration is the term used to describe the creation of a variable or con-
stant. Assignment, which is covered in the following sections, is the process
of storing a value in a variable.

Declaring Variables
Declaring a variable is quite simple—all you have to do is assign something
to it. If, for example, you wish to assign the number five to a variable
named $intFive, you would use the following:
$intFive = 5;

The dollar sign in the variable name isn’t part of the variable name, per se.
Instead, it’s how PHP knows you’re referring to a variable named intFive.
Whenever you use a variable, you must precede it with a dollar sign.

Variable names in PHP must follow the following requirements:

• Any combination of letters, numbers, and underscores can be used.

• Names can be as short as one character and can be of any length.

• Names can begin only with a letter or an underscore; variable names
cannot begin with a number.

As you already know, just because PHP understands a variable following
the requirements seen previously doesn’t mean you and the people who
read your code will. To improve style, variables should be named according
to these style guidelines:

• Keep variable names meaningful. For example, don’t use $x to
store a visitor’s age; instead, use $intVisitor_age.

If you come back to make changes or fixes in your program a month
from when you first write it, you will be confused with variable names
like $x because $x doesn’t mean anything, whereas $intVisitor_age
says exactly what it contains.

• Variable names should be reasonably short. Typing a 25-charac-
ter variable name just a few times will become a bit tedious and frus-
trating. Try abbreviating; just be sure your abbreviation makes sense.

32 Chapter 2: Variables and Constants

For example, instead of $strWebPageFormFieldForEmailAddress, it
would obviously be just as clear if it were named $strVisitor_Email.

• Prefix a variable type abbreviation to the variable name.
Although variable types are explained a little later in the chapter, you
should recognize now that the variables suggested so far in this list
have been preceded by int or str.

All variables should be prefixed as follows: int for integers, flt or dbl
for floating-point numbers or doubles, str for strings, and arr for
arrays.

• Format your variable names in a hierarchical fashion, separat-
ing major divisions with underscores. For example, if you have a
visitor’s first name, last name, and e-mail address, it’s better to use
$strVisitor_first, $strVisitor_last, and $strVisitor_email instead
of $strFirstName, $strLastName, and $strEmail because you may find
later in the script that you want to refer to another e-mail address or
another person’s name. Although the underscore-divided names are a
little bit longer, it’s worth it to keep conflicts and confusion from aris-
ing later in the script. You don’t want to find yourself asking, “Whose
e-mail do I have in $strEmail?”

Following these conventions makes your programs easier to understand to
anyone that has to work with them, especially you.

Assigning Variables
There are two ways a variable can be assigned: in the script itself, or by the
PHP interpreter. For now, let’s focus on variables that are created (declared
and assigned) by the script itself. Variables assigned automatically by the
PHP interpreter (such as the $HTTP_GET_VARS variable found in the first
example of this chapter), will be discussed in Chapter 3.

Assignment, as you’ve already learned, occurs when a value is stored in a
variable. Whenever you assign a value to a variable, you must keep in mind
the order in which the assignment will be processed. For example, the fol-
lowing two statements are not equivalent:
$intFive = 5;
5 = $intFive;

As a rule of thumb, read assignments from right to left—the first would
read, “the number 5 should be assigned to the variable $intFive.” Reading
assignments in this fashion will become more and more important as your
programs and statements grow in complexity.

33Declaration and Assignment

Now, take a look at the second assignment—“the variable $intFive should
be assigned to the number 5.” The latter doesn’t make sense; it will defi-
nitely not work. In fact, if you were to use this statement in a program,
PHP would stop with a parse error.

Declaring a Constant
Declaring a constant is done using the define function (more will be dis-
cussed about functions in Chapter 11, “Classes and Objects”). The following
example demonstrates the declaration of a constant, EXAMPLE, with a value
of 5:
<?php
/* ch02ex02.php – demonstrates constant declaration */

define(‘EXAMPLE’, 5);

echo EXAMPLE;

?>

Notice that EXAMPLE is not preceded by a dollar sign in either statement.
The dollar sign is reserved for use only with variables; constants should
never be preceded by a dollar sign.

Just as variables have naming requirements that must be followed, so do
constants. The following guidelines will ensure that you always use a valid
name for a constant:

• A constant’s name should not be preceded by a dollar sign.

• The name should begin with a letter or underscore, but never a
number.

Constants cannot be redefined; that is, the value of EXAMPLE cannot be
changed after it has already been defined. After all, that’s why it’s defined
as a constant instead of a variable.

As with variables, constants should also be subject to naming conventions
for clarity and good style. Adhered to consistently, the following guidelines
improve the style of your code:

• Keep names short enough to be convenient. This rule is followed
less strictly than most; because constants are generally only used for
setting options, they aren’t usually mentioned as frequently as vari-
ables. Therefore, it’s generally acceptable to make a constant’s name
longer.

34 Chapter 2: Variables and Constants

E X A M P L E

• Constants should always be named using all uppercase. This
helps distinguish that you’re intentionally using the word without
quotes. Thus, as soon as you see a word in your program written in all
caps, you know you can probably look for a constant being defined
with that name.

• Separate words with underscores. Since constants don’t have the
ability to switch case (capitalizing the first letter of every word and
using lowercase for the rest), underscores are necessary to keep the
separate words in a name easily distinguishable.

• Name constants in a hierarchical fashion. As with variables, if
you have several constants that are related in some way (they all
describe the program, for instance), it would be good to prefix them
with PROGRAM. Thus, you’ll end up with PROGRAM_VERSION,
PROGRAM_AUTHOR, and PROGRAM_LAST_UPDATE, which are a lot less
ambiguous than VERSION, AUTHOR, and LAST_UPDATE, which could
describe a number of different things.

Also, by using a hierarchical form (as opposed to just separating
words, which would lead to names like PROGRAM_VERSION and
LAST_PROGRAM_UPDATE), the constants are grouped into a related set.
Because they all begin with PROGRAM_, we know they’re related. If,
however, we used a name such as LAST_PROGRAM_UPDATE, although it is
clear, we don’t know just from looking at it that it is related to the
other two constants.

N O T E
Although a variable type prefix is very useful in variables, it isn’t necessary in con-
stants. The purpose and type of a constant never change (and can’t change), so it’s
safe to assume that a variable is whatever type it is defined to be when it’s first
defined.

T I P
It’s a good idea to define all constants at the beginning of your program. If you get
halfway through and need to define another constant, scroll back up and put it at the
top of the file instead of just putting it wherever you currently are in the program. This
will make it much easier to find out what the value of the constant is; looking through
hundreds of lines of code in multiple files is quite a task if constants aren’t defined at
the top of the program.

Deciding Whether to Use a Variable or Constant
If you find wondering whether to use a variable or a constant, think about
how the information will be needed within the program.

35Declaration and Assignment

If the value might be modified sometime during the program’s execution,
always use a variable. Using a constant completely prevents the value
being modified.

Conversely, if you want to intentionally keep a value from being modified,
use a constant. This is a built-in feature of the language so you can protect
certain values from accidentally being changed, either by you or by another
programmer who isn’t as familiar with your program.

If you’re not sure whether to use a variable or a constant, use a variable. If
you use a variable where a constant might have been a better choice, it’s
not really a big problem; however, if you use a constant where a variable
would have been better, changing it to a variable throughout the script can
give you quite a headache.

Variable Types
Variable types, which are handled automatically by PHP, tell PHP what
kind of value it’s working with. To put things in perspective, think about
what you know about certain values. Cat, for example, is text. You can’t
multiply cat by cat because they’re not numbers, they’re text. However, 5
and 5 can be multiplied to make 25. They’re numbers, so it works.

PHP recognizes a value as belonging to a certain data type depending on
the characteristics of the value. The following sections describe certain
characteristics and behaviors for each data type.

Integers
An integer is any numeric value that does not have a decimal point, such as
the following:

• 5 (five)

• –5 (negative five)

• 0123 (preceded by a zero; octal representation of decimal number 83)

• 0x12 (preceded by 0x; hexadecimal representation of decimal number
18)

The last two values on the list are somewhat advanced topics and are rare.
They are presented for your information so you know what you’re dealing
with if you ever encounter this notation. It is important, however, for you to
know that preceding a number with a zero (which may seem insignificant)
is going to produce unexpected results. The previous example, for instance,
proves this point: 123 is much different than 83 (which is 0123 octal).

36 Chapter 2: Variables and Constants

N O T E
PHP does have limitations within the integer type. On 32-bit platforms, integers are lim-
ited to be 32-bit numbers (–2,147,483,648 to 2,147,483,648); on 64-bit platforms
integers are limited to be 64-bit numbers (–9,223,372,036,854,775,808 to
9,223,372,036,854,775,808). This generally doesn’t become a problem, but if you
attempt to handle extremely large values (negative or positive), you might find that
results aren’t as expected. This is a limitation of all programming languages and there
is information on the PHP Web site for using larger numbers, should you have the need.

Floating-Point Numbers
A floating-point number (commonly referred to simply as a float or double,
which, in PHP, are exactly the same thing) is a numeric value with a deci-
mal point.

The following are all floating-point values:

• 5.5

• .055e2 (scientific notation for .055 times 10 to the second power, which
is 5.5)

• 19.99

The second example is a float represented in scientific notation. The e, as is
often the case on graphing calculators, means “times 10 to the”. It is followed
by whatever power 10 should be raised to in order to put the decimal wher-
ever you want it. Thus, .055e2 is the same as .055 times 100, which is 5.5.

Floats also have limitations—floats are accurate enough for general-pur-
pose use, but if you need to store a number with an extremely long decimal
value, you will need to look into the arbitrary precision math functions
(BCMath or GMP) on the PHP Web site.

Also, because of these limitations, you must realize that a float isn’t always
exactly what you think it is. For example, 1/3 can only be represented as
.33333333… in the computer’s memory; the 3’s repeat forever, so it’s impos-
sible to be completely accurate. It’s best to decide on how much precision
you desire (for instance, if dealing with money, you’d choose 2 decimal
places) and keep in mind that your decimals are no more accurate than
that. Thus, you will reduce your chances for strange results when doing cal-
culations (which is discussed in Chapter 4, “Arithmetic”).

Arrays
Arrays are a little different than the numeric data types discussed so
far. Arrays can be thought of as lists of variables, all contained within one
variable. These variables can contain values of any data type, including

37Variable Types

being arrays themselves. For example, if five people are involved in a task,
their names could be stored in a five-element array, with one element for
each person. The people on the task, represented collectively by the array,
would each have their information stored in separate variables within the
array.

ARRAY INDEXING

The names could then be retrieved using array indexing—adding a sub-
script (or location within the array) to the end of an array’s name to
retrieve the value of that element. (An element is a single variable con-
tained within an array.)

The following example demonstrates the construction of an array contain-
ing five names, then printing each name on a separate line:
<?php
/* ch02ex03.php – demonstration of arrays */

$namesArray = Array(‘Joe’, ‘Bob’, ‘Sarah’, ‘Bill’, ‘Suzy’);

echo “$namesArray[0]
”;
echo “$namesArray[1]
”;
echo “$namesArray[2]
”;
echo “$namesArray[3]
”;
echo “$namesArray[4]
”;

?>

N O T E
The
 tags are given here to separate each element of the array on a separate line.

It’s important to notice that the first element of an array is given by the
subscript 0 and not 1. While this may seem awkward, it is fairly common in
programming languages because of the way arrays are handled in memory.

T I P
Why is the first index of an array always 0? In many languages, namely C (because
most of the other languages that do it are based off C), there’s a very good reason. An
array would be given an area of memory when it was created, and in that area of mem-
ory, the array’s elements are stored in order. The array name only contains the address
of the first element of the array. Thus, the index given would be the offset from the
address; that is, the index shows how many positions to move ahead in memory.

So, the first element of the array would be indexed at its address plus 0, the second
would be indexed at the address of the first plus 1, and so on. This behavior has made
its way into most of today’s languages.

38 Chapter 2: Variables and Constants

E X A M P L E

Arrays can be constructed as shown previously, or alternatively by assign-
ing a value to a new element, which can either be automatically added to
the end or inserted at an explicitly specified index within the array.

The following example demonstrates the use of empty brackets after an
array to add new elements and also explicitly defines a certain element in
an array:
$namesArray = Array(‘Joe’, ‘Bob’, ‘Sarah’, ‘Bill’, ‘Suzy’);
$namesArray[] = ‘Rachel’; // adds ‘Rachel’ as $namesArray[5]
$namesArray[3] = ‘John’; // replaces ‘Bill’ with ‘John’

Generally, the Array() function is used to create an array for which all val-
ues are hard-coded; the empty brackets construct is used when the array
will have an unknown number of variables added to it; and the specific sub-
script method is used whenever a specific value needs to be accessed or
changed.

Strings
Strings are values that contain text—anything from one character to a
whole string of characters (hence the name). For example, a sentence such
as “This is a string” is a string value.

There are two types of strings: those that are single-quoted and those that
are double-quoted.

Single-quoted strings are always interpreted just as they are. For example,
to use “My variable is called $myVariable” as a string, use the statement
found in the following example:
<?php
/* ch02ex04.php – shows use of single-quoted strings */

echo ‘My variable is called $myVariable’;

?>

The output from this example is
My variable is called $myVariable

As you may have noticed from the echo statements found earlier in this
chapter, double-quoted strings are interpreted so that variables are
expanded before they are actually stored as a value. Consider the following
example:
<?php
/* ch02ex05.php – shows use of double-quoted strings */

39Variable Types

E X A M P L E

E X A M P L E

// Do single-quote assignment and output result
$myVariable = ‘My variable is called $myVariable’;
echo $myVariable;

// Move to new line
echo ‘
’;

// Do double-quote assignment and output result
$myVariable = “My variable is called $myVariable”;echo $myVariable;

?>

The output from this example is
My variable is called $myVariable
My variable is called My variable is called $myVariable

The first assignment works just as the single-quoted assignment earlier: The
text is assigned just as you see it. Thus, the first line of output shows the
string just as it appears in the code.

However, the second assignment uses a double-quoted string, so the string
is interpreted before it is stored in the variable. Thus, $myVariable is
expanded using its current value (that of the first assignment), and then
the new value is stored in the variable, yielding the string found on the sec-
ond line of output.

CHARACTER ESCAPING

Some characters, such as the dollar sign, have special meaning within
strings. In addition, sometimes you need to include quotes within your
strings, which would typically signal the end of the string.

To avoid this, we use character escaping, which tells PHP to interpret a
character as a literal part of the string instead of a special character (one
that would signal a variable or the end of a string).

To escape a character, precede it with a backslash, like this:
\char

Here, char is any single character, such as a dollar sign or quote.

The following example uses character escaping to include $strSmall’s name
and its contents surrounded by quotes inside the string $strBig:
<?php
/* ch02ex06.php – demonstrates character escaping */
$strSmall = “John Smith”;

$strBig = “The name stored in \$strSmall is \”$strSmall\”.”;

40 Chapter 2: Variables and Constants

E X A M P L E

echo $strBig;

?>

Take time to study the assignment of $strBig, as it demonstrates both the
escaping of the dollar sign and of quote characters, both of which are inter-
preted literally as part of the string when encountered in their escaped
form.

Thus, the output of the above program is
The name stored in $strSmall is “John Smith”.

STRING INDEXING

Strings have an indexing feature that makes them much like an array of
letters. To find the letter at a given position, use the following syntax:
$string{index}

Here, $string should be any string variable and index should be a position
within that string for which you want the letter.

For example, take a look at the following program:
<?php
/* ch02ex07.php – demonstrates string indexing */

// Assign a name to $strName
$strName = “Walter Smith”;

// Output the fifth letter of the name
echo $strName{4};

?>

N O T E
The index for the fifth letter is actually 4 because indexing of strings, like that of arrays,
begins with 0.

Objects
Objects are a powerful method of program organization. They are essen-
tially what people are talking about when they refer to OOP or Object-
Oriented Programming. Objects (and their definitions, called classes) are
discussed in depth in Chapter 12, “Using Include Files (Local and Remote).”

41Variable Types

E X A M P L E

Scope
Scope refers to the lifetime of any particular variable. Variables are avail-
able only in certain areas of a program, depending on where they are
declared. The main scope, known as the global scope, contains most of the
variables you declare. So far, all of the variables we’ve declared have
belonged to the global scope. Later, when we get to functions, the global
scope will contain fewer of your variables.

Other parts of your program have their own scopes. The main reason
behind this is to prevent the accidental changing of a variable. For exam-
ple, in any given program, you might create a variable called $temp. A vari-
able like this might be used while you perform some kind of processing
algorithm.

However, what if, in the course of that processing somewhere, the value of
$temp was changed by code located in some other function or even in some
other file? For example, look at the following code:
// Code segment – NOT a working example
$temp = “This string is being processed.”;

for ($x = 1; $x <= strlen($temp); $x++)
{

$part = substr($temp, $x, 1);
doSomething($part);

}

Don’t worry about trying to figure out exactly what the code does. It doesn’t
really have much use, as it is; doSomething() undefined. Either way, there’s
only one place where it appears $temp is being assigned a value—at the
very beginning of the segment. And luckily, that’s the way it is. Without
variable scope, though, doSomething() could’ve had an assignment to $temp
in it and we would never know. Finding a bug in code without a variable
scope can take weeks of persistent debugging time by an experienced pro-
grammer or even a team of experienced programmers.

Variable scope is basically divided between the global scope and individual
functions; each (the global scope and each function) has a scope of its own,
and, thus, no variables will be overwritten by a function or segment of code
that isn’t supposed to do so.

• Functions

• Class member functions

42 Chapter 2: Variables and Constants

E X A M P L E

Type Casting
Type casting is specifying the type that a certain variable should be evalu-
ated as for a particular statement. This is useful, for example, if you want
to use just the integer portion of a floating-point number. Since integers
aren’t allowed to have a decimal point, the decimal point and everything
after it would be dropped in such a conversion.

N O T E
The first three are probably the most common. However, casts to array or object types
are also supported.

If a cast is made to an array, the result is an array whose first element is the value of
the variable before it was cast. If a cast is made to an object, an object is created with
a member variable called scalar that contains the value of the variable before it was
cast.

Casts of this sort are uncommon and doing so is discouraged.

Necessity of Type Casting
It’s not usually necessary to typecast a variable. Most of PHP’s functions
will do this for you; PHP is said to handle types automatically.

Thus, type casting comes in handy occasionally for things such as convert-
ing from integers to doubles. It isn’t something you’ll use a lot, but when
you do use it, it’s a lot quicker and easier than any other method would be.

Syntax
To typecast a variable, specify the type you wish the variable to become in
parentheses, followed by the variable, as follows:
(type) $variable

N O T E
Since PHP ignores whitespace, spaces can be included between the parentheses and
the type, as desired. Also, at your discretion, the type may be placed right next to the
variable, without a space in between the two. There are no real style guidelines or con-
cerns here, so what you do is up to you; basically, try to use what you find is most
readable.

Type casting can be done between any of the following types (types listed
with the same bullet point are the same):

• (int) or (integer)

• (real), (double), or (float)

43Type Casting

• (string)

• (array)

• (object)

The following example performs a type cast:
<?php
/* ch02ex05.php – demonstrates type casting */

// Assign a float value to $myFloat
$myFloat = 5.5;

// Display value stored in $myFloat, then the result of a type cast to an int
echo $myFloat;echo (integer) $myFloat;

?>

The first echo statement in this program shows that the decimal value 5.5
was really assigned to $myFloat. The second statement shows what the
value of $myFloat is after a type cast to an integer.

However, it is important to note that this type-casting operation did not
change the value of $myFloat as it is stored in the variable; if you want to
change the type of the variable itself, you can assign the type-cast variable
to itself, as follows:
<?php
/* ch02ex06.php – demonstrates assignment with a type casted variable */

// Assign a float value to $myFloat
$myFloat = 5.5;

// Change the type for $myFloat
$myFloat = (integer) $myFloat;

// Display value stored in $myFloat
echo $myFloat;

?>

This program’s output is simply:
5

N O T E
Assigning 5.5 to $myFloat again would cause PHP to automatically set the type of
$myFloat back to float. Types may change commonly, so don’t rely on a type being pre-
served for a variable after type casting.

44 Chapter 2: Variables and Constants

Variable References
In simple terms, a variable reference is an alias for a variable. That is, a
variable reference points to the same value as the variable that references
it. Variable references are commonly used to shorten long variable names
into names that are more practical. Figure 2.1 shows a diagram of how you
might imagine a referenced variable.

45Variable References

CODE

<?php

 $a = 5;

 $b =& $a;

 $b = 10;

?>

VARIABLES

$a $5

$a
$b

$5

$a
$b

$10

Figure 2.1: Variable references create aliases to the same value, not sepa-
rate variables.

To create a variable reference, do an assignment as usual, add an amper-
sand between the equals sign and the variable to be referenced, as shown
here:
$alias = & $variable;

where alias is the name of the reference to the variable and variable is
the name of the variable you are referencing.

The following example demonstrates the creation and use of a reference:
<?php
/* ch02ex06.php – demonstration of references */

// Create a variable with a long name
$arrNamesThatAreFairlyCommon = Array(‘Joe’, ‘Bob’, ‘Sarah’, ‘Bill’, ‘Suzy’);

// print_r() displays the contents of an array
print_r($arrNamesThatAreFairlyCommon);

// Separate the two lines of output
echo ‘
’;

// It’s not convenient to type that long variable name out, so let’s make a
➥reference to it that’s shorter
$arrNames =& $arrNamesThatAreFairlyCommon;

E X A M P L E

// Now let’s look at the contents of the array by reference
print_r($arrNames);

?>

The output of this segment is
Array ([0] => Joe [1] => Bob [2] => Sarah [3] => Bill [4] => Suzy)
Array ([0] => Joe [1] => Bob [2] => Sarah [3] => Bill [4] => Suzy)

Both arrays have the same contents. In fact, since the values are the same
(as opposed to a separate copy), changing the value of the reference will
change the value of the original variable, as shown by the following
program:
<?php
/* ch02ex07.php – changing a reference changes the original value */

// Create original variable & a reference to it
$arrNamesThatAreFairlyCommon = Array(‘Joe’, ‘Bob’, ‘Sarah’, ‘Bill’, ‘Suzy’);
$arrNames =& $arrNamesThatAreFairlyCommon;

// Print the value of each before being modified
echo ‘Values before being changed: ‘;
print_r($arrNamesThatAreFairlyCommon);
echo ‘
’;
print_r($arrNames);

// Change the value of the reference and insert a couple of line breaks
$arrNames[0] = ‘Tim’;
echo ‘

’;

// Print the value of each after being modified
echo ‘Values after being changed: ‘;
print_r($arrNamesThatAreFairlyCommon);
echo ‘
’;
print_r($arrNames);

?>

Here’s the output of this program:
Values before being changed: Array ([0] => Joe [1] => Bob [2] => Sarah [3] =>
➥Bill [4] => Suzy)
Array ([0] => Joe [1] => Bob [2] => Sarah [3] => Bill [4] => Suzy)
Values after being changed: Array ([0] => Tim [1] => Bob [2] => Sarah [3] =>
➥Bill [4] => Suzy)
Array ([0] => Tim [1] => Bob [2] => Sarah [3] => Bill [4] => Suzy)

46 Chapter 2: Variables and Constants

We can see that the variable and its reference are the same both times (and
always will be as long as one references the other). Thus, if the reference
changes, the original value changes, and vice versa.

Obviously, using references in this fashion makes coding quicker because
the long, original variable name, which in some cases may need to be
repeated quite a bit, can be shortened considerably, thus reducing coding
time and increasing readability.

What’s Next
Now that you understand the principles behind variables, such as how
they’re created and how they can be used, as well as some more in-depth
concepts, you’re ready to collect input from your visitor. The first example
in this chapter, in which the program’s output changed depending on what
string was given in the URL, showed you a brief preview of this.

In the next section, you’ll learn about gathering input; you’ll also learn
about sending input to a PHP program using the form or the URL itself, as
we did in the example at the beginning of this chapter. You’ll also learn
some more about performing output operations, and you’ll find that echo
definitely isn’t the only way to do so.

47What’s Next

3

Program Input and Output
Without input and output, your program might as well be a regular HTML
page. When you add input and output, however, your program’s potential
will be unlimited. You will be able to collect information from your visitors,
ask them questions, and give them a personalized experience that you
never could have provided before.

This chapter teaches you the following:

• The purpose of input and output

• Output as you’ve already seen it

• Advanced types of output

• Requesting input

• Input methods

Revisiting Output
Output is the text or information that is sent from your program to the user
(specifically, the visitor to your Web site). Think of output as anything the
user receives from a program.

For example, when you use a search engine, a program performs the search
and sends back HTML data that looks to your browser like any other
HTML page. The page isn’t like other HTML files—it isn’t saved anywhere
on the server. The program simply sent its output—a customized HTML
page—straight to your browser.

Figure 3.1 illustrates the interaction that might occur between your
browser and a server when performing such a search.

50 Chapter 3: Program Input and Output

PROGRAM

BROWSER

Request
(Input)

Response
(Output)

Figure 3.1: At its most basic level, the interaction between a visitor’s
browser and your program works like this: A request is sent to the program
and the program’s output is its response to the browser.

We’ve already briefly visited one way of sending output—the echo com-
mand. Output can be sent in several different ways. The method that you
use depends on the context within the program. The following considera-
tions may influence your decision on which method to use:

• The content may vary from one visitor to the next, or it may always
be the same.

• The length of the content you wish to send as output might be short
(one line or a single word), or it could be long (a paragraph, a table, or
even a whole file).

The following sections will help you understand when and how to use each
method of output.

The echo Command
You should decide which method to use to send output based on what
you’re sending. You must decide whether the content is static or dynamic.

On top of that, if the content is dynamic, you will have to consider how
much of it there is to send.

All output can be divided into two main categories: static and dynamic.
Static output is output that will not change from visitor to visitor; it is
hard-coded within the file and independent of any variables. Dynamic out-
put, on the other hand, is any output that contains variables, may change
from visitor to visitor, or depends upon variables in any way.

To help clarify the division, think of it this way: Static output will never
change unless someone changes the program itself; dynamic output will
change from user to user, from one time to the next, or depending on an
outside data source such as a database. Figure 3.2 illustrates this visually.

51Revisiting Output

Regular Page
(Static)

BrowserBrowserBrowser

Info Info

Info Get
Info

Get
Info

Get
Info

PHP Program
(Dynamic)

BrowserBrowserBrowser

Info
on “Cat”

Info on
“Dog”

Get Info
on “Dog” Get

Info on
“Ferret”

Info on
“Ferret”

Get Info
on “Cat”

Figure 3.2: The left side of this diagram shows the interaction between mul-
tiple visitors and a program that produces static output; the right side
shows multiple visitors interacting with a program that produces dynamic
output.

The echo command is an excellent choice for dynamic content. It allows you
to output numbers, text, and variables all in one string. While it can be
used for static content as well, your HTML code will become less readable if
you have to “wrap” it with PHP code (such as enclosing it in quotes).
Therefore, echo should only be used to insert small amounts of dynamic
content at a time.

The following example demonstrates a PHP program with nothing but sta-
tic output—it is returned just as a regular HTML file would be
<html>
<head><title>Example Page</title></head>
<body>This is an example!</body>
</html>

Since none of this code is enclosed in PHP tags, every line is sent as output.
Also, the output doesn’t rely in any way on any variables or data sources, so
it is classified as static.

E X A M P L E

N O T E
Recall from Chapter 1, “Welcome to PHP,” that anything outside of PHP tags is sent
straight to output without being processed in any way. Even if a variable is inserted into
this code, it would not be interpreted as a variable; rather, the text would be sent just
as it appeared.

The following program sends the same result (also static output), but this
time uses echo:
<?php
/* ch03ex01.php – demonstrates static output with echo */

echo “<html>\n”;
echo “<head><title>Example Page</title></head>\n”;
echo “<body>This is an example!</body>\n”;
echo “</html>\n”;

?>

N O T E
The \n is interpreted as a symbol (called an escape sequence); it means newline and is
sometimes also called the newline character. It is comparable to pressing Enter on your
keyboard. Without the newlines, all of the outputted HTML code for the previous exam-
ple would appear on a single line because echo alone doesn’t add anything to separate
the lines.

This example uses echo in a way that is understandable to PHP but more
complicated than most people prefer to read. Look at the first example and
then again at the second; in this case, there’s no good reason to add all of
the extra echo commands, quotes, and newline characters.

Also, according to our basic classification of echo, it should only be used for
short, dynamic output. Since this output is long and static, it would be bet-
ter to stick with the method used in the first example by placing the text
outside of the PHP tags.

Now let’s take a look at a more appropriate use of echo. The following
example is a mostly static HTML page with a small portion of dynamic con-
tent—therefore, a small section of PHP code and an echo statement are
inserted to output the contents of a variable ($aVariable):
<?php
/* ch03ex02.php – demonstrates dynamic output with echo */

$aVariable = “This is a variable!”;

?>

52 Chapter 3: Program Input and Output

E X A M P L E

<html>
<head><title>Example: Static vs. Dynamic Output</title></head>
<body>

Static output:

The following is static output. It will never change.

Here’s a variable: $aVariable

Dynamic output:

The following is dynamic output. It may change.

<?php

echo “Here’s a variable: $aVariable”;

?>

</body>
</html>

Here’s the output:
<html>
<head><title>Example: Static vs. Dynamic Output</title></head>
<body>

Static output:
This is static output. It will never change.

Here’s a variable: $aVariable

Dynamic output:

This is dynamic output. It may change.

Here’s a variable: This is a variable!

</body>
</html>

N O T E
This output is the HTML code you would see if you used your browser’s View Source
feature.

The only text the user would actually see in his browser would be

Static output:

This is static output. It will never change.

Here’s a variable: $aVariable

Dynamic output:

This is dynamic output. It may change.

Here’s a variable: This is a variable!

53Revisiting Output

From the previous example you should recall that PHP doesn’t interpret
text placed outside of the PHP tags at all. So, the text “$aVariable” was out-
put just as it appeared in the code when it was outside of the PHP tags.
However, when it was mentioned inside the tags in a double-quoted string
it was interpreted as a variable and the value of that variable was output
instead of the actual text “$aVariable.”

This is a more appropriate use of echo; notice that only a single line (the
one with the variable) was sent with echo. The rest of the output was sent
as static output. It will never change and therefore doesn’t need echo.

C A U T I O N
If the strings following echo in the previous example had been single quoted, they
would not have been interpreted, and the static output and dynamic output would look
the same.

Using Here-doc
So far you’ve seen output sent by placing it outside of the PHP tags and
output sent using one-line echo statements. Now lets take a look at ways to
send large amounts of dynamic output without the tediousness and confu-
sion of using multiple echo statements. This is important: In the future,
you might find yourself writing programs in which more than 75% of the
program is dynamic output.

There are two ways to send large amounts of dynamic output: Use a single
echo statement, thereby reducing the clutter of outputting multiple lines of
data with echo, or use static output and insert PHP tags to print variables
wherever necessary.

The first method is called here-doc (short for “here-document”). Here-doc
helps you, the programmer, create clearer multiline strings; it behaves just
as a double-quoted string would, but in a more readable fashion. It also
allows you to use only one echo statement, as opposed to the clutter of
repeated echo statements.

PHP understands and executes the following code, but because the string
might not end for many lines and because any double quotes within the
string must be escaped, the purpose and contents of the string can become
unclear:
<?php
/* ch03ex03.php – demonstrates multi-line double-quoted string */

// Multi-line double-quoted string
echo “<html>
<head><title>Example</title></head>

54 Chapter 3: Program Input and Output

<body>
This is an example!
</body>
</html>”;

?>

Here-doc allows the code to use more understandable multiline strings.
First, by using here-doc, you’re saying, “Heads up! I’m using a multiline
string here.” If you take a look at the double-quoted string shown previ-
ously, that’s not suggested in any way; in fact, if you saw the following line
alone, you would think that it was erroneous:
echo “<html>

Using double quotes to create multiline strings is hard to understand just
for this reason. There’s nothing to say that the string is multiline other
than the fact that it isn’t ended with a double quote. You or someone read-
ing your code might find themselves asking, “Did he mean to do that?”

There’s another reason that here-doc is better than double quotes. Whereas,
the double quote at the end of a multiline string doesn’t mean much to any-
body except “this is the end of a string,” here-doc allows you to specify an
end identifier that can be descriptive of the string’s purpose or contents.

Here’s an example of a here-doc statement:
<?php
/* ch03ex04.php – demonstrates use of here-doc */

// Set $user and $pass variables
$user = “John Doe”;
$pass = “doe123”;

// Outputting a multi-line here-doc string
echo <<<END_USER_INFO
Username: $user

Password: $pass
END_USER_INFO;

?>

The <<< syntax is used exclusively for here-doc. The first line might be
read: “echo everything until END_USER_INFO is reached.”

N O T E
END_USER_INFO just happens to be the end identifier I chose; while it is appropriate for
its descriptiveness of the string, it could have been any other string following the end
identifier naming convention, which follows.

55Revisiting Output

E X A M P L E

Like constants and variables, end identifiers for here-doc strings follow a
naming convention. Typically, they are uppercase strings with any multiple
words separated by underscores. The convention itself dictates that identi-
fiers can be any combination of letters (upper- and lowercase), numbers,
and underscores. However, an end identifier should not contain spaces or
begin with a number.

Notice that here-doc strings are interpreted just as double-quoted strings
are: Variables are replaced with their values and escape sequences (such as
\n) still work.

N O T E
Double quotes in here-doc strings can be escaped, but it isn’t necessary as it is in a
double-quoted string.

You must place the ending identifier for a here-doc string at the very begin-
ning of a new line. This makes here-doc strings more efficient for PHP to
interpret because PHP only has to look for the end identifier at each new
line as opposed to every position of every line. However, if you forget to
place the end identifier at the leftmost position on a line, you will find your-
self trying to figure out an error message for a line that seems to have
nothing wrong with it; in fact, it probably doesn’t. Make sure any here-doc
statements before it are terminated correctly. Remembering this can save
you much frustration.

Take a look at the following code, which directly compares the use of a
double-quoted string to a here-doc string:
<?php
/* ch03ex05.php – compares use of double-quoted string to here-doc */

// Multi-line double-quoted string
echo “<body bgcolor=\”#FFFFFF\” text=\”#000000\”>
This is an example!

Here’s a variable: $aVariable

</body>”;

// Multi-line here-doc string
echo <<<END_OF_OUTPUT
<body bgcolor=”#FFFFFF” text=”#000000”>
This is an example!

Here’s a variable: $aVariable

56 Chapter 3: Program Input and Output

E X A M P L E

</body>
END_OF_OUTPUT;

?>

These examples have the exact same output. However, you should notice
how difficult it could be to read a multiline string when the double-quotes
must be escaped. With too much escaping, your strings would, at times,
become almost impossible to comprehend. Since here-doc doesn’t require
quotes to be escaped, it can make your code easier to read.

Using Short Tags
The other method of outputting large amounts of dynamic data is to use
short tags. As discussed in Chapter 1, short tags are a shorthand way to
make regular PHP tags shorter.

The following example uses the short tag that you’ve already seen:
<? echo “This echo statement is in short tags!”; ?>

N O T E
Recall from Chapter 1 that using short tags shortens the first tag because you remove
the letters “php” from it; the closing tag remains the same. Also, the semicolon follow-
ing the command shown here can be omitted because it is the only command within
the PHP tags.

Using an echo statement for every dynamic element you wish to output
works, but it’s still a bit tedious to type “echo” every time. During the devel-
opment of PHP, some PHP programmers were migrating to PHP from ASP
(Microsoft’s scripting environment known as Active Server Pages, which is
somewhat similar to PHP). These programmers were used to ASP tags,
which come in two varieties: the regular ASP tags, which, like PHP tags,
separate ASP code from static output; and the ASP equals tag. The ASP
equals tag added an equals sign to the opening ASP tag (hence the name
“equals tag”) and eliminated the need for an explicit command to print
output.

PHP has a second short tag that was modeled after ASP’s equals tag. Like
ASP’s equals tag, it shortens the amount of code it takes to output a value
and eliminates the need for the echo statement by appending an equals
sign to PHP’s short tag.

N O T E
Remember that short tags must be enabled in PHP’s configuration file for them to work.
The short tag and the short equals tag are collectively classified as PHP’s “short tags.”
If you experience problems or short tags don’t work as expected, consult the configura-
tion section of the PHP manual.

57Revisiting Output

Take a look at the following excerpt, which puts PHP’s short equals tag to
use:
<?= “This is outputted automagically by the short equals tag!” ?>

Where the letters “php” would appear in a regular PHP tag, there is now
an equals sign.

C A U T I O N
The equals sign must be directly attached to the tag—spaces separating the equals
sign from the question mark are not allowed. Also, the short equals tag does not work
with the regular PHP tag: Combining <?= with <?php to get <?php= will result in a
generic parse error.

Now that you understand the basics of the short equals tag, let’s take a
look at its advantages. The short equals tag can significantly reduce the
complexity of your code and increase its readability. Take a look at the fol-
lowing code segment, which doesn’t use the short equals tag:
<?php
/* ch03ex06.php – demonstrates code using standard PHP tags with echo */

$title = “Example Title”;
$text = “Here’s some text!”;

?>
<html>
<head><title><?php echo $title; ?></title></head>
<body><?php echo $text; ?></body>
</html>

Now compare it to the simpler version of the same code:
<?php
/* ch03ex07.php – demonstrates short equals tag */

$title = “Example Title”;
$text = “Here’s some text!”;

?>
<html>
<head><title><?= $title ?></title></head>
<body><?= $text ?></body>
</html>

While both of these have the same output, the second one is quicker and
easier to type. In fact, many developers prefer it to the tediousness of the
first method.

58 Chapter 3: Program Input and Output

E X A M P L E

C A U T I O N
Of these two methods, I will use the latter throughout this book to keep my code con-
cise and as clear as possible. However, before adopting the short tags for use on any
major project, you should ensure that your host will allow you to use short tags so you
don’t run into problems if your host has short tags disabled for some reason.

Here-doc Versus the Short Equals Tag
To summarize the differences between using here-doc or the short equals
tag, here-doc can be handy in certain instances (like storing a long string to
a variable), but it isn’t usually a very good way to send output. For clarity,
it’s probably wiser to stick with the short equals tag or even regular PHP
tags with an echo statement, if necessary. However, if you absolutely are
stuck on using multiline strings to send output, here-doc is a better way to
do it than double-quoted strings, stylistically.

So you can compare the two for yourself side-by-side, the following account
information program has been provided using each method. The output is
the same for both examples; a program like this would typically be used on
an e-commerce or members-only site to tell the user important information
about his account, such as his account number and the e-mail address he
registered with.

Here’s the here-doc version:
<?php
/* ch03ex08.php – displays account info using here-doc */

// Set up example account information
$user_name = “John Williams”;
$user_email = “johnw@example.com”;
$user_acctno = 1152;

// Display account info code
echo <<<END_HTML
Name: $user_name

E-Mail: $user_email

Account Number: $user_acctno

END_HTML;

?>

And here’s the short equals tag version of the same program:
<?php
/* ch03ex09.php – displays account info using equals tags */

59Revisiting Output

E X A M P L E

E X A M P L E

// Set up example account information
$user_name = “John Williams”;
$user_email = “johnw@example.com”;
$user_acctno = 1152;

// Display account info code
?>
Name: <?= $user_name ?>

E-Mail: <?= $user_email ?>

Account Number: <?= $user_acctno ?>

<?php

// This space can be omitted, but is included to show that
// more code could be included here if desired.

?>

Program Input
On the Web, input—any data your program needs to process or know in
order to perform its task—is gathered from an HTTP request. An HTTP
request occurs whenever a user types in an address, clicks a link, or clicks
a button on a Web page. The request contains information about the
request, such as the desired file, any cookies that have been sent to the
browser for that site, and any form fields that are being submitted to the
server.

The request can be very complicated, however. Since PHP was created with
Web programming in mind, it makes gathering this information less
complex.

You still have to know a few things about the HTTP request because PHP
divides the input it receives into the categories based on how they arrive in
the HTTP request. Input is divided into three main categories: get, post,
and cookie variables. You must know which category your variables are in
to be able to access them.

N O T E
There is a more direct shortcut for accessing variables discussed later in this chapter,
along with its advantages and disadvantages. However, make sure you understand this
material before you try to use the shortcut.

For now, don’t worry about the cookie variables category; it will be covered
in Chapter 17, “Putting It All Together.”

60 Chapter 3: Program Input and Output

Get and Post Form Methods
You may recognize the other two categories, get and post, from your previ-
ous HTML experience; they are attributes used in the method tag of a form.
Depending on which sort of form you use, you will need to use the corre-
sponding category in PHP.

Get forms are commonly used for search queries and small amounts of
information that may be exposed in the address bar of the visitor’s browser.
A get request is also made whenever a user clicks a link.

C A U T I O N
You should not use a get form when requesting a visitor’s password or other sensitive
information. Items from a get form will be in plain sight of anyone within sight of the
visitor’s monitor.

When information is sent to the server in a get request, PHP puts all of the
form fields and their values in the appropriate input array, $HTTP_GET_VARS.
So, to get the value of a field, use the value of $HTTP_GET_VARS with the field
name as the key.

Let’s take a look at an example. The following program generates a person-
alized greeting for a visitor:
<?php
/* ch03ex10.php – shows personalized greeting form */
?>
<html>
<head><title>Welcome!</title></head>
<body>

<form action=”ch03ex11.php”>

What’s your name? <input type=”text” name=”userName”>
<input type=”submit” value=”Continue”>

</form>

</body>
</html>

Since the form’s method isn’t specified and get is the default method, get is
assumed. The PHP file can then find the value for the field in
$HTTP_GET_VARS[‘name’], as shown in the following file:
<?php
/* ch03ex11.php – shows personalized greeting */
?>

61Program Input

E X A M P L E

<html>
<head><title>Welcome!<title></head>
<body>

<h4>
Welcome, <?= $HTTP_get_VARS[‘name’] ?>!
</h4>

</body>
</html>

The username and password are shown to the user just as they were
entered on the form.

Now let’s take a look at using links to make get requests. When I refer to
links, I’m not just referring to the HTML <a> tag. I’m also referring to
addresses typed directly into a browser’s location bar or the address speci-
fied in an tag.

To investigate this further, let’s create a single-question survey. The ques-
tion, which could be inserted anywhere in an HTML file, should be set up
similar to this:
<?php
/* ch03ex12.php – survey form */
?>
<html>
<head><title>Survey</title></head>
<body>

Which animal do you like better?
Dogs or
Cats

</body>
</html>

Upon clicking one of the links, the visitor is taken to answerSurvey.php,
which looks like this:
<?php
/* ch03ex12.php - handles survey answers */
?>
<html>
<head><title>Your Answer</title></head>
<body>

You said you like <?= $HTTP_GET_VARS[‘answer’] ?> the best!

</body>

62 Chapter 3: Program Input and Output

E X A M P L E

As you can see, get requests are handled precisely the same as those made
with forms. You can also change the question file so that the answer is col-
lected using a form instead of a link. Try this for practice.

Now that you know about get forms, let’s take a look at the other form
method. Post forms are used for larger amounts of data (such as detailed
user information, e-mail messages, or file uploads) and data that should not
be visible in the browser’s address bar (such as passwords). An example of
data being clearly visible in the browser’s Address bar is given in Figure
3.3.

63Program Input

Figure 3.3: Sensitive information in a get request may be revealed in a
browser’s Address bar.

Let’s try a practice problem. Yahoo!, Hotmail, and Excite all offer private
services which require a username and password. In order to verify that a
user is really the user he claims to be, services such as these must check
that the login name and password are valid. For now, we’ll just focus on
collecting the data. The process of actually verifying the information is a
separate concept, which will be discussed at various times later in this
book, particularly in Chapter 6, “The if, elseif, and else Statements,” and
Chapter 13, “Creating Dynamic Content with PHP and a MySQL
Database,” when we discuss if statements and using databases,
respectively.

The program will have two files: one to request the user’s username and
password and a second to retrieve that data.

The first file will contain a form that has its method set to post. If we don’t
set the method attribute, the username and password will be left out in the
open in the user’s address bar, which is considered to be a security risk.
Anybody that happens to walk by the visitor’s computer can see the pass-
word in the browser’s Location or Address bar. Figure 3.3, shown previ-
ously, shows this vulnerability.

Here’s the first file:
<?php
/* ch03ex13.php – login form */
?>
<html>
<head><title>Authorization Required</title></head>
<body>

<form action=”ch03ex14.php” method=”post”>

Username: <input type=”text” name=”username”>

Password: <input type=”password” name=”password”>

<input type=”submit” value=”Login”>

</form>

</body>
</html>

That’s not too complicated; it’s just an HTML page with a form. Now we
need to set up the file to accept the data this form posts. For now, we’re
going to set up our program to show the visitor the username and password
he entered. To do so, we’ll use the contents of the $HTTP_POST_VARS array
because the information was posted with the post method.

Here’s the second file, which handles the data posted from the first file:
<?php
/* ch03ex14.php - shows the visitor what username and password he entered */
?>
<html>
<head><title>Enter your password</title></head>
<body>

Username: <?= $HTTP_POST_VARS[‘username’] ?>

Password: <?= $HTTP_POST_VARS[‘password’] ?>

</body>
</html>

This should look a lot like the $HTTP_GET_VARS example did; the only differ-
ence is that we’ve changed the method for the form, so we have to change
which array we use in PHP—the two (the value of the form’s method tag
and the name of the script’s input variable) must always correspond with
one another.

For practice, try modifying this program to use get as the method.

64 Chapter 3: Program Input and Output

E X A M P L E

T I P
You’ll need to modify both files in order to make it work with the get method.

Once you’ve modified it and it’s working, look at the address in your
browser’s Address or Location bar after you’ve posted the form. You should
notice a string (such as “?username=joe&password=joepass”) appended to
the end of the filename. This is another illustration of why get forms and
passwords aren’t a good mixture.

Using Forms
Although creating HTML forms isn’t technically a part of PHP, it is defi-
nitely a part of learning PHP. Since forms are just about the only way for
your program to collect information from the user, you must use the form
elements allowed by HTML to construct the most intuitive form possible.

T I P
The intuitiveness of a form is the overall effectiveness it has for the user. For example,
using a single-line text input where the user will probably be entering a large amount of
text makes it difficult for the user to read and edit what he’s typing. In that case, it
would be more effective to use a textarea.

The various form-input types will be discussed to help you create the most intuitive
forms, which in turn makes your visitors experience more pleasing.

Form inputs allow the user to enter text and make selections. For example,
if you wish to ask a user for his name, a simple text input is fine. The text
input follows this syntax:
<input type=”text” name=”field_name” value=”default_value”>

The value attribute is optional; in most cases, it would be left blank.
However, if you wish to suggest a value for the user’s input, you can include
the value=”default_value” attribute and the value will appear in the field.

For example, to suggest a default value using a variable you already have
(such as one that was entered from a previous form), you can specify the
value attribute by outputting the variable’s value with short equals tags,
like so:
<?php
/* ch03ex16.php – default value example */

// Assume $user_name can come from a previous form submission;
// it’s specified here for clarity.
$user_name = “John Doe”;

65Program Input

E X A M P L E

// Print a form using this name as the default value for the user_name field
?>

<form>
Name: <input type=”text” name=”user_name” value=”<?= $user_name ?>”>

<input type=”submit”>
</form>

N O T E
Assuming PHP has its default configuration, you should be able to set the action
attribute of this form to the name of the program file (such as ch03ex16.php) and the
value of the field would be updated as the default value every time the submit button is
clicked.

This example is primarily here to demonstrate that you can specify a dynamic default
value, just as any other output can be dynamic.

There are several types of inputs for making selections. We’ll look at radio
and check box inputs first, then compare them to select inputs.

The radio input is used to ask the user to pick one item out of a list. The
syntax follows this form:
<input type=”radio” name=”field_name” value=”field_value”>

In this case, the value attribute is not optional; if you don’t specify it, the
field will appear to be blank from within PHP, even if the option is selected.
This type of input is best used in groups; the following example could be
used to ask a visitor what his favorite pet is
What’s your favorite pet?

<input type=”radio” name=”favorite_pet” value=”dog”>Dog

<input type=”radio” name=”favorite_pet” value=”cat”>Cat

<input type=”radio” name=”favorite_pet” value=”camel”>Camel

<input type=”radio” name=”favorite_pet” value=”none”>None

Notice that all of the inputs have the same name; this is a feature of the
radio input that allows the user to choose only one option, but it only works
if the radio buttons all use the same name.

If you wish to get multiple answers from a user, you would need to use a
check box input, which follows this syntax:
<input type=”checkbox” name=”field_name” value=”field_value” checked>

Again, the value attribute must be included with this input. However, the
checked attribute you see at the end of the tag is optional; if it’s included,
the check box will appear checked by default.

66 Chapter 3: Program Input and Output

E X A M P L E

This type of input is commonly seen when you sign up for newsletters and
free services online. These services gather information about the users they
have so they can charge their advertisers more for targeted advertising.
The following example demonstrates the common question, “What maga-
zines do you subscribe to?”
What magazines are you currently subscribed to?

<input type=”checkbox” name=”us_news” value=”true”>US News
<input type=”checkbox” name=”sports_illustrated” value=”true”>Sports Illustrated
<input type=”checkbox” name=”national_geographic” value=”true”>National
Geographic
<input type=”checkbox” name=”time” value=”true”>Time

Notice that all of the name attributes are different; they cannot be the
same or multiple selections would overwrite each other and only the last
one would be retrievable from within PHP.

The select field allows similar data collection, using a smaller space. For
example, listing all of the countries for the user to pick one could take up a
lot of space on your form, making it seem longer than it really is. By
putting all of the countries into one select input, the long list is compressed
into one line. The syntax for a select input is
<select name=”field_name” size=”field_height” multiple>

<option value=”option_value”>option_text</option>
…
<option value=”option_value”>option_text</option>

</select>

The value attribute is optional; if it is omitted, the text used for
option_text will be used as the value as well (but option_text never over-
writes a value specified in option_value). The multiple attribute is also
optional; leaving it out forces the user to pick only one option. If specified,
the size attribute determines how many options are visible at once. If the
size is omitted, the input appears as a drop-down list; otherwise (if it is
specified), the list appears in a scroll box.

Here’s a very short example that could be used to ask a user what country
he is from:
What country do you live in?
<select name=”country”>

<option>China</option>
<option>France</option>
<option>Germany</option>
<option>United Kingdom</option>
<option>United States</option>

</select>

67Program Input

E X A M P L E

E X A M P L E

Notice that the multiple attribute wasn’t included because you only want to
allow the user to pick one country. Also, the value attributes were omitted
because the text found between the two option tags is all you need to know.
(The value tags are often used to associate numeric codes that the program
understands with textual names that the visitor understands.)

It’s not always appropriate to limit the user to just one selection. To allow
multiple selections, the multiple attribute must be specified. Once it is, the
user can make multiple selections using Ctrl and Shift. The following input
asks the user about his hobbies:
What are your hobbies?

<select name=”hobbies[]” multiple>

<option>Travel/Sightseeing</option>
<option>Automotive/Cars/Hotrods
<option>Sports/Fitness</option>
<option>Reading</option>
<option>Outdoors/Camping/Fishing</option>

</select>

This input allows the user to select from zero to all of the options given.

C A U T I O N
Notice the brackets in the name attribute; since they are present, the hobbies variable
in PHP will be an array, with each element being an element selected from the options
list. If the brackets were left out, only the last option selected would be visible within
PHP.

Let’s say Automotive and Reading are the two options chosen from this list,
and the form is submitted. In this case, the $hobbies array contains
Array(

[0] => “Automotive”,
[1] => “Reading”)

The last method for gathering information is the textarea. The textarea is
used to allow the user to type a large amount of text, such as a feedback
message. Here is the basic syntax for a textarea field:
<textarea name=”field_name” rows=”field_height”
cols=”field_width”>default_value</textarea>

Although the rows and cols attributes are optional, it’s best to specify
them. You need to experiment a little with these to get a feel for how they
affect the size of the textarea. The default_value shown between the
beginning and ending tags shows where you can suggest a default value for
the textarea to contain. Because the textarea allows for multiple para-
graphs, adding a value attribute is not appropriate; this is why the default

68 Chapter 3: Program Input and Output

value is specified between the textarea’s opening and closing tags. If you
chose to omit the default value, you still need to include the closing
</textarea> tag.

There are two inputs to submit a form: submit and image. These inputs
work about the same way, except the latter uses an image instead of a gray
button.

Here’s an example of each; these two uses are functionally equivalent:
<input type=”submit” value=”Submit”>
<input type=”image” src=”/path/to/image.gif”>

Your forms must always include a submit button or the form won’t be very
effective. Pressing Enter or using JavaScript works most of the time, but
it’s always preferable to have a button for those who can’t use Enter or
don’t support JavaScript.

You might want to use this section as reference until you get used to creat-
ing forms (if you’re not already used to it). With some practice, you’ll have
no trouble at all creating intuitive forms.

What’s Next
In this chapter, you learned about the various methods that can be used to
output data. You saw the advantages of echo for short amounts of output
and its disadvantages for longer amounts of output—especially static out-
put. You’ve also had a chance to explore using the short equals operator to
splice dynamic content into static output. And, lastly, you examined input,
both with the get and post methods, and the advantages and disadvan-
tages of each.

Now that you have a good idea of how to collect input, you’re ready to move
towards manipulating the data you’ve collected. This includes everything
from taking input and doing arithmetic operations on it to examining an
e-mail address to decide whether it’s valid. The most basic sort of data
manipulation is arithmetic, so it makes sense that we’ll start there. In the
next chapter, you learn how to perform basic arithmetic operations, as well
as learn that some very interesting things can be done with arithmetic.

69What’s Next

E X A M P L E

4

Arithmetic
Arithmetic is rooted deep within programming—not just PHP, but other
languages, too—and rightly so, because all a computer knows is numbers.
PHP provides you with several different types of arithmetic operators, some
of which will be familiar to you as common mathematical symbols, such as
plus and minus. There are others, though, that are just as simple and have
been added to make your job of programming easier. Arithmetic will also
open the doors to being able to use patterns, which are just as powerful as
arithmetic itself.

This chapter teaches you the following:

• Mathematical expressions

• Arithmetic operations

• Arithmetic operator precedence

• Compound operators

• Applying arithmetic with patterns

Basic Arithmetic
Here’s a question you probably heard back in elementary school: You’ve got
two apples and you find three more, how many apples do you have now? Of
course you know the answer, but how do you tell PHP? Of course, you could
just hardcode 5—but hardcoded data requires the program to be revised
when the data needs to be changed, whereas dynamic variables can be
changed from outside of the code and therefore no changes to the code are
necessary—in which case, you won’t be able to hard-code a number.

You would have to leave it up to PHP to calculate and use the appropriate
value—you just have to know how to tell PHP what you want it to do. As
you’ll soon see, doing so is about as simple as typing the expression—the
calculation you want PHP to perform—into your code.

Expressions are a combination of operators and operands. An operator is a
character that stands for a mathematical operation—such as addition or
subtraction. The operand is one of the numbers involved in the operation.
For example, if you multiple 5×2, 5 and 2 are both operands.

T I P
Think of the operator as the action in an expression and the operand as the thing the
action is being performed on.

An expression may be constructed with anything from just two operands
and one operator to an infinite number of operands and operators. The fol-
lowing example shows a simple expression:
1 + 2

This is about as simple as an expression gets. It’s not too intimidating to
look at 1 + 2 and know that the result is 3. However, longer expressions
can be intimidating. Take a look at the following expression to see what I
mean:
1 + (4 * 4 % 6 – 5) / 2

That expression really isn’t as cryptic as it looks. By the end of this chapter,
you will not only be able to read expressions such as this one without being
intimidated, but you will also be able to write them without much, if any,
difficulty.

In the following sections, you will learn about the operators used in this
expression. You will also learn that an intimidating expression such as this
can be broken down into a few smaller, simpler expressions like the expres-
sion 1 + 2 we looked at before.

72 Chapter 4: Arithmetic

E X A M P L E

The following Table 4.1 summarizes PHP arithmetic operators. For now,
glance over them and continue reading. You don’t need to try to memorize
them—you will have plenty of time to memorize them individually as they
are explained. If you need to come back later to refresh your memory, this
table may be a good place to start.

Table 4.1: PHP’s Arithmetic Operators Perform Basic Mathematical Tasks

Operator Operation Name Example
+ (Unary) Positive +5
- (Unary) Negative -5
+ Plus 5 + 5
- Minus 5 - 5
* Multiply 5 * 5
/ Divide 5 / 5
% Modulus/Remainder 5 % 5

The sections that follow will discuss the operators used within expressions
one by one. Each section will leave you with a clear understanding of what
exactly each operator does along with how to use it.

Positive and Negative Numbers
While most of your calculations will probably involve only positive num-
bers, you are sure to encounter negative numbers at some time or another.
Negative numbers really don’t have anything special about them. They
behave just as they should mathematically, and they have a negative sign
preceding them when outputted.

To specify that a number is negative, you must place a negative sign before
it. Here are several examples of negative numbers being assigned to
$someVar:
$someVar = -2;

$someVar = -64;

$someVar = -1028;

The positive sign is also allowed in PHP, but it serves no useful purpose
other than demonstrating to the programmer that a number is positive.
Numbers without a sign are automatically positive, however, so the positive
sign is rarely used. Here are a few examples of it for your reference:
$someVar = +2;

$someVar = +64;

$someVar = +1028;

73Basic Arithmetic

E X A M P L E

C A U T I O N
While it might seem logical to force a variable’s sign (negative or positive) to be positive
by preceding it with the positive sign, this will not work. To reverse a variable’s sign, you
must negate it.

Unary and Binary Operators
The positive and negative signs are considered to be unary operators—that
is, operators that only require one operand. These are the only two unary
operators we’ll discuss in this chapter, although ++ and --, which will be
introduced in Chapter 8, “Using while and do-while,” are also unary opera-
tors. All of the other arithmetic operators require two operands. For this
reason, they are called binary operators.

T I P
For a quick example, consider any addition, subtraction, multiplication, or division prob-
lem. In order to perform one of these operations, you must have two numbers—one
that will go on the left side of the operator and one that will go on the right. Thus, mul-
tiplication (or any other binary operation) cannot be done with only one operand.

If you have trouble understanding why the positive sign doesn’t force the
value of a variable to be positive, consider the actual inner workings of
these operators:

• The negative operator yields the value of its operand times negative
one.

• The positive operator yields the value of its operand times positive
one, or simply the value of the operand; thus, the positive unary oper-
ator is essentially ignored.

If you are familiar with binary numbers, don’t be confused by the term
binary used in conjunction with binary operators. The word binary has
nothing to do with the numbers used as operands; rather, the word binary
is used to describe them because they take two arguments.

The rest of the operators in this chapter, including addition, subtraction,
multiplication, division, modulus, and the compound operators, are all
binary operators.

Addition
Addition is done using the plus character found on your keyboard. Let’s
return to the scenario presented at the beginning of this chapter about
apples—you have two apples and you find three more. This could be coded as
<?= 2 + 3 ?>

74 Chapter 4: Arithmetic

E X A M P L E

That’s pretty simple: The expression 2 + 3 is placed inside short equals
tags. PHP always handles mathematical expressions before doing anything
with them—after all, the point of the expression is to calculate a result.
Thus, the output will be the expression’s result, 5.

C A U T I O N
Don’t let the equals sign in the short equals tag confuse you—the addition operation
has nothing to do with the equals sign because the equals sign is part of the tag.

To clarify this even further, the equals sign isn’t part of an assignment. Instead, it is
part of the method of output being used. Thus, even though it looks like an assignment
or mathematical sort of operator, it is actually part of the tag signaling PHP’s output.

This example is presented in a short equals tag for simplicity; you could use any num-
ber of alternatives, or even store the result to another variable. The important thing to
understand is that placing a plus sign between two values tells PHP to add the two.

Now, let’s make the preceding code dynamic so it can work with any two
numbers. Following the previous scenario, those numbers will be the num-
ber of apples you had and the number of apples you found. Let’s assume
that the number of apples you had is stored in $applesHad and the number
of apples you found is stored in $applesFound. To get the result depending
on these two variables, you would use the following expression:
<?= $applesHad + $applesFound ?>

No matter what two values are stored in these variables, the output will
always be the result of this expression—their sum.

C A U T I O N
Dealing with very large numbers in computers can sometimes be difficult. Since the
computer has to store numbers as a fixed-length set of ones and zeros, numbers can
only be a certain size (going either direction—positive or negative) before they get too
big and their value becomes inaccurate. Although, it depends on the operating system
and hardware of the machine running PHP, the range of numbers that can accurately be
stored is usually from –2,147,483,648 to +2,147,483,648 (2 to the 31st power, which
is the case for a 32-bit system).

Subtraction
Subtraction works the same way as addition—however, the operator used is
now the minus sign on the keyboard. Let’s reverse our scenario: You have
five apples but you drop two. In numeric terms, this would be expressed as
<?= 5 - 2 ?>

To make that calculation dynamic, we replace the numbers with variables.
Let’s assume that $applesHad is the number of apples we had to start with

75Basic Arithmetic

E X A M P L E

and that $applesDropped is the number of apples that were dropped. So, fol-
lowing with this example, $applesHad is 5 and $applesDropped is 2. To out-
put the remaining number of apples, we use the following code:
<?= $applesHad - $applesDropped ?>

T I P
Since this program uses variables within its calculations, we could get these variables
from input. Upon returning the result to the user, we’ve created a calculator—a calcula-
tor that only subtracts, but a calculator nonetheless.

Multiplication
Multiplication works just as addition and subtraction did using the asterisk
as the operator.

The following demonstrates a multiplication expression:
<?= 2 * 4 ?>

N O T E
A space was added on either side of the asterisk to promote readability. This lessens
any possible confusion about what’s going on in this statement. It is a good idea to pad
all operators (except the two unary operators) in this way.

Using the asterisk instead of x avoids the conflicts that could arise. For
example, the letter x could appear in any variable or constant name. The
following code illustrates this point:
<?= $varOnex$varTwo ?>

This code is impossible even for a human to decipher definitively. The code
could mean “$varOne times $varTwo” or it could mean “$varOnex followed by
$varTwo.”

To get around this, PHP uses a character that cannot show up in a variable
name: the asterisk. The asterisk makes a likely pick: It’s in use on numeric
keypads, calculators, and in some other places already.

The following code changes the previous example so that it will mean what
we want it to mean—“$varOne times $varTwo”:
<?= $varOne * $varTwo ?>

C A U T I O N
If you are familiar with algebraic notation (such as “3x”), you should note that placing
two variables or a number and a variable next to each other does not imply multiplica-
tion. In other words, if you intend to multiply a variable by three, you must separate the
number three from the variable with an asterisk. Not doing so (using 3$someVar) will
cause PHP to terminate with an error.

76 Chapter 4: Arithmetic

E X A M P L E

Division
Now it’s time to take a look at the last of the four common operators—the
division operator. You may already be used to seeing fractions expressed all
on one line; if you’re not, it’s not too hard to learn. Instead of stacking the
numerator over the denominator vertically, you must put them on one line
separated with a slash. The slash, in this case, is the operator.

To divide 35 by 7, the following expression could be used:
<?= 35 / 7 ?>

This code would output 5.

As with the other arithmetic operators, this can be used with variables. To
divide $varOne by $varTwo, you might use
<?= $varOne / $varTwo ?>

C A U T I O N
You must check to make sure your denominator is not 0 before you perform the opera-
tion (checking for certain conditions will be discussed when we get to if in Chapter 6,
“The if, elseif, and else Statements”). A denominator of zero yields an undefined
result, to and PHP will terminate with an error informing you that you have attempted to
divide by zero.

Modulus Division
This is one you to probably haven’t seen before—at least not with this
name. This operator is less commonly called the remainder operator—and
it does just that. The modulus operator was created to allow you to easily
get the remainder resulting from the division of two integers.

A simple example of modulus division follows:
<?= 10 % 3 ?>

The output of this statement is 1—three goes evenly into ten three times
with a remainder of one. The following example also demonstrates this
concept:
<?php
$numerator = 5; S/B 9 to match text below.
$denominator = 9; s/b 5 to match text below.

?>

Regular division: <?= $numerator / $denominator?>

Integer division: <?= (int)($numerator / $denominator) ?> r<?= $numerator %
$denominator ?>

77Basic Arithmetic

E X A M P L E

E X A M P L E

First, nine is divided by five. Then, 9 is divided by 5 and the result is type-
cast to an integer to get only the number of times that 9 divides into 5
evenly, resulting in 1. The remainder is then expressed using modulus divi-
sion and is output after the “r.”

The output is
Regular division: 1.8

Integer division: 1 r4

T I P
Modulus division is sometimes referred to simply as mod. Expressions are commonly
read this way; for instance, the remainder calculation in the previous example is read
“nine mod five.” It is shorter and easier to read an expression this way than reading
the whole phrase “the remainder of nine divided by five.”

C A U T I O N
Attempting to use modulus division on a floating-point value is strongly discouraged.
Any offending values (values that are not integers) will be typecast to integers and any
decimal values will be truncated. On top of that, PHP will not terminate because of this
problem because it is corrected by the type casting. Only use modulus division on a
value that may be a floating-point value if you are fully aware that the value will be type-
cast to an integer before being evaluated with the operator.

Order of Operations
The five operators described in the previous section are simple enough if
you’re only doing one thing at a time—but what if you wish to do more than
one operation at a time? You’ll need to know how PHP evaluates multiple
operations when they’re together.

The order in which operators are evaluated is known as operator
precedence. For example, an operator that is evaluated before another oper-
ator is said to have a higher precedence than the operator it was evaluated
before, which has a lower precedence.

PHP will evaluate all addition and subtraction operations in the order in
which they appear from left to right. The expression 1 + 2 + 3 - 4 + 5,
for example, would be evaluated from left to right until no operations
remained. Figure 4.1 demonstrates the evaluation of this statement.

The next class of operators—multiplication and division—takes precedence
over addition and subtraction. That is, multiplication and division are eval-
uated before addition and subtraction. You must be careful to consider this;
not doing so may yield unexpected results. Figure 4.2 represents the evalu-
ation of the expression 2 * 2 + 3 * 3.

78 Chapter 4: Arithmetic

Figure 4.1: These operations are evaluated from left to right.

79Order of Operations

1 + 2 + 3 – 4 + 5

 3 + 3 – 4 + 5

6 – 4 + 5

2 + 5

7

2 * 2 + 3 * 3

4 + 3 * 3

4 + 9

13

Figure 4.2: These operations are evaluated first for multiplication and divi-
sion operations, then addition and subtraction.

Notice that the result of this expression, 13, is not the same as if it were
evaluated strictly in left-to-right order, which would be 21, as demonstrated
by Figure 4.3.

2 * 2 + 3 * 3

4 + 3 * 3

7 * 3

21

Figure 4.3: The expression in Figure 4.2 is being evaluated in an incorrect
order here. Multiplication and division are always evaluated before addition
and subtraction.

The order in which expressions are evaluated is determined by each opera-
tor’s precedence. An operator’s precedence dictates how important its evalu-
ation is compared to that of other operators.

Precedence of operators in numeric expressions is shown here from highest
to lowest. Operators on the same row carry the same precedence and are
evaluated from left to right as they appear in the expression. The operator
precedence of the binary math operators is shown in Table 4.2.

Table 4.2: This Table Shows the Order of Precedence from Highest (Most
Important; First to Be Evaluated) to Lowest (Least Important; Last to Be Evaluated)
*, /, % Multiply, divide, mod
+, - Add, subtract

The order of operations isn’t set in stone, however. You can clarify the order
of operations or even change the order of operations with parentheses. For
example, the preceding statement, 2 * 2 + 3 * 3, would have been much
clearer if it were expressed as (2 * 2) + (3 * 3). It would then be quite
obvious which operations were meant to come first.

Expressions inside of parentheses are evaluated independently of anything
outside of the parentheses. It can therefore also be said that the items
within parentheses are evaluated first, before any other parts of the expres-
sion are evaluated. Then, once a single result for the expression inside of
the parentheses is reached, the result is used in place of the inner expres-
sion (inside the parentheses) and the expression outside of the parentheses
is evaluated.

Since expressions inside of parentheses are evaluated separately from the
operations outside of the parentheses, it’s possible to modify the order in
which the operations of expressions are evaluated.

Take a look at this example:
<?= 2 * (2 + 3) * 3 ?>

Since parentheses enclose the addition of 2 and 3, that operation must be
completed before the multiplication outside of the parentheses can take
place. Figure 4.4, demonstrates the step-by-step evaluation of this
expression.

80 Chapter 4: Arithmetic

E X A M P L E

2 * (2 + 3) * 3

 2 * 5 * 3

10 * 3

30

Figure 4.4: The parentheses in this expression have changed the way it is
evaluated.

Parentheses can also be nested. That is, a set of parentheses can be placed
inside of another set of parentheses. Nesting of parentheses is infinite—
that is, you could have any number of parentheses within parentheses in
an expression.

What’s Nesting?
In programming, nesting refers to the placement of one set of commands
within another set. In expressions, this is the placement of an expression
contained within parentheses within another statement that was enclosed
in parentheses.

Nested expressions can be divided into a number of smaller expressions. By
dividing nested expressions into smaller ones, your job at evaluating them
becomes much easier. Figure 4.5 shows how an expression can be broken
into smaller expressions.

81Order of Operations

Expression: 4 + (5 / (2 + 3) % (4 / 2) – 3)

Innermost: (2 + 3) (4 / 2)

Middle: (5 / % – 3)

Outer: 4 + – 3)

RESULT

Figure 4.5: This nested expression is broken down into smaller expressions.
The innermost expressions can be separated from the middle ones, and the
middle ones can be separated from the outer expression.

The following expression demonstrates nesting of parentheses:
<?= (2 * (5 + (5 + 5) * 2)) % 3 ?>

For practice, try finding the result of the preceding example now. Once you
have an answer, continue reading; the following figure shows a step-by-step
breakdown of the expression and the final answer.

T I P
You should evaluate numeric expressions as follows: start with the innermost set of
parentheses, then evaluate all multiplication and division operations within that expres-
sion, and finally evaluate the addition and subtraction operations of that expression. If
the parentheses are nested, work your way through the outer expressions, always work-
ing from the inside out.

Figure 4.6 shows the evaluation of the preceding expression.

E X A M P L E

Figure 4.6: This diagram shows the steps for the evaluation of an expres-
sion that incorporates all of the rules for expression evaluation.

Here are more examples to help you get comfortable with evaluating
expressions:

• Fixed multiplication/division with addition/subtraction:
6 / 3 * 10 – 5 * 2 + 4 =
2 * 10 – 5 * 2 + 4 =
20 – 5 * 2 + 4 =
20 – 10 + 4 =
10 + 4 =
14

• Order dictated by parentheses:
4 * (5 % (9 / 3)) =
4 * (5 % 3) =
4 * 2 =
8

• Mixed multiplication/division with addition/subtraction and
parentheses:
4 * 5 + 3 % (2 * 4 – 6) =
4 * 5 + 3 % (8 – 6) =
4 * 5 + 3 % 2 =
20 + 3 % 2 =
20 + 1 =
21

Now let’s look at a slightly different example. First, look and the following
segment and see if you can find the values for $x, $y, and $z when it is fin-
ished executing:
<?php

$x = 1;
$y = 2;
$z = 3;

82 Chapter 4: Arithmetic

(2 * (5 + (5 + 5) * 2)) % 3

(2 * (5 + 10 * 2)) % 3

(2 * (5 + 20)) % 3

(2 * 25) % 3

50 % 3

2

$x = $y + 2 * $z;
$y = $x % 4;
$z = (12 + $z) / 5;

?>

x = <?= $x ?>

y = <?= $y ?>

z = <?= $z ?>

The visual output of this segment would be
x = 8
y = 0
z = 3

First, this program assigns the values 1, 2, and 3 to $x, $y, and $z, respec-
tively. Then, it evalutes the following expression to assign its value to $x:
$x = $y + 2 * $z;

Multiplication has precedence over addition, so 2 * $x is evaluated first.
The value of $x is 3 at that time, and 2 * 3 yields 6. Then, the addition por-
tion of the expression is evaluated. $y is 2, so when the addition is evalu-
ated, 2 + 6 = 8 and the final value for $x is obtained.

Then, the calculation for $y is performed. $x, which is now 8, mod 4 yields a
remainder of 0, so $y is 0.

Finally, the calculation for $z is performed. The expression inside the
parentheses is evaluated before anything else; so 12 + 3 yields 15. Then,
the resulting value for the parentheses is divided by 5, and a final result for
$z is found to be 3.

Compound Operators
The results of operations aren’t always outputted as the previous examples
show—sometimes the result is to be stored in a variable. That’s not too dif-
ficult based on the examples you have seen. However, there are times when
it’s necessary to change a variable somehow—for instance, you might want
to double something or subtract ten from something, keeping the result in
the variable itself.

The operators designed to do this are called compound operators. Without
compound operators, you would have to type the variable name twice—once
for the left portion of the assignment and again in the operation itself.

83Compound Operators

N O T E
Compound operators are also sometimes called assignment operators because
they assign their resulting value to the left operand just like the regular assignment
operator, =.

The following code shows an operation performed on a variable without
using compound operators:
<?php
$variable = $variable * 2;

?>

This example would double the value of $variable. There’s a simpler way to
do this operation, however.

A compound operator—that is, an operator that performs more than one
task at a time—can perform the same operation with less code. There is a
compound operator for every operator that has been introduced in this
chapter, as Figure 4.7 shows.

84 Chapter 4: Arithmetic

Compound Operator Operation Example

+= Add $variable += 2;
-= Subtract $variable -= 2;
*= Multiply $variable *= 2;
/= Divide $variable /= 2;
%= Modulus $variable %= 2;
.= Concatenate $variable .= "2";

Figure 4.7: Compound operators perform the corresponding operation and
store the result in the left operand.

N O T E
The string concatenation operator and its corresponding compound operator are dis-
cussed in Chapter 5, “String Manipulation.”

To use a compound operator, place the variable to be modified on the left
and the operation’s other argument on the right side. Here’s an example:
<?php
$variable *= 2;

?>

This segment performs the same task that the segment preceding it did,
except this time with a compound operator. After this statement, $variable
has been doubled (multiplied by 2).

E X A M P L E

N O T E
There are special operators for adding and subtracting 1. These operators are
nown as the increment and decrement operators, respectively, and can be found
in Chapter 8.

Compound operators are pretty straightforward. Here are a few more
examples to help demonstrate their use.

An organization is trying to break the world record for the longest distance
of dollar bills strung together, but much of the money donated has been in
change. In order to exchange the coins for bills, the group must calculate
how many dollars the money is worth.

To do this, we’ll need to know the amount in cents. Because 100 cents are
in a dollar, dividing the amount in cents by 100 will yield the amount in
dollars. Therefore, to convert the amount to dollars, we do a compound divi-
sion operation using the amount and 100 as the operands.

The following program converts an amount given in cents to a dollar
amount:
<?php

$amount = 1995; // in cents

echo “$amount cents is equal to “;

$amount /= 100; // 100 cents in a dollar

echo “$amount dollars!”;

?>

The output of this program is
1995 cents is equal to 19.95 dollars!

Here’s another example: A small computer company wants to keep track of
the number of computers it has in stock based on how many it has at the
start of the day minus the number it sells.

To do this, we’ll need to know the number of computers in stock at the
beginning of the day and the number of computers sold during the day.
Then, to find the number of computers in stock at the end of the day, we’ll
use a compound subtraction operator to subtract the number sold from the
number in stock, storing the result back to the number in stock so the num-
ber in stock is accurate after the day’s sales.

85Compound Operators

E X A M P L E

E X A M P L E

The following program performs this calculation:
<?php

$inStock = 11; // number of computers in stock at the
beginning of the day
$numSold = 3; // number of computers sold during the day

echo “You started with $inStock computers, but sold
$numSold. “;

$inStock -= $numSold; // number of computers left at end of
day

echo “You now have $inStock computers left.”;

?>

The output from this segment is
You started with 11 computers, but sold 3. You now have 8 computers left.

Patterns and Arithmetic
Few uses of arithmetic will be just to modify a number and output the
result. Instead, you will be using arithmetic to create patterns—however
simple or complex they might be—to make more visitor-friendly, appealing
programs.

The process of developing a pattern requires that you find an operation or
set of operations that occur multiple times. For example, in making a table
in which all of the rows are numbered in order, the pattern requires you to
add one after each row. Repeating the process yields numbered rows—1, 2,
3, 4, and so on, as long as the pattern repetitions continue.

N O T E
Repetitions are achieved by a looping structure—that is, a statement telling PHP to exe-
cute one or more commands, what those commands are, and when to stop executing
them. Looping statements are covered, along with some more examples of patterns, in
Chapters 8 and 9.

Other patterns, however, may seem less obvious. For example, it is often
easier to read a table if its alternating lines have alternating background
colors. A result such as this is easy to imagine—but what kind of pattern
could be used to create such an effect?

If you observe that numbers alternate between even and odd from one out
to infinity, you have the first half of the pattern—create a variable that

86 Chapter 4: Arithmetic

starts at one and increases by one each repetition. Then, all you have to do
is test to find if the number is even or odd. More specifically, you have to
test whether the number is evenly divisible by 2—if it is, it is even; if it
isn’t, it is odd.

To test whether the number is evenly divisible, use modulus division to get
the remainder and determine if the remainder is 1 or 0. Depending on the
result, the appropriate background color can be chosen and the colors will
alternate.

In parallel with that idea, if you wanted to use three different colors
instead of two, you could find the remainder of the incrementing variable
divided by 3. The result would be 0, 1, or 2, and depending on its value, the
appropriate color could be used.

T I P
This example is discussed in more detail and is accompanied by sample code in
Chapter 8.

What’s Next
In this chapter, you have learned about mathematical expressions and how
they are evaluated in PHP. You have also learned about the math opera-
tors—including the four basic operations and an additional one for modulus
(remainder) division. You’ve even skimmed the surface of applying arith-
metic to patterns, which can obviously be quite handy.

From arithmetic, we’ll move into string manipulation. You can use string
manipulation to read and interpret information from files, to replace cer-
tain words in a sentence or paragraph, or even to verify that an e-mail
address a user gave you is valid. The next chapter will not only teach you
several good uses of the string manipulation functions of PHP, but it will
also help you to develop your own uses for them.

87What’s Next

5

String Manipulation
Many Web sites ask for a visitor’s e-mail address when he wishes to com-
municate with the site; obviously, this gives the site administrator a chance
to respond to questions, comments, and problems. But what happens if the
user mistypes his e-mail address? The site administrator has no way to
respond, which may make the visitor angry because, without a response, it
may appear that the person or company behind the site doesn’t care.

E-mail address verification is one of the several types of string manipula-
tion this chapter covers. Other types include joining strings, dissecting
strings, and string replacements.

This chapter teaches you the following:

• How to join strings

• How to split strings

• How to extract a substring from a string

• How to use numeric string indexes

• How to replace a string within a string

• How to use regular expressions for complex string manipulation

Before We Begin
Being able to use string manipulation functions in your programs is similar
to being able to make your program know how to read. For example, I
already mentioned that by the end of this chapter you will be able to make
your programs differentiate between valid and invalid e-mail addresses.

Although this chapter will cover some of the string manipulation functions,
there are many more refined functions that are simply too numerous to
cover for practical, day-to-day use.

However, some situations do lend themselves to these more refined func-
tions. So, if you find yourself wishing PHP had a function to do something,
take a look at the manual—there’s a function for just about anything you
could need. And, as you might expect, the more you use PHP, the more of
these functions will become familiar to you. For now, though, the functions
this chapter teaches will give you a strong start.

T I P
The PHP manual page for string functions is available online at http://www.php.
net/manual/ref.strings.php, or you can use the manual’s home page at http://
www.php.net/manual to browse to the section on strings.

The String Concatenation Operator
Like the numeric variable types, strings can be used with operators.
However, operators don’t treat strings the same way they treat numeric
variables. For example, multiplying two strings together wouldn’t make
much sense. Neither would dividing, adding, or subtracting them.

T I P
You may be thinking, “Hey, wait. Wouldn’t adding strings ‘glue’ them together to form a
composite?” This operation of “adding” strings, though, is known among programmers
as concatenation, which has a separate operator. We’ll discuss that a little later in this
section.

In fact, if you perform a mathematical operation on strings, the strings are
typecast to the most appropriate numeric type before the expression evalu-
ates them.

✔ To refresh your memory on string-to-numeric typecasting, see “Type Casting,” p. 43.

The string concatenation operator, however, is made to work with strings.
Concatenation is the joining together of two or more strings to form a single

90 Chapter 5: String Manipulation

string. The string concatenation operator is the period; so, to join two strings
together, we place a string on either side of a period. The resulting string
can either be stored in a third string by assignment, or echoed directly to
output.

N O T E
This works the same way as adding 1 + 2 + 3. You can have any number of concate-
nation operators in an expression, as long as each has a string on either side.

For example, if you ask a user for his first and last names as two separate
entries, then you can use concatenation to display his full name in what-
ever format you prefer, or even switch back and forth within the same
script as necessary.

The following program asks the user for his first and last names, then
prints his full name in two different formats:
<?php
/* File: ch05ex01.php – demonstrates string concatenation */

?>
<html>
<head><title>PHP By Example :: Chapter 5 :: Example 1</title></head>

<body>

<?php

if ($HTTP_GET_VARS[‘fname’] && $HTTP_GET_VARS[‘lname’])
{

echo $HTTP_GET_VARS[‘fname’] . ‘ ‘ . $HTTP_GET_VARS[‘lname’] . ‘
’;
echo $HTTP_GET_VARS[‘lname’] . ‘, ‘ . $HTTP_GET_VARS[‘fname’] . ‘
’;

}

?>

<form action=”ch05ex01.php” method=”GET”>
First Name: <input type=”text” name=”fname”>

Last Name: <input type=”text” name=”lname”>

<input type=”submit”>
</form>

</body>

</html>

91The String Concatenation Operator

E X A M P L E

Being able to join two strings in this manner expands the flexibility of your
program. Because you know that this is possible, you can ask for first and
last names separately, and, in turn, have the ability to manipulate that
name however you want.

For example, let’s say you’re organizing a convention (such as the annual
ApacheCon) for which participants will sign up through your Web site. By
gathering people’s first and last names independently of each other (instead
of gathering one, inflexible fullname), you have the ability to format and
sort the names however you want.

In some instances—creating a roster of attendees, for example—you might
want to list the names alphabetically by last name. To do so, you simply
concatenate the last name, a string containing a comma and a space, and
the first name, like so:
$name_full = $name_last . ‘, ‘ . $name_first;

The resulting string might look like this:
Smith, John

Later in this chapter, you will learn the skills needed to create a string con-
taining a person’s initials using the strings containing his first and last
names. (For example, given that a person’s first name is Joe and his last
name is Smith, you could find that his initials are J.S.) For now, you should
have a clear idea of how string concatenation works and how to do it.

String Functions
As the concatenation operator joins strings, the various string functions
allow you to divide strings and manipulate what’s already in a string. This
will allow you to

• Separate a string of data into more workable pieces

• Retrieve only a particular part of a string

• Find the location of a substring you want to extract

• Replace a substring with a different string

Extracting Substrings
Extracting substrings is simply a matter of knowing where within a string
the information (another string) you want is located. Specifically, you have
to know the index of the first character and the length of the string you
want to extract.

92 Chapter 5: String Manipulation

E X A M P L E

For example, let’s assume you have a person’s Social Security number
stored in a string and you want to use the last four digits of the number as
the default PIN code.

Let’s assume your program (or a person) has already formatted the string
such that it is simply a sequence of nine numbers, without hyphens, spaces,
or other characters separating the numbers. Let’s say the Social Security
number is 012-34-5678. The sequence is stored in a variable as follows:
$SSN = ‘012345678’;

T I P
Notice that the string above must be within quotes or it will lose the intial zero.
Although most numeric values may be easily converted back and forth between num-
bers and strings, this one would lose the zero as soon as it became a numeric type.

It is a good practice to enclose all numbers intended to be used as strings in quotes to
denote them as strings and not numbers. Not doing so can not only yield strange
results if the number begins with a zero, but it also makes your code somewhat
obscure. Variables intended for use only as strings should be coded only as strings.

Now, you want to retrieve the last four characters (in this case, digits) of a
nine-character string. To do this, use the substr (substring) function. The
syntax for substr follows:
string substr(string str, int start [, int length])

I N T E R P R E T I N G S Y N TA X G U I D E S
The monospaced text you see just before this block is called a syntax guide. It’s a brief
way of showing how a function is intended to be used that tells two important things
about the function: what value is returned and what parameters it takes.

The function’s return value is given before the function name. In this case, it’s the first
occurrence of string on that line.

After the function name, the parameters are given in parentheses, similarly to actually
calling the function. However, the parameter types are given in addition to the typical
parameter itself. Also, the parameters given here are italicized because they are sym-
bolic names for what should be passed as that parameter.

Syntax guides can also tell you which parameters are optional. Optional parameters are
enclosed in brackets so you’re aware of which parameters are optional and which
aren’t.

str is the string you want to extract a substring from, start is the index of
the first character to be extracted, and the optional parameter length is the
length of the substring you wish to extract. If you leave length out, the sub-
string returned will go all the way to the end of the string.

93String Functions

E X A M P L E

So, to get the last four characters of the Social Security number, use
$SSN_lastFour = substr($SSN, 5, 4);

The 5 here means the substring you get will start at the index position 5,
which is the fourth character from the end of the string. The last param-
eter, 4, tells substr() to give us four characters—in this case, the last four.
Figure 5.1 illustrates the extraction of the last four digits from the rest of
the string.

94 Chapter 5: String Manipulation

Last four digits

$SSN:
INDEX:

0 1 2 3 4 5 6 7 8

[0] [1] [2] [3] [4] [5] [6] [7] [8]

Figure 5.1: The substring here is the last four characters of the nine-
character string, starting at the character index 5 and continuing to the end.

N O T E
When a substring is extracted from a string, it is not removed, but rather only retrieved.
For example, in the demonstration involving a Social Security number, $SSN will still be
a nine-character string, and it will still be the same as it was before. You are not chang-
ing the string in any way; instead, you’re merely “taking a look” at what’s inside the
string.

The substr function is much more flexible than that, however. Let’s assume
for a moment that you’re not sure if the Social Security number has its
number groups separated by some character or not. Any of the following
assignments could be true:
$SSN = ‘012345678’;

or
$SSN = ‘012-34-5678’;

or even
$SSN = ‘012.34.5678’;

Independent of the rest of the string, if you know that the last four charac-
ters of the string are the last four digits of the number, you can retrieve the
last four characters from the end.

Counting from the end is especially important in this case because you
can’t be sure whether the string’s length will be 9 (just the nine digits) or
11 (the nine digits plus two separating characters). If you counted from the
beginning of the string, you would then have the problem of figuring out
what the starting position of the substring would be; it could be either 5 or
7. However, if you count from the end, the substring will always start 4
characters from the end.

E X A M P L E

To express this to substr, use a negative starting position. Doing so tells
substr to count from the end of the string instead of from the beginning.
However, unlike counting from the beginning of the string, when counting
from the end, the first character is –1 (not 0 or -0).

The following statement retrieves the last four digits, regardless of the for-
mat of the string:
$SSN_lastFour = substr($SSN, -4);

Notice that the length parameter is omitted. Because you’re trying to
retrieve everything up to the end of the string, it’s not necessary.

Now, try using the length parameter. The length parameter determines
how long the substring returned will be. For example, if length is specified
as 2, the substring returned will be two characters long. The following
example demonstrates this principle.
$str = ‘abcdef’;
echo substr($str, 0, 2); // outputs ‘ab’

In this example, the substring begins at the very first position in the string,
0, and it’s 2 characters long. Thus, the substring returned is the first two
characters of the string, ab.

The length parameter can also be negative. Like the start parameter, if the
length parameter is negative, it means count from the end of the string.
Thus, the ending position for the string will be length number of characters
from the end of the string. The character at the ending position specified is
included in the substring. Again, -1 is the first character when counting
from the end of the string.

Here’s an example:
$str = ‘abcdef’;
echo substr($str, 0, -2); // outputs ‘abcde’

Now, instead of the length of the string being 2, it’s however long it takes to
get 2 from the end (position -2). The string starts at the beginning (0), so
everything from the first character to the one before the last (-2) is
returned as the substring.

C A U T I O N
Because string index positions can be confusing, it’s a good idea to check the result of
substr calls with several different strings to make sure it is doing what you want it to
do. If it’s not, you can adjust the parameters you’re passing to it without too much of a
hassle; if you continue without testing, you may later find that you have a hard time
even figuring out where the problem is.

95String Functions

E X A M P L E

You may find that sometimes you need the length of a string. This is help-
ful if you want to get the last character of a string or check to make sure a
string isn’t too long to fit somewhere (such as a particularly limited place
on a Web page or in a size-limited database field).

To find the length of a string, use the strlen function, which has the follow-
ing syntax:
int strlen(string str)

To find the length of a string $str, then, you would use
echo strlen($str);

The complete number of characters (including whitespace characters such
as spaces and \n) is returned. Here’s an example:
$str = ‘This is a string.’;
$str2 = “Newlines!\nOne\nTwo”;
echo strlen($str) . ‘, ‘ . strlen($str2);

The output of this code would be 17, 17. Remember that even though the
second string appears longer, the \n sequence inside of double quotes is
interpreted as only one character. Thus, the two strings are of equal length.

Finding Substrings
If you already know where to find a substring within a string, things aren’t
too difficult. However, it’s not always so easy; sometimes you only know
where a substring is in relation to another string.

Let’s take a string representation of a number raised to a power as an
example. To interpret such a string, you would have to break the string into
two parts: the number and the power it’s supposed to be raised to.

Here’s an example string:
$numToPower = ‘20^2’;

Keep in mind that this example should be allowed to change; although our
example is 20^2, it could be 2^2, 3^5, or 5^10. Therefore, you have no idea
where the caret is going to be and where either number will begin or end.

So, in order to extract the numbers as substrings, you first must determine
the positions at which they start and end. You know that the first number
will always start at 0, and you know that the last number will always go to
the end. All you really have to figure out is where the first number ends
and the second begins.

If you knew the position of the caret, you could determine the positions you
needed: The first number would end 1 before the caret’s position, and the
second number would begin 1 after the caret’s position. Now you need to
find the caret’s position.

96 Chapter 5: String Manipulation

E X A M P L E

E X A M P L E

To do this, you’ll use the strpos function. The syntax for the strpos func-
tion is as follows:
int strpos(string str, string find [, int start])

str is the string to be searched, and find is the string to find. The optional
start parameter is used to limit where strpos starts searching for find
within str; for example, if you know there are three periods within a string,
but want to find the second one, you can rule out the first one by specifying
a start that is past it.

Here’s how strpos is used to find the caret in the preceding expression:
$caretPos = strpos($numToPower, ‘^’);

Supposing $numToPower was 20^2, $caretPos would now be 2 (the caret’s
index within the string). See Figure 5.2 for a visual depiction of how
strpos() arrives at this value.

97String Functions

String Length:

INDEX:

1 2 3 4

$numToPower: 2 0 ^ 2

[0] [1] [2] [3]

Figure 5.2: The index position of the caret is what’s returned by
strpos(‘20^2’, ‘^’).

Now, to get the two numbers, it’s only necessary to use $caretPos with the
preceding assertions describing where you will find the beginnings and ends
of the numbers in relation to the caret.

There is one complication, however. The substr function doesn’t take a start
and an end position, but rather a start and a length. To overcome this, you
have to calculate the length for the first number. (The second number’s
length can be unspecified because it will end at the end of the string.)

The caret position is 2; this tells us that there are 2 characters before the
caret: those at positions 0 and 1. If the caret were at 3, there would be 3
characters before it (those at 0, 1, and 2). At 4, there would be 4, and so on.
Therefore, you can simply use the caret’s position as the length of the sub-
string for the first number.

The last number starts at whatever position immediately follows the caret,
$caretPos + 1.

The following code extracts the two numbers from the string $numToPower:
<?php
/* ch05ex02.php – demonstrates strpos and substr functions */

$numToPower = ‘20^2’;
$caretPos = strpos($numToPower, ‘^’);

$num = substr($numToPower, 0, $caretPos);
$power = substr($numToPower, $caretPos + 1);

echo “You’re raising $num to the power of $power.”;
?>

Performing Basic String Replacements
Another type of string manipulation is comparable to a word processor’s
Find and Replace utilty. A string replacement occurs when a particular
string is replaced with another string within a larger string. This is com-
monly used for

• Removing possible occurrences of obscene words from publicly submit-
ted text

• Changing plain-text characters into HTML characters (such as regular
newlines into
 tags)

• Changing Windows return plus newline (\r\n) into Unix-formatted
newlines (\n)

The function to perform simple string replacements with is str_replace.
Here’s the syntax:
string str_replace(string find, string replace, string str)

Where find is the string that should be found, replace is the string to
replace all occurrences of find with, and str is the string to perform the
replacements in.

N O T E
Notice that str_replace returns a string. The only way to get the result of the replace-
ment is to store this return value (either to a new variable or even back to the original
variable passed as str). The str_replace function does not modify str on its own.

The use of str_replace is pretty straightforward. Let’s assume the string
$text contains some text a user submitted that’s going to be displayed on a
Web site. If the user pressed Enter anytime he was typing the text, he
would have inserted \n or \r\n into the text. However, these characters are
ignored when a browser is interpreting HTML. (You can break a line wher-
ever you want in HTML and the file will be processed exactly the same
way.) To get these linebreaks to show up, you must replace the \n sequences
with a
 tag. Here’s how this could be done:
$text = str_replace(“\n”, ‘
’, $text);

98 Chapter 5: String Manipulation

C A U T I O N
The difference between double quotes and single quotes is extremely important in this
example. The newline (\n) passed to str_replace must be the same as the one in
$text. Therefore, you must be sure to enclose the newline in double quotes. As with all
other strings, enclosing it in single quotes keeps PHP from interpreting it as a newline,
but rather forces PHP to interpret it as a slash and an ‘n’.

T I P
There is also a function that has been specifically created to handle this task called
nl2br. For more information, check out the PHP manual, as specified in Appendix A,
“Debugging and Error Handling.”

N O T E
The str_replace function has one drawback: It’s case-sensitive. If you want to find
only the capitalized word Fred then this is fine; however, if you want to find Fred, fred,
and FRED, you’ll need to use the pregi_replace function, which is mentioned later in
this chapter in “Replacements with Regular Expressions.”

The str_replace function can also perform multiple replacements at the
same time. Any of the three parameters may be specified as arrays. The
first parameter may be an array of several different substrings to find
within the string. Once found, the corresponding element of the array
passed as the second parameter is used as the replacement string. If the
second parameter was a single string, then that string will be used for all of
the replacements. This can go on for however many strings are in the array
passed as the third parameter, which may or may not be an array.

C A U T I O N
If the array for the second parameter has fewer elements than the one in the first param-
eter, empty strings will be used as the replacement strings for the missing elements. If
you’re replacing multiple strings with multiple values, be sure you have a value for each
string you’re replacing or you’ll end up simply removing the strings without replacing
them with anything.

The following example demonstrates the replacement of the strings “dog”,
“cat”, and “ferret” with the single word “animal”:
<?php
/* ch05ex2.php – demonstrates str_replace with array parameters */

$str = ‘My dog knows a cat that knows the ferret that stole my keys.’;
$find = Array(‘dog’, ‘cat’, ‘ferret’);

echo str_replace($find, ‘mammal’, $str);

?>

99String Functions

Here’s the output from this program:
My animal knows a mammal that knows the animal that stole my keys.

Now that you’ve replaced several words with one, try replacing them so
each word is replaced with a different word:
<?php
/* ch05ex3.php – demonstrates str_replace with array parameters */

$str = ‘My dog knows a cat that knows the ferret that stole my keys.’;
$find = Array(‘dog’, ‘cat’, ‘ferret’);
$replace = Array(‘wife’, ‘guy’, ‘thief’);

echo str_replace($find, $replace, $str);

?>

And here’s the output:
My wife knows a guy that knows the thief that stole my keys.

Pattern Matching with Regular Expressions
Although basic string replacements are very effective in some cases, they
are simply useless in others. For example, if you know exactly what you
want to replace, such as the word “dog”, str_replace is fine. However,
sometimes you only know how the word will appear in a file; somehow, you
have to “describe” what the word “looks like” so PHP can find it; regular
expressions are a way to write such a description using regular characters
along with wildcards—characters that stand for some unknown character
or group of characters.

A good example of this is an HTML anchor (<a href>) tag. If you have a
whole HTML page stored in a variable and want to find all of the links on
the page, the functions you’ve learned so far would require that you develop
a pretty complex algorithm for extracting this information. However, regu-
lar expressions allow you to specify that you know the string is something
like this:
SOME_OTHER_STRING

By doing so, you’ve eliminated most of the problem immediately. In addition
to being able to find substrings like this, you can do replacements with
them, or return the values you find (such as the values where SOME_STRING
and SOME_OTHER_STRING appear). In this case, you would be able to parse the
URL and text from HTML code (which could have been submitted by a visi-
tor or retrieved from another Web site). However, since you don’t know
what the actual text is that you’re looking for, str_replace doesn’t help any.

100 Chapter 5: String Manipulation

E X A M P L E

Pattern matching was created to accomplish this task. Pattern matching is
the process of comparing one string (the string in which substrings are to
be found) to another string that contains wildcard characters (the “descrip-
tion” of what the substring should “look like”). Wildcard characters are
characters that represent one character or a set of characters. An example
of a wildcard character is the asterisk; it is used on both Windows and
Unix-based systems to indicate “any character(s).”

For PHP, the wildcards are used in regular expressions, a standard for how
wildcards and other characters (collectively known as patterns) are written.

N O T E
In this section, you are discussing only PHP’s support for PCRE (Perl-compatible regular
expressions). If you have experience with other regular expressions, you may find some
of this to be a little different.

All of this new terminology at once is probably a bit confusing. The follow-
ing example demonstrates a short pattern and the text it matches:
Pattern: “hello”
Matches: “hello”

As you can see, the pattern only matches one string: itself. This is very
much like the behavior of str_replace; the only occurrences found are those
that are exactly like the one being searched for.

This example can be expanded a little bit to make it more useful. For exam-
ple, if you wanted to find the word “hello” anywhere in a sentence, you
could use a wildcard to specify that it’s okay for “hello” to be bordered by
any number of any characters.

The following example uses a regular expression function, preg_match,
which is discussed later in this chapter, to determine whether the word
“Hello” appears somewhere within a string:
<?php
/* ch05ex04.php - demonstrates simple use of regular expressions */

$string1 = ‘Hello, this is string one.’;
$string2 = ‘This is string two.’;

echo “String1 is: $string1
”;
if (preg_match(“/.*Hello.*/”, $string1))
{

echo “I found ‘Hello’ in this string.

”;
}
else
{

101Pattern Matching with Regular Expressions

E X A M P L E

echo “I didn’t find ‘Hello’ in this string.

”;
}

echo “String2 is: $string2
”;
if (preg_match(“/.*Hello.*/”, $string2))
{

echo “I found ‘Hello’ in this string.

”;
}
else
{

echo “I didn’t find ‘Hello’ in this string.

”;
}

?>

The output of this program is
String1 is: Hello, this is string one.
I found ‘Hello’ in this string.

String2 is: This is string two.
I didn’t find ‘Hello’ in this string.

Just as Windows and Unix-based systems use the asterisk to specify any
character, regular expressions (sometimes referred to as regexps, which is
pronounced “rej-exps”) use the period to indicate “any character.” This and
other wildcards are known as qualifiers. Table 5.1 shows the qualifiers PHP
recognizes in regular expressions:

Table 5.1: These Qualifiers Are Understood in PHP’s Regular Expressions

Qualifier Meaning
. Any character
^ The beginning of the string
$ The end of the string
[] Used to specify character classes

All other characters are also considered to be qualifiers, but these are the
special ones.

For example, to specify that a string may contain the word “hello” followed
by any three characters, I could use the expression “/Hello.../”. If I
wanted to ensure that the string matched is the only text within the string
we’re testing, I could specify that it border the beginning and end using the
appropriate qualifiers; “/^Hello...$/” would do the trick.

The following program demonstrates using these two expressions:
<?php
/* ch05ex05.php – uses some more regular expressions */

102 Chapter 5: String Manipulation

E X A M P L E

$string1 = ‘Hello---’; // This one matches both expressions
$string2 = ‘Hi, Hello---’; // This one isn’t at the beginning of the string
$string3 = ‘Hello’; // This one doesn’t have three characters after Hello

echo “String1 is: $string1
”;
if (preg_match(“/Hello.../”, $string1))
{

echo “I found ‘Hello...’ in this string;
checking to see if this is all that’s in the string... “;

if (preg_match(“/^Hello...$/”, $string1))
{

echo “it is.

”;
}
else
{

echo “it isn’t.

”;
}

}
else
{

echo “I didn’t find ‘Hello...’ in this string.

”;
}

echo “String2 is: $string2
”;
if (preg_match(“/Hello.../”, $string2))
{

echo “I found ‘Hello...’ in this string;
checking to see if this is all that’s in the string... “;

if (preg_match(“/^Hello...$/”, $string2))
{

echo “it is.

”;
}
else
{

echo “it isn’t.

”;
}

}
else
{

echo “I didn’t find ‘Hello...’ in this string.

”;
}

echo “String3 is: $string3
”;

103Pattern Matching with Regular Expressions

if (preg_match(“/Hello.../”, $string3))
{

echo “I found ‘Hello...’ in this string;
checking to see if this is all that’s in the string... “;

if (preg_match(“/^Hello...$/”, $string3))
{

echo “it is.

”;
}
else
{

echo “it isn’t.

”;
}

}
else
{

echo “I didn’t find ‘Hello...’ in this string.

”;
}

?>

The output of this program is
String1 is: Hello---
I found ‘Hello...’ in this string; checking to see if this is all that’s in the
string... it is.

String2 is: Hi, Hello---
I found ‘Hello...’ in this string; checking to see if this is all that’s in the
string... it isn’t.

String3 is: Hello
I didn’t find ‘Hello...’ in this string.

The last qualifier on the list is the set of square brackets. These are used to
define character classes, or certain groups of characters from which any one
character may be used. For example, if you wanted to allow only a vowel to
be picked, you might use the character class [aeiou], as in “b[aeiou]t”,
which would match “bat”, “bet”, “bit”, “bot”, and “but”. Notice that only one
character is allowed from the set.

You can also define character ranges within a character class using the
hyphen. To match any alphanumeric character, this character class could be
used: [a-zA-Z0-9].

Unlike Windows and Unix, however, one dot only allows for one occurrence
of a character. As you can see from the previous example, if you had an
unknown or large number of wildcard characters to match, things could

104 Chapter 5: String Manipulation

become quite confusing. Therefore, you have to specify how many of some-
thing you wish to allow. The following table shows you the modifiers used
to specify how many occurrences should be matched (therefore, known as
quantifiers)

Table 5.2: These Quantifiers Can Be Used to Specify How Many Occurrences of a
Certain Character Are to Be Matched

Quantifier Meaning
* Any number of occurrences (zero or more)
+ At least one occurrence (one or more)
? May or may not occur (zero or one)
{x} Exactly x number of occurrences
{x,y} At least x but not more than y occurrences
{x,} At least x occurrences

To use a quantifier, place it directly after a qualifier. The example above
could be reexpressed as “hello.{3}”.

N O T E
If you want to use an actual period, question mark, or so forth, precede it with two
backslashes (\\).

Just as you must escape quotes within a string, you must escape the special charac-
ters in regexps to get their literal meaning. This would normally be done with a single
slash; however, because the regular expressions are being expressed in double-quoted
strings, you have to make an exception. The slash that really escapes the special char-
acter must itself be escaped.

Before you move on, let’s spend a little bit of time practicing and getting
used to regular expressions:

• “hello.*” matches any string that begins with “hello”. It may include
much more text or it may terminate right after the “o”. Examples
include “hello, this is regexps 101” and “hello”.

• “.*hello.*” matches any string with the word “hello” in it. It could be
the word “hello” alone or any combination of things, as long as “hello”
appears somewhere within, such as “Why, hello John!” and “hello”.

• “^hello$” matches a string containing only the word “hello”. If other
characters are present, the match fails.

• “[a-zA-Z0-9]+” matches any string containing alphanumeric charac-
ters only, such as “John Smith” and “Smith150”.

• “<a.+href[]*=[]*[‘\”]?.*[‘\”]?.*>” matches an HTML anchor
tag. The initial <a is important to let us know you’re dealing with the

105Pattern Matching with Regular Expressions

right kind of tag. Then, any number of attributes (or just a space)
could appear between the “a” and the “href”. After the “href”, zero or
more spaces may appear, followed by an equals sign, followed by zero
or more spaces once again. A single, double, or no quote at all may
enclose the address (although, the last isn’t really valid HTML).

Notice that the double quote must be escaped with a slash to keep
from ending the double quoted string that contains the expression.
The href value itself is matched by the .* combination, and the open-
ing quote, if present, is closed, followed by any other attributes and
finally the end of the tag. This expression will become useful in
demonstrating functions later in this chapter. Make sure you under-
stand what each part of it does and why each character appears where
it appears.

This pattern is somewhat complex, so a more in-depth explanation of
it is necessary. An anchor tag that it is designed to match might look
like this:

The <a part of the pattern matches those characters in the string with
which we’re matching it. Following the <a, we expect at least one
space (or maybe other unexpected attributes such as style), so the
regular expression allows for any characters until it reaches href,
which matches the href in the string. Again, there may or may not be
spaces around the equals sign, so the expression includes a match for
[]* so the pattern works with any format, whether there are spaces
around the equals sign or not. After the equals sign, there may be a
double quote, a single quote, or no quote at all, which is matched by
[‘\”]? (zero or one of ‘ or “). The expression then matches everything
(.*) up to the closing quote [‘\”]?, which would signify the end of the
URL given for the href attribute. Again, as done before the href
attribute, the expression allows for other attributes (.*) before finding
the angle bracket that closes the tag (>).

The asterisk is a particularly tricky quantifier; it is referred to as a greedy
quantifier because it will match the biggest string it can. This can create
problems. Consider the following example string:
This is a test.

Notice that the tag isn’t just a simple two-component tag; instead, it has a
third component for class. The regular expression formulated in the pre-
ceding examples will match more of this string than you really intend for it
to match. Not only will it match the <a href> tag, but it will also match the
text This is a test. because at the end it is looking for the largest

106 Chapter 5: String Manipulation

E X A M P L E

string of any characters before the last > character. That’s just about
everything.

However, you can reverse the greediness of the expression by adding ques-
tion marks after the asterisk quantifiers, like this:
<a.+href[]*=[]*[‘\”]?.*?[‘\”]?.*?>

Notice that the two .* sequences got the addition of a question mark; this
will stop the asterisk from going for the biggest string it can find. Rather, it
will go until it finds the string following it in the regular expression (>).
Now, instead of going to the last tag, the expression will reach the
closing angle bracket of the first tag and will stop evaluating that part of
the expression. Thus, only the opening tag of the string is matched.

It’s also possible to let an expression match two (or more) completely differ-
ent textual occurrences. In the next section of this chapter, for example, the
goal is to match both the opening <a href> tag and the closing tag. To
do this, the expression must be able to say “pick either one of these”. This is
done by including an expression for both conditions in the expression and
separating the two with a pipe (|). This is read in the expression as “or”;
abc|def is the same as match abc or def in English.

Basic Pattern Matching
Now that you know the basics of pattern matching, here’s a chance to try
them out. The first thing you should do is get acquainted with the
preg_match function, which is the basic function for matching strings with
regular expressions in PHP. It follows this syntax:
bool preg_match($expr, $str [, $result])

Where $expr is the regular expression, which must have a delimiter added
to it. The easiest thing to do is add a forward slash to each end of the
string, like this: “/hello/”. The slashes are a carryover from Perl that
allows certain options to be added (but we won’t explore those). $str should
be the string being compared to the expression, and $result, if specified,
becomes an array holding the results of the match. This will be discussed in
more detail soon.

For now, let’s stick with simply testing to see if an expression matches a
string. At the beginning of the chapter, the idea of verifying that an email
address looks valid was mentioned, so let’s use that example for now.

Before you look at any code, let’s decide what an email address should look
like. The following example addresses are all valid email addresses you can
use to follow along as the attributes of an email address are described:

107Pattern Matching with Regular Expressions

example2001@example.com
example-email@example123.com
example.email@this-example.com
example_email@subdomain.example.com

First, you know an e-mail address has two basic parts of interest: that
before the @ sign and that after it. (Of course, the @ sign itself must be pre-
sent, too.) The part before the @ sign may consist of letters, numbers, peri-
ods, hyphens, and underscores. The part after the @ sign will be a domain
(letters, numbers, hyphens, and periods) with any number of subdomains.
For instance, a domain might be simply “example.com”, or it could be
“mail.example.com”, or even “in.mail.example.com”.

Now let’s construct the expression you’ll use. The first part of the e-mail
address can be expressed as this:
“[a-zA-Z0-9\.\-_]+”

Notice that the slashes keep the special characters from meaning anything
other than their literal form. Actually, it isn’t necessary to escape the period
(because it is always taken literally within brackets) or the underscore
(because it appears next to a bracket), but doing so can’t hurt anything.

The other part of the address is the domain. The expression for that
could be
“([a-zA-Z0-9\-]+\.)+[a-zA-Z0-9\-]+”

The first part of this expression accounts for the domain and possible sub-
domains, while the latter half accounts for the top-level domain (such as
.com, .org, or .net).

Now let’s put this together to verify an e-mail address. To do this, you’ll add
the beginning and ending qualifiers; if you don’t, strings such as
“ex:ample@example.com” will match although it’s not a valid address
because ample@example.com matches and you didn’t specify that nothing
else could be present in the variable; adding the beginning and ending
qualifiers will prevent this. You’ll also have to add the slashes for delimiters
on either end of the string. Here’s the resulting code:
$email = ‘example-email@example-domain.com’;
$validateEmail = “/^([a-zA-Z0-9\.\-_]+)\@({[a-zA-Z0-9\-]+\.}+[a-zA-Z0-9\-]+)$/”;

echo (int) preg_match($validateEmail, $email); // echos 1 for match, 0 for no
match

You could insert this code into any program where you wanted to check an
e-mail address for typos and it would work with very little modification.

108 Chapter 5: String Manipulation

E X A M P L E

There’s also the optional result parameter. If supplied, this parameter
becomes an array containing the values of what the regular expression
matched. For example, the previous code would yield an array with element
0 being ‘example@example.com’, 1 being ‘example-email’, and 2 being
‘example-domain.com’.

There are rules that dictate which elements of the array contain which
matched strings. The first element (0) is always the value of the whole
string that was matched. The strings under that (1, 2, 3, and so on) are
numbered as the left parenthesis is encountered from left to right. Figure
5.3 illustrates the sequencing of the elements of the array containing the
expression’s matches:

109Pattern Matching with Regular Expressions

String: example-email@example-domain.com

Expression: /^([a-zA-Z0-9\.\-_]+)\@({[a-zA-Z0-9\-]+\.}+ [a-zA-Z0-9\-]+)$/

Result Array: [0] => example-email@example-domain.com

[1] => example-email

[2] => example-domain

Figure 5.3: The elements of the result array will contain the different parts
of this regular expression’s match results.

Replacements with Regular Expressions
Just as you can check to see if a string matches a pattern, you can perform
replacements when strings match particular patterns. Replacements can
be the same for all matches of a certain pattern, or they can be based upon
what is matched.

The function you’re going to use to perform these replacements is
preg_replace. This function uses the following syntax:
string preg_replace(string pattern, string replacement, string str [, int limit])

Where pattern is the pattern to match, replacement is the string to replace
the pattern with, str is the string to be replacing in, and the optional
parameter limit is the number of times a replacement can be made.

T I P
preg_replace is case sensitive (which means Jim and jim aren’t considered the
same). A case insensitive version, pregi_replace (the “i” stands for “insensitive”),
takes the same parameters, but works in a case-insensitive fashion, so that Jim, jim,
and JIM are all the same.

Let’s try a replacement in which all of the links (<a href>… tags) in a
string are replaced by the text “[Link]”. This requires that you go back to
the href pattern you created before. The following code contains that
expression:
$match = “<a.+href[]*=[]*[‘\”]?.*[‘\”]?.*>”;

Although this matches the tag when the tag is the only thing in a variable,
in a longer variable, it’s too greedy. This expression would end up matching
everything from <a href to . To stop this, turn off the greediness of the
asterisk by following it with a question mark.

Another problem with the match string is that it only matches the opening
tag and not the closing tag. We need to add a provision for it to match the
closing tag, also. This is done with an “or” operator (|).

Here’s the code after those changes:
$match = “<a.+href[]*=[]*[‘\”]?.*?[‘\”]?.*?>|”;

From there, all we have to do is add the delimiter slashes and pass it to the
function. In adding the delimiter slashes, you have to escape the forward
slash in the closing link tag.

The following example completes the process:
<?php
/* ch05ex06.php – replaces all links in a page with [Link] */

$str = <<<END_OF_HTML
This is a link.

If you want a link, go here.
END_OF_HTML;

$match = “/<a.+href[]*=[]*[‘\”]?.*?[‘\”]?.*?>|<\/a>/i”; // case-insensitive

echo preg_replace($match, ‘[Link]’, $str);

?>

The output for this segment is
[Link]This[Link] is a link.
If you want a [Link]link[Link], go here.

Some replacements with regular expressions are a little more complicated.
For example, say you want to make all the e-mail addresses within a string
clickable. To do this you need to find the e-mail addresses, then replace
those with a string that includes the e-mail address you found both in the
link and as the link text.

110 Chapter 5: String Manipulation

E X A M P L E

The first step to referencing text that was matched is to understand how
parentheses influence the referencing of text. Every set of parentheses in a
regular expression means that it is a segment of the expression that is to be
referenced. If you don’t intend to reference the value of a matched expres-
sion, it’s generally a good idea not to enclose it in parentheses unless you
have to.

Now you need to be able to use the value of a certain set of parentheses.
Each value is a variable named after an integer in numeric sequence, start-
ing at one. As a rule, the whole matched string is always $0. So the first set
of parentheses encountered from the left would be $1, the second would be
$2, and so on.

To match an e-mail address, use the expression
$matchEmail = ‘/[a-zA-Z0-9\.\-_]+\@([a-zA-Z0-9\-]+\.)+[a-zA-Z0-9\-]+/’;

And to make it clickable, do a preg_replace like this:
$str = ‘This is my email address: example@example.com. Try it!’;
$matchEmail = ‘/[a-zA-Z0-9\.\-_]+\@([a-zA-Z0-9\-]+\.)+[a-zA-Z0-9\-]+/’;

echo preg_replace($matchEmail, “$0”, $str);

The preg_replace goes through the string and finds anything that looks
like an e-mail address (as we’ve specified in the regular expression) and
replaces it with a link, using the value found with the regular expression
both as the link value and the link text. Here’s the HTML output:
This is my email address:

example@example.com. Try it!

This covers the basic idea behind doing string replacements with refer-
ences. Using references, you’re able to manipulate text to a virtually
unlimited extent.

What’s Next
Now that you’ve learned about input and output, variables, and variable
manipulation (including math and string functions), you’re ready to move
on to the next step.

In the next few chapters, you’ll learn how to include conditional logic (mak-
ing decisions such as “if this is true, do this; otherwise, do that”) and also
repetition (repeat a group of commands a number of times). These new
additions will give your programs a surprising amount of new power.

111What’s Next

E X A M P L E

Part II

Control Structures

The if, elseif, and else Statements

The switch Statement

Using while and do-while

Using for and foreach

6

The if, elseif, and else Statements
It’s time for your programs to make decisions. As variables within your pro-
gram change, there will be times when you’ll want to test to see if a vari-
able meets certain conditions.

The example I’ll use throughout this chapter is an online login form. If a
visitor enters the correct username and password, he has been verified as
someone with special permission to see whatever the program does. On the
other hand, if the visitor doesn’t enter the right username and password, he
shouldn’t be given any sort of privileges.

This chapter teachers you the following:

• The fundamentals of Boolean comparison

• Conditional expressions and operators

• How to combine expressions with logical operators

• How to nest conditionals

Basic Conditionals
In the simplest sense, all decisions are made based on a condition: some-
thing that may or may not be true.

To see this, look at a few of the decisions you might make from day to day:

• If it’s trash day, take the trash to the curb.

• If the car is low on gas, stop and fill it up.

• If it’s raining, take an umbrella.

Notice that all of these statements follow a certain pattern: A condition is
given, and then an action is given that should be performed if and only if
the condition is true.

Thus, if it’s trash day and you consider the first example, the condition
(whether it’s trash day) will be true. So, you take the trash to the curb (or
tell somebody else to do it).

The if statement specifies a command (or multiple commands) that should
be executed if a given condition is true. An if statement evaluates its condi-
tion as a Boolean expression; if a condition doesn’t result in a Boolean
value, it is typecast to a Boolean.

N O T E
You may wish to review Chapter 2, “Variables and Constants,” for information about
Booleans and the rules followed by PHP in typecasting other types to Booleans.

The if statement follows this syntax:
if (condition)
{

statements
}
[else
{

statements
}]

N O T E
The lines enclosed in braces are collectively called a block.

Condition is any statement or expression that evaluates to true or false.
Statements may be one or more statements formatted just as any other
PHP statements would be formatted, except indented one level deeper (usu-
ally four spaces or one tab) for good style. The optional else keyword and

116 Chapter 6: The if, elseif, and else Statements

block allow you to execute a different set of statements when the condition
is false. else will be discussed later in this chapter, in “Using elseif and
else Statements.”

The following example helps demonstrate the syntax to use with if
statements:
<?php
/* ch06ex01.php – demonstrates simple use of if statement */

// Condition 1
if (true)
{

echo “Condition 1 outputs this.”;
}

// Condition 2
if (false)
{

echo “Condition 2 outputs this.”;
}

?>

When you run this program, only the following text appears:
Condition 1 outputs this.

The first if statement finds that the condition specified in parentheses is
true, so it executes the command given after it in curly braces. (If you want
the condition to execute multiple commands, you can place the additional
commands inside the curly braces.)

The second if statement doesn’t allow the code below it to execute, though,
because the condition it’s given is explicitly given as false.

N O T E
The previous example always prints the result as shown.

Code such as this, however, has no practical use; if you’re just going to specify true or
false as the condition, you might as well leave the if statement out altogether.
Instead, if statements are more appropriately used with variables and constants.

The following program shifts from using explicit true/false values, which
aren’t very useful in a practical program, to using variables that will evalu-
ate to a true or false value (all variables evaluate to one or the other,
depending on their value):
<?php
/* ch06ex01.php - demonstrates simple use of if statement */

117Basic Conditionals

E X A M P L E

$condition1 = 1; // Evaluates to true
$condition2 = 0; // Evaluates to false

// Test condition 1
if ($condition1)
{

echo “Condition 1 is true.”;
}
else
{

echo “Condition 1 is false.
 \n”;
}

// Test condition 2
if ($condition2)
{

echo “<p>Condition 2 is true.</p>”;
}
else
{

echo “<p>Condition 2 is false.</p>”;
}

?>

The output from this program is
Condition 1 is false.
Condition 2 is true.

Almost all statements, namely function calls, have a value associated with
them. For example, preg_match evaluates to 1 if a match is found; other-
wise, it returns 0.

N O T E
When functions, such as preg_match, evaluate to a value, it’s commonly said in the
programming vernacular that the function “returns” the value. When a value is said to
be returned, it is the same as if the function evaluated directly to that value.

✔ To learn more about return values, see “Returning a Value,” p. 199.

The following example demonstrates the use of a function’s return value:
<?php
/* ch06ex02.php – demonstrates function’s return value */

$intFirstResult = preg_match(‘/abc/’, ‘abcdef’); // match found, evaluates to 1
$intSecondResult = preg_match(‘/abc/’, ‘defghi’); // match not found, evaluates
to 0

118 Chapter 6: The if, elseif, and else Statements

E X A M P L E

echo “\$intFirstResult = $intFirstResult
”;
echo “\$intSecondResult = $intSecondResult
”;

?>

This program yields the following output:
$intFirstResult = 1
$intSecondResult = 0

Thus, you can see that the first call to preg_match returns true, and the sec-
ond call returns false (both represented here numerically).

Such a return value is often evaluated within an if statement. For exam-
ple, to see if “abc” is found in “abcdef”, an if statement such as the follow-
ing could be constructed:

<?php
/* ch06ex03.php – tests whether string is found */

// initialize variables
$strContainer = ‘abcdef’;
$strFirstTest = ‘abc’;
$strSecondTest = ‘ghi’;

// See if $strFirstTest is in $strContainer
if (preg_match(“/$strFirstTest/”, $strContainer))

// notice the double closing parenthesis; one for
{

// preg_match and one for the if statement
echo “‘$strFirstTest’ was found in ‘$strContainer’”;

}

// Separate first result from second result with an HTML line break
echo “
”;

// See if $strSecondTest is in $strContainer
if (preg_match(“/$strSecondTest/”, $strContainer))
{

echo “‘$strSecondTest’ was found in ‘$strContainer’.”;
}

?>

Since only $strFirstTest is found in $strContainer, the output is
‘abc’ was found in ‘abcdef’.

119Basic Conditionals

Try this program with other values, if you wish. Add the contents of
$strSecondTest to $strContainer, for example, to see how the second if
statement reacts when a match is found.

Using elseif and else Statements
Many times, you don’t want to do something only if a condition is true, but
also do something if it isn’t true. For example, using preg_match as shown
previously, you might wish to tell a visitor whether a match was found or
not. Therefore, you must output something depending on if the call to
preg_match succeeds or fails, but the program must never output both
statements.

This is accomplished using an else statement, which follows this syntax:
if (condition)
{

statements
} else {

other-statements
}

N O T E
When if and else statements are combined, they can be referred to collectively as an
if-else clause.

So, to tell a visitor whether a match was found, you could use
<?php
/* ch06ex04.php – tells visitor whether match was found or not */

// initialize variables
$strContainer = ‘abcdef’;
$strFirstTest = ‘abc’;
$strSecondTest = ‘ghi’;

// See if $strFirstTest is in $strContainer
if (preg_match(“/$strFirstTest/”, $strContainer))

// notice the double closing parenthesis; one for
{

// preg_match and one for the if statement
echo “‘$strFirstTest’ was found in ‘$strContainer’”;

} else {
echo “‘$strFirstTest’ was not found in ‘$strContainer’”;

}

// Separate first result from second result with an HTML line break
echo “
”;

120 Chapter 6: The if, elseif, and else Statements

E X A M P L E

// See if $strSecondTest is in $strContainer
if (preg_match(“/$strSecondTest/”, $strContainer))
{

echo “‘$strSecondTest’ was found in ‘$strContainer’”;
} else {

echo “‘$strSecondTest’ was not found in ‘$strContainer’”;
}

?>

Running this program produces the following output:
‘abc’ was found in ‘abcdef’
‘ghi’ was not found in ‘abcdef’

As you can see, the program now has a reaction for both conditions: If the
match is found, it says one thing, but if a match isn’t found, it says another.

You may also have a certain series of conditions, for each of which you wish
to perform a certain task. In English, this would equate to: “If condition A
is true, do this; or if condition B is true, do this; otherwise, do this.” There
could be more conditions checked, as well; they would be phrased like con-
dition B.

For example, let’s assume you want to place someone into a four-category
age-grouping system. The age groups are divided as follows:

• Group A—Ages 20 and younger

• Group B—Ages 21 to 40

• Group C—Ages 41 to 60

• Group D—Ages 61 and older

This involves using a combination of if, elseif, and else to find which age
group is appropriate and assign the corresponding letter to a variable.

T I P
The less than operator (<) is used in this example; it is introduced in more depth a bit
later in this chapter.

Basically, an expression using the less than sign evaluates to true if the left operand is
less than the right operand.

Here’s the program:
<?php
/* ch06ex05.php – assigns an age group for the specified age */

// Grab $intAge from POST array
$intAge = $HTTP_POST_VARS[‘age’];

121Basic Conditionals

E X A M P L E

// If the form has been submitted
if ($intAge) // will be true if it’s been submitted (can’t be 0)
{

// Assign age group letter to $chrAgeGroup
if ($intAge < 21) // Ages 20 and younger
{

$chrAgeGroup = ‘A’;
} elseif ($intAge < 41) { // Ages 21 – 40

$chrAgeGroup = ‘B’;
} elseif ($intAge < 61) { // Ages 41 – 60

$chrAgeGroup = ‘C’;
} else { // Ages 61 and older

$chrAgeGroup = ‘D’;
}

// Show age group chosen
echo “Age $intAge fits into age group $chrAgeGroup”;

}

?>
<!-- Here’s the HTML form we get input from -->
<form action=”ch06ex05.php” method=”POST”>
Age: <input type=”text” name=”age”><input type=”submit”>
</form>

Here are some samples of the program’s output:
Age 14 fits into age group A

Age 37 fits into age group B

Age 99 fits into age group D

N O T E
Notice the difference here between an if-else clause and multiple if statements. If
multiple if statements were used and the age were, say, 20, not only would that condi-
tion be true (assigning ‘A’ to $chrAgeGroup), but the two conditions following it would
be true also because 20 is less than 41 and 20 is less than 61. Thus, only the last
value, ‘C’, would be assigned to $chrAgeGroup, and the age group assigned would be
incorrect.

You can also nest if statements; that is, you can include one or more if
statements within the statements surrounded by another if statement.
Thus, you can check one condition, and if it is true, you can check another
condition and perform different actions depending on the inner condition.
(The inner if statement, in effect, is evaluated only if the outer one is true.)

122 Chapter 6: The if, elseif, and else Statements

Nested if statements can be nested to any number of levels, as shown here:
if (condition)
{

if (condition)
{

if (condition)
{

if (condition)
{

// etc.
}

}
}

}

Each condition represents a condition you want to test. Each of these if
statements may also have accompanying elseif and else statements, as
necessary.

For example, the following program improves Example 5 to determine
whether the input submitted is numeric before it tries to determine the
number’s category; if for some reason something other than a number is
submitted, an error message is displayed.
<?php
/* ch05ex06.php – demonstrates nested if statements */

// Grab $intAge from POST array
$intAge = $HTTP_POST_VARS[‘age’];

// If the form has been submitted
if ($intAge) // will be true if it’s been submitted (can’t be 0)
{

if (is_numeric($intAge)) // A number was given
{

// Assign age group letter to $chrAgeGroup
if ($intAge < 21) // Ages 20 and younger
{

$chrAgeGroup = ‘A’;
} elseif ($intAge < 41) { // Ages 21 – 40

$chrAgeGroup = ‘B’;
} elseif ($intAge < 61) { // Ages 41 – 60

$chrAgeGroup = ‘C’;
} else { // Ages 61 and older

$chrAgeGroup = ‘D’;
}

123Basic Conditionals

// Show age group chosen
echo “Age $intAge fits into age group $chrAgeGroup”;

}
else // It wasn’t a number; print an error message
{

echo “You must enter a number!

”;
}

}

?>
<!-- Here’s the HTML form we get input from -->
<form action=”ch06ex06.php” method=”POST”>
Age: <input type=”text” name=”age”><input type=”submit”>
</form>

N O T E
The is_numeric function is very straightforward: It takes one argument and returns
true if the argument is a number; otherwise, it returns false.

The if statements here are nested—there’s one that has most of the rest of
the program in its code block. Then, the second if has yet another if
within its code block. This way, your program can perform different tasks
based on the conditions.

N O T E
The indentation shown here is an important attribute of programming style.

As mentioned in Chapter 1, “Welcome to PHP,” the indentation brings much clarity to
the organization of your program. The if statements above would surely be harder to
evaluate if they were all aligned even with the left edge. By indenting each if block to a
new level, you demonstrate visually that program execution will never make it to the
inner (indented) levels without first passing through the conditions given by the outer
levels (to the left of the current level).

So, for program execution to reach the innermost level of three levels, all three condi-
tions must be met. Indenting each block of code makes this relationship obvious on
first sight—instead of forcing someone reading your code to match curly braces to find
where blocks begin and end.

The if statements you’ve explored so far evaluate only a single value that
is either true of false; many times, though, you’re not at all interested in
whether a value is simply true or false. Rather, you’re interested in how
one value compares to another.

124 Chapter 6: The if, elseif, and else Statements

Here are a few examples:

• Is $intA less than $intB?

• Does $strA have the same value as $strB?

• Is $form[‘emailAddress’] empty, or does it contain something?

These comparisons can all be made using conditional operators, which are
operators that compare two values and return a Boolean value.

N O T E
Because of their purpose, conditional operators are sometimes referred to as compari-
son operators.

The syntax for conditional operators is the same as other binary operators;
that is, one value should be placed on each side of the operator, as shown
here:
value operator value

Table 6.1: The Comparison Operators

Operator Name Example
== Equal $var1 == $var2

=== Identical $var1 === $var2

!= Not equal $var1 != $var2

!== Not identical $var1 !== $var2

> Greater than $var1 > $var2

>= Greater than or equal to $var1 >= $var2

< Less than $var1 < $var2

<= Less than or equal to $var1 <= $var2

N O T E
The == and === operators (and their != and !== relatives) aren’t the same. The first,
which checks two values for equality, compares two values of the same data type. If
they aren’t the same type, == typecasts them before they are compared. Therefore, the
string “1” and the integer 1 are the same.

On the other hand, === checks each value’s type before comparing the actual value. If
the types don’t match, the variables aren’t considered the same, and false is returned.
Only if two variables are identical (that is, their type and value both match) will this
operator return true.

125Basic Conditionals

To use an if statement to see whether a form field was filled out, you could
use
if ($form[‘username’] == ‘’)
{

echo ‘You must enter a username.’;
}

As you can see, this tests to see if $form[‘username’] is an empty string
or not.

N O T E
This example assumes that a reference called $form has been made from
$HTTP_POST_VARS or $HTTP_GET_VARS, whichever is appropriate.

T I P
The isset() and empty() functions are also sometimes used for this purpose.
However, isset() tests only whether a variable has been declared (thus it could be
empty). The empty() function considers “0” and “” to both be the same, so even if “0”
is a legitimate choice, it will be rejected because it is considered by empty to be the
same as “”.

Therefore, the best way to test if a form field was filled or not is to test to see if it is
equal or not equal to an empty string.

Let’s try using this technique to create a single-page login form. (This will
later be expanded into a file that can ensure a user is logged in for any
number of pages.)

The file should react depending on the data passed to it. For starters, if a
username and password aren’t supplied, a login form should be shown
requesting this information. This is what happens the first time that a user
goes to the page.

Once a username and password are supplied, they should be verified for
correctness. If they’re not correct, the login form should be returned with
an error message stating that the username and password weren’t
accepted. If they are correct, the user should be shown whatever is being
protected on the page.

Since this program performs several different tasks, let’s divide them up so
you can see how the tasks relate to each other. Here’s a flow chart showing
the different tasks the program will perform:

126 Chapter 6: The if, elseif, and else Statements

E X A M P L E

Figure 6.1: This flow chart illustrates the path Example 6’s logic will
follow.

From this, you know that the program must make two decisions: whether
data has been posted, and, if so, whether the data is the correct username
and password. Also, since you’re passing username and password informa-
tion, you’ll be using the post method; thus, you’ll create a reference called
$form to $HTTP_POST_DATA. Here’s a program skeleton with the code for these
first two requirements:
<?php
/* ch06ex06a – login form program skeleton showing structure of if statements */

// define allowed username/password pair
define(‘ALLOWED_USER’, ‘administrator’);
define(‘ALLOWED_PASS’, ‘abc123’);

// create reference to form based on the form method used
$form =& $HTTP_POST_VARS;

if (($form[‘username’] == ‘’) || ($form[‘password’] == ‘’))
{

// Show a login form

} else {

if (($form[‘username’] == ALLOWED_USER) && ($form[‘password’] ==
ALLOWED_PASS))

{

127Basic Conditionals

Get login information

Check whether the username and password are empty

Check if the username
and password are right

Show a login form

Show protected
page

Show login form with
error message

They're not empty They're empty

They're right They're wrong

Stop

E X A M P L E

// User verified OK; return protected page

} else {

// User provided bad login info; return login form with error message

} // end if

} // end if

?>

N O T E
The && operator means “and”; it’s a logical operator that we haven’t discussed yet, but
its purpose here should be clear. Only if both conditions are true will the whole condi-
tion evaluate to true.

The || operator evaluates to true if either condition is true.

These and the other logical operators are discussed later in this chapter.

Notice that the first if statement only checks to see if a username and
password were submitted. Whether the password is actually correct or not
is determined by a nested if statement after the program has determined
that there is a username and password pair to test in the first place.

The benefit of the nested if statements is that different pages can be
shown depending on the conditions. If the username and password simply
aren’t given, a basic login form can be displayed to request the missing
data. On the other hand, if the username and password were given but are
incorrect, a different page can be shown stating that the data provided was
not accepted and a form can be provided to allow the user to try again.

Here’s how you would complete this program:
<?php
/* ch06ex06b – login form program */

// define allowed username/password pair
define(‘ALLOWED_USER’, ‘administrator’);
define(‘ALLOWED_PASS’, ‘abc123’);

// create reference to form based on the form method used
$form =& $HTTP_POST_VARS;

if (($form[‘username’] == ‘’) || ($form[‘password’] == ‘’))
{

128 Chapter 6: The if, elseif, and else Statements

// Show a login form
?>

<html>
<head><title>Chapter 6 :: Example 6 :: Login Form</title></head>
<body>

<h2>Login</h2>

<form action=”<?= $PHP_SELF ?>” method=”post”>

Username: <input type=”text” name=”username”>

Password: <input type=”password” name=”password”>
<input type=”submit” value=”Login”>

</form>

</body>
</html>

<?php
// End of login form

} else {

if (($form[‘username’] == ALLOWED_USER) && ($form[‘password’] ==
ALLOWED_PASS))

{

// User verified OK; return protected page
?>

<html>
<head><title>Chapter 6 :: Example 6 :: Protected Page</title></head>
<body>

<h2>Login Successful</h2>

This page would contain the protected information, such as management
facilities for the site, information intended for only a certain person
or group of people, etc.

</body>
</html>

<?php
// End of protected page

129Basic Conditionals

} else {

// User provided bad login info; return login form with error message
?>

<html>
<head><title>Chapter 6 :: Example 6 :: Login Form – Error</title></head>
<body>

<h2>Login</h2>
<h4>The username and password you entered were not valid.</h4>

<form action=”<?= $PHP_SELF ?>” method=”post”>

Username: <input type=”text” name=”username”>

Password: <input type=”password” name=”password”>
<input type=”submit” value=”Login”>

</form>

</body>
</html>

<?php
// End of login form with error message

} // end if

} // end if

?>

T I P
The $PHP_SELF variable is defined by PHP to be a valid URL for the script being
accessed. Thus, having a form post to $PHP_SELF ensures that no matter what the file
is named or where it is, it will always submit to its own address.

Expressing Multiple Conditions
Using if-elseif-else clauses and nesting if statements are good if you
have an action to perform for each condition. However, this isn’t always the
case. For example, in the login example given earlier in this chapter, it was
necessary to check both the username and password at the same time. You
don’t really care if only one of them is correct; you just want to know if they
both are.

130 Chapter 6: The if, elseif, and else Statements

So, the two expressions
$form[‘username’] == ALLOWED_USER

and
$form[‘password’] == ALLOWED_PASS

are combined into one using a logical operator; that is, an operator that
evaluates Boolean values according to certain rules and returns a Boolean
value.

The logical operator in this case was && (and), as shown here:
($form[‘username’] == ALLOWED_USER) && ($form[‘password’] == ALLOWED_PASS)

N O T E
The parentheses here aren’t necessary, per se, but they’re beneficial to the readability
of the expression as a whole.

The && operator returns true if and only if both operands are true. So, if the
username and password are both correct, the expression evaluates to true.
Otherwise (if one or both are incorrect), it evaluates to false. Table 6.2 lists
PHP’s logical operators.

Table 6.2: This Table Shows the Logical Operators Listed in Order of Precedence

Operator Name Example
AND And $var1 and $var2

OR Or $var1 or $var2

XOR Exclusive or $var1 xor $var2

&& And $var1 && $var2

|| Or $var1 || $var2

! Not !$var1

Let’s take a closer look at each of these operators to make sure you have a
clear understanding of each one’s function.

N O T E
The && and || operators are shown in the same tables as their relatives, and and or,
because their only difference is their precedence.

Table 6.3 shows the behavior of the AND operator in detail.

Table 6.3: The AND (or &&) Operator Requires That Both of the Values Be True

Left Value Right Value Return Value
True True True
True False False
False True False
False False False

131Expressing Multiple Conditions

As you can see, the AND operator is used to verify that two Boolean values
are both true.

For example, to make sure a user gave his first and last names, and assum-
ing that $form has been referenced to the appropriate input variable
($HTTP_POST_VARS, $HTTP_GET_VARS), you could use
($form[‘fname’] != ‘’) && ($form[‘lname’] != ‘’)

Using this condition, each variable ($form[‘fname’] and $form[‘lname’])
must not be empty.

Typically, you will find && used instead of and. However, as long as you real-
ize that and has higher precedence than &&, it’s acceptable to use either one.

For example, if I wanted to use and instead of &&, I would simply use the
condition:
($form[‘fname’] != ‘’) and ($form[‘lname’] != ‘’)

This condition is functionally equivalent to the condition given before that
used &&.

T I P
Either way, the operator is read as “and.” So, both conditions are read as,
“$form[‘fname’] isn’t empty and $form[‘lname’] isn’t empty.”

Table 6.4 shows the behavior of the OR operator in detail.

Table 6.4: The OR (or ||) Operator Requires That at Least One of the Values Be True

Left Value Right Value Return Value
True True True
True False True
False True True
False False False

The OR operator is used to find out if either value given in a conditional is
true.

For example, a user could be required to choose between two different
options; let’s say it’s a subscription level for an online magazine. The choice
would be between “standard” and “premium,” but one of the two must be
chosen (true), the option can’t be left blank (false).

Thus, you could use a conditional like this:
($form[‘standard’] == True) || ($form[‘premium’] == True)

This would ensure that at least one of the values was true.

Table 6.5 shows the behavior of the XOR operator in detail.

132 Chapter 6: The if, elseif, and else Statements

E X A M P L E

E X A M P L E

Table 6.5: The XOR Operator Requires That Only One of the Values Be True

Left Value Right Value Return Value
True True False
True False True
False True True
False False False

The XOR (exclusive or) operator has no symbolic operator akin to it (like &&
or ||). Its purpose is to ensure that only one of the values is true. So, unlike
OR, if both values are true, XOR will return false.

Consider the example given above for OR. In that case, both values could
conceivably be true, in which case there is the ambiguity of which one is
intended or correct. However, by using the XOR operator in the condition,
both values would not be allowed to slip through being true. Here’s how the
conditional would look:
($form[‘standard’] == True) xor ($form[‘premium’] == True)

Finally, the last logical operator, the NOT operator, is shown in Table 6.6.
This operator is used to reverse any Boolean value; if the value is 1, then 0
is returned, and vice versa.

To use the NOT operator, you simply place it before a Boolean value. As with
all of the logical operators, if a value used with NOT isn’t a Boolean value, it
will be typecast to a Boolean first.

Table 6.6: The NOT (or !) Operator Reverses the Value of a Boolean Value

Right Value Return Value
True False
False True

So, if $boolVal is true,
echo !$boolVal;

displays 0. On the other hand, if $boolVal is false,
echo !$boolVal;

displays 1.

Short Circuit Evaluation
To make PHP more efficient, a shortcut is sometimes taken in evaluating a
conditional. This never changes the outcome of the condition’s evaluation,
but it might keep things from happening that you might expect to happen.

133Short Circuit Evaluation

E X A M P L E

E X A M P L E

The shortcut is called short circuit evaluation. This occurs when PHP
decides there’s no need for it to evaluate any more of the condition because
it already knows the outcome. This happens when

• The first part of a condition with and in it evaluates to false,
because both values in such a condition must evaluate to true.
If one evaluates to false, PHP knows the condition can’t possibly eval-
uate to true.

• The first part of a condition with or in it evaluates to true,
because only one value in such a condition must evaluate to
true. So, if the first evaluates to true, it doesn’t matter if the second is
true or false; the condition as a whole will be true.

The problem this presents is if you use if statements with assignments or
calls to functions in them. For example, an assignment returns the value
that was being assigned. This is often used to assign a value and check to
see if it evaluates to true or false as a Boolean at the same time. However,
if the assignment appears in the second part of the conditional and the first
part causes the rest to be skipped, the assignment will never take place.

Therefore, the following example script produces no output:
<?php
/* ch06ex07 – shows no output because of short circuit evaluation */

if (true || $intVal = 5) // short circuits after true
{

echo $intVal; // will be empty because the assignment never took place
}

?>

This program outputs nothing because the assignment of $intVal never
takes place, so although the echo statement is executed, $intVal is empty
and nothing is outputted.

Short circuit evaluation can also have an effect on calls to functions that
change the value of a variable. This is for the same reason that causes
assignments to be skipped. Therefore, it’s always recommended that assign-
ments and calls to functions, which change variables, be placed outside of
conditionals; if the value the function returns is needed in the conditional,
store it in a variable first and put the variable in the conditional.

134 Chapter 6: The if, elseif, and else Statements

E X A M P L E

What’s Next
Now that you understand if statements and conditionals, let’s move ahead
in the next chapter to switch statements. Like if statements, switch state-
ments use conditionals to make “decisions” during execution. However,
switch statements can be used with multiple conditions more easily. The
next chapter will explore this statement with you in depth.

135What’s Next

7

The switch Statement
As you learned in the previous chapter, an if-elseif-else clause is ideal for
making decisions based on any number of conditions. The switch statement
performs a very similar function. However, unlike an if-elseif-else clause,
the switch statement compares one value to any number of possibilities
specified by the programmer. This behavior will be explained in more depth
as you move further into this chapter.

This chapter teaches you the following:

• The differences between switch and if-elseif-else

• The syntax for the switch statement

• How to break switch statement execution

• How to specify a default case

• How to create multifunction pages

Introducing the switch Statement
A switch statement is used to compare a single variable with multiple pos-
sible values. For example, in the previous chapter you created a program to
determine a user’s age group (A, B, C, or D) depending on his age. If you
wanted the program to invert this process, say to give the user a friendlier
representation of his age group (such as 20 and younger, 21 to 40, and so
on), you would use a switch statement to compare the age group to the four
letters A, B, C, and D to see which letter matched.

Granted, this could be done with an if statement, but switch has some
advantages over if, namely speed and style.

First of all, if is slower than switch. When you use if and elseif state-
ments, PHP evaluates each condition separately. For example, let’s say you
chose to code the program I just described using an if-elseif-else clause;
it would probably look a lot like this:
<?php
/* ch07ex01.php – demonstrates age group output using an if-elseif-else clause */

// Specify age group
$chrAgeGroup = ‘B’;

// Output user-friendly representation of age group
if ($chrAgeGroup == ‘A’) // Group A: 20 and younger
{

echo “Ages 20 and younger”;
}
elseif ($chrAgeGroup == ‘B’) // Group B: 21 – 40
{

echo “Ages 21 to 40”;
}
elseif ($chrAgeGroup == ‘C’) // Group C: 41 – 60
{

echo “Ages 41 to 60”;
}
else // Group D: 61 and older
{

echo “Ages 61 and older”;
}

?>

This program works just fine. For example, if you were to run it as is, the
output would be:
Ages 21 to 40

138 Chapter 7: The switch Statement

E X A M P L E

However, each condition is evaluated independently; that is, the first condi-
tion ($chrAgeGroup == ‘A’) is evaluated, and, if it’s false, the next condition
($chrAgeGroup == ‘B’) is evaluated, and so on, until a condition is found to
be true. Therefore, the value of $chrAgeGroup must be recalled from memory
for each condition evaluated. This causes a small delay each time, which
results in a slightly slower time for the page to be retrieved.

N O T E
The delay caused by an element of a program, whether it is a reference to a variable, a
function call, or the execution of a few collective statements, is called processing
overhead.

If one of your programs performs a more complicated task than another and therefore
runs a bit slower, it’s said that the delay in response is due to the program’s overhead.

In low- to medium-traffic Web sites, this isn’t usually a problem. The delay
caused by using if-elseif-else instead of switch is probably, in most cases,
only a few of your CPU’s clock cycles (a fraction of a second); in fact, you
probably can’t measure a difference without a very quick, precise bench-
marking program.

However, in a large-scale Web site, any amount of delay that could be elimi-
nated is unacceptable. For such a Web site, even a tenth of a second per
program execution would add up quickly, eventually slowing down the
whole site.

By using a switch statement, the delay is reduced significantly. Instead of
retrieving a variable’s value for every comparison, the value is retrieved
only once at the beginning of the statement. Thus, the delay of retrieving
the value for every condition is eliminated.

Aside from the speed differences, which may be negligible to you at this
point, using switch makes your code clearer. Let’s examine the syntax and
an example of switch to discuss the increased clarity of switch over if.

Using the switch Statement
Here’s the syntax for a switch statement:
switch (variable)
{

case value:
code;
break;

case value:
code;
break;

default:

139Introducing the switch Statement

code;
break;

}

The variable would be the variable that you’re comparing to a list of possi-
ble values. The values each represent a possibility, or case. As you can see,
cases are given after a case statement. Following the case statement is a
colon and one or more statements to be executed, if that case is true.

N O T E
If you provide more than one case that could match, the first one to match will be exe-
cuted and the switch will stop being evaluated at the first break statement encountered.

For example, if the integer 1 is given as the value for switch, and there is a case for 1
and another for true, whichever case comes first is the only one that will have its code
executed.

break statements are used to separate each case; these can be omitted, but
if you do this, the statements for all of the following cases will be executed
as well, even though the cases don’t match the variable’s value. Once a case
is matched, the code inside will be executed until a break statement is
reached. The default statement is optional; it represents a default case
that should be used if no other case matches the variable.

C A U T I O N
Don’t confuse the statement-terminating semicolon with the colon used with case
statements or vice versa. case statements are followed by a colon, suggesting that the
statement introduces a section of code to follow. On the other hand, a semicolon is
used to terminate all other statements.

Let’s rewrite the previous example using a switch statement:
<?php
/* ch07ex02.php – demonstrates age group output using a switch statement */

// Specify age group
$chrAgeGroup = ‘B’;

// Output user-friendly representation of age group
switch ($chrAgeGroup)
{

case ‘A’: // Group A: 20 and younger
echo “Ages 20 and younger”;
break;

case ‘B’: // Group B: 21 – 40
echo “Ages 21 to 40”;

140 Chapter 7: The switch Statement

E X A M P L E

break;
case ‘C’: // Group C: 41 – 60

echo “Ages 41 to 60”;
break;

case ‘D’: // Group D: 61 and older
echo “Ages 61 and older”;
break;

}

?>

C A U T I O N
Let me reiterate that you should be careful not to leave out the break statement. In
this example, if the break statements were omitted, the last three echo statements
would all execute because the second case matches. The output would be:

Ages 21 to 40Ages 41 to 60Ages 61 and older

This unexpected output not only looks bad—it doesn’t say anything because the age
can only be one of the three.

T I P
Since case ‘D’ is the last case, the break following it is optional; omitting it wouldn’t
cause any other code to be executed because it’s at the end of the switch block.
However, it’s a good idea to include the break anyway; if you or someone else comes
back and adds more cases later, the missing break may be overlooked, leading to a
hard-to-find bug in your program.

Notice how clearly this code expresses that it is determining which value is
in $chrAgeGroup. One reason switch clarifies code is because you know it
only performs equality comparisons. Also, the complex looking parentheses
and curly braces of the if-elseif-else clause are gone, making the code
easier to read. These improvements increase the overall quality of style of
your code.

T I P
Another style tip for switch statements: Place the cases in order of the most likely to
be used. Putting the most-used cases at the top of the switch block makes it much
easier to find them if you have to come back and modify the code. It may also provide
a marginal speed increase in the execution of your script.

These style issues, as well as the speed benefit discussed earlier, are why
switch should always be used when trying to find the specific value of a
variable.

141Introducing the switch Statement

It shouldn’t go unsaid that some things are better off left to if. In some
cases, this is obvious. For example, take a look at the following code:
<?php
/* ch07ex03.php – ridiculous use of switch */

// Assign a number to be compared
$intNumber = 7;

switch ($intNumber > 5)
{

case true:
echo “$intNumber is greater than 5”;
break;

case false:
echo “$intNumber is less than or equal to 5”;
break;

}

?>

Although this code is acceptable to the interpreter, it’s confusing. This
switch block is acceptable to PHP, however; it is evaluated as follows:

1. The expression provided as the variable ($intNumber > 5) is evaluated,
producing a result of true.

2. True is compared to the first case (true) and it’s determined that they
match.

3. The code for the first case is executed and the switch block breaks.

N O T E
By saying that the switch block breaks, I mean that the rest of the block is skipped
and execution picks back up after the closing curly brace of the switch block.

For this task, it’s obvious that an if-else clause would be more
appropriate.

The default case is useful when you know an unanticipated value might be
used. Using a default case, you can specify a task to perform if there isn’t a
match with one of the other cases.

Using default, the age group program could be modified to check for an age
group that isn’t understood, as follows:
<?php
/* ch07ex04.php – demonstrates age group output with error checking */

142 Chapter 7: The switch Statement

E X A M P L E

// Specify age group
$chrAgeGroup = ‘B’;

// Output user-friendly representation of age group
switch ($chrAgeGroup)
{

case ‘A’: // Group A: 20 and younger
echo “Ages 20 and younger”;
break;

case ‘B’: // Group B: 21 – 40
echo “Ages 21 to 40”;
break;

case ‘C’: // Group C: 41 – 60
echo “Ages 41 to 60”;
break;

case ‘D’: // Group D: 61 and older
echo “Ages 61 and older”;
break;

default: // Error checking
echo “Error: unrecognized age group ‘$chrAgeGroup’”;
break;

}

?>

Using this code, if the age group isn’t A, B, C, or D, an error message is dis-
played by the default case.

if is also the only way to compare two variables for anything other than
equality; only equality comparisons are done by switch. For example, with
if, you can test to see if $intAge is less than 21, which would make the age
group A for 20 and younger. However, using switch, you can only do direct
comparisons of equality.

T I P
Knowing that switch performs equality comparisons only, you might want to mentally
note that the cases in a switch statement are compared to the value being checked
using the same rules as the == operator. In other words, all comparisons in a switch
clause are implicitly done with the == operator.

Although the following code may seem logical, it is invalid:
<?php
/* ch07ex05.php – assigns an age group for the specified age */

/* NOTE:
This is not a working program; it demonstrates a switch usage
and syntax error. */

143Introducing the switch Statement

// Specify age
$intAge = 32;

// Assign age group letter to $chrAgeGroup
switch ($intAge)
{

case (< 21): // Ages 20 and younger
$chrAgeGroup = ‘A’;
break;

case (< 41): // Ages 21 – 40
$chrAgeGroup = ‘B’;
break;

case (< 61): // Ages 41 – 60
$chrAgeGroup = ‘C’;
break;

default: // Ages 61 and older
$chrAgeGroup = ‘D’;
break;

}

// Show age group chosen
echo “Age $intAge fits into age group $chrAgeGroup”;

?>

This code is invalid because the < operator requires a left as well as a right
operand. Here, you’ve only supplied the right operand, so the expression
can’t be evaluated. Should you try to execute this code, PHP will die with a
parse error.

So, the fact that switch statements can only evaluate for equality is the
reason you must choose to use an if-elseif-else clause in this case to
assign the lettered age groups. As you can see, switch is useful for printing
text describing the appropriate one of four age groups (A, B, C, and D), but
it isn’t useful when working in the reverse direction and assigning a letter
for an age (given as a number).

Multiple Cases for the Same Code
In some cases you may find that you have two cases in a switch statement
that should prefix the same code. In fact, you could have any number of
cases that should be followed by one block of code.

As mentioned before, when a condition is met, the execution of the state-
ments following the case doesn’t stop until a break statement is encoun-
tered. This can be used to your advantage when dealing with multiple cases
that should all perform the same task.

144 Chapter 7: The switch Statement

For example, let’s say you want to tell a user whether the color he picks is a
cool color or a warm color. Let’s also assume the color has been chosen from
a list box or similar input, so you know the color will be one of the follow-
ing: red, orange, yellow, green, blue, or violet. (The first three are warm col-
ors, and the latter three are cool colors.)

This could be done using an if statement, as shown:
<?php
/* ch07ex06.php – color choices using if statement */

// $strColor would typically come from input; we’ll assign it explicitly
// here for demonstration purposes.
$strColor = ‘Blue’;

// Decide if color is warm or cool
if ($strColor == ‘Red’ || $strColor == ‘Orange’ || $strColor == ‘Yellow’)
{

echo “$strColor is a warm color”;
} else {

echo “$strColor is a cool color”;
}

?>

The output of this program would be:
Blue is a cool color

This is correct; the code works fine. However, you’re only comparing one
variable for equality to a number of different possibilities. You know from
previous discussion that this comparison could be done with a switch state-
ment; you also know that switch would be better style and make the pro-
gram slightly faster.

To express this in switch, you specify several conditions for warm colors so
that one task (outputting “color is warm”) is completed for the set of warm
colors. Then, after a break to end the code for warm colors, the second set of
colors (the cool colors) can be assumed using the default statement.

T I P
The default statement, in this case, could be left out and replaced by the remaining
three cases, since you know what the possible values could be. Alternatively, you could
specify both sets of cases and keep the default case to detect bad input and return
an error message.

For now, you’re not going to worry about bad input since the value is hard-coded.

145Introducing the switch Statement

E X A M P L E

The following code performs the same task, but is favored over an if-else
clause:
<?php
/* ch07ex07.php – color choices using if statement */

// $strColor would typically come from input; we’ll assign it explicitly
// here for demonstration purposes.
$strColor = ‘Blue’;

// Decide if color is warm or cool
switch ($strColor)
{

// warm colors
case ‘Red’:
case ‘Orange’:
case ‘Yellow’:

echo “$strColor is a warm color”;
break;

// cool colors
default:

echo “$strColor is a cool color”;
break;

}

?>

The output of this code is the same as that for the code above it. It is:
Blue is a cool color

Notice how multiple cases are specified for the first echo statement. Again,
this works because the break doesn’t appear until after the echo statement.
If any of the first three cases match, the echo statement will be executed.

T I P
This example shows that, although it can be an inconvenience to have to type breaks
after every case’s code, being able to leave out breaks is very useful. If the code is
very long, repetition of the same code for multiple conditions could be confusing. Also,
modifying multiple sections of code that are supposed to be the same can be very
tedious.

Multifunction Pages
Using switch, the input and processing tasks of a program, which would
typically be stored in separate files, can be combined into a single file. This

146 Chapter 7: The switch Statement

E X A M P L E

makes common Web site features, such as feedback forms, compact and
easily transferable between different sites.

By doing so, a developer can easily plug in a generic program into any site
he creates. A professional developer might create four Web sites every
month. Being able to use the same feedback program speeds up the devel-
opment process and lets the developer focus on less mundane, more special-
ized tasks for the Web site.

You will find that being able to reuse common Web site components like
this is very useful. To help you learn how to create these, you’ll go through
the steps of creating a feedback program.

The feedback program you want to create will have three main tasks, as
follows:

• Display a form.

• Display a verification page to let the user review what he’s about to
submit.

• Send the form’s contents to the Webmaster and display a thank you
page.

For the program to know what it should do, you’ll use a variable called step
to let the program know what part of the process it should perform. So, if
step is 1 or if it isn’t given, the form should be displayed; if step is 2, the
verification page should be sent back; and if step is 3, the e-mail should be
sent and the thank you page should be displayed.

Thus, you come up with a program like the one shown in Listing 7.1.

Listing 7.1: A Feedback Form

<?php
/* ch07ex08 - feedback form multi-function program */

// Make reference to form variables
$form =& $HTTP_POST_VARS;

// Define configuration settings
define(‘FEEDBACK_TO’, ‘tbutzon@imawebdesigner.com’); // email for webmaster
define(‘FEEDBACK_SUBJ’, ‘Feedback: ‘); // subject prefix

switch ($form[‘step’]) // Decide what to do based on step
{

case 1: // If step is 1, or if
default: // no known step is specified, display the form

147Multifunction Pages

E X A M P L E

Listing 7.1: continued

?>
<html>
<head><title>Chapter 7 :: Example 8 :: Feedback Form</title></head>
<body>

<h2>Chapter 7 :: Example 8 :: Feedback Form</h2>

<form action=”<?= $PHP_SELF ?>” method=”post”>

<input type=”hidden” name=”step” value=”2”>
Name:

<input type=”text” name=”feedback_name”>

Email:

<input type=”text” name=”feedback_email”>

Subject:

<select name=”feedback_subj”>
<option selected>Comment</option>
<option>Complaint</option>
<option>Suggestion</option>
</select>

Message:

<textarea name=”feedback_msg” rows=”5” cols=”40”></textarea>

<input type=”submit” value=”Continue”>

</form>

</body>
</html>
<?php

break; // end of case 1/default for switch ($form[‘step’])

case 2: // Show user his submission for review

?>
<html>
<head><title>Chapter 7 :: Example 8 :: Feedback Form - Review Your
Submission</title></head>
<body>

<h2>Chapter 7 :: Example 8 :: Feedback Form</h2>
<h4>Review Your Submission</h4>

Name:

<?= $form[‘feedback_name’] ?>

148 Chapter 7: The switch Statement

Listing 7.1: continued

Email:

<?= $form[‘feedback_email’] ?>

Subject:

<?= $form[‘feedback_subj’] ?>

Message:

<?= $form[‘feedback_msg’] ?>

<form action=”<?= $PHP_SELF ?>” method=”post”>

<input type=”hidden” name=”step” value=”3”>
<input type=”hidden” name=”feedback_name” value=”<?= $form[‘feedback_name’] ?>”>
<input type=”hidden” name=”feedback_email” value=”<?= $form[‘feedback_email’] ?>”>
<input type=”hidden” name=”feedback_subj” value=”<?= $form[‘feedback_subj’] ?>”>
<input type=”hidden” name=”feedback_msg” value=”<?= $form[‘feedback_msg’] ?>”>

<input type=”button” value=”Back” onClick=”javascript:history.go(-1);”>
<input type=”submit” value=”Send”>

</form>

</body>
</html>
<?php

break; // end of case 2 for switch ($form[‘step’])

case 3: // Send feedback and show thank you page

// Send feedback
$feedback_subj = FEEDBACK_SUBJ . $form[‘feedback_subj’];
$feedback_body = <<<END

Name: {$form[‘feedback_name’]}
Email: {$form[‘feedback_email’]}
Subject: {$form[‘feedback_subj’]}
Message: {$form[‘feedback_msg’]}
END;

mail(FEEDBACK_TO, $feedback_subj, $feedback_body);

// Show thank you page

?>
<html>
<head><title>Chapter 7 :: Example 8 :: Feedback Form - Thank You</title></head>
<body>

149Multifunction Pages

Listing 7.1: continued

<h2>Chapter 7 :: Example 8 :: Feedback Form</h2>
<h4>Thank You</h4>

Your feedback has been sent!

</body>
</html>
<?php

break; // end of case 3 for switch ($form[‘step’])
}

?>

N O T E
The large amounts of HTML embedded in the middle of a file like this make the PHP
code hard to follow, stylistically. You’ll learn how to make a tremendous improvement on
this when you get to Chapter 12, “Using include Files (Local and Remote),” which cov-
ers include files.

What’s Next
Now that you’ve covered if and switch statements to perform decision
making within your program, you’ll move on to statements used for repeti-
tion. These enable you to code tasks that should be repeated a certain num-
ber of times. The first of these, while, is covered in the next chapter.

150 Chapter 7: The switch Statement

8

Using while and do-while
while and do-while enable your programs to perform repetitive tasks. For
example, perhaps you want to list the contents of a 30-element array. Until
now, you needed 30 lines of code to do this. However, using while or
do-while, this task can be shortened to just a few lines—one line to output
an element, and an enclosing while block, essentially to tell how many
times to repeat the command.

This chapter teaches you the following:

• The looping concept

• while and do-while syntax

• How to use while to traverse an array

• How to count with sentinel values

• How to calculate totals for repetitive statements

The while Statement
Repetitive tasks in a program are coded using loops, blocks of code that per-
form the same task multiple times. A loop is coded using a special type of
statement block called a control structure, which controls how many times
(if any) a given code segment is allowed to execute.

N O T E
The if statement (and its relatives elseif and else) and the switch statement are
also control structures because they control whether the code below them executes
once or never.

The two control structures discussed in this chapter are while and do-while.
For this section, we’ll focus solely on while.

A while statement is used to repeat a block of code as long as a given condi-
tion is true. For example, you can execute a while statement to display the
elements of an array one at a time, as long as more elements can be
displayed.

To do this, we need to use two commands you haven’t seen yet: list and
each.

The each command is used to get each individual value of an array. The
first call to each will return the first element, the second call returns the
second element, and so on.

However, to allow for flexibility, each also returns an array. The array con-
tains four key/value pairs:

• [0] => key

• [1] => value

• [‘key’] => key

• [‘value’] => value

N O T E
The => symbol here is used to indicate a key/value relationship in an associative array.
The following statement uses an associative array:

$someArray[‘someElement’] = ‘This is someElement!’;

After executing this statement, the contents of $someArray can easily be represented
using the => notation. Here’s an easy way to write the contents of $someArray:

[‘someElement’] => ‘This is someElement’

154 Chapter 8: Using while and do-while

This is where the list command comes in. The list function is used to
assign the values within an array to individual variables in one step. For
example, assume the array $arrSample has been defined as follows:
$arrSample = Array(‘Joe’, ‘R.’, ‘Smith’);

To extract those values from the array and store them in separate vari-
ables, $strFName, $strMInitial, and $strLName, you would use list as
follows:
list($strFName, $strMInitial, and $strLName) = $arrSample;

N O T E
Be aware that the use of a function as shown in this example with list() is rare (and
impossible with typical functions). Attempting to assign a value to a function other than
list will most likely result in an error, unless the function is another language con-
struct that is meant to be used in this way.

The reason it is possible here is that list is a language construct, which means it is
processed differently from other functions.

The right operand (the Array command) creates an associative array con-
taining two keys: fname and lname. In assigning this array to the list of
variables, the variables given to list are matched up to the values within
the array by comparing the keys within the array to the variable names.
Thus, after the assignment, $fname contains ‘’Joe’’ and $lname contains
‘’Smith’’.

Therefore, to traverse an array (move through each element by looping),
we’ll want to capture the associative array values returned by each in the
variables $key and $value. So, for each time the code segment repeats, we
need to execute this assignment:
list ($key, $value) = each ($arrValues)

This assumes that $arrValues is the name of the array we want to traverse.

Another important factor of each is that it returns false when it reaches
the end of the array. This is how we know when no more elements can be
shown.

Syntax for while
To handle the looping part of the process, we need to take a look at the
details of using the while statement.

while follows this syntax:
while (condition)
{

code to repeat
}

155The while Statement

The condition specified can be any value that evaluates to true or false.
Just as with if, this can be a function call, a logical comparison, or a vari-
able. The code to repeat should do a certain task, which usually also
changes slightly in relation to the condition.

For example, if your condition is $i <= 10, you’re probably using $i in your
output. This could either be directly sending its value to output, or it could
be using the value at the index $i in an array.

C A U T I O N
No matter what your condition is, you should ensure that the condition will eventually
evaluate to false. If you don’t, the block will be an infinite loop—a loop that never
exits.

In some programming languages, an infinite loop causes the entire system to crash,
which is a huge frustration for programmers. However, PHP imposes a time limit on its
programs by default so they do not run longer than 30 seconds.

If you see a maximum execution time exceeded error, chances are you have created an
infinite loop. It’s possible you have created a looped code block with a lot of overhead,
but this scenario is rare. (The latter can be fixed in the configuration file or using the
set_time_limit() function to increase the amount of time allowed for execution.)

Figure 8.1 illustrates what happens in a while loop.

156 Chapter 8: Using while and do-while

other statements

while (condition)

{ true false

 code to repeat

}

other statements

Figure 8.1: This loop requires that the condition be true every time the
beginning of the loop is reached.

For example, to use while to echo all of the values in $HTTP_POST_VARS, you
can create a program like this:
<?php
/* ch08ex01.php – prints contents of $HTTP_POST_VARS */

?>
<html>
<head>
<title>Chapter 8 :: Example 1 :: What’s in $HTTP_POST_VARS?</title>

E X A M P L E

<body>
<?php

// If count returns 0, there’s nothing in the array
if (count($HTTP_POST_VARS) < 1)
{

echo “There aren’t any elements in \$HTTP_POST_VARS.”;

}
else
{

echo “The following data is in \$HTTP_POST_VARS:
”;

// Show the elements in the array one by one
while (list($key, $value) = each($HTTP_POST_VARS))
{

echo “$key = $value
”;
}

}

?>
</body>
</html>

N O T E
The count() function shown in this code is used to determine the number of elements
in an array. If 0 is returned, we can deduce that nothing was posted to the program,
and it is unnecessary to try to show the elements in the array.

Upon posting data to this program from a form, the program will display
the data exactly as it is received.

T I P
This information can also be displayed using the phpinfo() function, which displays
information about PHP and its environment, including the version of PHP that is run-
ning, the options that are enabled, and, most importantly, the variables automatically
created by its environment, such as the elements of $HTTP_POST_VARS and the environ-
ment variables such as $HTTP_REFERER.

To try using phpinfo(), create and then run the following one-line program:

<?= phpinfo(); ?>

157The while Statement

For example, Figure 8.2 shows a screenshot of the form from Exercise 7 of
Chapter 7, “The switch Statement.” The form has been modified to post its
data to the program we just created instead of the feedback program.

158 Chapter 8: Using while and do-while

Figure 8.2: This form is an example of what might be posted to the pro-
gram we just created.

When submitted, the output of our program is as follows:
The following data is in $HTTP_POST_VARS:
step = 2
feedback_name = Joe Smith
feedback_email = Joe@Example.com
feedback_subj = Comment
feedback_msg = Nice Web site!

As you can see, the while loop we used enables us to run the code segment
as many times as it needs to be run. Here, the code segment had to run five
times to output the values of the five different form fields. However, the
form could have more or less and the loop wouldn’t need to be changed at
all. Without changes made to it, the loop will execute enough times to dis-
play the elements within the array.

Let’s assume you’re making a program that asks the user what state he is
in, then returns another page asking him to choose the closest city. This
would be best accomplished using a database, which we haven’t discussed
yet. For now, let’s assume the variable $arrCities already contains the
correct cities.

E X A M P L E

We want the user to choose the closest city out of a list (we’ll use a select
box). To display the list of cities from the array, we need to traverse the
array and print an option tag for each city.

The following code can be inserted into the program to accomplish this:
echo “<select name=\”city\”>\n”;
while (list($dummy, $value) = each($arrCities)) // $dummy gets the key

// (value that’s the first element in the array returned by each()
{

echo “<option>$value</option>\n”;
}
echo “</select>\n”;

This assumes that $arrCities contains the appropriate cities.

Another application of traversing an array might be e-mailing a list of
users with a common e-mail message. For example, perhaps you have an
array called $arrAddresses that contains the e-mail addresses of users who
asked for an e-mail update.

To send an update out to all of these addresses, you can create a program
like this:
<?php

$strMessage = “Come see our newly renovated website at HYPERLINK
“http://www.example.com!/”www.example.com!HYPERLINK
“http://www.example.com!/”HYPERLINK “http://www.example.com!/””;
§
while (list($dummy, $value) = each($arrAddresses))
{

// SYNTAX:
// mail(string TO, string SUBJECT, string BODY)

mail($value, “Announcement!”, $strMessage);

}

?>

Of course, this is only a basic version of the program. You can expand on
this idea to send longer, HTML-formatted e-mails without much trouble.

Using while with a Counter
A counter is used to associate a number with each execution of a loop. Most
of the time, this number simply increments from 0 or 1 to higher values
until the loop finishes. However, the number can also decrement, change by
some multiple, or have a function applied to it to generate a new value.

159The while Statement

E X A M P L E

T I P
A counter is usually also a type of sentinel value. That is, the counter is generally used
in the condition that determines when the looping stops.

Using a counter, it’s possible to create sequentially numbered lists as out-
put or perform calculations with a list of values.

A while with a counter takes a few extra lines of code to initialize the
counter before the loop and modify it for each successive execution of the
loop.

A while with a counter generally looks like this:
$counter = 0;
while ($counter < 10)
{

code to execute;

// increment counter
$counter++;

}

This would result in the code executing 10 times. For each successive exe-
cution, the value of $counter would be one higher. So, the values would be
0, 1, 2, …, 8, 9.

N O T E
In loops like this, it’s important to understand exactly what you’re trying to do. For
example, this loop executes 10 times with the values 0 through 9, but not 10. At first
glance, however, it appears that 10 would be the last value because it appears in the
condition. However, the 10 is never reached because 10 < 10 isn’t true, so the loop
ends.

An example of using while with a counter would be displaying the contents
of a numerically indexed array. The following program shows a numbered
list of names, which are stored in $arrNames:
<?php
/* ch08ex02.php – displays a numbered list from an array of names */

// Initialize list of names
$arrNames = Array(‘Joe’, ‘Bob’, ‘Sarah’, ‘Bill’, ‘Suzy’);

// Display numbered list of names
$counter = 0;
while ($counter < count($arrNames))
{

160 Chapter 8: Using while and do-while

E X A M P L E

E X A M P L E

echo $counter + 1 . $arrNames[$counter] . ‘
’;
$counter++;

}

?>

T I P
Because arrays are numbered from 0 and people number from 1, the number we dis-
play as output is actually one more than the index used to retrieve the value from the
array. In other words, if we were to output $output instead of $output + 1, the output
would look strange because the items would be numbered starting at 0.

The count function appears here so the code can be modified. Use count if
you’re going to be traversing an array so you know how many elements
exist. If you hardcode a number and the array ends up changing later, the
while block won’t work as it should.

Computing Totals
Another use for a counter is to perform mathematical calculations using a
sequence of numbers. For example, the most basic application of this might
be to find the sum of all the numbers between 1 and 10.

To do this, we’ll need to keep a running total for the calculations using a
variable other than the counter. The result will look something like this:
$total = 0;
$counter = 1;
while ($counter <= 10)
{

$total += $counter;
$counter++;

}

At the end of this segment, $total would be the sum of all the numbers
between 1 and 10.

Here are a few longer examples to help you get used to computing totals:

1. Let’s modify the example we just did a little bit to work with any two
numbers first and last. Assuming they’re passed to the script via GET,
you could produce the following script:
<?php
/* ch08ex03.php – computes sum of all numbers from
first to last (passed via GET) */
?>

<html>

161The while Statement

E X A M P L E

E X A M P L E

<head>
<title>PHP by Example :: Chapter 8 :: Example 3</title>

</head>

<body bgcolor=”white”>

<h1>ch08ex03.php</h1>
Here are some examples of the input and output:

<pre>
URI RESULT
ch08ex03.php?first=1&last=5 15
ch08ex03.php?first=10&last=13 46
ch08ex03.php?first=1&last=100 5050
</pre>

<?

// Make reference to input variables
$arrIn =& $HTTP_GET_VARS;

// Make sure first and last were specified
if ($arrIn[‘first’] == ‘’ || $arrIn[‘last’] == ‘’)
{

echo “You must specify first and last in the URL!”;
exit;

}

// Compute total
$total = 0;
$counter = $arrIn[‘first’];
while ($counter <= $arrIn[‘last’])
{

$total += $counter;
$counter++;

}

// Display result
echo “Sum of all the numbers between $first and $last = $total”;

?>

</body></html>

162 Chapter 8: Using while and do-while

Here are some examples of the output:

URI RESULT

ch08ex03.php?first=1&last=5 15

ch08ex03.php?first=10&last=13 46

ch08ex03.php?first=1&last=100 5050

2. Similar to finding sums is finding factorials. In this case, instead of
adding a series of numbers, we’ll multiply them.

The following program, like the previous one, requires that a value be
specified in the query string to tell it of which number to find the
factorial:
<?php
/* ch08ex04.php – computes factorial for a number

num passed via GET
*/

// Make reference to input variables
$arrIn =& $HTTP_GET_VARS;

// Make sure num was specified
if ($arrIn[‘num’] == ‘’ || $arrIn[‘num’] < 1)
{

echo “You must specify num (>= 1) in the URL!”;
exit;

}

// Compute total
$counter = $arrIn[‘num’];
$total = $counter;
while ($counter > 1)
{

$counter--;
$total *= $counter;

}

// Display result
echo “Factorial of {$arrIn[‘num’]}: $total”;

?>

163The while Statement

Here are some examples of the output:

URI RESULT

ch08ex04.php?num=2 2

ch08ex04.php?num=5 120

ch08ex04.php?num=10 3628800

These examples help demonstrate the conceptual usage of totals more than
they show a practical usage. Although you might never want to find a sum
or a factorial, you will use totals at some time.

The do-while Statement
The do-while statement is much like the while statement, except do-while
always executes at least once. This is because the condition doesn’t appear
(and isn’t checked) until the end of the block.

do-while Syntax
You will notice that the syntax for a do-while statement is similar to that of
a simple while statement. The syntax is as follows:
do {

code to loop;
} while (condition);

N O T E
Notice that in a while statement, no semicolon follows while; however, in a do-while
statement, a semicolon is required to terminate the block.

Figure 8.3 shows the execution path that a do-while block follows. Notice
that the condition isn’t checked until after the code block executes; for this
reason, no matter what the condition is, the code will always execute at
least once.

Again, the only difference between while and do-while is where the condi-
tion is checked; in while, it’s checked at the top of the loop (before it exe-
cutes), and in do-while, it’s checked at the bottom of the loop (after it
executes). For this reason, while might never execute its code, but the code
for a do-while always executes at least once.

Because while and do-while are so similar, you will decide which to use on
a case-by-case basis. Whichever makes your programming task easier and
clearer is the one you should use.

164 Chapter 8: Using while and do-while

Figure 8.3: The execution of a do-while block differs by when the condition
is evaluated.

To show you do-while in action, let’s rework the task we had before of out-
putting option tags based on an array of options. Because a select input
with no options is useless, at least one option will always exist.

The resulting program would look something like this:
<?php
/* ch08ex05.php – displays option tags using do-while */

?>
<html>
<head><title>Chapter 8 :: Example 5 :: Dynamic SELECT form input</title>
<body>

<form action=”<?= $PHP_SELF ?>”>
Dynamic select box:
<?php

// Assign array of options
$arrOptions = Array (‘Option A’, ‘Option B’, ‘Option C’, ‘Option D’);

// Make sure there’s at least one option
if (count($arrOptions) < 1)
{

echo “Error: no options specified”;
exit;

}

// Output select/option tags
echo “<select name=\”options\”>\n”;

$counter = 0;
do {

echo “<option>” . $arrOptions[$counter] . “</option>\n”;

165The do-while Statement

other code

do {

 code to loop;

} while (condition);

other code

true

false

E X A M P L E

$counter++;
} while ($counter < count($arrOptions));

echo “</select>\n”;

?>

</form>

</body>
</html>

If you get into work involving database-driven pages, loops like this will be
useful to you.

The break and exit Statements
You might have seen the break and exit statements, but until now you’ve
only been momentarily introduced to them. They are similar, yet each has
its own purpose.

Breaking Loop Execution
The break statement is used to terminate a looping construct, such as while
or do-while. break also works with for and foreach, which you will be intro-
duced to in the following chapters. Figure 8.4 illustrates use of the break
statement.

166 Chapter 8: Using while and do-while

other code

while (conditionA)

{

if (conditionB)

{

break 2;

}

looped code

}

other code

falsetrue

Figure 8.4: The break statement causes a looping structure to be termi-
nated.

This is break as you’ve already seen it. For example, the following while
loop uses break to terminate if its counter variable becomes a multiple
of 10:
$counter = 1;
while ($counter < 100)
{

if ($counter % 10 == 0)
{

break;
}

echo $counter . ‘
’;

$counter++;
}

Thus, the numbers 0–9 are printed.

break also accepts an optional argument that tells it how many looping
structures to break. The syntax for this is as follows:
break level;

The level specified determines how many loops to break.

For example, take a look at the following code, which contains nested while
loops:
<?php

$counterA = 0;
while($counterA < 4)
{

$counterB = 0;
while ($counterB < 4)
{

if ($counterA == 2 && $counterB == 2)
{

break 2;
}

echo “After if statement: \$counterA = $counterA,
\$counterB = $counterB
\n”;

$counterB++;
}

167The break and exit Statements

E X A M P L E

E X A M P L E

$counterA++;
echo “

\n”;

}

?>

The output is
After if statement: $counterA = 0, $counterB = 0
After if statement: $counterA = 0, $counterB = 1
After if statement: $counterA = 0, $counterB = 2
After if statement: $counterA = 0, $counterB = 3

After if statement: $counterA = 1, $counterB = 0
After if statement: $counterA = 1, $counterB = 1
After if statement: $counterA = 1, $counterB = 2
After if statement: $counterA = 1, $counterB = 3

After if statement: $counterA = 2, $counterB = 0
After if statement: $counterA = 2, $counterB = 1

N O T E
Although all of the loops here are while loops, a multilevel break will break any kind of
loop, including different types of loops. For example, if a while loop is inside a for
loop (which we will discuss in Chapter 9, “Using for and foreach”), and a break 2
occurs, both loops are broken.

T I P
As with a simple break, a multilevel break (such as break 2) breaks only the loop.
Had more code followed the loops, execution would have picked up right after the outer
while loop, and the other code would have been run as normal.

Figure 8.5 shows the use of a multilevel break to break out of two while
loops at the same time.

N O T E
When doing multilevel breaks, count the number of loops to break from the inside out.
For example, to break only the current loop, you break 1. (This is implied by break
without an argument.) If three nested while loops are present and you want to break
the inner two but continue looping the outermost loop, do a break 2.

Exiting a Program
Sometimes you’re not just trying to terminate the loop, but the whole pro-
gram. Several of the examples I’ve used have had conditional testing, called
error checking, in them to ensure that certain conditions are met. If the
conditions aren’t met, the program is terminated using exit and the rest of
the program won’t run.

168 Chapter 8: Using while and do-while

Figure 8.5: The multilevel break statement here causes both loops to be
terminated.

The syntax for exit is simple. Just place it on a line followed by a semi-
colon, as shown:
exit;

We have already found it is useful to use exit to stop our program’s execu-
tion, and it will continue to be useful throughout this book and as you cre-
ate programs on your own.

What’s Next
Now that you’ve seen general looping using while and do-while, it’s time to
take a look at two different looping constructs especially created for num-
ber-related procedures and array-traversing. In Chapter 9, you will look at
the for and foreach looping statements.

169What’s Next

other code

while (conditionA)

{

while (conditionB)

{

if (conditionC)

{

break 2;

other code

}

}

other code

falsetrue

9

Using for and foreach
Like while and do-while, for and foreach are looping statements that
enable the execution of a given code block to be repeated. However, unlike
the while and do-while statements, for and foreach have features built in
to update the sentinel value for every repetition. As we discuss the for and
foreach statements, you will find that they are easier to read and to use in
many situations.

This chapter teaches you the following:

• How to use the for statement

• How the for statement works

• How to use the foreach statement

• How the foreach statement works

• How for and foreach compare to while

The for Statement
The for statement is used to create loops involving numbers. It is composed
of three parts: an initialization statement, a condition, and a repetition
statement. These three parts have important purposes within the for loop.

N O T E
You will read later in this chapter that for has some definite similarities to while. This
is touched upon here, but will be discussed in more detail in the following section.

Look at this while loop:
$i = 1;
while ($i <= 10)
{

echo $i . ‘
’;
$i++;

}

This loop echoes a list of numbers from 1 to 10. However, it’s quite bulky—
six lines of code to print a list of numbers. In addition, the loop above isn’t
very easy to read, either.

If these lines of code were found among many others, a programmer might
find himself asking whether the statement $i = 1 has anything to do with
the while loop directly below it. It may but it may not, either. If the code
block below the loop grew in complexity, it could take a few minutes to
answer that simple question. When it comes to programming, a few min-
utes of time wasted on such a trivial discovery should be avoided, if
possible.

Another problem with the while statement found here is the addition of the
$i++ at the end of the code block. An unfamiliar programmer won’t know
right away whether this will have an effect on the number of times the loop
executes, or if the variable $i is simply used within the loop somewhere; it
may be either one, or in this case both.

So, although while is great for some occasions, for can make your job of
programming easier and clearer. After you’ve finished reading this chapter,
using for will become as much an integral part of your programming prac-
tices as using while.

Syntax
The for loop gives you a way to clarify exactly what you’re doing with a
loop. Whereas, the initialization of $i above was somewhat ambiguous in

172 Chapter 9: Using for and foreach

E X A M P L E

its relationship to the while loop, the for loop makes this relationship clear
by adding the initialization statement to the for statement, right next to
the condition. In addition, the incrementing of the sentinel ($i++) is also
added to the statement. Thus, anyone who reads your code knows immedi-
ately what variable is used as the sentinel, what the condition is (which is
the only thing he would’ve known if while were used), and how the variable
is changed before each repetition.

The initialization statement, conditional expression, and repetition state-
ment are placed together in the for statement, as shown by its syntax here:
for (initialization statement; conditional expression; repetition statement)
{

code block
}

This syntax may seem a bit confusing at first, but with some explanation it
will be much clearer.

The initialization statement is executed only once, at the very beginning
of the loop. Then, before the code block is executed, the conditional
expression is checked to make sure it is true. After the code block has
been executed, and before the conditional expression is evaluated again
to begin another repetition of the loop, the repetition statement is
executed.

C A U T I O N
The conditional expression is checked just before the code block is executed. So,
if the condition isn’t met to begin with, the looped code never executes.

Let’s assume you want to list the numbers 1 through 10, as done above
with a while loop, except this time we’ll do it with a for loop. If you were to
tell another person what you want it to do, you would say something like:
“For every number from 1 to 10, show the current number.”

The three parts of your for loop are as follows:

• The initialization statement sets $i equal to the first number you wish
to display, 1.

• The conditional expression evaluates to true until $i is greater than
10.

• The repetition statement should increment $i by 1.

The following for loop results:
for ($i = 1; $i <= 10; $i++)
{

173Syntax

E X A M P L E

echo $i . ‘
’;
}

N O T E
Be aware that the semicolons in the for statement are only used as separators; there-
fore, no semicolon is needed after the repetition statement.

In fact, if a semicolon is placed after the repetition statement, PHP will die with this
parse error: parse error, expecting “)”.

Don’t worry too much about trying to memorize the for statement syntax
right now; you’ll get used to it as you cover some more examples. For now,
make sure you’re familiar with what it does.

Examples
Let’s look at a few examples of using for. These examples demonstrate the
ways that for is generally used:

• To find the sum of the integers from $intStart to $intEnd, you would
construct a for loop using these variables in your initial and condi-
tional statements, respectively.

The following program does this:
<?php
/* ch09ex01.php – uses for loop to find sums */

$intStart = 1;
$intEnd = 10;

$sum = 0;
for ($a = $intStart; $a <= $intEnd; $a++)
{

$sum += $a;
echo “$sum, “;

}

echo ‘
’;
echo $sum;

?>

The output of running this program using the two values shown here,
1 and 10, is
1, 3, 6, 10, 15, 21, 28, 36, 45, 55,
55

174 Chapter 9: Using for and foreach

E X A M P L E

Thus, you have created the PHP-equivalent of
1 + 2 + 3 + ... + 9 + 10

Or, more generally, assuming A and B are functionally equivalent to
the variables $intStart and $intEnd in the program, the sum is
A + (A + 1) + (A + 2) + ... + (B – 1) + B

This whole process of summing a range of numbers is mostly of inter-
est only to mathematicians. You will probably use it (or some variation
of it, as the other examples show), but in the case of most sums, a
more efficient calculation can be done with an explicit formula.
Depending on how efficient your program must be, and how strong
your mathematics skills are, your choice to use a for loop or to derive
an explicit formula is completely up to you. (The for loop is favorable
for its simplicity.)

• This example demonstrates that the third parameter to the for state-
ment can be any sort of modification to the sentinel variable. This
time, instead of counting up (incrementing), we’re counting down
(decrementing):
<?php
/* ch09ex02.php – demonstrates decrementing with for */

for ($a = 10; $a >= 1; $a--)
{

echo $a . ‘
’;
}

?>

The output of this program is a list of numbers from 10 to 1, in that
order. The same principle works with multiplication, division, and
even modulus division, should you find an application that requires
those operations. Notice, however, that these operations (multiplica-
tion, division, and modulo) do not have unary operators like the incre-
ment and decrement operators. So, you must use the compound
operators, such as *= and %=. The same holds true if you wish to add
or subtract some number other than 1. The += and -= operators come
in handy in such situations.

• Let’s suppose for a moment that you have an array with a given struc-
ture, say, a person’s name, then his age, then another person’s name,
and the second person’s age, then a third, for an unknown number of
times.

175Syntax

The array might look something like this:
Array(

[0] => “John Williams”,
[1] => 43,
[2] => “Arnie Stevens”,
[3] => 35,
[4] => “Bill Baker”,
[5] => 39)

Of course, as you’ve probably already noticed, this would be much
more appropriately implemented using a multidimensional array of
associative arrays or objects. However, this is already coded like this,
so we’re going to have to be flexible on this one.

To reiterate, this example is entirely theoretical, so it may seem to
have no practical application. However, it teaches some of the nuances
of for loops that you should be familiar with.

Now, let’s say we want to print each person’s name and his age in this
form:
Name, Age

To do this, we must step through the array by two (instead of incre-
menting by one). This will be done using a for loop and the += opera-
tor, as follows:
<?php
/* ch09ex03.php – for loop and an array */

$arrPeople = Array(
“John Williams”, 43,
“Arnie Stevens”, 35,
“Bill Baker”, 39);

for ($a = 0; $a < count($arrPeople) – 1; $a += 2)
{

echo $arrPeople[$a] . ‘, ‘ . $arrPeople[$a + 1];
echo ‘
’;

}
?>

The output of this program is
John Williams, 43
Arnie Stevens, 35
Bill Baker, 39

The elements 0, 2, and 4 of the array are peoples’ names. So, $a starts
at 0 and increases by 2 for every repetition of the loop. To get each
person’s age, we use $a + 1.

176 Chapter 9: Using for and foreach

The loop terminates when the condition, $a < count($arrPeople) –1,
becomes true. This condition becomes true, in this case, when $a is 4.
count() returns 6 because there are 6 elements in the array; however,
we subtract one from that, giving us 5, and have used the less than
sign (<) instead of the less than or equal to sign (<=), so the last index
used is actually 4.

Since $a increases by 2 every iteration of the loop, it isn’t really too
important to disallow it to become 5. In truth, it couldn’t become 5
because 5 isn’t a multiple of 2 (on third iteration, 0 + 2 + 2 = 4, and on
the fourth, 0 + 2 + 2 + 2 = 6, so 5 would be skipped). Regardless of this
technicality, it’s best to be specific for others that might read your pro-
gram by specifying 4 instead of allowing the possibility of 5 for the last
value of $a.

Comparing for and while
for and while are similar in many ways. You might think about for as a
specialized sort of while statement for loops that involve a constantly
changing variable. Whereas, only while repeats as long as a condition is
false, for adds initialization and repetition statements for a counter
variable.

It should be fairly obvious when you should use for and when you should
use while. If you’re using a counter variable, it’s most likely best to use for;
otherwise, stick to while.

N O T E
For your general knowledge (but not use—as it is not good style), it is possible to omit
a statement within the for statement. For example, you might specify a for with no ini-
tialization or repetition statements, leaving only a condition. This would have the same
effectiveness as simply using while, and would look something like this:

for (; $intA != $intB ;)
{

code to repeat
}

Here, the first and third (initialization and repetition) statements are omitted. However,
the semicolons are still required.

Again, using for without specifying relevant initialization and repetition arguments is
very undesirable style. Not only is it hard to read and follow, but you might as well use
while.

Figure 9.1 helps you compare the flow of execution through for as com-
pared to while.

177Comparing for and while

Figure 9.1: The for and while loops are similar in many ways, but for
extends the functionality of a while loop to make it ideal for use with
counters.

The foreach Statement
The foreach statement is similar to for in that it is basically a specialized
form of the while loop. foreach, however, unlike for, is to be used with
arrays.

Like for, foreach automatically performs a step for every repetition of the
loop: It assigns the next value of an array to a temporary variable (similar
to a counter).

For example, foreach could be used to sum all of the numbers in an array.

T I P
PHP’s built-in array_sum() function will perform the same task, but for simplicity, stick
with addition for now and concentrate on the looping statement.

Although probably self-evident, it’s worth mentioning the intention of the
foreach loop. For the summation example just mentioned, the idea is: “For
each element in this array, add the value of the current element to a total
value.”

Basic Syntax
The syntax for foreach takes two forms: a basic usage to retrieve only each
value in an array, and a second usage to retrieve key/value pairs from an
associative array. This makes it possible to not only retrieve each value
from an array, but also have the value’s key. The key, in this instance, may
either be the element’s numeric index or its text key, which appears in asso-
ciative arrays.

178 Chapter 9: Using for and foreach

for ($a = 0; $a < 10; $a++)

{

 code

}

$a = 0;

while ($a < 10)

{

 code

 $a++;

}

1

1 2

3

4

2

3
4

FOR WHILE

Both repeat steps 2, 3, and 4 until condition is false

The syntax for the foreach loop is as follows:
foreach (array as value)
{

code to repeat
}

Here, the array is whichever array you’re trying to step through. The value
is the temporary variable where the value of the array’s current element
will be stored. And, as you probably guessed, the code to repeat is the
code that is to be repeated for each value in the array.

C A U T I O N
If there is a chance that your array will be an empty array or that the variable specified
as the array isn’t an array at all, you should add extra error checking to ensure the type
and contents of the variable. Otherwise, you run the risk of having PHP issue a warning
when it reaches the foreach statement.

If this happens, the warning will be: Invalid argument supplied for foreach()....

T I P
If you would like to implement the error checking mentioned in the previous note, you’ll
need to use the type checking function is_array in conjunction with an if statement.

For information about the is_array function, see: http://www.php.net/is_array.

The error checking code should look like this:

// Make sure $someArray is an array
if (! is_array($someArray))
{

die(‘$someArray isn’t an array!’);
}

You might not want the program to stop (it will if it reaches die); in that case, try using
echo instead of die.

Examples
Let’s look at some examples to get to know the foreach statement better.

1. For the first example, we’ll use foreach to print each element of an
array. We’ll step through the array using foreach as discussed previ-
ously, printing each element as we go, as follows:
<?php
/* ch09ex04.php – prints contents of an array */

$arrNames = Array(‘Joe’, ‘Bill’, ‘Arnie’, ‘Harold’);

foreach ($arrNames as $strName)

179The foreach Statement

E X A M P L E

{
echo $strName . ‘
’;

}

?>

As you already can see, the output of this program would be the
names in $arrNames printed with each name on a separate line.

2. Now let’s take a look at the example given a little earlier in this chap-
ter: summing the numbers within an array.

Let’s say you have an array, $arrNumbers, and you want to know what
the sum of all the numbers in the array is. You could write a program
such as this:
<?php
/* ch09ex05.php – sums values in an array */

$arrNumbers = Array(1, 5, 9, 13);

$sum = 0;
foreach ($arrNumbers as $intNumber)
{

$sum += $intNumber;
}

echo $sum;

?>

The result, in this case, would be 28.

Notice that $sum must be initialized to 0. In a longer program, simply
using $sum without explicitly initializing it just before the loop could
become ambiguous. For instance, you might find yourself asking: “Is
$sum here supposed to be 0, and, if it is, what’s the guarantee that it is
0 at this point?”

This stems from an obvious vulnerability to bugs: Small, careless
omissions like the initialization of $sum could lead to an incorrect sum,
which, if the problem wasn’t readily apparent, could take a long time
to uncover.

3. Now, let’s look at the most common problem found when using
foreach: trying to use a variable that’s not an array as an array.

For instance, Example 2 just before this one has explicitly declared
the array $arrNumbers. However, what if you don’t explicitly declare
the array? What if it’s created based on input from a form or
database?

180 Chapter 9: Using for and foreach

It turns out, in some cases, that what you might expect to be an array
isn’t an array at all. Instead, the supposed array is NULL or of some
other type, such as int or string.

Assume that the following is an excerpt from a longer program:
foreach ($arrRecords as $intRecord)
{

(some code here)
}

There’s nothing that necessarily guarantees that $arrRecords is
indeed an array. As cautioned earlier, using some other type of vari-
able besides array just won’t work with foreach because it’s made to
be used with foreach only.

So, when you’re not sure if a supposed array is actually going to be an
array, you may want to check using an if statement such as
if (is_array($arrRecords))
{

(put foreach statement here)
}

Of course, if you’re still developing the program, you might rather see
warnings when the variable doesn’t turn out to be an array. This
would help you find places where you might have a typo or other error.

C A U T I O N
In accordance with the way the foreach loop works, the values given to you in a
foreach iteration are actually copies of the elements of the array. Therefore, changing
one of these values doesn’t change the value within the array. Any changes made to
the values are temporary.

Syntax for Associative Arrays
foreach can also be used to retrieve key/value pairs as opposed to just the
value, as shown before. Doing this allows you to still associate a key with
the value related to it.

The syntax for doing so looks like this:
foreach (array as key => value)
{

code to repeat
}

Like the simple first use of the foreach statement, the array is the array
you want to step through. The key and value are expressed just as they are
when calling Array() to create an array. Two temporary variables result:

181The foreach Statement

key, which contains the key associated with the current element, and value,
which contains the value of the current element.

Examples
Let’s take a look at a few examples to get used to the foreach statement
being used this way.

1. The first example involves using foreach to print a list of array ele-
ments along with their numeric index. We get the numeric index by
treating it as the element’s key—after all, they are basically the same
thing.

The following program prints a list of names numbered from 0 to 3:
<?php
/* ch09ex06.php – lists contents of array */

$arrNames = Array(‘Joe’, ‘Bill’, ‘Arnie’, ‘Harold’);

foreach ($arrNames as $intKey => $strVal)
{

echo $intKey . ‘. ‘ . $strVal . ‘
’;
}

?>

The output of this program is as follows:
0. Joe
1. Bill
2. Arnie
3. Harold

2. Now let’s say we have an associative array that contains various peo-
ple’s addresses, with their names as keys. We can print a list of names
and addresses from this information, as follows:
<?php
/* ch09ex07.php – prints list of names and addr */

$arrAddresses = Array(
‘Joe Williams’ => ‘525 Quiet Circle’,
‘Rob Thomson’ => ‘1630 Fourth Avenue’,
‘Norm Smith’ => ‘1 Smith Lane’);

foreach ($arrAddresses as $strName => $strAddress)
{

echo “$strName
$strAddress

”;
}

?>

182 Chapter 9: Using for and foreach

E X A M P L E

The output of this program would look like
Joe Williams
525 Quiet Circle

Rob Thomson
1630 Fourth Avenue

Norm Smith
1 Smith Lane

As you can see from the differences between Examples 1 and 2,
numeric indexes (keys) and string keys are identical as far as foreach
is concerned.

3. This example combines two different processes at once. It takes a list
of student names and scores and lists them in a comparable way to
the lists the previous two programs have generated. As it does so, it
keeps a running total of the scores and how many scores there have
been, so, at the end, an average score can also be output.
<?php
/* ch09ex08.php – scores and average score */

$arrScores = Array(
‘Joe Williams’ => 83,
‘Rob Thomson’ => 78,
‘Norm Smith’ => 97);

$intSum = 0;
$intNumScores = 0;
foreach ($arrScores as $strName => $intScore)
{

echo “$intScore $strName
”;

$intSum += $intScore;
$intNumScores++;

}

echo “
Average score: “;
echo $intSum / $intNumScores;

?>

The output for this program looks like this:
83 Joe Williams
78 Rob Thomson
97 Norm Smith

Average score: 86

183The foreach Statement

What’s Next
This section of the book has covered logical decision-making and looping
constructs. You’ve learned how to use if, switch, while, and for, and the
related constructs of each. Now it’s time to learn the last fundamental step
of PHP programming: program organization and optimization. This coming
section will focus strongly on style and neatness, pushing you to write your
programs using the best style possible.

The next chapter will focus on creating your own functions. Up until now,
you’ve had to rely on PHP’s built-in functions to do certain tasks, but now
you’re ready to create your own!

184 Chapter 9: Using for and foreach

Part III

Organization and Optimization of Your Program

Functions

Classes and Objects

Using include Files

10

Functions
A function is used to give a complex task a shorter form by naming it; that
is, a group of statements is merged into a function, so that, when the func-
tion is executed, all of its statements are executed. You’ve already seen
some functions. For example, the string functions strlen(), substr(), and
strpos() are all functions supplied to you by PHP. These tasks could be
completed using a series of loops, but doing so would make a program seem
much more complex than necessary. Translating those loops into functions
makes the code clearer and more organized.

Although PHP provides many useful functions, they’re all fairly basic; to
keep your programs organized, you’ll need to create some functions on your
own, as well.

This chapter teaches you the following:

• How to control program flow through functions

• How to use function parameters

• How return values, referenced parameters, and referenced return
values work

• How to use recursion

Understanding Functions
Before you get too deep into functions, let’s take a look at the concept
behind them. The basic purpose of a function is to group a set of commands
(which perform basic tasks) in such a way that a new command (which per-
forms a more complex task) is created.

T I P
It’s often said that any portion of code you use more than once should be converted
into a function. Although that decision is ultimately up to you, it’s not a bad idea
because it makes your code simpler, shorter, and more manageable.

For example, you often consider opening a door to be a simple task, but it’s
actually a complex task if you compare it to the even simpler tasks that
compose it.

The following steps must be taken to perform this task:

1. If the door is locked, it must be unlocked.

2. The doorknob must be turned.

3. The door must be pushed or pulled in the appropriate direction.

This sequence of tasks is best performed as a group. Thus, you can group it
into a single function. This new function simplifies our three-step process
into a single step: Open the door.

Function Definition
A function definition (or declaration) specifies a function’s

• Name

• Parameters, if any (will be discussed later)

• Body (statements that perform the function’s task)

A function declaration follows this syntax:
function function name(parameters)
{

function body
}

The function name, similar to a variable name, should describe what the
function does. For example, a function which opens doors might be called
door_open() or openDoor(), depending on what sort of naming convention
you’re using.

188 Chapter 10: Functions

W H E N T O U S E door_open() A N D W H E N T O U S E openDoor()
When you get to include files in Chapter 12, “Using include Files,” you’ll learn how to
create reusable function libraries—collections of code designed to be used easily in any
program. One problem that arises when you want to do this, however, is that functions
might conflict.

For example, openDoor() in the main program might be designed to open a vehicle
door and openDoor() in the function library might be designed to open building doors.
This is the same conflict found with variable naming. To avoid this conflict, a general
door-opening function would be named door_open(), and more specific versions for
vehicles and buildings would be named veh_door_open() and bld_door_open().

That still leaves openDoor() up for discussion. A function named like this should only
be used in the main part of a program to separate the steps of the program’s execu-
tion. By using functions named like this in the main part of your program only, you’ll
avoid naming conflicts when you start combining libraries.

Of course, this makes more sense when you get to Chapter 12, which presents
include files.

The function’s parameters will be discussed in detail later. For now, let’s
stick with an empty parameter list, like this:
function demoFunction()
/* PRE: precondition

PST: postcondition
*/
{

body statements
}

C A U T I O N
Even though you’re not specifying any parameters, the parentheses following the func-
tion name are mandatory. Leaving out the parentheses will cause PHP to die with a
parse error:

parse error, expecting `(‘

The function body is a group of statements that perform the function’s task.

The precondition and postcondition statements are comments describing
what the function needs to work and what it does. A precondition describes
the status of parameters coming into the function, stating, for instance,
that the first parameter must be an integer. With an empty parameter list,
a precondition statement might be left out.

The postcondition describes what happens during the function’s execution,
whether any of the parameters have been changed (and how), and tells
what the return value would be.

189Understanding Functions

For example, a program using a function that simply echoes “Hello, World!”
could be written as follows:
<?php
/* ch10ex01.php – demonstrates user-defined sayHello() function */

/* MAIN PROGRAM */

sayHello();

/* FUNCTION DECLARATIONS */

function sayHello()
/* PRE: none

PST: echoes “Hello, World!”
*/
{

echo “Hello, World!”;
}

?>

N O T E
A description of the PRE and PST lines in this function definition can be found below in
the bulleted organization guidelines.

It doesn’t matter to PHP where in the file you put the function definition,
as long as it’s defined somewhere in the file that calls it.

Some discretion should be used for organizing your functions. A program
can contain any number of functions, so grouping and organization is a key
skill in making functions work for you (and not against you by cluttering
your code).

The following guidelines should help you keep your functions organized:

• Place all of your functions at the bottom of your program. If all of your
functions can be found grouped at the bottom, all you have to do when
you see a function call is scroll down.

T I P
Some programmers do place their function definitions at the top (some languages
require it), but it doesn’t provide a good, immediate understanding of what the program
is meant to do.

To illustrate: If someone were describing to you how to find his or her house, would you
want instructions on how to start your car, make a left turn, or knock on his or her front
door? Rather, you would want a general description of where to go, and then get any
special instructions at the end.

190 Chapter 10: Functions

E X A M P L E

• Group functions according to their task, and include a comment at the
top of each group describing the purpose of the functions. For exam-
ple, functions to display certain information could be grouped as “dis-
play” functions; functions to calculate different shipping costs could be
grouped as “shipping” functions; and so on.

• Include a comment with all functions describing their purpose. A very
common method of doing this is the use of PRE and PST statements
(included in the syntax guide and all examples of functions throughout
this book).

Calling a Function
Calling a function is another name for executing the function. A function is
called simply by using the function name, along with an argument list, as a
statement. For now, of course, you’re still dealing with an empty set of
parentheses for the argument list, so your function call might look some-
thing like this:
sayHello();

Pretty simple, huh? By now, the usefulness of functions should be becoming
apparent. If you had to say “Hello, World!” in five different places in your
program, creating a sayHello() function would definitely be beneficial; typ-
ing sayHello() is slightly easier than typing out the whole echo statement.
Using a function here is especially useful if “Hello, World!” might be
changed to “Hello, Universe!” in the future; five separate changes have
been narrowed down to one because there’s only one copy of the echo state-
ment now (as opposed to having five of them scattered throughout the
program).

Flow of Execution
Now let’s take a look at exactly what’s going on when you call a function.
When PHP encounters a function call, it executes all of the statements of
the function before executing any statements after the function call.

In short, when a function is called, it is executed before any more of the
program’s statements execute. So, the flow of execution (that is, the order in
which statements in your program execute) transfers to the function’s body;
then, at the end of the function’s body, flow returns back to the calling
expression. In most cases, this results in the statement following the func-
tion call to be executed after the function returns.

Figure 10.1 illustrates this visually.

191Understanding Functions

Figure 10.1: When a function is called, its body is executed before flow
returns to the statement following the calling statement.

N O T E
As you’ve already read, it doesn’t matter where in the program the function definition is,
as long as the function is defined. In the previous diagram, the function is shown
beside the code for clarity. However, the function would typically appear after the other
program code.

Scope
Functions have their own scope, so variables that exist within a function
don’t exist in the program, as well. This is helpful because programmers
don’t have to spend their time worrying about accidentally modifying a
variable that’s not meant to be changed.

Take this function call, for instance:
$temp = 5;
doSomething();
echo $temp;

If doSomething() is defined to be
function doSomething()
{

$temp = 0;
}

and if the scope restriction didn’t exist, the result of the echo statement
after execution returns to the main program would be 0. With a variable
named $temp, this probably would not be the desired behavior.

Therefore, variables inside of functions are completely different than the
variables outside of them. This way, the call to echo $temp results in 5
being output.

192 Chapter 10: Functions

<?php

echo "I'm about to say hello...
";

 function sayHello()

sayHello(); {

 echo "Hello, World!";

echo "
"; }

echo "I said hello, see?";

?>

E X A M P L E

So what if you intend to change the value of an outside variable? You have
two options: Either pass the variable in as a referenced parameter (which
you’ll get to a little later in this chapter), or use the $GLOBALS array.

Global variables are variables that exist in the global scope (outside any
functions). The $temp variable shown earlier that contains 5 is a global vari-
able. To modify it from within the function, you would use the $GLOBALS
array as follows:
function doSomething()
{

$GLOBALS[‘temp’] = 0;
}

Now, if your program did something like this:
$temp = 5;
doSomething();
echo $temp;

The output would be 0, as the global variable $temp was changed, whereas
in the previous program a different variable $temp, which was local to the
doSomething() function, was changed (leaving the global one unchanged).

T I P
It isn’t recommended that you change a global variable from within a function. In a
large program, such behavior becomes very hard to follow because the programmer
must read each and every function called to follow a program’s flow of execution and
know exactly what’s going on with a particular variable. This leads to extremely buggy
programs and long, frustrating hours of debugging.

Instead, the $GLOBALS array is provided to let you read (and not modify) the variables
outside the function. If you need to change one of those values, pass it into the func-
tion as a referenced argument (which you’ll see a little later in this chapter) or assign it
a function’s return value.

Passing Values to and from Functions
Now that you understand how functions work and how to create a basic
function, let’s discuss that parameter list you’ve been avoiding up until now.

The parameter list allows the function to accept values into local variables
that exist only within the function to perform a task depending on the val-
ues of the variables. By supplying such values (known as parameters, as
you’ll soon learn) in a function call, you’re passing these values to the
function.

193Passing Values to and from Functions

Parameters
The values specified in the function’s definition are known as the function’s
parameters. When the function is called, the values given as parameters
are often referred to as the function’s arguments.

The following program uses a function that takes three parameters:
$strName, $intAge, and $intGender. Calling the function outputs the three
parameters in a human-readable sentence.

Here it is:
<?php
/* ch10ex02.php – demonstrates user-defined outputSentence() function */

/* MAIN PROGRAM */

outputSentence(‘Kathy Williams’, 43, ‘female’);

/* FUNCTION DECLARATIONS */

function outputSentence($strName, $intAge, $strGender)
/* PRE: $strName is a string,

$intAge is an integer greater than 0,
$strGender is a string containing either ‘male’ or ‘female’

PST: Outputs a sentence.
*/
{

echo “$strName is a $intAge-year old $strGender.”;
}

?>

The outputSentence() function’s parameter list is illustrated in Figure 10.2.

194 Chapter 10: Functions

E X A M P L E

Parameter 3

Parameter 2

Parameter 1

Parameter List

function output Sentence ($strName, $intAge, $strGender)
/* PRE: $strName is a string,

 $intAge is an integer greater than 0,
 $strGender is a string containing either 'Male' or 'Female'

 PST: Outputs a sentence.
*/
{

 echo "$strName is a $intAge-year old $strGender. ";

Figure 10.2: This function takes three parameters in its parameter list.

Here are a few examples of the results of this function:

• Function call:
outputSentence(‘Joe Smith’, 36, ‘male’);

Output:
Joe Smith is a 36-year old male.

• Function call:
outputSentence(‘Ashley Edwards’, 8, ‘female’);

Output:
Ashley Edwards is a 8-year old female.

Notice that the grammar of the output string hasn’t changed (“a”
should have changed to “an”). Some programmers and their clients
don’t mind this sort of problem, but it’s possible to modify this function
to always use correct grammar, thus producing a more professional
result.

• Function call:
outputSentence(8, ‘male’, ‘Nick Williams’);

Output:
8 is a male-year old Nick Williams.

Notice here that the function call has its parameters out of order. As
you can see, PHP is perfectly happy outputting them in any order, just
as it got them. Therefore, if you’re ever unsure of the order your argu-
ments should be in, you should check the function’s definition to find
out.

Just as you can use literal values as parameters when you call a function,
you can also use variables. The variable will be evaluated before the func-
tion is called, so only the variable’s value will be passed.

The following two examples demonstrate using functions with variables in
the function call:

1. Code segment:
$strName = ‘Joe Smith’;
$intAge = 26;
$strGender = ‘male’;

outputSentence($strName, $intAge, $strGender);

Output:
Joe Smith is a 26-year old male.

195Passing Values to and from Functions

E X A M P L E

E X A M P L E

2. Code segment:
$strVisitorName = ‘Michelle Lewis’;
$strVisitorAge = 33;
$strVisitorGender = ‘female’;

outputSentence($strVisitorName, $strVisitorAge,
$strVisitorGender);

Output:
Michelle Lewis is a 33-year old female.

You should be aware of two things here. First, the variables passed to
a function are rarely named the same as the function’s arguments are
named in the definition. As long as the arguments are passed in the
correct order, the result will be just as if the values of the variables
were passed in explicitly.

Second, to encourage neatness and good style, I recommend wrapping
to the next line (as done in the function call here) between arguments
and indenting to align the first argument of the new line to the first
argument of the line above it. Thus, your code will stay neat and read-
able without having to scroll back and forth to read the argument list.

N O T E
Any expression that has a value can be passed to a function as a parameter value. So,
if you wish to multiply two numbers before you pass them to the function, you can
place that expression right in the parameter list and it will be done before anything is
passed to the function. Thus, the value resulting from the operation is passed, as
follows:

<?php

testFunction(5 * 10);

function testFunction($arg)
{

echo $arg;
}

?>
The output of this program is:
50

196 Chapter 10: Functions

DEFAULT PARAMETER VALUES

Sometimes you might want to have optional parameters; that is, param-
eters that default to a certain value if no value is specified.

For example, let’s say you have a function table_row() that outputs a sin-
gle-celled table row (assuming that a table has already been started with a
<table> tag). Now, the function could only have one argument: the text to
go in the cell. However, you realize that you might also want to choose
whether the text is aligned to the left, center, or right of the cell.

Here’s what the function would look like without a default parameter:
function table_row($strText, $strAlign)
{

echo <<<END_HTML
<tr><td align=”$strAlign”>$strText</td></tr>
END_HTML;
}

As it is, however, you must always specify both arguments in the function
call. If the argument is left out, PHP will issue a Missing argument
warning.

Thus, you have the perfect opportunity to implement a default parameter.
Most of the time, the text will simply be aligned to the left, but sometimes
the alignment will be different. So, “left” will be the default value for that
parameter. If another value is desired, it can be specified in the argument
list.

The new function declaration, which allows us to leave the second argu-
ment out unless you desire to use something other than the default, looks
like this:
function table_row($strText, $strAlign = ‘left’)
{

echo <<<END_HTML
<tr><td align=”$strAlign”>$strText</td></tr>
END_HTML;
}

The default value for a parameter, as you can see, is specified in the func-
tion declaration as if it is an assignment.

C A U T I O N
The default value must be a literal value. It cannot be an assignment of a variable or
function’s return value.

If you do attempt this, PHP will die with a parse error of some sort, depending on what
type of value you tried to use as the default.

197Passing Values to and from Functions

E X A M P L E

To call this function, you might specify one or both arguments. Here are a
few examples:

1. Function call:
table_row(‘This is my text’, ‘left’);

Result:

A table row is printed with the specified text left-aligned.

2. Function call:
table_row(‘This is my text’);

Result:

A table row is printed with the specified text left-aligned (same as #1).

3. Function call:
table_row(‘This is my text’, ‘right’);

Result:

A table row is printed with the specified text right-aligned.

N O T E
The important thing to see with these examples is that default parameters enable you
to shorten the argument list by assuming a default set of parameter values when those
arguments aren’t specified.

It’s worth mentioning that the default parameter(s) should always be at the
end of the parameter list; you can’t leave a value out if there’s a value you
want to specify after it in the list because PHP won’t know which value
you’re trying to specify and which value you’re trying to leave out.

Take the following function definition, for example:
function example($arg1 = 10, $arg2)
{

// function code would go here
}

Now, if you want to let $arg1 default to 10, then you might think that you
need only specify one value as argument two, as follows:
example(‘This is argument 2’);

However, this function call is ambiguous: Do you mean to put that value in
$arg1, leaving $arg2 unspecified, or do you mean to let $arg1 default to 10
and $arg2 receive the value given?

198 Chapter 10: Functions

E X A M P L E

E X A M P L E

PHP always uses the first scenario, and warns you with the following error
because argument 2 is unspecified in the function call:
Warning: Missing argument 2 for example()

So, the first argument having a default value is useless as long as other
values without defaults follow it. Therefore, you should always put the
default parameters at the end of the parameter list.

Here’s a version of the same function with this problem rectified:
function example($arg1, $arg2 = 10)
{

// function code would go here
}

Returning a Value
Some functions are created to give a value back to the calling expression.
For instance, PHP has a built-in function substr() that takes a string and
two numeric arguments and returns a substring of the original string.

Here’s an example:
$substring = substr(‘ABCDEFG’, 0, 3);

After this statement executes, $substring contains ABC.

When this statement is evaluated, the function is executed before the
assignment occurs. Thus, the function’s return value (ABC) gets stored in the
variable ($substring).

Your own functions can have this characteristic, as well. Until now, your
functions weren’t returning a value, per se; they had a NULL return value.

When your function’s task is complete, you can return any value you want
using the return statement, which has the following syntax:
return value;

Value, here, would be whatever value you’re returning.

Let’s say you want to return the value of the second parameter passed into
the function. The following example does just that:
<?php
/* ch10ex03.php – demonstrates user-defined returnSecond() function */

/* MAIN PROGRAM */

echo returnSecond(“Three”, “One”, “Two”);
echo returnSecond(“One”, “Two”, “Three”);
echo returnSecond(“Two”, “Three”, “One”);

199Passing Values to and from Functions

E X A M P L E

/* FUNCTION DEFINITION */

function returnSecond($arg1, $arg2, $arg3)
/* PRE: none.

PST: the second argument is returned
*/
{

return $arg2 . ‘ ‘; // add a space
}

?>

The output of this program is
One Two Three

Now let’s take a more practical example. The following program uses a
function box_area() to calculate the area of a box based on its length,
width, and height:
<?php
/* ch10ex04.php – uses a function to calculate surface area of several boxes */

/* MAIN PROGRAM */

echo ‘Box areas:

’;
echo ‘Box 1: ‘ . box_area(3, 3, 5) . ‘
’;
echo ‘Box 2: ‘ . box_area(2, 2, 2) . ‘
’;
echo ‘Box 3: ‘ . box_area(4, 5, 2) . ‘
’;

/* FUNCTION DEFINITION */

function box_area($x, $y, $z)
/* PRE: $x, $y, and $z are the numeric dimensions of the box

PST: returns the box’s surface area given by the formula:
A = 2XY + 2XZ + 2YZ

*/
{

return ((2 * $x * $y) + (2 * $x * $z) + (2 * $y * $z));
}

?>

N O T E
This could be done several different ways. Here, I’ve put the expression and the return
statement together on one line. I could also have performed the calculation on one line
(storing it to a variable such as $area), and then returned it. Either way works.

The method shown here reduces the time used slightly by eliminating the storing of the
value to a variable and then recalling it again.

200 Chapter 10: Functions

E X A M P L E

The output of this program would be
Box areas:

Box 1: 78
Box 2: 24
Box 3: 76

REFERENCED RETURN VALUES

If you’re returning a value that is fairly large, such as an object or array,
you might want to return it by reference. This is useful for expressions that
look something like this:
$objSomeObject = thisReturnsAVeryLargeObject();

Making the assignment an assignment by reference, like this:
$objSomeObject =& thisReturnsAVeryLargeObject();

and making the function return a referenced return value (you’ll see how
soon) avoids copying the return value to the variable. The result is that
only a single copy of the object is ever created; otherwise, one copy would be
returned, and a copy would be made of it to be stored in the variable it was
being assigned to (thus, 2 copies exist over the course of the assignment).

To make your function return a referenced value, you should add an amper-
sand between the word function and the function name when you declare
the function.

N O T E
Returning a reference value is also known as a return by reference.

Here’s the syntax:
function & function name(parameters)
{

function body
}

N O T E
This syntax is identical to a regular function declaration except for the addition of the
ampersand. For this ampersand to be of any use, though, the function must return a
value.

Now, let’s take a look at an example program which uses a function that
returns a reference. Here it is:
<?php
/* ch10ex05.php – demonstrates a referenced function return value */

201Passing Values to and from Functions

E X A M P L E

/* MAIN PROGRAM */

// Show what the original array is:
echo ‘arrNumbers:
’;
$arrNumbers = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
print_r($arrNumbers);
echo ‘

’;

// Reverse the order of the elements
$arrNegativeNumbers =& makeNegative($arrNumbers);

// Show the resulting array
echo ‘arrNegativeNumbers:
’;
print_r($arrNegativeNumbers);

/* FUNCTION DEFINITIONS */

function & makeNegative($array)
/* PRE: $array must be an array

PST: returns by reference the reversed array
*/
{

for ($a = 0; $a < count($array); $a++)
{

$array[$a] *= -1;
}

return $array;
}

?>

Running this program produces the following output:
arrNumbers:
Array
(

[0] => 1
[1] => 2
[2] => 3
[3] => 4
[4] => 5
[5] => 6
[6] => 7
[7] => 8
[8] => 9
[9] => 10

)

202 Chapter 10: Functions

arrNegativeNumbers:
Array
(

[0] => -1
[1] => -2
[2] => -3
[3] => -4
[4] => -5
[5] => -6
[6] => -7
[7] => -8
[8] => -9
[9] => -10

)

N O T E
The raw HTML output is shown here for clarity in the way the arrays are displayed. If
you execute the program in your browser, the calls to print_r() produce single-line
output, which can be difficult to interpret.

Whenever you want to return a value by reference, you must remember the
following two things:

• The assignment must use =& instead of

• The function must have an ampersand (&) in its declaration between
the word function and the function’s name.

T I P
Returning a value by reference has nothing to do with the way the function works; any
function that returns a value by reference can also be made to return the value nor-
mally. Returning a value by reference simply makes functions that return values that
take up lots of memory more efficient by eliminating the excessive copying process.

C A U T I O N
Although returning a value by reference speeds up a function that returns a large value,
doing so with a function that returns a single number or small string is pointless.
Copying the return value by reference on such a small value will not speed up the
process, so you might as well leave those functions (which will be most of the functions
you create) as regular functions that do not return a value by reference.

Don’t be shy about using references, but be able to support why you used them when
you do.

203Passing Values to and from Functions

Referenced Parameters
References are more often useful for modifying more than one value with a
single function call. Typical functions can only change one value in the
global scope (by returning it and having the return value assigned to the
variable in the main program). However, using referenced parameters, any
argument that is passed into the function will be modified at the global
scope if it is modified within the function.

N O T E
Variables are also sometimes passed using references to avoid the overhead it takes
to copy a large variable (such as an object or a large array). If you must do this, be very
careful not to change the value of the variable unless you intend to change the variable
at the global scope. Without making a copy of the variable (by passing it in normally),
there’s no guarantee that the variable will be unchanged after the function executes.

Generally, you’ll use referenced parameters to return more than one value
in the global scope with one function call.

SYNTAX

Whether a variable is passed by reference or not is decided by the function
definition by placing an ampersand before each parameter that should be
passed by reference. The syntax is
function function name(& parameter1, & parameter2, ...)
{

function body
}

N O T E
Because the parameter list can go on ad infinitum, the parameter list in this syntax
guide is simply left open-ended with an ellipsis.

T I P
This list shows all of the parameters of this function as referenced parameters. As
you’ll see in some of the following examples, not all of the function’s parameters have
to be referenced.

Only the parameters that need to be referenced should be referenced.

EXAMPLE

One common use for referenced parameters is in certain array sorting algo-
rithms. Although PHP has built-in functions for this (such as sort() and
asort()), it’s handy to know a little bit about how array sorting works,

204 Chapter 10: Functions

E X A M P L E

especially because a common array sorting algorithm is perfect for using
referenced parameters.

Array sorting, speaking very generally, involves comparing certain values
within an array to other values within the array. (The difference in algo-
rithms generally is a matter of which elements are compared and in which
order the comparisons are performed.) A selection sort begins with the first
element of an array and compares it to all of the other values in the array.
The smallest value found is swapped with the first value, thus performing
the first iteration of the sort. The process moves on to the second value, this
time disregarding the first value as a possibility, and the next smallest
value is found. It, like the first, is swapped to the second position in the
array and whatever value was at the second position is moved to the loca-
tion where the smallest value was. This process goes on until the array is
sorted from least to greatest value, as Figure 10.3 shows.

205Referenced Parameters

[0] [1] [2] [3] [4] Swap elements

Original: Array (1, 5, 2, 0, - 4)

Iteration 1: Array (- 4, 5, 2, 0, 1)

Iteration 2: Array (- 4, 0, 2, 5, 1)

Iteration 3: Array (- 4, 0, 1, 5, 2)

Iteration 4: Array (- 4, 0, 1, 2, 5)

0 and 4

1 and 3

2 and 4

3 and 4

Figure 10.3: A selection sort selects the smallest value in an array and
moves it to its appropriate location closer to the front of the array.

In Figure 10.3, the numbers with a box around them represent the left
boundary of the numbers being considered in finding the minimum value.
(Considering the numbers sorted to the left would always yield the same
value, thus failing to sort the array.)

The numbers circled are the ones found to be the minimum value for that
particular iteration, and thus their values are swapped with the current
leftmost “boundary” value (the one with a box around it). The arrows show
this swapping. After the values are swapped, a new array is formed (the
one following the one you were just looking at), and the process repeats
with the left boundary moved one to the right.

So, what does all this have to do with referenced parameters? Well, the
process of swapping two values sounds like it could make a good function.
After all, if you make it for this sorting algorithm, another one down the
road might be able to use it too.

You can’t use a simple function with a return statement for this task;
in the process of swapping the values, both variables have to be changed.
(That’s right; for all practical purposes an element of an array, such as
$arrSomething[2], is just as much a regular variable, such as $strMyString,
as $strMyString is. Thus, they can be passed as referenced values too, with-
out even disturbing the rest of the array!)

So you create a fairly simple little swap function that takes the value from
one variable and sticks it in a temporary variable. (If you didn’t do this, you
would lose the value of one of the variables because you’d end up with two
identical variables after an assignment, which is what you’ll use to move
the value.) Then you move the values around as necessary, and you’re done.

Here’s the function:
function Swap(& $var1, & $var2)
{

$temp = $var1;
$var1 = $var2;
$var2 = $temp;

}

That’s not so bad, thanks to the referenced parameters. Thus, the swap for
the first iteration in the diagram above (from the top array to the second
one) could be done with a call to Swap() similar to this:
Swap($arrNumbers[0], $arrNumbers[4]);

T I P
As you’ll see in the coming full example, the indexes you hard-coded here will end up
being variables when you call the Swap() function in the sorting algorithm.

Now that you’ve gotten this far into it, you might as well take a look at a
program that does the whole process. Any uncertainties you might have
about referenced parameters can be cleared up here.

The following program takes the array defined at its beginning and uses
the function printArray() to display its contents. Then it uses the selection
sort algorithm described previously, which in turn makes use of the Swap()
function to sort to array. (Both of these functions use referenced param-
eters, by the way.) Finally, the sorted array is displayed again for us to see.

Here it is:
<?php
/* ch10ex06.php - selection sort/referenced parameters */

/* MAIN PROGRAM */

206 Chapter 10: Functions

E X A M P L E

$arrNumbers = Array(5, 1, 37, -3, -2, 0);

echo “Array before sorting:
”;
displayArray($arrNumbers);

selectionSort($arrNumbers);

echo “
Array after sorting:
”;
displayArray($arrNumbers);

/* FUNCTION DEFINITIONS */

function displayArray($arr)
/* PRE: $arr should be an array of numbers

PST: $arr is outputted in HTML-formatted list
*/
{

foreach ($arr as $key => $val)
{

echo “[$key] => $val
”;
}

}

function selectionSort(& $arr, $verbose = 0)
/* PRE: $arr is an array of numbers,

$verbose is an optional parameter:
If $verbose == 1, the array is displayed at every iteration of the

sorting algorithm.
Otherwise, this extra output is suppressed.

PST: $arr is sorted from least to greatest.
*/
{

for ($i = 0; $i < count($arr); $i++)
{

if ($verbose == 1)
{

echo “
Iteration $i:
”;
displayArray($arr);

}

$min_index = findMinimum($i, $arr);

if ($arr[$min_index] < $arr[$i])
{

Swap($arr[$min_index], $arr[$i]);
}

207Referenced Parameters

}
}

function findMinimum($low_bound, $arr)
/* PRE: $low_bound is a valid index for $arr,

$arr is an array of numbers.
PST: The lowest value found in the array from the $low_bound index to the last

index in the
array is returned.

*/
{

$min_index = $low_bound;

for ($i = $low_bound + 1; $i < count($arr); $i++)
{

if ($arr[$i] < $arr[$min_index])
{

$min_index = $i;
}

}

return $min_index;
}

function Swap(& $param1, & $param2)
/* PRE: $param1 and $param2 are any values.

PST: The values are swapped between their variables.
*/
{

$temp = $param1;
$param1 = $param2;
$param2 = $temp;

}

?>

T I P
The sorting function shown here also has a default parameter, which has been left
unspecified when it is called here. Try giving the function a second argument of 1 (as
opposed to the default of 0) to see the array displayed at every step of the sorting
process.

The output of this program is
Array before sorting:
[0] => 5
[1] => 1

208 Chapter 10: Functions

[2] => 37
[3] => -3
[4] => -2
[5] => 0

Array after sorting:
[0] => -3
[1] => -2
[2] => 0
[3] => 1
[4] => 5
[5] => 37

T I P
The theory behind this sorting algorithm isn’t too important for you right now; PHP does
provide functions to take care of all the sorting needs you’ll probably ever have.
However, from this example you can see the very real importance of having referenced
parameters. Without them, this algorithm would become even more complex than it
already is.

This example makes use of several function features you’ve discussed in
this chapter. Look through and make sure you understand how values are
being transferred back and forth between the functions. Even if you don’t
precisely understand the algorithm here, you should know what each line of
code does on its own.

Furthermore, if you break down the program into small parts as the func-
tions have here, you shouldn’t have much trouble figuring out the whole
algorithm (try using Figure 10.3 as a guide, as well). Breaking problems
down into more workable parts is one of the benefits of functions. As your
tasks become more and more complex, you’ll use more and more functions
to keep the smaller tasks separate; the more separation you can get
between unique tasks, the less confusing problems will be.

Recursive Functions
A recursive function is a function that calls itself, using the result of that
function call to complete its task (and return a resultant value in most
cases).

For example, you did factorials (multiplying an integer by every integer
below it until 1 is reached) using a for loop and decrementing the counter
variable. This could be done, too, with recursion, which you’ll see soon.

209Recursive Functions

What Is Recursion?
Recursion relies on the basic principle that at some point the function will
stop calling itself. After all, if the function called itself infinitely, it would
have no use. So, any recursive function must have an if statement (or
another conditional statement) to test whether the function should call
itself again or if it should simply return its result and stop.

One other trait is common to all recursive functions: Some change must be
made to the function’s parameter before it is used to call the function again.
For example, to find a factorial, subtract one from the parameter (just as
you did with the counter in a for loop) and call the function on the result-
ing value.

Thus, every time the function is called, the value is one less than it was
before. Eventually, the value would reach 1; because you want to stop at
one, this will become your conditional.

Understanding Recursion
Let’s take a look at how recursion works. Recursion isn’t quite as straight-
forward as looping because it requires you to imagine that the same seg-
ment of code can have multiple instances of itself running at the same time.

The factorial function discussed so far would look something like this:
function factorial($number)
{

if ($number == 1)
{

return $number;
}
else
{

return ($number) * factorial($number – 1);
}

}

N O T E
Notice how the function’s name appears within its definition. Whenever you see this,
you’re dealing with a recursive function.

This will be much clearer if you have some diagrams to go by. Let’s start off
simple: the factorial of 1. As you already know, this function call would look
like:
factorial(1);

210 Chapter 10: Functions

It doesn’t take a diagram to see that the if statement finds that $number is
equal to 1, and 1 is returned. Thus, the factorial of 1 is correctly reported to
be 1.

Now, what about the factorial of 2? You might want to follow Figure 10.4
along with this explanation so you can see exactly what the function is
doing.

211Recursive Functions

function factorial($number)

{

 if ($number == 1)

 {

 return $number;

 }

 else

 {

 return ($number) * factorial($number - 1);

 }

}

function factorial($number)

{

 if ($number == 1)

 {

 return $number;

 }

 else

 {

 return ($number) * factorial($number - 1);

 }

}

$number = 2

$number = 1

2 factorial (1)

Evaluates to false; skipped

Evaluates to true; returns 1

Imaginary copy

of factorial()

Figure 10.4: The factorial of 2 requires the factorial() function to call
itself once.

First, factorial() is called with the argument 2. The if check to see if the
parameter is 1 evaluates to false, so the code below else is executed. This
code is a return statement like this:
return ($number) * factorial($number – 1);

Now, $number evaluates directly to 2. However, factorial($number – 1)
requires the factorial function to be executed to find the value of
factorial(2 – 1) or factorial(1).

When this occurs, think of it as if a second copy of the function has been
created; the old copy is still waiting for the value that this call to
factorial() returns, so you can’t discard it. Therefore, you end up with two
copies of the factorial function running simultaneously—the first waiting
on the second to finish.

In the second copy of factorial, the parameter is 1. The if statement does
evaluate to true now and 1 is returned. The second copy of the function is
discarded now; its work is done.

You’re back in the first (and now the only) copy of the factorial() function
now. The value returned by the call to factorial(1) was 1, and now the
multiplication expression can be evaluated. 2 is multiplied by 1, and the
resulting 2 is returned by the last copy of factorial(), thus ending the
process.

Using Recursion
Recursion can go deeper than just one level, of course. If you took the facto-
rial of 35, for example, using factorial(35) as the function call, you would
end up with 35 imaginary copies of the factorial() function, all waiting on
the factorial(1) to return 1. At that point, the copies would all begin eval-
uating their mathematical expressions.

First, factorial(2) would evaluate 2 * 1 (its own parameter times the
return value of factorial(1)), and it would return the resulting 2. Then,
factorial(3) would be able to evaluate its expression, which would be 3 *
factorial(2). Because factorial(2) returned 2, that expression would
evaluate to 6, and factorial(4) would have a value to evaluate its expres-
sion with, and so on until factorial(35) finally returned with the end
result.

This might seem like a somewhat confusing way to think, and indeed many
times it’s easier to use some sort of loop. However, recursive functions are
short and compact, and even if you don’t choose to use them, you’re sure to
have to read the code of some other programmer who has decided to use
them.

As long as you break down the process like you did with the factorial()
function here, you should have no problems with recursion. If you have to,
think of it as a different way of looping: The initialization is the value of
the original argument, the condition is found in the if statement, and the
repetition statement is found wherever the function is called again.

For example, let’s look at the factorial() function one more time:
function factorial($number)

212 Chapter 10: Functions

{
if ($number == 1)
{

return $number;
}
else
{

return ($number) * factorial($number – 1);
}

}

Here, whatever initial value is passed as an argument for $number will
make up the initialization. The condition is found in the if loop, so $number
== 1 is the condition when the recursion will end. Finally, $number –1 is
the expression found in the recursive function call, so $number –1 is the
repetition statement occurring with each level of recursion.

What’s Next
You now understand what functions are, how they work, and how useful
they can be. You also see that you can divide your programs into smaller
tasks using functions as separate blocks to create the whole of your
program.

Now you’ll take it one step further with classes and objects. These are used
to combine variables and functions into logical “objects”—things with cer-
tain properties (variables) and certain abilities (functions) associated with
them. Classes and objects, like functions, enable you to create cleaner, more
logical programs and will help you to break problems down into smaller,
easier-to-handle tasks.

213What’s Next

11

Classes and Objects
As you learned in the previous chapter, functions provide a way for you to
divide your program’s tasks into separate, smaller tasks. Classes and
objects are somewhat similar in helping you to organize your program.
They are used to create collections of related variables and functions, which
can be used to more accurately represent real-life situations.

This chapter teaches you the following:

• How to define classes

• How to instantiate objects

• Member variables and functions

• The this variable

• How to serialize and unserialize objects

• Inheritance

What Are Classes and Objects?
A class is used to define a collection of variables and functions that work
together. A class is actually a new variable type, comparable to the numeric
and string data types already found in PHP, but unlike the predefined
types, a class can be customized to fit your needs. Thus, classes are also
known as abstract data types (ADTs) because they allow you to define a
variable type the way you want.

A class defines a new variable type to model a concept, such as a bank
account or a shopping cart. After the class (a data type) is defined, an
instance of that type must be created. An instance is simply a variable that
follows the structure of a class. For example, an instance of an int is a vari-
able that contains an integer; likewise, an instance of a given class is sim-
ply a variable that contains data of that class’s type. An instance of a class
is usually called an object.

A class tells what an object should look like. A car class might have make,
model, and color properties associated with it. Thus, an instance of the car
class (an object) should contain data matching the class’s description—make,
model, and color.

T I P
The relationship between a class and an object will become clearer after we’ve used
them both.

In modeling the behavior of a concept, both variables and functions must be
contained within the class. For example, to model a dog, we might have
variables that tell us the dog’s attributes, such as weight and color.

However, we haven’t fully modeled a dog just by having his properties; we
need to model his behavior, as well. This will be done by functions. Such
functions for a dog might include barking, eating, and sleeping.

T I P
The important thing to remember is that we’re trying to model a concept or a physical
object using an abstract data type in PHP. Although you probably wouldn’t want to model
the behavior of a dog, if you understand the relationship between a dog’s properties
(color, weight) and his functions (barking, sleeping), you will understand how to separate
other concepts into similar divisions of variables and functions.

Commonly modeled concepts, such as bank accounts, shopping carts, or item invento-
ries, will be discussed and defined in classes as we move through this topic.

216 Chapter 11: Classes and Objects

Defining a Class
A class is defined using the class keyword, as follows:
class class_name
{

var variable1, variable2;
var variable3;

function function1(argument_list)
{

function1_body
}

function function2(argument_list)
{

function2_body
}

}

Here, class_name is the name of the class you’re creating (such as
bank_account).

Inside the class, the member variables and functions are declared. Any
number of member variables can be declared, and the data type (such as
int, string, array, or even object) does not need to be given. In fact, even
though the variables are declared, they are undefined because no values
are given when they are declared.

N O T E
Always declare the class’s member variables at the top of the class to let you and other
programmers who might use the class know what the class’s member variables are.

T I P
Although it is possible to define a class and not list member variables, it isn’t good pro-
gramming practice to do so because it forces a programmer to read through the entire
program to figure out what member variables are used with the class.

Member variables that are to be used should always be declared using var at the top
of the class. If you later decide to add another member variable, go back and add it
where the other members are declared.

After the member variables come the class’s function declarations. A class’s
member functions are declared just as they would be if they weren’t in a
class.

217What Are Classes and Objects?

Following this syntax, you can create a dog class as follows:
<?php
/* ch11ex01.php – defines class dog

(Won’t output anything if run.) */

class dog
{

var $name; // dog’s name

function Bark()
// PRE: None
// PST: Outputs “woof” to simulate barking
{

echo “Woof!”;
}

}

?>

Notice that this program will not output anything like it is. The Bark()
function is never called, so no output is generated.

However, this program does properly declare a dog class with a name and a
function to make it bark. We’ll use this class in the next example.

Creating and Using an Object
After you have a class defined, you can create an object from it. In fact, just
as you can create as many ints as you want, you can create as many
objects of a class as you want.

To create an object, use the new operator in an assignment-like expression,
as follows:
$object_name = new class_name;

N O T E
A few variations on this syntax are valid. It is possible that you will encounter object
instantiations similar to this:

$object_name = new class_name();

or

$object_name = new class_name($arg1, $arg2);

You will learn more about these when we discuss constructor functions.

This creates an instance of the class given by class_name in the variable
$object_name.

218 Chapter 11: Classes and Objects

E X A M P L E

To access an object’s members (both variables and functions), use the
-> operator.

N O T E
Don’t confuse the -> operator with the => operator. The ->, which is used with classes,
cannot be interchanged with =>, which is used with associative arrays.

For example, using the dog class from the previous example, you could cre-
ate a program as follows:
<?php
/* ch11ex02.php – demonstrates the use of an object */

// Define what a dog is
class dog
{

var $name; // dog’s name

function Bark()
{

echo ‘Woof!’;
}

}

// Create a dog, give him a name, and make him bark
$objDog = new dog;
$objDog->name = ‘Cerberus’;

echo $objDog->name . ‘ says: ‘;

$objDog->Bark();

?>

This program creates a new dog object and assigns him the name Cerberus.
Then, after printing Cerberus says: as output, the dog’s Bark() function is
called, causing the dog object to output Woof!.

The following output results:
Cerberus says: Woof!

Similar to placing an index after an array (such as arrayName[index]), you
can use the object->memberVariable notation anywhere you can use a vari-
able. It will be evaluated before the rest of the expression.

Thus, the echo $objDog->name line in this example is perfectly valid.

219What Are Classes and Objects?

T I P
Here, we define the dog class first. This isn’t completely necessary, as long as the defi-
nition appears somewhere within the code being executed. The dog class appears at
the top here, but the definition can be moved to the bottom or even into separate
include files, which will be discussed in Chapter 12, “Using include Files.”

C A U T I O N
The class you are trying to instantiate must exist somewhere within the program.
If the class is not defined, PHP will die with the fatal error: Cannot instantiate
non-existent class.

Example: Creating a bank_account Class
To demonstrate the use of a class, let’s create one to model a bank account.
A bank account has certain information associated with it, such as its
account number, the PIN number needed to access it, and its balance. This
information could be stored in a class’s member variables.

Here’s the class declaration with only the member variables declared:
class bank_account
{

var $Number, // (string) Account Number (xxx-xxxx-xxxx)
$PIN, // (int) PIN Number (xxxx)
$Balance; // (double) Balance (xxxx.xx)

}

Now we have a basic definition of the data a bank account has associated
with it. Next, we need to define functions to work with this data. For
starters, we’ll need Withdraw() and Deposit() functions to handle these
basic tasks of banking.

These functions will be changing the value of certain member variables
within the class. To do so, we must use the $this object.

THE $this OBJECT

$this is used to access the contents of an object from within its own mem-
ber functions. To modify a variable from within a member function defini-
tion, you use $this->variable_name, where variable_name is one of the
class’s member variables.

220 Chapter 11: Classes and Objects

E X A M P L E

The following program demonstrates the use of $this:
<?php
/* ch11ex03.php – demonstrates use of $this */

// Define example class
class Example
{

var $text;

function changeTextOne()
{

$text = “This is the new text.”; // Won’t work as we might expect
}

function changeTextTwo()
{

$this->text = “This is the new text.”; // Works as expected
}

}

// Use example class to demonstrate $this usage
$objExample = new Example;

$objExample->text = “This is the original text.”;
echo ‘$objExample->text after explicit assignment: ‘ . $objExample->text .
‘
’;

$objExample->changeTextOne();
echo ‘$objExample->text after changeTextOne(): ‘ . $objExample->text . ‘
’;

$objExample->changeTextTwo();
echo ‘$objExample->text after changeTextTwo(): ‘ . $objExample->text . ‘
’;

?>

The output of this program is as follows:
$objExample->text after explicit assignment: This is the original text.
$objExample->text after changeTextOne(): This is the original text.
$objExample->text after changeTextTwo(): This is the new text.

As you can see, the assignment in changeTextOne() didn’t change the value
of $objExample->text. That’s because the variables of a class aren’t auto-
matically part of the member function’s scope; that is, in the member func-
tions, $this->text and $text are different variables.

221What Are Classes and Objects?

E X A M P L E

Only when we use $this->text to assign a value to the member variable
text do we see the desired result.

C A U T I O N
Forgetting to use $this in a member function when you’re trying to access a member
variable is a bigger problem than you might expect. This is one of the first things you
should check if you’re getting unexpected behavior from a class’s member variables or
functions.

Whenever you’re trying to access a member variable within a member function, you
must use the $this variable.

Getting back to the bank account example, we define the Withdraw() and
Deposit() functions (which use $this) and update the class as follows:
class bank_account
{

var $Number, // (string) Account Number (xxx-xxxx-xxxx)
$PIN, // (int) PIN Number (xxxx)
$Balance; // (double) Balance (xxxx.xx)

function Deposit($dblAmount)
{

$this->Balance += $dblAmount;
}

function Withdraw($dblAmount)
{

$this->Balance -= $dblAmount;
}

}

Thus, using this bank_account class, a programmer could quickly model
bank account transactions in an organized, logical fashion.

For example, this class could be used as it is to create a rudimentary check-
book-balancing program, as follows:
<?php
/* ch11ex04.php – uses the bank_account class in a

checkbook-balancing program */

// MAIN PROGRAM

$in = $HTTP_POST_VARS;

switch($in[‘action’])
{

default:

222 Chapter 11: Classes and Objects

E X A M P L E

E X A M P L E

showForm();
break;

case ‘Deposit’:
$objAccount = new bank_account;
$objAccount->Balance = $in[‘previous-balance’];
$objAccount->Deposit($in[‘amount’]);
showForm($objAccount->Balance);
break;

case ‘Withdraw’:
$objAccount = new bank_account;
$objAccount->Balance = $in[‘previous-balance’];
$objAccount->Withdraw($in[‘amount’]);
showForm($objAccount->Balance);
break;

}

// FUNCTION DEFINITIONS

function showForm($dblBalance = 0)
// PRE: none
// PST: An HTML form is displayed to allow input into the program
{
?>
<html>
<head><title>PHP By Example :: Chapter 11 :: Example 4</title></head>
<body bgcolor=”white”>

<form action=”<?= $GLOBALS[‘PHP_SELF’] ?>” method=”POST”>
<!-- hidden input to track balance from one submission to the next -->
<input type=”hidden” name=”previous-balance” value=”<?= $dblBalance ?>”>

Account Balancing Program

Previous Balance: <?= $dblBalance ?>

Amount: <input type=”text” name=”amount”>

<input type=”submit” name=”action” value=”Withdraw”>

<input type=”submit” name=”action” value=”Deposit”>
</form>

</body>
</html>
<?php
} // end of showForm()

// CLASS DEFINITIONS

223What Are Classes and Objects?

class bank_account
{

var $Number, // (string) Account Number (xxx-xxxx-xxxx)
$PIN, // (int) PIN Number (xxxx)
$Balance; // (double) Balance (xxxx.xx)

function Deposit($dblAmount)
{

$this->Balance += $dblAmount;
}

function Withdraw($dblAmount)
{

$this->Balance -= $dblAmount;
}

}

?>

N O T E
Like all other variables in PHP, object variables are not persistent; that is, each time
PHP runs, the object that exists has to be re-created. It is not the same object every
time the user clicks a Deposit or Withdraw button. This is why the previous-balance
hidden field is included in the form.

As you can see, the first time the program runs (when the user first visits
it), no action is defined. In response, the program simply returns the form.

N O T E
In this program, the class definition has been moved to the bottom of the program. It is
less significant, in this case, than the main logic of the program.

This use shows how the removal of the class definition from concentration clarifies the
workings of the program.

The Constructor Function
One thing about this implementation of the class is that the balance isn’t
always set when a new object is first instantiated. As you can see in the
body of the switch statement in this example, if we want the balance to be
set, we have to explicitly set it with an assignment, such as the following:
$objAccount->Balance = $in[‘previous-balance’];

It would be nice if this could be added into the line where the object is first
instantiated. After all, all accounts must have a balance before they can
work properly.

224 Chapter 11: Classes and Objects

This is where the constructor function comes in. PHP executes a constructor
function automatically whenever an object of a class is instantiated. A class
might or might not have a constructor function, but if it does, it must have
the same name as the class; PHP uses the name to determine whether it
should execute the function as a constructor function.

The constructor function is the reason behind the parameter list (noted pre-
viously) that might follow the class name when an object is created. For
example, the following are all valid:
$objAccount = new bank_account;

$objAccount = new bank_account();

$objAccount = new bank_account(45.00);

The first two are both essentially the same: No parameters are specified, so
if a constructor were being executed, it must not require parameters. The
last example, though, passes 45.00 as its argument.

As the bank_account class is defined so far, this parameter would simply be
ignored. However, we could define a constructor function to add to the class
to make the bank account set its balance to this value.

Here’s what the class definition looks like after this addition:
class bank_account
{

var $Number, // (string) Account Number (xxx-xxxx-xxxx)
$PIN, // (int) PIN Number (xxxx)
$Balance; // (double) Balance (xxxx.xx)

function bank_account($dblBalance = 0)
{

$this->Balance = $dblBalance;
}

function Deposit($dblAmount)
{

$this->Balance += $dblAmount;
}

function Withdraw($dblAmount)
{

$this->Balance -= $dblAmount;
}

}

Notice how the constructor function has the same name as its class. This
tells PHP that it is the constructor function.

225What Are Classes and Objects?

E X A M P L E

Also, the fact that the $dblBalance parameter has a default value means
the class can still be instantiated without arguments. However, if an argu-
ment is given, this value is used to set the account’s balance.

The following program demonstrates the use of this new version of the
bank_account class:
<?php
/* ch11ex05.php – demonstrates use of bank_account class with a constructor */

// MAIN PROGRAM

$objAccount1 = new bank_account; // Balance defaults to 0.00
$objAccount2 = new bank_account(45.00); // Balance is set to 45.00

echo ‘Account 1: ‘ . $objAccount1->Balance . ‘
’;
echo ‘Account 2: ‘ . $objAccount2->Balance . ‘
’;

echo ‘
’;

$objAccount1->Deposit(100);
$objAccount2->Deposit(100);

echo ‘Account 1: ‘ . $objAccount1->Balance . ‘
’;
echo ‘Account 2: ‘ . $objAccount2->Balance . ‘
’;

// CLASS DEFINITION

class bank_account
{

var $Number, // (string) Account Number (xxx-xxxx-xxxx)
$PIN, // (int) PIN Number (xxxx)
$Balance; // (double) Balance (xxxx.xx)

function bank_account($dblBalance = 0)
{

$this->Balance = $dblBalance;
}

function Deposit($dblAmount)
{

$this->Balance += $dblAmount;
}

function Withdraw($dblAmount)
{

226 Chapter 11: Classes and Objects

E X A M P L E

$this->Balance -= $dblAmount;
}

}

?>

The output of this program is as follows:
Account 1: 0
Account 2: 45

Account 1: 100
Account 2: 145

As you can see, the balance can now be set by giving it after the class’s
name when you instantiate the object. When the constructor is called, this
value is passed as a parameter and the balance is set accordingly because
that’s what this parameter is supposed to do. However, because the param-
eter has a default value, it is optional, and not setting it results in a begin-
ning balance of 0.

The rest of the class, such as the Deposit() and Withdraw() functions, work
just as they did before.

Object-Oriented Programming Concepts
Until now, our discussion of classes has been on a purely functional level.
The methods you’ve seen so far will work, but style improvements and con-
cepts exist that go along with classes that will make using them even more
beneficial to you.

Now we’re going to look at two concepts—black boxing and data protec-
tion—that will help you understand some of the added advantages to using
classes.

Black Boxing
Classes are most useful for black boxing concepts. Black boxing involves
hiding the inner workings of a concept and only requiring the programmer
to think about the higher-level results he is trying to produce.

N O T E
Black boxing is also sometimes called encapsulation; the two terms are interchange-
able. The important idea is that using black boxing will allow you to forget how you
solved particular problems once you’ve coded and tested their solutions. You’ll be much
less likely to become confused with a large program this way.

227Object-Oriented Programming Concepts

For example, the bank account class alone barely provides an advantage
over other approaches without classes. However, by adding error checking
and other features to the class, the class becomes the method of choice over
other methods for representing a bank account within the program.

Although error checking isn’t complex, hiding it within the class allows the
programmer to forget how the class works and merely rely on the fact that
it does. This is often referred to as black boxing.

Another usefulness of black boxing is that a complex task can overwhelm
even the best of programmers. To simplify matters, we divide things into
smaller pieces, ensuring that each smaller piece works as desired, and then
use the smaller pieces to make a larger piece.

For example, after we know that a bank account class works, we can create
another class to model a person’s financial assets as a whole. This requires
multiple accounts, so having the functionality of a single account figured
out and black-boxed allows the programmer to simply think of the accounts
as working objects, leaving him without worry about how the accounts
themselves work.

Data Protection
Another reason to use classes is that they provide data protection; that is,
classes prevent a programmer from making logic errors in dealing with
complex data structures. Using a class’s member functions to modify its
member variables protects a class’s data. By doing this, you are guaranteed
that all of the changes necessary to perform a desired task are executed
every time you want to perform the task.

For example, one desired function of a bank account class might be to keep
a record for each transaction made with the account. However, if a pro-
grammer simply modifies the account’s Balance member, he will probably
neglect to add an entry to the account history.

Good object-oriented programming practices dictate that a programmer
should use functions to access and modify the data within an object. Thus,
the programmer will have a smaller chance of making a mistake.

Example: A Shopping Cart Class
A shopping cart provides an excellent example for these two concepts. In
this case, black boxing is useful for being able to use the class without
learning how everything within it works. This way, the class’s member
functions can be called with less concentration to the inner workings of the
functions.

228 Chapter 11: Classes and Objects

C A U T I O N
It isn’t advisable to use a class you’ve downloaded off the Internet without reading
through it to check for possible problems. Although you can find numerous free classes
on the Internet, you should always read and understand them yourself to make sure
you trust the code before using it. Using code that a representative of the Web site has
not verified is risky; neglecting to do so leaves you open to security holes.

Note that I said “a representative of the Web site”; this representative doesn’t have to
be you if others on the team can check the code. Just make sure someone you trust
has deemed the code safe and you will have done the best you can do.

Also, the data is protected. The process of adding and removing an item has
been simplified into one step by putting it into a class member function.
Otherwise, these processes could involve several steps, and if you acciden-
tally left one out, it could cause problems with the format or structure of
the data stored in your shopping cart variables.

DEFINING THE shopping_cart CLASS

First, we need to define the properties and behavior of a shopping cart
class. This shopping cart will be kept fairly simple for demonstration pur-
poses, but will certainly be sufficient for use and expansion.

The shopping cart will track all of the items it contains by using an array.
We’ll assume that each item has an item number (001, 002, and so on), a
brief name, and a price. We’ll want the shopper to be able to choose what-
ever quantity he wants, so this will also be stored in the array.

Aside from that array, we will also track the total number of items stored in
the array. This number will be stored in an integer variable.

Now that we know the variables we want, we need to think about what
functions we’ll need. The obvious ones, Add() and Update(), would add and
remove items from the cart. (To remove an item, you would use Update() to
set the new desired quantity.) In addition to those functions, we’ll define
TotalItems() and NumItems(), the first of which will return the total num-
ber of items in the cart and the second of which will return how many of a
given item are in the cart.

Our class comes out looking like this:
class shopping_cart
{

var $arrItems,
$intNumItems;

function shopping_cart()
/* PRE: none

229Object-Oriented Programming Concepts

E X A M P L E

PST: member variables are initialized
*/
{

$this->arrItems = Array();
$this->intNumItems = 0;

}

function Add($intItemNumber, $strName, $dblPrice, $intQuantity)
/* PRE: $intItemNumber is the 3-digit item number code

assigned to this item,
$strName is the textual name of the item,
$dblPrice is the price of the item,
$intQuantity is the number of this item we are adding

to the shopping cart
PST: The item information (name, price) for $intItemNumber

is updated to match the newest data,
$intQuantity items are added to the previous quantity
$intNumItems is updated appropriately

*/
{

// Set item’s name/price information
$this->arrItems[$intItemNumber][‘name’] = $strName;
$this->arrItems[$intItemNumber][‘price’] = $dblPrice;

// Add the appropriate number of items to the quantity
$this->arrItems[$intItemNumber][‘quantity’] += $intQuantity;

// Update the intNumbItems variable
$this->intNumItems += $intQuantity;

}

function Update($intItemNumber, $intQuantity)
/* PRE: $intItemNumber is the 3-digit item number code assigned

to this item,
$intQuantity is the new quantity of this item that should

be in the shopping cart
PST: The item’s quantity is updated to match $intQuantity

$intNumItems is updated appropriately
*/
{

// Update intNumItems
$this->intNumItems += $intQuantity -

$this->arrItems[$intItemNumber][‘quantity’];

// Update arrItems
$this->arrItems[$intItemNumber][‘quantity’] = $intQuantity;

230 Chapter 11: Classes and Objects

}

function TotalItems()
/* PRE: none

PST: returns the total number of items in the shopping cart
(stored in $intNumItems)

*/
{

return $this->intNumItems;
}

function NumItems($intItemNumber)
/* PRE: $intItemNumber is a 3-digit item identification number

PST: the quantity of items with the $intItemNumber item
number is returned

*/
{

return $this->arrItems[$intItemNumber][‘quantity’];
}

}

/* PRE: $intItemNumber is the 3-digit item number code assigned to this item,

Notice that a basic constructor function has been added to explicitly set the
class’s member variables to beginning values. Although this isn’t necessary,
telling other programmers that these values always begin at this starting
point is good programming practice. When given a choice, it’s better not to
leave matters in question; the process wastes time when adding a short
function, because the constructor clarifies matters instantly.

From this class you can see why black boxing is helpful. Now, instead of
dealing with a multidimensional array, which could easily get confusing,
we’re working with a few simple functions that handle all the details for us.
As a by-product, the class’s member variables are less likely to be corrupted
by a programming mistake; they’re as reliable as the class definition.

As you can see from these functions, the workings of this shopping cart are
fairly simple. The Add() function adds items to the shopping cart, the
Update() function allows us to update an item’s quantity by either increas-
ing or decreasing its value, and the TotalItems() and NumItems() functions
give us important information about the contents of the class.

serialize() and unserialize()
Sometimes we want to save the contents of an object for use in a later pro-
gram execution so the object can be used just as if it had existed even while

231serialize() and unserialize()

its program wasn’t running. Because an object will be destroyed from one
page access to the next, we need a way to save a copy of the class repre-
sented as a string, thus allowing us to store it in a hidden form field or, a
session variable (introduced in Chapter 14 in the section entitled, “Using
Sessions”), or a database (introduced in Chapter 13, “Creating Dynamic
Content with PHP and a MySQL Database”). Because you can serialize and
unserialized objects, you can transfer the contents of a whole object
between one program and another one.

The process of encoding an object into a string form is known as serializing
the object—that is, you’re taking the elements of an object and connecting
them in order as a string. The inverse of this operation, which converts a
string representing an object back to an actual object, is called unserializ-
ing the object. Unserializing involves taking the ordered version of the
string and turning it into an object in which the elements have no order
associated with them.

The actual functions that do this are appropriately named serialize() and
unserialize().

Here’s the syntax for serialize():
$strSerialized = serialize($objObject);

serialize() takes the content of the object $objObject and encodes it into a
string variable $strSerialized. This string can then be placed in a hidden
field in a form and the object can be reinstantiated from the string after the
form is posted using unserialize().

Here’s the syntax for unserialize():
$objObject = unserialize($strSerialized);

After executing unserialize() on a given string (which was constructed by
calling serialize() on an object), the object is once again available for
use—with the same members it had before.

Let’s use the dog class we defined earlier in this chapter to explore the
serialize() and unserialize() functions a little further. The following pro-
gram uses these functions to store a serialized object in form field:
<?php
/* ch11ex06.php – demonstrates serialize() and unserialize() */

// MAIN PROGRAM

if (!isset($posted))
{

// The form has not been posted; create an object, show that it works
// before it is serialized, then serialize it and show the serialized string

232 Chapter 11: Classes and Objects

E X A M P L E

// in a form.
echo ‘Creating a new object...
’;
$objDog = new dog;
$objDog->name = ‘Spike’;
echo $objDog->name . ‘
’;
$objDog->Bark();

$strSerializedDog = serialize($objDog);

echo <<<END_HTML
<form action=”$PHP_SELF” method=”post”>
<input type=”text” name=”serialized_data” value=”$strSerializedDog”>
<input type=”submit”>
</form>
END_HTML;

}
else
{

// The form HAS been posted; unserialize the posted string into an object
// and use it to show that it still works.
echo ‘Unserializing the object...
’;
$objDog = unserialize($HTTP_POST_VARS[‘serialized_data’]);
echo $objDog->name . ‘
’;
$objDog->Bark();

}

// CLASS DEFINITION

class dog
{

var $name; // dog’s name

function Bark()
{

echo “Woof!”;
}

}

?>

is:
<input type=”text” name=”serialized_data” value=”$strSerializedDog”>
<input type=”submit”>
<input type=”submit”>
</form>

233serialize() and unserialize()

$objDog = unserialize($HTTP_POST_VARS[‘serialized_data’]);
echo $objDog->name . ‘
’;
$objDog->Bark();

}

N O T E
The base64_encode() and base64_decode() functions are probably unfamiliar to you
at this point. These functions work similarly to serialize() and unserialize(),
except these functions turn strings with special characters (such as the quotes, colons,
and curly braces found in the serialized string) into combinations of normal characters.

Base64 encoding a serialized object is important because without doing it, the quotes
found in the serialized string would end the value tag in our input prematurely (after
only the characters O:3:). The encoded string, however, is much more acceptable to be
posted.

For example, take a look at this string, the result of serializing an object:

O:3:”dog”:1:{s:4:”name”;s:5:”Spike”;}

Because a Web browser is looking for HTML code like this:

<input type=”hidden” name=”dogObject”
value=”some value”>

and the serialized string contains quotes, the first quote in the serialized string will
make the browser think that the value has ended. Thus, the rest of the encoded string
is considered to be garbage and ignored by the browser.

Because we’re encoding the string using base64_encode(), we also have to decode the
string using base64_encode()’s counterpart, base64_decode(). This function returns
the string to its original state. In this case, the decoded string is then passed to
unserialize() and the object is reinstantiated from there.

For more information on the base64_encode() and base64_decode() functions, refer
to the PHP manual.

The output of this program demonstrates that the serialize() and
unserialize() functions work as expected:
Creating a new object...
Spike
Woof!

Serialized: O:3:”dog”:1:{s:4:”name”;s:5:”Spike”;}
Serialized & Encoded: TzozOiJkb2ciOjE6e3M6NDoibmFtZSI7czo1OiJTcGlrZSI7fQ==
[Submit Button]

As you can see, when the object is first instantiated, it works as it should.
Then, we serialize the object, resulting in the string shown on the second-
to-last line. Finally, because we can’t have double quotes interfering with
the double quotes of our form’s HTML, we encode the object, yielding the
unintelligible string found on the last line.

234 Chapter 11: Classes and Objects

Submitting the form brings us to the next page, which says:
Unserializing the object...
Spike
Woof!

As you can see, the encoded, serialized string is decoded and unserialized to
produce the same instance of the dog object that we had before. Nothing
about the object has changed—its members and functions are exactly how
they were before the object was encoded.

C A U T I O N
To effectively re-create an object from a serialized form, you must include the class defi-
nition in the code that unserializes the object, as well as the code that serializes it to
begin with.

Subclasses and Inheritance
The last feature of classes to learn is the ability to create subclasses—
classes that extend a more general class, known as a base class.

T I P
Subclasses are also sometimes referred to as derived classes because they are derived
directly from the base class.

For example, let’s say you have a class called tree that represents any tree.
Any tree object, then, will have roots, leaves, and bark. However, you could
represent a specific kind of tree by creating a subclass of the class tree
called pineTree.

The pineTree class would not only have roots, leaves (needles), and bark,
but also pinecones. Not only does the pineTree contain its own members
(pinecones), but it also inherits those of the base class (roots, leaves, and
needles). The base or parent class is the class that is being extended; in this
case, the base class is the tree class.

Inheritance gives subclasses the power and ease that makes subclasses use-
ful; instead of having to define four members in the subclass, you only have
to define one because the other three are inherited from its parent.

The extends Keyword
When you want to create a subclass, you’ll need to use the extends keyword
to tell PHP that the class you’re creating extends (and is therefore a sub-
class of) another class.

235Subclasses and Inheritance

The syntax for extends is as follows:
class class_name extends base_class_name
{

class definition
}

This syntax isn’t difficult to understand, particularly because just reading
the code aloud is so close to plain English that you know what it’s doing:
“Class B extends class A.”

N O T E
Notice that I said class B extends class A and not vice versa. The class being extended
must be created prior to the class that is to extend it.

However, because PHP pays no attention to the order in which you actually define
classes in your program, this doesn’t mean you must put one class definition above the
other in the program file. As long as the class being extended exists, it will work.

Let’s look at an example of extending a class. Let’s say you have a class
Number defined as follows:
class Number
{

var $dblValue;

function getValue()
{

return $this->dblValue;
}

}

This class alone merely encapsulates a number to make it an object. As it
is, this class isn’t of much use; you might as well simply use a numeric vari-
able. However, we can extend this class to create a class Fraction that can
be of more use to us.

Here’s how a fraction might be defined:
class Fraction extends Number
{

var $intNumerator, $intDenominator;

function setValue($intNumerator, $intDenominator)
{

$this->intNumerator = $intNumerator;
$this->intDenominator = $intDenominator;
$this->dblValue = $intNumerator/$intDenominator;

}

236 Chapter 11: Classes and Objects

E X A M P L E

E X A M P L E

function getString()
{

return $this->intNumerator . ‘/’ . $intDenominator;
}

}

In essence, we have the following class Fraction:
class Fraction
{

var $intNumerator, $intDenominator;
var $dblValue;

function getValue()
{

return $this->dblValue;
}

function setValue($intNumerator, $intDenominator)
{

$this->intNumerator = $intNumerator;
$this->intDenominator = $intDenominator;
$this->dblValue = $intNumerator/$intDenominator;

}

function getString()
{

return $this->intNumerator . ‘/’ . $this->intDenominator;
}

}

Even though the class isn’t explicitly declared with all of these members
and functions, because the class inherits these from its parent, all of these
members and functions are available.

The following program defines these classes, then uses an object of each to
display their values in as many ways as their definitions provide:
<?php
/* ch11ex07.php – demonstrates subclasses and inheritance */

// MAIN PROGRAM

// Declare and define a Number
$objNum = new Number;
$objNum->dblValue = 4.5;

// Declare and define a Fraction
$objFrac = new Fraction;

237Subclasses and Inheritance

E X A M P L E

$objFrac->setValue(4, 5); // This makes the fraction = 4/5

// Compare the two
echo ‘The Number is: ‘ . $objNum->getValue() . ‘
’;
echo ‘The Fraction is: ‘ . $objFrac->getValue() . ‘ OR ‘

. $objFrac->getString() . ‘
’;

// CLASS DEFINITIONS

class Number
{

var $dblValue;

function getValue()
{

return $this->dblValue;
}

}

class Fraction extends Number
{

var $intNumerator, $intDenominator;

function setValue($intNumerator, $intDenominator)
{

$this->intNumerator = $intNumerator;
$this->intDenominator = $intDenominator;
$this->dblValue = $intNumerator/$intDenominator;

}

function getString()
{

return $this->intNumerator . ‘/’ . $this->intDenominator;
}

}

?>

The output of this program is as follows:
The Number is: 4.5
The Fraction is: 0.8 OR 4/5

As you can see, data that can have multiple representations is a good can-
didate for subclassing.

238 Chapter 11: Classes and Objects

What’s Next
Now that you’ve learned to divide your programs into functions and classes,
we will move into include files. Like functions and classes, include files are
a way of dividing your programs into logical parts. However, include files
are completely separate program files, which gives you more flexibility than
ever in organizing and using the code you write. The next chapter will
teach you everything you need to know to use include files effectively.

239What’s Next

12

Using Include Files
The programs we’ve created so far have been short—fewer than 200 lines of
code. However, these programs are intentionally shortened as much as pos-
sible to focus specifically on one or two concepts within the program.
Programs for a professional Web site will usually be much more detailed.
The look and feel of the Web site would be more refined on a high-quality
site, more features would be added, and more error checking would be nec-
essary—all to make the program more user friendly. However, these addi-
tions increase the amount of code within the program. Thus, what once was
a 200-line program can become a 500 or even 1,000 line program in a short
time.

Why is this important? Working with a 1,000-line program can be difficult.
Imagine digging through 50 function definitions looking for one specific
function. It would take you a minute or two just to find the function,
whereas picking the function out of a group of 5 at a time would be much
quicker. Include files will help you divide large programs into smaller files
that will all work together as one program when the program is executed.
We’ll take a look at some other advantages to include files as well.

This chapter teaches you the following:

• The syntax for include

• How include works

• How to separate a program into logical file divisions

• How to use include_once with libraries

• How to create a library directory

• Configuration modifications for include

Understanding include
First of all, let’s take a look at what include files do. Include files are files
that are interpreted as part of a program at runtime. Include files usually
contain program code or HTML code, but they can also contain other infor-
mation (such as JavaScript code).

N O T E
Include files in PHP are similar to Server Side Include files (.ssi or .shtml files).

Include files are used in many languages, including C, C++, Perl, and Java. You will see
why they are so widely used when you’ve finished learning about them in this chapter.

include Syntax
Files are included using the include statement, which tells PHP to include
the file at that point in the program.

The include statement follows this syntax:
include(‘/path/filename’);

Here, path is the optional path to the include file’s location; the path doesn’t
have to be specified if the file is the PHP’s configured include directory. The
filename, such as contents.php, must be specified.

The following example includes the files top.php and bottom.php, which
simply contain HTML code, in their respective positions within the
program:
<?php
/* ch12ex01.php – demonstrates use of include() with

HTML code in include file */

include(‘top.php’);

?>

Hello!

<?php

include(‘bottom.php’);

?>

As you can see, HTML in the middle of the program is surrounded on
either side by include statements. The two include files contain HTML code
to go on either side of the page’s content—the boldfaced word hello.

242 Chapter 12: Using Include Files

E X A M P L E

C A U T I O N
It’s important to note that include statements, like all other PHP statements, must be
inside the PHP tags.

For example, perhaps the file top.php looks like this:
<html>
<head><title>PHP By Example :: Chapter 12 :: Example 1</title></head>
<body bgcolor=”white”>

and bottom.php looks like this:
</body>
</html>

The example program just given would generate the following output:
<html>
<head><title>PHP By Example :: Chapter 12 :: Example 1</title></head>
<body bgcolor=”white”>

Hello!

</body>
</html>

As you can see, the contents of the include files have been inserted where
their respective include statements were located within the program.

Including PHP Code
Using include with PHP code is similar to using it with HTML code.
However, ensure that your PHP code is enclosed in PHP tags in the include
file. Because include files are not assumed to be PHP code, if you don’t
enclose PHP code in PHP tags within the include file, the code will simply
be outputted with the rest of the program’s output.

To include a PHP code include file, call include with the filename of the file
you want to include, as shown in this program:
<?php
/* ch12ex02.php – demonstrates include with PHP code in include file */

include(‘config.php’);

?>

<html>
<body bgcolor=”white”>

243Understanding include

E X A M P L E

Hello, <?= $user_name ?>!

</body>
</html>

Perhaps config.php contains something like this:
<?php
/* Configuration code */

$user_name = “John Smith”;

?>

As you can see, the variable $user_name is set in the configuration file for
the program. Because any code that is included is treated as if it’s part of
the main program file when it’s evaluated by PHP, the declaration for
$user_name applies to the entire program, not just within the include file.
Therefore, when the contents of the variable are outputted, we see the
value that was assigned to it in config.php.

C A U T I O N
Any PHP code—in include files or otherwise—must be enclosed in PHP tags.

Similarly, HTML code and other forms of output will be understood as such as long as
they are outside the PHP tags within its respective file.

Function and Variable Scope Between Include Files
When a file is included in a program, its contents are inserted into a tempo-
rary copy of the program in the computer’s memory while it is evaluated.
This is basically an imaginary copy of the program—it exists only while the
program is being evaluated and it disappears as soon as the program termi-
nates. Figure 12.1 shows how all of the files included in a main program
become part of an imaginary, consolidated main program.

One common misunderstanding of include files is that they have a separate
variable or function scope; that is, variables and functions declared in one
include file will not be available or will not interfere with variables of the
same name within another file. However, this is not true.

Figure 12.1 is intended to clarify this concept; you can imagine that the
files are evaluated as one conglomerate file. Any functions or variables will
be available to the other files just as if they were all one program.

244 Chapter 12: Using Include Files

Figure 12.1: Include files are consolidated into a temporary copy of the pro-
gram for evaluation.

Why Use includes?
One of the main advantages to include files is that they allow you to split
your programs into organized segments. Even more, you can divide code in
such a way that you can reuse certain portions of it in other programs.

You divide code for two main reasons: to organize it and to make it easily
reusable. These uses overlap in some places; for example, classes are often
declared in their own include file for both reasons. However, let’s look at
each reason for using include files individually.

Program Organization
As you’ve already heard many times before, programs should always follow
a structured, organized form. Programs that fail to do so are often difficult
to work with or understand. For this reason, we often divide sections of a

245Why Use includes?

MAIN.PHP

<?php

include('config.php');

include('top.php');

?>

Your name: <?=$user_name ?>

<?php

include('bottom.php');

?>

IMAGINARY/TEMPORARY COPY

<?php

$user_name = "John Smith";

?>
<html>
<head><title>Example</title>
<body bgcolor="white">

Your name: <?= $user_name ?>

</body>
</html>

CONFIG.PHP

<?php

$user_name = "John Smith";

?>

TOP.PHP

<html>
<head><title>Example</title></head>
<body bgcolor="white">

BOTTOM.PHP

</body>
</html>

program into include files, somewhat similar to the way we divide a pro-
gram into functions.

However, with include files, we’re not just dividing separate tasks; we’re
dividing entire groups of tasks. These tasks are probably already coded as
functions—a good start in program organization—but when 20 functions
are in a single program, that long list of functions becomes quite unwieldy
to work with.

This is where include files come in. To help handle this load, we divide sets
of functions into groups as necessary until a more manageable number—
let’s say no more than 10—exists in each file.

N O T E
You might find that you have an include file with more than 10 functions in it. The gen-
eral rule is not to let the file become hard to work with. If you find you’re having trouble
finding a function among other functions, try to divide the functions into some kind of
logical group and separate them into include files. This will make your job—and the job
of any other programmer having to read your code—much easier.

The following program is intended to allow a user to check his e-mail and
delete unwanted messages. As you read it, don’t concentrate too much on
how the functions work. Rather, concentrate on how many functions exist
and how long and tedious the program is to read.
<?php
/* ch12ex03.php – displays list of e-mails and allows user to delete them by

clicking a link */

/**** SETUP/CONFIGURATION ****/

define(‘POPHOST’, ‘www.example.com’);
define(‘USERNAME’, ‘jsmith’);
define(‘PASSWORD’, ‘pass’);

/**** MAIN PROGRAM ****/

$in =& $HTTP_GET_VARS;

switch($in[‘action’])
{

default:
echo nl2br(ShowAllEmails(POPHOST, USERNAME, PASSWORD)); // nl2br()

// replaces \n with

break;

case ‘delete-msg’:
DeleteMessage(POPHOST, USERNAME, PASSWORD, $in[‘message-id’]);

246 Chapter 12: Using Include Files

E X A M P L E

header(“Location: $PHP_SELF”);
exit;

}

exit;

/**** FUNCTIONS ****/

// Upper-level functions for POP3 protocol communications

function ShowAllEmails($host, $user, $pass) {
/* PRE: $host, $user, and $pass are valid

PST: returns a string containing all of the messages separated by newlines
*/

$sock = fsockopen($host, 110, &$errno, &$errstr)
or die(“FSOCKOPEN Error: “ . $errno . “:” . $errstr . “\n”);

stristr($response = pop_get_response_line($sock), “+OK”) == $response
or die(“Connection failed!”);

pop_snd($sock, “USER $user”);
stristr($response = pop_get_response_line($sock), “+OK”) == $response

or die(“Unable to verify USER”);
pop_snd($sock, “PASS $pass”);
stristr($response = pop_get_response_line($sock), “+OK”) == $response

or die(“Unable to verify PASS”);
pop_snd($sock, “STAT”);
stristr($response = pop_get_response_line($sock), “+OK”) == $response

or die(“Unable to delete verified message!”);
$message_count = split(“ “, $response);
for ($i = 1; $i <= $message_count[1]; $i++) {

$ret .= “SHOWING MESSAGE $i OF ${message_count[1]} “ .
“(<a href=\”$PHP_SELF?action=delete-msg” .
“&message-id=$I\”>DELETE:\n”;

pop_snd($sock, “RETR $i”);
$ret .= pop_get_response_body($sock);
$ret .= “\n\n---\n\n”;

}
pop_snd($sock, “QUIT”);
pop_get_response_line($sock);
fclose($sock);
return $ret;

}

function DeleteMessage($host, $user, $pass, $message_id) {
/* PRE: $host, $user, $pass, and $message_id are valid

PST: deletes message from server
*/

247Why Use includes?

$sock = fsockopen($host, 110, &$errno, &$errstr)
or die(“FSOCKOPEN Error: “ . $errno . “:” . $errstr . “\n”);

stristr($response = pop_get_response_line($sock), “+OK”) == $response
or die(“Connection failed!”);

pop_snd($sock, “USER $user”);
stristr($response = pop_get_response_line($sock), “+OK”) == $response

or die(“Unable to verify USER”);
pop_snd($sock, “PASS $pass”);
stristr($response = pop_get_response_line($sock), “+OK”) == $response

or die(“Unable to verify PASS”);
pop_snd($sock, “DELE “ . $message_id);
stristr($response = pop_get_response_line($sock), “+OK”) == $response

or die(“Unable to delete verified message!”);
pop_snd($sock, “QUIT”);
pop_get_response_line($sock);
fclose($sock);

}

// Mid-level functions for POP3 protocol communications

function pop_get_response_line(&$sock) {
/* PRE: $sock is an open socket connection

PST: one response line (up to the next \r\n sequence) is returned
*/

$terminator = “\r\n”;
$octet = _pop_get_response_octet($sock, $terminator, 1);

while ($octet != $terminator) {
$response .= $octet;
$octet = _pop_get_response_octet($sock, $terminator);

}

return $response;
}

function pop_get_response_body(&$sock) {
/* PRE: $sock is an open socket connection

PST: returns a full response body (up to \r\n.\r\n sequence)
*/

$terminator = “\r\n.\r\n”;

$octet = _pop_get_response_octet($sock, $terminator, 1);
while ($octet != $terminator) {

$response .= $octet;

248 Chapter 12: Using Include Files

$octet = _pop_get_response_octet($sock, $terminator);
}

return $response;
}

// Low-level functions for POP3 protocol communications

function _pop_get_response_octet(&$sock, $terminator, $reset = 0) {
/* PRE: $sock is a valid open socket,

$terminator is the octet termination character,
$reset determines whether the buffer should be reset (only

if we’re just beginning a new octet search)
PST: returns the octet

*/
static $last_octets = “”;
if ($reset) $last_octets = “”;

if (strcmp($last_octets, “”) == 0)
{

$last_octets = pop_prime_buffer($sock, strlen($terminator));
}
else
{

$last_octets .= fgetc($sock);
}

if ($last_octets == $terminator) {
return $terminator;

} else {
return str_shift($last_octets);

}
}

function __pop_prime_buffer(&$sock, $x) {
/* PRE: $sock is a valid socket connection, $x is an integer

PST: primes the buffer with $x number of characters
*/

for ($i = 1; $i <= $x; $i++) $ret .= fgetc($sock);
return $ret;

}

function str_shift(&$str) {
/* PRE: $str is a string

PST: returns shifted string (AB becomes BA)
*/

249Why Use includes?

$cpy = $str;
$str = substr($str, 1);
return substr($cpy, 0, 1);

}

function showCRLFs($str) {
/* PRE: $str is a string

PST: replaces \r and \n with visible representations
*/

return str_replace(“\r”, “[CR]”, str_replace(“\n”, “[LF]”, $str));
}

function pop_snd(&$sock, $buf) {
/* PRE: $sock is an open socket connection

PST: $buf is written to the socket and the $buf is returned
*/

fputs($sock, $buf . “\r\n”);
fflush($sock);

return $buf;
}

?>

This looks overwhelming. In fact, despite its organization and heavy com-
menting, the code is almost impossible to work with; the nine functions of
the program blur together, so even though they are divided by sectional
comments, they aren’t divided enough to be easily maintainable.

What we need to do is divide this program into more manageable sections.
Each of the commented subsections within the functions portion of the pro-
gram can be separated from the program into include files.

The include files would be pop3_upper.php, pop3_mid.php, and pop3_low.php.
Notice how the files have a common pop3_ prefix, which distinguishes them
from the other files they might be mixed with in a directory. They are a
related group, so they are named with a common prefix. Also, notice that
the name reflects what they do; the upper-level POP3 functions belong in
pop3_upper.php, the mid-level functions in pop3_mid.php, and so on.

Thus, we end up with three files. pop3_upper.php looks like this:
<?php
/* pop3_upper.php – contains the upper-level functions for POP3

communications */

function ShowAllEmails($host, $user, $pass) {
/* PRE: $host, $user, and $pass are valid

250 Chapter 12: Using Include Files

PST: returns a string containing all of the messages separated by newlines
*/

$sock = fsockopen($host, 110, &$errno, &$errstr)
or die(“FSOCKOPEN Error: “ . $errno . “:” . $errstr . “\n”);

stristr($response = pop_get_response_line($sock), “+OK”) == $response
or die(“Connection failed!”);

pop_snd($sock, “USER $user”);
stristr($response = pop_get_response_line($sock), “+OK”) == $response

or die(“Unable to verify USER”);
pop_snd($sock, “PASS $pass”);
stristr($response = pop_get_response_line($sock), “+OK”) == $response

or die(“Unable to verify PASS”);
pop_snd($sock, “STAT”);
stristr($response = pop_get_response_line($sock), “+OK”) == $response

or die(“Unable to delete verified message!”);
$message_count = split(“ “, $response);
for ($i = 1; $i <= $message_count[1]; $i++) {

$ret .= “SHOWING MESSAGE $i OF ${message_count[1]} “ .
“(<a href=\”$PHP_SELF?action=delete-msg” .
“&message-id=$I\”>DELETE:\n”;

pop_snd($sock, “RETR $i”);
$ret .= pop_get_response_body($sock);
$ret .= “\n\n---\n\n”;

}
pop_snd($sock, “QUIT”);
pop_get_response_line($sock);
fclose($sock);
return $ret;

}

function DeleteMessage($host, $user, $pass, $message_id) {
/* PRE: $host, $user, $pass, and $message_id are valid

PST: deletes message from server
*/

$sock = fsockopen($host, 110, &$errno, &$errstr)
or die(“FSOCKOPEN Error: “ . $errno . “:” . $errstr . “\n”);

stristr($response = pop_get_response_line($sock), “+OK”) == $response
or die(“Connection failed!”);

pop_snd($sock, “USER $user”);
stristr($response = pop_get_response_line($sock), “+OK”) == $response

or die(“Unable to verify USER”);
pop_snd($sock, “PASS $pass”);
stristr($response = pop_get_response_line($sock), “+OK”) == $response

or die(“Unable to verify PASS”);
pop_snd($sock, “DELE “ . $message_id);
stristr($response = pop_get_response_line($sock), “+OK”) == $response

251Why Use includes?

or die(“Unable to delete verified message!”);
pop_snd($sock, “QUIT”);
pop_get_response_line($sock);
fclose($sock);

}

?>

pop3_mid.php looks like this:
<?php
/* pop3_mid.php – contains the mid-level functions for POP3 communications */

function pop_get_response_line(&$sock) {
/* PRE: $sock is an open socket connection

PST: one response line (up to the next \r\n sequence) is returned
*/

$terminator = “\r\n”;
$octet = _pop_get_response_octet($sock, $terminator, 1);

while ($octet != $terminator) {
$response .= $octet;
$octet = _pop_get_response_octet($sock, $terminator);

}

return $response;
}

function pop_get_response_body(&$sock) {
/* PRE: $sock is an open socket connection

PST: returns a full response body (up to \r\n.\r\n sequence)
*/

$terminator = “\r\n.\r\n”;

$octet = _pop_get_response_octet($sock, $terminator, 1);
while ($octet != $terminator) {

$response .= $octet;
$octet = _pop_get_response_octet($sock, $terminator);

}

return $response;
}

?>

252 Chapter 12: Using Include Files

pop3_low.php looks like this:
<?php
/* pop3_low.php – contains the low-level functions for POP3 communications */

function _pop_get_response_octet(&$sock, $terminator, $reset = 0) {
/* PRE: $sock is a valid open socket,

$terminator is the octet termination character,
$reset determines whether the buffer should be reset (only

if we’re just beginning a new octet search)
PST: returns the octet

*/
static $last_octets = “”;
if ($reset) $last_octets = “”;

if (strcmp($last_octets, “”) == 0)
{

$last_octets =_pop_prime_buffer($sock, strlen($terminator));
}
else $last_octets .= fgetc($sock);

if ($last_octets == $terminator) {
return $terminator;

} else {
return str_shift($last_octets);

}
}

function __pop_prime_buffer(&$sock, $x) {
/* PRE: $sock is a valid socket connection, $x is an integer

PST: primes the buffer with $x number of characters
*/

for ($i = 1; $i <= $x; $i++) $ret .= fgetc($sock);
return $ret;

}

function str_shift(&$str) {
/* PRE: $str is a string

PST: returns shifted string (AB becomes BA)
*/

$cpy = $str;
$str = substr($str, 1);
return substr($cpy, 0, 1);

}

function showCRLFs($str) {
/* PRE: $str is a string

253Why Use includes?

PST: replaces \r and \n with visible representations
*/

return str_replace(“\r”, “[CR]”, str_replace(“\n”, “[LF]”, $str));
}

function pop_snd(&$sock, $buf) {
/* PRE: $sock is an open socket connection

PST: $buf is written to the socket and the $buf is returned
*/

fputs($sock, $buf . “\r\n”);
fflush($sock);

return $buf;
}

?>

T I P
Realize here that the emphasis is on the organization of this program; we’re not trying
to learn network programming. Without familiarizing himself with the socket communica-
tions functions, no programmer would understand this program much better than the
comments.

However, a fairly detailed program must be used to understand how organization with
include files helps. Therefore, unless you really want to learn socket programming, you
don’t need to actually read the contents of all the functions, especially not the mid- and
low-level ones.

Now that our functions are divided, we can rewrite the main program to be
much more concise—at least at first sight—and more organized.

Here’s what the new program looks like:
<?php
/* ch12ex03.php – displays list of emails and allows user to delete them by

clicking a link */

/**** INCLUDES ****/

include(‘pop3_low.php’); // Low-level POP3 functions
include(‘pop3_mid.php’); // Mid-level POP3 functions
include(‘pop3_upper.php’); // Upper-level POP3 functions

/**** SETUP/CONFIGURATION ****/

define(‘POPHOST’, ‘www.example.com’);
define(‘USERNAME’, ‘jsmith’);
define(‘PASSWORD’, ‘pass’);

254 Chapter 12: Using Include Files

E X A M P L E

/**** MAIN PROGRAM ****/

$in =& $HTTP_GET_VARS;

switch($in[‘action’])
{

default:
echo nl2br(ShowAllEmails(POPHOST, USERNAME, PASSWORD)); // nl2br()

// replaces \n with

break;

case ‘delete-msg’:
DeleteMessage(POPHOST, USERNAME, PASSWORD, $in[‘message-id’]);
header(“Location: $PHP_SELF”);
exit;

}

?>

As you can see, now we only have to look at the main part of the program
to get a general idea of what it does. If we want to delve further into how it
works, we would need to explore the include files, beginning with the
upper-level ones, because they are the ones most directly worked with in
the main program.

Program organization doesn’t just mean functions. For example, earlier in
this chapter, we saw the top and bottom portions of HTML code for a page
being separated into top.php and bottom.php files. These files make it easy
to have the same layout and style from one page to the next within a Web
site. In fact, they can save hours because instead of changing many files,
you only have to change one, and the results are seen on all the pages
instantly.

Generally, you should divide off sections of your program that you will want
to use in other pages or programs within that Web site or other Web sites.
If a collection of functions begins to get unwieldy, simply divide them into
more manageable include files.

Code Reuse
The other reason to use include files is code reuse. The example you saw in
the previous section not only made the program clearer, it also made it pos-
sible to use the functions in the include files in other programs. For exam-
ple, if I were creating a similar program a month after I created that one, I
could simply include the files I had already created and begin using the
functions found within them instantly.

255Why Use includes?

In fact, I could add to them to create code libraries. Code libraries are col-
lections of code designed to be usable in multiple programs without modifi-
cation. For example, the POP3 functions in the previous example (in the
pop3_*.php include files) could be used in more programs than just the one
shown in the previous section. In fact, if more functions were added, we
could have a complete POP3 mail-reading library, capable of browsing a
POP3 mailbox with a few high-level, fairly simple functions.

Code libraries usually come in one of two forms: function libraries or class
libraries. A function library is comprised of a group of related functions.
The POP3 libraries above are all function libraries.

However, libraries can also contain classes. In fact, it’s a good idea to
always create a new library when you create a new class. That way, if you
want to use the same class in another program, all you have to do is
include the class library in your program and start using it.

Why not just copy and paste the functions or classes into your programs as
you need them? First, this takes up more space on your system. Of course,
space probably isn’t a big problem with the large capacity drives most Web
sites run off of today, but it is at least a minor consideration. More impor-
tant, though, is the problem of bugs.

Imagine finding a bug in a function or class and having five copies of that
class all running in different programs. You would have to find the occur-
rence of the mistake in each program (if you can even remember off the top
of your head all of the programs using the class) and fix each one. It’s eas-
ier to simply have one copy of the function or class in a library file that all
of the programs use. That way, if you change one file, your problem is
solved, and you don’t have to wonder whether you forgot another program
that is using the class.

USING include_once WITH LIBRARIES

The creators of PHP have added an include-like function specifically
designed for libraries. The function is include_once(), and it should be
used whenever you are including a library file.

Why is this important? Including the same library file into the same pro-
gram more than once will probably result in errors. For example, a function
library might contain a function called print_table(). The first time the
library is included, the print_table() function is defined as normal in the
program. However, the second time the file is included, the function is rede-
clared. You can’t declare the same function twice, so PHP dies with an error
message.

256 Chapter 12: Using Include Files

To help you prevent the same library from being included more than once,
the include_once() function is used. The syntax for this function is as
follows:
include_once(‘/path/filename’);

The path and filename work the same way they did with include(), only
now the file will only be included once. If the include_once() function is
called again with the same file, the file will not be included and the error
messages that would have occurred with include() will be avoided.

N O T E
Don’t forget to use include_once() with libraries. If you use it for the first include
but not a later one, you will get an error anyway, because include_once() works only if
it is used every time for each particular library file.

As you would expect, other files, such as HTML code and content files,
should still be included with the regular include() function. Using
include_once() with these might keep the contents of the include file from
being displayed if the file has already been included. This, of course, is not
the desired effect when using simple HTML code in include files.

ORGANIZING A LIBRARY DIRECTORY

If you’re going to keep code libraries, it’s a good idea to organize a library
directory—a folder containing all of your code libraries—that can be easily
accessed by all of your programs. A library directory should be named so
that it is easy to distinguish it and its purpose from the other folders. For
example, a library directory named lib (for library), inc (for includes), or
common (for common code) would be effective. Any one of these names is
completely acceptable, and you might find that you would rather use a
name you devise. Whatever you choose, keep in mind that the directory
should be clearly marked as a code library directory.

One concern some people have with their library directory is that other peo-
ple will download or steal the code in it. You can take two precautions to
prevent this:

• Don’t name your files with an extension other than that designated as
a PHP-processed file (generally, .php).

• Place your code library outside of your Web site’s root directory.

The first is fairly easy to follow. You might have noticed as we’ve discussed
include file examples that all of the include files are named with a .php
extension, just as the main program files are. On many servers, naming

257Why Use includes?

your files otherwise (using .inc or .html, for example) allows them to be
downloaded if they are accessible from your Web server. The solution to this
is to always use the .php extension, thus forcing PHP to process these files
before they are returned to the visitor. In the case of code libraries, which
generally produce no output without a function call, nothing but a blank
page would be visible to the visitor.

The latter is somewhat more of a challenge because it usually involves set-
ting file permissions on your Web server.

T I P
If you’re not sure how to set up a folder outside of your Web root to be accessible only
to the user PHP runs as (usually something like nobody on Unix systems or
IUSER_computername on Windows), get in touch with your Web server’s administrator
for guidance.

After you have the outside directory set up, however, the rest is fairly
uncomplicated. A simple change to the PHP configuration file will allow you
to access your library files just as if they were in the current program’s
directory (without using an absolute or full path). This way, even if your
library directory moves, you can simply update your PHP configuration file
(instead of many hard-coded absolute paths).

CONFIGURING PHP’S DEFAULT INCLUDE DIRECTORY

PHP allows you to specify where you want it to look for the files you include
if you don’t specify an absolute path. (This is similar to the PATH environ-
ment variable in both Windows and Unix-based systems.)

N O T E
You will need permissions to configure PHP on your Web server to do what is described
in this section. If you don’t, you’ll need to get your system administrator to perform
these tasks for you.

To modify PHP’s default include directories:

1. Open PHP’s configuration file (usually php.ini).

2. Locate the entry for include_path, which should be on or near line
236.

3. Specify the current directory (./), then the library directory (some-
thing like /www/lib/ or C:\InetPub\lib), along with any other directo-
ries you might want to specify. Separate each entry with a colon (on
Unix) or a semicolon (on Windows), and use the appropriate slash (for-
ward slash for Unix, backslash for Windows).

258 Chapter 12: Using Include Files

E X A M P L E

On Unix-based systems, the entry will end up looking like this:
include_path = “./:/www/lib/”

Similarly, on Windows, it will look like this:
include_Path = “.\;C:\InetPub\lib\”

4. Save and close the configuration file. You might want to check that
your settings were made successfully by calling phpinfo() from a pro-
gram on your server. You should see the path you entered for the
include_path listed on that page.

Then, no matter where your program is on the server in relationship to the
library directory, you can simply include a file like this:
include(‘library.php’);

The file will be located automatically, and if found in the include directory,
it will be included as desired.

What’s Next
Now that you’ve learned about includes, you’ve completed the section on
program organization. You now know how to organize your programs into
functions, classes, and include files successfully so that your program will
be clear, easy to follow, and most importantly, easy to maintain. At this
point, you’ve essentially learned to program in PHP.

In the next section, we’ll look at some additional features PHP has to offer
to help make your Web programs more exciting. So many modules have
been added to PHP to give it special features such as these that they
couldn’t possibly be covered in much detail in one book. However, of these
features, the most-often desired will be discussed to give you some ideas of
where your programs can go from here. Get ready to add features to your
Web sites that many people want, but few know how to create.

259What’s Next

Part IV

Advanced PHP Features

Creating Dynamic Content with PHP and a MySQL Database

Using PHP for Password Protection

Allowing Visitors to Upload Files

Cookies

Putting It All Together

13

Creating Dynamic Content with PHP
and a MySQL Database

Now that you understand all of the concepts of programming in PHP, it’s
time to use those skills to create Web sites that are truly useful and intu-
itive. In this section, we’re going to talk about how you can integrate a
MySQL (pronounced My-Ess-Que-Ell) database into your Web site. By doing
so, you have an easy way to display an almost unlimited number of items
without creating a separate page for each one. You can also store informa-
tion about a visitor between multiple requests and even multiple visits to
the Web site. Common examples of database use are product catalogs, auto-
mated Web site subscriptions, and even Web site searches. The possibilities
are virtually endless; databases can be used to create customized news, dis-
cussion boards, archiving systems, and much more!

This chapter teaches you the following:

• Using a database to make content more flexible

• How to plan and create a MySQL database

• How to connect to a database

• How to query the database

• How to make sense of query results

A Word about Databases
Before we get started with this chapter, you need to ensure that you have a
MySQL database set up somewhere. You can use other databases, of course,
but MySQL is a favorite of many for its power and reliability.

If you don’t have access to a MySQL server, you will need to set one up
before you can use any of the concepts presented in this chapter.

Luckily, MySQL can run on just about any operating system. For learning
purposes, you can set it up on your local machine. MySQL’s Web site,
www.mysql.com, will provide you with plenty of information on downloading
and setting up your own MySQL server.

Because your workstation probably can’t compete with a dedicated server in
reliability, you should probably get paid access to a MySQL host when you
begin publishing public database-driven Web sites. Finding a good host is
very similar to finding a regular Web provider—simply add PHP and
MySQL access to your list of desired features.

Also, it’s important to realize that this is only an introduction to creating
database-driven Web sites. It’s enough to give you a good start; in fact, after
reading this chapter, you’ll probably be able to do all you want for now.

This introduction is indeed brief, but resources specific to creating data-
base-driven Web sites with PHP and MySQL are abundant. You can find
information about MySQL, as well as download and set it up for free, by
visiting www.MySQL.com.

T I P
You also might want to get a book to act as a guide and source for more in-depth expla-
nations of database concepts; one of the most recommended books on the market is
Paul DuBois’s MySQL, published by New Riders.

The Idea Behind Database-Driven Content
Have you ever been faced with creating a Web site that seemed like it was
mostly a lot of typing that didn’t require much skill, whereby the pages
were all basically the same, just with different words? Such Web sites do
exist. Take Amazon.com, for instance. Imagine keeping up the Amazon Web
site by creating a page for each item it has!

Thankfully, though, this problem has an easier solution. Let’s focus on just
one area of Amazon: the books. No matter what book you’re looking at,
every page displaying a book follows the same basic format: Each has a

264 Chapter 13: Creating Dynamic Content with PHP and a MySQL Database

title, an author, an ISBN number, and so on. This information is shown on
every page; the only change from page to page is the values of those fields.

Knowing this, we can separate every page into two parts:

• The template—A format followed for every page

• A record—A collection of information about the book

Thus, we only have to create a single template to display any number of
books. That template will then be given a single piece of information—an
ID number—to retrieve and display the information for that book.

The information is stored in a database. Databases are divided into tables,
which contain records of like items (in this case, books). Table 13.1 shows a
table containing a couple of dummy entries.

Table 13.1: A Sample Table for Books

id title author isbn
1 Some Book D. Brainiac 1-2345-6789-0
2 The Other Book Ima d’Other 1-3578-2468-0

N O T E
MySQL defines a table as composed of records called rows and records called columns.
A column in a particular row may also be referred to as a field.

After we have a template, we essentially have a page for every item in that
table. All we have to do is fill in the blanks on the template page with the
information from a row in the table.

Let’s assume we have a table that contains the data shown in Table 13.1,
and we’ve created a template like the one shown in Figure 13.1.

265The Idea Behind Database-Driven Content

Figure 13.1: The empty template page.

Now that template can be filled in with the data from Table 13.1. In this
instance, let’s say we used data in the bottom row. The resulting page is
shown in Figure 13.2.

266 Chapter 13: Creating Dynamic Content with PHP and a MySQL Database

Figure 13.2: The template page is filled in with data from the table.

The format of the template page and the information from the table com-
bine quite easily to show the information in an organized fashion.

So by creating a template page suitable for any book, and by isolating the
actual information we plan to display from it, we have freed ourselves from
the tremendous task of creating a new page for each book we want to dis-
play. That’s the main idea behind database-driven content.

A MySQL database is an excellent solution when creating a database-
driven Web site. It’s fast, stable, and, like PHP, free.

Now we have several topics to discuss about creating a database-driven
Web site. First, we need to look at the process of designing and creating a
database in MySQL. Then we’ll get into how to connect to and use that
database within a program, as well as learn the commands that MySQL
recognizes for retrieving data.

Designing and Creating a Table in MySQL
When you’re storing information in a database, you first need to create a
table that has a column for each piece of information that needs to be
stored. For example, in the previous scenario, we were storing information
about books. Thus, each book had a title, an author, and an ISBN number,
as well as an ID number, which is generally used in program-database
interaction only.

In creating a table to contain records for books, we would need to have the
four fields just mentioned. Because all records within a table will have the
same fields, these fields are defined when the table is created.

To create a table, you’ll issue a command to a MySQL server (which is why
you have to have access to a MySQL server to do the things described in
this chapter). All of the MySQL commands can be executed using any
MySQL client. I say any here because many different clients are available
for MySQL. To keep things simple, we’ll stick with those supported by PHP
(the mysql_* functions in PHP) and the MySQL developers (the mysql
command-line utility).

T I P
If you feel shorted by a command-line utility, you’re welcome to find a Windows GUI
(Graphical User Interface) client made by a third-party developer, such as MySQL GUI
(http://mysql.com/downloads/gui-mysqlgui.html). PHPMyAdmin also makes a very
nice database viewing and manipulation client; it’s available at
http://phpmyadmin.sourceforge.net.

In general, these clients aren’t supported as well and don’t work as well as the com-
mand-line utility. You’re probably best off taking the time to become familiar with the
command-line client.

The most common client for administering MySQL by hand is the mysql
command-line client that comes with MySQL. If you don’t have the mysql
utility, you can get it at www.MySQL.com. After you have it, you can start the
MySQL client by entering the following command on the command line:
mysql --user=username --password database

Here, username is your MySQL username and database is the MySQL data-
base with which you want to work. MySQL will prompt you for your pass-
word, which will be kept secret as you type it.

N O T E
In case you’re unfamiliar with the command line, it is a low-level user interface to your
operating system.

In Windows 95 or 98, go to Start, Run, and type command. In Windows NT or 2000, go
to Start, Run and type cmd. This is the Windows command line.

In Unix-based operating systems (such as Linux, Solaris, or BSD), just use your favorite
shell.

Finally, if you’re using a remote Web host (such as a paid Web hosting service), you can
telnet or SSH to your host. After you’ve logged in, you will be presented with a Unix-
style command line (shell).

After you’re at a command line, you can enter the command just as it was shown
earlier.

267Designing and Creating a Table in MySQL

T I P
The command line we talked about is an expanded version intended to make things
clear to a novice user. It can, in fact, be shortened to a quicker, simpler version that fol-
lows this syntax:

mysql –uusername –p database

Notice that the –u switch and the username are run together; this can be confusing if
you’re used to –option=value style switches, but it’s the way MySQL works.

Also note the number of dashes used with each type of switch: The long form (like --
username) uses two dashes, but the short form (like –u) uses one.

As always, you can choose the expanded or the short version of the command-line
switches; in the end, it makes no difference to mysql. It’s simply a matter of
convenience.

C A U T I O N
If you execute mysql –help from your command line, you’re liable to see that mysql
accepts a password on the command line just as it accepts the username. This might
seem convenient, but it is less secure in two ways.

First, in any operating environment, someone looking over your shoulder could easily
read the username and password and possibly have more access than he should.

In addition, in Unix-based environments, the data entered on the command line can be
viewed as long as the program is running. This could lead to exposure and unautho-
rized use of your password.

For these reasons, use of the --password=password form of the password switch is
highly discouraged. Instead, you should always simply specify –p, which will cause
mysql to prompt you for this password in a more secure fashion.

Typically, the mysql command-line utility is used for creating and adminis-
tering your database. The mysql_query() function in PHP is used to do
more routine tasks, such as retrieving information to display that informa-
tion on a Web site or inserting new information into the database as it
becomes available (such as when a visitor enters it).

Therefore, while we’re talking about the CREATE TABLE command, it’s advis-
able that you use the command-line utility.

T I P
At some point, you will probably discover that you need to change something about a
table you’ve already created. Even though you have to declare the data types for your
table when you first create it, the creators of MySQL have included a command to allow
you some leverage if your plans didn’t quite work as expected. The ALTER TABLE com-
mand, which we’ll discuss later in this chapter, allows you to redefine your table if you
ever need to.

268 Chapter 13: Creating Dynamic Content with PHP and a MySQL Database

After you know the types for what information you will store in your table
(which we’ll talk about soon), you can create your table using MySQL’s
CREATE TABLE command.

The CREATE TABLE command has the following basic syntax:
CREATE TABLE (

column1_name column_type other_options,
column2_name column_type other_options, etc.

);

N O T E
As you can see in the syntax guide, MySQL commands are typically written in upper-
case. This is a matter of SQL style.

(SQL, pronounced sequel, stands for Structured Query Language, which is the language
used to issue commands to the MySQL server. MySQL is not the only database that
understands SQL commands; others include Microsoft SQL Server and mSQL.)

This all-caps style is common in SQL. As you’ll see in the following sections, SQL com-
mands are often entered in a single line. In most languages, including PHP, we can for-
mat code to allow for high readability. However, because SQL is most often entered in a
single line, another approach has to be taken.

Thus, we enter SQL commands in uppercase and user-defined names (such as table
and column names) in lowercase.

Here, the column names (column1_name and column2_name), of course, repre-
sent whatever you want the column or field to be called. For example, if
you’re going to hold a person’s first name, you would probably name the col-
umn first_name. You’ll probably recognize that this is similar to naming
variables in PHP; in essence, we’re simply naming our variables for a
MySQL table.

The column_type and other_options parts of the declaration will be dis-
cussed as we talk about MySQL’s data types in the next section.

MySQL’s Data Types
In a manner slightly different from PHP, MySQL requires you to declare
the type of data that each column will hold when you define the table. PHP
does this automatically, but evidence (such as typecasting) bleeds through
showing that it does, indeed, have data types.

Data typing of columns allows MySQL to organize the data you give it most
efficiently. However, it makes your job of creating the database a little more
complicated: You have to decide what the maximum requirements of your
data will be before you create the table.

269Designing and Creating a Table in MySQL

At the time of this writing, MySQL has 25 data types. Most are variations
on the numeric and string types, but some have been added to store such
things as dates and even files. We’ll cover four basic types: INT, DOUBLE,
TEXT, and TIMESTAMP.

T I P
The other data types should be easy to understand after you have mastered the basic
ones. Remember that you can find information about MySQL’s data types in the MySQL
manual at www.MySQL.com.

MYSQL’S INT TYPE

The INT data type is comparable to PHP’s int type. It stores integers (hence
the name INT). (If you supply a decimal number for an INT field, the deci-
mal portion of the value—that is, the part after the decimal point—will be
discarded.)

An INT column can be declared as follows:
column_name INT [UNSIGNED] [NOT NULL] [DEFAULT default] [AUTO_INCREMENT] [PRIMARY
KEY]

N O T E
For practicality’s sake, not all the available options are given here. Specifically, the
ZEROFILL option has been omitted.

The other types have had their options narrowed for the same reason. As always, if
you’re yearning to learn more about these types, you can visit www.MySQL.com.

The syntax for creating an INT column might look a little intimidating, but
it’s not as bad as it looks. In addition, all of these options give you flexibil-
ity you’ll appreciate after you understand everything.

Here, column_name, of course, is the name of the column you want to declare
in the table. INT is the basic type of the column, because that’s what we’re
discussing right now.

The UNSIGNED option essentially gives you room for bigger values, but at the
same time stops you from putting a negative value in the column. The
explanation of this is beyond the scope of this book. To keep things simple,
a signed INT value can be any number from –2,147,483,648 to
+2,147,483,647. Of course, this is a wide enough range in many applica-
tions, but if you need to, you can add the UNSIGNED modifier, which
increases the upper end of the range, while eliminating the entire negative
portion of the range. Thus, a value in an INT UNSIGNED column can range
from 0 to +4,294,967,295.

270 Chapter 13: Creating Dynamic Content with PHP and a MySQL Database

T I P
If you need to store numbers even bigger than these, look into BIGINT in the MySQL
manual.

The NOT NULL option specifies whether you want a NULL value to be placed
in the column if no value is specified at insertion time (whenever a row is
inserted). If you would rather have the value default to a non-NULL value,
you must specify NOT NULL. For INTs, if NOT NULL is given and no other
default value is specified (with DEFAULT), 0 is used.

As you might expect, DEFAULT allows you to choose the default value if
NOT NULL is specified. (Therefore, if DEFAULT is used, NOT NULL must accom-
pany it.) To specify a default value, simply use the DEFAULT keyword, fol-
lowed by a space and the value you want to use. Use of the DEFAULT option
will be clearer after you look at the examples following the explanations of
the rest of the options for INT.

AUTO_INCREMENT is a special option that is allowed only once per table. It
tells MySQL to use the incremented value last used for this column. For
example, if the last value used was 127, then 128 will be used this time,
and in the future 129, 130, and so on will be used. When using
AUTO_INCREMENT, you cannot specify the value to be inserted into the column;
you basically have a system for assigning a unique ID number to each row
within a table.

C A U T I O N
An AUTO_INCREMENT column must always have the NOT NULL option specified as well or
it will not work properly.

That brings us to the last option, PRIMARY KEY. This option tells MySQL
that this value should be indexed and used as a reference for finding the
row. This goes hand-in-hand with the unique ID number idea expressed in
the previous paragraph. If you use an AUTO_INCREMENT column, you’re also
required to make it a PRIMARY KEY to tell MySQL that it should be a unique
value used to reference each row in the table.

N O T E
Although the AUTO_INCREMENT option has an underscore separating its words,
PRIMARY KEY and NOT NULL do not.

Let’s take a look at a few INT column definitions. We’ll look at entire table
definitions at the end of this section, after we’ve covered the other data
types. Until then, here are some INT column definitions:

271Designing and Creating a Table in MySQL

E X A M P L E

• To declare a column named age, which can contain any integer value
and which has a default value of 0, the following declaration is used:
age INT NOT NULL

Notice that we don’t need to define the default value of 0 because
that’s the default value anyway; we must only specify that the value
cannot be NULL.

• To declare a column named items_sold, which can contain large posi-
tive values but never negative values, and which defaults to NULL, the
following declaration is used:
items_sold INT UNSIGNED

• As you can see, even if the value is unsigned, we can reserve a value
in case the value is not given at insertion time; when NOT NULL is left
out, this value is NULL. (This can be checked in PHP using a standard
condition of equality, such as $value == NULL, which would evaluate to
true or false accordingly.)

To declare an ID number column so that every row has a unique iden-
tification number, the following declaration is used:
id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY

It’s important to note that even though AUTO_INCREMENT is given here,
unless you specify the NOT NULL, the AUTO_INCREMENT feature will fail to
work.

• Here’s a twist that shows the versatility of MySQL’s types to fit your
needs. The following declaration creates a column that tells whether a
user (let’s say this is a table of user accounts) has special administra-
tive privileges. If he does, the value will be 1; if not, it will be 0
(which, as you recall, evaluate to true and false, respectively).
admin INT NOT NULL DEFAULT 0

Notice that if a value for this field is unspecified at insertion time, a 0
will be used automatically so the user doesn’t somehow gain privileges
unintended for him.

MYSQL’S DOUBLE TYPE

The DOUBLE type is similar to the INT. It stores decimal numeric values, and
is declared as follows:
column_name DOUBLE [NOT NULL] [DEFAULT default]

DOUBLE columns can hold numbers ranging from –1.7977E+308 to
+1.7977E+308 (including 0). Because doubles are supposed to have a

272 Chapter 13: Creating Dynamic Content with PHP and a MySQL Database

certain amount of precision, their range is more technically expressed in
terms of maximum possible values and minimum possible values. A MySQL
DOUBLE stores values at a minimum of +/–2.2250738585072014E-308 (close
to 0) and at a maximum of +/–1.7976931348623157e+308 (far from 0).

N O T E
Zero is a special case and is stored as 0, despite the minimum and maximum ranges
shown here.

The options given here work exactly as they do with INT columns, so let’s
jump straight into a few examples.

The following represent common examples of how you might see DOUBLE
columns used:

• To define a column that will hold a dollar amount for a record of an
online purchase, the following column declaration is used:
amount DOUBLE

This, of course, is about as basic as you can get for a DOUBLE declara-
tion. It creates a column that will hold any DOUBLE value, and use NULL
if no value is specified at insertion time. (Of course, in this case, if no
value is given at insertion time, something is probably wrong.)

• To define a column that will hold an optional rebate mount, which can
be 0 or any positive decimal, the following column declaration is used:
rebate DOUBLE NOT NULL

In this particular instance, the value defaults to 0; if no rebate
amount is entered, no rebate is given.

MYSQL’S TEXT TYPE

This type is most similar to a string in PHP. It allows you to enter a group
of characters within quotes as textual data.

A TEXT column can be defined as follows:
column_name TEXT [NOT NULL] [DEFAULT default]

TEXT columns are fairly straightforward; however, you must consider the
length of the data that will be stored before declaring the field. A typical
TEXT column, as shown here, has a maximum length of 64KB (65,535 char-
acters). If you try to insert more text than the field allows, the entry will be
truncated to fit the given space. In other words, data will be lost.

273Designing and Creating a Table in MySQL

E X A M P L E

To avoid this, you might want to give special consideration to the alternate
column types when it comes to defining a text column. Because this is the
most likely shortcoming you’ll encounter, Table 13.2 details all of the TEXT
types so you can find the one that best suits your needs.

Table 13.2: MySQL’s TEXT Type Variants

Type Maximum Character Length
TINYTEXT 255
TEXT 65,535
MEDIUMTEXT 16,777,215
LONGTEXT 4,294,967,295

The following examples all use a TEXT column to store data.

• To develop a database-driven online catalog, you would need to store a
description of each product (as well as some other information we’ll
ignore for now) in a database.

Declaring an appropriate column in the products table can be done as
follows:
description TEXT NOT NULL

Thus, a description can be stored, and, in case no value is passed to
MySQL at insertion time, the value of description will be an empty
string (“”).

• Any Web site that holds user accounts in a database (which would
allow for subscription-type services, user profiles in free membership
Web sites, and so on) needs to store some textual information about
the user, such as the user’s name and e-mail address.

The following declarations create columns for a user’s name and e-
mail address:
name TEXT NOT NULL,
email TEXT NOT NULL

As you can see, there isn’t much variation between text column
declarations.

One thing you should note in this declaration is that the two are sepa-
rated with a comma (found at the end of the first line). This is your
first glimpse of creating an entire table, which will have several, if not
many, column declarations like these, and all of the column declara-
tions must be separated with a comma.

• Finally, let’s look at a declaration that uses the DEFAULT option. Default
values are often useful. For example, in discussion board systems, if

274 Chapter 13: Creating Dynamic Content with PHP and a MySQL Database

E X A M P L E

no subject is entered, it looks better to put a “Subject Not Given” mes-
sage in the subject line instead of leaving the field completely blank.

As an example, here’s a column entry for subject that uses “Subject
Not Given” as the value if no value is given:
subject TEXT NOT NULL DEFAULT “Subject Not Given”

Notice this time that the text given is in quotes. MySQL, like PHP,
requires quotes around TEXT values (whether the quotes are single or
double doesn’t matter). Conversely, numeric values, as you’ve already
seen, do not need quotation marks. You’ll see more use of quoted text
values as we continue to discuss MySQL.

MYSQL’S TIMESTAMP TYPE

This type was created to give you a versatile way to store date and time
information. A TIMESTAMP field contains a number in the format of
YYYYMMDDHHMMSS (such as 20010522000100 for 12:01:00AM on May
22, 2001). This representation for a date/time combination is common in
Unix-based systems, which is understandable because it is a compact,
easily manipulated representation.

In fact, PHP provides a date() function that allows you to format a time-
stamp to meet your needs. Following are several formats that the date()
function can create:

• 12:01 AM, January 1, 2001

• 00:01 01/01/01

• 1 Jan 2001 - 12:01am

The date() function is the way you’ll usually interpret the information held
in a TIMESTAMP field. The syntax of the date() function is as follows:
date($strFormat, [$intTimestamp])

The format ($strFormat) of your date determines how your date will look. A
few examples of formats have just been given to show how versatile the
date() function is; Table 13.3 details the formatting symbols that are
accepted. The following examples illustrate how the formatting symbols are
used together in a string to produce a formatted date.

C A U T I O N
The format MySQL uses to store a TIMESTAMP and the Unix-standard format expected
as the $intTimestamp are not the same. When we get to SELECT, you’ll see how to
use one of MySQL’s functions to convert the MySQL timestamp to something PHP can
handle.

275Designing and Creating a Table in MySQL

The timestamp ($intTimestamp) passed to date() is optional; if it is not
specified, the current timestamp will be used. However, to use this function
with the data from a TIMESTAMP field, you must pass the timestamp as the
second parameter.

Table 13.3: The date() Function’s Formatting Symbols

Symbol Meaning
h Hours in 12-hour format (0–12)
H Hours in 24-hour format (0–24)
i Minutes (00–60)
s Seconds (00–59)
A AM/PM
d Day of month (1–31)
F Textual month (January, February, and so on)
m Numeric month (01–12)
D Three-letter day of week (Mon, Tue, and so on)
Y Four-digit year (2000, 2001, and so on)
y Two-digit year (00, 01, and so on)

N O T E
These aren’t the only symbols that date() understands. The full list of commands is
about twice the size of Table 13.3. However, you’ll probably use the ones in Table 13.3
the most often.

For more information about the date() function, visit http://www.php.net/date.

N O T E
If you include symbols the date() function doesn’t understand in your formatting
string, those symbols will be included in the returned string just as they appear in the
formatting string. However, because more symbols might be added in later versions, it’s
wise to escape these symbols (just as quotes might be escaped within a string) so that
date() will ignore them.

Also note that because some characters such as \n have special meaning when
escaped in a double-quoted string, it’s wise to only use single-quoted strings to enclose
date format strings.

Here’s a quick example of using the date() function to generate a formatted
date and time:
<?php
/* ch13ex01.php – demonstrates date() function */

echo date(“d F Y - h:i:s A”);

?>

276 Chapter 13: Creating Dynamic Content with PHP and a MySQL Database

E X A M P L E

The output for the current date and time looks like:
01 January 2001 - 10:40:23 AM

N O T E
The actual date and time displayed will be your current system date and time as set,
not the values shown here.

Here, we’re using the current system time because the second parameter
isn’t specified. However, you can also use the data from a TIMESTAMP field as
a second argument and get the same effect with the date and time of that
timestamp.

Now that you understand a little bit about timestamps and the date()
function, let’s look at the syntax for a TIMESTAMP field in MySQL:
column_name TIMESTAMP [DEFAULT default]

T I P
The NOT NULL option isn’t necessary with TIMESTAMP fields. If you inadvertently specify
NOT NULL anyway, MySQL will simply ignore it.

The TIMESTAMP field is fairly straightforward. Consider the following
sample:
ts TIMESTAMP

This creates a simple TIMESTAMP column.

N O T E
If you don’t specify a value for a timestamp column (if one is present) when you insert
a row, MySQL automatically inserts the current timestamp. This is handy for recording
the time that a user registered with a service or that a purchase was made because
you don’t have to deal with getting the current time and storing it—it’s all done
automatically.

Creating a Table
Now that you’ve seen an overview of the MySQL types we’ll be using, let’s
create a table that we can use in the rest of the examples for this chapter.

First, run mysql from the command line as you were taught earlier in this
chapter. After you’re in, you should see something like this:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 3.23.27-beta

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer

mysql>

277Designing and Creating a Table in MySQL

E X A M P L E

E X A M P L E

The mysql> is mysql’s command prompt. It allows you to issue SQL com-
mands directly to the SQL server for processing.

From here, test to make sure mysql knows which database to use by enter-
ing…
SHOW TABLES;

…at the prompt. If mysql knows which database to use, it’ll show a list of
tables already active in the database, or it might respond that no tables
exist by saying “Empty set.”

If, however, mysql says “ERROR 1046: No Database Selected,” you’ll know
you need to tell it which database to use, as follows:
USE database;

Here, database would be the name of the database to use.

N O T E
If you installed your own MySQL server, you probably haven’t created any databases yet.
You’ll need one that you can use to experiment with as you read this book, so type this
at the MySQL prompt:

CREATE DATABASE PHPByExample;

This will create an empty database. Before you continue, be sure to enter

USE PHPByExample;

so you don’t get the “No Database Selected” error previously mentioned.

N O T E
You can see a list of the databases on your MySQL server by typing

SHOW DATABASES;

at the MySQL prompt.

After you can successfully see a list of the tables within your database, we
can create a table. To do this, we’ll enter a CREATE TABLE command at the
mysql> prompt, as follows:
mysql> CREATE TABLE members (

-> name TEXT NOT NULL,
-> email TEXT NOT NULL,
-> age INT NOT NULL,
-> date_joined TIMESTAMP,
-> credit DOUBLE NOT NULL DEFAULT 0

278 Chapter 13: Creating Dynamic Content with PHP and a MySQL Database

Assuming everything was typed correctly, mysql will respond with the
following:
Query OK, 0 rows affected (0.16 sec)

This means your entry was accepted. Now, by typing SHOW TABLES; at the
command line, we can see that our table has been created:
mysql> SHOW TABLES;
+------------------------+
| Tables_in_PHPByExample |
+------------------------+
| members |
+------------------------+
1 row in set (0.00 sec)

Using MySQL to Make Your Web Site Come Alive
Now that you understand the basics of creating a database, we’re going to
integrate its abilities with PHP programs.

In a database-driven Web program, we have four basic operations: reading
the database, adding and modifying the database, and deleting from the
database. Each of these operations has its own practical use within a Web
site.

Reading the database, for example, occurs when a user browses an online
catalog. The information for each page or item within the catalog is read
from the database and then displayed for the user to see. Nothing changes
within the database unless something is added, modified, or deleted. Other
examples of reading from a database might be browsing the information in
discussion boards (but not posting to them—that would be writing) and
even looking at search results pulled from a database.

N O T E
The term pulled is commonly used to refer to the process of retrieving data from a data-
base. That’s because MySQL doesn’t have an obvious name when it comes to reading
from the database, as you’ll soon see. The other operations, however, are clear, so they
are often referred to by name, such as insert, update, and delete.

Now, information might be added, or inserted, into a database whenever
information for a new record is given to a program. For example, when you
sign up to create a user account, the information is probably being inserted
into a database. Likewise, if you place an order on an e-commerce Web site,
a record containing information about that order (such as date placed,
items ordered, where to ship, and so on) might be inserted into a database.

279Using MySQL to Make Your Web Site Come Alive

Modifications, or updates, are made when information that already exists
in the database needs to be modified. For example, if you sign up with one
e-mail address and later decide you would rather use a different one, many
systems will allow you to change that information. You don’t need to delete
your account and start with a new one; the information is quickly and eas-
ily updated.

Finally, when information is removed from a database, it is called deleting.
Similar to modifying an account, if you sign up for a service and later
decide to cancel your account, chances are, the Web site is calling a delete
command in the background to tell MySQL that it can rid itself of your
record because it is no longer needed.

You now know the basics of how a database interacts with a Web site. Now,
using the members database created earlier, we’ll follow a step-by-step
process to create programs to add, view, modify, delete, and search member
accounts.

Connecting with mysql_connect
The first thing you have to do to interact with MySQL within a PHP pro-
gram is somewhat similar to starting MySQL on the command line—except
it’s done through a PHP function now. Your program must log in to the
MySQL server using the same username and password combination you
were using before.

To have PHP connect and log in to MySQL, call the mysql_connect() func-
tion, which follows this syntax:
mysql_connect(host, username, password);

N O T E
You can open connections to different MySQL servers or log in with a different user-
name and password at the same time. However, this is an uncommon need, so if you
want to do it, you should look into using the extra parameters of the mysql_* functions
in the PHP manual at http://www.php.net/manual.

For typical, single connections, MySQL automatically takes care of the extra parameters
specified in the manual.

For example, to connect to a MySQL server located at mysql.example.com
using the username “admin” and the password “abc123,” you would use the
following call to mysql_connect():
mysql_connect(‘mysql.example.com’, ‘admin’, ‘abc123’);

After you have connected to MySQL, you must tell it which database to use.
(This would have been specified on the command line or using USE in the

280 Chapter 13: Creating Dynamic Content with PHP and a MySQL Database

E X A M P L E

mysql client.) To do this, we’ll use the following function:
mysql_select_db(database)

This performs the same task. To select a database called PHPByExample,
you would use the following:
mysql_select_db(‘PHPByExample’);

After you have connected to the server and selected your database, you can
use all of the other MySQL functions, the most relevant of which are dis-
cussed in the next section.

N O T E
You might expect that you must close the connection after you’re finished with it. You
can close it by calling mysql_close(), but it’s not necessary. PHP closes the connec-
tion to the server automatically when the script finishes running.

Thus, before you can call other database functions, your programs will need
to call mysql_connect(), passing the appropriate parameters. In case you
don’t supply the correct information, though, or in case the server is
unreachable, mysql_connect() will return false.

A typical program that interacts with a database might look like this:
<?php
/* ch13e02.php – skeleton database-driven program */

// Set up some constants
define(‘MYSQL_HOST’, ‘mysql.example.com’);
define(‘MYSQL_USER’, ‘admin’);
define(‘MYSQL_PASS’, ‘abc123’);
define(‘MYSQL_DB’, ‘PHPByExample’);

// If we fail to connect, we can’t keep going, so we exit
if (! mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASS))
{

die(‘Failed to connect to host “‘ . MYSQL_HOST . ‘“.’);
}
else
{

echo ‘Connected to MySQL server ‘ . MYSQL_HOST . ‘ as user ‘
. MYSQL_USER . ‘
’;

}

mysql_select_db(MYSQL_DB);

// Calls to MySQL functions go here...

?>

281Using MySQL to Make Your Web Site Come Alive

E X A M P L E

This example shows a good way to ensure that you’ve connected to the
database. The error checking demonstrated in this example is a good idea
when you’re working with MySQL because problems will likely occur with
the database, and errors like this help you determine what went wrong
quickly and easily.

Issuing SQL Commands to MySQL with mysql_query
The mysql_query() function allows you to execute a command on the
MySQL server, somewhat similar to the command line of the mysql utility.
You pass SQL commands to mysql_query() to add, delete, and modify the
information in a database.

The syntax for this function is as follows:
mysql_query(SQL_command)

Here, SQL_command is the SQL command you want to execute on the server.
You’ll see how this works in the following sections as we discuss the four
main SQL commands: INSERT, SELECT, UPDATE, and DELETE.

THE INSERT STATEMENT

The INSERT statement is used to add information to a database. For exam-
ple, when a new member signs up, a new record is inserted into the data-
base with his information using the INSERT command.

INSERT has the following syntax:
INSERT INTO table SET field1=value1[, field2=value2 [...]]

The table, obviously, is the table into which we are inserting a new row.
The field values are specified after SET by doing a simple comma-separated
list of assignment operations.

For example, to insert a record into the members table, the following SQL
command might be executed:
INSERT INTO members SET name=’John Williams’, email=’John@Williams.com’, age=58

N O T E
Notice again how the string values are quoted, just like they would be in PHP, but the
numbers aren’t.

The following example program allows a new member to sign up; upon sub-
mitting the form, a new record is created for him in the database.
<?php
/* ch13ex05.php – member signup form demonstration */

282 Chapter 13: Creating Dynamic Content with PHP and a MySQL Database

E X A M P L E

/* CONSTANT DECLARATIONS */

define(‘MYSQL_HOST’, ‘mysql.example.com’);
define(‘MYSQL_USER’, ‘admin’);
define(‘MYSQL_PASS’, ‘abc123’);
define(‘MYSQL_DB’, ‘PHPByExample’);

/* MAIN PROGRAM HERE */

if (! isset($action))
{

$action = NULL;
}

switch($action)
{

default:
displayForm();
break;

case ‘signup’:
signUp($HTTP_POST_VARS);
displaySuccess();
break;

}

/* DEFINITIONS ARE BELOW THIS POINT */

function displayForm()
{

head();
?>
<form action=”<?php echo $PHP_SELF ?>” method=”POST”>

<input type=”hidden” name=”action” value=”signup”>
Name: <input type=”text” name=”name”>

E-mail: <input type=”text” name=”email”>

Age: <input type=”text” name=”age”>

<input type=”submit”>

</form>
<?php

foot();
}

function signUp($input)
{

283Using MySQL to Make Your Web Site Come Alive

// If we fail to connect, we can’t keep going, so we exit
if (! mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASS))
{

echo ‘Failed to connect to host “‘ . MYSQL_HOST . ‘“.’;
exit;

}

mysql_select_db(MYSQL_DB);

mysql_query(“INSERT INTO members SET name=’{$input[‘name’]}’,
email=’{$input[‘email’]}’, “ .

“age={$input[‘age’]}”);
}

function displaySuccess()
{

head();
?>
Your submission has been completed!
<?php

foot();
}

function head()
{

echo “<html><body>”;
}

function foot()
{

echo “</body></html>”;
}

?>

Upon entering the correct information, this program completes the inser-
tion and displays a success message.

THE SELECT STATEMENT

The SELECT statement essentially allows you to “grab” rows from a table. As
its name suggests, it selects a group of rows (which might or might not be
adjacent to each other in the actual table), which you can then move
through using the mysql_fetch_array() function.

SELECT has the following syntax:
SELECT column_list FROM table [WHERE ...]

284 Chapter 13: Creating Dynamic Content with PHP and a MySQL Database

For now, ignore the optional WHERE at the end of the command because it
will be covered in the next section. For now, look at the column_list and
table portions of the command. The column_list specifies the fields to be
retrieved. If the column_list is an asterisk (*),all the columns in the table
will be included, which, unless you’re really worried about performance, is
just fine in most cases. The table specifies the table from which the rows
should be taken.

T I P
Without a WHERE clause, SELECT returns every row in a table. For now, when we use
SELECT, every row in the table will be returned to us.

For example, if I want to get every row in the members table we defined ear-
lier, I could use a SELECT statement like this:
SELECT * FROM members

As with all SQL commands, remember that we must call mysql_query() to
actually execute this command on the server.

The call to mysql_query() looks like this:
$result_set = mysql_query(“SELECT * FROM members”);

How do you use the data after it has been selected? This will require us to
use the mysql_fetch_array() function, which has the following syntax:
$row_array = mysql_fetch_array($result_set)

The $result_set is the data returned after a SELECT by msyql_query().
(Thus, mysql_query() is always the operand on the right in an assignment
when the command given is SELECT.) The $result_set returned by
mysql_query() isn’t something you can manipulate directly, but by calling
mysql_fetch_array() and getting a row from the result set as an array, you
can then use the array to access the information you want.

The following example selects the entire members table, fetches the first row
to an array, and uses print_r() to display the contents of the array:
<?php
/* ch13ex03.php – demonstrates basic use of mysql_fetch_array() */

// Set up some constants
define(‘MYSQL_HOST’, ‘mysql.example.com’);
define(‘MYSQL_USER’, ‘admin’);
define(‘MYSQL_PASS’, ‘abc123’);
define(‘MYSQL_DB’, ‘PHPByExample’);

285Using MySQL to Make Your Web Site Come Alive

E X A M P L E

// If we fail to connect, we can’t keep going, so we exit
if (! mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASS))
{

die(‘Failed to connect to host “‘ . MYSQL_HOST . ‘“.’);
}
else
{

echo ‘Connected to MySQL server ‘ . MYSQL_HOST . ‘ as user ‘
. MYSQL_USER . ‘
’;

}
// Tell MySQL which database to use
mysql_select_db(MYSQL_DB);
echo ‘Database ‘ . MYSQL_DB . ‘ selected for use.’;

// Select entire members table
$result = mysql_query(‘SELECT * FROM members’); // notice we’re storing the
return value to $result

// Get and print_r() the first row
$row = mysql_fetch_array($result);

echo ‘<pre>’;
print_r($row);
echo ‘</pre>’;

?>

N O T E
The <pre> and </pre> tags outputted before and after the call to print_r() simply
force the output that print_r() generates to be formatted correctly by the browser.
Otherwise, the browser ignores the line breaks and everything ends up being one long
line when it’s displayed.

Now, assuming the members table had been filled in like this:
mysql> select * from members;
+-----------+------------------+-----+----------------+--------+
| name | email | age | date_joined | credit |
+-----------+------------------+-----+----------------+--------+
| Joe Smith | Joe@Smith.com | 32 | 20010608212854 | 0 |
| Don Hardy | DHardy@Hardy.com | 29 | 20010608212949 | 0 |
+-----------+------------------+-----+----------------+--------+
2 rows in set (0.00 sec)

The output of this script will be
Array
(

286 Chapter 13: Creating Dynamic Content with PHP and a MySQL Database

[0] => Joe Smith
[name] => Joe Smith
[1] => Joe@Smith.com
[email] => Joe@Smith.com
[2] => 32
[age] => 32
[3] => 20010608212854
[date_joined] => 20010608212854
[4] => 0
[credit] => 0

)

As you can see, mysql_fetch_row() gives us an associative and numerically
indexed array. In most cases, the associative elements of the array are used
and the rest are ignored.

Also, you might be wondering why we can’t print the contents of every row
that we selected. We can, but we need to call mysql_fetch_array() in a
while loop and put the code that manipulates or displays that data within
the loop.

It’s helpful, in this use, to know that mysql_fetch_array() returns each con-
secutive row within the result set until the whole result set has been tra-
versed, at which point it returns false. Therefore, the following construct
works just fine for going through every element of a result set:
while ($row = mysql_fetch_array($result))
{

// Manipulation/display code here...
}

The condition of the while statement here evaluates to true as long as
another row can be fetched. However, when mysql_fetch_array() runs out
of rows, it returns false, and the while loop ends.

Let’s take a look at one more example. This time, we’ll create a program
that is much more practical than the one that only prints one row.

This example prints a list of current members, assuming that the members
table holds a record for each subscribed member:
<?php
/* ch13ex04.php – demonstrates basic use of mysql_fetch_array() */

// Set up some constants
define(‘MYSQL_HOST’, ‘mysql.example.com’);
define(‘MYSQL_USER’, ‘admin’);
define(‘MYSQL_PASS’, ‘abc123’);
define(‘MYSQL_DB’, ‘PHPByExample’);

287Using MySQL to Make Your Web Site Come Alive

E X A M P L E

// If we fail to connect, we can’t keep going, so we exit
if (! mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASS))
{

echo ‘Failed to connect to host “‘ . MYSQL_HOST . ‘“.’;
exit;

}

mysql_select_db(MYSQL_DB);

// Select entire members table
$result = mysql_query(‘SELECT * FROM members’); // notice we’re storing the

// return value to $result

echo “<h2>Current Members</h2>”;

// Go through and print each user’s record
while ($row = mysql_fetch_array($result))
{

echo “{$row[‘name’]} “ .
“<{$row[‘email’]}> “ .
“joined on “ .
date(“d F Y”, $row[‘date_joined’]) . “ at “ .
date(“h:i:s A”, $row[‘date_joined’]) . ‘
’;

}

?>

The resulting page is shown here in Figure 13.3.

288 Chapter 13: Creating Dynamic Content with PHP and a MySQL Database

Figure 13.3: This list of names will repeat as long as rows in the database
can be displayed.

However, you might notice one problem with this output. The dates are
wrong—it’s impossible that somebody joined in the year 2038. The dates
are wrong because the timestamp MySQL gave us is a MySQL timestamp,
and the timestamp PHP’s date() function expects is a more standard Unix-
style timestamp.

To obtain a Unix timestamp, we have to tell MySQL we want a Unix time-
stamp instead of a MySQL timestamp. MySQL’s UNIX_TIMESTAMP function
will do this for us. It needs to be specified in the query like so:
SELECT *, UNIX_TIMESTAMP(date_joined) AS date_joined FROM members

Notice that I’ve changed the column list to include all columns, but I’ve
added another column. Even though date_joined was already included by
the asterisk, because it is wrapped by the UNIX_TIMESTAMP function, it will
now be a valid Unix timestamp that PHP’s date() function will understand.
The AS date_joined clause that follows the UNIX_TIMESTAMP(date_joined)
column tells MySQL to send the value of that function call back as the
value for the date_joined column. Otherwise, the date_joined column
would be the same value that we had before.

Changing the SQL query in ch13ex04.php to the updated version yields the
correct output, as shown in Figure 13.4.

289Using MySQL to Make Your Web Site Come Alive

Figure 13.4: The timestamp has been converted so that the dates display
correctly.

USING THE WHERE CLAUSE WITH MYSQL’S OPERATORS

The SELECT command is not useful when it returns every row in a table.
However, if you add the limiting capabilities of WHERE, you instantly have
the ability to choose only the rows you want, and, even better, to search the
table.

The following shows the syntax for the WHERE clause:
WHERE condition

That’s certainly not too difficult. The condition here is typically a compari-
son of a field to a value or to another field. Using a WHERE clause is quite
simple: You just append it to your SELECT statement.

For example, the following command would retrieve all the rows where the
date_joined value is later than January 1, 2001:
SELECT * FROM members WHERE date_joined > 20010101000000

T I P
Recall that the timestamp is in YYYYMMDDHHMMSS format, so the number shown
here can easily be interpreted as Jan. 1, 2001, at 00:00:00.

After you have the results from a SELECT statement with a WHERE clause, you
can access them just as you did with a basic SELECT statement, using
mysql_fetch_array() until it returns false.

N O T E
You’ll find we also use the WHERE clause with the DELETE command. DELETE’s use then
is identical to its use with WHERE; with either command, it limits which rows are acted
upon.

THE UPDATE STATEMENT

The UPDATE statement is used to change records that are already in a table.
UPDATE is usually used with a WHERE clause to limit which records are modi-
fied; if you don’t specify a WHERE clause, every record in the table will have
the same update executed on it.

The syntax for UPDATE is
UPDATE table SET field=’value’, field2=’value2’ WHERE field3=5

So, for example, let’s assume you have a table called members, as follows:
mysql> select * from members;
+-----------+------------------+-----+----------------+--------+
| name | email | age | date_joined | credit |
+-----------+------------------+-----+----------------+--------+
| Joe Smith | Joe@Smith.com | 32 | 20010608212854 | 0 |
| Don Hardy | DHardy@Hardy.com | 29 | 20010608212949 | 0 |
+-----------+------------------+-----+----------------+--------+
2 rows in set (0.00 sec)

To change the e-mail address given for Joe Smith, you could use an SQL
statement like

290 Chapter 13: Creating Dynamic Content with PHP and a MySQL Database

E X A M P L E

E X A M P L E

UPDATE members SET email=’Webmaster@JSmith.com’ WHERE name=’Joe Smith’

After executing this statement, the table looks like this:
mysql> select * from members;
+-----------+-------------------------+-----+----------------+--------+
| name | email _______ | age | date_joined | credit |
+-----------+-------------------------+-----+----------------+--------+
| Joe Smith | Webmaster@JSmith.com | 32 | 20010608212854 | 0 |
| Don Hardy | DHardy@Hardy.com | 29 | 20010608212949 | 0 |
+-----------+-------------------------+-----+----------------+--------+
2 rows in set (0.00 sec)

N O T E
If you forget to specify a WHERE clause, all the e-mail addresses in the table will be
changed to the value you’re updating with. For example, if you remove the WHERE
clause from this example, Don Hardy’s e-mail address would also be stored as
‘Webmaster@JSmith.com’.

THE DELETE STATEMENT

The DELETE statement is used to remove records from a table. DELETE is
almost always used in conjunction with WHERE, because if it isn’t, every
record in the table will be deleted.

C A U T I O N
Keep in mind that one wrong DELETE—that is, one without a WHERE clause—will wipe
out an entire table in your database. Be careful when adding DELETE statements to
existing systems to make sure you have a WHERE clause to limit what is deleted.

To delete a row, simply use the following syntax:
DELETE FROM table WHERE condition

For example, to delete the record in members with an age less than 30, the
following command could be executed:
DELETE FROM members WHERE age < 30

What’s Next
Now that you understand databases, we can look at using them for pass-
word authentication. Simply put, you will be able to register users, let them
pick a username and password, and then give them access to restricted
areas of your Web site if they supply that username and password.

This ability is a big step in designing user-friendly, customizable Web sites;
after users log in, you can greet them by name, personalize content to meet
their needs, and more!

291What’s Next

E X A M P L E

14

Using PHP for Password Protection
One of PHP’s many useful abilities is user authentication—that is, the abil-
ity to password-protect certain programs. Password protection is quite com-
mon on the Web today. It’s on just about every interactive Web site you
visit, from Hotmail’s e-mail service to the forums on DevShed (an online
Open Source Web development arena). These sites have found that it’s bet-
ter to ask a user to log in once, rather than prompt him for his name and
password every time he wants to do something. (It makes more sense to
only do it once anyway, doesn’t it?)

If you plan to allow more than a few users to access a password-protected
area of your Web site, if you want users to be able to register and log in
instantly at your Web site, or if you would like to create personalized ser-
vices such as member profiles, then you will definitely find this aspect of
PHP quite useful!

This chapter teaches you the following:

• How to set up a user database

• How to create a simple authentication form

• How to verify a username and password pair

• How to remember who is logged in

• How to use HTTP headers instead of an HTML form to collect the
username and password

Goals of Authentication with PHP
You might be familiar with the standard features of your Web server, which
probably allow you to password-protect certain files and directories on your
Web site. In the Apache Web server, for example, you can add directives to
an .htaccess file that tells the server to require a certain user (or a user
who is a member of a certain group) to log in before he is given access to
particular resources. Similarly, in Microsoft’s Internet Information Server
and other Windows servers, you can set file and directory permissions to
require visitors to log in, as needed.

The drawback to these methods is that you have limited flexibility for
adding and removing user accounts. For example, even if you did create a
way for new users to register, sending the contents of a form to you by e-
mail, you would still have to manually create each new user. Not only
would this take a minute or two of your time, but it would require the user
to wait until his account had been created. (It’s a little-known fact that peo-
ple don’t like to wait—especially on the Web.)

To make things quick and easy for your visitors and to keep you from hav-
ing to do little repetitive tasks (which is one of the main goals of program-
ming anyway), we’re going to look at using PHP to automate this process.
More specifically, we’re going to look at how you can use a user database to
authenticate users.

Besides simply authenticating users, we’ll briefly cover how you can tell
which user is logged in from within your PHP program. This will allow you
to customize your Web site to the particular user who is viewing it. Thus,
you can program a Web-based mail client, a personalized contact manager,
or just about whatever you want. Whenever a user is logged in, you can
make your Web site customize itself to that visitor.

Setting Up the Basics
Before we can begin with the technical details, it’s important to get a clear
understanding of the process that we’re planning to follow. To authenticate
a user, you have to perform the following steps:

1. Request a username and password.

2. Verify the username/password combination.

3. Respond to the request based on whether the username and password
are valid.

294 Chapter 14: Using PHP for Password Protection

Setting Up a User Table
To authenticate users, you’ll use a table in a MySQL database. Setting up a
user table shouldn’t be much of a challenge. Our purposes require only two
columns: one for a username and one for a password.

N O T E
Because we covered database interaction in Chapter 13, “Creating Dynamic Content
with PHP and a MySQL Database,” we’re not going to focus on it too much here.
However, to ensure you understand exactly what’s going on at every step of this
process, the table creation statement is presented here.

The statement used to create the table is as follows:
CREATE TABLE users (

user TEXT NOT NULL,
pass TEXT NOT NULL

);

As you might have guessed, this simple table will hold all of the usernames
in the user column and the passwords in the pass column. Because each
username/password combination is stored in a new row, checking to find
whether a username and password are correct will involve finding a row
where the username and password are as entered in the form. We’ll discuss
the details of this later in the section “Making Sure the Username and
Password Are Correct.”

However, while we’re working with the users table, let’s add a few dummy
entries we can work with later. They are as follows:
INSERT INTO users SET user=’asmith’, pass=’smitty’;
INSERT INTO users SET user=’johnr’, pass=’spot’;

This outputs a table that looks like this:
+--------+--------+
| user | pass |
+--------+--------+
| asmith | smitty |
| johnr | spot |
+--------+--------+

Getting the Username and Password
For now, the first step (getting a username and password from the user)
will be accomplished with an HTML form because this method is the
easiest.

295Setting Up the Basics

E X A M P L E

N O T E
The other method involves sending special HTTP headers that cause the browser appli-
cation to present a pop-up authentication dialog box. That method will be discussed
later in this chapter in the section “Using HTTP Header Authentication.”

Setting up a form to obtain a visitor’s username and password is quite easy,
as you might have expected. The following page presents the form to be
used with this example:
<?php ch14ex01-form.php ?>
<html>
<head><title>PHP By Example :: Chapter 14 :: User Authentication Form</title>

<body bgcolor=”white”>

<h2>Please Log In</h2>

<form action=”ch14ex01-login.php” method=”POST”>
Username: <input type=”text” name=”user”>

Password: <input type=”text” name=”pass”>

<input type=”submit” value=”Log In”>
</form>

</body>
</html>

C A U T I O N
Notice that the form action is POST and not GET. As discussed in Chapter 3, “Program
Input and Output,” POST is favorable for sending passwords because it doesn’t cause
the browser to display them in the address bar like GET does.

However, don’t let yourself get too comfortable with using POST forms with high security
passwords. (Most Web-based services have decided that this marginal risk is accept-
able and have informed their users of the risk.) It is possible for others to look at pass-
words in transit, even if they are POSTed, unless the information is submitted over a
secure connection.

Either SSL (Secure Sockets Layer) or the newer TLS (Transport Layer Security) can be
used to make connections secure. You can find out more about using SSL or TLS by
consulting your server’s documentation, or by asking the server’s administrator.

This problem should always be at the front of your mind when planning a new login sys-
tem; if it’s necessary to have tight security, you will need to have a secure certificate
installed for that Web site and every page that is secured should be retrieved over that
connection. (If you’re not sure what you need to do to have a security certificate
installed on your Web server and how to use it, contact your server administrator.)

296 Chapter 14: Using PHP for Password Protection

E X A M P L E

C A U T I O N
If you prefer using a password field instead of a text field when your form requests a
password, that’s great. Using a password field keeps sensitive information out of sight
from anyone looking over your shoulder just as using POST instead of GET eliminates
the possibility of someone seeing your information exposed in the URL.

You should be just as aware of the dangers of using a password field blindly as you are
of using GET. Although passwords are hidden from sight by asterisks (*), it won’t be hid-
den from sight to network sniffers who are after your sensitive information. Even if
you’re using a password field, you have to send it over an SSL or TLS connection for
the data to be secure in transit.

As you can see, all we require in a form is that it obtains a username and
password from the user. The next section will discuss the actual authentica-
tion program, ch14ex01-login.php, which is referenced in this form’s action
attribute.

Verifying the Username and Password
After the visitor submits his username and password data to a login script,
several things typically happen. The most obvious is that the username and
password are verified. The script then reacts based on whether the user-
name and password combination is valid. If it is, the script might set ses-
sion data (which we’ll talk about later in this chapter in the section “Using
Sessions”), and then send the user on to a default first page after he is
logged in. On the other hand, if his username and password are bad, the
script sends a page back to the visitor telling him so and perhaps giving
him a form to try again.

Making Sure the Username and Password Are Correct
As mentioned earlier, to verify a username and password, all we have to do
is check to see if the users table has a row with a username and password
combination that matches the one we have. If it finds a row, the username
and password are valid; if it doesn’t, the username and password are
invalid.

But how do you tell whether MySQL found a row with a matching user-
name and password? This is done with mysql_query() and MySQL’s COUNT()
function.

N O T E
COUNT() is a special function within MySQL that counts the number of rows meeting a
particular set of criteria, which are specified in the WHERE portion of the query
statement.

297Verifying the Username and Password

The following query is used:
$result = mysql_query(“SELECT COUNT(*) AS numfound FROM users WHERE
user=’{$HTTP_POST_VARS[‘user’]}’ AND pass=’{$HTTP_POST_VARS[‘pass’]}’”;

This statement stores a result set containing the number of rows in which
the username and password match the ones submitted to a variable called
$result. To get this actual number, we still have to use mysql_fetch_array()
and then access the correct element, numfound, in that array.

Because we’re checking to see whether rows were found, we’ll combine the
result that MySQL returned with an if statement that checks to see if the
number of rows found is at least 1 (or, in more programming-specific terms,
greater than or equal to 1), as follows:
$result_ar = mysql_fetch_array($result);

if ($result_ar[‘numfound’] >= 1)
{

// Username & password accepted
}
else
{

// Username & password don’t match
}

T I P
This condition is purposely left in a generalized form to include all conditions so that
unexpected behavior will not occur. For example, if two rows ended up in your database
with the same username and password, COUNT() would return 2 instead of 1, and a
check such as the following:

if (numfound == 1)

would fail because two rows were found, not one. Obviously, the check should pass
because the login information was correct—even if two identical users are in the
database.

Responding to a Login Request
After the login script has determined whether a username and password
are valid, the script must respond to the user. The easiest way, obviously, is
to output an error message when the username and password are bad, and
otherwise let the user see the protected page.

However, if the password is bad, simply printing an error message doesn’t
give the visitor an easy way to try again. Redirecting the user to the login
page he just came from gives him a chance to log in again. In addition,

298 Chapter 14: Using PHP for Password Protection

E X A M P L E

adding a parameter to the query string to signal that an error should be
printed lets the visitor know that an error occurred, instead of mysteriously
showing the same login form he just filled out.

You can redirect a browser by sending an HTTP Location header using
PHP’s header() function, as follows:
header(‘Location: login-form.php?error=1’);

Here, you send the visitor to login-form.php. (This could also be a complete
Web address, http:// and all, if you so desire.) In addition, a query string
parameter has been added setting error equal to 1 so that login-form.php
can display a predefined login error message. (Obviously, login-form.php
would have to be modified to do this before an error message would be
displayed.)

The Result
The program you can create based on the preceding information follows:
<?php
/* ch14ex01-login.php - verifies username and password

We expect to receive user and pass via POST. If they’re not
given, access will be denied (assuming there is no entry in
the users table with a blank username and password). */

// Set up some variables
define(‘HOST’, ‘localhost’);
define(‘USER’, ‘admin’);
define(‘PASS’, ‘abc123’);
define(‘DB’, ‘main’);

// Connect and get numfound
mysql_connect(HOST, USER, PASS);
mysql_select_db(DB);
$result = mysql_query(“SELECT COUNT(*) AS numfound FROM users WHERE
user=’{$HTTP_POST_VARS[‘user’]}’ AND pass=’{$HTTP_POST_VARS[‘pass’]}’”);

// Decide what we’re going to allow
$result_ar = mysql_fetch_array($result);
if ($result_ar[‘numfound’] < 1) // ***** Login Failed *****
{

header(‘Location: ch14ex01-form.php?error=1’);
}
else // ***** Login Succeeded! *****
{

echo “Logged In Successfully!”;
}

?>

299Verifying the Username and Password

E X A M P L E

Practical Techniques
Obviously, a program like the one just given in the previous section is good
enough if all you want to send to the user is a line or two of output. Even a
whole page could be sent back, really, but wrapping a whole page in part of
an if-else clause can get confusing—especially if other if-elses exist in the
program.

In addition to that, if you wanted to password-protect 15 different pages
within your Web site, you would have to copy the code from one file to the
next until all 15 pages were protected.

To get around these complications, the next two sections will show you how
to use include files along with some slightly adjusted logic to form a solu-
tion that is better suited to everyday use.

Adjusting the Login Logic
The logic shown in the previous example demonstrates only one way to
keep a user who doesn’t log in from viewing the protected page. However,
the feat can be accomplished in more than one way. Suppose you had many
pages you wanted to protect like this; as the program appears right now,
you would have to copy and edit the code within the else block to make it
work the way you wanted it to.

It would be much easier if you only had to add to the end of the file. That
way, you could create the file and test it as usual, and after you were ready,
you could simply paste the appropriate login script in front of your code. In
plain terms, you want to eliminate the else portion of the script.

Therefore, instead of structuring our program in an if-else fashion, we’ll
structure it so that the program stops if it makes it into the if block. If
it doesn’t, execution will continue, making the part of the program after
the if block act like an else block. Figure 14.1 demonstrates this more
clearly.

The exit function will be used to stop the program if the visitor doesn’t pro-
vide a valid username and password. Using exit is quite straightforward: If
execution ever reaches a line that calls exit, the program stops
immediately.

300 Chapter 14: Using PHP for Password Protection

Figure 14.1: The logic of the login program has been altered for flexibility.

The following program uses the logic discussed in this section to determine
whether a visitor should be allowed to view its protected contents or not.
The same login form we used before (ch14ex01-form.php) will be used again
with this program:
<?php
/* ch14ex02.php - login program with adjusted logic

We expect to receive user and pass via POST. If they’re not
given, access will be denied (assuming there is no entry in
the users table with blank username and password). */

// Set up some variables
define(‘HOST’, ‘localhost’);
define(‘USER’, ‘admin’);
define(‘PASS’, ‘abc123’);
define(‘DB’, ‘main’);

// Connect and get numfound
mysql_connect(HOST, USER, PASS);
mysql_select_db(DB);
$result = mysql_query(“SELECT COUNT(*) AS numfound FROM users WHERE
user=’{$HTTP_POST_VARS[‘user’]}’ AND pass=’{$HTTP_POST_VARS[‘pass’]}’”);

// Decide what we’re going to allow
$result_ar = mysql_fetch_array($result);
if ($result_ar[‘numfound’] < 1) // ***** Login Failed *****
{

301Practical Techniques

If Method (Eliminates Else)

If Username and Password aren't Valid:
Send the user to the login form.
Stop executing (exit).

End If

Show the protected page.

If-Else Method

If Username and Password are Valid:
Show the protected page.

Else:
Send the user to the login form.

End If

Access
Denied

Access
Granted

E X A M P L E

header(‘Location: ch14ex01-form.php?error=1’);
exit; /* stops program execution; only users who had

correct username and password will be allowed
to continue */

}

// The following code is ONLY executed if the user was authorized

echo “Logged In Successfully!
”;

?>

You can switch out to HTML mode...

<?php

echo “And of course back to PHP mode, too!
”;

?>

Because the program stops if the user isn’t authorized, anything below the
section of login code at the top is protected from unauthorized visitors. This
solves the problem you would have had before with having to close the else
block after outputting your protected page.

Including Protection
Because authorization can be covered by the same code across multiple
pages, it makes sense that it should be separated into an include file. Thus,
if you include the authorization file, nobody but those who are allowed to
log in will be able to see the contents of the file.

The following file shows what the resulting include file looks like:
<?php
/* ch14ex03-login.php - login include file

Only lets visitors see the page if they log in
We expect to receive user and pass via POST. If they’re not
given, access will be denied (assuming there is no entry in
the users table with blank username and password). */

// Set up some variables
define(‘HOST’, ‘localhost’);
define(‘USER’, ‘admin’);
define(‘PASS’, ‘abc123’);
define(‘DB’, ‘main’);

302 Chapter 14: Using PHP for Password Protection

E X A M P L E

// Connect and get numfound
mysql_connect(HOST, USER, PASS);
mysql_select_db(DB);
$result = mysql_query(“SELECT COUNT(*) AS numfound FROM users WHERE
user=’{$HTTP_POST_VARS[‘user’]}’ AND pass=’{$HTTP_POST_VARS[‘pass’]}’”);

// Decide what we’re going to allow
$result_ar = mysql_fetch_array($result);
if ($result_ar[‘numfound’] < 1) // ***** Login Failed *****
{

header(‘Location: ch14ex03-form.php?error=1’);
exit; /* stops program execution; only users who had

correct username and password will be allowed
to continue */

}

?>

N O T E
To use this example, copy ch14ex01-form.php to ch14ex03-form.php and change this
line:

<form action=”ch14ex01-login.php” method=”POST”>

so it posts to the correct program, like this:

<form action=”ch14ex03-login.php” method=”POST”>

Notice that ch14ex01-login.php has been changed to ch14ex03-login.php.

Then, we can include it in a file we want to protect, like this:
<?php
/* ch14ex03-protected.php - demonstrates use of login include file */

include(‘ch14ex03-login.php’); // Make the visitor log in

?>
<h2>Congratulations!</h2>
If you can see this information, you have logged in successfully.

<i>(If you really did this, you would probably have something a little
more interesting or important here...)</i>

It’s obvious now why you would want to put the authorization code in a sep-
arate file from the rest of a protected page—it makes protecting a page
much simpler! This, in turn, makes program maintenance easier to handle.

303Practical Techniques

Logging In for a Session
The example given previously is fine, but it isn’t quite practical because it
requires the visitor to log in for every protected page he wants to see.
Because the login script expects each visitor to POST his username and pass-
word, and because such a POST occurs only when the visitor submits the
login form, the form would have to be submitted every time a protected
page was viewed. Visitors would soon get frustrated with having to reenter
their username and password every time they wanted to see another page.

The cure for this dilemma is to use sessions. Sessions allow your programs
to remember information about a user between page views. Thus, if one
page stores a user’s username in a session, marking him as logged in, it’s
possible to allow him to move from one protected page to the next without
having to resubmit his username and password every time.

T I P
If you’re familiar with how cookies work, you might be wondering if sessions are any dif-
ferent from cookies; in fact, they are quite different, despite their similar purpose.
Session data is stored on the server and not in the client browser’s cookie file. This
makes the data more secure and more reliable because the user cannot directly
change his session data. In contrast, cookies can be changed by anyone savvy enough
to open and edit his browser’s cookie file.

A cookie is typically still sent to the browser, even if you’re using sessions, but that
cookie is only an encrypted session identifier that tells the server for which visitor it
should call up the session data. Changing this cookie wouldn’t allow the visitor to give
himself unauthorized access; it would simply erase his session and force him to start
over.

T I P
It’s possible to customize the way sessions work within your program. For example, the
session ID must be returned to the client in some form so the session data can be
called up on the next request. However, the session ID can be sent either as a cookie
or by modifying all of the local links on the page (something PHP will do automatically if
you set it to).

For our purposes, the default settings for sessions will work just fine, but when you find
time to experiment with sessions, it’s a worthwhile area of the language to look into.
For more information, check out the section on sessions in the PHP Manual at http://
www.php.net/manual/en/ref.session.php.

Using Sessions
Before you can use a session, you have to initialize it using
session_ start(). This function checks to see if the current user already
has a session assigned to him (each visitor has a separate session), and if
he does, the data from that session is imported into the current script as

304 Chapter 14: Using PHP for Password Protection

the $HTTP_SESSION_VARS array. If the current visitor doesn’t already have a
session, a new, empty one is created.

session_start() takes no parameters and has no return value, so the
syntax guide has been omitted.

N O T E
Whenever you need to access session data, you must call the session_start()
function.

Session data is stored in the $HTTP_SESSION_VARS array, so if you want to
view or change session data, you simply access the appropriate element in
the array.

However, to add a new variable to the session, you must use
session_register() to do so. This only has to be called once for each vari-
able; you don’t have to call it in subsequent page views or when you want to
access the session data.

session_register() has the following syntax:
session_register(variable name);

variable name is the quoted name of the variable you want to store in the
session.

For example, the following program starts a session and sets the username
element in the $HTTP_SESSION_VARS array to a dummy username:
<?php
/* ch14ex04.php - demos session functionality */

// Initialize the session
session_start();

// Store the username in the session
$username = ‘jsmith’;

// Create a place for ‘username’ in the session’s storage
session_register(‘username’);

echo ‘“jsmith” has been stored in the session.’;

?>

Because the username “jsmith” is now stored in the session, it will be avail-
able to any other script on the same server in the same visit, as the follow-
ing program can demonstrate:

305Practical Techniques

E X A M P L E

<?php
/* ch14ex04-viewer.php - shows session data stored by ch14ex04.php */

// Still have to initialize the session
session_start();

// Now we can get the data that was stored by a different script
echo ‘Username stored in session: ‘ . $HTTP_SESSION_VARS[‘username’];

?>

The output of this program, assuming it is run after ch14ex04.php is vis-
ited, is as follows:
Username stored in session: jsmith

T I P
Just as you can get the value of a session variable by accessing its element in the
$HTTP_SESSION_VARS array, you can also change its value.

C A U T I O N
If you fail to initialize the session with session_start(), the $HTTP_SESSION_VARS
array will not exist and changes to it will not be saved between pages.

Applying Sessions to a Login Script
Now that you know how sessions work, you can apply that knowledge to
the authentication script so that users who have logged in once will not
have to log in again to access other protected pages.

To incorporate sessions into the login script, you have to start a new session
and store the user’s username in $HTTP_SESSION_VARS[‘user’] when the
user first logs in. In addition, you have to change the login script to check
whether a value is already present in $PHP_SESSION_VARS[‘user’], which
would signal that the user is already logged in, before it checks for a POSTed
username and password.

The revised include file version of the script follows:
<?php
/* ch14ex05.php - login include file

Only lets visitors see the page if they log in
We expect to have a username stored in the ‘user’
session variable
OR

We expect to receive user and pass via POST. If they’re not

306 Chapter 14: Using PHP for Password Protection

E X A M P L E

given, access will be denied (assuming there is no entry in
the users table with blank username and password). */

// We’re using sessions now
session_start();

// Set up some variables
define(‘HOST’, ‘localhost’);
define(‘USER’, ‘admin’);
define(‘PASS’, ‘abc123’);
define(‘DB’, ‘main’);

// Check to see if the user’s already logged in; if so,
// we can skip this part.
if (empty($HTTP_SESSION_VARS[‘user’]))
{

// Connect and get numfound
mysql_connect(HOST, USER, PASS);
mysql_select_db(DB);
$result = mysql_query(“SELECT COUNT(*) AS numfound FROM users

WHERE user=’{$HTTP_POST_VARS[‘user’]}’ AND
pass=’{$HTTP_POST_VARS[‘pass’]}’”);

// Decide what we’re going to allow
$result_ar = mysql_fetch_array($result);
if ($result_ar[‘numfound’] < 1) // ***** Login Failed *****
{

header(‘Location: ch14ex05-form.php?error=1’);
exit; /* stops program execution; only users who had

correct username and password will be allowed
to continue */

}

// The user has successfully logged in; set ‘user’ in session
$user = $HTTP_POST_VARS[‘user’];
session_register(‘user’);

echo ‘Logged in successfully!’;
}

?>

By modifying Example 3 (ch14ex03-protected.php), you can verify that this
method of logging in only requires you to POST your username and password
once. After that, you’re logged in automatically until the session times out
or you close your browser, which resets the session.

307Practical Techniques

Using HTTP Header Authentication
The other way to collect the visitor’s username and password is by sending
an HTTP WWW-Authenticate header, which tells the browser to get the infor-
mation from the visitor using its own means, and then to return it to the
program.

N O T E
Header authentication doesn’t work on Microsoft’s Internet Information Server when
PHP is installed as a CGI program. (As an ISAPI module, however, it should work fine.)
You should check your system configuration to be sure that isn’t the case before plan-
ning to implement a login system that uses this feature.

However, that doesn’t mean you can’t use the login system that relies simply on forms.
Besides looking different, HTTP header authentication doesn’t really have significant
advantages.

This is a little more complicated than it sounds because the process takes
two separate HTTP requests: one to ask the browser to get the visitor’s
username and password, and a separate one for the browser to send the
information to the server and retrieve the protected page.

T I P
Remember that you can’t send a header after your program has sent output, so be sure
that blank spaces don’t appear at the beginning of your program. Also, check for the
possibility of other forms of output being accidentally sent before the headers. Any out-
put sent before the headers will cause a warning to be generated when the header()
function is called.

Sending the HTTP WWW-Authenticate Header
This program will start off simply, just as the one that was made for using
forms. The first thing you need to do is make it prompt the browser for a
username and password. To do this, the program will have to send two
headers, as follows:
<?php
/* ch14ex06.php - demonstrates using http-auth headers */

header(‘HTTP-Authenticate: Basic realm=”Protected Area: PHP by Example – Ch. 14,
Ex. 06”’);
header(‘HTTP/1.0 401 Unauthorized’);

?>

308 Chapter 14: Using PHP for Password Protection

C A U T I O N
The headers shown in this example must be sent in the order they are shown; sending
them in this order solves problems in some versions of Internet Explorer that don’t
react well to the reverse order.

T I P
For best compatibility, make sure you capitalize Basic in the HTTP-Authenticate
header.

Also, always be sure to include double quotes around the text for the realm. In this
example, that means double quotes should surround Protected Area, as you can see
in the example.

Finally, ensure that only one space separates HTTP/1.0 and 401 in the second header.
Omitting the space or increasing the spacing can cause some browsers to ignore this
line because the header doesn’t meet HTTP standards.

That’s all it takes to cause the browser to display a window similar to that
shown in Figure 14.2.

309Using HTTP Header Authentication

Figure 14.2: The browser displays a prompt window when given the
appropriate HTTP headers.

N O T E
The exact wording and layout of this window varies slightly from one operating system
and browser to the next because of basic differences in browser interfaces, but they all
are generally the same.

After the user receives the prompt window, he is expected to either fill in a
username and password or cancel. If he cancels, an error page is typically
displayed telling him that the page allows authorized individuals only. A
typical page might look something like that shown in Figure 14.3.

Figure 14.3: An error page is returned if the user fails to log in.

Also, if the visitor enters his login information, you need to be able to verify
it. If any login information is entered, it will be in two special variables cre-
ated automatically by PHP: $PHP_AUTH_USER and $PHP_AUTH_PW, which con-
tain the user and password, respectively.

The following program completes the process of prompting and handling a
username and password via HTTP headers:
<?php
/* ch14ex06.php - complete HTTP headers auth page */

function LoginOK($user, $pass)
/* PRE: $user and $pass are the username and password variables that may

or may not have been submitted by the user.
PST: If the username and password contain something and are in the users

table, returns true.
Otherwise, returns false

*/
{

// Make sure we’ve got a username and password
if (empty($user) || empty($pass))
{

return false;
}
else
{

// We have a user/pass, so check and see if they’re correct

// Set up some variables
define(‘HOST’, ‘localhost’);
define(‘USER’, ‘admin’);

310 Chapter 14: Using PHP for Password Protection

E X A M P L E

define(‘PASS’, ‘abc123’);
define(‘DB’, ‘main’);

// Connect and get numfound
mysql_connect(HOST, USER, PASS);
mysql_select_db(DB);
$result = mysql_query(“SELECT COUNT(*) AS numfound FROM users WHERE

user=’$user’ AND pass=’$pass’”);

// Decide what we’re going to allow
$result_ar = mysql_fetch_array($result);
if ($result_ar[‘numfound’] < 1) // ***** Login Failed *****
{

return false;
}
else
{ // ***** Login Information Accepted *****

return true;
}

}
}

// Authentication starts here.
if (! LoginOK($PHP_AUTH_USER, $PHP_AUTH_PW))
{

// Tell the user he has to log in, or error out if he cancels
header(‘HTTP-Authenticate: Basic realm=”Protected Area”’);
header(‘HTTP/1.0 401 Unauthorized’);

// The following text is what the user will see if he fails to log in
echo “You are required to log in to access this protected resource.”;

// Stop
exit;

}

// If execution makes it this far, the user is logged in OK

?>
Login Successful!

As you can see, the logic for this program is a little more complex than it
was when using a login form. For this reason, the process of checking
whether a username and password combination is valid has been separated
into a function called LoginOK.

311Using HTTP Header Authentication

The first thing the program does (after defining the LoginOK function) is
pass the two variables that are supposed to hold the HTTP authentication
data (the visitor’s username and password, if he entered them) to the
LoginOK function to check whether the user should be given access to the
protected page.

The LoginOK function first checks to see if the username and password vari-
ables both contain something. If they don’t contain anything, LoginOK
returns false so the user will be prompted to enter a username and pass-
word. If they do contain something, the username and password are
checked against the users table in the database. The appropriate value for
whether the username and password are valid is returned.

Now, consider the main logic of the program. The if statement checks to
see if the login information is not acceptable. If it is acceptable, the headers
are sent to ask the user to enter (or reenter) his login information. The pro-
gram also exits at that point to ensure the protected part of the page isn’t
revealed prematurely.

If the login was successful, the program keeps executing and the protected
page is displayed.

T I P
Although you can incorporate sessions into this login system, too, it’s not necessary
because all of the major browsers automatically send login information for other pages
on the same server after the correct information is entered once. Thus, instead of the
user having to reenter his username and password for every page, the browser sends
the same username and password automatically so the user isn’t troubled with it.

What’s Next
You now know how to use some authorization techniques with PHP, which
will help you automate user registrations, profiles, and other user-friendly
service.

The next chapter will lead you into handling file uploads with PHP. This
will help you allow your visitors to post pictures, documents, spreadsheets,
and other files in any format to your server securely—and at your discre-
tion and control so they can only upload what you want to allow. Thus, you
can allow users to upload pictures to their profiles, upload Word files for
others to download, or add attachments of any kind in an online e-mail sys-
tem. Read on to find out about the great qualities of PHP’s file uploading
feature!

312 Chapter 14: Using PHP for Password Protection

15

Allowing Visitors to Upload Files
Uploading files over the Internet has gotten to be a popular activity over
the past couple of years. You can send attachments on most Web-based e-
mail sites by selecting a file (or files) to upload. Other types of services
besides Web-based e-mail can use this feature, as well. For example, Web
sites in which users have their own profiles have started allowing their
members to add a picture to their profile. These are only the most common
uses; you could very easily think up another situation in which you would
want to allow file uploading on your Web site.

With the help of some of PHP’s specialized functions, allowing your visitors
to upload files is easier than it ever has been before.

This chapter teaches you the following:

• How to use the file type of form field

• Why PHP makes file uploads easier

• How to process a file that is being uploaded

• Where to store an uploaded file

• How to store and retrieve a file from a database

File Upload Process Overview
When a file is uploaded from a visitor’s computer to your Web server, sev-
eral things take place.

N O T E
Some older browsers, as well as some of the less common ones, might not support file
uploading; however, file uploading is generally supported in all mainstream browsers, so
using it shouldn’t be a problem as long as your visitors use a fairly recent browser.

The following three browsers are known to support file uploads:

• Netscape Navigator 3.0 or later

• Microsoft Internet Explorer 3.0 (requires patch)

• Microsoft Internet Explorer 4.0 or later

Any other browser that is RFC-1867–compliant will work, as well.

First, the visitor selects the file from a Choose File dialog box, as shown in
Figure 15.1.

316 Chapter 15: Allowing Visitors to Upload Files

Figure 15.1: The visitor uses this dialog box to select which file he wants to
upload.

After a file is selected, the visitor submits the form, and the file is trans-
mitted to the server. When the file reaches the server, PHP does some
behind-the-scenes decoding and saves the file to a temporary directory.

N O T E
The temporary directory PHP uses can be specified in your php.ini file using the
upload_tmp_dir option.

Your php.ini should look something like this:

;;;;;;;;;;;;;;;;
; File Uploads ;

;;;;;;;;;;;;;;;;
file_uploads = On ; Whether to allow HTTP
file uploads
upload_tmp_dir = c:\apache\php\upload ; Temporary directory for
HTTP

; uploaded files (will use
system default

; if not specified)
upload_max_filesize = 10M ; Maximum allowed size for
uploaded files

If you don’t specify an upload_tmp_dir, PHP will use your system’s default temporary
directory automatically. In most cases, using the default option is fine.

From the temporary directory, the file can either be copied to a location
within the public Web directory (so it can be accessed at a location such as
http://www.example.com/files/somefile.jpg), or it can be inserted into a
database for more control.

The rest of this chapter describes this process in more detail, teaching you
about the options you have along the way.

Creating a File Upload Form
The first step to uploading a file is creating a form to get the file that
should be uploaded. The form should use the POST method, and can have
many inputs, just like any other form. However, an additional field to input
a file is added.

The HTML syntax for file input is as follows:
<input type=”file” name=”field name”>

The field name can be whatever you like.

The following example is a form that might be used to perform a simple file
upload:
<!-- ch15ex01.html -->
<html>
<head><title>PHP By Example :: Chapter 15 :: Example 1</title></head>
<body bgcolor=”white”>

<h2>File Uploader</h2>

<form action=”ch15exXX.php” method=”POST” enctype=”multipart/form-data”>
<input type=”hidden” name=”MAX_FILE_SIZE” value=”1000000”>
File: <input type=”file” name=”upload_file”>

<input type=”submit” value=”Upload”>
</form>

317Creating a File Upload Form

E X A M P L E

</body>
</html>

The MAX_FILE_SIZE hidden field in this code sets the limit for the size of file
that is uploaded. It is specified in bytes, so a 1000000 value equates to
1,000,000 bytes, or 1MB. This limit can be increased or decreased as
desired.

N O T E
PHP’s configuration file also specifies a maximum file size, and that setting is the true
maximum limit. For example, if the MAX_FILE_SIZE is omitted from the form, the maxi-
mum size specified in php.ini will be used. Also, if the MAX_FILE_SIZE is specified in
the form to be larger than the limit specified in php.ini, the limit in php.ini will be
the maximum file size, not the higher size specified in the form.

C A U T I O N
The MAX_FILE_SIZE must be specified before the file input field in the form or it will
not be available to PHP when it is needed. Thus, failing to specify MAX_FILE_SIZE
before the file input field will result in the MAX_FILE_SIZE value being ignored.

Also notice that an additional attribute, enctype, has been added to the
form tag. That attribute must always be set as it is in the example when-
ever you’re uploading a file.

C A U T I O N
If the enctype attribute is not set, the file will not be uploaded. Instead, the file’s name
will appear in $HTTP_POST_VARS[‘field name’], but that’s all that will happen.

This sample page is shown in Figure 15.2.

318 Chapter 15: Allowing Visitors to Upload Files

Figure 15.2: A form like this is used to gather file upload information.

When the user clicks the Browse button, the dialog box shown in Figure
15.1 is displayed, giving him a chance to select a file and then submit the
form to a PHP script for processing.

Handling the File Upload Request
The rest of the file upload process is handled by another file, the file upload
handler. This file has a few main purposes:

• To verify that the uploaded file meets the desired criteria, if any

• To move the uploaded file to its desired final location

• To respond with a message indicating the file upload result

File Upload Criteria
The first thing the upload handler script needs to do is verify that the file is
the type of file desired for upload. For example, don’t allow members to
upload a 1MB .exe picture of themselves. Instead, delete the file and tell
the user he can’t upload files of that size and type.

Three variables help us determine whether we want to accept the uploaded
file:

• $HTTP_POST_FILES[‘field name’][‘name’]

• $HTTP_POST_FILES[‘field name’][‘type’]

• $HTTP_POST_FILES[‘field name’][‘size’]

The first variable holds the original file’s name as it was on the client’s
computer. For example, if I uploaded C:\picture.jpg, this variable would
be the string “picture.jpg”.

The next variable, $HTTP_POST_FILES[‘field name’][‘type’], has the MIME
type associated with the file in the client’s browser. For example, if I send a
.jpg file, the MIME type would be image/jpeg.

C A U T I O N
The client’s browser sends this MIME type, so you must question its accuracy. If the
user associates an .exe file with the mime type image/jpeg, he could theoretically get
it through your verification process if you don’t check the file’s actual extension and
instead rely on the MIME type.

For this reason, you’ll notice that instead of relying on the MIME type, we extract the
file’s actual extension and use that instead.

The final variable contains the file’s size in bytes. Using this value, you can

319Handling the File Upload Request

implement a second check to make sure the uploaded file is of a certain size
(or meets a maximum size requirement). This is a good idea because the
user can easily download, modify, and then use any HTML form you send.
However, by implementing a limit at this point in your PHP script, even
changing the form won’t allow a user to upload a file larger than your sys-
tem allows.

To verify that the uploaded file is something you want to allow, you can cre-
ate a function to verify file type and size at the same time.

The following program demonstrates this function, verify_uploaded_file().
The following program can be used with the form in ch15ex01.html; simply
change the form’s action to action=”ch15ex02.php”. Here’s the program:
<?php
/* ch15ex02.php - file verification example */

// The following values are used to verify_uploaded_file()
// as the types and sizes that are allowed to be uploaded.
$UPLOAD_TYPES[‘JPG’] = 1; // Allow .jpg
$UPLOAD_TYPES[‘JPEG’] = 1; // and .jpeg files
$UPLOAD_SIZES[‘max’] = 100000; // Make sure files are
$UPLOAD_SIZES[‘min’] = 0; // under 1MB in size

echo ‘File: ‘ . $HTTP_POST_FILES[‘upload_file’][‘name’] .
‘
’ .
‘Size: ‘ . $HTTP_POST_FILES[‘upload_file’][‘size’] .
‘

’;

// Verify the file’s size and type
$intResult = verify_uploaded_file(

$HTTP_POST_FILES[‘upload_file’][‘name’],
$HTTP_POST_FILES[‘upload_file’][‘size’]);

if ($intResult == 1)
{

echo $HTTP_POST_FILES[‘upload_file’][‘name’] .
‘ is acceptable.’;

}
else
{

echo $HTTP_POST_FILES[‘upload_file’][‘name’] .
‘ is unacceptable.

’;

if ($intResult == -1)
{

echo ‘Reason: File size out of allowed range.’;

320 Chapter 15: Allowing Visitors to Upload Files

E X A M P L E

}
elseif ($intResult == -2)
{

echo ‘Reason: File type not allowed.’;
}

}

function verify_uploaded_file($strName, $intSize)
/* PRE: $strName and $intSize are attributes taken from

the uploaded file’s information.
Also, the global variables $UPLOAD_SIZES and
$UPLOAD_TYPES should be defined prior to calling
this function.

PST: Returns
1 if the file is acceptable,
-1 if the file’s size is out of range,
-2 if the file’s type isn’t accepted

*/
{

// Check file size
if ($intSize < $GLOBALS[‘UPLOAD_SIZES’][‘min’] ||

$intSize > $GLOBALS[‘UPLOAD_SIZES’][‘max’])
{

return -1;
}

// Check file type
$arrSegments = split(‘[.]’, $strName); // may contain multiple dots
$strExtension = $arrSegments[count($arrSegments) - 1];

if ($GLOBALS[‘UPLOAD_TYPES’][strtoupper($strExtension)] != 1)
{

return -2; // File type not defined/allowed
}

// All tests have passed; this file is valid.
return 1;

}

?>

The way this program works is noteworthy in a couple of ways. First, notice
that the $UPLOAD_TYPES elements (such as ‘JPEG’) are specified in all caps.
This is to give the program a standard case in which it can work with file
extensions. As you can see, when the verify_uploaded_file() function uses
the UPLOAD_TYPES array (by accessing it through the $GLOBALS array), it

321Handling the File Upload Request

uppercases the extension before checking to see if that particular array ele-
ment is set to 1. That way, the case that the extension actually appears in
is negligible, but making sure the elements in $UPLOAD_TYPES are in upper-
case is essential.

Also, notice that verify_uploaded_file() accounts for the fact that a file
can be named with multiple dots, such as my.file.jpg. The function is
designed this way to ensure that only the jpg part of the filename is consid-
ered part of the extension. (This avoids the problem of file.jpg not being a
recognized extension.)

These two considerations are vital to this program working consistently.

What to Do with the Uploaded File
After a file has been verified as a file you want to accept, your script must
do something with the file. If it doesn’t, PHP will automatically delete the
file when the script finishes executing.

As mentioned before, you have a couple of options for where you put the
file. You can put it somewhere in the Web-accessible part of your server’s
file system, which is the easiest thing to do, or you can store the entire file
in a database, which gives you more control over who sees the file and
when they see it.

MOVING THE FILE INTO THE WEB FILE SYSTEM

The developers of PHP added two functions in PHP 4: is_uploaded_file()
and move_uploaded_file(). These functions play a vital role when you get
ready to move the uploaded file to its final location.

Before you can use those functions, be aware that the three elements in the
uploaded file array that were listed earlier are not the only elements avail-
able. The ‘tmp_name’ element is also present.

For instance, the following script (which should be used in conjunction with
the form in ch15ex01.html) will show you where the uploaded file is tem-
porarily stored:
<?php
/* ch15ex03.php – shows where the uploaded file is stored temporarily */

echo ‘The file you just uploaded is stored in: ‘ .
$HTTP_POST_FILES[‘upload_file’][‘tmp_name’];

?>

322 Chapter 15: Allowing Visitors to Upload Files

E X A M P L E

On Windows 2000, the output of this script might be something like this:
The file you just uploaded is stored in: C:\WINNT\TEMP\php98.tmp

This value is used in conjunction with two uploading-related functions. The
first, is_uploaded_file(), has the following syntax:
is_uploaded_file(file)

This function checks to see if a visitor did upload file. The value used for
file, for instance, would be something like
$HTTP_POST_FILES[field name][‘tmp_name’]

For the form given in ch15ex01.html, you would call is_uploaded_file()
like this:
is_uploaded_file($HTTP_POST_FILES[‘upload_file’][‘tmp_name’])

C A U T I O N
Checking the value that this function returns is vital for every file upload you allow.
Otherwise, you risk the chance of having your script tricked into handling a file already
on your file system as if it were an uploaded file.

Let me give you an idea of how dangerous this could be. If a visitor were to enter
/etc/passwd into the file input instead of choosing a file, your script might be fooled
into moving /etc/passwd into a Web-accessible directory. This would give the visitor
(who can be considered an attacker) access to the file by going to an address such as
http://www.example.com/uploaded_files/passwd.

✔ A complete example that uses is_uploaded_file() can be found in “Storing

an Uploaded File in the files Table,” p. 328

The other function, move_uploaded_file(), is called using the following
syntax:
move_uploaded_file(uploaded file, destination file)

This function does two things: First, it checks whether calling is_uploaded_
file() on the uploaded file (such as $HTTP_POST_FILES[‘upload_file’]
[‘tmp_name’]) passes or fails. If it fails, the file isn’t an uploaded file and it
shouldn’t be moved; therefore, the function stops and returns false.
Otherwise, the file is judged to be a valid uploaded file and is moved to the
destination file, which contains both the destination path and filename,
such as C:/InetPub/wwwroot/up_images/.

move_uploaded_file() is the function we’ll use to verify and move uploaded
files into the Web-accessible file system.

323Handling the File Upload Request

N O T E
Typically, uploaded files are placed in their own directory in the Web file system. You
will need to create such a directory if you use a script such as the one shown in
Example 3.

Also, you will need to ensure that the user PHP runs and will have read/write access to
the folder. In Unix-based environments, this means you need to chmod 600 the direc-
tory. On Windows NT and 2000, you need to right-click the folder and add read/write
access for IUSR_machine on the Security tab. Other Windows environments don’t have
user access restrictions, so you don’t have to do anything but create the directory.

The following script verifies that the uploaded file matches the desired type
and size specifications (as Example 2 did); that way, if the file meets the
requirements, it’s moved to C:\InetPub\wwwroot\up_images\, a publicly
accessible Web directory for Microsoft’s IIS.

N O T E
If you’re using a Unix-based Web server, modify the path to be a publicly accessible
directory for your server.

<?php
/* ch15ex04.php - file verification example */

// The $MOVE_TO_PATH is the path to the directory (including
// trailing slash) where the file should go.
$MOVE_TO_PATH = ‘C:/Inetpub/wwwroot/up_images/’;

// The following values are used to verify_uploaded_file()
// as the types and sizes that are allowed to be uploaded.
$UPLOAD_TYPES[‘JPG’] = 1; // Allow .jpg
$UPLOAD_TYPES[‘JPEG’] = 1; // and .jpeg files
$UPLOAD_SIZES[‘max’] = 1000000; // Make sure files are
$UPLOAD_SIZES[‘min’] = 0; // under 1MB in size

echo ‘File: ‘ . $HTTP_POST_FILES[‘upload_file’][‘name’] .
‘
’ .
‘Size: ‘ . $HTTP_POST_FILES[‘upload_file’][‘size’] .
‘

’;

// Verify the file’s size and type
$intResult = verify_uploaded_file(

$HTTP_POST_FILES[‘upload_file’][‘name’],
$HTTP_POST_FILES[‘upload_file’][‘size’]);

// The file doesn’t meet our criteria
if ($intResult != 1)

324 Chapter 15: Allowing Visitors to Upload Files

E X A M P L E

{
$msg_base = $HTTP_POST_FILES[‘upload_file’][‘name’] .

‘ is unacceptable.

’;

// die() with error message
if ($intResult == -1)
{

die($msg_base . ‘Reason: File size out of allowed range.’);
}
elseif ($intResult == -2)
{

die($msg_base . ‘Reason: File type not allowed.’);
}

}

// The file met our criteria; verify its validity and move it
if (! move_uploaded_file($HTTP_POST_FILES[‘upload_file’][‘tmp_name’],

$MOVE_TO_PATH . $HTTP_POST_FILES[‘upload_file’][‘name’]))
{

die(‘You didn’t upload a file or the file couldn’t be moved to ‘ .
$MOVE_TO_PATH . $HTTP_POST_FILES[‘upload_file’][‘name’]);

}
else
{

echo $HTTP_POST_FILES[‘upload_file’][‘name’]
. ‘ was uploaded successfully.’;

}

function verify_uploaded_file($strName, $intSize)
/* PRE: $strName and $intSize are attributes taken from

the uploaded file’s information.
Also, the global variables $UPLOAD_SIZES and
$UPLOAD_TYPES should be defined prior to calling
this function.

PST: Returns
1 if the file is acceptable,
-1 if the file’s size is out of range,
-2 if the file’s type isn’t accepted

*/
{

// Check file size
if ($intSize < $GLOBALS[‘UPLOAD_SIZES’][‘min’] ||

$intSize > $GLOBALS[‘UPLOAD_SIZES’][‘max’])
{

return -1;
}

325Handling the File Upload Request

// Check file type
$arrSegments = split(‘[.]’, $strName); // may contain multiple dots
$strExtension = $arrSegments[count($arrSegments) - 1];

if ($GLOBALS[‘UPLOAD_TYPES’][strtoupper($strExtension)] != 1)
{

return -2; // File type not defined/allowed
}

// All tests have passed; this file is valid.
return 1;

}

?>

Upon successfully uploading a file, this program should output something
like this:
File: MVC-011F.JPG
Size: 93777

MVC-011F.JPG was uploaded successfully.

This program handles the file quite similarly to ch15ex02.php. If the file is
acceptable based on those requirements, the script then attempts to move it
using move_uploaded_file(). If that function fails, the visitor has done
something wrong or is trying to trick your script, and an error message is
printed. Otherwise, the uploaded file is moved to a publicly accessible direc-
tory on the server.

You can now go to http://www.example.com/up_images/image.jpg (making
necessary changes to point to your server and the correct directory and file-
name) to see the image file you uploaded.

At that point, you can use the file any way you want. For example, you can
point an tag at the file to show the picture from a page
within your site. This is how you would add the picture to a user’s profile.
By recording the name of the image in the user’s profile record in a data-
base, you could later use a page to display the image simply by linking an
 tag with the correct image name out the database. (Another way to
do this—by storing the picture itself in the database—will be shown in
detail in the next section.)

Storing the File in a Database
Storing an uploaded file in a database is a little more complex than simply
moving the file to a publicly accessible area of your file system. However, it
gives you some extra advantages:

326 Chapter 15: Allowing Visitors to Upload Files

• Fewer people on your system will have access to or get ideas to change
the files.

• You will have more control over what visitors view files. For example,
you can require a user to be authorized to your PHP login system
before they are allowed to view any files.

• Files can’t collide with one another. For example, if two users both
have a picture named cat.jpg, the second picture would either myste-
riously not be able to upload his file or his file would overwrite the
first user’s file, baffling and probably frustrating the first user.
However, with a database, the files would be stored in separate rows
regardless of the filename. Like-named files won’t collide.

CREATING A TABLE FOR FILES

Creating a table where files can be stored involves working with a MySQL
column type you haven’t seen before: the BLOB type. A BLOB is a binary-safe
version of the TEXT type, which means data that is not readable text will
not be interpreted as readable text; instead, it will be read and stored
strictly as data.

C A U T I O N
BLOB columns are case sensitive if you store data in them and then try to search them
with a MySQL query. If you aren’t storing binary file data (for example, if you’re only
going to store text files), go on and store it in a TEXT column. BLOB columns are best
used only for binary data.

The regular BLOB column, allows 65,535 bytes (about 65Kb) to be stored in
it. To accommodate files that might sometimes be a little larger than that,
the MEDIUMBLOB type (which accepts up to 16,777,215 bytes, or about 16MB)
will be used.

Depending on your use for this type of system, the table could be designed
in a few different ways. You’ll need a reliable way to recall files using a
SELECT ... WHERE query. You could assign the file an auto-incremented file
ID, or you could allow users only to upload one file and then use the user’s
login name for the file identifier. For now, an ID number should serve as a
good demonstration.

The following SQL statement defines a table you can store file data in:
CREATE TABLE files (

file_data MEDIUMBLOB NOT NULL,
id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY

);

327Handling the File Upload Request

STORING AN UPLOADED FILE IN THE files TABLE

This process will be similar to that found in ch15ex04.php, except that
instead of moving the file from the temporary location to a final directory,
you’re going to read its contents and insert it into the database.

To read the file’s contents, you’ll use a few functions you haven’t seen
before: fopen(), fread(), filesize(), and fclose().

The fopen() (file open) function is used to open a file. To open an uploaded
file, use fopen() as follows:
$file = fopen($HTTP_POST_FILES[‘upload_file’][‘tmp_name’], ‘r’);

After the file is opened, you can read its contents into a variable. The
fread() function is used to do this. It takes two arguments: the file you just
opened and the number of bytes you want to read from it. Because you
want to read the entire file at once, the filesize() function is used to get
the number of bytes the file contains.

The following statement assigns the contents of $file to $file_contents:
$file_contents = fread($file,
filesize($HTTP_POST_FILES[‘upload_file’][‘tmp_name’]));

N O T E
Notice that the filesize() function takes an argument that contains the file’s name,
not the variable of the actual opened file.

After you have the file contents, close the file, as shown here:
fclose($file);

These commands are the key change to the file upload script. Instead of
moving the file to a different directory, you’re going to read it and put its
contents into a database.

Before a call to fclose() is included in the upload handler, let’s try it using
a simple test script. The following program reads a file that is already on
the server and places it into the files table created earlier:

N O T E
For this program to work, you need to modify the $MY_FILE variable to point to an
image that is already on your server. Of course, you will also need to modify the
MYSQL_* constants found at the top of the program.

328 Chapter 15: Allowing Visitors to Upload Files

E X A M P L E

<?php
/* ch15ex05.php - demonstrates putting a file into files table */

// MySQL login information
define(‘MYSQL_HOST’, ‘localhost’);
define(‘MYSQL_USER’, ‘admin’);
define(‘MYSQL_PASS’, ‘abc123’);
define(‘MYSQL_DBASE’, ‘test’);

// This is the file we’re going to put in the database
$MY_FILE = ‘C:/InetPub/wwwroot/picture.jpg’;

// Open the file and store its contents in $file_contents
$file = fopen($MY_FILE, ‘r’);
$file_contents = fread($file, filesize($MY_FILE));
fclose($file);

// We need to escape strange characters that might appear in $file_contents,
// so do that now, before we begin the query.
$file_contents = AddSlashes($file_contents);

// Put the file in the database
mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASS) or die(“Unable to connect.”);
mysql_select_db(MYSQL_DBASE) or die(“Unable to select the DB.”);
mysql_query($SQL = “INSERT INTO files SET file_data=’$file_contents’”)

or die(“MySQL Query Error: “ . mysql_error() . “

”
. “The SQL was: $SQL

”);

mysql_close();

echo “File INSERTED into files table successfully.”;

?>

If all of your settings are within the program, you should receive the follow-
ing output:
File INSERTED into files table successfully.

This means the file has been copied to a field in the database. If you want
to, you can see it using the mysql client tool and entering the following
query:
SELECT * FROM files;

If the file is there, blank spaces followed by some dashes will scroll down
your screen. This is the data that was within the image file; MySQL is sim-
ply displaying the binary data as spaces instead of the special range of
characters used within binary files.

329Handling the File Upload Request

VIEWING A FILE IN THE DATABASE

To make sure the file in the database is actually the same as the one on
your Web server, you have to construct a script to get the data back out of
the database and display it as an image.

You specify that the data you’re showing should be displayed as an image
by sending a Content-type header and then simply printing the image data.
First, you need to query the database and get the image file’s data. Then,
you simply print the header and the file’s data.

The following program allows you to view a file associated in the database
with a particular ID number (passed on the query string by setting the id
parameter):
<?php

// Make sure the user specified an ID
if (empty($HTTP_GET_VARS[‘id’]))
{

die(“You must specify an ID.

For example, try typing in: “
. “ch15ex06.php?id=1”);

}

// MySQL login information
define(‘MYSQL_HOST’, ‘localhost’);
define(‘MYSQL_USER’, ‘admin’);
define(‘MYSQL_PASS’, ‘abc123’);
define(‘MYSQL_DBASE’, ‘test’);

// Put the file in the database
mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASS) or die(“Unable to connect.”);
mysql_select_db(MYSQL_DBASE) or die(“Unable to select the DB.”);
$result = mysql_query($SQL = “SELECT * FROM files WHERE id =
{$HTTP_GET_VARS[‘id’]}”)

or die(“MySQL Query Error: “ . mysql_error() . “

”
. “The SQL was: $SQL

”);

if ($result_ar = mysql_fetch_array($result))
{

// This is a JPEG image, so send back that MIME type to tell the browser
// to interpret and display the data as an image.
header(“Content-type: image/jpeg”);

// Send the image data
echo $result_ar[‘file_data’];

}
else

330 Chapter 15: Allowing Visitors to Upload Files

E X A M P L E

{
die(“There’s no image with this ID.”);

}

mysql_close();

?>

THE FINAL UPLOAD HANDLER

Modifying the file upload handler in ch15ex04.php to store the file in a
database, we can do a fairly simple merge of ch15ex05.php and
ch15ex04.php, adding the check with is_uploaded_file() to make sure the
file is an uploaded file before we store it in the database.

The resulting script looks like this:
<?php
/* ch15ex07.php - file verification example */

// MySQL login information
define(‘MYSQL_HOST’, ‘localhost’);
define(‘MYSQL_USER’, ‘admin’);
define(‘MYSQL_PASS’, ‘abc123’);
define(‘MYSQL_DBASE’, ‘test’);

// The following values are used to verify_uploaded_file()
// as the types and sizes that are allowed to be uploaded.
$UPLOAD_TYPES[‘JPG’] = 1; // Allow .jpg
$UPLOAD_TYPES[‘JPEG’] = 1; // and .jpeg files
$UPLOAD_SIZES[‘max’] = 1000000; // Make sure files are
$UPLOAD_SIZES[‘min’] = 0; // under 1MB in size

/*echo ‘File: ‘ . $HTTP_POST_FILES[‘upload_file’][‘name’] .
‘
’ .
‘Size: ‘ . $HTTP_POST_FILES[‘upload_file’][‘size’] .
‘

’;

*/
// Verify the file’s size and type
$intResult = verify_uploaded_file(

$HTTP_POST_FILES[‘upload_file’][‘name’],
$HTTP_POST_FILES[‘upload_file’][‘size’]);

// The file doesn’t meet our criteria
if ($intResult != 1)
{

$msg_base = $HTTP_POST_FILES[‘upload_file’][‘name’] .
‘ is unacceptable.

’;

331Handling the File Upload Request

E X A M P L E

// die() with error message
if ($intResult == -1)
{

die($msg_base . ‘Reason: File size out of allowed range.’);
}
elseif ($intResult == -2)
{

die($msg_base . ‘Reason: File type not allowed.’);
}

}

// The file met our criteria. Verify its validity, then put it in
// the database.
if (! is_uploaded_file($HTTP_POST_FILES[‘upload_file’][‘tmp_name’]))
{

die(‘You didn’t upload a file!’);
}
else
{

// Open the file and store its contents in $file_contents
$file = fopen($HTTP_POST_FILES[‘upload_file’][‘tmp_name’], ‘r’)

or die(“File open failed!”);
$file_contents = fread($file,

filesize($HTTP_POST_FILES[‘upload_file’][‘tmp_name’]))
or die(“Can’t read!”);

fclose($file);

// We need to escape strange characters that might appear in
// $file_contents,
// so do that now, before we begin the query.
$file_contents = AddSlashes($file_contents);

// Put the file in the database
mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASS)

or die(“Unable to connect.”);
mysql_select_db(MYSQL_DBASE) or die(“Unable to select the DB.”);
mysql_query($SQL = “INSERT INTO files SET file_data=’$file_contents’”)

or die(“MySQL Query Error: “ . mysql_error() . “

”
. “The SQL was: $SQL

”);

mysql_close();

echo $HTTP_POST_FILES[‘upload_file’][‘name’]
. ‘ was uploaded successfully.’;

}

function verify_uploaded_file($strName, $intSize)
/* PRE: $strName and $intSize are attributes taken from

the uploaded file’s information.

332 Chapter 15: Allowing Visitors to Upload Files

Also, the global variables $UPLOAD_SIZES and
$UPLOAD_TYPES should be defined prior to calling
this function.

PST: Returns
1 if the file is acceptable,
-1 if the file’s size is out of range,
-2 if the file’s type isn’t accepted

*/
{

// Check file size
if ($intSize < $GLOBALS[‘UPLOAD_SIZES’][‘min’] ||

$intSize > $GLOBALS[‘UPLOAD_SIZES’][‘max’])
{

return -1;
}

// Check file type
$arrSegments = split(‘[.]’, $strName); // may contain multiple dots
$strExtension = $arrSegments[count($arrSegments) - 1];

if ($GLOBALS[‘UPLOAD_TYPES’][strtoupper($strExtension)] != 1)
{

return -2; // File type not defined/allowed
}

// All tests have passed; this file is valid.
return 1;

}

?>

C A U T I O N
If the user PHP runs and doesn’t have access to read and write to the temporary direc-
tory specified in the php.ini file, you will be unable to read the file into a variable, and
the “Can’t read” error message will be displayed by the script.

In Windows, be sure to give IUSR_machine name read and write access to the tempo-
rary directory. In Unix-based environments, be sure the user that PHP runs as has
access to the temporary directory specified.

What’s Next
Now that you understand how to upload files, both onto the Web server’s
public file system and into a MySQL database, it’s time to look at the last
topic covered in this book: cookies.

333What’s Next

Cookies have earned extensive coverage in the news and on the Internet
regarding their implications to people’s privacy. The next chapter will cover
how to use cookies, as well as what using cookies implies about your Web
site. It also will give you some useful advice for putting your visitor’s minds
at ease when you use cookies.

334 Chapter 15: Allowing Visitors to Upload Files

16

Cookies
Cookies, like sessions, are a means of remembering information about a
particular visitor between page views. You’ve seen this done using sessions:
A user can log in, the login script sets a session variable to mark this user
as logged in, and the user can continue without logging in again. Cookies
are slightly different from sessions in that you have control over how long
the data is kept. You can also specify only certain servers or even directo-
ries on servers that are to have access to the information in a cookie. In a
way, cookies are more flexible—but they’re not for every application.

This chapter will teach you the following:

• How cookies work

• How to set a cookie

• How to control who sees your cookies

• Cookie paranoia and the cookie virus myth

• How to ensure your visitors’ privacy

Cookie Overview
A cookie is a very small piece of data passed from a Web site to a visitor’s
browser, where it is saved to be sent back to the server whenever subse-
quent requests are made. When a Web site sends data to a browser to be
saved as a cookie, it’s said that the server is setting a cookie. Many sites
today use cookies in some way or another. Because all the variables you
create and use in a PHP script are destroyed after the script finishes exe-
cuting, the next script a visitor goes to won’t have access to the old values
you had created in the previous script. Cookies are a means for getting
around this problem because they enable you to store data between page
views.

Cookies are like sessions. They both hold a piece of information about a
particular visitor. However, cookies are stored on the visitor’s computer,
whereas session data is kept on the server. This, in itself, has some advan-
tages and disadvantages. A crafty user can modify the values of his cookies
if he wants to by editing the browser’s cookie file. (For instance, on
Windows, Netscape’s cookies can be found in C:\Program Files\
Netscape\Users\Default\cookies.txt.) However, a user can’t modify session
data because it’s stored on the server—out of his reach.

T I P
For Windows users: To see the cookies that other Web sites have already stored on
your computer, go to Start, click Search, and click For Files or Folders. To search for the
cookies on your computer, simply enter the word “cookie” (without quotes) into the
search box and press Search.

The cookie files on your computer should turn up in the Search Results dialog. To view
the cookie data, single-click on the file; then, while holding Shift, right-click on the file
and choose Open With.... Select WordPad from the Open With... dialog and click OK.
Doing so will display the data stored in that cookie.

Cookies do, however, have advantages over sessions. For example, after a
user’s session expires (he closes his browser, for instance), his session data
disappears. Unlike sessions, you can set an expiration date for a cookie. Of
course, it’s not 100% guaranteed that the cookie will be there because you
have no control over preserving data on your visitor’s computer, but it will
be there most of the time. When a cookie expires, it’s not a matter of life
and death. Cookies are often set only to make a visitor’s experience on a
Web site more convenient.

How Cookies Work
Cookies are sent and received within the headers of HTTP transactions.
For example, when you first visit a Web site, the site probably has no cook-
ies to set because it has little information about who you are. Also, because
it’s your first time visiting the site, you won’t have any cookies already set
on your computer for that site. Thus, your browser won’t send cookie infor-
mation to the server, and the server won’t set new cookies in your browser.

However, after you log in to the site, the site will want to remember you by
an ID number or maybe even your username. (In fact, in Chapter 14,
“Using PHP for Password Protection,” when we used sessions to remember
a logged in visitor’s username, PHP automatically set an ID number in a
cookie so it could identify the visitor and retrieve his session information
when he made future requests.) This cookie is sent back as part of the
headers that precede the HTML page (which is called the body).

338 Chapter 16: Cookies

Upon subsequent requests, your browser will always send back any cookies
the server has set. This way, if a program needs to remember some value, it
can send that value to the visitor in the form of a cookie (which is usually
transparent to the user), and then the value becomes available to other
scripts as the browser sends it back for each subsequent request.

In short, whenever you visit a Web site, your browser checks to see if cook-
ies are available in its cookie file that have been sent by that server. If
there are, the browser adds a note to the server in its request header say-
ing, “A cookie called ‘user_id’ was set with the value ‘someuser’”—in
a more technical way, of course. If more than one cookie exists, they will all
be sent back just like that.

Setting Cookies
A cookie is set by adding a header to the HTTP response that goes back to
the visitor. The setcookie() function is used to do this.

T I P
A cookie can also be set using the header() function and adding a Set-Cookie header
with all of the appropriate formatting and parameters, but the setcookie() function
takes care of those details automatically to ensure the cookie will be sent properly, so
it’s best to use the setcookie() function.

The setcookie() function has the following syntax:
setcookie(name, value [, expires [, path [, domain [, secure]]]])

Much like variables, all cookies must have a name and a value. A basic
cookie could be set using the following function call:
setcookie(‘someCookie’, ‘This is the value.’);

Executing this statement would cause a cookie called someCookie and con-
taining This is the value to be stored on the visitor’s computer.

C A U T I O N
Because cookies are sent in HTTP response headers—which are the same thing you’re
adding when you call the header() function—you have to put all calls to setcookie()
before any regular output. If you don’t, calling the setcookie() function will let you
know with the message Warning: Cannot add header information—headers
already sent.

Setting a Simple Cookie
The following script is a bare-bones example that asks the user to input a
value and stores the given value in a cookie:

339Setting Cookies

E X A M P L E

E X A M P L E

<?php
/* ch16ex01.php - basic setcookie() example */

// Make sure we have a value to set in the cookie
if (isset($HTTP_GET_VARS[‘myVal’]))
{

setcookie(‘myCookie’, $HTTP_GET_VARS[‘myVal’]);
$msg = “\$myCookie’s value is now \”{$HTTP_GET_VARS[‘myVal’]}\””;

}

?>

<html>
<head><title>PHP By Example :: Chapter 16 :: Example 1</title>
<body bgcolor=”white”>

<h1>Set a Cookie</h1>

<i><?php echo $msg; ?></i>

<form action=”<?php echo $PHP_SELF; ?>” method=”GET”>
Set cookie to: <input type=”text” name=”myVal”><input type=”submit”>
</form>

</body>
</html>

This program should be fairly self-explanatory. It first displays a form, and
after submitting a value for that form, it sets the cookie using that value.

At this point it doesn’t seem that you’ve really done anything special:
Setting the cookie doesn’t do anything for you on this page. In fact, even if
you wanted to see the cookie’s value on this page, you wouldn’t be able to
use the same methods used to retrieve cookie values. Instead, you would
have to use the value of the variable with which the cookie was set; in this
case, that would be $HTTP_GET_VARS[‘myVal’].

Because a cookie can’t be accessed in the same script it’s created in, you’ll
have to create a new script to view the value of the cookie you set.

To retrieve your cookie value, you’ll use the $HTTP_COOKIE_VARS array. As
you might suspect, this array is quite similar to $HTTP_POST_VARS,
$HTTP_GET_VARS, and the other similar arrays predefined by PHP. For exam-
ple, to retrieve the array set by ch16ex01.php—which was named
myCookie—you simply use $HTTP_COOKIE_VARS[‘myCookie’].

340 Chapter 16: Cookies

The following script gets the value of the cookie set by ch16ex01.php and
echos it for you to see in your browser:
<?php
/* ch16ex02.php – demonstrate retrieval of cookie set by ch16ex01.php
*/
?>
<html>
<head><title>PHP By Example :: Chapter 16 :: Example 2</title></head>
<body bgcolor=”white”>

<h1>See myCookie’s Value</h1>

myCookie = “<?php echo $HTTP_COOKIE_VARS[‘myCookie’] ?>”

</body>
</html>

For example, if you entered This is my value in the form on ch16ex01.php
and submitted it, setting the cookie, this page should show that value. This
is a basic but useful application of cookies.

Having More Control over Your Cookies
Now that you’ve set your first cookie, it’s time to take a look at a few more
details about how cookies work. Unlike sessions, cookies allow you to set
specific attributes about when and where your cookie should be passed to a
server.

As you probably guessed from setcookie()’s parameter list, you specify
when and where a certain cookie is available by assigning values to the
optional attributes. To refresh your memory, these attributes are as follows:

• Expiration time stamp

• Path

• Domain

• Require a secure connection

By setting these options, you restrict when your cookies are visible to your
scripts. (It just so happens that some of these—such as the path and
domain—will keep other sites from being able to access your cookie values,
as well.)

The Lifetime of a Cookie
One of the nice features of cookies is that you can set a cookie for more time
than just one session. For example, if a user visits your site, he can check a

341Setting Cookies

E X A M P L E

box for your site to remember his password, and even if he comes back a
week later, the cookie you set can still remember his password for him.

The default behavior—that is, what you get if you only specify the name
and value when you call setcookie()—is for the cookie to expire when the
user closes his browser or when the cookie is overwritten.

To get a feel for this, try setting a cookie in your browser with the
ch16ex01.php script. After you’ve set a value, go to ch16ex02.php to ensure
the cookie is there. At this point, the cookie should still be available and the
value you entered before should appear on the page. Now, close your
browser and browser windows and then open the browser again and go to
ch16ex02.php. You will see that the cookie has no value.

The output of ch16ex02.php will be as follows when the cookie has been
erased:
See myCookie’s Value

myCookie = “”

N O T E
If ch16ex02.php shows that myCookie still has a value (and thus something other than
empty quotes is displayed), the cookie hasn’t been deleted.

To ensure that the cookie will be deleted, close all instances of your browser (not just
one window, but rather all of them), and then try again.

The cookie has been erased because, in its default state, it expires when
you close your browser.

If you want a cookie to last for more time than that, you’ll have to set a
time stamp for the expires attribute.

T I P
To keep things simple (and to keep you from having to flip back to the function syntax
too many times), these options appear in the order that they are accepted as parame-
ters by the setcookie() function. Thus, as each new option is introduced, you’ll see
one more parameter used when setcookie() is called.

A time stamp, as you might recall from Chapter 13, “Creating Dynamic
Content with PHP and a MySQL Database,” is an integer representation of
time. A time stamp is actually the number of seconds since what is known
as the Unix epoch, which is January 1, 1970 at 00:00:00 (midnight). A typi-
cal Unix time stamp might look something like this:
1016445254

342 Chapter 16: Cookies

E X A M P L E

N O T E
Even though a time stamp has its roots in Unix-based environments, projects such as
MySQL and PHP have made it more common to see time stamps used on Windows
machines, as well.

PHP’s time() function, which returns a time stamp for the current date and
time, is most often used to generate time stamps. A time stamp isn’t hard to
manipulate, though. For example, if you want a cookie to expire in 30 days,
you simply add however many seconds are in 30 days (and you don’t even
have to waste time figuring that out).

Following are a few quick examples:

• To have a cookie expire 30 days from the time it’s set, you take the
current time stamp generated by time() and add 60 seconds in a
minute * 60 minutes in an hour * 24 hours in a day * 30 days. You
don’t have to stop and figure out how many seconds that really is; in
fact, it makes your code more understandable to leave it in this form.

The following setcookie() might be used to set a cookie that should
expire in 30 days:
setcookie(‘myCookie’, ‘Some value’,

time() + 60*60*24*30); // sec/min * min/hr * hrs/day * days

• If you created an online administration interface for a particular Web
site, you might want to add an extra level of security to it by timing
out sessions that were inactive for more than 15 minutes. To do this,
you would set a cookie that would expire in 15 minutes every time the
user hit one of the secure Web pages. If the cookie were ever found to
be missing, the session would have expired.

The cookie could be set using the following statement:
setcookie(‘SessionActive’, true,

time() + 60*15); // secs*mins

Notice that each time you set the cookie, the expiration value would be
updated, effectively allowing the session to stay active for as long as
the user keeps accessing pages that update the cookie with a new time
stamp.

• Having your site offer to remember a user’s username for him can
oftentimes make using your site more convenient. A cookie like this
should never expire because you don’t know how long the user will
take to come back. It could be a few days or a few months before he
revisits your site, and if you set the cookie correctly, his password will
be remembered for him either way.

343Setting Cookies

E X A M P L E

It’s not quite possible to make a cookie “never expire,” though, so you
have to simply set it ahead enough to give that effect. Five years
should be plenty, and 10 years would almost be overkill. However, as
long as 10 years ahead is a valid time stamp (time stamps only go
until sometime in the year 2038), you might as well run with it.

The following statement calls setcookie() with an “infinite” expiration
setting:
setcookie(‘Username’, $username,

time() + 60*60*24*365*10);

This example assumes that a username is stored in $username. This
would be the username posted from the login form, for example.

N O T E
You might find it strange and even alarming that time stamps are only valid up to some-
time in the year 2038. However, it’s not a grave concern.

The reason that time stamps can only go to 2038 is that the size of the number used
to represent a time stamp is limited. When the number can’t grow any more without
adding digits, the Unix time stamp of today will be obsolete.

Of course, with the speed of the development of computers, the current Unix time
stamp system will be outdated long before the year 2038.

As you can see, cookies allow you to wield much more flexibility over how
long the data is kept than sessions do. Information that you could only
store for a single visit with sessions can now be stored for an almost infi-
nite period of time.

Restricting Access to a Certain Path
Being able to extend the lifetime of a variable saved in a cookie also
requires the responsibility of protecting that cookie data as much as you
can. After all, if you don’t, other sites might be able to see and even change
the data in your cookies (which they might do inadvertently or on purpose).

Restricting a cookie to a specific path causes it to only be sent when the
browser notices that the current URL is in (or below) a particular directory.
For example, if you set a cookie with the path /, any directory on your Web
server can see and modify that cookie.

The following script sets a cookie for the root Web directory on your server:
<?php
/* ch16ex03.php – sets a cookie for the root path */

setcookie(‘myRootCookie’, ‘Cookie value’, time() + 60*15, ‘/’);

?>

344 Chapter 16: Cookies

E X A M P L E

Now, you can use this script to view the cookie in the / directory or any
subdirectory on that server:
<?php
/* ch16ex04.php – views a cookie set in the root path */
?>

myRootCookie = “<?php echo $HTTP_COOKIE_VARS[‘myRootCookie’]; ?>”

You can place this script anywhere in your Web-accessible file system, and
you should see the cookie’s value every time.

The strictness of how the path attribute is adhered depends on the browser.
Browsers such as Internet Explorer and Netscape Navigator aren’t finicky
about how cookies are set. With those browsers, you can set a cookie for a
parent directory or even a completely separate directory without the
browser complaining. (Internet Explorer 6 has addressed this in its cookie
security options.) However, in more scrupulous (and secure) browsers, such
as Opera, the browser will display a warning so the user knows a cookie is
being set that doesn’t really match the HTTP specifications.

What’s wrong with a cookie being set for a directory other than the one the
script is in? Well, it’s a not-too-uncommon practice for multiple Web sites to
be hosted on the same domain. For example, two completely separate users
might have Web sites in the directories /~user1 and /~user2. If a script in
/~user2 sets a cookie for /~user1, he might end up overwriting one of
/~user1’s cookies. That’s not exactly considered to be desirable behavior.

In the strictest sense, cookies should be limited to being set only for the
path the script is currently in.

The following example shows how you can set a cookie just for /~user1 so
that it will not be available to scripts in the root directory, such as /~user2:
<?php
/* ch16ex05.php – demonstrates setting a cookie with a restricted path */

setcookie(‘myCookie’, ‘This is the value’, time() + 60*15, ‘/~user1/’);

?>

You can verify that this cookie is only passed to scripts in the /~user1/
directory by placing ch16ex02.php in the /~user1/ directory (on Unix-based
systems you may need to change the directory names by removing the tilde,
since the tilde has a special interpretation in Unix). When the script is
in the /~user1/ directory, you should see the cookie just as it was set in
ch16ex05.php. However, if you move the script to any other directory (such

345Setting Cookies

as /foo/), the cookie will appear to be empty (which is the same as non-
existent because in fact the cookie was never sent to the server because the
directory on the server didn’t match the directory restriction set for that
cookie).

Keeping Cookies Within Your Domain
In a way that’s similar to keeping domains within only the necessary path,
it’s important to restrict cookies to your domain. If you don’t, users on other
domains might be able to see and change your cookies. This can lead to
security issues or just annoying interference, but either way you will want
to eliminate the problem.

If you’re running a large-scale site with its own domain, this restriction is
even more important than setting the cookie’s path because no other Web
sites (which on a shared server might be in other directories on the same
domain) will have access to cookies on your domain.

Therefore, when you’re going to limit a cookie to a particular domain, it’s
usually okay to only limit its path to /. (The only exception to this rule is
when other Web sites are on the same domain.)

To set a cookie that is restricted to www.mydomain.com, you would use the
following:
setcookie(‘myCookie’, ‘some value’, time() + 60*15, ‘/’, ‘www.mydomain.com’);

Now any script on www.mydomain.com can access and change this cookie.

Some Web sites have multiple subdomains. For example, if your Web site is
big enough, it might be on a cluster of servers, such as www1.mydomain.com
through www4.mydomain.com. To set a cookie that is visible to all of these
domains, you can simply make it available to all the domains below
mydomain.com using the following:
setcookie(‘myCookie’, ‘some value’, time() + 60*15, ‘/’, ‘.mydomain.com’);

If you have multiple domains set up somewhere, you can see this at work
using this script:
<?php
/* ch16ex06.php – demonstrates domain-restricted cookie use */

setcookie(‘myCookie’, ‘some value’, time() + 60*15, ‘/’, ‘.mydomain.com’);

?>

The cookie has been set successfully.

346 Chapter 16: Cookies

E X A M P L E

Then, to see where the cookie is available, try running the following script
on several different subdomains:
<?php
/* ch16ex07.php – shows the cookie set by ch16ex06.php */

if (isset($HTTP_COOKIE_VARS[‘myCookie’]))
{

echo “The value of \$myCookie is \”{$HTTP_COOKIE_VARS[‘myCookie’]}\”.”;
}
else
{

echo “That cookie isn’t available or isn’t set for this domain.”;
}

?>

C A U T I O N
If you don’t have multiple subdomains on which to limit your cookies, don’t forget to at
least set one domain on which your cookies will be limited. If you don’t, your cookies
will be vulnerable to interference and possible malicious programming on other sites.

Requiring Secure Transmission of Sensitive Cookie Data
The last option you have with the cookies you set is to only have them sent
to you over a secure connection. For example, with a cookie of this type, the
cookie probably contains sensitive information that you don’t want to allow
to pass between the client and server without encryption.

It’s easy enough to transmit the cookie while the client is connected to you
on a secure connection (via SSL or the newer TSL), but what happens if the
user inadvertently switches back to an insecure method of transport?
Without this option, the browser would unwittingly send the cookie over an
insecure connection. However, by specifying this option, you can tell the
browser not to send the cookie unless it’s connected to the server securely.

The secure parameter is simply a Boolean flag. It will either be true or
false.

The following example demonstrates sending a cookie that will require a
secure connection:
<?php
/* ch16ex08.php – demonstrates secure cookie flag being set */

setcookie(‘secureCookie’, ‘some sensitive data here’, time() + 60*15,
‘/’, ‘www.mydomain.com’, true);

347Setting Cookies

E X A M P L E

?>

A secure cookie has been set.

You can then retrieve this cookie with the following script:
<?php
/* ch16ex09.php – retrieves secure cookie */

if (!isset($HTTP_COOKIE_VARS[‘secureCookie’]))
{

echo “The cookie doesn’t exist; either you aren’t accessing this “ .
“script over a secure connection, or the cookie hasn’t been set.”;

}
else
{

echo “secureCookie = \”{$HTTP_COOKIE_VARS[‘secureCookie’]}\””;
}

?>

Deleting a Cookie
An interesting feature of cookies is that you can set them to new values
whenever you want. For example, in the administration script automatic
15-minute timeout mentioned earlier in this chapter, the same cookies were
modified every time a script was executed to keep the cookie expiration
time updated.

This also provides for a way to delete cookies. If a cookie has no value, it
might as well not exist. If you assign an empty string to a cookie, the cookie
is effectively deleted.

If you’re going to delete or modify a cookie, you have to specify the same
options (with the exception of the time stamp) you did when you first cre-
ated the cookie.

For example, if I set a cookie using this statement:
setcookie(‘myCookie’, ‘my value’, time() + 60*15, ‘/some/path/’, ‘.mydomain.com’);

then later calling the following function call will not delete the cookie:
setcookie(‘myCookie’, ‘’);

The browser will recognize these as two completely separate cookies,
despite the fact that they have the same name. The first cookie is used only
for /some/path on any domain below mydomain.com. However, the latter is a
global cookie for all paths and all domains, and as such it will not overwrite
the previous cookie.

348 Chapter 16: Cookies

E X A M P L E

To delete the cookie, you can call setcookie() with the same arguments as
those that created the cookie, except with an empty string for its value:
setcookie(‘myCookie’, ‘’, time(), ‘/some/path/’, ‘.mydomain.com’);

N O T E
Notice that the expiration time stamp can change without affecting which cookie you’re
changing. In fact, setting the expiration time to the current time or even the current
time minus a few minutes will help to ensure that the cookie expires (and is therefore
deleted).

However, simply setting the cookie to an empty string should delete it.

Privacy and Security Concerns
Despite the incredible power that cookies give you, many people are con-
cerned about them—from executives trying to ensure that their Web sites
adhere to their privacy statements to users worried about viruses being
planted on their computers through cookies.

Cookies aren’t risky for anyone, but you should be aware of the concerns
that have been voiced so you can be ready to defend their use. By knowing
about the possible controversies, you can be ready and usually even predict
the problems people will have with your use of cookies.

N O T E
Although some people will ask questions and will be concerned, cookies are not a
threat to anyone. You, as a developer, are responsible for making sure visitor privacy
policies are followed. The rumors and threats that have spread on the Internet are
bogus.

The Cookie Virus Myth
One worry that is sometimes expressed by Web site visitors is that a virus
will be planted on their computer using a cookie. This is simply a gross
misconception.

The idea behind this worry is fairly straightforward: If a Web site saves
information on a hard disk, why can’t the Web site save a virus on it?
However, the process of setting a cookie isn’t nearly that simple.

Cookies are limited to a fairly small size. Although viruses could be written
to meet this size, the virus still can’t be distributed through cookies.

When a cookie is set, it’s sent as part of the HTTP response to the client
browser. The browser then takes that cookie information, interprets it, and
saves it in a textual cookie file. Executing this file in any environment
would be impossible.

349Setting Cookies

The misconception here is the user thinking that a Web site’s code can arbi-
trarily decide where it wants to save its cookie data. It can’t just send a
cookie and have it saved as C:\somevirus.exe—that’s not even remotely
possible.

But Cookies Will Snoop Through My Personal Data…
In fact, it’s impossible for cookies to do this. Because cookies are passed
through the browser, a script cannot determine from which file the browser
reads its cookie information. Access is limited solely to the browser’s cookie
file.

Even if a script tried somehow to access C:\Quicken\Personal Finances.dat,
the script couldn’t possibly get that file using cookies alone.

This worry and the cookie virus myth are both exaggerations of how cookies
work. Neither is remotely possible.

Using Cookies Ethically
A concern that is more worrisome is that of user’s personal privacy. For
example, most users don’t count on being tracked wherever they go on the
Internet. In fact, they might not expect to be tracked even within your Web
site, although a certain amount of information should be expected to be
gathered, such as general trends in where users enter the Web site, how
long they spend on it, and so on.

The best thing to do about this concern is to have a privacy policy written,
if it hasn’t been done already, and stick to it. If you tell your visitors their
specific actions won’t be tracked, then don’t track their actions.

Most importantly, don’t track anything about your users you wouldn’t want
tracked about you. Engineering methods to keep track of where users go
after leaving your site is definitely taboo. Collecting statistical information
about what sorts of things users do and buy—without attaching personally
identifiable markers to any of it—is usually acceptable.

In any event, tell your users what your Web site collects about them and
what you’re doing with it. If you don’t, and a technically savvy visitor
decides to look into what kinds of cookies you’re keeping on your computer,
he might become suspicious and begin spreading warnings. Obviously, such
possibilities would be much better avoided altogether by making users
aware of what you’re doing through a privacy policy, and furthermore by
sticking to the policy.

350 Chapter 16: Cookies

What’s Next
This chapter is the final section of this book that introduces new concepts.
You have covered such topics as file uploading, automating password pro-
tection with PHP, and using MySQL with your Web sites. Before that, you
learned the syntax and semantics involved with writing PHP programs,
such as if statements and using functions.

You are now prepared to do a specific study of a full program in PHP. The
final chapter will take you through the entire development process of a
PHP program, from beginning to end, to help you put together all of the
concepts you’ve learned so far.

351What’s Next

17

Putting It All Together
At this point, you’ve seen all of the important concepts of programming in
PHP. Now it’s time to pull the new skills you’ve learned together to create a
full-scale Web program. In creating this program, you will not only review
what you’ve learned in previous chapters, but you’ll also follow the develop-
ment process of a program from start to finish.

This chapter will walk you through the process of creating a simple guest-
book program. As you follow this process, you’ll find that all of the topics
you’ve read about in the previous 16 chapters fit together quite nicely. And
you’ll find that writing even large, seemingly complicated Web programs is
simply a matter of knowing what you want—and then coding it.

This chapter will teach you the following:

• How to plan a new program

• How to organize your program’s file system

• How to write a multifile Web program

Writing a Full Program
In the development process, the effectiveness of your planning will be
directly evident in the quality of the program you produce. Planning wisely
will also help reduce the amount of time it takes you to code the program.

The importance of planning can be demonstrated in areas other than pro-
gramming alone. For example, imagine driving a 400-mile trip to some-
where you have never been before without looking at a map. Chances are
you would get lost. Even if you had a decent idea of where you were the
whole time, you probably wouldn’t take the quickest, most direct route to
your destination.

Things work the same way in programming. If you spend some time plan-
ning what you’re going to do (and even toss around some ideas of how
you’re going to do it), you’ll end up with a clearer picture of what you need
to do, and as a result you’ll work faster, too.

This process is basically a matter of brainstorming and effectively writing
down the ideas you get. After you have some ideas, you can consider more
closely how you’re going to do things. In the process of doing that, it’s likely
that you’ll want to get rid of a few bad ideas, and maybe add a few new
ones. As you continue to rework your ideas on paper, your program’s poten-
tial quality steadily increases.

It usually seems at first like you should to be able to do this process while
you’re coding, and many novice programmers make the mistake of writing
a program without planning it out first. Imagine the problems you would
run into, though, if you were in the middle of coding a program and you
realized you didn’t like the way you had written one of the main features.
As a result, you might have to rewrite 1/3 of the code before you could con-
tinue. Setbacks like that can generally be avoided with a little planning.

Planning Your Guestbook
Because your program is going to act as a guestbook, you should already
have some kind of idea of what it’s going to do. At the very least, because
the point of a guestbook is to take the names and a brief message from your
visitors, your program should do that.

First, start writing down ideas of the obvious things your program should
do. Because you’re writing a fairly simple program, that’s the only obvious
thing we really want.

354 Chapter 17: Putting It All Together

T I P
At this point, you’re probably wondering why you would bother to write down a single
objective if it’s the only one. You’ll soon see that even though this is the only thing
you’re writing down, other things will follow, and having the main objective on paper will
help keep you from getting disoriented while you’re working on this program.

Now that you know the main point of your program—that is, now that the
obvious tasks are on paper—you’ll need to fill in some gaps. For example,
what information, exactly, do you want to get from the visitor? You’ll want
the user’s name, maybe a brief subject, and a quick message. It would also
be interesting to know when each entry was posted, so you’ll want to track
the date of each entry.

That spurs a new question: Where are you going to put this information
when it’s collected? A MySQL database would serve nicely to handle that.

As you can see, you already have several tasks before you: You’re going to
have to create a MySQL database, an HTML form so visitors can post their
messages, and a form handler script to insert new data into the database.

Then you realize it’s useless to make a guestbook if you can’t see the entries
in it, so you add a note that you’ll need to write a viewing program to list
all of the guestbook entries out of the database.

At this point, you pretty much have everything for this program thought
out. Then you realize there will always be a few mischievous visitors who
add messages to your guestbook that don’t belong there. It’s bound to hap-
pen sooner or later, so you’ll need a way to remove unwanted entries from
the guestbook.

You could remove unwanted entries using the mysql command line if you
wanted to, but it would be much easier to have an administration interface
built in to your guestbook. So you add a note that you want an admin login
screen, as well as delete privileges if you’re logged in as admin.

Creating a Program Specification Outline
Several methods can be used to lay out the functions a program should per-
form. Although each system has different styles, program specifications are
most commonly either drawn in the form of a diagram (a logical flow chart)
or outline.

Diagrams are a great tool for presentations and quick communication
within development groups, but when you’re working on your own, an out-
line is the quickest, easiest way to go.

355Writing A Full Program

If you were to outline the program specifications as you brainstormed them,
you might get something like this:
FUNCTIONS OF A GUESTBOOK:
1. View

- Shows all entries (pulled out of MySQL table)
- If logged in as an admin, shows additional link under each post

to allow for deletions
2. Post

- Show a form to collect information visitor wants to post
- Handle submitted form data by inserting it into the MySQL table

3. Administration
- Show a login form (username/password fields)
- Handle login form data

- If login data matches specific user/pass pair:
- Set a session variable to mark the user as an admin
(so the view page knows to show delete option)

- If the login data fails, display an error message
4. Data

- The db table will hold the following guestbook data: name,
timestamp, subject, and message

N O T E
As with any approach to writing a program, this outline only shows one of the many pos-
sible approaches. It’s likely that you would come up with a slightly different design if
you sat down and outlined it on your own.

Organizing Your Program’s Files
A full PHP program—such as a guestbook—isn’t going to be a single file.
Web programs are almost always a set of smaller programs designed to
work together to accomplish the overall task.

For example, in this case, the view functions (item 1 on the outline) could
be placed in a file called view.php. However, because the first thing you
usually see when you use a guestbook is the other guestbook entries, you
can go on and put the viewing code in index.php.

T I P
If your Web server is set up correctly, you can go to the guestbook directory’s Web
location—presumably something like http://localhost/guestbook—and the URL will
automatically be interpreted as a request for index.php, just as a request for http://
localhost automatically pulls up index.html (or default.htm or index.htm, depend-
ing on your server’s setup).

You can go through your entire program outline and form an idea for which
files you’ll be creating.

356 Chapter 17: Putting It All Together

E X A M P L E

Following is the file and directory structure of all the files in the guestbook
program:
guestbook/

admin/
delete.php
index.php

inc/
common.inc.php
configure.inc.php
footer.inc.php
header.inc.php

index.php
post.php

As you can see, tasks are separated into different files to make the program
clear and understandable. Each file within the program is concise and only
performs a specific task (or a few related tasks).

The two subdirectories—admin/ and inc/—are not at all uncommon. They
both keep files that perform routinely needed tasks.

T I P
admin/ contains administration scripts, whereas inc/ contains include files.

N O T E
Although it’s common to have admin/ and inc/ directories, the files within them and
exactly what functions those files perform are obviously completely dependent on the
program. The files within these directories are still specific to the program for which
they’re written.

Each subdirectory separates files based on their purpose. The admin/ direc-
tory contains files that are for administrators only. The admin/index.php
program allows admins to log in, whereas admin/delete.php performs dele-
tions for admins who are logged in.

COMMON include FILES

The inc/ directory contains some very important files. These files are used
by all of the other files in the guestbook program; they form a common seg-
ment of code that is needed by every script in the guestbook system.

The header and footer files, for example, are used to make every page in
the program look and feel the same. They contain HTML code that appears
at the top and bottom of every page within the guestbook system.

357Writing A Full Program

E X A M P L E

The following code is header.inc.php:
<html>
<head>

<title>PHP By Example :: Chapter 17 :: Guestbook Program</title>
<style type=”text/css”>

body,td {
font-size: 13px;
font-family: Tahoma, Arial;

}

.header {
font-size: 15px;
font-weight: bold;
color: <?php echo HEADER_TXT_COLOR; ?>;
background-color: <?php echo HEADER_COLOR; ?>;

}

.subject {
font-size: 14px;
font-style: italic;

}

.message {
s

}
</style>

</head>

<body bgcolor=”white”>

<h1>Guestbook</h1>

As you can see, header.inc.php is simply the beginning code for a typical
HTML page. It has a title, a stylesheet definition, and the beginning of the
HTML body.

The footer page is the exact opposite; following is the code for
footer.inc.php:
</body>
</html>

This one is quite a bit shorter, but it basically performs the same purpose:
It takes care of some HTML that’s going to be the same in every page I
write within the guestbook system.

358 Chapter 17: Putting It All Together

E X A M P L E

N O T E
You should see now that I can make a number of different pages—all with different con-
tent—using the same header and footer files, and they’ll all look the same. Later, if I
decide to change the colors or layout, I can simply modify the header and footer files
and the change is made within all the files instantly.

The other two files—configure.inc.php and common.inc.php—serve a simi-
lar purpose, but they don’t output anything. The configure file holds con-
stant declarations (mainly for MySQL access), and common.inc.php holds
common functions and code that are needed by most of the other scripts.

Following is the configure file:
<?php
/* PHP BY EXAMPLE GUESTBOOK DEMONSTRATION

configure.inc.php - contains config constants
and admin initialization code */

///////////////////////// MySQL Constants //////////////////////////
define(‘MYSQL_USER’, ‘’);
define(‘MYSQL_PASS’, ‘’);
define(‘MYSQL_HOST’, ‘’);
define(‘MYSQL_DB’, ‘PHPByExample’);

///////////////////////// Look/Feel Constants //////////////////////
define(‘STANDARD_WIDTH’, ‘450’);
define(‘HEADER_COLOR’, ‘#332299’);
define(‘HEADER_TXT_COLOR’, ‘#FFFFFF’);

///////////////////////// Admin Initialization /////////////////////
// If user has previously been authorized to be an admin
// (by admin/index.php), set the IS_ADMIN constant
session_start();

if ($HTTP_SESSION_VARS[‘is_admin’])
{

define(‘IS_ADMIN’, true);
}
else
{

define(‘IS_ADMIN’, false);
}

?>

As you can see, this file defines some constants for use when connecting to
MySQL. It also defines a few constants that relate to the look and feel of

359Writing A Full Program

E X A M P L E

the other scripts’ output. Finally, the configuration script checks to see if
the user is logged in as an administrator, and sets a constant called
IS_ADMIN to make finding out if a user is an administrator easier in other
scripts. (You don’t have to worry about starting the session or accessing the
long name of the session variable in other scripts.)

The common functions file (common.inc.php) looks like this:
<?php
/* PHP BY EXAMPLE GUESTBOOK DEMONSTRATION

common.inc.php - contains common functions */

///////////////////////// Common Functions /////////////////////////
//
function print_navBar()
// PRE: None
// PST: If user is admin, prints a recognition banner;
// A nav bar table is printed regardless
{

if (IS_ADMIN)
{

?>

<!-- Begin Administrator Recognition Banner -->

<p>
<table border=”0” cellspacing=”0” cellpadding=”2”

width=”<?php echo STANDARD_WIDTH; ?>”>
<tr>

<td align=”center” bgcolor=”#cccccc” style=”color: #CC0000;”>
<i>Administrator Logged In</i>

</td>
</tr>

</table>
</p>

<!-- End Administrator Recognition Banner -->

<?php

} // if (IS_ADMIN)

?>

<!-- Begin Nav Bar -->

360 Chapter 17: Putting It All Together

E X A M P L E

<p>
<table border=”0” cellspacing=”0” cellpadding=”0”>

<tr>
<td align=”center”>

View Guestbook Entries |
Post a Guestbook Entry |
Admin

</td>
</tr>

</table>
</p>

<!-- End Nav Bar -->

<?php
} // print_navBar()

function print_guestbkEntry($arrEntry)
// PRE: $arrEntry is a row from the guestbook table
// PST: Prints a table-formatted version of the post in $arrEntry
{

// Convert \n linebreaks to HTML-formatted
 breaks
$arrEntry[‘message’] = str_replace(“\n”, ‘
’, $arrEntry[‘message’]);

?>

<!-- Begin Message -->

<p><!-- Space tables out with p’s -->
<table border=”2” width=”<?php echo STANDARD_WIDTH; ?>”

cellpadding=”0” cellspacing=”0”>
<tr>

<td><!-- Wrapper table makes nice outline -->

<table border=”0” width=”100%” cellpadding=”2”
cellspacing=”0”><!-- Inner table arranges data -->
<tr><!-- On [date] at [time], [name] said: -->

<td class=”header”>On
<?php echo date(‘d.M.Y’, $arrEntry[‘tstamp’]); ?> at
<?php echo date(‘h:m:s’, $arrEntry[‘tstamp’]); ?>,
<?php echo $arrEntry[‘name’]; ?> wrote:

</td>
</tr>
<tr><!-- [subject] -->

<td class=”subject”>

361Writing A Full Program

<?php echo $arrEntry[‘subject’]; ?>
</td>

</tr>
<tr><!-- [message] -->

<td class=”message”>
<?php echo str_replace(“\n”, ‘
’,

$arrEntry[‘message’]); ?>
</td>

</tr>
<?php

if (IS_ADMIN)
{

?>

<tr><!-- Admin Options -->
<td bgcolor=”#cccccc” align=”center”>

<a href=”admin/delete.php?id=<?php
echo $arrEntry[‘id’]; ?>”

onClick=”return confirm(‘Are you sure?’);”>
DELETE

</td>
</tr>

<?php

} // if (IS_ADMIN)

?>
</table>

</td>
</tr>
</table>

</p>

<!-- End Message -->

<?php
} // print_guestbkEntry()

?>

As you can see, this file has only two functions: one to show a simple navi-
gation bar when you need it (such as at the top of and bottom of some of the
pages), and the other to display a nicely formatted version of a guestbook

362 Chapter 17: Putting It All Together

entry (complete with the admin’s delete option, if the visitor is logged in as
an admin).

Setting Up the Database
Because most of the scripts within this program will rely on a table in
MySQL, you should create that first so you can test your scripts as you
write them.

You know you want to store the visitor’s name, the date the entry was
posted, a brief subject, and the message, so you can define a table as
follows:
guestbook.sql - creates guestbook structure and
adds some sample data

Make sure we have a PHPByExample database
CREATE DATABASE IF NOT EXISTS PHPByExample;
USE PHPByExample;

Delete (if already exists) and re-create the guestbook table
DROP TABLE IF EXISTS guestbook;
CREATE TABLE guestbook (

id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
tstamp TIMESTAMP,
name TEXT NOT NULL,
subject TEXT NOT NULL,
message TEXT NOT NULL

);

INSERT INTO guestbook SET name=’Test User’,
subject=’This is a test!’, message=’Test message body...’;

INSERT INTO guestbook SET name=’Another Tester’,
subject=’This is another test...’, message=’Hi, this is a test message!’;

INSERT INTO guestbook SET name=’Last Test’,
subject=’Last Test :)’, message=’This is the last auto-created test!’;

T I P
Much SQL data like this is often stored in a file. This data was designed to be stored in
a file called guestbook.sql. To enter it into the database, you can simply call mysql
and append < guestbook.sql before you press Enter. (Note that you must run this
command from the same directory in which you saved guestbook.sql.)

For example:

mysql –uadmin –p –hmysql.myhost.com mydatabase < guestbook.sql

363Setting Up the Database

E X A M P L E

N O T E
This file assumes you’ll be logging in to your MySQL server with privileges to create a
database (called PHPByExample). If you don’t have those privileges, you’ll need to mod-
ify the SQL to fit your needs (by dropping the CREATE DATABASE statement and chang-
ing the USE PHPByExample line to use whatever database you have permissions for).

The result of executing these SQL commands will be a table called
guestbook in your database. It will have a few dummy entries as well to
help with testing.

The Guestbook Program
Now that you know about some of the configuration and layout files found
in inc/, it’s time to get down to the programming that drives the main
guestbook functionality.

The order in which you write the files doesn’t really matter, but it makes
sense to code your main objectives, then fill in the holes (such as allowing
an administrator to delete posts as desired) as necessary. When you com-
plete one task, you can always look at your outline and decide what the
next logical step should be, which is typically whatever is most closely
related to the step you just completed.

The most obvious place to start would be the guestbook viewer script,
index.php. This script will show you all of the postings in the MySQL table.

Following is index.php:
<?php
/* PHP BY EXAMPLE GUESTBOOK DEMONSTRATION

index.php - shows current guestbook entries */

include ‘inc/common.inc.php’; // Common functions, etc.
include ‘inc/configure.inc.php’; // Configuration constants, etc.

include ‘inc/header.inc.php’; // Standard layout header

echo ‘<h2>Read Guestbook Entries</h2>’;

print_navBar();

// Get ALL guestbook entries
mysql_connect(MYSQL_USER, MYSQL_PASS, MYSQL_HOST)

or trigger_error(mysql_error(), E_USER_ERROR);
mysql_select_db(MYSQL_DB)

or trigger_error(mysql_error(), E_USER_ERROR);

364 Chapter 17: Putting It All Together

E X A M P L E

$guestbkEntries = mysql_query(‘SELECT *, UNIX_TIMESTAMP(tstamp) AS tstamp FROM
guestbook ORDER BY tstamp’)

or trigger_error(mysql_error(), E_USER_ERROR);

// Display those guestbook entries
while ($guestbkEntry = mysql_fetch_array($guestbkEntries))
{

print_guestbkEntry($guestbkEntry, IS_ADMIN);
}

print_navBar();

include ‘inc/footer.inc.php’; // Standard layout footer

?>

As you have expected after being introduced to the files in the inc/ direc-
tory, all four of the files in inc/ are included at appropriate locations within
the script. The common and configure scripts could have been included any-
where within this file, but including them at the top helps to make their
use within the file obvious. (You don’t want to hide those include state-
ments somewhere in the middle or at the bottom of the file.)

The rest of the script simply prints a subheader (enclosed in <h2> tags),
connects to the database, and prints the guestbook entries, one by one,
using the print_guestbkEntry() function defined in inc/common.inc.php.

From here, it seems logical to implement a script to allow for new posts to
the guestbook. This will be handled by post.php, which is divided into two
parts by a switch statement. One displays the entry form, and the other
takes the data posted from that form and inserts it into the database.

Following is what post.php looks like:
<?php
/* PHP BY EXAMPLE GUESTBOOK DEMONSTRATION

post.php – allows for new guestbook entries */

include ‘inc/common.inc.php’; // Common functions, etc.
include ‘inc/configure.inc.php’; // Configuration constants, etc.

switch($HTTP_POST_VARS[‘action’])
{

default:
print_guestbookForm();
break;

case ‘post’:
addEntry($HTTP_POST_VARS[‘entry’]);

365The Guestbook Program

E X A M P L E

print_entrySuccess();
break;

}

///////////////////// FUNCTION DEFINITIONS /////////////////////////
//
// These functions are specific to this page only.
//

function addEntry($arrEntry)
// PRE: $arrEntry is the data posted from the new guestbook entry form
// PST: Inserts the data from $arrEntry into the database
{

// Convert possible \r\n sequences into simpler unix-style \n
$arrEntry[‘message’] = str_replace(“\r\n”, “\n”, $arrEntry[‘message’]);

mysql_connect(MYSQL_USER, MYSQL_PASS, MYSQL_HOST)
or trigger_error(mysql_error);

mysql_select_db(MYSQL_DB)
or trigger_error(mysql_error);

mysql_query(“INSERT INTO guestbook SET “ .
“name=’{$arrEntry[‘name’]}’, “ .
“subject=’{$arrEntry[‘subject’]}’, “ .
“message=’{$arrEntry[‘message’]}’”)

or trigger_error(mysql_error);
}

function print_entrySuccess()
// PRE: None. (Well, the new guestbook post should’ve been
// successful.)
// PST: A success message is displayed with a link to continue.
{

include ‘inc/header.inc.php’;

?>

<h2>New guestbook entry successful!</h2>

Continue

<?php

include ‘inc/footer.inc.php’;
}

366 Chapter 17: Putting It All Together

function print_guestbookForm()
// PRE: None
// PST: A form to add a new guestbook entry is displayed.
{

include ‘inc/header.inc.php’; // Standard layout header
echo ‘<h2>Post a New Guestbook Entry</h2>’;
print_navBar();

?>

<p>
<table border=”0” cellspacing=”0” cellpadding=”3”>

<form action=”<?php echo $GLOBALS[‘PHP_SELF’]; ?>” method=”post”>
<input type=”hidden” name=”action” value=”post”>
<tr>

<th align=”right”>Name: </th>
<td><input type=”text” name=”entry[name]”></td>

</tr>
<tr>

<th align=”right”>Subject: </th>
<td><input type=”text” name=”entry[subject]”></td>

</tr>
<tr>

<th align=”right”>Message: </th>
<td><textarea name=”entry[message]” rows=”5” cols=”50”></textarea></td>

</tr>
<tr>

<td colspan=”2” align=”center”>
<input type=”submit”>

</td>
</tr>
</form>

</table>
</p>

<?php

print_navBar();
include ‘inc/footer.inc.php’; // Standard layout footer

} // print_guestbookForm()

?>

The only part of this program left to implement is the administrative part.
First, you’ll implement admin/index.php, which performs simple authoriza-
tion and stores a session variable when an administrator logs in.

367The Guestbook Program

Following is admin/index.php:
<?php
/* PHP BY EXAMPLE GUESTBOOK DEMONSTRATION

admin/index.php - lets administrator log in */

include ‘../inc/common.inc.php’;
include ‘../inc/configure.inc.php’;

switch($action)
{

default:
print_loginForm();
break;

case ‘login’:
if (validateInfo($HTTP_POST_VARS[‘user’], $HTTP_POST_VARS[‘pass’]))
{

$is_admin = true;
session_register(‘is_admin’);
header(‘Location: ../index.php’);
exit; // Make sure script terminates here if we send redirect header

}
else
{

$is_admin = false;
session_register(‘is_admin’);
print_loginForm(true);

}

break;
}

///////////////////// FUNCTION DEFINITIONS /////////////////////////
//
// These functions are specific to this page only.
//

function print_loginForm($err = false)
{

if ($err == true)
{

$err_msg = “Your username and/or password were invalid.
Please try again.”;

}

include ‘../inc/header.inc.php’;

368 Chapter 17: Putting It All Together

E X A M P L E

?>
<h2>Administrator Login</h2>

<i><?php echo $err_msg; ?></i>

<p>
<table border=”0”>
<form action=”<?php echo $GLOBALS[‘PHP_SELF’]; ?>” method=”post”>
<input type=”hidden” name=”action” value=”login”>

<tr>
<th align=”right”>Username:</th>
<td><input type=”text” name=”user”></td>

</tr>
<tr>

<th align=”right”>Password:</th>
<td><input type=”password” name=”pass”></td>

</tr>
<tr>

<td colspan=”2”><input type=”submit” value=”Log In”></td>
</tr>

</form>
</table>

</p

<?php

include ‘../inc/footer.inc.php’;

} // print_loginForm()

function validateInfo($user, $pass)
{

if ($user == ‘admin’ && $pass == ‘pass’)
{

return true;
}
else
{

return false;
}

} // validateInfo()

?>

The structure of this script is much like that in post.php in that it takes
care of both displaying a login form and handling that form data after it’s
posted.

369The Guestbook Program

Also, notice that the username and password to log in as an administrator
are quite obvious right now: They’re ‘admin’ and ‘pass’, as found in the
validateInfo() function at the end of the script.

The last file in this program is admin/delete.php. It’s packaged in the
admin directory with the login script because it requires administrative
access to delete a guestbook entry. (Access isn’t blocked by directory, but
putting the admin files in admin/ help you remember that you must verify
that the user is an administrator before you let him do anything.)

Following is admin/delete.php:
<?php
/* PHP BY EXAMPLE GUESTBOOK DEMONSTRATION

admin/delete.php - allows admins to delete a guestbook entry by
the entry’s ID number */

include ‘../inc/common.inc.php’;
include ‘../inc/configure.inc.php’;

// Make sure this user is an administrator
if (!IS_ADMIN)
{

die(‘You are not authorized to perform this operation.’);
}

mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASS)
or trigger_error(mysql_error());

mysql_select_db(MYSQL_DB)
or trigger_error(mysql_error());

mysql_query(“DELETE FROM guestbook WHERE id={$HTTP_GET_VARS[‘id’]}”)
or trigger_error(mysql_error());

header(‘Location: ../index.php’);

?>

Notice that the first thing in this file after the two initial include state-
ments is a check to make sure the user is an administrator (using the
IS_ADMIN constant defined in inc/configure.inc.php). The script will die
before it makes it to the MySQL-related code if the user isn’t logged in as
an administrator.

You now should have a complete, working copy of a guestbook system. It’s
advisable that you look through each file and make changes. Play with cer-
tain aspects of how it works. Change the title and headings to say “My
Magic Program!” Integrate the administration login checks with a MySQL
admin users table.

370 Chapter 17: Putting It All Together

E X A M P L E

One of the best ways to learn is to try things on your own and see what
happens, so go for it. You have a good sample program to start with here,
and when you are finished with this one, you can find more online that are
free for download (see Appendix A, “Debugging and Error Handling,” for
more information). The more PHP code you read and experiment with, the
better you’ll learn to write it!

What’s Next
You’ve finished a complete introduction to PHP—and more importantly,
Web programming! You now have the foundation you need to work your
way into a career in PHP programming, or you can just use it for hobby
purposes. In any case, the more you use it, the better you will be at it.

Now that you’ve been introduced thoroughly to programming, you might
also be interested in learning about other languages, such as Perl or C++.
Whatever you want to do with your new knowledge, you definitely have an
advantage over other Web designers with no experience in Web program-
ming. Good luck!

371What’s Next

Appendix

Debugging and Error Handling

Glossary

A

Debugging and Error Handling
The process of writing PHP programs inherently involves knowing how to
debug your programs. Debugging is the process of removing bugs (code that
doesn’t work as intended) from your program.

Debugging is a process that can be self-taught. You could completely ignore
this Appendix and you would eventually figure out the problem when your
programs don’t work. However, it’s much easier to have a guide to follow
when you’re getting started. Some of the techniques involved in debugging
aren’t obvious unless you know how PHP works internally, which isn’t
something that most PHP programmers need to know.

This Appendix teaches you the following:

• What types of errors can occur that will cause PHP to stop executing
your program

• How to interpret and understand error messages

• How to track variables as your program executes

• How to use multiple debugging output levels

Understanding Error Messages
To most people, PHP’s error messages seem unnecessarily cryptic at first.
Despite the initial appearance as such, PHP’s error messages are not
worded to keep you from understanding them. Instead, they’re worded to be
as clear and simple as possible, while still including all of the necessary
information you need to fix the problem.

To help you understand the error messages commonly seen in PHP pro-
grams, this section will introduce you to some of the errors you might see,
and explain how to go about fixing them. You are encouraged to read
through these for specific problems and suggestions, but, more importantly,
read them in a general sense so you get a good feel for how PHP describes
the errors it finds.

N O T E
You will also find throughout this section some of the terms PHP uses when displaying
errors. For example, when PHP tells you that a parse error exists, it’s telling you that
something is fundamentally wrong with the syntax you used at or before the given line.
This is discussed in more detail in the “Correcting Errors” section, which follows
shortly.

Error messages have several important pieces of information given with
them:

• The type of error (printed in bold at the beginning of the error
message)

• A description of the error that occurred

• The file and line number where the error occurred

You will use this information to fix the error.

N O T E
The file and line of the error are significant, especially when your program is separated
into multiple files. The error message will always display the filename and line number
for the file where the error actually occurred.

Correcting Errors
The first thing you should do when PHP reports a parse or fatal error is to
find the place in the program where PHP says the problem is located.

N O T E
In a few cases, the line number isn’t going to be the number of the line you need to
change. Rather, it’s the number on which PHP discovered that a problem was keeping it
from continuing execution.

For example, if you forget to include a semicolon on the end of a line, PHP won’t notice
the problem until it gets to the next line. Thus, if you leave a semicolon off of an echo
statement on line 5, PHP will report an error on line 6.

After you have located the appropriate line, go back to the error message
and see what it says. Following are a couple of examples of errors you
might see:

• parse error, expecting '’something’’ means PHP was expecting to
see something in a particular place on that line, but didn’t.

For example, if you leave out a semicolon somewhere, the error will be
parse error, expecting `’,’’ or `’;’’

376 Appendix A

E X A M P L E

With this error message, PHP is trying to say, “Hey, you left this out!”
Just go back and add the semicolon, and the error goes away.

• Call to undefined function and Cannot instantiate non-existent
class essentially mean that you’ve tried to use a class or function that
doesn’t exist.

For example, the following program will generate a Call to undefined
function error:
<?php
/* Demonstrates ‘Call to undefined function’ error */

foo(); // call a function that’s not defined

?>

The error will look like this:
Fatal error: Call to undefined function: foo() in C:\apache\htdocs\php by
example\errorex1.php on line 12

To fix the error, you will obviously need to declare the function foo()
so that it does something.

You will assuredly encounter a wide variety of errors outside of this list;
this list is just intended as a way to give you an idea of what error mes-
sages look like and how to interpret them.

For other errors, you can usually take a look at the error message and error
type and figure out how to fix the problem.

Following are the two general types of errors that can occur in a program:

• Parse errors occur when PHP doesn’t know how to interpret a certain
line in your program. If you encounter a parse error, look for things
that should be there but aren’t, or vice versa.

One common problem that causes parse errors is unmatched quotes,
parentheses, braces (curly parentheses), and so on. A quote is
unmatched if the beginning quote is included, but the ending quote
has been left out. (This essentially gives you a string that doesn’t ter-
minate where you want it to.)

Characters or operators that PHP doesn’t understand can also cause
parse errors. These are errors in syntax as far as PHP is concerned, so
they will keep your program from running until you fix them.

• Fatal errors occur when your syntax is valid (PHP understands what
you’re saying) but PHP simply doesn’t know how to execute your code.
For example, if you call a function that is not defined, the syntax
might be completely valid, but because the function isn’t defined, it

377Appendix A

E X A M P L E

can’t be called. Because PHP can’t complete the task, the program
exits with a fatal error.

Besides undefined functions, fatal errors occur when you try to create
an instance of a class that is not declared, or when something goes
wrong in the execution of your program and it simply can’t continue.

Variable Tracking
To ensure that important data manipulation parts of your programs are
working as expected, it’s a good idea to generate some extra output to tell
you what the values of your variables are at certain times. Making the con-
tents of your variables visible to you throughout your program’s runtime is
called variable tracking.

N O T E
Variable tracking is also integrated into PHP-specific editors, namely PHPEd.

If you don’t like doing variable tracking by adding output to your program, you might
decide to use PHPEd’s variable-tracking features instead.

Basic variable tracking is accomplished by outputting the contents of
important variables whenever their values are used within the program.

For example, perhaps you have a function called computeWages() that is
defined as follows:
function computeWages($dblRate, $dblNormalHrs, $dblOvertimeHrs)
/* PRE: $dblRate is the dollar amount the employee gets paid for a normal hour,

$dblNormalHrs is the number of normal hours the employee worked this
week,

$dblOvertimeHrs is the number of overtime hours the employee worked
this week

PST: returns the dollar amount the employee has earned for this week
as follows:

amount = (normal hours * rate) + (overtime hours * rate * 1.5)
*/

You don’t need to see the function body because it is assumed that you
wrote the function yourself and that you think it works.

To test the function, you would use variable tracking. Just before the func-
tion runs, you will want to see the values being passed into the function.
After the function runs, you will want to see its return value to check its
accuracy.

The following program performs variable tracking by outputting the values
of important variables before and after they are used in function calls:

378 Appendix A

E X A M P L E

E X A M P L E

<?php
/* AppendixAex01.php - demonstrates use of variable tracking in

function testing */

// Get inputs from URL parameters
$dblRate = $HTTP_GET_VARS[‘rate’];
$dblNormalHours = $HTTP_GET_VARS[‘hours’];
$dblOvertimeHours = $HTTP_GET_VARS[‘overtime’];

// Variable tracking code
echo “Here are the important variables before calling computeWages():
”;
echo “\$dblRate = $dblRate
”;
echo “\$dblNormalHours = $dblNormalHours
”;
echo “\$dblOvertimeHours = $dblOvertimeHours
”;
echo “
”;

$dblTotalEarnings = computeWages($dblRate, $dblNormalHours, $dblOvertimeHours);

// More variable tracking
echo “Here are the important variables after calling computeWages():
”;
echo “\$dblRate = $dblRate
”;
echo “\$dblNormalHours = $dblNormalHours
”;
echo “\$dblOvertimeHours = $dblOvertimeHours
”;
echo “\$dblTotalEarnings = $dblTotalEarnings
”;
echo “
”;

// computeWages definition:
function computeWages($dblRate, $dblNormalHrs, $dblOvertimeHrs)
/* PRE: $dblRate is the dollar amount the employee gets paid for a normal hour,

$dblNormalHrs is the number of normal hours the employee worked this
week,

$dblOvertimeHrs is the number of overtime hours the employee worked
this week

PST: returns the dollar amount the employee has earned for this week
as follows:

amount = (normal hours * rate) + (overtime hours * rate * 1.5)
*/
{

return (($dblNormalHrs * $dblRate) + ($dblOvertimeHrs * 1.5 * $dblRate));
}

?>

Running this program as AppendixAex01.php?rate=6.00&hours=40&overtime=4
produces the following output:
Here are the important variables before calling computeWages():
$dblRate = 6.00
$dblNormalHours = 40

379Appendix A

$dblOvertimeHours = 4

Here are the important variables after calling computeWages():
$dblRate = 6.00
$dblNormalHours = 40
$dblOvertimeHours = 4
$dblTotalEarnings = 276

Using this method of variable tracking, you can verify two important
things. First, you can see that the three parameter values ($dblRate,
$dblNormalHrs, and $dblOvertimeHrs) were not changed by calling the func-
tion, which might happen if the function were declared with referenced
parameters. You can also calculate what you expected the output to be on
your own to verify that the output was correct. In this case, everything
seems to be working as expected.

The last aspect of variable tracking that is important is the ability to turn
off all of this extra output. When your program is finished, the 10 or so
lines of debugging output shown previously will need to be hidden.

The most obvious approach is to delete the variable tracking code, but that
is a bad idea. You might run into problems later that slipped through your
original function testing. If you do experience problems, you will have to go
back through and add echo statements to help you figure out where the
problem is.

A more convenient approach is to define a constant that controls whether
the debugging output is shown. (This method also tends to be cleaner
because you are not tempted to cut corners when rewriting debugging
code.)

The way you use constants to hide/unhide debugging output is up to you.
The two most-often-used methods are using a Boolean constant and using
debugging levels.

Using a Boolean Debugging Constant
Using Boolean debugging constants is best if your program is and always
will be a small utility type of program. If your program becomes too big,
you will end up with such a long list of debugging output that it will be dif-
ficult to figure out exactly where the problem you are looking for is hiding.

Following is a short example of a Boolean constant variable tracking/debug-
ging system:
<?php

define(‘SHOW_ERRORS’, true);

380 Appendix A

E X A M P L E

if (SHOW_ERRORS)
{

// debugging output A
}

// statements related to debugging output A

if (SHOW_ERRORS)
{

// debugging output B
}

// statements related to debugging output B

// And so on...

?>

Using Multiple Debugging Levels
If your program is big, using debugging levels can help you sort out the out-
put you need from that which you don’t.

The levels are a numerical representation of how important the debugging
output is based on a given range of possible levels.

For example, on a range of 0–3, 0 would cause no output to be shown. 1
would cause minimal (only the most important, high-level debugging opera-
tions) to be displayed; 2 would cause middle-level debugging information
(such as “Calling suchAndSuch() function...”) to be displayed; and level 3
would cause all possible debugging output to be shown. (AppendixAex01.php
shows a detailed set of output; in a typical program, that output would
probably be restricted to the highest debugging level only.)

The range can also be larger; a range of 0–10 could be used to further sepa-
rate what debugging output should be shown when. Whatever range you
choose, note that the range of possible levels should remain constant
throughout the program, or you will end up with some areas showing ver-
bose output whereas some are only showing the minimal information. (For
example, if you use both the 0–3 and 0–10 ranges, and you set the actual
level to be displayed to 3, you will get some verbose output and some that is
much less detailed.)
<?php
/* AppendixAex02.php - demonstrates use of variable tracking in function

testing; computes the total wages earned based on
the given inputs */

// Debugging level; valid range = 0 thru 3

381Appendix A

E X A M P L E

define(‘DEBUG_LEVEL’, 3);

// Get inputs from URL parameters
$dblRate = $HTTP_GET_VARS[‘rate’];
$dblNormalHours = $HTTP_GET_VARS[‘hours’];
$dblOvertimeHours = $HTTP_GET_VARS[‘overtime’];

// Level 3 debugging code
if (DEBUG_LEVEL >= 3)
{

echo “\$dblRate = $dblRate
”;
echo “\$dblNormalHours = $dblNormalHours
”;
echo “\$dblOvertimeHours =

$dblOvertimeHours
”;
echo “
”;

}

// Level 1 debugging code
if (DEBUG_LEVEL >= 1)
{

echo “Calling computeWages()...
”;
}

$dblTotalEarnings = computeWages($dblRate, $dblNormalHours, $dblOvertimeHours);

// Level 1 debugging code
if (DEBUG_LEVEL >= 1)
{

echo “computeWages() returned
$dblOvertimeHours .

”;

}

// Level 3 debugging code
if (DEBUG_LEVEL >= 3)
{

echo “\$dblRate = $dblRate
”;
echo “\$dblNormalHours = $dblNormalHours
”;
echo “\$dblOvertimeHours =

$dblOvertimeHours
”;
echo “
”;

}

// Output the total wages earned no matter what – that’s
// the point of the program
echo “Total Earnings: $dblTotalEarnings
”;

// computeWages definition:
function computeWages($dblRate, $dblNormalHrs, $dblOvertimeHrs)

382 Appendix A

/* PRE: $dblRate is the dollar amount the employee gets paid for a normal hour,
$dblNormalHrs is the number of normal hours the employee worked this

week,
$dblOvertimeHrs is the number of overtime hours the employee worked

this week
PST: returns the dollar amount the employee has earned for this week

as follows:
amount = (normal hours * rate) + (overtime hours * rate * 1.5)

*/
{

return (($dblNormalHrs * $dblRate) +
($dblOvertimeHrs * 1.5 * $dblRate));

}

?>

The output of this program will become increasingly verbose as the error
level is moved from 0 to 3.

Notice that not all error levels are used here; they don’t all have to be used.
Also notice that the if statement that checks whether debug output should
be displayed tests a >= condition, not just a == condition. Using the greater
than comparison causes all output to be shown up to a certain level. That
way, your level 1 and level 2 output helps you figure out where in the pro-
gram level 3 output is being displayed by giving you more general reference
points.

Here are a few examples. For each of these examples, the only thing that
will change is the setting for the DEBUG_LEVEL constant. Each time it’s run,
assume we’re using the following URI:

AppendixAex02.php?rate=10.00&hours=40&overtime=2

If we leave the DEBUG_LEVEL set to 3 (as it appears in the example), the out-
put is the following:
$dblRate = 10.00
$dblNormalHours = 40
$dblOvertimeHours = 2

Calling computeWages()...
computeWages() returned 2 .

$dblRate = 10.00
$dblNormalHours = 40
$dblOvertimeHours = 2

Total Earnings: 430

383Appendix A

E X A M P L E

Changing the DEBUG_LEVEL to 1 turns off some of the more detailed output,
giving us this general idea of what’s going on:
Calling computeWages()...
computeWages() returned 2 .

Total Earnings: 430

Finally, when you’re ready to use the code in a production system (when
you don’t want to show any debugging output), you can set the DEBUG_LEVEL
to 0 to turn off all debugging output, which will give you the following
output:
Total Earnings: 430

A DEBUG_LEVEL of 0 is used when you’re ready to put your finished program
on a public Web site. The others—1, 2, and 3—give you different degrees of
help in locating bugs within your program.

384 Appendix A

Glossary
abstract data type (ADT) A customizable variable type that models
real-world concepts.

Active Server Pages (ASP) Microsoft’s Active Server Pages Web script-
ing environment. ASP is often used in conjunction with Visual Basic (VB)
script to create dynamic Web sites. See the comparison of PHP and ASP in
Chapter 1, “Welcome to PHP.”

algorithm A procedure that, when followed precisely, will yield a desired
predictable result.

argument The value passed for a function’s parameter.

Arithmetic operator Any of PHP’s operators that perform arithmetic
operations, including +, -, *, /, %, and their associated compound operators.

array A data structure that holds one or more elements.

assignment The act of storing a value in a variable.

associative array An array that uses text indexes; an associative array
would be used as follows:

$arrSomeArray[‘elementName’]

binary operator An operator that takes two arguments: one on either
side.

bit The smallest unit in computer logic; can either be a 1 or a 0.

black boxing The technique of writing a class or functions that perform
complex operations reliably with a single function call, thereby freeing the
programmer from concentrating on the complexities of the function’s code.
For example, if you were to use a square_root() function in a program, you
should be able to give it an input—such as square_root(64)—and get back
the correct output—8—without having to worry about how the square root
was calculated. You don’t care how a function works, as long as it does.
(This isn’t encouragement to create buggy functions; functions and classes
that use black boxing should be tested for every possible condition so the
output will be reliable.)

block A segment of code enclosed in curly braces; typically part of an if,
switch, while, or function statement.

byte A group of 8 bits.

C A language used across many operating systems to create executable
programs and operating systems.

C++ A newer, object-oriented version of C.

character escaping The act of placing a backslash (\) before a special
character (usually in double quotes) to prevent it from being interpreted as
a special character.

child class See subclass.

class The definition for an abstract data type. A class defines the vari-
ables and functions available to an object instantiated from that class.
Classes are often used in a hierarchy of subclasses (or child classes) and
superclasses (or parent classes).

client-side scripting Script code that runs on the client machine (as
opposed to the server machine). A common example of this is JavaScript
code, which is executed by a user’s browser.

code Anything written in a programming language; also, a collection of
one or more instructions that are read and performed by a computer.

coding The process of writing code.

column A set of all the same fields from every row in a table.

comments Anything delimited from the rest of a program’s code by com-
ment characters (such as // or /* ... */). Comments are ignored by the
parser and are therefore an important tool for making your code more
understandable.

compiler A special program used to make an executable binary out of a
source code file; not necessary with PHP.

compound operators A combination of two operators, usually consisting
of an assignment operator and a data manipulation operator, such as an
arithmetic or concatenation operator.

concatenation The joining of two strings.

condition An expression that can either be true or false.

conditional An expression that evaluates a condition.

constant A named value that cannot be changed during program
execution.

constructor A function that is called automatically upon a new instanti-
ation of a class.

388 Glossary

cookie A small piece of information that can be stored on a client
machine by a program on the server if the browser allows it.

database A collection of data held in a specific place and usually accessed
through a database server, such as MySQL.

declaration The creation of a variable.

decrement Decreasing a number by 1.

default The option used if no other option is selected. Also, a special case
used in switch statements.

derived class See subclass.

editor A program used to create and modify files. In particular, a text
editor is used to edit files containing PHP code (and HTML code, too, unless
you use a WYSIWYG editor such as FrontPage or Dreamweaver).

element A value located at a certain index position within an array.

embedded programming language A language whose code is embed-
ded in some other type of code. For example, PHP is designed to be embed-
ded in HTML code to make separation of program code and output clearer
and easier.

escaping See character escaping.

execution The running of a program.

false A value that is not true; can also be expressed in PHP as 0.

field See column.

float See floating-point number.

floating-point number A number that consists of an integer (whole
number) component and a decimal (fractional) component, separated by a
decimal point.

function A collection of statements that can be run collectively with a
function call.

function call The execution of a function by using the name of the func-
tion followed by an argument list as a statement.

global The main scope in a PHP script; all variables not contained in
functions and classes.

guestbook A program that allows visitors to leave their name and com-
ments at a Web site.

here-doc A string-quoting style that allows for clearly readable multiline
strings; most closely related to doubled quoting in PHP.

Glossary 389

HTTP The protocol used by Web servers and browsers to request and
transfer files.

HTTP header The portion of an HTTP message (request or response)
that contains data not meant for visual display in the client browser.

Hypertext Markup Language (HTML) HTML code is interpreted by a
Web browser to format and arrange information on the screen.

increment The act of increasing a value by 1.

index The value used to retrieve a value from within an array.

inheritance The automatic gaining of a parent class’s member variables
and functions.

input Data that is supplied at runtime to a program.

instance An object variable of a particular class.

instantiation The act or process of creating a new instance.

int A keyword used in parentheses to typecast a variable of another type
to an integer. See also integer.

integer A whole number.

interpreter A program that reads code and performs certain actions
based on the instructions in the code.

Java A fully object-oriented, cross-platform programming language most
closely related to C/C++.

JavaScript A scripting language unrelated to Java (with the exception of
a few syntactical and structural similarities); almost always executed
client-side.

JScript Microsoft’s version of JavaScript.

library A file containing functions and classes that is meant to be
included into other programs so those programs can use the included func-
tions or classes.

license A legal document defining how software can be used. A license, if
used, is usually stated or referenced at the top of each file containing
licensed code.

literal A value hard-coded into a program; sometimes also used to refer
to constants.

looping Repetition of a block of code until a given condition becomes
true.

members The variables and functions within a class.

390 Glossary

method A class’s member function.

modulus Remainder division. Example: 5 mod 2 is 1; 4 mod 2 is 0; 3 mod
2 is 1; and so on.

nesting The act of placing a group of expressions or statements within
another.

null The lack of a value. If compared as a Boolean, evaluates to false,
but is truly a lack of falseness, too.

object An instance of a class.

object-oriented programming language A programming language,
such as C++, Java, or PHP, that makes use of abstract data types (classes).

Object-Oriented Programming (OOP) Programming in an OO (object-
oriented) language, which enables the programmer to model real-world con-
cepts with classes and thus break problems down into smaller, independent
or interdependent parts.

open source software Software to which the source code is freely
available.

operating system Software that allows for basic user interaction with
other software and the computer’s hardware.

operator A special character that represents an operation (assignment,
arithmetic, concatenation, compound, or conditional). Examples of operators
include +, =, *=, ==, &&, and so on.

operator precedence The order in which operators should be evaluated
within an expression.

order of operators See operator precedence.

output Anything a program produces that is still available after the pro-
gram finishes execution. Examples include visual output to your browser
and file output to the server’s file system.

parameter A local variable within a function to which the corresponding
call-time argument will be assigned.

parent class The class from which a subclass was derived.

parser A program that tokenizes (splits into separate statements and
expressions) and interprets a script.

pattern matching The act of matching a regular expression against a
string.

perl The Practical Extraction and Report Language; a programming lan-
guage similar to PHP, but not initially intended for Web programming.

Glossary 391

platform See operating system.

program Any file containing instructions that can be interpreted and
executed by the machine, whether through an interpreter (as in a PHP
script) or directly (as in C that has been compiled to machine code).

programming language A written language with which a computer can
be given instructions.

qualifier A wildcard in regular expressions that determines what charac-
ters will be matched.

quantifier A wildcard in regular expressions that determines how many
characters will be matched by a given qualifier.

query A request. In PHP with MySQL, a request to the MySQL server to
execute a MySQL statement.

recursion The calling of a function from itself. The result is similar to a
loop, but less efficient and generally more confusing.

reference An alias to a variable.

RegExp See regular expression.

regular expression A collection of special wildcard characters used to
search strings for only partially known string patterns.

row A single record or entry in a MySQL table.

scope The ability of a variable to be “seen” by certain areas of the same
script.

script A program that isn’t compiled, but rather is interpreted from
human-readable source every time it is run.

sentinel A value that counts in a loop or determines when a loop will
end.

server-side scripting Scripting that is executed on the server before
anything is sent to the client.

shopping cart A commonly used online facility for tracking the types
and quantities of items to be purchased upon checkout.

short-circuit evaluation The concept that an if statement will stop
evaluating further conditions if it is determined to be impossible for the
condition to become true. For example, if expr1 (expr1 && expr2) is false,
then even if expr2 were true, the overall condition wouldn’t be true, so PHP
stops short without even evaluating expr2.

special character A character that represents some other character
(such as a non-printing character, which normally isn’t visible) or a special

392 Glossary

set of characters (such as ., which represents any character). Another
example is the $ that’s used to prefix variable names.

statement A single written command.

string A collection of one or more letters; a string can be a word, a sen-
tence, or just a single letter.

subclass A class created by extending a parent class using the extends
keyword.

subscript See index.

syntax The format that must be used when writing code.

true The opposite of false. Can also be represented by any non-zero num-
ber, non-null value, or non-empty string.

type casting The act of forcing a variable to become a given type.

unary operator An operator that only takes one argument. Example:
the negative sign in –21 is a unary operator.

variable A value represented by a name. Unlike constants, a variable’s
value may change any number of times during execution.

VBScript Microsoft’s scripting version of Visual Basic.

whitespace Any character that doesn’t print a visible character on the
screen; whitespace characters include new lines (\n), spaces, tabs, and
so on.

WYSIWYG What You See Is What You Get. A visual/graphical HTML edi-
tor designed for easy creation of HTML Web sites, but almost always detri-
mental when used with PHP.

Glossary 393

Symbols
! logical operator, 131-133
!= (not equal) operator,

125-126
!== (not identical) operator,

125-126
$HTTP POST FILES vari-

able, file uploads criteria,
319-322

$strText variable, 30-31
$this object (bank account

class), 220-224
% operator (modulus divi-

sion), 77-78
&& logical operator, 131-133
* operator (multiplication),

73, 76
+ operator (unary-positive),

73-75
- operator (unary-negative),

73-76
/ operator (division), 73, 77
< (less than) operator,

125-126
<= (less than or equal to)

operator, 125-126
>= (greater than or equal to)

operator, 125-126
== (equal) operator, 125-126

switch statement usage, 143
=== (identical) operator,

125-126
32-bit platforms, PHP limita-

tions, 37
64-bit platforms, PHP limita-

tions, 37

404 File Not Found message,
troubleshooting PHP pro-
gram execution, 26

500 Internal Error message,
FTP servers, 13

A
abstract data types. See

classes
Active Server Pages. See

ASP
Add() function, shopping

cart class, 229-231
addition operator (+), 74-75
admin/delete.php script

(entry deletion), guestbook
program, 370-371

admin/index.php script
(administrator login),
guestbook program,
367-370

admin/subdirectory (pro-
gram files), 356-357

algorithms
ASP capabilities, 8
PIN number example, 8

ALTER TABLE command
(MySQL), 268

AND logical operator,
131-133

applying sessions to login
scripts (authentication),
306-307

arguments (functions),
194-196

arithmetic operators. See
operators

Index

array sorting (referenced
function parameters),
204-209

arrays
displaying

each command, 154-155
list command, 155
while statement, 154-155

elements, 38-39
empty brackets, 39
foreach statements

examples, 179-183
usage of, 178-179

indexing, 38-39
name example, 38-39
numerically indexed, display-

ing (while statement),
160-161

sorting (referenced function
parameters), 204-209

variable type, 37-39
ASCII mode, FTP servers, 13
ASP (Active Server Pages)

algorithm capabilities, 8
licensing fees, 8

assigning variables
via PHP interpreter, 33-34
via script, 33-34

assignment operators, 83-86
associative arrays, foreach

statement examples,
181-183

authentication
goals, 294
HTML forms, setting up,

295-297
HTTP header authentication,

308-312
passwords

responding to login requests,
298-303

verifying, 297-298
process, 294
sessions

applying to login scripts,
306-307

logging in, 304-306
user tables, setting up, 295

396

B
bank account class

$this object, 220-224
account number member vari-

able, 220
creating, 220-227
functions

Deposit(), 222-224
Withdraw(), 222-224

PIN number member variable,
220

base classes, inheritance, 235
base64 decode() function,

shopping cart class, 234
base64 encode() function,

shopping cart class, 234
binary mode (FTP servers),

13
binary operators, 74
black boxing (encapsula-

tion), 227
classes, 227-228
shopping cart class example,

228-231
BLOB columns (tables),

327-329
blocks, code listings, 116
Boolean debugging constant,

variable tracking example,
380-381

break statement
example, 140-141
loops, termination of, 166-168
syntax, 140

bugs. See debugging

C
C versus PHP in develop-

ment time, 9
calling functions, 191

flow of execution, 191-192
recursive function usage,

210-213
scopes, 192-193

CGI Error message, trou-
bleshooting PHP program
execution, 26

character escaping (strings),
40-41

check boxes, input collection
(HTML), 66-68

class keyword, 217-218
class libraries, 256
classes (abstract data types),

216
bank account

$this object, 220-224
account number member

variable, 220
creating, 220-227
PIN number member vari-

able, 220
black boxing, 227-228
code libraries, 256
constructor functions, object

instantiation, 224-227
data protection, 228
defining (class keyword),

217-218
functions, declaring, 217-218
instances, 216
member variables, defining,

217-218
objects, 216

creating, 218-220
modeling behavior, 216
serializing, 231-235
unserializing, 231-235

shopping cart
black boxing example,

228-231
defining, 229-231

subclasses, creating (extends
keyword), 235-238

clauses in statements, 22
client-side scripting versus

server-side scripting, 22-24
clients (MySQL)

launching, 267
third-party utilities, 267

code
cookies, setting, 339-341
debugging, 375-376
include files

advantages, 241
code reuse, 255-256

array sorting

397connecting databases

file organization, 245-255
function/variable scope, 244
include statement, 242-243
PHP code example, 243-244
uses, 241

listings
blocks, 116
indentation guidelines, 124

reuse of (include files), 255-256
code libraries

classes, 256
code reuse, 256
functions, 256
include once() function,

256-257
organizational guidelines,

257-258
paths, configuring, 258-259
PHP program execution, trou-

bleshooting, 25
code listings

blocks, 116
indentation guidelines, 124

color patterns, developing,
86-87

command lines
Unix, 267
Windows 95/98, 267
Windows NT/2000, 267

commands
each, array displays, 154-155
echo, appropriate uses of,

52-54
functions, grouping sets, 188
interpreters, function of, 16
list, array displays, 155
MySQL

ALTER TABLE, 268
CREATE TABLE, 268-269
executing through client,

267
style guide, 269
third-party utilities, 267

order of
statement error messages,

16-17
statement functions, 16-17

splitting (parsers), 16

SQL
all-caps style, 269
DELETE, 291
INSERT, 282-284
SELECT, 284-290
UPDATE, 290-291

comments
multiline, 18-20
single line, 18-20

comparing strings, pattern
matching with regular
expressions, 100-107

comparison operators
!= (not equal), 125-126
!== (not identical), 125-126
< (less than), 125-126
<= (less than or equal to),

125-126
= (greater than or equal to),

125-126
== (equal), 125-126
=== (identical), 125-126

compiled languages versus
scripting languages, 16

compound operators, 83-86
computeWages() function,

variable tracking example,
378-380

computing mathematical
totals (while statement
counters), 161-164

concatenation operator
(strings), 90-92

conditionals
break statement syntax,

140-141
comparison operators

!= (not equal), 125-126
!== (not identical), 125-126
< (less than), 125-126
<= (less than or equal to),

125-126
= (greater than or equal to),

125-126
== (equal), 125-126
=== (identical), 125-126

echo statements, multiple
cases, 146

else statement
age-grouping program,

121-124
syntax, 120-124

elseif statement
age-grouping program,

121-124
syntax, 120-124

if statement
age-grouping program,

121-124
nested, 123-124
syntax, 116-124

if statements, multiple cases,
144-145

if-else statements, multiple
cases, 146

multiple, 130-133
overview, 116
short circuit evaluation,

133-134
single-page login form,

126-130
switch statement

equality comparisons, 143
performance advantages,

139
style guidelines, 141
syntax, 138-141
versus if statement, 142-144
versus if-else-elseif state-

ments, 139
switch statements

multifunction Web pages,
146-150

multiple cases, 144-146
true/false values, 117-118

preg match function,
118-119

configuring
code library paths, 258-259
guestbook program, database

setup, 363-364
user tables, authentication,

295
connecting databases

(MySQL), 280-282

constants
Boolean debugging, 380-381
declaring, 34-35
naming requirements, 34-35
versus literal values, 31
versus variables, 35-36

constructor functions, object
instantiation, 224-227

control structures
break statements, loop termi-

nation, 166-168
do-while statements

loop control, 164
syntax, 164-166

exit statements, program ter-
mination, 168-169

while statements
array elements, displaying,

154-155
conditions, 156-159
counters, 159-161
loop control, 154
syntax, 155-159

controlling cookies
domain restrictions, 346-347
expiration time stamp,

341-344
secure connections, 347-348
URL path access, 344-345

cookie variable, 60
cookies

deleting, 348-349
editing, 337-338
ethical usage of, 350
lifetime values, 341-344
properties

domain restrictions, 346-347
expiration time stamp,

341-344
secure connection, 347-348
URL path access, 344-345

sending, 338-339
sessions, 304
setcookie() function, 339
setting, 337-338

simple script example,
339-341

snooping myth, 350

398

transmitting, 339
user ID information, 338-339
versus sessions, 337-338
viewing, 338
virus myth, 349-350

correcting errors, guide-
lines, 376-377

COUNT() function (My
SQL), username/password
verification, 297-298

counters
sentinel values, 160
while statements

computing mathematical
totals, 161-164

loop execution, 159-161
numerical arrays, display-

ing, 160-161
CPAN (Perl module archive),

9
CREATE TABLE command

(MySQL), 268-269
creating

classes (bank account exam-
ple), 220-227

forms
for authentication (HTML),

295-297
for file uploads (HTML),

317-319
objects in classes, 218-220
PHP programs, similarities to

HTML, 12-13
programs, outline specifica-

tions, 355-356
subclasses (extends keyword),

235-238
tables (MySQL), 266-269,

277-279
variable references, 45-47
Web sites with database-

driven content, 264-266

D
data connections (cookie

properties), 347-348
data protection classes, 228

data types (MySQL)
DOUBLE, 272-273
function of, 269
INT, 270-272
MySQL Web site resources,

270
number of, 270
TEXT, 273-275
TIMESTAMP, 275-277

database-driven content
records, 265-266
templates, 265-266
Web sites

creating, 264-266
databases, connecting to,

280-282
databases, deleting, 280,

291
databases, inserting, 279,

282-284
databases, reading, 279
databases, selecting,

284-290
databases, updating, 280,

290-291
table creation (MySQL),

266-269, 277-279
databases

file uploads
acceptance and storage

stage, 326-329
handler script, 331-333
viewing, 330-331

MySQL, server access, 264
programs, setting up, 363-364

date() function
formatting symbols, 276
TIMESTAMP data type

(MySQL), 275-276
debugging, 375

error messages
correction guidelines,

376-377
description of, 376
file/line number, 376
interpretation of, 375-376
type of, 376

fatal errors, 377

constants

399files

levels, output verbosity,
381-384

parse errors, 377
variable tracking, 378

Boolean debugging constant,
380-381

example, 378-380
declarations (functions),

188-191
declaring

constants, 34-35
functions in classes, 217-218
variables, 32-33

decrement operators, 85
default parameter values for

functions, 197-199
defining

classes (class keyword),
217-218

shopping cart class, 229-231
definitions (functions),

188-191
placement of, 190

DELETE command (SQL),
291

deleting
cookies, 348-349
databases (MySQL), 280, 291

Deposit() function, bank
account class, 222-224

derived classes. See sub-
classes

directories
code libraries

default path modification,
258-259

organizational guidelines,
257-258

organizational structure, 24
structural guidelines, 24
subdirectories, 24

discussion boards, 10
displaying array elements

(while statement), 154-155
division operator (/), 73, 77
do-while statements

loop control, 164
syntax, 164-166

domains, restricted access,
cookie properties, 346-347

door open() function, 189
DOUBLE data type

(MySQL), 272-273
double-quoted strings, 39-41
dynamic output, 50

echo command, 51-54
appropriate uses, 52-54

here-doc method, 54-57
versus short tags, 59-60

short tags, 57-60
versus here-doc method,

59-60

E
e-commerce, 10
each command, arrays, dis-

playing, 154-155
echo command

appropriate uses, 52-54
output method, 50-54

echo statements, 15
multiple cases, 146

else statement
age-grouping program,

121-124
syntax, 120-124

elseif statement
age-grouping program,

121-124
syntax, 120-124

email
address verification program

string concatenation opera-
tor, 90-92

string matching, 107-109
string replacements, 109-111
substring extraction, 92-96
substring locations, 96-97

username/password example
(post form method), 63-65

embedded programming
Hello World! example, 21
PHP coding within HTML

code, 20-21
encapsulation. See black

boxing

equal (==) operator, 125-126
switch statement usage, 143

error messages
correction guidelines, 376-377
description of, 376
file/line number, 376
interpretation of, 375-376
type of, 376

errors
correction guidelines, 376-377
fatal, 377
parse, 377

executing
loops (while statement coun-

ters), 159-161
programs, 24

404 File Not Found mes-
sage, 26

CGI Error message, 26
code failure, 25
Parse Error message, 26-27
Save As dialog box appear-

ance, 25
exit statements, program

termination, 168-169
expiration time stamps

(cookies), 341-344
expressions (mathematical),

72
extends keyword, subclass

creation, 235-238
extracting substrings, 92-96

F
factorial() function, recur-

sive function example,
212-213

fatal errors, 377
fclose() function, 328-329
feedback forms, 10

switch statement example,
146-150

text area (HTML forms), 68-69
files

programs, organizational
structure, 356-362

uploads
criteria verification, 319-322
forms creation, 317-319

handler script, 331-333
moving to databases,

326-329
moving to servers, 322-326
process, 316-317
RFC-1867, 316
viewing in databases,

330-331
filesize() function, 328-329
floating-point numbers, vari-

able type, 37
flow of execution (function

calls), 191-192
fopen() function, 328-329
for statement (loops), 172

composition of, 172
conditional expression,

172-174
examples, 174-177
initialization statement,

172-174
repetition statement, 172-174
syntax, 172-174
versus while statement, 172,

177
foreach statement (loops),

178
array usage, 178-183
associative array usage,

181-183
examples, 179-183
syntax, 178-179
uses, 178

forms
file uploads, creating, 317-319
HTML input collection, 65-69
input method

get, 61-63
post, 63-65

intuitiveness, 65
passwords, retrieving, 295-297
POST method versus GET

method, 296
usernames, retrieving, 295-297

fread() function, 328-329
FTP servers

500 Internal Error message,
13

ASCII mode, 13
binary mode, 13

400

function libraries, 256
functions

arguments, 194-196
bank account class

Deposit(), 222-224
Withdraw(), 222-224

body of, 189-191
calling, 191

flow of execution, 191-192
scopes, 192-193
use of recursive types,

210-213
classes, declaring, 217-218
code libraries, 256
commands, execution of, 188
computeWages(), variable

tracking example, 378-380
date(), 275-276
declarations, 188-191
definitions, 188-191
door open(), 189
fclose(), 328-329
filesize(), 328-329
fopen(), 328-329
fread(), 328-329
include once(), code library

usage, 256-257
move uploaded file(), 322-326
MySQL

COUNT(), 297-298
mysql connect(), 280-282
mysql query(), 282-291
query(), 297-298

nl2br, 99
openDoor(), 189
organizational guidelines,

190-191
parameters, 189, 194

default values, 197-199
program example, 194-196
referenced, 204-209

postcondition statements,
189-191

precondition statements,
189-191

preg match, 107-109
preg replace, 109-111
purpose of, 187-188

recursive, 209-210
example, 210-212
factorial() function exam-

ple, 212-213
reusable libraries, 189
scopes, 192-193

include files, 244
global variables, 193

setcookie(), 339
cookie deletion, 348-349
domain access attribute,

346-347
expiration attribute, 341-344
secure connection attribute,

347-348
URL path access attribute,

344-345
shopping cart class

Add(), 229-231
base64 decode(), 234
base64 encode(), 234
NumItems(), 229-231
serialize(), 231-235
TotalItems(), 229-231
unserialize(), 231-235
Update(), 229-231

statements
execution of, 187
flow of execution, 191-192

str replace, 98-100
strlen, 96
strpos, 97
substr, 93-96
syntax guides, 93
testing (variable tracking),

378-380
uploaded file(), 322-326
values

passing to, 194-196
returning, 199-201
returning by reference,

201-203

G
get forms, input method,

61-63
GET method, forms usage,

296

files

401inserting

get variable, 60
global scope (variables), 42
global variables, 193
greater than (>) operator,

125-126
greater than or equal to(>=)

operator, 125-126
greedy quantifiers, 106
guestbook program, 10

administrator login script
(admin/index.php), 367-370

databases, configuring,
363-364

entry deletion script
(admin/delete.php), 370-371

file structure, 356-362
form script (post.php), 365-367
outline specifications, 355-356
planning, 354-355
viewer script (index.php),

364-365

H
here-doc (here document),

54-57
multiline strings, 55-57
output method, 54-57
single echo statements, 54-57
versus short equals tag, 59-60

HTML (Hypertext Markup
Language)
embedding PHP code, 20-21
forms

check boxes, 66-68
file uploads, 317-319
image buttons, 68-69
input collection, 65-69
radio buttons, 66-68
submit buttons, 68-69
textarea, 68-69
usernames/passwords,

295-297
include files, 242

bottom.php example,
242-243

top.php example, 242-243
PHP similarities to HTML,

12-14

HTTP (Hypertext Transfer
Protocol)
headers

authentication, 308-312
cookie transmittal, 338-339

input requests, 60

I
identical (===) operator,

125-126
if statement

age-grouping program,
121-124

multiple cases, 144-145
nested, 123-124
syntax, 116-124
true/false values, 117-118

preg match function,
118-119

versus switch statement,
142-144

if-else statements, multiple
cases, 146

image buttons, input collec-
tion (HTML), 68-69

inc/ subdirectory (program
files), 356-357
common function, 360-362
configure, 359
header, 357-358

include files
advantages, 241

code reuse, 255-256
file organization, 245-255

code libraries, 256
include once() function,

256-257
organization guidelines,

257-258
path configuration, 258-259

function scope, 244
HTML code, 242

bottom.php example,
242-243

top.php example, 242-243
include statement

PHP code, 243-244
syntax, 242-243

JavaScript code, 242
PHP code, config.php example,

243-244
uses, 241
variable scope, 244

include once() function,
code library usage, 256-257

include statement
PHP code, 243-244
syntax, 242-243

increment operators, 85
indentation, programming

style guidelines, 124
index.php script (viewer),

guestbook program,
364-365

indexing
arrays, 38-39
strings, 41

infinite loops (while state-
ments), 156

inheritance in subclasses,
235

input
categories

cookie variable, 60
get variable, 60
post variable, 60

HTML forms, 65-69
HTTP requests, 60
methods

get forms, 61-63
post forms, 63-65

types
check boxes, 66-68
image buttons, 68-69
radio buttons, 66-68
submit buttons, 68-69
textarea, 68-69

INSERT command (SQL),
282, 284

inserting
comments in PHP programs,

18-20
databases (MySQL), 279,

282-284
whitespace in PHP programs,

17-18

instances, 216
instantiating objects (con-

structor functions), 224-227
INT data type (MySQL),

270-272
AUTO INCREMENT option,

271
column definitions, 271-272
NOT NULL option, 271
PRIMARY KEY option, 271
UNSIGNED option, 270

integers
32-bit platforms, PHP limita-

tions, 37
64-bit platforms, PHP limita-

tions, 37
variable type, 36-37

interpreters, 15
executable file, 15
function of, 16
variable assignments, 33-34

intuitive forms, 65
issuing SQL commands to

MySQL, 282-291

J - K
Java

platform independence, 8-9
versus PHP

development time/cost, 8-9
execution speed, 8-9

JavaScript
client-side scripting language,

22
combining with PHP, potential

logic problems, 22-24
include files, 242

joining strings (concatena-
tion operator), 90-92

L
language constructs, 155
launching MySQL clients,

267
less than (<) operator,

125-126

402

less than or equal to (<=)
operator, 125-126

levels (debugging), output
verbosity, 381-384

libraries (functions), 189
list command, arrays, dis-

playing, 155
literal values

versus constants, 31
versus variables, 30-31

locating substrings, 96-97
logical operators

!, 131-133
&&, 131-133
AND, 131-133
multiple conditionals, express-

ing, 130-133
OR, 131-133
XOR, 131-133

login requests, session
authentication, 298-306

login scripts, sessions, apply-
ing to, 306-307

loops
break statements, termination

of, 166-168
do-while statements, 164-166
for statement

composition of, 172
conditional expression,

172-174
examples, 174-177
initialization statement,

172-174
repetition statement,

172-174
syntax, 172-174
versus while statement, 172,

177
foreach statement, 178

array usage, 178-179
examples, 179-183
syntax, 178-179

while statements, 154
conditions, 156-159
counters, 159-161
syntax, 155-159

M
matching strings via regular

expressions, 107-109
mathematical expressions

compound operators, 83-86
nesting, 81-83
operands, 72
operators, 72

addition (+), 74-75
division (/), 77
modulus division (%), 77-78
multiplication (*), 76
rules of precedence, 78-80
subtraction (-), 75-76

member variables, classes,
defining, 217-218

message boards, 10
Microsoft, ASP licensing

fees, 8
minus operator (-), 73-76
modeling objects, class rela-

tionships, 216
modifying

default include directories,
258-259

source code with WYSIWYG
editors, 12

modulus division operator
(%), 77-78

move uploaded file() func-
tion, 322-326

moving uploaded files to
servers, 322-326

multiline comments, 18-20
multiline strings, here-doc

output method, 55-57
multiple conditionals, logical

operators, 130-133
multiplication operator (*),

73, 76
MySQL

clients, launching, 267
command line, 268-269
commands

ALTER TABLE, 268
CREATE TABLE, 268-269

instances

403parent classes

executing through client,
267

style guide, 269
third-party utilities, 267

data types
DOUBLE, 272-273
function of, 269
INT, 270-272
MySQL Web site resources,

270
number of, 270
TEXT, 273-275
TIMESTAMP, 275-277

database-driven content
creating, 264-266
databases, connecting to,

280-282
databases, deleting, 280,

291
databases, inserting, 279,

282-284
databases, reading, 279
databases, selecting,

284-290
databases, updating, 280,

290-291
records, 265-266
templates, 265-266

functions
COUNT(), 297-298
query(), 297-298

hosts, finding, 264
servers, access to, 264
tables, creating, 266-269,

277-279
Web site, 264

data type resources, 270
mysql command line, 267-269
mysql connect() function,

280-282
mysql query() function,

282-291
username/password verifica-

tion, 297-298

N
naming

constants, 34-35
variables, 32-33

negative numbers, indicat-
ing, 73-74

negative operator (-), 73-74
nested expressions, evaluat-

ing, 81-83
nested if statement, 123-124
new operator, object cre-

ation, 218-220
nl2br function, 99
not equal (!=) operator,

125-126
not identical (!==) operator,

125-126
Notepad, PHP code, viewing,

12
numbers, string syntax

guidelines, 93
numeric expressions, nested,

81-83
numerical patterns, develop-

ing, 86-87
NumItems() function, shop-

ping cart class, 229-231

O
objects

classes, 216
creating, 218-220
modeling behavior, 216
serializing, 231-235
unserializing, 231-235

instantiation, constructor func-
tions, 224-227

variable type, 41
open source software,

OpenSource.org Web site, 8
openDoor() function, 189
OpenSource.org Web site, 8
operands, mathematical

expressions, 72
operators (arithmetic), 72

% (modulus division), 77-78
* (multiplication), 73, 76

+ (plus), 73-75
- (minus), 73-76
/ (division), 73, 77
binary, 74
comparison, 125

!= (not equal), 125-126
!== (not identical), 125-126
< (less than), 125-126
<= (less than or equal to),

125-126
>= (greater than or equal

to), 125-126
== (equal), 125-126
=== (identical), 125-126

compound, 83-86
decrement, 85
increment, 85
mathematical expressions, 72
rules of precedence, 78-80
unary, 74

OR logical operator, 131-133
organizing

code libraries, 257-258
directories, structural guide-

lines, 24
functions, 190-191
programs

file structure, 356-362
include files, 245-255

output
dynamic (echo command),

50-54
examples, 50
methods, 50

echo command, 50-54
here-doc, 54-57
short tags, 57-60

static, 50-54

P
parameters (functions), 189,

194
default values, 197-199
program example, 194-196
referenced, 204-209

parent classes (inheritance),
235

parentheses, nested expres-
sions, 81-83

Parse Error message, PHP
program execution, 26-27

parse errors, 377
parsers, 15

command splitting, 16
passing values to functions,

194-196
passwords

authentication (HTTP head-
ers), 308-312

goals, 294
HTML forms, setting up,

295-297
login requests, responding,

298-303
process, 294
sessions, logging in, 304-306
user tables, setting up, 295
verifying, 297-298

paths, code libraries, config-
uring, 258-259

pattern matching (regular
expressions)
string comparisons, 100-107
string matching, 107-109
string replacements, 109-111

patterns
color, developing, 86-87
numerical, developing, 86-87

Perl
CPAN (module archive), 9
versus PHP, 9

PHP
combining with JavaScript,

logic problems, 22-24
comments

multiline, 18-20
programming style, 18-20
single line, 18-20

common uses, 10
echo statement, 15
evolution of, 9
include files, config.php exam-

ple, 243-244
interpreters

executable file, 15
function of, 16

404

parsers, 15
command splitting, 16

programs
browser output, 14
components of, 13-14
executing, 24-27
simple example, 13-14
writing, 11-12
similarities to HTML, 12-13

scripting language, 16
statements

command order, 16-17
error messages, 16-17

syntax overview, 15-16
tags, 20-21
versus

ASP, licensing fees, 8
C in development time, 9
HTML, 13-14
Java, 8-9
Perl, module downloads, 9

whitespace programming
style, 17-18

WYSIWYG editors, source
code, 11-12

PHP.net Web site
history, 10
session resources, 304
string functions, 90

PHPEd, variable tracking,
378

plus operator (+), 73-75
positive numbers, indicat-

ing, 73-74
positive operator (+), 73-74
post forms, input method,

63-65
POST method, forms usage,

296
post variable, input cate-

gory, 60
post.php script (forms),

guestbook program,
365-367

postcondition statements,
189-191

precedence, arithmetic oper-
ator rules, 78-80

precondition statements,
189-191

preg match function
return value evaluation,

118-119
string matching, 107-109

preg replace function, string
replacements, 109-111

processing overhead, 139
programs (PHP)

browser output, 14
comments, inserting, 18-20
constants, 31

naming requirements, 34-35
versus variables usage,

35-36
database configuration of

guestbook program, 363-364
embedding code within HTML,

20-21
executing, 24

404 File Not Found mes-
sage, 26

CGI Error message, 26
code failure, 25
Parse Error message, 26-27
Save As dialog box appear-

ance, 25
exit statements, termination

of, 168-169
file organization of guestbook

program, 356-362
guestbook program

administrator login script
(admin/index.php),
367-370

entry deletion script
(admin/delete.php),
370-371

form script (post.php),
365-367

viewer script (index.php),
364-365

include files
code reuse, 255-256
organizational advantages,

245-255

parentheses, nested expressions

405setcookie() function

input
forms construction, 65-69
HTTP requests, 60

input methods
get forms, 61-63
post forms, 63-65

literal values, 30-31
output

examples, 50
methods, 50
echo command, 50-54

output methods
here-doc, 54-57
short tags, 57-60

processing overhead, 139
simple example, 13-14
variables, 30-31

arrays, 37-39
floating-point numbers, 37
integers, 36-37
naming requirements, 32-33
objects, 41
reference creation, 45-47
scope, 42
strings, 39-41
type casting, 43-44
versus constants usage,

35-36
versus HTML, 13-14
whitespace, inserting, 17-18
writing overview, 10-11, 354

Q - R
qualifiers in regular expres-

sions, 102, 104
quantifiers in regular

expressions, 105-106

radio buttons, input collec-
tion (HTML), 66-68

reading databases (MySQL),
279

records, database-driven
content, 265-266

recursive functions, 209-210
example, 210-212
factorial() function, 212-213

referenced parameters
(functions), 204
array sorting algorithm exam-

ple, 204-209
syntax, 204

references in variables, cre-
ating, 45-47

referencing return values in
functions, 201-203

regular expressions (reg-
exps), 102-106
pattern matching

string comparisons, 100-107
string matching, 107-109
string replacements, 109-111

qualifiers, 102-104
quantifiers, 105-106
wildcard characters, 101-106

repeating patterns
colors, 86-87
numbers, 86-87

replacing strings
str replace function, 98-100
via regular expressions,

109-111
responding to login

requests, authentication
process, 298-303

restricting
domain access via cookie prop-

erties, 346-347
URL path access via cookie

properties, 344-345
returning values for func-

tions, 199-203
RFC-1867 (Request for

Comment), file uploads, 316

S
Save As dialog box, PHP pro-

gram execution, 25
scopes

functions, 192-193
variables, 42

scripting
languages versus compiled

languages, 16
variable assignments, 33-34

Secure Sockets Layer (SSL),
296

security (cookies)
ethical usage of, 350
virus myth, 349-350

SELECT command (SQL),
284-289
WHERE clause, 289-290

selecting databases
(MySQL), 284-290

selection sorts, array sort-
ing, 204-209

semicolons (;), statement
syntax, 16-17

sending cookies, 338-339
sentinel values (counters),

160
serialize() function, shop-

ping cart class, 231-235
serializing objects, 231-235
Server Side Include (SSI)

files, 242
server-side scripting versus

client-side scripting, 22-24
servers

file uploads
acceptance and moving

stage, 322-326
criteria verification, 319-322
process, 316-317

MySQL, access to, 264
sessions

applying to login scripts,
306-307

cookies, 304
logging in (authentication),

304-306
PHP.net Web site, 304
versus cookies, 337-338

setcookie() function, 339
attributes

domain restrictions, 346-347
expiration time stamp,

341-344
secure connection attribute,

347-348
URL path access, 344-345

cookie deletion, 348-349

setting cookies, 337-338
simple script example, 339-341

shopping cart class
black boxing example, 228-231
defining, 229-231
functions

Add(), 229-231
base64 decode(), 234
base64 encode(), 234
NumItems(), 229-231
serialize(), 231-235
TotalItems(), 229-231
unserialize(), 231-235
Update(), 229-231

shopping carts, 10
short circuit evaluation

(conditionals), 133-134
short tags, 57-60

example, 57
versus here-doc, 59-60

single line comments, 18-20
single-page login form, con-

ditionals example, 126-130
single-quoted strings, 39-41
source code

modifying (WYSIWYG edi-
tors), 12

PHP sensitivity (WYSIWYG
editors), 12

viewing (WYSIWYG editors),
11

splitting commands with
parser function, 16

SQL (Structured Query
Language) commands
all-caps style, 269
DELETE, 291
INSERT, 282-284
issuing to MySQL, 282-291
SELECT, 284-290
UPDATE, 290-291

SSI (Server Side Include)
files, 242

SSL (Secure Sockets Layer),
296

statements
break

example, 140-141
syntax, 140

clauses, 22

406

command order, 16-17
echo, 15
error messages, 16-17
functions, 187

flow of execution, 191-192
semicolon usage, 16-17
switch

example, 140-141
performance advantages,

139
programming style guide-

lines, 141
syntax, 139-140
uses, 138
versus if statement, 142-144
versus if-else-elseif state-

ments, 139
static output, 50-54
storing uploaded files in

databases, 326-329
str replace function, 98-100
strings

character escaping, 40-41
comparisons, pattern matching

with regular expressions,
100-107

concatenation operator, 90-92
double-quoted, 39-41

versus single-quoted, inter-
pretation of, 99

index positions, 95
indexing, 41
joining (concatenation opera-

tor), 90-92
length, finding (strlen func-

tion), 96
manipulation functions, 90
matching via regular expres-

sions, 107-109
numbers, syntax guidelines,

93
PHP.net Web site, 90
replacing

via regular expressions,
109-111

via str replace function,
98-100

single-quoted, 39-41
versus double-quoted, inter-

pretation of, 99
strlen function, 96
strpos function, 97
substrings

extracting, 92-96
finding, 96-97

variables
syntax guidelines, 93
type, 39-41

strlen function, 96
strpos function, 97
subclasses (derived classes),

235
creating (extends keyword),

235-238
inheritance, 235

submit buttons, input collec-
tion (HTML), 68-69

substr() function, 93-96
return values, 199-201

substrings
extracting, 92-96
finding, 96-97
substr function(), 93-96

subtraction operator (-),
75-76

sum totals, computing (while
statement), 161-164

switch statement
equality comparisons, 143
example, 140-141
performance advantages, 139
programming style guidelines,

141
syntax, 139-140
uses, 138
versus

if statement, 142-144
if-else-elseif statements, 139

switch statements
multifunction Web pages,

146-150
multiple cases, 144-146

syntax guides, 15-16, 93

setting cookies

407viruses, cookie myths

T
tables

BLOB columns, 327-329
creating (MySQL), 266-269,

277-279
uploaded files, creating,

327-329
tags (PHP), 20-21

short, 57-60
templates for database-

driven content, 265-266
terminating

loops (break statement),
166-168

programs (exit statement),
168-169

testing functions via vari-
able tracking, 378-380

TEXT data type (MySQL),
273-275

textarea, input collection
(HTML), 68-69

TIMESTAMP data type
(MySQL), 275-277

TLS (Transport Layer
Security), 296

TotalItems() function, shop-
ping cart class, 229-231

transmitting cookies, 339
ethical usage of, 350
secure transmission require-

ments, 347-348
Transport Layer Security

(TLS), 296
troubleshooting

PHP code views with
WYSIWYG editors, 12

program execution
404 File Not Found mes-

sage, 26
CGI Error message, 26
code failure, 25
Parse Error message, 26-27
Save As dialog box appear-

ance, 25
type casting variables, 43

syntax, 43-44
when to use, 43

U
unary operators

+ (positive), 73-74
- (negative), 73-74

Unix command line, 267
unserialize() function, shop-

ping cart class, 231-235
unserializing objects,

231-235
UPDATE command (SQL),

290-291
Update() function, shopping

cart class, 229-231
updating databases

(MySQL), 280, 290-291
uploaded file() function,

322-326
uploading files

criteria verification, 319-322
forms creation, 317-319
handler script, 331-333
moving to databases, 326-329
moving to servers, 322-326
process, 316-317
RFC-1867, 316
viewing in databases, 330-331

URLs (Uniform Resource
Locators), path access,
344-345

user authentication
goals, 294
HTML forms, 295-297
password/username verifica-

tion, 297-298
process, 294
responding to login requests,

298-303
session logins, 304-306
table configuration, 295

user registration services, 10
usernames

authentication, HTTP headers,
308-312

login requests, responding,
298-303

password e-mail example (post
form method), 63-65

sessions, logging in, 304-306
verifying, 297-298

V
values

functions
passing to, 194-196
returning, 199-201
returning by reference,

201-203
literal, 30-31
variables, 30-31

variable tracking
Boolean debugging constant,

380-381
example, 378-380
PHPEd, 378

variables
$strText, 30-31
assigning

via PHP interpreter, 33-34
via script, 33-34

compound operators, 83-86
declaring, 32-33
naming requirements, 32-33
references, creating, 45-47
scope, 42

include files, 244
strings, syntax guidelines, 93
type casting

syntax, 43-44
when to use, 43

types
arrays, 37-39
floating-point numbers, 37
integers, 36-37
objects, 41
strings, 39-41

versus
constants, 35-36
literal values, 30-31

verifying
passwords, 297-298
usernames, 297-298

viewing
cookies, 338
source code (WYSIWYG edi-

tors), 11-12
uploaded files in databases,

330-331
viruses, cookie myths,

349-350

W - Z
Web browsers

authentication (HTTP),
308-312

client-side scripting versus
server-side scripting, 22-24

cookies
deleting, 348-349
domain restrictions, 346-347
editing, 337-338
ethical usage of, 350
expiration time stamp,

341-344
secure connection, 347-348
snooping myth, 350
URL path access, 344-345
user ID information,

338-339
viewing, 338
virus myth, 349-350

files
moving uploads onto

servers, 322-326
storing uploads in data-

bases, 326-331
upload criteria, 319-322
upload forms, 317-319
upload handler script,

331-333
upload support, 316-317

output example, 50
PHP programs

echo statements, 15
execution, troubleshooting,

26
output, 14

server-side scripting versus
client-side scripting, 22-24

Web pages, feedback forms,
146-150

Web sites
authentication

goals, 294
HTML forms, 295-297
HTTP header authentica-

tion, 308-312
password/username verifi-

cation, 297-298
process, 294

408

responding to login requests,
298-303

session logins, 304-306
user table configuration, 295

cookies
ethical usage of, 350
ID information, 338-339
sending, 337-339

database-driven content
creating, 264-266
databases, connecting to,

280-282
databases, deleting, 280,

291
databases, inserting, 279,

282-284
databases, reading, 279
databases, selecting,

284-290
databases, updating, 280,

290-291
records, 265-266
table creation (MySQL),

266-269, 277-279
templates, 265-266

files, uploading, 316-333
MySQL, 264
OpenSource.org, 8
PHP history, 10
PHP.net

session resources, 304
string resources, 90

while statements (loops), 172
array elements, displaying,

154-155
conditions, 156-159
counters, 159-161

numerical arrays, display-
ing, 160-161

totals, computing, 161-164
infinite loops, 156
loop control, 154
syntax, 155-159
versus for statements, 172,

177
whitespace, inserting into

programs, 17-18
wildcard characters, regular

expressions, 101-106

Windows 95 command line,
267

Windows 98 command line,
267

Windows 2000 command
line, 267

Windows NT command line,
267

Withdraw() function, bank
account class, 222-224

writing
PHP programs, 11-12

similarities to HTML, 12-13
programs

overview, 354
process overview, 10-11

WYSIWYG editors, source
code
modifying, 12
PHP sensitivity, 12
viewing, 11

XOR logical operator,
131-133

Web browsers

	Cover
	QUE - PHP By Example
	Contents at a Glance
	Table of Contents
	Dedication
	Acknowledgments
	Introduction
	Part I Getting Started with Programming in PHP
	Chapter 01
	Chapter 02
	Chapter 03
	Chapter 04
	Chapter 05

	Part II Control Structures
	Chapter 06
	Chapter 07
	Chapter 08
	Chapter 09

	Part III Organization and Optimization of Your Program
	Chapter 10
	Chapter 11
	Chapter 12

	Part IV Advanced PHP Features
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17

	Appendix A
	Glossary
	Index

