A

Deepak Vohra

Ruby on Rails
for PHP and
Java Developers

@ Springer

Deepak Vohra

Ruby on Rails
for PHP and
Java Developers

With 202 Figures and 32 Tables

@ Springer

Deepak Vohra
dvohra09 @yahoo.com

Library of Congress Control Number: 2007929957

ISBN 978-3-540-73144-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German Copyright Law of September 9, 1965, in its current version, and permission
for use must always be obtained from Springer. Violations are liable for prosecution under
the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typesetting: by the Author
Production: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig
Cover design: KiinkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 45/3180/YL -543210

Preface

Ruby! is an open source programming language that was released in 1995.
Ruby is ranked 10" in the TIOBE Programming Community index?. Ruby
on Rails® is an open source web framework that was released in 2004.
Ruby on Rails is being widely adopted because of its simplicity,
maintainability and development speed. Computerworld* lists Ruby on
Rails as the one of the top 5 technologies for 2007.

Motivation for this Book

Ruby is often compared with PHP, which is the most commonly used
scripting language, and with Java, which is the most commonly used
programming language. In the trends graph of TIOBE index you might
notice that since the middle of 2006 Ruby shows an increase in usage
while PHP and Java show a decrease in usage. OReilly Radar® has noted
the trend towards an increased usage of Ruby on Rails. Statistics aside,
Ruby on Rails has some advantages over PHP, which are discussed below.

1. Ruby on Rails is more object-oriented than PHP, thus providing all
the inherent advantages of an object-oriented language such as
simplicity, modularity, modifiability, extensibility, maintainability
and re-usability.

2. Ruby on Rails is web framework whereas PHP is only a scripting
language.

! Ruby-http://www.ruby-lang.org/en/

2 TIOBE Index-http://www.tiobe.com/tpci.htm

3 Ruby on Rails-http://www.rubyonrails.org/

4 ComputerWorld-
http://computerworld.com/action/article.do?command=viewArticleBasic
&articleId=9011969

5 OReilly Radar-
http://radar.oreilly.com/archives/2006/08/programming_language trends 1.html

VI Preface

3. Ruby on Rails includes a web server for development, whereas a web
server has to be installed for PHP.

4. Ruby on Rails implements the Model-View-Controller (MVC)
architecture, whereas the MVC architecture has to be implemented
externally in PHP.

5. Ruby on Rails framework provides the Create-Read-Update-Delete
(CRUD) functionality, PHP doesn’t.

While Java has advantages over Ruby on Rails in scalability, security,
transaction management and availability of development tools, Ruby on
Rails has advantages over Java in simplicity, development speed, and
maintainability. Ruby on Rails provides a tightly coupled web framework
consisting of a persistence framework, a web application framework, and
a Web Services framework. The J2EE application framework is not as
seamless as Ruby on Rails and requires much more configuration. Ruby on
Rails also has the advantage of being dynamically typed, while Java is
statically typed.

While a number of books have been published on Ruby on Rails, none
of the books compare Ruby on Rails with PHP and very few compare
Ruby on Rails with Java.

Who Should Read this Book?

A comparison with PHP and Java is included in most chapters where
relevant. But, you don’t have to be a PHP or Java developer to read the
book. You may be using another scripting language or Ruby on Rails may
be the first scripting language based web framework you are learning
about. If you have used Ajax you would be familiar with the requirement
for a server-side tier, which may be PHP-based, Java-based , or .NET-
based. Ruby on Rails supports Ajax and according to an Ajaxian.com
survey® 14% of Ajax developers use Rails as the Ajax platform. If you
have been using PHP or Java class libraries to develop PDF and Excel
reports, Ruby on Rails provides Ruby gems for generating PDF and Excel
reports. If you are a web developer and often use PHP or Java to
create/read/update/delete database entries, Ruby on Rails provides a built-
in support for CRUD. If you have been using Java Naming and Directory
Interface (JNDI) or a PHP class library to implement directory services

6 Ajaxian.com Survey- http://ajaxian.com/archives/ajaxiancom-2006-survey-
results

Outline to the Book Structure VII

Ruby on Rails provides an alternative for creating lightweight directory
access protocol (LDAP) directory services.

It is not a goal to instruct the reader about PHP or Java. Most chapters
include a brief comparison with PHP and Java. The reader shall notice the
similarity between PHP, Java and Ruby, all being object oriented
languages. If a reader is not familiar with PHP or Java, he/she may skip the
comparison sections.

Outline to the Book Structure

In Chap. 1 we introduce the Ruby programming language. We install
Ruby and use the IRB (Interactive Ruby shell) to discuss the syntax of the
Ruby language. The chapter concludes with a comparison of Ruby with
PHP and Java.

Chap. 2 introduces the Rails framework. We install the Rails framework
and discuss the different components of the Rails framework. We discuss
how Rails requests are routed and how helpers, layouts and stylesheets
may be used. We configure the Rails framework with the MySQL
database. The chapter concludes with a comparison with PHP and Java.

Chap. 3 discusses the CRUD functionality provided by Ruby on Rails.
We create a database table in the MySQL database and also discuss
configuring Rails with Oracle and SQL Server databases. We create a
CRUD application to create, read, update and delete catalog entries.

Chap. 4 introduces Ajax and discusses Ajax support in the Rails
framework. We create a database search application to list catalog entries
for a specified section.

Chap. 5 discusses the procedure to create PDF and Excel spreadsheet
reports with Ruby on Rails. A comparison is made with the PHP and Java
class libraries for generating reports.

Chap. 6 discusses the Ruby gems for processing XML. We create an
XML document with the RubyGem builder-2.0.0.gem. We create an XML
document from an Oracle database table. Parsing an XML document with
REXML, an XML processor in Ruby, is also discussed.

In Chap. 7 we discuss PHP on Trax, a PHP web application and
persistence framework for Ruby on Rails. We create a CRUD application
similar to the one in Chap. 3, but without using any Ruby.

In Chap. 8 we discuss creating a directory service with Ruby on Rails.
We also discuss the procedure to install the commonly used directory
servers.

VIII Preface

Chap. 9 discusses the Web Services support in Ruby on Rails. We
discuss the different dispatching modes and protocol clients. A comparison
with creating Web Services with PHP and Java is made.

Chap. 10 discusses the Eclipse plugins for Ruby on Rails. We explain
the procedure to install and use the Ruby Development Tools (RDT) and
RadRails plugins.

Chap. 11 discusses Rails testing. The development phase is not
complete without testing. We discuss unit testing for Rails models and
functional testing for Rails controllers. We also discuss fixtures, sample
data for testing.

Chap. 12 discusses the production aspect of Ruby on Rails. We deploy
a Rails application to Apache2 and FastCGI. We discuss Ruby on Rails
best practices that may improve performance. We also host a Rails
application on a web host.

Prerequisite Skills

Familiarity with PHP and/or Java is assumed to be able to compare Ruby
on Rails with PHP and/or Java. Familiarity with object-oriented concepts
such as classes, methods and inheritance is required. An introduction is
included in all chapters, but a familiarity with Ajax and the concepts of
directory service and Web Service is a pre-requisite.

Acknowledgements

The author would like to thank Hermann Engesser, Executive Editor
Computer Science, Springer. Thanks are also due to Gabriele Fischer, the
project manager at Springer, and to Michael Reinfarth, Production Editor,
LE-TeX Jelonek.

About the Author

Deepak Vohra is a Sun Certified Java Programmer and Sun Certified Web
Component Developer. He has a Master of Science degree in mechanical
engineering from Southern Illinois University, Carbondale. Deepak is an
Oracle Certified Associate. Moreover, he is a Manning Publications

About the Author IX

Technical editor and edited the Prototype and Scriptaculous in Action
book.

Contents

Preface \%
Motivation for this BOOKccovviieiiiiiiiieiiccec e VvV
Who Should Read this BOOK?..........cocveieiiiiiiiieeccceeceecee e VI
Outline to the Book Structurecoovvveeeiiiiieiieeieee e VII
Prerequisite SKIllS.......ccoiiviiiiieiiieiieieeie et VI
Acknowledgementsccoevierieiieeiieeeeeee e VIII
ADbout the AUthOTooiiiiiiiii e VIII

Contents XI

1 Ruby 1
1.1 INtrOAUCEION ..ottt ettt eanes 1
1.2 Installing RUDYoooiiiiiiiicieeeee e 1
1.3 Creating a Ruby Applicationc.ccevveeiiieiiienienieeeece e 3
1.4 Identifiers and COMMENTS............ccevvveeeeiiieiieeeeireee e 5
L5 SHNES 1ottt ettt ettt ettt be et 6
1.6 Arrays Hashes and Rangescccceveveeviieniienieniecieee e 8
1.7 Variables Constants and Operators...........c.ccceeveereeeneeriieenieenneennns 11
L8 CLASSES ..ceuvveeeeeeeeeeree et eeetee et eetre e eete et e e re e etae e eae e eetaeeetreeenteeens 16
L9 MEthOMAS ..ot et 18
1.10 Procs and BIOCKScccueeivuviieirieeeiie et 24
1.11 Control Structures and Iterators..........c..cceveeevveeeiieceiee e 28
1.12 Exception Handlingccoocoeeiiiiiiiniiniiiiiececeee e 33
L13 MOAUIES ..ot ettt 36
1.14 Comparing Ruby with PHPc.ccoooiiiiii e, 36
1.15 Comparing Ruby with Javaccccccevviniiiininieieeeeee, 37
L.16 SUMMATY ...cviiiiiiieeiee ettt et 39

2 Rails Framework 41
2.1 INtrOAUCTION ..ovvieciiecceiee ettt e enee s 41
2.20verview Of RAilSccoovvuviiiiieiiiiiieceee e 41
2.3 ACtiVE RECOId ...oeooeviiiciiieieieeee e 43

2.4 ACtion CONIOLIETcoeiiiiiiiieeeeeeeee e 47

XII Contents
2.5 ACHON VIEW.c.uiiiniiiiiiiiiiniinieiiecteteicet sttt ettt 50
2.5.1 SUD-TemPIAteSeccieriieeiieeie ettt 52
2.6 Ruby on Rails Commandscccceverieneninnienenieniesieeiesiesienns 52
2.7 Installing RailS........coevieriieiiiiieiiesieeee et 53
2.8 Developing a Rails Application.........cccccoeeeevieiiiiiienieneiieeieeeen 54
2.9 RailS ROULES ..c..cuveuieiiiiiriiniiieiceceecrcn ettt 56
2.10 StYlESHEELS ..ottt e 57
21T HEIPETS .ttt st eareeanes 57
212 LAAYOULS ettt ettt ettt e ettt e et eesnee e 58
213 Partials c.ceeeeeeieiee e e 60
2.14 Rails Framework EXxamples..........ccccooveevieiiiniiiiieeiecieceecie e 61
2.15 Configuring Rails with the MySQL Database............ccccceeeueennee. 67
2.16 Comparing Rails with PHP...........cccoooiiiiniiieee 69
2.17 Comparing Rails with Java.........ccccceevviiriiniiniiiiiece e, 69
2.18 SUMIMATY....eetiiiieiiieie ettt st b e 69
3 CRUD on Rails 71
3.1 INtrOdUCHION ..ottt ens 71
3.2 Scaffolding.......ccveviiiieiee et 71
3.3 CRUD With PHP ..ot 72
3.4 CRUD With JaVA....ccciiiriniiniinieicicineceseneececeeiese e 74
3.5 Creating a Rails Application...........ccoecvveviierienieeciieiierienee e enens 75
3.6 Creating a Database Table..........cccocueeiieiiiiiiiiceeeeeeeees 76
3.7 MIGLAtIONS. ¢..eevieeieteeteete sttt sttt ettt ettt sttt sneeneesbeeneenes 77
3.8 Creating catalogs Table with Migrations.............cccecververveneeennnns 82
3.9 Configuring with Oracle Databaseccccevieiereniesienieeeenn, 84
3.10 Configuring with SQL Server 2005 Database...........ccccceceerueneene. 85
3.11 Developing a CRUD Application...........cccceeeiieiienieincenienieeeeans 86
3.11.1 Creating Dynamic Scaffolding...........ccccevcerievieneninnenenene. 87
3.11.2 Creating Scaffolding with Scaffold Generator 88
3.12 Ajax Scaffolding........ccooceeievieiiiieeeieec e 95
3.13 Validations........eeiieiieriiecieeie ettt 100
314 SUMMATY ...ttt ettt et 106
4 Ajax on Rails 107
4.1 INErOAUCLION ottt 107
4.2 OVEIVIEW Of AJAX tuvevieiieiieiieiesieetenie ettt ste st 107
4.3 Overview of XMLHttpREqUESt........ccvevvieieiiiicieieeeeeie e, 108
4.4 Creating an XMLHttpRequest Objectccoeveevieriireiienieenne 110
4.5 Opening an HTTP Request.........ccecveverierieneiiereneeeeeeeees 110
4.6 Sending an HTTP Requestccceeviirieiiiieiieieee e 111

4.7 Processing an HTTP ReSponse........cccocvevvereeienenieneneeieeeenns 111

Ruby on Rails for PHP and Java Developers ~ XIII

4.8 Ajax With PHP ..o 113
4.9 AJax With JAVA ...cocuieiiiiiiiciieee s 113
4.10 Support for Ajax in RailS.......ccooceevieririeniiieecceeceeeee 114
4.10.1 INK 0 TeMOLE.....eereveerierieiierieeieereesieeseveere e esteesieesenees 116
4.10.2 fOrm_TremOte TaZeevveerueieiieriieniieeieeieeieeiee e eee e 117
4.10.3 SUDMIt 1O TEIMOLE ..ovviveeneireieiieieeeietesteeiesteeeee et eeeeeeeeens 117
4.10.4 observe fieldcoceeiieiieiiiiee e 118
4.10.5 0DSEIVE fOIM...cviivieiiieieiieiieieie ettt 119
4.10.6 periodically_call remotecceeveeveerieriieiieiereeeeeeene 119
4.10.7 update _element function..........cccceeveereenienienneeseeceneens 119
4.10.8 UPAALE PALE ..c.vervienieeieiieteeieeie ettt sttt 120
4.11 Creating a Ruby on Rails Application..........ccccceeevereeneernnnnen. 120
4.12 Creating a Database Table..........ccccovvvieierieiienieiieiesceeieee 121
4.13 Sending @ ReqUESEc.ceviriiieiieie ettt 124
4.13.1 Sending a Request with form remote tag Method 125
4.13.2 Sending a Request with observe field Method 127
4.14 Processing @ REqUEStccceeviiiiiiiiieiieiee e 128
4.15 Processing the ReSpOnSe..........ccceevvevieienienieeienenieiesieeeeie e 135
4,10 SUMIMATYeeoniiieiiieeiiee ettt ettt ee ettt e stte e satee s et e e sateeeeaeeesanees 142
5 Creating PDF and Excel Reports 143
5.1 INTOAUCHION ...viieeiiiiietceeee ettt 143
5.2 Creating a PDF with PHP ... 144
5.3 Creating a PDF with Javacccccooiviiiiinieicieeeeeee 144
5.4 Creating a PDF File with Ruby on Railsc..ccccceviiniiininns 145
5.5 Creating a Table in PDFccccoooiiiiiiniieeeceeee, 149
5.6 Creating a Spreadsheet with PHPcccoocviviiiiiiiiiiiees 155
5.7 Creating a Spreadsheet with Javaccccovviiiiiiiniiniiiiees 156
5.8 Creating an Excel Spreadsheet with Ruby on Rails 157
5.9 Creating a Spreadsheet with Ruby Spreadsheetc........ 167
5.10 SUMMATY ...eotiiiieniiiteeeeeee ettt s 172
6 XML On Rails 173
6.1 INtrOdUCTHION ...ovveiieiiiiciiic e e 173
6.2 Processing XML with PHP 5.......ccccooeiiiiiiiiiiieieeeeees 173
6.3 Processing XML with Java........ccccoooiniiiiiiiiieieee e 174
6.4 Installing XML Builderccccoeoeevininiieniiieeneeeeee 175
6.5 Creating an XML Document with Ruby on Rails 176
6.6 Creating an XML Document from a Databasec.ccccceenennne 180
6.7 Parsing an XML Document with REXML............cccccoevviiinnnnnne 184

6.8 SUMMATYoiiiiiiiiiie ettt e ettt e e 189

XIV Contents

7 PHP On Rails
7.1 INtrOdUCHION ..ottt s
7.2 Installing PHPc.oooiiiiiiiieeeeeeee e
7.3 Installing PHPONTTAXccccvevvieiiieiieiiecie et
7.4 Creating a Trax Applicationccccceeeueeiierienieiieeeeree e
7.5 Creating a CRUD Application..........ccocceeeeiereeiienienieenieeieeenes
7.6 SUMIMATY ...cetieeeiiit ettt ettt ettt e et e eiee e et e e e aeeeneee s

8 LDAP On Rails
8.1 INtrodUCHIONcoviieiiieiiciicicicrcecccee s
8.2 Installing OpenLDAPcccoiiiiiiiiieiee e
8.3 Installing Tivoli Directory Server.........coccecereevienereenierieeeneenes
8.4 Installing Oracle Internet Directory.........ccoeeveeveereeeneeniesieeeeenee
8.5 LDAP With PHPcooiiiiiiiiiniiniiiciciercsceeeceeceeees
8.6 LDAP With Java.......cceeeiiiiiiiieeeeeeeee et
8.7 Installing NET:LDAP ..ottt
8.8 Creating a Rails Application...........ccoecveviieriinieeciieiienieeie e
8.9 Creating a Directory Entry.........cccoccvvvviieiiiiieiieiecieeeee e,
8.10 Modifying a Directory Entryccocceeeeveniinieninieieneeieeeeen
8.11 Searching a Dir€ctoryccceeeeeriieniieieeeeseeeee e
8.12 Deleting a Directory Entry.........ccceceveevenenievieninieiceieesieeee
8. 13 SUMMATY....eeieiiieiiieeieeeee et e e e eee e eeeeneeeeneeeenee

9 Web Services On Rails
9.1 INrOAUCTION ..ovviiieniieiieiieiieiee ettt
9.2 Web Services With PHP..........cccccoooiiiiiiiiiiiiccce e
9.3 Web Services With JaVa........cccvevueririeniinieieeeieeeee e
9.4 Creating a Web Service with Ruby on Railscccccvveirennnnne.
9.5 Web Service AP Class.......c.ocecveeeciiieeiiieeieeeeeeeee et
9.6 DiISPAtCRINGeeuveiieiietieiieieeitee ettt e

9.6.1 Direct DispatChing..........ccceveeiieriiinienieeiceeeeeee e
9.6.2 Delegated DispatChing..........ccceecveviieienenieiienicieeeeeieeee
9.6.3 Layered Dispatching...........ccoeeeevieiiiienienieesieeie e
9.7 ProtoCO]l CIIENLSccvveieiiieeiiiieiee et et
0.8 SUMMATYccviiieiiieiieee et eee e et e e e s s e ennee s

10 Ruby on Rails in Eclipse
10.1 INrodUCHIONcoveviriiieieiiciicceinercctccece et
10.2 PHP in EClIPSE...vieuvieiieiieeiieeieeieeeeeeteeeeteee e
10.3 Installing RDTc.oiiiiieee e
10.4 Creating a Rails Project in RDTcccoovvviiniiiiieiecieeeeene
10.5 Creating a Database Table with RDT........c.ccccoviiiiiiiiiie

Ruby on Rails for PHP and Java Developers XV

10.6 Creating a CRUD Application with RDT........cccccoevevrinieennne. 313
10.7 Installing RadRailsccccoeiriiiiiiiiiiee et 316
10.8 Creating a Rails Application with RadRails..........ccccccccevcnenene. 318
10.9 Creating a CRUD Application with RadRailscccceeeeenenne. 320
1O.10 SUMMATY ..ttt ettt ettt et sbeesaee e 323
11 Rails Testing and Fixtures 325
11,1 INtroduCtionc.ceceeiriiniiieiiieinincereeeeee e e 325
11.2 Unit Testing in PHP and Java..........ccccoooeviniiiniiieeceee 325
11.3 Rails EXample TeSt......cccveevieriierieeiieie e 326
11.4 ASSETtION TYPES -.eeuvieiieeiieiiieitesit ettt ettt ettt e 331
11.5 Rails T@SLINZ ...eeveeeereieierie ettt 335
L1.6 FIXTUTES ..ottt ettt ettt ettt ettt e e e eneeeneeens 336
T1.7 UNTt TESEINEZ .ovvevienieeieeiieie ettt ettt s 337
11.8 Testing Controllerscccverierieeiieie e 342
11.9 SUMIMATYeotiiiiiiiiiieieee ettt ettt 349
12 Rails in Production 351
12.1 INtrOdUCHON ..ottt 351
12.2 Setting the Production Modecoooeieiiiiiinieniiiecceeeee 351
12.3 Rails Best Practices and Performanceccoocveeienieninnnnnne 352
12.4 Deployment on Apache2 and FastCGIccocceviiiiiniinnen. 354
12.5 Rails Web HOSHING......ccccviiiieiieiieeieeie et 360
12.6 SUMIMATY ...coieiiiiiie ettt e 387
Sources of Information 389

Index 391

1 Ruby

1.1 Introduction

Ruby is an interpreted scripting language for object-oriented programming.
Interpretive implies that a ruby application is run without first compiling
the application. Variables in Ruby do not have a type; a Ruby variable may
contain data of any type. Variables in Ruby may be used without any
variable declarations. Ruby being an object oriented language has features
such as classes, inheritance and methods. Everything in Ruby is an object
including methods, strings, floats and integers. A ruby script is stored in a
file with the . rb extension and run with the ruby command. First, we
need to install Ruby.

1.2 Installing Ruby

In this section we shall install Ruby, and RubyGems. RubyGems is the
standard Ruby package manager used with Ruby applications and libraries.
To install Ruby, and RubyGems the procedure is as follows. Download
the Ruby Windows Installer' application. Double-click on ruby184-19.exe
application. Ruby Setup Wizard gets started. Click on Next.

! Ruby Window Installer- http://rubyforge.org/frs/?group _id=167

2 1Ruby

uby-185-21 Setup i o sl |

Welcome to the Ruby-185-21 Setup
Wizard

This wizard will guide you through the installation of
Ruby-185-21.

1t is recommended that you close all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Next ta continue,

Cancel |

Fig. 1.1 Ruby Setup Wizard

Accept the license agreement and click on Next. Select the default
components to install, which include the RubyGems package manager,
and SciTE, a Scintilla based Text Editor, and click on Next.

LiEix

Choose Components _—
Choose which features of Ruby-185-21 you want to install. (

J

Check the components you want to install and uncheck the components you don't want to
install, Click Next to continue,

Select components to install: r~ Description

SciTE

FreeRIDE

Enable RubyGems
] European Keyboard

Space required: 96.0MB

ldullsaft Install System vz, 16

< Back I r_\lﬁxt> I Cancel

N

Fig. 1.2 Selecting Components to install

1.3 Creating a Ruby Application 3

Specify a directory to install Ruby (default is c¢: /ruby) and click on
Next.

=ik
Choose Install Location =
Choose the folder in which to install Ruby-185-21. (9)

Setup will install Ruby-185-21 in the Following folder. To install in a different Folder, click
Browse and select another folder. Click Next ta continue.

Browse... '

’—Destination Folder

Space required: 96.0MB
Space available: 11.6GB

[ullsoft Install System vz, 16

< Back I Nef'E > I Cancel

A

Fig. 1.3 Specifying Installation Folder

Specify a start folder and click on Install. Ruby and RubyGems gets
installed. Click on Finish to close the Ruby Setup wizard. Ruby gets
installed. Directory path c:/ruby/bin gets added to System environment
variable PATH. System environment variable RUBYOPT with value —
rubygems gets added.

1.3 Creating a Ruby Application

Next, we shall create a Ruby application. For example, create a Ruby
script helloruby.rb with the following Ruby code.

puts "Hello Ruby"
Run the Ruby script with the following command.
C:/>ruby helloruby.rb

The output from the Ruby script is as follows.
Hello Ruby

4 1Ruby

The puts function is used to print text. The puts function adds a
newline after each text string. For example, modify the Ruby script to the
following script, which includes a string separator.

puts “Hello”, “Ruby”

The output from the Ruby script is as follows.

Hello
Ruby

If the string separator is not specified as in the following script, the
strings are concatenated.

puts "Hello" "Ruby"

The output from the script is as follows.
HelloRuby

Print is another command to print a string. The difference between
the print function and the puts function is that the print function does not
add a newline after a string unless a newline is specified.

Ruby also provides the Ruby interactive shell to run ruby scripts. The
interactive shell may be started with i rb as shown in Figure 1.4.

[*lcommand Prompt - irb

C:\>irh
irhb(main):001:8>

Fig. 1.4 Ruby Interactive Shell

The example Ruby scripts in this chapter are run in irb. A ruby script
may be run from the interactive shell as shown below.
irb(main) : 001:0> puts “Hello Ruby”

The output is as the same as for running a .rb script as shown in Figure
L.5.

["]command Prompt - ith

“Hello Ruby'

=> nil
irh<{main>:002:0> _

Fig. 1.5 Running a Ruby Script in irb

1.4 Identifiers and Comments 5

Ruby also provides the gets function to get a string input by a user. In
the Ruby interactive shell specify gets and press Enter.

irb(main) : 001:0>gets

Input a string, “Hello Ruby” for example, and press Enter. The string
specified gets output.

[¢"]command Prompt - itb =

irh{(main)>:882:8> gets

Fig. 1.6 The gets Function

1.4 Identifiers and Comments

Identifiers are names used to identify variables, methods and classes in a
Ruby script. A Ruby identifier begins with a letter [a-zA-Z] or a * ’ and
consists of alphanumeric characters and underscores. A class name is
required to begin with an uppercase letter. An identifier may not be a
reserved word. Reserved words are listed below.

=begin =end alias and begin BEGIN
break case class def defined? do
else elsif END end ensure false
for if in module next nil
not or redo rescue retry return
self super then true undef unless
until when while yield

A comment begins with a # and a comment is defined upto the end of
the line.

Example of a comment

Documentation may be embedded in a script with =begin =end. The
following listing defines documentation.

=begin

Example Of

Embedded Documentation
=end

6 1 Ruby

1.5 Strings

A string may be specified using single quotes or double quotes. In single
quotes a single quote may be escaped using \’ and a backslash may be
escaped using \\. In double quotes a double quote is escaped using \” and a
backslash is escaped using \\. In double quotes, other characters may also
be escaped such as backspace (\b), carriage return (\r), newline (\n), space
(\s) and tab (\t). Double quotes also has the provision to evaluate
embedded expressions using interpolation with #{}. For example, run the
following ruby script.

puts "#{"Hello"+"Ruby"}"
The output is as follows.
HelloRuby

Variables referenced in #{} are required to be pre-defined. In the
previous example the + operator is used to concatenate strings. The * may
be used to repeat strings as in the following script.

puts "Hello Ruby" *3

The output from the script is as follows.

Hello RubyHello RubyHello Ruby

Characters are integers in Ruby. Characters may be extracted from
strings as shown in the following script.

hello= "Hello Ruby"
puts hello[8]

The character index is 0 based. The output from the script is the ASCII
code for character ‘b’, 98.

Substrings may also be extracted by specifying a start index and an end
index as in the following script.

hello= "Hello Ruby"
puts hellol[6,10]

The output from the script is shown below.
Ruby

Character index offsets may be specified from the end of the string with
—ve indices. Offsets from the end of the string are 1 based and the second
parameter represents the number of characters in the substring, as in the
following script.

1.5 Strings

7

hello= "Hello Ruby"
puts hello[-4,4]

The output from the script is as follows.

Ruby

If more number of characters are specified than available in the string,
the substring is created including upto the end of the string. Strings may be
compared using the == operator as in the following script.

puts "Hello Ruby"=="Hello Ruby"

The output from the script is as follows.

true

Regular expressions may be used in a string. A regular expression is
specified using character patterns. Some of the character patterns are

discussed in Table 1.1.

Table 1.1 Character Patterns

Pattern Description

il Specifies a range. For example,
[a-c] specifies a character in the
range of a-c.

\w Specifies a letter or a digit.

\W Specifies that neither a letter nor
digit should be specified.

\s Specifies a space character.

\S Specifies a non-space character.

\d Specifies a digit character.

\D Specifies a non digit character.

\b Specifies a backspace if in a
range specification. Also
specifies a word boundary if not
in a range specification.

\f Form feed

\t Horizontal tab

\v Vertical tab

\B Specifies a non-word boundary.

8 1Ruby

Table 1.1 (continued)

Pattern

Description

*

Specifies 0 or more repetitions
of the preceding.

+

Specifies 1 or more repetitions
of the preceding.

{m,n}

Specifies at least m and at most
n repetitions of the preceding.

Specifies at most 1 repetition of
the preceding.

Specifies that either the
preceding or the next expression
may match.

0

Specifies a grouping.

The % notation may be used to create string variables. The % notation is
used with delimiting characters to create a string. For example, all of the

following create the string “Hello Ruby”.

o°

[Hello Ruby]
{Hello Ruby}
(Hello Ruby)
!Hello Ruby!
@Hello Ruby@

o° 0P o?°

o\©

The % notation is useful if a string contains quotes; with the % notation
quotes may not be escaped. For example the following strings are

equivalent.

“Hello \ \\Ruby\ "n
% [Hello “Ruby”]

1.6 Arrays Hashes and Ranges

Arrays are created in Ruby by listing items in [] and separating the items

witha ‘,’.

hello =["Hello", "Ruby"]

1.6 Arrays Hashes and Ranges 9

Arrays may be concatenated. For example, create an array, hello_array,

by concatenating another array. Run the following script in irb.

hello =["Hello", "Ruby"]
hello array=hello+["ruby", "RUBY"]

The output is the following array.
=>["Hello", "Ruby", “ruby”, “RUBY”]

An array may be referenced using indices, which are 0 based. For

example the following array reference produces output “RUBY”.

hello array[3]

An array may be created from another array by specifying the start

index and the number of items in the array as in the following script.

hello arrayl[0,2]
The output from the script in irb is as follows.
=>[“Hello”, "Ruby”]

An array may be created from another array by specifying a range of

indices. For example, create an array from hello_array, which consists of
items at indices 0, 1, and 2.

hello arrayl[0..2]
The output is the array shown below.
=> [“Hello" , "Ruby" S \\ruby"]

Negative indices indicate offsets from the end of the array and are 1

based. For example, create an array from the hello_array with the last two
elements.

hello arrayl[-2, 2]
The following array gets produced.
=> [A\Y rubyn , ” RUBY"]

An array may be converted to a string using the join function. For

example, create a string by joining the members of the hello_array using a

(3R]

hello array.join(",")
The following string gets output.
“Hello Ruby, ruby, RUBY”

10 1 Ruby

A string may be converted to an array using split (). The following
script produces the array [“Hello”, “Ruby”,”ruby”,”RUBY”].

"Hello Ruby,ruby,RUBY".split(",")

A Hash is an associative array consisting of key-value pairs in {}
brackets.

hello={1=>"hello", 2=>"Ruby", 3=>"ruby", 4=>"RUBY"}

A hash item is accessed using a key. For example, access the value of
the hash entry with key 3.

hello[3]

A hash entry may be added to a hash. For example, add a hash entry
with key 5.

hello[5]="RUby"
hello

The resulting hash has the new entry appended in the beginning of the
hash.

{5=>"RUby",1=>"hello", 2=>"Ruby", 3=>"ruby",
4=>"RUBY"}

A hash entry may be deleted using delete. The following command in
irb deletes the hash entry with key 5.

hello.delete 5

Each key may occur only once in a hash. Commonly symbols are used
as hash keys. The following hash is declared without using symbols.

hello:{“a”=>"he110", \\bll=>IlRuby", “C"=>"I"ley”,
“d"=>"RUBY"}

If symbols are used, the hash is declared as follows.

hello:{:a=>"hello”, :b=>"Ruby", :c=>"ruby",
:d=>"RUBY" }

A range represents a range of values. A range is specified with a start
value and an end value and with 2 or three ‘.” between. Two ‘.’ specify that
the end value is included in the range. Three .” specify that the end value
is not included in the range. For example, create a range of integers
between 0 and 10, excluding 10.

0..10

1.7 Variables Constants and Operators 11

As another example, define a range of characters between ‘a’ and d’
including ‘d’.

‘tal. . rd’

Ranges represent increasing sequences. The following range would
create an empty sequence.

‘ar..ra’

To determine if a value is within a range use the === method. For

example, create a range between ‘a’ and ‘d’ and determine if ‘¢’ is in the
range and if ‘e’ is in the range.

r = 'a'..'d’
puts r === 'c'
puts r === 'e'

The output is true for ‘c’ and false for ‘e’.

1.7 Variables Constants and Operators

Variables in Ruby are dynamically typed, therefore, variable declarations
are not used. Ruby provides four types of variables.

1. Local Variables
2. Instance Variables
3. Global Variables
4. Class Variables

The prefix of an identifier specifies the type of the variable Different
variable types are discussed in Table 1.2.

Table 1.2 Variable Types

Variable Type Notation Example
Local Variable First character [a-z] var
or
Instance Variable First character @ @var
Global Variable First character $ $var
Class Variables Prefix @@ @@var

Instance and global variables have the value nil before being
initialized. Local variables are required to be initialized before being used.
Class variables are available since Ruby 1.5.3 and also required to be

12 1 Ruby

initialized before being used. Ruby also provides some psuedo variables:
self, nil, true and false. Self is a global variable and refers to the
current object. Nil is a constant and is the value assigned to uninitialized
global and instance variables. The scope of a local variable is the loop,
method, class, procedure object, or module in which it is defined. If the
local variable is not defined in any of these constructs, the scope is the
complete script. The defined? operator is used to check if a variable is
defined as in the following script.

hello="Hello Ruby"
puts defined? (hello)

The output from the script is “local-variable”. Local variables defined
in a method are not available in another method. For example, in the
following script local variable hello is defined in the helloRuby method,
but not in the selloRuby method.

class HelloRuby
def helloRuby

hello= "Hello Ruby"
return defined? (hello)
end

def hello Ruby
return defined? (hello)
end
end
helloRubyInstance=HelloRuby.new
helloRubyInstance.helloRuby
helloRubyInstance.hello Ruby

The output is local-variable for the helloRuby method and nil for the
helloRuby method.

Instance variables are defined in the scope of an object and have the
initial value nil if uninitialized. For example define a class and define a
method in the class. Define an instance variable @#ello in the method.

class HelloRuby
def hello (name)
@hello=name
return "Hello" + @hello
end

end

1.7 Variables Constants and Operators 13

The instance variable @hello is only available to instances of the
HelloRuby class. For example, create a class instance and invoke the Aello
method.

helloRuby=HelloRuby.new
helloRuby.hello ("Ruby")

Create another class instance and invoke the hello method with a
different value.

hello Ruby=HelloRuby.new
hello Ruby.hello("ruby")

Run the following script in irb.

irb(main) : 001:0>class HelloRuby
def hello(name)
@hello=name

return "Hello" + @hello
end

end
helloRuby=HelloRuby.new
helloRuby.hello ("Ruby")

hello Ruby=HelloRuby.new
hello Ruby.hello("ruby")

The output is “HelloRuby” for the first class instance method invocation
and “Helloruby” for the second class instance. The instance variable has
the value “Ruby” for the first class instance method invocation and “ruby”
for the second class instance method invocation.

Global variables are available throughout a ruby script. For example,
declare a global variable $iello and output its value by invoking a method.
Modify the variable’s value in another method and output the variable’s
value as shown in the following script.

Shello="Ruby"
class HelloRuby
def hello
Shello= "Hello" +Shello
end

def varValue
return Shello
end
end

14 1 Ruby

helloRuby=HelloRuby.new
helloRuby.varValue
helloRuby.hello
helloRuby.varvValue

The $hello variable’s value is “Ruby” before being modified by
invoking the hello method and “HelloRuby” after being modified.

Class variables are associated with a class and all instances of a class
have the same class variable copy. The difference between class variables
and global variables is that class variables are required to be initialized
before being used and do not have the default value nil. As an example,
create a class variable @@hello and modify the value of the variable by
invoking a method of the class. The value of the variable changes for all
instances of the class. The following script returns the @@hello variable
value for class instance helloRuby as “HelloRuby”, because another class
instance has modified the variable value.

@@hello="Ruby"
class HelloRuby
def hello
@@hello= "Hello" + @@hello
end

def wvarValue
return @@hello
end
end
helloRuby=HelloRuby.new
helloRuby.varValue
helloRuby.hello

hello Ruby=HelloRuby.new
hello Ruby.varValue

Some pre-defined system variables are defined that consist of $ as the
first character and these may not be defined as global variables. Some of
these system variables are discussed in Table 1.3.

Table 1.3 System Variables

System Variable Description

$! Specifies latest error message.
S@ Specifies error location.

$ Specifies string last read by gets

1.7 Variables Constants and Operators 15

Table 1.3 (continued)

System Variable Description

$. Specifies line number last read
by interpreter.

$/ Specifies input record separator.

$\ Specifies output record
separator.

$0 Specifies name of ruby script
file.

$* Specifies the command line
arguments.

$. Specifies line number last read
by interpreter.

A constant is an identifier with a constant value and starts with an
uppercase letter. Constants may be defined within classes and modules and
are accessible outside the class or module. For example, define a constant
Hello in a class and access the constant outside the class. Run the
following ruby script in irb.

irb(main) : 001:0>class HelloRuby
Hello="Hello Ruby"
end

HelloRuby: :Hello

The output is as follows.

=>"Hello Ruby”

Constants may be reassigned value, but a warning gets generated that
the constant has already been initialized.

Ruby handles all operators by converting them to methods. The method
name is the same as the operator name. The ‘=" operator is used for
assignment in following Ruby. example.

var=1
strvar="String Variable”
hello=Hello.new

Ruby supports the +=, -=, *=, /=, **= operators. Ruby also supports
multiple assignments as shown below.

x,y,z="'Hello', 'Ruby', 'ruby'

16 1 Ruby

puts x
puts y
puts z

The output is as follows.

Hello
Ruby
Ruby

Arrays may be created using %w() or %{}. For example, the following
script outputs “Ruby”.

array=%w(Hello Ruby ruby)
puts array[1l]

The ||= operator is used for conditional assignment. If a variable value is
nil the value specified with ||= is assigned to the variable. For example, the
following script outputs “default value”.

var=nil
var| |="default value"
puts var

Ruby also provides symbols. A symbol is a variable prefixed with a
colon (:), which is stored with a unique id, for example :varl. Symbols are
like constants and are used for comparison in Rails as they require less
processing than strings.

1.8 Classes

Ruby is an object oriented language and a class represents the template
from which objects may be created. An object is an instance of a class. A
class consists of variables and methods. A class definition starts with
class and ends with end. A class name is required to begin with a
capital letter. The following script defines a class Hello, which consists of
a method #ello.

class Hello

def hello
return “Hello Ruby”
end
end

1.8 Classes 17

A class is instantiated with the new method. For example, create an
instance of the class Hello.

hello=Hello.new

Using the class object invoke the method hello.
hello.hello

The output from the method invocation is “Hello Ruby”. Classes in
Ruby support inheritance. For example create another class Msg, which
extends class Hello. Extending a class is denoted with ‘<’. Define a
method msg in class Msg that return a string. Create an instance of class
Msg and invoke the msg method. As the Msg class extends the Hello class,
an instance of class Msg is also an instance of class Hello. Invoke the hello
method of class Hello with an instance of class Msg. Run the following
script .

class Hello

def hello
return "Hello Ruby"
end
end

class Msg <Hello
def msg
return "Hello ruby"
end

end

msg=Msg.new
msg.msg
msg.hello

The output from invoking the msg method is “Hello ruby” and the
output from invoking the hello method is “Hello Ruby”. Ruby does not
support multiple inheritance, therefore, a class may extend only one other
class.

A initialize function may be defined to initialize a class. The
initialize function is invoked after a class instance is created. For example,
define a class with the initialize function. Initialize an instance variable
@hello in the initialize function. Output the value of the instance variable
by invoking another method of a class instance.

class Hello
@hello

18 1 Ruby

def initialize (hello)
@hello=hello

end

def hello
return @hello
end
end

hello=Hello.new("Hello Ruby")
hello.hello

The output from the Ruby script is “Hello Ruby”.

1.9 Methods

Methods in Ruby begin with def and end with end. The following
method takes a name parameter and returns a string.

class Hello

def hello (name)
return “Hello” +name
end

end

A method is invoked with an instance of the class in which the method
is defined. The hello method of class Hello may be invoked as follows.

helloObj=Hello.new
helloObj.hello (“Deepak”)

The output from the method invocation is “HelloDeepak”. Method
names in Ruby should begin with a lowercase letter. By default, methods
return the last statement in the method. Therefore, the following method,
which does not have a return statement, would also return a “Hello ...”
string.

def hello (name)

“Hello” +name
end

Method parameters may be assigned default values. For example, in the
following method definition parameter name is assigned a default value.

1.9 Methods 19

def hello(name="John”)
return “Hello” +name
end

If the method is invoked without an argument, the default value is used.
The following script outputs “HelloRuby”.

class Hello
def hello (name="Ruby")

return "Hello" +name
end

end
helloObj=Hello.new
helloObj.hello

Ruby has the provision to define methods with a variable number of
arguments by preceding the last parameter of a method with an asterisk
(*). For example, define method hello to take a variable number of
arguments. The following script outputs “Hello Ruby,ruby, RUBY™.

class Hello

def hello (*name)
return "Hello " +name.join(','")
end

end

helloObj=Hello.new
helloObj.hello ("Ruby", "ruby", "RUBY")

The asterisk operator may also precede an Array argument in a method
invocation. In the following script the hello method is invoked with an
array using the * operator.

class Hello

def hello(namel,name2,name3)

return "Hello " +namel+", "+name2+", "+name3
end

end

helloObj=Hello.new

array=["Ruby", "ruby", "RUBY"]

helloObj.hello (*array)

20 1 Ruby

The output from the script is “Hello Ruby, ruby, RUBY”. The
parentheses in method invocation may be omitted. The hello method may
be invoked with arguments as follows.

helloObj.hello "Ruby", "ruby", "RUBY"

Parentheses are required if another method is to be invoked on the
method invocation result. For example if a method returns an array and the
order of the elements in the array is to be reversed, parentheses are
required as shown below.

array= helloObj.hello ("Ruby", "ruby", "RUBY").reverse

A hash may be used as an argument to a method. For example, define a
method hello and invoke the method with a hash as shown below.

class Hello

def hello (name)
return "Hello " +name[:c]
end

end

helloObj=Hello.new
helloObj.hello :a=>"Ruby", :b=>"ruby", :c=>"RUBY"

The output from the method invocation is “Hello RUBY”.Methods in
Ruby are public, by default. The access may be restricted by public,
private and protected methods, Public, private, and protected are
not keywords, but methods that operate on a class.

For example, in the following class/method definition hello is declared
as a private method.

class Hello
def hello (name)
return "Hello " +name
end
private :hello
end

If private is invoked without arguments, all methods following private
are set to private, as in the following example.

class Hello
private

def methodA
end

1.9 Methods 21

def methodB
end
end

Methods methodA and methodB are set to private. A method may also
be set to private with the method private class method.

private class_method :hello

Private methods may only be accessed within the class they are
declared or a subclass of the class. . For example, if class Hello defines a
private method #ello, and helloObjl is an instance of class Hello,
helloObj1 may only access non-private methods of class Hello eventhough
helloObj1 is an instance of class Hello. In the following script, method
hello is private to class Hello, and may only be invoked within the class.

class Hello

def hello (name)
return "Hello " +name
end

private :hello

def helloRuby
hello "Ruby"
end
end

helloObjl=Hello.new
helloObjl.helloRuby
helloObjl.hello "Ruby"

The output from the script is the string “Hello Ruby” for the helloRuby
method invocation, which invokes private method hello. When the hello
method is invoked directly by an instance of class Hello an error gets
output: “NoMethodError: private method ‘hello’ called...”.

Protected methods also may be accessed within the defining class and
subclasses of the class. The difference between private methods and
protected methods is that a protected method may be invoked with an
explicit receiver while a private method may be invoked with only self
as the receiver, which implies that a protected method may be invoked by
an instance of the defining class and by an instance of a subclass of the
defining class while a private method may only be invoked within the
context of the defining class or a subclass of the defining class. In the
preceding example, method hello may be invoked with an instance of class

22 1 Ruby

Hello, as shown below, or an instance of a sub-class of Hello, if method
hello is protected.

class Hello

def hello (name)
return "Hello " +name
end
protected :hello
helloObjl=Hello.new

helloObjl.hello "Ruby"

end

Ruby provides accessor methods for instance variables. Without the
accessor methods getter/setter methods would have to be used. For

example, getter/setter methods are used in the following listing to access
an instance variable.

class Catalog

def initialize(catalogid)
@catalogid=catalogid
end

def getCatalogid
@catalogid
end

def setCatalogid(catalogid)
@catalogid=catalogid
end

end
catalog=Catalog.new("catalogl")
catalog.getCatalogid
catalog.setCatalogid("catalog2")
catalog.getCatalogid

The output from the Ruby script is as follows.

“catalogl”
“catalog2”
“catalog2”

1.9 Methods 23

The attr accessor function provides the getter/setter functionality.
In the following script, the attr accessor method is used on the catalogid
instance variable.

class Catalog

def initialize(catalogid)
@catalogid=catalogid
end

attr accessor :catalogid

end

catalog=Catalog.new("catalogl")
catalog.catalogid
catalog.catalogid="catalog2"
catalog.catalogid

More than one instance variables may be specified in an attr_accessor
function.

attr_accessor :varl, :var2

If only getter functionality is required use function attr reader, and
if only setter functionality is required use the attr writer function.

Ruby provides Singleton methods, which are defined only for an object
of a class. For example, define a class Hello with a method hello. Create an
instance of the class and define a singleton method for the instance of the
class.

class Hello

def hello

return "Hello Ruby"
end

end

helloObj=Hello.new
helloObj.hello

def helloObj.hello (name)
"Hello"+ name

end
helloObj.hello("ruby")

24 1 Ruby

The script returns “Hello Ruby” for the invocation of the hello method
and “Helloruby” for the invocation of the singleton method hello(name),
which is defined for the helloObj object.

1.10 Procs and Blocks

Proc objects are blocks of code bound to a set of local variables. A block:
{ %] ...}
is equivalent to:
do |x]|

A Proc object is created using the Proc.new method. Create a proc
that outputs a Hello message.

hello=Proc.new{|name| puts "Hello "+name}
hello.call ("Ruby")

The output from the script in irb is “Hello Ruby”.

If a local variable specified in a Proc object is previously specified, and
the Proc object is invoked with a variable value, the previously specified
variable value gets changed. In the following script variable x value gets
changed to 10 after invoking the Proc object.

x=1

proc = Proc.new {|x| puts x }
proc.call(10)

puts x

The parameters of a Proc object are specified in the || in the beginning of
the block. The code following the parameters is run when the Proc is
invoked. A Proc is invoked with the call method, which takes the
arguments to the Proc object and returns the last expression evaluated in
the block. More than one parameters may be specified in a Proc object.
The following script, which invokes a Proc object with 3 parameters,
outputs the message “Hello Ruby, ruby, RUBY™.

hello=Proc.new{|namel, name2, name3| puts "Hello

"+namel+", "+name2+", "+name3}
hello.call ("Ruby", "ruby", "RUBY")

1.10 Procs and Blocks 25

The parameters may be omitted from a Proc object as in the following
script, which outputs “Hello Ruby”.

hello=Proc.new{ puts "Hello Ruby"}
hello.call()

A method may be invoked with a Proc object argument. For example,
create a class Hello and a method helloMthd, which takes 2 parameters.
Create a Proc object, create an instance of the class and invoke the method
with the Proc object as shown in following listing.

class Hello

def helloMthd (paraml, param2)
return paraml.call (param2)

end

end

helloProc=Proc.new{ |name| puts "Hello "+name}
helloObj=Hello.new
helloObj.helloMthd (helloProc, "Ruby")

The output from invoking the helloMthd method with a Proc object is
“Hello Ruby”. If a Proc.new object in a method contains a return
statement, invoking the Proc object returns from the enclosing method. In
the following script, a method creates a Proc object with Proc.new. In the
Proc object a return statement is specified. The Proc object is invoked in
the method. When the method is invoked, the Proc object gets invoked,
and the method invocation returns.

class Hello
def hello()

helloProc=Proc.new{return "Return from Proc"}
helloProc.call ()

puts "Hello Ruby"

end

end

helloObj=Hello.new
helloObj.hello()

The output from the script is “Return from Proc”. The “Hello Ruby”
string is not output. The Kernel module provides a method called proc or

26 1 Ruby

lambda, which is equivalent to Proc.new, but which does not return from
the enclosing method. If the preceding script is run with the proc method,
instead of Proc.new, the output is “Hello Ruby”. Another difference
between Proc.new and the proc method is that the proc method checks for
the number of arguments, while Proc.new doesn’t. For example, a
Proc.new block, which defines 2 parameters, may be invoked with 3
arguments as in the following script.

hello=Proc.new{|namel, name2| puts "Hello "+namel}
hello.call ("Ruby", "ruby", "RUBY")

The output is “Hello Ruby”.

In contrast, if the proc method is used to create a Proc object and the
Proc object is invoked with a different number of arguments than
specified, an error gets generated. For example, the following script creates
a Proc object with the proc method that defines 2 parameters, and when the
Proc object is invoked with 3 arguments an error gets generated:
“ArgumentError: wrong number of arguments (3 for 2)”.

hello=proc{|namel, name2| puts "Hello "+namel}
hello.call ("Ruby", "ruby", "RUBY")

The Proc.new method may be used without a block, if invoked in a
method and the method has an attached block, as in the following script.

def hello
Proc.new
end
helloProc = hello { "hello ruby" }
helloProc.call

A block of code may be used with a method without using Proc.new to
create a Proc object. When a block is appended to a method call, Ruby
converts the block of code to a Proc object without a name. The Proc
object may be invoked in the method using the yield method, which is
equivalent to an explicit call to an explicit Proc object. In the following
listing method hello is invoked with a block. Ruby converts the block to a
Proc object, which may be called using the yield method.

def hello
yield

1.10 Procs and Blocks 27

yield
end

hello {puts "Hello Ruby"}

The output from the script is as follows.

Hello Ruby
Hello Ruby

The ampersand operator (&) may be used to explicitly convert between
a block and a Proc object. If an & is prepended to the last parameter of a
method and a block attached with the method, the block gets converted to
a Proc object and gets assigned to the last argument. In the following
example, the last argument of the hello method is prepended with an &.
When the method invocation is attached with a block, the block gets
converted to a Proc object and gets assigned to the last argument of the
method. The call method may be invoked on the Proc object ‘name’ in the
method definition. The yield method may still be used to invoke the Proc
object.

def hello (msg, &name)

name.call (msg)
yield (msg)
end

hello ("Ruby") {|name| puts "Hello " +name}
The output from the Ruby script is as follows.

Hello Ruby
Hello Ruby

The argument prepended with & isn’t really an argument, but meant to
convert a block of code to a Proc object. A method may not be invoked
with a Proc object where a block is expected. For example, if the hello
method in the preceding script is invoked with a Proc object instead of a
block, as in the following listing, an ArgumentError gets generated.

28 1 Ruby

def hello(msg, &name)
name.call (msg)

yield (msg)

end

hello ("Ruby", proc {|name| puts "Hello " +name})

But, a Proc object may be converted to a block and a method that
expects a block invoked with the converted block. A Proc object is
converted to a block by prepending the Proc object with an &. In the
following script, the procObj Proc object is prepended with a & in the
hello method invocation.

def hello(msg, &name)

name.call (msg)
yield (msg)
end

procObj=proc {|name| puts "Hello " +name}
hello ("Ruby", &procObj)

The output is the same as invoking the method with a block.

1.11 Control Structures and Iterators

Ruby provides control structures to run code conditionally. A conditional
branch evaluates a test expression and evaluates code in a block depending
on whether the expression evaluates to true or false. The if control
structure is used evaluate a block of code if the expression following if
evaluates to true as shown in the following example.

varl=nil

if varl==nil

varl="Nil Variable"
end

The output is "Nil Variable". The test expression and code block may be
put on the same line using then.

varl=nil
if varl==nil then varl="Nil Variable" end

The if expression may also be used as follows.

1.11 Control Structures and Iterators 29

varl=nil
varl="Nil Variable" if varl==nil

The unless expression evaluates a block of code if an expression
evaluates to false.

varl=nil

unless varl!=nil
"Variable is Nil"
end

The output is "Nil Variable". The if-elsif-else expression
evaluates a series of expressions. For example, the following if-elsif-else
script outputs “Varl is nil”.

varl=nil

if varl==
"Varl is 1"

elsif varl==
"Varl is 2"

elsif varl==
"Varl is 5"

else

"WVarl is nil"

end

The short-if statement is used to evaluate one expression if a Boolean
expression is true and another expression if the Boolean expression is
false.

varl=5
(varl==nil)? nil : "Varl is not nil"

The preceding Ruby script outputs “Varl is not nil”. The case
statement is used to test a sequence of conditions. The following script
tests name with different strings and outputs “Ruby”.

name="Ruby"

case name
when "RUBY"
puts "RUBY"
when "ruby"
puts "ruby"
when "Ruby"
puts "Ruby"

end

30 1 Ruby

The while statement runs a block of code while a specified condition
is true. The following script outputs an integer and increments the integer
while the integer is not 10.

var=1

while var!=10
puts var
var +=1

end

The until statement is a negated while. The following script outputs
an integer and increments an integer until the integer is 10.

var=1

until var==10
puts var
var +=1

end

Ruby provides four methods to exit a while/until loop: break, next,
redo, and return. The break exits the loop. In the following script,
integers are output only upto 7.

var=1
while var!=10
if var==
break
end
puts var
var +=1
end

The next statement invokes the next iteration of a loop. In the
following script, which has a next statement, integers 2 to 10 are output
except integer 8, because the next iteration is invoked if var value is 8.

var=1

while var!=10
var +=1
if var==
next
end
puts var

end

1.11 Control Structures and Iterators 31

The redo statement restarts the current iteration again. The following
script restarts current iteration if var value is 8. The output is integers 1 to
9.

var=1

while var!=10
puts var
var +=1
if var==
redo
end

end

A return statement in a loop exits the loop and also the method that
contains the loop. The following script iterates the while loop twice.

class Hello

def hello

var=1

while var!=10

puts "Hello Ruby"
var+=1

if var==3

return "Hello Ruby"
end

end

end

end
hello=Hello.new
hello.hello

The for statement iterates over a collection without using indices. The
collection may be a hash, an array, a range or any other collection. The
following script iterates over an array and outputs a Hello message for
each element in the collection.

array =["Ruby", "ruby", "RUBY"]
for name in array

puts "Hello"+ name
end

The output is as follows.

32 1 Ruby

“Hello Ruby”
“Hello ruby”
Hello RUBY”

A collection may also be iterated using the each method. The
following script also produces the same output as the preceding script.

array =["Ruby", "ruby", "RUBY"]

array.each do |name]
puts "Hello "+ name
end

A string type provides a method each byte, which iterates over each
character in the string. The following snippet outputs ASCII character
codes for the characters in the “RUBY” string.

str="RUBY"

str.each byte do |c|
puts c
end

Ruby provides another iterator for string type, each line, which
iterates over each line in a string.

str="RUBY\nRuby\nruby"

str.each line do |1|
puts 1
end

The output from the code snippet is as follows.

RUBY
Ruby
Ruby

The each method for a string type is the same as the each_line method.
The retry statement restarts the iteration from the beginning. The
following script, outputs “Hello Ruby” twice.

array =["Ruby", "ruby", "RUBY"]
c=0

array.each do |name|

if name=="ruby" and c==

retry

end

puts "Hello "+ name

1.12 Exception Handling 33

c +=1
end

The redo statement is used to restart the current iteration. The
following script does not output a string if ¢ is 1.

array =["Ruby", "ruby", "RUBY"]

c=0

array.each do |name|

if c==

c +=1

redo

end

puts c

puts "Hello "+ name

c +=1

end

Ruby provides the n.times do iterator for n iterations. For example,
the following iteration outputs 0, 1, 2, 3.

4.times do |num|
puts num

end

1.12 Exception Handling

Exceptions are conditions in the running of code that prevent the code
from running. An Exception is an instance of class Exception or a sub-
class of Exception. In the section on methods, we discussed that if a
private method of a class is invoked with an instance of the class, a
NoMethodError gets generated. NoMethodError is a sub-class of
NameError class, which is a sub-class of StandardError class, which is a
sub-class of the Exception class. Ruby provides exception handling
mechanism with begin/end block. If an exception is raised in a
begin/end block Ruby provides the rescue clause to handle the
exception. Multiple rescue clauses may be specified in a begin/end block
to handle different error conditions. An ensure clause may also be
specified that consists of statements that are run whether an exception
occurs or not. The format of a begin/end block is as follows.

34 1Ruby

begin

rescue Exceptionl
Statements to run when an exception of type
Exceptionl occurs

rescue Exception2
Statements to run when exception of type
Exception2 occurs.

ensure
Statements to run whether an exception occurs or
not.

end

A reference to the exception object associated with the latest exception
is available in the global variable $!. In the following script, a
NoMethodError gets generated when a private method a class is invoked.
An error message is output in the rescue statement.

class Hello

def hello (name)
return "Hello " +name
end

private :hello
end

begin

helloObjl=Hello.new

helloObjl.hello "Ruby"

rescue NoMethodError

Sstderr.print "The NoMethodError has been generated:
||+$!

end

The output from the script is as follows.

The NoMethodError has been generated: private method
hello called for #<Hello:>

If no exception class is specified in the rescue clause, the StandardError
exception is the default. Multiple exception classes may be specified in a
rescue class, and a local variable may be specified to receive the matched
exception. For example, in the following script multiple exception classes
have been assigned to a rescue clause and also a local variable has been
assigned to the rescue class.

1.12 Exception Handling 35

class Hello

def hello (name)
return "Hello " +name
end

private :hello

end

begin

helloObjl=Hello.new

helloObjl.hello "Ruby"

rescue NoMethodError, SyntaxError =>error
Sstderr.print error

end

The output from the script is as follows.
private method hello called for #<Hello:>
Parameters to the rescue clause may be expressions that return an

Exception class. Exceptions may also be raised explicitly using the raise
method. The raise method has one of the following syntaxes.

raise
raise(aString)
raise(anException [, aString [anArray 1])

With no arguments, raise raises the exception in !$ or raises a
RuntimeError if !$ is nil. With a single argument, raise raises a
RuntimeError with the string message. With the third syntax, the first
parameter is the Exception class or a sub-class of the Exception class. The
optional second parameter is string message associated with the exception.
The optional third parameter is an array of callback information. In the
following script, an exception of type Exception is raised in the hello
method and the rescue clause outputs the error message.

class Hello

def hello (name)
raise Exception, "An exception has been generated
in the hello method"
return "Hello " +name
end

end

36 1 Ruby

begin

helloObjl=Hello.new

helloObjl.hello "Ruby"

rescue NoMethodError, Exception =>error
Sstderr.print error

end

The output from the script is as follows.

"An exception has been generated in the hello
method" .

The raise method is available in the kernel module.

1.13 Modules

A module is a collection of classes, methods, variables, and constants. A
module is defined with the following syntax.

module

end

A module is similar to a class in that it is a collection of methods,
variables, and constants. But, a module is different from a class, because a
module may not be instantiated or sub-classed. Members of a module are
referenced with the :: notation. For example, if class Class1 is in module
Modulel, the class is referenced as Modulel::Class1. Modules provide
multiple inheritance with mixins. A module may be included in a class,
thus, the members of the module become the members of the class. A
module is included in a class with the include statement. If the module
is another file, first import the module with a require statement.

require Modulel
include Modulel

1.14 Comparing Ruby with PHP

Both PHP and Ruby are interpreted scripting languages. Both PHP and
Ruby are object-oriented and provide classes, methods, and class
inheritance. Ruby is more object-oriented than PHP; in Ruby everything is
an object. In both Ruby and PHP, a class may extend one other class;
single inheritance. In both Ruby and PHP access to classes and methods

1.15 Comparing Ruby with Java 37

may be public, protected or private. The PHP script runs on the web server
and output may be viewed in a web browser. For server-side-scripting
three components are required; PHP Installation, Web Server, and a Web
Browser. PHP is dynamically typed; variables are not declared, just as in
Ruby. Ruby provides the constant nil corresponding to PHP type NULL.
Both Ruby and PHP provide the constants TRUE and FALSE. Both Ruby
and PHP support expression interpolation for double-quoted strings using
#{}; expressions enclosed in #{} in a double quoted string are evaluated
and replaced with the result. Both Ruby and PHP support exception
handling. Both Ruby and PHP may be embedded in HTML, the syntax
though is different. PHP code is embedded using <? 7> and Ruby code is
embedded using <% %>, or <%= %> to output to a browser. Ruby and
PHP are different in some other aspects too. Ruby is a strongly typed
language, which means that explicit conversions have to be performed
between data types, unlike PHP, which performs the type conversions
automatically. Strings, numbers, arrays, and hashes are objects in Ruby
unlike in PHP. Integers in Ruby may contain underscores as markers,
which are not evaluated by the parser. Ruby provides symbols, which
PHP doesn’t. In Ruby parentheses are optional in method invocation,
unlike in PHP. Ruby provides control structures if, else and elsif
corresponding to PHP’s control structures if, else and elseif.
Corresponding to PHP’s while, do-while, for and foreach, Ruby provides
n.times do, while, begin-end-until, for and .each do. Ruby does not
support abstract classes or interfaces, which PHP does. Almost everything
in Ruby gets converted to a method call.

1.15 Comparing Ruby with Java

Ruby is similar to Java in that both are object-oriented languages and are
strongly typed. But, Ruby is dynamically typed, whereas Java is statically
typed; in Ruby type declarations are not used while in Java type
declarations are required. Both Java and Ruby provide inheritance and
have public, private and protected methods. Ruby is simpler than Java and
faster than Java too. Ruby is different from Java in a number of features.
The differences between Java and Ruby are discussed in Table 1.4.

38

1 Ruby

Table 1.4 Comparing Ruby with Java

Feature Ruby Java
Interpreted/Compiled Ruby is an interpreted | Java
scripting language | applications are
and is run directly. required to be
compiled
before running.
Defining Blocks Ruby defines a | Java uses
class/method block | braces to define
using the end | a class/method
keyword. block.
Importing The require statement | The import
packages/modules is used to import a | statement is

class or a module.

used to import
a package or a
class.

Multiple Inheritance.

Uses mixins for
multiple inheritance.

Uses interfaces
for multiple

inheritance.
Typed Variables Variables do not have | Variables have
an explicit type | an explicit
associated. type.
Constructor Constructor is the | Constructor is

initialize method.

the name of the
class.

Class Instantiation. A class Classl 1is | A class Classl
instantiated as | is instantiated
follows: as follows:

class1=Class1.new classl=new
Class1()

Configuration file YAML files are used. | XML files

Null value nil null

Casting No casting. Casting is used.

Type declarations. No type declarations. | Variables are
Variables are | statically typed.

dynamically typed.

1.16 Summary 39

Table 1.4 (continued)

Feature Ruby Java
Objects Everything is an | Objects
object including
numbers.
Parentheses in | Parentheses in | Parentheses in

method invocation. method invocation | method invocation.
are optional.
Member variables. All member | Member variables.
variables are private.

1.16 Summary

In this chapter we installed Ruby. We discussed the Ruby syntax. We
compared Ruby with PHP another commonly used scripting language. We
also compared Ruby with Java.

2 Rails Framework

2.1 Introduction

A J2EE web application requires a lot of different components such as
JSPs/HTMLs, EJBs, Servlets and also requires some configuration files.
Ruby on Rails requires lesser code in comparison to a J2EE MVC
application and does not require any configuration files (except a database
configuration file). Ruby is an interpretive object oriented scripting
language. Rails is a Ruby based framework for developing web
applications with a database component using the Model-View-Controller
pattern. To develop a Ruby on Rails application a web server and a
database are required. Rails includes a built-in web server, WEBTrick. Rails
also supports other web servers such as Apache HTTP server. Rails is
configured with the MySQL database by default. Rails also supports other
databases such as PostgreSQL, SQL Server, IBM’s DB2 UDB, Oracle and
SyabaseASA. Rails supports most operating systems. We shall be using
the Windows operating system.

2.2 Overview of Rails

Rails is a web application and persistence framework to develop database-
based web applications according to the Model-View-Controller pattern.
Views are the user interfaces of a web application. A view is rendered
using RHTML or RXML. RHTML is Ruby embedded HTML, and RXML
is Ruby-generated XML. The controller sets instance variables required by
a view and renders a view. A view contains links to methods (actions)
defined in the controller with which controller actions are invoked. Models
model business objects in a MVC application. In Rails, models are
typically based on Active Record design pattern, which provides an object-
relational mapping (ORM) between business objects and a database. With

42 2 Rails Framework

Active record pattern a database table is represented by a class, and an
object instance represents a row in the database table. The database table
columns are represented by the attributes of the class, and the class
provides accessors for each column in the database table. The controller is
a class that extends the ApplicationController class and consists
of actions (methods). A controller integrates the model with the view
using public methods (actions). The model provides the data, the controller
provides business logic to process the data, and the view presents the data.
A request is initiated from a view template in a browser. The web server
forwards the request to a dispatcher. The dispatcher loads the controller.
The controller provides the business logic and interacts with the Active
Record persistence layer to return a response to the view template, which
gets displayed in the browser.

Rails is a combination of the following sub-projects:

1. Model: Active Record is an object relational mapping package
built on the Active Record pattern.

2. Control: Action Controller (Action Pack package).

3. View: Action View (Action Pack package).

The Rails Model-View-Controller framework is shown in Figure 2.1.

Rails Model-View-Controller Framework

Sends Request WEBrick

Browser
Web Server

1
Forwards
Y

Dispatcher
Displays

Loads

CRUDs
Renders

Action View < —— Controller Active Record

Returns Response
Queries/ Returns Data
Stores

Database ‘

Fig. 2.1. Rails Model-View-Controller Framework

2.3 Active Record 43

2.3 Active Record

Active Record objects extend the ActiveRecord: :Base class. Active
Record integrates business objects and database tables to create a
persistable domain model. An Active Record object is linked with a
database table. An Active Record does not specify its attributes directly,
but the attributes have a 1-1 mapping to the database table columns it is
linked to. Adding, removing and modification of attributes is performed
directly in the database table. An Active Record object may be initialized
using a hash or a block with the new () method. An Active Record object
created with the new() method is not saved in the database table. To
create an Active Record object that is saved in the database table use the
create () method. An example of creating an Active Record object for
model class Catalog with attributes journal, edition, title, author is as
follows.

Catalog=Catalog.new (:journal=>"Oracle Magazine”,
:edition=>"Jan-Feb 2007”, :title=>"Modeling Tables and
Components”, :author=>”Steve Muench”)

Only attributes that have matching column names in the associated
database table may be specified. Using block initialization a Catalog class
Active Record object is created using accessors on the Active Record
object as follows.

catalog= Catalog.new do |c]
.journal="Oracle Magazine"
.edition="Jan-Feb 2007"
.title="Modeling Tables and Components"
.author="Steve Muench"

2 nnaan

Active Record object initialization may also be performed by creating
an Active Record object and subsequently settings its attributes using
accessors.

catalog= Catalog.new

catalog.journal="Oracle Magazine"
catalog.edition="Jan-Feb 2007"
catalog.title="Modeling Tables and Components"
catalog.author="Steve Muench"

Active record does not require any configuration files. Active Record
uses transactions for database operations. By default the Rails framework

44 2 Rails Framework

uses the connection settings in the config/database.yml file for connecting
to the database. The establish connection ()method of the
Active:Record:Base class may be used to create a class specific connection
with the database. By default the Rails framework uses pluralization to
obtain the database table name with the Inflector module. If the model
class name is Catalog the database table name is “catalogs”. The database
table name may also be set with the set _table name method of the
ActiveRecord:Base class. ActiveRecord:Base class methods are used to
create a database record, find a database record, update a record and delete
a record. Some of the methods in the ActiveRecord:Base class are
discussed in Table 2.1.

Table 2.1 ActiveRecord::Base Class Methods

Method Description

attribute _names() Returns an array of attributes
names for an Active Record
object.

attributes() Returns a hash of attributes.

columns() Returns an array of columns for

the database table associated
with the Active Record.

establish _connection() Establishes a connection to the
database.

remove_connection() Removes a connection
associated with an
ActiveRecord object.

connection() Returns a connection associated

with an Active Record object.

set table name() Sets the table name.
set primary key() Sets the primary key.
create() Creates an object and saves it

as a record.

2.3 Active Record

45

Table 2.1 (continued)

Method

Description

find(*)

The find() method may be used
with one of the following
retrieval methods:

Find by id: Finds a record for a
specified id or a list/array of ids.
Find first: Retrieves the first
record that matches the specified
options.

Find all: Retrieves all the record
that match the specified options.
Some of the options that may be
specified are:

:conditions: An SQL
fragment such as
“catalogld=catalog1”.

:limit: An integer specifying
a limit on the number of records
returned.

:offset: An integer
specifying the row offset to
retrieve rows. For example, if
:offset is 5, the first 4 rows are
skipped.

:select: Specifies a SELECT
statement to retrieve rows. By
default SELECT * FROM is
used.

find by sql(sql)

Retrieves a result set for the
specifies SELECT statement.

id() Returns the primary key for an
Active Record object.
save() Creates a new record. If the

record already exists, the record
is updated.

46 2 Rails Framework

Table 2.1 (continued)

Method

Description

update(id, attributes)

Updates a record.

update all()

Updates all records.

update_attribute(name, value)

saves the record.

Updates a single attribute and

delete(id)

Deletes a record.

Next, we shall discuss each of theses methods with an example. An
example to create a connection with the Oracle database with
establish_connection method, which takes a hash as input, is as follows.

ActiveRecord: :Base.establish connection(

:adapter =>
:host =>
:username =>
:password =>
:database =>

The :adapter key specifies a database adapter in lower-case.

"OCi n
I
nn
I
n Oe n ,
"oracle"
“ORCL"”

Table

name and primary key may be set in a model class Catalog, which extends
the ActiveRecord:Base class as in following listing.

class Catalog < ActiveRecord: :Base
set table name "catalogs"

set primary key
end

n id"

The default primary key is “id”. As an example, the “catalogs” table
has columns id, journal, publisher, edition, section, title and author. The
create method is used to create a record. For example add a record with
values specified for columnl, column2 and column3 with Catalog as the

model class.

Catalog.create

:columnl => "columnlvalue",
:column2 => "column2value", :column3 => "column3value"

2.4 Action Controller 47

Active Record may be used to save any object such as a hash or an
array in a text column with the serialize method. The following example
creates and saves a journal hash.

class Catalog < ActiveRecord: :Base
serialize :journal

end

catalog = Catalog.create(:journal => { "title" =>
"Oracle Magazine", '"edition" => "January-February
2007" })

The £ind method is used to find a record. For example, find the first
record that matches the SQL section.

find(:first, :conditions => "section = 'SQL'")

The find by sqgl method finds a result set for a specified SQL
statement. An example of find by sql is as follows in which a result set is
created for SQL section.

@resultset=Catalog.find by sqgl ("SELECT * from
catalogs WHERE SECTION='SQL'")

The update method updates a record for the specified id. For example,
the following listing updates journal and title columns of a row with id 1.

Catalog.update (1, {:journal=>'0Oracle Magazine',
title=>'Introduction to Ruby on Rails'})

The update all method updates all the records. For example, update all
records to set journal to “Oracle Magazine” and publisher to “Oracle
Publishing”.

Catalog.update all "journal="'0Oracle Magazine'
publisher='0Oracle Publishing'"

The delete method deletes a record. For example, delete a record
with id 10.

Catalog.delete(10)

2.4 Action Controller

An Action Controller extends the ActionController: :Base class.
An Action controller is made up of one or more actions (methods) that
perform a business logic and then either render a template, partial, file, or

48 2 Rails Framework

text, or redirect to an action, url, file or back to the page that issued the
request. An action is defined as a public method that is made available to
the web server through Rails routes. A request is handled by the Action
Controller framework by extracting the value of the :action key and
invoking the action (method) specified in the :action key. An action
assumes that you want to render a template matching the name of the
action in the app/views/controllername directory when the method code
has run, controllername being the variable controller name. You may also
redirect to an action or a page with redirect to. A controller action
should conclude with a single render or redirect. Multiple renders/redirects
result in DoubleRenderError error. Example in following listing redirects
to a controller action.

redirect to :action=>”index”

An action may be redirected to another page as in the following listing.

redirect to “http://www.rubyonrails.org”

An action may be redirected to an image file.
redirect to "logo.jpg"

Redirect to:back redirects back to the page that issued the
request. A request is sent to a Action Controller from a view template with
the :action key. The :action key specifies name of an action in the Action
Controller as shown in following listing.

:action=>:index

The request parameters are made available to the controller action and
the action code is run. The request parameters are available to a controller
action with the params method, which returns a hash. For example,
:section param may be retrieved in a controller action with params hash as
shown below.

@section=params|[:section]

Each controller action results in a response that is constructed using
renders and redirects. By default a controller action renders a view
template with matching name. For example, an index action would render
the index template. If no action is specified the default controller action,
index, gets rendered. The instance variables set in a controller action are
available to the template rendered. A controller action may render a

2.4 Action Controller 49

template other than the default template. For example, render an edit
template using the render method as shown below.

render :template=>”catalog/edit”

Template rendering takes a path relative to the template root. The
current layout is applied in template rendering. A controller action may
invoke a template for another action instead of the default template. The
HTTP status code may be specified using the :status option. The
default status code for the render method is “200 OK”. By default,
templates associated with actions are rendered using the current layout
(Layouts are discussed in a later section). If the current layout is not to be
used specify :layout=>false in the render method invocation. A
layout for the template may be specified using the : layout option. For
example, a controller action may invoke controller action index’s template
as shown in following listing.

render :action=>"index”, :status=>"200", :layout
=>"index"”

The :action, :status, and :layout options may be specified in any order.
A file may also be rendered from a controller action. For example, render a
file index.rhtml as shown below.

render :file=>"
C:/ruby/railsapp/app/views/catalog/index.rhtml”,
:layout => true, :status => 404

File rendering takes absolute file path by default and the current layout
is not applied. Text may be rendered in a browser with render: text
as shown below.

render:text =>"Example of render text”

The current layout is not applied in text rendering. In an Ajax request
(Ajax is discussed in Chap. 3) the text rendered is returned as Ajax
response to the view template in the browser that invoked the controller
action. An inline template may also be rendered. The inline template is
interpreted using ERb or Builder. By default ERDb is used for rendering and
the current layout is not applied. For example, in the following listing an
inline template is rendered.

render :inline => "<%= 'hello ' + name %>", :locals
=> { :name => "Deepak" }

50 2 Rails Framework

The :1locals option specifies local variables. The render method
may also be used to render JavaScriptGenerator
(JavaScriptGenerator is discussed in the next section) page updates. For
example, insert HTML in a catalog list.

render update page do |page]
page.insert html :bottom, 'catalog',
"<lis#{@catalog.name}</1i>"

end

Nothing may be rendered as in the following example.

render :nothing => true

2.5 Action View

The Action View consists of templates that provide a user interface. The
ActionView: : Base class defines 3 types of Action View templates.

1. Templates with .rthtml extension.
2. Templates with .rxml extension.
3. Templates with .rjs extension.

A .rthtml extension template consists of a mixture of ERb (embedded
Ruby) and HTML. ERb is used with embeddings tags, for example, <%
%> and <%= %>. The <%= %> tag set is used for output. The <% %>
tag set is used to embed Ruby code.

A .rxml template is used to generate XML output using the
Builder::XmlMarkup library. An XmlMarkup object, @xml, is made
available to an .rxml template by default. The Builder:XmlMarkup library
is used in Chap. 6 to generate an XML document.

An .1js extension template is a JavaScriptGenerator template and
generates JavaScript instructions for updating an already rendered page.
RIS templates are used in combination with Ajax to modify multiple
elements on a page. A JavaScriptGenerator object, page, is made available
to an .rjs template. The Ajax scaffolding example in Chap. 3 uses .rjs
templates. A JavaScriptGenerator object is created using the
PrototypeHelper#update page method and subsequent invocations of
JavaScriptGenerator methods are used to update the content of the current

2.5 Action View 51

page. In the following example the catalog name is added at the bottom of
the catalog list and journals div is replaced by rendering a partial.

update page do |page|
page.insert html :bottom, 'catalog',
"#{@catalog.name}</1i>"

page.replace html 'journals', :partial =»>
'journal', :collection => @journals
end

Some of the JavaScriptGenerator methods are discussed in Table 2.2.

Table 2.2 JavaScriptGenerator Method

Method Description
alert(message) Displays an alert dialog with the
given message.
assign(variable, value) Assigns a JavaScript variable a
value.
insert_html(position,id, Inserts HTML at the specified
*options_for render) position relative to the specified
DOM ID. Position is one of the
following: :top,

:bottom,:before,:after.
options_for render may be
either an HTML string or a hash
of options with which the
ActionView::Base#render
method is invoked.

remove(*ids) Removes the DOM elements
with the specified ids.

replace(id, Replaces the outer HTML of an
*options_for render) element. options_for render
may be either an HTML string
or a hash of options with which
the ActionView::Base#render
method is invoked.

replace _html(id, Replaces the inner HTML.
*options_for render)

52 2 Rails Framework

2.5.1 Sub-Templates

A template may include content from a sub-template by including the
result of rendering a sub-template with an output embedding. For example,
output from a header template and a footer template may be included in a
template as follows.

<%= render "header" %>
Table

)

<%= render "footer" %>

Instance variables defined in a template are available in a sub-template.
For example, define an instance variable @title and include the output of a
header sub-template as follows.

<% @title = "Page Title" %>
<%= render "header" %>

In the header sub-template the @title instance variable may be used as
follows.

<title><%= @title %></title>

Local variables may be passed to a sub-template using a hash of variable
names and values in the render method. The following example renders the
header sub-template and passes local variables title and edition.

<%= render '"header", { :title => "Page Title",

.edition => "2nd" } %>

In the header sub-template the title and edition local variables may be
accessed as follows.

Page Title: <%= title %>
Edition: <%= edition %>

2.6 Ruby on Rails Commands

A MVC Rails application consists of the following Ruby, RHTML and
configuration files.

1. View templates(.rhtml files) in the app/views directory.

2. Model classes in the app/models directory.

3. Controller classes in the app/controllers directory.

4. Database Configuration file (database.yml) in the config directory.

2.7 Installing Rails 53

Ruby on Rails provides some commands with which model and
controller scripts may be generated. Some of the commonly used Ruby on

Rails commands are discussed in Table 2.3.

Table 2.3 Ruby on Rails Commands

Command

Description

rails application

Creates a Rails application.

ruby script/server

Starts Ruby Rails web server
WEBTrick at http://localhost:3000

ruby script/generate
modelname

model

Generates a model class of
specified model name.

ruby script/generate controller

Generates a controller class of

controllername specified name. Also generates
controlleraction the controller actions if
controlleraction specified.

ruby script/generate scaffold | Generates a scaffolding for a
modelname database table, the model class
controllername and a controller class.

controllername is optional in the
scaffold generator command and
is the same as the model name
by default.

Generates an ActiveRecord

migration.

ruby script/generate migration
migrationname

2.7 Installing Rails

In the previous chapter we installed Ruby. In this section we shall install
the Rails framework. Cd (change directory) to the c:/ruby directory, the
directory in which Ruby is installed, in a command line window, and run
the following command to install Rails and dependencies including
activerecord and actionpack; activerecord implements the model layer of a
Rails MVC application and actionpack implements the view and
controller.

54 2 Rails Framework

c:/ruby>gem install rails --include-dependencies

The rails framework including dependencies gets installed as shown in
Figure 2.2.

mmand Prompt =

C:\ruby>gem install rails ——include-dependencies
Need to update 22 gems from http://gems.rubyforge.ory

installed rails-1.2.2

installed activesupport-1.4.1
Successfully installed activerecord-1.15.2
Successfully installed actionpack-1.13.2
Successfully inst ed actionmailer-1.3.2
Successfully installed actionuwehservice-1.2.2

Installing »i documentation for activesupport-1.4.1...
I ri documentation for activerecord-1.15

ri documentation for actionpack-1

ri documentation for actionmaile

ri documentation for actionwehservice-1.2.2...
oc documentation for activesupport-i.4.1...

RDoc documentation activerecord-1.15.2. ..

RDoc documentation » actionpack— .

RDoc documentation » actionmaile o AR

Installing RDoc documentation actionwebservice-1.2.2...

C:\ruby>

Fig. 2.2. Installing Rails

2.8 Developing a Rails Application

Create a Rails application, railsapp, with the following command.

c:/ruby>rails railsapp

A Rails application directory structure gets generated. The root
directory of the Rails application is railsapp, as shown in Figure. 2.3.

2.8 Developing a Rails Application 55

80

_\I controllers
{1 helpers
{1 models
= :] views

: .;] layouts

] components

R config

b

{1 doc

-] lib

-~ log

=] public

= ‘;] images
ﬂ javascripts

: (7] stylesheets

& {23 script

2 test

&1 tmp

& vendor

Fig. 2.3. Rails Application Directory Structure

The railsapp directory contains the sub-directories of the Rails
application. The app sub-directory consists of sub-directories models,
views, controllers and helpers. The models directory is for model Ruby
scripts, the views directory is for view templates and layouts. The
controllers directory is for controller scripts. The config directory contains
a database.yml configuration file in which a database configuration is
defined. The config directory also contains a routes.rb file in which Rails
framework routes are defined. The public directory contains the index.html
file, which is displayed when the railsapp Rails application is accessed in a
browser with the URL http://localhost:3000. The public directory also
contains the images directory, the javascripts directory for JavaScript files,
and the stylesheets directory for the css stylesheets.

56 2 Rails Framework

2.9 Rails Routes

Rails Routes are used to map matching URLs to controllers and actions
and are configured in the config/routes.rb file. An example route is defined
below.

map.connect 'catalog/:id', :controller => 'catalog',
:action => 'view!

If the URL http://localhost:3000/catalog/1 is specified in the browser,
the view action of the catalog controller gets invoked and the first entry in
the catalog is displayed. Routes are generated in the order in which they
are specified in the routes.rb file. The default route has the lowest priority
and is specified as shown below.

map.connect ':controller/:action/:id’

The default route implies that a controller action may be invoked with
the url http://localhost:3000/controllername/actionname. Controllername
and actionname are variables. The :1d specifies the id of the view. A
default controller may be associated with the default route.

map.connect ':controller/:action/:id', :controller
=> 'catalog'

Delete the public/index.html file to use the default controller. The URL
http://localhost:3000/ would invoke the index.rhtml view of the catalog
controller. The root of the a site may be routed as shown below.

map.connect '', :controller => "catalog", :action
=> 'listCatalogs'

Delete the public/index.html file to use the empty path route. The URL
http://localhost:3000 would invoke the listCatalogs action of the catalog
controller. Named routes may also be created. For example, a named route
for catalog controller may be created as shown below.

map.catalog '', :controller => 'catalog', :action =>
"list!

The named route creates a method called catalog url. Using the named
route the following redirect may be specified as redirect to
catalog url.

redirect_to :controller => 'catalog', :action =»>
'list!

2.11 Helpers 57

2.10 Stylesheets

Stylesheets represent the formatting information such as fonts, colors and
layouts of a web page and separate the formatting from the content. Using
stylesheets makes the formatting and the content easier to maintain.
Stylesheets in the public/stylesheets directory are used with view templates
and may be included in a template with HTML.

<link rel="Stylesheet"
href="/stylesheets/catalog.css" type="text/css"
media="screen" />

Stylesheets may also be included using Ruby code. The .css suffix is
not required to be added to the stylesheet.

<%= stylesheet link tag "catalog" %>

2.11 Helpers

Helpers are modules that are available to the associated view templates and
are located in the app/helpers directory. For example, if a controller
catalog and an associated view index are generated, a CatalogHelper
module also gets generated.

module CatalogHelper

end

The methods in the CatalogHelper module are available to the index
view and to other views associated with the catalog controller. By default,
only one helper module is available to views associated with a controller.
Additional helper modules may be added by specifying the helpers in the
controller using the helper method of the
ActionController::Helpers::ClassMethods module. For example, a helper
module catalog2 helper may be added to the catalog controller.

class CatalogController < ApplicationController
helper :catalog2 helper
def index
end

end

58 2 Rails Framework

A controller method may be declared a helper method using the
helper method method of the
ActionController::Helpers::ClassMethods module. For example, in the
following example the helperMethod method is declared as a helper
method.

helper_method :helperMethod
def helperMethod
end

2.12 Layouts

Layouts in the views/layouts directory are used to add presentation to the
views. Layouts are also used to define common content, headers and
footers for example, which may be used by different content pages.
Variables defined in the layout are available in the views and variables
defined in the views are available in the layout. Layouts are .rxml or .rhtml
templates. If a layout with the same name as the controller is available in
the views/layouts directory, the template becomes the default layout for the
controller. For example, if the controller class is CatalogController, a
catalog.rhtml or catalog.rxml template in the views/layouts directory
becomes the default layout. If a layout layout by the same name is not
available, an application.rhtml or application.rxml template may be created
in the layouts directory and the template becomes the default layout for the
views associated with the controller. A layout may also be assigned in the
controller class with the 1ayout method. For example a layout “catalog”
is set in the catalog controller.

class CatalogController < ApplicationController
layout "catalog"
def index
end

end

As a directory is not specified the catalog template should be in the
app/views/layouts/ directory. The layout specified in the controller class
overrides the default layout. Layouts may be applied to specific controller
actions or may exclude some actions. If the catalog layout in the
preceding example is to be applied to index action only specify the
following.

layout “catalog” , :only=> :index

2.12 Layouts 59

If a layout is to be specified to all actions except the index action
specify the layout method as follows.

layout “catalog” :except=> :index

More than one actions may be specified using :only and :except. The
following example applies the catalog template to all actions except the
index and list actions.

layout “catalog” :except=> [:index, :1list]

A method reference may be specified in the layout method instead of a
layout template to select a layout based on a condition such as whether a
user is logged in or not.

class CatalogController < ActionController::Base
layout :select layout

def index
end
private
def select layout
logged _in? ? "layout templatel"
"layout template2"
end

In a layout template, you may specify variables for adding stylesheets
to a view template. For example, in the layout specify:

<%=@content for page stylesheets%>

<styles>
<%=@content for page styles%>
</style>

In the view template specify the stylesheets.

<% content for :page stylesheets do %>
<%=stylesheet link tag 'stylesheetl'%>
<%=stylesheet link tag 'stylesheet2'%>
<% end %>

A layout may be specified in the action rendering.

render :action => "index", :layout => "index"

60 2 Rails Framework

2.13 Partials

Partials (“partial views”) are used in views to update one or more
elements on a web page. A partial is an .rhtml or .rxml view template that
is evaluated and the result inserted into the view. The same partial may be
used by different views. By default partials do not use the current layout.
Partials are represented by the ActionView::Partials module. Partials are
invoked with render :partial. The syntax of using a partial is as
follows.

<%= render :partial=> 'partialname', :locals => {}

The first parameter to the render method is the name of the partial.
The second parameter specifies a hash of local variables. The rails
framework invokes a file _partialname.rhtml, which is required to be in the
same directory as the view, and adds the result to the view in which the
partial is specified. For example the following code snippet renders a
partial _form.rhtml.

<%= render :partial=> 'form' %>

A partial from a different controller may be rendered by specifying the
controller views sub-directory. For example, render a ‘form’ partial in the
views sub-directory app/views/catalog.

<%= render :partial=> 'catalog/form' %>

A partial may be rendered for each of the elements in an array
collection by specifying a collection with :collection. Without
:collection a collection is rendered by iterating over the collection and
rendering a partial for each of elements in the collection. In the following
example, a collection represented with the @catalogs instance variable is
iterated and the catalog.rhtml partial is rendered for each of the elements
in the collection. Local variable catalog is passed to the partial as local
variable catalog.

<% for catalog in @catalogs %>
<%= render :partial => "catalog", :locals => {
:catalog => catalog } %>

)

<% end %>

2.14 Rails Framework Examples 61

Partials provide a method for rendering a partial by the same name as
the elements in an array collection for each of the elements in the array
collection. The preceding example may also be represented as shown
below.

<%= render :partial => T"catalog", :collection =>
@catalogs %>

The catalog.rhtml template gets rendered for each of the elements in the
(@catalogs array and a local variable catalog, representing an element in
the collection, is passed to the partial. Iteration counter catalog counter
is made available to the partial template. An iteration counter has the
name partialname counter, partialname being the name of the partial.
When rendering partials with a collection, a spacer partial may be
specified that is rendered between rendering of the partial for the different
elements of the collection. The spacer partial is specified with
:spacer_template as shown below.

<%= render :partial => T"catalog", :collection =>
@catalogs, :spacer template => "spacer" %>

Local variables may be made available to partials using the :locals
option. In the following listing a partial is rendered using a local variable
catalog whose value is the Ruby local variable catalog. Local variable var2
is passed as local variable var2.

<%= render :partial=> 'form', :locals
=>{:catalog=>catalog, :var2=>var2}%>

With :locals, symbols are used for variable names. Instance variables
that are defined in a view are also available in the partials. Partials are
commonly used with Ajax to update an element without reloading the
page. The Ajax scaffolding example in Chap. 2 uses partials to update
sections of a page.The advantage of using partials is that views may be
refactored with sub-templates. Another advantage is that sub-views may be
reused by different views.

2.14 Rails Framework Examples

Next, we shall discuss the integration of the view templates with the
controller framework. As an example, create a controller class catalog,
with an index action, and an index.rhtml view template.

62 2 Rails Framework

C:/ruby/railsapp>ruby script/generate controller
catalog index

A controller script catalog controller.rb gets generated in the
app/controllers directory. The controller class has an action index and
extends the ApplicationController class. The Application Controller class
extends the ActionController::Base class, which we discussed earlier.

class CatalogController < ApplicationController
def index

end
end

A view template index.rhtml gets generated in the app/views/catalog
directory.

<hl>Catalog#index</hl>
<p>Find me in app/views/catalog/index.rhtml</p>

Start the WEBrick server with the following command.
C:/ruby/railsapp>ruby script/server

Invoke the index controller action with the url
http://localhost:3000/catalog/index. The controller action index gets
invoked, which renders the index.rhtml view template as shown in Figure
2.4.

2.14 Rails Framework Examples 63

/) http://localhost:3000/catalog/index - Microsoft Internet Explorer K E B ___.__|_I;!_|_1_|
Fle Edt View Favortes Tools Hebp]-
weack ~ = - @ [2) A Qsearch (GiFavorites GPmedia P | - S FH
Ad&ass]ahtm:.lﬂo:ahost:mlcatdog{ndex j PG ‘Lh&s"
Y)-F Q- |web search < & Bookmarks + [Tsettings ~ | 2 mail + @My vahoo! | »

I3 uw::mm:mpcdm.,,IE

Catalog#index

Find me in app/views/catalog/index rhtml

=
€] Done [B8 localintranet %

Fig. 2.4. Invoking a Controller Action

To demonstrate generating an output from the controller, modify the
controller class to render text.
class CatalogController < ApplicationController
def index
render:text =>"Introduction to Ruby on Rails"

end
end

Invoke the following url.
http://localhost:3000/catalog/index

The index action gets invoked and the text gets rendered as shown in

Figure 2.5.

64 2 Rails Framework

3 http://localhost:3000/catalog/index - Microsoft Internet Explorer e = oj x|
File Edt VYiew Favorites Tools Help ‘-
GBack - = - @ [2) | Qoearch [wiFavortes Fmeda (B | - S = FH
Address [@] hetpslocalnost: 3000/catalogfindex S] @ [Lns >
Y7 - @~ |web search < & Bookmarks - [Tsettings - | (2 mail ~ @My vahoo! | »
[Mtp:!fbcm:mp'catamﬂn._.l@ a
Introduction to Ruby on Rails

I

|&] Done [| & Localintranet 7

Fig. 2.5. Rendering Text

As an example of integration between the controller class and the view
template, modify the controller class, catalog_controller.rb, to specify an
instance variable, which is subsequently accessed in the view template.

class CatalogController < ApplicationController

def index
@msg="Message to View Template from Controller

Class"
end
end

Modify the index.rhtml view template to output the @msg variable
using ERb.

<%¥=@msg %>

Invoke the controller action index with url
http://localhost:3000/catalog/index. The index action in catalog controller
gets invoked. The @msg variable is set in the index action. The
index.rhtml template is rendered. The @msg variable is output in the view
template as shown in Figure 2.6.

2.14 Rails Framework Examples 65

'5http:,."r‘localhnst:3ﬂDD¢-‘catanq."inﬂen - Microsoft Internet Explorer =101 %]
File Edt Wew Favorites Tools Help J-
Gpak - = - @ [2] A Quoearch GilFavorites @mediz (F| - S - 2
Address |ﬂMtp:.iﬁnca\hosmﬂouicatalugflnd:x j ‘5 & ‘u"ks 3
Y7 - Q- |web search < & Bookmarks + [Tsettings ~ | (2 mail + (@ ty vahoo! | »

L3 bitpiffocaost:3000jcataog/i... || o [x]
Message to View Template from Controller Class
-
]—F]i&anal intranet. 4

|&] Done
Fig. 2.6. Accessing Controller Instance Variable in View

Next, we shall create an example with Helpers. Modify the
app/helpers/catalog_helper.rb script associated with the catalog controller.
Add a method, getMsg, to the CatalogHelper class as shown below.

module CatalogHelper

def getMsg
return "Message from Helper"

end
end

The Helper method becomes available to views associated with the
catalog controller. Modify the views/catalog/index.rhtml view to invoke

the getMsg method.
<%¥=getMsg %>
Invoke the controller action index with the URL

http://localhost:3000/index. The index.rhtml view template gets rendered
and the getMsg method gets invoked as shown in Figure 2.7.

66 2 Rails Framework

'3 http://localhost:3000/catalog/index - Microsoft Internet Explorer = :‘- =1aix|
Flo Edt Vew Favorkes Took Help [« |
whack - = - @D D) A Qoearch GFevorites nedia (B | - S = H
Address [@] hetp:locanost: 3000jcatalogfindex =] @G0 |unks >
Y7 -| CJ\'Jwahseu:h <+ @ Bookmarks ~ [TSettings ~ | B Mal ~ @My vahoo! | »
[5 Mtp:iflncal‘bst::imuf:atabgﬁn.uug
E
Message from Helper
IR
&) Done [BB tocalintranet 7

Fig. 2.7. Helper Example

Next, we shall create an example using Layouts. Define a layout,
catalog.rhtml, for the catalog controller in the views/layouts directory. The
layout defines a @page title variable, a header and a footer. The yield
variable specifies the region for the view template content.

<html>
<head>
<title><%= @page title %$></titlex>
</heads>
<body>
<div>The header part of this layout</divs>
<div><%= yield%></div>
<div>The footer part of this layout</divs>
</body>
</html>

Modify the index.rhtml view template to specify a value for the
(@page _title variable and add some page content.

<% @page_title = "Layouts" %>
Example with Layouts

Invoke the index action with following URL.

http://localhost:3000/catalog/index.

2.15 Configuring Rails with the MySQL Database 67

The layout gets applied to the index view as shown in Figure 2.8.

-ioix]
Fle Edt Yiew Favorites Tools Help |-
SBack ~ = - @ (2])| Qsearch [EFavortes @iveda (P | - S = H |
address [2] http: flocahost: 3000jcataloafindex =] @0 |unks 7|

7 - @~ |web search - % Bookmarks ~ [Tsettings - | E21Mal ~ @y vahoo! | »
o I
=

The header part of this layout
Example with Layouts
The footer part of this layout

|€] Dane [[B Localintranet 7

Fig. 2.8. Layouts Example

2.15 Configuring Rails with the MySQL Database

By default the MySQL database is configured with a Ruby on Rails
application. Next, we shall install the MySQL database. Download the
MySQL 5.0" and extract the zip file mysql-5.0.27-win32.zip to a directory.
Double-click on the Setup.exe application. The MySQL Server 5.0 Setup
Wizard gets started. Click on Next. Select the Typical (the default) Setup
Type and click on Next. The installation folder is specified as C:\Program
Files\MySQL\MySQL Server 5.0. Click on Install to install the MySQL
database. In the Sign-up frame, select Skip Sign-Up and click on Next.
Click on Finish. The MySQL Server Instance Configuration Wizard gets
started. Click on Next. Select the Detailed Configuration configuration
type, the default, and click on Next. Select the default server type,
Developer Machine, and click on Next. Select the default database usage,
Multifunctional Database, and click on Next. Select the default settings

! MySQL 5.0 -http://dev.mysql.com/downloads/mysql/5.0.html

68 2 Rails Framework

for the InnoDB Tablespace settings and click on Next. Select Decision
Support (DSS)/OLAP for the approximate number of concurrent
connections to the server and click on Next. Select the default settings in
the networking options, the default port number being 3306, and click on
Next. Select Standard Character Set as the default character set and click
on Next. Select the Install as Windows Service option, which is selected
by default, with service name MySQL. Check the Include Bin Directory in
Windows PATH checkbox and click on Next. In the security options
frame check the Modify Security Settings checkbox and specify a
password for the root user. To create an anonymous account, check the
Create an Anonymous Account checkbox and uncheck the Modify
Security Settings checkbox. By default the user root does not require a
password. It is recommended to specify a password for the root user. Click
on Next. Click on Execute. A MySQL database instance gets created and
the service associated with the database instance gets started. Click on
Finish. To set a password for the root user if a password was not specified
during installation run the following command.

SET PASSWORD FOR 'root'@'localhost' =
PASSWORD ('rootpw') ;

The database.yml configuration file provides three modes of
connection: development environment (default), production environment
and test environment. The WEBrick server starts in development mode by
default. The WEBrick server may be started in another mode using the —e
option. For example the following command starts the WEBrick server in
production environment.

ruby script/server -e production

Rails environment may be set to production mode by uncommenting
the following line in the config/environment.rb file.

ENV['RAILS ENV'] ||= 'production'

As the default environment is development, modify the development
environment settings in database.yml file to as shown below.

development :
adapter: mysqgl
database: test
username: root
password: rootpw
host: localhost

2.18 Summary 69

Add a space between the "' and the configuration values. For example,
specify adapter: mysql instead of adapter:mysql.

2.16 Comparing Rails with PHP

PHP is a scripting language while Ruby on Rails is a web framework. PHP
may be used to develop a web application and is one of the most
commonly used scripting language used for developing web applications.
Ruby on Rails provides a Model-View-Controller (MVC) architecture,
which minimizes external configuration using naming conventions for
mapping database tables to model objects, routing URLs, and rendering
view templates. PHP provides a view-centric architecture and a MVC
architecture has to implemented externally. Ruby on Rails provides a
scaffolding, classes and .rhtml files, for CRUD functionality, while
CRUD has to be implemented in a PHP based web application.

2.17 Comparing Rails with Java

Java Platform, Enterprise Edition (Java EE) is the application framework
for developing MVC Java applications. Java EE consists of many
different components such as JSPs, EJBs, Servlets, Java API for XML
Processing (JAXP) and Java Database Connectivity (JDBC) API, and Java
Naming and Directory Interface (JNDI) API. In comparison Ruby on
Rails web framework consists of only the model, the controller and the
view. Ruby on Rails requires fewer configuration files than JEE and is
easier to maintain and faster to develop. The Ruby on Rails framework is
seamlessly integrated in comparison to the JEE framework.

2.18 Summary

In this chapter we discussed the rails framework. Rails comprises of the
Active Record, Action Controller and Action View sub-projects. We
created a rails application and configured the application with MySQL
database. We compared Rails with PHP and Java.

3 CRUD on Rails

3.1 Introduction

CRUD is an acronym for Create-Read- Update-Delete. Rails is a web
application and database persistence framework to develop web
applications according to the Model-View-Controller (MVC) pattern. The
Rails framework may be used to develop a CRUD application using a
relational database. Rails is configured with MySQL database by default.
Models model objects in a Rails application and are based on Active
Record. An Active Record model class extends the ActiveRecord::Base
class. Models provide object-relational mapping (ORM) between business
objects and a database. Action View provides the .rhtml view templates as
user interfaces for a CRUD application. From a view template a user may
invoke actions on a controller class. The controller class uses the model
class to establish a connection with the database table and retrieve data
from the data. A controller integrates the model with the view. The
model models data objects, the controller defines business logic to process
the data, and the view presents the data.

3.2 Scaffolding

Scaffolding provides an interface to data in the database. The rails
framework has the provision to generate scaffolding, Ruby classes and
.rhtml files, for a CRUD application. Scaffolding consists of controller and
model Ruby classes and view templates for creating retrieving, updating
and deleting table rows. Rails provides two types of scaffoldings, dynamic
scaffolding and scaffolding created with the ScaffoldGenerator. Dynamic
scaffolding is created by adding the following scaffold method invocation
to the controller class.

scaffold :modelname

72 3 CRUD on Rails

The scaffold method generates controller logic and view templates
dynamically using model class obtained with naming conventions. The
first letter of the model name is uppercased to obtain the model class. For
example, if the model name specified in the scaffold method is catalog, the
Catalog model class is used in the scaffolding. Instance variables
@catalog/@catalogs are used in the controller class; controller
instance variables are also available in the view templates. Controller
actions index, 1ist, show, new, create, edit, update, destroy
and corresponding view templates are generated with dynamic scaffolding.

More than one scaffoldings may be generated in a controller class by
specifying multiple scaffold method invocations and by setting the
:suffix option to true. For example, the following scaffold method
invocations generate two scaffoldings dynamically.

scaffold :catalog, :suffix=>true
scaffold :journal, :suffix=>true

If multiple scaffoldings are specified using the :suffix option the
controller actions for the different scaffoldings are distinguished with the
_model name suffix. The preceding example would generate controller
actions list_catalog, show catalog, new catalog, create catalog,
edit catalog, update catalog, destroy catalog and list journal,
show_journal, new_journal, create journal, edit journal, update journal,
destroy journal. If suffix is used the index action is not created.

Scaffolding generated with the ScaffoldGenerator is similar to the one
generated with the scaffold method, except that the controller logic and
view templates are generated explicitly. We shall discuss the
ScaffoldGenerator in a later section.

Rails provides another type of scaffolding, Ajax scaffolding, which is
similar to the non-Ajax scaffolding except that the table entries are created,
retrieved, updated and deleted using Ajax. Ajax scaffolding is created
using the AjaxScaffold generator, which we shall discuss in a later section.
The AjaxScaffold generator also generates CSS stylesheets for the view
templates.

3.3 CRUD with PHP

PHP does not provide any built-in functionality for creating a CRUD
application as Ruby on Rails does. A CRUD application may be created by
using a form to input field/column values and connecting with a database
using one of the PHP class libraries for databases. PHP supports form
processing with the $_GET, $_POST, $ REQUEST variables. The § GET

3.3 CRUD with PHP 73

variable is an associative array of variables sent to a PHP script with the
HTTP GET method. The $ POST variable is an associative array of
variables sent to a PHP script with the HTTP POST method. The
$ REQUEST variable consists of the contents of $ GET, $ POST, and
$ COOKIE. For example, a form, addEntry.html, to create a catalog entry
would be as shown below.

<html>
<head>
<title>Add Entry</title>
</head>
<body>

<form action="addEntry.php" method="get">
<p>Catalog ID: <input type="text"
name="catalogID" /></p>
<p>Journal: <input type="text" name="journal" /></p>
<p>Publisher: <input type="text"
name="publisher" /></p>
<p>Edition: <input type="text" name="edition" /></p>
<p>Title: <input type="text" name="title" /></p>
<p>Author: <input type="text" name="author" /></p>
<p><input type="submit" /></p>
</form>

</body>
</html>

To create a CRUD application with PHP we would create a PHP script,
addEntry.php, in the C:/Apache/htdocs directory. As the HTTP method is
GET, retrieve the form fields with the $ GET variable in the PHP script.

$catalogid= $ GET['catalogID'];
$journal=$ GET['journal'l];
$publisher= $ GET['publisher'];
Sedition=$ GET['edition'];
Stitle= $_GET['title'];
Sauthor=$_GET['author'];

We would connect with a database using PHP class library for database
such as MySQL. Create a database entry using the PHP class library for
MySQL. In the PHP script specify variables for username and password
and connect with the MySQL database using the mysqgl connect ()
function. The username “root” does not require a password by default.
Specify the server parameter of the mysql connect() method as
localhost:3306.

74 3 CRUD on Rails

Susername="'root';

Spassword="";

Sconnection = mysgl connect ('localhost:3306"',
Susername, S$password) ;

If a connection does not get established output the error message using
the mysqgl error () function.
if (!$connection) ({

$e = mysqgl error ($connection) ;
echo "Error in connecting to MySQL Database.".Se;

}

We would need to select the database in which a table is to be created.
Select the MySQL database instance “test” using the
mysgl select db () function.

$selectdb=mysgl select db('test');

Create a SQL statement to add data to MySQL database. Database table
Catalog consists of columns Catalogld, Journal, Publisher, Edition, Title,
Author.

Ssqgl = "INSERT INTO Catalog VALUES ($catalogid,
Sjournal, Spublisher, sedition, $title, $author)";

Run the SQL statement using the mysgl query () function.
$addrow=mysgl query ($sgl, S$connection);

Similary database table entries may be retrieved, updated and deleted.

3.4 CRUD with Java

A CRUD application with Java is developed using the JDBC API. JSPs
may be used as the views for user input and struts/servlets may be used to
connect with the database and create, retrieve, update, and delete database
entries. First, we would need to create a datasource JNDI in an application
server such as JBoss or WebLogic. Create a DataSource object using JNDI
lookup.

javax.naming.InitialContext ic = new
javax.naming.InitialContext () ;

javax.sql.DataSource dataSource =
(javax.sqgl.DataSource) ic.lookup ("jdbc/MySQLDS") ;

We would need to obtain a connection with the database from the
DataSource object.

3.5 Creating a Rails Application 75

java.sqgl.Connection connection =
dataSource.getConnection () ;

To create, read, update or delete a table row we would need to create a
Statement object.

Statement stmt = connection.createStatement () ;

Next, we would require to specify the SQL statement to run. For
example to add a row to a table catalog specify the following SQL
statement.

String sgl="INSERT INTO CATALOG VALUES ('Oracle
Magazine', 'Oracle Publishing', 'Jan-Feb 2007',
'Modeling Tables and Components', 'Steve Muench')";

We would run the SQL statement.

stmt .execute (sql) ;

Similarly, to retrieve data from database table we would need to run a
SELECT sql statement, to update data run a UPDATE statement, and to
delete data, run a DELETE statement.

3.5 Creating a Rails Application

In this section we shall create a Ruby on Rails application. The application
that we shall create represents a journal catalog. The rails Ruby
command is used to create a Ruby on Rails application. On the command
line run the rails command to create an application.

C:\ruby>rails catalog

A rails application gets created in the catalog directory in the
rails_apps directory. The app directory contains sub-directories
controllers, models and views for the controller classes, model classes and
view templates respectively. The config directory contains the
database.yml file in which the database configuration is specified. A rails
application may be run in development, test, or production mode. We shall
run the rails application in development mode. Modify the development
mode settings in database.yml file to specify the database as mysqgl. The
development mode settings for MySQL database are shown below.

76 3 CRUD on Rails

development :
adapter: mysqgl
database: test
username: root
password: password
host: localhost

The db directory is used for migration scripts, which we shall discuss in
the next section.

3.6 Creating a Database Table

In this section we shall create an ActiveRecord migration script to create a
database table. Migrations perform transformations on a database schema.
Migrations support the MySQL, PostgreSQL, SQLite, SQL Server,
Sybase and Oracle databases; the DB2 database is not supported. A
migration class extends the ActiveRecord: :Migration class and is
run with the rake command. The rake command is similar to Ant's
build tool for creating J2EE applications. A migration class may be created
with the migration generator as follows.

C:/ruby/catalog>ruby script/generate migration
migrationname

A migration script gets created in the db/migrate directory. A
migration script name has the format nnn_migrationname; nnn being the
migration number, which is incremented for each additional migration in a
rails application. A migration script gets created when a model class script
is created. Create a model script with the following command in the Ruby
Console Window.

C:\ruby\catalog>ruby script/generate model catalog

A model class catalog. rb gets created in the app/models directory.
A migration script, based on migrations naming conventions,
001 create_catalogs.rb gets created in the db/migrate directory.
The migration script class, CreateCatalogs, extends the
ActiveRecord: :Migration class as shown in listing below.

3.7 Migrations 77

class CreateCatalogs < ActiveRecord::Migration
def self.up
create table :catalogs do |t
t.column :name, :string
end
end
def self.down
drop table :catalogs
end
end

3.7 Migrations

All migration scripts consist of methods self.up and self.down, which
contain the transformations required to implement (migrate) or remove
(revert) the migration. Migrations are run with the following rake
command.

>rake db:migrate VERSION=version number

The rake db:migrate command migrates the database through
scripts in the db/migrate directory. The first time the rake db:migrate
command is run on a database a schema_ info table gets created,
which has a version column specifying the current version of the migration
applied to the database. VERSION is optional and if specified is required
to be specified in uppercase. If VERSION is not specified rake migrates
the database to the most recent version. The version number corresponds
to the migration number of the migration scripts. The rake command runs
all migrations with migration number up to version number. If the version
number specified is higher than the current version the self.up method of
migrations up to version number, including the migration with migration
number the same as the version number specified, gets invoked starting
with the current version. For example, if no migrations have yet been
applied the following command implements migrations up to migration
number 003 including the 003 migration.

>rake db:migrate VERSION=3

In the preceding example the self.up method of the migrations 001,
and 002, and 003 gets invoked in order. If the current version number is
higher than the version number specified the self.down method of all
migrations up to version number, excluding the migration with migration
number as the version number, get run starting with the current migration.

78 3 CRUD on Rails

For example, if the current version is 4, the following command runs the
self.down method of migrations 004, 003, and 002.

>rake db:migrate VERSION=1

Migrations are implemented (migrated) by specifying the version
number to be higher than the current version and migrations are
removed(reverted) by specifying the version number to be lower than the
current version. The self.up method is usually invoked to create a
database table and add columns, but the transformations in the self.up
method may remove columns, and the transformations in the self.down
method may add columns.

Next, we shall discuss migrations with an example. Create 4
migrations, migrationl, migration2, migration3, and migration4 in the
Rails application catalog as shown in Figure 3.1.

mmand Prompt ==

:Nrubyhcatalog?ruby script/generate migration migrationl
create dh/migrate
create dh/migrate/B81_migrationl.rh

>:N\rubyncatalog>ruby script/generate migration migration2
exists db/migrate
create db/migrate/B82_migration2.rh

:\rubyncatalogdruby script/generate migration migration3
exists db/migrate
create db/migrate/B03_migration3.rh
:\rubyncatalog>ruby script/generate migration migration4
exists dbhs/migrate
create db/migrate/BB4_migrationd.rh

Nrubyscatalog?>

Fig. 3.1 Generating Migrations

A schema_info table also gets created for the selected database. Run a
SELECT query on the schema info table as shown in Figure 3.2. The
version column specifies the current version as 0.

mmand Prompt - mysql -u root =

nysgl> select * from schema_info
=2

sec)

Fig. 3.2 Obtaining Migration Version

3.7 Migrations 79

Run the rake db:migrate command. All the migrations get
implemented in order as shown in Figure 3.3. The self.up methods of
migrations migrationl, migration2, migration3 and migration4 get
invoked.

nmand Prompt

C:\ruby\catalog>rake dh:migrate
¢in C:/ruby/catalog>
Migrationl: migrating ===
Migrationl: migrated (0.0000s)>

Migration2: migrating =
Migration2: migrated <@.

Migration3: migrating =
Migration3: migrated <8.0000:

Migration4: migrating =
Migrationd: migrated (B.0000s> =

C:\ruby\catalog>

Fig. 3.3 Implementing Migrations

The version gets set to 4 corresponding to migration 004 as shown in
Figure 3.4.

ommand Prompt - mysql -u root

mysgl> SELECT »* FROM schema_infos;
+ —t

i
+
1l
i

—
set <0.08 sec>

Fig. 3.4 Migration Version Increased

Next, revert the migrations up to version 1 with the following
command.

>rake db:migrate VERSION=1
Migrations migration4, migration3, and migration2 get reverted as

shown in Figure 3.5. The self.down methods of migrations migration4,
migration3, and migration2 get invoked.

80 3 CRUD on Rails

'ommand Prompt =

C:\rubyscatalog>rake dh:migrate UERSI
(in C:/rubyscatalogd>

== Migration4: reverting ===

= Migration4: reverted (6.0

Migration3: reverting =
Migration3: reverted <(0.000

Migration2: reverting
= Migration2: reverted (B

IC:\rubyscatalog?>

Fig. 3.5 Reverting Migrations

The current version gets set to 1 as shown in Figure 3.6.

ommand Prompt - mysql -u root

ysql> SELECT * FROM schema_infos;
+

=t <(0.808 sec)

Fig. 3.6 Migration Version Decreased

To revert migration migrationl run the rake db:migrate command with
VERSION=0 as shown in Figure 3.7.

‘ommand Prompt -

thyhcatalog>rake db:imigrate VERSION=8
:/rubys/catalog>
rationl: reverting =
= Migrationl: reverted <0.0800

C:\rubyncatalog>

Fig. 3.7 Reverting migrationl

When migrations are implemented by specifying version higher than
the current version self.up methods of all the migrations, including the
migration with migration number the same as the version number
specified, gets invoked as shown in Figure 3.8.

3.7 Migrations 81

[#{]command Prompt - - =10 x|

C:\ruby\catalog>rake dh:migrate UERSION=4
(in C:/rubyscatalog)

Migrationl: migrating ===

Migrationl: migrated <(8.80

Migration2: migrating
Migration2: migrated (8.

Migration3: migrating
Migration3: migrated ¢

Migrationd: migrating
Migrationd: migrated (8.

C:\rubyscatalog>

Fig. 3.8 Migrating to a Higher Migration Version

The self.up and self.down methods may also be used to run SQL with
the execute statement. For example, in the following self.up method an
ALTER statement is run.

def self.up
execute "ALTER TABLE ..."
end

The create table transformation of class
ActiveRecord: :Migration is used to create a database table.
ActiveRecord uses pluralization to map a model class to a database table.
The model class is singular and upper case and the database table is plural
and lower case. In the example Ruby on Rails application, the model class
is Catalog and the database table is catalogs.

The ActiveRecord::Migration class provides various
transformations for a database. Some of the transformations are discussed
in Table 3.1.

Table 3.1 Migration Transformations

Transformation Description

create_table(name, options) Creates a table and makes the
table available to a block to
add columns. The options hash
consists of fragments such as
"DEFAULT

CHARSET=UTF-8" and is
used in the create table

definition.
drop table(name) Drops a table
rename_table(old name, Renames a table.

new_name)

82 3 CRUD on Rails

Table 3.1 (continued)

Transformation Description

Adds a column. Options that
add_column(table name, may be specified are :default,
column name, type, options) :limit, and :null.
rename_column(table name, Renames a column

column_name,
new_column_name)

change column(table name, Changes a column type
column_name, type, options)
remove_column(table name, Removes a column

column_name)

3.8 Creating catalogs Table with Migrations

Modify the migration script 001 _create catalogs.rb to create a
database table and add data to the table. In the create table
transformation create a table catalogs with columns journal, publisher,
edition, title, author as shown in following listing.

create table :catalogs do |t]

t.column :journal, :string, :limit => 255
t.column :publisher, :string, :limit => 255
t.column :edition, :string, :limit => 255
t.column :title, :string, :1limit => 255
t.column :author, :string, :limit => 255

end

Valid column types are integer, float, datetime, date, timestamp, time,
text, string binary, and boolean. Valid column options are limit,
default and null. Next, add data to the table with the
ActiveRecord: : Base class method create. The following listing adds
a table row.

Catalog.create :journal => "developerWorks",
:publisher => "IBM", :edition => "September 2006",
:title=> "A PHP V5 migration guide", :author=>"Jack
D. Herrington"

The complete migration script, 001 create catalogs.rb, is listed below.

3.8 Creating catalogs Table with Migrations 83

class CreateCatalogs < ActiveRecord::Migration

def self.up

create table :catalogs do |t]

t.column :journal, :string, :limit => 255
t.column :publisher, :string, :limit => 255
t.column :edition, :string, :limit => 255

t.column :title, :string, :limit => 255
t.column :author, :string, :limit => 255

end

Catalog.create :journal => "developerWorks",
:publisher => "IBM", :edition =>

"September 2006", :title=> "A PHP V5 migration
guide", :author=>"Jack D. Herrington"

Catalog.create :journal => "developerWorks",
:publisher => "IBM", :edition =>

"September 2006", :title=> "Make Ruby on Rails easy
with RadRails and Eclipse", :author=>"Pat Eyler"

end

def self.down
drop_table :catalogs
end
end

Run the migration with rake. Rails has a target called migrate to run
migrations.

C:\ruby\catalog>rake db:migrate

A database table catalogs gets created in the MySQL database test.
The catalogs table has a primary key field of type int(11) and has the
auto_increment attribute. The auto increment attribute generates a
unique identity for new rows. For Oracle database, which does not support
the auto increment attribute, a sequence catalogs seq also gets
created.

84 3 CRUD on Rails

3.9 Configuring with Oracle Database

In the previous section we configured Ruby on Rails with the MySQL
database and created a table in the MySQL database. Ruby on Rails may
also be configured with the Oracle database by modifying the connection
parameters in the database.yml configuration file. First, we need to
install the Oracle database. Download the Oracle 10g database' zip file.

Extract the /0201 database win32.zip file to an installation directory.
Double-click on the database/install/oui application. The Oracle Universal
Installer gets started. Click on the Next button. In the Select Installation
Type frame select an installation type, Enterprise Edition for example.
Click on the Next button. Specify an installation directory in the Specify
Home Details frame and click on Next. In the Select Configuration Option
frame select Create a Database, which creates a database instance, and
click on Next. In the Select Database Configuration frame select General
Purpose and click on Next. In the Specify Dataabse Configuration Options
frame specify a Global Database Name and SID, or select the default
‘orcl’. To create the sample schemas in the database instance select the
Create Database with sample schemas checkbox. Click on Next. In the
Select Database Management Option frame select Use Database Control
for Database Management and click on Next. In the Specify Database
Storage Option frame select File System (the default), or another storage
option and click on Next. In the Specify Backup and Recovery Options
frame select Enable Automated Backups to automate backups or select Do
not Enable Automated backups. Click on Next. In the Specify Database
Schema Passwords frame specify schema passwords or use the same
password for the different schemas. Click on Next. In the Summary page
click on Install. The database and the configuration assistants get installed.

We also need to install Ruby oci8 driver, which is required to connect
to Oracle database from a Ruby on Rails application. Download the ruby-
oci8-0.1.15-mswin32.rb? file. Cd to the c:/ruby directory and run the Ruby
application ruby-oci8-0.1.15-mswin32.rb.

c¢:/ruby>ruby ruby-oci8-0.1.15-mswin32.rb

Modify the development environment settings in database.yml file to as
shown below.

10racle database 10g -
http://www.oracle.com/technology/software/products/database/oracle10g/index.
html

2 Ruby OCIS Driver- http://rubyforge.org/frs/?group id=256

3.10 Configuring with SQL Server 2005 Database 85

development :
adapter: oci
database: ORCL
username: OE
password: password
host:

ORCL is the Oracle database instance. OE is the schema name. The host
value should be kept empty.

3.10 Configuring with SQL Server 2005 Database

Ruby on Rails provides an adapter for the SQL Server database that may
be used with an ADO driver. Install SQL Server 2005. First, install the
NET Framework 2.03. Download Microsoft SQL Server 2005 Express
Edition SP14 Double-click on SQLEXPR.EXE application. SQL Server
files get extracted and Microsoft SQL Server 2005 Setup wizard gets
started. Accept the licensing terms and click on Next. In the Installing
Prerequisites frame, click on Install button to install Microsoft SQL Native
Client and Microsoft SQL Server 2005 Setup Support Files. Click on Next
button. SQL Server Installation Wizard gets started. Click on Next. A
System Configuration Check gets run. Click on Next button. In the
Registration Information frame, specify registration information and click
on button Next. In the Feature Selection frame, select Database Services
node and click on Next. Install the SQL Server 2005 Express edition in
Mixed Mode Authentication. In the Authentication Mode frame select
Mixed Mode and specify a sa login password. Click on Next. In the Error
and Usage Report Settings frame, select the checkboxes if error and
features are to be reported automatically, and click on Next. In the Ready
To Install frame click on Install button. The SQL Server components get
configured. Click on Next. SQL Server installation gets completed. Click
on Finish.

Next, enable TCP/IP protocol. Select Microsoft SQL Server
2005>Configuration Tools>SQL Server Configuration Manager. In the
SQL Server Configuration Manager select the node SQL Server 2005
Network Configuration>Protocols for SQLEXPRESS. Right-click on the

3.NET Framework 2.0- http://msdn2.microsoft.com/en-
us/netframework/aa731542.aspx

“Microsoft SQL Server 2005 Express Edition SP1-
http://msdn.microsoft.com/vstudio/express/sql/download/

86 3 CRUD on Rails

TCP/IP node and select Enable. Restart the SQL Server (SQLEXPRESS)
service. In Adminstrative Tools>Services, right-click on the SQL Server
(SQLEXPRESS) service and select Restart.

Next, configure the Rails framework with the SQL Server database for
the Windows operating system. The Rails installation includes a SQL
Server adapter. The ADO driver is required to use the SQL Server adapter.
Install the ADO driver. The ADO driver is included in the Ruby-DBI
distribution. Obtain the Ruby-DBI distribution®. Extract the dbi-0.1.1.tar.gz
file to a directory. Create an ADO directory in the
C:\ruby\lib\ruby\site_ruby\1.8\DBD directory = and copy the \ruby-
dbi\lib\dbd\ADO.rb file to the ADO directory.

Modify the database.yml configuration file in the config directory
of the Rails application with the SQL Server database connection
parameters as shown below.

development :
adapter: sqglserver
database: tempdb
username: sglserver
password: sglserver
host: localhost, portnumber
mode: DBI:ADO

Variable portnumber is obtained from the SQL Server
configuration Manager. When the SQL Server 2005 SQLEXPRESS is
restarted the port number changes. To obtain the portnumber in the SQL
Server Configuration Manager, select the node SQL Server 2005 Network
Configuration>Protocols for SQLEXPRESS. Right-click on TCP/IP node
and select Properties. Select the IP Addresses tab. In IP ALL, the TCP
Dynamic Ports specifies the portnumber value.

3.11 Developing a CRUD Application

In this section we shall develop a Ruby on Rails application. A Ruby on
Rails application consists of the following Ruby scripts/view templates.

1. Model class in the app/models directory.

2. Controller class in the app/controllers directory.

3. View templates (RHTML files) in the views directory.

4. Database Configuration file (database.yml) in the config directory.

3 Ruby-DBI Distribution- http://rubyforge.org/projects/ruby-dbi/

3.11 Developing a CRUD Application 87

A MVC Ruby on Rails CRUD application may be developed either by
creating the model and controller classes separately and adding scaffolding
dynamically with the scaffold method in the controller class, or by
creating the scaffolding classes and view templates with the Scaffold
generator. We shall discuss both the methods, and create scaffolding for a
rails application with the scaffold generator.

3.11.1 Creating Dynamic Scaffolding

Dynamic scaffolding consists of creating model and controller separately
and adding scaffolding using the scaffold method in the controller class. A
model class is created with the following ruby command.

>ruby script/generate model catalog

This generates a ruby script catalog.rb in the models directory of
the Rails application’s app directory. The model class extends the
ActiveRecord: :Base class. Ruby script generated with example ruby
command is listed in following listing.

class Catalog < ActiveRecord: :Base
end
A controller class may be created with the following ruby command.

C:/ruby/catalog>ruby script/generate controller
catalog

A controlller class, which extends the ApplicationController
class gets generated. Controller ruby script is shown in following listing.

class CatalogController < ApplicationController

end

Scaffolding may be added to the controller class by adding
scaffold:catalog.

class CatalogController < ApplicationController
scaffold:catalog

end

By default, actions and views listed below get generated: index,
list, show, new, create, edit, update, destroy. If the default
actions views are to be overridden, create view templates corresponding to
the actions. For example, to override the default view for edit action, create

88 3 CRUD on Rails

a view template edit.rhtml in the views/catalog directory of the Rails
application.

3.11.2 Creating Scaffolding with Scaffold Generator

The rails framework provides the scaffold generator to create a controller
class and a model class and add scaffolding to the controller class.
Scaffolding is an interface to the data in the database. The interface is used
to create new entries in the database, retrieve entries, update entries and
delete entries. The syntax of the scaffold generator class is as follows.

C:/ruby/catalog>ruby script/generate scaffold
modelname, controllername, actionl, action2..

In the schema generator command, variable modelname specifies the
model class and variable controllername specifies the controller class.
Specifying controllername is optional. Actionl, action2.. specify the
actions in the controller class and are optional to be specified. If the
controller is not specified the plural form of the model name is used to
create the controller class. Model name and controller name should not be
suffixed with ‘Model” or ‘Controller’.

In the Ruby console window run the scaffold generator with the
following command.

C:\ruby\catalog>ruby script/generate scaffold catalog

A model class, a controller class and view templates get generated. By
default, actions and views listed below get generated: index, list, show,
new, create, edit, update, destroy. Model class Catalog extends the
ActiveRecord::Base class. The model class, Catalog, is shown in following
listing.

class Catalog < ActiveRecord: :Base

end

The controller class created has the plural form of the model class. The
controller class extends the ApplicationController class. The controller
class CatalogsController is shown below.

class CatalogsController < ApplicationController
def index
list
render :action => 'list'
end

3.11 Developing a CRUD Application 89

GETs should be safe (see
http://www.w3.0rg/2001/tag/doc/whenToUseGet .html)
verify :method => :post, :only => [:destroy,

:create, :update 1,
:redirect to => { :action => :list }

def list
@catalog_pages, @catalogs = paginate :catalogs,
:per_page => 10
end

def show
@catalog = Catalog.find(params[:id])
end

def new
@catalog
end

Catalog.new

def create
@catalog = Catalog.new(params[:catalog])
if @catalog.save
flash([:notice] = 'Catalog was successfully
created.'
redirect to :action => 'list'
else
render :action => 'new'
end
end

def edit
@catalog = Catalog.find(params[:id])
end

def update
@catalog = Catalog.find(params[:id])
if @catalog.update attributes (params[:catalog])

flash[:notice] = 'Catalog was successfully
updated.'
redirect_to :action => 'show', :id => @catalog
else
render :action => 'edit'
end

end

def destroy
Catalog.find (params[:1d]) .destroy

90 3 CRUD on Rails

redirect to :action => 'list’
end

end

With the scaffolding the following actions (methods) get generated in
the controller class :index, list, show, new, create, edit, update, destroy.
The default view templates may be overridden with view templates in the
views directory. For example, a custom view template edit.rhtml may be
provided in the views/catalogs directory. @A stylesheet
app/public/stylesheets/scaffold.css also gets generated. A layout
catalogs.rhtml gets generated in the views/layouts directory. Next, we shall
run the Ruby on Rails application in WeBrick web server. Start the
WEBFick server with the following command.

C:\ruby\catalog>ruby script/server

The WeBrick server gets started. Access the WeBrick web server with
URL http://localhost:3000 as shown in Figure 3.9.

‘2 Ruby on Rails: Welcome aboard - Mltrosoﬂ: lntemetExphl'ﬂ
Fle Edt View Favortes Tools Help T |
Goack - 5 - @ [A) | Qoearch (Favortes Preda (3| D- & 7|
Address |] http:/jlocalhost:3000 =] @0 |uinks »|

a

"ﬁ Welcome aboard

2 fou're riding the Rails
RAILS

About your application’s environment

Getting started

Here’s how to get rolling:

1. Create vour databases and edit
config/database.yml

Rails needs to know your login and password.

2. Use script/generate to create your
models and controllers

To see all available options, run it without parameters.
-
4| S i »
|&) [& ocalintranet 7
Fig. 3.9 WeBrick Console

3.11 Developing a CRUD Application 91

Display the list of catalog entries with the 1ist view template, which
is invoked with the URL http://localhost:3000/catalogs/list. To create a
new catalog entry click on the New catalog link as shown in Figure 3.10.

3 Catalogs: list - Microsoft Internet Explorer = |I:leJ
File Edit View Favortes Tools Help |-

GBack - 5 - @ [A} | Qsearch [iFavorkes Giedia (| BN & = - [H

Address I@j http:fflocalhost: 3000/ catalogs/list ﬂ 6o |Ln!s 2%

Listing catalogs
Journal Publisher Edition Title Author

A PHP V
September 2 Jack D.

2006 rgn:j?;:tmn Herrington Show Edit Destroy

Make Ruby
Rail
developerWorks IBM Septembensonitatsieasy Pat Eyler

2006 with RadRails oo bestoy

-

developerWorks IBM

and Eclipse

=
|&] http:jjlocalhost:3000/catalogs/new [[B ocalintranet v

Fig. 3.10 Listing Catalog Entries

In the new view template add a catalog entry and click on the Create
button as shown in Figure 3.11.

92 3 CRUD on Rails

3 Catalogs: new - Microsoft Internet Explorer -- _-_Jl_:l_,ﬁ’

| Fle Edt Vew Faortes Tok W |ma
Gpack -~ = - @ [2) 4} | Qoearch [igFavortes Wvedia B | Y- S = - [H

Address I@ http:/flocalhost; 3000/catalogs/new ﬂ 6o IL‘nIG 2%
New catalog
Journal

lde\reloperWorks

Publisher
|10

Edition
[uly 2208

Title
[The Java XPath API

Author
|Etliotte Rusty Harold

Create

Back

o
G T

Fig. 3.11 Creating a New Catalog Entry

A new catalog entry gets added as shown in the list view template. To
show a catalog entry click on the Show link. To delete a catalog entry click
on the Destroy link. To edit a catalog entry click on the Edit link as shown
in Figure 3.12.

3.11 Developing a CRUD Application 93

3 Catalogs: list - Microsoft Internet Explorer : - ||:||£’
File Edit View Favorites Tools Help |-
Back - = - @ (2 A} | Qoearch CigFavortes Fivedia (B | 5N S - 5
Address I@ http:/flocalhost: 3000/ catalogs/list j 6o lLinEa 2
Catalog was successfully created.
Journal Publisher Edition Title Author
& PHP V5
September . . Jack D.
developerWorks IBM 2006 mlgratlnn Herrington Show Edit Destroy
guide
Make Ruby
developerWorks IBM SEptEnibel o AR Bat Pat Eyler Show Destro
: 2006 with RadRails ¥ g s
and Eclipse
The Java Elliotte
developerWworks IBM July 2006 Rusty Show Edit Destroy
XPath APIL
Harold
New catalog
=
|@] http:{flocalhost:3000/catalogs/edit/2 I_ I_ l_ _fg‘ Local intranet y:

Fig. 3.12 Selecting Edit

In the edit view template modify the catalog entry, for example,
modify the title and click on the Edit button as shown in Figure 3.13.

94 3 CRUD on Rails

a Catalogs: edit - Microsoft Internet Explorer
File Edt View Favorites Tools Help

M

ek - = - @ [A | Qsearch GFevorkes Gvede P EN- S - H

Address [&] http:/flocahost 3000 catalogs/edt/2 =] oo |unks»

Editing catalog

Journal
|daveloperWorks

Publisher
[iBM

Edition
|September 2006

Title
|Ruby on Rails and Eclipse

Author
|Pat Eyler

Show | Back

S

|

[&] Done [[[BEtocaingane:

Fig. 3.13 Editing a Catalog Entry

Catalog entry gets updated as shown in Figure 3.14.

3.12 Ajax Scaffolding 95

3 Catalogs: show - Microsoft Internet Explorer : ;]E!ﬂ
Fle Edt Vew Favortes Tok M R
$Back - = - @ [0 A} | Qoearch CigFavortes Fvedia B | 5N S - 5

Address I(i,ﬂhttp:J,lIocalhost:SUUOFcatabgs,lshowE j 6o ‘Links 2

Catalog was successfully updated.
Journal: developerworks
Publisher: 1M

Edition: September 2006

Title: Ruby on Rails and Eclipse

Author: Pat Eyler

Edit | Back
[
&)oce T e,

Fig. 3.14 Updated Catalog Entry

3.12 Ajax Scaffolding

We shall be discussing Ajax with Ruby on Rails in the next chapter. But,
because the Ajax functionality may be added to scaffolding we shall
introduce Ajax in this chapter. Ajax is a web technique with which XML
data may be transferred between a browser and a server without reloading
the web page. To add Ajax functionality to the scaffolding install the
ajax _scaffold generator gem. Run the following command
while connected to the internet.

C:/ruby>gem install ajax_scaffold generator
Gem ajax_scaffold generator.3.1.10 gets installed. Create a rails

application, modify the database.yml and create a catalogs table using
migrations as in the non Ajax scaffolding example. Run the Ajax scaffold

96 3 CRUD on Rails

generator on the database table “catalogs”. We shall use model name
Catalog and controller name Catalogs as in the non-Ajax example.

C:/ruby/railsapp> ruby script/generate ajax_scaffold
Catalog

Controller class CatalogsController in Ruby script
catalogs controller.rb gets generated. The controller actions
new, create, update, list, cancel, edit, destroy and view templates new.rjs,
create.rjs, update.rjs, list.rhtml, canceljs, edit.rjs, destroy.rjs get
generated. CSS stylesheets for the view templates also get generated. Start
the WEBrick web server and invoke the URL
http://localhost:3000/catalogs. The catalogs table entries get displayed in
the 1ist action view template. The CRUD view templates use Ajax for
addition, update, and delete operations. To create a new catalog entry click
on the Create New link as shown in Figure 3.15.

7 Catalogs - Microsoft Internet Explorer = =10l x|
File Edt View Favorites Tools Help ‘i
Geack - = - @D [0 A | Qoeach GiFavaites Trede B[EN- & M - H
Address I@ http:{flocalhost: 3000{ catslogsflist _-_I @G0 | Links >
7 vI Q‘IWehSean:h © o Bookmarks v [Settings v | EMail + My Yahoo! | »
; Catalogs HE m
Catalogs ® Create New
Journal Publisher Edition Title Author
September Jack D, ’
developerWorks IBM 2006 A PHP ¥S migration guide Herrington Edit Delete
September Make Ruby on Rails easy with RadRails 2 -
developerWorks IBM 2006 and Eclipse Pat Eyler Edit Delete
2] hittp: [flocalhost: | t_directi Id_id=catalog ’_!_/_ Local intranet 4

Fig. 3.15 Create New

The Create Catalog window opens in the same view template with
Ajax. In the Create Catalog frame specify values for a new catalog entry
and click on Create as shown in Figure 3.16.

3.12 Ajax Scaffolding

97

€

atalogs iﬁrmsaft Internet Explorer
Fle Edt Wiew Favorites Tools Help]
EBak - & - @ [f) A} | Qoeach (iFavoites Fveda B | 5 S B - 5
Address I@ http: fflocalhost: 3000/ catalogs/list ;I PGo]Llr\hs 2%
7 - @~ |web Search <+ & Bookmarks ~ [settings ~ | [2)Mal ~ @My Yahoo! | »
oo |+
Catalogs @ Create New
Journal Publisher Edition Title Author
Create Catalog
Journal Publisher
[developerWorks | 1BM |
Edition Title
[July 2006 | [The Java XPath API |
Author
[Elliotte Rusty Harold| |
[CCrpate] cancer
: §
developerWorks 1BM September 2006 & PHP WS migration guide :Iaeil:tr?g.ton Edit Delete
developerworks 18M September 2006 ::‘;‘:a‘?ﬁ‘;b‘g’n;"ﬁ;‘;ﬁe“” with ot eyler Edit Delete
4]
l_l_'_ Eloﬁai intranet. Z

Fig. 3.16 Creating new Catalog Entry

A new catalog entry gets added to the catalogs table and gets displayed
in the list action view template. To edit a catalog entry click on Edit as

shown in Figure 3.17.

98 3 CRUD on Rails

atalogs - MicrnLo!t Internet Explorer
Fie Edt Yiew Favorites Tools Help]
GBak - & - @ [2] A} | Qoewch (EFavoites Tveda B | B S 0 - 5

T
_direction=asc

/&) http: Hlocalhost: Jedi

Address [] http:/flocalhost: 3000icatalogslist =l @ |unks >
¥7 - @~ | web Search <+ 4 Bookmarks ~ [Settings ~ |)Mail = @My vahoo! | »
- coms |+
Catalogs @ Create New
Journal Publisher Edition Title Author
developeriorks 1BM July 2006 The Java xPath API Elfictn Husty Edit Delete
September iarati P Jack D. =
developerworks IBM 2006 A PHP WS migration guide Herrington Edit Delete
Septemnber Make Ruby on Rails easy with RadRails i
developerWorks IBM 2008 and Eclipse Pat Eyler 54“% Delete

|
[B ocalitanet

Fig. 3.17 Editing Catalog Entry

In the Update Catalog frame modify the field values and click on

Update as shown in Figure 3.18.

4 Catalogs - MicrnLo!t Internet Explorer
Fie Edt Yiew Favorites Tools Help]
GBak - & - @ [2] A} | Qoewch (EFavoites Tveda B | B S 0 - 5

Address Ie] hitp:{flocalhost: 3000 catalogslist

;I @G0 |Llnhs 2

7 -

C\‘I;e‘hsaa:h < 4 Bookmarks = [Settings ~ | Email » My vahoo! | >

- coon |+
Catalogs @ Create New
Journal Publisher Edition Title Author
developerWorks IBM July 2006 The lava XPath AP Elliotte Rusty Harold Edit Delete
developerworks 1BM September 2006 gufy; 5, mgration Jack D. Herrington Edit Delete
|
Update Catalog
Journal Publisher
|developerworks | 1M |
Edition Title
|September 2006 | [Ruby on Rails and Eclipse |
Author

| [PatEyier |

|
' Cancel

&

|
[B ocalitanet

Fig. 3.18 Updating Catalog

3.12 Ajax Scaffolding 99

The catalog entry gets modified. To delete a catalog entry click on
Delete as shown in Figure 3.19.

3 Catalogs - Microsoft Internet Eun!or__e_r_ —
File Edt View Favorites Tools Help i
Bk + = - @ @) 2| Qoearch [Fovorites Weda (B | B &b il - F
Address]@ hittp: flocalhost: 3000/ catalogs/list LI @G0 |Links »
Y7 - @~ |web Search <+ % Bookmarks = [Settings ~ | [21Mal + My Yahoo! | »
| Catalogs l@
-
Catalogs @ Create New
Journal Publisher Edition Title Author
developerworks IBM July 2006 The Java XPath API Elliotte Rusty Harold Edit Delete
developerworks IBM Septernber 2006 A PHP VS migration guide Jack D. Herrington Edit ﬁm
developerworks IBM Septerber 2006 Ruby on Rails and Eclipse Pat Eyler Edit Del
L |
|&] http:{/ [destroy]1?page -_direction=asciamp;scaffold_id=catalog ’_ /_ /_ Local intranet ,é

Fig. 3.19 Deleting Catalog Entry

The catalog entry gets deleted as shown in Figure 3.20. A difference
between the Ajax scaffolding example and the non-Ajax scaffolding
example is that in the Ajax scaffolding example only the list action view
template is displayed and the catalog entry addition, update and delete
operations are performed using .rjs templates. In the non-Ajax scaffolding
example the view templates for the different controller actions are
displayed.

100 3 CRUD on Rails

/7 Catalogs - Microsoft Internet Explorer =|of x|
Fle Edk Ve Favories Took Help |
Goack - & - @ D) A | Qoearch [ElFavorites Pmedn (F | B S W - [H
Address [&] http:/flocalhost: 3000/ catalogsfist =l Pe |”“'°5 =
Y7 -| Q- | web Search < 4 Bookmerks ~ [Sattings - | Ejmal -~ @ty vahoo! | »
] Catalogs IE

Catalogs @ Create New
Journal Publisher Edition Title Author
developerWorks IBM July 2006 The Java XPath API Elliotte Rusty Harold Edit Delete
developerworks IBM September 2006 Ruby on Rails and Eclipse Pat Eyler Edit Delete
Bl
@ T Bl

Fig. 3.20 Catalogs table with an entry deleted

3.13 Validations

The Rails framework has the provision to validate fields. For example, set
the journal field as a required field. To the catalog.rb script model class
Catalog add the following line.

validates presence of :journal

In the views/catalogs/ _form.rhtml modify the following line.
<label for="catalog journal">Journal</label>

Modify the line to the following.

<label class="required"
for="catalog journal">Journal*</labels.

Invoke the Ajax scaffolding with the url http://localhost:3000/catalogs.
Click on Create New to create a new catalog entry. The Journal field has a
asterix indicating that the field is a required field. Specify values for all the
fields except the Journal field and click on Create as shown in Figure 3.21.

3.13 Validations 101

-l
File Edit Wiew Favorites Tooks Help Ii
q:m.-)-@@ﬁ|ﬁ5nrm [l Favorites @ Media @l%‘é
address [&) hitp:iflocahost:000jcatalogslist =] @eo ‘ Uinks »
¥7 - O~ | web Search <+ 4 Bookmarks ~ [Settings ~ |) Mail = My vahoo! | »
] catalogs IE

Catalogs @ Create New
Journal Publisher Edition Title Author
Create Catalog
Journal* Publisher
| Bm |
Edition Title
[July 2006 | [The Java XPath API |
Author
[Elliotte Rusty Harold |
cancel
Ruby on Rails and =
developerWorks IBM Septernber 2006 Eclipse Pat Eyler Edit Delete
developerWorks BM July 2006 The Java XPath API g‘::oti Rusty Edit Delete
2|
& [T [BE Localintranet A

Fig. 3.21 Validating Fields

An error message gets displayed indicating that the Journal field may
not be empty as shown in Figure 3.22.

-l
Fle Edt VYiew Favorites Tools Help I
SBack ~ & - @) [#) A Qsearch CiFavorites ivedia o | B S5 [

Address [&] htp:/localhost: 5000 catalogs list] Pe |L|nhs 2
Y7 - O~ |web Search <+ % Bookmarks ~ [settings ~ | [2)Mail ~ @My Yahoo! | »
: Catalogs lEI

=
Catalogs @ Create New
Journal Publisher Edition Title Author
Create Catalog
There were problems with the following fields:
¢ Journal can't be blank
Journal* Publisher
l | [BM |
Edition Title
[Juty2008 | [The Java XPath API |
Author
|Efliotte Rusty Harold |
cancel |
developerWorks 18M Septernber 2006 gzlhi’p’;:n Zatizend Pat Eyler Edit Delete
ra—T =l
€] [[[Localintranet 7

Fig. 3.22 Validation Error

102 3 CRUD on Rails

The Rails Validations that may be specified are discussed in Table 3.2.

Table 3.2 Rails Validations

Validation Description
validates_presence of Validates presence of one or more
fields.

For example, fields journal and
edition should be present:
validates presence of:journal, :edition

validates_length of Validates length of a field. For
example, catalogid should be
minimum of 8 characters and
maximum of 16 characters:

validates_length of :catalogid,
‘minimum => §
‘maximum => 16

validates_acceptance_of Validates the acceptance of a

condition. For example, a checkbox,
license_terms, should accept the value
“17.

validates_acceptance of
:license_terms,

:message => "must be accepted",

:on =>:save,

:accept=>"1",

:if=>:allow_validation

The following configuration options
may be specified:

:message-Specifies the error message.
Default is "must be accepted".
:on-Specifies when the validation
should occur. Default is :save. :create
and :update may also be specified.
:accept-Specifies a value that is
considered accepted. Default is “1”.
:if-Specifies a method, procedure or
string to invoke to determine if the
validation should occur.

3.13 Validations

103

Table 3.2 (continued)

Validation

Description

validates_confirmation of

Validates confirmation of a
field. For example, validate
confirmation of user_name
field:

validates_confirmation_of
:user_name,

:message => "doesn’t match
confirmation",

:on=>:save,
:if=>:allow_validation

Fields user_name and

user name_confirmation are
presented in the user view. The
following configuration options
may be specified:

:message-Specifies the error
message. Default is "doesn’t
match confirmation”.
:on-Specifies when the
validation should occur. Default

is :save. :create and :update may

also be specified.

:if-Specifies a method,
procedure or string to invoke to
determine if the validation
should occur.

validates_uniqueness_of

Validates uniqueness of a field.
For example, catalogid should
be unique:

validates_uniqueness_of
:catalogid

104 3 CRUD on Rails

Table 3.2 (continued)

Validation

Description

validates format of

Validates format of a field. For
example, zip code should match
a specified regular expression:

validates format of :zipcode

swith => /(M {5}$)(\d{5}-
\d{4}8$)/

validates_numericality of

Validates that a field is a
number. For example, the
catalogid field should be an
integer:
validates_numericality of
:catalogid,:on =>
:create,:message=>"is not an
integer",:only_integer=>true,

:allow_nil=>false,
:if=>:allow_validation

The following configuration
options may be specified:

:message - Specifies a custom
error message. Default is "is not
a number".

:on- Specifies when the
validaion should occur. Default
is :save. :create and :update may
also be specified.

:only_integer-Specifies whether
the value is required to be an
integer. Default is false.

:allow_nil-Specifies if nil values
may be specified. Default is
false. :if -Specifies a method,
procedure or string to invoke to
determine if the validation
should occur.

3.13 Validations

105

Table 3.2 (continued)

Validation

Description

validates_inclusion_in

Validates if the field value is
included in the specified list of
values. For example, journal
value should be one of
developerWorks, DB2
Magazine or WebSphere
Journal:

validates_inclusion_of :journal,
:in=>%w(developerWorks,DB2
Magazine, WebSphere Journal),
:message=>"1s not included in
the list",

:allow_nil=>false,
:if=>:allow_validation

The following configuration
options may be specified:

:in-Enumeration of values.
:message - Specifies a custom
error message. Default is "is not
included in the list".
:allow_nil-Specifies if nil values
may be specified. Default is
false.

:if -Specifies a method,
procedure or string to invoke to
determine if the validation
should occur.

106 3 CRUD on Rails

Table 3.2 (continued)

Validation Description
validates_exclusion_of

Validates that field value is not
in the specified enumeration. For
example, the cataloged should
not be in the range of 0-10.

validates_exclusion_of
:catalogid, :in=>0..10,
:message =>"is reserved",
:allow_nil=>false,
:if=>:allow_validation

The configuration options are the
same as for
validates_inclusion_in.The
default error message is "is
reserved".

validates_associated Validates if associated objects

are also valid.

3.14 Summary

In this chapter we discussed the scaffolding for CRUD operations
provided by the Rails framework. We discussed the different types of
scaffoldings and created a CRUD application to create, read, update and
delete catalog entries in MySQL database. We also configured Rails with
Oracle and SQL Server 2005 databases. We discussed the Ajax
scaffolding, which adds Ajax to the CRUD. We also discussed Rails
validations. Ruby on Rails is simpler than J2EE and PHP for developing
MVC CRUD applications. JSPs/HTMLs, servlets, EJBs, and configuration
fields that are required in a J2EE application are not required for a Ruby
on Rails application. A connection with the database is not required to be
obtained and SQL statements are not required to be run as in PHP and
Java.

4 Ajax on Rails

4.1 Introduction

Ajax is an XMLHttpRequest based web technique with which data may be
transferred between a client application and a web server and sections of
the web page updated with the XMLHttpRequest response without
reloading the web page. Rails facilitates the development of a dynamic
web application by supporting Ajax functions with which an
XMLHttpRequest request may be made to a web server. In this chapter we
shall develop an Ajax application using the Rails framework and MySQL
database.

4.2 Overview of Ajax

Asynchronous JavaScript and XML (Ajax) is a web technique for
developing asynchronous web applications. Ajax combines the
XMLHttpRequest object with JavaScript and XML Document Object
Model (DOM) technologies to provide asynchronous interaction between a
web client and a server. Asynchronous implies that a HTTP request
send () method returns immediately, thus providing dynamic interaction
between a web page and a server. The XMLHttpRequest object is used to
implement the Asynchronous JavaScript for XML (Ajax) web technique.
The XMLHttpRequest object transfers XML data between a client and a
server. XMLHttpRequest object was introduced as an ActiveX object in
IES, and is a window object property in IE7. Asynchronous
communication between a client and a server in a web application has
various applications. Google’s Gmail is an example of an Ajax
application. Some of the other Ajax applications are listed below.

1. Dynamic Form Data Validation. As an example, suppose a user fills
out a form to register with a web site. The validity of data in the form

108 4 Ajax on Rails

is not checked till the form is submitted. With Ajax, the data added to
the form is dynamically validated using business logic in a server
application. Thus, a complete form does not have to be posted to the
server to check if data in the form is valid.

2. Auto completion. As a user adds some data to a form, the remaining
form gets auto completed.

3. Refreshing data on a page. Some web pages require that data be
refreshed frequently, a weather web site for example. Using the
AJAX technique, a web page may poll the server for latest data and
refresh the web page without reloading the page.

4.3 Overview of XMLHttpRequest

XMLHttpRequest object provides asynchronous communication between a
client application, which may be an HTML/JavaScript page, and a server
application, which may be a Java Servlet. With the XMLHttpRequest
object, XML data may be submitted to a server and retrieved from the
server response without reloading a web page. The XML data received in a
response may be rendered on the client side using XML DOM and XSLT.
Microsoft in IE 5 introduced XMLHttpRequest for Windows as an
ActiveX component. Internet Explorer 6 also implements
XMLHttpRequest as an ActiveX object. In IE 7, XMLHttpRequest was
introduced as a window object property. The XMLHttpRequest object
provides various attributes/properties and methods to implement HTTP
client functionality. The XMLHttpRequest attributes/properties are
discussed in Table 4.1. In subsequent sections we shall discuss the
procedure to use these attributes in a web application.

Table 4.1 XMLHttpRequest Attributes

Attribute/Property Description
onreadystatechange Specifies the callback method
for asynchronous requests

readyState Retrieves the current state of a
HTTP request

responseText Retrieves the server response as
text

responseXML Retrieves the server response as

an XML DOM object.

4.3 Overview of XMLHttpRequest

109

Table 4.1 (continued)

Attribute/Property Description

responseBody Retrieves the response body

status Retrieves the HTTP status
code! of the request.

statusText Retrieves the text of the HTTP
status.

The XMLHttpRequest object methods are used to create an
XMLHttpRequest object, open a request, set request headers, get and set
response headers, and send a request. XMLHttpRequest methods are

discussed in Table 4.2.

Table 4.2 XMLHttpRequest Methods

Method Description
abort() Cancels the current HTTP
request.

getAllResponseHeaders()

Retrieves all the response
headers if readyState value is
3 or 4. Returns null if
readyState is 0, 1, or 2.

getResponseHeader(string
header)

Returns a specified response
header if readyState value is 3
or 4. Returns null if
readyState is 0, 1, or 2.

open(string method, string urll[,
boolean asynch][,string
username][, string password])

Opens a HTTP request with a
specified method and URL

send(data)

Sends a HTTP request to the
server and recieves an XML
response.

setRequestHeader(string
headerName, string headerValue)

Sets HTTP request headers if
readyState value is 1.

! Status Code Definitions- http://www.w3.org/Protocols/rfc2616/rfc2616-

sec10.html

110 4 Ajax on Rails

4.4 Creating an XMLHttpRequest Object

Before a client application may send a HTTP request, an XMLHttpReuest
is required to be created. XMLHttpRequest is implemented as an ActiveX
component in IE 5 and 6, and as a window object property in IE 7. An
XMLHttpRequest object is created in IE 6 with the following script, which
may be specified in a client application.

<scripts>

if (window.ActiveXObject)

var req = new ActiveXObject ("Microsoft.XMLHTTP") ;
</scripts>

In Internet Explorer 7, XMLHttpRequest is implemented as a window
object property. An XMLHttpRequest object in IE7 is created with the
following script that may be specified in a JavaScript application.

<scripts>

if (window.XMLHttpRequest) {
var req = new XMLHttpRequest () ;

}

</script>

After an XMLHttpRequest object has been created, the readyState
property is set to 0. At this stage, an XMLHttpRequest object has been
created, but not initialized.

4.5 Opening an HTTP Request

After an XMLHttpRequest object has been created, open an HTTP request
using the open(string method, string url[, boolean
asynch] [, string wusername] [, string password])
method. The open () method initializes a HTTP request, but does not
send the request. HTTP method and server URL are required parameters of
the open() method. The URL may be relative or absolute. Boolean
parameter asynch specifies if the HTTP request is asynchronous or
synchronous. The default value of the asynch is true. In the following
example, an HTTP request is opened with HTTP method GET and a
relative URL to an JSP page, validate.jsp. The userld parameter is
included in the URL. JavaScript method
encodeURIComponent (String) is used to encode userld value.

4.7 Processing an HTTP Response 111

<scripts>

var userId=document.getElementById ("userId") ;
req.open ("GET", "validate.jsp?userId="+
encodeURIComponent (userId), true);

</scripts>

After the open() method has been invoked, the readyState property
is set to 1. Attributes responseText, responseXML, status, and
statusText are set to their initial values.

4.6 Sending an HTTP Request

After opening a HTTP request, register a callback method using the
onreadystatechange property. The callback method is invoked
when the value of the readyState property changes. In the following
example callback event handler requestCallback is registered with the
XMLHttpRequest object using the onreadystatechange property.

<scripts>
req.onreadystatechange=requestCallback;
</scripts>

Next, send an HTTP request with the send (data) method. The
data parameter may be a string, an array of unsigned bytes, or an XML
DOM object. The data may be set to null. The send() method is
asynchronous if the boolean parameter asynch of the open() method is set
to true, and synchronous if the asynch is set to false. A asynchronous
method returns immediately, a synchronous method does not return till the
HTTP request is complete and the entire response has been received.

<scripts>

reqg.send (null) ;
</scripts>

After the send () method has been invoked, the readyState property
value is set to 2. At this stage, the status and headers are not available.
When the HTTP request has completed, the readyState property is set to 4.

4.7 Processing an HTTP Response

In the previous section a callback method was registered with the
XMLHttpRequest object. The callback method gets invoked when the
readyState property changes. A readyState value of 3 indicates that some

112 4 Ajax on Rails

data has been received, but response headers and status are not completely
available. At this stage, the responseXML property value is null. The
responseText property value contains partial response data. A
readyState property value of 4 indicates that response headers are
completely set and all the data has been received. In the requestCallback
method, check the value of the readyState property. If the readyState
property value is 4 and the status is 200, which corresponds to “Ok”,
invoke the JavaScript function response() as shown in following script.

<scripts>
function requestCallback () {
if (req.readyState==4) {

if (req.status==200)

response () ;

}

}

</scripts>

In the response() function, the values of the responseXML,
responseBody, and responseText properties may be retrieved to modify the
page content on the page that initiated the HTTP request. The
responseXML property contains an XML DOM object that may be
processed to obtain element and attribute values.

<scripts>

function response () {

var xmlResponse=req.responseXML;
var textResponse=req.responseText;
}

</scripts>

4.9 Ajax with Java 113

4.8 Ajax with PHP

Various Ajax frameworks for PHP are available, for example, Xajax and
Sajax. Xajax is used to communicate asynchronously between a client
application and a server side application comprised of PHP scripts. Xajax
generates JavaScript wrapper functions for PHP functions on the server
side that may be accessed from a client application. When a client
application invokes the wrapper functions, an XMLHttpRequest object is
initiated and an XMLHttpRequest request is sent to the server. On the
server, the Xajax object receives the XMLHttpRequest request and
invokes the PHP functions corresponding to the JavaScript wrapper
functions. The default request type of PHP functions registered through
Xajax is POST. The PHP functions process the data and return an XML
response that is returned to the client application by the Xajax object.
Based on the instructions in the XML response, the Xajax’s JavaScript
message pump updates the content of the client input page. Xajax has a
feature that, data is updated only if data has been modified.

4.9 Ajax with Java

Similar to PHP, various Ajax frameworks are available for Java, some of
which are AjaxTags, Direct Web Remoting (DWR), and Google Web
Toolkit (GWT). AjaxTags is a tag library for implementing the Ajax web
technique in a JSP page. AjaxTags provides various tags to implement the
Ajax functionality some of which are ajax:anchors, ajax:select,
ajax:autocomplete, ajax:htmlContent and ajax:updateField. For example,
ajax:htmlContent fills a DOM element with the HTML content returned by
the server. Direct Web Remoting (DWR) is a Java open source library for
developing Ajax applications. DWR consists of two components:
JavaScript running in the browser that sends requests and dynamically
updates the web page with the response, and a Servlet running on the
server that processes requests and sends response back to the browser.
Remoting in DWR implies that Java class methods are remoted as
JavaScript functions in the browser. DWR dynamically generates
JavaScript corresponding to Java classes and the JavaScript may be run in
the browser just as any other JavaScript class library. The JavaScript
functions generated corresponding to Java class methods have a callback
function as one of the parameters. The remote methods are invoked in the
browser using a callback function and the request is sent to the server
using Ajax. When the request is complete a response is returned to the

114 4 Ajax on Rails

browser using Ajax. The callback function specified in the remote method
gets invoked with the data returned from the server and the web page may
be updated with the server response. Google Web Toolkit (GWT) is a Java
framework for developing Ajax applications. Ajax being a JavaScript
based web technique, GWT generates the required JavaScript and HTML
from the Java classes. GWT provides a library of dynamic, reusable user
interface (UI) components for UI applications. Only a front-end Java class
is required to be specified to create a GWT application.

4.10 Support for Ajax in Rails

Rails provides support for Ajax in the Prototype JavaScript Framework,
which is a set of methods that return the required JavaScript to implement
the method. The Prototype helpers are provided in the
ActionView: :Helpers: :PrototypeHelper class. Using Ajax,
controller methods may be invoked from JavaScript code in a view without
posting a web page to the server. Some of the methods in the Prototype
JavaScript framework are discussed in Table 4.3.

Table 4.3 Rails Prototype JavaScript Methods

Prototype Method Description

link to remote Returns a link to a remote object

form_remote_tag Returns a form tag that will
submit using XMLHttpRequest.

submit to remote Returns a button input that will
submit a form with
XMLHttpRequest.

observe_field Observes a field with a specified
DOM ID and invokes a
specified url using

XMLHttptRequest. Updates
innerHTML of a specified DOM
ID with XMLHttpRequest
response text.

observe form Similar to observe field, but for
a form.
update page Updates a web page using

XMLHttpRequest.

4.10 Support for Ajax in Rails 115

Table 4.3 (continued)

Prototype Method Description
periodically call remote Periodically invokes a
specified url using

XMLHttpRequest and updates
a specified div with
XMLHttpRequest response

text.

update _element function Returns a JavaScript function
that will update a specified
element using
XMLHttpRequest.

We shall discuss each of these functions in some detail. Callback
functions may be invoked at various stages of the Ajax request. Callback
functions are specified using callback options. The callback options that
are used with the ActionView::Helpers::PrototypeHelper class are
discussed in Table 4.4.

Table 4.4 Callback Options

Callback Option Description

:uninitialized Invoked when an
XMLHttpRequest object has
been created, but not yet
initialized; readyState value is

0.
:loading Invoked when the open()
method on the

XMLHttpRequest object has
been invoked, but the send()
method has not yet been
invoked. ReadyState value is 1.
:loaded Invoked when the send() method
has been invoked. The
readyState value is 2.

:interactive Invoked when the response has
not completely been received.
The readyState value is 3.

116 4 Ajax on Rails

Table 4.4 (continued)
Callback Option Description
:success Invoked when XMLHttpRequest
is completed and the HTTP
status code is in the range of
2XX.
‘failure Invoked when the

XMLHttpRequest is completed
and the HTTP status is not in the
range of 2xx.

:complete Invoked when the
XMLHttpRequest is completed
and the :failure or :success
callbacks have been invoked, if
present.

4.10.1 link_to_remote

The 1ink to remote method returns a link, which is invoked using
XMLHttpRequest, to a remote action specified with the : url option. The
XMLHttpRequest response may be used to update a DOM object whose id
may be specified using the : update option. The callback options may be
used to invoke JavaScript functions. For example, a link to controller
action update_catalog may be created that updates div catalog.

link to_remote "Update Catalog", :update =>
"catalog", :url => { :action =>"update_ catalog",
:id=>catalog.id }

The :position option may be used to specify how the target DOM is
to be updated. The :position option may have a value of :before, :top,
:bottom, or :after. By default the remote request is asynchronous during
which the callbacks may be invoked. Callbacks are invoked with the
XMLHttpRequest object “request”.

Browser side invocation logic may be customized with JavaScript code
snippets invoked using some optional parameters, discussed in Table 4.5.

4.10 Support for Ajax in Rails 117

Table 4.5 Browser Optional Parameters

Parameter Description
:confirm Adds a confirmation dialog.
:condition Perform remote request

conditionally using the
specified condition.

:before Invoked before request is
invoked.
:after Invoked after request is

initiated and before :loading

:submit Submit using the specified
DOM ID as the container
element for the form elements,
instead of the form element.

4.10.2 form_remote_tag

The form remote tag method returns a form tag that submits using
XMLHttpRequest instead of HTTP POST. The :url and callback options
are the same as for link to_remote. For example, invoke the process_form
action when a form is submitted. When the XMLHttpRequest is
completed, invoke the processResponse function. In the controller class the
form elements are available in params hash.

form remote tag :url => { :action =>"process form",

:id=>catalog.id } :complete=>"processResponse"

4.10.3 submit_to_remote

The submit to remote method returns a button input tag that will
submit using XMLHttpRequest. The same options as in the
form_remote tag may be specified. For example a form has fields journal

118 4 Ajax on Rails

and edition and buttons Create and Update, which are created using the
submit_to remote tag.

<form>
<label for="journal"s>Journal:</label> <input
id="journal™"
type="text" name="journal" />

<label for="edition"s>Edition:</label> <input
id="edition"
type="text" name="edition" />

<%= submit_ to remote 'button', 'Create', :url =>
{ :action =»>
'create' } %>
<%= submit to remote 'button', 'Update', :url =>
{ :action =»>
'update' } %>
</form>

4.10.4 observe_field

The observe field method observes a field with the specified DOM
ID and sends an Ajax request when the field value has changed. Either the
:url or the : function option is required. The :url option invokes a
controller action and the :function option invokes a function using
XMLHttpRequest. Additional options that may be specified are discussed
in Table 4.6.

Table 4.6 observe_field Options

Option Description

:frequency Specifies the frequency in
seconds after which the field is
polled. If value specified is —ve,
0 or a value is not specified,
event based observation is used
instead of time based
observation.

:update Specifies the DOM ID whose
innerHTML is to be update with
XMLHttpRequest response text.

4.10 Support for Ajax in Rails 119

Table 4. 6 (continued)

Option Description

:with Specifies a JavaScript
expression that contains the
XMLHttpRequest request
parameters. Defaults to “value’,
which refers to the field value.

:on Specifies the event handler to
observe. By default is set to
“changed” for form fields and
text areas and “click” for radio
buttons and checkboxes.
Another event handler such as
“blur” and “focus” may be set
with :on.

4.10.5 observe_form

The observe form method is similar to observe field except that the
entire form is observed instead of a field. The options are the same as for
observe_field, except the :with option default value, which is set to a string
containing the field names and field values in the form.

4.10.6 periodically_call_remote

The periodically call remote method is used to invoke a
controller action, specified in the :url option, periodically (default is 10
seconds) and update a div, specified with the :update option, using the
XMLHttpRequest response. The :url and callback options are the same as
for link to remote.

4.10.7 update_element_function

The update element function returns a JavaScript function that
updates a DOM element. The options that may be used with the
update _element function are discussed in Table 4.7.

120 4 Ajax on Rails

Table 4.7 Options for update_element_functions

Option Description

:content The content to use for updating.
The :content option may contain
Ruby variables set in the
controller class.

:action Specifies the action to be
performed on the element.
Values that may be specified are
:update, :empty, or :remove. The
default value is :update. The
:empty value empties the
element. The :remove value
removes the element.

:position If the :action option is set to
:update, specifies the position at
which the content is updated.
Specified value may be :before,
:top, :bottom, :after

For example, update the journal element with the @journal variable
set in the controller class. Position the update value after the current value
in the element.

<%= update element function/(
"journal", :action => :update, :position =>
:after, :content => "<p>#{@journal.name}</p>")) %>

4.10.8 update_page

The update page method is used to update multiple elements in a page
using the JavaScriptGenerator. Returns JavaScript code in the Ajax
response.

4.11 Creating a Ruby on Rails Application

In this section we shall create a Ruby on Rails Ajax application using the
Model-View-Controller pattern. Install MySQL 5.0 database if not
already installed and create a database instance. Create a Rails application,
ajaxrails, with the following command.

4.12 Creating a Database Table 121

c:/ruby>rails ajaxrails

A Rails application directory structure gets generated. The root directory
of the Rails application is ajaxrails. The app directory consists of
sub-directories models, views and controllers for model classes,
view templates and controller classes respectively. The config directory
consists of a database.yml configuration file in which a database
configuration is defined. By default the MySQL database is configured.
The db directory consists of a sub-directory migrate that consists of
migrations that will be discussed in the next section.

4.12 Creating a Database Table

In this chapter we shall develop a Rails application with the Prototype
JavaScript framework, which implements the Ajax functionality in Rails.
The example application consists of a Catalog search form that retrieves an
article list using XMLHttpRequest. First, create a database table and
add data to the table using ActiveRecord migrations. A migration is a class
that extends the ActiveRecord::Migration class. The procedure to create a
table and add table data is as follows.

1. Create a migration.
2. Edit the migration code.
3. Run the migration.

Before creating and running a migration, modify the database.yml
configuration file in the config directory of the example Rails application
ajaxrails with the MySQL database. A migration may be run in
development environment (default), production environment or test
environment. Modify the development environment settings in
database.yml file to as shown below.

development:
adapter: mysql
database: test
username: root
password: rootpw
host: localhost

Add a space between the ' and the configuration values. For example,
specify adapter: mysqgl instead of adapter:mysqgl. If the root
user does not require a password specify password: without a value. If
the Oracle database is used modify the development environment in
database.yml as follows.

122 4 Ajax on Rails

development :
adapter: oci
database: ORCL
username: OE
password: password
host:

If Oracle database is used we also need to install Ruby oci8 driver as
discussed in Chap. 3.

If SQL Server 2005 database is used modify the development
environment in database.yml to as shown in following listing.

development :

adapter: sqglserver
database: tempdb

username: sglserver
password: sglserver

host: localhost, portnumber
mode: DBI:ADO

Variable portnumber is obtained from the SQL Server configuration
Manager as explained in chapter 3. Also, as explained in Chap. 3, we
need to install the ADO driver to use the SQL Server adapter.

We shall generate a migration by generating a model class. Create a
model, Catalog, using the following command from the ajaxrails
directory.

c:/ruby/ajaxrails>ruby script/generate model Catalog

A Ruby script, catalog. rb, which consists of a model class, Catalog,
which extends the ActiveRecord: :Base class gets generated and is
listed below. The ‘<’ notation indicates that the Catalog class extends the
ActiveRecord::Base class.

class Catalog < ActiveRecord: :Base
end

A migration script, 001 _create catalogs.rb, which consists of
CreateCatalogs class also gets generated. The migration class,
CreateCatalogs, extends the ActiveRecord: :Migration class.
A default migration consists of methods self.up and self.down.
Method self.up consists of transformations to implement the migration and
self.down consists of transformations to rollback a migration. In the
CreateCatalogs class, self.up consists of a transformation create table
that creates a catalogs table. Active Record uses pluralization to map
model classes to database tables. The model class is singular and
capitalized and the database table is plural and lowercase. For example, if

4.12 Creating a Database Table =~ 123

the model class is Catalog, the table name is catalogs. The self.down
method in CreateCatalog migration class consists of a drop table
transformation that drops database table catalogs. Next, we shall modify
the migration class to create a table, add columns to the table and add data
to the table. To the catalogs table add columns section, title, and url of type
string and size 255. The example migration script uses the block form of
create_table

create table :catalogs do |t
t.column :section, :string, :limit => 255
t.column :title, :string, :limit => 255
t.column :url, :string, :limit => 255

end

Valid column types that may be added are integer, float, datetime,
timestamp, time, text, string, binary and boolean. Add data to the catalogs
table with ActiveRecord::Base class method create. An example row is
added as shown below.

Catalog.create :section => "XML", :title => "JAXP
validation", :url =>
http://www-128.1ibm.com/developerworks/xml/library/x-
jaxpval.html

The complete migration script is listed below.

class CreateCatalogs < ActiveRecord::Migration
def self.up
create table :catalogs do |t
t.column :section, :string, :limit => 255
t.column :title, :string, :limit => 255

t.column :url, :string, :limit => 255

end
Catalog.create :section => "XML", :title => "JAXP
validation", :url =>

"http://www-128.1ibm.com/developerworks/xml/library/x-
jaxpval.html"

Catalog.create :section => "XML", :title => "The Java
XPath API", :url =>
"http://www-128.ibm.com/developerworks/xml/library/x-
javaxpathapi.html"

Catalog.create :section=> "Open Source",

:title => "Make Ruby on Rails easy with RadRails and
Eclipse", :url =>

124 4 Ajax on Rails

"http://www-
128.1ibm.com/developerworks/opensource/library/os-ecl-
radrails/"

end

def self.down
drop_table :catalogs
end

end

Next, run the migration with rake. Rake is similar to Java's ant. Rails
has a target called migrate to run migrations.

c:/ruby/ajaxrails>rake db:migrate

A database table catalogs gets generated.

4.13 Sending a Request

In this section we shall send an HTTP request from a catalog search form
using Ajax. Ajax is implemented by the XMLHttpRequest functionality
provided by the prototype JavaScript library. We shall use a Ruby on Rails
application to develop the Ajax application. The example Rails application
consists of the following Ruby and configuration files.

1. index.rhtml in the views directory (the view template).

2. catalog.rb in the models directory (the model class).

3. catalog_controller.rb in the controllers directory (the controller class)
4. database.yml file in the config directory.

A database.yml file gets created when a rails application is created. We
configured the database.yml file with the MySQL database and created a
table in the database in the previous section. A model script, catalog.rb,
was created in the previous section. In this section we shall create a
controller script, define a controller action index and create a view
template index.rhtml. Create a controller class, a controller action
index, and a view template index.rhtml with the following command.

c:/ruby/ajaxrails>ruby script/generate controller

catalog index

A catalog_controller.rtb Ruby file gets generated in the controllers
directory. The controller script includes a controller action index. Add
controller actions get articles and get article list to process HTTP

4.13 Sending a Request 125

requests from a view template. The controller script is shown in the
following listing.

class CatalogController < ApplicationController

def index
end

def get articles
end

def get_article list
end
end

A catalog directory gets generated in the views directory for view
templates. A view template, index.rhtml, gets generated in the
views/catalog directory. HTTP requests using XMLHttpRequest are
initiated from the index.rhtml view template and processed by the Action
Controller framework.

Each controller class method either renders a corresponding view
template with a matching name (the default, index.rhtml matches index
action in controller class), renders another view template, redirects to an
action in the controller class, renders an action in the controller class,
renders a file, or renders text in the view template that invoked the method.

Next we shall initiate an XMLHttpRequest in index.rhtml view
template. The Ajax functionaility is implemented in the Prototype
JavaScript framework, therefore, include the prototype library with the
following declaration in the <head> </head> section of the index.rhtml
file.

<%= javascript include tag "prototype" %>

An XMLHttpRequest may be initiated using one of the methods
discussed in Table 4.3. We shall discuss two of these methods,
form_remote tag and observe_field.

4.13.1 Sending a Request with form_remote_tag Method

In the form remote tag version of index.rhtml add a form with the
form_remote tag method.

<%=form_remote tag(:update=>"article list",
:url=>{:action=>:get_article list}) %>

126 4 Ajax on Rails

The form remote tag returns a <form> tag that is submitted using
XMLHttpRequest instead of HTTP POST or GET. The :update option
specifies a form id to be updated. The :url option specifies the controller
action to invoke when the form is submitted. Add a label, and a text field
to the form with text field tag method. Method text field tag is
included in the ActionView::Helpers::FormTagHelper module. The text
field is included in the form to specify a section for catalog search. When
the form is submitted, an XMLHttpRequest request is sent to
get_article_list action of the controller class and the article list div in the
form is updated with XMLHttpRequest response text that consists of an
article list retrieved from the database.

<label>Search by Section:</label>
<%=text_ field tag:section %>

Add a submit button with the submit_tag method.
<%=submit_ tag "Search" %>

Add a div that is to be updated and add form end tag with the
end form_ tag method. The end form tag method outputs the </form>
tag.

<div id="article list"></divs>
<% end form tag %>

The index.rhtml view template that generates a form with the
form_remote_tag method is listed below.

<html>
<head>
<title></title>
<%= javascript include tag "prototype" %>
</head>
<body>
<h3>Catalog Search Form</h3>

<%=form remote_ tag(:update=>"article list",

:url=>{:action=>:get article list}) %>

<label>Search by Section:</label>
<%=text field tag:section %>

<%=submit tag "Search" %>

<div id="article list"></div>

<% end form tag %>

</body>
</html>

4.13 Sending a Request 127

4.13.2 Sending a Request with observe_field Method

In the observe field version of index.rhtml the text field used to specify a
catalog section is polled at a specified frequency and an XMLHttpRequest
request is sent to the web server. The get articles controller action is
invoked periodically. An article list div in the web page is updated with
XMLHttpRequest response text, which consists of an article list retrieved
from the database. Add a text field with text field tag method.

<%=text_field tag:section %>

Specify the text field to observe and the div to update with the
observe field method.

)

<%= observe field(:section, :frequency=>0.1,
:update=>"article list",
:url=>{:action=>:get_articles}) %>

The observe field method specifies that the :section text field is to
observed. The :frequency option of the observe_ field method specifies the
frequency (in seconds) with which the text field is to be polled. The
:update option specifies the div to be updated with XMLHttpRequest
reponse text. The :url option specifies the controller action to invoke at the
specified frequency.

The index.rhtml view template that includes a text field observed with
the observe field method is listed below.

<htmls>
<heads>
<title></title>
<%= javascript_include_tag "prototype" %>
</head>
<body>
<h3>Catalog Search Form</h3>

<labels>Search by Section:</labels>
<%=text field tag:section %>

<%= observe field(:section, :frequency=>0.1,

:update=>"article list",

:url=>{:action=>:get articles}) %>

<div id="article list"></div>

</body>
</html>

128 4 Ajax on Rails

4.14 Processing a Request

The procedure to initiate a request and process a response is as follows.

1. A request is initiated from a prototype library method in the view
template. Examples of methods that may initiate a request are
form remote tag and observe field.

2. The view template method invokes an action in the controller class
with XMLHttpRequest.

3. The controller class retrieves the value/s specified in the view and
queries the database using the model class to create a connection with
the database and obtain data from the database. The controller action
processes the data by applying a business logic and renders text that
is sent to the view that invoked the controller action.

4. The XMLHttpRequest response text is processed in the view. In the
example application the response text is used to update a div with an
article list for a specified section.

In the example application, an XMLHttpRequest is initiated from view
template index.rhtml. If the form remote tag method is used to send a
request, the get article list action in the controller is invoked. If the
observe field method is used to send a request the get articles action in
the controller class is invoked. The controller class obtains a data result set
using a SQL query created from the section value specified in the view and
outputs a list of retrieved articles. The controller class, CatalogController,
obtains data using the model class, Catalog. The model class Catalog was
generated in the Creating a Database Table section. By default, the Rails
framework uses the plural of the model class with the first letter
lowercased as the table name. The table name may also be specified using
set table name method of ActiveRecord::Base class as explained in this
section. By default, the rails framework uses the connection parameters
specified in the database.yml file to establish a connection in the database.
A connection may also be specified using the establish_connection method
as we shall discuss in this section. If the default connection configuration
specified in database.yml is to be used the catalog.rb is not required to be
modified. In the example application the connection configuration is set in
the catalog.rb file to discuss the provision to override the default
connection configuration. Setting the connection configuration in the
model class may be used when multiple models and controllers are used.
Modify the catalog.rb Ruby file to create a database connection. In the
Catalog class set table name from which data is to be retrieved with
set table name method of ActiveRecord::Base class.

4.14 Processing a Request 129

class Catalog < ActiveRecord: :Base
set table name "catalogs"
end

Next, establish a connection with the database with the
establish_connection method. For a connection with the MySQL database,
specify :adapter value as "mysql" in lowercase.

ActiveRecord: :Base.establish connection(

:adapter => "mysqgl",
:host => "localhost",
:database => "test",
:username => "root",
:password => “rootpw”

)

The complete listing for the catalog.rb model class is listed below.

require 'rubygems'
require 'active record'

class Catalog < ActiveRecord: :Base
set table name "catalogs"
end

ActiveRecord: :Base.establish connection(
:adapter => "mysqgl",
:host => "localhost",
:database => "test",
:username => "root",
:password => “rootpw”

)

The controller class CatalogController (catalog controller.rb file)
integrates the model with the view. A controller class is a sub class of the
ApplicationController class, which is a sub «class of the
ActionController::Base class. The controller class consists of actions
(methods) that are invoked from a view. A controller class action is either
mapped to a view template with a matching name, redirected to a view
template, redirected to another controller action, or renders text in the view
that invoked the action. CatalogController consists of actions index,
get_articles, and get article list. The index action has a corresponding
view template in the views directory. The get articles and get_article list
actions send response text to the index.rhtml view template.

130 4 Ajax on Rails

The get_article list action gets invoked from index.rhtml view template
if the template consists of the form remote tag method. In the
get_article list method retrieve the value of the section text field.

@section=params[:section]

If Oracle database is used retrieve the value of the section text field and
convert the value to upper case as the values in the database table are
uppercase.

@section=params[:section] .upcase

Create a variable, (@catalogList, for a list of articles retrieved from the
database for the specified section.

@catalogList=""

The ActiveRecord::Base class provides various finder methods to query
a database. These finder methods are discussed in Table 4.8.

4.14 Processing a Request 131
Table 4.8 ActiveRecord::Base Finder Methods
Finder Description Options
Method
find(*args) Retrieves database data Some of the
using one of the following commonly used
retrieval approaches. options are as
Find by id-Finds by id. follows.
Example, find(1,options). :conditions-An
Find first-Returns the SQL fragment,
first record matched by Example,
the specified options. :conditions=>"secti
Example, find(:first,options). | on="Developer".
Find all- Returns the | :limit-An integer
complete result set. that specifies the
Example, find(:all,options). limit on the
number of rows to
return.
:offset-An offset
determining from
where the rows

should be fetched.
If value is 3, the
first 2 rows are
skipped.

:select-A SELECT
query. The default
is SELECT *
FROM.
:from-Specifies the
table name or
database view. Set
if the default table
name is not to be
used.
:readonly-Specifies
if the result is read
only.

find by sql(s
qb)

Runs a SQL statement
to select data.

132 4 Ajax on Rails
Table 4.8 (continued)
Finder Method Description Options
find by Dynamic attribute- | Same as
find_all by based for find().
find or create by finders. Dynamic The
find or initialize by | finders are cleaner than | Complete
the SQL based finder. Interface
Dynamic finders are for
used by appending the find by section

attribute name to the
finder method. For
example, to find by
section use:

find by _section(section

).

To create a record if

a record does not

exist

use find_or create by .
Multiple attributes may
be specified in a finder
by including an “and”.
For example to find by
section and tile use

find by section_and_tit
le

(section, title).

To return a new record,
if the record does not
exist, without saving
the

record

use

find or initialize by.

is

find by section
(section,
options).

Using dynamic finders such as find by _attribute makes the code more
readable and maintainable, but slows down the query and reduces
efficiency as the dynamic methods have to be generated dynamically by
the ActiveRecord and the SQL query has to be built from the dynamic
finder. Using find by sql directly is more efficient and is recommended if

SQL queries are to be optimized.

4.14 Processing a Request 133

Next, select database table data using the find by sql method and a
SELECT statement SQL query. A database connection was obtained in the
model script (catalog.rb) and the database table was also specified in the
model script. Iterate over the result set array to construct a list of articles
that match the specified section.

Catalog.find by sqgl ("SELECT * from catalogs WHERE
SECTION='"+@section+"'") .

each do|catalog]

@catalogList+=""
+catalog.title+ ""

end

Send a response with render:text method.
render:text =>@catalogList
The get articles controller class action gets invoked if observe field

method is used in the index.rhtml view template. Retrieve the value of the
section text field.

@section=request.raw_post

[]

Due to a bug in the raw_post a ‘=" might get appended to the string
value. Use the following to obtain the string value from raw_post.

@section=request.raw_post [0, request.raw post.length-

1]

If Oracle database is used retrieve the value of the section text field and
convert the value to upper case.

@section=request.raw_post.upcase

Construct a local variable, @catalogList, for a list of articles retrieved
for a section.

@catalogList=""

The result set for a section may be obtained by one of the finder
methods.

Catalog.find(:all, :conditions => ["section = ?",
@section])

Catalog.find all by section(@section)
Catalog.find by sqgl ("SELECT * from catalogs WHERE
SECTION='"+@section+"'")

134 4 Ajax on Rails

We shall run a SQL query with a SELECT statement with a specified
section value using the find by sql method and iterate over the result set
to construct a list of articles that match the section value.

Catalog.find by sqgl ("SELECT * from catalogs WHERE
SECTION='"+@section+"'") .each

do|catalog]|

@catalogList+=""
+catalog.title+ ""

end

Return a response to the index.rhtml view with render:text.

render:text=> @catalogList

The controller script, catalog_controller.rb is listed below.

class CatalogController < ApplicationController

def index
end

def get_ articles
@section=request.raw_post

@catalogList=""
Catalog.find by sql ("SELECT * from catalogs WHERE
SECTION='"+@section+"'").
each do|catalog]|
@catalogList+=""
+catalog.title+ ""

end

@catalogList+="</0l>"

render:text=> @catalogList

end

def get article list
@section=params [:section]
@catalogList=""

Catalog.find by sqgl ("SELECT * from catalogs WHERE
SECTION="'"+@section+"'").
each do|catalog]
@catalogList+=">1li>>a href=\""+catalog.url+"\">"
+catalog.title+ ">/a>>/1li>"

end

4.15 Processing the Response 135

@catalogList+="</0l>"
render:text =>@cataloglList
end

end

4.15 Processing the Response

The response from the controller class is used to update the article list
div specified in the :update option of the form remote tag method or
observe_field method.

<%=form_remote_ tag(:update=>"article list",
:url=>{:action=>:get article list}) %>

<%= observe field(:section, :frequency=>0.1,
:update=>"article list",
:url=>{:action=>:get _articles})%>

Next we shall run the MVC Ruby on Rails application. First, start the
WEBTrick web server.

c:/ruby/ajaxrails>ruby script/server

The web server may be accessed at url http://localhost:3000/ as shown
in Figure 4.1.

136 4 Ajax on Rails

(=]
Flo Edt View Favontss Tooks Help -
B G o Y| Y S e g o | 2 2 o) e L SN
Address [{€] hito:/flocshost: 3000 =] @6 ik ™
| -
|
t: Welcome aboard —
RAILS e hEISAS
About your application’s environment Join th
Getting started s
Here's how to get rolling: Dotem
| Mailing ki
| IRC chan
1. Create your databases and edit | i
fig/database.yml P
config/database.ym | o
Rails needs to know your login and password.
Brows:
. docum
2. Use script/generate to create your A
models and controllers S
To see all available options, run it without parameters. | Bubysta
| Ruby cor
3. Set up a default route and remove or | L.
rename this file
Routes are setup in config/routes.rb |
4 | ; »
& [T [ocal et 7

Fig. 4.1 Ruby on Rails Console

We shall run the Rails Ajax application with each of the view
templates, index.rhtml, discussed in the Sending a Request section. One of
the view templates uses the form_remote tag method to send a request and
another uses the observe field method to send a request. Copy index.rhtml
for the form remote tag method to views/catalog directory of the
ajaxrails directory. Invoke the index action of the Catalog controller with
url http://localhost:3000/Catalog/index in a web browser. A input form
gets displayed as shown in Figure 4.2.

4.15 Processing the Response 137

: http://localhost:3000/Catalog/index - Microsoft Internet Explorer -!Dl!]
Flo Edk View Favortes Tools Help

ok » = - @D [A) A| Qseorch (SlFavorkes @Mede (P Bh- S M - = &

Address [£] http:/flocahos: 3000/Catslogiindex +] @60 | Lnks

Catalog Search Form

Search by Section [Search I

W—. .

[@itone [B ocalintranet Z

Fig. 4.2 Catalog Search Form

Specify a value in the Search by section field, "Open Source" for
example. The section value may be uppercase or lowercase or mixedcase.
Click on the Search button as shown in Figure 4.3.

138 4 Ajax on Rails

A http://localhost:3000/Catalog/index - Microsoft Internet Explorer _Inlll

Fle Edk View Favortes Took Help -

bk » =+ - @ D) A Qoeurch (aiFavortes @Meda (P - S G - = &

Address [2] http:/flocshos 3000/ Catsloafindex T ~] PG |Lnks?

Catalog Search Form

Search by Section: iopen Source

— oz

18] Bore [B =

Fig. 4.3 Searching a Catalog

An XMLHttpRequest request gets sent and a view page div gets
updated with the response text, which consists of a list of articles that
match the specified section. The article list gets displayed without posting
the form to the web server as shown in Figure 4.4.

4.15 Processing the Response 139

3 htep: 'localhost:3000/Catalog/index - Microsoft Internet Explorer A i -IDEE]
Fle Edk View Favortes Tools Help

ok + = - @D) A Qoearch (SlFavorkes @iMeda P - S G - = &G
Adkdress [{€] http:/locshost: 3000/ Catsloiind ~] @60 s *
Catalog Search Form :

Search by Section |Open Source

1. Make Ruby on Rails easy with RadRails and Eclipse

T E— I - T

Fig. 4.4 Catalog Search Result

Next, we shall run the Rails application with observe field method in
the view template. Copy index.rhtml for the observe field method to the
views/catalog directory of the ajaxrails directory. Invoke the index action
in the controller class with url http://localhost:3000/Catalog/index. A
search form gets displayed as shown in Figure 4.5. The search form has
only an input text field that is polled at regular intervals and the field value
is sent to the web server with XMLHttpRequest.

140 4 Ajax on Rails

;hﬂp: localhost:3000/Catalog/index - Microsoft Internet Explorer

Fle Edt View Favortes Took Help
Eoeck - 5 - Q) 2| Qearch [aiFavorkes Pieda J D SH [- H &
Address [] http: flocahost:3000]Cat slogfindex =] P |nks ?
Catalog Search Form
Search by Section: I
<]
|&] pone [T B ocal ibranet 7

Fig. 4.5 Catalog Search Form

Specify a section field value. If the specified section value does not
match a section value in the database an article list is not displayed as
shown in Figure 4.6.

4.15 Processing the Response 141

3 http://localhost:3000/Catalog/index - Microsoft Internet Explorer e -lo| ﬂl
Fle Edt Wiew Favorkes Took Help

Sk - > - DB O] Diseath (aifever=s Fiece 3| B> B il - 2 55

#ddress [) hup:iflocshosz: 000/ Cataloiindex =] @60 |tnks »

Catalog Search Form
Search by Section: M

&1 0one T Bfvocalingrenst 7]

Fig. 4.6 Specifying an Input Value

Specify a section value that matches a section in the database table
catalogs. Specify "XML" for example. A list of articles that match the
specified section gets displayed without clicking on a button as shown in
Figure 4.7.

142 4 Ajax on Rails

1 http://locathost:3000/Catalog/index - Microsoft Internet Explorer

Fle Edk View Favorites Took Help
ok - = - D D) A| Qsearch (siFavokes PMeda (P EN- Sh Ol - = &
Address [] http: flocahost 3000/ Cataloafindex ~] @G | Unks ™

Catalog Search Form

Search by Section IXML

1. JAXP vahdaton
2. The Java XPath API

[&ioone [it

Fig. 4.7 Catalog Search Result

4.16 Summary

In this chapter we discussed the Ajax web technique. The Rails framework
provides the Ajax functionality in the PrototypeHelper class. The
advantages of the Ruby on Rails framework may be combined with the
dynamic interaction between a client and a server provided by Ajax to
develop easy to develop dynamic web applications.

5 Creating PDF and Excel Reports

5.1 Introduction

Portable Document Format (PDF) is a file format created by Adobe
Systems for electronic information exchange. PDF is widely used to
capture, view, and print information from any application and on any
platform. PDF documents preserve the source file information including
text, drawings, 3D, full-color graphics, photos, and business logic. Adobe
has submitted PDF 1.7 to ISO for a formal, open standard ISO 32000.
Various tools are available to generate a PDF document with Ruby on
Rails. Some of these PDF tools are listed below.

1. HTMLDOC is an application that converts HTML documents to
Adobe PostScript or Adobe PDF files.

2. PdfWriter is a function library, available as a pdf writer.rb file, to
generate PDF documents.

3. PDF::Writer is a tool to generate PDF documents.

4. Ruby FPDF is a ruby file that may be used to generate PDF files.

5. JasperReports is a Java reporting tool that may be integrated with
Rails.

6. Rails PDF Plugin.

Often data is required to be presented in a spreadsheet. Excel is a
spreadsheet program by Microsoft to analyze, exchange, and present
information in a row-column-cell format. Ruby provides various libraries
to generate an Excel spreadsheet. Some of these Ruby libraries are
discussed below.

1. The Builder ruby library may be used to export XML to Excel
spreadsheet.

2. Apache POI Ruby Bindings may be used to generate an XML
Document

3. The Ruby Spreadsheet library.

144 5 Creating PDF and Excel Reports

In this chapter we shall create PDF and Excel spreadsheet documents
using Ruby on Rails. For comparison, we shall also briefly discuss how
one would create a PDF document and an Excel spreadsheet in PHP and
Java.

5.2 Creating a PDF with PHP

In PHP a PDF document is created using one of the PHP class libraries for
PDF such as PDFLib or CIlibPDF. For example, with ClibPDF, first one
would open a new PDF document using the cpdf open () function.

Scpdf=cpdf open(0) ;

Start a new page using the cpdf page init() function. In which, page
size, page number, and page orientation may be specified. A bookmark
may be added using the cpdf add outline() function. Text is added to the
PDF document using the cpdf begin_text() function.

cpdf begin text (Scpdf) ;

Set font using the cpdf set font() function and text position with the
cpdf set text pos() function. Specify text rendering mode with the
cpdf set text rendering() function. Text may be rendered in fill mode or
stroke mode. Add text to the PDF document using the cpdf text() function.

cpdf text ($cpdf, "PDF Document created with PHP") ;

The text section is ended with the cpdf end_text() function.
cpdf end text ($cpdf) ;

The ClibPDF class library also provides functions to add a line or add a
JPEG to the PDF document.

5.3 Creating a PDF with Java

A PDF document is created using the Apache FOP API. The Formatting
Objects Processor (FOP) API converts a XSL Formatting Objects (XSL-
FO) object to a PDF object. For example, if an XML document is to be
converted to a PDF document, first we need to transform the XML
document to an XSL-FO file, foFile, using a Transformer object. Create a
FOP driver object.

5.4 Creating a PDF File with Ruby on Rails 145

org.apache.fop.apps.Driver driver=new
org.apache.fop.apps.Driver () ;

Set the PDF renderer on the Driver object.
driver.setRenderer (Driver .RENDER_PDF) ;
Specify an InputStream for the XSL-FO document.

InputStream input=new FileInputStream(foFile) ;
driver.setInputSource (new InputSource (input)) ;

Specify an OutputStream for the PDF document.

OutputStream output=new FileOutputStream(pdfFile) ;
driver.setOutputStream (output) ;

Run the FOP driver to generate a PDF document.

driver.run() ;

5.4 Creating a PDF File with Ruby on Rails

We shall create example PDF files with the PDF : : Writer tool. We need
to install PDF::Writer and dependencies with the package manager
RubyGems. The ruby command to install PDF::Writer is as follows.

c:/ruby>gem install pdf-writer

All gem install commands are required to be run while connected to the
Internet. PDF::Writer gets installed including the dependencies as shown
in Figure 5.1.

Command Prompt

thy>genm install pdf-writer
Need to update 5 gems from http://gems.rubyforge.oryg

Install required dependency color—tools? [¥nl
Install required dependency transaction r1mp1e7 [¥n1l
ite .1.3

;ull_) 1n.,talled pdf

ri documentation for col

ri documentation for trans

RDoc documentation for pdf-writ 1.1.3.

RDoc documentation for color—tools-1.3.0
Installing RDoc documentation for transaction-simple-1.3.0...

C:spuby>

Fig. 5.1 Installing PDF-Writer Gem

Some of the commonly used methods of the PDF::Writer class are
discussed in Table 5.1.

146

5 Creating PDF and Excel Reports

Table 5.1 PDF::Writer Methods

Method

Description

add_content(content)

Adds content to the

PDF::Writer object.

add_internal link(label, x0, yO,
xl,yl)

Adds an internal link.

add link(uri, x0, y0, x1, y1)

Adds a link.

add text(x, y,size = niltext,
angle = 0, word_space_adjust =
0)

Adds text to the document at
specified location.
Size defaults to current
font_size and
word _space_adjust is an
internal parameter.

add text wrap(x, y, width, text,
size = nil, justification = :left,
angle = 0, test = false)

Adds text within the specified
width and returns the remaining
text.

insert_page(page = nil)

Returns or sets the insert page
property. For example,
insert page(25) sets the insert
page as 25 and
insert_page(:last) sets the insert
page as the last page.

margins_cm(top, left =
bottom = top, right = left)

top,

Defines the margins in cm.

new(options = {})

Creates a new PDF document.
Accepts the following
parameters:

:paper-Specifies the size of the
default page.
:orientation-Specifies page
orientation to long (:portrait) or
wide (:landscape).

render(debug = false)

Returns the PDF stream as
string.

save as(name)

Saves PDF as a file.

select_font(font, encoding = nil)

Loads the specified font if not
already loaded and sets the font
as the current font.

start_columns(size = 2, gutter =
10)

Starts multi column output.

5.4 Creating a PDF File with Ruby on Rails 147

Table 5.1 (continued)

Method Description

size() Returns the number of PDF
objects in the document.
start_columns(size = 2, gutter = | Starts multi column output.

10)
start new_page(force = false) Creates a new page. If multi
column output is set, changes
the column or creates a new
page. If force set to true creates
a new page even if multi column
output is set.

start_page numbering(X, y, | Starts page numbering.

size, pos = nil, pattern = nil,
starting = nil)

text(text, options = {}) Adds text. The following
options may be specified.
:font_size-Specifies font size.
:left-Space to leave from left

margin.
:right-Space to leave from right
margin.
:absolute_left-Absolute left

position, overrides :left.
:absolute_right-Absolute right
position-overrides :right.
;justification-:left, :right, :center
or :full.

:leading-Height taken by the
line.

:spacing-Word spacing.

Next, we shall create an example PDF document. First, create a rails
application for the PDF document with the following command.

C:/ruby>rails pdfwriter

We need to create a controller Ruby script to generate a PDF document
with following command; also create a controller action called createPDF.

148 5 Creating PDF and Excel Reports

C:/ruby/pdfwriter>ruby script/generate controller
pdfwriter createPDF

A controller script pdfwriter _controller.rb gets generated in the
C:\ruby\pdfwriter\app\controllers directory. In the controller script add a
require statement for PDF:: Writer.

require 'pdf/writer'
In the createPDF action we need to create a PDF::Writer object.

pdfWriter = PDF::Writer.new

We need to select the font to be used in the PDF document using the
select font method. Also specify the page margins and page
numbering using the margins_cm and start page numbering methods.

pdfWriter.select font 'Times-Roman'

pdfWriter.margins_cm(5, 5, 5, 5);

pdfWriter.start page numbering (300, 10, 10, pos =
:center, pattern = nil, starting = nil)

Output text using the text method in which the font size and
justification may also be set.

pdfWriter.text "This PDF document is created with PDF
Writer.", :font size => 72, :justification => :center

Output the PDF document to a file output.pdf using the send data
method of the ActionController::Streaming module.

send_data pdfWriter.render, :filename =>
'output.pdf', :type => "application/pdf"

The complete controller script, pdfwriter controller.rb, is listed below.

class PdfwriterController < ApplicationController
require 'pdf/writer'

def createPDF
pdfWriter = PDF::Writer.new
pdfWriter.select font 'Times-Roman'
pdfWriter.margins_cm(5, 5, 5, 5);
pdfWriter.start page numbering (300, 10, 10, pos
= :center, pattern = nil, starting = nil)

pdfWriter.text "This PDF document is created

with PDF Writer.", :font_size => 25, :justification
=> :center
send data pdfWriter.render, :filename =>

'output.pdf', :type => "application/pdf"

5.5 Creating a Table in PDF 149

end
end

We need to start the WEBTrick web server with the following command.

C:/ruby/pdfwriter>ruby script/server

To create the PDF document we need to invoke the createPDF action in
the controller script with URL http://localhost:3000/pdfwriter/createPDF.
A PDF document gets created as shown in Figure 5.2.

il
) Fle Edt Document Tooks View Window Help mEE]

eeEaa @-Bl- B es|ehx - OEE=-|H
[mea- 588 -¢-£- BL&BSUHE T

This PDF document is created
with PDF Writer.

[signatures " comments Y Thumbnais " Bookmarks

hd

LS o1 o1 esxtin 1O M M

Fig. 5.2 PDF Document Generated with PDF::Writer

Ruby on Rails may also be used to generate graphics with the
PDF::Writer::Graphics class, charts with the PDF::Charts::StdDev class,
and tables with the PDF::SimpleTable class. In the next section we shall
create a table.

5.5 Creating a Table in PDF

The PDF: : SimpleTable class is used to create a table in PDF. Method
new of the class is used to create a new table. Method render on is
used to render a table on a PDF::Writer object. Some of the commonly
used attributes of the PDF::SimpleTable class are discussed in Table 5.2.

150

5 Creating PDF and Excel Reports

Table 5.2 PDF::SimpleTable Attributes

Attribute

Description

column_gap

Space in PDF user units to the
left and right sides of each cell.
Default value is 5.

column_order

Specifies the order of the

columns.

columns

An array that specifies columns
and column options.

data

Specifies an array of Hash
entries; each entry being a key-
value pair in the same order as
specified in the column_order
attribute.

font size

Font size; defaults to 10 points.

heading color

Text color of the heading.

heading font size

Heading Font size;defaults to
12 points.

inner_line style

Specifies inner line style.

line color Specifies line color.
maximum width Maximum width of the table.
orientation Table orientation relative to

position. The following values
may be used:

:left-Left of position.
:right-Right of position.
:center-Centered at position.

outer line style

Outer line style.

position Specifies position of the table.
left-Aligned with the left
margin.
right-Aligned with the right
margin.
:center-Aligned with center, the
default value.

row_gap Gap between the text and cell

lines at the top and bottom in
each row.

5.5 Creating a Table in PDF

151

Table 5.2 (continued)

Attribute

Description

show_headings

Specifies if heading are to be
shown, defaults to true.

show_lines

Specifies if lines are to be

shown in the table.
:none-Shows no lines.
:outer-Shows outer lines.
:inner-Shows inner lines.
:all-Shows all lines

split_rows

Specifies if rows are to be split
across page pundaries.
Defaults to false.

text color

Text color of table text.

title

Table title.

title color

Title color.

title font size

Font size of title.

title_gap Specifies gap between title and
table. Defaults to 5 units.
width width

PDF::SimpleTable also provides the render on method to render a table
on a PDFWriter object. A column in a table is represented with the
PDF::SimpleTable::Column class. The PDF::SimpleTable::Column class
provides method new to create a new column. Some of the attributes of the
Column class are discussed in Table 5.3.

Table 5.3 Attributes of PDF::SimpleTable::Column

Attribute Description

heading Specifies column heading. Value is a
PDF::SimpleTable::Column::Heading
class object.

justification Column justification- :left, :right,
:center, or :full

name Column name

width Column width

152 5 Creating PDF and Excel Reports

To create a table in a PDF document we need to create a Rails
application, pdftable.

C:/rubys>rails pdftable

We also need to create a controller ruby script and a controller action,
createPDFTable.

C:/ruby>ruby script/generate controller pdftable
createPDFTable

A controller script pdftable controller.rb gets generated. Controller
class PdfwriterController gets generated in the controller script as shown
below.

class PdftableController < ApplicationController

def createPDFTable
end

end

To the controller class we need to add require statements for pdf
writer and simple table.

require 'pdf/writer'
require 'pdf/simpletable’

In the controller action, createPDFTable, we need to create a
PDF::Writer object and select the font to be used in the PDF::Writer
object.

pdfWriter = PDF::Writer.new
pdfWriter.select font ("Times-Roman")

To create a table in PDF, we need to create a SimpleTable object.

PDF::SimpleTable.new do |table]
end

In the table set the table title using the t it 1e attribute.
table.title = "Journal Catalog"

The column order is set using the column_order attribute.

table.column_ order.push (*%w(Journal Publisher Edition
Title Author))

Next, we shall create column objects and set the column headings. For
example the Journal column is created as follows.

5.5 Creating a Table in PDF 153

table.columns ["Journal"] =
PDF::SimpleTable: :Column.new ("Journal") { |column|
column.heading = "Journal"

}

Show table lines and table headings using the show lines and
show_headings attributes respectively.

table.show lines = :all
table.show_headings = true

The table orientation and table position may be set using the
orientation and position attributes respectively.

table.orientation = :center
table.position = :center

We need to specify a data array and set the data on the table.

data = [

{"Journal"=>“0racle Magazine",
"Publisher"=>"Oracle Publishing","Edition" => "July-
August 2005","Title"=>"Tuning Undo Tablespace",
"Author" => "Kimberly Floss" },

{"Journal"=>“0rac1e Magazine",
"Publisher" => "Oracle Publishing","Edition" =>
"September-October 2005", "Title" => "Creating Search
Pages", "Author" => "Steve Muench" },

]

table.data.replace data

To create a PDF document, first, we need to render the table on the
PDF::Writer object using the render _on method.

table.render on(pdfWriter)

We need to output the PDF::Writer object to a PDF file using the
send_data method.

send_data pdfWriter.render, :filename =>
'catalog.pdf', :type => "application/pdf"

The complete controller script, pdftable _controller.rb, is listed below.

class PdfwriterController < ApplicationController
require 'pdf/writer'
require 'pdf/simpletable’

def createPDFTable
pdfWriter = PDF::Writer.new

154 5 Creating PDF and Excel Reports

pdfWriter.select font ("Times-Roman")

PDF::SimpleTable.new do |table]

table.title = "Journal Catalog"

table.column order.push (*%w(Journal
Publisher Edition Title Author))

table.columns ["Journal"] =
PDF: :SimpleTable: :Column.new ("Journal") { |column|
column.heading = "Journal"
}

table.columns ["Publisher"] =
PDF::SimpleTable: :Column.new ("Publisher") { |column|
column.heading = "Publisher"

table.columns ["Edition"] =
PDF: :SimpleTable: :Column.new ("Edition") { |column|
column.heading = "Edition"

table.columns ["Title"] =
PDF: :SimpleTable: :Column.new ("Title") { |column|
column.heading = "Title"

table.columns ["Author"] =

PDF::SimpleTable: :Column.new ("Author") { |column|
column.heading = "Author"
}

table.show lines = :all

table.show headings = true
table.orientation = :center
table.position = :center
data = [
{"Journal”=>"0racle Magazine",
"Publisher" => "Oracle Publishing","Edition" =>

"July-August 2005","Title"=>"Tuning Undo Tablespace",
"Author" => "Kimberly Floss" },

{"Journal"=>"Oracle Magazine",
"Publisher" => "Oracle Publishing", "Edition" =>
"September-October 2005", "Title" => "Creating Search
Pages", "Author" => "Steve Muench" },

]

table.data.replace data
table.render on(pdfWriter)
end

5.6 Creating a Spreadsheet with PHP 155

send_data pdfWriter.render, :filename =>
'catalog.pdf', :type => "application/pdf"

end

end

Start the WEBTrick server if not already started.
C:/ruby/pdftable>ruby script/server

To create a table in a PDF document we need to invoke the controller
action createPDFTable with the following URL.

http://localhost:3000/pdftable/createPDFTable

A PDF file catalog.pdf gets generated. PDF file catalog.pdf is shown in
Figure 5.3.

(e — el
) Fle Edt Document Took View Window Help NEE

R ®- A& B es]oms= -o|0OOE|D-

&

O&-E-elE-0-L-BE BYUHS T
; »
a
Joumal Catalog
Joumal Publisher Edition Title Author
Oracle Magazine | Oracle Publishing | July-August 2005 Tuning Undo Tablk Kimberly Floss
Oracle Magazine | Oracle Publishing | Seplember-October 2005 | Crealing Search Pages Steve Muench

Signatures | Commerts { Thumbnails Y Bookmarks |

M|

R
e

) 4 4] 10f1 > b 85xidin | O [H 8 4] 2

Fig. 5.3 catalog.pdf

5.6 Creating a Spreadsheet with PHP

A spreadsheet is created in PHP with the
Spreadsheet Excel Writer class library, which is available as a
PEAR module. A spreadsheet workbook is created with the
Spreadsheet Excel Writer () constructor.

156 5 Creating PDF and Excel Reports

Sworkbook = new
Spreadsheet Excel Writer ('workbook.xls');

A worksheet 1s added to the workbook with the
Workbook::&addWorksheet() function.

Sworksheet =& Sworkbook-s>addWorksheet ('worksheetl') ;

A format is added to a worksheet with the Workbook::&addFormat ()
function and text is added to the worksheet with the Worksheet::write(row,
column, text, format) function.

$format row =& S$workbook->addFormat () ;

Sformat title->setBold() ;

Sworksheet->write (1, 2, 'Second row, third column',
$format row) ;

Close the workbook with the Workbook::close () function.

5.7 Creating a Spreadsheet with Java

The Apache POI API is used to create an Excel document. First, import the
Apache POI HSSF package.

import org.apache.poi.hssf.usermodel.*;

Create a HSSFWorkbook object, which represents an excel workbook.
HSSFWorkbook wb=new HSSFWorkbook () ;

Create an Excel spreadsheet from the workbook.

HSSFSheet
spreadSheet=wb.createSheet ("spreadSheet") ;

To set cell style create a HSSFCellStyle object.

HSSFCellStyle cellStyle=
wb.createCellStyle() ;

For a cell style, set the cell border.

cellStyle.setBorderRight (
HSSFCellStyle.BORDER _MEDIUM) ;
cellStyle.setBorderTop (
HSSFCellStyle.BORDER MEDIUM) ;

Column width may be specified using the setColumnWidth() method of
the HSSFSheet object. For example, the column width of the first column
is set as follows.

5.8 Creating an Excel Spreadsheet with Ruby on Rails 157

spreadSheet.setColumnWidth ((
short) 0, (short) (256*25)) ;

Create a row in the spreadsheet with the createRow() method of
HSSFSheet. Rows, columns and cells are 0 based.

HSSFRow row=spreadSheet.createRow ((short)0) ;

Create a row cell with the createCell() method of HSSFRow.
HSSFCell cell=row.createCell ((short)O0) ;

Set the cell style on a row cell.
cell.setCellStyle(cellStyle);

Set the cell value.

cell.setCellValue (“columnl”) ;

Create an OutputStream to output the Excel workbook.

FileOutputStream output=new FileOutputStream(new
File ("Excel.xls"));

Output the Excel workbook.

wb.write (output) ;
output.flush() ;
output.close () ;

5.8 Creating an Excel Spreadsheet with Ruby on Rails

In this section we shall create an Excel spreadsheet from MySQL database.
MS Excel defines an XML Schema to create a spreadsheet in XML format.
We shall use the builder Ruby gem to export an XML document to a
spreadsheet. First, we need to create a rails application for generating an
Excel spreadsheet from a database.

C:/rubys>rails rubyexcel

Modify the development mode settings in database.yml file to specify
the database as ‘test’. The development mode settings for MySQL
database are shown in following listing.

development :

adapter: mysqgl
database: test
username: root
password: mysql

158 5 Creating PDF and Excel Reports

host: localhost

We shall use ActiveRecord migrations to create a database table. We
need to create a migration script by creating a model script as follows.

C:\ruby\rubyexcel> ruby script/generate model catalog

A model script app/models/catalog.rb and a migration script db/migrate/
001 create catalogs.rb get created. Modify the migration script
001 create catalogs.rb to create a database table and add data to the table.
In the create table transformation create a table catalogs with columns
journal, publisher, edition, title, author as shown below.

class CreateCatalogs < ActiveRecord::Migration
def self.up
create_table :catalogs do [t|
t.column :journal, :string, :limit => 255
t.column :publisher, :string, :limit => 255
t.column :edition, :string, :limit => 255
t.column :title, :string, :limit => 255
t.column :author, :string, :limit => 255

end

Catalog.create :journal => "Oracle Magazine", :publisher => "Oracle
Publishing", :edition => "July-August 2005", :title=> "Tuning Undo
Tablespace",:author=>"Kimberly Floss"
Catalog.create :journal => "Oracle Magazine", :publisher => "Oracle
Publishing", :edition => "September-October 2005", :title=> "Creating
Search Pages",:author=>"Steve Muench"

end

def self.down
drop_table :catalogs
end
end.

The migration script is run with rake and the db:migrate target.

C:/ruby/rubyexcel>rake db:migrate

Database table ‘catalogs’ gets created in MySQL database. Next, we
shall generate an Excel Spreadsheet from the database. We need to create a
controller script to retrieve data from the database and generate an Excel

5.8 Creating an Excel Spreadsheet with Ruby on Rails 159

spreadsheet from the data. Also create a controller action gen excel as
shown below.

C:/ruby/rubyexcel >ruby script/generate controller
catalog gen_excel

A controller script catalog controller.rtb gets generated in the
app/controllers directory. A gen_excel.rxml view template gets generated
in the to the app/views/catalog directory

We need to set the Content-Type, Content-Disposition, and Cache-
Control headers. The Content-Type header sets the content type to MS
Excel. The Content-Disposition header specifies the Excel file that is
generated. Set the Cache-Control header to nil, setting which does not
generate the “Internet Explorer was not able to open this internet site”
error.

headers['Content-Type']l = "application/vnd.ms-excel"

headers['Content-Disposition']="attachment;
filename="catalog.xlgs"'

headers['Cache-Control'] = "!

Retrieve data from the database using a finder method and define a
Ruby instance variable for the result set. Instance Variables defined in the
controller script are available in the view template.

@catalogs = Catalog.find(:all)

We shall be generating an Excel spreadsheet in XML format. A
Builder::XmIMarkup object is available by default in .rxml view
templates. We need to create a gen excel.rxml view template in the
views/catalog directory and delete the gen_excel.rhtml view template.

In the view template we shall create an Excel spreadsheet in XML
format. MS Excel defines an XML Spreadsheet Schema (XMLSS) to
create an Excel spreadsheet in XML format. Elements in the XMLSS
schema are in the urn:schemas-microsoft-
com:office:spreadsheet namespace. The top-most element in an
XML Spreadsheet is ss:Workbook. A worksheet in an XML Spreadsheet
document is represented with the ss:Worksheet element. Some of the
commonly used elements in the XMLSS schema are discussed in Table
5.4.

160

5 Creating PDF and Excel Reports

Table 5.4 XMLSS Schema Elements

style.

Element Description Attributes Sub-
Elements
ss:Workbook | Top-most - ss:Worksheet
element in (required)
an XML ss:Styles
Spreadsheet
document.
ss:Styles Contains the - ss:Style
style
definitions.
ss:Style Defines a ss:ID(required) | ss:Alignment

ss:Borders
ss:Font
ss:Interior
ss:NumberFor
mat
ss:Protection

ss:Alignment

Specifies the
font
alignment.

ss:Horizontal — —
Specifies
horizontal
alignment of text.
ss:Vertical-
Specifies vertical
alignment of text.
ss:Indent-
Specifies the
indentation of
text.
ss:Vertical Text-
Specifies if text is
vertically drawn.
ss:WrapText-
Specifies if text is
to be wrapped.

ss:Borders

Defines the

borders.

ss:Border

ss:Interior

Defines the
fill

properties.

ss:Color
ss:Pattern
ss:PatternColor

ss:Interior

161

5.8 Creating an Excel Spreadsheet with Ruby on Rails
Table 5.4 (continued)
Element Descriptio | Attributes Sub-

n Elements
ss:NumberFor Defines | ss:Format ss:Number
mat the Format

number

format.

ss:Border Defines ss:Position(required -
a border.)-Specifies the border
type;left, right, top,
bottom.
ss:Color —Specifies
border color.
ss:LineStyle-
Specifies line style.
ss:Weight-Specifies
border thickness.
ss:Font Defines ss:Bold -
the font of ss:Color

a style. ss:FontName

ss:Italic

ss:Size

ss:StrikeThrough

ss:Underline
ss:Protection Specifie ss:Protected, -

s if a | x:HideFormula

spreadshe

et is

editable.
ss:Worksheet | Defines a | ss:Name(required) ss:Table

worksheet. | ss:Protected x:Workshe

etOptions
ss:Table Defines a | ss:DefaultColumnWid | ss:Column
table. th ss:Row

ss:DefaultRowHeight

ss:LeftCell —Specifies

the column index.

ss:StyleID

ss:TopCell-Specifies

the row index.

162

5 Creating PDF and Excel Reports

page.

Table 5.4 (continued)
Element Description | Attribute Sub-
Elements
ss:Column Defines the | c:Caption -
formatting | ss:AutoFitWidth
of one or | ss:Hidden
more ss:Index
columns. ss:StyleID
ss:Width
ss:Row Defines c:Caption ss:Cell
formatting | ss:AutoFitHeight
and data of | ss:Height
one ore | ss:Hidden
more rows. | ss:Index
ss:StyleID
ss:Cell Defines a | ss:Formula ss:Data
cell. ss:HRef
ss:Index
ss:StyleID
ss:Data Specifies ss:Type B Font I S
the data in Span Sub
a cell. Sup U
x:WorksheetOptions | Specifies x:PageSetu
worksheet P
options.
x:PageSetup Specifies - x:Footer
the print x:Header
options. x:Layout
x:PageMar
gins
x:Footer Specifies x:Margin -
the footer | (required)
of a printed x:Data
page.
x:Header Specifies x:Margin -
the header | (required)
of a printed x:Data

5.8 Creating an Excel Spreadsheet with Ruby on Rails 163

Table 5.4 (continued)
Element Description | Attributes Sub-
Elements

x:Layout Specifies x:CenterHorizontal -
the layout x:CenterVertical
of the page x:Orientation
setup. x:StartPageNumber

x:PageMargins Specifies x:Bottom -
margins of | (required)
a printed x:Left (required)
page. x:Right (required)

x:Top(required)

In the gen_excel.rxml view template we shall create an XML document
using the @xml Builder::XmIMarkup object, which is available in .rxml
templates by default. Elements are created with Builder::XmlIMarkup by
invoking methods on the @xml object. Methods sent to the @xml object
are converted to equivalent XML markup. For example the following
@xml method invocation generates the element <catalog>Oracle
Magazine</catalogs.

@xml.catalog("Oracle Magazine")

We shall discuss more about creating an XML document in Chap. 6.
We need to create the XML declaration, using the instruct! method, and
create the root element Workbook. The namespace declarations required
for a spreadsheet document in XML format are also set in the root element.

@xml.instruct!:xml, :version=>"1.0", :encoding=>"UTF-8"
@xml . Workbook ({
'xmlns'=>"urn:schemas-microsoft-
com:office:spreadsheet",
'xmlns:o'=>"urn:schemas-microsoft-
com:office:office",
'xmlns:X'=>"urn:schemas-microsoft-
com:office:excel",
'xmlns:html'=>"http://www.w3.0rg/TR/REC-html40",
'xmlns:ss'=>"urn:schemas-microsoft-
com:office:spreadsheet™"
}) do

end

164 5 Creating PDF and Excel Reports

We need to add the Styles element.

@xml.Styles do
end

We also need to define the default style. We shall use the Verdana font.

@xml.Style 'ss:ID' => 'Default’, 'ss:Name' =>
'Normal' do

@xml.Alignment 'ss:Vertical'=>'Bottom',
'ss:Horizontal' => 'Center'

@xml .Borders

@xml .Font 'ss:FontName' => 'Verdana'

@xml .Interior
@xml . NumberFormat

end

We also need to define a style for the header, for which we shall use the
Arial Bold style.

@xml.Style 'ss:ID' => 'header' do

@xml .Alignment 'ss:Vertical!' => 'Bottom',
'ss:Horizontal' => 'Center'
@xml .Font 'ss:FontName' => 'Arial', 'ss:Bold'=>'1"
end

A spreadsheet is represented with the Worksheet element. Therefore, we
need to add the Worksheet element.

@xml .Worksheet 'ss:Name' => 'Catalog' do
end

We also need to add a table to the worksheet.

@xml .Table 'ss:DefaultColumnWidth'=>'100",
'ss:DefaultRowHeight' => '15' do
end

Next, we shall add the header row to the table.

@xml.Row 'ss:StyleID' => 'header' do
for column in Catalog.content columns do
@xml.Cell do
@xml.Data column.human name, 'ss:Type'
=> 'String'
end
end
end

5.8 Creating an Excel Spreadsheet with Ruby on Rails 165

To add data to the spreadsheet iterate over the result set retrieved from
the database in the instance variable @catalogs and add a row to the table
for each row in the result set.

for catalog in @catalogs
@xml .Row do
for column in Catalog.content_ columns do
@xml.Cell do
@xml .Data catalog.send(column.name),
'ss:Type' => 'String'
end
end
end
end

The complete gen_excel.rxml template is listed below.

@xml .instruct! :xml, :version=>"1.0",
:encoding=>"UTF-8"
@xml . Workbook ({

'xmlns' => "urn:schemas-microsoft-
com:office:spreadsheet",
'xmlns:o' => "urn:schemas-microsoft-
com:office:office",
'xmlns:x' => "urn:schemas-microsoft-
com:office:excel",
'xmlns:html' => "http://www.w3.org/TR/REC-
html40",
'xmlns:ss' => "urn:schemas-microsoft-
com:office:spreadsheet™"
}) do
@xml.Styles do
@xml.Style 'ss:ID' => 'Default', 'ss:Name' =>
'Normal' do
@xml.Alignment 'ss:Vertical' => 'Bottom',
'ss:Horizontal' => 'Center'
@xml .Borders
@xml.Font 'ss:FontName' => 'Verdana'

@xml .Interior
@xml .NumberFormat

end
@xml.Style 'ss:ID' => 'header' do

@xml .Alignment 'ss:Vertical! => 'Bottom',
'ss:Horizontal' => 'Center'

166 5 Creating PDF and Excel Reports

@xml . Font 'ss:FontName' => 'Arial’',
'ss:Bold'=>"1"

end

end

@xml .Worksheet 'ss:Name' => 'Catalog' do
@xml.Table 'ss:DefaultColumnWidth'=>'100",
'ss:DefaultRowHeight' => '15' do

Header
@xml.Row 'ss:StyleID' => 'header' do
for column in Catalog.content columns do
@xml.Cell do
@xml .Data column.human name, 'ss:Type'
=> 'String'
end
end
end

Rows
for catalog in @catalogs
@xml .Row do
for column in Catalog.content columns do
@xml.Cell do
@xml .Data catalog.send (column.name) ,
'ss:Type' => 'String'
end
end
end
end

end
end

end

Next, we shall run the rubyexcel rails application. Start the WEBrick
web server.

C:/ruby/rubyexcel>ruby script/server

To generate the spreadsheet invoke the gen_excel controller action with
URL http://localhost:3000/catalog/gen_excel.

5.9 Creating a Spreadsheet with Ruby Spreadsheet 167

An Excel spreadsheet gets generated. Because the Spreadsheet is in
XML format, it requires MS Excel 2003 to open. Download and install
Excel'. The spreadsheet generated is shown in Figure 5.4.

B Microsoft Excel - catalog B ﬂﬁl
0] ple Edt Vew Inset Fomet Took Data Window Help Type aguestionforhelp - _ & X
NDEdagn gim o Bz v | EE=EIs % w3 EE B
Al hd # Journal
A | B | c | D | E =
1 Journal ! Publisher Edition Title Author
| 2 | Oracle Magazine Oracle Publishing July-August 2005 Tuning Undo Tablespace Kimberly Floss
| 3 |Oracle Magazine Oracle Publishing September-October 2005 Creating Search Pages | Steve Muench
| 4
| & |
ez
L]
| 8 |
5
Gl
[
| 12
| 13
| 14
S
| 16
| 17 | 0
13
10 hd
W 4 » W)\Catalog / JET| | ﬂJJ
Ready NUM V7

Fig. 5.4 Spreadsheet Generated with Ruby on Rails

5.9 Creating a Spreadsheet with Ruby Spreadsheet

In this section we shall create an Excel spreadsheet using the Ruby
Spreadsheet library. Download the Spreadsheet TAR file?. Extract the file
to the c:/ruby directory, in which Ruby on Rails is installed. Run the
following commands to install the Spreadsheet library.

ruby spreadsheet-excel.gemspec
gem install spreadsheet-excel-0.3.4.gem

The Spreadsheet Ruby library gets installed. Output from the installation
is shown in Figure 5.5.

I MS Excel- http://office.microsoft.com/en-us/excel/FX100487621033.aspx
2 Spreadsheet Library- http://rubyforge.org/projects/spreadsheet

168 5 Creating PDF and Excel Reports

Command Prompt

readsheet—8.3.4>ruby spreadsheet—excel.gemspec
111y built RubyGem
readsheet-exce 1

sheet-excel-0.3. 4_gem

C:\rubynspreadsheet-8.3.4>gem install spreadsheet-excel-0.3.4.gem
Successfully installed spreadsheet-excel. version 6.3.4
Installing »i documentation for spreadsheet-excel-8.3.4...
Installing RDoc documentation for spreadsheet-excel-8.3.4...

C:\rubysspreadsheet-0.3.4>

Fig. 5.5 Installing Spreadsheet Ruby Library
We need to create a rails application to generate a spreadsheet with the
spreadsheet library.

C:/ruby>rails spreadsheet

We also need to create a controller script, including a controller action,
to generate an Excel spreadsheet.

c:/ruby/spreadsheet>ruby script/generate controller
spreadsheet spreadsheet

The spreadsheet ruby library provides various classes, which are
discussed in Table 5.5 to generate a spreadsheet.

Table 5.5 Spreadsheet Library Classes

Class Description | Methods
Excel Represents a | new() creates an Excel object.
xls File
Workbook | Represents a | add worksheet(sheet name)-Adds a
workbook. worksheet to the workbook.

add_format(attributes/format_object)
-Adds a format to the workbook.
close-Closes the workbook.

Format Defines a | new() creates a Format object.
worksheet
format.

5.9 Creating a Spreadsheet with Ruby Spreadsheet 169

Table 5.5 (continued)
Class Description | Methods
Worksheet | Represents a | write(row,column,value,format=nil)
worksheet. —Adds data to the specified cell.

write_row(row,column,Array,format
=nil)-Adds a row of data.
write_column(row,column,Array,for
mat=nil)-Adds a column of data.
format_row(int/range,height=nil,for
mat=nil) —Applies formatting to an
entire row or range of rows.
format_column(int/range,width=nil,f
ormat=nil)-Applies formatting to a
column or range of columns.

Next we shall modify the controller script to create a spreadsheet. Add
a require and an include statement for the spreadsheet library. With
the include statement a class may be used without the package prefix.

require "spreadsheet/excel"
include Spreadsheet

We need to create a Workbook object in the controller action
spreadsheet.

workbook = Excel.new("catalog.xls")

We need to define a format for the header row and a format for the
spreadsheet data and add the formats to the Workbook.

formatl = Format.new (
:color => "blue",
:bold => true,

:underline => true

)

format2 = Format.new (
:color => "blue",
:bold => false,

:underline => false
)
workbook.add format (formatl)
workbook.add format (format2)

We need to add a worksheet to the workbook, which may be done with
the add worksheet method.

170 5 Creating PDF and Excel Reports

worksheetl workbook.add worksheet

Next, we shall add the header row. For example a header column at
index 0,0 is added as follows.

worksheetl.write (0,0, "Journal", formatl)
A row of data is added to worksheet with the write method. For
example, the data at index 1,0 is added as follows.

worksheetl.write (1,0, "Oracle Magazine", format2)

The complete controller script, controller spreadsheet.rb, is listed
below.

class SpreadsheetController < ApplicationController
require "spreadsheet/excel"

include Spreadsheet
def spreadsheet

workbook = Excel.new("catalog.xls")
formatl = Format.new (
:color => "blue",
:bold => true,
:underline => true
)
format2 = Format.new(
:color => "blue",
:bold => false,
:underline => false

)
workbook.add format (formatl)
workbook.add format (format2)

worksheetl = workbook.add worksheet

Add a header row

worksheetl.write (0,0, "Journal", formatl)

worksheetl.write (0,1, "Publisher", formatl)

worksheetl.write (0,2, "Edition", formatl)

worksheetl.write (0,3, "Title", formatl)

worksheetl.write (0,4, "Author", formatl)

#Add a data row

worksheetl.write (1,0, "Oracle Magazine", format2)

worksheetl.write (1,1, "Oracle Publishing", format2)

worksheetl.write (1,2, "July-August 2005", format2)

worksheetl.write (1,3, "Tuning Undo
Tablespace", format2)

5.9 Creating a Spreadsheet with Ruby Spreadsheet 171

worksheetl.write (1,4,

#Add a data row
worksheetl.write (2,0,
worksheetl.write (2,1,
worksheetl.write (2,2,
2005", format2)
worksheetl.write (2,3,
worksheetl .write (2,4,

workbook.close
end
end

"Kimberly Floss", format2)

"Oracle Magazine", format2)
"Oracle Publishing", format2)
"September-October

"Creating Search Pages", format2)
"Steve Muench", format2)

Start the WEBrick web server.

C:/ruby/spreadsheet>ruby script/server

We need to invoke the spreadsheet controller action, spreadsheet, with
URL http://localhost:3000/spreadsheet/spreadsheet. A spreadsheet gets
generated in the rails application directory. The spreadsheet may be
opened with Excel Viewer or Excel 2003 as shown in Figure 5.6.

ER Microsoft Excel Viewer - catalog -|I:I|ﬂ
-IGI X
A [B ! c \ D | E =
1_|Journal Publisher Edition Title I
| 2 |Oracle Magazine Oracle Publishing July-August 2005 Tuning Undo Tablespace Kimberly Floss
| 3 |Oracle Magazine Oracle Publishing September-October 2005 Creating Search Pages Steve Muench
4
1 5|
| 6|
| 7 |
18
1 9|
110
|11
112
113
|14
15 -
16
17
v
s »i\Sheet1 / 4] | ﬂJ_J
Ready NUM A

Fig. 5.6 Spreadsheet Generated with Spreadsheet Library

172 5 Creating PDF and Excel Reports

5.10 Summary

Ruby provides various RubyGems gems to create PDF and Excel
spreadsheet documents. In this chapter we create a PDF document using
the PDF::Writer Ruby library and added a table to a PDF document using
the PDF::SimpleTable class. We create an Excel spreadsheet by exporting
an XML document, which conforms to the XML Spreadsheet Schema
(XMLSS) XML Schema. We also create an Excel spreadsheet using the
Ruby Spreadsheet library.

6 XML On Rails

6.1 Introduction

Ruby on Rails is a database based web framework. XML is the standard
medium for data exchange. An XML document may be created and parsed
with Ruby on Rails. Rails provides a ruby library called Builder to
generate XML markup. The Builder package contains class
Builder: :XmlMarkup to generate an XML document. REXML is an
XML toolkit for Ruby that may be used to parse an XML document. In
this chapter we shall create an XML document with the Builder library.
We shall also create an XML document from Oracle database.
Subsequently we shall parse an XML document with REXML using
XPath.

6.2 Processing XML with PHP 5

PHP 5 provides XML extensions for parsing, transforming, XPath
navigation, and validation of XML documents. Using the DOM extension
an XML document an XML document may be created and parsed,
navigated with XPath, and validated with an XML Schema. SimpleXML
extension in PHP 5 simplifies parsing by converting an XML document
to a PHP object that may be accessed with property selectors and array
iterators. The XSL extension in PHP 5 is used to transform an XML
document.

An XML document in PHP 5 is represented with DOMDocument class,
which extends DOMNode class. In PHP, first create a DOMDocument
object.

Sdom = new DOMDocument () ;

Create root element catalog with createElement() function. Add the root
element to the DOMDocument object with appendChild() function. Create

174 6 XML On Rails

an attribute with createAttribute() function. Output the XML
DOMDocument generated using saveXML() function.

echo $dom->saveXML () ;

For XPath evaluation, the DOMXPath class is used to evaluate an XPath
expression in the context of an XML document node. An XML document
is validated with an XML schema with the schemaValidate() function.
With the PHP 5 extension, an XML document is transformed using an
XSLTProcessor. Create an XSLTProcessor.

6.3 Processing XML with Java

An XML document is created and parsed using the Java API for XML
Parsing (JAXP). First, we need to create a DocumentBuilderFactory
object. From the factory object, create a DocumentBuilder object.

DocumentBuilder builder =
factory.newDocumentBuilder () ;

Create a new Document object, which represents an XML document,
from the DocumentBuilder object.

Document document=builder.newDocument () ;

Add elements and attributes to the Document object using the
createElement()and createAttribute() methods. To output the XML
document, create a TransformerFactory object and subsequently create a
Transformer object. Create a DOMSource object for the Document object

and a StreamResult object for the output. Output the Document object
using the Transformer object.

transformer.transform(source, result);

An XML document may be parsed using the XPath API in the
javax.xml.xpath package in JDK 5.0. First, we need to create an
XPathFactory object.

XPathFactory factory=XPathFactory.newInstance() ;
Create an XPath object.
XPath xPath=factory.newXPath() ;

The element or attribute whose value is to be retrieved is selected using
XPath. Create and compile an XPathExpression. Create an InputSource for

6.4 Installing XML Builder

an XML document. Evaluate the XPath expression using the evaluate()

method.

6.4 Installing XML Builder

Builder is installed with the package manager RubyGems. Run the
following command while connected to the Internet to install Builder

2.0.0.

C:/ruby>gem install builder

Builder gets installed as shown in Figure 6.1.

ommand Prompt

C:\rubyd>gem install builder
Successfully installed builder-2.6.0

Installing »i documentation for builder-2.0.0...
WUhile generating documentation for huilder-2.0.0

. MESSAGE IInlkdeeLl spe al:
4 RDOC args: ——pi —op ¢
Builder —— Easy uHL Building

: type=17. text="
y/1ib/ruby/gens 1 .8/doc/bu . i ——titl
main README —-line-numbers

e
README Rak

efile CHRNGES doc ’relea“ee/bullde; -1.2.4.rdoc docnelea*ee/bm.ldez =2.8.0.rdoc
{continuing with the rest of the installation>
Installing RDoc documentation for builder-2.8.0...

CiNruby>

Fig. 6.1 Installing Builder

The Builder:: XmIMarkup provides methods discussed in Table 6.1.

Table 6.1 Builder:: XmlMarkup Methods

Method Description

cdatal!(text) Adds a CDATA section.
comment!(comment_text) Adds a comment.

declare!(inst, *args, &block) Adds a declaration. args

specifies 0 or more arguments.

instruct!(directive _tag=:xml,
attrs={})

Adds a processing instruction.
Attributes are specifies with an
array of hash entries.

target!()

Returns target of Builder object.

176 6 XML On Rails

Table 6.1 (continued)

Method

Description

new(options={})

Creates a XML markup Builder
object. The following options
may be specified in an array of
hash entries.
‘target=>targetObject,
:indent=>indentation
:margin=>initial indentation

We shall use some of these methods in creating an XML document in
this chapter. Download and install the Oracle Database 10g. We also need
to install Ruby oci8 driver!, which is required to connect to Oracle
database from a Ruby on Rails application.
0.1.16-mswin32.rb file. Cd to the c:/ruby directory and run the Ruby

application ruby-oci8-0.1.16-mswin32.rb.

c¢:/ruby>ruby ruby-oci8-0.1.15-mswin32.rb

6.5 Creating an XML Document with Ruby on Rails

In this section we shall generate an example XML document, catalog.xml,

listed below.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE catalogs [
catalogs (catalog+) >

< |ELEMENT
<! ELEMENT
author) >
<! ELEMENT
<!ATTLIST
< !|ELEMENT
<! ELEMENT
< |ELEMENT
1>

catalog (journal, publisher, title,

journal
journal

(#PCDATA) >
(edition CDATA) >

publisher (#PCDATA) >

title (#PCDATA) >

author

(#PCDATA) >

<!--Journal Catalog -->

<catalogs>
<catalog>

<journal edition="July-August 2005">

! Ruby oci8 Driver- http://rubyforge.org/frs/?group id=256

Download the ruby-oci8-

6.5 Creating an XML Document with Ruby on Rails 177

Oracle Magazine</journals>
<publisher>0Oracle Publishing</publisher>
<title>Tuning Undo Tablespace</titles>
<author>Kimberly Floss</authors>
</catalog>

<catalog>

<journal edition="September-October 2005">
Oracle Magazine</journals>
<publisher>Oracle Publishing</publishers>
<title>Creating Search Pages</title>
<author>Steve Muench</authors

</catalog>

</catalogs>

We need to create a rails application, xmlbuilder, for generating an
XML document with Builder 2.0.0.

C:/ruby>rails xmlbuilder

We also need to create a controller, xmlbuilder, including a controller
action gen_xml to run the ruby code to generate an XML document.

C:/rubys>xmlbuilder>ruby script/generate controller
xmlbuilder gen xml

A controller class XmlbuilderController, including a controller action
gen_xml, gets generated as shown in following listing.

class XmlbuilderController < ApplicationController
def gen_ xml

end
end

In the controller script we need to add a require statement for the
Builder package.

require 'builder'

In the controller class create a Builder:: XmlMarkup object. Set output to
STDOUT and specity indentation in the XML output.
xml markup =
Builder: :XmlMarkup.new (:target=>STDOUT, :indent=>2)

We need to add an XML declaration to the XML document using the
instruct! method.

178 6 XML On Rails

xml_markup.instruct! :xml, :version=>"1.0",
:encoding=>"UTF-8"

Also add a DOCTYPE declaration using the declare! method.

xml_markup.declare! :DOCTYPE, :catalogs do
|catalogs| end

To the DOCTYPE add ELEMENT declarations. For example,
ELEMENT declaration for catalogs element is added as follows.

catalogs.declare! :ELEMENT, :catalogs, :"(catalog+)"
Add a comment with the comment!(“comment text”) method.
xml_markup.comment! "Journal Catalog"
Add XML markup for root element catalogs.
xml markup.catalogs{}

To the catalogs element add catalog elements. XML markup for a
catalog element is added as shown in following listing.

xml markup.catalog { |catalog]|

catalog.journal ("Oracle Magazine", "edition"=>"July-
August 2005"); catalog.publisher ("Oracle
Publishing"); catalog.title("Tuning Undo

Tablespace") ;catalog.author ("Kimberly Floss") };

The complete controller ruby script, xmlbuilder controller.rb,
is shown below.

require 'builder'
class XmlbuilderController < ApplicationController
require gem 'builder'

def gen xml
xml_markup =
Builder: :XmlMarkup.new(:target=>STDOUT, :indent=>2)
xml markup.instruct! :xml, :version=>"1.0",
:encoding=>"UTF-8"

xml_markup.declare! :DOCTYPE, :catalogs do
|catalogs|
catalogs.declare! : ELEMENT, :catalogs,
:" (catalog+) "
catalogs.declare! :ELEMENT, :catalog,
:" (journal, publisher, title, author)"
catalogs.declare! :ELEMENT, :journal,

:" (#PCDATA) "

6.5 Creating an XML Document with Ruby on Rails 179

catalogs.declare! :ATTLIST, :journal,
:" (edition CDATA)"

catalogs.declare! : ELEMENT, :publisher,
:" (#PCDATA) "

catalogs.declare! :ELEMENT, :title,
:" (#PCDATA) "

catalogs.declare! : ELEMENT, :author,
:" (#PCDATA) "

end
xml markup.comment! "Journal Catalog"
xml markup.catalogs

xml markup.catalog { |catalog]|
catalog.journal ("Oracle Magazine", "edition"=>"July-
August 2005") ; catalog.publisher ("Oracle
Publishing") ; catalog.title ("Tuning Undo

Tablespace") ;catalog.author ("Kimberly Floss")};

xml markup.catalog { |catalog]|
catalog.journal ("Oracle Magazine",
"edition"=>"September-October 2005") ;
catalog.publisher ("Oracle Publishing") ;
catalog.title ("Creating Search

Pages") ;catalog.author ("Steve Muench") }

}

end
end

In the app/views/xmlbuilder directory of the xmlbuilder rails application
a gen_xml.rhtml file gets generated when the controller class is created.
The gen xml.rhtml file is the view template for the controller action
gen_xml. Template gen xml.rhtml may be kept empty. In the example
gen xmlrhtml file add text “XML Document Generated”. Start the
WEBTrick server with the following ruby command.

C:/ruby/xmlbuilders>ruby script/server

To generate the XML document we need to invoke the gen xml
controller action with URL http://localhost:3000/xmlbuilder/gen xml.
XML document gets output to the STDOUT as shown in Figure 6.2.

180 6 XML On Rails

mmand Prompt - ruby script/server

K?xml version="1.8" encoding="UTF-8"7?>
<{*DOCTYPE catalogs [
<*ELEMENT catalogs C(catalog+>>
<*ELEMENT catalog (journal, publisher, title, author>>
<*ELEMENT journal (#PCDATA>>
{*ATTLIST journal Cedition CDATAD>
<{*ELEMENT publisher <HPCDATA>>
<*ELEMENT title <H#PCDATA>>
<{t*ELEMENT author (HPCDATAD>
1>
{t-— Journal Catalog ——>
Kcatalogs>
{catalog>
{journal edition="July—RAugust 28B5">0racle Magazine{/journall
<publisher>Oracle Publishing<{/publisher>
<title>Tuning Undo Tahlespace</title>
<author>Kimberly Floss<-/author>
{/catalog>
{catalog>
1 edition="Septembher—Octoher 2005">0racle Magazine{/journald
r>0Oracle Publishing<{/publisher>
{title>Creating Search Pages<{/title>
{author>Steve Muench<{/author>
{scatalog>
{s/catalo

Fig. 6.2 STDOUT XML Document

The following message gets displayed in the browser.

XML Document Generated

6.6 Creating an XML Document from a Database

Rails supports the Active Record pattern to model database table columns
as model object attributes. Thus, a object relational mapping (ORM)
between business objects and database tables is provided. In this section
we shall create an XML document from an Oracle database table. We need
to create a rails application, databasexml, for generating an XML
document from a database.

C:/ruby>rails databasexml

We need to modify the development mode settings in database.yml file
to specify the database as ‘ORCL’. The development mode settings for
Oracle database are shown in following listing.

development:
adapter: oci
database: ORCL
username: OE
password: password
host:

We shall use ActiveRecord migrations to create a database table. Create
a migration script by creating a model script as follows.

6.6 Creating an XML Document from a Database 181

C:\ruby\databasexml> ruby script/generate model
catalog

A model script app/models/catalog.rb and a migration script db/migrate/
001 create catalogs.rtb get created. The migration script class,
CreateCatalogs, extends the ActiveRecord::Migration class.

The default migration script consists of methods self.up and self.down.
The self.up method is is invoked to apply a migration and create a database
table. The create table transformation of class ActiveRecord::Migration is
used to create a database table catalogs. ActiveRecord uses pluralization to
map a model class to a database table. The model class is singular and
upper case and the database table is plural and lower case. In the example
Ruby on Rails application, the model class is Catalog and the database
table is catalogs.

We need to modify the migration script 001 create catalogs.rb to create
a database table and add data to the table. In the create table
transformation create a table catalogs with columns journal, publisher,
edition, title, author as shown below.

class CreateCatalogs < ActiveRecord::Migration
def self.up
create table :catalogs do |t]
t.column :journal, :string, :limit => 255
t.column :publisher, :string, :limit => 255
t.column :edition, :string, :limit => 255
t.column :title, :string, :limit => 255
t.column :author, :string, :limit => 255

end

Catalog.create :journal => "Oracle Magazine",
:publisher => "Oracle Publishing", :edition => "July-
August 2005", :title=> "Tuning Undo
Tablespace", :author=>"Kimberly Floss"

Catalog.create :journal => "Oracle Magazine",
:publisher => "Oracle Publishing", :edition =>
"September-October 2005", :title=> "Creating Search

Pages", :author=>"Steve Muench"
end

def self.down
drop_table :catalogs
end
end

182 6 XML On Rails

We need to run the migration script with the rake command and the
db:migrate target.

C:/ruby/databasexml>rake db:migrate

Database table catalogs gets created in Oracle database. Next, we need
to create a controller script to generate an XML document from the
database table. Specify controller class as catalog and define a controller
action gen_xml.

C:/ruby/databasexml>ruby script/generate controller
catalog gen xml

Controller script app/controllers/catalog controller.rb gets created as
shown below.

class CatalogController < ApplicationController

def gen xml
end
end

In the controller class we need to create a Builder:: XmIMarkup object.
The indentation is set with the :indent option and the margin is set with the
:margin option.

@xml = Builder::XmlMarkup.new (:indent=>2,
:margin=>4)

An XmlMarkup object is not required to be created. An XmlMarkup
object, @xml, is available by default in an .rxml view template. An
XmlMarkup object may be created to specify additional options such as
:indent and :margin. Next, retrieve data from Oracle database table
catalogs, which was set in the model script using the find(:all)
method. The result set of the database query is stored in instance variable
(@catalogs, which would be available in view templates for the catalog
controller.

@catalogs=Catalog.find(:all)

The complete controller script, catalog_controller.rb, is listed below.

class CatalogController < ApplicationController
def gen_ xml
@xml = Builder::XmlMarkup.new (:indent=>2,
:margin=>4)
@catalogs=Catalog.find(:all)
end
end

6.6 Creating an XML Document from a Database 183

We need to replace the gen xmlrhtml view template in the
views/catalog directory with a gen xml.rxml template. In the RXML
template create an XML document from data retrieved from the database.
We shall use instance variable @xml, which represents an XmlMarkup
object, to create the XML document. We need to add an XML declaration
using the instruct! Method. Version is specified using the :version option.

@xml.instruct! :xml, :version=>"1.0"

An XML document has a root element. Therefore, add root element
‘catalogs’.

@xml .catalogs{}

In the root element iterate over the data retrieved from the database and
create a ‘catalog’ element for each row of data in the result set.

for catalog in @catalogs

@xml.catalog do
@xml . journal (catalog.journal)
@xml .publisher (catalog.publisher)
@xml.edition(catalog.edition)
@xml.title(catalog.title)
@xml .author (catalog.author)

end

The complete gen xml.rxml file is listed below.

@xml .instruct! :xml, :version=>"1.0"

@xml .catalogs
for catalog in @catalogs
@xml.catalog do
@xml . journal (catalog.journal)
@xml .publisher (catalog.publisher)
@xml.edition(catalog.edition)
@xml.title(catalog.title)
@xml .author (catalog.author)
end
end

}

Next, run the rails application to generate an XML document. Start the
WEBTrick web server if not already started.

184 6 XML On Rails

C:/ruby/databasexml>ruby script/server

To generate the XML document invoke the gen xml controller action
with the URL http://localhost:3000/catalog/gen xml. An XML document

gets generated as shown in Figure 6.3.

/2 http:/flocalhost:3000/ catalog/gen_xml - Microsoft Internet Explorer
File Edt Wiew Favorites Tools Help

ok - 5 D] Dseen aireoes Gvens 36 O

Address [£] http:/flocalhost: 3000{catalogigen_xml

=101

=] P unks >

<?xml version="1.0" encoding="UTF-8" 7>
- <catalogs>
- <catalog>
<journal>Oracle Magazine</journal>
<publisher>Oracle Publishing</publisher>
<edition>July-August 2005</edition>
<title=Tuning Undo Tablespace</titlex
<author>Kimberly Floss</author>
</catalog>
- <catalog>
<journal>Oracle Magazine</journal>
<publisher>Oracle Publishing</publisher>
<edition>September-October 2005</edition>
<title=Greating Search Pages</title>
<author>8teve Muench</authors
</catalog>
</catalogs>

[&]pone

o o

Local intranet

=

A

Fig. 6.3 Invoking the gen xml controller action

6.7 Parsing an XML Document with REXML

REXML is an XML toolkit for Ruby. REXML supports XPath with which
node values may be selected. The REXML::XPath class is used to parse an
XML document with XPath. REXML::XPath class methods are discussed

in Table 6.2.

6.7 Parsing an XML Document with REXML 185

Table 6.2 REXML::XPath Class Methods

Method Description
each(element, path=nil, | Iterates over nodes that match
namespaces={}) the XPath expression specified

with path. ‘element’ specifies to
context element.

first(element, path=nil, | Returns the first node that

namespaces={}) matches the specified XPath
expression.

match(element, path=nil, | Returns an array of nodes that

namespaces={}) match the specified XPath
expression.

In this section we shall parse an example XML document with
REXML. We need to create a rails application, rexm/, for REXML.

C:/ruby>rails rexml

We need to create a controller, rexml, for the rails application and
define a controller action xpath to parse an XML document with XPath
using REXML.

C:/ruby/rexml>ruby script/generate controller rexml
xpath

The controller class with a controller action gets created as shown
below.

class RexmlController < ApplicationController

def xpath
end
end

We need to add a require statement for REXML.
require "rexml/document"

We need to specify the XML document to be parsed as a string.

string = <<EOF

<catalogs>

<catalog>

<journal>Oracle Magazine</journals
<publisher>Oracle Publishing</publishers>
<edition>July-August 2005</edition>
<title>Tuning Undo Tablespace</titles>

186 6 XML On Rails

<author>Kimberly Floss</author>
</catalog>

<catalog>

<journals>Oracle Magazine</journals>
<publisher>Oracle Publishing</publisher>
<edition>September-October 2005</edition>
<title>Creating Search Pages</title>
<author>Steve Muench</authors>

</catalog>

</catalogs>

EOF

We need to create a REXML::Document object from the XML string. A
REXML::Document object represents a complete XML document.

doc = REXML: :Document.new string

Next, we shall retrieve element values from the XML document and
create a table. Define an instance variable for a table and create a header
row for a table.

@catalogList="<table><tr><th>Journal</th><th>Publish
er</ths><th>Edition</th><th>Title</th><th>Author</th>
</tr>"

@catalogList+="</table>"

We need to iterate over the catalog elements and add a row for each
catalog element in the XML document. The REXML::XPath class is used
to iterate over a node set with the each() method.

REXML: :XPath.each(doc, "/catalogs/catalog") { |row|
@catalogList+="<tr>"

@catalogList+="</tr>"

}

Iterate over each catalog node to add a table column value in the table
row. For example, a Journal column value is added as shown below.

REXML: :XPath.each (row, "journal") { |journal]
@catalogList+="<td>"+journal.text+"</td>"

}

The complete controller script, rexml_controller.rb, is listed below.

6.7 Parsing an XML Document with REXML 187

require "rexml/document"
class RexmlController < ApplicationController
def xpath

string = <<EOF
<catalogs>
<catalog>
<journal>Oracle Magazine</journals
<publisher>Oracle Publishing</publishers>
<edition>July-August 2005</editions>
<title>Tuning Undo Tablespace</title>
<author>Kimberly Floss</authors>
</catalog>

<catalog>

<journal>Oracle Magazine</journal>
<publisher>Oracle Publishing</publishers>
<edition>September-October 2005</edition>
<title>Creating Search Pages</title>
<author>Steve Muench</authors>

</catalog>

</catalogs>

EOF

doc = REXML: :Document.new string

@catalogList="<table><tr><th>Journal</th><th>Publishe
r</th><th>Edition</th><th>Title</th><th>Author</th></
tr>"

REXML: :XPath.each(doc, "/catalogs/catalog") { |row]|
@catalogList+="<tr>"

REXML: :XPath.each (row, "journal") { |journal|
@catalogList+="<td>"+journal.text+"</td>"

}

REXML: :XPath.each (row, "publisher") { |publisher|
@catalogList+="<td>"+publisher.text+"</td>"

}

REXML: :XPath.each(row, "edition") { |edition]|
@catalogList+="<td>"+edition.text+"</td>"

188 6 XML On Rails

}

REXML: :XPath.each (row, "title") { |title]
@catalogList+="<td>"+title.text+"</td>"

}

REXML: :XPath.each (row, "author") { |author]|
@catalogList+="<td>"+author.text+"</td>"

}

@catalogList+="</tr>"

}

@catalogList+="</table>"
end
end

A view template xpath.rhtml gets created in the app/views/rexml
directory when the controller class is generated. In the xpath.rhtml view
template specify the following Ruby output embedding.

<%= @catalogList %>
Start the WEBrick web server if not already started.
C:/ruby/rexml>ruby script/server

To parse the XML document with XPath and generate a table we need
to invoke the controller action xpath with URL
http://localhost:3000/rexml/xpath. A table gets generated from the XML
document as shown in Figure 6.4.

/i http:/ {localhost:3000/rexml /kpath - Microsoft Internet Explorer : =101.x|
File Edit View Favorites Tools Help

eBack - - @ [A& | Qseach [GiFavorkes Gede F |5 G W] - 5

address [&] hitp:flocalhost: 3000/rexmixpath =] @oo |unks >
=
Journal Publisher Edition Title Author
Oracle Magarzine Oracle Publishing July- August 2005 Tuning Unde Tablespace Kimberly Floss

Oracle Magazine Oracle Publishing September-October 2005 Creating Search Pages Steve Muench

R LK

[Eioers [B
Fig. 6.4 Table Generated from XML Document with XPath

6.8 Summary 189

6.8 Summary

XML is the standard medium of data exchange. Ruby provides the
RubyGems builder gem to create an XML document. We created an XML
document with the builder gem. We also created an XML document from a
database using the MVC Rails framework. Subsequently, we parsed an
XML document using the REXML toolkit.

7 PHP On Rails

7.1 Introduction

Ruby on Rails is a web framework for developing database based web
applications. Ruby on Rails applications are based on the Model-View-
Controller pattern. PHP is a commonly used scripting language and
provides various frameworks based on the Ruby on Rails framework.
Some of the PHP ports of Ruby on Rails framework are Zend Framework,
Akelos Framework and PHP On Trax. PHP On Trax is an open source web
application and persistence framework, based on Ruby on Rails, to
develop database-based web applications according to the Model-View-
Controller pattern. In this chapter we shall develop a MVC application
using the PHP On Trax framework.

7.2 Installing PHP

Download the Apache HTTP Server 2.0'. Install the Apache HTTP server
by double-clicking on the Apache web server application, apache 2.0.55-
win32-x86-no_ssl. Next, install PHP 5. Download PHP 5.2.02. Extract the
PHP zip file php-5.1.2-Win32.zip to an installation directory, C:/PHP for
example.To the PATH environment system variable add C:/PHP, the
directory in which PHP 5 is installed. Modify the php.init-recommended
file in the C:/PHP directory to php.ini.

Enable the MySQL extension in php.ini configuration file. Set the
extension directory by specifying extension dir = "./ext". Activate
the MySQL extension by removing the ';' from the following line.

extension=php mysqgl.dll

! Apache2 HTTP Server- http://httpd.apache.org/
2 PHP 5.2- http://www.php.net/

192 7 PHP On Rails

Set error reporting® in php.ini file to E_ ERROR.
error_reporting = E_ERROR

Install PHP 5 in the Apache HTTP server. To the
<Apache2>\conf\httpd.conf file add the following.
For PHP 5

LoadModule php5 module "C:/PHP/php5apache2.dll"
AddType application/x-httpd-php .php

configure the path to php.ini
PHPIniDir "C:/PHP/"

<Apache2> is the directory in which Apache 2 web server is installed,
and is C:/Apache2 in this chapter. If the directory in which PHP 5 is
installed is other than C:/PHP, replace C:/PHP with the directory in which
PHP 5 is installed. The PHPIniDir directive specifies the directory
containing the php.ini configuration file. We also need to install the MDB2
driver MySQL, which is available as a PEAR module. First, install PEAR.
Download go-pear.php* and run the following command to install PEAR.

C:/PHP>PHP go-pear.php

Download the MDB2 driver for MySQL MDB2 Driver mysql-1.2.2.1gz
file. Copy the .tgz file to the C:/PHP directory. Install the MDB2 driver
with the following command.

C:/PHP>pear install -o MDB2 Driver mysgl-1.2.2.tgz

7.3 Installing PHPONTrax

PHPOnTrax is available as a PEAR module. Download the PHPOnTrax®
pear module and install the module with the pear installer. Run the
following command to install PHPOnTrax.

pear install -o PHPonTrax-266svn.tgz

PHPonTrax gets installed as shown in Figure 7.1.

3 Error Reporting- http://ca3.php.net/error_reporting
4 go-pear.php-http://go-pear.org/
3 PHPOnTrax- http://www.phpontrax.com/

7.4 Creating a Trax Application 193

[£%) command Prompt

o PHPonTrax-266svn.tgz
wel://pear.php.net/PHPonTrax-266svn

Fig. 7.1 Installing PHPOnTrax

A PHPonTrax directory gets created in the C:\PHP\PEAR directory.
Create a frax.bat file in the C:/PHP directory, which is in the PATH
environment variable. To the trax.bat file add the following code.

php C:\PHP\PEAR\PHPonTrax\trax.php %1

The trax.bat file shall be used to create a PHPOnTrax application.

7.4 Creating a Trax Application

In this section we shall create a PHPonTrax application. Create an
application catalog in the Apache web server root with the following
command.

C:\Apache2\htdocs >trax catalog

A trax application with an application structure similar to a Ruby on
Rails application gets created. The app directory consists of the
controllers directory for the controller PHP scripts, the models
directory for the model scripts and the views directory for the views
templates. Instead of the controllers/application.rb of a Ruby on Rails
application a controllers/application.php PHP script gets generated. The
application.php script is shown below.

<?php
class ApplicationController extends ActionController

}

?>

PHPOnTrax being a direct port of the Rails framework you would
notice the similarity of the PHP controller script with a Ruby controller
script.

Instead of a database.yml file in a Ruby on Rails application, a
database.ini database configuration file gets created in the config directory.
Modify the config/environment.php directory to specify the PHP directory

194 7 PHP On Rails

and the trax root directory. Define variables PHP LIB ROOT,
TRAX ROOT, and TRAX ENYV as shown in following listing.

define (" PHP_LIB_ROOT" , "C: /PHP/ PEAR") ;
define (" TRAX ROOT",
"C:/Apache2/Apache2/htdocs/catalog") ;
define ("TRAX ENV", "development") ;

The public/.htaccess file specifies configuration directives for the
Apache HTTP server. The configuration directives in the .htaccess file
apply to the directory in which the .htaccess file is placed and the sub-
directories of the directory. Modify the public/.htaccess file. Replace the
following line:

php value include path
.:C:\Apache2\Apache2\htdocs\catalog/config

with the following line:

php value include path
.;C:\Apache2\Apache2\htdocs\catalog/config

The include path directive specifies a list of directories and is used to
locate files. Access the Trax application console with the URL
http://localhost/catalog/public as shown in Figure 7.2.

A PHP on Trax: Welcome aboard - Microsoft Internet Explorer i -] x|
Fle [Vew FParorkes Tods Hep -
bk - = - @ [A) o} Qsewcn (SFavores Freds F| 3D D wi- E 8
ml'&]hﬁbu" doaloulic [7C- i he2{Apachell dnaloublic heml :j R(b Lnks ®
[— F—
PHP Welcome aboard T [
Join the community
Getting started E0e on Teax
Here’s how to get rolling Official forym
IRC channel
1. Create your databases and edit ¥ia
config/database.ini g tratia
Trax neads to know your login and password Browse the

documentation

2. Use script/generate.php to create

your models and controllers Irax AP|
ExE

To see all available optsons, run it without parameters

w

Set up a default route and remove or |
&) oone [& Localinmanet p

Fig. 7.2 PHP On Trax Console

7.4 Creating a Trax Application 195

Modify the C:\Apache2\conf\httpd.conf file so that the directives in the
.htaccess file may override earlier access information. Activate the
mod_rewrite module by removing the '#' before the following line.

LoadModule rewrite module modules/mod rewrite.so

The mod_rewrite module provides rules based rewriting engine to
rewrite requested URLs. Also set the AllowOverride directive to All.

AllowOverride All

The AllowOverride directive specifies which directives in the .htaccess
may override earlier access information. Modify all the AllowOverride

directives in the httpd.conf file. Modify the DocumentRoot directive in
httpd.conf to the following.

DocumentRoot "C:/Apache2/htdocs/catalog/public"
Restart the Apache server. Next, we shall create a Trax application.

Create a file model bat in the htdocs/catalog directory and copy the
following code to the directory.

php ./script/generate.php model %1

The model.bat file is used to create model scripts. A model class models
data in a database table. Create a file controller.bat in the htdocs/catalog
directory and copy the following code to the batch file.

o\°

3

o\

php ./script/generate.php controller %1 %2 4

The controller.bat file is used to generate controller scripts. A controller
class integrates a model class with the view templates. Generate a PHP
model script, catalog, with the following command.

C:\Apache2\htdocs\catalog>model catalog

A model script catalog.php gets created in the catalog/app/models
directory. PHP script catalog.php is shown below.

<?php
class Catalog extends ActiveRecord {

}

?>

Create a PHP controller, catalog, with the following command. Also
create a controller action phprails.

C:\Apache2\htdocs\catalog>controller catalog phprails

A catalog controller.php script gets created in the
catalog/app/controllers directory. The controller script includes a function

196 7 PHP On Rails

phprails(). Modify the phprails() function to output a message to the
browser as shown in the following listing.

<?php
class CatalogController extends ApplicationController

{

function phprails() {

echo "PHP on Rails";

}
}

?>

A view template phprails.phtml gets created in the views/catalog
directory. The phprails.phtml file may be edited; modify the phprails.phtml

file to the following.
<h3>PHP on Rails</h3>

Invoke the phprails controller action with the URL
http://localhost/catalog/phprails as shown in Figure 7.3.

23 PHP on Trax - Microsoft Internet Explorer : “ = |DI‘5.|

Fle Edt Wiew Favorites Tools Help |
GBack + & - @) | Qsearch (Favorites Media (4| BN & vl - 5] >

Address |§:| http: Hlocalhostfcatalog/phprails j .’PGo | Links >

-~

PHP on Rails

PHP on Rails

=l
Bl 0

Fig. 7.3 Invoking a PHPOnTrax Application Controller Action

7.5 Creating a CRUD Application 197

7.5 Creating a CRUD Application

In this section we shall create a CRUD application with PHP. First, modify
the config/database. ini file for the MySQL database. We shall be
using the development mode as follows.

[development]
phptype = mysqgl
database = test
hostspec = localhost
username = root
password =
persistent = true

We shall generate a model class and the scaffolding for the model
class, which models a database table, with the scaffold generator. Create a
scaffold.bat file in the C:\Apache2\htdocs\catalog directory. Copy the
following code to the scaffold.bat file.

php ./script/generate.php scaffold %1 %3

Before we create the scaffolding, create a database table catalogs in
the MySQL database with the SQL script shown in the next listing. The
primary key field should be "id" and of type INT.

CREATE TABLE catalogs(id INT PRIMARY KEY, Journal
VARCHAR (255) , Publisher VARCHAR (255),

Edition VARCHAR (255), Title Varchar (255), Author
Varchar (255)) ;

INSERT INTO catalogs VALUES (1, 'developerWorks',
'IBM', 'September 2006',
'A PHP V5 migration guide', 'Jack D. Herrington');

INSERT INTO catalogs VALUES (2, 'developerWorks',

'IBM', 'September 2006',
'Make Ruby on Rails easy with RadRails and Eclipse',
'Pat Eyler');

Delete the controllers/catalog_controller.php file and the
models/catalog.php file, which were created for an example application in
previous section. Create a scaffolding for the catalogs table with the
following command.

C:\Apache2\htdocs\catalog>scaffold catalog catalog

A model class catalog.php gets generated in the models directory as
shown below.

198 7 PHP On Rails

<?php

class Catalog extends ActiveRecord {

}

?>

A controller script catalog_controller.php gets created in the controllers
directory. The controller script is shown below.

<?php

class CatalogController extends ApplicationController

{

function index ()
Scatalog = new Catalog() ;
S$this->catalogs = $catalog->find all();
Sthis->content columns = $catalog-
>content columns;

}

function show() {
Scatalog = new Catalog() ;
Sthis->catalog = S$catalog-
>find ($_REQUEST(['id']l) ;

}

function add() {
Sthis->catalog = new
Catalog (array key exists('catalog', $ REQUEST) ?
$_REQUEST['catalog'] : null);
if (s _POST) {
if (sthis->catalog-
>save ($_POST['catalog'l)) {
Session::flash('notice', "Catalog was
successfully created.");
$this->redirect to =

url for(array(":action" => "index"));
} else {
Session::flash('error', "Error adding

catalog to the database.");
}
}
}

function edit () {

7.5 Creating a CRUD Application 199

Scatalog = new Catalog() ;

Sthis->catalog = Scatalog-
>find ($_REQUEST['id'l) ;

if ($_PosST) {

if ($Sthis->catalog-
>save ($_POST['catalog'])) {
Session::flash('notice', "Catalog was
successfully updated.") ;
Sthis->redirect to =
url for(array(":action" => "show",
":id" => S$this->catalog)) ;

} else {
Segsion::flash('error', "Error saving
catalog to the database.");
1

}
}

function delete() ({
if ($_REQUEST['id'] > 0) {
Scatalog = new Catalog() ;
Scatalog = $catalog-
>find ($_REQUEST['id']);
if ($catalog->delete())

Session::flash('notice', "Catalog was
successfully deleted.");
} else {
Session::flash('error', "Error deleting
catalog from the database.");
1

}

Sthis->redirect_to = url for(array(":action"
=> "index")) ;

}
}

View templates form.phtml, edit.phtml, index.phtml, add.phtml, and
show.phtml get created in the views directory. Modify the form.phtml
view template. Add the following line as the first line in the _form.phtml
file.

<p><label for="catalog id">Id:</labels>

<?= text field("catalog", "id") ?></p>

200 7 PHP On Rails

The default URL for a URL action is http://localhost/controller/action.
Custom URLs may also be defined in the config/routes.php file.
For example the index controller action of catalog controller may be
invoked by specifying a custom router in the config/routes.php file.

Srouter->connect ("catalog",
array (":controller" => "catalog",
":action" => "index"));

Next, we shall use the scaffolding for the catalogs table to add,
modify and delete catalog entries. Invoke the index controller action with
the URL http://localhost/catalog/index. The catalogs listing gets displayed.
To create a new listing click on the New hyperlink as shown in Figure 7.4.

"3 Scaffolding : catalog - Microsoft Internet Explorer

ok - > - Q[@ Qoo GlFovortes Greds P
Address [Q'} http: f/locahost/catalog/index

Listing catalogs

Id Journal Publisher Edition Title Author
A PHP VS
kD.
1 developerworks IBM zoe;éember ;ﬁjrzhon iae'l:"nnclgton Show Edit Delete

Make Ruby on
September Rails easy with

2 developerworks IBM 2006 RadRails and Pat Eyler Show Edit Delete
Eclipse
= = =
|&) http:iflacalhostfcatalogiadd U [T B vecaintranet 7

Fig. 7.4 Listings catalogs

In the New catalog view template, create a new catalog entry and click
on the Create button as shown in Figure 7.5.

7.5 Creating a CRUD Application 201

7 scaffolding : catalog - Microsoft Internet Explorer pRer ~a] x|
File Edk View Favorkes Tools Help . T
SBack - = - @ [A) | Qsearch (SiFavorites Frieda (F| D S v - H &

Address [) bt locahost/cataloglodd i] @6 |uoks ®

New catalog

Id:
[3

Joumnal:
IdeveloperWorks

Publisher:
EY]

Edition:
[October 2005

Title:
[JaxP Validation

Author:
|Brett McLaughlin|

X =
[&]pece [it

Fig. 7.5 Creating a new catalog entry

A new catalog entry gets added to the database table catalogs and
gets listed in the “Listing catalogs”. To edit a catalog entry, click on the
Edit hyperlink as shown in Figure 7.6.

202 7 PHP On Rails

A scaffolding : catalog - Microsoft Internet Explorer
File Edk View Favorkes Tools Help
Bk + = - D D) | Qsearch [EfFavorites PMeda P | Dy &b] - = 2
Address [@] hitp:/locahostjcataloa/index ~] Peo | ks »
Catalog was successfully created.
Listing catalogs
Id Journal Publisher Edition Title Author
A PHP V5
September Jack D. !
1 developerworks IBM 2006 migration Herrington Show Edit Delete
guide
Make Ruby on
September Rails easy ¢
2 developerworks 1BM) with RadRails Pt Evler Show % Delete
and Eclipse
October JAXP Brett 5 i
! let
3 developeriorks [BM 2005 Validation McLaughlin Shew. fdd Delets
New
=
|&] hitpifiecalhostjcatalogfeditiz [T BB rocaintranet o

Fig. 7.6 Invoking the edit controller action

Next, modify the catalog entry, for example modify the title and click
on the Edit button as shown in Figure 7.7. The primary key field, id should
not be modified.

7.5 Creating a CRUD Application 203

2 scaffolding : catalog - Microsoft Internet Explarer b [dg]!]
File Edk View Favorkes Tools Help K3
Bk ~ = - QD) Af | Qsearch [SFavorites Pieda (P | D S] - H &

Address [] hirp:locahost/cataloaledtj2] Ot (ws>

Editing catalog

Id:
[2

Joumnal:
IdeveloperWoms

Publisher:
Y]

Edition:
|September 2006

Title:
[Ruby on Rails with Eclipse

Author:
|Pat Eyter

Eglit 5
&) Doee [[BHuocintanet 4
Fig. 7.7 Modifying a catalog entry

The catalog entry gets updated. Click on the Back hyperlink to display
the modified listings. To display a catalog entry, click on the Show
hyperlink as shown in Figure 7.8.

204 7 PHP On Rails

3 Scaffolding : catalog - Microsoft Internet Explorer - IU'!I
File Edk Vew Favortes Tools Help

Bk - = - @ [4| Qsearch (ajFovorites Piieda F| - &] - [H &
Address [) http: flocahost/catsloa/ndex 7] Pco s ”
Listing catalogs
1d Journal Publisher Edition Title Author
A PHP VS
1 developerworks IBM ;‘.gg;ember ;ﬁli‘?;ztinn ilae‘:rtlr?dton Show Edit Delete

September Ruby on Rails

2 developerWorks 1BM Pat Eyler Show Edit Delete

2006 with Eclipse
October JAXP Brett g
pelet
3. Geyslopariorks’ 1M 2008 Validation McLaughlin F Edit Delete
New
=
[&] hitpifflecalhostcatalog/show)3 [T B8 ocdintranet 7

Fig. 7.8 Invoking the show controller action

The catalog entry gets displayed as shown in Figure 7.9.

7.5 Creating a CRUD Application 205

; Scaffolding : catalog - Microsoft Internet Explorer

File Edk View Favorkes Tools Help

ek - = - Q [Q| Qsearch [GiFavories Gthieda 3 B-SH-EHE
‘Address [] btxo:focahosticatalonlshon3] e (s

Id: 3

Journal: developerWorks
Publisher: 1M

Edition: October 2005
Title: JAXP Vvalidation

Author: Brett McLaughlin

Edit | Back
=
[&Dcon [[Biocdiovanet

Fig. 7.9 Displaying Catalog Entry

To delete a catalog entry, click on the Delete hyperlink as shown in
Figure 7.10.

206 7 PHP On Rails

3} scaffolding : catalog - Microsoft Internat Explorer i _-IEILXJ
File Edt View Favorkés Taols Help

Goxk - o - Q[()| Dsewh (igrwotes Greds (3| e b] - (2 44

mmrﬁp:mm*ﬂst{c&amg!ntr]' e iLﬂG it

Listing catalogs

i

Id Jaurnal Publisher Edition Title Author
A PHP VS
September Jack O
I
1 developeriworks [BM 2008 rgnl?crlztlcn Herrington Show Edit F
Ul

2 developerworks IBM September Ruby on Rails Pat Evler Show Edit Deleta

2006 with Eclipse
October JEXP Brett .
Sho j
8; davelopariorks 16K 2005 Yalidation Mclaughlin fhow Edd Lelete
Mg
I
| @] httpsfflecalhosteataloafdaletelt T [EBvocdintranet 4|

Fig. 7.10 Deleting a Catalog Entry

Catalog entry gets deleted from the database and the Listing catalogs
as shown in Figure 7.11.

3 Scaffolding : catalog - Microsoft Internet Explorer
File Edt Wew Favortes Teols Help

bk - » - Q[| Qewrch (ifFvrin: Prieds (J| D & o] - = 4
Acdbess [repfocshsticarsogiedex =] P s ®

=

Catalog was successfully deleted,

Listing catalogs

Id Journal Publisher Edition Title Author
2 developerworks IBM ;;g;ﬁmhm ?\rj—illhh‘rlED;\:f;‘S Pat Eyler Show Edit Delete
5. Henslaparwiorts 1M g;égbar if‘l:?;\::atlun fflr::zughlin el Lt Levin
Hew
=
] tore [[T Erocdintranst 4

Fig. 7.11 Listings catalog

7.6 Summary

PHP provides various frameworks that are based on the Ruby on Rails
framework. In this chapter we discussed one such PHP framework PHP
On Trax to create a CRUD application with MySQL database.

8 LDAP On Rails

8.1 Introduction

A directory service is an application/s that stores, retrieves and modifies
information about network resources such as network users. The actual
data is stored in a database; a database service is an abstract layer on top of
the database. Lightweight Directory Access Protocol (LDAP) is a
lightweight protocol for accessing directory services. LDAP is based on
entries; an entry is a set of attributes identified by a globally unique
Distinguished Name (DN). Each of a directory entry’s attributes has a
type and one or more values. The attributes in a directory entry’s
distinguished name(DN) are arranged in a hierarchy from right to left with
the rightmost attribute as the top entry and with the leftmost attribute/s that
are unique at its level called as Relative Distinguished Name (RDN). A
DN is a sequence of RDNs. Some examples of attribute types are
discussed in Table 8.1.

Table 8.1 Attribute Types

Attribute Type Description

0 Organization

de Domain component
ou Organizational unit
cn Common name

uid Userid

dn Distinguished name
mail Email address

An entry in a directory is identified by a distinguished name (DN). An
example of a directory entry’s distinguished name is as follows.

cn=dvohra, ou=People,dc=example, dc=com

210 8 LDAP On Rails

In the example DN, the base entry/root is “dc=example,dc=com”. The
relative distinguished name is "cn=dvohra". LDAP defines operations for
adding, searching, modifying and deleting directory entries. A LDAP
server is required to provide a LDAP directory service. Some of the
commonly used LDAP servers are OpenLDAP, Tivoli Directory Server,
and Oracle Internet Directory. We shall discuss the procedure to install
OpenLDAP, Tivoli Directory Server and Oracle Internet Directory. We
shall use the Oracle Internet Directory to create a directory service.

8.2 Installing OpenLDAP

We shall discuss the procedure to install the windows version of the
OpenLDAP directory server. Download OpenLDAP!' for Windows
operating system. Double-click on the OpenLDAP application openldap-
2.2.29-db-4.3.29-openssl-0.9.8a-BDB_ONLY-win32 Setup.exe. The
OpenLDAP Setup wizard gets started as shown in Figure 8.1. Click on
Next button.

5

Welcome to the OpenLDAP Setup
© Wizard

This will install openldap-2.2.23 on your computer.

It is recommended that you close all other applications before
continuing.

Click Next to continue, or Cancel to exit Setup.

Niat > Cancel

Fig. 8.1 OpenLDAP Setup Wizard

! OpenLDAP- http://download.bergmans.us/openldap/

8.2 Installing OpenLDAP 211

Accept the license agreement and click on Next button. Select the
default destination, C:\Program Files\OpenLDAP, and click on Next
button. Select components BDB-tools and OpenL.DAP-slapd as NT service
and click on Next as shown in Figure 8.2.

15! Setup - OpenLDAP >

Select Components
which components should be installed?

Select the components you want to install; clear the components you do not want to
install. Click Next when you are ready to continue.

® install OpenLDAP openldap-2.2.29 8.7MB
i [4] install BDB-tools 0.3MB
install OpenLDAP-slapd as NT service
‘- [0 install OpenLDAP-sluipd as NT service

Current selection requires at least 9.3 MB of disk space.

< Back I Niat > I Cancel

4]

Fig. 8.2 Selecting OpenLDAP Components

Specify a Start Menu Folder and click on Next. Select additional tasks
such as “automatically start OpenLDAP NT service after reboot” and
“Create a desktop item” and click on Next. Click on the Install button to
install OpenLDAP as shown in Figure 8.3.

212 8 LDAP On Rails

{&! Setup - OpenLDAP '

Ready to Install
Setup is now ready to begin instaling OpenLDAP on your computer.

Click Install to continue with the installation, or click Back if you want to review or
change any settings.

Destination location: N
C:\Program Files\OpenLDAP

Setup type:
Full installation

Selected components:
install DpenLDAP openldap-2.2.29
install BDB-tools
install OpenLDAP-slapd as NT service o

Start Menu folder:

OpenLDAP -
__1_] y

< Back l Install I Cancel |

hy

Fig. 8.3 Installing OpenLDAP

OpenLDAP gets installed. Click on Finish. Also install a LDAP GUI
console, LDAP Browser/Editor>. Extract the Browser282b2.zip to a
directory.

Configuration for a slapd server is specified in the slapd.conf
configuration file. Configuration information is of three types: global,
back-end and database. The configuration information is specified with
directives; the global directives precede the back-end directives, which
precede the database directives.

The global directives apply to all backends and database types. Some
of the commonly used global directives are discussed in Table 8.2.

Table 8.2 Global Directives

Directive Description

idletimeout <integer> Specifies the number of seconds
after which an idle connection is
closed.

2 LDAP Browser- http://www-unix.mcs.anl.gov/~gawor/ldap/

8.2 Installing OpenLDAP 213

Table 8.2 (continued)

Directive Description

loglevel<integer> Specifies level at which debug
information and other statistics
are logged. Value of -1
enables all debugging and 0
disables debugging.

sizelimit <integer> Specifies the maximum number
of entries to return from a
search operation. Default value
is 500.

timelimit <integer> Specifies the maximum number
of seconds spent on a request.
Default value is 3600.

Backend directives specify a backend and apply to all database
instances in a backend. The commonly used backend directive is as
follows.

backend <type>

The backend directive specifies a backend declaration. Some of the
backend types are bdb (Berkley DB transactional backend) and sgl (SQL
programmable backend).

Database directives specify information about a database instance. Some
of the commonly used database directives are discussed in Table 8.3.

Table 8.3 Database Directives

Directive Description

database <type> Specifies a database instance
declaration. Some of the types
are bdb and sql.

readonly {on|off} Specifies a readonly database.

rootdn <DN> Specifies a superuser DN that

may bypass directory access and
administrative restrictions.

rootpw <password> Specifies the password for
rootdn DN.
suffix <dn suffix> Also known as ‘root’ or ‘base’,

specifies the topmost entry in a
DIT (Directory Information
Tree).

214 8 LDAP On Rails

Table 8.3 (continued)
Directive Description
directory Specifies the directory in which
Berkley DB database files are
located.

Next, we shall modify the directives in the slapd.conf file in the
C:\Program Files\OpenLDAP directory of the OpenLDAP server we
installed earlier. The database directive is already set to bdb for the
Berkley DB database. Set the suffix, rootdn, and rootpw as shown
in following listing.

database bdb

suffix "dc=example, dc=com"
rootdn "cn=Manager, dc=example, dc=com"
rootpw netldap

directory ./data

Start/Restart the OpenLDAP Directory service. LDAP entries are
represented in LDAP Data Interchange Format (LDIF) in a .1dif format.
The format of an entry in a LDIF file is as follows.

#comment

dn: <distinguished names>
<attrdesc>: <attrvalues>
<attrdesc>: <attrvalues>

Next, we shall add attributes to the base dn. Create an .1dif file
(baseentry.ldif) in the C:\Program Files\OpenLDAP directory and copy the
following 1dif listing to the file.

dn: dc=example,dc=com
objectClass: top
objectClass: dcObject
objectClass: organization
dc :example

o: NetLDAP

Next, start the OpenLDAP slapd server with the following command
from the OpenLDAP installation directory.

C:\Program Files\OpenLDAP> .\slapd -d 1

OpenLDAP provides the 1dapadd tool to add a directory entry. Run
the Idapadd command on the baseentry.ldif file as shown below. The —d
argument specifies the bind DN for authenticating connection to the
directory. The —w argument specifies the password for authenticating to

8.2 Installing OpenLDAP 215

the bind DN. The —file argument specifies the LDIF file that contains the
directory entries.

C:\Program Files\OpenlLDAP>ldapadd -D
"cn=Manager,dc=example,dc=com" -v -w netldap -f
baseentry.1ldif

Double click on the /be.bat file to start the LDAP Browser. In the
Connect frame specify the following parameters for the different fields.
Host: localhost
Port: 389

Base DN: dc=example,dc=com
User DN: cn=Manager

Select the “append base DN” and click on the Connect button as shown
in Figure 8.4.

x|
Session List | Quick Connect |
fConnection |/0ptior|s !
Host Info
Host: [Iocalhnst | Port: [389 | Version:
Base DN: ‘dc:example,dc:com | v]
[]ssL [] Anomymous bind
User Info
User DN:]cn:hﬂanager | append hase DN
Password: =]

| Comgect H Cancel]
L\

Fig. 8.4 Connecting to the LDAP Browser

The LDAP Browser displays the base directory entry as shown in Figure
8.5. Directory entries may be added to the base entry using Ruby on Rails.

216 8 LDAP On Rails

£ LDAP Browser\Editor v2.8.2 - [ldap://localhost/dc=example,dc = Dl‘ﬁl
File Edit \iew LDIF Help
g[¢aa %6~ @ al[a]s
[e=example, de=com| f[atrioute Tvawe]
R‘ dc example
objectClass top
objectClass dcObject
“|objectClass organization
0 NetLDAP
[Ready. u

Fig. 8.5 Base Directory Entry in OpenLDAP

8.3 Installing Tivoli Directory Server

Tivoli Directory Server 6.0 is built on top of DB2 UDB database.
Therefore, install DB2 UDB 8.1 Enterprise Server Edition prior to
installing the directory server. Download DB2 UDB 8.1 database. Extract
the DB2 UDB 8 zip file to a directory. Double-click on the setup.exe
application to install DB2 UDB 8. In the Setup Wizard, the DB2 UDB
Enterprise Server Edition is selected by default. Click on Next. In the
Welcome page click on Next. Accept the license agreement and click on
Next. Select the installation type (Typical by default) and click on Next.
Select the "Install DB2 Enterprise Server Edition on this computer"
checkbox and click on Next. Select the default installation directory ,
C:\Program Files\IBM\SQLLIB by default, and click on Next. Specify
username (db2 for example) and password (db2admin for example) for
DB2 Administration Server and click on Next. Select the default
administration contact list settings and click on Next. Select the default
DB2 instance, DB2, and click on Next. Select the default settings in
Prepare the DB2 tools catalog frame and click on Next. Select "Defer the
task.. " in the "Specify a contact .." frame and click on Next. In the "Enable
operating system security for DB2 objects" uncheck the checkbox "Enable
operating system security. Click on Next. Click on Install to install DB2
UDB 8 database. The DB2 database gets installed. Click on Finish.

8.3 Installing Tivoli Directory Server 217

Next, create the sample database. In the IBM DB2 First Steps
Launchpad frame click on Create Sample Database. In the Create Sample
Database frame check the DB2 UDB sample checkbox and click on OK.
The SAMPLE database gets created.

Next, we shall install the Tivoli Directory Server 6.0. Download Tivoli
Directory Server 6.0. Extract the zip file 6.0.0.3-TIV-ITDS-Win32-
IF0002.zip To a directory. Double-click on Setup.exe to install the Tivoli
Directory Server. In the Install wizard for Tivoli Directory Server 6.0 click
on Next as shown in Figure 8.6.

& I8M Tivoli Directory Server 6.0 - |ULXJ

Welcome to the InstaliShield Wizard for IBM Tivoli
« Directory Server 6.0
¢ The InstallShield Wizard will install IBM Tevoli Directory Server 6.0 on your computer.
To continue, choose Next
1BM Tivoli Directory Server 6.0

cancel |

Fig. 8.6 Tivoli Directory Server InstallShield Wizard

Accept the license agreement and click on Next. The DB2 8.1 gets
listed in the "The following applications have been identified on your
system" frame. Click on Next. Specify the installation directory,
C:\Program Files\IBM\LDAP by default, and click on Next. Select the
Tivoli Directory Server features to install including the Web
Adminsitration Tool 6.0, and click on Next as shown in Figure 8.7.

218 8 LDAP On Rails

@ 1BM Tivoli Directory Server 6.0 -0 X
Select the features to install:
¥ Client SDK 6.0
¥ Java Client 6.0
¥ Web Administration Tool 6.0
¥ Proxy Server 6.0
¥ Server 6.0 (Full Server Package)
Ap Server- E
Description:
This component contains the IBM DB2 executables and libraries.
A supported DB2 component IS already installed. DB2 will notbe
instalied.
Space required for C\: 174 MB Available: 2054 MB
InstaliShield
< Back I Ned > I Cancel I
i)

Fig. 8.7 Selecting the Features to Install

The installation settings get listed. Click on Next to install the Tivoli
Directory Server 6.0. The Tivoli Directory Server 6.0 gets installed. Click
on Finish. A configuration tool gets started. Click on Create to create a
directory server instance as shown in Figure 8.8.

+ IBM Tivoli Directory Server Instance Administration Tool

List of directory server instances instalied on the machine

Create or migrate o direclory server nstance.

Delgte

View... |

4 | |

Fig. 8.8 Creating a Tivoli Directory Server Instance

Select "Create a new directory server instance" and click on Next.
Specify a username, db2admin for example. Specify an encryption seed
string (0123456789abc for example), which is a string of characters that

8.3 Installing Tivoli Directory Server 219

contains only printable ISO-8859-1 ASCII characters with values in the
range of 33 to 126, such as a-z, A-Z, and 0-9, and is from 12 to 1016
characters in length. Click on Next. Select DB2 instance that is to be

associated with the directory server instance. Select DB2 instance name,
DB2, and click on Next as shown in Figure 8.9.

Create new directory server instance 5 = |EIL)£]
DB2 instance details

Enter the details of the DB2 instance to be associated with the new directory

server instance. You may select an existing DB2 instance or enter a new DB2
instance name.

DB2 instance name
B2 %

Hote:

1. You cannot select a DB2 instance which is already associated
with another directory server instance.

2. The new DB2 instance name should be same as an existing
system user account.

Help | ?I < Back N = Finish Cancel

.

Fig. 8.9 Setting the Database for the Tivoli Directory Server Instance

In the TCP/IP settings frame check the "Listen on all configured IP
addresses" checkbox and click on Next. Select the default TCP/IP port

settings, Server port number being 389, and click on Next as shown in
Figure 8.10.

220 8 LDAP On Rails

Create new directory server instance 5 = lﬂlﬂ
TCP fIP port settings
~ Enter port details

Server port number

| 339|

Server secure port number
636

Admin daemon port number

I 3538

Admin daemon secure port number

I 3539

Help | ?l < Back Npsg = Finish Cancel

A

Fig. 8.10 The TCP/IP Port Settings for the Tivoli Directory Server Instance

Next we shall configure the admin DN and password, and configure
the DB2 database with the Tivoli Directory server. Check the checkboxes
for the admin DN and database configurations and click on Next. Specify
administrator DN, cn=root for example, and administrator password,
tivoli for example. Click on Next as shown in Figure 8.11.

8.3 Installing Tivoli Directory Server 221

Create new directory server instance . : -|D|ﬁ|

Configure administrator DN and password
Administrator DN

Icn=ruoi

Administrator password

wawwww

Confirm password

I#*#*tw

Help |°| < Back I Ifext = I Firish | Cancel |

N

Fig. 8.11 Specifying the Administrator DN and Password

In the Configure database frame, specify the database username, db2,
and password, db2admin, that were specified when installing the DB2

database. Specify database name as SAMPLE, which was created earlier.
Click on Next as shown in Figure 8.12.

222 8 LDAP On Rails

7 Create new directory server instance : - IUIﬂ

Configure database

Database user name:
db2

Password

Iv.-ww-n-wa-w

Database name

ISAMPLE

Help | ?I = Back I W = I Finish Cancel

M

Fig. 8.12 Configuring the Directory Server Instance with the DB2 Database

The directory server instance settings get listed. Click on Finish as
shown in Figure 8.13.

% Create new directory server instance - lﬂlﬂ

Verify settings

Werify that the settings belowr are correct.

Click Finish to begin the instance creation.

5, new directory server instance 'db2' will be created.

The directory server instance will be created at: 'C'.

The directory server instance will be configured for IP 'All'.

The directory server instance's port will be set to '389'".

The directory server instance's secure port will be set to '636".

The directory server instance's Admin Daeron port will be set to '3538".
The directory server instance's Admin Daemon secure port will be set to '3539'.
Database instance 'DB2' will be configured.

The directory server instance admin DN will be set to ‘ch=root’.

The database 'SAMPLE' will be configured.

Help | ?I < Back flext = I Finjsh I Cancel
S

Fig. 8.13 Settings for the Directory Server Instance

8.3 Installing Tivoli Directory Server 223

A directory server instance gets created. Click on Close. Click on
Close in the instance administration tool as shown in Figure 8.14.

=T

Instance Type | Version Description

EM Tivol Directory Server Instance V6.0

Edit TCPAP seftings... |
Delete, I

Fig. 8.14 New Directory Server Instance

Tivoli Directory Server 6.0 provides a Web Administration Tool to
administer the directory server. Before we may use the Web
Administration Tool we need to install the WebSphere Application server
and install the Web Administration Tool application in the WebSphere
application server. Download WebSphere Application Server 6.1 and
extract the zip file to a directory. Double-click on the launchpad
application. Start the installation wizard for WebSphere Application
Server. Click on Next in the WebSphere application server installation
wizard. Accept the license agreement and click on Next. Click on Next in
the System Prerequisites check frame. Check the Install the Sample
Applications checkbox and click on Next. Specify the installation folder,
C:\Program Files\IBM\WebSphere\AppServer by default, and click on
Next. Specify administrative username and password and click on Next. In
the Installation Summary frame click on Next to install the WebSphere
application server. WebSphere application server gets installed. Click on
Finish.

Next, we shall deploy the Web Administration Tool to the WebSphere
Application Server. Copy the C:\Program
Files\I BM\LDAP\V6.0\idstools\IDSWebApp WAR file to the C:\Program
Files\IBM\WebSphere\AppServer6\installableApps directory. Start the
WebSphere Application Server from the WebSphere Application Server-
First Steps. Start the Administrative Console. In the Administrative
console, select Applications>Install New Application to install the Web
Administration Tool application. Specify the directory path the Web

224 8 LDAP On Rails

Administration Tool application, C:\Program
Files\IBM\WebSphere\AppServero6\installable Apps\IDSWebApp, and

specify context root as IDSWebApp, and click on Next as shown in Figure
8.15.

A Integrated Solutions Consale - Microsolt Internet Explarer] -Iﬂ’_lj
Fle Edt Yww Favakes Tock Hep =
GaBock v & - (D) A Doewch [(ajFevortes Preds F N b = o

Vkﬁhq la’] Petps:filocahost 043 fiomfconsclslogin. do?action=securs

Integrated Solutions Console Welcomis rebsphens admin Help | Logout

eT— =)
Viewrs [All taskr Close pags
Prap aring for the spplication iny Lall un B e
Guided Activities
Field help
s Spacify the EAR, WAR, JAR, or SAR module to upload and install e
the module being
B Applications Path ts the maw spphication is 3 Web module
Entarprise Applicatioas @ Local file systam file).>

Install Hew Application

Full path o Pon bk

® <\Program Fles\isrw | Biowee. rs information
Resources More information |
Security € Remote file system Shizpaas
Environment . -
System sdminisvation e ——
B Users and Greups Context root
e

= [foswabapp Used only for standalone Wab modules
Bieaiering sd Tuning (war filas) wnd $1P modules (ser Fles)
B Troubleshootng How do you want te initall the applicatioa?

B Sarvics intagration & prompt ma only vhan addtional information is reguired.

B oot € $how me all installation options snd paramaters.
@ Cancel
<
| (3 [EE] o’
2] Dere [3 ¥ tocal mbraret J

Fig. 8.15 Installing the Web Administration Tool Application to WebSphere
Application Server

Select the default installation options and click on Next. Map the IBM
Tivoli Directory Server application to the WebSphere application server
and click on Next. Select the default host as the virtual host to deploy the
directory server web application and click on Next. In the installation
summary page click on Finish. The Web Administration Tool application
gets deployed to the WebSphere application server. Click on Save to save
the install configuration to master configuration. The Web Administration
Tool application gets installed and started as shown in Figure 8.16. If the
IDSWebApp application is not started click on Start.

8.3 Installing Tivoli Directory Server

225

T Integrated Salutions Consale - Microsaft Internet Explorer

Fle Edt vew Favortes

bt - Q) D Qoewh GlPeeetes Greds

Teck Hebp

Address | @) ahost 904
Integrated Solutions Console Welcome webephers admin Help | Logeut
View: | Al tagks 25 Close page |a
@ Guided Activitias B Massages
@ Servers [application [DSWabApp_var on server serverl and node d207-6-39-2Ho|
succes sfully.
B Applications
Entarprise Applications
Inszall v Application Enterprise Applications

Use this page to manage installed A single can be deployed ento mul|
B Resources
B Prefarences
@ Sacurity |
Start| | Stop | | Install Uningtall Update Rollaut Update Remove File
B gavironment ,T‘T‘, —_—— [I,, s | ,,,,,,,,I

[System administration QIR
Users snd Groups _s.uo.' Nama 3 Application Status Q
B Moaizoring and Tuning [| Dafauapplicasion >
@ Troubleshooting r WebAs = i
B Servics intagration E% ~
BlantsBy¥WebSohers
upoI 2
- | ZamolesGalleny >
s *
|
o > [
4] ¥ =1 |
r—r— m Local intraret 4

Fig. 8.16 Web Administration Tool Application

Next, we shall login to the Web Administration Tool and create a
server configuration for the Tivoli Directory Server instance. Login to the
Web Administration Tool console with the URL
http://localhost:9080/IDSWebApp/IDSjsp/Login.jsp. Console Admin as
LDAP Hostname. Specify the default username, "superadmin", and the
default password, "secret", and click on Login as shown in Figure 8.17.

226 8 LDAP On Rails

A 18M Tivoli Directory Server Wob Administration - Microsolt Internet Exploser SRR ..[ﬂl_)g
Fie Edt View Favortes Tock Heb =
wBack + = - @ 2] 3 QSewch [GlFavcrtes Preds F - O A S
Address [) rerp: focahost - 0a0/ 05w ebAODTUSOM 00N, 159
Tivoll. Directory Server Web Administration Tool
Login page
Enter usemame and password
LDAP Hostname Console Admin =
Usarname superadmin
Password s
"
) I ¥ Locad mtranet 7

Fig. 8.17 Logging in to Web Administration Console as Console Adminstrator

In the Web Administration Tool console the console administrator
username may be modified with the "Change console administrator login"
link. The password may be modified with the "Change console
administrator password" link. Click on "Manage console servers" to create

a server configuration for the Tivoli directory server as shown in Figure
8.18.

8.3 Installing Tivoli Directory Server 227

I} Tivol Directory Server Web Administration Tool - Microsalt Internet Explorer o = I:I|!_|
Fle Edt Yew Fawrbes Took Hebp 1-
ek - S - Q) 4 Qeweh Glfererer Greds J |- B D

Addrezs [i@] henp: {locaihost :SOR0/I0SWebAORIDSISPHDS ConsomF tame Work, 150

Toll Directory Server Web Administration Tool

Console administrator
Introduction

3 Shangs seralsadminiatiatel toain

o Welcome 1o the IBM Trvol Drectory Server 6.0 Web
Ehangs sensaly Jdministigtor baseord

Administration Tool Thes tool enables you to manage servers, both

Gﬁm"—“&‘{‘jﬂ! locally and remotely.
[D Manags oniels Rressdin
3 Logout Chcke an item on the Jeft to perform a task

At any tume, m the upper nght comer, you can select:

810 access help

{c) Copyright IBM Corporation 1998, 2002, 2003, 2004, All rights
reservad

[2 [

@ Saved changes
&) himfflocak JEARunT askitah ! [T BBocdmbest

B

Fig. 8.18 Selecting Manage console servers link

In Manage Console Servers click on Add as shown in Figure 8.19.

228 8 LDAP On Rails

A Tivoli Directory Server Web Administration Tool - Microsoft Internet Explorer

% -|o| x|
Fle Edt View Favrkes Took Hep -
ok v = - (D D A Doexch (ajfevertes Preda P N = o)
Ackrezs) tetp: focahost: XG0S sbAp/TDSp{IDS Consokr ame Work. 159

Tivoli. Directory Server Web Administration Tool

[introduction Console administrator

~ {3 Console sdministr ation Manage console servers Logfiles Halp
(3 Ehanas sersels administaler legin

a!n.ll’l ieidraior

(3 Mensns consels parves L

— Select Action - v| En}
Select | Hostname | Port

) Manags conaeis iesasmias

| Administra... | SSL enabled |
[Logout

Close

o off
.)

2l

Fig. 8.19 Adding a Directory Server Configuration to Web Administration Tool

Specify Hostname as localhost and select the default port settings.
Click on OK as shown in Figure 8.20.

8.3 Installing Tivoli Directory Server 229

7} Tivoli Directory Server Web Administration Tool - Microsoft Internet Explorer B | =10 x|
Fie Edt Yew Favorkes Took Help -
bk » =3 - (@D) A Qsewch GiFevcrtes @reda F - O S 5
Address [§8] hetp: ocaihost: SOB0NI0SViebA0D IDSISHIDSCorsolF amaMwiork, 159
Tivoll. Directory Server Web Administration Tool
Console administrator
Add server ogfiles Help
I:iosmama fort
localhosg 389
D Manage convole perves
Administration por
(3 Manage comieie saepesing . 3538
353
[3 Logout
™ Enable SSL encryption
% Cancel
=
® -
&) Done [T tcclinbranet

Fig. 8.20 Specifying the Host and Port settings for the Directory Server

The directory server configuration gets added to the Web
Administration Tool. Click on OK. The directory server configuration gets
listed in Manage console servers as shown in Figure 8.21.

230 8 LDAP On Rails

7} Tivoli Diecctory Server Web Administration Tool - Microsoft Internct Explorer 1

Fe Edt View Favortes Tock Help -
debak v = - () 2) 3| Qsewch (GiFwcrtes Greds P - O A o

Address h] hetp: f focaihost : GOS0 I0SWebACDTDSEpIDSConsoker ama'work, 50

Tivoll. Directory Server Web Administration Tool

[0 introduction Console administrator
~ SJConnole sdministration Manage console servers Logfiles Help
D) Snanassesals adminiatialerioain _iM _gﬂ_ﬂ__ %
D bticass saiie st Select | Hostname | Port Administra... | SSL enabl...|
[0nou € locahost 389 3538 No
" o
® 3
&) bone T Bwdnast

Fig. 8.21 Directory Server Configuration Added

Logout from the Console Admin. Re-login with
http://localhost:9080/IDSWebApp/IDSjsp/Login.jsp URL. Select LDAP
Hostname as localhost:389. Specify Username as cn=root, and
Password as tivoli, which we configured when creating a directory
server instance. Click on Login as shown in Figure 8.22.

8.3 Installing Tivoli Directory Server 231

‘3 1BM Tivali Directory Server Web Administration - Microsoft Internet Exploser R = Dll&j
Fie Edt Yiew Favorkes Took Hep -
eBack v = - (@ D) A Qsewch (afFevories Preda P N O (o

Address [’Q.I tp: focahost: S0/ I0SWebApo/TDSispllogin. ksp

Tivoll. Directory Server Web Administration Tool

Login page

Enter usemame and password

LDAP Hostname localhost 359 =
Usarname cn=root

Password

Fig. 8.22 Logging in to Web Administration Tool

The Web Administration Tool console gets displayed. Start the Tivoli
Directory Server instance if not already started. Click on Directory
Management>Manage Entries to display the directory entries in the
directory server instance a shown in Figure 8.23. A directory entry may be
created in the cn=1ocalhost directory entry using Ruby on Rails.

232

8 LDAP On Rails

B tovok Orectory Server Web Admeniiration Teal - Hicroselt Intrmet Bl

Tie G e Fawutes

» CYudoma maneoement

Tock o
03 3| Quewo [ijremen Friehs 3 B 9 F 2

veborog L 0/ LS sk yve . 60

Manage entries

Currant location

ColtspsenGo 10

Expana | [Find.. | [aze

Edt Mtrages

= Delete
(3 At arin 2PN FE T G
D¥esaen Seiect | Expend | RON ~|Otpectclass ~|Created ~|Lastmo_ ~|Lastmodified by
e [cnsconfiguration ibm-slapdTop
» CBegibs st manapment
» Cfesdns s tempiatns. LA * COMEnNar CN=ROOT
N e e & enslocsiont comainar CN=ROOT
[T
© cn=predpolicy containar CN=ANYBOOY
Paga 101 Total 4 Filtersd 4 Dispiayed 4
Cloze
| | »f
® E!
) Oore. ¥ ook rrransc

Fig. 8.23 Listing the Directory Entries in the Tivoli Directory Server Instance

8.4 Installing Oracle Internet Directory

Oracle Internet Directory provides a user repository for Oracle Identity
Management and is included in the Oracle Identity Management
Infrastructure and Oracle Identity Federation download. Download Disk1
and Disk2 of the Oracle Identity Management Infrastructure and Oracle
Identity Federation zip files. Extract disk1 to a directory. Extract disk2 zip
file to the same directory as disk 1. To install Oracle Internet Directory
click on the \install\setup application. The Oracle Universal Installer gets
started. Click on Next. Specify the installation directory in the Specify File
Locations frame and click on Next as shown in Figure 8.24.

8.4 Installing Oracle Internet Directory ~ 233

“# Oracle Universal Installer: Specify File Locations - ' = - |DIEI

Specify File Locations

Source

Enter the full path of the file representing the product(s) you want to install:
Path: [c10racle Intemet Directonpistagelproducts xml [

[~ Browse..
Destination
Enter or select a name for the installation and the full path where you wantto install the product
Name: |oracleas =
Path: [CioraHome_1| [~ Browse..

About Qracle Universal Installer.. |

telp) Installed Broducts... | Back -uﬁ i _nstall) Cancel)

Fig. 8.24 Installing Oracle Internet Directory

Select Oracle Application Server Infrastructure 10g and click on Next
as shown in Figure 8.25. The Oracle Application Server Infrastructure 10g
includes the Oracle Internet Directory and the Oracle database.

234 8 LDAP On Rails

" Oracle Universal Installer: Select a Product to Install -’DIEI
Select a Product to Install
© QOracle Identity Federation 10g
Oracle dertity F ion is & , star based federated identity management solution enabing enterprises

1o form trustesd relationships across disparate security o quickly and securely.

Oracle Application Server Infrastructure 10g

This ogtion Installs kientity Management services and Metadata Repasitory tor Oracle Apphcation Server Midce-Tier
Servers. This selection includes an option to create a new Oracle Internet Directory. Included components are Oracle
Database, Oracle Internet Directory, Oracle Appiication Server Single Sign-On, Oracle Appiication Server Certificate
Authortty and others.

s Proauctl.anﬁuanes‘,, J

Help _, lns!al|euEroduc|s...}_ Back -Nﬁ s install J} Cancel |

Fig. 8.25 Selecting Oracle Application Server Infrastructure

In the Select Installation Type frame select Identity Management and
Metadata Repository, which installs the Oracle Internet Directory, and the
Oracle 10g database 10g including the Metadata repository. Click on Next
as shown in Figure 8.26.

8.4 Installing Oracle Internet Directory 235

“# Oracle Universal Installer: Select Installation Type N -IDIﬂ

Select Installation Type
Oracle Application Server Infrastructure 10g 10.1.4.0.1

What type of installation do you want?

® |dentity Management and Metadata Repository (3.56GB)

This option installs and configures identity Management services (Oracle Internet Directory, Single Sign-On,
Administration Service, Directory Integration Platform, and Certificate Authority) and an Oracie 10.1 0.5 0 dafabase
contaning the Oracle Apphcation Server Metadata Repostory. (Requires 1024 MB RAM configured on your maching)

© Identity Management (1.10GB)

This option installs mmlwumwmmmm(mmmmmm To configure Oracle
Irternst Direclory or Certificate Authority, you need an existing Oracle A y. (Requires
1024 MB RAM configured on your machine)

© Metadata Repository (3.96GB)

This option installs a nevw Oracle 10.1.0.5 0 database cortaining the Oracle / Server y. This
Repository can be wwmwwmwmsmwwm Mesllmm
RAM configured on your maching) —
-
Help) Installed Products...) Back Install) Cancel |

Fig. 8.26 Selecting Installation Type

Select the default Oracle Application Server Infrastructure 10g
components to install and click on Next as shown in Figure 8.27.

236 8 LDAP On Rails

& Oracle Universal Installer: Available Product Components E - IDIEI

Available Product Components
Oracle Application Server Infrastructure 10g

The following are components that you can install as part of Oracle Application Server Infrastructure 10g.
Which of these components do you want to install?

Components Instal Status
@ Oracle Application Server Infrastructure 109101 401 New Instal
4 Oracle Process Managemerit Notification 10.1.2.1.0 New Instal
® W Enterprise Manager pigin Common Fles 10.1.0.20 New Instal
Help | Installed Products... Back Install | Cancel
i). bt) 6)

ORACLE

Fig. 8.27 Selecting Oracle Application Server Infrastructure Components

Check the pre-installation requirements and click on Next. Select the
default configuration options and click on Next as shown in Figure 8.28.

8.4 Installing Oracle Internet Directory

237

“ Oracle Universal Installer: Select Configuration Options h =|E) x|

Select Configuration Options

Selectthe components that you would like to configure and automatically start at the end of the installation.

Oracle A

tion Server Metadata R itory is always confi d.

Ifyou want to use an existing Oracle Intemet Directory, then do not select it below. The installer will then
prompt you to enter the location of the existing Oracle Internet Directory.

Avallable Components: | Deseription]'_‘:
7] j Qracle Application Server Metadata Repository Configures Oracle Application Server Metadata R 3
FOIQ(\D HTTP Server ‘Ser\fes static and dynamic Web content ‘
FOmc\e Appllcalxon Senner Cnmalners for JE‘EE ARuns Enterprise Java appl[ca1ion= \ ;‘
F? Oratle Internet Dlreclory Cnnﬂgures an LDAP server for identity and securl
[7 Oracle Application Server Single Sign-On CUnﬁgutes a directory-enabled single sign-on fo
EOmcler' f lon Server Deleg - atio... valﬂesweb based identity and securm/aﬂmlnl‘
¥ Oracle Directory Integration Platform Enables directory synchronization and user and
I" ' Oracle Application Server Certificate Authority (OCA) c:eates and manages security certificates. j

Help) Installed Products...),,-—- . Back Install | Cancel ,'

Fig. 8.28 Selecting Configuration Options

Select the default port configuration options and click on Next

shown in Figure 8.29.

as

238 8 LDAP On Rails

“ Oracle Universal Installer: Specify Port Configuration Options s = - |E||£I

Specify Port Configuration Options

Select the method which you want to use to configure the ports for Oracle Application Server 10g. if you
decide to manually configure the ports, then you must specify the port numbers for each port in a text file and
enter the filename below.

Configure Ports
® Automatic
© Manual;
[c10raHome_11staticports.ini | [Browee S
— ->

Help) Installed Products...) gack [N) sl) cancel)

ORACLE

Fig. 8.29 Selecting Port Configuration Options

Specify a namespace in the Oracle Internet Directory to create new
users. For example specify dc=example, dc=com and click on Next as
shown in Figure 8.30.

8.4 Installing Oracle Internet Directory 239

“ Oracle Universal Installer: Specify Namespace in Internet Directory . - !DIEI

Specify Namespace in Internet Directory

Specify a location, or namespace, in Oracle Internet Directory to contain users, groups, and Identity
Management policies. This namespace will be the default |dentity Management Realm.

© guggested Namespace: [de=behsia,de=telus, de=net]

® Cystomn Namespace: idc=etample,dc=cnrri
Example: de=acme,di=com

Help | Installed Products... | Back I bpd) nstall) Cancel)
ORACLE

Fig. 8.30 Specifying Root DN

Specify database configuration options, or select the default database
configuration options, and click on Next as shown in Figure 8.31.

240 8 LDAP On Rails

@ Oracle Universal Installer: Specify Database Configuration Options 3 -|DI.!I

Specify Database Configuration Options

~ Database Naming
A Global Database Name, typically of the form "name.domain”, uniquely identifies an Oracle database. In
addition, each database is referenced by at least one Oracle System Identifier (SID). Specify the Global
Database Name and SI0 for this database.

Global Database Name: iorclnel SiD; orel

-~ Database Character Set
The number of language groups to be stored which setlo use. See"Help” for
the definition of language groups. For the Unicode database character set, select"Unicoda Standard UTF-8
AL32UTFE"

Select Database Character set | Unicode standard UTF-8 AL32UTF8 -|
- Database File Location

Use the file sysmem rnr database storage. For best database organization and performance, Oracle
tab files and Oracle software on separate disks.

i

Specify Database File Location: [C \oradata = E:mol

Help J !nml!euz:ouucls,.._)_ Back I;% i Install | Cancel }

Fig. 8.31 Specifying Database Configuration Options

Specify database schema password and click on Next as shown in
Figure 8.32.

Y Oracle Universal Installer: Specify Database Schema Passwords 1: - Dlﬂ

Specify Database Schema Passwords
The Starter Database contains pre-loaded schemas, most of which have passwords that will expire and be
locked at the end of . After the is you must unlock and set new passwords for
those accounts you wish to use. Sch used for the datab it and postinstall functions are
left ked, and p is for these will not expire. Spaclfyﬂlapasmrds forthese accounts.

€ Use different p for these

User Name Enter Password Confirm Password | I

5YS &

SYSTEM

R.\il"'-‘lllkl -
~ ® Usethe same p for all the —=

Enter Password: f:: Confirm Password: [mi ’]
L -

Help Installed Products.. | gack | install) gancel)

Fig. 8.32 Specifying Database Schema Passwords

8.4 Installing Oracle Internet Directory 241

Specify an Oracle Application Server Infrastructure instance name.
Specify a password for ias admin administrator username and click on
Next as shown in Figure 8.33.

“# Oracle Universal Installer: Specify Instance Name and ias_admin Password - 5 I:J'ﬂ

Specify Instance Name and ias_admin Password

All Oracle Ay Server ture on a hosl must have unique names. The
hostname and domain name of the host are appended to the instance name.

Each Oracle Application Server C] has its own of which user
performed the installation. Passwords are not shared across instances, even ifthe instances were installed
by the same user.

The password must have a mi of 5 alp ic ct ters, maxi 30 characters, and at least
one of the characters mustbe a number.

Administrator Usemame: ias_admin

Instance Name: [oracteas

las_admin Password; [reeseres

Confirm Password. i-—--—--

Help J Installed Broducts...) Back ;'”ﬂ, W Cancel |

Fig. 8.33 Specifying Oracle Application Server Infrastructure Instance Name and
Password

Click on Install to install the Oracle Application Server Infrastructure
as shown in Figure 8.34.

242 8 LDAP On Rails

& Oracle Universal Installer: Summary 7. - ID.ﬂI

Summary
Oracle Application Server Infrastructure 10g 10.1.4.0.1
Global Settings c
Source: CAOracle Internet Directoristagelproductsxml
Fomcie Home: CAOraHome_1 (oracleast)
Installation Type: Identity Management and Metadata Repository
Product Languages
LEn;;ns.h
Space Requirements
Lea Reguired 3.44G68 (includes 55MB temporary) : Available 4.54GB
New Installations (323 products)
ADF Business Comp Config i 10.1.2.0.2
ADF Business Compi ts Config A tantfor agent10.1.2.0.2
ADF Business Components Runtime Library10.1.2.0.2
ADF Business Components Runtime for OracleAS 10.1.2.0.2
AP Tanl 404 0 AN — X
Help | Installed Products...)7 o Back I et) m Cancel |

ORACLE

Fig. 8.34 Install

The installation starts as shown in Figure 8.35. A dialog shall prompt
for the Oracle Application Server 10g disk 2. Specify the stage directory
of disk2.

8.4 Installing Oracle Internet Directory 243

% Oracle Universal Installer: Install

Install

= Copying files for "Oracle Process Management Hotification 10.1.21.0°
Setup pending...
Configuration pending...

creating directory 'C:¥OraHome_1'backup_restore'plugin_config’

— gt
» Enhancedinstalland
upgrade procedures
» Improved performance,
— reliability and scalability.

Stop installaion._

You can find & log of this install session at:
C:Program Files'Or yiog ions2006-12-26_04-01-16PM Jog

Help) Installed Eroducts..)// Back Next Install

Fig. 8.35 Installing Oracle Application Server Infrastructure

Next, the configuration assistants get installed as shown in Figure
8.36.

244 8 LDAP On Rails

& Oracle Universal Installer: Configuration Assistants = |l:l|£|
Configuration Assistants
The following config tants will configure and start the components you selected earlier.
" |Tool Name Status Type | ‘\
|
¥ Oracle Net Configuration Assistant Pending... Recommended |1
7 Oracle Database Configuration Assistant Pending... Recommended
7 Java Security Configuration Assistant Pending... Recommended
¥ OC4J Configuration Assistant Pending... Recommended
% HTTP Server Configuration Assistant Pending... Recommended &)
Retry | :
Detalls (see full log at C\Program Files\O: Instal 2006-12-26_04-01-16PM.10g):
Output generated from configuration assistant “Oracle Idnrlm Management oneofl patch Configuration
Assistant”.
Please see the IM Oneoff Patch Configuration Assistant details at C:
\OraHome_1\cfgtoollogs atchca_: log
Help) Installed Products..) _ Back l Ned | Install) Cancell)

Fig. 8.36 Installing Configuration Assistants

Click on Next after all the Configuration Assistants have installed as
shown in Figure 8.37.

8.4 Installing Oracle Internet Directory

245

& Oracle Universal Installer: Configuration Assistants K - Dlﬂ

Configuration Assistants

The foll confi 1 will conf

'] and startthe Id you selected earlier.
| Tool Name Stalus Tyoe
1" OC4JInstance Configuration Assistant ucceeded Recorr d Ta)
= oPMN Configuration Assistant - start HTTP Server Succeeded Recommended
™ OPMN Configuration Assistant - start DAS Instance Succeeded Recommended ‘
r Register DCM Plug-Ins With EM Succeeded Recommended
.I:Appllcallnn Server Control Configuration Assistant Succeeded Recommended ‘

i

Retry | Stop |

Details (see full log al C:\Program Files\OracleinventorflogsiinstallActions2006-12-26_04-01-16PM.log):
Qutput from DCMF Backup
backup created: Installedimage_oracleas.d207-6-39-2 behsia telus.net

Configuration assistant "DCM Repository Backup Assistant' succeeded

Help | instailed Produets... | Ok |Thea) st | cancel)

ORACLE

Fig. 8.37 Installation of Configuration Assistants Completed

Click on Exit to complete the installation as shown in Figure 8.38.

“# Oracle Universal Installer: End of Installation

End of Installation

The installation of Oracle Application Server Infrastructure 10g was successful.
Please remember...

The following J2EE Applications have been deployed and are accessible at the URLs =
listed below.

our database configuration files have been Installed In C: while other components
selected for installation have been Installed in C:\OraHome_1. Be cautious not to
accidentally delete these configuration files.

Use the following URL to access the Oracle Enterprise Manager 10g Application
Server Control Console ©

hitp://d207-6-39-2 bchsia telus net 18100

Click the Release Information button to view current release information. e

—
Release Information... T
Help | Installed Products...) Back | Bext ,: Install)
ORACLE

Fig. 8.38 Installation of Oracle Application Server Infrastructure Completed

246 8 LDAP On Rails

Next, we shall start the Oracle Directory Manager, which is used to
administer the Oracle Internet Directory. Before we are able to use the
Oracle Internet Directory we need to start the OID Monitor and a Oracle
Internet Directory server instance. Start the OID Monitor with the
following command.

C:\>oidmon start

Start an Oracle Directory Server Instance with the following command.

C:\>o0idctl server=oidldapd instance=2 start

Next, start the Oracle Directory Manager. A Directory Server
Connection dialog gets displayed. Click on OK. Directory Server Name
Manager dialog gets displayed. Click on Add. In the Directory Server
Connection dialog specify Server as localhost and port as 389. Click on
OK. Click on OK in the Directory Server Name Manager. In the Oracle
Directory Manager Connect frame specify username as User as orcladmin,
which is the superuser and specify the password as the password specified
for the Oracle Application Server Infrastructure 10g instance. Specify
Server as localhost and Port as 389, the default port. Click on Login as
shown in Figure 8.39.

¥ Oracle Directory Manager Connect X 5]

B, credentials |

|cn=ulclzdm|n ;“_"
- Password: —
— Server. locall -
GIa CI e Port |[::s;a = J EJ
Inter@t Directory I SSLEnabled
_ Help Login Cancel |

Copyright (C) 1998, 2008, Oracle. All rights resétbed,

Fig. 8.39 Connecting to Oracle Directory Manager

The Oracle Directory Manager gets started as shown in Figure 8.40.

8.5 LDAP with PHP 247

racle Directory Manager

aaccess Control Managernet LSRR

o5 Attribute Unigueness Managems
HlAudit Log Management

Uz Change Log Management

> Entry Management

(12 cn=OracleContext

(I3 cn=0OracleSchemaversion “

Alternate Server:

Gonfiguration Set Location:

Critical Event Leveal:

(I3 cn=Serer C i ;
3 de=com
Directory ersion:
@-Qi de=example
3 cn=Calendar Server Distinguished Name:
13 cn=Groups Enable Eniry Carhe:
(L cr=oracleContex Enable Group Cache,
tn=Users
) Enable MalehDN Processing:
{13 cn=orclacmin
(3 cn=PUBLIC Enable Statistics Gathering:

182 Garbage Collection Entry Gache Size in Bytes
D& Password Policy Management (dl
DGR Password Verfier Managernent

Fig. 8.40 Oracle Directory Manager

8.5 LDAP with PHP

In PHP a LDAP directory service is created with the PHP LDAP
extension. A connection is created with the LDAP server using the
Idap _connect() function.

$ldapconn = ldap_ connect ($ldaphost, $ldapport) ;
Bind to the LDAP server with the Idap bind() function.

S$r=1dap_ bind($ldapconn, “userdn", "password") ;

To add a directory an entry, create an entry consisting of an array of
attributes. For example, the ‘cn’ attribute is specified as follows.

$directory entry["cn"]="JohnSmith";

Specify the dn of the directory entry to be added and add the directory
entry to the LDAP directory using the ldap add() method.

$dn="cn=JohnSmith, dc=example,dc=com";
$r=1dap_add($ldapconn, $dn, $directory entry);

248 8 LDAP On Rails

To modify a directory entry, create an array of directory entry attributes
with the modified values. Modify the directory entry with the
ldap_modify() function.

$r=1dap modify($ldapconn, dn, Sdirectory entry);

To search for a directory entry, specify an attribute array for which
attribute values are to be retrieved. Specify the dn of the directory entry to
search. Specify a filter for the search.

Sattribute array=array("cn", "sn", "title");
Sdn="JohnSmith, dc=example,dc=com";
Sfilter = " (objectclass=*)";

Search the directory using the ldap_search() method.

$sr=1dap_ search($ldapconn, $dn, $filter,
Sattribute array) ;

8.6 LDAP with Java

The Java Naming and Directory Interface (JNDI) API provides the
directory service functionality in the javax.naming.directory package.
Using the INDI API a directory entry’s attributes may be created, added,
updated and removed. First, we would create an initial directory context.
Create a Hashtable and set the INITIAL CONTEXT FACTORY and
PROVIDER URL properties. The PROVIDER URL property specifies
the LDAP server url to access a directory service.

Hashtable env = new Hashtable() ;

env.put (Context .INITIAL CONTEXT FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory") ;

env.put (Context.PROVIDER_ URL,

"ldap://localhost:389/cn=1ocalhost") ;

Create a DirContext object using the Hashtable of environment
properties.

DirContext ctx = new InitialDirContext (env) ;

For example, retrieve the attributes of the directry entry with dn
“cn=John Smith,cn=localhost”.

Attributes attr=ctx.getAttributes ("cn=John
Smith,cn=localhost") ;

8.6 LDAP with Java 249

Obtain the enumeration of attributes. Iterate over the attributes to output
attribute id and attribute values.

for (NamingEnumeration
enum:attrs.getAll();enum.hasMore();){
Attribute attr=enum.next () ;
System.out.println ("Attribute ID:
"+attr.getID()) ;
for (NamingEnumeration
attrVals=attr.getAll () ;attrVals.hasMore() ;)

System.out.println ("Attribute value:
"+attrVals.next () ;

}
}

The DirContext interface provides various search() methods to search
for a directory entry. Specify the attributes to match using an Attributes
object.

Attributes attrs = new BasicAttributes() ;
attrs.put (new BasicAttribute("sn",
"Smith")) ;

Search a directory service using a search() method.

NamingEnumeration
enum=ctx.search("cn=1localhost",attrs) ;

The search() methods return an enumeration of SearchResult objects.
Iterate over the enumeration to output attributes for the directory entries
retrieved with the search.

while (enum.hasMore ()) {

SearchResult

result= (SearchResult)enum.next () ;
Attributes attrs=result.getAttributes/() ;

}

The DirContext interface provides the modifyAttributes() methods to
modify attributes in a directory entry. The Modificationltem class
represents an object to modify. A Modificationltem object may be created
using one of the modifications: DirContext.ADD ATTRIBUTE,
DirContext. REPLACE _ATTRIBUTE and
DirContext REMOVE _ATTRIBUTE. For example, create an array of
Modificationltem objects.

ModificationItem[] mods = new
ModificationItem[3] ;

250 8 LDAP On Rails

Initialize the array to replace the title attribute, add the
telephonenumber attribute and remove the facsimileTelephoneNumber
attribute.

mods [0] = new
ModificationItem(DirContext.REPLACE ATTRIBUTE,
new BasicAttribute("title", "J2EE
Developer")) ;
mods [1] = new
ModificationItem (DirContext.ADD ATTRIBUTE,
new
BasicAttribute ("telephonenumber", "1 555
555 1234"));
mods [2] = new
ModificationItem(DirContext.REMOVE_ ATTRI
BUTE,
new

BasicAttribute ("facsimileTelephoneNumber
Il)) ;

Specify the dn to modify.

String dn="cn=John Smith,cn=1localhost";
Modify the attributes.
ctx.modifyAttributes (dn, mods) ;

8.7 Installing NET::LDAP

Install the ruby-net-1dap gem with the following command while
connected to the Internet.

C:/ruby>gem install ruby-net-1ldap

The Net : : LDAP class provides a Ruby implementation of the LDAP
client protocol. The Net::LDAP class is used for bind, search, add, modify,
delete, and rename operations. The Net:LDAP class methods are
discussed in Table 8.4.

8.7 Installing NET::LDAP

251

Table 8.4 Net::LDAP Class Methods

Method

Description

add(args)

Adds a new directory entry.
Arguments are as follows:
:dn-DN of the new entry.
:attrs-Attributes of the new
entry specified as a Hash.

add_attribute(dn, attribute, value)

Adds a value to an attribute. If
the specified attribute is not
already defined, creates a new
attribute.

authenticate(username,
password)

Specifies the authentication
credentials to the LDAP server.

bind(auth=@auth)

Connects to the LDAP server
and requests authentication
based on the the authentication
credentials specified in the
open or new method. Returns
true if a connection with the
LDAP server is established.

bind as(args={})

Binds as a specified user

delete(args)

Deletes a directory entry for a
specified DN, which is the only
supported argument.

delete_attribute(dn, attribute)

Deletes an attribute and all its
values. The dn parameter
specifies the directory entry
and the attribute specifies the
attribute to delete.

new(args = {})

Creates an object of type
Net::LDAP, but does not open
a connection with the server.
The arguments may be as
follows:

:host-LDAP server host,
defaults to localhost.
:port-LDAP server port,
defaults to 389.

:auth-A hash containing

authorization parameters.

252 8 LDAP On Rails

Table 8.4 (continued)
Method Description
get_operation_result() Returns a operation result code

and message for the bind,
search, add, modify, rename,
and delete operations.
modify(args) Modifies the attribute values
for a specified directory entry.
Takes the following arguments
as a Hash:

:dn-The DN of the directory
entry to modify.
:operations-The modifications,
each of which is specified as an
array consisting of the
following elements:
Operator-May be :add,
:replace, or :delete.

Attribute name-The attribute to
be modified.

Attribute value-The value of
attribute.

8.8 Creating a Rails Application

We need to create a Rails application to create a directory service with the
Net::LDAP Ruby library. Use the rails command to create a rails
application, oidldap.

c:/ruby>rails oidldap

A rails application with the complete directory structure of the rails
application gets created. We shall run the Net::LDAP Ruby on Rails
application as a controller script with controller actions for creating a
directory entry, modifying a directory entry, searching a directory entry
and deleting a directory entry. We shall also create RHTML view
templates corresponding to each of these controller actions to input data
for the directory entries. Create a controller script, directory, which
consists of controller actions index, add entry, modify entry,
search_entry, and delete_entry.

8.9 Creating a Directory Entry 253

C:/ruby/netldap>ruby script/generate controller
directory index add entry modify entry search entry
delete entry

A controller script directory controller.rb gets created in the
controllers directory. The controller script consists of controller actions
index, add entry, modify entry, search entry, and delete entry. View
templates index.rhtml, add_entry.rhtml, modify_entry.rhtml,
search_entry.rhtml, and delete entry.rthtml get created in the
views/directory folder. In the following sections we shall modify the
controller actions and view templates to add a directory entry, modify a
directory entry, search a directory entry and delete a directory entry. Next,
modify the config/routes.rb to add routes for the .rhtml templates.

map.connect '/directory/add entry.rhtml',
:controller => 'directory', :url =>
'/directory/add_entry.rhtml'

map.connect '/directory/modify entry.rhtml',
:controller => 'directory', :url =»>
'/directory/modify entry.rhtml'

map.connect '/directory/search entry.rhtml',
:controller => 'directory’, :url =>
'/directory/search entry.rhtml'

map.connect '/directory/delete entry.rhtml',
:controller => 'directory', :url=s>
'/directory/delete entry.rhtml'

We also need to configure the rendering of the files corresponding to
file URLs specified in routes.rb. In the directory controller index action,
render the file specified in the URL in a map.connect in routes.rb.

def index
render
:file=>"C:/ruby/oidldap/app/views"+params [:url]
return
end

8.9 Creating a Directory Entry

Next, we shall create a directory entry in the Oracle Internet Directory
server. First, install Oracle Internet Directory. A directory entry consists
of attributes and attribute values. Dn of a directory entry represents the

254 8 LDAP On Rails

distinguished name for the directory entry. A Dn consists of the relative
distinguished name and the base dn. We shall create a directory entry in
the “cn= PUBLIC,cn=Users,dc=example,dc=com” root/base DN. Start the
OID Monitor with the following command.

C:\>oidmon start

Start an Oracle Directory Server Instance with the following command.

C:\>o0idctl server=oidldapd instance=2 start

Next, start the Oracle Directory Manager. The Oracle Directory
Manager lists the directory entries in the Entry Management node as
shown in Figure 8.41.

Systern Objetts
g 0racke Intemat Directory Senvers
B orcladming@locainost 369

©8access Control Managemeant
& amrioue Unigueness Managems
+{ilauoit Log Management
@4y Changs Log Managemant
7 R |,
@5 cr=OracieContert
&G cr=OracieSchemaversion
(3 cr=Server Configurations
@G de=com
&0 dezerample

&5 er=Calendar Server

& en=Groups

®-(G en=CracleConten

G enssers

B wreortladmin

L@ er=PUBLIC
{2 Garbage Collecton Manageme
> P assword Policy Management
P s swioed Verifier Mansgement
D RIPluo-in Mananemant

it node for the search (for ex

Fig. 8.41 Entry Management

Each directory entry is identified with a dn attribute. The
objectClass attributes specify the type of data, and required and
optional attributes in an entry. Object classes form a class hierarchy and
some of the commonly used object classes are top, organization,
and organizationalPerson. All object classes are sub classes of the
object class top. We shall create a directory service with the top,
person, and organizationalPerson object classes. The “top”
object class does not have any required attributes. “Person” object class
required attributes are “cn” and “sn”. “OrganizationalPerson” object class

8.9 Creating a Directory Entry 255

does not have any required attributes. Some of the attributes that may
specified in a directory entry of object class type organizationalPerson are
“title” and “telephoneNumber”.

First, modify the add_entry.rhtml view template to input data for the
directory entry. Define a form with the form tag method of the
FormTagHelper class. Define a field in the form with the
text_field(object name, method, options = {}) method, which returns an
input tag of type “text”. Method parameter object name represents an
object for the form template. The method parameter represents a form field
as an attribute of the form object. For example, the following text field:

text field("directory entry", "title", "size" => 20)
converts to HTML form text field:

<input type="text" id="directory entry title"
name="directory entryl[title]" size="20"
value="#{@directory entry.title}" />

To the add_entry.rhtml, add text fields for first name, last name, title,
telephone number, department, and fax number. A directory entry's
attribute for first name is “gn”, attribute for last name is “sn”, attribute for
title is “title”, attribute for telephone number is “telephoneNumber”,
attribute for department is “physicalDeliveryOfficeName”, and attribute
for FAX number is “facsimileTelephoneNumber”. The add_entry.rhtml is
listed below.

<html>
<body>

<div>
<table border='0' cellspacing='0"
cellpadding='5">

<tr>

<captions>

Add Directory Entry

</caption>
</tr>

<!-- start form tag -->

<%= form tag :action => "add entry" %>

<tr>

<td>First Name*</td>
<td><%= text field(:add entry, :gn)
$></td>
</tr><tr>
<td>Last Name*</td>

256 8 LDAP On Rails

<td><%= text field(:add entry, :sn)

$></td>
</tr>
<trs>
<td>Title</td>
<td><%= text field(:add entry, :title)
$></td>
</tr><tr>
<td>Telephone Number</tds>
<td><%= text field(:add entry,
:telephoneNumber) %></td>
</tr>
<trs>

<td>Department</td>
<td><%= text field(:add_entry,
:physicalDeliveryOfficeName) %$></td>
</tr>

<tr>
<td>Fax Number</td>
<td><%= text field(:add_entry,
:facsimileTelephoneNumber) %></td>
</tr>

<tr>
<td><input type="submit"
value="Submit"></td>
</tr>
<%= end form tag %>
</table>
</div>
* indicates a required field.
</body>
</html>

Next, modify the controller action add_entry. Retrieve the parameter
values. Retrieve the first name (:gn) and the last name (:sn) and define a
variable cn.

values = params[:add_entry]
gn=values[:gn]
sn= values|[:sn]
cn=gn+sn

8.9 Creating a Directory Entry 257

Define the distinguished name for the directory entry, dn, which
consists of the rdn and the base dn.

dn="cn="+cn+", cn=PUBLIC, cn=Users,dc=example, dc=com"
Retrieve values for the other form fields.

title=values|[:title]

telephoneNumber=values [:telephoneNumber]
physicalDeliveryOfficeName=values [:physicalDeliveryOf
ficeName]
facsimileTelephoneNumber=values[:facsimileTelephoneNu
mber]

Define a variable, attr, which consists of the different attributes of the
directory entry.

attr = {

:cn => cn,

:objectclass => ['top', 'person',
'organizationalPerson'],

:sn => sn,

:title => title,

:telephoneNumber => telephoneNumber,

:physicalDeliveryOfficeName =>
physicalDeliveryOfficeName,

:facsimileTelephoneNumber =>
facsimileTelephoneNumber

}

Open a connection to the Oracle Internet Directory server and add the
directory entry to the server using the add() method.

Net::LDAP.open(:host => 'localhost', :port =>
389, :base =>

‘cn=PUBLIC, cn=Users,dc=example,dc=com', :auth => {
:method => :simple, :username => 'cn=orcladmin',

:password => 'oidadminlO' }) do |ldap|
ldap.add(:dn => dn, :attributes => attr)
end

Start the WEBTrick server with the following command.
C:/ruby/oidldap>ruby script/server

Invoke the add entry.rhtml view template with the URL
http://localhost:3000/directory/add_entry.rhtml. Specify the values for the
different attributes and click on the Submit button as shown in Figure 8.42.

258 8 LDAP On Rails

3 hitp:/ flocalhost:3000,/ directory/index - Microsoft Internet Explorer E e [=])
Fle Edt Wiew Favorites Tools Help

Stk - = - @ [4| Quearch Calrovotes @edn 3| b & 7 -

Ackiress] hetpffocalhost: 3000/ drectoryfindex =] Ps [unie 7|
=
Add Directory Entry
First Name* [Deepak
Last Name* |Vuhra
Title |Weh Developer

Telephone Number |555 1234

Department |JDestnper

Fax Number 555 2348]

*mdicates a required field.

=
[€]ore [[BFocdintanet

Fig. 8.42 Creating a New Directory Entry

A directory entry gets created in the
“cn=PUBLIC,cn=Users,dc=example,dc=com” directory entry in the
Oracle Internet Directory server instance. Select the

cn=PUBLIC,cn=Users,dc=example,dc=com directory entry in the Oracle
Directory Manager.The directory that was added using Ruby on Rails is
listed in the cn=PUBLIC directory entry as shown in Figure 8.43.

8.9 Creating a Directory Entry 259

Oracle Directory Manager

HI@ Oracle Internet Directary Servers
SB. orcladming@localhost:369
®Faccess Contral Management
555 attribute Unigueness Management
i) Audit Log Management
> L Change Log Management
2] Entry Management
(3 on=OracleContext
(I3 cr=0OracleSchemaversion
(I3 cr=Server Configurations
(1 de=com
& de=example
{3 cn=Calendar Server
[cn=Groups
{5 en=0racleContext
G en=Users
{3 en=arcladmin
(3 cn=PUBLIC

L
>3 Garbage Collecayn Managerment

> S5 Password Policy Management
> G Password Verifier Management

03 Properties

o

createtimestamp:
crealorsname:
n:

facsimiletelephonenumber.

modifiersname:
modiftimestamp:

objeciclass:

View Prapetties: ® Only Non-null Values © All C Advanced

ORACLE

PUBLIC

Deepakvohia

[en=orcladmin

[en=Deepakiiahra,cn=PUBLIC en=Users de=example,dc:

555 2345

[I)

[en=orcladmin

|February 18, 2007 12:46:08 AW UTC

op
[person
organizationalPerson

Fig. 8.43 Directory Entry Added with Ruby on Rails

The attributes of the directory entry also get added as shown in Figure

8.44.

Oracle Directory Manager

File Edit *,

HCgOracle Inteet Directory Servers
@ﬁ.nrc\admin@ucalhust:isﬂ
@/FaAccess Conirol Management
> attribute Unigueness Management
i Audit Log Management
5L Change Log Management
> Entry Managernent
(13 cr=OracleContext
(I3 cr=0OracleSchemaversion
{3 cr=Server Configurations
{5 de=com
o1 de=exarnple

{3 en=Calendar Sewer

3 cn=Groups
(G en=OracleContext
(3 en=Users
3 en=orcladmin
@ en=puBLIC
L

>4@ Garbage Collection Management
>-E=] Password Policy Management
> % Password Verifier Managerment

(& Propeties

physicaldelivenyoficename:

telephonenumber:

Fig. 8.44 Directory Entry Attributes

View Properties: ® Only on-null Values " All Advanced

ORACLE

PUBLICIc

@

\Developar

wieh Developar

260 8 LDAP On Rails

8.10 Modifying a Directory Entry

In this section we shall modify a directory entry. The data to be modified is
input in the modify_entry.rhtml. Similar to the section on adding an entry,
add a form to the modify entry.rhtml view template with the form_tag
method of the FormTagHelper class. Add form fields with the text field
method of the FormHelper class. The modify_entry.rhtml view template is
listed below.

<html>
<body>

<div>
<table border='0' cellspacing='0"
cellpadding='5">
<tr>
<captions>
Modify Directory Entry
</caption>
</tr>
<!-- start form tag -->
<%= form tag :action => "modify entry" %>
<tr>
<td>First Name*</td>
<td><%= text field(:modify entry, :gn)
$></td>
</tr><tr>
<td>Last Name*</td>
<td><%= text field(:modify entry, :sn)
$></td>
</tr>

<tr>
<td>Title</td>
<td><%= text field(:modify entry,
:title) %$></td>
</tr><tr>
<td>Telephone Number</tds>
<td><%= text field(:modify entry,
:telephoneNumber) %></td>
</tr>

<tr>
<td>Department</td>
<td><%= text field(:modify entry,
:physicalDeliveryOfficeName) %$></td>

8.10 Modifying a Directory Entry 261

</tr>

<tr>
<td>Fax Number</td>
<td><%= text field(:modify entry,
:facsimileTelephoneNumber) %></td>
</tr>

<tr>
<td><input type="submit"
value="Submit"></td>
</tr>
<%= end form tag %>
</table>
</div>
* indicates a required field.
</body>
</html>

When the modify entry.rhtml template is submitted the modify entry
controller action of the controller directory gets invoked. Modify the
modify_entry controller action. Retrieve the values for the form fields, :gn
and :sn, and define a variable cn.

values = params|[:modify entry]
gn=values|[:gn]
sn= values|[:sn]
cn=gn+sn

A directory entry is identified with a distinguished name. Define the dn
of the directory entry to modify.

dn="cn="+cn+", cn=PUBLIC, cn=Users,dc=example, dc=com"
Retrieve the values of the other form fields.

title=values|[:title]

telephoneNumber=values [:telephoneNumber]

physicalDeliveryOfficeName=values [:physicalDeliveryOf

ficeName]
facsimileTelephoneNumber=values[:facsimileTelephone

Number]

Open a connection with the Oracle Internet Directory server and replace
the attribute values with the replace attribute method. For example, the
title attribute is replaced as follows.

262 8 LDAP On Rails

Net: : LDAP.open (
389, :base =>

:host =»>

'cn=PUBLIC, cn=Users,dc=example,dc=com',

:method :simple,
:password => 'oidadminlO'

=> :username =>

}) do

ldap.replace _attribute dn,

end

Start the WEBTrick web server and invoke the modify_entry.rhtml view
template with the URL http://localhost:3000/directory/modify_entry.rhtml.
Specify the directory entry to be modified and the modified attributes.

'localhost',

:title,

:port =>

'cn=orcladmin',
|1dap|

title

Click on the Submit button as shown in Figure 8.45.

/2 http://localhost:3000/directory/index - Microsoft Internet Explorer
File Edt View Favorites Tools Help

Gk - = - D A 4| @ i @ B & - B

=101

Address [£] hitp:flocalhost: 3000/drectoryjindex

=] @so ‘Llnks ”|

Modify Directory Entry

First Name™ |Deepak

Last Name™® |Vuhra

Title |Java Developer

Telephone Number |555 3456

Department IOrst\e JDeveloper

Fax Mumber

(Soi]

= indicates a required field.

[555 1234]

@ Dane

=

=
T B cdinbane: 2

Fig. 8.45 Modifying Directory Entry

The directory entry gets modified as shown in the Oracle Directory

Manager in Figure 8.46.

:auth => {

8.11 Searching a Directory 263

¥ Oracle Directory Manager

HI@ Oracle Internet Directary Servers
S, orcladmin@localhost:369
> access Control Management
)‘EARWJUE Unigueness Management
i) Audit Log Management

>-Lrg) Change Loy Management

2] Entry Management

%m en=OracleContext

Rhysicaldelivenyomcaname: Oracle JDsveloper

{13 cn=OracleSchematersion
(I3 cr=Server Configurations
(03 de=com

& de=example

(4 en=Calendar Server & telephonenumber:
3 en=Groups &
G cn=OracleContext

o [l) |
(12 en=orcladrmin fl
(3 cn=PUBLIC

L

5453 Garbage Collection Management 48

> S5 Password Policy Management

> Password Verifier Management - -
P Apply Jll Revert

[I)

555 3456

Java Developer

Fig. 8.46 Modified Directory Entry

8.11 Searching a Directory

In this section we shall search for a directory entry. We shall display the
result of the directory search on the same page as the directory entry data
is input using the Ajax web technique. The Ajax web technique is
implemented by the Prototype library. The prototype library includes a
class, PrototypeHelper to create a form that may be updated
asynchronously using Ajax. Include the prototype library in the
search_entry.rhtml view template.

<%= javascript_include_tag "prototype" %>

Add a form that is submitted using Ajax with the form remote_tag
method of the PrototypeHelper class. The :update option of the
form_remote tag specifies the form element to be updated with the server
response. The :url option specifies the URL to which the form is
submitted, the controller action is specified with the :action parameter.

<%=form remote tag(:update=>"directory entry",
:url=>{:action=>:search entry}) %>
<% end form tag %>

264 8 LDAP On Rails

Specify the directory entry input fields, with the text field tag of the
FormTagHelper class. The form element to be updated is specified as a
div.

<div id="directory entry"s</div>

The search_entry.rhtml view template is listed below.

<html><head>
<titles></title>
<%= javascript include_ tag "prototype" %>
</head>

<body>
<captions>
Search Directory Entry
</caption>
<%=form remote tag(:update=>"directory entry",
:url=>{:action=>:search entry}) %>
<tables>
<tr>
<label>First Name*</labels>
<%=text field tag:firstName %></tr>
<tr><labelsLast Name*</labels>
<%=text field tag:lastName %></tr>
<%=submit_ tag "Search" %>
</table>
<captions>
 Directory Entry Table
</captions>

<div id="directory entry"s</div>
<% end form tag %>
* indicates a required field.
</body>

</html>

When the search entry.rhtml form is submitted the search entry
controller action of the directory controller gets invoked. Modify the
search_entry action. Retrieve the values of the :gn and :sn fields and define
the base dn of the directory entry to search.

gn=values|[:gn]

sn= values[:sn]
CcCn=gn+sn

Specify the attributes of the directory entry to retrieve.

8.11 Searching a Directory 265

attrs = ["cn", "sn","title",
"telephoneNumber", "physicalDeliveryOfficeName", "facs
imileTelephoneNumber"]

Open a connection with the Oracle Internet Directory Server and
search for the specified directory entry using the search() method of the
Net::LDAP class.

Net::LDAP.open(:host => 'localhost', :port =>
389, :base =>

'cn=PUBLIC, cn=Users,dc=example,dc=com', :auth => {
:method => :simple, :username =>
'cn=orcladmin', :password => 'oidadminlO' }) do
| 1dap|
ldap.search(:base => treebase, :attributes =>
attrs,
:return result => true) do |directory|
end

The search() method returns a result set. Iterate over the result set and
create a HTML table to send as a response to the view template. For
example a row for the cn attribute is added to the table as follows.

directoryEntry+="<tr>"
directoryEntry+="<td>cn</td>"
directoryEntry+="<td>"+"#{directory.cn}"+"</td>"
directoryEntry+="</tr>"

Invoke the search entry.rhtml view template with the URL
http://localhost:3000/directory/search_entry.rhtml to search for a directory
entry. Specify the :gn and :sn attributes, which form the rdn of a directory
entry, and click on the Search button as shown in Figure 8.47.

266 8 LDAP On Rails

3 http:/flocalhost:3000, directory/index - Microsoft Internet Explorer X =18 x|
Fle Edt Wiew Favorites Tools Help
Rk + = - @ (2] & Qoeach Favorites veda P | B S - =

Adress [] bt {flocalhost 3000/drectorylindex =] P unke >

Search Directory Entry

First Name™

Deepak
Last Name®

ohra|
Directory Entry Tahle
* mdicates a required field.

|&)pone T | B8 ocalintrane: 7

Fig. 8.47 Searching for a Directory Entry

The directory entry attributes get listed as shown in Figure 8.48.

3 http:/ flocalhost:3000/ directory;index - Microsoft Internet Explorer : . [=]]

Fle Edt Yew Favorites Tooks Help

Sgack v = - @[3 | Qrearch GulFavotes Gwecia B | B+ &] - E
address [E] hitp:/flocalhost: 3000/drectoryjindex =] @co |unks >
Search Directory Entry

First Name™®

Pospk

Last MName®

Vohra

Directory Entry Table

Attribute [Vale

cn [Deepakohra

£ IVol'n'a

title |J' ava Developer

telephoneblurat [555 3456

iphysicalDeliveryOfficelName |Oracla JDeveloper

facsimile Telephonelumber [355 1234

*ndicates a required field.

2|

[&]pone [[Efrocalinans: %

Fig. 8.48 Directory Entry Search Result

8.12 Deleting a Directory Entry

8.12 Deleting a Directory Entry

In this section, we shall delete a directory entry. A directory entry is
identified by a dn, which is comprised of the rdn and the base dn. The rdn
of the directory entry to be deleted is specified in the delete entry.rhtml
view template. The form tag method is used to create a form and the
text field tag is used to create a form text field. The delete entry.rhtml
view template consists of input fields for first name and last name. The

delete_entry.rhtml form is listed below.

<html>
<body>

<div>
<table border='0' cellspacing='0"
cellpadding='5">
<tr>
<captions>
Delete Entry
</captions>
</tr>
<!-- start form tag --»>

<%= form tag :action => "delete entry" %>

<tr>
<td>First Name*</td>
<td><%= text field(:delete entry,

$></td>
</tr><tr>
<td>Last Name*</td>
<td><%= text field(:delete_entry,
$></td>

</tr><tr>
<td><input type="submit"
value="Submit"></td>
</tr>
<%= end_form tag %>
</table>
</div>
* indicates a required field.
</body>
</htmls>

When the delete entry.rthtml form is submitted the delete entry
controller action of the directory controller gets invoked. In the
delete_entry controller action retrieve the values of the form fields and

create a dn of the directory entry to delete.

268 8 LDAP On Rails

values = params|[:delete entryl
gn=values[:gn]
sn= values|[:sn]
cn=gn+sn

dn="cn="+cn+", cn=PUBLIC, cn=Users, dc=example,dc=com"

Open a connection with the Oracle Internet Directory server and delete
the directory entry with the delete method of the Net::LDAP class.

Net::LDAP.open(:host => 'localhost', :port => 389,
:base => 'cn=PUBLIC, cn=Users,dc=example,dc=com',
:auth => { :method => :simple, :username =>
'cn=orcladmin', :password => 'oidadminlO' }) do
| 1dap |

ldap.delete :dn => dn

end

To delete a directory entry invoke the delete entry.rhtml view template
with the URL http://localhost:3000/directory/delete_entry.rhtml. Specify
the :gn (first name) and :sn (last name) attributes of the directory entry to
delete and click on the Submit button as shown in Figure 8.49.

/i http:/ {localhost:3000/ directory,/index - Micrasoft Internet Explorer =3 =10 x|

File Edit View Favorites Tools Help
whack - = - @ [B) 4| Roearch [aiFavoites @rieda B |- S - = 7
actiress [[2] b ffocathost; 3000/drecteryfindex = @ |uns »
=
Delete Entry

First Name* [Deepak

Last Mame* [Vohra

* indi es a required field

I
[@ Done [| |8 ocalintranet: 4

Fig. 8.49 Deleting a Directory Entry

The directory entry gets deleted as shown in the Oracle Directory
Manager as shown in Figure 8.50.

8.12 Deleting a Directory Entry

269

Oracle Directory Manager

ORACLE

Systerm s d calhostABAIENTY Managementidc=co plefen=Us UBLIG
g 0racle Internet Directory Semers
S8 orcladmin@localnost 388
aaccess Control Managernent
o5 Attribute Unigueness Managems
HlAudit Log Management

Uz Change Log Management

(2 Properties

View Froperties: ® Only Non-null Values T All ' Advanced

on; FUBLIC

(13 cn=OracleContext
(I3 cn=0OracleSchemaversion
(I3 cn=Sewer Configurations

createtimestamp:

crealorsname: |en=oreladmin

deseription: This eniry is used as the identification for unauthenticated users

3 de=com
@-Qﬁ de=example
{13 cn=Calendar Server
Qﬁ tn=Groups >
{0 cn=OracleContext dn: |cn=PUBL|c.cn=Usels,dc=example,uc=cam
0 en=Users PUBLIC

(2 en=orcladmin

mail: [F‘UBLIC

DL Gaibage Collection Mana&me

D& Password Policy Management

ﬁ Password Verifier Management

25 Plug-in Management
= ——

Fig. 8.50 Directory Entry Deleted

The directory controller.rb controller script is listed below.
require 'net/ldap’'

class DirectoryController < ApplicationController
def add_entry

values = params|[:add_entry]

gn=values|[:gn]

sn= values/|[:sn]
cn=gn+sn

et Management) [—) |

dn="cn="+cn+",cn=PUBLIC, cn=Users,dc=example,dc=com"

title=values[:title]
telephoneNumber=values [:telephoneNumber]

physicalDeliveryOfficeName=values [:physicalDeliveryO

fficeName]

facsimileTelephoneNumber=values [:facsimileTelephoneN
umber]

attr = { :cn => cn,

:objectclass => ['top', 'person',
'organizationalPerson'],
:sn => sn,

270 8 LDAP On Rails

:title => title,

:telephoneNumber => telephoneNumber,
:physicalDeliveryOfficeName =>

physicalDeliveryOfficeName,
:facsimileTelephoneNumber =>

facsimileTelephoneNumber

}

Net::LDAP.open(:host => 'localhost',6 :port =>
389, :base => 'cn=PUBLIC, cn=Users,dc=example,dc=com',
:auth => { :method =»>

:simple, :username => 'cn=orcladmin', :password =>
'oidadminl0' }) do |ldap| ldap.add(:dn => dn,
:attributes => attr)

end

end

def modify entry

values = params[:modify entry]

gn=values[:gn]

sn= values|[:sn]
cn=gn+sn
dn="cn="+cn+",cn=PUBLIC, cn=Users,dc=example, dc=com"
title=values|[:title]
telephoneNumber=values [:telephoneNumber]
physicalDeliveryOfficeName=values|[:physicalDeliveryO

fficeName]
facsimileTelephoneNumber=values[:facsimileTelephoneN
umber]

Net::LDAP.open(:host => 'localhost', :port =>

389, :base => 'cn=PUBLIC, cn=Users,dc=example,dc=com',
:auth => { :method =>

:simple, :username => 'cn=orcladmin', :password =>
'oidadminl0' }) do |ldap|

ldap.replace_attribute dn, :title, title
ldap.replace_attribute dn, :telephoneNumber,
telephoneNumber

ldap.replace_attribute dn,
:physicalDeliveryOfficeName,
physicalDeliveryOfficeName

ldap.replace attribute dn,
:facsimileTelephoneNumber, facsimileTelephoneNumber

8.12 Deleting a Directory Entry 271

end
end

def search entry

gn=params [: firstName]

sn= params [:lastName]

cn=gn+sn
treebase=
"cn="+cn+",cn=PUBLIC, cn=Users, dc=example, dc=com"
attrs = ["cn", "sn","title",
"telephoneNumber", "physicalDeliveryOfficeName", "facs
imileTelephoneNumber"]
directoryEntry="<table
border><tr><th>Attribute</th><th>Value</th></tr>"

Net::LDAP.open(:host => 'localhost',6 :port =>
389, :base => 'cn=PUBLIC, cn=Users,dc=example,dc=com',
:auth => { :method =>

:simple, :username =>'cn=orcladmin', :password =>
'oidadminl0' }) do |ldap]|
ldap.search(:base => treebase, :attributes =>

attrs, :return result => true) do |directory|
directoryEntry+="<tr>"

directoryEntry+="<td>cn</td>"
directoryEntry+="<td>"+"#{directory.cn}"+"</td>"
directoryEntry+="</tr>"

directoryEntry+="<tr>"

directoryEntry+="<td>sn</td>"
directoryEntry+="<td>"+"#{directory.sn}"+"</td>"
directoryEntry+="</tr>"

directoryEntry+="<tr>"
directoryEntry+="<td>title</td>"
directoryEntry+="<td>"+"#{directory.title}"+"</td>"
directoryEntry+="</tr>"

directoryEntry+="<tr>"
directoryEntry+="<td>telephoneNumber</td>"
directoryEntry+="<td>"+"#{directory.telephoneNumber}
"+"</td>"

directoryEntry+="</tr>"

directoryEntry+="<tr>"
directoryEntry+="<tds>physicalDeliveryOfficeName</td>
n
directoryEntry+="<td>"+"#{directory.physicalDelivery
OfficeName}"+"</td>"

272

8 LDAP On Rails

directoryEntry+="</tr>"

directoryEntry+="<tr>"
directoryEntry+="<td>facsimileTelephoneNumber</td>"
directoryEntry+="<td>"+"#{directory.facsimileTelepho
neNumber}"+"</td>"

directoryEntry+="</tr>"

end

directoryEntry+="</table>"

render:text=> directoryEntry

end
end

def delete entry

values = params|[:delete entryl
gn=values|[:gnl]
sn= values/|[:sn]
cn=gn+sn
dn="cn="+cn+",cn=PUBLIC, cn=Users,dc=example, dc=com"
Net::LDAP.open(:host => 'localhost', :port =>
389, :base => 'cn=PUBLIC, cn=Users,dc=example,dc=com',
:auth => { :method =>

:simple, :username => 'cn=orcladmin', :password =>
'oidadminl0' }) do |ldap| ldap.delete :dn => dn
end

end

def index
render
:file=>"C:/ruby/oidldap/app/views"+params [:url]
return

end
end

8.13 Summary 273

8.13 Summary

In this chapter we installed some of the commonly used directory servers
such as OpenLDAP, Tivoli Directory Server, and Oracle Internet Directory
and created a directory service with RubyGems ruby-net-ldap gem. We
used the Oracle Internet Directory to create a directory service. The
procedure is the same for the other directory servers. Only the root/base
DN would be different for the other directory servers.

9 Web Services On Rails

9.1 Introduction

A web service is a software system designed for interoperable interaction
over a network. A webservice is defined with a WSDL(Web Services
Description Language) document and other systems interact with the Web
service using SOAP messages, transferred using HTTP with an XML
serialization. A web service is an abstract resource that provides a set of
functions, and is implemented by an agent, which sends and receives
messages. A provider entity provides the functionality of a web service
with a provider agent and a requester entity uses the web service
functionality with a requester agent. Web services implement various
technologies, some of which are XML, SOAP and WSDL. XML is a
standard format for data exchange. Web service requests and responses are
sent as XML messages. The elements and attributes that may be specified
in an XML document are specified in an XML Schema. SOAP provides a
standard framework for packaging and exchanging XML messages.
WSDL is an XML document in the "http://schemas.xmlsoap.org/wsdl/"
namespace for describing a web service as a set of endpoints operating on
messages. A WSDL document specifies the operations (methods) provided
by a web service and the format of the XML messages.

The ActionWebService module implements the web services
functionality in Ruby on Rails. Action Web Service implements server
side support for SOAP and XML-RPC web service protocols. Using the
Action Web Services you may declare and publish APIs(application
programming interfaces).

9.2 Web Services with PHP

PHP 5 provides the SOAP and XML-RPC extensions to create a Web
Service. To create a SOAP Web Service, first create a SOAP server.

276 9 Web Services On Rails

Sserver = new SoapServer ("document.wsdl") ;

Add functions to the SOAP server with the addFunction() method.
Handle a SOAP request with the handle() function. A SOAP client is
created with the SoapClient constructor.

Sclient = new SoapClient ("document.wsdl") ;

Invoke methods of the SOAP web service. For an XML-RPC web
service, create an XML-RPC server using the xmlrpc server create()
method.

S$xmlrpc_server=xmlrpc_server create();

Register functions with the server using the
xmlrpe_server register method method. The second argument is the
method provided by the web service. The third argument is the PHP
function that is registered.

Sregistered=xmlrpc_server register method

(sxmlrpc_server, "webservice method", "php function"

)i

In the XML-RPC client, to send a request to the XML-RPC server
specify the XML string to be sent in the request.

$request_xml = <<< END

<?xml version="1.0"?>
<methodCall>

<methodCall>
END;

Invoke the web service method using the xmlrpc_server call method
function. The first argument to the xmlrpc_server call method function is
the server resource. The second argument is the string containing the
XML-RPC request. The third argument is the application data that is sent
to the third parameter of the method handler function.

Sresponse=xmlrpc_server call method($xmlrpc_server,
Srequest_xml, '', array(output type => "xml")) ;

9.3 Web Services with Java

Java EE 5 provides the Java API for XML Web Services (JAX-WS) to
create web services and web service clients. To create a web service create

9.3 Web Services with Java 277

an Service Endpoint Implementation class. The implementation class is
annotated with javax.jws.WebService or javax.jws.WebServiceProvider
annotation. The implementation class is required to be not abstract or final,
and is required to contain a default public constructor. Add business
methods, which are annotated with the javax.jws.WebMethod annotation,
and which are made available to web service clients to the implementation
class. The business methods are public and not static or final. The example
Web Service implementation class, Hello, in following listing has a public
method msg(String name) annotated with the @WebMethod annotation.

import javax.jws.WebService;

@WebService
public class Hello ({
private String message = new String("Hello") ;

public void Hello() {}

@WebMethod
public String msg(String name) {
return message+ " "+name +".";

}

Compile the Service Endpoint Implementation class. Next, we need to
generate the JAX-WS portable artifacts used in a JAX-WS web service
deployment and invocation using the wsgen tool. Specify the protocol,
servicename, HelloService for example, and portname in the wsgen
options.

wsgen [options] Hello

Package the Web Service files into a WAR file, helloservice.war.
Deploy the WAR file to an application server that supports Java EE 5.
When the web application is deployed the application server and the JAX-
WS runtime generate the WSDL file and any additional artifacts required
to invoke the web service from a client. The WSDL may be accessed with
URL http://localhost:port/helloservice/hello?WSDL.

Variable port is the application server port number. helloservice is the
web application war file. Next, create a web service client class. Declare a
reference to a Web Service using the javax.xml.ws.WebServiceRef
annotation. Obtain a proxy to the service.

Hello port = service.getHelloPort () ;

Invoke the msg(String) method of the web service.

278 9 Web Services On Rails

String response = port.msg("Dave") ;
System.out.println (response) ;

The example client class is listed below.

import javax.xml.ws.WebServiceRef;
public class HelloClient ({

@WebServiceRef (wsdlLocation="http://localhost:8080/hell
oservice/hello?WSDL")
static HelloService service;

public static void main(String[] args) ({
try {

Hello port = service.getHelloPort () ;
String response = port.msg("Dave") ;
System.out.println (response) ;
} catch(Exception e) ({
System.out.println(e.getMessage()) ;
}

}
}

Use the wsimport tool to generate the web service artifacts required to
connect to the Web service including the Service Endpoint Interface (SEI)
. Specify the WSDL file location with the ~-wsdllocation option.

wsimport [options] wsldfile.wsdl

Compile and run the client class to invoke the web service and generate
an output. The output from the web service invocation is “Hello Dave”.

9.4 Creating a Web Service with Ruby on Rails

Before discussing the Web services support in Ruby on Rails in detail, we
shall create a simple web service using the Action Web Service module.

Install the actionwebservice Ruby gem if not already installed.
Run the following gem install command while connected to the Internet.

C:/ruby>gem install actionwebservice

Ruby gem actionwebservice-1.2.2 gets installed. Create a
Rails application for the Web service.

C:/ruby>rails webservice

9.4 Creating a Web Service with Ruby on Rails 279

Create a directory, apis, in the app directory. Create a web service API
class, HelloMessageApi that extends the
ActionWebService: :API: :Base class. Store the following Ruby
script to hello_message api.rb in the app/apis directory.

class HelloMessageApi < ActionWebService::API::Base

api method :hello message, :expects =>
[{:firstname=>:string}, {:lastname=>:string}],
:returns => [:string]

end

Create a controller script, which defines a controller class,
HelloMessageController. Copy the following Ruby code to the controller
script and save the controller script, hello_message controller.rb, in the
app/controllers directory.

class HelloMessageController < ApplicationController

web_service api HelloMessageApi
web_service_dispatching mode :direct
wsdl service name 'hello message'
web_service scaffold :invoke

def hello message (firstname, lastname)
return "Hello "+ firstname +" "+lastname

end

end

Start the WEBrick web server.

C:/ruby/webservicesruby script/server

Display the WSDL file for the web service with the URL
http://localhost:3000/hello_message/wsdl as shown in Figure 9.1.

280 9 Web Services On Rails

calhost:3000/hello_message;/wsdl - Microsoft Internet Explorer = |El|£]

Fle Edt View Favorites Tooks Help |i

ok - 5 - @ [3) o} | Qoearch [ijravories @meda F| 55 S o] - [&1

Address [&€] http:flocalhost:30007hello_messagejwsdl] @ [tinks >
a

<?xml version="1.0" encoding="UTF-8" 7>
- <definitions name="hello_message" xmins: typens="urn:ActionWebService"
xmins: wsdl="http://schemas.xkmlsoap.org/wsdl/"
xmins: xsd="http:/ /www.w3.0rg/2001/XMLSchema"
xmins: soap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="urn:ActionWebService"
¥mins: soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmins="http://schemas.xmlsoap.org/wsdl/">
- <message name="HelloMessage">
<part name="firstname" type="xsd:string" />
<part name="lastname" type="xsd:string" />
</message>
- <message name="HelloMessageResponse":> b
<part name="return" type="xsd:string" />
</message>
- <portType name="hello_j g llo gePort">
- <operation name="HelloMessage">
<input message="typens:HelloMessage" />
<output message="typens:HelloMessageResponse" />
</operation>
</portType>
<binding name="hello_messageHelloMessageBinding"
type="typens:hello_messageHelloMessagePort">
<soap;:binding transport="http://schemas.xmlsoap.org/soap/http" =
P

ctvla—"ene" /w

ol
&) Dore [[BEtecaimtranet

Fig. 9.1 Web Service WSDL

Invoke the web service with the URL
http://localhost:3000/hello_message/invoke. The API methods for the web
service get displayed as shown in Figure 9.2. Select the HelloMessage
method.

9.4 Creating a Web Service with Ruby on Rails 281

’1 hello_message Web Service - Microsoft Internet Explorer

: =[o]x|
Fle Edt View Favorites Took Help ‘ 5
Bk + = - @ [F] A | Qoearch [iIFavortes Preda B | B S8l - B £

Address [Q] http:/flocalhost:3000/hello_message/invoke]' P ‘ Links >
x

API Methods for HelloMessage

s string HelloMessage(string firstname, string lastname)

4]
[[T Efclinanet

Fig. 9.2 Invoking Web Service

To test the web service specify a first name , and a last name and click on
the Invoke button as shown in Figure 9.3.

282 9 Web Services On Rails

'a hello_message Web Service - Microsoft Internet Explorer

File Edit Yiew Favorites Tools Help
Gk - = - @ [2) 4| Qoearch (EiFavortes Pveda (| EN- S - E &
Address I@ http:flocalhost: 3000/hello_messagefinvoke_method, _params"ssrvice#ue\Ia_messagemathnd:i'I E?Gu lLinks x4

El

Method Invocation Details for HelloMessage&HelloMessage

Protocol:

SOAP vl

Method Parameters:

Firstname {(string)
[John

Lastname (string)
Sroith]

Back

El
[&] Done [[Bt

Fig. 9.3 Invoking a Web Service Method

Return value gets output. Also the request XML and response XML
gets displayed as shown in Figure 9.4.

9.4 Creating a Web Service with Ruby on Rails 283

3 hello_message Web Service - Microsoft Internet Explorer & - il:llﬂ

Fle Edt View Favortes Tods Help |
Gback - & - () [2) 4| Qsearch Garavorites @vedis (3| - S [l - H &
Address IQ hitp:fflocalhost: 3000/hello_message/invoke_submit Ti G |Links £

Method Invocation Result for HelloMessage&HelloMessage

Invocation took 0.040000 seconds

Return Yalue:
"Hello John Smith®
Request XML:

<?zml version="1.0" encoding="utf-8" 2>
<env: Envelope xmlns:xsd="htop://uww.wd. org/2001/XHLSchena"
xmlns: env="http: //schenas.xulsoap.org/soap/envalope/"
awins: xsi="heep: //wm. w3, oxy/Z001 HMLSschena-instance ">
<env:Body>

<nl:HelloMessage xmilns:nl="urn:ActionWebService"

env:encodingStyle="http: //schemas. xnlsoap.org/soap/encoding/ ">
<firstname xsi:type="xsd:string">John</firstnaner
<lastnane xsi:type="xsd:string">Smith</lastnames
</nl:HalloMassager
</env:Body>
</env:Enveloper

Response XML:

<7um]l wersian="1 N" encading="TITR=-8" 2>

=l
[&oore [T B recalivkanet
Fig. 9.4 Output from Web Service

Let's discuss the web service we created in some detail. The web
service API class defines the methods that the web service provides. The
example API class defines the hello_message method, which takes two
parameters of type string and returns a string value. An API method is
defined with the api method method of the
ActionWebService: :API: :Base class. The WSDL for the web
service is created from the API class. The web service API class extends
the ActionWebService::API::Base class. The controller class contains the
code that the web service makes available to a client. The
web service api option specifies the API definition class. The
web service dispatching mode option specifies the dispatching
method; where remote callers send their invocation methods, the endpoint
URLs, and how the method invocation is routed to the object that
implements the method. With the 'direct' dispatching mode method
invocations are made directly to the controller. The API method
implementations are defined in the controller class as public instance
methods. The ‘'directt mode is the default mode. The

284 9 Web Services On Rails

wsdl service name option specifies the web service name. The
web_ service scaffold option generates a web service scaffolding
for method invocations. The web service scaffolding is similar to the
Active Record's scaffolding. The 'invoke' method specified in the example
web service lists all the methods in all the APIs attached to the controller.
The hello_message action in the controller class is available to clients for
method invocation.

9.5 Web Service API Class

In the previous example the web service API class is HelloMessageApi.
The web service API class extends the ActionWebService::API::Base class
and specifies the methods that are to be made available for an API in a web
service. Some of the methods of the class are discussed in Table 9.1.

Table 9.1 ActionWebService::API::Base Methods

Method Description
api_method(name, options={}) Specifies an API method.
The options are as
follows: :expects-
Signature for method
input parameters.
:returns-Signature for
return value.
:expects_and_returns-
Signature for input
parameters and return
values.

api_method name(public_name) Specifies a service
method name for a public
method name.

api_methods() Specifies a Hash of
service methods on this
APL

soap client(endpoint uri, options={}) | Specifies a SOAP client.

xmlrpc_client(endpoint_uri, Specifies an XML RPC

options={}) client

9.6 Dispatching 285

Table 9.1 (continued)

Method Description
has_public_api_method?(public_name) | Specifies = whether a
public method has a
corresponding service
method on this APL

The procedure to define a API class is as follows.

1. Determine which methods are to be made available on the API.

2. Create a class that extends the
ActionWebService: :API: :Base class.

3. Define the methods using the api method option including the
method signature.

9.6 Dispatching

Dispatching is the dispatching of method invocations on a web service. A
dispatching approach refers to where remote callers send their invocation
messages and how the method invocations are routed to the method
implementation object. An API is implemented based on the dispatching
approach. Three dispatching approaches are available.

1. Direct
2. Delegated
3. Layered

We shall discuss each of these dispatching approaches.

9.6.1 Direct Dispatching

With the Direct dispatching approach, the API definition class is attached
to the controller class and the API methods are implemented in the
controller class as public instance methods. As in the example application
discussed earlier, the direct dispatching is specified as follows.

web service dispatching mode :direct

The direct dispatching approach is the default approach. With the direct
dispatching approach a controller class may implement only one API. The

286 9 Web Services On Rails

endpoint URL for a web service with direct dispatching is of the following
format.

http://SERVER/CONTROLLER NAME/api

The endpoint URL for the example web service discussed earlier is
http://localhost:3000/hello_message/api as specified in the service element
of the WSDL document.

<service name="hello messageService">
<port name="hello messageHelloMessagePort"
binding="typens:hello messageHelloMessageBinding">
<soap:address
location="http://localhost:3000/hello_message/api" />
</port>
</services>

In the direct dispatching mode the web service api option may be
omitted if the API definition class is of the same name as the controller
class and is stored in the app/apis directory in a Ruby file of the format
apiclass_api.rb. In the example application discussed earlier the
web_service api option is not required in the controller class as the API
class is stored in the hello_message api.rb. The procedure to develop an
Action Web Service web service using the 'direct' dispatching approach is
as follows.

1. Define an API class, a class that extends the ActionWebService::Base
class, and define the API methods.

2. Attach the API web service class to a controller class using the
web_service_api option.

3. Set the dispatching mode to 'direct' with
web service dispatching mode :direct

4. Implement the API methods in the controller class as public instance
methods.

5. Test the web service by adding scaffolding to the controller class.

9.6.2 Delegated Dispatching

A limitation of the direct dispatching approach is that a controller class
may implement only one API. In the delegated dispatching approach,
a controller class may implement more than one APIs. We shall discuss
delegated dispatching with an example.

Define two different API classes, HelloMessageApi and DeveloperApi.
Store the HelloMessageApi class in hello message api.rb Ruby script in
the app/apis directory. The HelloMessageApi class defines an API method

9.6 Dispatching 287

hello_message that takes two string parameters, firstname and lastname,
and returns a string value. The hello_message api.rb script is listed below.

class HelloMessageApi < ActionWebService::API::Base

api_method :hello message, :expects =>
[{:firstname=>:string}, {:lastname=>:string}],
:returns => [:string]

end

Store the DeveloperApi class in the developer api.rb Ruby script in
the app/apis directory. The DeveloperApi class defines a method
developer that also takes two string parameters and returns a string
value. The developer api.rb script is listed below.

class DeveloperApi < ActionWebService::API::Base

api _method :developer, :expects =>
[{:firstname=>:string}, {:lastname=>:string}],
:returns => [:string]

end

Create a service class for each of the API classes. A service class
extends the ActionWebService::Base class. The service class implements
the methods defined in the API class. The API class is attached with the
service class using the web_service api option. The HelloMessageService
class implements the HelloMessageApi API class. Store the service class
HelloMessageService in the app/models directory as Ruby script
hello_message service.rb. The hello message service.rb script is listed
below.

class HelloMessageService < ActionWebService: :Base
web service api HelloMessageApi

def hello message (firstname, lastname)
return "Hello "+ firstname +" "+lastname
end
end

Similarly create a service class, DeveloperService, for the API class
DeveloperApi. The Ruby script for the DeveloperService class is stored in
the app/models directory as developer_service.rb. The
developer_service.rb script is listed below.

class DeveloperService < ActionWebService::Base
web service api DeveloperApi

def developer (firstname, lastname)

288 9 Web Services On Rails

return "This web service is developed by "+
firstname +" "+lastname
end
end

Create a controller class for the service classes. Set the dispatching
mode to 'delegated' with the following option setting.

web service dispatching mode :delegated

Attach the service classes to the controller class using the
web service option. For example, the HelloMessageService class is
attached to the controller class with the following declaration.

web _service :hello message, HelloMessageService.new

hello_message is a web service that represents the HelloMessageService
class. To test the web service add scaffolding to the controller class with
the web service scaffold option.

web_service_scaffold :invoke

Store the controller class in the app/controllers directory. The controller
script, delegated controller.rb is listed below.

class DelegatedController < ApplicationController
web_service_dispatching mode :delegated

web_service :hello message, HelloMessageService.new
web service :developer, DeveloperService.new
web_service scaffold :invoke

end

The controller class does not have to be named DelegatedController.
Next, we shall test the web service. Start the WEBrick web server if not
already started.

C:/ruby/helloservices>ruby script/server

Invoke the web service listing of methods with the URL
http://localhost:3000/delegated/invoke. API methods for all the API
service classes specified in the controller class get listed as shown in
Figure 9.5.

9.6 Dispatching 289

3 Web Service - Microsoft Internet Explorer & : - D!_ﬂ
Fle Edt Vew Favorites Took Help ‘“
&Back - = - 7Y | Qsearch [aiFavortes Ehmedia <4 | B S il - H &
nddrassl&'] http:fflocalhost: 3000/delegatedfinvoke -| PG ‘Lirks »|
=
API Methods for HelloMessage
e string Helloh ring firstnarn ring lastrarm:
API Methods for Developer
e string Developer(string firstname, string lastname)
=
L?,j] E Lacal intranet 4

Fig. 9.5 Invoking Delegated Web Service

In contrast to the 'direct' dispatching approach more than one API

classes may be attached to the controller class using the service classes.
The procedure to develop a Action Web Service web service using the
delegated approach is as follows.

1.

Define API classes that are to be implemented by the web service.

2.Create a service class, a <class that extends the

ActionWebService: :Base class, for each of the API classes.
Attach the API class to the service «class with the
web_service api option.

. Implement the API methods in the service class as public instance
methods.

. Create a controller class and set the dispatching mode to 'delegated'.

. Attach the service classes to the controller class with the
web service option.

. Test the web service by generating a scaffolding for the web service
using the web_service scaffold option.

290 9 Web Services On Rails

9.6.3 Layered Dispatching

The layered dispatching approach procedure is similar to the delegated
dispatching approach procedure except the following declaration.

web service dispatching mode :layered

Each method invocation is prefixed with the service name in the format
servicename.methodname. A layered dispatching approach web service
may also be tested wusing scaffolding, generated with the
web_service scaffold option.

9.7 Protocol Clients

Action Web Services provides some client classes for accessing remote
web services. A remote web service may be accessed from inside a
controller using the web_client api helper function or directly using
an instance of the ActionWebService::Client::Soap or
ActionWebService: :Client: :XmlRpc class. In this section, we
shall create a Action Web Services web service and access the web service
using using the web client api function and the direct instance
method invocation. We need to create two separate rails applications, one
for the web service and the other for the client. First, create a Rails
application for the web service.

C:/ruby>rails helloservice

Create a web service, Hello, with an API class HelloApi and an API
method getMsg using the web_service script generator.

C:/ruby/helloservicesruby script/generate
web _service Hello getMsg

An API class HelloApi gets created in the apis directory as Ruby script
hello_api.rtb. A controller script hello controller.rb gets created in the
controllers directory. The controller class HelloController includes a
controller action getMsg. The controller class also specifies the
wsdl service name, the web service name. The WSDL for a web
service is available when the web service is run. Modify the controller
script to specify the web service api option and also specify the
scaffolding with the web_service scaffold option. The web_service api
option maps the controller to the API class. Modify the getMsg controller
action to take a string parameter and return a string value. The getMsg

9.7 Protocol Clients 291

method implements the getMsg method in the API class. The modified
controller script is listed below.

class HelloController < ApplicationController
wsdl service name 'Hello'

web _service api HelloApi
web service scaffold :invoke
def getMsg(name)
"Hello "+ name
end
end

Modify the API class HelloApi to add a parameter and a return value to
the getMsg method signature. The HelloApi class is listed below.
class HelloApi < ActionWebService::API::Base
apli_method :getMsg, :expects => [:name=>:string],
:returns => [:string]
end

Next, we shall test the web service. Start the web service with the
following command from the web service directory.

C:/ruby>webservices>ruby script/server

Invoke the web service using the URL

http://localhost:3000/hello/invoke The API methods for the web service
get listed. Click on the GetMsg method as shown in Figure 9.6.

292 9 Web Services On Rails

2 Hello Web Service - Microsolt Internet Explorer _ =lnix|
Fio Edt Womw Favortes Todls Hep
bk - % - Q[A Qsewch (Fawrtes Gheda 3| D- D - H ‘
Addess Eipoesboz o teioiec- RN x| PG |urks ®
7 O m|websswrch o Bookmarks » [TSettings + | 10l ~ @ty vahoo! ~ » |
__ Helo Wb Service |+
Gocgle G+ |t D E - 1Y eeisr Doboded Fres » ® O settose
” - |

API Methods for Hello
. j!l’lnﬂ ;ig!?ﬂig] stnng name.

(&) Done

g |
T et

Fig. 9.6 Invoking a Web Service Scaffolding

An input field for name gets displayed. You may also select the
protocol: SOAP or XML RPC. Specify a value in the Name field and click
on the Invoke button as shown in Figure 9.7.

9.7 Protocol Clients 293

A Hello Web Service - Microsolt Internet Bxplorer e R = |
Rl Edt Vew Favorkes Tools Hop

Bk v = - D [A Dseach ‘Lgm S 3 D-SFE-3
S |) sp:focabost: X0 elofinoe pthod s ghsonicontel Silwe)| e
7 |] L\']mm~q-mls- Misettings = | 1mal ~ @y vahoo! = ».1
. Helo Web Service + (X}
Google G~ et® D E - | O vomaer Dothoset | Fewrr > Qs

=

Method Invocation Details for Hello&# GetMsg

Protocol.

SOAP vl

Method Parameters:

Name (s1nng)

[Stewe|
Back
=l
&00re [T [P ocalintranet 7

Fig. 9.7 Invoking a Web Service Method

The web service method getMsg gets invoked with name parameter
value as "Steve" and the return value gets output. Also the request XML
and response XML messages get displayed as shown in Figure 9.8.

294 9 Web Services On Rails

A Hello Web Service - Microsoft Internet Explorer PR & : =10l x|
R EQ Wem Favortes Took Hep [w |
bk - = - Q[4 Qsewch [iFavorss FMeda F |- ST B - (5

advess [) hetp flocalost: 3000jhediofrrvoke_submit =] Pco ks
- " Wb Saarch «» 4 Bookmarks » [TSettings + |)Mad ~ DMy vahoo! + »
" Helo Web Service |I*
Gougle |G~ Enl T) settigs >

Method Invocation Result for Hellog® GetMisg
Invocation took 0.050000 seconds

Return Value:

*Hello Steve®

Request XML:

<txal versions*1.0" encoding="utf-8% 7>
<enw:Envelops xmine:xxd=*herp: / /v, vl org/2001 SMLEchena®
xulns: env="http: //schenas. xulsosp. oxg/soap/envelope/ "
xelns:xzim heep: //wow, w3, org/ 2001 /XNLScheaa-1nsrance™>
<anv:Body>
<nl:CetMig xmlns:nls*urn:ActicnVabZervice®

anv:encoding$tyles*hrep: //schenas, xulsoap . org/ soap/encoding/ *»

“name

i:type="xsd:string”>Steve</naner

s B

£]0one [T BEocdireet

Fig. 9.8 Web Service Response

Next, we shall create a rails application for the client. Create a rails
application with the following command.

C:/ruby>rails helloadmin

Create an apis directory in the app directory of the helloadmin rails
application and copy the hello_api.rb script from the helloservice rails
application to the apis directory. Create a controller script for the web
service client.

C:/ruby/helloadmin>ruby script/generate controller
helloadmin getMsg

A controller class HelloadminController consisting of a controller
action getMsg gets created. Access the web service API from the controller
class using the web_client_api function.

web _client api :hello, :xmlrpc,
http://localhost:3001/hello/api

The web_client_api(name, protocol, endpoint_uri, options={}) method
creates a protected method specified with 'name' parameter using the
specified protocol to communicate with the specified endpoint URI. We

9.7 Protocol Clients 295

have created a method 'hello' using the xmlrpc protocol to connect with the
endpoint uri http://localhost:3001/hello/api. We shall run the Hello web
service on port 3001 and access the web service with a client on port 3000.
Modify the getMsg controller action to create a variable for the output of
the web service method invocation. Using the 'hello' method created with
web_client_api invoke the getMsg method of the Hel1lo web service with
a 'name' parameter as input to the method. We shall define the 'name'
parameter value in an index.rhtml view template. The controller script
helloadmin_controller.rb is listed below.

class HelloadminController < ApplicationController
web_client_api :hello, :xmlrpc,
"http://localhost:3001/hello/api"
def getMsg
@service output= hello.getMsg(params[:name])
end
end

The web service Hello may also be accessed directly using an instance
of the ActionWebService::Client::Soap or
ActionWebService::Client:: XmIRpc class. The helloadmin_controller.rb
script may also be represented using an instance of the
ActionWebService::Client::Soap class as shown below.

class HelloadminController < ApplicationController
def getMsg
hello_client =
ActionWebService: :Client: :Soap.new (HelloApi,
"http://localhost:3001/hello/api")
@service output=
hello client.getMsg(params [:name])

end
end

Create an index.rhtml view template in the views/helloadmin directory
and add a form with an input field, 'name’, in the RHTML template. When
the form is submitted the getMsg method of the Helloadmin controller is
invoked. View template index.rhtml is listed below.

296 9 Web Services On Rails

<html>

<heads>
<title>Hello Web Service</titles

</head>

<body>
<hl>Hello Web Service</hls>
<p>
This rails application tests a web service.
</p>
<%= start form tag :action=> 'getMsg' %>
<p><label>Name</label>

<%= text field 'nmame', '' %$></p>
<%= submit tag "Get Message" %>
<%= end form tag %>

</body>

</html>

Modify the getMsg.rhtml view template to output the value of the
variable @service output, which is defined in the Helloadmin controller
class's getMsg method. The getMsg.rhtml view template is listed below.

<html>
<head>
<title>Hello Web Service</titles>
</head>
<bodys>
<hl>Hello Web Service </hl>

<p>

</p>
<p>
<%= @service output %>
</p>
</body>
</html>

Next, we shall test the web service, Hello, using the client rails
application. Start the web service on port 3001 with the following
command from the helloservice directory.

C:/ruby/helloservicesruby script/server --port=3001

Start the client rails application on the default port 3000 from the
helloadmin directory.

C:/ruby/helloadmin>ruby script/server

The example application is to demonstrate accessing a web service from
a protocol client. Invoke the index controller action of the Helloadmin

9.7 Protocol Clients 297

controller with the URL http://localhost:3000/helloadmin/index. The
index.rhtml view template gets displayed. Specify a name value and click

on the Get Message button as shown in Figure 9.9.

A Hello Web Service - Microsoft Internet Explorer

Ble Edt Vew Favorkes Tools Hep

ok - > - O B Q| Qores (ilfevare Brie 3| B & il - &

Address [45] hetp:ocabost: 3000 helosdmindex)
w7 - A [WebSsarch @ Bockmarts + [Settiogs + | 1Med » @Myvabool =
. Felo Wb Servies [+

Gougle (G~ v|6o+'$ 28~ £ ockmarts Bhobioded | ¥ Check + ¥) setgs

b

s

x|

Hello Web Service

Thas rails appbcation tests a web sernce

Name
[Sreve

»

=

oo [T B tocaliomranct

]

Fig. 9.9 Testing a Web Service with a Protocol Client

The getMsg method of the Helloadmin controller gets invoked. Using
the 'hello' method, which is defined using the web_client_api option, the
web service Hello is accessed and the getMsg method of the web service is
invoked. The output from the web service is displayed in the getMsg.rhtml

view template as shown in Figure 9.10.

298 9 Web Services On Rails
7} Hello Web Service - Microsoft Internet Explorer EEeean : =100 x|
Rl B Wew Favorkes Tools Help | o |
weack - = - Q[A Qoewh (yFavores Fwda (F - O - FH
Address [] hetp:filocabost: 000 hedosdmingetiteg =] @G |k >
7 - O~ |web Search @ Bockmerks » [Tsettiogs = | Ml = @My vahoo! ~ »
. Helo Web Service] + 0
Google G» ~leod @ D Er v €2 bomadss Biotioded | T check + () Sattings
=

Hello Steve

Hello Web Service

2] Deon T Ecditrenst

Fig.

9.10 Output from Web Service

The procedure to access a web service using a protocol client is as
follows.

1.

W

— \O 00

Create a rails application for a web service.

. Create a web service.

. Define the APl method/s and implement the method/s in the
controller class.

. Create a rails application for the protocol client.

. Define the API class and the API method/s.

. Access the web service from the client application controller using
either the web client api option or an instance of the
ActionWebService::Client::Soap or
ActionWebService::Client:: XmlRpc.

. Implement the API method/s in the client controller class.

. Start the web service on port 3001.

. Start the client application on port 3000.

0.Invoke the API method/s from a RHTML view template and output

the web service output to another RHTML view template.

9.8 Summary 299

9.8 Summary

In this chapter we discussed the procedure to create a Web Service with
Ruby on Rails. We discussed the different dispatching approaches. We
also discussed the procedure to access a Web Service with a protocol
client.

10 Ruby on Rails in Eclipse

10.1 Introduction

Eclipse is the most commonly used Java IDE. Ruby on Rails provides
some plugins to use Ruby on Rails in Eclipse. Two such plugins are Ruby
Development Tools and RadRails. Ruby Development Tools (RDT) and
RadRails are open source Ruby IDEs for the Eclipse platform. Some of
the features of RDT are syntax highlighting, syntax validation, error
markers, code completion, code formatting, and Ruby unit testing
framework integration. RadRails features include code assist on Ruby and
RHTML files, debugging support, integrated server views, generators,
dynamic testing and integrated deployment. In this chapter we shall
develop a Ruby on Rails Create-Read-Update-Delete (CRUD) application
in Eclipse. If you haven’t already installed Eclipse, download and install
Eclipse 3.2'. Also install the MySQL database if not already installed.
First, install Ruby on Rails.

10.2 PHP in Eclipse

Various PHP extensions for Eclipse are available. PHP IDE is an open
source project in the Eclipse Tools Project. Dev-PHP IDE is a
SourceForge.net project. PHP Eclipse-Plugin is another SourceForge.net
project. The Eclipse plugins for PHP may be used to create and run PHP
scripts.

Eclipse being a Java IDE, no plugins are needed to develop Java
applications in Eclipse.

! Eclipse 3.2- http://www.eclipse.org/downloads/

302 10 Ruby on Rails in Eclipse

10.3 Installing RDT

To install Ruby Development Tools, select Help>Software Updates>Find
and Install in Eclipse IDE. In the Features Updates frame, select Search for
new features to install and click on Next. In the Install frame click on the
New Remote Site button. In the New Update Site frame, specify a Name
(RDT for example) and in the URL field specify
http://updatesite.rubypeople.org/release. Click on OK button. In the Update
sites to visit frame select RDT and click on Finish. Select the features to
install, select the checkbox “Select the latest version of a feature only”,
and click on Next as shown in Figure 10.1.

%

Search Results
D

Select features to install from the search resul lst. ¢

Select the festures to install:
SRRl Deselect Al
=W Other
4" Ruby Development Tooks 0,8, 1,609062100PRD

Select Required

Errar Dezals,

The Ruby Development Tools release bulds.

1 of 9 selected.
[V Show the latest version of a feature only
I Fiker features included in other features on the st

(?) ¢ Bach IJQAext> I Finish I Cancel

LS

Fig. 10.1 Installing Ruby Development Tools

Accept the feature license agreement and click on Next. In the
Installation frame select the Ruby Development Tools feature and click on
Finish. In the Feature Verification frame click on Install All. Ruby
Development Tools plugin gets installed. Restart Eclipse for the
configuration changes to take effect. Next, we need to configure the Ruby
preferences. Select Window>Preferences. In the Preferences frame select
Ruby>Installed Interpreters. In the Add RubyVM frame specify a

10.4 Creating a Rails Project in RDT ~ 303

RubyVM name, Ruby for example, and in the RubyVM home directory
field specify the location of rubyw.exe application. If Ruby on Rails is
installed in the c:/ruby directory, rubyw is in the c:/ruby/bin directory.
Click on the OK button in the Add RubyVM frame. . Click on the OK
button in the Preferences frame.

10.4 Creating a Rails Project in RDT

Next, we create a new Ruby project in Eclipse. Select File>New>Project.
In the New frame select the Ruby Project wizard and click on Next as
shown in Figure 10.2.

X

Select a wizard

Create a new Ruby project,

‘Wizards:

] type filter text

& Class
: & Interface
L,i—;- Java Project
s Java Project from Existing Ant Buildfile
“ Plug-in Project
(= General
W €Y
EE = Java
[#-(= Plug-in Development
B Ruby
(& Ruby Class
: L Ruby Project

@) < Back I__NJext:v I Finish Cancel

L]

Fig. 10.2 Creating a Ruby Project

In the Ruby Project frame specify a Project Name and click on Finish.
Open the Ruby perspective if not already open. A new Ruby project gets
added to the Eclipse IDE. Next we need to configure external tools for
various tasks such as creating a Rails application, creating a Model,

304 10 Ruby on Rails in Eclipse

creating a Controller, creating a scaffold, and starting the WEBrick server.
Select Run>External Tools>External Tools to create an external tools
configuration. In the External Tools frame, create configurations for
various tasks. To create a configuration, right-click on the Program node
and select New. Create a configuration, “Create Rails Application”, to
create a Rails application. In the Location field specify the rails.cmd file.
In the Working Directory field select the variable ${project loc}. To
create an application by the same name as the rails project, specify
./${project name} in the Arguments text area using the Variables button
to select the project name variable. Click on the Apply button to apply the

configuration as shown in Figure 10.3.

£ External Tools 7.7

Create, manage, and run configurations @

Run a program

X

=

IR | B

I type fiker text

® ¥ Ank Buid
= q. Program
3 Create Ralls Appll

Name! I Create Rails Application

m;:“ Rmi EErwrmﬁ:} = Qotmm'z[
Location:
| Ci\rubyonrails\bin\ratls.omd

Browse Workspace.., | Browss Fie Systen... | Variables... |

~Working Directory:
[#oroject Joct
Browese Workspace... I Browise File System... | Variables... I

Arguments:
IHoroject_name} A

-
Variables...
Note: Enclose an argument containing spaces using double-quates ().

Run I Close I

Fig. 10.3 Creating an External Tools Configuration for a Rails Application

10.4 Creating a Rails Project in RDT 305

As the rails application generates some directories and classes, we
would need to refresh the project resources. Select the Refresh tab. In the
Refresh frame select the checkbox “Refresh resources upon completion.”.
Click on the Apply button. To add the configuration to favorites, select the
Common tab and select the External Tools checkbox in the Display in
favorites menu. Click on the Apply button. Next, create a configuration to
start the WEBrick server. In the Location field specify the ruby.exe
application, in the Working directory frame specify ${project loc} using
the Variables button to select the variable, and in the Arguments text area
specify script/server. Click on the Apply button to apply the configuration
as shown in Figure 10.4.

£ External Tools 7-, I 1]
Create, manage, and run configurations @
Run a program @

T o=

Name: IStan WEBrick

lt fiker text - >
ype fiker tex =n }E 1:(‘ [
@ # AntBuild jLaam* ERaooEe, il
=, Program
Q, Create Rails Appl | Ciindyoreaisibininy. exe
(3, Start WEBrick Brawsewukwl BrmseFleSysbem...l Variables... |
~Working Directory:
| $toroject Joc}

qukspon Bn:mmFlsSystan...l Variables... |

Arguments:
script/server ;'

-
Variables...
Nate: Enclose an argument containing spaces using double-quates ().

Si——] N | _peven I
2 : I Close I

Fig. 10.4 Creating an External Tools Configuration to start WEBrick Server

306 10 Ruby on Rails in Eclipse

Similarly, create configurations to create a ruby model script, create a
controller script, create a scaffolding and run the rake command. To create
a model script, specify ruby.exe in the Location field, specify
${project_loc} in the Working Directory field, and script/generate model
${string_prompt: Model name} -f in the Arguments text area using the
Variables buttons to select variables. Click on Apply as shown in Figure
10.5.

%
Create, manage, and run configurations @
3 | B .
'x‘—"p Name: | Create Model
| type fiker text .
m;“ Refresh | g Envirorment | [;ommmI
% Ant Buikd T BERRE
=@, Program -
Q Creste Contralier | Ciindyoreaisibininby.exe
G Creste Model Browse Workspace. . | Browse Fie System... | veriables... |
Q, Creste Rails Appii
Q, Create Scaffold ~Working Directory:
Qu rake | ${project loc}
QL Start WEBrick
Browse Workspace... I Browse File System... | Yariables... l
Arguments:
scriptjgenerate model ${string_prompt:Model name} -f = |
El
Variables...
MNote: Enclose an argument containing spaces using double-quotes ().
d | RS
I

Fig. 10.5 Creating an External Tools Configuration for a Model

To create a controller script create a configuration, “Create
Controller”. Specify ruby.exe in the Location field, ${project loc} in the
Working Directory field, and script/generate controller
${string_prompt:Controller name} —f in the Arguments text area using the

10.4 Creating a Rails Project in RDT 307

Variables buttons to select variables. Click on Apply as shown in Figure
10.6.

€ External Tools = E]

Create, manage, and run configurations Q
Run a program @
o E i =
105 % B % Name: | Create Controler
I type fiker text -
® % AntBuild B
2 q, Program - |
Q Creste Model | Ci\nbyoreaisibininby. exe I
G, Creste Rails Appl Browse Workspace... | Browse Fie System... | variables... ||
3 New_configurati
3, Start WEENick ~Working Directory:
| $#{project_oc} |
Brchlkspane] Bn:mseFluSyshn...l Variables... I.
[~ Arguments: 1
script/generate controller ${string_prompt:Controlier name} f A
-]
Variables... I
Nate: Enclose an argur ining spaces using doubls-quates (). |

J o ooty | rever |
[rn] coe |

Fig. 10.6 Creating an External Tools Configuration for a Controller

)

~
A

We also need to create a configuration, “Create Scaffold”, for creating
scaffolding classes. Specify ruby.exe in Location field, ${project loc} in
the Working Directory field and script/generate scaffold
${string_prompt:Model name} ${:string prompt:Controller name} —f in
Arguments using the Variables buttons to select variables as shown in
Figure 10.7.

308 10 Ruby on Rails in Eclipse

¢ = =
RRCR BROR Name: | Create Scaffold
I type filker text
& % Ant Build
 Location:
=43, Program .
i, Create Controller | Cilrubyonrailsibiniruby.exe
Qu Create Model Browse Workspace... | Browse Fie System... | variables... |
&, Create Rails Appli
q., — Working Directory:
—Qu rake | $4project _lock
£, start WEBrick
Browse Workspace. ., I Browse File System.., I Variables. .. I
scriptjgenerate scaffold ${string_prompt:Model name} =
${string_prompt:Controller name} -f
=
Varisbles...
Note: Enclose an argument containing spaces using double-quotes (7).
i I ﬂ Apply. I Reyert I

Fig. 10.7 Creating an External Tools Configuration for Scaffold Generator

We shall create an example rails application, a CRUD application to
create a catalog entry, read a catalog entry, update a catalog entry and
delete a catalog entry. To create a rails application, select the Ruby project
‘catalog’ in the Ruby Resources view, select Run>External Tools>Create
Rails Application. A rails application, catalog, gets created with the
directory structure shown in Figure 10.8.

10.5 Creating a Database Table with RDT 309

€ ruby raipsesoe -[o]x|
File Edt Ruby Navigate Search Project Run Window Help
I3 - [|$-0~-Q- |4 |- |E8C T @ruby F3Debug
J ity = - a’kva
=i
problems R | Tasks | Regexp | & Conscle 2 =

<terminated> Create Rails Application [Progre ® ;* B .'.:‘u'| =
exists ﬂ
create app/controllers

create app/helpers

create app/models

create app/views/layouts

create config/environmentcs

Create components

create db =
il ,

Fig. 10.8 Creating a Rails Application

In the next section we shall create a MySQL database table using Rails
migrations.

10.5 Creating a Database Table with RDT

First, we need to modify the database.yml file for the MySQL database.
Modify the development configuration with the following settings as
shown in Figure 10.9.

development :
adapter: mysqgl
database: test
username: root
password:
host: localhost

310 10 Ruby on Rails in Eclipse

ErrTTTra— .ol
Fle Edt Ruby Navipate Search Project Run Window Heb

|l | G |30 Q- |4 |- |8 5| @ruby Tsoebug
JEFESR. Bt & davs

= O [2 darabase.yml 5 =
L4 AN UE DULE LU USE BEW-BUYIE pRoOWOLU GRORAG! gy
128 htop://dev.mysgl.com/doc/refman/S.0/en/old-cI
|| 13development:

14 adapter: mysql

database: test J

15

16 username: root
17 password:

1 host: localhost
19

| | ;ILI

Problems | Rt (B Conscle u\gmfml =0}
<terminated> Rake [Program] C:irubyonralbs\binyake.bat !
® | bBl 2B

Fig. 10.9 Modifying database.yml

Next, we shall create a database table in the MySQL database using
migrations for which we need to create an external tools configuration for
the rake command. Rake is similar to Java’s ant command and is used to
run the migrate target. Specify rake.bat in the Location field of the Rake
configuration. Specify ${project loc} in the Working Directory field using
the Variables button and migrate in Arguments. Click on Apply as shown
in Figure 10.10.

10.5 Creating a Database Table with RDT 311

£ External Tools . _x.l

Create, manage, and run configurations 0
Run a program ﬁ'
G e
E" Ex|B% Name: |Rake
| type fiker text .,
T Refresh | P Envirorwment | (] Common|
- AntBuid e
=, Program = |
% Create Controller]C:\n.bycrrals\bh\ra@..bat
Qu Create Model Browse Workspace... | Browse Fie Systen... | variables... |
-G, Creste Rails Appli
Q, Create Scaffold ~Working Di y:
- Rake [${eroject _loc}
@, Start WEBrick
meew«kiml Browise File Syshem...l Variables...]
. Arguments:
migrate ;j

Variables... l

Note: Enclose an argument conkaining spaces using double-quotes (), J

_I.—I‘ ﬂ t Aoty I Revert |
@ (e e

Fig. 10.10 Creating an External Tools Configuration for Rake

We shall create a migration script by creating a model script, which
also creates a migration script. Select Run>External Tools>Create Model
to create a model script. In the Variable Input frame specify catalog as the
model name and click on OK. A model script, catalog.rb, and a migration
script,001 _create catalogs.rb, get added to the rails project catalog.
Modify the migration script to create a database table ‘catalogs’. Migration
script 001 _create catalogs.rb is listed below.

312 10 Ruby on Rails in Eclipse

class CreateCatalogs < ActiveRecord::Migration
def self.up
create table :catalogs do |t]
t.column :journal, :string, :limit => 255
t.column :publisher, :string, :limit => 255
t.column :edition, :string, :limit => 255
t.column :title, :string, :limit => 255
t.column :author, :string, :limit => 255

end
Catalog.create :journal => "developerWorks",
:publisher => "IBM", :edition => "September 2006",

:title=> "A PHP V5 migration

guide", :author=>"Jack D. Herrington"

Catalog.create :journal => "developerWorks",
:publisher => "IBM", :edition => "September 2006",
:title=> "Make Ruby on Rails

easy with RadRails and Eclipse", :author=>"Pat
Eyler"

end

def self.down
drop table :catalogs
end
end

Start the MySQL database, if not already started, and run the migration
with the Rake command. Select the migration script and select
Run>External Tools>Rake. Database table ‘catalogs’ gets created as
shown in Figure 10.11.

10.6 Creating a CRUD Application with RDT 313

£ Ruby - 001_create_catalogs.rb - Echipse SDK __ -‘D'E
Fle Edt Ruby Navigxe Search Project Run Window Heb
| iy |- Q-Q~ |4 |5~ JRCiN C; 55| @ruy TrDebug
liiie e = v & dava
@ Ruby Resources 3 = O[5 dabaseyml [(3] 001 _create_carabogs.b £\ =0
= S 1~class CreateCatalogs < ActiveRecord::Migracion A
= '.:"c&a\oq 4] def self.up
B¢ app | create_table :catalogs do |t|
& &> controlers s t.column :journal, :string, :limit => 255
> helpers 5 t.colunn :publigher, :string, :limit => 255
= &5 models t.colunn :rnhfmn, :stf1ng, :limit => 255
3l caabog.ib T.column :title, :gtring, :limit => 255
&> viows t.column :author, :string, :limit => 255 =
& componerks ;] »
® & config e T —
iy [protems a1 [ETPRIREI rasks |meceo | o)
= &> migrae <terminated> Rake [Program] Cilrubyonealks\binirake. bat
3l 001_creste_catsh b R NE T = R i
B doc == CreateCatalogs: migrating ﬂ
B&b == create_table(:catalogs)
B g =l -> o0.5410s
| | = [" CreateCatalogs: migrated (2.0730s5) ====es=s=s=s=m===
5 Gutine 82 Testitlok| = O =
- 4] | »
[v

Fig. 10.11 Creating a Database Table

10.6 Creating a CRUD Application with RDT

Next, we shall create a CRUD application with the scaffold generator. The
scaffold generator generates all the required model and controller scripts
and the RHTML view templates for an interface to data in a database
table. Select Run>External Tools>Create Scaffold to create a scaffolding
for the database table catalogs. A Variable input dialog prompts for a
value for the Model name. Specify a model name, ‘catalog’ for example. A
Variable input dialog prompts for a Controller name. Specify a controller
name, ‘catalog’. A scaffolding, which consists of a model class, catalog.rb,
a controller class, catalog_controller.rb, and view templates, form.rhtml,
edit.rhtml, show.rhtml, list.thtml, and new.rhtml gets created in the rails
application. Start the WEBrick server with Run>External Tools>Start
WEBETrick server as shown in Figure 10.12.

314 10 Ruby on Rails in Eclipse

& Ruby - catalog.rb - Eclipse SDK i -

Fle Edt Ruby Navioite Search Poject |Run Window Heb
3.
| e

~lol

5| @ruby Tsdebug
B aavo
:Base 2]

=

& models — (4, 2 Create Modsl
R
[caratog.rb Probh T Ruby Exception Bréakpoint
& views ams:mmwnuc:wdqﬂm
e ._;c.g!dcq - R %! BN '3 =) 'f. ¥ €, 5 Create scaffod
"j Sorm.rhiml exists app/controllers/ %6!&
(2 edv.rhiml exists app/helpers/
= Vst.rhtml create app/vieus/catalog Run As L&
. m'::m exista test/functional/ G Externsl Tods...
= ¥,
= io..c.a. By o Organze FvoIRes. .
< | » exists app/models/
— — exists tesc/unic/ -
|3‘:cmaez:% Tm::um! Ol | LI_I
catalog

| vy

Fig. 10.12 Starting WEBrick Server

Access the WEBTrick server with the URL http://localhost:3000 as

shown in Figure 10.13.

10.6 Creating a CRUD Application with RDT 315

3 Ruby on Rails: Welcome aboard - Microsoft Internet Explorer : - Iﬂl!]

File Edit View Favorites Tools Help i

whak - > - Q[4| Qeach (Favorkes Frede P B 7
Address |&] http:jflocalhost 13000 7] Pe | T

-
—

Welcome aboard

ou're ridir g the Ra |s!

About your application’s environment

Getting started

Here’s how to get rolling:

1. Create your databases and edit
config/database.yml

Rails needs to know your login and password.

2. Use script/generate to create your
maodels and controllers

To see all available options, run it without parameters,

| 5
|&] Done [[| | rocalintranet %
Fig. 10.13 WEBrick Server Console

The catalog entries listing may be displayed with the list.rhtml
template. Invoke the controller action list with the URL
http://localhost:3000/catalog/list as shown in Figure 10.14.

316 10 Ruby on Rails in Eclipse

3 Catalog: list - Microsoft Internet Explorer E .lD}E]
Flo Edt View Favorkes Tools Heb [@ |
Bk + = - @D [A) & Qoseach [ajFavoites PMeda P - S M - = &
Address] hito:/flocabost:3000/cataloslit x| @6 unis ™

Listing catalogs

Journal Publisher Edition Title Author
A PHP V5
% September . . _ Jack D. :
developarworks IBM 5006 ;nl:-lj;:tnon Harrington Show Edit Destroy

Make Ruby on
September Rails easy with
2006 RadRails and
Eclipse

developerWorks 1BM Pat Eyler Show Edit Destroy

|&] Done [[[¥ Localinbranet 7

Fig. 10.14 Listing Catalog Entries

Next, we shall discuss the RadRails plugin.

10.7 Installing RadRails

The RadRails plugin requires the RDT plugin to be installed prior to being
installed. Therefore, if you have not installed the RDT plugin, as explained
in the previous section, install the RDT plugin. To install the RadRails
plugin select Help>Software Updates>Find and Install. Select “Search for
new features to install” in the Feature Updates frame and click on Next.
Click on New Remote Site button in the “Update sites to visit” frame.
Specify an update site name, RadRails for example, and specify URL
http://radrails.sourceforge.net/update in the URL field. Click on the OK
button. Select the RadRails update site configuration and click on Finish.
Select the features to install and click on Next. Accept the feature license
and click on Next. In the Installation frame click on the Finish button.
Select Install All in the Feature Verification frame. Restart Eclipse for the

10.7 Installing RadRails ~ 317

plugin configuration to take effect. In the Eclipse IDE open the RadRails
perspective. Select Window>Open Perspective>Other>Rails as shown in
Figure 10.15.

& Open Perspective f .EI

CVS Repository Exploring
~-Data
’ﬁi Debug

3';" Java (default)

S:’ Java Browsing

T:ngava Type Hierarchy

<J=Plug-in Development
Rails

[{9Resource

& rRuby

S? Ruby Browsing

ED Team Synchronizing

OK Cancel

"\5

Fig. 10.15 Opening Rails Perspective

The RadRails perspective includes the following views: Servers,
Generators, Rake Tasks, Console, RI, and Rails Plugins. The Servers view
consists of WEBrick server configurations for the rails applications. The
Generators view consists generators for model, controller, scaffold, and
migration scripts. The Rake Tasks view is still in development and consists
of rake tasks such as migrate.

318 10 Ruby on Rails in Eclipse

10.8 Creating a Rails Application with RadRails

Next, we create a rails project with File>New>Project. In the New gallery
select the Rails Project wizard and click on Next as shown in Figure 10.16.

%

Select a wizard

Create a new Rails project |

Wizards:

| type filter text

& Interface :'
LL Java Project
s Java Project from Existing Ant BuildFile
14% Plug-in Project
[# (= General
(=2 CVS
[#-(=» Data
[#-(= Java
[#-= Plug-in Development
(& Rails
[‘. Rails Praject
(= Ruby
[#-(= Server L]

@) < Back]E\;;t> I Finish Cancel

Fig. 10.16 Creating a Rails Project in RadRails

Specify a project name, catalog, in the New Rails Project frame and
select the options “Generate Rails Application skelton” and “Create a
WEBErick Server”. Click on Finish. A rails application gets created as
shown in the Rails Navigator view in Figure 10.17.

10.8 Creating a Rails Application with RadRails 319

£ Rails - Edipse SDK i ;IE]L‘I

File Edt MNavigite Search Projsct Run Window Hep

|- [[3-0-Q- |5 |- HQO -0 £1|[gratls #Ruby
e e Tooebug &'1ave
S 0Bz 0w 8 N0
An outhne 5 not avalable,
Sarvers. Ganerators | Raka Tasks | B Console I - A Ralks Phugins =)
cterminatod > rals [intornal lounch] rals (10/22/2006 1:24:25 PM)
= Xl il 2B -15-
exists a
create app/coatrollers
create app/helpers
create app/models
create app/vievs/layouts
create config/environments
create components -
g 222, % LLJ_

] | B

Fig. 10.17 Rails Project in RadRails

We need to modify the development environment settings in
database.yml file for the MySQL database to as listed below and as shown
in Figure 10.18.

development:
adapter: mysqgl
database: test
username: root
password:
host: localhost

320 10 Ruby on Rails in Eclipse

- Rails - dotabase ymi - Ecipse SDK 3 -1o] x|
File Edt Navigats Search Projsct Bum Window Hsp
s B Qeur || -l 9 k-8 £ Fraks @ Ruty
. - - Tostug &0 Jeva
TR o | = O & dotsbasemi 2 SO0l Eo. 850
- — Law Oy = sty PRt [Uan outine & not vallshis
13 dey e
- -F’ cakalng - 1 Y mypagl
op 1 tent
4 = cortrolers 1 L N oot
4 (2 helpers 1 aas 1
= models 1 i lecalhost
= views 13
componants
coig
% Srironments
& boot.rb
™ [
smvironment.rh 1 . T =
F | Servers | Gererators | Rk Tasks | (2] corsan 01 A1 | Raik Phars =
& d;l = | ekeaminuabad> ras [internal lsunch] ralls (10/22/2006 1:34.25 PM)
& doc X aphl @
¥ i Ib exiscs B
& log create app/controllers -
e pubilc | o

catalog forifigidat abase, yriil 1

Fig. 10.18 database.yml Configuration for MySQL

Create a database table catalogs in the MySQL database using SQL
script listed below.

CREATE TABLE catalogs (Journal VARCHAR (255) ,
Publisher VARCHAR (255),
Edition VARCHAR (255), Title Varchar(255), Author
Varchar (255)) ;

INSERT INTO catalogs VALUES ('developerWorks"',
'"IBM', 'September 2006', 'A PHP V5 migration guide',
'Jack D. Herrington') ;

INSERT INTO catalogs VALUES ('developerWorks"',
'"IBM', 'September 2006', 'Make Ruby on Rails easy
with RadRails and Eclipse

', 'Pat Eyler');

10.9 Creating a CRUD Application with RadRails

Next, we create the scaffolding for the database table catalogs.
ActiveRecord uses pluralization; the database table name is the plural of
the model class name with the first letter of the table name as lowercase.
The scaffolding consists of model and controller scripts and RHTML view
templates. Create the scaffolding with the scaffold generator. Select the

10.9 Creating a CRUD Application with RadRails 321

Generators view and select the scaffold generator. Specify a model name,
catalog, and click on Go button as shown in Figure 10.19. A controller
name is optional in the scaffold generator and defaults to the plural of the
model name.

& Rails - dolabase ymd - Eclipse SDK - -|of x|
File Edt Newvgste Seach Propset Run Window Help
o [BrQ-Q- |5 M E-O £ [Frat drmy
.3 e Losbug &' Jeva
[l Rais Havigater 22 Testatrk| = D g debsbase ymi 22 =l N O
dApLE mysgl
= M eatalog it test Ay outhne s not avadable,
S app i Imer n root
componenks ¥ ! _.|
= corfig localhost
EEd 3
- coc # Wacning: The database defin.s|
il 1] 3
& log . i — =
& 2 public Snmm Rishs Tagks | Console | A1 | Ruaile Flugins | 20
-2 seript
G et [scaffon =] [cataiod e 1@J
7 fesaiprad Options 3
S vendor Create Destroy I Pretsnd I Forcs [~ M
#l Rabetie
REALME

Fig. 10.19 Scaffold Generator

The scaffolding for the catalogs table gets created. The scaffolding
consists of model class Catalog, which extends the ActiveRecord::Base
class, and a controller class CatalogsController, which extends the
ApplicationController class which further extends the
ActionController::Base class. The model script is generated in the
app/models directory and the controller script is generated in the
app/controllers directory. The view templates, form.rhtml, show.rhtml,
list.rthtml, edit.rhtml, and new.rhtml get created in the app/views/catalogs
directory as shown in Figure 10.20. Next, we start the WEBrick server
configuration for the rails application catalog as shown in Figure 10.20.

322 10 Ruby on Rails in Eclipse

o

J 5= o Q- Q- |4 |l3-] | [inats @Ruby

IR I-0]" o - r0ebup &Jave

8 Rais Novigator 53 =0 (a dababase.ymi fﬂ catobgrb 82N Eﬂ‘ gEow.. 20
o = o 1-class Catalog < lctiveRecord =] | 5

= catalog b o RN e

£ Rails - catalogrb - Edipse SDK

File Edt Ruby Navigste Search Froject Run Window Help

5 (& modobs il | ;r’"
i cakdogrd — .
5-C views MWmimrmicmlm[mm] el

& config _'.‘ < | _ﬂ

Fig. 10.20 Starting WEBrick Server

The WEBrick server gets started. Display the WEBTrick console with
the URL http://localhost:3000. Display the list the catalog entries with the
controller action list. Invoke the list action with the URL
http://localhost:3000/catalogs/list as shown in Figure 10.21.

10.10 Summary 323
3 Catalogs: list - Microsolt Internet Explorer - |DI£|
Fle Edt View Favorkes Tools Heb -
| mBack v o - @ () | Qsearch (aiFavorkes Predn | - O W - H 4 |
| Address [€] htto:localhost:3000]catalogs fist =] @6 s ™
Listing catalogs m
Journal Publisher Edition Title Author
A PHP VS
; September Jack D.
developerWorks IBM 2006 migration Herrington Show Edit Dastroy
guide
Make Ruby
September DT RaEs
developerWorks IBM P easy with Pat Eyler Show Edit Destroy
2006
RadRails
and Eclipse
New catalog
[&) oone [T P tocalintranet 7

Fig. 10.21 Listing Catalog Entries

10.10 Summary

In this chapter we installed the Ruby Development Tools (RDT) and
RadRails plugins in Eclipse. We created a Rails project in the RDT and
RadRails plugins. We created a database tool using the rake tool with
RDT. We created scaffolding for a CRUD application with RDT and

RadRails.

11 Rails Testing and Fixtures

11.1 Introduction

Tests are test applications that produce consistent result and prove that a
Rails application does what it is expected to do. Tests are developed
concurrently with the actual application. Alternatively, in a Test Driven
Development (TDD) tests are run before the actual application is created.
Tests are run to minimize errors in the actual Rails application. Tests also
provide information about what is likely to cause an application to fail.

11.2 Unit Testing in PHP and Java

Various open source testing tools are available for unit testing in Java.
JUnit is a regression testing framework for implementing unit tests in
Java. Some of the other unit testing tools in Java are Abbot, JUnitPerf,
Jameleon, DbUnit, XMLUnit for Java, jfcUnit, JTestCase, StrutsTestCase,
SQLUnit, JTR (Java Test Runner). With JUnit a test method is annotated
with @Test. An example JUnit test to test the equality of two strings is as
follows.

package junittest;

import org.junit.*;
import static org.junit.Assert.*;
import java.util.*;

public class JUnitTest

@Test

public void testStringCompare ()
String strl="Example JUnit Test";
String str2="Example JUNIT TEST";
assertTrue (strl.equals (str2)) ;

326 11 Rails Testing and Fixtures

}

public static void main(String argsl[]) ({
org.junit.runner.JUnitCore.main ("junittest.JUnitTe
st");
}
}

PhpUnit is the unit testing framework for PHP based on the JUnit
framework for Java. Some of the other PHP unit testing frameworks are
Simple Test for PHP, PHP Assertion Unit Framework and Spike
PHPCheckstyle. Unit testing in Ruby on Rails is similar to PHP and Java
unit testing in that we use test case classes and test methods.

11.3 Rails Example Test

How are tests run in Ruby on Rails? Tests are run by creating a sub-class
of Test::Unit::TestCase class. To the TestCase sub-class add test
methods. When the tests are run the results are collected in a
Test::Unit::TestResult object. Tests are run using fixtures,
which are sample data against which a test is run. A test may be run on the
command-line. Create a Ruby script, example test.rb, to run a test. The
testing API is provided in the test/unit gem, therefore, import the test/unit
gem.

require ‘test/unit’

Create a class, ExampleTestCase that extends the Test::Unit::TestCase
class. To the class add a test method test example that contains a single
line “assert true”. All test methods are required to start with “test”. The
test method contains an assert statement that specifies an assertion. An
assertion is a line of code that evaluates an object or expression for the
expected result. If the output of the assert statement is true the assertion
has passed. If the output of the assert statement is false, the assertion has
failed.

require 'test/unit'
class ExampleTestCase < Test::Unit::TestCase
def test_example
assert true
end
end

11.3 Rails Example Test 327

Run the ruby script on command-line. The output from the test indicates
that the test has passed as shown in Figure 11.1. The ‘.’ in the line after
Started denotes the test has passed. An ‘F’ indicates the test has failed and
an ‘E’ indicates that an error has occurred.

[*t]command Prompt

C:N\ruby>ruby example_test.rbh
Loaded suite example_test
Started

Finished in B.81 seconds.

1 tests, 1 assertions, @ failures, @ errors

Fig. 11.1 Running a Rails Test

Test cases are grouped into a suite. Thus, Rails testing follows a
hierarchy shown in Figure 11.2.

Suite

Test Case Test Case Test Case

Tost

Test Test Test. Test
= Test o Method Methed
Method Method Method Method s -

Assertions Assertions

Fig. 11.2 Rails Testing Hierarchy

Next, we shall discuss how tests may be used to test different class
objects. For example, if a Login class represents a user a test may be
developed to validate a user name. First, create a class Login with a
accessor username. In the class define a test method that determines if a
username is valid based on some conditions as shown in Login.rb listing
below.

class Login

Accessor
attr_ accessor :username

328 11 Rails Testing and Fixtures

Constructor

def initialize (username)
@username = username

end

Test to determine if username is valid

def is_username valid?
return false if @username.nil?
return false if @username.empty?
return false if @username.size < 5
return false if @username 'ruby'
true

end

end

Next, create a test case to test different usernames. The test case
LoginTestCase has a test method test usernames, which has 6 assert
statements. The login_test.rb Ruby scipt is shown below.

require 'test/unit'
require 'login'

class LoginTestCase < Test::Unit::TestCase
def test example
assert true
end

def test usernames

assert !Login.new(nil) .is_username valid?

assert !Login.new("").is username_ valid?

assert

!Login.new ("rubyonrails") .is_username valid?

assert !Login.new("ruby").is username_ valid?

assert !Login.new("john").is username valid?

assert !Login.new("johnsmith") .is username valid?
end

end

Run the test case in Ruby command line. The output indicates that the
first test passes and the second test (test usernames) fails. Out of 7
assertions 6 assertions pass and | assertion fails as shown in Figure 11.3.

11.3 Rails Example Test

329

[{]command Prompt = -10| x|

C:\ruby>ruby login_test.rbh
Loaded suite login_test
Started

Finished in 8.84 seconds.

1> Failure:
test_usernames{LoginTestCase> [login_test.rh:171:
{false> is not true.
2 tests. 7 assertions. 1 failures. @ errors

C:Nruby>

Fig. 11.3 Login Test Case

The assertion that fails is the last assertion in the test method
test_usernames. If the assertion that failed were before some of the other
assertions the assertions after the failed assertion won’t run and the test
case would stop the execution of the test method. For example specify the

assertion that failed as the 3™ assertion.

def test_usernames

assert !Login.new(nil) .is_username valid?
assert !Login.new("").is username_valid?

assert !Login.new("johnsmith").is username valid?

assert

!Login.new ("rubyonrails") .is_username_valid?
assert !Login.new("ruby").is username_ valid?
assert !Login.new("john").is username valid?

End

Run the test case again. The output indicates that only 4 assertions were
run and 1 assertion failed as shown in Figure 11.4. The assertion after the

failed assertion are not run.

[#t]command Prompt =

C:\ruby>ruby login_test.rbh
Loaded suite login_test
Started

Finished in B.B5 seconds.

1> Failure:
test_usernames{LoginTestCase> [login_test.rh:141]1:
{false> is not true.
2 tests. 4 assertions. 1 failures. @ errors

C:Nruby>

Fig. 11.4 Assertions After a Failed Assertion are not run

The Rails testing framework provides 2 methods setup and
teardown that if included in a test case are run with each test. The

330 11 Rails Testing and Fixtures

“setup” method is run before each test method and the “teardown” method
is run after each test method. The “setup” method is used to setup objects
to be used in a test method. Modify the test case LoginTestCase to add a
setup method and a teardown method. In the setup method set @username
to “JohnSmith” and in the teardown method set the @username to an
empty string. Modified login_test.rb is listed below.

require 'test/unit'

require 'login'

class LoginTestCase < Test::Unit::TestCase
def setup
@username="JohnSmith"
end

def teardown
@username=""
end

def test usernames

assert Login.new(@username) .is username valid?
assert !Login.new("").is username valid?

end

def test username
assert Login.new(@username) .is username valid?
end
end

Run the modified test case. The output indicates that 2 tests are run and
3 assertions are tested as shown in Figure 11.5. All 3 assertions pass.

[¢%]command Prompt

C:\ruby>ruby login_test.rb
Loaded suite login_test
Started

Finished in 8.81 seconds.

2 tests, 3 assertions, B failures. B errors

C:xruby>

Fig. 11.5 Running a test with setup and teardown

11.4 Assertion Types 331

11.4 Assertion Types

The test/unit gem provides different types of assertions, which we shall
discuss in this section. The assertion type that we have already used is
shown below.

assert (boolean, [msg])

The msg is an optional string that specifies the test failure message.
Create a test case to test different types of assertions. Add a test method
and an assertion as shown below.

require 'test/unit'
class AssertionTestCase < Test::Unit::TestCase
def test assertion

assert (false, "Assertion has failed")
end
end

The output from the test case indicates that the test has failed as shown
in Figure 11.6. The test failure message is the string specified in the msg
argument.

[¢*]command Prompt —

C:\ruby>ruby assertion_test.rb
Loaded suite assertion_test
Started

F

Finished in 8.084 seconds.

1> Failure:
tes sertion{fAssertionTestCase?> [assertion_test.rh:81:
i has failed.
> is not true.

» 1 assertions, 1 failures, 8 errors

Fig. 11.6 Assertion Type assert

Another type of assertion type tests if two ruby objects are equal.
assert_equal (objl, obj2, [msgl)
In a test method test if two ruby objects are equal as shown below.

require 'test/unit'
class AssertionTestCase < Test::Unit::TestCase
def test_assertion

objl="ruby"

obj2="ruby"

assert _equal (objl, obj2, "Objects not Equal")
end

end

332 11 Rails Testing and Fixtures

The output from the test case indicates that the objects are equal as
shown in Figure 11.7.

‘ommand Prompt =
sN\ruby>rub rh
assertion_t -rh: ng:
Loaded suite assertion_test

don’t put space bhefore argument parentheses
Started

Finished in 8.81 seconds.

1 tests, 1 assertions, B failures.

C:xruby>

B errors

Fig. 11.7 Assertion type assert_equal

Make the objects in the previous test case not equal and test again.

require 'test/unit'

class AssertionTestCase < Test::Unit::TestCase
def test_ assertion
objl="ruby"
obj2="rails"

assert equal (objl, obj2,
end
end

"Objects not Equal")

The output from the test case indicates that the objects are not equal and

test has failed as shown in Figure 11.8. The string specified in the msg
argument is output as the test failure message.

% |Command Prompt -

C:\ruby>ruby ertion_test.vbh
Loaded suite assertion_test
Started

F

Finished in 0.05 seconds.

rtion{AssertionTestCase) [assertion_test.rh:81:
not Equal

% " '?}expected “hut was
Yrails">.

assertions, 1 failures, B errors

Fig. 11.8 Objects not Equal

The following assertion type asserts that two objects are not equal.

assert not equal(objl, obj2, I[msgl)

The assertion type assert same(objl, obj2,[msg]) tests if two objects
are the same. Two objects are the same if they have the same id. In the

11.4 Assertion Types 333

following test case two ruby objects, both of which are strings “ruby” are
tested for sameness.

require 'test/unit'

class AssertionTestCase < Test::Unit::TestCase
def test assertion
objl="ruby"
obj2="ruby"

assert same (objl, obj2, "Objects not Same")
end
end

The output indicates that the objects are not the same as shown in Figure
11.9.

Command Prompt

C:\ruby>ruby assertion_test.rh
Loaded suite assertion_test
Started

F

Finished in B.86 seconds.

1 tests. 1 assertions, 1 failures, @ errors

Fig. 11.9 Assertion type assert_same

Assertion type assert not same (objl, obj2, [msg]) asserts that two
objects are not the same. The other assertion types are discussed in Table
11.1.

334

11 Rails Testing and Fixtures

Table 11.1 Assertion Types

Assertion Type

Description

assert_nil(obj, [msg])

Asserts that on object is nil.

assert not nil(obj, [msg])

Asserts that object is not nil.

assert_match(regexp, string,
[msg])

Asserts that a string matches a
regular expression.

assert no_match(regexp, string,
[msg])

Asserts that a string does not
match a regular expression.

assert_in_delta(expecting,

actual, delta, [msg])

Asserts that a expected value
and a actual value do not differ
by more than delta.

assert_throws(symbol, [msg]){
block }

Asserts that a block has a throw
statement for the catch block
with label specified in symbol.

assert raises(exceptions){

block }

Asserts that a block raises one
of the exceptions.

assert_nothing_raised(
exceptions){ block }

Asserts that none of the
exceptions are raised in the
block.

assert_instance of(class, obj,
[msg])

Asserts that an object is an
instance of a class.

assert_respond_to(obj, symbol,
[msg])

Asserts that obj has a method
called symbol.

assert_operator(objl, operator,
obj2, [msg])

Asserts that obj1.operator(obj2)

assert_send(array, [msg])

Asserts that invoking method in
array[0] on object in array[l]
with parameters specified in
array[2], array[3]... returns true.

flunk(Jmsg])

Causes failure

11.5 Rails Testing 335

11.5 Rails Testing

We have discussed what are test cases, test methods, and assertions. In this
section we shall discuss how testing is used in the Rails framework. Create
an example Rails application as shown below.

C:/rubys>rails catalog

A Rails application with models in the app/models directory, controllers
in the app/controllers directory, helpers in the app/helpers directory and
view templates in the app/views/catalog directory gets created. Also a test
directory gets created. The test directory includes 4 sub-directories: unit,
functional, fixtures and mock. The unit directory contains the model tests,
the functional directory contains the controller tests, the fixtures directory
contains the sample data files and the mock directory contains the mock
objects. Initially the unit, functional and fixtures directories are empty. We
shall add test and sample data to these directories. To run unit tests run the
following command.

C:/ruby/catalog> rake test:units
To run controller tests run the following command.
C:/ruby/catalog>rake test:functionals

The config/database.yml configuration file has 3 different database
setups: development, production and test. The test mode is for running
Rails tests. The test database should be different from the development
database. The configuration for the test mode is as follows.

test:
adapter: mysqgl
database: catalog test
username: root
password:
host: localhost

Using the test database configuration the database gets loaded with
sample data from the fixtures. The sample data loaded into the database
becomes available to the tests. Create a catalog test database with the
following mysql command.

CREATE DATABASE catalog test
DEFAULT CHARACTER SET utfs

Also create a catalog_development database with the following mysql
command.

336 11 Rails Testing and Fixtures

CREATE DATABASE catalog development
DEFAULT CHARACTER SET utfs8

11.6 Fixtures

Fixtures are sample data and are of two type: YAML fixtures and CSV
fixtures. YAML are the default types of fixtures. YAML fixtures are stored
in a YAML fixture file in the test/fixtures directory. YAML fixtures are
stored in a single file per mode and the YAML fixture file has the .yml
extension. For the Rails application catalog create a database table catalogs
in the catalog_test database using migrations or with the following mysql
command.

CREATE TABLE catalogs (id VARCHAR(25)

PRIMARY KEY, journal VARCHAR(25), publisher
VARCHAR (25) ,

edition VARCHAR (25), title Varchar (255), author
Varchar (25)) ;

Create a YAML fixture file catalogs.yml with 3 fixtures as listed
below.

catalogl:
id: 1
journal: Oracle Magazine
publisher: Oracle Magazine
edition: July-August 2005
title: Tuning Undo Tablespace
author: Kimberly Floss

catalog2:
id: 2
journal: Oracle Magazine
publisher: Oracle Magazine
edition: May-June 2006
title: Tuning Your View Objects
author: Steve Muench

catalog3:
id: 3
journal: Oracle Magazine
publisher: Oracle Magazine
edition: July-August 2006
title: Evolving Grid Management
author: David Baum

11.7 Unit Testing 337

If the CSV fixtures are used the same sample data is specified in a
catalogs.csv file as follows.

id, journal,publisher,edition,title, author

1,0racle Magazine,Oracle Magazine, July-August
2005, Tuning Undo Tablespace,Kimberly Floss

2,0racle Magazine,Oracle Magazine,May-June
2006, Tuning Your View Objects, Steve Muench

3,0racle Magazine,Oracle Magazine, July-August
2006, Evolving Grid Management,David Baum

The first line in CSV format is the header and each fixture is specified
on a separate line. Null values may be specified with two consecutive
commas without any value. In the YAML format each fixture has a name
specified in the fixture file, but in the CSV format each fixture has a name
of the format model counter. For example, the first fixture in the
catalogs.csv file has the name catalog 1. If a field value has a comma
specify the field value with a double-quote. If a field value has a double
quote, escape the double quote with another double-quote.

11.7 Unit Testing

Unit tests are tests run on models. To run a unit test using the fixtures first,
create a model catalog with the following command.

C:/ruby/catalog>ruby script/generate model catalog

A model script catalog.rb gets created in the models directory. A unit
test script catalog_test.rb gets created in the test/unit directory. A fixtures
file catalogs.yml gets created in the test/fixtures directory. Copy the
catalogs.yml file from the Fixtures section to the catalogs.yml file in the
fixtures directory. Next, we shall run the unit test, which is model test,
using the fixtures in the catalog.yml file. The default unit test consists of a
test case CatalogTest, which extends the Test::Unit::TestCase class. The
catalog_test.rb unit test script is listed below.

require File.dirname(_FILE_) + '/../test_helper'

class CatalogTest < Test::Unit::TestCase
fixtures :catalogs
Replace this with your real tests.
def test truth
assert true
end
end

338 11 Rails Testing and Fixtures

The unit test class has a fixtures method, which specifies a comma
separated list of symbols representing fixtures.

fixtures :catalogs
When the test case is run the testing environment automatically loads
the specified fixtures into the database. Modify the unit test class to add a

test method test catalogs count, which counts the catalogs in the sample
data. The modified unit test case class is shown below.

require File.dirname(FILE) + '/../test helper'
class CatalogTest < Test::Unit::TestCase
fixtures :catalogs

def test catalogs_ count
assert_equal 3, Catalog.count
end
end

Next, run the model test using from the test/unit directory.
C:/ruby/catalog/test/unit>ruby catalog_ test.rb
The output from the unit test indicates that the test has passed as shown

in Figure 11.10.

lﬁtummand Prompt

C:\rubyncataloghtest\unit>ruby catalog_test.rbh
Loaded suite catalog_test
Started

Finished in 1.182 seconds.

1 tests,. 1 assertions, @ failures. B errors

C:N\rubyhcataloghtest\unit>

Fig. 11.10 Running a Unit Test

Fixtures are available as hash objects by the same name as the fixture.
The :catalogs symbol fixtures are available as local variable catalogs,
which is a hash object, in the test case class. If instantiated fixtures, which
we shall discuss later, are enabled the fixtures are available as an instance
variable (@catalogs, which is a hash object with the same name as the
symbol specified in the fixtures method. And each of the fixtures in the
fixtures file is also available as a instance variable, for example catalogl
fixture is available as instance variable @catalogl. Instantiated fixtures
should be used sparingly as they reduce performance. Assertions may be

11.7 Unit Testing 339

tested using the hash object, either the default local variable hash or the
instance variable hash enabled with instantiated objects. For example, test
the value of the title for the fixture catalogl using the local variable
“catalogs”.

require File.dirname(FILE) + '/../test helper'
class CatalogTest < Test::Unit::TestCase

fixtures :catalogs
def test_find

assert_equal catalogs(:catalogl) .title, "Tuning
Undo Tablespace"
end

end

The output from the test, shown in Figure 11.11, indicates that the
assertion about the title is true.

[¢%]command Prompt

C:xrubyncatalog\test unit>ruby catalog_test.xh
Loaded suite catalog_test
Started

Finished in 1.822 seconds.

- 1 assertions, @ failures, @ errors

C:\rubuscatalogi\test\unit>

Fig. 11.11 Using Local Variables

Using instantiated fixtures the fixtures are loaded into hash object, an
instance variable by the same name as the symbol. Each of the fixtures is
available as a hash object, an instance variable by the same name as the
fixture. To enable instantiated fixtures set use instantiated fixtures in the
test/test_helper.rb to true.

self.use_instantiated fixtures = true

In the CatalogTest test case use instance variables @catalogs, for the
database table catalogs, and (@catalogl, for a fixture in the catalogs.yml
fixture file, to test an assertion.

require File.dirname(_FILE) + '/../test_helper'
class CatalogTest < Test::Unit::TestCase

fixtures :catalogs

def test_find

assert_equal @catalogs["catalogl"] ["title"],
@catalogl.title
end

end

340 11 Rails Testing and Fixtures

The output from the test, shown in Figure 11.12, case indicates that the
assertion is true.

Command Prompt

C:\rubyncataloghtest \unit>ruby catalog_test.rh
Loaded suite catalog_test
Started

Finished in 1.282 seconds.

1 tests, 1 assertions, B failures. B errors

C:\rubyscataloghtest\unit>

Fig. 11.12 Using Instantiated Fixtures

The model class method find may be used to find a fixture. For
example, find the model class object for id 2 and test the values of the
different columns using accessors.

require File.dirname(FILE) + '/../test helper'

class CatalogTest < Test::Unit::TestCase
fixtures :catalogs
def test_find
catalog2=Catalog.find (2)
assert _equal catalog2.edition, "May-June 2006"
assert _equal catalog2.title, "Tuning Your
View Objects"
assert equal catalog2.author, "Steve Muench"
end
end

The output indicates that 3 assertions have passed. Test assertions may
be used to create update or delete (CRUD) column values. To use the
create, save, delete update methods of the model class set
use_transactional fixtures to false in test/test_helper.rb file.

self.use transactional fixtures = false

As an example, update the edition, title and author columns of database
row with id 2. Test the assertion that the database row has been updated.

require File.dirname(FILE) + '/../test helper'
class CatalogTest < Test::Unit::TestCase
fixtures :catalogs
def test find
catalog2=Catalog.find(2)

catalog2.edition="MayJune2006"
catalog2.title="Tuning Your ADF View Objects"
catalog2.author="Muench, Steve"

11.7 Unit Testing 341

assert catalog2.save
end
end

Run the test case; the output indicates that test has passed. The database
row gets updated. Transactional fixtures are used by default. With
transactional fixtures every test case rolls back its changes. If the test
database is pre-loaded with all the fixture data and you are using
transactional fixtures, the fixtures declarations may be omitted as the
fixtures data is already loaded and the test cases roll back their changes.
For example, the following test case may run without the fixtures
declaration if the fixture data has been pre-loaded and transactional
fixtures are being used.

require File.dirname(FILE) + '/../test helper'
class CatalogTest < Test::Unit::TestCase
def test_find

catalog2=Catalog.find(2)
assert_equal catalog2.edition, "May-June 2006"

assert _equal catalog2.title, "Tuning Your View
Objects"
assert equal catalog2.author, "Steve Muench"
end
end

Transactional fixtures should not be used to test transactions and if a
database does not support transactions.

Both the YAML fixtures and CSV fixtures have the provision to embed
Ruby in the fixture file to create dynamic fixtures. The following example
creates dynamic fixtures fixture 1, fixture 2...fixture 10 with fields id an
edition that are also generated dynamically.

o\
\%

<% for i in 1..10 %> fixture <%= 1
id: <%= 1 %>
edition: edition <%= i %>

342 11 Rails Testing and Fixtures

11.8 Testing Controllers

Controller testing is also known as functional testing. Functional testing
tests the functionality of the controller such as was the response redirected
as expected, was the expected template rendered, was the routing as
expected, and does the response contain the expected tags. The Rails
framework provides the ActionController::TestRequest class to simulate a
request and the ActionController::TestResponse class to simulate a
response.

We shall run some controller tests using a rails application hello.
Create a Rails application hello.

C:/ruby>rails hello

Create MySQL databases hello_development and hello_test with SQL
commands as shown earlier. Create a controller “hello” with controller
actions “hello” and “index”.

C:/ruby/hello>ruby script/generate controller hello
hello index

A default controller test script hello_controller_test.rb gets created in the
test/functional directory as listed below.

require File.dirname(FILE) + '/../test helper'
require 'hello controller'

Re-raise errors caught by the controller.
class HelloController; def rescue action(e) raise e
end; end

class HelloControllerTest < Test::Unit::TestCase

def setup
@controller = HelloController.new
@request = ActionController: :TestRequest.new
@response = ActionController::TestResponse.new
end

Replace this with your real tests.
def test truth
assert true
end
end

The controller test consists of a setup method in which a controller
object, a TestRequest object and a TestResponse object are created. The
controller test case also consists of the default test method test truth. The

11.8 Testing Controllers 343

controller class, hello_controller.rb, consists of actions hello and index
and is listed below.

class HelloController < ApplicationController

def hello
end

def index
end
end

View templates hello.rhtml and index.rhtml get created in the
views/hello directory. Run the default controller test with the following
command.

C:/ruby/hello>rake test:functionals

The output generated, shown in Figure 11.13, indicates that the test
passed.

[3]command Prompt

stest Yc:/rubys/lib/ruby/gems/1.8/gens/rake-8.7.1/1ib/rake/
N t_loader.rh” “test/functionalshello_controller test.rh"
Loaded suite c:i/ruby/lib/ruby/gens/1.8/gens/rake—8.7.1/1ib/rake/rake_test_loader

Started

Finished in 1.B42 seconds.

» 1 assertions, B8 failures, @ errors

Fig. 11.13 Running a Controller Test

Rails framework supports 5 types of requests: get, post,put,head,
and delete. Request type “get” and “post” are the most commonly used
in controller testing. Add a controller test to the test case
HelloControllerTest to send a request to the index action with the GET
HTTP method. Use the assert_response assertion to test is the request was
successful.

def test index
get :index
assert response :success
end

Run the controller test. The test passes. The assert response(type,
message = nil) method is one of the methods in the

344 11 Rails Testing and Fixtures

ActionController::Assertions::ResponseAssertions module to test
controller response. The optional message parameter specifies the message
to display if the controller test fails. Response may be one of the following
types.

:success (status code 200)

:redirect (status code in the range of 300-399)

:missing (status code 404)
:error (status code in the range of 500-599)

The status code or the symbolic equivalent may be used to invoke the
assert response method. The assert redirected to(options = {},
message=nil) method asserts that the action has been redirected as
specified in the method options. The assert template(expected = nil,
message=nil) method asserts that a template was rendered. Add
assert_template and assert redirected to assertions to the
HelloControllerTest test case as shown below.

require File.dirname(FILE) + '/../test helper'
require 'hello controller'

Re-raise errors caught by the controller.
class HelloController; def rescue action(e) raise e
end; end

class HelloControllerTest < Test::Unit::TestCase

def setup
@controller = HelloController.new
@request = ActionController::TestRequest.new
@response = ActionController::TestResponse.new
end

def test index
get :index
assert_response :success
assert template "hello/index"
assert redirected to :controller => 'hello!',
:action => 'hello’

end

end

Run the modified controller test case. The output, shown in Figure
11.14, indicates that 2 of the assertions passed and 1 of the assertion (the
assert redirected_to assertion) failed.

11.8 Testing Controllers

345

‘'ommand Prompt e ;.IE'E'

C:\ruby\hello>rake test:functionals

<in C:/ruby/hello’

c:/rubys/binsruby —Ilibstest “¢:/ruby/lib/rubys/gens/1.8/g ake-8.7.1/1ib/rake/
rake_test_loader.rh" “test/functional/hello_controller_t b

Loaded suwite c:/ruby/lib/vuby/gens/1.8/gemns/rake-0.7.1/1 rake /rake_test_loader)

Started

F

Finished in 1.653 seconds.
1> Failure:

test_index(HelloControllerTest>
L 1uhy/11h/1uhyzg?m“/1 S/gr‘m*/e‘q tionpack-1.13. ?/11h/art1nn _controller/asse

to’
onpack-1.13. 2/11h/a|:l:10n _controller/asse
rt_redirecte o’
controller, :18:in “test_index’ 1:
se to be a <:redirect>. but w <28a>

rtions, 1 failures, @ errors
(.n'nmand failed with status <1)>: [c:/ruby/bin/ruby —Ilibstest “e:/ruby/lib/»...

(See full trace by r»unning task with ——trace>

Fig. 11.14 Controller Test with assert_template and assert redirected to

After a request has been sent the hash objects listed in Table 11.2

become available in the test method.

Table 11.2 Test Method Hash Objects

Hash Object Description

assigns Contains any objects stored in
instance variables of controller
actions.

cookies Cookies objects.

flash Flash objects.

Session Session variable objects

As an example, modify the hello action to define an instance variable

@msg.

def hello
@msg="Hello"
end

Modify the test index method to send a GET request to hello action.
Add assert_equal statement to assert that the @msg instance variable’s
value is “Hello”. Add a assert not nil statement to assert that the hello
instance variable is not nil, but the hello instance variable is not defined.

346 11 Rails Testing and Fixtures

def test _hello
get :hello
assert response :success
assert _equal "Hello", assigns["msg"]
assert not nil assigns(["hello"]
end

Run the controller test case. The output, shown in Figure 11.15,
indicates that 2 assertions passed and one assertion failed.

'ommand Prompt =

c:/vuby/lib/ruby/gens/1.8/gen
loader.rh" st/functionals/hello_controller_test.p
te c:/ruby/lib/ruby/gems/1.8/gems/rake-8.7.1/1lib/rake/rake_test_loader

Finished in 1.482 seconds.

1> Failure:
test_hello(HelloControllerTest) [./test/functional/hello_controller_test.rh:181:

Knil> expected to not bhe nil.
1 tests. 3 a rtions, 1 failures. B errors

rake ahorted?
iCommand failed with status <{1>: [c:/rubys/bin/vruby -Ilibs;test "“c:/ruby/lib/r»...1

Fig. 11.15 Using the assigns hash object

The Rails controller framework provides some routing assertions to
assert the routing of requests. The assert generates(expected path,
options, defaults={}, extras = {}, message=nil) method asserts that the
specified options generate the specified path. Each of the options
constitutes an assertion. For example, run the following test in the
HelloController test case.

def test_index

assert generates("/hello", :controller =>
"hello", :action => "index")
end

The output, shown in Figure 11.16, indicates that the test with 2
assertions passed.

11.8 Testing Controllers 347

[#t]command Prompt

C:\rubyshello>rake test:functionals

Started

Finished in B.671 seconds.

» B8 failures, @ errors

Fig. 11.16 Using assert generates

The assert_recognizes(expected options, path, extras={}, message=nil)
method asserts that the routing of the specified path was handled correctly
and the path generated from the options match the path. In the example
controller, the following assertion passes.

def test index
assert recognizes ({ :controller => 'hello',
:action => 'hello'}, 'hello/hello’)

end

The second argument to the assert recognizes method may be hash
specifying the request method. The following assertions contains a hash as
the second argument. The hash specifies the :path and the :method as get.

def test_ index

assert recognizes ({:controller => 'hello',
:action => 'hello'}, {:path => 'hello/hello', :method
=> :get})

end

Method assert routing(path, options, defaults={}, extras={},
message=nil) asserts that the path and options match both ways. The path
generated from the options is the same as the path specified and the
options obtained from the path are the same as the options specified. The
following assertion passes.

def test_ index

assert routing("/hello", :controller => "hello",
:action => "index")
end

The controller framework provides some tag assertions to assert tag
content returned by a controller action. The tags are required to be closed
to use tag assertions; a few of the tags such as
 and <hr> may not be
closed. The assert_tag(*opts) method asserts that the response contains the

348 11 Rails Testing and Fixtures

tag that meets all the conditions specified in a conditions hash. The options
the may be specified in assert_tag() are discussed in Table 11.3.

Table 11.3 Method assert_tag() Options

Option Description

‘tag Specifies the node type. For
example, :tag=>"table”

:attributes Specifies a hash of attributes.

:content Specifies text content.

:parent A hash specifying the node’s
preceding tag.

:child A hash specifying a child tag
of the node.

:ancestor A hash specifying an ancestor
tag of the node.

:descendant A hash specifying a descendent
of the node.

:sibling A hash specifying a sibling of
the node.

:after The node must be after a
sibling specified in the hash.

:before The node must be before a
sibling specified by the hash.

:children A hash for children of the
node.

As an example, modify the HelloController class to add a render
:text=> statement in the index method.

class HelloController < ApplicationController
def hello
end
def index

render:text =>"<div><div id='divl's></div></div>"
end
end

In the controller test case add a test that includes an assert tag
statement. The assertion asserts that the response contains a <div></div>
tag with an attribute id with value “div1”.

11.9 Summary 349

def test index

get :index

assert tag :tag => "div", :attributes => { :id =>
ndivi" }
end

Run the controller test. The output indicates that the assertion has

passed. The assert no_tag(*opts) method asserts that the response does not
contain a tag specified in the method options.

11.9 Summary

Rails testing consists of unit tests and functional tests. Unit tests are tests
run on models and functional tests are tests run on controllers. A test is run
by creating a sub class of the Test::Unit::TestCase class and including test
methods, which further consist of assertions.

12 Rails in Production

12.1 Introduction

Rails applications may be run in one of the three environments:
development, test and production. We used the development environment
for all of the chapters except the chapter on testing and fixtures in which
we used the test environment. A difference between the development
environment and the production environment is that the application code is
reloaded on each request in the development environment, which slows
down response time, but is suited for development as the web server is not
required to be restarted between code changes. Another difference is that
in development environment error reporting is enabled and caching is
turned off while in production mode error reporting is turned off and
caching is turned on. After developing and testing a Rails application may
be used in production mode.

12.2 Setting the Production Mode

The Rails environment may be set using the RAILS ENV variable. To set
the environment to production uncomment the following line in
config/environment.rb file.

ENV['RAILS ENV'] ||= 'production'

A environment file corresponding to each of the environments is created
in the config/environments directory when a Rails application is created.
The environment file for the production environment is production.rb.

The WEBTick web server may be started in production mode with the
following command, which overrides the RAILS ENYV setting.

ruby script/server -e production

352 12 Rails in Production

12.3 Rails Best Practices and Performance

In development mode all localhost requests are run as CGI (Common
Gateway Interface). WEBrick web server uses CGI. For small scale Rails
applications WEBrick web server may be suitable. Some of the Rails web
sites such as instiki.org and wiki.rubyonrails.com use WEBrick web
server. For large-scale Rails applications CGI is slow to be used in
production environment. For medium to large-scale applications in
production environment FastCGI! is the recommended and default method.
“FastCGI is a language independent, scalable, open extension to CGI that
provides high performance without the limitations of server specific
APIs.” FastCGI is supported by various web servers some of which are
Apache web server, Microsoft IIS, SunOne, and Lighttpd If you are using
Apache you’ll need the mod fcgi Apache module and the FastCGI
development kit. If you are using Apache an alternative to FastCGI is the
mod_ruby Apache module. Another alternative to FastCGI is SCGI Rails
Runner (SRR), a Ruby script that is as fast as FastCGI and easier to install
than FastCGI. SCGI Rails Runner supports Apache, and lighttpd web
servers on OSX, Linux, FreeBSD, and Win32 operating systems.

Sending files across a HTTP connection or retrieving data from a
database may increase bandwidth usage and database load to effect
performance. In production mode caching is turned on to cache models
and controllers, which are not expected to change. With caching the
cached data is used if the data has not been modified since the previous
time the data was requested. With caching models and controllers run
faster, thus, increasing performance. Caching is implemented by time
stamping the model and checking the HTTP_IF MODIFIED SINCE
header in the request sent by the browser. To timestamp a model add an
updated_at or updated on field of data type timestamp to the database
table. If the client’s timestamp, as indicated by the
HTTP_IF MODIFIED SINCE header, is older than the model timestamp
the browser is directed to use the cached copy. The controller sends an
HTTP status code to browser indicating that the data has not been
modified since the previous request.

render text '', '304 Not Modified!'
If the status code is '304 Not Modified', the browser uses the cached

copy. The controller also sends last modified timestamp to the browser
using the LAST _MODIFIED response header. Models may be cached

! FastCGI- http://www.fastcgi.com/

12.3 Rails Best Practices and Performance 353

using the cached model gem. Memcached? is a memory object caching
system for increasing the speed of web applications and for reducing
database load.

Some of the other best practices include optimizing the SQL queries.
Group operations into transactions to avoid multiple transactions. Use
filters and helpers only if required. Use logging only for the required
information. Using a debug logging level in production may increase load.
Use instance variables in controller only if the instance variables are used
in the view templates.

Using dynamic finders such as find by does make the code more
readable and easier to maintain, but slows down the query and reduces
efficiency as the dynamic methods have to be generated by the
ActiveRecord and the SQL query has to built from the dynamic finder by
the ActiveRecord.

Some of the performance considerations when developing a Rails
application are response time and security. Response time is better for
code run on the client side and security is better for code run on the server
side. Some of the common security problems are SQL injection and cross
site scripting (CSS/XSS). SQL Injection is the external modification of
SQL statements in a Rails application. SQL Injection becomes a problem
if a web application contains strings from form parameters in SQL
statements and does not correctly quote any meta characters such as back
slashes and single quotes. If you use predefined ActiveRecord methods
such as find() and save(), which do not contain any SQL, SQL Injection is
not a problem. SQL Injection is prevented by not using strings from form
parameters. For example, the following invocation of the find_all method
should not be used.

Catalog.find all "catalog id = 123 AND journal =
'#{@params['journal']}'"

Instead the following find_all method invocation should be used.

journal = @params|['journal']
Catalog.find all ["user_id = 123 AND journal = ?",
journal]

To prevent SQL Injection use “?” placeholders and correctly quote any
SQL meta characters such as “\” and ‘“’”. Another best practice in
ActiveRecord models is to use a function for a query that is to be run with
similar options in several instances in the model code. For example, if the

2 Memcached- http://www.danga.com/memcached/

354 12 Rails in Production

web application contains multiple instances of the following query create a
method to run the query.

catalogs = Catalog.find all ["journal = ?", journall

Create the following class method for the query.

class Catalog < ActiveRecord: :Base
def self.find with journal (journal)
Catalog.find all ["journal = ?", journall
end
end

The method is used as follows.

catalogs = Catalog.find with journal (journal)

Cross Site Scripting (CSS/XSS) is the code injection, including HTML
code and client —side scripts, into web pages to obtain information, such as
login information, about other users of the web page. To prevent CSS
convert HTML characters (“<” and “>") to the equivalent HTML entities
(“&Ilt;” and “>”). Use the Rails helper method h() for HTML meta
character conversions in views as in the following example.

<%=h catalog.journal %>

Various tools are available for measuring performance or Ruby on
Rails applications. Web Application Testing in Ruby (WATIR) is an open
source functional resting tool for automating browser-based tests of web
applications. Railsbench is a tool for measuring performance of Rails
applications. Ruby Performance Validator is tool for source code
performance analysis of Ruby applications. Ruby-prof is a profiler for
Ruby. The Ruby testing tools may be used to optimize the Ruby code in
the Ruby on Rails applications.

12.4 Deployment on Apache2 and FastCGl

While WEBrick is well suited for development and small-scale production
applications, for medium and large-scale production applications an
application server such as Apach2 web server that supports FastCGI is
recommended. With WEBTrick the following invocation path is followed.

1. Request is sent to the Web Server
2. Web Server forwards request to dispatch.rb.
3. routes.rb gets invoked.

12.4 Deployment on Apache2 and FastCGI 355

4. Controller gets loaded.

With Apache web server using FastCGI the following invocation path
gets invoked.

1. Request is sent to web server
2. The .htaccess gets invoked
3. dispatch.fcgi gets invoked

4. routes.rb gets invoked

5. Controller gets loaded

In this section we shall discuss deploying a Ruby on Rails application to
Apache2 web server using FastCGI.

First we need to install Apache2® web server. Install the Apache 2.0.x
version. Apache 2.2.x version does not include the FastCGI module.
Double-click on apache 2.0.59-win32-x86-no_ssl.msi file. The Installation
Wizard gets started. Click on Next as shown in Figure 12.1.

it? Apache HTTP Server 2.0 - Installation Wizard - x|

Welcome to the Installation Wizard for
Apache HTTP Server 2.0.59

The Installation Wizard will install Apache HTTP Server 2.0.59
on your computer. To continue, click Next.

WARNING: This program is protected by copyright law and
international treaties,

Cancel I

Fig. 12.1 Installation Wizard for Apache HTTP Server

Accept the license agreement and click on Next. In the Read This First
click on Next. Select the default server settings and click on Next. Select
Setup Type as Typical and click on Next. Select the default destination

3 Apache2- http://httpd.apache.org/

356 12 Rails in Production

folder, C:\Program Files\Apache Group, and click on Next. Click on
Install. Apache 2 web server gets installed. Click on Finish. Install
MySQL 5 database if not already installed. Download RubyForApache®.
Double-click on the RubyForApache-1.3.1.exe application. Select the
default destination folder and click on Next. Select the Apache Web Server
directory and click on Next. Select the Ruby installation directory and
click on Next. In the Installation Options window select the component
mod_fastcgi and click on Install as shown in Figure 12.2.

{%1- Ruby For Apache Setup: Installation Option: = |D|£|

B3| Check the components you want to install and uncheck the components
oy you don't want ta install, Click Install to start the installation.

Select components ta install: Shortcuts
mod_fastcgi
1 mod_ruby
] mysql.so

Space required: 663,0KB

Cancel I rullsaft Install System v2.07 < Back ” InFQaII I
L

Fig. 12.2 Selecting mod_fastcgi

RubyForApache gets installed as shown in Figure 12.3.

4 RubyForApache- http://rubyforge.org/projects/rubyforapache/

12.4 Deployment on Apache2 and FastCGI 357

iiga- Ruby For Apache Setup: Completed =]
@) Completed
O00000EEE0000000000000EEE00n00En
Change 100%
LI TE!
README.

Fig. 12.3 Installing RubyForApache

We need to create a rails application.

C:/rubys>rails catalog

We need to configure Apache web server. Modify the httpd.conf file in
the conf directory. Uncomment the following line.

LoadModule rewrite module modules/mod rewrite.so
To load the FastCGI module, add the following line.

LoadModule fastcgi module modules/mod fastcgi.so

In the httpd.conf configuration file we need to modify the
DocumentRoot directive. The DocumentRoot directive is the following
before modification.

DocumentRoot "C:/Program Files/Apache
Group/Apache2/htdocs™"

Modify the DocumentRoot directive to the following.
DocumentRoot "C:/ruby/catalog/public"

We also need to modify the following line.

<Directory "C:/Program Files/Apache
Group/Apache2/htdocs">

Modify the line to the following setting.
<Directory "C:/ruby/catalog/public/">

358 12 Rails in Production

We need to add the following VirtualHost element to the bottom of the
httpd.conf file.

<VirtualHost *:80>
ServerName rails
DocumentRoot "C:/ruby/catalog/public"
<Directory "C:/ruby/catalog/public/">
Options ExecCGI FollowSymLinks
AllowOverride all
Allow from all
Order allow,deny
AddHandler cgi-script .cgi
AddHandler fastcgi-script .fcgi
</Directory>
</VirtualHost>

After making modifications to the httpd.conf file we need to restart the
Apache2 web server.

We also need to modify the Rails application for FastCGI. Replace the
cgi dispatcher with the fastcgi dispatcher. In the public/.htaccess file
replace the following line.

A

RewriteRule " (.*)$ dispatch.cgi [QSA,L]

The replacement setting is shown below.

A

RewriteRule " (.*)$ dispatch.fcgi [QSA,L]

We also need to comment out the Apache options in the .htaccess file
with #.
#AddHandler fastcgi-script .fecgi
#AddHandler cgi-script .cgi
#Options +FollowSymLinks +ExecCGI

The dispatch.fcgi file should contain the path to the ruby application as
the first line.

#!c:/ruby/bin/ruby
We need to add a new host for the Rails application. To the

C:\WINNT\system32\drivers\etc\hosts file add the following line at the
beginning of the mappings.

127.0.0.1 localhost

Invoke the index.html page with the url http://localhost as shown in
Figure 12.4.

12.4 Deployment on Apache2 and FastCGI 359

‘@ Ruby on Rails: Welcome aboard - Microsoft Internet Explorer - =10l x|
Fie Edt View Favortes Tools Help ‘-
weack v =% - @ [A | Qoearch (aiFavorres Fredin (B | BN D= - H
Address [2] http:fflocalhost =] ee ‘links »
,—:
Welcome aboard = [——
You're riding the Rails!

About your application’s environment

Join the community

Ruby on Rails
Official weblog
Mailing lists

1. Create your databases and edit fff@ﬂé"

config/database.yml -
Bug tracker

Getting started

Here’s how ta get rolling:

Rails needs to know your login and password
Browse the

: documentation
2. Use script/generate to create your

madels and controllers ’
Rails API

Tn see all availahle nntinns. rn it withaut narameters Ruby standard librar it

Al | »
|&] pone [| BEiocainwanee

Fig. 12.4 index.html

N

Next, we shall create scaffolding for a MySQL database table. First,
we need to create a database table ‘catalogs’ with the following SQL
script.

CREATE TABLE catalogs(id VARCHAR (25)
PRIMARY KEY, journal VARCHAR (25) , publisher
VARCHAR (25) ,
edition VARCHAR(25), title Varchar(255), author
Varchar (25)) ;

INSERT INTO catalogs VALUES(1l, 'Oracle Magazine',
'Oracle Publishing', 'July-August 2006', 'Evolving
Grid Management', 'David Baum') ;

INSERT INTO catalogs VALUES (2, 'Oracle Magazine',
'Oracle Publishing', 'July-August 2005', 'Tuning Undo
Tablespace', 'Kimberly Floss');

We need to create scaffolding for the ‘catalogs’ table with the scaffold
generator.

C:\ruby\catalog>ruby script/generate scaffold catalog

The catalogs list may be displayed with the URL
http://localhost/catalogs as shown in Figure 12.5.

360 12 Rails in Production

3 Catalogs: index - Microsoft Internet Explorer o =] 3
Fie Edt View Favorites Tools Help [
Back - = - (D[] A | Qoearch Garavortes @media B | By Sb =1 - 5]
Address |-Q'|http:ﬂlncalhostfcata\og; :_l PG |L|nks 22
=
Journal Publisher Edition Title Author
Oracle Oracle July=-gugust Evolving Grid . 5
D. h Edit D
Magazine Publishing 2006 Management avid Baum - show Edit Destray
Oracle Oracle July-august E Kimberly g
% i Undo Tabl how Edit Dest
Magazine Publishing 2005 Hning Hndo TbIespace gypeq OW S aesy
New catalog
=i
|&] Done [[[BE Local intranet y

Fig. 12.5 Listing catalog entries

12.5 Rails Web Hosting

In this section we shall create a Rails application and host the application
on a web site using a Rails web host. Various Ruby on Rails web hosts® are
available. Any of the web hosts that support Rails may be used. We shall
be using the AVLUX web host. Join a hosting plan provided by AVLUX.
Specify a domain name. We shall be using the domain railscrud.com.

Select the checkbox Ruby on Rails in “Your custom domain choices.” as

shown in Figure 12.6.

5 Rails Web Hosts- http://wiki.rubyonrails.org/rails/pages/RailsWebHosts

12.5 Rails Web Hosting 361

h AVLUX 5 Subvcrsion Hosting _Trac, WebSYN = Ruby en Rails Hosting i: Managed Dedicobed Server Microsolt Intemet Bxplorer =12]x
Hls Ede wew Fsentss faok Hep |
Ehuk -+ 4+ - @[A Dseah GdFevabes EMedz 8| By S S - 12

Addres (] e e retcat ph =] @60 |Lins 7|

0

Complele Web Husting Plans
Featuring Ruby on Rails
and Subversion

ORI LS

:: Premium Hosting Plans ::

All premium plans include Subvsrsion repositoriss, offsite backups,
Ruby on Kails, a full complement of languages,
trea domain name renovral, and more...
B Reseller Plans are available.

select a plan and click the subscribe button to set up hosting

Enter vour domain name in the "Name" box

Hosting Plans RGN 1iDionze | NSiker [1Gold 1-Platinum
it dnmain chiices: Copper Grorize Slver Sod Platinur
Rails B cupvarsion ™ Trac T imstik L =] Le] o o
I Javal’
P Sucsive Haw
[Fres 24 hour getup | » v v v | » El
@ || i

Fig. 12.6 AVLUX Hosting

You shall receive a AVLUX domain setup information kit, which
includes the links for the Domain Admin Control Panel and Database
Admin Tool. Also the FTP hostname, logon and password are provided.

First, we need to create a Ruby on Rails application that is to be hosted
on the Rails web host. We shall be using a CRUD application. Create a
rails application, catalog.

C:/rubys>rails catalog

We need to modify the config/database.yml configuration file to specify
the database as test.

development:
adapter: mysqgl
database: test
username: root
password:
host: localhost

We need to create a MySQL database table ‘catalogs’ with the
following SQL Script.

CREATE TABLE catalogs (id VARCHAR (25)
PRIMARY KEY, journal VARCHAR (25) , publisher
VARCHAR (25) ,

362 12 Rails in Production

edition VARCHAR(25),
Varchar (25)) ;

title Varchar(255), author

INSERT INTO catalogs VALUES(1,
'Oracle Publishing', 'July-August
Grid Management',6 'David Baum') ;

'Oracle Magazine',
2006"', 'Evolving

INSERT INTO catalogs VALUES(2, 'Oracle Magazine',
'Oracle Publishing', 'July-August 2005', 'Tuning Undo
Tablespace', 'Kimberly Floss');

We need to create scaffolding for the database table ’catalogs’ using the
scaffold generator.

C:\ruby\catalog>ruby script/generate scaffold catalog

Next, we shall deploy the rails application on the AVLUX web host,
which uses lighttpd web server and FastCGI. AVLUX provides the
MySQL database for Rails applications.

First, create a MySQL database and a database user account. Login to
the Domain Admin Control Panel. Login to the Domain Admin Control
Panel with the logon and password included in the setup kit.The Domain
Admin Control Panel gets displayed. Select the link Home. To create a
database user account select the Databases icon as shown in Figure 12.7.

Fig. 12.7 Selecting the Databases

ZRrlesk 8.0 Microsolt Tnkernct Explorer E L |
Hia EdR vew Faontx look Hop |
ok - & - @D [A Dscach [Fevotes Fredo A | By S = H
Ackrezs [] htes: s ver ek 04437mes eUs ssce=han Lo =] @0 [Line ”|

-~ _—URIEL @ Log aut
—AVLUX
» General = 1=t
[Deslcicp @ ® Domain railscrud.com
4 Homne
Damain
» Systom
el =2
O sessens x o2 Q
2 Leg out = -
FRepart Lirnks Dorain Aliases Domar Back up Custo Buctors
» Help & Support G
| Help Desk g
@ v
=] o] ¥
Ml DhS Daab|Latabzsas]e tificetes Tomeat
Hosting {(Demain has physical hosting on IF 75.126.22.3) -
é $ (@ P = [J £
Setup & Webl_oss Subdowsine Direchores Srcrgmous ST LogManager FlsManager S3H Terming
% & =,
L ¥ =l B (3
Webdrin FposaL framab Ogplization¥allt Sk Preview
brin
Inta
Resource used Allowad
Velidity perud Mar 31, 2007 Undirniled
Disk space 1oeme 250 M
s irttiz 105 M/MoEh Ly et
J Eubdomains 0 Unlimited J
T [|8 i i

12.5 Rails Web Hosting 363

We need to select the Add New Database icon as shown in Figure
12.8.

Fle Ede wew famvontss Took Hep
ook - = - @[A @seonh (arevortes Gheds A | B S 2]
Aakdrezs (2] bt hse-ver ot Q42 fpr e cus_page—an_up T
_~URIEL T ¥ituozzo, | g og ot
(/ VL ux Virbualizatio
» General — railsorad.cor >
[T Deskicp = =
W o Databases for domain rallscrud.com &8 v
» System Toals
O sessons
2 Log ouk
/! Andd M
* Help & Support Database
[l Help Desk
® rein
Mo D
Click £ a3 2 rew
database
3
& v
|
(@i INE R

Fig. 12.8 Add New Database

Specify a database name, ‘test’ for example, and select Type as
MySQL. Click on OK as shown in Figure 12.9.

364 12 Rails in Production

J Plesk 8.1.0 - Microsoft Internet Explorer

File Edit View Favorites Tools Help
wBack = - @ 1] | Qoearch [GiFavorkes Fmeda F| Gy S =1 H
ml@ https:jju-server.net:8443/7previous_page=login_up :l @60 ‘LWS”

_—URIEL Py right 1999-200¢

#8, Discover Virtuozzo,

C’”AVLUX SWsoft, Inc. All rights reserved | &@ Server Virtualizaton | 2 09 9ut
Bl anan = railscrud.com = Databases »
[T Desktop =
Ffaiy Add New Database (& (&)
» System Add new datab

&Z Sessions Database name *
te st
9 Log out
Tyee [mysqL -]

iniicip: s unpant Database server Local MySQL server (default for MySQL)

] Help Desk

@ Hels Requined fiaids $ [
Enter new database name

and click to add.

5] [B [@wene 7
Fig. 12.9 Adding new database

The database test gets created. Next, create a database user. Click on
Add New Database User as shown in Figure 12.10.

Zj Plesk 8.1.0 - Microsoft Internet Explorer = .-_I.EIEI

Fle Edt Vew Favorites Tools Help |
EBack - = - @ 2] A Qoearch GiFavorkes Eredia B | By S =1 =)

Address I@ https: ffu-server.net:8443{7previous_page=login_up ;I @Gn |Lir|ks 2

_—URIEL © Copyright

e%, Discover ¥irtuozzo,

- L‘VLUX SWsoft, Inc. All rights £® Server virtualization “ Log out
Biciensnal = railscrud.com > Databsses > d
[T Desktop . .
o Users for database test on domain railscrud.com
> System
- . O Information: The database test has been created.
L7 sessions
D Log out Tools
P » Help & Support I
!l Help Desk
@ Help , DB ‘WebAdmin Dd.ﬂidﬁ%m
Click to add new database Database viere
user.
Mo Database users

-

>[4l

| 3
[Eoere [1[5 [mremet Z
Fig. 12.10 Add new Database User

12.5 Rails Web Hosting 365

Specify a username and password and click on OK as shown in Figure
12.11.

Z} Plesk 8.1.0 - Microsoft Internet Explorer - =100x]
File Edit View Favorites Tools Help |

&bk » = - @[3 ﬁ‘@saam\h (ilFavorites (EfMedia 3‘%-9@@
Address I@ https:{ju-server.net: 8443 ?previous_page=login_up j @G0 ‘Linls 2

/UE{EL © Copyrigh

> | @8, Discover Yirtuozzo
el !‘VLUX SWsoft, Inc. Al righ] I T2} Server virtualization | 2 Leg out
»General = railscrud.com > Databases > test >
Deskt i
EE i The database user addition
Home i
oo in test database
» System
R Datab user
7 sessions
 Log out Database user name * [dvohra—'
» Help & Support 0ld password Mone
1] Help Desk | New password * [Focersar
@ Help ! Confirm Password * [rwwmwwr |

Click to change password.

[@pene [[18 [nkernet 4
Fig. 12.11 Adding new database user

A new database user gets created as shown in Figure 12.12.

366 12 Rails in Production

Z} Plesk 8.1.0 - Microsoft Internet Explorer = (=] b3
Fie Edt View Favorites Tools Help]
Eoack - & - @[3 A | Qoewch [Ggravortes reda B | By 3 = E
Address [] https:ifu-server.net:8443(7previous_page=lgin_up =] P= |""'ks 2
__URIEL o8, Discover Virtuozo,
/ ﬁVLUX SWsao £ Server Yirtualization & Loy aut
iGabansl railserud.com > Databsses > =
[T Desktop " ol
e Users for database test on domain railscrud.com
o
» System Tools
1 Sessions &b
+) Log out l
DB WebAdmin Add Mew
Help & Support Database User
'] Help Desk
@ Help b users
all users of this database are 3
listed on this page.
1 Database users total r
s
™ dvohra L
3 ST
1 Database users total L=
5l | .
[Eloene [178 [memet 7

Fig. 12.12 New database user

We shall create a database table, ‘catalogs’ in the test database. Login
to the Database Admin Tool using the username and password created.
Select the Databases link in the Database Admin Tool as shown in Figure
12.13.

12.5 Rails Web Hosting 367

oft Internet Explorer

Edit View Favorites Tools Help

@m-qvg mlﬁsggr;h & Favorites GM! Gl%'ég-@

@ o privileges
'Shnw MySQL runtime information

[%jshow MySQL system variables @
ByShow processes @
Charadar Sets and Collations
EStorage Engines
e
#Export
Ealmport

HLog out B

bphbn il

M:i’ml@ https: fju-server nekimyadming :I P ||"‘ls =
P F
MySQL - 5.0,.27 phpMyAdmin - 2.8.0.1 —

P Protocol version: 10 P MySGL dient version: 5.0.27

JServer: Localhost via UNIX socket P Used PHP extensions: mysql

P User: duohra@localhost Frangusge 8

[HMysQL charset: UTF-8 Unicode (utfs) [Engiisn .E

MySQLmnnedicn eollation: ‘Thems / Style: lm
utf2_unicode_cl] e Eehpryadmin documnentation

‘fhCreate new database: @ @B8show PHP information
fofficial phpMyAdmin Homepage
» [ChangeLog] [CVS] [Lists]

E hittps: fju-server netfmyadminjserver_databases, php?

Fig. 12.13 Databases

A list of available databases gets displayed. Select the test database as

shown in Figure 12.14.

;I @G0 |Lits"

& localhost

%P Databases

information_schema uv 8 _genexal_ci
test lavinl swedish_ci L]

‘htreate new database: @
i No privileges

1l

el isa | sratus | vanamies | Hcharcers |26 engines |

. Databage - Lellation Imm..m..m_mn

0 0 Bytes 4.0 KB
0 0 Bytes 0 Bytes

Mm—a&—m S lvtes, L0, K8 28, K

4.0 KB
0 by

&) httpstju-server netimyadminjindex. php?Bich=test

Fig. 12.14 Available Databases

368 12 Rails in Production

Specify table name as ‘catalogs’ and number of fields as 6 and click on
Go as shown in Figure 12.15.

au—s(-rv(-r net / localhost / test / | phpMyAdmin 2.8.0.1 - Microsoft Internet Explorer i

e bbb S SN 3 i
Bk - S - @ [A) o} | Qsearch [gFavortes Priedo P |- S = - H

Addess [(€) htps:/u-server.netjmyadmn] =] @co |unks
&3 localhost » @ test

[structure

No tables found in database.

EB create new table on database test

[&]Done
Fig. 12.15 Creating Database Table

Specify the fields as id, Journal, Publisher, Edition, Title, and Author.
The field names and types should be the same as those used to create the
scaffolding for the ‘catalogs’ database in development mode. Specify the
id field as NOT NULL and a primary key. Click on Save as shown in
Figure 12.16.

12.5 Rails Web Hosting 369

EE— = I
[| [rrew = B] T
e T |
I
[
I

fon | v = B

VARG AT

I
]
ﬂ

Bl BB EEL

[aston [orecer = o
Lokl wilpmam Eming 8 Lallaline,

IF fisid type is "enum® © Flamsa anter the ua uas using this format:
i M o o ol e e e RO
e tah

*Fer defauls valugs, please enter ust 3 3 ngle uzlue, uithout backslzsh escasing er quetes. using this farmat: &

azs snter the valuss for Lansfonnatian oelions iing s fomst ‘<L
£ .

e hzed o b a badislanh (%) or 3 gl Jocle e, prevede i aill @ bedkolash Cor eranmpls Ny

e

Fig. 12.16 Creating Table Columns

A database table ‘catalogs’ gets created. Click on Insert to add data to
the ‘catalogs’ table as shown in Figure 12.17.

1 Microsoft Inbernet Enplorer =12

ble bk ves cmionte lodk bep
ok - = @A A Boeach Gifwoies Gredie F|(H- S5 H
Addreas [] hitps: s e netimyaami

& localhost - & test + E catoloas

| iiBrouser tsstructure | = sou |2 isearn [\-[r:i.n & cxport | Fimport ~=.u_.m.um;

“abla catalazs

20y

it
Toublisher mnn »-n:nmm
Taditcn 1N

it
SRIAARY KEV(5]
3 ENGINE = MYESAM |

!
z
E
|

— 1
r] w ntiza] B # ¥ E @ &
joumal sschan25) lstnl_rusdish_d Yar ML m 2R mE
[F] mublisher sorchoni25) 1stn:_cucdizh Yar L m 2 % O om E
D edition cacha25) lstni svedich & Yer L B 2% B m
[F] ute varcharf255) lstnt _svedish_d Yes WL E 4 % B @ E
author sarchan25) lstni evadish o e mar E 2 R 5 o)

T Check AL/ Unchook Al rith ratested.

7 REIEm

Sy Pt visw oF Relatior view o wr(F! table sticmurs @

8% Add T Hield's ALEND of Tablz |© AL Beciy 12 o Tabde it [[

Rovi Statistics
ufmtaams, Jyse Cardinalite, Action, Sistements, dalis,
HRIMARY ERIVERY | Type | Usaue
P — i — . —

para U et

[i
e k=t h et = R

Fig. 12.17 Adding Data

370 12 Rails in Production

Specify values for the different fields to create two rows in the
‘catalogs’ table as shown in Figure 12.18. The field values should be the
same as created for the test database when creating the Rails CRUD
application in development. Click on Go.

raontse 1ok Hep

@ QGeach FaFevotes @tvede H| By S -
wradirin]

3 localhost + & test + [catalogs

=] @60 | s 7|

varchai(2s) | = O] E-
varcha(as) [= O] F-
rhui2s) | = [T
1255 | = [
sarchaas) [Bl E N I —
L Hyll, talue,
int{25) ,ﬁ 3
i ehar(25) =[] lowsewepezne]
" L) 2 O] lowserwsm]
EEEED = O
ez | = T [vwio tabizsae
authar varchar(23) | E O] Frbabred]

[remarmemn =] e [pravmapege 7
.

N

5
Fig. 12.18 Specifying Column Values

Two rows of data get added as shown in Figure 12.19.

12.5 Rails Web Hosting 371

asoft Inkemet Enplorcr

C D[A Qoearch FEMevories @ireda | 2

L
& localhost » & test - EH catoloas =

[Tstructure = earch [cotnsert | @ ot |G mport

-3 =g

el | Cpublisher |, adiion ™, Sds" Cawthar)

L '0azle FUBlishing’ JulyAuaUsE 2005 Euoliing Citd Mansasment’ 'Dvd Baum

©racle Fublishing! July-August 2007 Tuning Ude Tablespace’ Wi barly Toass’

ntzE] H/KE @@ S
varhal(231 Jalind_swedishd s WULL S RE EME

ublisher | sarchar(aay |[lacnd_swedizh 1 vac mirs H S RE ® @ E
edition varshar2zl Izwni_swedizh a Ne@ o MLLL B &« ® B @ @
title sarchan 255) latin_swadish_d Nax | WRHL ms R E @D
[F] author orcharizsy lstn Var ML M 4 % O E E

ih ar
t chack allr uncheck Al aes e [H 2 3R] [H B EH E

By brot visn 58 Relacior view € Froposs tabl

Bt icid 1| sialdir |6 b nd of vabia [€ b ve

PRIMARY FRIFARY

Index .04 Fuec Collation

o D
Fig. 12.19 Rows Added

A Rails application structure is pre-installed for the web host. We shall
be uploading the scaffolding files created for the catalogs table to the
default Rails application. Click on File Manager in the Domain Admin
Control Panel as shown in Figure 12.20.

372 12 Rails in Production

viicroseft Internet Explorer
Fovarles Tooks Help
SEk - = - @) A | Qseerch [ilFavrites resa (3| By 5 = 5 |
2ddress [I] hitps: lurserver neti 8443 5previous_pege=login_up = @ | ?|
_—URIEL © 932006 | @8y Discover Virtuozzo, | g
= BVLUX SWsoft, Ine. Al sservad | (o} Server Virtualization. | © 99 out
> General =
[Desteop @ ® Domain railscrud.com
4 Home
£
Domain
» System
(3 sessions = - ﬁ ﬂ
2 Log out == - A
Repoie Umis Domanalases Domain Bkie CustomButons
TR Admiristrator
2] Help Desk Services
@ relp
. B
Manage your files and = ’:‘SJ
directories, Mail DS Databases Certificates Tomcat:
Hosting (Doman has physical hosting on 1P 75.126.22.3)
4) 3
& S 2 = [=B
Setup. okl WebUsers Subdomains Directorles Arcrumous P LogManager ik o S5H Teminal
e = = L k!
[5 & &
FP Wiebatin Cratab Apphcation Vauk Site Preview
Info
Resource [Used [anlowed
valdity period var 31, 2007 Unimites
Disk space 1.04 B 250 M8
38 swsoer
Traffic 1.04 MB/Month 1.95 GB/Month
| Subdomains 0 Unlimited &
[&]pane

[8 [kermet
Fig. 12.20 File Manager

The directory structure for a Rails application is installed in the rails
directory. We shall be uploading the Rails application we created to the
rails folder. Click on the rails folder as shown in Figure 12.21.

12.5 Rails Web Hosting

373

ZPlesk 8.1.0 Microsoft Inkernek Explorer. :

e

tok elp
ek - & @D (A A Qoearh FErevoies @reda 3| - S F

(3 ssssions
 Lag oure

[+ Help & Support.
7 el sk

8 vl

menage yeur Fles and

[E3prIEE =] Y

Namizer of eniriss per pag

2

5 100 4L

Aublreses [7] horps: s met 44 TpeenOU_page=Ccon_in =l Fa e
_-URIEL © Copyright 2935-2005 cver Virtuezzo, | e
Swsull, Tow., Al ghits reem vl ot Virtalisalin
<ZAVLUX
inEanosl railscrid com > =
5 Desktup - e
& vome File Manager 3 &
» Bystem Files

divechizries on this pags, [E[= Toals date User | Grown |
B =] [T Mar 3, 2007 railserud psasary
(m]] P ps rex Mar s, 07 rect psaary
=] ¥ rgr Mar 23, 2007 roilsercd paassrr
O % s e Mar 2%, 2007 roct prassrr
(=l ¥ P £ e Mar 23, 2007 rect prasser

il PR | P Far 25,7007 1ot ront
(ml¥ 4.00ke H Mar &3, 2007 railserud psasery
OB ERIT Mar 75, #0017 raileend psasary
Of 4.00k8 H Mar 23, 2007 roct peaszry

0 ERLTER Har 25, 007 reibwrud rout
[| 4.00kB °F Mar 23, 2007 reilsorud psassre
wncnic O PRI Mar 25, 2007 reilserud psassry

O annen o v e re nar 7 g wer sy |
14 s o e 5 T T T S T EN YT

Fig. 12.21 Selecting Rails Application Folder

A Rails application directory structure gets displayed as shown in Figure

12.22. Click on the app folder and subsequently the views folder.

lesk 8.4.0 Microsoft Internct Explorer
bl b wen Fmwonts fok Hep
Etack - = - @A Al QSeah FFevoites Frede | By S = E
Ao [] s se-ver ot 40 2 2 poe—lan D =] #oo |uns ¥
__URIEL T e
(’ nVLUx 5= Virbual zatio:
iisanecal railecradenn > =
[T Daskizp —
&
& rome File Manager @ &
» System Files
@ sessons
S Legoue [(] (g (B () (A :
» Help & support
L] Help Desk [—_ !
@ veln —
A5 files and dir=tories in il oo 4 reils Fatal Mumber of mobries per pag=: 1125 110 ALL
Mzrags rourtiles ard T
irchr s Hhicspae by v fsemes 0 sie Tools Permissions | Meditication date | User | Group
[4.30 kD Mar 23, 2007 ract raat
0@ aw 4.00 kB ez Mar 23, 2007 railsirul prav
© [comoorents 4.00 kB 5 pee e Mar 23, 2007 railscruc precln
A confo 430k 1F W (=2 (X Mar 23, 2007 railscruc psacln
da ann ke 5 rwg res et Mar 23, 2007 railsonic psanin
oz a0 ke 1 Yy ey ey Mar 25 2uns railseruc psaeln
iib amke e e Mar 23, 2007 railseruc pracin
I amue rwe e e Mar 23, 2007 railecruc pescin
uole 400 KB F PR en Fex Mar 29, 2007 rallscruc psaein
seri 4.00 kB Mar 23, 2007 railscruc psaein
ey amnkr ©F Mar 73, 2007 ailarin e
& swscer e annke ©F Mar 23, 7007 railscruc psacn
vandar amun ©F Mar 33, 707 ke peadn ||
& I & e

Fig. 12.22 Rails Application Directory Structure

374 12 Rails in Production

We need to create a directory for the view templates of the Rails
application catalog. Create a ‘catalogs’ folder in the ‘views’ folder by
selecting Add New Directory as shown in Figure 12.23.

ZhPlesk 8.0.0 Microselt Inkernct Explorer

b Ede ven Faontss fock Hep

ok - & - @ [(4 Dsearh [Erevoes Witede | - 2 51 5
Aoz (] otps: phrse e et QMDY e Dace=To0n_Lp

=] @ |uns |
_—URIEL e . rVirtiozzo, | o |0 o
il #'soft, In; LU i Yirtual zatin
—AVLUX
- General railscrud.com >
] Dslekep =
T
Hirore File Manager B =
» Gystem Files
@ seszons
D Log out (3¢ (&) [(1] (23 (B -
» Help & Support] Hew Tireciory
] Help Desk | —T-X 10
@ Help —
2 files A diFecories i Falkics il oo £ lE / apd f views 1568l Nurnber of wniriss per pege: 10 75 100 AL
Click to oroate a now
dirsctory. |7 [semes| siee Teols | Permissiens | Maditication dote [User Group
[< Q0 KD

7 ralseud psech
(wls BT =0 kp Bl

2 files and cirectories in ra s £1ails £ 400 ¢ views tetal

talsw ol pseu

Aurmber of enirizs per pegs: 1025 100 AL

[@ire

L I8 vt
Fig. 12.23 Add New Directory

Specify a directory name and click on OK as shown in Figure 12.24.

12.5 Rails Web Hosting

375

~zvontes

tok elp

5§ Plesk 8.1.0 Micrusoft Inkcrnct Explorer

Hle bde es

E BE

cliex ta creste # nthe current
ircctery

e

ek - & @D (A A Qoearh FErevoies @reda 3| - S F
Aublreses [7] horps: s met 44 TpeenOU_page=Ccon_in =l Fa e
_-URIEL © Copyright = virtuezzo, | 4
(’ "VLUX SWsoll, Too, Al -Tghts irkualizatin D Logout
inEanosl railscrd.cor >
) Deskinn . -
r®)
Pl File Manager =TS
Create new dirsdtory in e ssrulon £ als son / views
|k System
Directory creation
(7 seesions v
9 Log ou Directory nome * [y
| Help & Support
o * Reequired fislds e R
] elp sk R
0 Help)
Fnrer the dirarrary name and

Fig. 12.24 Adding new directory

BT

A ‘catalogs’ directory gets created in the ‘views’ directory as shown in

Figure 12.25.

Hle ke wen Faunts

3 Mesk 8.0.0 Microsolt Internct Enplorer E

tock rer

E

back - = - @ [H A Doeorch GlFevortes Freds 8| By S S 1]

& swsce

&

Fig. 12.25 catalogs directory

Ao [] s se-ver ot 40 2 2 poe—lan D =] #oo |uns ¥
__URIEL e
irbual zatio as
AVLUX
Jadieneodl railecradenn >
[T Daskizp
Wime File Manager
| b System Files
@ sessons
D Log o (] (& [&) (B (D (@] “
| » help & support
g Help Desk | —
Help
5 films A0l v dories in talsora o £ ok £ g £ oxisns tolsl Murnber of enfri=s per pege: 10 75 100 ALL
Mzrags rourtiles ard
dirnchorins 7 this pags. Clrfseames | siee Taols Permissions | Modification date |User Group
[<00 KB Mar £3, 2007 ralscud psach
M uetauus =goke M A= Mar 31,2007 ralswad psadli
L =R PP sonke 5 e Mar 21, 2007 ralsead paech
3 (il o dineduries in caborwlo £ il £ g f vises (ol Wurner

o elrizs per ey 10 25100 AL

B [i

376 12 Rails in Production

Next, upload the files of the ‘catalog’ Rails application that we created
to the ‘rails’ folder on the host using ftp. Specify the command ftp
hostname to login to the host as shown in Figure 12.26.

["lcommand Prompt =

IC:N\>ftp railscrud.com

Fig. 12.26 FTP Command

Ftp gets connected to the railscrud.com host. Specify username that is
provided in the setup information kit, specify the password and select
Enter. User gets logged in as shown in Figure 12.27.

[*lcommand Prompt - ftp railscrud.com

IC:N\>ftp railscrud.com
Connected to railscrud.com.
226 ProFIPD 1.3.0 Server (ProFTPD)> [75.126.22.31
User {railscrud.com:{noned>: railscrud
d required for railscrud.

railscrud logged in.

Fig. 12.27 User Logged In

List the directories in the host using the dir command as shown in
Figure 12.28. The rails directory in which we shall be uploading the Rails
application also gets listed. Cd to the rails directory with the cd rails
command.

12.5 Rails Web Hosting 377

_ol x|
C:~\>ftp rai ad .
Connected to railscrud.com.
220 ProFIPD 1.3.0 Server (ProFIPD)> [75.126.22.31]
+ (railscrud.com:{none> railscrud
word required for ilscrud.

Passuword
230 User railscrud logged in.
ftp> dir
2080 PORT command successful
158 Opening HSC]I mode data connection for file list
druxp—x——— railscrud psaserv 4096 Mar 24 UU 57 anon_ftp
d»uxk‘—xr—x root psaserv 4096 Mar 24 @ hin

=X railscrud psaserv 4096 Mar 24 BB:57 cgi-bin
root ¥ 4896 Mar 29 14:22 conf
root 4896 Mar 24 @i
root root 4096 Mar 24
railscrud p 2 57 httpdocs
zallsc:ud p 57 httpsdocs
root
railscr ucl luut
railscrud psaserv 40
railscrud psaseru 4096 Mar statistics
root psaserv 4896 Mar H hdomains
root root 4896 Mar 7 var
root psaserv 4896 Mar 29 B1:21 weh_users

er complete.
5 0

ftp: 960 bytes received in B.084Seconds 24.80Khytes/sec.
ftp> cd rails
ZSB)CI-FD command successful
ft

[y

drwxe—xr—x
dr—xp—x———
druxr—xr—x

2
2
2
2
3
6
4
2
2
4
7
2
3
3

Fig. 12.28 Rails directory on the web host

Cd to the local directory c:/ruby/catalog/app/controllers using the
following lcd command.

lcd ruby/catalog/app/controllers

On the host cd to the controllers directory using the following cd
command as shown in Figure 12.29.

cd app/controllers

378

12 Rails in Production

Command Prompt - ftp railscrud.com

successful

1568 Openlng ASCII mode data connection for file list
d

5
2
2
r
2
3
6
4
2
2
14
?
2
3
3

—XP—X
226 Transfer co
226 Quotas off

railscrud psaserv
root psaserv
railscrud psaserv
root psaserv
root psaserv
root root
railscrud psaserv
railscrud psaserv
root psaserv
railscrud root
railscrud psaseruv
railscrud psaserv
root psaserv
root root
root psaserv
mplete.

4096 Mar 24 G

57 httpdocs
7 httpsdocs

4096 Mar 24 @

4096 Mar 24 @ 7 statistics
4096 Mar 24 B0:57 subdomains
4896 Mar 24 00:57 var
4096 Mar 29 B1:21 web_users

ftp: 260 byge: received in 0@.04Seconds 24.00Kbytes-/sec.

and
fFtp> led ruby
Local directory

successful

now C:iNruby.

ftp> lcd catalog

Local directory now G:isruby\catalog.

ftp> lcd app

ctory now C:Nruhy\catalogN\app.

1
Ftp> led contro

1llers

Local directory now C:\ruby\catalegh\app\controllers.

ftp> cd appscon
258 CWD command
ftp>

trollers
successful

Fig. 12.29 app/controller directory on the web host and local rails application

Upload all the controller ruby scripts from the catalog/app/controllers
directory to the rails/app/controllers directory using the mput command

mput *.rb as shown in Figure 12.30.

Command Prompt

RT comman

tp railscrud.com
d successful

g ASCII mode data connect10n4for file list

A —Xr—x
“XB=X

[

railscrud psaserv
root psaserv
railscrud psaserv
root psasepru
root psasery
root root

rai rud Py
railscrud psaserv
root psaserv
railscrud root

railscrud psaserv

4896 Mar 24 00

4896 Mar 24 0 7 cygi

4896 Mar 29 14:22 cnnf

4896 Mar 24 BB:57 error_docs
4896 Mar 24 00:57 etc

4896 Mar 24 7 httpdocs
4896 Mar 24 7 httpsdocs
4896 Mar 24 88:57 p
48%6 Mar 24 7 private
4896 Mar 24 0 7 rails

4896 Mar 24 @ 7 statistics

railscrud psaserv
root psasery
root root
druxr—xe-x root psasery
226-Transfer complete.

226 Quotas off

ftp: 968 bytes received in B.84Seconds 24.00Khytes/sec.

sful

4096 Mar 24 @@:57 subdomains
4896 Mar 24 @@0:57 var
40896 Mar 29 81:21 web_users

WL AT NINLA YW NN NN

Local directory now G:Nruby.

ftp> led cataloyg

Local directory now C:\rubyscatalog.
ftp> led app

Local directory now C:\ruby\catalog\app.
ftp> lcd controllers

Local directory now G:iNrubyhcataleg\appscontrollers.
ftp> cd app/controllers

250 CWD command successful

ftp> mput *.rbh

mput _application.rh?

Fig. 12.30 mput command

12.5 Rails Web Hosting 379

Select the files to upload when prompted for each file as shown in
Figure 12.31.

4896 Mar 24 @80:57 pd
2 railscrud root 4096 Mar 24 @8:57 private
railscrud psaserv 4096 Mar 24 BA:=57 rails
? railscrud psaserv 4096 Mar 24 B0:57 statistics
root erv 4896 Mar 24 @ 7 subdomains

3 root 40896 Mar 24 @ 7 var
PUXE X 3 root psaserv 4996 Mar 29 B1:21 web_users
226-Transfer complete.
226 Quotas off
ftp: 968 bytes received in B.B4Seconds 24.BBKhytes/sec.
ftp> cd rails
258 CWD command successful
ftp> led ruby
Local directory now C:\rubhy.
ftp> lcd catalog
Local directory now C:\ruby\cataloy.
ftp> lcd app
Local directory now C:isrubyhcatalog\app.
ftp> lcd controllers
Local directory now C:iNruhy\cataloghNapph\controllers.
ftp> cd apps/controlle
2568 CWD command ul
ftp> mput *.vh
mput application.r»b? y
20@ PORT command successful
158 Opening BINARY mode data connection for application.rh
226 Transfer complete.
ftp: 334 bytes sent in B.88Seconds 334000.080Khytes/sec.
mput catalogs_controll h? y

command succ ful

158 Opening BINARY mode data connection for catalogs_controller.rh
226 Transfer complete.
;tp; 1145 hytes sent in @.00Seconds 1145000.00Khytes/sec.
t

Fig. 12.31 Selecting Files to upload

Similarly upload the model script catalog/models/catalog.rb, the
helpers, the view templates, the layout templates and the
public/stylesheet/scaffold.css stylesheet.. We don’t need to upload the
Rails application files such as database.yml and routes.rb, which are
already in the default Rails application on the host. Using the File Manager
check that the files have been uploaded to the host as shown in Figure
12.32.

380 12 Rails in Production

Dlesk 8.1.0 Micrasoft Internct Explorer

b Ede ven Faonts fock Hep

ook - & - @D [E 4 Dsewch [EFevobes Wrede |- 3 =

S

Addres [] htps:piurse e et 0442/ cus_ssce=loan_Lp

=] @4 | tins |

_—URIEL

irtuezzo,

Pianage your files ard

A swrsceT

&

Fig. 12.32 Uploaded Files

We need to modify a few of the files. Select the edit tool for

divectzries o1 this pags. C| 7 fsemes| s
@ . <00 KD
0B e = gokp F
4 M B edtcheml =ooke FE
r Lsirbuml < 00KE
[u] e vhiol “nnke
[chow rtrm cunke

6 fles anad cirectaries in e b o f il £ an £ visws cal el g el

(, VLUX Wirtual zatio ; ‘ ibog il
» General railscrad.com >

[T] Drsshekey B &

o m’; 5 File Manager 3 &
» System Filss

Bsess LRE .

L ESjEIEI]E .
Help & Support

[] Help Desk r |

@ rehn -

Moo f eniris per pege: 20 75 100 AL
Tools Permissions | Madification date [User Group
Mar 11, 20C7 ralserad psech
B2 Mar 31, 2007 ralswud osetln
B2 Mar 31,2007 relserud pssclh
B2 Mar 21, 2007 ralserad psadh
B2 MAr 1, 2007 Al psscln
g/

& files erd cirectories in ralscrudicom f rails / 320 / visws / cataloas total

Mar1, 20L! raleerd pach

Hlumzsr o enirizs per pegs: 10 25 100 ALL

|8 i

config/environment.rb file as shown in Figure 12.33.

b Ede ven Faontss fock Hep

Enok - & - @ [E A BSewch GEFevates WHede 8| By St =)

Aoz (] otps: phrse e et QMDY e Dace=To0n_Lp

—__URIEL
—AVLUX

b Gl =l vire

s in e s wlri / pils £ i bt

ek £ ad4 the tio,

400 kB
a0 ke oF
T P uese aw ke 7F

6 files ard cirectories in palscvad.com f pails / panfig tta

& swscer

SIS

e Fleaana e b 7 I g e

Fig. 12.33 Selecting environment.rb

:
a4,
A e _eat arF—=

Mar 23, 2007
Mar 23, 2007
Mo 29, 2007
Mar 30, 2007
Mar a0, 7007

Mar 40, 2007

» General railscrad.com =

[T] Dmsltey —_—

P ot File Manager =TS
» System Files

O sessons

= Logoue [() () () (2] (B ‘
» Help & Support

J'] Help Desk ’7

@ ren e

e ey 10075 100 AL

| Permissions | Modification date |Uscr | Group |

railscd pease s
reibrid puadh
roilsaid pracle
reilserd psac
railsen i psarie

reilsen - psac

flumiser oF encriss per page: 10 25 100 AL

[[g v

the

12.5 Rails Web Hosting 381

Uncomment the following line in environment.rb to set the production
mode as shown in Figure 12.34.

ENV['RAILS ENV'] ||= 'production'

e b ves fmontss fock Hep

bak - = - @ [0 A Qocorch GFavorkes @ede (3| B Z =]

Audreses [2] hetps: st e ek 04403 cus_sace=logn_up

=] @60 |Lins 7|
_—URIEL :

rtuoezze, o
| © Lo ot
. Waoft 7 e
—AVLUX
insisinenak Fallecradeom >
I Daslep — =
=
i File Manager B &
» System Edit fill reilecrid com / reile / contia f b
O seseions
D Log ouk [rrre Zl ¢ changsknosang) Line breaks:

@ inuniz style € in macos stle © inowndows style

* Help & Support ¥ B Sire In FESTART pair weh sarver when you mndify this fle =
il Help Besk [# Uncomment aclow to farse Rails imo prodaction mede when
® relp ¢ rou cen's concrol nebrapp server£nd can t set i the proper way
ENVT'RAILS_ERY'] (1= production’
Cliek ko save all cranass are FE
retum ta the list of Ales, i

Boctet-ap the Rai

enans, fromancrs, and cafeul coniaursion
requre File.jainiril

meme|_ILE_), b

pails s (tializer.run do |eofin

Settngs n znfhia/ el RS #* tace aracedence over fiace specfied hers
Shis Framemarks so
config fra el

pir o s Conle works if
T action iveb. $arvices cgan.maiier.d

Gnly loac the plugins ramad here, by dsfaul: <l algins in vcrdanphﬂ;m are loaded
confia plagi+ - “RW{ exception nobhetion sal ' iirem

& &dd additinnal load paths far your own cistom d
¥ sontig i astes o {RATLE R BOT poastras

Fore ol erirorinents o s Hie sans lgoss level

- |
€ oree D e) G (o)
& swsce =

& - E BT

Fig. 12.34 Modifying environment.rb

We also need to edit the config/database.yml file to set the production

mode. Select the edit tool for the database.yml file as shown in Figure
12.35.

382 12 Rails in Production

Microsoft Inkcrnct Explorer

Vs ke wew Faone look Hep
Ehack - =+ - @D [A A Bseach GaFevotes vede (A B S H
s] betps: irseeue ot Q5430 L Dge=ban LD =] @o e)

_—URIEL

T Virtuezzo,
i : | 9@ Log out
— Virtual zatio
—AVLUX
» General railscrud.com >
] Daskctep —
-
Hivore File Manager 8 =
* System Filas
(0 sess ons
9 Log out (2 (B} (&) (B] (i (B -
» Help & Support
JHG\D Desk ’7 Q] g
& reln —
B files and dicectaries in palsceid.enm £ ails /£ confi tita Ruirnber OF entriss per pege: 10 75 100 AL
Click to edt the tile, T
|7 juemed | sme| Tools | rermissions | Madification date |user | Group |
[.00 KD Mar 29, 2007 railscnd psaser
M envicomme b 400 ke oF Mar 23, 2007 railsurid paach
4 M B otk +ooke B 5 2 Mar 23, 2007 reilsond peache
W = dacbasew sooke W [4 s oo Mar 30, 2007 railscrid psacle
) 5
envisonmertrh 200 kp i . M 31, 2007 reilend paacke
o8 ¥ 2 v
O faicsis PO DR Y far 90, 5007 railscrid peach
6 files and cirecteries in ra lscrud.com [rails / cenfig tata Murnber of entrizs per page: 10 25 100 ALL.
& swso
i e i e T [| [i

Fig. 12.35 Selecting database.yml

Modify the production database settings as follows.

production:
adapter: mysql
database: test
username: username
password: password
host: localhost

Click on OK as shown in Figure 12.36.

12.5 Rails Web Hosting 383

ZPlesk 8.1.0 Microsoft Inkernek Explorer.

bl Ede ven ceomes ok bep

I
ek - & @D (A A Qoearh FErevoies @reda 3| - S F

Aldress [G5] horps: s net a4 7premous_page=con_n

_—URJEL

=l Fa e

<ZAVLUX

» Leneral

(5 Deskinp

A Home

* System
(3 ssssions
2 Lag o

[+ Help & Support.
7 el sk

8 vl

return 2 the list of Flés.

0G| .

Sl T, Al

vl Vietiozzo, | @ Laa out

Cliek £ save 2l shanges &nd

railscrod com >
File Manager =R

Edit file raizerud.cam / rails f confa J database.yml

2Tz = gawtwim)
& ito:/7dow mysal-comidac/r=mon/a.07ar/eld iert el =
d=uelopwent:

adaper mscl

database: rails_develcpment

uzemsms: rack

<

hosts ‘cealrast

Line breaks: @ inUnzsiyle T r Maz0S style € in Wirdons style

2 daring: Tie detabese d=fined as test’ il be srased 2
2 ~a-gereratad from your cevelonment dstabzse when yau mn '-ake’
Do not sethis db ta the same as development ar pradietion,

fost:

adapior myscl

datzbasz! rails_test

usernama: rast

pazswore:

hast: lzealkost

o

e B
passworc: aessward

host: lecalkast

o D s) D)
W SwWsoE %
AR - 1B (@ vimm

Fig. 12.36 Modifying database.yml

We have uploaded the files for the Rails application ‘catalog’ and
modified the environment.rb and database.yml files. We need to restart the

FastCGI processes on the host. Select the SSH Terminal icon in the
Domain Admin Control Panel as shown in Figure 12.37.

384 12 Rails in Production

R Plesk 8.0 Microsolt Inkernct Explorer.
Fis ke wen Fawontss look Hep |
ok - < - @[] A DSearch GaFevortes Eved 4| By S
Addruss [€] hetps: p-se e ot 042 fpres sus_sace=Ingn_Lp =] @4 | tins |
_-URIEL W ©Virtuoz20, | g |00 out
(’ ."VLUX S Wirtual zatio
> General 1=
[Dasktep @ ® Domaln rallscrud.com
4 Home
%
Domain
* System
O sessons =N G & ﬂ
) Log out e | !
Repert Lnks OcmamAlezms Dowar Backup Custom Burtors
& Help & Support i Efut
_[] Help Desk Servicos
@ rein
Ogen the terminal <l ent £ = g @ —IJ \‘?‘:J
acoess your account at Flesk Ml DS Dacabases Certificates Tomzat
$arer 0var e sedre el
Husting (Domain has physical husting on 1P 75.126.22.3)
i A = =4
@ s> @ @ @w B = [0
Satup Daktn Web Lssrz Subdowsine Dischovies rcrgmous ST LogManager Fils Manager SSerrmnal
= e 5 2, .
k‘":‘ | 2] & o]
Foussbadnn FRssL Qzplzaton VsLE Sk Previens
Swsztiin
Inte
Hesource Used Allowed
Velidity perud Mar 31, 2007 Unlirniled
= Disk space 1012 EERRLL
oidiciad e 104 Me/Month L.95 sb/Momt
0 Unlirmited
Y N i [=f
e

|18 i

Fig. 12.37 SSH Teminal

Specify username and password, which are the same as for the FTP

host and login to the SSH Terminal. Restart fcgi with the following
command as shown in Figure 12.38.

service fcgi restart

Plesk 8.1.0 Microseft Intcrnct Explorer
bl Ede ven ceomes ok bep
d=Dazk - =

@ [H] il Goeach [Eilavwries @ifeda iF

12.5 Rails Web Hosting

385

___UFRE
_AVLUX

(5 Deskinp

Address [2] herms:iLises e ret 4437 p0=MOUS_Dage=Cin_in

A Home

b System

(1 sessions

Log out

» Help & Bupport

7] Help Desk

8 vl

& shall Termins|

YA Crehik e T il

Fig. 12.38 Restarting FastCGI

» General

[T Daskizp

The FCGI processes get restarted as shown in Figure 12.39.

R Plesk Microsoft Inkcrnek Explorer
Fle bdh wen Favontss look Hep
| dmork < = - @[3 A Qiseorh aFevortes e

Address [2] hitpsi s e et 04407 £7 cus_sace—oon_o

_—URIEL
AVLUX

_[=]3]
|
|
|
railscrid cor =
Secure Shell Terminal [
Secure Shell Terminal
[Fie zdt Wow ook Hip
=R il IR TS
B

|

4 Home

» Systom

& sessons

2 Log out

* Help & Support

| Help Desk

[At ovsshitt b e Sl ey

secure shell Terminal

Secure Shell Terminal

| e

gt sleeled

Fig. 12.39 FastCGI Restarted

Fallatrud. o s

386 12 Rails in Production

The Rails application has been deployed to the web host. Specify the
URL http://www.railscrud.com in a browser as shown in Figure 12.40.

/2 Ruby on Rails: Welcome aboard - Microsoft Internet Explorer:
File Edt ‘%ew Favorites Tools Help

wack + = - @D [A | Qoearch Gifavortes Fiveda | By S = - 5

Address [&] http:ijwwm ralscrud. com | @6 |Uﬂks 2
[—.‘,
Welcome aboard T
3 You're riding the Rails!
RAILS N

A r appli nsenun Join the community

Ruby on Rails
Official weblag
Mailing lists
IRC channel
Wiki

Bug tracker

Getting started

Here’s how to get rolling:

1. Create your databases and edit
config/database .yml

Rails needs to know your login and password.
Browse the

3 documentation
2. Use script/generate to create your
models and controllers ;
Rails 4PI
. T sm@ Al Availahle Antians. mn it withaut naramsters lorary, _';I
« >
|&) Done [| | ineernet 7

Fig. 12.40 index.html

Invoke the controller for the Rails application with the URL
http://www.railscrud.com/catalogs. The listing of catalog entries created in
the MySQL database table ‘catalogs’ gets displayed using the Rails
scaffolding for the ‘catalogs’ table as shown in Figure 12.41. Catalog
entries may be added, modified, or deleted.

12.6 Summary 387

7} Catalogs: index - Microsoft Internet Explorer = i [=]
Fle Edt View Favorites Tools Help “
Gosck - = - @[3 4| Quoearch (airavorites Gpredn (B[BN S = - [F
Address |@ http:ffwww railscrud.comfcatalogs :J ?Gu ‘Links g
a
Journal Publisher Edition Title Author
Oracle Oracle July-august Evolving Grid %
h t Dy

Magazine Publishing 2006 Management David Baum - Show Edit Destroy
Oracle Oracle July-august ; Kimberly .

% e T Undo Tabl Sh Edit Desti
Magazine Publishing 2005 uning Hndo TabIEspace ¢ges L
New catalog

=l
] [T [[nternet 7

Fig. 12.41 Web Hosted Rails Application

12.6 Summary

In this chapter we discussed Rails best practices and the procedure to
deploy a Rails application on Apache2 and FastCGI. Subsequently, we
hosted a Rails application on a Rails web host.

Sources of Information

- Ruby on Rails Web Site: http://www.rubyonrails.org/
- Ruby Web Site: http://www.ruby-lang.org/en/
- Rails Framework API: http://api.rubyonrails.org/

Index

A

ActionController::Base, 47

ActionView::Base, 50

ActionView::Helpers::PrototypeHel
per, 114

actionwebservice, 278

ActionWebService, 275

ActionWebService::API::Base, 279

ActionWebService::Client::Soap,
290

ActionWebService::Client:: XmIRpc
,290

Active Record, 41

ActiveRecord::Base, 43

ActiveRecord::Migration, 76

Ajax, 107

Ajax Scaffolding, 95

AjaxScaffold, 72

ApplicationController, 42

assertions, 331

B

Builder, 175
Builder::XmIMarkup, 173

C

caching, 352

Class Variables, 11
controller, 42
Controller testing, 342
create_table, 81

cross site scripting, 353
CRUD, 71

CSV fixtures, 336

D

database.yml, 55
db:migrate, 77

delegated dispatching, 286
direct dispatching, 285
dispatcher, 42

Dispatching, 285

dynamic finders, 132

E

Eclipse, 301

ERD, 50
establish_connection(), 44
Excel, 143

Exceptions, 33

F

FastCGI, 352
Apach2 web server, 354
Lighttpd, 352
find, 47
find by sql, 47
finder methods, 130
Fixtures, 336
form_remote_tag, 117
Functional testing, 342

G
Global Variable, 11

392 Index

H
Helpers, 57

|

Instance Variable, 11
instantiated fixtures, 339
irb, 4

J

Java
Ajax with Java, 113
Comparing Rails with Java, 68
Comparing Ruby with Java, 37
Creating a PDF with Java, 144
Creating a Spreadsheet with Java,
156
CRUD with Java, 74
LDAP with Java, 248
Processing XML with Java, 174
Unit Testing in PHP and Java,
325
Web Services with Java, 276
JavaScriptGenerator, 50

L

layered dispatching, 290
Layouts, 58

LDAP, 209
link_to_remote, 116
Local Variable, 11

M

migration, 77

model, 42
Model-View-Controller, 41
module, 36

MySQL, 67

N
Net::LDAP, 250

(0]

observe field, 118

observe form, 119
OpenLDAP, 210

Oracle Database, 83

Oracle Internet Directory, 232
ORM, 41

P

Partials, 60
PDF, 143
PDF::SimpleTable, 149
PDF::Writer, 145
periodically _call_remote, 119
PHP
Ajax with PHP, 113
Comparing Rails with PHP, 68
Comparing Ruby with PHP, 36
Creating a PDF with PHP, 144
Creating a Spreadsheet with PHP,
155
CRUD with PHP, 72
LDAP with PHP, 247
PHP in Eclipse, 301
PHP On Trax, 191
Processing XML with PHP 5, 173
Unit Testing in PHP and Java,
325
Web Services with PHP, 275
PHP On Trax, 191
production, 351
Protocol Clients, 290
Prototype, 114

R

RadRails, 301

rails, 75

Rails, 41
ActionController::Base, 47
ActionView::Base, 50
Active Record, 41
ActiveRecord::Base, 43
commands, 53
controller, 42

Rails 393

dispatcher, 42
Installing, 53
model, 42
MVC, 41
production, 351
Routes, 56
view, 42
Rails testing, 327
RAILS _ENV, 351
rake, 77
render method, 48
REXML, 184
rhtml, 50
1js, 50
Routes, 56
routes.rb, 55
Ruby, 1
accessor methods, 22
array, 9
block, 26
class, 16
Class Variables, 11
comment, 5
constant, 15
control structures, 28
ERD, 50
Exceptions, 33
gets function, 5
Global Variable, 11
Hash, 10
identifier, 5
initialize function, 17
Installing, 1
Instance Variable, 11
irb, 4
Local Variable, 11
method, 18
module, 36
print function, 4
private methods, 21
Proc, 24
Protected methods, 21
puts, 4
range, 10
Reserved words, 5
RubyGems, 1

SciTE, 2

Singleton methods, 23

string, 6

symbol, 16

variable, 11
Ruby Development Tools, 301
Ruby oci8 driver, 122
Ruby Spreadsheet, 167
RubyForApache, 356
RubyGems, 1
rxml, 50

S

scaffold, 72

scaffold generator, 88
Scaffolding, 71
schema_info, 78
SciTE, 2

self.down, 77

self.up, 77

set_table name, 44
SQL injection, 353
SQL Server 2005 Database, 85
Stylesheets, 57
submit to remote, 117

T

Test::Unit:: TestCase, 337
testing, 326

Tivoli Directory Server, 216
Transactional fixtures, 341

U

unit test, 337

update element_function, 119
update page, 120

A\

Validations, 100

view, 42

\%Y4

web hosts, 360

394 Index

web service, 275 X
web_client_api, 290 XML, 173

z:g_:zrr:izz_zli)sl, itgciin mode XMLHtpRequest, 108
Py -1sp & ? XmlMarkup, 182

283
web_service scaffold, 284 XMLSS, 159
WEBTick, 41 v

wsdl_service_name, 284
YAML fixtures, 336

	preface
	toc
	1. ruby
	2. rails framework
	3. crud on rails
	4. ajax on rails
	5. creating pdf and excel reports
	6. xml on rails
	7. php on rails
	8. ldap on rails
	9. web services on rails
	10. ruby on rails in eclipse
	11. rails testing and fixtures
	12. rails in production
	src
	index

