

800 East 96th St., Indianapolis, Indiana, 46240 USA

Matt Zandstra

PHP
in24Hours

Teach Yourself

SECOND EDITION

00 fm 11/29/01 3:19 PM Page i

Sams Teach Yourself PHP in 24 Hours,
Second Edition
Copyright © 2002 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-32311-7

Library of Congress Catalog Card Number: 2001096665

Printed in the United States of America

First Printing: December 2001

04 03 02 01 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to the
accuracy of this information. Use of a term in this book should not be regarded
as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the pro-
grams accompanying it.

ACQUISITIONS EDITOR

Scott D. Meyers

DEVELOPMENT EDITORS

Scott D. Meyers
Jill Hayden

MANAGING EDITOR

Charlotte Clapp

INDEXER

D&G Limited, LLC

PROOFREADER

D&G Limited, LLC

TECHNICAL EDITOR

Andrei Zmievski

TEAM COORDINATOR

Amy Patton

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Aren Howell

PRODUCTION

D&G Limited, LLC

00 fm 11/29/01 3:19 PM Page ii

Contents at a Glance
Introduction 1

Part I Getting Started 5
Hour 1 PHP: From Homepage to Portal 7

2 Installing PHP 15

3 A First Script 27

Part II The Language 37
Hour 4 The Building Blocks 39

5 Going with the Flow 59

6 Functions 77

7 Arrays 99

8 Objects 119

Part III Working with PHP 147
Hour 9 Working with Forms 149

10 Working with Files 169

11 Working with DBA Functions 189

12 Database Integration—SQL 207

13 Beyond the Box 235

14 Images On-the-Fly 255

15 Working with Dates and Times 277

16 Working with Data 297

17 Working with Strings 319

18 Working with Regular Expressions 341

19 Saving State with Cookies and Query Strings 361

20 Saving State with Session Functions 379

21 Working with the Server Environment 393

22 PHP 4 and XML 407

00 fm 11/29/01 3:19 PM Page iii

Part IV Extending PHP 429
Hour 23 Smarty: A Template Engine 431

24 An Example: Page.inc.php 451

Glossary 473

Index 481

00 fm 11/29/01 3:19 PM Page iv

Contents
Introduction 1

PART I Getting Started 5

HOUR 1 PHP: From Homepage to Portal 7

What Is PHP? ..8
What Need Does PHP Fulfill? ..8
What’s New in PHP 4 ..9
The Zend Engine ..10
Why Choose PHP? ..10

Speed of Development ..10
PHP Is Open Source ..11
Performance ..11
Portability ..11

What’s New in This Edition ..11
Summary ..12
Q&A ..12
Workshop ..12

Quiz ..12
Quiz Answers ..13
Activities ..13

HOUR 2 Installing PHP 15

Platforms, Servers, Databases, and PHP ..15
Where to Find PHP and More ..16
Installing PHP 4 for Linux and Apache ..17
Some configure Options ..18

--with-gdbm ..18
--with-gd ..19
--with-ttf ..19
--with-mysql ..19

XML configure options ..20
Configuring Apache ..20
php.ini ..21

short_open_tag ..22
Error Reporting Directives ..22
Variable Directives ..22

Changing php.ini Directives Locally ..23
Help! ..23

00 fm 11/29/01 3:19 PM Page v

Summary ..24
Q&A ..25
Workshop ..25

Quiz ..25
Quiz Answers ..25
Activities ..26

HOUR 3 A First Script 27

Our First Script ..27
Beginning and Ending a Block of PHP Statements ..29
The print() Function ..31

Combining HTML and PHP ..32
Adding Comments to PHP Code ..33
Summary ..34
Q&A ..34
Workshop ..35

Quiz ..35
Quiz Answers ..35
Activities ..35

PART II The Language 37

HOUR 4 The Building Blocks 39

Variables ..40
Data Types ..41

Changing Type with settype() ..43
Changing Type by Casting ..44
Why Test Type? ..46

Operators and Expressions ..46
The Assignment Operator ..47
Arithmetic Operators ..47
The Concatenation Operator ..48
Combined Assignment Operators ..48
Comparison Operators ..49
Creating More Complex Test Expressions with the Logical

Operators ..50
Automatically Incrementing and Decrementing an Integer

Variable ..51
Operator Precedence ..53

Constants ..54
Predefined Constants ..55

Summary ..55
Q&A ..56
Workshop ..56

vi Sams Teach Yourself PHP in 24 Hours

00 fm 11/29/01 3:19 PM Page vi

Quiz ..56
Quiz Answers ..57
Activities ..58

HOUR 5 Going with the Flow 59

Switching Flow ..60
The if Statement ..60
Using the else Clause with the if Statement ..61
Using the elseif Clause with the if Statement ..62
The switch Statement ..63
Using the ? Operator ..64

Loops ..65
The while Statement ..65
The do...while Statement ..66
The for Statement ..67
Breaking Out of Loops with the break Statement ..68
Skipping an Iteration with the continue Statement70
Nesting Loops ..71

Codeblocks and Browser Output ..72
Summary ..73
Q&A ..74
Workshop ..74

Quiz ..74
Quiz Answers ..75
Activities ..75

HOUR 6 Functions 77

What Is a Function? ..78
Calling Functions ..78
Defining a Function ..80
Returning Values from User-Defined Functions ..81
Dynamic Function Calls ..83
Variable Scope ..83

Accessing Variables with the global Statement ..85
Saving State Between Function Calls with the static Statement87
More About Arguments ..89

Setting Default Values for Arguments ..89
Passing References to Variables to Functions ..91

Creating Anonymous Functions ..93
Testing for Function Existence ..94
Summary ..96
Q&A ..96
Workshop ..96

Contents vii

00 fm 11/29/01 3:19 PM Page vii

Quiz ..96
Quiz Answers ..97
Activities ..98

HOUR 7 Arrays 99

What Is an Array? ..99
Creating Arrays ..100

Defining Arrays with the array() Construct ..101
Defining or Adding to Arrays with the Array Identifier101

Associative Arrays ..102
Defining Associative Arrays with the array() Construct102
Directly Defining or Adding to an Associative Array103

Multidimensional Arrays ..103
Accessing Arrays ..105

Getting the Size of an Array ..105
Looping through an Array ..106
Looping through an Associative Array ..107
Outputting a Multidimensional Array ..108

Manipulating Arrays ..110
Joining Two Arrays with array_merge() ..110
Adding Multiple Variables to an Array with array_push()110
Removing the First Element of an Array with array_shift()111
Slicing Arrays with array_slice() ..112

Sorting Arrays ..112
Sorting Numerically Indexed Arrays with sort()112
Sorting an Associative Array by Value with asort()113
Sorting an Associative Array by Key with ksort()114

Functions Revisited ..114
Summary ..116
Q&A ..117
Workshop ..117

Quiz ..117
Quiz Answers ..118
Activities ..118

HOUR 8 Objects 119

What Is an Object? ..120
Creating an Object ..120
Object Properties ..121
Object Methods ..122
An Example ..125

Defining the Class’s Properties ..125
Creating a Constructor ..125

viii Sams Teach Yourself PHP in 24 Hours

00 fm 11/29/01 3:19 PM Page viii

The addRow() Method ..126
The addRowAssocArray() Method ..126
The output() Method ..127
Bringing It All Together ..127
What’s Missing? ..129
Why a Class? ..129

Inheritance ..130
Overriding the Method of a Parent Class ..131
Calling an Overridden Method ..132

Inheritance: An Example ..133
Defining HTMLTable’s Properties ..133
Creating the Constructor ..134
The setCellpadding() Method ..134
The Output() Method ..134
The Table and HTMLTable Classes in Their Entirety135
Why Use Inheritance? ..137

Testing Classes and Objects ..138
Finding the Class of an Object ..138
Finding the Family of an Object ..139
Checking for Class and Method Existence ..141

Storing and Retrieving Objects ..141
Summary ..143
Q&A ..143
Workshop ..144

Quiz ..144
Quiz Answers for Hour 8 ..144
Activities ..146

PART III Working with PHP 147

HOUR 9 Working with Forms 149

Predefined Variables ..150
A Script to Acquire User Input ..151
Accessing Form Input with User Defined Arrays ..153
Accessing Form Input with Built-In Arrays ..155
Distinguishing Between GET and POST Transactions156
Combining HTML and PHP Code

on a Single Page ..157
Using Hidden Fields to Save State ..159
Redirecting the User ..161
File Upload Forms and Scripts ..163
Summary ..166

Contents ix

00 fm 11/29/01 3:19 PM Page ix

x Sams Teach Yourself PHP in 24 Hours

Q&A ..167
Workshop ..167

Quiz ..167
Quiz Answers ..168
Activities ..168

HOUR 10 Working with Files 169

Including Files with include() ..169
Returning a Value From an Included Document ..171
Using include() within Control Structures ..172

include_once() ..173
The include_path directive ..173

Testing Files ..174
Checking for Existence with file_exists() ..174
A File or a Directory? ..174
Checking the Status of a File ..174
Determining File Size with filesize() ..175
Getting Date Information About a File ..175
Creating a Function that Performs Multiple File Tests176

Creating and Deleting Files ..177
Opening a File for Writing, Reading, or Appending ..178
Reading from Files ..179

Reading Lines from a File with fgets() and feof()179
Reading Arbitrary Amounts of Data from a File with fread()180
Reading Characters from a File with fgetc() ..181

Writing or Appending to a File ..182
Writing to a File with fwrite() or fputs() ..182
Locking Files with flock() ..183

Working with Directories ..184
Creating Directories with mkdir() ..184
Removing a Directory with rmdir() ..184
Opening a Directory for Reading with opendir()185
Reading the Contents of a Directory with readdir()185

Summary ..186
Q&A ..186
Workshop ..187

Quiz ..187
Quiz Answers ..187
Activities ..188

HOUR 11 Working with the DBA Functions 189

Beneath the Abstraction ..190
Opening a Database ..190

00 fm 11/29/01 3:19 PM Page x

Contents xi

Adding Data to the Database ..191
Amending Elements in a Database ..192
Reading from a Database ..193
Determining Whether an Item Exists in a Database ..195
Deleting an Item from a Database ..195
Adding Complex Data Structures to a Database ..195
An Example ..198
Summary ..204
Q&A ..204
Workshop ..204

Quiz ..204
Quiz Answers ..205
Activities ..205

HOUR 12 Database Integration—SQL 207

A (Very) Brief Introduction to SQL ..208
Connecting to the Database Server ..209
Selecting a Database ..210
Finding Out About Errors ..210
Adding Data to a Table ..211
Acquiring the Value of an Automatically Incremented Field215
Accessing Information ..215

Finding the Number of Rows Found by a Query ..215
Accessing a Resultset ..216

Changing Data ..219
Building a Database Abstraction Class ..220

Connecting to the Database ..221
Making the Query ..222
Testing the Basic Class ..223
Automating SQL Statements ..224
Bringing It All Together ..225

Summary ..231
Q&A ..232
Workshop ..232

Quiz ..232
Quiz Answers ..232
Activities ..233

HOUR 13 Beyond the Box 235

Server Variables ..235
A Brief Summary of an HTTP Client/Server Negotiation238

The Request ..238
The Response ..240

00 fm 11/29/01 3:19 PM Page xi

xii Sams Teach Yourself PHP in 24 Hours

Getting a Document from a Remote Address ..241
Converting IP Addresses and Hostnames ..243
Making a Network Connection ..244

Making an NNTP Connection Using fsockopen()247
Sending Mail with the mail() Function ..250
Summary ..251
Q&A ..251
Workshop ..252

Quiz ..252
Quiz Answers ..252
Activities ..253

HOUR 14 Images On-the-Fly 255

Creating and Outputting Images ..256
Acquiring Color ..257
Drawing Lines ..257
Applying Color Fills ..259
Drawing an Arc ..260
Drawing a Rectangle ..261
Drawing a Polygon ..262
Making a Color Transparent ..263
Working with Text ..265

Writing a String with imageTTFtext() ..265
Testing Text Dimensions with imageTTFbox() ..266

Bringing it Together ..270
Summary ..274
Q&A ..274
Workshop ..274

Quiz ..274
Quiz Answers ..275
Activities ..276

HOUR 15 Working with Dates and Times 277

Getting the Date with time() ..278
Converting a Timestamp with getdate() ..278
Converting a Timestamp with date() ..280
Creating Timestamps with mktime() ..282

Testing a Date with checkdate() ..283
An Example ..283

Checking User Input ..284
Building the HTML Form ..284
Creating the Calendar Table ..286

00 fm 11/29/01 3:19 PM Page xii

A Calendar Library ..290
Summary ..295
Q&A ..296
Workshop ..296

Quiz ..296
Quiz Answers ..296
Activity ..296

HOUR 16 Working with Data 297

Data Types Revisited ..298
A Recap ..298
Converting Complex Types ..298
Automatic Conversion of Data Types ..299
Testing Data Types ..301
More Ways of Changing Type ..302
Why Are Data Types Important? ..302

Variable Variables ..304
References to Variables ..305

Testing for Absence and Emptiness ..305
More About Arrays ..306

An Alternative Approach to Traversing Arrays ..306
Checking That a Value Exists in an Array ..307
Removing an Element from an Array ..308
Applying a Function to Every Element in an Array309
Filtering Arrays with array_filter() ..311

Custom Sorting Arrays ..312
Summary ..315
Q&A ..315
Workshop ..316

Quiz ..316
Quiz Answers ..316
Activities ..317

HOUR 17 Working with Strings 319

Formatting Strings ..320
Working with printf() ..320
Specifying a Field Width ..323
Argument Swapping ..326
Storing a Formatted String ..328

Investigating Strings ..328
A Note About Indexing Strings ..328
Finding the Length of a String with strlen() ..329
Finding a Substring Within a String with strstr()329

Contents xiii

00 fm 11/29/01 3:19 PM Page xiii

Finding the Position of a Substring with strpos()330
Extracting Part of a String with substr() ..330
Tokenizing a String with strtok() ..330

Manipulating Strings ..332
Cleaning Up a String with trim() and ltrim() and strip_tags()332
Replacing a Portion of a String Using substr_replace()333
Replacing Substrings Using str_replace ..333
Converting Case ..334
Wrapping Text with wordwrap() and nl2br() ..335
Breaking Strings into Arrays with explode() ..336

Summary ..337
Q&A ..337
Workshop ..338

Quiz ..338
Quiz Answers ..338
Activities ..339

HOUR 18 Working with Regular Expressions 341

POSIX Regular Expression Functions ..342
Using ereg() to Match Patterns in Strings ..342
Using ereg_replace() to Replace Patterns in Strings347
Using split() to Break Up Strings ..348

Perl Compatible Regular Expressions (PCREs) ..349
Matching Patterns with preg_match() ..349
Finding Matches Globally with preg_match_all()351
Using preg_replace() to Replace Patterns ..353
Modifiers ..354
Using preg_replace_callback() to Replace Patterns356

Summary ..357
Q&A ..358
Workshop ..358

Quiz ..358
Quiz Answers ..359
Activity ..359

HOUR 19 Saving State with Cookies and Query Strings 361

Cookies ..362
The Anatomy of a Cookie ..362

Setting a Cookie with PHP ..363
Deleting a Cookie ..365
Creating Session Cookies ..365
An Example—Tracking Site Usage ..365

xiv Sams Teach Yourself PHP in 24 Hours

00 fm 11/29/01 3:19 PM Page xiv

Working with the Query String ..373
Creating a Query String ..373
Summary ..375
Q&A ..376
Workshop ..376

Quiz ..376
Quiz Answers ..376
Activities ..377

HOUR 20 Saving State with Session Functions 379

What Are Session Functions? ..380
Starting a Session with session_start() ..380
Working with Session Variables ..381
Destroying Sessions and Unsetting Variables ..386
Passing Session IDs in the Query String ..387
Encoding and Decoding Session Variables ..388
Checking That a Session Variable Is Registered ..388
Working with the $HTTP_SESSION_VARS Array ..389
Summary ..389
Q&A ..390
Workshop ..390

Quiz ..390
Quiz Answers ..390
Activities ..391

HOUR 21 Working with the Server Environment 393

Opening Pipes to and from Processes with popen() ..394
Running Commands with exec() ..397
Running External Commands with system() or the Backtick

Operator ..398
Plugging Security Holes with
escapeshellcmd() ..399

Running External Applications with passthru() ..401
Calling an External CGI Script with the
virtual() Function ..402

Summary ..403
Q&A ..403
Workshop ..404

Quiz ..404
Quiz Answers ..404
Activities ..405

Contents xv

00 fm 11/29/01 3:19 PM Page xv

HOUR 22 PHP 4 and XML 407

What Is XML? ..408
XML Parser Functions ..410

Acquiring a Parser Resource ..411
Setting XML Handlers ..411
xml_parser_set_option() ..413
Parsing the Document ..413
Reporting Errors ..413
An Example ..415

An Introduction to the DOM XML Functions ..417
Acquiring a DomDocument Object ..418
The Root Element ..418
Adding New DomElement Objects to the Tree ..419
Getting Information from DomElement Objects ..420
Examining Text Nodes ..421
Traversing a Tree: Two Approaches ..422

XSL: A Brief Discussion ..424
PHP and XSL ..424
An XSL Document ..424
Applying XSL to XML with PHP ..425

Summary ..426
Q&A ..427
Workshop ..427

Quiz ..427
Quiz Answers ..428
Activities ..428

PART IV Extending PHP 429

HOUR 23 Smarty: A Template Engine 431

What Is Smarty? ..432
Acquiring and Installing Smarty ..432
A First Script ..434
Template Variables ..436
Built-In Template Functions ..438

{if}, {elseif}, and {else} ..438
Looping with the {section} Function ..439
Combining Templates with the {include} Function443

Modifying Template Variables ..443
capitalize and lower ..444
regex_replace ..444
string_format ..444
default ..445

xvi Sams Teach Yourself PHP in 24 Hours

00 fm 11/29/01 3:19 PM Page xvi

A Recap: Our Example in Full ..445
Summary ..448
Q&A ..448
Workshop ..448

Quiz ..448
Quiz Answers ..449
Activities ..449

HOUR 24 An Example: Page.inc.php 451

The Framework Class ..451
The Framework ..452
Acquiring POST and GET Parameters ..453
Getting the Message Across ..453
A Subclass for Testing ..454
Session Support ..455
Has the Form Been Submitted? ..456
Moving On ..457

Extending the Page Class ..460
Defining Flexible Site Areas ..460
Adding and Acquiring User Data ..462
Enforcing Access Control ..463
The Access Class in Full ..464
A Project Class ..466
Creating Some Sample Users ..467
A Simple Login Screen ..468
Protected Pages ..470

What Needs Doing? ..470
Summary ..471
Q&A ..471
Workshop ..471

Quiz ..471
Quiz Answers ..472
Activities ..472

Glossary 473

Index 481

Contents xvii

00 fm 11/29/01 3:19 PM Page xvii

About the Author
Matt Zandstra (matt@corrosive.co.uk) is a technical consultant. With his business part-
ner, Max Guglielmino, he runs Corrosive Web Design (http://www.corrosive.co.uk),
a company specializing in information design, usablity, and the creation of dynamic envi-
ronments. Before this book took over his life once again, Matt was writing an XML/
Java-based scripting language and interpreter for extracting content from Web pages. He
is currently keen on design patterns, unit tests, extreme programming, and space operas.
Matt is fatter than he was, but is still an urban cyclist. He says he is working on a novel,
but he has been saying that for a long time. He lives by the sea in Brighton, Great
Britain, with his partner, Louise McDougall, and their daughter, Holly.

00 fm 11/29/01 3:19 PM Page xviii

Dedication
For my father. Who would have approved.

Acknowledgments
Thanks to Louise for moving us from London to Brighton while I was writing this book.
I looked up, and my desk just seemed to be in a prettier room. Thanks to Louise for glaz-
ing over conspicuously when I begin to babble nonsense, for drinking beer and reading
books with me, and for holding Holly’s other hand when we one-two-three-swing her at
the beach. Thanks to Holly for the way she says “OH NO! Dropped it!” All these things
and more made the second edition fun.

From Sams, thanks once again to Scott Meyers. Thanks are also due to Jill Hayden and
Andrei Zmievski.

Thanks, as always, to Max Guglielmino, who dealt with horrors above and beyond the
call of duty during the last month or so of my disappearance to produce this edition.
Here’s to our next project. Do we know what it is, yet?

Thanks to all at CitiPages (http://www.citipages.net) for putting up with my abrupt
departure to work on this book. Particularly Charlie, James, Jim, Tolan, and Rares.

00 fm 11/29/01 3:19 PM Page xix

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can e-mail or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: webdev@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

00 fm 11/29/01 3:19 PM Page xx

Introduction
This is a book about PHP, the open source Web scripting language that has joined Perl,
ASP, and Java on the select list of languages that can be used to create dynamic online
environments. It is also a book about programming. In the space available, it is neither
possible to create a complete guide to programming in PHP nor to cover every function
and technique that PHP offers. Nevertheless, whether you are an experienced program-
mer considering a move to PHP or a newcomer to scripting, the steps in this book should
provide enough information to get your journey off to a good start.

Who Should Read This Book?
This book will take you from the first principles through to a good working knowledge
of the PHP 4 programming language. No prior experience of programming is assumed,
though if you have worked with a language such as C or Perl in the past, you will find
the going much easier.

PHP 4 is a Web programming language. To get the most from this book, you should have
some understanding of the World Wide Web and of HTML in particular. If you are just
starting out, you will still be able to use this book, though you should consider acquiring
an HTML tutorial. If you are comfortable creating basic documents and can build a basic
HTML table, you will be fine.

PHP 4 is designed to integrate well with databases. Some of the examples in this book
are written to work with MySQL, a SQL database that is free for personal use on some
platforms. We include a short introduction to SQL, but if you intend to use PHP to work
with databases, you might want to spend some time reading up on the subject. Numerous
introductory SQL tutorials are available online. If you intend to work with a database
other than MySQL, many of the examples in this book will be relatively easy to repro-
duce with the equivalent PHP functions designed to query your database.

How This Book Is Organized
This book is divided into four parts:

• Part 1 is an introduction to PHP 4.

• Part 2 covers the basic features of the language. Pay particular attention to this
section if you are new to programming.

01 Intro 11/29/01 3:22 PM Page 1

• Part 3 covers PHP 4 in more detail, looking at the functions and techniques you
will need to become a proficient PHP programmer.

• Part 4 examines library code, both code that you can create yourself and an exten-
sive third party library.

Part 1 contains Hours 1 through 3 and handles the information you will need to get your
first script up and running:

• Hour 1, “PHP: From Homepage to Portal,” describes the history and capabilities
of PHP and looks at some of the compelling reasons for deciding to learn this
scripting language.

• Hour 2, “Installing PHP,” explains how to install PHP on a UNIX system and dis-
cusses some of the configuration options you might want to choose when compil-
ing PHP. In this hour, we also look at ways of configuring PHP once it is installed.

• Hour 3, “A First Script,” looks at the different ways in which you can embed a
PHP script in a document and create a script that writes text to the user’s browser.

Part 2 comprises Hours 4 through 8. In this part, you will learn the basic components of
the PHP language:

• Hour 4, “The Building Blocks,” covers the basics of PHP. You will learn about
variables, data types, operators, and expressions.

• Hour 5, “Going with the Flow,” covers the syntax for controlling program flow in
your scripts. In addition to if and switch constructs, you will learn about loops
using for and while statements.

• Hour 6, “Functions,” explores the use of functions to organize your code.

• Hour 7, “Arrays,” discusses the array data type that can be used to hold list infor-
mation. We will also look at some of the functions that PHP 4 provides to manipu-
late arrays.

• Hour 8, “Objects,” introduces PHP’s support for classes and objects. Throughout
the course of the hour, we will develop a working example.

Part 3 consists of Hours 9 through 22. In this part, you will come to grips with the
features and techniques of the language:

• Hour 9, “Working with Forms,” introduces the dimension of user input through the
mechanism of the HTML form. You will learn how to gather data submitted via a
form.

• Hour 10, “Working with Files,” shows you how to work with files and directories
on the local machine.

2 Sams Teach Yourself PHP in 24 Hours

01 Intro 11/29/01 3:22 PM Page 2

• Hour 11, “Working with the DBA Functions,” demonstrates PHP’s support for
DBM-style database systems, versions of which are available on most systems.

• Hour 12, “Database Integration—mySQL,” provides a brief introduction to SQL
syntax and introduces the PHP 4 functions that can be used to work with the
MySQL database.

• Hour 13, “Beyond the Box,” covers some of the details of HTTP requests and
looks at PHP network functions.

• Hour 14, “Images On-the-Fly” explores PHP’s image functions. With these, you
can create GIF or PNG files dynamically.

• Hour 15, “Working with Dates and Times,” covers the functions and techniques
you can use for date arithmetic. We create a calendar example.

• Hour 16, “Working with Data,” revisits data types and explores some more of the
functions you can use to work with data in your scripts. More array functions are
also covered.

• Hour 17, “Working with Strings,” covers the functions that you can use to manipu-
late strings.

• Hour 18, “Working with Regular Expressions,” introduces regular expression func-
tions. You can use these to find and replace complex patterns in strings.

• Hour 19, “Saving State with Cookies and Query Strings,” shows you some tech-
niques for passing information across scripts and requests.

• Hour 20, “Saving State with Session Functions,” extends the techniques explored
in Hour 19, using PHP’s built-in session functions.

• Hour 21, “Working with the Server Environment,” shows you how to call external
programs from your scripts and incorporate their output into your own.

• Hour 22, “PHP 4 and XML,” looks at PHP’s support for XML (Extensible Markup
Language). We examine the XML Parser functions as well as taking in some
features for
navigating XML documents and converting XML to other formats.

Part 4 consists of Hours 23 and 24. In these, we move beyond the core language to
examine the ways that libraries can be used to extend PHP’s functionality.

• Hour 23, “Smarty: A Template Engine,” introduces a sophisticated third party
library that allows coders to separate application logic from presentation logic.

• Hour 24, “An Example: Page.inc.php,” builds up a code library of our own.
The library is designed to help with some of the common tasks encountered in
the creation of dynamic sites. We extend the core library to support password
protection and access control.

Introduction 3

01 Intro 11/29/01 3:22 PM Page 3

01 Intro 11/29/01 3:22 PM Page 4

Hour
1 PHP: From Homepage to Portal

2 Installing PHP

3 A First Script

PART I
Getting Started

02 Part 1 11/29/01 3:22 PM Page 5

02 Part 1 11/29/01 3:22 PM Page 6

HOUR 1
PHP: From Homepage to
Portal

Welcome to PHP! Throughout this book you will look at almost every
element of the PHP language. But first you will explore PHP as a product—
its history, features, and future.

In this hour, you will learn:

• What PHP is

• About PHP’s history

• What improvements can be found in PHP 4

• Some options that add features to your PHP binary

• Some reasons you should choose to work with PHP

03 CH01 11/29/01 3:19 PM Page 7

What Is PHP?
PHP is a language that has outgrown its name. It was originally conceived as a set of
macros to help coders maintain personal home pages, and its name grew from its pur-
pose. Since then, PHP’s capabilities have been extended, taking it beyond a set of utili-
ties to a full-featured programming language, capable of managing huge database-driven
online environments.

As PHP’s capabilities have grown, so too has its popularity. According to NetCraft
(http://www.netcraft.com), PHP was running on more than 1 million hosts in
November 1999. As of September 2001, that figure had already risen to over 6 million
hosts. According to SecuritySpace.com, PHP is the most popular Apache module
available, beating even mod_ssl.

PHP is now officially known as PHP: HyperText Preprocessor. It is a server-side script-
ing language usually written in an HTML context. Unlike an ordinary HTML page, a
PHP script is not sent directly to a client by the server; instead, it is parsed by the PHP
engine. HTML elements in the script are left alone, but PHP code is interpreted and exe-
cuted. PHP code in a script can query databases, create images, read and write files, talk
to remote servers—the possibilities are endless. The output from PHP code is combined
with the HTML in the script and the result sent to the user.

What Need Does PHP Fulfill?
There have been scripting solutions for as long as there has been a World Wide Web. As
the need to create sites with dynamic content has grown in recent years, so has the pres-
sure to create robust environments quickly and efficiently. Although C can be a great
solution for creating fast server tools, it is also hard to work with, and can easily produce
security holes if not carefully deployed. Perl, a language originally developed for text
processing, naturally filled the gap created by the demand for dynamic Web environ-
ments. Much easier to deploy safely than C, its slower performance has always been
more than balanced by the comparatively fast development cycle it offers. Even more
useful has been the increasing availability of a large number of stable code libraries for
Perl.

So where does PHP fit in? PHP has been written specifically for the Web. The issues and
problems faced by Web programmers are addressed within the language itself. While a
Perl programmer will need to use an external library, or to write code to acquire data
submitted by the user of a Web page, PHP will make this data automatically available.
While a Perl programmer will have to install modules to enable him or her to write
database-driven environments, PHP provides built-in support for a whole range of

8 Hour 1

03 CH01 11/29/01 3:19 PM Page 8

databases (though you may need to supply some information at installation time). In
short, because PHP has been created for Web programmers, it will have a set of functions
for almost any typical problem you might encounter from managing user sessions to
handling XML documents.

So, do we have to pay for this ease of use with even slower performance? Not at all.
PHP, when run as a server module, is lightning fast, much more so than Perl running as
a CGI.

When the first edition of this book was written, PHP 4 was still in the final stages of
development. It is now a mature and stable coding environment, and its popularity
continues to grow.

What’s New in PHP 4
PHP 4 introduces numerous new features that will make the programmer’s life more
interesting. Let’s take a quick look at some of them.

• A new foreach statement, similar to that found in Perl, makes it much easier to
loop through arrays. We will be using this for most of the array examples in this
book. Additionally, a raft of new array functions have been added, making arrays
easier to manipulate.

• The language now includes the boolean data type.

• A particularly useful feature of PHP3 was the capability to name form elements as
if they were elements in an array. The elements’ names and values are then made
available to the code in array form. This feature has been extended to support multi-
dimensional arrays.

• Support for object-oriented programming was somewhat rudimentary in PHP. This
is significantly extended in PHP 4; for example, it is now possible to call an over-
ridden method from a child class.

• PHP 4 now provides native support for user sessions, using both cookies and the
query string. You can now “register” a variable with a session, and then access the
same variable name and value in subsequent user requests.

• A new comparison operator (===) has been introduced that tests for equivalence of
type as well as equivalence of value.

• New associative arrays containing server and environmental variables have been
made available, as well as a variable that holds information about uploaded files.

• PHP 4 now provides built-in support for both Java and XML.

PHP: From Homepage to Portal 9

1

03 CH01 11/29/01 3:19 PM Page 9

Although these and other features significantly improve the language, perhaps the most
significant change has taken place under the hood.

The Zend Engine
When PHP3 was written, an entirely new parser was created from the ground up. PHP 4
represents a similar change to the scripting engine. This rewrite, though, is more signifi-
cant by orders of magnitude.

Zend is a scripting engine that sits below the PHP-specific modules. It is optimized to
significantly improve performance.

These changes in efficiency will ensure PHP’s continued success. Most code written for
PHP 3 will continue to run with no changes; however, these scripts may run up to 200
times faster!

A commercial addition to the Zend engine will be the facility for compiling PHP scripts.
This will provide a further gain in performance that should leave most, if not all, com-
petitors far behind.

Zend is built to improve performance but is also designed for increased flexibility.
Communication with servers has been improved, so it will be possible to create PHP
modules that work with a wider range of servers. Unlike a CGI interpreter, which sits
outside a server and is initialized every time a script is run, a server module runs in con-
junction with the server. This improves performance because the scripting engine does
not need to be started for a PHP page to be executed.

Why Choose PHP?
There are some compelling reasons to work with PHP 4. For many projects you will find
that the production process is significantly faster than you might expect if you are used
to working with other scripting languages. As an open source product, PHP 4 is well
supported by a talented production team and a committed user community. Furthermore,
PHP can be run on all the major operating systems with most servers.

Speed of Development
Because PHP allows you to separate HTML code from scripted elements, you will notice
a significant decrease in development time on many projects. In many instances, you will
be able to separate the coding stage of a project from the design and build stages. Not
only can this make life easier for you as a programmer, it also can remove obstacles that
stand in the way of effective and flexible design.

10 Hour 1

03 CH01 11/29/01 3:19 PM Page 10

PHP Is Open Source
To many people, “open source” simply means free, which is, of course, a benefit in itself.

Well-maintained open source projects offer users additional benefits, though. You benefit
from an accessible and committed community who offer a wealth of experience in the
subject. Chances are that any problem you encounter in your coding can be answered
swiftly and easily with a little research. If that fails, a question sent to a mailing list can
yield an intelligent, authoritative response.

You also can be sure that bugs will be addressed as they are found, and that new features
will be made available as the need is defined. You will not have to wait for the next com-
mercial release before taking advantage of improvements.

There is no vested interest in a particular server product or operating system. You are free
to make choices that suit your needs or those of your clients, secure that your code will
run whatever you decide.

Performance
Because of the powerful Zend engine, PHP 4 compares well with other server scripting
languages including ASP, Perl, and Java Servlets in benchmark tests, consistently beating
the rest of the pack in simple “hello world” tests. You can see the results of such a bench-
mark test at http://www.perlmonth.com/features/benchmarks/benchmarks.

html?issue=4&id=9351. PHP used in large projects is unlikely to show such a hugely
marked lead over other solutions, though it is possible to acquire a caching tool (Zend
Accelerator) from http://www.zend.com/ which is designed to provide even greater
performance than that shown by PHP alone.

Portability
PHP is designed to run on many operating systems and to cooperate with many servers
and databases. You can build for a Unix environment and shift your work to NT without
a problem. You can test a project with Personal Web Server and install it on a UNIX
system running on PHP as an Apache module.

What’s New in This Edition
Since the first edition of this book, PHP has consolidated its position as one of the best
options for Web development. PHP, in common with any popular open source project, is
a fast moving target. In this edition we have extensively checked and updated the exam-
ples and tutorials. Where new features have appeared we have extended our coverage.

PHP: From Homepage to Portal 11

1

03 CH01 11/29/01 3:19 PM Page 11

Significant new sections have been added covering functions, arrays, objects, databases,
and dates.

After the publication of the first edition we received many requests for source code. We
have now made all listings available online at [source url].

In addition to reviewing and extending existing material, we have added coverage for
XML, and a chapter on the Smarty template engine, a powerful library for organizing
large projects.

Summary
In this hour, we introduced PHP. You learned the history of PHP from a simple set of
macros to the powerful scripting environment it has become. You found out about PHP 4
and the Zend scripting engine, and how they incorporate new features and more effi-
ciency. Finally, you discovered some of the features that make PHP a compelling choice
as a Web programming language.

I hope that you’ve been convinced by this chapter that PHP is the language for you. In
the next hour we dive straight in and install the PHP engine.

Q&A
Q Is PHP an easy language to learn?

A In short, yes! You really can learn the basics of PHP in 24 hours. PHP provides an
enormous wealth of functions that allow you to do things for which you would
have to write custom code in other languages. PHP also handles data types and
memory issues for you (much like Perl).

Understanding the syntax and structures of a programming language is only the
beginning of the journey, however. Ultimately, you will only really learn by
building your own projects and by making mistakes. You should see this book
as a starting point.

Workshop
Quiz

1. True or false: PHP was originally developed for use in the banking industry.

2. How much does PHP cost?

12 Hour 1

03 CH01 11/29/01 3:19 PM Page 12

3. What is the name of the new scripting engine that powers PHP?

4. Name a new feature introduced with PHP 4?

Quiz Answers
1. False. PHP was originally developed for Web publishing.

2. PHP costs nothing at all.

3. Sitting below PHP 4 is an entirely new scripting engine called Zend.

4. PHP 4 introduces (among other things) new array functions, a new statement to
loop through arrays called foreach, a boolean data type, enhanced support for
objects, session functions, new built-in variables, and Java and XML support.

Activities
1. Jot down the reasons you have for deciding to learn PHP. How will the features

covered in this chapter help you with your projects? Define two or three projects
that you would like to be able to complete once you have finished this book. As
you read the book, keep a note of language features and techniques that will help
you in the development of these projects.

PHP: From Homepage to Portal 13

1

03 CH01 11/29/01 3:19 PM Page 13

03 CH01 11/29/01 3:19 PM Page 14

HOUR 2
Installing PHP

Before getting started with the PHP language, you must first acquire, install,
and configure the PHP engine. PHP is available for a wide range of plat-
forms and works in conjunction with many servers.

In this hour, you will learn

• Which platforms, servers, and databases are supported by PHP 4

• Where to find PHP and other useful open source software

• One way of installing PHP on Linux

• Some options that add features to your PHP binary

• Some configuration directives

• How to find help when things go wrong

Platforms, Servers, Databases, and PHP
PHP is truly cross-platform. It runs on the Windows operating system, most
versions of UNIX including Linux, and even the Macintosh. Support is pro-
vided for a range of Web servers including Apache (itself open source and

04 CH02 11/29/01 3:23 PM Page 15

cross-platform), Microsoft Internet Information Server, WebSite Pro, the iPlanet Web
Server, and Microsoft’s Personal Web Server. The latter is useful if you want to test your
scripts offline on a Windows machine, although Apache can also be run on Windows.

You can also compile PHP as a standalone application. You can then call it from the
command line. In this book, we will concentrate on building Web applications, but do
not underestimate the power of PHP 4 as a general scripting tool comparable to Perl. The
fact that PHP runs as a CGI application means that any server that supports CGI scripts
should be able to work with it. Configuration, though, will vary from server to server.

PHP is designed to integrate easily with databases. This feature is one of the factors that
make the language such a good choice for building sophisticated Web applications. PHP
supports almost every database currently available, either directly or via ODBC (Open
DataBase Connectivity).

Throughout this book, we will be using a combination of Linux, Apache, and MySQL.
All these are free to download and use, and can be installed relatively easily on a PC.

Where to Find PHP and More
You can find PHP 4 at <http://www.php.net/>. PHP 4 is open source software, which
means that you won’t need your credit card handy when you download it.

The PHP WebSite is an excellent resource for PHP coders. The entire manual can be
read online at <http://www.php.net/manual/>, complete with helpful annotations from
other PHP coders. You can also download the manual in several formats.

You can find out more about getting Linux for your computer at <http://www.linux.
org/help/beginner/distributions.html>. If you want to run Linux on a Power
PC, you can find information about LinuxPPC at <http://www.linuxppc.org>.
Alternatively, Mac OS X, Apple’s latest operating system, is based on Unix, and can
run PHP with no problems. If you are running OS X you can find installation infor-
mation at <http://www.php.net/manual/en/install.macosx.php>.

MySQL, the database we will use in this book, can be downloaded from <http://
www.mysql.com>. There are versions for many operating systems including UNIX,
Windows, and OS/2.

16 Hour 2

04 CH02 11/29/01 3:23 PM Page 16

Installing PHP 4 for Linux and Apache
In this section, we will look at one way of installing PHP 4 with Apache on Linux. The
process is more or less the same for any UNIX operating system. You might be able to
find prebuilt versions of PHP for your system, which are simple to install. Compiling
PHP, though, gives you greater control over the features built into your binary.

Before you install you should make sure that you are logged into your system as the root
user. If you are not allowed access to your system’s root account, you may need to ask
your system administrator to install PHP for you.

There are two ways of compiling an Apache PHP module. You can either recompile
Apache, statically linking PHP into it, or you can compile PHP as a Dynamic Shared
Object (DSO). If your version of Apache was compiled with DSO support, it will be
capable of supporting new modules without the need for recompiling the server. This
method is the easiest way to get PHP up and running, and it is the one we will look at in
this section.

In order to test that Apache supports DSOs you should launch the Apache binary (httpd)
with the -l argument.

/www/bin/httpd -l

You should see a list of modules. If you see

mod_so.c

among them, you should be able to proceed; otherwise, you may need to recompile
Apache. The Apache distribution contains full instructions for this.

If you have not already done so, you will need to download the latest distribution of PHP
4 (PHP 4.0.6 at the time of writing). Your distribution will be archived as a tar file and
compressed with gzip, so you will need to unpack it:

tar -xvzf php-4.0.6.tar.gz

After your distribution is unpacked, you should move to the PHP 4 distribution directory:

cd ../php-4.0.6

Within your distribution directory you will find a script called configure. This accepts
additional information that should be provided when the configure script is run from the
command line. These ‘command line arguments’ will control the features that PHP will
support. For this example, we will include some useful command line arguments,
although you might want to specify arguments of your own. We will discuss some of
the configure options available to you later in the hour.

Installing PHP 17

2

04 CH02 11/29/01 3:23 PM Page 17

./configure --with-gdbm=/usr \
--with-apxs \
--with-mysql \
--with-xml \
--with-sablot=/usr \
--with-expat-dir=/usr/local \
--with-xslt-sablot \
--with-gd=/usr \
--enable-gd-native-ttf \
--with-ttf=/usr \
--with-dom=/usr \
--with-zlib=/usr

The directives chosen in this example are designed to support the features discussed in
this book. Most of them require that your system has certain libraries installed before
you can compile PHP. The configure script will complain if the relevant libraries cannot
be located.

After the configure script has run, you can run the make program. You will need a C
compiler on your system to run this command successfully.

make
make install

These commands should end the process of PHP 4 compilation and installation. You
should now be able to configure and run Apache.

Some configure Options
When we ran the configure script, we included some command-line arguments that
determined the features that the PHP engine will include. The configure script itself
gives you a list of available options. From the PHP distribution directory type the
following:

./configure --help

The list produced is long, so you may want to add it to a file for reading at leisure:

./configure --help > configoptions.txt

Although the output from this command is very descriptive, we will look at a few useful
options—especially those that might be needed to follow this book.

--with-gdbm
This option includes support for the Gnu Database Manager. This or another DBM type
library will need to be supported in order for you to work with the DBA functions dis-
cussed in Hour 11. If you are running Linux it is likely that this library will be present,

18 Hour 2

04 CH02 11/29/01 3:23 PM Page 18

but see Hour 11, “Working with the DBA Functions,” for alternatives. If your DBM
library is in a non-standard location you may need to specify a path.

--with-gdbm=/path/to/dir

--with-gd
--with-gd enables support for the GD library, which, if installed on your system, allows
you to create dynamic GIF or PNG images from your scripts. You can read more about
creating dynamic images in Hour 14, “Images On-the-Fly.” You can optionally specify a
path to your GD library’s install directory:

--with-gd=/path/to/dir

If your compile fails you should try explicitly setting the path when using this option.

--with-ttf
--with-ttf provides support for the FreeType 1 library that will allow you to include
fonts in any dynamic image you create. To enable this option you must have the
FreeType 1 library installed. You can find out more about FreeType at <http://www.
freetype.org>. As with many other directives, if you run into problems you should try
specifying a path.

--with-ttf=/path/to/dir

--with-mysql
--with-mysql enables support for the MySQL database.

--with-mysql=/path/to/dir

As you know, PHP provides support for other databases. Table 2.1 lists some of them
and the configure options you will need to use them.

TABLE 2.1 Some Database configure Options

Database configure Option

DBA --with-dba

DBM --with-dbm

GDBM --with-gdbm

Adabas D --with-adabas

FilePro --with-filepro

msql --with-msql

Installing PHP 19

2

04 CH02 11/29/01 3:23 PM Page 19

TABLE 2.1 continued

Database configure Option

informix --with-informix

iODBC --with-iodbc

OpenLink ODBC --with-openlink

Oracle --with-oracle

PostgreSQL --with-pgsql

Solid --with-solid

Sybase --with-sybase

Sybase-CT --with-sybase-ct

Velocis --with-velocis

LDAP --with-ldap

XML configure options
This book explores a number of XML features. In particular the --with-sablot option
enables support for XSLT and requires that you have installed the Sablotron engine. You
can find Sablotron at <http://www.gingerall.com/>.

To explicitly include Expat support you should use the --with-xml option.

In order to run the DOM XML functions you will require the libxml library (version
2.2.7 or better) which is available from <http://www.xmlsoft.org>. The required
configure option is --with-dom=/path/to/lib.

Configuring Apache
After you have compiled PHP and Apache, you should check Apache’s configuration
file, httpd.conf, which you will find in a directory called conf in the Apache install
directory. Add the following lines to this file:

AddType application/x-httpd-php .php
AddType application/x-httpd-php-source .phps

This ensures that the PHP engine will parse files that end with the .php extension. Any
files with the .phps extension will be output as PHP source. That is, the source code will
be converted to HTML and color-coded. This can be useful for debugging your scripts.

20 Hour 2

04 CH02 11/29/01 3:23 PM Page 20

If you want to offer to your users PHP pages with extensions more familiar to them, you
can choose any extension you want. You can even ensure that files with the .html exten-
sion are treated as PHP files with the following:

AddType application/x-httpd-php .html

Note that treating files with the .html extension as PHP scripts could slow down your
site, because every page with this extension will be parsed by the PHP engine before it is
served to the user.

If PHP has been preinstalled and you have no access to the Apache configuration files,
you may be able to change the extensions that will determine which files will be treated
as PHP executables by including an AddType directive in a file called .htaccess. After
you have created this file, the directive will affect the enclosing directory, as well as any
subdirectories. This technique will only work if the AllowOverride directive for the
enclosing directory is set to either FileInfo or All.

Although the filename .htaccess is the default for an access control file, it may have
been changed. Check the AccessFileName directive in httpd.conf to find out. Even if
you don’t have root access, you may be able to read the Apache configuration files.

An .htaccess file can be an excellent way of customizing your server space if you do
not have access to the root account. The principal way of configuring the behavior of
PHP, however, is the php.ini file.

php.ini
After you have compiled or installed PHP, you can still change its behavior with a file
called php.ini. On UNIX systems, the default location for this file is /usr/local/
lib; on a Windows system, the default location is the Windows directory. You should
find a sample php.ini file in your distribution directory, which contains factory settings.
Factory settings will be used if no php.ini file is used. Directives in the php.ini file
come in two forms: values and flags. Value directives take the form of a directive name
and a value separated by an equals sign. Possible values vary from directive to directive.
Flag directives take the form of directive name and a positive or negative term separated
by an equals sign. Positive terms can be ‘1,’ ‘On,’ ‘Yes,’ or ‘True.’ Negative terms can be
‘0,’ ‘Off,’ ‘No,’ or ‘False.’ Whitespace is ignored.

If PHP has been preinstalled on your system, you might want to check some of the
settings in php.ini.

You can change your php.ini settings at any time, though if you are running PHP as an
Apache module, you should restart the server for the changes to take effect.

Installing PHP 21

2

04 CH02 11/29/01 3:23 PM Page 21

short_open_tag
The short_open_tag directive determines whether you can begin a block of PHP code
with the symbols <? and close it with ?>. If this has been disabled, you will see one of
the following:

short_open_tag = Off
short_open_tag = False
short_open_tag = No

To enable the directive you can use one of the following:

short_open_tag = On
short_open_tag = True
short_open_tag = Yes

You can read more about PHP open and close tags in Hour 3, “A First Script.”

Error Reporting Directives
To diagnose bugs in your code, you should enable the directive that allows error mes-
sages to be written to the browser. This is on by default.

display_errors = On

You can also set the level of error reporting. For working through this book, you should
set this to the following:

error_reporting = E_ALL & ~ E_NOTICE

This will report all errors but not notices that warn about potential problems with your
code. Notices can interfere with some PHP techniques. This setting is the default.

Variable Directives
PHP makes certain variables available to you as a result of a GET request, a POST request,
or a cookie. You can influence this in the php.ini file.

Prior to version 4.0.3 the track_vars directive instructed PHP to create associative
arrays containing elements generated as a result of an HTTP request. This feature is now
enabled by default. If you are using an older version of PHP, and are not in a position to
upgrade, you should set this directive to ‘On.’

The register_globals directive determines whether values resulting from an HTTP
request should be made available as global variables. Many scripts in this book will
require the following setting to be enabled.

register_globals = On

22 Hour 2

04 CH02 11/29/01 3:23 PM Page 22

Changing php.ini Directives Locally
If you are running Apache with the module version of PHP and your configuration
allows the use of the .htaccess file, you can enable and disable php.ini directives on a
per-directory basis.

Within the .htaccess file you can use the php_flag directive to set a php.ini flag (a
directive that requires ‘On’ or ‘Off’) and the php_value directive to set a php.ini value
(a directive that requires a string or number).

php_flag short_open_tag On
php_value include_path “.:/home/corrdev”

If you are not running Apache, all is not lost. As of PHP 4.0.5 the function ini_set()
was introduced. It allows you to set some php.ini directives from within your code.
ini_set() requires two strings; the directive name, and the value to set.

ini_set(“include_path”, “.:/home/corrdev”);

You can read more about functions in Hour 6 “Functions.”

Help!
Help is always at hand on the Internet, particularly for problems concerning open source
software. Wait a moment before you hit the send button, however. No matter how
intractable your installation, configuration, or programming problem might seem,
chances are you are not alone. Someone will have already answered your question.

When you hit a brick wall, your first recourse should be to the official PHP site at
<http://www.php.net/>, particularly the annotated manual at <http://www.php.net
/manual>.

If you still can’t find your answer, don’t forget that the PHP site is searchable. The
advice you are seeking may be lurking in a press release or a Frequently Asked
Questions file. Another excellent and searchable resource is the PHP Builder site at
<http://www.phpbuilder.com>.

Still no luck? You can search the mailing list archives at <http://www.php.net/search.
php>. These archives represent a huge information resource with contributions from
many of the great and the good in the PHP community. Spend some time trying out a
few keyword combinations.

If you are still convinced that your problem has not been addressed, you may well be
doing the PHP community a service by exposing it.

Installing PHP 23

2

04 CH02 11/29/01 3:23 PM Page 23

You can join the PHP mailing lists at <http://www.php.net/support.php>. Although
these lists are often high volume, you can learn a lot from them. If you are serious about
PHP scripting, you should certainly subscribe at least to a digest list. Once subscribed to
the list that matches your concerns, you might consider posting your problem.

When you post a question it is often a good idea to include as much information as pos-
sible (without writing a novel). The following items often are pertinent:

• Your operating system

• The version of PHP you are running or installing

• The configure options you chose

• Any output from the configure or make commands that preceded an installation
failure

• A reasonably complete example of the code that is causing you problems

Why all these cautions about posting a question to a mailing list? First, developing
research skills will stand you in good stead. A good researcher can generally solve a
problem quickly and efficiently. Asking a naive question of a technical list often involves
a wait rewarded only by a message or two referring you to the archives where you should
have begun your search for answers.

Second, remember that a mailing list is not analogous to a technical support call center.
No one is paid to answer your questions. Despite this, you have access to an impressive
resource of talent and knowledge, including that of some of the creators of PHP itself. A
good question and its answer will be archived to help other coders. Asking a question
that has been answered several times just adds more noise.

Having said this, don’t be afraid to post a problem to the list. PHP developers are a civi-
lized and helpful breed, and by bringing a problem to the attention of the community,
you might be helping others to solve the same problem.

Summary
PHP 4 is open source software. It is also open in the sense that it does not demand that
you use a particular server, operating system, or database.

In this hour, you learned where to locate PHP and other open source software that can
help you host and serve Web sites. You learned how to compile PHP as an Apache mod-
ule on Linux. If you download a PHP binary for another platform, your distribution will
contain step-by-step instructions. You learned some of the configure options that can
change the features that your binary will support. You learned about php.ini and some

24 Hour 2

04 CH02 11/29/01 3:23 PM Page 24

of the directive it contains. Finally, you learned about sources of support. You should
now be ready to come to grips with the language itself.

In the next hour we will write and run our first script. We will encounter some of the
special syntax you will need to use to distinguish HTML from PHP code.

Q&A
Q You have covered an installation for Linux and Apache. Does that mean that

this book will not apply to my server and operating system?

A No, one of PHP’s great strengths is that it runs on multiple platforms. If you are
having trouble installing PHP to work on your operating system or with your
server, don’t forget to read the files that come with your PHP distribution. You
should find comprehensive step-by-step instructions for installation. If you are still
having problems, review the “Help!” section earlier in this hour. The online
resources mentioned there will almost certainly contain the answers you need.

Workshop
Quiz

1. Where can you find the PHP online manual?

2. From a UNIX operating system, how would you get help on configuration options
(the options that you pass to the configure script in your PHP distribution)?

3. What is Apache’s configuration file typically called?

4. What line should you add to the Apache configuration file to ensure that the .php
extension is recognized?

5. What is PHP’s configuration file called?

Quiz Answers
1. The manual for PHP 4 is available at <http://www.php.net>.

2. You can get help on configuration options by calling the configure script in the
PHP distribution folder and passing it the --help argument:

./configure --help

3. The Apache configuration file is called httpd.conf.

Installing PHP 25

2

04 CH02 11/29/01 3:23 PM Page 25

4. The line

AddType application/x-httpd-php .php

ensures that Apache will treat files ending with the .php extension as PHP 4
scripts.

5. PHP’s configuration file is called php.ini.

Activities
1. Install PHP on your system. If it is already in place, review your php.ini file and

check your configuration.

26 Hour 2

04 CH02 11/29/01 3:23 PM Page 26

HOUR 3
A First Script

Having installed and configured PHP, it is now time to put it to the test. In
this hour, you will create your first script and spend a little time analyzing
its syntax. By the end of the hour, you should be ready to create documents
that include both HTML and PHP.

In this hour, you will learn:

• How to create, upload, and run a PHP script

• How to incorporate HTML and PHP in the same document

• How to make your code clearer with comments

Our First Script
Let’s jump straight in with a PHP script. To begin, open your favorite text
editor. Like HTML documents, PHP files are made up of plain text. You can
create them with any text editor, such as Notepad on Windows, Simple Text
and BBEdit on MacOS, or VI and Emacs on UNIX operating systems. Most
popular HTML editors provide at least some support for PHP.

05 CH03 11/29/01 3:21 PM Page 27

Type in the example in Listing 3.1 and save the file, calling it something like first.php.

LISTING 3.1 A First PHP Script

1: <?php
2: print “Hello Web!”;
3: ?>

The extension to the PHP document is important because it tells the server to treat the
file as PHP code and invoke the PHP engine. The default PHP extension for a PHP 4
document is .php. This can be changed, however, by altering the server’s configuration.
You saw how to do this in Hour 2, “Installing PHP.” System administrators occasionally
configure servers to work with non-default extensions, so some server set-ups may
expect extensions such as .phtml or .php4.

If you are not working directly on the machine that will be serving your PHP script, you
will probably need to use an FTP client, such as WS-FTP for Windows or Fetch for
MacOS to upload your saved document to the server.

28 Hour 3

Keith Edmunds maintains a handy list of PHP-friendly editors at
http://www.itworks.demon.co.uk/phpeditors.htm.

For historical reasons, different operating systems use different character
combinations to denote the end of a line of text. It is a good idea to save
your PHP documents with the correct linebreaks for the operating system
which runs your server. A document with the wrong linebreaks for the oper-
ating system may be read as a single very long line of text by the PHP
engine. This usually causes no problems, but the occasional bug can result.
Most good text editors will allow you to nominate your target operating
system.

After the document is in place, you should be able to access it via your browser. If all has
gone well, you should see the script’s output. Figure 3.1 shows the output from the
first.php script.

If PHP is not installed on your server or your file’s extension is not recognized, you may
not see the output shown in Figure 3.1. In these cases, you probably will see the source
code created in Listing 3.1. Figure 3.2 shows what happens when an unknown extension
is encountered.

05 CH03 11/29/01 3:21 PM Page 28

If this happens, first check the extension with which you saved your PHP script. In
Figure 3.2, the document was accidentally called first.nphp. If the file extension is as it
should be, you may need to check that PHP has been installed properly and that your
server is configured to work with the extension that you have used for your script. You
can read more about installing and configuring PHP in Hour 2.

Now that you have uploaded and tested your script, you can take a look at the code in a
little more detail.

Beginning and Ending a Block of PHP Statements
When writing PHP, you need to inform the PHP engine that you want it to execute your
commands. If you don’t do this, the code you write will be mistaken for HTML and will
be output to the browser. You can do this with special tags that mark the beginning and
end of PHP code blocks. Table 3.1 shows four such PHP delimiter tags.

A First Script 29

3

FIGURE 3.1
Success: The output
from Listing 3.1.

FIGURE 3.2
Failure: The extension
is not recognized.

05 CH03 11/29/01 3:21 PM Page 29

TABLE 3.1 PHP Start and End Tags

Tag Style Start Tag End Tag

Standard tags <?php ?>

Short tags <? ?>

ASP tags <% %>

Script tags <SCRIPT LANGUAGE=”php”> </SCRIPT>

Of the tags in Table 3.1, only the standard and the script tags can be guaranteed to work
on any configuration. The short and ASP style tags must be explicitly enabled in your
php.ini. You examined the php.ini file in Hour 2.

To activate recognition for short tags, you must make sure that the short_open_tag
switch is set to “On” in php.ini:

short_open_tag = On;

Short tags are enabled by default, so you would only need to edit php.ini if you want to
disable these.

To activate recognition for the ASP style tags, you must enable the asp_tags setting:

asp_tags = On;

After you have edited php.ini, you should be able to choose from any of the four styles
for use in your scripts. This is largely a matter of preference, although if you intend to
include XML in your script, you should disable the short tags (<? ?>) and work with the
standard tags (<?php ?>).

30 Hour 3

The character sequence ‘<?’ tells an XML parser to expect a processing
instruction and is therefore frequently included in XML documents. If you
include XML in your script and have short tags enabled, the PHP engine is
likely to confuse XML processing instructions and PHP start tags. Disable
short tags if you intend to incorporate XML in your document

Let’s run through some of the ways in which you can legally write the code in Listing
3.1. You could use any of the four PHP start and end tags that you have seen:

<?
print(“Hello Web!”);
?>

05 CH03 11/29/01 3:21 PM Page 30

<?php
print(“Hello Web!”);
?>

<%
print(“Hello Web!”);
%>

<SCRIPT LANGUAGE=”php”>
print(“Hello Web!”);
</SCRIPT>

Single lines of code in PHP also can be presented on the same line as the PHP start and
end tags:

<? print(“Hello Web!”); ?>

Now that you know how to define a block of PHP code, take a closer look at the code in
Listing 3.1 itself.

The print() Function
print() is a function that outputs data. In most cases, anything output by print() ends
up in the browser window. A function is a command that performs an action, usually
modified in some way by data provided for it. Data sent to a function is almost always
placed in parentheses after the function name. In this case, you sent the print() function
a collection of characters, or string. Strings must always be enclosed by quotation marks,
either single or double.

A First Script 31

3

Function calls generally require parentheses after their name whether or not
they demand that data be passed to them. print() is an exception, and
enclosing the data you want to print to the browser in parentheses is
optional. This is the more common syntax, so we will usually omit the
brackets in our examples.

You ended your only line of code in Listing 3.1 with a semicolon. The semicolon
informs the PHP engine that you have completed a statement.

A statement represents an instruction to the PHP engine. Broadly, it is to PHP
what a sentence is to written or spoken English. A sentence should end with a

period; a statement should usually end with a semicolon. Exceptions to this include
statements that enclose other statements, and statements that end a block of code. In
most cases, however, failure to end a statement with a semicolon will confuse the PHP
engine and result in an error.

NEW TERM

05 CH03 11/29/01 3:21 PM Page 31

Because the statement in Listing 3.1 is the final one in that block of code, the semicolon
is optional.

Combining HTML and PHP
The script in Listing 3.1 is pure PHP. You can incorporate this into an HTML document
simply by adding HTML outside the PHP start and end tags, as shown in Listing 3.2.

LISTING 3.2 A PHP Script Including HTML

1: <html>
2: <head>
3: <title>Listing 3.2 A PHP script including HTML</title>
4: </head>
5: <body>
6:
7: <?php
8: print “hello world”;
9: ?>
10:
11: </body>
12: </html>

As you can see, incorporating HTML into a PHP document is simply a matter of typing
in the code. The PHP engine ignores everything outside PHP open and close tags. If you
were to view Listing 3.2 with a browser, as shown in Figure 3.3, you would see the string
“hello world” in bold. If you were to view the document source, as shown in Figure 3.4,
the listing would look exactly like a normal HTML document.

32 Hour 3

FIGURE 3.3
The output of Listing
3.2 as viewed in a
browser.

05 CH03 11/29/01 3:21 PM Page 32

You can include as many blocks of PHP code as you need in a single document, inter-
spersing them with HTML as required. Although you can have multiple blocks of code
in a single document, they combine to form a single script. Any variables defined in the
first block usually will be available to subsequent blocks.

Adding Comments to PHP Code
Code that seems clear at the time of writing can seem like a hopeless tangle when you
come to amend it six months later. Adding comments to your code as you write can save
you time later on and make it easier for other programmers to work with your code.

A comment is text in a script that is ignored by the PHP engine. Comments can
be used to make code more readable, or to annotate a script.

Single line comments begin with two forward slashes (//) or a single hash sign (#). All
text from either of these marks until either the end of the line or the PHP close tag is
ignored.

// this is a comment
this is another comment

Multiline comments begin with a forward slash followed by an asterisk (/*) and end with
an asterisk followed by a forward slash (*/).

/*
this is a comment
none of this will

A First Script 33

3

FIGURE 3.4
The output of Listing
3.2 as HTML source
code.

NEW TERM

05 CH03 11/29/01 3:21 PM Page 33

be parsed by the
PHP engine
*/

34 Hour 3

With a third party tool called PHPDoc it is possible to convert your
comments into hyperlinked documentation. This is extremely useful for
maintaining large projects. You can find PHPDoc at http://www.phpdoc.de.

Summary
You should now have the tools at your disposal to run a simple PHP script on a properly
configured server.

In this hour, you created your first PHP script. You learned how to use a text editor to
create and name a PHP document. You examined four sets of tags that you can use to
begin and end blocks of PHP code. You learned how to use the print() function to send
data to the browser, and you brought HTML and PHP together into the same script.
Finally, you learned about comments and how to add them to PHP documents.

In the next hour you will be able to use these skills to test some of the fundamental
building blocks of the PHP language, including variables, data types and operators.

Q&A
Q Which are the best start and end tags to use?

A It is largely a matter of preference. For the sake of portability the standard tags
(<?php ?>) are probably the safest bet. Short tags are enabled by default and have
the virtue of brevity, but with the increasing popularity of XML it may be safest to
avoid them.

Q What editors should I avoid when creating PHP code?

A Do not use word processors that format text for printing (such as Word, for
example). Even if you save files created using this type of editor in plain text
format, hidden characters are likely to creep into your code.

Q When should I comment my code?

A This is a matter of preference once again. Some short scripts will be self-
explanatory to you, even after a long interval. For scripts of any length or
complexity, you should comment your code. This often saves you time and
frustration in the long run.

05 CH03 11/29/01 3:21 PM Page 34

Workshop
Quiz

1. Can a user read the source code of PHP script you have successfully installed?

2. What do the standard PHP delimiter tags look like?

3. What do the ASP PHP delimiter tags look like?

4. What do the script PHP delimiter tags look like?

5. What function would you use to output a string to the browser?

Quiz Answers
1. No, the user will only see the output of your script.

2. <?php

// your code here
?>.

3. <%

// your code here
%>.

4. <script language=”php”>

// your code here
</script>.

5. print()

Activities
1. Familiarize yourself with the process of creating, uploading, and running PHP

scripts. In particular, create your own ‘hello world’ script. Add HTML code to it,
and additional blocks of PHP. Experiment with the different PHP delimiter tags.
Which ones are enabled in your configuration? Take a look at your php.ini file to
confirm your findings. Don’t forget to add some comments to your code.

A First Script 35

3

05 CH03 11/29/01 3:21 PM Page 35

05 CH03 11/29/01 3:21 PM Page 36

Hour
4 The Building Blocks

5 Going with the Flow

6 Functions

7 Arrays

8 Objects

PART II
The Language

06 Part 2 11/29/01 3:17 PM Page 37

06 Part 2 11/29/01 3:17 PM Page 38

HOUR 4
The Building Blocks

In this hour, you are going to get your hands dirty with some of the nuts and
bolts of the language.

There’s a lot of ground to cover, and if you are new to programming, you
might feel bombarded with information. Don’t worry—you can always refer
back here later on. Concentrate on understanding rather than memorizing the
features covered.

If you’re already an experienced programmer, you should at least skim this
hour’s lesson. It covers a few PHP-specific features.

In this hour, you will learn:

• About variables—what they are, why you need to use them and how
to use them

• How to define and access variables

• About data types

• About some of the more commonly used operators

• How to use operators to create expressions

• How to define and use constants

07 CH04 11/29/01 3:23 PM Page 39

Variables
A variable is a special container that you can define to “hold” a value. Variables are
fundamental to programming. Without them we would be forced to ‘hard-code’ all the
values in our scripts. In adding two numbers together and printing the result, I have
achieved something useful.

print (2 + 4);

This script will only be useful for people who want to know the sum of 2 and 4, how-
ever. To get round this, I could write a script for finding the sum of another set of num-
bers, say 3 and 5. This approach to programming is clearly absurd. Variables allow us to
create templates for operations (adding two numbers, for example), without worrying
about what values the variables contain. The variables will be given values when the
script is run, possibly through user input, or through a database query.

You will want to use a variable whenever the data that is being subjected to an operation
in your script is liable to change from one script execution to another, or even within the
lifetime of the script itself.

A variable consists of a name that you can choose, preceded by a dollar ($) sign. The
variable name can include letters, numbers, and the underscore character (_). Variable
names cannot include spaces or characters that are not alphanumeric. They should also
begin with a letter or an underscore. The following code defines some legal variables:

$a;
$a_longish_variable_name;
$2453;
$sleepyZZZZ;

Remember that a semicolon (;) is used to end a PHP statement. The semicolons in the
previous fragment of code are not part of the variable names.

A variable is a holder for a type of data. It can hold numbers, strings of
characters, objects, arrays, or booleans. The contents of a variable can be

changed at any time.

As you can see, you have plenty of choices about naming. To declare a variable, you
need only to include it in your script. You usually declare a variable and assign a value to
it in the same statement.

$num1 = 8;
$num2 = 23;

The preceding lines declare two variables, using the assignment operator (=) to give them
values. You will learn about assignment in more detail in the Operators and Expressions

40 Hour 4

NEW TERM

07 CH04 11/29/01 3:23 PM Page 40

section later in the hour. After you give your variables values, you can treat them exactly
as if they were the values themselves. In other words:

print $num1;

is equivalent to

print 8;

as long as $num1 contains 8.

Data Types
Different types of data take up different amounts of memory and may be treated differ-
ently when they are manipulated in a script. Some programming languages therefore
demand that the programmer declare in advance which type of data a variable will con-
tain. By contrast, PHP 4 is loosely typed, which means that it will calculate data types as
data is assigned to each variable. This is a mixed blessing. On the one hand, it means that
variables can be used flexibly, holding a string at one point and an integer at another. On
the other hand, this can lead to problems in larger scripts if you expect a variable to hold
one data type when in fact it holds something completely different. You may have created
code that is designed to work with an array variable, for example. If the variable in ques-
tion contains a number value instead, then errors might occur when the code attempts to
perform array specific operations on the variable.

Table 4.1 shows the six standard data types available in PHP 4.

TABLE 4.1 Standard Data Types

Type Example Description

Integer 5 A whole number

Double 3.234 A floating-point number

String “hello” A collection of characters

Boolean true One of the special values true or false

Object See Hour 8, “Objects”

Array See Hour 7, “Arrays”

Of PHP’s six standard data types, we will leave arrays and objects for Hours 7 and 8.

PHP 4 also provides two special data types. These are listed in Table 4.2.

The Building Blocks 41

4

07 CH04 11/29/01 3:23 PM Page 41

TABLE 4.2 Special Data Types

Type Description

Resource Reference to a third party resource (a database

for example)

NULL An uninitialized variable

Resource types are often returned by functions that deal with external applications or
files. You will see examples of resource types throughout the book in Hour 10, Hour 11
and Hour 12. The type NULL is reserved for variables that have not been initialized (that
is, have not yet had a value assigned to them).

You can use PHP’s built-in function gettype() to test the type of any variable. If you
place a variable between the parentheses of the function call, gettype() returns a string
representing the relevant type. Listing 4.1 assigns five different data types to a single
variable, testing it with gettype() each time.

42 Hour 4

You can read more about calling functions in Hour 6, “Functions.”

LISTING 4.1 Testing the Type of a Variable

1: <html>
2: <head>
3: <title>Listing 4.1 Testing the type of a variable</title>
4: </head>
5: <body>
6: <?php
7: $testing; // declare without assigning
8: print gettype($testing); // null
9: print “
”;
10: $testing = 5;
11: print gettype($testing); // integer
12: print “
”;
13: $testing = “five”;
14: print gettype($testing); // string
15: print(“
”);
16: $testing = 5.0;
17: print gettype($testing); // double
18: print(“
”);
19: $testing = true;
20: print gettype($testing); // boolean
21: print “
”;

07 CH04 11/29/01 3:23 PM Page 42

LISTING 4.1 continued

22: ?>
23: </body>
24: </html>

This script produces the following:

NULL
integer
string
double
boolean

When we declare our $testing variable in line 7 we do not assign a value to it. So when
we first use the gettype() function to test the variable in line 8, we get the string
“NULL”. After this we assign values to $testing by using the = sign before passing it to
gettype(). An integer, assigned to the $testing variable in line 10, is a whole or real
number. In simple terms, it can be said to be a number without a decimal point. A string,
assigned to the $testing variable in line 13, is a collection of characters. When you
work with strings in your scripts, they should always be surrounded by double (“) or
single (‘) quotation marks. A double, assigned to the $testing variable in line 16, is a
floating-point number. That is, a number that includes a decimal point. A boolean, assigned
to the $testing variable in line 19, can be one of two special values, true or false.

The Building Blocks 43

4

Prior to PHP 4, there was no boolean type. Although true was used, it was
actually a contstant (a special kind of variable that we will cover later in this
chapter) with the integer value of 1.

Both NULL and Resource types were also added with PHP 4.

Changing Type with settype()
PHP provides the function settype() to change the type of a variable. To use
settype(), you must place the variable to change (and the type to change it to) between
the parentheses and separated by commas. Listing 4.2 converts the value 3.14 (a double)
to the four types that we are covering in this hour.

LISTING 4.2 Changing the Type of a Variable with settype()

1: <html>
2: <head>
3: <title>Listing 4.2 Changing the type of a variable with settype()</title>

07 CH04 11/29/01 3:23 PM Page 43

LISTING 4.2 continued

4: </head>
5: <body>
6: <?php
7: $undecided = 3.14;
8: print gettype($undecided); // double
9: print “ is $undecided
”; // 3.14
10: settype($undecided, ‘string’);
11: print gettype($undecided); // string
12: print “ is $undecided
”; // 3.14
13: settype($undecided, ‘integer’);
14: print gettype($undecided); // integer
15: print “ is $undecided
”; // 3
16: settype($undecided, ‘double’);
17: print gettype($undecided); // double
18: print “ is $undecided
”; // 3.0
19: settype($undecided, ‘boolean’);
20: print gettype($undecided); // boolean
21: print “ is $undecided
”; // 1
22: ?>
23: </body>
24: </html>

In each case, we use gettype() to confirm that the type change worked and then print
the value of the variable $undecided to the browser. When we convert the string “3.14”
to an integer in line 13, any information beyond the decimal point is lost forever. That’s
why $undecided still contains 3 after we have changed it back to a double in line 16.
Finally, in line 19, we convert $undecided to a boolean. Any number other than 0
becomes true when converted to a boolean. When printing a boolean in PHP, true is
represented as 1 and false as an empty string, so in line 21, $undecided is printed as 1.

Changing Type by Casting
By placing the name of a data type in parentheses in front of a variable, you create a
copy of that variable’s value converted to the data type specified.

The principle difference between settype() and a cast is the fact that casting produces a
copy, leaving the original variable untouched. Listing 4.3 illustrates this.

LISTING 4.3 Casting a Variable

1: <html>
2: <head>
3: <title>Listing 4.3 Casting a variable</title>
4: </head>

44 Hour 4

07 CH04 11/29/01 3:23 PM Page 44

LISTING 4.3 continued

5: <body>
6: <?php
7: $undecided = 3.14;
8: $holder = (double) $undecided;
9: print gettype($holder) ; // double
10: print “ is $holder
”; // 3.14
11: $holder = (string) $undecided;
12: print gettype($holder); // string
13: print “ is $holder
”; // 3.14
14: $holder = (integer) $undecided;
15: print gettype($holder); // integer
16: print “ is $holder
”; // 3
17: $holder = (double) $undecided;
18: print gettype($holder); // double
19: print “ is $holder
”; // 3.14
20: $holder = (boolean) $undecided;
21: print gettype($holder); // boolean
22: print “ is $holder
”; // 1
23: print “<hr>”;
24: print “original variable type: “;
25: print gettype($undecided); // double
26: ?>
27: </body>
28: </html>

We never actually change the type of $undecided, which remains a double throughout.
We illustrate this on line 25 by using the gettype() function to output the type of
$undecided.

In fact, by casting $undecided, we create a copy that is then converted to the type we
specify. This new value is then stored in the variable $holder, first in Line 8, and then
also in Lines 11, 14, 17 and 20. Because we are working with a copy of $undecided, we
never discard any information from it as we did in lines 13 and 19 of Listing 4.2.

So now that we can change the contents of a variable from one type to another, either
using settype() or a cast, we should consider why this might be useful. It is certainly
not a procedure you will use often because PHP will automatically cast for you when the
context requires. However, an automatic cast is temporary, and you might wish to make a
variable persistently hold a particular data type.

Numbers typed into an HTML form by a user will be made available to your script as a
string. If you try to add two strings containing numbers, PHP will helpfully convert the
strings into numbers while the addition is taking place. So

“30cm” + “40cm”

The Building Blocks 45

4

07 CH04 11/29/01 3:23 PM Page 45

will give the integer 70. In casting the strings PHP will ignore the non-numeric charac-
ters. However, you may wish to clean up your user input yourself. Imagine that our user
has been asked to submit a number. We can simulate this by declaring a variable and
assigning to it.

$test = “30cm”;

As you can see, our user has mistakenly added units to the number. We can make sure
that our user input is clean by casting it to an integer.

$test = (integer)$test;
print “Your imaginary box has a width of $test centimeters”;

You can read more about automatic casts in Hour 16, “Working With Data.”

Why Test Type?
So why might it be useful to know the type of a variable? There are often circumstances
in programming in which data is passed to you from another source. In Hour 6, for
example, you will learn how to create functions in your scripts. Functions can accept
information from calling code in the form of arguments. For the function to work with
the data it is given, it is often a good idea to first check that it has been given values of
the correct data type. A function that is expecting a resource, for example, will not work
well when passed a string.

Operators and Expressions
You can now assign data to variables. You can even investigate and change the data type
of a variable. A programming language isn’t very useful, though, unless you can manipu-
late the data you can store. Operators are symbols that make it possible to use one or
more values to produce a new value. A value that is operated on by an operator is
referred to as an operand.

An operator is a symbol or series of symbols that, when used in conjunction
with values, performs an action and usually produces a new value.

An operand is a value used in conjunction with an operator. There are usually
two operands to one operator.

Let’s combine two operands with an operator to produce a new value:

4 + 5

46 Hour 4

NEW TERM

NEW TERM

07 CH04 11/29/01 3:23 PM Page 46

4 and 5 are operands. They are operated on by the addition operator (+) to produce 9.
Operators almost always sit between two operands, though you will see a few exceptions
later in this hour.

The combination of operands with an operator to manufacture a result is called an
expression. Although most operators form the basis of expressions, an expression need
not contain an operator. In fact in PHP, an expression is defined as anything that can be
used as a value. This includes integer constants such as 654, variables such as $user, and
function calls such as gettype(). The expression (4 + 5), therefore is an expression that
consists of two further expressions and an operator. When an expression produces a
value, it is often said to ‘resolve to’ that value. That is, when all sub-expressions are
taken into account the expression can be treated as if it were a code for the value itself.

An expression is any combination of functions, values, and operators that resolve
to a value. As a rule of thumb, if you can use it as if it were a value, it is an

expression.

Now that we have the principles out of the way, it’s time to take a tour of PHP’s more
common operators.

The Assignment Operator
You have met the assignment operator each time we have initialized a variable. It con-
sists of the single character =. The assignment operator takes the value of its right-hand
operand and assigns it to its left-hand operand:

$name = “matt”;

The variable $name now contains the string “matt”. Interestingly, this construct is an
expression. It might look at first glance that the assignment operator simply changes the
variable $name without producing a value, but in fact, a statement that uses the assign-
ment operator always resolves to a copy of the value of the right operand. Thus

print ($name = “matt”);

prints the string “matt” to the browser in addition to assigning “matt” to $name.

Arithmetic Operators
The arithmetic operators do exactly what you would expect. Table 4.3 lists these opera-
tors. The addition operator adds the right operand to the left operand. The subtraction
operator subtracts the right-hand operand from the left. The division operator divides the
left-hand operand by the right. The multiplication operator multiplies the left-hand
operand by the right. The modulus operator returns the remainder of the left operand
divided by the right.

The Building Blocks 47

4

NEW TERM

07 CH04 11/29/01 3:23 PM Page 47

TABLE 4.3 Arithmetic Operators

Operator Name Example Example Result

+ Addition 10+3 13

– Subtraction 10–3 7

/ Division 10/3 3.3333333333333

Multiplication 10*3 30

% Modulus 10%3 1

The Concatenation Operator
The concatenation operator is a single dot. Treating both operands as strings, it appends
the right-hand operand to the left. So

“hello”.” world”

returns

“hello world”

Regardless of the data types of the operands, they are treated as strings, and the result
always is a string. We will encounter concatenation frequently throughout this book
when we need to combine the results of an expression of some kind to with string.

$centimeters = 212;
print “the width is “.($centimeters/100).” meters”;

Combined Assignment Operators
Although there is really only one assignment operator, PHP 4 provides a number of com-
bination operators that transform the left-hand operand as well as return a result. As a
rule, operators use their operands without changing their values. Assignment operators
break this rule. A combined assignment operator consists of a standard operator symbol
followed by an equals sign. Combination assignment operators save you the trouble of
using two operators yourself. For example,

$x = 4;
$x = $x + 4; // $x now equals 8

may instead by written as

$x = 4;
$x += 4; // $x now equals 8

There is an assignment operator for each of the arithmetic operators and one for the
concatenation operator. Table 4.4 lists some of the most common.

48 Hour 4

07 CH04 11/29/01 3:23 PM Page 48

TABLE 4.4 Some Combined Assignment Operators

Operator Example Equivalent to

+= $x += 5 $x = $x + 5

–= $x –= 5 $x = $x – 5

/= $x /= 5 $x = $x / 5

*= $x *= 5 $x = $x * 5

%= $x %= 5 $x = $x % 5

.= $x .= “ test” $x = $x.” test”

Each of the examples in Table 4.4 transforms the value of $x using the value of the
right-hand operand.

Comparison Operators
Comparison operators perform tests on their operands. They return the boolean value
true if the test is successful, or false otherwise. This type of expression is useful in
control structures, such as if and while statements. You will meet these in Hour 5.

To test whether the value contained in $x is smaller than 5, for example, you would use
the less than operator:

$x < 5

If $x contained 3, this expression would be equivalent to the value true. If $x contained
7, the expression would resolve to false.

Table 4.5 lists the comparison operators.

TABLE 4.5 Comparison Operators

Returns Example
Operator Name True if ($x is 4) Result

== Equivalence Left is $x == 5 false

equivalent
to right

!= Non- Left is $x != 5 true

equivalence not
equivalent
to right

The Building Blocks 49

4

07 CH04 11/29/01 3:23 PM Page 49

TABLE 4.5 continued

Returns Example
Operator Name True if ($x is 4) Result

=== Identical Left is $x === 5 false

equivalent
to right
and they
are the
same type

> Greater Left is $x > 4 false

than greater
than right

>= Greater Left is $x >= 4 true

than or greater
equal to than or

equal to
right

< Less than Left is $x < 4 false

less than
right

<= Less than Left is $x <= 4 true

or equal to less than
or equal
to right

These operators are most commonly used with integers or doubles, although the equiva-
lence operator is also used to compare strings.

Creating More Complex Test Expressions with the
Logical Operators
The logical operators test combinations of booleans. The or operator, which is indicated
by two pipe characters (‘||’) or simply the characters or, for example, returns true if
either the left or the right operand is true.

true || false

would return true.

50 Hour 4

07 CH04 11/29/01 3:23 PM Page 50

The and operator, which is indicated by two ampersand characters (‘&&’) or simply the
characters and, only returns true if both the left and right operands are true.

true && false

would return false. It’s unlikely that you would use a logical operator to test boolean
constants, however. It would make more sense to test two or more expressions that
resolve to a boolean. For example,

($x > 2) && ($x < 15)

would return true if $x contained a value that is greater than 2 and smaller than 15. We
include the parentheses to make the code easier to read. Table 4.6 lists the logical opera-
tors.

TABLE 4.6 Logical Operators

Returns True
Operator Name if... Example Result

|| Or Left or right true || true

is true false

or Or Left or right true || true

is true false

xor Xor Left or right true xor false

is true but true

not both

&& And Left and right true && false

are true false

and And Left and right true && false

are true false

! Not The single ! true false

operand is
not true

Why are there two versions of both the or and the and operators? The answer lies in
operator precedence, which you will look at later in this section.

Automatically Incrementing and Decrementing an
Integer Variable
When coding in PHP, you will often find it necessary to increment or decrement an inte-
ger variable. You will usually need to do this when you are counting the iterations of a

The Building Blocks 51

4

07 CH04 11/29/01 3:23 PM Page 51

loop. You have already learned two ways of doing this. I could increment the integer con-
tained by $x with the addition operator

$x = $x + 1; // $x is incremented

or with a combined assignment operator

$x += 1; // $x is incremented

In both cases, the resultant integer is assigned to $x. Because expressions of this kind are
so common, PHP provides some special operators that allow you to add or subtract the
integer constant 1 from an integer variable, assigning the result to the variable itself.
These are known as the post-increment and post-decrement operators. The post-
increment operator consists of two plus symbols appended to a variable name.

$x++; // $x is incremented

increments the variable $x by one. Using two minus symbols in the same way decre-
ments the variable:

$x--; // $x is decremented

If you use the post-increment or post-decrement operators in conjunction with a condi-
tional operator, the operand will only be modified after the test has been completed:

$x = 3;
$x++ < 4; // true

In the previous example, $x contains 3 when it is tested against 4 with the less than oper-
ator, so the test expression returns true. After this test is complete, $x is incremented.

In some circumstances, you might want to increment or decrement a variable in a test
expression before the test is carried out. PHP provides the pre-increment and pre-
decrement operators for this purpose. On their own, these operators behave in exactly
the same way as the post-increment and post-decrement operators. They are written
with the plus or minus symbols preceding the variable:

++$x; // $x is incremented
--$x; // $x is decremented

If these operators are used as part of a test expression, the incrementation occurs before
the test is carried out.

$x = 3;
++$x < 4; // false

In the previous fragment, $x is incremented before it is tested against 4. The test expres-
sion returns false because 4 is not smaller than 4.

52 Hour 4

07 CH04 11/29/01 3:23 PM Page 52

Operator Precedence
When you use an operator, the PHP engine usually reads your expression from left to
right. For complex expressions that use more than one operator, though, the waters can
become a little murky. First, consider a simple case:

4 + 5

There’s no room for confusion, here. PHP simply adds 4 to 5. What about the next frag-
ment?

4 + 5 * 2

This presents a problem. Does it mean the sum of 4 and 5, which should then be multi-
plied by 2, giving the result 18? Does it mean 4 plus the result of 5 multiplied by 2,
resolving to 14? If you were to read simply from left to right, the former would be true.
In fact, PHP attaches different precedence to operators. Because the multiplication opera-
tor has higher precedence than the addition operator does, the second solution to the
problem is the correct one.

You can force PHP to execute the addition expression before the multiplication expres-
sion with parentheses:

(4 + 5) * 2

Whatever the precedence of the operators in a complex expression, it is a good idea to
use parentheses to make your code clearer and to save you from obscure bugs. Table 4.7
lists the operators covered in this hour in precedence order (highest first).

TABLE 4.7 Order of Precedence for Selected Operators

Operators

++ -- (cast)

/ * %

+ -

< <= => >

== === !=

&&

||

= += -= /= *= %= .=

and

xor

or

The Building Blocks 53

4

07 CH04 11/29/01 3:23 PM Page 53

As you can see, or has a lower precedence than || and and has a lower precedence than
&&, so you could use the lower-precedence logical operators to change the way a complex
test expression is read. This is not necessarily a good idea. The following two expres-
sions are equivalent, but the second is much easier to read:

$x and $y || $z
$x && ($y || $z))

The order of precedence is the only reason that both && and and are present in PHP. The
same is true of || and or. In most, if not all circumstances, however, use of parentheses
will make for clearer code and fewer bugs than code that takes advantage of the differ-
ence in precedence of these operators. Throughout this book, we will tend to use the
more common || and && operators.

Constants
Variables offer a flexible way of storing data. You can change their values and the type of
data they store at any time. If, however, you want to work with a value that you do not
want to alter throughout your script’s execution, you can define a constant. You must use
PHP’s built-in function define() to create a constant. After you have done this, the con-
stant cannot be changed. To use the define() function, you must place the name of the
constant and the value you want to give it within the call’s parentheses. These values
must be separated by a comma:

define(“CONSTANT_NAME”, 42);

The value you want to set can only be a number or a string. By convention, the name of
the constant should be in capitals. Constants are accessed with the constant name only;
no dollar symbol is required. Listing 4.4 defines and accesses a constant.

LISTING 4.4 Defining a Constant

1: <html>
2: <head>
3: <title>Listing 4.4 Defining a constant</title>
4: </head>
5: <body>
6: <?php
7: define(“USER”, “Gerald”);
8: print “Welcome “.USER;
9: ?>
10: </body>
11: </html>

54 Hour 4

07 CH04 11/29/01 3:23 PM Page 54

Notice that in line 8 we used the concatenation operator to append the value held by our
constant to the string “Welcome”. This is because the PHP engine has no way of distin-
guishing between a constant and a string within quotation marks.

define() optionally accepts a third boolean argument which determines whether or not
the constant name should be case-independent. By default constants are case-dependent,
but by passing true to the define() function you can change this behavior. So if we
were to set up our USER constant in this way

Define(“USER”, “Gerald”, true);

we could access its value without worrying about case:

print User;
print usEr;
print USER;

would all be equivalent. This feature can make scripts a little friendlier for programmers
who work with your code, in that they will not need to consider case when accessing a
constant that you have defined. On the other hand, the fact that other constants are case-
sensitive could make for more rather than less confusion as programmers forget which
constants to treat in which way. Unless you have a compelling reason to act otherwise,
the safest course is probably to keep your constants case sensitive and define them using
upper-case characters, which is an easy-to-remember convention.

Predefined Constants
PHP automatically provides some built-in constants for you. __FILE__, for example,
returns the name of the file currently being read by the PHP engine. __LINE__ returns
the line number of the file. These constants are useful for generating error messages.
You can also find out which version of PHP is interpreting the script with PHP_VERSION.
This can be useful if you want to limit a script to run on a particular PHP release.

Summary
In this hour, you covered some of the basic features of the PHP language. You learned
about variables and how to assign to them using the assignment operator. You were intro-
duced to operators and learned how to combine some of the most common of these into
expressions. Finally, you learned how to define and access constants.

Now that you have mastered some of the fundamentals of PHP, the next hour will really
put you in the driver’s seat. You will learn how to make scripts that can make decisions
and repeat tasks, with help—of course—from variables, expressions and operators.

The Building Blocks 55

4

07 CH04 11/29/01 3:23 PM Page 55

Q&A
Q Why can it be useful to know the type of data a variable holds?

A Often the data type of a variable constrains what you can do with it. You may want
to make sure that a variable contains an integer or a double before using it in a
mathematical calculation, for example.

You explore situations of this kind a little further in Hour 16, “Working with Data.”

Q Should I obey any conventions when naming variables?

A Your goal should always be to make your code both easy to read and understand. A
variable such as $ab123245 tells you nothing about its role in your script and
invites typos. Keep your variable names short and descriptive.

A variable named $f is unlikely to mean much to you when you return to your
code after a month or so. A variable named $filename, on the other hand, should
make more sense.

Q Should I learn the operator precedence table?

A There is no reason why you shouldn’t, but I would save the effort for more useful
tasks. By using parentheses in your expressions, you can make your code easy to
read at the same time as defining your own order of precedence.

Workshop
Quiz

1. Which of the following variable names is not valid?
$a_value_submitted_by_a_user
$666666xyz
$xyz666666
$____counter____
$the first
$file-name

2. What will the following code fragment output?
$num = 33;
(boolean) $num;
print $num;

3. What will the following statement output?
print gettype(“4”);

56 Hour 4

07 CH04 11/29/01 3:23 PM Page 56

4. What will be the output from the following code fragment?
$test_val = 5.4566;
settype($test_val, “integer”);
print $test_val;

5. Which of the following statements does not contain an expression?
4;
gettype(44);
5/12;

6. Which of the statements in question 5 contains an operator?

7. What value will the following expression return?
5 < 2

What data type will the returned value be?

Quiz Answers
1. The variable name $666666xyz is not valid because it does not begin with a letter

or an underscore character. The variable name $the first is not valid because it
contains a space. $file-name is also invalid because it contains a nonalphanumeric
character.

2. The fragment will print the integer 33. The cast to boolean produced a converted
copy of the value stored in $num. It did not alter the value actually stored there.

3. The statement will output the string “string”.

4. The code will output the value 5. When a double is converted to an integer, any
information beyond the decimal point is lost.

5. They are all expressions because they all resolve to values.

6. The statement 5/12; contains a division operator.

7. The expression will resolve to false, which is a boolean value.

The Building Blocks 57

4

07 CH04 11/29/01 3:23 PM Page 57

Activities
1. Create a script that contains at least five different variables. Populate them with

values of different data types and use the gettype() function to print each type to
the browser.

2. Assign values to two variables. Use comparison operators to test whether the first
value is

• the same as the second

• less than the second

• greater than the second

• less than or equal to the second

Print the result of each test to the browser.

Change the values assigned to your test variables and run the script again.

58 Hour 4

07 CH04 11/29/01 3:23 PM Page 58

HOUR 5
Going with the Flow

The scripts created in the last hour flow only in a single direction. The same
statements are executed in the same order every time a script is run. This
does not leave much room for flexibility.

You now will look at some structures that enable your scripts to adapt to
circumstances. In this hour, you will learn:

• How to use the if statement to execute code only if a test expression
evaluates to true

• How to execute alternative blocks of code when the test expression of
an if statement evaluates to false

• How to use the switch statement to execute code based on the value
returned by a test expression

• How to repeat execution of code using a while statement

• How to use for statements to make neater loops

• How to break out of loops

• How to nest one loop within another

• How to use PHP start and end tags within control structures

08 CH05 11/29/01 3:20 PM Page 59

Switching Flow
Most scripts evaluate conditions and change their behavior accordingly. The facility to
make decisions makes your PHP pages dynamic, capable of changing their output
according to circumstances. Like most programming languages, PHP 4 allows you to do
this with an if statement.

The if Statement
An if statement is a way of controlling the execution of a statement that follows it (that
is, a single statement or a block of code inside braces). The if statement evaluates an
expression between parentheses. If this expression results in a true value, the statement
is executed. Otherwise, the statement is skipped entirely. This enables scripts to make
decisions based on any number of factors.

if (expression) {
// code to execute if the expression evaluates to true
}

Listing 5.1 executes a block of code only if a variable contains the string “happy”.

LISTING 5.1 An if Statement

1: <html>
2: <head>
3: <title>Listing 5.1</title>
4: </head>
5: <body>
6: <?php
7: $mood = “happy”;
8: if ($mood == “happy”) {
9: print “Hooray, I’m in a good mood”;
10: }
11: ?>
12: </body>
13: </html>

You use the comparison operator == to compare the variable $mood with the string
“happy”. If they match, the expression evaluates to true, and the code block below the if
statement is executed. Although the code block is wrapped in braces in the example, this
is only necessary if the block contains more than one line. The following fragment,
therefore, would be acceptable:

if ($mood == “happy”)
print “Hooray, I’m in a good mood”;

60 Hour 5

08 CH05 11/29/01 3:20 PM Page 60

If you change the value of $mood to “sad” and run the script, the expression in the if
statement evaluates to false, and the code block is skipped. The script remains sulkily
silent.

Using the else Clause with the if Statement
When working with the if statement, you will often want to define an alternative block
of code that should be executed if the expression you are testing evaluates to false. You
can do this by adding else to the if statement followed by a further block of code:

if (expression) {
// code to execute if the expression evaluates to true

} else {
// code to execute in all other cases

}

Listing 5.2 amends the example in Listing 5.1 so that a default block of code is executed
if $mood is not equivalent to “happy”.

LISTING 5.2 An if Statement That Uses else

1: <html>
2: <head>
3: <title>Listing 5.2</title>
4: </head>
5: <body>
6: <?php
7: $mood = “sad”;
8: if ($mood == “happy”) {
9: print “Hooray, I’m in a good mood”;
10: } else {
11: print “Not happy but $mood”;
12: }
13: ?>
14: </body>
15: </html>

Notice in line 7 that $mood contains the string “sad”, which is not equivalent to “happy”,
so the expression in the if statement in line 8 evaluates to false. This means that the first
block of code (line 9) is skipped. The block of code after else, therefore, is executed,
and the message “Not happy but sad” is printed to the browser.

Using the else clause with the if statement allows scripts to make sophisticated deci-
sions, but you currently are limited to an either-or branch. PHP 4 allows you to evaluate
multiple expressions one after the other.

Going with the Flow 61

5

08 CH05 11/29/01 3:20 PM Page 61

Using the elseif Clause with the if Statement
You can use an if-elseif-else construct to test multiple expressions before offering a
default block of code:

if (expression) {
// code to execute if the expression evaluates to true

} elseif (another expression) {
// code to execute if the previous expression failed
// and this one evaluates to true

} else {
// code to execute in all other cases

}

If the first expression does not evaluate to true, then the first block of code is ignored.
The elseif clause then causes another expression to be evaluated. Once again, if this
expression evaluates to true, then the second block of code is executed. Otherwise, the
block of code associated with the else clause is executed. You can include as many
elseif clauses as you want, and if you don’t need a default action, you can omit the
else clause.

62 Hour 5

The elseif clause can also be written as two separate words: else if.
The syntax you employ is a matter of taste.

Listing 5.3 adds an elseif clause to the previous example.

LISTING 5.3 An if Statement that Uses else and elseif

1: <html>
2: <head>
3: <title>Listing 5.3</title>
4: </head>
5: <body>
6: <?php
7: $mood = “sad”;
8: if ($mood == “happy”) {
9: print “Hooray, I’m in a good mood”;
10: } elseif ($mood == “sad”) {
11: print “Awww. Don’t be down!”;
12: } else {
13: print “Neither happy nor sad but $mood”;
14: }
15: ?>
16: </body>
17: </html>

08 CH05 11/29/01 3:20 PM Page 62

Once again, $mood holds a string, “sad” in line 7. This is not equivalent to “happy”, so
the first block in line 9 is ignored. The elseif clause in line 10 tests for equivalence
between the contents of $mood and “sad”, which evaluates to true. This block of code is
therefore executed. In lines 12, 13 and 14 we provide default behavior. If none of the test
conditions have been fulfilled we simply print out a message including the actual value
of the $mood variable.

The switch Statement
The switch statement is an alternative way of changing program flow according to the
evaluation of an expression. There are some key differences between the switch and if

statements. Using the if statement in conjunction with elseif, you may evaluate multi-
ple expressions. switch evaluates only one expression, executing different code accord-
ing to the result of that expression, as long as the expression evaluates to a simple type
(a number, a string, or a boolean). The result of an expression evaluated as part of an if
statement is read as either true or false. The expression of a switch statement yields a
result that is tested against any number of values.

switch (expression) {
case result1:

// execute this if expression results in result1
break;

case result2:
// execute this if expression results in result2
break;

default:
// execute this if no break statement
// has been encountered hitherto

}

The switch statement’s expression is often simply a variable. Within the switch state-
ment’s block of code, you find a number of case statements. Each of these tests a value
against the result of the switch statement’s expression. If these are equivalent, then the
code after the case statement is executed. The break statement ends execution of the
switch statement altogether. If this is left out, the next case statement’s expression is
evaluated. If the optional default statement is reached, its code is executed.

Going with the Flow 63

5

Don’t forget to include a break statement at the end of any code that will
be executed as part of a case statement. Without break, the program flow
will continue to the next case statement and ultimately to the default
statement. In most cases, this will not be the behavior that you will be
expecting.

08 CH05 11/29/01 3:20 PM Page 63

Listing 5.4 re-creates the functionality of the if statement example, using the switch
statement.

LISTING 5.4 A switch Statement

1: <html>
2: <head>
3: <title>Listing 5.4</title>
4: </head>
5: <body>
6: <?php
7: $mood = “sad”;
8: switch ($mood) {
9: case “happy”:
10: print “Hooray, I’m in a good mood”;
11: break;
12: case “sad”:
13: print “Awww. Don’t be down!”;
14: break;
15: default:
16: print “Neither happy nor sad but $mood”;
17: }
18: ?>
19: </body>
20: </html>

Once again, in line 7 the $mood variable is initialized to “sad”. The switch statement in
line 8 uses this variable as its expression. The first case statement in line 9 tests for
equivalence between “happy” and the value of $mood. There is no match, so script execu-
tion moves on to the second case statement in line 12. The string “sad” is equivalent to
the value of $mood, so this block of code is executed. The break statement in line 14
ends the process.

Using the ? Operator
The ? or ternary operator is similar to the if statement but returns a value derived from
one of two expressions separated by a colon. Which expression is used to generate the
value returned depends on the result of a test expression:

(expression)?returned_if_expression_is_true:returned_if_expression_is_false;

If the test expression evaluates to true, the result of the second expression is returned;
otherwise, the value of the third expression is returned. Listing 5.5 uses the ternary
operator to set the value of a variable according to the value of $mood.

64 Hour 5

08 CH05 11/29/01 3:20 PM Page 64

LISTING 5.5 Using the ? Operator

1: <html>
2: <head>
3: <title>Listing 5.5</title>
4: </head>
5: <body>
6: <?php
7: $mood = “sad”;
8: $text = ($mood==”happy”)?”Hooray, I’m in a good mood”:”Not happy but

➥$mood”;
9: print “$text”;
10: ?>
11: </body>
12: </html>

In line 7, $mood is set to “sad”. In line 8, $mood is tested for equivalence to the string
“happy”. Because this test returns false, the result of the third of the three expressions is
returned.

The ternary operator can be difficult to read but is useful if you are dealing with only two
alternatives and like to write compact code.

Loops
So far you’ve looked at decisions that a script can make about what code to execute.
Scripts can also decide how many times to execute a block of code. Loop statements are
designed to enable you to achieve repetitive tasks. Almost without exception, a loop con-
tinues to operate until a condition is achieved, or you explicitly choose to exit the loop.

The while Statement
The while statement looks similar in structure to a basic if statement:

while (expression) {
// do something

}

As long as a while statement’s expression evaluates to true, the code block is executed
over and over again. Each execution of the code block in a loop is often called an ‘itera-
tion.’ Within the block, you usually change something that affects the while statement’s
expression; otherwise, your loop continues indefinitely. Listing 5.6 creates a while loop
that calculates and prints multiples of two up to 24.

Going with the Flow 65

5

08 CH05 11/29/01 3:20 PM Page 65

LISTING 5.6 A while Statement

1: <html>
2: <head>
3: <title>Listing 5.6</title>
4: </head>
5: <body>
6: <?php
7: $counter = 1;
8: while ($counter <= 12) {
9: print “$counter times 2 is “.($counter*2).”
”;
10: $counter++;
11: }
12: ?>
13: </body>
14: </html>

In this example, we initialize a variable $counter in line 7. The while statement in line 8
tests the $counter variable. As long as the integer contained by $counter is smaller than
or equal to 12, the loop continues to run. Within the while statement’s code block, the
value contained by $counter is multiplied by two, and the result is printed to the
browser. Then in line 10, $counter is incremented. This last stage is extremely impor-
tant. If you were to forget to change $counter, the while expression would never resolve
to false, and the loop would never end.

The do...while Statement
A do...while statement looks a little like a while statement turned on its head. The
essential difference between the two is that the code block is executed before the truth
test and not after it:

do {
// code to be executed

} while (expression);

66 Hour 5

The test expression of a do...while statement should always end with a
semicolon.

This statement might be useful if you want the code block to be executed at least once
even if the while expression evaluates to false. Listing 5.7 creates a do...while
statement. The code block is executed a minimum of one time.

08 CH05 11/29/01 3:20 PM Page 66

LISTING 5.7 The do...while Statement

1: <html>
2: <head>
3: <title>Listing 5.7</title>
4: </head>
5: <body>
6: <?php
7: $num = 1;
8: do {
9: print “Execution number: $num
\n”;
10: $num++;
11: } while ($num > 200 && $num < 400);
12: ?>
13: </body>
14: </html>

The do...while statement tests whether the variable $num contains a value that is greater
than 200 and smaller than 400. In line 7, we have initialized $num to 1 so this expression
returns false. Nonetheless, the code block is executed before the expression is evalu-
ated, so the statement will print a single line to the browser.

The for Statement
You cannot achieve anything with a for statement that you cannot do with a while state-
ment. On the other hand, the for statement is often a neater and safer way of achieving
the same effect. Earlier, Listing 5.6 initialized a variable outside the while statement.
The while statement then tested the variable in its expression. The variable was incre-
mented within the code block. The for statement allows you to achieve this on a single
line. This allows for more compact code and makes it less likely that you forget to incre-
ment a counter variable, thereby creating an infinite loop.

for (initialization expression; test expression; modification expression) {
// code to be executed

}

Each of the expressions within the parentheses of the for statement is separated by semi-
colons. Usually, the first expression initializes a counter variable, the second expression
is the test condition for the loop, and the third expression increments the counter. Listing
5.8 shows a for statement that re-creates the example in Listing 5.6, which multiplies 12
numbers by 2.

Going with the Flow 67

5

08 CH05 11/29/01 3:20 PM Page 67

LISTING 5.8 Using the for Statement

1: <html>
2: <head>
3: <title>Listing 5.8</title>
4: </head>
5: <body>
6: <?php
7: for ($counter=1; $counter<=12; $counter++) {
8: print “$counter times 2 is “.($counter*2).”
”;
9: }
10: ?>
11: </body>
12: </html>

The results of Listings 5.6 and 5.8 are exactly the same. The for statement, though,
makes the code more compact. Because $counter is initialized and incremented at the
top of the statement, the logic of the loop is clear at a glance. In line 7, within the for
statement’s parentheses, the first expression initializes the $counter variable and sets it
to 1. The test expression checks that $counter contains a value that is less than or equal
to 12. The final expression increments the $counter variable.

When program flow reaches the for loop, the $counter variable is initialized, and the
test expression is evaluated. If the expression evaluates to true, the code block is exe-
cuted. The $counter variable is then incremented and the test expression evaluated
again. This process continues until the test expression evaluates to false.

Breaking Out of Loops with the break Statement
Both while and for statements incorporate a built-in test expression with which you can
end a loop. The break statement, though, enables you to break out of a loop according
to additional tests. This can provide a safeguard against error. Listing 5.9 creates a simple
for statement that divides a large number by a variable that is incremented, printing the
result to the screen.

LISTING 5.9 A for Loop That Divides 4000 by Ten Incremental Numbers

1: <html>
2: <head>
3: <title>Listing 5.9</title>
4: </head>
5: <body>
6: <?php
7: for ($counter=1; $counter <= 10; $counter++) {
8: $temp = 4000/$counter;

68 Hour 5

08 CH05 11/29/01 3:20 PM Page 68

LISTING 5.9 continued

9: print “4000 divided by $counter is... $temp
”;
10: }
11: ?>
12: </body>
13: </html>

In line 7, this example initializes the variable $counter to 1. The for statement’s test
expression checks that $counter is smaller than or equal to 10. Within the code block,
4000 is divided by $counter, printing the result to the browser.

This seems straightforward enough. What, though, if the value you place in $counter
comes from user input? The value could be a minus number, or even a string. Let’s take
the first instance. Changing the initial value of $counter from 1 to –4 causes 4000 to be
divided by zero as the code block is executed for the fifth time, which is not advisable.
Listing 5.10 guards against this by breaking out of the loop if the $counter variable con-
tains zero.

LISTING 5.10 Using the break Statement

1: <html>
2: <head>
3: <title>Listing 5.10</title>
4: </head>
5: <body>
6: <?php
7: $counter = –4;
8: for (; $counter <= 10; $counter++) {
9: if ($counter == 0)
10: break;
11: $temp = 4000/$counter;
12: print “4000 divided by $counter is... $temp
”;
13: }
14: ?>
15: </body>
16: </html>

Going with the Flow 69

5

Dividing a number by zero does not cause a fatal error in PHP 4. Instead, a
warning is generated and execution continues.

08 CH05 11/29/01 3:20 PM Page 69

Use an if statement, shown in line 9, to test the value of $counter. If it is equivalent to
zero, the break statement immediately halts execution of the code block, and program
flow continues after the for statement.

Notice that we initialized the $counter variable in line 7, outside the for statement’s
parentheses, to simulate a situation in which the value of $counter is set according to
form input or a database look up.

70 Hour 5

You can omit any of the expressions of a for statement, but you must
remember to retain the semicolons.

Skipping an Iteration with the continue Statement
The continue statement ends execution of the current iteration but doesn’t cause the
loop as a whole to end. Instead, the next iteration is immediately begun. Using the break
statement in Listing 5.10 was a little drastic. With the continue statement in Listing
5.11, you can avoid a divide by zero error without ending the loop completely.

LISTING 5.11 Using the continue Statement

1: <html>
2: <head>
3: <title>Listing 5.11</title>
4: </head>
5: <body>
6: <?php
7: $counter = –4;
8: for (; $counter <= 10; $counter++) {
9: if ($counter == 0)
10: continue;
11: $temp = 4000/$counter;
12: print “4000 divided by $counter is... $temp
”;
13: }
14: ?>
15: </body>
16: </html>

In line 10, we have swapped the break statement for a continue statement. If the
$counter variable is equivalent to zero, the iteration is skipped, and the next one
immediately is started.

08 CH05 11/29/01 3:20 PM Page 70

Nesting Loops
Loop statements can contain other loop statements. This combination is particularly use-
ful when working with dynamically created HTML tables. Listing 5.12 uses two for
statements to print a multiplication table to the browser.

LISTING 5.12 Nesting Two for Loops

1: <html>
2: <head>
3: <title>Listing 5.12</title>
4: </head>
5: <body>
6: <?php
7: print “<table border=\”1\”>\n”;
8: for ($y=1; $y<=12; $y++) {
9: print “<tr>\n”;
10: for ($x=1; $x<=12; $x++) {
11: print “\t<td>”;
12: print ($x*$y);
13: print “</td>\n”;
14: }
15: print “</tr>\n”;
16: }
17: print “</table>”;
18: ?>
19: </body>
20: </html>

Before we examine the for loops, let’s take a closer look at line 7 in Listing 5.12.

print “<table border=\”1\”>\n”;

Notice that we have used the backslash character (‘\’) before each of the quotation
marks within the string. This is necessary in order to tell the PHP engine that we wish to
quote the quotation character, rather than interpret it as the beginning or end of a string.
If we did not do this, the statement would not make sense to the engine, consisting as it
would of a string, followed by a number followed by another string. This would generate
an error. We will encounter this backslash technique, known as escaping, once again in
Hour 7, “Arrays.”

Going with the Flow 71

5

The break and continue statements can make code more difficult to read.
Because they often add layers of complexity to the logic of the loop state-
ments that contain them they are best used with care.

08 CH05 11/29/01 3:20 PM Page 71

The outer for statement (line 8) initializes a variable called $y, setting its starting value
to 1. It defines an expression that tests that $y is smaller or equal to 12 and defines the
increment for $y. For each iteration, the code block prints a TR (table row) HTML ele-
ment (line 9) and defines another for statement (line 10). This inner loop initializes a
variable called $x and defines expressions along the same lines as for the outer loop. For
each iteration, the inner loop prints a TD (table cell) element to the browser (line 11), as
well as the result of $x multiplied by $y (line 12). In line 13 we close the table cell.
After the inner loop has completed we fall back through to the outer loop where we close
the table row on line 15, ready for the process to begin again. When the outer loop has
finished the result is a neatly formatted multiplication table. We wrap things up by clos-
ing the table on line 17.

Codeblocks and Browser Output
In Hour 3 we established that we can slip in and out of HTML mode at will, using the
PHP start and end tags. In this chapter we have discovered that we can present distinct
output to the user according to a decision-making process that we can control with if
and switch statements. In this section we will combine these two techniques.

Imagine a script that outputs a table of values only when a variable is set to the boolean
value true. Listing 5.13 shows a simplified HTML table constructed with the code block
of an if statement.

LISTING 5.13 A code block containing multiple print() statements

1: <html>
2: <head>
3: <title>Listing 5.13</title>
4: </head>
5: <body>
6: <?php
7: $display_prices = true;
8: if ($display_prices) {
9: print “<table border=\”1\”>”;
10: print “<tr><td colspan=\”3\”>”;
11: print “todays prices in dollars”;
12: print “</td></tr>”;
13: print “<td>14</td><td>32</td><td>71</td>”;
14: print “</tr></table>”;
15: }
16: ?>
17: </body>
18: </html>

72 Hour 5

08 CH05 11/29/01 3:20 PM Page 72

If $display_prices is set to true in line 7, then the table is printed. For the sake of
readability we split the output into multiple print() statements, and once again we
escape any quotation marks. There’s nothing wrong with that, but we can save ourselves
some typing by simply slipping back into HTML mode within the code block. In Listing
5.14 we do just that.

LISTING 5.14 Returning to HTML mode within a code block

1: <html>
2: <head>
3: <title>Listing 5.14</title>
4: </head>
5: <body>
6: <?php
7: $display_prices = true;
8: if ($display_prices) {
9: ?>
10: <table border=”1”>
11: <tr><td colspan=”3”>todays prices in dollars</td></tr>
12: <td>14</td><td>32</td><td>71</td>
13: </tr></table>
14: <?php
15: }
16: ?>
17: </body>
18: </html>

The important thing to note here is that the shift to HTML mode on line 9 only occurs if
the condition of the if statement is fulfilled. This can save us the bother of escaping quo-
tation marks and of wrapping our output in print() statements. It might, however, affect
the readability of our code in the long run, especially as our script begins to grow.

Summary
In this hour, you learned about control structures and the ways in which they can help to
make your scripts flexible and dynamic. Most of these structures will reappear regularly
throughout the rest of the book.

You learned how to define an if statement and how to provide for alternative actions
with the elseif and else clauses. You learned how to use the switch statement to
change flow according to multiple equivalence tests on the result of an expression. You
learned about loops, in particular, the while and for statements, and you learned how to
use break and continue to prematurely end the execution of a loop or to skip an itera-
tion. You learned how to nest one loop within another and saw a typical use for this

Going with the Flow 73

5

08 CH05 11/29/01 3:20 PM Page 73

structure. Finally you looked at a technique for using PHP start and end tags in
conjunction with conditional code blocks.

You should now have enough information to write scripts of your own. Your scripts can
now make decisions and perform repetitive tasks. In the next hour we will be looking at
a way of adding even more power to your applications. Functions will enable you to
organize your code, preventing duplication and improving reusability.

Q&A
Q Must a control structure’s test expression result in a boolean value?

A Ultimately, yes, but in the context of a test expression zero, an undefined variable,
or an empty string will be converted to false for the purposes of the test. All other
values will evaluate to true.

Q Must I always surround a code block in a control statement with brackets?

A If the code you want executed as part of a control structure consists of only a sin-
gle line, you can omit the brackets.

Q Does this hour cover every kind of loop there is?

A In Hour 7, “Arrays,” you encounter the foreach statement, which enables you to
loop through every element in an array.

Workshop
Quiz

1. How would you use an if statement to print the string “Youth message” to the
browser if an integer variable, $age, is between 18 and 35? If $age contains any
other value, the string “Generic message” should be printed to the browser.

2. How would you extend your code in question 1 to print the string “Child
message” if the $age variable is between 1 and 17?

3. How would you create a while statement that prints every odd number between 1
and 49?

4. How would you convert the while statement you created in question 3 into a for
statement?

74 Hour 5

08 CH05 11/29/01 3:20 PM Page 74

Quiz Answers
1. $age = 22;

if ($age >= 18 && $age <= 35)
print “Youth message
\n”;

else
print “Generic message
\n”;

2. $age = 12;

if ($age >= 18 && $age <= 35)
print “Youth message
\n”;

elseif ($age >= 1 && $age <= 17)
print “Child message
\n”;

else
print “Generic message
\n”;

3. $num = 1;

while ($num <= 49)
{
print “$num
\n”;
$num += 2;
}

4. for ($num = 1; $num <= 49; $num += 2)

print “$num
\n”;

Activities
1. Review the syntax for control structures. Think about how these techniques will

help you in your scripting. Perhaps some of the script ideas you are developing
will be able to behave in different ways according to user input, or will loop to dis-
play an HTML table. Start to build the control structures you will be using. Use
temporary variables to mimic user input or database queries for the time being.

2. Review the section on the ternary operator. What distinguishes it from the control
structures covered in the rest of the chapter? Why might it be useful?

Going with the Flow 75

5

08 CH05 11/29/01 3:20 PM Page 75

08 CH05 11/29/01 3:20 PM Page 76

HOUR 6
Functions

Functions are the heart of a well-organized script, making code easy to read
and reuse. No large project would be manageable without them.

Throughout this hour, we will investigate functions and demonstrate some of
the ways in which they can save you from repetitive work. In this hour, you
will learn:

• How to define and call functions

• How to pass values to functions and receive values in return

• How to call a function dynamically using a string stored in a variable

• How to access global variables from within a function

• How to give a function a “memory”

• How to pass data to functions by reference

• How to create anonymous functions

• How to check that a function exists before calling it

09 CH06 11/29/01 3:18 PM Page 77

What Is a Function?
You can think of a function as a machine. A machine takes the raw materials you feed it
and works with them to achieve a purpose or to produce a product. A function accepts
values from you, processes them, and then performs an action (printing to the browser,
for example) or returns a new value, possibly both.

If you needed to bake a single cake, you would probably do it yourself. If you needed to
bake thousands of cakes, you would probably build or acquire a cake-baking machine.
Similarly, when deciding whether to create a function, the most important factor to con-
sider is the extent to which it can save you from repetition.

A function, then, is a self-contained block of code that can be called by your scripts.
When called, the function’s code is executed. You can pass values to functions, which
they will then work with. When finished, a function can pass a value back to the calling
code.

Calling Functions
Functions come in two flavors—those built into the language and those you define your-
self. PHP 4 has hundreds of built-in functions. The very first script in this book consisted
of a single function call:

print(“Hello Web”);

In this example, we called the print() function, passing it the string “Hello Web”. The
function then went about the business of writing the string. A function call consists of the
function name, print in this case, followed by parentheses. If you want to pass informa-
tion to the function, you place it between these parentheses. A piece of information
passed to a function in this way is called an argument. Some functions require that more
than one argument be passed to them. Arguments in these cases must be separated by
commas:

some_function($an_argument, $another_argument);

print() is typical in that it returns a value. Most functions give you some information
back when they’ve completed their task, if only to tell whether their mission was suc-
cessful. print() returns a boolean, therefore.

78 Hour 6

09 CH06 11/29/01 3:18 PM Page 78

The abs() function, for example, requires a signed numeric value and returns the
absolute value of that number. Let’s try it out in Listing 6.1.

LISTING 6.1 Calling the Built in abs() Function.

1: <html>
2: <head>
3: <title>Listing 6.1</title>
4: </head>
5: <body>
6: <?php
7: $num = –321;
8: $newnum = abs($num);
9: print $newnum;
10: // prints “321”
11: ?>
12: </body>
13: </html>

In this example, we assign the value –321 to a variable $num. We then pass that variable
to the abs() function, which made the necessary calculation and returned a new value.
We assign this to the variable $newnum and print the result. In fact, we could have dis-
pensed with temporary variables altogether, passing our number straight to abs(), and
directly printing the result:

print(abs(–321));

We used the temporary variables $num and $newnum though, to make each step of the
process as clear as possible. Sometimes your code can be made more readable by break-
ing it up into a greater number of simple expressions.

You can call user-defined functions in exactly the same way as we have been calling
built-in functions.

Functions 79

6

print() is not a typical function in that it does not require parentheses in
order to run successfully.

print(“Hello Web”);

and

print “Hello Web”;

are equally valid. This is an exception. All other functions require
parentheses, whether or not they accept arguments.

09 CH06 11/29/01 3:18 PM Page 79

Defining a Function
You can define a function using the function statement:

function some_function($argument1, $argument2) {
// function code here

}

The name of the function follows the function statement and precedes a set of parenthe-
ses. If your function is to require arguments, you must place comma-separated variable
names within the parentheses. These variables will be filled by the values passed to your
function. If your function requires no arguments, you must nevertheless supply the
parentheses.

Listing 6.2 declares a function.

LISTING 6.2 Declaring a Function

1: <html>
2: <head>
3: <title>Listing 6.2</title>
4: </head>
5: <body>
6: <?php
7: function bighello() {
8: print “<h1>HELLO!</h1>”;
9: }
10: bighello();
11: ?>
12: </body>
13: </html>

The script in Listing 6.2 will simply output the string “HELLO” wrapped in an HTML
<H1> element. We declare a function bighello() that requires no arguments. Because of
this, we leave the parentheses empty. bighello() is a working function but not terribly
useful. Listing 6.3 creates a function that requires an argument and actually does some-
thing helpful with it.

LISTING 6.3 Declaring a Function That Requires Arguments

1: <html>
2: <head>
3: <title>Listing 6.3</title>
4: </head>
5: <body>
6: <?php

80 Hour 6

09 CH06 11/29/01 3:18 PM Page 80

LISTING 6.3 continued

7: function printBR($txt) {
8: print (“$txt
\n”);
9: }
10: printBR(“This is a line”);
11: printBR(“This is a new line”);
12: printBR(“This is yet another line”);
13: ?>
14: </body>
15: </html>

Functions 81

6

FIGURE 6.1
A function that
prints a string
with an appended

 tag.

You can see the output from the script in Listing 6.3 in Figure 6.1. In line 7, the
printBR() function expects a string, so we place the variable name $txt between the
parentheses when we declare the function. Whatever is passed to printBR() will be
stored in $txt. Within the body of the function, in line 8, we print the $txt variable,
appending a
 element and a newline character to it.

Now when we want to write a line to the browser, such as in line 10, 11 or 12, we can
call printBR() instead of the built-in print(), saving us the bother of typing the

element.

Returning Values from User-Defined
Functions

In our previous example we output an amended string to the browser within the
printBR() function. Sometimes, however, you will want a function to provide you with
a value that you can work with yourself. If your function has transformed a string that

09 CH06 11/29/01 3:18 PM Page 81

you have provided, you may wish to get the amended string back so that you can pass it
to other functions. A function can return a value using the return statement in conjunc-
tion with a value. return stops the execution of the function and sends the value back to
the calling code.

Listing 6.4 creates a function that returns the sum of two numbers.

LISTING 6.4 A Function That Returns a Value

1: <html>
2: <head>
3: <title>Listing 6.4</title>
4: </head>
5: <body>
6: <?php
7: function addNums($firstnum, $secondnum) {
8: $result = $firstnum + $secondnum;
9: return $result;
10: }
11: print addNums(3,5);
12: // will print “8”
13: ?>
14: </body>
15: </html>

The script in Listing 6.4 will print the number ‘8.’ Notice in line 7 that addNums()
should be called with two numeric arguments (line 11 shows those to be 3 and 5 in
this case). These are stored in the variables $firstnum and $secondnum. Predictably,
addNums() adds the numbers contained in these variables together and stores the result
in a variable called $result.

The return statement can return a value or nothing at all. How a value passed by return
is arrived at can vary. The value could be hard-coded:

return 4;

It could be the result of an expression:

return ($a/$b);

It could be the value returned by yet another function call:

return (another_function($an_argument));

82 Hour 6

09 CH06 11/29/01 3:18 PM Page 82

Dynamic Function Calls
It is possible to assign function names as strings to variables and then treat these vari-
ables exactly as you would the function name itself. Listing 6.5 creates a simple example
of this.

LISTING 6.5 Calling a Function Dynamically

1: <html>
2: <head>
3: <title>Listing 6.5</title>
4: </head>
5: <body>
6: <?php
7: function sayHello() {
8: print “hello
”;
9: }
10: $function_holder = “sayHello”;
11: $function_holder();
12: ?>
13: </body>
14: </html>

A string identical to the name of the sayHello() function is assigned to the
$function_holder variable on line 10. Once this is done, we can use this variable in
conjunction with parentheses to call the sayHello() function. We do this on line 11.

Why would we want to do this? In the example, we simply made more work for our-
selves by assigning the string “sayHello” to $function_holder. Dynamic function calls
are useful when you want to alter program flow according to changing circumstances.
We might want our script to behave differently according to a parameter set in a URL’s
query string, for example. We could extract the value of this parameter and use it to call
one of a number of functions.

PHP’s built-in functions also make use of this feature. The array_walk() function, for
example, uses a string to call a function for every element in an array. You can see an
example of array walk() in action in Hour 1.

Variable Scope
A variable declared within a function remains local to that function. In other words, it
will not be available outside the function or within other functions. In larger projects, this
can save you from accidentally overwriting the contents of a variable when you declare
two variables of the same name in separate functions.

Functions 83

6

09 CH06 11/29/01 3:18 PM Page 83

Listing 6.6 creates a variable within a function and then attempts to print it outside the
function.

LISTING 6.6 Variable Scope: A Variable Declared Within a Function Is Unavailable
Outside the Function

1: <html>
2: <head>
3: <title>Listing 6.6</title>
4: </head>
5: <body>
6: <?php
7: function test() {
8: $testvariable = “this is a test variable”;
9: }
10: print “test variable: $testvariable
”;
11: ?>
12: </body>
13: </html>

84 Hour 6

FIGURE 6.2
Attempting to reference
a variable defined
within a function.

You can see the output of the script in Listing 6.6 in Figure 6.2. The value of the vari-
able $testvariable is not printed. This is because no such variable exists outside the
test() function. Note that the attempt in line 10 to access a nonexistent variable does
not cause an error.

Similarly, a variable declared outside a function will not automatically be available
within it.

09 CH06 11/29/01 3:18 PM Page 84

Accessing Variables with the global Statement
From within a function, it is not possible by default to access a variable that has been
defined elsewhere. If you attempt to use a variable of the same name, you will set or
access a local variable only. Let’s put this to the test in Listing 6.7.

LISTING 6.7 Variables Defined Outside Functions Are Inaccessible from Within a
Function by Default

1: <html>
2: <head>
3: <title>Listing 6.7</title>
4: </head>
5: <body>
6: <?php
7: $life = 42;
8: function meaningOfLife() {
9: print “The meaning of life is $life
”;
10: }
11: meaningOfLife();
12: ?>
13: </body>
14: </html>

Functions 85

6

FIGURE 6.3
Attempting to print a
global variable from
within a function.

You can see the output from the script in Listing 6.7 in Figure 6.3. As you might expect,
the meaningOfLife() function has no access to the $life variable from line 7; $life is
empty when the function attempts to print it. On the whole, this is a good thing. We’re
saved from potential clashes between identically named variables, and a function can
always demand an argument if it needs information about the outside world.

09 CH06 11/29/01 3:18 PM Page 85

Occasionally, however, you may want to access an important global variable from within
a function without passing it in as an argument. This is where the global statement
comes into its own. Listing 6.8 uses global to restore order to the universe.

LISTING 6.8 Accessing Global Variables with the global Statement

1: <html>
2: <head>
3: <title>Listing 6.8</title>
4: </head>
5: <body>
6: <?php
7: $life=42;
8: function meaningOfLife() {
9: global $life;
10: print “The meaning of life is $life
”;
11: }
12: meaningOfLife();
13: ?>
14: </body>
15: </html>

86 Hour 6

You can see the output from the script in Listing 6.8 in Figure 6.4. By placing global in
front of the $life variable when we declare it in the meaning_of_life() function (line
9), we make it refer to the global $life variable declared outside the function (line 7).

You will need to use the global statement for every function that wishes to access a par-
ticular global variable.

Be careful, though. If we manipulate the contents of the variable within the function,
$life will be changed for the script as a whole.

FIGURE 6.4
Successfully accessing
a global variable from
within a function using
the global keyword.

09 CH06 11/29/01 3:18 PM Page 86

You can declare more than one variable at a time with the global statement, simply sep-
arate each of the variables you wish to access with commas.

global $var1, $var2, $var3;

In Hour 9, “Working with Forms” we will encounter the $GLOBALS array, a way of
accessing global variables from anywhere in your script.

Functions 87

6

Usually, an argument is a copy of whatever value is passed by the calling
code; changing it in a function has no effect beyond the function block.
Changing a global variable within a function on the other hand changes
the original and not a copy. Use the global statement sparingly.

Saving State Between Function Calls with
the static Statement

Variables within functions have a short but happy life on the whole. They come into
being when the function is called and die when execution is finished. Once again, this is
as it should be. It is usually best to build a script as a series of self-contained blocks,
each with as little knowledge of others as possible. Occasionally, however, you may
want to give a function a rudimentary memory.

Let’s assume that we want a function to keep track of the number of times it has been
called. Why? In our examples, the function is designed to create numbered headings in a
script that dynamically builds online documentation.

We could, of course use our newfound knowledge of the global statement to do this. We
have a crack at this in Listing 6.9.

LISTING 6.9 Using the global Statement to Remember the Value of a Variable
Between Function Calls

1: <html>
2: <head>
3: <title>Listing 6.9</title>
4: </head>
5: <body>
6: <?php
7: $num_of_calls = 0;
8: function numberedHeading($txt) {
9: global $num_of_calls;
10: $num_of_calls++;

09 CH06 11/29/01 3:18 PM Page 87

LISTING 6.9 continued

11: print “<h1>$num_of_calls. $txt</h1>”;
12: }
13: numberedHeading(“Widgets”);
14: print(“We build a fine range of widgets<p>”);
15: numberedHeading(“Doodads”);
16: print(“Finest in the world<p>”);
17: ?>
18: </body>
19: </html>

88 Hour 6

FIGURE 6.5
Using the global
statement to keep track
of the number of times
a function has been
called.

This does the job. We declare a variable, $num_of_calls, in line 7, outside the function
numberedHeading(). We make this variable available to the function with the global
statement in line 9. You can see the output of Listing 6.9 in Figure 6.5.

Every time numberedHeading() is called, $num_of_calls is incremented (line 10). We
can then print out a heading complete with a heading number.

This is not the most elegant solution, however. Functions that use the global statement
cannot be read as standalone blocks of code. In reading or reusing them, we need to look
out for the global variables that they manipulate.

This is where the static statement can be useful. If you declare a variable within a func-
tion in conjunction with the static statement, the variable remains local to the function.
On the other hand, the function “remembers” the value of the variable from execution to
execution. Listing 6.10 adapts the code from Listing 6.9 to use the static statement.

09 CH06 11/29/01 3:18 PM Page 88

LISTING 6.10 Using the static Statement to Remember the Value of a Variable
Between Function Calls

1: <html>
2: <head>
3: <title>Listing 6.10</title>
4: </head>
5: <body>
6: <?php
7: function numberedHeading($txt) {
8: static $num_of_calls = 0;
9: $num_of_calls++;
10: print “<h1>$num_of_calls. $txt</h1>”;
11: }
12: numberedHeading(“Widgets”);
13: print(“We build a fine range of widgets<p>”);
14: numberedHeading(“Doodads”);
15: print(“Finest in the world<p>”);
16: ?>
17: </body>
18: </html>

numberedHeading() has become entirely self-contained. When we declare the $num_of
_calls variable on line 8, we assign an initial value to it. This assignment is made when
the function is first called on line 12. This initial assignment is ignored when the func-
tion is called a second time on line 14. Instead, the previous value of $num_of_calls is
remembered. We can now paste the numberedHeading() function into other scripts with-
out worrying about global variables. Although the output of Listing 6.10 is exactly the
same as that for Listing 6.9, we have made the code more elegant.

More About Arguments
You’ve already seen how to pass arguments to functions, but there’s more to cover yet. In
this section, you’ll look at a technique for giving your arguments default values and
explore a method of passing variables by reference rather than by value. This means that
the function is given an ‘alias’ to the original value rather than a copy of it.

Setting Default Values for Arguments
PHP gives you a nifty feature to help build flexible functions. Until now, we’ve said that
some functions “demand” one or more arguments. By making some arguments optional,
you can render your functions a little less autocratic.

Functions 89

6

09 CH06 11/29/01 3:18 PM Page 89

Listing 6.11 creates a useful little function that wraps a string in an HTML font element.
We want to give the user of the function the chance to change the font element’s size
attribute, so we demand a $size argument in addition to the string (line 7).

LISTING 6.11 A Function Requiring Two Arguments

1: <html>
2: <head>
3: <title>Listing 6.11</title>
4: </head>
5: <body>
6: <?php
7: function fontWrap($txt, $size) {
8: print “<font size=\”$size\”
9: face=\”Helvetica,Arial,Sans-Serif\”>
10: $txt”;
11: }
12: fontWrap(“A heading
”,5);
13: fontWrap(“some body text
”,3);
14: fontWrap(“some more body text
”,3);
15: fontWrap(“yet more body text
”,3);
16: ?>
17: </body>
18: </html>

90 Hour 6

FIGURE 6.6
A function that formats
and outputs strings.

You can see the output from the script in Listing 6.11 in Figure 6.6. Useful though this
function is, we really only need to change the font size occasionally. Most of the time we
default to 3. By assigning a value to an argument variable within the function definition’s
parentheses, we can make the $size argument optional. If the function call doesn’t
define an argument for this, the value we have assigned to the argument is used instead.
Listing 6.12 uses this technique to make the $size argument optional.

09 CH06 11/29/01 3:18 PM Page 90

LISTING 6.12 A Function with an Optional Argument

1: <html>
2: <head>
3: <title>Listing 6.12</title>
4: </head>
5: <body>
6: <?php
7: function fontWrap($txt, $size=3) {
8: print “<font size=\”$size\”
9: face=\”Helvetica,Arial,Sans-Serif\”>
10: $txt”;
11: }
12: fontWrap(“A heading
”,5);
13: fontWrap(“some body text
”);
14: fontWrap(“some more body text
”);
15: fontWrap(“yet more body text
”);
16: ?>
17: </body>
18: </html>

When the fontWrap() function is called with a second argument, as in line 12, this value
is used to set the size attribute of the font element. When we omit this argument, as in
lines 13, 14 and 15, the default value of 3 is used instead. You can create as many
optional arguments as you want, but when you’ve given an argument a default value, all
subsequent arguments should also be given defaults.

Passing References to Variables to Functions
When you pass arguments to functions they are stored as copies in parameter variables.
Any changes made to these variables in the body of the function are local to that function
and are not reflected beyond it. This is illustrated in Listing 6.13.

LISTING 6.13 Passing an Argument to a Function by Value

1: <html>
2: <head>
3: <title>Listing 6.13</title>
4: </head>
5: <body>
6: <?php
7: function addFive($num) {
8: $num += 5;
9: }
10: $orignum = 10;
11: addFive($orignum);
12: print($orignum);

Functions 91

6

09 CH06 11/29/01 3:18 PM Page 91

LISTING 6.13 continued

13: ?>
14: </body>
15: </html>

The addFive() function accepts a single numeric value and adds 5 to it. It returns noth-
ing. We assign a value to a variable $orignum in line 10, and then pass this variable to
addFive() in line 11. A copy of the contents of $orignum is stored in the variable $num.
Although we increment $num by 5, this has no effect on the value of $orignum. When we
print $orignum, we find that its value is still 10. By default, variables passed to functions
are passed by value. In other words, local copies of the values of the variables are made.

We can change this behavior by creating a reference to our original variable. You can
think of a reference as a signpost that points to a variable. In working with the reference
you are manipulating the value to which it points.

Listing 6.14 shows this technique in action. When you pass an argument to a function by
reference, as in line 11, the contents of the variable you pass ($orignum) are accessed by
the argument variable and manipulated within the function, rather than just a copy of the
variable’s value (10). Any changes made to an argument in these cases will change the
value of the original variable. You can pass an argument by reference by adding an
ampersand to the argument name in the function definition, as shown in line 7.

LISTING 6.14 Using a Function Definition to Pass an Argument to a Function by
Reference

1: <html>
2: <head>
3: <title>Listing 6.14</title>
4: </head>
5: <body>
6: <?php
7: function addFive(&$num) {
8: $num += 5;
9: }
10: $orignum = 10;
11: addFive($orignum);
12: print($orignum);
13: ?>
14: </body>
15: </html>

92 Hour 6

09 CH06 11/29/01 3:18 PM Page 92

Creating Anonymous Functions
It is possible to create functions ‘on the fly’ during script execution. Because such func-
tions are not themselves given a name, but are stored in variables or passed to other func-
tions, they are known as anonymous functions. PHP 4 provides the create_function()
function for creating anonymous functions. create_function() requires two string argu-
ments. The first argument should contain a comma delimited list of argument variables,
exactly the same as the argument variables you would include in a standard function dec-
laration. The second argument should contain our function body.

In Listing 6.15 we create a simple anonymous function to add two numbers together.

LISTING 6.15 A simple anonymous function

1: <html>
2: <head>
3: <title>Listing 6.15</title>
4: </head>
5: <body>
6: <?php
7: $my_anon = create_function(‘$a, $b’, ‘return $a+$b;’);
8: print $my_anon(3, 9);
9: // prints 12
10: ?>
11: </body>
12: </html>

Note that we used single quotes when passing arguments to create_function(). That
saved us from having to escape the variable names within the arguments. We could have
used double quotes but the function call would have been a little more involved:

$my_anon = create_function(“\$a, \$b”, “return \$a+\$b;”);

Functions 93

6

Until recently it was also usual to set up pass by reference from within the
calling code rather than at the function declaration. This technique ‘call-
time pass-by-reference’ involved prepending an ampersand to the variable
in the function call rather than in the function declaration. This technique
has been deprecated, and so should not be used.

If you are using library code that falls foul of this deprecation, you can tem-
porarily suppress PHP’s warning messages by setting the allow_call_time_
pass_reference directive to on in your php.ini file.

09 CH06 11/29/01 3:18 PM Page 93

So what use are anonymous functions? In practical terms you will probably only use
them when built-in functions need to be passed as ‘callback’ functions. A callback
function is generally written by the user and designed to be invoked (usually repeatedly)
by the function to which it is passed. You will see examples of this in Hour 16, “Working
With Data”.

94 Hour 6

The second argument to create_function() is the function body. Don’t for-
get to end the last statement in this string with a semi-colon. The inter-
preter will complain and your anonymous function will not be executed if
you omit it.

Testing for Function Existence
We have seen that we do not always know that a function exists before we try to invoke
it. If our code were to work with a function name stored in a variable, for example, it
would be useful for us to be able to test whether or not the function exists before we
attempt to call it. Furthermore, different builds of the PHP engine may include different
functionality. If you are writing a script that may be run on multiple servers, you might
want to check that key features are available. You might write code that will use MySQL
if mysql functions are available, but simply log data to a text file otherwise.

You can use function_exists() to check for the availability of a function.
function_exists() requires a string representing a function name. It will return true if
the function can be located and false otherwise.

Listing 6.16 shows function_exists() in action, and illustrates some of the other
topics we have covered in this chapter.

LISTING 6.16 Testing for a Function’s Existence

1: <html>
2: <head>
3: <title>Listing 6.16</title>
4: </head>
5: <body>
6: <?php
7:
8: function tagWrap($tag, $txt, $func=””) {
9: if (! empty($txt) && function_exists($func))
10: $txt = $func($txt);
11: return “<$tag>$txt</$tag>\n”;
12: }

09 CH06 11/29/01 3:18 PM Page 94

LISTING 6.16 continued

13:
14: function underline($txt) {
15: return “<u>$txt</u>”;
16: }
17:
18: print tagWrap(‘b’, ‘make me bold’);
19: // make me bold
20:
21: print tagWrap(‘i’, ‘underline me too’, “underline”);
22: // <i><u>underline me too</u></i>
23:
24: print tagWrap(‘i’, ‘make me italic and quote me’,
25: create_function(‘$txt’, ‘return “"$txt"”;’));
26: // <i>"make me italic and quote me"</i>
27:
28: ?>
29: </body>
30: </html>

We define two functions, tagWrap() (line 9) and underline() (line 14). TagWrap()
accepts three strings, a tag, the text to be formatted, and an optional function name. It
returns a formatted string. underline() requires a single argument, the text to be format-
ted, and returns the text wrapped in <u> tags.

When we first call tagWrap() on line 18 we pass it the character ‘b’ and the string ‘make
me bold’. Because we haven’t passed a value for the function argument, the default
value (an empty string) is used. On line 9 we check whether the $func variable contains
characters and, if it is not empty we call function_exists() to check for a function by
that name. Of course, the $func variable is empty, so we wrap the $txt variable in
tags on line 11 and return the result.

We next call tagWrap() on line 21 with the string ‘i’, some text, and a third argument:
“underline”. function_exists() does find a function called underline() (line 14), so
this is called and passed the $txt argument variable before any further formatting is
done. The result is an italicized, underlined string.

Finally, we call tagWrap() on line 24 with an anonymous function (which wraps text in
quotation entities). Of course, it would be quicker for us to simply add the entities
to the text to be transformed ourselves, but this does illustrate the point that function_
exists() works as well on anonymous functions as it does on strings representing
function names.

Functions 95

6

09 CH06 11/29/01 3:18 PM Page 95

Summary
In this hour, you learned about functions and how to deploy them. You learned how to
define and pass arguments to a function. You learned how to use the global and static

statements. You learned how to pass references to functions and how to create default
values for function arguments. Finally, you learned how to create anonymous functions
and to test for function existence.

Q&A
Q Apart from the global keyword, is there any way that a function can access

and change global variables?

A You can also access global variables anywhere in your scripts with a built-in asso-
ciative array called $GLOBALS. To access a global variable called $test within a
function, you could reference it as $GLOBALS[‘test’]. You can learn more about
associative arrays in the next hour.

You can also change global variables from within a function if it has been passed
in by reference.

Q Can you include a function call within a string, as you can with a variable?

A No. You must call functions outside quotation marks.

Workshop
Quiz

1. True or False: If a function doesn’t require an argument, you can omit the paren-
theses in the function call.

2. How do you return a value from a function?

3. What would the following code fragment print to the browser?
$number = 50;

function tenTimes() {
$number = $number * 10;

}

tenTimes();
print $number;

96 Hour 6

09 CH06 11/29/01 3:18 PM Page 96

4. What would the following code fragment print to the browser?
$number = 50;

function tenTimes() {
global $number;
$number = $number * 10;

}

tenTimes();
print $number;

5. What would the following code fragment print to the browser?
$number = 50;

function tenTimes($n) {
$n = $n * 10;

}

tenTimes($number);
print $number;

6. What would the following code fragment print to the browser?
$number = 50;

function tenTimes(&$n) {
$n = $n * 10;

}

tenTimes($number);
print $number;

Quiz Answers
1. The statement is false. You must always include the parentheses in your function

calls, whether you are passing arguments to the function or not.

2. You must use the return keyword.

3. It would print 50. The tenTimes() function has no access to the global $number
variable. When it is called, it will manipulate its own local $number variable.

4. It would print 500. We have used the global statement, which gives the tenTimes()
function access to the $number variable.

5. It would print 50. When we pass an argument to the tenTimes() function, it is
passed by value. In other words, a copy is placed in the parameter variable $n. Any
changes we make to $n have no effect on the $number variable.

Functions 97

6

09 CH06 11/29/01 3:18 PM Page 97

6. It would print 500. By adding the ampersand to the parameter variable $n, we
ensure that this argument is passed by reference. $n and $number point to the
same value, so any changes to $n will be reflected when you access $number.

Activities
1. Create a function that accepts four string variables and returns a string that con-

tains an HTML table element, enclosing each of the variables in its own cell.

98 Hour 6

09 CH06 11/29/01 3:18 PM Page 98

HOUR 7
Arrays

Arrays, and the tools to manipulate them, greatly enhance the scope and
flexibility of PHP 4 scripts. After you’ve mastered arrays, you will be able
to store and organize complex data structures.

This hour introduces arrays and some of the functions that help you work
with them. In this hour, you will learn:

• What arrays are and how to create them

• How to access data from and about arrays

• How to access and sort the data contained in arrays

• How to create more flexible functions using arrays

What Is an Array?
You already know that a variable is a “bucket” in which you can temporarily
store a value. By using variables, you can create a script that stores,
processes, and outputs different information every time it is run.
Unfortunately, you can only store one value at a time in a variable. Arrays
are special variables that enable you to overcome this limitation. An array

10 CH07 11/29/01 3:24 PM Page 99

enables you to store as many values as you want in the same variable. Each value is
indexed within the array by a number or a string. If a variable is a bucket, you can think
of an array as a filing cabinet—a single container that can store many discrete items.

Of course, if you have five values to store, you could always define five variables. So,
why use an array rather than a variable? First, an array is flexible. It can store two values
or two hundred values without the need to define further variables. Second, an array
allows you to work easily with all its items. You can loop through each item or pull one
out at random. You can sort items numerically, alphabetically, or even according to a sys-
tem of your own.

Each item in an array is commonly referred to as an element. Each element can be
accessed directly via its index. An index to an array element can be either a number or a
string.

By default, array elements are indexed by numbers, starting at 0. It’s important to
remember, therefore, that the index of the last element of a sequential numerically
indexed array is always one less than the number of elements the array contains.

For example, Table 7.1 shows the elements in an array called users. Notice that the third
element has an index of 2.

TABLE 7.1 The Elements in the users Array

Index Number Value Which Element?

0 Bert First

1 Sharon Second

2 Betty Third

3 Harry Fourth

Indexing arrays by string can be useful in cases where you need to store both names and
values.

PHP 4 provides tools to access and manipulate arrays indexed by both name and number.
Some of these are covered in this hour, and others will be covered in Hour 16, “Working
with Data.”

Creating Arrays
By default, arrays are lists of values indexed by number. Values can be assigned to an
array in two ways: with the array() construct or directly using the array operator [].
You’ll meet both of these in the next two sections.

100 Hour 7

10 CH07 11/29/01 3:24 PM Page 100

Defining Arrays with the array() Construct
The array() construct is useful when you want to assign multiple values to an array at
one time. Let’s define an array called $users and assign four strings to it:

$users = array(“Bert”, “Sharon”, “Betty”, “Harry”);

You can now access the third element in the $user array by using the index “2”:

print $users[2];

This would return the string “Betty”. The index of an array element is placed between
square brackets directly after the array name. You can use this notation either to set or
retrieve a value.

Remember that arrays are indexed from zero by default, so the index of any element in
an sequentially indexed array always is one less than the element’s place in the list.

Defining or Adding to Arrays with the Array Identifier
You can create a new array (or add to an existing one) by using the array identifier in
conjunction with the array name. The array identifier is a set of square brackets with no
index number or name inside it.

Let’s re-create our $users array in this way:

$users[] = “ Bert”;
$users[] = “ Sharon”;
$users[] = “ Betty”;
$users[] = “ Harry”;

Notice that we didn’t need to place any numbers between the square brackets. PHP 4
automatically takes care of the index number, which saves you from having to work out
which is the next available slot.

We could have added numbers if we wanted, and the result would have been exactly the
same. It’s not advisable to do this, though. Take a look at the following code:

$users[0] = “ Bert”;
$users[200] = “Sharon”;

The array has only two elements, but the index of the final element is 200. PHP 4 will
not initialize the intervening elements. This could lead to confusion when attempting to
access elements in the array. On the other hand, there may be circumstances in which
you will want to use arbitrary index numbers in your array.

Arrays 101

7

10 CH07 11/29/01 3:24 PM Page 101

In addition to creating arrays, you can use the array identifier to add new values onto the
end of an existing array. In the following code, we define an array with the array() con-
struct and use the array identifier to add a new element:

$users = array (“Bert”, “ Sharon”, “Betty”, “Harry”);
$users[] = “Sally”;

Associative Arrays
Numerically indexed arrays are useful for storing values in the order they were added or
according to a sort pattern. Sometimes, though, you need to access elements in an array
by name. An associative array is indexed with strings between the square brackets rather
than numbers. Imagine an address book. Which would be easier, indexing the “name”
field as 4 or as “name”?

Once again, you can define an associative array using either array() or the array
operator [].

102 Hour 7

The division between an associative array and a numerically indexed array is
not absolute in PHP. They are not separate types as arrays and hashes are in
Perl. It is a good idea, nevertheless, to treat them separately. Each demands
different strategies for access and manipulation.

Defining Associative Arrays with the array()
Construct
To define an associative array with the array() construct, you must define both the key
and value for each element. The following code creates an associative array called
$character with four elements:

$character = array (
“name” => “bob”,
“occupation” => “superhero”,
“age” => 30,
“special power” => “x-ray vision”
);

We can now access any of the fields of $character:

print $character[‘age’];

The keys in an associative array are strings, but in its default error reporting state the
engine won’t complain if array keys aren’t quoted. For this reason, array keys were not
quoted in the previous edition of this book.

10 CH07 11/29/01 3:24 PM Page 102

This is not good practice, however. If your error reporting is set to a higher than standard
level, the engine will complain every time an unquoted associative array key is met. Even
worse, if an array key happens to coincide with a constant, the value of the constant will
be substituted for the key as typed.

Arrays 103

7

You should enclose an associative array key with quotation marks when the
key in question is a string literal.

print $character[age]; // wrong
print $character[“age”]; // right

If the key is stored in a variable, you do not need to use quotation marks.

$agekey = “age”;
print $character[$agekey]; // right

Directly Defining or Adding to an Associative Array
You can create or add a name/value pair to an associative array simply by assigning a
value to a named element. In the following, we re-create our $character array by
directly assigning a value to each key:

$character[“name”] = “bob”;
$character[“occupation”] = “superhero”;
$character[“age”] = 30;
$character[“special power”] = “x-ray vision”;

Multidimensional Arrays
Until now, we’ve simply said that elements of arrays are values. In our $character
array, three of the elements held strings, and one held an integer. The reality is a little
more complex, however. In fact, an element of an array could be a value, an object, or
even another array. A multidimensional array is an array of arrays. Imagine an array that
stores an array in each of its elements. To access the third element of the second ele-
ment, you would have to use two indices:

$array[1][2]

The fact that an array element can itself be an array enables you to create sophisticated
data structures relatively easily. Listing 7.1 defines an array that has an associative array
as each of its elements.

10 CH07 11/29/01 3:24 PM Page 103

LISTING 7.1 Defining a Multidimensional Array

1: <html>
2: <head>
3: <title>Listing 7.1</title>
4: </head>
5: <body>
6: <?php
7:
8: $characters = array (
9: array (
10: “name”=> “bob”,
11: “occupation” => “superhero”,
12: “age” => 30,
13: “specialty” =>”x-ray vision”
14:),
15: array (
16: “name” => “sally”,
17: “occupation” => “superhero”,
18: “age” => 24,
19: “specialty” => “superhuman strength”
20:),
21: array (
22: “name” => “mary”,
23: “occupation” => “arch villain”,
24: “age” => 63,
25: “specialty” =>”nanotechnology”
26:)
27:);
28:
29: print $characters[0][‘occupation’];
30: // prints “superhero”
31: ?>
32: </body>
33: </html>

Notice that we have nested array construct calls within an array construct call. At the first
level, we define an array. For each of its elements, we define an associative array.

Accessing $characters[2], therefore, gives us access to the third associative array
(beginning on line 21). in the top-level array (beginning on line 8).We can then go ahead
and access any of the associative array’s fields. $characters[2][‘name’] will be
“mary,” and $characters[2][‘age’] will be 63.

When this concept is clear, it will be easy to create complex combinations of associative
and numerically indexed arrays.

104 Hour 7

10 CH07 11/29/01 3:24 PM Page 104

Accessing Arrays
So far, you’ve seen the ways in which you can create and add to arrays. In this section,
you will examine some of the tools that PHP 4 provides to allow you to acquire informa-
tion about arrays and access their elements.

Getting the Size of an Array
You can access an element of an array by using its index:

print $user[4]

Because of the flexibility of arrays, however, you won’t always know how many ele-
ments a particular array contains. That’s where the count() function comes into play.
count() returns the number of elements in an array. In the following code, we define a
numerically indexed array and use count() to access its last element:

$users = array (“Bert”, “ Sharon”, “Betty”, “Harry”);
print $users[count($users)-1];

Notice that we subtract 1 from the value returned by count(). This is because count()
returns the number of elements in an array, not the index of the last element.

Although arrays are indexed from zero by default, it is possible to change this. For the
sake of clarity and consistency, however, this is not usually advisable.

Although count() will give you the size of an array, you can only use it to access the
last element in the array if you are sure that array elements have been added consecu-
tively. If we had initialized the $user array with values at arbitrary indeces,

$users[66] = “Bert”;
$users[100] = “Sharon”;
$users[556] = “Betty”;
$users[703] = “Harry”;

count() would not be of any use in finding the final element. The array still only con-
tains 4 elements, but there is no element indexed by 3. If you are not certain that your
array is consecutively indexed, you can use the end() function to retrieve the final ele-
ment in the array. end() requires an array as its only argument. It will return the given
array’s last element. The following statement will print the final element in the $users
array no matter how it was initialized.

print end($users);

Arrays 105

7

10 CH07 11/29/01 3:24 PM Page 105

Looping through an Array
There are many ways of looping through each element of an array. For these examples,
you’ll use PHP’s powerful foreach statement. You will examine some other methods in
Hour 16, “Working with Data.”

In the context of numerically indexed arrays, you would use a foreach statement like
this:

foreach($array as $temp) {
//...

}

where $array is the array you want to loop through, and $temp is a variable in which
you will temporarily store each element.

In the following code, we define a numerically indexed array and use foreach to access
each of its elements in turn:

$users = array (“Bert”, “Sharon”, “Betty”, “Harry”);
foreach ($users as $val) {

print “$val
”;
}

You can see the output from this code fragment in Figure 7.1.

106 Hour 7

FIGURE 7.1
Looping through an
array.

The value of each element is temporarily placed in the variable $val, which we then
print to the browser. If you are moving to PHP 4 from Perl, be aware of a significant dif-
ference in the behavior of foreach. Changing the value of the temporary variable in a
Perl foreach loop changes the corresponding element in the array. Changing the tempo-
rary variable in the preceding example would have no effect on the $users array. You
will look at a way of using foreach to change the values of a numerically indexed array
in Hour 16.

10 CH07 11/29/01 3:24 PM Page 106

Looping through an Associative Array
To access both the keys and values of an associative array, you need to alter the use of
foreach slightly.

In the context of associative arrays, you would use a foreach statement like this:

foreach($array as $key=>$value) {
//...

}

where $array is the array we are looping through, $key is a variable that temporarily
holds each key, and $value is a variable that temporarily holds each value.

Listing 7.2 creates an associative array and accesses each key and value in turn.

LISTING 7.2 Looping Through an Associative Array with foreach

1: <html>
2: <head>
3: <title>Listing 7.2</title>
4: </head>
5: <body>
6: <?php
7: $character = array (
8: “name” => “bob”,
9: “occupation” => “superhero”,
10: “age” => 30,
11: “special power” => “x-ray vision”
12:);
13: foreach ($character as $key=>$val) {
14: print “$key = $val
”;
15: }
16:
17: ?>
18: </body>
19: </html>

The array is created on line 7. We use the foreach statement on line 13 to loop through
the character array. Each key is placed in a variable called $key and each value placed in
a variable called $val. They are printed on line 14. You can see the output from Listing
7.2 in Figure 7.2.

Arrays 107

7

10 CH07 11/29/01 5:25 PM Page 107

Outputting a Multidimensional Array
You can now combine these techniques to output the multidimensional array created in
Listing 7.1. Listing 7.3 defines a similar array and uses foreach to loop through each of
its elements.

LISTING 7.3 Looping Through a Multidimensional Array

1: <html>
2: <head>
3: <title>Listing 7.3</title>
4: </head>
5: <body>
6: <?php
7: $characters = array (
8: array (
9: “name”=> “bob”,
10: “occupation” => “superhero”,
11: “age” => 30,
12: “specialty” =>”x-ray vision”
13:),
14: array (
15: “name” => “sally”,
16: “occupation” => “superhero”,
17: “age” => 24,
18: “specialty” => “superhuman strength”
19:),
20: array (
21: “name” => “mary”,
22: “occupation” => “arch villain”,
23: “age” => 63,
24: “specialty” =>”nanotechnology”
25:)

108 Hour 7

FIGURE 7.2
Looping through an
associative array.

10 CH07 11/29/01 5:25 PM Page 108

LISTING 7.3 continued

26:);
27:
28: foreach ($characters as $val) {
29: foreach ($val as $key=>$final_val) {
30: print “$key: $final_val
”;
31: }
32: print “
”;
33: }
34:
35: ?>
36: </body>
37: </html>

Arrays 109

7

FIGURE 7.3
Looping through an
multidimensional
array.

You can see the output from Listing 7.3 in Figure 7.3. We create two foreach loops
(lines 28 and 29). The outer loop on line 28 accesses each element in the numerically
indexed array $characters, placing each one in $val. Because $val itself then contains
an associative array, we can loop through this on line 29, outputting each of its elements
(temporarily stored in $key and $final_val) to the browser.

For this technique to work as expected, we need to make sure in advance that $val will
always contain an array. To make this code a little more robust, we could use the func-
tion is_array() to test that $val. is_array() accepts a variable, returning true if the
variable is an array, or false otherwise. Alternatively we could cast the $val variable
created on line 29 to an array, thereby ensuring that it is always an array, whatever type
it started out as.

$val = (array) $val;

10 CH07 11/29/01 5:25 PM Page 109

Manipulating Arrays
You can now populate arrays and access their elements, but PHP 4 has functions to help
you do much more than that with arrays. If you’re used to Perl, you’ll find some of these
eerily familiar!

Joining Two Arrays with array_merge()
array_merge() accepts two or more arrays and returns a merged array combining all
their elements. In the following example, we create two arrays, joining the second to the
first, and loop through the resultant third array:

$first = array(“a”, “b”, “c”);
$second = array(1,2,3);
$third = array_merge($first, $second);

foreach ($third as $val) {
print “$val
”;

}

The $third array contains copies of all the elements of both the $first and $second

arrays. The foreach statement prints this combined array (‘a’, ‘b’, ‘c’, 1, 2, 3) to the
browser with a
 tag between each element. Remember that the arrays passed to
array_merge() are not themselves transformed. If two arrays passed to array_merge()
have elements with the same string index, then those of the first array will be overwritten
by their namesakes in the second.

Adding Multiple Variables to an Array with
array_push()
array_push() accepts an array and any number of further parameters, each of which is
added to the array. Note that the array_push() function is unlike array_merge() in that
the array passed in as the first argument is transformed. array_push() returns the total
number of elements in the array. Let’s create an array and add some more values to it:

$first = array(“a”, “b”, “c”);
$total = array_push($first, 1, 2, 3);

print “There are $total elements in \$first<P>”;
foreach ($first as $val) {

print “$val
”;
}

Because array_push() returns the total number of elements in the array it transforms, we
are able to store this value (6) in a variable and print it to the browser. The $first array now
contains its original elements as well the three integers we passed to the array_ push()
function, all of these are printed to the browser within the foreach statement.

110 Hour 7

10 CH07 11/29/01 3:24 PM Page 110

Notice that we used a backslash character when we printed the string “\$first”. If you
use a dollar sign followed by numbers and letters within a string, PHP will attempt to
insert the value of a variable by that name. In the example above we wished to print the
string ‘$first’ rather than the value of the $first variable. To print the special character
‘$’, therefore, we must precede it with a backslash. PHP will now print the character
instead of interpreting it. This process is often referred to as “escaping” a character.

Arrays 111

7

Perl users beware! If you’re used to working with Perl’s push(), you should
note that if you pass a second array variable to array_push() it will be
added as a single element, creating a multidimensional array. If you want to
combine two arrays, use array_merge().

Removing the First Element of an Array with
array_shift()
array_shift() removes and returns the first element of an array passed to it as an argu-
ment. In the following example, we use array_shift() in conjunction with a while loop.
We test the value returned from count() to check whether the array still contains elements:

<?php
$an_array = array(“a”, “b”, “c”);

while (count($an_array)) {
$val = array_shift($an_array);
print “$val
”;
print “there are “.count($an_array).” elements in \$an_array
”;

}
?>

You can see the output from this fragment of code in Figure 7.4.

FIGURE 7.4
Using array_shift()

to remove and print
every element in an
array.

10 CH07 11/29/01 3:24 PM Page 111

array_shift() is useful when you need to create a queue and act on it until the queue
is empty.

Slicing Arrays with array_slice()
array_slice() enables you to extract a chunk of an array. It accepts an array as an argu-
ment, a starting position (offset), and an (optional) length. If the length is omitted,
array_slice() generously assumes that you want all elements from the starting position
onward returned. array_slice() does not alter the array you pass to it. It returns a new
array containing the elements you have requested.

In the following example, we create an array and extract a new three-element array from
it:

$first = array(“a”, “b”, “c”, “d”, “e”, “f”);
$second = array_slice($first, 2, 3);

foreach ($second as $var) {
print “$var
”;

}

This will print the elements ‘c’, ‘d’, and ‘e’, separating each by a
 tag. Notice that
the offset is inclusive if we think of it as the index number of the first element we are
requesting. In other words, the first element of the $second array is equivalent to
$first[2].

If we pass array_slice() an offset argument that is less than zero, the returned slice
will begin that number of elements from the end of the given array.

If we pass array_slice() a length argument that is less than zero, the returned slice will
contain all elements from the offset position to that number of elements from the end of
the given array.

Sorting Arrays
Sorting is perhaps the greatest magic you can perform on an array. Thanks to the func-
tions that PHP 4 offers to achieve just this, you can truly bring order from chaos. This
section introduces some functions that allow you to sort both numerically indexed and
associative arrays.

Sorting Numerically Indexed Arrays with sort()
sort() accepts an array as its argument and sorts it either alphabetically if any strings
are present or numerically if all elements are numbers. The function doesn’t return any

112 Hour 7

10 CH07 11/29/01 3:24 PM Page 112

data, transforming the array you pass it. Note that it differs from Perl’s sort() function
in this respect. The following fragment of code initializes an array of single character
strings, sorts it and outputs the transformed array:

$an_array = array(“x”,”a”,”f”,”c”);
sort($an_array);

foreach ($an_array as $var) {
print “$var
”;

}

Arrays 113

7

Don’t pass an associative array to sort(). You will find that the values are
sorted as expected but that your keys have been lost—replaced by numerical
indices that follow the sort order.

You can reverse sort a numerically indexed array by using rsort() in exactly the same
way as sort().

Sorting an Associative Array by Value with asort()
asort() accepts an associative array and sorts its values just as sort() does. However,
it preserves the array’s keys:

$first = array(“first”=>5,”second”=>2,”third”=>1);
asort($first);

foreach ($first as $key => $val) {
print “$key = $val
”;

}

You can see the output from this fragment of code in Figure 7.5.

FIGURE 7.5
Sorting an associative
array by its values
with asort().

You can reverse sort an associative array by value with arsort().

10 CH07 11/29/01 3:24 PM Page 113

Sorting an Associative Array by Key with ksort()
ksort() accepts an associative array and sorts its keys. Once again, the array you pass it
will be transformed and nothing will be returned:

$first = array(“x”=>5,”a”=>2,”f”=>1);
ksort($first);

foreach ($first as $key => $val) {
print “$key = $val
”;

}

You can see the output from this fragment of code in Figure 7.6.

114 Hour 7

FIGURE 7.6
Sorting an associative
array by its keys with
ksort().

You can reverse sort an associative array by key with krsort().

Functions Revisited
Now that we have covered arrays, we can examine some built-in functions that could
help you make your own functions more flexible. If you have programmed in Perl
before, you will know that you can easily create subroutines that accept a variable
number of arguments. PHP 4 provides functions that make it just as easy.

Imagine that you have created a function that accepts three string arguments and returns
a single string containing each of the provided arguments wrapped in an HTML table
which includes the sum of the numbers in its final row.

function addNums($num1, $num2) {
$result = $num1 + $num2;
$ret = “<table border=\”1\”>”;
$ret .= “<tr><td>number 1: </td><td>$num1 </td></tr>”;
$ret .= “<tr><td>number 2: </td><td>$num2 </td></tr>”;

10 CH07 11/29/01 3:24 PM Page 114

$ret .= “<tr><td>result: </td><td>$result</td></tr>”;
$ret .= “</table>”;
return $ret;

}

print addNums(49, 60);

This very simple function does its job well enough, but it is not very flexible. Imagine
now that we are asked to amend the function to handle four arguments, or six, or, well,
pretty much any number of integers. The simplest solution would be to ask that the call-
ing code provides a single array containing all the numbers rather than two individual
integers. This would mean that lots of code would have to be changed in the project as a
whole as well as in the function. It would be better, then, to change the function to accept
any number of integers.

The tools for this job are func_num_args() and func_get_arg(). func_num_args()
returns the number of arguments that have been passed to the function, it does not itself
require an argument. func_get_arg() requires an integer representing the index of the
argument required, and will return its value. As with arrays, arguments are indexed from
zero, so to get the first argument passed to a function you would use

func_get_arg(0);

It is your responsibility to check that the index you pass to func_get_arg() is within the
number of arguments that were passed to the function you are testing. If the index is out
of range func_get_arg() will return false and an error will be generated. Now we can
rewrite our addNums() function:

function addNums() {
$ret = “<table border=\”1\”>”;
for ($x=0; $x<func_num_args(); $x++) {

$arg = func_get_arg($x);
$result += $arg;
$ret .= “<tr><td>number “.($x+1).”: </td><td>$arg</td></tr>”;

}
$ret .= “<tr><td>result: </td><td>$result</td></tr>”;
$ret .= “</table>”;
return $ret;

}

print addNums(49, 60, 44, 22, 55);

Notice that we do not provide any argument variables at all in the function declaration.
Instead, we use a for loop to access each of the arguments in term. The loop will execute
just the right number of times because our upper limit is set by func_num_args().

Arrays 115

7

10 CH07 11/29/01 3:24 PM Page 115

So, given that we haven’t actually used an array in this example, why is this section in a
chapter on arrays? Firstly, the way that arguments to functions are indexed makes them
somewhat array-like. Mainly though, we have yet to cover another function:
func_get_args(). func_get_args() returns an array containing all the arguments
passed to our function. This means that we can rewrite our example to work with a
familiar foreach loop

function addNums() {
$args = func_get_args();
$ret = “<table border=\”1\”>”;
foreach($args as $key => $val) {

$result += $val;
$ret .= “<tr><td>number “.($key+1).”: </td><td>$val</td></tr>”;

}
$ret .= “<tr><td>result: </td><td>$result</td></tr>”;
$ret .= “</table>”;
return $ret;

}

print addNums(49, 60, 44, 22, 55);

Rather than access our arguments one at a time we simply decant the lot into an array
variable called $args. Then it’s simply a matter of looping through the array.

Summary
In this hour, you learned about arrays and some of the many tools that PHP 4 provides to
work with them. You should now be able to create both numerically indexed and associa-
tive arrays, and output data from them using a foreach loop.

You should be able to combine arrays to create multidimensional arrays and loop through
the information they contain. You learned how to manipulate arrays by adding or remov-
ing multiple elements and examined some of the techniques that PHP 4 makes available
to sort arrays. Finally, you learned about functions that use array-like indexing to help
make your own functions more flexible.

In Hour 8 we complete our tour of PHP fundamentals by taking a look at PHP’s support
for objects. PHP developers are increasingly creating libraries using classes and objects,
so this is an area well worth studying.

116 Hour 7

10 CH07 11/29/01 3:24 PM Page 116

Q&A
Q If the foreach statement was introduced with PHP 4, how did programmers

using PHP3 iterate through arrays?

A The PHP3 technique for looping through an array involved a function called
each(), which was used in conjunction with a while statement. You can read about
this technique in Hour 16.

Q Are there any functions for manipulating arrays that we have not covered
here?

A PHP 4 supports many array functions. You can read about some more of these in
Hour 16 and find them all in the official PHP manual at http://www.php.net/
manual/ref.array.php.

Q I can discover the number of elements in an array, so should I use a for state-
ment to loop through an array?

A You should be cautious of this technique. You cannot be absolutely sure that the
array you are reading is indexed by consecutively numbered keys.

Workshop
Quiz

1. What construct can you use to define an array?

2. What is the index number of the last element of the array defined below?
$users = array(“Harry”, “Bob”, “Sandy”);

3. Without using a function, what would be the easiest way of adding the element
“Susan” to the $users array defined previously?

4. Which function could you use to add the string “Susan” to the $users array?

5. How would you find out the number of elements in an array?

6. In PHP 4, what is the simplest way of looping through an array?

7. What function would you use to join two arrays?

8. How would you sort an associative array by its keys?

Arrays 117

7

10 CH07 11/29/01 3:24 PM Page 117

Quiz Answers
1. You can create an array with the array() construct.

2. The last element is $users[2]. Remember that arrays are indexed from 0 by
default.

3. $users[] = “Susan”;

4. array_push($users, “Susan”);

5. You can count the number of elements in an array with the count() function.

6. You can loop through an array using the foreach statement.

7. You can merge arrays with the array_merge() function.

8. You can sort an associative array by its keys with the ksort() function.

Activities
1. Create a multidimensional array of movies organized by genre. This should take

the form of an associative array with genres as keys (“SF”, “Action”, “Romance”,
and so on). Each of this associative array’s elements should be an array containing
movie names (“2001”, “Alien”, “Terminator”, and so on).

2. Loop through the array you created in Activity 1, outputting each genre and its
associated movies to the browser.

118 Hour 7

10 CH07 11/29/01 3:24 PM Page 118

HOUR 8
Objects

Object-oriented programming is dangerous. It changes the way you think
about coding, and once the concepts have a hold on you, they don’t let go.
PHP, like Perl before it, has progressively incorporated more object-oriented
aspects into its syntax and structure. With the advent of PHP 4, it becomes
possible to use object-oriented code at the heart of your projects.

Throughout this hour, you’ll take a tour of PHP’s object-oriented features
and apply them to some real-world code. In this hour, you will learn:

• What objects and classes are

• How to create classes and instantiate objects

• How to create and access properties and methods

• How to create classes that inherit functionality from others

• How to find out about objects in your code

• How to save objects to a string that can be stored in a file or database

• Some of the reasons why object-oriented programming can help you
to organize your projects

11 CH08 11/29/01 3:21 PM Page 119

What Is an Object?
An object is an enclosed bundle of variables and functions forged from a special tem-
plate called a class. Objects hide a lot of their inner workings away from the code that
uses them, providing instead easy interfaces through which you can send them orders
and they can return information. These interfaces are special functions called methods.
All the methods of an object have access to special variables called properties.

By defining a class, you lay down a set of characteristics. By creating objects of that
type, you create entities that share these characteristics but might initialize them as dif-
ferent values. You might create an automobile class, for example. This class would have
a color characteristic. All automobile objects would share the characteristic of color,
but some would initialize it to “blue,” others to “green,” and so on.

Perhaps the greatest benefit of object-oriented code is its reusability. Because the classes
used to create objects are self-enclosed, they can be easily pulled from one project and
used in another. Additionally, it is possible to create child classes that inherit and over-
ride the characteristics of their parents. This technique can allow you to create progres-
sively more complex and specialized objects that can draw on base functionality while
adding more of their own.

Perhaps the best way to explain object-oriented programming is to do it.

Creating an Object
To create an object, you must first design the template from which it can be instantiated.
This template is known as a class, and in PHP 4 it must be declared with the class key-
word:

class first_class {
// a very minimal class

}

The first_class class is the basis from which you can instantiate any number of
first_class objects. To create an instance of an object, you must use the new statement:

$obj1 = new first_class();
$obj2 = new first_class();
print “\$obj1 is a “.gettype($obj1).”
”;
print “\$obj2 is a “.gettype($obj2).”
”;

You can test that $obj1 and $obj2 contain objects with PHP’s gettype() function.
gettype() accepts any variable and returns a string that should tell you what you are
dealing with. In a loosely typed language like PHP, gettype() is useful when checking
arguments sent to functions. In the previous code fragment, gettype() returns the string
“object”, which is then written to the browser.

120 Hour 8

11 CH08 11/29/01 3:21 PM Page 120

So, you have confirmed that you have created two objects. Of course they’re not very
useful yet, but they help to make an important point. You can think of a class as a mold
with which you can press as many objects as you want. Let’s add some more features to
the class to make your objects a little more interesting.

Object Properties
Objects have access to special variables called properties. These can be declared any-
where within the body of your class, but for the sake of clarity should be defined at the
top. A property can be a value, an array, or even another object:

class first_class
{
var $name = “harry”;
}

Notice that we declared our variable with the var keyword. This is essential in the con-
text of a class, and you will be rewarded with a parse error if you forget it. Now any
first_class object that is created will contain a property called name with the value of
“harry”. You can access this property from outside the object and even change it:

class first_class {
var $name = “harry”;

}

$obj1 = new first_class();
$obj2 = new first_class();
$obj1->name = “bob”;
print “$obj1->name
”;
print “$obj2->name
”;

The -> operator allows you to access or change the properties of an object. Although
$obj1 and $obj2 were born with the name of “harry”, we have helped $obj2 to change
its mind by assigning the string “bob” to its name property, before using the -> operator
once again to print each object’s name property to the screen.

Objects 121

8

Object-oriented languages, such as Java, demand that the programmer set a
level of privacy for all properties and methods. This means that access can
be limited to only those features needed to use the object effectively, and
properties meant only for internal use can be safely tucked away. PHP has
no such protection. You can access all the fields of an object, which can
cause problems if a property isn’t meant to be changed.

11 CH08 11/29/01 3:21 PM Page 121

You can use objects to store information, but that makes them little more interesting than
associative arrays. In the next section, you will look at object methods, and your objects
can get a little more active.

Object Methods
A method is a function defined within a class. Every object instantiated from the class
will have the method’s functionality. Listing 8.1 adds a method to the first_class class
(line 7).

LISTING 8.1 A Class with a Method

1: <html>
2: <head>
3: <title>Listing 8.1</title>
4: <body>
5: <?php
6: class first_class {
7: function sayHello() {
8: print “hello”;
9: }
10: }
11:
12: $obj1 = new first_class();
13: $obj1->sayHello();
14: // outputs “hello”
15: ?>
16: </body>
17: </html>

As you can see, a method looks and behaves much like a normal function. A method is
always defined within a class, however. You can call an object method using the -> oper-
ator. Importantly, methods have access to the class’s member variables. You’ve already
seen how to access a property from outside an object, but how does an object refer to
itself? Find out in Listing 8.2.

LISTING 8.2 Accessing a Property from Within a Method

1: <html>
2: <head>
3: <title>Listing 8.2</title>
4: <body>
5: <?php
6: class first_class {

122 Hour 8

11 CH08 11/29/01 3:21 PM Page 122

LISTING 8.2 continued

7: var $name=”harry”;
8: function sayHello() {
9: print “hello my name is $this->name
”;
10: }
11: }
12:
13: $obj1 = new first_class();
14: $obj1->sayHello();
15: // outputs “hello my name is harry”
16: ?>
17: </body>
18: </html>

A class uses the special variable $this to refer to the currently instantiated object (line
9). You can think of it as a personal pronoun. Although you refer to an object by the han-
dle you have assigned it to ($obj1, for example), an object must refer to itself by means
of the $this variable. Combining the $this variable and the -> operator, you can access
any property or method in a class from within the class itself.

Imagine that you want to assign a different value to the name property to every object of
type first_class you create. You could do this by manually resetting the name property
as you did earlier, or you could create a method to do it for you, as shown in Listing 8.3
on line 10.

LISTING 8.3 Changing the Value of a Property from Within a Method

1: <html>
2: <head>
3: <title>Listing 8.3</title>
4: </head>
5: <body>
6: <?php
7: class first_class {
8: var $name=”harry”;
9:
10: function setName($n) {
11: $this->name = $n;
12: }
13:
14: function sayHello() {
15: print “hello my name is $this->name
”;
16: }
17: }
18:
19:

Objects 123

8

11 CH08 11/29/01 3:21 PM Page 123

LISTING 8.3 continued

20: $obj1 = new first_class();
21: $obj1->setName(“william”);
22: $obj1->sayHello();
23: // outputs “hello my name is william”
24: ?>
25: </body>
26: </html>

The name property of the object begins as “harry” (line 10), but after the object’s
setName() method is called on line 21, it is changed to “william”. Notice how the
object is capable of adjusting its own property. Notice also that you can pass arguments
to the method in exactly the same way as you would to a function.

We’re still missing a trick here, however. If you create a method with exactly the same
name as the first_class class, it will automatically be called when a new object is
instantiated. In this way, you can give your objects arguments to process at the moment
you instantiate them. Objects can run code to initialize themselves based on these argu-
ments or other factors. These special methods are called constructors. Listing 8.4 adds a
constructor to the first_class class.

LISTING 8.4 A Class with a Constructor

1: <html>
2: <head>
3: <title>Listing 8.4</title>
4: </head>
5: <body>
6: <?php
7: class first_class {
8: var $name;
9: function first_class($n=”anon”) {
10: $this->name = $n;
11: }
12: function sayHello() {
13: print “hello my name is $this->name
”;
14: }
15: }
16:
17: $obj1 = new first_class(“bob”);
18: $obj2 = new first_class(“harry”);
19: $obj1->sayHello();
20: // outputs “hello my name is bob”
21: $obj2->sayHello();
22: // outputs “hello my name is harry”

124 Hour 8

11 CH08 11/29/01 3:21 PM Page 124

LISTING 8.4 continued

23: ?>
24: </body>
25: </html>

The first_class() constructor method on line 9 is automatically called when we
instantiate a first_class object. We set up a default so that the string “anon” is
assigned to the parameter if we don’t include an argument when we create our object.

An Example
Let’s bring these techniques together to create an example that might be a little more
useful. We will create a class that can maintain a table of fields, organized in named
columns. This data should be built up on a row-by-row basis, and a crude method
should be included so that the data can be written to the browser. Neatly formatting
the data is not necessary at this stage.

Defining the Class’s Properties
First, we must decide what properties we need to store the data in. We will keep the col-
umn names in an array and the rows in a multidimensional array. We’ll also store an inte-
ger so that we can easily keep track of the number of columns we’re dealing with:

class Table {
var $table_array = array();
var $headers = array();
var $cols;

}

Creating a Constructor
We need to get the names of the columns that we’ll be working with straight away. We
can do this in the constructor by asking for an array of strings as a parameter. Armed
with this information, we can calculate the number of columns and assign the result to
the cols property:

function Table($headers) {
$this->headers = $headers;
$this->cols = count ($headers);

}

Assuming that the correct information is provided when the new Table object is created,
we will know right away the number of columns we’ll be storing and the name of each
column. Because this information has been stored in properties, it will be available to all
the object’s methods.

Objects 125

8

11 CH08 11/29/01 3:21 PM Page 125

The addRow() Method
The Table object accepts each row of data in the form of an array, assuming, of course,
that this information is provided in the same order as that of the column names:

function addRow($row) {
if (count ($row) != $this->cols)

return false;
array_push($this->table_array, $row);
return true;

}

The addRow() method expects an array, which is stored in a parameter variable called
$row. We have stored the number of columns that the object expects to handle in the
$cols property. We can check that the $row array parameter contains the right number of
elements using the count() function. If it doesn’t, a boolean false is returned.

We then use PHP’s array_push() function to add the row array to the table_array
property. array_push() accepts two arguments—an array to add to and the value to push
onto it. If the second argument is itself an array, it will be added as a single element of
the first array, creating a multidimensional array. In this way, we can build up an array of
arrays.

The addRowAssocArray() Method
The addRow() method is fine as long as the elements of the array passed to it are ordered
correctly. The addRowAssocArray() method allows for a little more flexibility. It expects
an associative array. The keys for each value should match one of the header names we
are storing in our headers property, or they’ll be ignored:

function addRowAssocArray($row_assoc) {
$row = array();
foreach ($this->headers as $header) {

if (! isset($row_assoc[$header]))
$row_assoc[$header] = “”;

$row[] = $row_assoc[$header];
}
array_push($this->table_array, $row);
return true;

}

The associative array passed to addRowAssocArray() is stored in the parameter variable
$row_assoc. We create an empty array called $row to store the values that we will even-
tually add to the table_array property. We loop through the headers array to check that
a value corresponding to each string exists in the $row_assoc array. To do this, we use
the PHP 4 function isset(), which expects any variable as its argument. It returns true

126 Hour 8

11 CH08 11/29/01 3:21 PM Page 126

if the variable passed to it has been set and false otherwise. We pass isset() the ele-
ment in the $row_assoc array whose key is the current value in the headers property we
are looping through. If no element indexed by that string exists in $row_assoc, we go
ahead and create one with the value of an empty string. We can then continue to build up
our $row array, adding to it the element in $row_assoc indexed by the current string in
the headers array. By the time we have finished looping through the headers array prop-
erty, $row contains an ordered copy of the values passed to us in $row_assoc, with empty
strings in place of any omissions.

We now have two simple methods to allow the addition of rows of data to a Table
object’s table_array property. All we need now is a way of outputting the data.

The output() Method
The output() method writes both the headers and the table_array array properties to
the browser. This method is provided mainly for the purpose of debugging. You’ll see a
more satisfactory solution later in the hour.

function output() {
print “<pre>”;
foreach ($this->headers as $header)

print “$header “;
print “\n”;
foreach ($this->table_array as $y) {

foreach ($y as $xcell)
print “$xcell “;

print “\n”;
}
print “</pre>”;

}

This code fragment should be fairly self-explanatory. We loop first through the headers_
array property, writing each element to the screen. We then do the same for the
table_array property. Because the table_array property is a two-dimensional array,
each of its elements is itself an array that must be looped through within the main loop.

Bringing It All Together
Listing 8.5 includes the entire Table class, as well the code that instantiates a Table
object and calls each of its methods.

LISTING 8.5 The Table Class

1: <html>
2: <head>
3: <title>Listing 8.5</title>

Objects 127

8

11 CH08 11/29/01 3:21 PM Page 127

LISTING 8.5 continued

4: </head>
5: <body>
6: <?php
7: class Table {
8: var $table_array = array();
9: var $headers = array();
10: var $cols;
11: function Table($headers) {
12: $this->headers = $headers;
13: $this->cols = count ($headers);
14: }
15:
16: function addRow($row) {
17: if (count ($row) != $this->cols)
18: return false;
19: array_push($this->table_array, $row);
20: return true;
21: }
22:
23: function addRowAssocArray($row_assoc) {
24: $row = array();
25: foreach ($this->headers as $header) {
26: if (! isset($row_assoc[$header]))
27: $row_assoc[$header] = “”;
28: $row[] = $row_assoc[$header];
29: }
30: array_push($this->table_array, $row);
31: return true;
32: }
33:
34: function output() {
35: print “<pre>”;
36: foreach ($this->headers as $header)
37: print “$header “;
38: print “\n”;
39: foreach ($this->table_array as $y) {
40: foreach ($y as $xcell)
41: print “$xcell “;
42: print “\n”;
43: }
44: print “</pre>”;
45: }
46: }
47:
48: $test = new table(array(“a”,”b”,”c”));
49: $test->addRow(array(1,2,3));
50: $test->addRow(array(4,5,6));
51: $test->addRowAssocArray(array (b=>0, a=>6, c=>3));

128 Hour 8

11 CH08 11/29/01 3:21 PM Page 128

LISTING 8.5 continued

52: $test->output();
53: ?>
54: </body>
55: </html>

You can see the output of Listing 8.5 in Figure 8.1.

Objects 129

8

FIGURE 8.1
The Table object in
action.

The output looks neat as long as the individual strings are the same length. This will
change if we vary the length of any of the elements.

What’s Missing?
Although this class will do a job effectively for us, with more time and space, we might
have added some features and safeguards.

Because PHP is loosely typed, it is our responsibility to make sure that parameters
passed to our methods are the type we are expecting. For this purpose, we can use the
data functions covered in Hour 16, “Working with Data.” We might also want to make
the Table object a little more flexible, adding methods to sort the rows according to the
values in any column before we output, for example.

Why a Class?
So, what’s better about using an object to achieve this task than simply manipulating
arrays ourselves as and when we need to? It certainly isn’t efficiency. We’ve added over-
heads to the process of storing and retrieving information.

11 CH08 11/29/01 3:21 PM Page 129

First, this code is reusable. It has a clear purpose—to represent data in a certain way, and
we can now slot it into any project that needs data stored and output in this way.

Second, a Table object is active. We can ask it to output its data without bothering to
write code to loop through its table_array property.

Third, we’ve built an interface to the object’s functionality. If we decide later to optimize
the code in the class, we can do so without disturbing the rest of the project, as long as
the same methods remain, expecting the same arguments and returning the same data
types.

Finally, we can build classes that inherit, extend, and override its functionality. This
makes object-oriented code truly cool.

Inheritance
To create a class that inherits functionality from a parent class, we need to alter our class
declaration slightly. Listing 8.6 returns to our simple example.

LISTING 8.6 Creating a Class That Inherits from Another

1: <html>
2: <head>
3: <title>Listing 8.6</title>
4: </head>
5: <body>
6: <?php
7: class first_class {
8: var $name = “harry”;
9: function first_class($n) {
10: $this->name = $n;
11: }
12: function sayHello() {
13: print “Hello my name is $this->name
”;
14: }
15: }
16:
17: class second_class extends first_class {
18:
19: }
20:
21: $test = new second_class(“son of harry”);
22: $test->sayHello();
23: // outputs “Hello my name is son of harry”
24: ?>
25: </body>
26: </html>

130 Hour 8

11 CH08 11/29/01 3:21 PM Page 130

In addition to the simple first_class class defined on line 7, we have created an even
more basic second_class class on line 17. Notice the extends clause in the class decla-
ration. This means that a second_class object inherits all the functionality laid down in
the first_class class. Any second_class object will have a sayHello() method and a
name property just as any first_class object would.

If that’s not enough, there’s even more magic to be found in Listing 8.6. Notice that we
didn’t define a constructor method for the second_class class. So, how was the name
property changed from the default, “harry” to the value passed to the second_class
class, “son of harry”? Because we didn’t provide a constructor, the first_class
class’s constructor was automatically called.

Objects 131

8

If a class extending another doesn’t contain a constructor method, the par-
ent class’s constructor method will be called automatically when a child
object is created. This feature is new in PHP 4.

Overriding the Method of a Parent Class
The second_class class currently creates objects that behave in exactly the same way as
first_class objects. In object-oriented code, child classes can override the methods of
their parents, allowing objects instantiated from them to behave differently, while other-
wise retaining much of the same functionality. Listing 8.7 gives the second_class class
its own sayHello() method.

LISTING 8.7 The Method of a Child Class Overriding That of Its Parent

1: <html>
2: <head>
3: <title>Listing 8.7</title>
4: </head>
5: <body>
6: <?php
7: class first_class {
8: var $name = “harry”;
9: function first_class($n) {
10: $this->name = $n;
11: }
12: function sayHello() {
13: print “Hello my name is $this->name
”;
14: }
15: }
16:

11 CH08 11/29/01 3:21 PM Page 131

LISTING 8.7 continued

17: class second_class extends first_class {
18: function sayHello() {
19: print “I’m not going to tell you my name
”;
20: }
21: }
22:
23: $test = new second_class(“son of harry”);
24: $test->sayHello();
25: // outputs “I’m not going to tell you my name”
26: ?>
27: </body>
28: </html>

The sayHello() method in the second_class class (line 12) is called in preference to
that in the parent class.

Calling an Overridden Method
Occasionally, you will want the functionality of a parent class’s method, as well as the
benefit of your own additions. Object-oriented programming allows you to have your
cake and eat it too. In Listing 8.8, the second_class’s sayHello() method calls the
method in the first_class class that it has overridden.

LISTING 8.8 Calling an Overridden Method

1: <html>
2: <head>
3: <title>Listing 8.8</title>
4: </head>
5: <body>
6: <?php
7: class first_class {
8: var $name = “harry”;
9: function first_class($n) {
10: $this->name = $n;
11: }
12: function sayHello() {
13: print “Hello my name is $this->name
”;
14: }
15: }
16:
17: class second_class extends first_class {
18: function sayHello() {
19: print “I’m not going to tell you my name — “;
20: first_class::sayHello();

132 Hour 8

11 CH08 11/29/01 3:21 PM Page 132

LISTING 8.8 continued

21: }
22: }
23:
24: $test = new second_class(“son of harry”);
25: $test->sayHello();
26: // outputs “I’m not going to tell you my name — Hello my name is son of
harry”
27: ?>
28: </body>
29: </html>

By using the syntax

parentclassname::methodname()

we can call any method that we have overridden. We demonstrate this on line 20. This
syntax is new to PHP 4—the same code will result in a parse error with PHP3.

Inheritance: An Example
You’ve seen how one class can inherit, override, and extend the functionality of another.
Now we can use some of these techniques to create a class that inherits from the Table
class created in Listing 8.5. The new class will be called HTMLTable and will be designed
to overcome the deficiencies of Table’s output() method.

Defining HTMLTable’s Properties
HTMLTable will format the data that it stores courtesy of Table’s functionality using a
standard HTML table. For this example, we will allow an HTMLTable’s user to change the
CELLPADDING argument of the TABLE element and the BGCOLOR argument of the TD ele-
ment. A real-world example should allow for many more changes than this.

class HTMLTable extends Table {
var $bgcolor;
var $cellpadding = “2”;

}

We have defined a new class and established that it will inherit from Table by using
the extends clause. We create two properties, bgcolor and cellpadding, giving
cellpadding a default value of 2.

Objects 133

8

11 CH08 11/29/01 3:21 PM Page 133

Creating the Constructor
You have already seen that a parent class’s constructor is called automatically if you
don’t define a constructor for a child class. In this case, however, we want to do more
work with our constructor than has already been written for the Table class:

function HTMLTable($headers, $bg=”#ffffff”) {
Table::Table($headers);
$this->bgcolor=$bg;

}

The HTMLTable constructor accepts an array of column names and a string. The string
becomes our bgcolor property, and we give it a default value, making it an optional
argument. We call the Table class’s constructor, passing the $header array to it. Laziness
is a virtue in programming, so we let the Table class’s constructor do its thing and worry
no more about it. We initialize the HTMLObject’s bgcolor property.

134 Hour 8

If a child class is given a constructor method, the parent’s constructor is no
longer called implicitly. The child class’s constructor must explicitly call that
of its parent.

The setCellpadding() Method
A child class can of course create its own entirely new methods. setCellpadding()
allows a user to change the cellpadding property from the default. Of course, it would
be perfectly possible to set the cellpadding property directly from outside the object,
but this is not good practice on the whole. As a rule of thumb, it is best to create meth-
ods that will change properties on behalf of an object’s user. In a more complex version
of this class, the setCellpadding() method might need to change other properties to
reflect the change made to the cellpadding property. Unfortunately, there is no neat
way of enforcing privacy in PHP 4.

function setCellpadding($padding) {
$this->cellpadding = $padding;

}

The Output() Method
The Output() method completely overrides the equivalent method in the Table class.
It outputs data according to exactly the same logic as its parent, adding HTML table
formatting:

11 CH08 11/29/01 3:21 PM Page 134

function output() {
print “<table cellpadding=\”$this->cellpadding\” border=1>”;
foreach ($this->headers as $header)

print “<td bgcolor=\”$this->bgcolor\”>$header</td>”;
foreach ($this->table_array as $row=>$cells) {

print “<tr>”;
foreach ($cells as $cell)

print “<td bgcolor=\”$this->bgcolor\”>$cell</td>”;
print “</tr>”;

}
print “</table>”;

}

The output() method should be fairly clear if you understood the Table class’s version.
We loop through both the header and table_array arrays, outputting each to the
browser. Crucially, though, we format the data into a table, using the cellpadding and
bgcolor properties to change the spacing and color of the table that the end user sees.

The Table and HTMLTable Classes in Their Entirety
Listing 8.9 brings the entire Table and HTMLTable examples together. We also instantiate
an HTMLTable object, change its cellpadding property, add some data, and call its
output() method. In a real-world example, we would probably get our row data
directly from a database.

LISTING 8.9 The Table and HTMLTable Classes

1: <html>
2: <head>
3: <title>testing objects</title>
4: </head>
5: <body>
6: <?php
7: class Table {
8: var $table_array = array();
9: var $headers = array();
10: var $cols;
11: function Table($headers) {
12: $this->headers = $headers;
13: $this->cols = count ($headers);
14: }
15:
16: function addRow($row) {
17: if (count ($row) != $this->cols)
18: return false;
19: array_push($this->table_array, $row);
20: return true;
21: }

Objects 135

8

11 CH08 11/29/01 3:21 PM Page 135

LISTING 8.9 continued

22:
23: function addRowAssocArray($row_assoc) {
24: if (count ($row_assoc) != $this->cols)
25: return false;
26: $row = array();
27: foreach ($this->headers as $header) {
28: if (! isset($row_assoc[$header]))
29: $row_assoc[$header] = “ “;
30: $row[] = $row_assoc[$header];
31: }
32: array_push($this->table_array, $row);
33: }
34:
35: function output() {
36: print “<pre>”;
37: foreach ($this->headers as $header)
38: print “$header “;
39: print “\n”;
40: foreach ($this->table_array as $y) {
41: foreach ($y as $xcell)
42: print “$xcell “;
43: print “\n”;
44: }
45: print “</pre>”;
46: }
47: }
48:
49: class HTMLTable extends Table {
50: var $bgcolor;
51: var $cellpadding = “2”;
52: function HTMLTable($headers, $bg=”#ffffff”) {
53: Table::Table($headers);
54: $this->bgcolor=$bg;
55: }
56:
57: function setCellpadding($padding) {
58: $this->cellpadding = $padding;
59: }
60: function output() {
61: print “<table cellpadding=\”$this->cellpadding\” border=1>”;
62: foreach ($this->headers as $header)
63: print “<td bgcolor=\”$this->bgcolor\”>$header</td>”;
64: foreach ($this->table_array as $row=>$cells) {
65: print “<tr>”;
66: foreach ($cells as $cell)
67: print “<td bgcolor=\”$this->bgcolor\”>$cell</td>”;
68: print “</tr>”;
69: }

136 Hour 8

11 CH08 11/29/01 3:21 PM Page 136

LISTING 8.9 continued

70: print “</table>”;
71: }
72: }
73: $test = new HTMLTable(array(“a”,”b”,”c”), “#00FF00”);
74: $test->setCellpadding(7);
75: $test->addRow(array(1,2,3));
76: $test->addRow(array(4,5,6));
77: $test->addRowAssocArray(array (b=>0, a=>6, c=>3));
78: $test->output();
79: ?>
80: </body>
81: </html>

You can see the output from Listing 8.9 in Figure 8.2.

Objects 137

8

FIGURE 8.2
The HTMLTable object
in action.

Why Use Inheritance?
So, why did we split Table from HTMLTable? Surely we could have saved ourselves time
and space by building HTML table capabilities into the Table class? The answer lies in
flexibility.

Imagine that a client gave you the brief to create a class that can maintain a table of
fields, organized in named columns. If you had built a monolithic class that collected
and stored the data, customized HTML, and output the result to the browser, all would
seem to be well.

If the same client came back to you and asked whether the code could be adapted addi-
tionally to write neatly formatted data to a text file, you could probably add some more
methods and properties to make it do this too.

11 CH08 11/29/01 3:21 PM Page 137

A week or so later, the client realizes that she would like the code to be able to send data
out as an email, and while you’re at it, the company intranet uses a subset of XML; could
this be accommodated too? At this stage, including all the functionality in a single class
is beginning to look a little unwieldy, and you would already be considering a complete
rewrite of the code.

Let’s try this scenario out with our Table and HTMLTable examples. We have already
substantially separated formatting the data from acquiring and preparing it. When our
client asks that the code should be capable of outputting to a file, we only need to create
a new class that inherits from Table. Let’s call it FileTable. We need make no changes
at all to our existing code. The same would be true for MailTable and XMLTable. Figure
8.3 illustrates the relationship between these classes.

138 Hour 8

XML Table Mail Table HTML Table File Table

Table
FIGURE 8.3
The relationship
between the Table
class and multiple
child classes.

What’s more, we know that any object that inherits from Table will have an output()
method, so we can group a bunch of them into an array. When we’re ready, we can loop
through the lot, calling output() without worrying about the mechanics. From a single
array of Table-derived objects, we can write emails, HTML, XML, or plain text, simply
by repeatedly calling output()!

Testing Classes and Objects
We have already seen how we can use functions like gettype() to test data types. This
is very useful to ensure that functions are supplied with the right arguments.

All objects belong to the “object” datatype, but we sometimes need more information
than this.

Finding the Class of an Object
We have a class that simply outputs a string. Its output method, though, requires an
OutputFilter object.

class SayHello {
function print_hello($filter_object) {

print $filter_object->filter(“hello you
”);
}

}

11 CH08 11/29/01 3:21 PM Page 138

class OutputFilter {
function filter($txt) {

return “$txt”;
}

}
$hello = new SayHello();
$hello->print_hello(new OutputFilter());

As you can see, the sayHello class is betting that the object passed to it has a filter()
method. Clearly, we are taking a lot on trust here. We can ensure that the variable passed
to the print_hello() function is an OutputFilter object using the get_class() func-
tion. get_class() accepts an object and returns the name of its class (in lowercase let-
ters).

class sayHello {
function print_hello($filter_object) {

if (get_class($filter_object) != “outputfilter”)
return false;

print $filter_object->filter(“hello you
”);
}

}

Our print_hello() function can now be reasonably sure that it is dealing with an
OutputFilter object.

Finding the Family of an Object
In the previous example, you may have wondered about the point of delegating the task
of filtering output text to an object provided from outside the SayHello class. Imagine
though that we have an entire family of OutputFilter objects.

class ItalicFilter extends OutputFilter {
function filter($txt) {

return “<i>$txt</i>”;
}

}

class UnderlineFilter extends OutputFilter {
function filter($txt) {

return “<u>$txt</u>”;
}

}

class BlinkFilter extends OutputFilter {
function filter($txt) {

return “<blink>$txt</blink>”;
}

}

Objects 139

8

11 CH08 11/29/01 3:21 PM Page 139

As things stand we would not be able to pass a BlinkFilter object to SayHello.
Wouldn’t it be nice if we could make SayHello relax and accept any object that belongs
to the OutputFilter family? After all, if it belongs to that family, it is absolutely guaran-
teed that an object will have a filter() method.

The is_subclass_of() function is just the thing for this. is_subclass_of() accepts an
object and the name of the class from which the object should be derived. If the object is
a subclass of the class in question the function returns true, otherwise it returns false.
We can now add an additional check to our print_hello() method.

Listing 8.10 brings all our fragments together. Note the print_hello() method on line
3, and our use of is_subclass_of() on line 5.

LISTING 8.10 Testing the Class and Inheritance of an Object

1: <?php
2: class SayHello {
3: function print_hello($filter_object) {
4: if (get_class($filter_object) != “outputfilter” &&
5: ! is_subclass_of($filter_object,”outputfilter”))
6: return false;
7: print $filter_object->filter(“hello you
”);
8: }
9: }
10:
11: class OutputFilter {
12: function filter($txt) {
13: return “$txt”;
14: }
15: }
16:
17: class ItalicFilter extends OutputFilter {
18: function filter($txt) {
19: return “<i>$txt</i>”;
20: }
21: }
22:
23: class UnderlineFilter extends OutputFilter {
24: function filter($txt) {
25: return “<u>$txt</u>”;
26: }
27: }
28:
29: class BlinkFilter extends OutputFilter {
30: function filter($txt) {
31: return “<blink>$txt</blink>”;
32: }
33: }

140 Hour 8

11 CH08 11/29/01 3:21 PM Page 140

LISTING 8.10 continued

34:
35: $hello = new SayHello();
36: $hello->print_hello(new OutputFilter());
37: $hello->print_hello(new ItalicFilter());
38: $hello->print_hello(new UnderlineFilter());
39: $hello->print_hello(new BlinkFilter());
40: ?>

Checking for Class and Method Existence
As libraries grow, classes become increasingly interdependent. With this comes the pos-
sibility that a class might attempt to invoke another that is not available to the script.
PHP provides you with functions for testing both class and method existence.

class_exists() requires a string representing a class name. If the user-defined class is
found the function will return true. Otherwise it will return false. class_exists() is
especially useful when using class names stored in strings.

if (class_exists($class_name))
$obj = new $class_name();

method_exists() requires two arguments; an object, and a string containing the name of
the method you are checking for.

if (method_exists($filter_object, “filter”))
print $filter_object->filter(“hello you
”);

Storing and Retrieving Objects
Usually you will separate your objects from data storage. In other words, you will use
saved data to construct objects, and then when you are done, you will store the data
again. Occasionally, though, you will want your object and data to persist intact. PHP
provides two functions to help you with this.

To ‘freeze-dry’ an object you should pass it to the serialize() function. serialize()
will produce a string that you can then store in a file, a database, or transmit to another
script.

class apple {
var $flavor=”sweet”;

}
$app = new apple();
$stored = serialize($app);
print $stored;
// prints “O:5:”apple”:1:{s:6:”flavor”;s:5:”sweet”;}”

Objects 141

8

11 CH08 11/29/01 3:21 PM Page 141

The string produced by serialize() can be converted back into an object with the
unserialize() function. If the original class is present at the time unserialize() is
called, an exact copy of the original object will be produced.

$new_app = unserialize($stored);
print $new_app->flavor;
// prints “sweet”

In some circumstances you will need your objects to clean up a little before storage. This
is particularly important if an object has a database connection open, or is working with
a file. By the same token, you may want your object to perform some sort on initializa-
tion when it is woken up. You can handle these needs by including two special methods
in any object that might need to be serialized.

The __sleep() method will automatically be called by serialize() before it packs up
the object. This allows you to perform any clean up operations you may need. In order
for the serialization to work, your __sleep() method must return an array of the prop-
erty names that you wish to be saved in the serialized string.

class apple {
var $flavor=”sweet”;
var $frozen = 0;
function __sleep() {

$this->frozen++;
// any clean up stuff goes here
return array_keys(get_object_vars($this));

}
}
$app = new apple();
$stored = serialize($app);
print $stored;
// prints “O:5:”apple”:2:{s:6:”flavor”;s:5:”sweet”;s:6:”frozen”;i:1;}”

Notice the trick we used at the end of the __sleep() method in order to list the names of
all the properties in the object. We used the built-in function get_object_vars(). This
requires an object and returns an associative array of all the properties belonging to it.
We pass the result of our call to get_object_vars() to the array_keys() function.
array_keys() accepts an array (usually an associative array) and returns an array of its
keys.

PHP also supports a special method called __wakeup(). If this is defined, it will automat-
ically be called by unserialize(). This will enable you to resume database connections,
or to provide any other initialization the object might need. We might add the following
method to our apple class.

142 Hour 8

11 CH08 11/29/01 3:21 PM Page 142

function __wakeup() {
print “This apple has been frozen “.$this->frozen.” time(s)”;
// any initialization stuff goes here

}

Now that we have added __wakeup() we can call unserialize()

$new_app = unserialize($stored);
// prints “This apple has been frozen 1 time(s)”

Summary
It is not possible to introduce you to all the aspects of object-oriented programming in
one short hour, but I hope I have introduced you to some of the possibilities.

The extent to which you use objects and classes in your projects is a matter of choice. It
is likely that heavily object-oriented projects will be somewhat more resource-intensive
at runtime than more traditional code. However, effective deployment of object-oriented
techniques can significantly improve the flexibility and organization of your code.

Throughout this hour, you learned how to create classes and instantiate objects from
them. You learned how to create and access properties and methods. You learned how to
build new classes that inherit and override the features of other classes.

Finally you learned how to determine the class of an object and whether an object’s class
is a subclass of another.

Now that we have covered the core of the PHP language we are ready to move on and
begin to explore some of its wider features. In the next hour we will look at PHP’s sup-
port for handling HTML forms.

Q&A
Q This hour introduced some unfamiliar concepts. Do I really need to under-

stand object-oriented programming to become a good PHP programmer?

A The short answer is no. Most PHP scripts use little or no object-oriented code at
all. The object-oriented approach won’t help you do things that you couldn’t other-
wise achieve. The benefits of object-oriented programming lie in the organization
of your scripts, their reusability, and their extensibility.

Even if you decide not to produce object-oriented code, however, you may need to
decipher third-party programs that contain classes. This hour should help you
understand such code.

Objects 143

8

11 CH08 11/29/01 3:21 PM Page 143

Q I’m confused by the special variable $this.

A Within a class, you sometimes need to call the class’s methods or access its proper-
ties. By combining the $this variable and the -> operator, you can do both. The
$this variable is the handle a class is automatically given to refer to itself and to
its components.

Workshop
Quiz

1. How would you declare a class called emptyClass() that has no methods or prop-
erties?

2. Given a class called emptyClass(), how would you create an object that is an
instance of it?

3. How can you declare a property within a class?

4. How would you choose a name for a constructor method?

5. How would you create a constructor method in a class?

6. How would you create a regular method within a class?

7. How can you access and set properties or methods from within a class?

8. How would you access an object’s properties and methods from outside the
object’s class?

9. What should you add to a class definition if you want to make it inherit functional-
ity from another class?

Quiz Answers for Hour 8
1. You can declare a class with the class keyword:

class emptyClass {

}

2. You should use the new operator to instantiate an object:

$obj = new emptyClass();

3. You can declare a property using the var keyword:
class Point {

// properties
var $x = 0;
var $y = 0;

}

144 Hour 8

11 CH08 11/29/01 3:21 PM Page 144

4. You can’t choose the name of a constructor. It must take the name of a class that
contains it.

5. You can create a constructor by declaring a method that has the same name as the
class that contains it. The constructor will be called automatically when an object
is instantiated from the class.
class Point {

// properties
var $x = 0;
var $y = 0;

// constructor
function Point($x, $y) {

// set up code goes here
}

}

6. A method is a function of any name declared within a class:
class Point {

// properties
var $x = 0;
var $y = 0;

// constructor
function Point($x, $y) {

// set up code goes here
}

// method
function moveTo($x, $y) {

}
}

7. Within a class, you can access a property or method by combining the $this vari-
able and the -> operator:
class Point {

// properties
var $x = 0;
var $y = 0;

// constructor
function Point($x, $y) {

// calling a method
$this->moveTo($x, $y);

}

// method
function moveTo($x, $y) {

Objects 145

8

11 CH08 11/29/01 3:21 PM Page 145

// setting properties
$this->x = $x;
$this->y = $y;

}
}

8. You can call an object’s methods and access its properties using a reference to the
object (usually stored in a variable) in conjunction with the -> operator:
// instantiating an object
$p = new Point(40, 60);

// calling an object’s method
$p->moveTo(20, 200);

// accessing an object’s property
print $p->x;

9. For a class to inherit from another it must be declared with the extends keyword
and the name of the class from which you want to inherit:

class funkyPoint extends Point {
}

Activities
1. Create a class called baseCalc() that stores two numbers as properties. Give it a

calculate() method that prints the numbers to the browser.

2. Create a class called addCalc() that inherits its functionality from baseCalc().
Override the calculate() method so that the sum of the properties is printed to
the browser.

3. Repeat activity 2, for a class called minusCalc(). Give minusCalc() a calculate
method that subtracts the first property from the second, outputting the result to the
browser.

146 Hour 8

11 CH08 11/29/01 3:21 PM Page 146

Hour
9 Working with Forms

10 Working with Files
11 Working with DBA Functions
12 Database Integration—SQL
13 Beyond the Box
14 Images On-the-Fly
15 Working with Dates and Times
16 Working with Data
17 Working with Strings
18 Working with Regular Expressions
19 Saving State with Cookies and Query Strings
20 Saving State with Session Functions
21 Working with the Server Environment
22 PHP 4 and XML

PART III
Working with PHP

12 Part 3 11/29/01 3:18 PM Page 147

12 Part 3 11/29/01 3:18 PM Page 148

HOUR 9
Working with Forms

Until now, all examples in this book have been missing a crucial dimension.
You can set variables and arrays, create and call functions, and work with
objects. All this is meaningless if users can’t reach into a language’s envi-
ronment to offer it information. In this hour, you will look at strategies for
acquiring and working with user input.

On the World Wide Web, HTML forms are the principal means by which
substantial amounts of information can pass from the user to the server. PHP
is designed to acquire and work with information submitted via HTML
forms.

In this hour, you will learn

• How to get and use predefined variables

• How to access information from form fields

• How to work with form elements that allow multiple selections

• How to create a single document that contains both an HTML form
and the PHP code that handles its submission

• How to save state with hidden fields

13 CH09 11/29/01 3:23 PM Page 149

• How to redirect the user to a new page

• How to build HTML forms that upload files and how to write the PHP code to
handle them

Predefined Variables
Before you actually build a form and use it to acquire data, you need to make a small
detour and look again at global variables. You first met these in Hour 6, “Functions.” A
global variable is any variable declared at the “top level” of a script—that is, declared
outside a function. All functions are made available in a built-in associative array called
$GLOBALS. This is useful in Listing 9.1 because we can take a peek at all our script’s
global variables with a single loop.

LISTING 9.1 Looping Through the $GLOBALS Array

1: <html>
2: <head>
3: <title>Listing 9.1 Looping through the $GLOBALS array</title>
4: </head>
5: <body>
6: <?php
7: $user1 = “Bob”;
8: $user2 = “Harry”;
9: $user3 = “Mary”;
10: foreach ($GLOBALS as $key=>$value) {
11: print “\$GLOBALS[\”$key\”] == $value
”;
12: }
13: ?>
14: </body>
15: </html>

We declare three variables (lines 7-9) and then loop through the built-in $GLOBALS asso-
ciative array (lines 10 and 11), writing both array keys and values to the browser. In the
output, we are able to locate the variables we defined, but we see an awful lot more
besides these. PHP automatically defines global variables that describe both the server
and client environments. According to your system, server, and configuration, the avail-
ability of these variables will vary, but they can be immensely useful. Table 9.1 lays out
some common predefined variables. These can be accessed as part of the $GLOBALS array,
or directly.

150 Hour 9

13 CH09 11/29/01 3:23 PM Page 150

TABLE 9.1 Some Predefined Variables

Variable Contains Example

$HTTP_USER_AGENT The name and Mozilla/4.6
version of the (X11;I;Linux2.2.6-
client 15apmac ppc)

$REMOTE_ADDR The IP address 158.152.55.35
of the client

$REQUEST_METHOD Whether the POST

request was GET
or POST

$QUERY_STRING For GET requests, name=matt&address=

the encoded data unknown

send appended to
the URL

$REQUEST_URI The full address /matt/php-

of the request book/forms/

including query eg9.14.html?

string name=matt

$HTTP_REFERER The address of http://www.test.

the page from com/a_page.html

which the request
was made

In addition to these header-oriented variables, PHP makes some other global variables
available to you. The variable $GLOBALS[“PHP_SELF”], for example, gives you the path to
the script currently running. On my system this was as follows:

/dev/php24/ch9/listing9.1.php

This variable can also be directly accessed as the global variable $PHP_SELF.

A Script to Acquire User Input
For now, we’ll keep our HTML separate from our PHP code. Listing 9.2 builds a simple
HTML form.

LISTING 9.2 A Simple HTML Form

1: <html>
2: <head>
3: <title>Listing 9.2 A simple HTML form</title>

Working with Forms 151

9

13 CH09 11/29/01 3:23 PM Page 151

LISTING 9.2 continued

4: </head>
5: <body>
6: <form action=”listing9.3.php”>
7: <input type=”text” name=”user”>
8:

9: <textarea name=”address” rows=”5” cols=”40”>
10: </textarea>
11:

12: <input type=”submit” value=”hit it!”>
13: </form>
14: </body>
15: </html>

We define a form that contains a text field with the name “user” on line 7, a text area
with the name “address” on line 9, and a submit button on line 12. It is beyond the
remit of this book to cover HTML in detail. If you find the HTML in these examples
hard going, take a look at Sams Teach Yourself HTML in 24 Hours or one of the numer-
ous online HTML tutorials. The FORM element’s ACTION argument points to a file called
listing9.3.php, which processes the form information. Because we haven’t added any-
thing more than a filename to the ACTION argument, the file listing9.3.php should be
in the same directory on the server as the document that contains our HTML.

Listing 9.3 creates the code that receives our users’ input.

LISTING 9.3 Reading Input from the Form in Listing 9.2

1: <html>
2: <head>
3: <title>Listing 9.3 Reading input from the form in Listing 9.2</title>
4: </head>
5: <body>
6: <?php
7: print “Welcome $user<P>\n\n”;
8: print “Your address is:<P>\n\n$address”;
9: ?>
10: </body>
11: </html>

This is the first script in this book that is not designed to be called by hitting a link or
typing directly into the browser’s location field. We include the code from Listing 9.3 in
a file called listing9.3.php. This file is called when a user submits the form defined in
Listing 9.2.

152 Hour 9

13 CH09 11/29/01 3:23 PM Page 152

In the code, we have accessed two variables, $user and $address. It should come as no
surprise that these variables contain the values that the user added to the text field named
“user” and the text area named “address”. Forms in PHP really are as simple as that.
Any information submitted by a user will be available to you in global variables that will
have the same names as those of the form elements on an HTML page.

Accessing Form Input with User Defined
Arrays

The examples so far enable us to gather information from HTML elements that submit a
single value per element name. This leaves us with a problem when working with SELECT
elements. These elements make it possible for the user to choose multiple items. If we
name the SELECT element with a plain name

<select name=”products” multiple>

the script that receives this data will only have access to a single value corresponding to
this name. We can change this behavior by renaming any elements of this kind so that its
name ends with an empty set of square brackets. We do this in Listing 9.4.

LISTING 9.4 An HTML Form Including a SELECT Element

1: <html>
2: <head>
3: <title>Listing 9.4 An HTML form including a SELECT element</title>
4: </head>
5: <body>
6: <form action=”listing9.5.php” method=”POST”>
7: <input type=”text” name=”user”>
8:

9: <textarea name=”address” rows=”5” cols=”40”>
10: </textarea>
11:

12: <select name=”products[]” multiple>
13: <option>Sonic Screwdriver
14: <option>Tricorder
15: <option>ORAC AI
16: <option>HAL 2000
17: </select>
18:

19: <input type=”submit” value=”hit it!”>
20: </form>
21: </body>
22: </html>

Working with Forms 153

9

13 CH09 11/29/01 3:23 PM Page 153

In the script that processes the form input, we now find that input from the
“products[]” form element created on line 12 will be available in an array called
$products. products[] is a select element, and we offer the user multiple choices
using the option elements on lines 13 to 16. We demonstrate that the user’s choices
are made available in an array in Listing 9.5.

LISTING 9.5 Reading Input from the Form in Listing 9.4

1: <html>
2: <head>
3: <title>Listing 9.5 Reading input from the form in Listing 9.4</title>
4: </head>
5: <body>
6: <?php
7: print “Welcome $user<p>\n\n”;
8: print “Your address is:<p>\n\n$address<p>\n\n”;
9: print “Your product choices are:<p>\n\n”;
10: if (! empty($products)) {
11: print “\n\n”;
12: foreach ($products as $value) {
13: print “$value
\n”;
14: }
15: print “”;
16: }
17: ?>
18: </body>
19: </html>

On line 7 we access the $user variable, which is derived from the user form element.
On line 10 we test for the $products variable. If it is present we loop through it on line
12, outputting each choice to browser on line 13.

Although this technique is particularly useful with the SELECT element, it will in fact
work with any form element at all. By giving a number of check boxes the same name,
for example, you can allow a user to choose many values within a single field name. As
long as the name you choose ends with empty square brackets, PHP compiles the user
input for this field into an array. We can replace the SELECT element from lines 12-17 in
Listing 9.4 with a series of check boxes to achieve exactly the same effect:

<input type=”checkbox” name=”products[]” value=”Sonic Screwdriver”>Sonic
Screwdriver

<input type=”checkbox” name=”products[]” value=”Tricorder”>Tricorder

<input type=”checkbox” name=”products[]” value=”ORAC AI”>ORAC AI

<input type=”checkbox” name=”products[]” value=”HAL 2000”>HAL 2000

154 Hour 9

13 CH09 11/29/01 3:23 PM Page 154

In fact, we are not limited to numerically indexed arrays. We can place form input data
into associative arrays, and even into multidimensional arrays. To keep our script’s data
neat, for example, we might wish to place all form input into an associative array called
$form. We can do this very simply by constructing our form field names as if they were
elements in an associative array (once again, omitting the dollar sign).

<input type=”text” name=”form[user]”>

<textarea name=”form[address]” rows=”5” cols=”40”>
</textarea>

Once submitted we will then be able access ‘user’ and ‘address’ as elements in the $form
array.

print $form[user];

To construct a multidimensional array, we can simply extend the associative array
naming convention to include another level

<input type=”checkbox” name=”form[products][]” value=”Sonic Screwdriver”>Sonic
Screwdriver

<input type=”checkbox” name=”form[products][]” value=”Tricorder”>Tricorder

<input type=”checkbox” name=”form[products][]” value=”ORAC AI”>ORAC AI

<input type=”checkbox” name=”form[products][]” value=”HAL 2000”>HAL 2000

When submitted, the $form[products] element should contain a numerically indexed
array, populated according to the checkboxes clicked by the user.

Accessing Form Input with Built-In Arrays
The techniques you have looked at so far work well but can clutter up your scripts with
global variables. To limit the number of globals in your script you can disable the feature
that creates variables for each of your form fields by setting the register_globals
directive to off in the php.ini file. We discussed the php.ini file in more detail in Hour
2, “Installing PHP”.

That will clean up your namespace, but how can you access submitted form elements
now?

The global variables that PHP 4 makes available provide the solution to this problem.
According to whether or not a submitting form used the GET or POST method, you will
have access to one or both of $HTTP_GET_VARS or $HTTP_POST_VARS. These are associa-
tive arrays that contain the name/value pairs submitted. Listing 9.6 takes advantage of
this to list all the fields submitted from a form via a GET request.

Working with Forms 155

9

13 CH09 11/29/01 3:23 PM Page 155

LISTING 9.6 Reading Input from Any Form Using the $HTTP_GET_VARS array

1: <html>
2: <head>
3: <title>Listing 9.6 Reading input from any form using the $HTTP_GET_VARS

➥array</title>
4: </head>
5: <body>
6: <?php
7: foreach ($HTTP_GET_VARS as $key=>$value) {
8: print “$key == $value
\n”;
9: }
10: ?>
11: </body>
12: </html>

This code lists the names and values of all parameters passed to it via a GET transaction.
We could also do the very same thing with the $HTTP_POST_VARS array.

Distinguishing Between GET and POST
Transactions

To work flexibly, a script that can accept data from any source must be able to decide
whether to read the $HTTP_GET_VARS or $HTTP_POST_VARS arrays. On most systems, you
can discover whether you are dealing with a GET or POST transaction in the predefined
variable $REQUEST_METHOD, which should contain the string “post” or “get”. To be
absolutely sure that your scripts are entirely portable, however, you can simply test both
arrays for elements.

Listing 9.7 amends our form parser script to work with the correct array every time.

LISTING 9.7 Extracting Parameters from Either a GET or POST Request

1: <html>
2: <head>
3: <title>Listing 9.7 Extracting parameters from
4: either a GET or POST request</title>
5: </head>
6: <body>
7: <?php
8: $PARAMS = (count($HTTP_POST_VARS))
9: ? $HTTP_POST_VARS : $HTTP_GET_VARS;

156 Hour 9

13 CH09 11/29/01 3:23 PM Page 156

LISTING 9.7 continued

10:
11: foreach ($PARAMS as $key=>$value) {
12: print “$key == $value
\n”;
13: }
14:
15: ?>
16: </body>
17: </html>

We use the ternary operator on line 8 to set a variable called $PARAMS. Using the built-in
count() function, we first check whether the $HTTP_POST_VARS array contains elements.
If the $HTTP_POST_VARS array is not empty, the ternary expression resolves to this; other-
wise, it resolves to $HTTP_GET_VARS. We can now use the $PARAMS array throughout the
rest of the script without worrying about whether it has been populated as the result of a
GET or a POST request.

Combining HTML and PHP Code
on a Single Page

In some circumstances, you may want to include form-parsing code on the same page as
a hard-coded HTML form. Such a combination can be useful if you need to present the
same form to the user more than once. You would have more flexibility if you were to
write the entire page dynamically, of course, but you would miss out on one of the great
strengths of PHP. The more standard HTML you can leave in your pages, the easier they
will be for designers and page builders to amend without reference to you. You should
avoid scattering substantial chunks of PHP code throughout your documents, however.
This will make them hard to read and maintain. Where possible you should create
functions that can be called from within your HTML code, and can be reused in other
projects.

For the following examples, imagine that we are creating a site that teaches basic math to
preschool children and have been asked to create a script that takes a number from form
input and tells the user whether it is larger or smaller than a predefined integer.

Listing 9.8 creates the HTML. For this example, we need only a single text field, but
even so, we’ll include a little PHP.

Working with Forms 157

9

13 CH09 11/29/01 3:23 PM Page 157

LISTING 9.8 An HTML Form that Calls Itself

1: <html>
2: <head>
3: <title>Listing 9.8 An HTML form that calls itself</title>
4: </head>
5: <body>
6: <form method=”POST”>
7: Type your guess here: <input type=”text” name=”guess”>
8: </form>
9: </body>
10: </html>

Whatever we name the page that contains this form, the fact that we have left out the
action attribute of the form element will mean that the form will be submitted back to
its own url.

158 Hour 9

Almost all browsers will submit a form to its current page if the form
element’s action attribute is omitted. You can, however, explicitly tell the
browser to submit a form back to its own document by using the predefined
$PHP_SELF variable.

<form action=”<?php print $PHP_SELF?>”>

The script in Listing 9.8 will not produce any output. In Listing 9.9, we begin to build
up the PHP element of the page. First, we need to define the number that the user will
guess. In a fully working version, we would probably randomly generate this, but for
now we will keep it simple. We assign ‘42’ to the $num_to_guess variable on line 2.
Next, we need to decide whether the form has been submitted; otherwise, we will
attempt to assess variables that have not yet been made available. We can test for sub-
mission by testing for the existence of the variable $guess. $guess will have been made
available as a global variable if your script has been sent a “guess” parameter. If this
isn’t present, we can safely assume that the user has arrived at the page without submit-
ting a form. If the value is present, we can go ahead and test the value it contains. The
test for the presence of the $guess variable takes place on line 4.

LISTING 9.9 A PHP Number Guessing Script

1: <?php
2: $num_to_guess = 42;
3: $message = “”;
4: if (! isset($guess))

13 CH09 11/29/01 3:23 PM Page 158

LISTING 9.9 continued

5: $message = “Welcome to the guessing machine!”;
6: elseif ($guess > $num_to_guess)
7: $message = “$guess is too big! Try a smaller number”;
8: elseif ($guess < $num_to_guess)
9: $message = “$guess is too small! Try a larger number”;
10: else // must be equivalent
11: $message = “Well done!”;
12:
13: ?>
14: <html>
15: <head>
16: <title>Listing 9.9 A PHP number guessing script</title>
17: </head>
18: <body>
19: <h1>
20: <?php print $message ?>
21: </h1>
22: <form method=”POST”>
23: Type your guess here: <input type=”text” name=”guess”>
24: </form>
25: </body>
26: </html>

The bulk of this script consists of an if statement that determines which string to assign
to the variable $message. If the $guess variable has not been set, we assume that the
user has arrived for the first time and assign a welcome string to the $message variable
on line 5.

Otherwise, we test the $guess variable against the number we have stored in $num_to_
guess, and assign advice to $message accordingly. We test whether $guess is larger than
$num_to_guess on line 6, and whether it is smaller than $num_to_guess on line 8. If
$guess is neither larger nor smaller than $num_to_guess, we can assume that it is equiv-
alent and assign a congratulations message to the variable (line 11). Now all we need to
do is print the $message variable within the body of the HTML.

There are a few more additions yet, but you can probably see how easy it would be to
hand this page over to a designer. He can make it beautiful without having to disturb the
programming in any way.

Using Hidden Fields to Save State
The script in Listing 9.9 has no way of knowing how many guesses a user has made. We
can use a hidden field to keep track of this. A hidden field behaves exactly the same as a

Working with Forms 159

9

13 CH09 11/29/01 3:23 PM Page 159

text field, except that the user cannot see it, unless he views the HTML source of the
document that contains it. Listing 9.10 adds a hidden field to the number guessing script
and some PHP to work with it.

LISTING 9.10 Saving State with a Hidden Field

1: <?php
2: $num_to_guess = 42;
3: $num_tries = (isset($num_tries)) ? ++$num_tries : 0;
4: $message = “”;
5: if (! isset($guess))
6: $message = “Welcome to the guessing machine!”;
7: elseif ($guess > $num_to_guess)
8: $message = “$guess is too big! Try a smaller number”;
9: elseif ($guess < $num_to_guess)
10: $message = “$guess is too small! Try a larger number”;
11: else // must be equivalent
12: $message = “Well done!”;
13:
14: $guess = (int) $guess;
15: ?>
16: <html>
17: <head>
18: <title>Listing 9.10 Saving state with a hidden field</title>
19: </head>
20: <body>
21: <h1>
22: <?php print $message ?>
23: </h1>
24: Guess number: <?php print $num_tries?>
25: <form method=”POST”>
26: Type your guess here:
27: <input type=”text” name=”guess” value=”<?php print $guess?>”>
28: <input type=”hidden” name=”num_tries” value=”<?php print $num_tries?>”>
29: </form>
30: </body>
31: </html>

The hidden field on line 28 is given the name “num_tries”. We also use PHP to write its
value. While we’re at it, we do the same for the “guess” field on line 27, so that the user
can always see his last guess. This technique is useful for scripts that parse user input. If
we were to reject a form submission for some reason we can at least allow our user to
edit his previous query.

160 Hour 9

13 CH09 11/29/01 3:23 PM Page 160

Within the main PHP code, we use a ternary operator to increment the $num_tries vari-
able. If the $num_tries variable is set, we add one to it and reassign this incremented
value; otherwise, we initialize $num_tries to 0. Within the body of the HTML, we can
now report to the user how many guesses he has made.

Working with Forms 161

9

When you need to output the value of an expression to the browser, you
can of course use print() or echo(). When you are entering PHP mode
explicitly to output such a value you can also take advantage of a special
extension to PHP’s short opening tags. If you add an equals (=) sign to the
short PHP opening tag, the value contained will be printed to the browser.
So

<? print $test;?>

is equivalent to

<?=$test?>

Don’t entirely trust hidden fields. You don’t know where their values have
been! This isn’t to say that you shouldn’t use them, just be aware that your
users are capable of viewing and amending source code should they want to
cheat your scripts.

Redirecting the User
Our simple script still has one major drawback. The form is rewritten whether or not the
user guesses correctly. The fact that the HTML is hard-coded makes it difficult to avoid
writing the entire page. We can, however, redirect the user to a congratulations page,
thereby sidestepping the issue altogether.

When a server script communicates with a client, it must first send some headers that
provide information about the document to follow. PHP usually handles this for you
automatically, but you can choose to send your own header lines with PHP’s header()
function.

To call the header() function, you must be sure that no output has been sent to the
browser. The first time that content is sent to the browser, PHP will send out headers and
it will be too late for you to send your own. Any output from your document, even a line
break or a space outside of your script tags will cause headers to be sent. If you intend to

13 CH09 11/29/01 3:23 PM Page 161

use the header() function in a script you must make certain that nothing precedes the
PHP code that contains the function call. You should also check any libraries that you
might be using.

Listing 9.11 shows typical headers sent to the browser by PHP.

LISTING 9.11 Typical Server Headers Sent from a PHP Script

1: HEAD /dev/php24/ch9/listing9.1.php HTTP/1.0
2:
3: HTTP/1.1 200 OK
4: Date: Mon, 24 Sep 2001 14:32:28 GMT
5: Server: Apache/1.3.12 Cobalt (Unix) PHP/4.0.6 mod_perl/1.24
6: X-Powered-By: PHP/4.0.6
7: Connection: close
8: Content-Type: text/html

162 Hour 9

You can see headers sent in response to a request by using a telnet client.
Connect to a Web host at port 80 and then type

HEAD /path/to/file.html HTTP/1.0

followed by two returns. The headers should be displayed on your client.

By sending a “Location” header instead of PHP’s default, you can cause the browser to
be redirected to a new page:

header(“Location: http://www.corrosive.co.uk”);

Assuming that we have created a suitably upbeat page called “congrats.html”, we can
amend our number guessing script to redirect the user if she guesses correctly, as shown
in Listing 9.12.

LISTING 9.12 Using header() to Send Raw Headers

1: <?php
2: $num_to_guess = 42;
3: $message = “”;
4: $num_tries = (isset($num_tries)) ? ++$num_tries : 0;
5: if (! isset($guess))
6: $message = “Welcome to the guessing machine!”;
7: elseif ($guess > $num_to_guess)
8: $message = “$num is too big! Try a smaller number”;
9: elseif ($guess < $num_to_guess)
10: $message = “$num is too small! Try a larger number”;

13 CH09 11/29/01 3:23 PM Page 162

LISTING 9.12 continued

11: else { // must be equivalent
12: header(“Location: congrats.html”);
13: exit;
14: }
15: $guess = (int)$guess;
16: ?>
17: <html>
18: <head>
19: <title>Listing 9.12 Using header() to send raw headers</title>
20: </head>
21: <body>
22: <h1>
23: <?php print $message ?>
24: </h1>
25: Guess number: <?php print $num_tries?>
26: <form method=”POST”>
27: Type your guess here:
28: <input type=”text” name=”guess” value=”<?php print $guess?>”>
29: <input type=”hidden” name=”num_tries”
30: value=”<?php print $num_tries ?>”>
31: </form>
32: </body>
33: </html>

The else clause of our if statement on line 11 now causes the browser to request
“congrats.html”. We ensure that all output from the current page is aborted with the
exit statement on line 13, which immediately ends execution and output, whether
HTML or PHP.

File Upload Forms and Scripts
So far we’ve looked at simple form input. Browsers Netscape 2 or better and Internet
Explorer 4 or better all support file uploads, and so, of course, does PHP. In this section,
you will examine the features that PHP makes available to deal with this kind of input.

First, we need to create the HTML. HTML forms that include file upload fields must
include an ENCTYPE argument:

ENCTYPE=”multipart/form-data”

PHP also works with an optional hidden field that can be inserted before the file upload
field. This should be called MAX_FILE_SIZE and should have a value representing the
maximum size in bytes of the file that you are willing to accept. This size cannot over-
ride the maximum size set in the upload_max_filesize field in your php.ini file that

Working with Forms 163

9

13 CH09 11/29/01 3:23 PM Page 163

defaults to 2 megabytes. The MAX_FILE_SIZE field will be obeyed at the browser’s discre-
tion, so you should rely upon the php.ini setting to cap unreasonable uploads. After the
MAX_FILE_SIZE field has been entered, you are ready to add the upload field itself. This
is simply an INPUT element with a TYPE argument of “file”. You can give it any name
you want. Listing 9.13 brings all this together into an HTML upload form.

LISTING 9.13 A Simple File Upload Form

1: <html>
2: <head>
3: <title>Listing 9.13 A simple file upload form</title>
4: </head>
5: <body>
6: <form enctype=”multipart/form-data” method=”POST”>
7: <input type=”hidden” name=”MAX_FILE_SIZE” value=”51200”>
8: <input type=”file” name=”fupload”>

9: <input type=”submit” value=”upload!”>
10: </form>
11: </body>
12: </html>

Notice that once again this form calls the page that contains it. This is because we are
going to add some PHP code to handle the uploaded file. We limited file uploads to
50KB on line 7 and named our upload field “fupload” on line 8. As you might
expect, this name will soon become important.

When a file is successfully uploaded, it is given a unique name and stored in a temporary
directory. On UNIX systems the default temporary directory is /tmp, but you can set it
with the upload_tmp_dir directive in php.ini.

Information about the uploaded file will become available to you in the $HTTP_POST_
FILES array which will be indexed by the names of each upload field in the form. The
corresponding value for each of these keys will itself be an associative array. These fields
are described in Table 9.2.

TABLE 9.2 File Upload Global Variables

Element Contains Example

$HTTP_POST_FILES[‘fupload’][‘name’] Name of uploaded file test.gif

$HTTP_POST_FILES[‘fupload’][‘tmp_name’] Path to temporary file /tmp/phprDfZvN

$HTTP_POST_FILES[‘fupload’][‘size’] Size (in bytes) of uploaded file 6835

$HTTP_POST_FILES[‘fupload’][‘type’] Mime type of uploaded file image/gif
(where given by client)

164 Hour 9

13 CH09 11/29/01 3:23 PM Page 164

Armed with this information, we can write a quick and dirty script that displays informa-
tion about uploaded files (see Listing 9.14). If the uploaded file is in GIF format, the
script will even attempt to display it.

LISTING 9.14 A File Upload Script

1: <html>
2: <head>
3: <title>Listing 9.14 A file upload script</title>
4: </head>
5: <?php
6: $file_dir = “/home/corrdev/htdocs/php24/scrap/uploads”;
7: $file_url = “http://corros.colo.hosteurope.com/dev/php24/scrap/uploads”;
8:
9: foreach($HTTP_POST_FILES as $file_name => $file_array) {
10: print “path: “.$file_array[‘tmp_name’].”
\n”;
11: print “name: “.$file_array[‘name’].”
\n”;
12: print “type: “.$file_array[‘type’].”
\n”;
13: print “size: “.$file_array[‘size’].”
\n”;
14:
15: if (is_uploaded_file($file_array[‘tmp_name’])
16: && $file_array[‘type’] == “image/gif”) {
17: move_uploaded_file($file_array[‘tmp_name’], “$file_dir/$file_name”)
18: or die (“Couldn’t copy”);
19: print “<p>\n\n”;
20: }
21: }
22:
23: ?>
24: <body>
25: <form enctype=”multipart/form-data” method=”POST”>
26: <input type=”hidden” name=”MAX_FILE_SIZE” value=”51200”>
27: <input type=”file” name=”fupload”>

28: <input type=”submit” value=”Send file!”>
29: </form>
30: </body>
31: </html>

In Listing 9.14, we first create the $file_dir and $file_url variables on lines 6 and 7
to store path information. Then we use a foreach statement to loop through every ele-
ment in the $HTTP_POST_FILES array on line 9. This will be empty the first time the
page is loaded, so nothing in the loop will be executed and our script will default to writ-
ing the upload form.

Once the form has been submitted the $HTTP_POST_FILES array will be populated. We
are using a loop rather than an if statement in order to make our script capable of scal-
ing to deal with multiple uploads on the same page. The foreach loop on line 9 stores

Working with Forms 165

9

13 CH09 11/29/01 3:23 PM Page 165

the upload file’s name in the $file_name variable and the file information in the $file_
array variable. We can then output the information we have about the upload.

To move the uploaded file to a directory within our web space, we need to run a couple
of checks first. We are only dealing with GIF files in this example so test the mime type
on line 16.

Also, use a new function to verify the file on line 15. The is_uploaded_file() function
was re-introduced with PHP 4.03. It accepts a path to an uploaded file and returns true
only if the file in question is a valid upload file. This function therefore enhances the
security of your scripts.

Assuming that all is well, copy the file from its temporary home to a new directory on
line 17. We use another function, move_uploaded_file() for this purpose. This will
copy a file from one place to another, first performing the same security checks as those
performed by is_uploaded_file(). move_uploaded_file() requires a path to the
source file and a path to the destination. It will return true if the move was successful and
false if the file was not a valid upload file, or if it could not be found.

166 Hour 9

Beware of the names of uploaded files. Operating systems such as MacOS
and Windows are pretty relaxed when it comes to file naming, so expect
uploaded files to come complete with spaces, quotation marks and all man-
ner of other unexpected characters. It is therefore a good idea to filter file
names. You can learn more about techniques for testing and checking
strings in Hour 17 “Working with Strings” and Hour 18 “Working with
Regular Expressions”.

When we created the $file_dir variable on line 6 to store the file path to our upload
directory, we also created a variable called $file_url on line 7 to store the URL of
the same directory. We wrap up the script by writing an HTML image element that
references our newly written image.

Summary
If you’ve kept up so far, things should be getting exciting now. You have the tools to cre-
ate truly sophisticated and interactive environments. There are still a few things missing,
of course. Now that you can get information from the user, it would be nice to be able to
do something with it. Write it to a file, perhaps. That is the subject of the next hour.

13 CH09 11/29/01 3:24 PM Page 166

Throughout this hour, you have learned how to work with the $GLOBALS associative array
and acquire predefined variables, form input, and uploaded files using global variables.
You have also learned how to send raw headers to the client to redirect a browser. You
have learned how to acquire list information from form submissions and how to pass
information from script call to script call using hidden fields.

Q&A
Q Can I create arrays for values entered into elements other than select and

check box fields?

A Yes, in fact any element name ending with empty square brackets in a form will
resolve to an array element when the form is submitted. You can use this fact to
group values submitted from multiple fields of any type into an array.

Q The header() function seems powerful. Will we look at HTTP headers in more
detail?

A We cover HTTP (Hypertext Transfer Protocol) in more detail in Hour 13,
“Beyond the Box.”

Q Automatically converting form element names into variables seems a little
risky. Can I disable this feature?

A Yes, you can ensure that submitted form element names are not converted into
global variables by setting the register_globals directive to “off” in the
php.ini file.

Workshop
Quiz

1. Which predefined variable could you use to determine the IP address of a user?

2. Which predefined variable could you use to find out about the browser that called
your script?

3. What should you name your form fields to access their submitted values from an
array variable called $form_array?

4. Which built-in associative array contains all values submitted as part of a GET
request?

5. Which built-in associative array contains all values submitted as part of a POST
request?

Working with Forms 167

9

13 CH09 11/29/01 3:24 PM Page 167

6. What function would you use to redirect the browser to a new page? What string
would you pass it?

7. How can you limit the size of a file that a user can submit via a particular upload
form?

8. How can you set a limit to the size of upload files for all forms and scripts?

Quiz Answers
1. The variable $REMOTE_ADDR should store the user’s IP address.

2. Browser type and version, as well as the user’s operating system, are usually stored
in a variable called $HTTP_USER_AGENT.

3. Creating multiple fields with the name form_array[] creates a populated array
called $form_array when the form is submitted.

4. The built-in array $HTTP_GET_VARS contains all values submitted as part of a GET
request.

5. The built-in array $HTTP_POST_VARS contains all values submitted as part of a POST
request.

6. You can redirect a user by calling the header() function. You should pass it a
Location header:

header(“Location: anotherpage.html”);

7. When creating upload forms in PHP 4, you can include a hidden field called
MAX_FILE_SIZE:

<INPUT TYPE=”hidden” NAME=”MAX_FILE_SIZE” VALUE=”51200”>

8. The php.ini option upload_max_filesize determines the maximum size of an
upload file that any script will accept. This is set to 2 megabytes by default.

Activities
1. Create a calculator script that allows the user to submit two numbers and choose an

operation to perform on them (addition, multiplication, division, subtraction).

2. Use hidden fields with the script you created in activity 1 to store and display the
number of requests that the user has submitted.

168 Hour 9

13 CH09 11/29/01 3:24 PM Page 168

HOUR 10
Working with Files

Testing, reading, and writing to files are staple activities for any full-featured
programming language. PHP is no exception, providing you with functions
that make the process straightforward. In this hour, you will learn

• How to include files in your documents

• How to test files and directories

• How to open a file before working with it

• How to read data from files

• How to write or append to a file

• How to lock a file

• How to work with directories

Including Files with include()
The include() statement enables you to incorporate files into your PHP
documents. PHP code in these files can be executed as if it were part of the
main document. This can be useful for including library code in multiple
pages.

14 CH10 11/29/01 3:24 PM Page 169

Having created a killer function, your only option until now would have been to paste it
into every document that needs to use it. Of course, if you discover a bug, or want to add
a feature, you will have to find every page that uses the function to make the change. The
include() statement can save you from this chore. You can add the function to a single
document and, at runtime, read this into any page that needs it. The include() statement
requires a single argument, a relative path to the file to be included. Listing 10.1 creates
a simple PHP script that uses include() to incorporate and output the contents of a file.

LISTING 10.1 Using include()

1: <html>
2: <head>
3: <title>Listing 10.1 Using include()</title>
4: </head>
5: <body>
6: <?php
7: include(“listing10.2.php”);
8: ?>
9: </body>
10: </html>

The include() statement in Listing 10.1 incorporates the document listing10.2.php,
the contents of which you can see in Listing 10.2. When run, Listing 10.1 outputs the
string “I have been included!!”, which may seem strange, given that we have
included plain text within a block of PHP code. Shouldn’t this cause an error? In fact,
the contents of an included file are displayed as HTML by default. If you want to
execute PHP code in an included file, you must enclose it in PHP start and end tags.
In Listings 10.3 and 10.4, we amend the previous example so that code is executed in
the included file.

LISTING 10.2 The File Included in Listing 10.1

1: I have been included!!

LISTING 10.3 Using the include() statement to Execute PHP in Another File

1: <html>
2: <head>
3: <title>Listing 10.3 Using include to execute PHP in another file</title>
4: </head>
5: <body>
6: <?php

170 Hour 10

14 CH10 11/29/01 3:24 PM Page 170

LISTING 10.3 continued

7: include(“listing10.4.php”);
8: ?>
9: </body>
10: </html>

LISTING 10.4 An Include File Containing PHP Code

1: <?php
2: print “I have been included!!
”;
3: print “But now I can add up... 4 + 4 = “.(4 + 4);
4: ?>

Returning a Value From an Included Document
Included files in PHP4 can return a value in the same way as functions do. As in a func-
tion, using the return statement ends the execution of code within the included file.
Additionally, no further HTML will be included. In Listings 10.5 and 10.6, we include a
file, assigning its return value to a variable.

LISTING 10.5 Using include() to Execute PHP and Assign the Return Value

1: <html>
2: <head>
3: <title>Listing 10.5 Using include() to execute PHP and assign the return

➥value</title>
4: </head>
5: <body>
6: <?php
7: $addResult = include(“listing10.6.php”);
8: print “The include file returned $addResult”;
9: ?>
10: </body>
11: </html>

LISTING 10.6 An Include File that Returns a Value

1: <?php
2: $retval = (4 + 4);
3: return $retval;
4: ?>
5: This HTML should never be displayed because it comes after a return
➥statement!

Working with Files 171

10

14 CH10 11/29/01 3:24 PM Page 171

Using include() Within Control Structures
You can use an include() statement in a conditional statement, and the referenced file
will only be read if the condition is met. The include() statement in the following frag-
ment will never be called, for example

$test = false;
if ($test) {

include(“a_file.txt”); // won’t be included
}

If you use an include() statement within a loop, it will be replaced with the contents of
the referenced file each time the include() statement is called. This content will be exe-
cuted for every call. Listing 10.7 illustrates this by using an include() statement in a
for loop. The include() statement references a different file for each iteration.

LISTING 10.7 Using include() Within a Loop

1: <html>
2: <head>
3: <title>Listing 10.7 Using include() within a loop</title>
4: </head>
5: <body>
6: <?php
7: for ($x = 1; $x<=3; $x++) {
8: $incfile = “incfile$x”.”.txt”;
9: print “Attempting include $incfile
”;
10: include(“$incfile”);
11: print “<p>”;
12: }
13: ?>
14: </body>
15: </html>

When Listing 10.7 is run, it includes the content of three different files, “incfile1.txt”,
“incfile2.txt”, and “incfile3.txt”. Assuming that each of these files simply con-
tains a confirmation of its own name, the output should look something like this:

Attempting include incfile1.txt
This is incfile1.txt

172 Hour 10

Returning values from included files would only work in PHP3 if the return
statement was contained in a function. The code in Listing 10.6 would cause
an error.

14 CH10 11/29/01 3:24 PM Page 172

Attempting include incfile2.txt
This is incfile2.txt

Attempting include incfile3.txt
This is incfile3.txt

include_once()
One of the problems caused by using multiple libraries within your code is the danger of
calling include() twice on the same file. This can occur in larger projects when differ-
ent library files call include() on a common file. Including the same file twice will
often result in the repeated declaration of functions and classes, thereby causing the PHP
engine great unhappiness.

The situation is saved by the include_once() statement. include_once() requires the
path to an include file and will behave the same way as include() the first time it is
called. If include_once() is called again for the same file during script execution, how-
ever, the file will not be included again.

This makes include_once() an excellent tool for the creation of reusable code libraries.

The include_path directive
Using include() and include_once() to access libraries can increase the flexibility and
reusability of your projects. However there are still headaches to overcome. Portability in
particular can suffer if you hardcode the paths to included files. Imagine that you create a
‘lib’ directory and reference it throughout your project:

include_once(“/home/user/bob/htdocs/project4/lib/mylib.inc.php”);

When you come to move your project to a new server you may find that you have to
change a hundred or more include paths. You can escape this fate by setting the
include_path directive in your php.ini file.

include_path .:/home/user/bob/htdocs/project4/lib/

include_path can include as many directories as you want separated by colons
(semicolons in Windows). You can then reference your library file only by its name

include_once(“mylib.inc.php”);

When you move your project you will only need to change the include_path directive.

Working with Files 173

10

14 CH10 11/29/01 3:24 PM Page 173

Testing Files
Before you work with a file or directory, it is often a good idea to learn more about it.
PHP4 provides many functions that help you to discover information about files on your
system. This section briefly covers some of the most useful.

Checking for Existence with file_exists()
You can test for the existence of a file with the file_exists() function. This requires a
string representing an absolute or relative path to a file that may or may not be there. If
the file is found, it returns true; otherwise, it returns false.

if (file_exists(“test.txt”))
print “The file exists!”;

A File or a Directory?
You can confirm that the entity you are testing is a file, as opposed to a directory, with
the is_file() function. is_file() requires the file path and returns a Boolean value:

if (is_file(“test.txt”))
print “test.txt is a file!”;

Conversely, you might want to check that the entity you are testing is a directory. You
can do this with the is_dir() function. is_dir() requires the path to the directory and
returns a Boolean value:

if (is_dir(“/tmp”))
print “/tmp is a directory”;

Checking the Status of a File
When you know that a file exists, and it is what you expect it to be, you can then find out
some things that you can do with it. Typically, you might want to read, write to, or exe-
cute a file. PHP can help you with all of these.

174 Hour 10

PHP4 has a require() statement, which performs a similar function to
include(). There is also a require_once() statement.

require() is executed regardless of a script’s flow, and should not therefore
be used as part conditional or loop structures.

A file included as a result of a require() statement cannot return a value.

14 CH10 11/29/01 3:24 PM Page 174

is_readable() tells you whether you can read a file. On UNIX systems, you may be
able to see a file but still be barred from reading its contents. is_readable() accepts the
file path as a string and returns a Boolean value:

if (is_readable(“test.txt”))
print “test.txt is readable”;

is_writable() tells you whether you can write to a file. Once again it requires the file
path and returns a Boolean value:

if (is_writable(“test.txt”))
print “test.txt is writable”;

is_executable() tells you whether you can run a file, relying on either the file’s permis-
sions or its extension depending on your platform. It accepts the file path and returns a
Boolean value:

if (is_executable(“test.txt”)
print “test.txt is executable”;

Determining File Size with filesize()
Given the path to a file, filesize() attempts to determine and return its size in bytes. It
returns false if it encounters problems.

print “The size of test.txt is.. “;
print filesize(“test.txt”);

Getting Date Information About a File
Sometimes you will need to know when a file was last written to or accessed. PHP pro-
vides several functions that can provide this information.

You can find out when a file was last accessed with fileatime(). This function requires
the file path and returns the date that the file was last accessed. To access a file means
either to read or write to it. Dates are returned from all these functions in UNIX epoch
format. That is, the number of seconds since 1 January 1970. In our examples, we use
the date() function to translate this into human readable form. You learn more about
date functions in Hour 15, “Working with Dates and Times.”

$atime = fileatime(“test.txt”);
print “test.txt was last accessed on “;
print date(“D d M Y g:i A”, $atime);
// Sample output: Thu 13 Jan 2000 2:26 PM

You can discover the modification date of a file with the function filemtime(), which
requires the file path and returns the date in UNIX epoch format. To modify a file means
to change its contents in some way.

Working with Files 175

10

14 CH10 11/29/01 3:24 PM Page 175

$mtime = filemtime(“test.txt”);
print “test.txt was last modified on “;
print date(“D d M Y g:i A”, $mtime);
// Sample output: Thu 13 Jan 2000 2:26 PM]

PHP also allows you to test the change time of a document with the filectime() func-
tion. On UNIX systems, the change time is set when a file’s contents are modified or
changes are made to its permissions or ownership. On other platforms, the filectime()
returns the creation date.

$ctime = filectime(“test.txt”);
print “test.txt was last changed on “;
print date(“D d M Y g:i A”, $ctime);
// Sample output: Thu 13 Jan 2000 2:26 PM]

Creating a Function that Performs Multiple File Tests
Listing 10.8 creates a function that brings the file test functions we have looked at
together into one script.

LISTING 10.8 A Function to Output the Results of Multiple File Tests

1: <html>
2: <head>
3: <title>Listing 10.8 A function to output the results of multiple file

➥tests</title>
4: </head>
5: <body>
6: <?php
7: $file = “test.txt”;
8: outputFileTestInfo($file);
9:
10: function outputFileTestInfo($f) {
11: if (! file_exists($f)) {
12: print “$f does not exist
”;
13: return;
14: }
15: print “$f is “.(is_file($f)?””:”not “).”a file
”;
16: print “$f is “.(is_dir($f)?””:”not “).”a directory
”;
17: print “$f is “.(is_readable($f)?””:”not “).”readable
”;
18: print “$f is “.(is_writable($f)?””:”not “).”writable
”;
19: print “$f is “.(is_executable($f)?””:”not “).”executable
”;
20: print “$f is “.(filesize($f)).” bytes
”;
21: print “$f was accessed on “.date(“D d M Y g:i A”, fileatime($f)
➥).”
”;
22: print “$f was modified on “.date(“D d M Y g:i A”, filemtime($f)
).”
”;
23: print “$f was changed on “.date(“D d M Y g:i A”, filectime($f)
➥).”
”;

176 Hour 10

14 CH10 11/29/01 3:24 PM Page 176

LISTING 10.8 continued

24: }
25:
26: ?>
27: </body>
28: </html>

Notice that we have used the ternary operator as a compact way of working with some of
these tests. Let’s look at one of these, found in line 15, in more detail:

print “$f is “.(is_file($f)?””:”not “).”a file
”;

We use the is_file() function as the right-hand expression of the ternary operator. If
this returns true, an empty string is returned. Otherwise, the string “not “ is returned.
The return value of the ternary expression is added to the string to be printed with con-
catenation operators. This statement could be made clearer but less compact, as follows:

$is_it = is_file($f)?””:”not “;
print “$f is $isit a file”;

We could, of course, be even clearer with an if statement, but imagine how large the
function would become if we had used the following:

if (is_file($f))
print “$fi is a file
”;

else
print “$f is not a file
”;

Because the result of these three approaches is the same, the approach you take becomes
broadly a matter of preference.

Creating and Deleting Files
If a file does not yet exist, you can create one with the touch() function. Given a string
representing a file path, touch() attempts to create an empty file of that name. If the file
already exists, the contents are not disturbed, but the modification date is updated to the
time at which the function executed.

touch(“myfile.txt”);

You can remove an existing file with the unlink() function. Once again, unlink()
accepts a file path:

unlink(“myfile.txt”);

Working with Files 177

10

14 CH10 11/29/01 3:24 PM Page 177

All functions that create, delete, read, write, or modify files on Unix systems require that
the correct file or directory permissions are set.

Opening a File for Writing, Reading, or
Appending

Before you can work with a file, you must first open it for reading, writing, or both. PHP
provides the fopen() function for this. fopen() requires a string containing the file path,
followed by a string containing the mode in which the file is to be opened. The most
common modes are read (‘r’), write (‘w’), and append (‘a’). fopen() returns a file
resource you will later use to work with the open file. To open a file for reading, you
would use the following:

$fp = fopen(“test.txt”, ‘r’);

You would use the following to open a file for writing:

$fp = fopen(“test.txt”, ‘w’);

To open a file for appending (that is, to add data to the end of a file), you would use this:

$fp = fopen(“test.txt”, ‘a’);

fopen() returns false if the file cannot be opened for any reason. It is a good idea,
therefore, to test the function’s return value before proceeding to work with it. You can
do this with an if statement:

if ($fp = fopen(“test.txt”, “w”)) {
// do something with $fp

}

Or you can use a logical operator to end execution if an essential file can’t be opened:

($fp = fopen(“test.txt”, “w”)) or die (“Couldn’t open file, sorry”);

If the fopen() function returns true, the rest of the expression won’t be parsed, and the
die() function (which writes a message to the browser and ends the script) will never be
reached. Otherwise, the right-hand side of the or operator will be parsed, and the die()
function will be called.

Assuming that all is well and you go on to work with your open file, you should remem-
ber to close it when you have finished. You can do this by calling fclose(), which
requires the file resource returned from a successful fopen() call as its argument:

fclose($fp);

178 Hour 10

14 CH10 11/29/01 3:24 PM Page 178

Reading from Files
PHP provides a number of functions for reading data from files. These enable you to
read by the byte, the line, or even the character.

Reading Lines from a File with fgets() and feof()
After you have opened a file for reading, you will often need to access it line by line. To
read a line from an open file, you can use fgets(), which requires the file resource
returned from fopen() as an argument. You must also pass it an integer as a second argu-
ment. This specifies the number of bytes the function should read if it doesn’t first
encounter a line end or the end of the file. The fgets() function reads the file until it
reaches a newline character (“\n”), the number of bytes specified in the length argument,
or the end of the file.

$line = fgets($fp, 1024); // where $fp is the file resource returned by

fopen()

Although you can read lines with fgets(), you need some way of telling when you have
reached the end of the file. The feof() function does this, returning true when the end
of the file has been reached and false otherwise. Once again this function requires a file
resource as its argument:

feof($fp); // where $fp is the file resource returned by fopen()

You now have enough information to read a file line by line, as shown in Listing 10.9.

LISTING 10.9 Opening and Reading a File Line by Line

1: <html>
2: <head>
3: <title>Listing 10.9 Opening and reading a file line by line</title>
4: </head>
5: <body>
6: <?php
7: $filename = “test.txt”;
8: $fp = fopen($filename, “r”) or die(“Couldn’t open $filename”);
9: while (! feof($fp)) {
10: $line = fgets($fp, 1024);
11: print “$line
”;
12: }
13: ?>
14: </body>
15: </html>

Working with Files 179

10

14 CH10 11/29/01 3:24 PM Page 179

We call fopen() on line 8 with the name of the file that we want to read, using the or
operator to ensure that script execution ends if the file cannot be read. This usually
occurs if the file does not exist, or (on a UNIX system) if the file’s permissions won’t
allow the script read access to the file. The actual reading takes place in the while state-
ment on line 9. The while statement’s test expression calls feof() for each iteration,
ending the loop when it returns true. In other words, the loop continues until the end of
the file is reached. Within the code block, we use fgets() on line 10 to extract a line (or
1024 bytes) of the file. We assign the result to $line and then print it to the browser on
line 11, appending a
 tag for the sake of readability.

Reading Arbitrary Amounts of Data from a File with
fread()
Rather than reading text by the line, you can choose to read a file in arbitrarily defined
chunks. The fread() function accepts a file resource as an argument, as well as the
number of bytes you want to read. It returns the amount of data you have requested
unless the end of the file is reached first.

$chunk = fread($fp, 16);

Listing 10.10 amends our previous example so that it reads data in chunks of 16 bytes
rather than by the line.

LISTING 10.10 Reading a File with fread()

1: <html>
2: <head>
3: <title>Listing 10.10 Reading a file with fread()</title>
4: </head>
5: <body>
6: <?php
7: $filename = “test.txt”;
8: $fp = fopen($filename, “r”) or die(“Couldn’t open $filename”);
9: while (! feof($fp)) {
10: $chunk = fread($fp, 16);
11: print “$chunk
”;
12: }
13: ?>
14: </body>
15: </html>

Although fread() allows you to define the amount of data acquired from a file, it won’t
let you decide the position from which the acquisition begins. You can set this manually
with the fseek() function. fseek() enables you to change your current position within a

180 Hour 10

14 CH10 11/29/01 3:24 PM Page 180

file. It requires a file resource and an integer representing the offset from the start of the
file (in bytes) to which you want to jump:

fseek($fp, 64);

Listing 10.11 uses fseek() and fread() to output the second half of a file to the
browser.

LISTING 10.11 Moving Around a File with fseek()

1: <html>
2: <head>
3: <title>Listing 10.11 Moving around a file with fseek()</title>
4: </head>
5: <body>
6: <?php
7: $filename = “test.txt”;
8: $fp = fopen($filename, “r”) or die(“Couldn’t open $filename”);
9: $fsize = filesize($filename);
10: $halfway = (int)($fsize / 2);
11: print “Halfway point: $halfway
\n”;
12: fseek($fp, $halfway);
13: $chunk = fread($fp, ($fsize - $halfway));
14: print $chunk;
15: ?>
16: </body>
17: </html>

We calculate the halfway point of our file by dividing the return value of filesize() by
2 on line 10. We can then use this as the second argument to fseek() on line 12,
jumping to the halfway point. Finally, we call fread() on line 13 to extract the second
half of the file, printing the result to the browser.

Reading Characters from a File with fgetc()
fgetc() is similar to fgets() except that it returns only a single character from a file
every time it is called. Because a character is always 1 byte in size, fgetc() doesn’t
require a length argument. You simply need to pass it a file resource:

$char = fgetc($fp);

Listing 10.12 creates a loop that reads the file “test.txt” a character at a time, out-
putting each character to the browser on its own line.

Working with Files 181

10

14 CH10 11/29/01 3:24 PM Page 181

LISTING 10.12 Moving Around a File with fseek()

1: <html>
2: <head>
3: <title>Listing 10.12</title>
4: </head>
5: <body>
6: <?php
7: $filename = “test.txt”;
8: $fp = fopen($filename, “r”) or die(“Couldn’t open $filename”);
9: while (! feof($fp)) {
10: $char = fgetc($fp);
11: print “$char
”;
12: }
13: ?>
14: </body>
15: </html>

Writing or Appending to a File
The processes for writing to or appending to a file are the same. The difference lies in
the fopen() call. When you write to a file, you should use the mode argument “w” when
you call fopen():

$fp = fopen(“test.txt”, “w”);

All subsequent writing will occur from the start of the file. If the file doesn’t already
exist, it will be created. If the file already exists, any prior content will be destroyed and
replaced by the data you write.

When you append to a file, you should use mode “a” in your fopen() call:

$fp = fopen(“test.txt”, “a”);

Any subsequent writes to your file are added to the existing content.

Writing to a File with fwrite() or fputs()
fwrite() accepts a file resource and a string. It then writes the string to the file.
fputs() works in exactly the same way.

fwrite($fp, “hello world”);
fputs($fp, “hello world”);

Writing to files is as straightforward as that. Listing 10.13 uses fwrite() to print to a
file. We then append a further string to the same file using fputs().

182 Hour 10

14 CH10 11/29/01 3:24 PM Page 182

LISTING 10.13 Writing and Appending to a File

1: <html>
2: <head>
3: <title>Listing 10.13 Writing and appending to a file</title>
4: </head>
5: <body>
6: <?php
7: $filename = “test.txt”;
8: print “Writing to $filename
”;
9: $fp = fopen($filename, “w”) or die(“Couldn’t open $filename”);
10: fwrite($fp, “Hello world\n”);
11: fclose($fp);
12: print “Appending to $filename
”;
13: $fp = fopen($filename, “a”) or die(“Couldn’t open $filename”);
14: fputs($fp, “And another thing\n”);
15: fclose($fp);
16: ?>
17: </body>
18: </html>

Locking Files with flock()
The techniques you have learned for reading and amending files will work fine if you are
only presenting your script to a single user. In the real world, however, you would expect
many users to access your projects more or less at the same time. Imagine what would
happen if two users were to execute a script that writes to one file at the same moment.
The file will quickly become corrupt.

PHP 4 provides the flock() function to forestall this eventuality. flock() will lock a file
to warn other process against writing to or reading from a file while the current process
is working with it. flock() requires a valid file resource, and an integer representing the
kind of lock you would like to set. PHP 4 provides predefined constants for each of the
integers you are likely to need. In Table 10.1 we list three kinds of locks you can apply
to a file.

TABLE 10.1 Integer arguments to the flock() function

Constant Integer Lock type Description

LOCK_SH 1 Shared Allows other processes to read the file but pre-
vents writing (used when reading a file)

LOCK_EX 2 Exclusive Prevents other processes from either reading
from or writing to a file (used when writing to
a file)

LOCK_UN 3 Release Releases a shared or exclusive lock

Working with Files 183

10

14 CH10 11/29/01 3:24 PM Page 183

You should call flock() directly after calling fopen() and then call it again to release
the lock before closing the file.

$fp = fopen(“test.txt”, “a”) or die(“couldn’t open”);
flock($fp, LOCK_EX); // exclusive lock
// write to the file
flock($fp, LOCK_UN); // release the lock
fclose($fp);

184 Hour 10

Locking with flock() is advisory. Only other scripts that use flock() will
respect a lock that you set.

Working with Directories
Now that you can test, read, and write to files, turn your attention to directories. PHP
provides many functions to work with directories. You will look at how to create,
remove, and read them.

Creating Directories with mkdir()
mkdir() enables you to create a directory. mkdir() requires a string representing the
path to the directory you want to create and an integer that should be an octal number
representing the mode you want to set for the directory. You specify an octal (base 8)
number with a leading 0. The mode argument will only have an effect on Unix systems.
The mode should consist of three numbers between 0 and 7, representing permissions
for the directory owner, group, and everyone, respectively. This function returns true if
it successfully creates a directory, or false if it doesn’t. If mkdir() fails, this will usu-
ally be because the containing directory has permissions that preclude processes with
the script’s user ID from writing. If you are not comfortable with setting Unix directory
permissions, you should find that one of the examples below fits your needs. Unless you
really need your directory to be world writable, you should probably use 0755, which
allows the world to read your directory but not write to it.

mkdir(“testdir”, 0777); // global read/write/execute permissions
mkdir(“testdir”, 0755); // world and group: read/execute only

// owner: read/write/execute

Removing a Directory with rmdir()
rmdir() enables you to remove a directory from the file system, if the process running
your script has the right to do so, and if the directory is empty. rmdir() requires only a
string representing the path to the directory you want to create.

rmdir(“testdir”);

14 CH10 11/29/01 3:24 PM Page 184

Opening a Directory for Reading with opendir()
Before you can read the contents of a directory, you must first obtain a directory
resource. You can do this with the opendir() function. opendir() requires a string rep-
resenting the path to the directory you want to open. opendir() returns a directory han-
dle unless the directory is not present or readable, in which case it returns false.

$dh = opendir(“testdir”);

Reading the Contents of a Directory with readdir()
Just as you use gets() to read a line from a file, you can use readdir() to read a file or
directory name from a directory. readdir() requires a directory handle and returns a
string containing the item name. If the end of the directory has been reached, readdir()
returns false. Note that readdir() returns only the names of its items, rather than full
paths. Listing 10.14 shows the contents of a directory.

LISTING 10.14 Listing the Contents of a Directory with readdir()

1: <html>
2: <head>
3: <title>Listing 10.14 Listing the contents
4: of a directory with readdir()</title>
5: </head>
6: <body>
7: <?php
8: $dirname = “.”;
9: $dh = opendir($dirname) or die(“couldn’t open directory”);
10:
11: while (! (($file = readdir($dh)) === false)) {
12: if (is_dir(“$dirname/$file”))
13: print “ “;
14: print “$file
”;
15: }
16: closedir($dh);
17: ?>
18: </body>
19: </html>

We open our directory for reading with the opendir() function on line 9 and use a while
statement to loop through each of its elements on line 11. We call readdir() as part of
the while statement’s test expression, assigning its result to the $file variable. Within
the body of the while statement, we use the $dirname variable in conjunction with the
$file variable to create a full file path, which we can then test on line 12. If the path
leads to a directory, we print “ “ to the browser on line 13. Finally, we print the filename
on line 15.

Working with Files 185

10

14 CH10 11/29/01 3:24 PM Page 185

We have used a cautious construction in the test of the while statement. Most PHP pro-
grammers (myself included) would use something like the following:

while ($file = readdir($dh)) {
print “$file
\n”;

}

The value returned by readdir() will be tested. Because any string other than “0” will
resolve to true, there should be no problem. Imagine, however, a directory that contains
four files, “0”, “1”, “2”, and “3”. The output from the preceding code on my system is
as follows:

.

..

When the loop reaches the file named “0”, the string returned by readdir() resolves to
false, causing the loop to end. The approach in Listing 10.14 uses === to check that the
return value returned by readdir() is not exactly equivalent to false. 0 only resolves to
false in the test, so we circumvent the problem.

Summary
In this hour, you learned how to use include() to incorporate files into your documents
and to execute any PHP code contained in include files. You learned how to use some of
PHP’s file test functions. You explored functions for reading files by the line, by the
character, or in arbitrary chunks. You learned how to write to files, either replacing or
appending to existing content. Finally, you learned how to create, remove, and read
directories.

Now that we can work with files, we can save and access substantial amounts of data. If
we need to look up data from large files, however, our scripts will begin to slow down
quite considerably. What we need is some kind of database. In the next hour we will look
at PHP’s DBA functions, which give us relatively fast access to data on our filesystem.

Q&A
Q Will the include() statement slow down my scripts?

A Because an included file must be opened and parsed by the engine, it will add
some overhead. The benefits of reusable code libraries often outweigh the
relatively low performance overhead, however.

186 Hour 10

14 CH10 11/29/01 3:24 PM Page 186

Q Should I always end script execution if a file cannot be opened for writing or
reading?

A You should always allow for this possibility. If your script absolutely depends on
the file you want to work with, you might want to use the die() function, writing
an informative error message to the browser. In less critical situations, you will still
need to allow for the failure, perhaps adding it to a log file. You can read more
about logging in Hour 22, “Debugging.”

Workshop
Quiz

1. What functions could you use to add library code to the currently running script?

2. What function would you use to find out whether a file is present on your file
system?

3. How would you determine the size of a file?

4. What function would you use to open a file for reading or writing?

5. What function would you use to read a line of data from a file?

6. How can you tell when you have reached the end of a file?

7. What function would you use to write a line of data to a file?

8. How would you open a directory for reading?

9. What function would you use to read the name of a directory item after you have
opened a directory for reading?

Quiz Answers
1. You can use the require() or include() statements to incorporate PHP files into

the current document. You could also use include_once() or require_once().

2. You can test for the existence of a file with the file_exists() function.

3. The filesize() function returns a file’s size in bytes.

4. The fopen() function opens a file. It accepts the path to a file and a character rep-
resenting the mode. It returns a file resource.

5. The fgets() function reads data up to the buffer size you pass it, the end of the
line, or the end of the document, whichever comes first.

6. The feof() function returns true when the file resource it is passed has reached
the end of the file.

Working with Files 187

10

14 CH10 11/29/01 3:24 PM Page 187

7. You can write data to a file with the fputs() function.

8. The opendir() function enables you to open a directory for reading.

9. The readdir() function returns the name of a directory item from an opened
directory.

Activities
1. Create a form that accepts a user’s first and second name. Create a script that saves

this data to a file.

2. Create a script that reads the data file you created in activity 1. As well as writing
its contents to the browser (adding a
 tag to each line), print a summary that
includes the number of lines in the file and the file’s size.

188 Hour 10

14 CH10 11/29/01 3:24 PM Page 188

HOUR 11
Working with the DBA
Functions

If you don’t have access to a SQL database such as MySQL or Oracle, you
will almost certainly have a DBM-style database system available to you.
DBM stands for database manager and DBM-like systems allow you to store
and manipulate name/value pairs on your system.

DBA stands for Database abstraction layer, and these functions are designed
to provide a common interface to a range of file-based database systems.

Although DBA functions do not offer you the power of a SQL database,
they are flexible and easy to use. The fact that DBA functions stand above a
range of common database systems, means that your code is likely to be
portable even if the database files themselves might not be.

In this hour, you will learn:

• How to open a database

• How to add data to the database

• How to extract data from the database

15 CH11 11/29/01 3:23 PM Page 189

• How to change and delete items

• How to store more complex kinds of data in DBM-style databases

Beneath the Abstraction
In order to use the DBA functions, you need to have one of the supported database sys-
tems installed. If you are running Linux, it is likely that you will have GDBM (the GNU
Database Manager installed). For each system there is a corresponding compile option
which should have been used when PHP was installed. You can see the supported data-
bases and their corresponding compile options in Table 11.1.

TABLE 11.1 DBM systems supported by the DBA functions

Type Compile option Further information

cdbm --with-cdbm Read-only database system

db2 --with-db2 http://www.sleepycat.com/

db3 --with-db3 http://www.sleepycat.com/

dbm --with-dbm The original DBM. Deprecated

gdbm --with-gdbm GNU Database Manager

ndbm --with-ndbm Deprecated

If your system and PHP installation supports one of these systems you will be able to use
the DBA functions with no problems. Note that support for the cdbm system (which is
designed for fast access to static databases) is read-only.

Opening a Database
You can open a DBM-like database with the function dba_open(). This function requires
three arguments: The path to the database file, a string containing the flags with which
you want to open the database, and a string representing the database manager you want
to work with (the ‘type’ column in Table 11.1). dba_open() returns a DBA resource that
you can then pass to other DBA functions to access or manipulate your database.
Because dba_open() involves reading from and writing to files, PHP must have permis-
sion to write to the directory that will contain your database.

The flags that you pass to dba_open() determine the way in which you can work with
your database. They are listed in Table 11.2

190 Hour 11

15 CH11 11/29/01 3:23 PM Page 190

TABLE 11.2 Flags for Use with dba_open()

Flag Description

r Opens database reading only

w Opens database for writing and reading

c Creates database (or open for read/write access if it exists)

n Creates new database (truncate old version if it exists)

The following code fragment opens a database, creating a new one if it does not already
exist:

$dbh = dba_open(“./data/products”, “c”, “gdbm”)
or die(“Couldn’t open Database”);

Notice that we use a die() statement to end script execution if our attempt to open the
database fails.

When you finish working with a database, close it using the function dba_close(). This
is because PHP locks a database that you are working with so that other processes cannot
attempt to modify the data you are reading or writing. If you don’t close the database,
then other processes are going to have to wait longer before getting their bite of the
cherry. dba_close() requires a valid DBA resource:

dba_close($dbh);

Adding Data to the Database
You can add name/value pairs to your open database with the function dba_insert(),
which requires the name of a key, the value that you want to store, and a valid DBA
resource (as returned by dba_open()). This function returns true if all is well and false
if an error occurs (such as an attempt to write to a database opened in read-only mode, or
to overwrite an element of the same name). If the element you are attempting to insert
already exists, then the data is not overwritten.

Listing 11.1 creates or opens a database called products and adds some data to it.

LISTING 11.1 Adding Items to a Database

1: <html>
2: <head>
3: <title>Listing 11.1 Adding items to a database</title>
4: </head>
5: <body>

Working with the DBM Functions 191

11

15 CH11 11/29/01 3:23 PM Page 191

LISTING 11.1 continued

6: Adding products now...
7:
8: <?php
9: $dbh = dba_open(“./data/products”, “c”, “gdbm”)
10: or die(“Couldn’t open database”);
11:
12: dba_insert(“Sonic Screwdriver”, “23.20”, $dbh);
13: dba_insert(“Tricorder”, “55.50”, $dbh);
14: dba_insert(“ORAC AI”, “2200.50”, $dbh);
15: dba_insert(“HAL 2000”, “4500.50”, $dbh);
16:
17: dba_close($dbh);
18: ?>
19: </body>
20: </html>

In order to add values to the database we use the dba_insert() functions (lines 12 to 15).
All values are converted to strings when added to the database, so we add quotes to the
product prices to maintain their format. We can treat these strings as doubles when we
extract them from the database if we need to. We covered the double data type in Hour 4
“The Building Blocks.” Notice also that we can use keys that have more than one word.

If we now attempt to call dba_insert() with the same key argument as one of the keys
we have already used, dba_insert() returns false and makes no change to the database.
In some circumstances, this might be what you want; but in others, you will want to
amend existing data, as well as create new elements.

Amending Elements in a Database
You can amend an entry in a database with the dba_replace() function. dba_replace()
requires the name of a key, the new value to add, and a valid DBA resource. It returns
true if all goes well and false if an error occurs. Listing 11.2 amends the code in
Listing 11.1 so that keys are added regardless of existence.

LISTING 11.2 Adding or Changing Items belonging to a Database

1: <html>
2: <head>
3: <title>Listing 11.2 Adding or changing items
4: belonging to database</title>
5: </head>
6: <body>

192 Hour 11

15 CH11 11/29/01 3:23 PM Page 192

LISTING 11.2 continued

7: Adding products now...
8: <?php
9: $dbh = dba_open(“./data/products”, “c”, “gdbm”)
10: or die(“Couldn’t open database”);
11: dba_replace(“Sonic Screwdriver”, “25.20”, $dbh);
12: dba_replace(“Tricorder”, “56.50”, $dbh);
13: dba_replace(“ORAC AI”, “2209.50”, $dbh);
14: dba_replace(“HAL 2000”, “4535.50”, $dbh);
15: dba_close($dbh);
16: ?>
17: </body>
18: </html>

We have only had to change the function calls from dba_insert() to dba_replace() to
change the functionality of the script.

Reading from a Database
Now that we can add data to our database, we need to find a way to fetch it. We can
extract an individual element from the database with the dba_fetch() function.
dba_fetch() requires the name of the element you want to access and a valid DBA
resource. The function returns the value you are accessing as a string. So to access the
price of the “Tricorder” item, we would use the following code:

$price = dba_fetch(“Tricorder”, $dbh);

If the “Tricorder” element does not exist in the database, then dba_fetch() returns
false.

You won’t always know the names of all the keys in the database, however. What would
you do if you needed to output every product and price to the browser without hard-
coding the product names into your script? PHP provides a mechanism by which you
can loop through every element in a database.

You can get the first key in a database with the dba_firstkey() function. This requires a
DBA resource and returns the first key. Note that this won’t necessarily be the first ele-
ment that you added because DBM-like databases often maintain their own ordering sys-
tems. After you’ve retrieved the first key, you can access each subsequent key with the
dba_nextkey() function. Once again dba_nextkey() requires a DBA resource and
returns an element’s key. By combining these functions with dba_fetch(), you can now
list an entire database.

Working with the DBM Functions 193

11

15 CH11 11/29/01 3:23 PM Page 193

Listing 11.3 outputs the products database to the browser. We acquire the first key in the
database on line 19 using the dba_firstkey() function. We then use a while loop on line
20 to work our way through all the elements in the database. Elements are acquired with
the call to dba_fetch() on line 21. Once we have written the element to the browser we
use dba_nextkey() on line 24 to acquire the next key and assign it to the $key variable.
When there are no more keys to acquire, dba_nextkey() will return false, and the test
expression on line 20 will halt the loop.

LISTING 11.3 Reading All Records from a Database

1: <html>
2: <head>
3: <title>Listing 11.3 Reading all
4: records from a Database </title>
5: </head>
6: <body>
7: Here at the Impossible Gadget Shop
8: we’re offering the following exciting
9: products:
10: <p>
11: <table border=1 cellpadding =”5”>
12: <tr>
13: <td align=”center”> product</td>
14: <td align=”center”> price </td>
15: </tr>
16: <?php
17: $dbh = dba_open(“./data/products”, “c”, “gdbm”)
18: or die(“Couldn’t open database”);
19: $key = dba_firstkey($dbh);
20: while ($key != false) {
21: $value = dba_fetch($key, $dbh);
22: print “<tr><td align = \”left\”> $key </td>”;
23: print “<td align = \”right\”> \$$value </td></tr>”;
24: $key = dba_nextkey($dbh);
25: }
26: dba_close($dbh);
27: ?>
28: </table>
29: </body>
30: </html>

Figure 11.1 shows the output from Listing 11.3.

194 Hour 11

15 CH11 11/29/01 3:23 PM Page 194

Determining Whether an Item Exists in a
Database

Before reading or setting an element in a database, it is sometimes useful to know
whether the element exists. You can do this with the dba_exists() function.
dba_exists() requires the name of the element for which you are testing and a valid
DBA resource. It returns true if the element exists.

if (dba_exists(“Tricorder”, $dbh))
print dba_fetch(“Tricorder”, $dbh);

Deleting an Item from a Database
You can delete an item from a database using the dba_delete() function. dba_delete()
requires the name of the element you want to remove from the database and a valid DBA
resource. It returns true if the item was successfully deleted, and false if the element
did not exist to be deleted.

dba_delete(“Tricorder”, $dbh);

Adding Complex Data Structures to a
Database

All data in a DBM-like database is extracted in string format, so you are limited to stor-
ing integers, strings, and doubles. Any other data type will be lost. Let’s try to store an
array, for example:

Working with the DBM Functions 195

11

FIGURE 11.1
Reading all records
from a database.

15 CH11 11/29/01 3:23 PM Page 195

$array = array(1, 2, 3, 4);
$dbh = dba_open(“./data/test”, “c”, “gdbm”) or die(“Couldn’t open test”);
dba_insert(“arraytest”, $array, $dbh);
print gettype(dba_fetch(“arraytest”, $dbh));
// prints “string”

We create an array and store it in the variable $array. We then open a database and
attempt to insert an element called “arraytest”, passing it the $array variable as the
value. We then test the return type from dba_fetch() when attempting to access
“arraytest” and ascertain that a string has been returned. In fact, if we printed the value
stored in the “arraytest” record, we would get the string “Array”. That would seem to
wrap up any hopes for storing arrays and objects.

Fortunately, PHP provides a feature that allows you to “freeze-dry” values of any data
type in string format. The data can then be stored in a database or file until it is needed.
You can use this technique to store arrays and even objects in a database.

To convert the array in the previous example to a string, we must use the serialize()
function. serialize() requires a value of any type and returns a string:

$array = array(1, 2, 3, 4);
print serialize($array);
// prints a:4:{i:0;i:1;i:1;i:2;i:2;i:3;i:3;i:4;}

We can now store this string in the database. When we want to resurrect it, we can use
the unserialize() function. unserialize() requires a serialized string and returns a
value of the appropriate data type.

This allows you to store complex data structures within the relatively simple format
allowed by DBM-like databases. Listing 11.4 serializes an associative array for each of
the items in our list of products and adds the result to a database.

LISTING 11.4 Adding Complex Data to a Database

1: <html>
2: <head>
3: <title>Listing 11.4 Adding complex data to a database</title>
4: </head>
5: <body>
6: Adding complex data to database
7: <?php
8: $products = array(
9: “Sonic Screwdriver” => array(price=>”22.50”,
10: shipping=>”12.50”,
11: color=>”green”),
12: “Tricorder” => array(price=>”55.50”,
13: shipping=>”7.50”,

196 Hour 11

15 CH11 11/29/01 3:23 PM Page 196

LISTING 11.4 continued

14: color=>”red”),
15: “ORAC AI” => array(price=>”2200.50”,
16: shipping=>”34.50”,
17: color=>”blue”),
18: “HAL 2000” => array(price=>”4500.50”,
19: shipping=>”18.50”,
20: color=>”pink”)
21:);
22: $dbh = dba_open(“./data/products2”, “c”, “gdbm”)
23: or die(“Couldn’t open database”);
24: while (list ($key, $value) = each ($products))
25: dba_replace($key, serialize($value), $dbh);
26: dba_close($dbh);
27: ?>
28: </body>
29: </html>

We build a multidimensional array beginning on line 8, containing the product names as
keys and four arrays of product information as values. We then open the database on line
22 and loop through the array on line 24. For each element, we pass the product name
and a serialized version of the product array to dba_replace() (line 25). We then close
the database (line 26).

Listing 11.5 writes the code that extracts this data.

LISTING 11.5 Retrieving Serialized Data from a Database

1: <html>
2: <head>
3: <title>Listing 11.5 Retrieving serialized
4: data from a database</title>
5: </head>
6: <body>
7: Here at the Impossible Gadget Shop
8: we’re offering the following exciting
9: products:
10: <p>
11: <table border=1 cellpadding =”5”>
12: <tr>
13: <td align=”center”> product</td>
14: <td align=”center”> color </td>
15: <td align=”center”> shipping </td>
16: <td align=”center”> price </td>
17: </tr>
18: <?php

Working with the DBM Functions 197

11

15 CH11 11/29/01 3:23 PM Page 197

LISTING 11.5 continued

19: $dbh = dba_open(“./data/products2”, “c”, “gdbm”)
20: or die(“Couldn’t open database”);
21: $key = dba_firstkey($dbh);
22: while ($key != false) {
23: $prodarray = unserialize(dba_fetch($key, $dbh));
24: print “<tr><td align=\”left\”> $key </td>”;
25: print “<td align=\”left\”>”.$prodarray[‘color’].” </td>\n”;
26: print “<td align=\”right\”>\$”.$prodarray[‘shipping’].” </td>\n”;
27: print “<td align=\”right\”>\$”.$prodarray[‘price’].” </td></tr>\n”;
28: $key = dba_nextkey($dbh);
29: }
30: dba_close($dbh);
31: ?>
32: </table>
33: </body>
34: </html>

Listing 11.5 is similar to the example in Listing 11.3. In this case though, we are display-
ing more fields. We open the database on line 19 and then use dba_firstkey() (line 21)
and dba_nextkey() (line 28) to loop through each item in the database. We extract the
value and use unserialize() to reconstruct the product array on line 23. It is then sim-
ple to print each element of the product array to the browser. Figure 11.2 shows the out-
put from Listing 11.5.

198 Hour 11

FIGURE 11.2
Retrieving serialized
data from a database.

An Example
We now have enough information to build an example using some of the techniques dis-
cussed in this hour. Our brief is to build an administration page to enable a site editor to

15 CH11 11/29/01 3:23 PM Page 198

change the prices in the products database created in Listing 11.2. The administrator
should also be able to remove elements from the database and add new ones. The page
will not be hosted on a publicly available server, so security is not a problem for this
project.

First, we must build a form that incorporates all the elements in the database. The user
will be able to change any price using a text field and choose which items to delete using
a check box. She will also have two text fields for adding a new item to the database.
Listing 11.6 shows the code to create the form.

LISTING 11.6 Building an HTML Form Based on Content from a Database

1: <?php
2: $dbh = dba_open(“./data/products”, “c”, “gdbm”)
3: or die(“Couldn’t open database”);
4: ?>
5: <html>
6: <head>
7: <title>Listing 11.6 Building an html form based
8: on content from a database</title>
9: </head>
10: <body>
11: <form action=”POST”>
12: <table border=”1”>
13: <tr>
14: <td>delete</td>
15: <td>product</td>
16: <td>price</td>
17: </tr>
18: <?php
19: $key = dba_firstkey($dbh);
20: while ($key != false) {
21: $price = dba_fetch($key, $dbh);
22: print “<tr><td><input type=’checkbox’ name=\”delete[]\” “;
23: print “value=\”$key\”></td>”;
24: print “<td>$key</td>”;
25: print “<td> <input type=\”text\” name=\”prices[$key]\” “;
26: print “value=\”$price\”> </td></tr>”;
27: $key = dba_nextkey($dbh);
28: }
29: dba_close($dbh);
30: ?>
31: <tr>
32: <td> </td>
33: <td><input type=”text” name=”name_add”></td>
34: <td><input type=”text” name=”price_add”></td>
35: </tr>
36: <tr>

Working with the DBM Functions 199

11

15 CH11 11/29/01 3:23 PM Page 199

LISTING 11.6 continued

37: <td colspan=3 align=”right”>
38: <input type=”submit” value=”amend”>
39: </td>
40: </tr>
41: </table>
42: </form>
43: </body>
44: </html>

We start by opening the database as usual (line 2). We then begin an HTML form that
points back to the current page (line 11).

Having written some table headers to the screen on lines 13 to 17, we loop through the
contents of our database using dba_firstkey() (line 19) and dba_nextkey() (line 27)
to get each key in turn, and dba_fetch() on line 21 to extract the value.

In the first table cell of each row, we create a checkbox (line 22). Notice that we give all
these the name “delete[]”. This instructs PHP to construct an array called $delete of
all submitted values that share this name. We use the database element name (stored in
$key) as the value for each check box. When the form is submitted, therefore, we should
have a $delete array with the names of all the database elements that we want to delete.

We then print the element name to the browser on line 24 and create another text field
(line 25). This field presents the product price to the user, ready for amendment. We
name the field using a similar technique as we did for the previous field. This time, how-
ever, we include the name of the database element in the square brackets of the field
name. PHP constructs an associative array called $prices from these submitted fields
with the element names as keys.

We close the database on line 29 and revert to HTML mode to write the final fields (lines
33 and 34). These allow the user to add new product and price combinations. Only two
fields are required, and we give them the names name_add and price_add.

Figure 11.3 shows the output from Listing 11.6.

Now that we have created the form, we need to write code to deal with the user input.
This is not as difficult as it sounds. There are three possible actions we can take. First,
we can delete items from the database; second, we can amend prices in the database; and
third, we can add new elements to the database.

200 Hour 11

15 CH11 11/29/01 3:23 PM Page 200

If the form has been submitted, we know which items we need to delete because a
$delete array variable will have been made available. We need to loop through this array
and delete the elements whose names it contains.

if (! empty($delete)) {
while (list ($key, $val) = each ($delete)) {

unset($prices[$val]);
dba_delete($val, $dbh);

}
}

First we test that the $delete array exists and has elements. If the user has only just
arrived at the page, or if she has not chosen to delete any items, the variable will not
exist. If the variable exists, we can go ahead and loop through it. For each string held in
the $delete array, we call dba_delete() removing the element by that name from the
database. We also interfere with another array variable. The $prices array contains all
the key value pairs in the database, although some of the values might have been
changed by the user. If we do not remove the elements, we delete from the database the
$price array as well. The next block of code adds them to the database once again.

To update the database according to the user amendments, we have a choice. We could
only update those elements that the user has elected to change. We would choose this
option if we expected many users to be using the script at the same time or if the data-
base was likely to grow significantly. As it is, this script will be run by a single adminis-
trator and is only expected to deal with a few products, so we opt to update every
element in the database:

if (! empty($prices)) {
while (list ($key, $val) = each ($prices))

dba_replace($key, $val, $dbh);
}

Working with the DBM Functions 201

11

FIGURE 11.3
Building an HTML
form based on content
from a database.

15 CH11 11/29/01 3:23 PM Page 201

We test for the existence of the $prices array. This should contain a new version of
the entire database. We loop through the array, calling dba_replace() for each of its
elements.

Finally, we need to check whether the user has submitted a new product for inclusion in
the database:

if (! empty($name_add) && ! empty($price_add))
dba_replace(“$name_add”, “$price_add”, $dbh);

Instead of testing whether the $name_add and $price_add variables are set, we test
whether they are empty. This is a subtle but important difference. When the user submits
the form we have built, these variables will always be set. They may, however, contain
empty strings. We do not want to add empty strings to our database, so we only execute
the code to insert new values if neither variable is empty:

if (! empty($name_add) && ! empty($price_add))
dba_insert(“$name_add”, “$price_add”, $dbh);

We use dba_insert() rather than dba_replace() to guard against the user inadvertently
overwriting an element that has already been defined.

You can see the complete code in Listing 11.7. You can find the code that handles
deletions on lines 5 to 9. The code to update the database is on lines 12 through 15.
We handle the insertion of new elements on lines 17 and 18.

LISTING 11.7 The Complete Product Maintenance Code

1: <?php
2: $dbh = dba_open(“./data/products”, “c”, “gdbm”)
3: or die(“Couldn’t open database”);
4:
5: if (! empty($delete)) {
6: while (list ($key, $val) = each ($delete)) {
7: unset($prices[$val]);
8: dba_delete($val, $dbh);
9: }
10: }
11:
12: if (! empty($prices)) {
13: while (list ($key, $val) = each ($prices))
14: dba_replace($key, $val, $dbh);
15: }
16:
17: if (! empty($name_add) && ! empty($price_add))
18: dba_insert(“$name_add”, “$price_add”, $dbh);
19: ?>
20:

202 Hour 11

15 CH11 11/29/01 3:23 PM Page 202

LISTING 11.7 continued

21: <html>
22: <head>
23: <title>Listing 11.7 The complete product maintenance code</title>
24: </head>
25: <body>
26:
27: <form action=”<? print $PHP_SELF; ?>” action=”POST”>
28:
29: <table border=”1”>
30: <tr>
31: <td>delete</td>
32: <td>product</td>
33: <td>price</td>
34: </tr>
35:
36: <?php
37: $key = dba_firstkey($dbh);
38: while ($key != false) {
39: $price = dba_fetch($key, $dbh);
40: print “<tr><td><input type=’checkbox’ name=\”delete[]\” “;
41: print “value=\”$key\”></td>”;
42: print “<td>$key</td>”;
43: print “<td> <input type=\”text\” name=\”prices[$key]\” “;
44: print “value=\”$price\”> </td></tr>”;
45: $key = dba_nextkey($dbh);
46: }
47:
48: dba_close($dbh);
49: ?>
50:
51: <tr>
52: <td> </td>
53: <td><input type=”text” name=”name_add”></td>
54: <td><input type=”text” name=”price_add”></td>
55: </tr>
56:
57: <tr>
58: <td colspan=3 align=”right”>
59: <input type=”submit” value=”amend”>
60: </td>
61: </tr>
62:
63: </table>
64: </form>
65:
66: </body>
67: </html>

Working with the DBM Functions 203

11

15 CH11 11/29/01 3:23 PM Page 203

Summary
In this hour, you learned how to use PHP’s powerful DBA functions to store and retrieve
data. You learned how to use dba_open() to acquire a DBA resource, which you can use
with other DBA functions. You learned how to add data to a database with
dba_insert(), alter it with dba_replace(), and delete data with dba_delete(). You
learned how to use dba_fetch() to retrieve data. You learned how to use serialize()
and unserialize() to save complex data structures to a database. Finally, you worked
through an example that uses many of the techniques we have examined.

The DBA functions are useful for storing relatively small amounts of data that only
needs to be queried in a simple way. Inevitably, our needs will occasionally be more
demanding than this. In the next chapter we will cover MySQL, an open source SQL
database.

Q&A
Q When should I use a DBM-like database as opposed to a SQL database?

A A DBM-like database is a good option when you want to store small amounts of
relatively simple data (typically name/value pairs). Scripts built to use a DBM
database have the virtue of portability. If you intend to store large amounts of data
or many fields, consider using a SQL database, such as MySQL.

Workshop
Quiz

1. What function would you use to open a database using the DBA functions?

2. What function would you use to insert a record into a database?

3. What function would you use to replace a record in a database?

4. How would you access a record from a database by name?

5. How would you get the name (as opposed to the value) of the first element in a
database?

6. How would you get subsequent element names?

7. How would you delete a named element from a database?

204 Hour 11

15 CH11 11/29/01 3:23 PM Page 204

Quiz Answers
1. You can open a database with the dba_open() function.

2. The dba_insert() function adds a record to a database.

3. The dba_replace() function replaces a record in a database.

4. The dba_fetch() function returns an element given a DBA resource and the ele-
ment’s name.

5. dba_firstkey() returns the name of the first element in a DBM-like database.

6. After calling dba_firstkey(), you can get subsequent element names by calling
dba_nextkey().

7. You can delete an element with dba_delete().

Activities
1. Create a database to keep track of user names and passwords. Create a script that

allows users to register their combinations. Don’t forget to check for duplications.

2. Create an authentication script that checks a user name and password. If the user
input matches an entry in the database, present the user with a special message.
Otherwise, re-present the login form to the user.

Working with the DBM Functions 205

11

15 CH11 11/29/01 3:23 PM Page 205

15 CH11 11/29/01 3:23 PM Page 206

HOUR 12
Database Integration—
SQL

One of the defining features of PHP is the ease with which you can connect
to and manipulate databases. In this hour, we will concentrate on MySQL,
but you will find similar functions for many of the databases that PHP sup-
ports. Why MySQL? It fits well with the spirit of PHP in that it is free to the
individual user, yet remains a powerful tool that can be used as the basis of
demanding real-world projects. Furthermore, versions of MySQL are avail-
able for multiple platforms. You can download MySQL from http://www.
mysql.com.

In this hour, you will learn:

• A few SQL samples

• How to connect to the MySQL database server

• How to select a database

• About error handling

• How to add data to a table

• How to retrieve data from a table

16 CH12 11/29/01 3:20 PM Page 207

• How to alter data in a table

• About the structure of databases

• An approach to automating database queries

A (Very) Brief Introduction to SQL
SQL stands for Structured Query Language. It provides a standardized syntax by which
different types of database can be queried. Most SQL database products provide their
own extensions to the language, just as many browsers provide their own extensions to
HTML. Nonetheless, an understanding of SQL enables you to work with a wide range of
database products across multiple platforms.

This book cannot even begin to describe all the intricacies of SQL. Nonetheless, we can
fill in some background about MySQL and SQL in general.

MySQL is an open source database server that can be queried using SQL. MySQL runs
as a server daemon to which users on the same or even remote machines can connect.
Once connected to the server, you can select a database if you have the privileges to do
so.

Within a database, there will be a varying number of tables of data. Each table is
arranged in rows and columns. The intersection between a row and a column is the point
at which each item of data you want to store and access sits. Each column only accepts a
predefined type of data, INT for integer, for example, or VARCHAR for a variable number
of characters up to a defined limit.

To create a new table within a database we have selected, we might use a SQL query like
the following:

CREATE TABLE mytable (first_name VARCHAR(30), second_name VARCHAR(30), age

INT);

Our new table has three columns. first_name and second_name can contain strings of up
to 30 characters. age can contain any integer.

To add data to this table, we could use an INSERT statement:

INSERT INTO mytable (first_name, second_name, age) VALUES (‘John’, ‘Smith’,

36);

The field names to which we want to add data are defined in the first set of parentheses.
The values we want to insert are defined in the second.

208 Hour 12

16 CH12 11/29/01 3:20 PM Page 208

To acquire all the data in a table, we would use a SELECT statement:

SELECT * FROM mytable;

The “*” symbol represents a wildcard which means “all fields.” To acquire the informa-
tion from a single field, you can use the column name in place of the wildcard:

SELECT age FROM mytable;

To change the values already stored in a table, you can use an UPDATE statement:

UPDATE mytable SET first_name = ‘Bert’;

This changes the first_name field in every row to “Bert”. We can narrow the focus of
SELECT and UPDATE statements with a WHERE clause. For example,

SELECT * FROM mytable WHERE first_name = ‘Bert’;

returns only those rows whose first_name fields contain the string “Bert”. This next
example

UPDATE mytable SET first_name = “Bert” WHERE second_name = “Baker”;

changes the first_name fields of all rows whose second_name fields contain “Baker”.

For more information on SQL, see Sams Teach Yourself SQL in 21 Days by Ryan K.
Stephens et. al.

Connecting to the Database Server
Before you can begin working with your database, you must first connect to the server.
PHP provides the mysql_connect() function to do just this. mysql_connect() does not
require any arguments but accepts up to three strings: the hostname, a username, and a
password. If you omit any or all of these arguments, the function assumes localhost as
the host and that no password or username has been set up in the mysql user table,
unless defaults have been set up in the php.ini file. Naturally, this is unwise for any-
thing but a test database, so we will always include a username and password in our
examples. mysql_connect() returns a link resource if the connection is successful. You
can store this return value in a variable so that you can continue to work with the data-
base server.

The following code fragment uses mysql_connect() to connect to the MySQL database
server:

$link = mysql_connect(“localhost”, “root”, “n1ckel”);
if (! $link)

die(“Couldn’t connect to MySQL”);

Database Integration—SQL 209

12

16 CH12 11/29/01 3:20 PM Page 209

If you are using PHP in conjunction with Apache, you could also connect to the database
server with mysql_pconnect(). From the coder’s perspective, this function works in
exactly the same way as mysql_connect(). In fact, there is an important difference. If
you use this function, the connection does not die when your script stops executing or if
you call mysql_close() (which ends a standard connection to the MySQL server).
Instead, the connection is left active, waiting for another process to call mysql_
pconnect(). In other words, the overhead of opening a new connection to the server
can be saved if you use mysql_pconnect() and a previous call to the script has left
the connection open.

Selecting a Database
Now that we have established a connection to the MySQL daemon, we must choose
which database we want to work with. You can select a database with the mysql_
select_db() function. mysql_select_db() requires a database name and optionally
accepts a link resource. If you omit this, the resource returned from the last connection
to the server will be assumed. mysql_select_db() returns true if the database exists
and you are able to access it. In the following fragment, we select a database called
sample.

$database = “sample”;
mysql_select_db($database) or die (“Couldn’t open $database);

Finding Out About Errors
So far we have tested the return values of the MySQL functions that we have used and
called die() to end script execution if a problem occurs. You might, however, want to
print more informative error messages to the browser to aid debugging. MySQL sets an
error number and an error string whenever an operation fails. You can access the error
number with mysql_errno(), and the error string with mysql_error(). Listing 12.1
brings our previous examples together into a simple script that connects to the server and
selects a database. We use mysql_error() to make our error messages more useful. On
line 11 we connect to the database. If this is successful we then select a database on line
15 before closing the connection on line 18.

LISTING 12.1 Opening a Connection and Selecting a Database

1: <html>
2: <head>
3: <title>Listing 12.1 Opening a connection and
4: selecting a database</title>

210 Hour 12

16 CH12 11/29/01 3:20 PM Page 210

LISTING 12.1 continued

5: </head>
6: <body>
7: <?php
8: $user = “harry”;
9: $pass = “elbomonkey”;
10: $db = “sample”;
11: $link = mysql_connect(“localhost”, $user, $pass);
12: if (! $link)
13: die(“Couldn’t connect to MySQL”);
14: print “Successfully connected to server<P>”;
15: mysql_select_db($db)
16: or die (“Couldn’t open $db: “.mysql_error());
17: print “Successfully selected database \”$db\”<P>”;
18: mysql_close($link);
19: ?>
20: </body>
21: </html>

If we change the value of the $db variable in Line 10 to “notthere”, we will be attempt-
ing to open a nonexistent database. The output of our die() function call will look some-
thing like the following:

Couldn’t open sample2: Access denied for user: ‘harry@localhost’ to database

‘notthere’

Adding Data to a Table
Now that we have access to our database, we can add information to one of its tables.
For the following examples, imagine that we are building a site that allows people to buy
domain names.

We have created a table within the sample database called domains. The table was cre-
ated with five columns: a primary key field called id that will automatically increment an
integer as data is added, a domain field that will contain a variable number of characters
(VARCHAR), a sex field that will contain a single character, and a mail field that will con-
tain a user’s email address. The following SQL statement was used in the MySQL client
to create the table:

create table domains (id INT NOT NULL AUTO_INCREMENT,
PRIMARY KEY(id),
domain VARCHAR(20),
sex CHAR(1),
mail VARCHAR(20));

Database Integration—SQL 211

12

16 CH12 11/29/01 3:20 PM Page 211

To add data to this table, we will need to construct and execute a SQL query. PHP pro-
vides the mysql_query() function for this purpose. mysql_query() requires a string con-
taining a SQL query and, optionally, a link resource. If the resource is omitted, the query
is sent to the database server to which you last connected. Mysql_query() returns a posi-
tive value if the query is successful. If your query contains a syntax error, or if you don’t
have permission to access the database in question, then query() returns false. Note
that a successful query does not necessarily result in any altered rows. Listing 12.2
extends our previous examples starting at line 15 and uses mysql_query() (line 17) to
send an INSERT statement to the domains table in the sample database.

LISTING 12.2 Adding a Row to a Table

1: <html>
2: <head>
3: <title>Listing 12.2 Adding a row to a table</title>
4: </head>
5: <body>
6: <?php
7: $user = “harry”;
8: $pass = “elbomonkey”;
9: $db = “sample”;
10: $link = mysql_connect(“localhost”, $user, $pass);
11: if (! $link)
12: die(“Couldn’t connect to MySQL”);
13: mysql_select_db($db, $link)
14: or die (“Couldn’t open $db: “.mysql_error());
15: $query = “INSERT INTO domains (domain, sex, mail)
16: values(‘123xyz.com’, ‘F’, ‘sharp@adomain.com’)”;
17: mysql_query($query, $link)
18: or die (“Couldn’t add data to \”domains\” table: “
19: .mysql_error());
20: mysql_close($link);
21: ?>
22: </body>
23: </html>

Notice that we did not insert a value for the id column in line 15. This field will
auto-increment.

Of course, every time we reload the script in Listing 12.2, the same data is added to a
new row. Listing 12.3 creates a script that will enter user input into our database.

212 Hour 12

16 CH12 11/29/01 3:20 PM Page 212

LISTING 12.3 Adding User Input to a Database

1: <html>
2: <head>
3: <title>Listing 12.3 Adding user input to a database</title>
4: </head>
5: <body>
6: <?php
7: if (isset($domain) && isset($sex) && isset($domain)) {
8: // check user input here!
9: $dberror = “”;
10: $ret = add_to_database($domain, $sex, $mail, $dberror);
11: if (! $ret)
12: print “Error: $dberror
”;
13: else
14: print “Thank you very much”;
15: } else {
16: write_form();
17: }
18:
19: function add_to_database($domain, $sex, $mail, &$dberror) {
20: $user = “harry”;
21: $pass = “elbomonkey”;
22: $db = “sample”;
23: $link = mysql_pconnect(“localhost”, $user, $pass);
24: if (! $link) {
25: $dberror = “Couldn’t connect to MySQL server”;
26: return false;
27: }
28: if (! mysql_select_db($db, $link)) {
29: $dberror = mysql_error();
30: return false;
31: }
32: $query = “INSERT INTO domains (domain, sex, mail)
33: values(‘$domain’, ‘$sex’, ‘$mail’)”;
34: if (! mysql_query($query, $link)) {
35: $dberror = mysql_error();
36: return false;
37: }
38: return true;
39: }
40:
41: function write_form() {
42: global $PHP_SELF;
43: print “<form method=\”POST\”>\n”;
44: print “<input type=\”text\” name=\”domain\”> “;
45: print “The domain you would like<p>\n”;
46: print “<input TYPE=\”text\” name=\”mail\”> “;
47: print “Your mail address<p>\n”;
48: print “<select name=\”sex\”>\n”;

Database Integration—SQL 213

12

16 CH12 11/29/01 3:20 PM Page 213

LISTING 12.3 continued

49: print “\t<option value=\”F\”> Female\n”;
50: print “\t<option value=\”M\”> Male\n”;
51: print “</select>\n”;
52: print “<input type=\”submit\” value=\”submit!\”>\n</form>\n”;
53: }
54: ?>
55: </body>
56: </html>

To keep the example brief, we have left out one important process in Listing 12.3, testing
user input. We are trusting our users. We should in fact check any kind of user input. We
deal with the string functions that help you test user input in Hour 17, “Working with
Strings.”

We check for the variables $domain, $sex, and $mail on line 7. If they exist, we can
be fairly certain that the user has submitted data, and we call the add_to_database()
function on line 10.

The add_to_database() function declared on line 19 requires four arguments: the
$domain, $sex, and $mail variables submitted by the user, and a string variable called
$dberror. We populate this last argument with any error strings we encounter. For this
reason, we accept $dberror as a reference to a variable. Any changes made to this string
within the function will change the original argument rather than a copy.

We attempt to open a connection to the MySQL server on line 23. If this fails, we assign
an error string to $dberror and end the execution of the function by returning false on
line 26. We select the database that contains the domains table on line 28 and build an
SQL query to insert the user-submitted values. We pass this to mysql_query() on line
34, which makes the query for us. If either mysql_select_db() or mysql_query() fail,
we assign the value returned by mysql_error() to $dberror and return false. Assuming
that all went well, the function returns true on line 38.

Back in the calling code, we can test the return value from add_to_database() on line
11. If the function returns true, we can be sure that we have added to the database and
thank the user on line 14. Otherwise, we write an error message to the browser. We know
that the $dberror variable that we passed to add_to_database() will now contain useful
information, so we include it in our error message.

If our initial if statement fails to find $domain, $sex, or $mail variables, we can assume
that no data has been submitted and call another user-defined function, write_form() on
line 16, which outputs an HTML form to the browser.

214 Hour 12

16 CH12 11/29/01 3:20 PM Page 214

Acquiring the Value of an Automatically
Incremented Field

In our previous examples, we have added data to our database without worrying about
the id column, which automatically increments as data is inserted. If we need the value
of this field for a record at a later date, we can always extract it with a SQL query.
What if we need the value straight away, though? It would be wasteful to look it up.
Luckily, PHP provides mysql_insert_id(), a function that returns the value of an
auto-incremented key field after a SQL INSERT statement has been performed. mysql_
insert_id() optionally accepts a link resource as an argument. With no arguments,
it works with the most recent link established.

So, if we want to tell a user the number we have allocated to her order, we could call
mysql_insert_id() directly after adding the user’s data to our database.

$query = “INSERT INTO domains (domain, sex, mail) values(‘$domain’, ‘$sex’,
‘$mail’)”;
mysql_query($query, $link);
$id = mysql_insert_id();
print “Thank you. Your transaction number is $id. Please quote it in any
queries.”;

Accessing Information
Now that we can add information to a database, we need to look at strategies for retriev-
ing the information that it contains. As you might guess, you can use mysql_query() to
make a SELECT query. How do you use this to look at the returned rows, though? When
you perform a successful SELECT query, mysql_query() returns a result resource. You
can pass this resource to other functions to access and gain information about a result set.

Finding the Number of Rows Found by a Query
You can find the number of rows returned as a result of a SELECT query using the
mysql_num_rows() function. mysql_num_rows() requires a result resource and returns a
count of the rows in the set. Listing 12.4 uses a SQL SELECT statement to request all
rows in the domains table and then uses mysql_num_rows() to determine the table’s size.
If all we wanted to do was to find the number of rows in the table then the approach in
listing 12.4 would be very wasteful. We would do better to use MySQL’s COUNT function.
Imagine however, that we intend to work with the rows we have found in any case.
Perhaps we wish to write the contents of the table to the browser. Having used SELECT
for this purpose, we can use mysql_num_rows() to find some useful summary informa-
tion about the request.

Database Integration—SQL 215

12

16 CH12 11/29/01 3:20 PM Page 215

LISTING 12.4 Finding the Number of Rows Returned by a SELECT Statement with
mysql_num_rows()

1: <html>
2: <head>
3: <title>Listing 12.4 Using mysql_num_rows()</title>
4: </head>
5: <body>
6: <?php
7: $user = “harry”;
8: $pass = “elbomonkey”;
9: $db = “sample”;
10: $link = mysql_connect(“localhost”, $user, $pass);
11: if (! $link)
12: die(“Couldn’t connect to MySQL”);
13: mysql_select_db($db, $link)
14: or die (“Couldn’t open $db: “.mysql_error());
15: $result = mysql_query(“SELECT * FROM domains”);
16: $num_rows = mysql_num_rows($result);
17: print “There are currently $num_rows rows in the table<P>”;
18: //
19: // Further work with the $result resource here
20: //
21: mysql_close($link);
22: ?>
23: </body>
24: </html>

The mysql_query() function returns a result resource. We then pass this to mysql_num_
rows(), which returns the total number of rows found.

We connect to the database on line 10 and select the database on line 13. On line 15 we
call mysql_query(), passing it our SQL query. The function returns a result resource that
we can then use with mysql_num_rows() on line 16. Having output summary information
on line 17 we are ready to begin to do some more substantial work with our results. We
go on to do this in the next section.

Accessing a Resultset
After you have performed a SELECT query and gained a result resource, you can use a
loop to access each found row in turn. PHP maintains an internal pointer that keeps a
record of your position within a found set. This moves on to the next row as each one is
accessed.

You can easily get an array of the fields in each found row with mysql_fetch_row().
This function requires a result resource, returning an array containing each field in the

216 Hour 12

16 CH12 11/29/01 3:20 PM Page 216

row. When the end of the found set is reached, mysql_fetch_row() returns false.
Listing 12.5 outputs the entire domains table to the browser.

LISTING 12.5 Listing All Rows and Fields in a Table

1: <html>
2: <head>
3: <title>Listing 12.5 Listing all rows and fields in a table</title>
4: </head>
5: <body>
6: <?php
7: $user = “harry”;
8: $pass = “elbomonkey”;
9: $db = “sample”;
10: $link = mysql_connect(“localhost”, $user, $pass);
11: if (! $link)
12: die(“Couldn’t connect to MySQL”);
13: mysql_select_db($db, $link)
14: or die (“Couldn’t open $db: “.mysql_error());
15: $result = mysql_query(“SELECT * FROM domains”);
16: $num_rows = mysql_num_rows($result);
17: print “There are currently $num_rows rows in the table<P>”;
18: print “<table border=1>\n”;
19: while ($a_row = mysql_fetch_row($result)) {
20: print “<tr>\n”;
21: foreach ($a_row as $field)
22: print “\t<td>$field</td>\n”;
23: print “</tr>\n”;
24: }
25: print “</table>\n”;
26: mysql_close($link);
27: ?>
28: </body>
29: </html>

After we have connected to the server and selected the database, we use mysql_query()
on line 15 to send a SELECT statement to the database server. We store the returned result
resource in a variable called $result. We use this to acquire the number of found rows
as before.

In the test expression of our while statement on line 19, we assign the result of mysql_
fetch_row() to the variable $a_row. Remember that an assignment operator returns the
value of its right-hand operand, so the assignment resolves to true as long as mysql_
fetch_row() returns a positive value. Within the body of the while statement, we loop
through the row array contained in $a_row on line 21, outputting each element to the
browser embedded in a table cell.

Database Integration—SQL 217

12

16 CH12 11/29/01 3:20 PM Page 217

You can also access fields by name in one of two ways. mysql_fetch_array() returns a
numeric array, as does mysql_fetch_row(). It also returns an associative array, with the
names of the fields as the keys. The following fragment rewrites the while statement
from Listing 12.5, incorporating mysql_fetch_array() (this replaces lines 18 to 25):

print “<TABLE BORDER=1>\n”;
while ($a_row = mysql_fetch_array($result)) {

print “<TR>\n”;
print “<TD>”.$a_row[‘mail’].”</TD><TD>”.$a_row[‘domain’].”</TD>\n”;
print “</TR>\n”;

}
print “</TABLE>\n”;

The default behavior of mysql_fetch_array() is to return an array indexed by string
which also contains the same values indexed numerically. This is fine if you want to refer
to your fields individually. If, however you need to dump all the array values and keys,
you will not want this duplication. mysql_fetch_array() accepts an optional second
argument. This integer should be one of three built-in constants. MYSQL_ASSOC,
MYSQL_NUM, or MYSQL_BOTH. Passing MYSQL_BOTH is redundant in that it will enforce the
default behavior. Passing MYSQL_ASSOC to mysql_fetch_array() will ensure that the
return array is indexed by strings only. Passing MYSQL_NUM to mysql_fetch_array() will
ensure that the return array is numerically indexed.

If you are seeking the functionality provided by

mysql_fetch_array($result, MYSQL_ASSOC);

you can use a shortcut function which was introduced with PHP 4.03. mysql_fetch_
assoc() is functionally identical to a call to mysql_fetch_array() with MYSQL_ASSOC.

You can also extract the fields from a row as properties of an object with mysql_fetch_
object(). The field names become the names of the properties. The following fragment
once again rewrites the while statement from Listing 12.5, this time incorporating
mysql_fetch_object() (this replaces lines 18 to 25):

print “<table border=1>\n”;
while ($a_row = mysql_fetch_object($result)) {

print “<tr>\n”;
print “<td>$a_row->mail</td><td>$a_row->domain</td>\n”;
print “</tr>\n”;

}
print “</table>\n”;

Both mysql_fetch_array() and mysql_fetch_object() make it easier for you to selec-
tively extract information from a row. Neither of these functions takes much longer than

218 Hour 12

16 CH12 11/29/01 3:20 PM Page 218

mysql_fetch_row() to execute. Which you choose to use is largely a matter of
preference, although mysql_fetch_array() is more commonly used.

Changing Data
You can change data using the mysql_query() function in conjunction with an UPDATE
statement.

A successful UPDATE statement does not necessarily change any rows. You need to use a
function to call mysql_affected_rows() to discover whether you have changed data in
your table. mysql_affected_rows() optionally accepts a link resource. If this is missing,
the most recent connection is assumed. This function can be used with any SQL query
that can alter data in a table row.

Listing 12.6 builds a script that allows an administrator to change any of the values in the
domain column of our example table.

LISTING 12.6 Using mysql_query() to Alter Rows in a Database

1: <html>
2: <head>
3: <title>Listing 12.6 Using mysql_query()
4: to alter rows in a database</title>
5: </head>
6: <body>
7: <?php
8: $user = “harry”;
9: $pass = “elbomonkey”;
10: $db = “sample”;
11: $link = mysql_connect(“localhost”, $user, $pass);
12: if (! $link)
13: die(“Couldn’t connect to MySQL”);
14: mysql_select_db($db, $link)
15: or die (“Couldn’t open $db: “.mysql_error());
16:
17: if (isset($domain) && isset($id)) {
18: $query = “UPDATE domains SET domain = ‘$domain’ where id=$id”;
19: $result = mysql_query($query);
20: if (! $result)
21: die (“Couldn’t update: “.mysql_error());
22: print “<h1>Table updated “. mysql_affected_rows() .
23: “ row(s) changed</h1><p>”;
24: }
25: ?>
26: <form action=”<? print $PHP_SELF ?>” method=”POST”>
27: <select name=”id”>

Database Integration—SQL 219

12

16 CH12 11/29/01 3:20 PM Page 219

LISTING 12.6 continued

28: <?
29: $result = mysql_query(“SELECT domain, id FROM domains”);
30: while($a_row = mysql_fetch_object($result)) {
31: print “<OPTION VALUE=\”$a_row->id\””;
32: if (isset($id) && $id == $a_row->id)
33: print “ SELECTED”;
34: print “> $a_row->domain\n”;
35: }
36: mysql_close($link);
37: ?>
38: </select>
39: <input type=”text” name=”domain”>
40: </form>
41: </body>
42: </html>

We open a connection to the database server and select a database as normal. We then
test for the presence of the variables $domain and $id on line 17. If these are present, we
build a SQL UPDATE query on line 18 that changes the value of the domain field where
the id field contains the same value as our $id variable. We do not get an error if a
nonexistent id is used or if the $domain variable is the same as the current value for
domain in the relevant row. Instead, the mysql_affected_rows() simply returns 0. We
print this return value (usually 1 in this example) to the browser on lines 22 and 23.

Starting on line 26, we print an HTML form to allow the administrator to make her
changes. Note that we use mysql_query() (line 29) once again to extract the values of
the id and domain column and incorporate them in an HTML SELECT element (lines 27
to 38). The administrator will use this pop-up menu to choose which domain to change.
If the administrator has already submitted the form and the id value she chose matches
the value of the id field we are currently outputting, we add the string SELECTED to the
OPTION element (line 33). This ensures that her changed value will be instantly visible to
her in the menu.

Building a Database Abstraction Class
Databases can make it hard to create durable and transportable code. If database code is
built tightly into a project it can be difficult to migrate from one database server to an
other, for example.

In this sample we are going to create a basic utility class that separates a lot of the data-
base facing code from the logic of a project as a whole. The class will broadly achieve

220 Hour 12

16 CH12 11/29/01 3:20 PM Page 220

two things. First it will present a conduit between a program and the database via which
SQL queries can be passed. Second, it will automate the generation of SQL for a range
of frequently performed operations, such as simple SELECT and UPDATE statements. In the
case of SELECT queries, the result set will be provided in the form of an array of associa-
tive arrays.

The class should provide two main benefits for the client coder. First, in automating
simple queries it should save the need to construct SQL statements on the fly. Second,
in providing a clear interface to its functionality it should safeguard portability. If the
project is to be moved to a different database server, then an alternative class can be writ-
ten that maintains the same functionality but with a different implementation behind the
scene.

It must be noted, however that all database abstraction schemes (including Perl’s famous
database independent interface or DBI library) suffer from one major drawback.
Different database engines tend to support different SQL syntaxes and features. This
means that SQL statements written to work with MySQL may not work with Oracle, for
example. For simple projects you can go some way towards dealing with this problem by
using SQL features that are as ‘standard’ as possible, and avoiding the use of features
specific to a database application.

Connecting to the Database
To start with, let’s build the methods to connect to a database server, and select a data-
base. Along the way, we can look at the method we are going to use for reporting errors.

class DataLayer {
var $link;
var $errors = array();
var $debug = false;

function DataLayer() {
}

function connect($host, $name, $pass, $db) {
$link = mysql_connect($host, $name, $pass);
if (! $link) {

$this->setError(“Couldn’t connect to database server”);
return false;

}

if (! mysql_select_db($db, $this->link)) {
$this->setError(“Couldn’t select database: $db”);
return false;

}
$this->link = $link;

Database Integration—SQL 221

12

16 CH12 11/29/01 3:20 PM Page 221

return true;
}

function getError() {
return $this->errors[count($this->errors)-1];

}

function setError($str) {
array_push($this->errors, $str);

}
...

We have called our class DataLayer. We establish three properties; $link will store our
database resource, $errors will store an array of error messages, and $debug is another
flag which will help us to monitor the behavior of our class.

The connect() method simply uses the now familiar mysql_connect() and mysql_
select_db() functions to connect to the server and choose a database. If you implement
this class yourself, you might consider storing the $host, $name, $pass and $db argument
variables in class properties. We have chosen not to in this example. If we encounter any
problems with connection we call the setError() function which maintains a stack of
error messages. If all goes well, however, we store the database resource returned by
mysql_connect in our $link property.

Making the Query
We’re now ready to build the query methods. We split these up into three:

function _query($query) {
if (! $this->link) {

$this->setError(“No active db connection”);
return false;

}
$result = mysql_query($query, $this->link);
if (! $result)

$this->setError(“error: “.mysql_error());
return $result;

}

function setQuery($query) {
if (! $result = $this->_query($query))

return false;
return mysql_affected_rows($this->link);

}

function getQuery($query) {
if (! $result = $this->_query($query))

return false;
$ret = array();

222 Hour 12

16 CH12 11/29/01 3:20 PM Page 222

while ($row = mysql_fetch_assoc($result))
$ret[] = $row;

return $ret;
}

_query() performs some basic checks, but all it really does is to pass a string containing
an SQL query to the mysql_query() function, returning a mysql result resource if all
goes well. Both setQuery() and getQuery() call _query(), passing it an SQL string.
They differ in what they return to the user, however. setQuery() is designed for SQL
statements that act upon a database. UPDATE statements, for example. It returns an integer
representing the number of affected rows. getQuery() is designed primarily for SELECT
statements. It builds an array of the result set which it returns to the calling code. We’re
now in a position to test our class.

Testing the Basic Class
For the test, we assume the presence of a table called test_table. The CREATE statement
illustrates its structure:

CREATE TABLE test_table (
id INT NOT NULL AUTO_INCREMENT,
PRIMARY KEY(id),
name VARCHAR(255),
age INT,
description BLOB
);

Our test code simply connects to the database, adds some data, and then requests it back
again, looping through the returned array and printing an HTML table to the browser.

$dl = new DataLayer();
$dl->connect(“localhost”, “”, “”, “test”) or die ($dl->getError());
$dl->setQuery(“DELETE FROM test_table”);
$dl->setQuery(“INSERT INTO test_table (name, age, description)

VALUES(‘bob’, 20, ‘student’)”);
$dl->setQuery(“INSERT INTO test_table (name, age, description)

VALUES(‘mary’, 66, ‘librarian’)”);
$dl->setQuery(“INSERT INTO test_table (name, age, description)

VALUES(‘su’, 31, ‘producer’)”);
$dl->setQuery(“INSERT INTO test_table (name, age, description)

VALUES(‘percy’, 45, ‘civil servant’)”);
$table = $dl->getQuery(“SELECT * from test_table”);

print “<table border=\”1\”>”;
foreach($table as $d_row) {

print “<tr>”;
foreach ($d_row as $field=>$val)

print “<td>$val</td>”;

Database Integration—SQL 223

12

16 CH12 11/29/01 3:20 PM Page 223

print “</tr>”;
}
print “</table>”;

Automating SQL Statements
SQL can be a highly complex affair, and it is not our purpose to reinvent it. However,
some fairly basic operations are performed over and over again, SQL statements can be
tedious to construct within a script. These methods should simplify some of these tasks.

Let’s illustrate the technique by looking at a method for automating basic SELECT state-
ments.

function select($table, $condition=””, $sort=””) {
$query = “SELECT * FROM $table”;
$query .= $this->_makeWhereList($condition);
if ($sort != “”)

$query .= “ order by $sort”;
$this->debug($query);
return $this->getQuery($query, $error);

}

function _makeWhereList($condition) {
if (empty($condition))

return “”;
$retstr = “ WHERE “;
if (is_array($condition)) {

$cond_pairs=array();
foreach($condition as $field=>$val)

array_push($cond_pairs, “$field=”.$this-
>_quote_val($val));

$retstr .= implode(“ AND “, $cond_pairs);
} elseif (is_string($condition) && ! empty($condition))

$retstr .= $condition;
return $retstr;

}

The select() method requires at least a table name. It will also optionally accept condi-
tion and sort arguments. The sort argument should be a string such as “age DESC,
name”. The condition argument can be either an associative array or a string. A condition
passed as an associative arrays will be used to construct a WHERE clause with the keys
representing field names. So

array(name=>”bob”, age=>20)

will resolve to

WHERE name=’bob’ AND age=20

224 Hour 12

16 CH12 11/29/01 3:20 PM Page 224

Where more complex conditions are required, such as

WHERE name=’bob’ AND age<25

the condition argument should be passed as string containing the valid SQL fragment.
The construction of the WHERE clause takes place in the _makeWhereList() method. If no
condition is required an empty string is returned. If the condition is a string, it is simply
tacked onto the string “WHERE” and returned. If the condition is an array however, the
fieldname/value pairs are first constructed and stored in an array called $cond_pairs.
The implode() function is then used to join the new array into a single string, the
fieldname/value pairs separated by the string “ AND ”.

Notice that we call a utility method called quote_val() when we are building our string.
This is used to add backslashes to special characters (such as single quotes) within val-
ues. It also surrounds strings in quotes, though it leaves numbers alone.

function _quote_val($val) {
if (is_numeric($val))

return $val;
return “‘“.addslashes($val).”’”;

}

The addslashes() function built-in to PHP. It accepts a string and returns another with
special characters backslashed. This is useful for us, because we must surround strings
sent to MySQL with single quotes.

To get an array containing a complete listing of our table we can now use the select()
method.

$table = $dl->select(“test_table”);

To get all rows with an age of less than 40:

$table = $dl->select(“test_table”, “age<40”);

To pull out information about people called bob

$table = $dl->select(“test_table”, array(‘name’=>”bob”));

Bringing It All Together
Listing 12.7 represents the complete DataLayer class. It includes the methods update(),
delete(), and insert() that are similar to select() in that they simply construct SQL
statements.

Database Integration—SQL 225

12

16 CH12 11/29/01 3:20 PM Page 225

LISTING 12.7 The DataLayer Class

1: <?
2: class DataLayer {
3: var $link;
4: var $errors = array();
5: var $debug = false;
6:
7: function DataLayer() {
8: }
9:
10: function connect($host, $name, $pass, $db) {
11: $link = mysql_connect($host, $name, $pass);
12: if (! $link) {
13: $this->setError(“Couldn’t connect to database server”);
14: return false;
15: }
16:
17: if (! mysql_select_db($db, $link)) {
18: $this->setError(“Couldn’t select database: $db”);
19: return false;
20: }
21: $this->link = $link;
22: return true;
23: }
24:
25: function getError() {
26: return $this->errors[count($this->errors)-1];
27: }
28:
29: function setError($str) {
30: array_push($this->errors, $str);
31: }
32:
33: function _query($query) {
34: if (! $this->link) {
35: $this->setError(“No active db connection”);
36: return false;
37: }
38: $result = mysql_query($query, $this->link);
39: if (! $result)
40: $this->setError(“error: “.mysql_error());
41: return $result;
42: }
43:
44: function setQuery($query) {
45: if (! $result = $this->_query($query))
46: return false;
47: return mysql_affected_rows($this->link);
48: }

226 Hour 12

16 CH12 11/29/01 3:20 PM Page 226

LISTING 12.7 continued

49:
50: function getQuery($query) {
51: if (! $result = $this->_query($query))
52: return false;
53: $ret = array();
54: while ($row = mysql_fetch_assoc($result))
55: $ret[] = $row;
56: return $ret;
57: }
58:
59: function getResource() {
60: return $this->link;
61: }
62:
63: function select($table, $condition=””, $sort=””) {
64: $query = “SELECT * FROM $table”;
65: $query .= $this->_makeWhereList($condition);
66: if ($sort != “”)
67: $query .= “ order by $sort”;
68: $this->debug($query);
69: return $this->getQuery($query, $error);
70: }
71:
72: function insert($table, $add_array) {
73: $add_array = $this->_quote_vals($add_array);
74: $keys = “(“.implode(array_keys($add_array), “, “).”)”;
75: $values = “values (“.implode(array_values($add_array),

➥“, “).”)”;
76: $query = “INSERT INTO $table $keys $values”;
77: $this->debug($query);
78: return $this->setQuery($query);
79: }
80:
81: function update($table, $update_array, $condition=””) {
82: $update_pairs=array();
83: foreach($update_array as $field=>$val)
84: array_push($update_pairs, “$field=”.$this->_quote_val($val)

➥);
85:
86: $query = “UPDATE $table set “;
87: $query .= implode(“, “, $update_pairs);
88: $query .= $this->_makeWhereList($condition);
89: $this->debug($query);
90: return $this->setQuery($query);
91: }
92:
93: function delete($table, $condition=””) {
94: $query = “DELETE FROM $table”;

Database Integration—SQL 227

12

16 CH12 11/29/01 3:20 PM Page 227

LISTING 12.7 continued

95: $query .= $this->_makeWhereList($condition);
96: $this->debug($query);
97: return $this->setQuery($query, $error);
98: }
99:
100: function debug($msg) {
101: if ($this->debug)
102: print “$msg
”;
103: }
104:
105: function _makeWhereList($condition) {
106: if (empty($condition))
107: return “”;
108: $retstr = “ WHERE “;
109: if (is_array($condition)) {
110: $cond_pairs=array();
111: foreach($condition as $field=>$val)
112: array_push($cond_pairs, “$field=”.$this->_quote_val($val
));
113: $retstr .= implode(“ and “, $cond_pairs);
114: } elseif (is_string($condition) && ! empty($condition))
115: $retstr .= $condition;
116: return $retstr;
117: }
118:
119: function _quote_val($val) {
120: if (is_numeric($val))
121: return $val;
122: return “‘“.addslashes($val).”’”;
123: }
124:
125: function _quote_vals($array) {
126: foreach($array as $key=>$val)
127: $ret[$key]=$this->_quote_val($val);
128: return $ret;
129: }
130: }
131: ?>

As you should see from the code, update() (line 81), delete() (line 93), and insert()
(line 72) provide a similar interface to that provided by select() (line 63).

update() which is declared on line 81 requires a string representing the table to be
worked with. It also requires an associative array of keys and values. The keys should
be the field name to be altered, and the value should be the new content for the field.

228 Hour 12

16 CH12 11/29/01 3:20 PM Page 228

Finally, an optional condition argument is accepted. This follows the same logic as the
condition argument in the select() method. It can be a string or an array.

delete() which is declared on line 93 requires a table name, and an optional condition
argument.

insert() is declared on line 72 and requires a table name, and an associative array of
fields to add to the row. The keys should be the field name to be altered, and the value
should be the new content for the field.

We had better see the code in action. Listing 12.8 is a simple test script that populates
and manipulates a table in a database.

LISTING 12.8 Working with the DataLayer Class

1: <html>
2: <head>
3: <title>Listing 12.8 Working with the DataLayer Class</title>
4: </head>
5: <body>
6: <?php
7: include(“listing12.9.php”);
8: $people = array(
9: array(‘name’=>”bob”, ‘age’=>20, ‘description’=>”student”),
10: array(‘name’=>”mary”, ‘age’=>66, ‘description’=>”librarian”),
11: array(‘name’=>”su”, ‘age’=>31, ‘description’=>”producer”),
12: array(‘name’=>”percy”, ‘age’=>45, ‘description’=>”civil servant”)
13:);
14:
15: $dl = new DataLayer();
16: $dl->debug=true;
17: $dl->connect(“localhost”, “”, “”, “test”) or die ($dl->getError());
18:
19: $dl->delete(“test_table”);
20:
21: foreach ($people as $person) {
22: $dl->insert(“test_table”, $person) or die($dl->getError());
23: }
24:
25: foreach ($people as $person) {
26: $person[‘age’]++;
27: $dl->update(“test_table”, $person, array(‘name’=>$person[‘name’]));
28: }
29:
30: $dl->delete(“test_table”, “age < 25”);
31: $table = $dl->select(“test_table”);
32:
33: print “<table border=\”1\”>”;

Database Integration—SQL 229

12

16 CH12 11/29/01 3:20 PM Page 229

LISTING 12.8 continued

34: foreach($table as $d_row) {
35: print “<tr>”;
36: foreach ($d_row as $field=>$val)
37: print “<td>$val</td>”;
38: print “</tr>”;
39: }
40: print “</table>”;
41: ?>
42: </body>
43: </html>

We initialize our data using an associative array beginning on line 8. We instantiate a
DataLayer object on line 15, set the object’s $debug property to true on line 16, and
connect to the database on line 17. Because the object is in debug mode, all the SQL we
generate will be output to the browser after being sent to the database.

We call the delete() method on line 19, to clear any data in the table, before populating
it by looping through our $people on line 21 array and calling the insert() method
(line 22) for each person. DataLayer is designed to work with associative arrays, so we
only need to pass each element of the $people array to insert() in order to populate the
table.

We then decide that we wish to alter the age field of each row. Once again we loop
through the people array (line 25), incrementing each element before calling update()
on line 27. We can pass the entire $person array to update(). Although this will mean
that most fields in the row will be updated with their own value, this is quick and easy
from the client coder’s perspective. The third argument to update() is a condition array
containing the name key and value. In a real world example we would probably use the
id field to ensure that we are updating only one row.

Finally, we call delete() once again (line 30), this time including a condition argument.
Because we wish to delete all rows with an age value of less than 25, we pass a condition
string rather than an array. Remember that condition arrays are only useful for demand-
ing equivalence, so we must ‘hardcode’ the ‘less then’ comparison into a string.

You can see the output from Listing 12.8 in Figure 12.1. Because the object was in
debug mode, notice that the SQL has been output to the browser.

230 Hour 12

16 CH12 11/29/01 3:20 PM Page 230

Summary
In this hour, we covered some of the basics of storing and retrieving information from a
MySQL database.

You should now be able to establish a connection to the MySQL server using mysql_
connect() or mysql_pconnect().

You should be able to select a database with mysql_select_db(). If the selection fails,
you should be able to discover more about the error with mysql_error().

You should be able to make SQL queries using mysql_query(). With the result resource
this function returns, you should be able to access data, or discover the number of rows
you have transformed.

You should be able to use PHP’s MySQL functions to list the number of databases,
tables, and fields accessible to you and to find out more about the attributes of individual
fields.

You should be able to use some of the techniques discussed in the creation of our
DataLayer class to automate SQL queries, and to separate database code from a larger
script.

In the next hour we will take a look at PHP in the contexts of the wider world. In partic-
ular we will be exploring techniques for learning about and talking to machines other
than our own.

Database Integration—SQL 231

12

FIGURE 12.1
Working with the
DataLayer Class.

16 CH12 11/29/01 3:20 PM Page 231

Q&A
Q This hour is specific to MySQL. How transferable are these examples to other

SQL databases?

A There are functions for mSQL that mirror those for MySQL almost exactly. Other
database servers have corresponding PHP functions that support their features and
capabilities. The common feature of many suites of database function is the capa-
bility to send SQL queries. If you work with ANSI (standard) SQL, you should
have little problem adapting scripts across database servers.

Q What is the best way of writing code that can be easily adapted to work with
different database servers?

A It is often a good idea to group code that queries a database into a single class or
library. If you need to rewrite your project to work with a different database, you
will only need to change a discrete portion of your code without disturbing the pro-
ject as a whole. Don’t forget though that SQL varies from database application to
database application.

Workshop
Quiz

1. How would you open a connection to a MySQL database server?

2. What function would you use to select a database?

3. What function would you use to send a SQL query to a database?

4. What does the mysql_insert_id() function do?

5. Assuming that you have sent a successful SELECT query to MySQL, name three
functions that you might use to access each row returned.

6. Assuming that you have sent a successful UPDATE query to MySQL, what function
might you use to determine how many rows have been updated?

7. What function would you call if you want to list all databases available from a
MySQL server?

8. What function would you use to list all tables within a database?

Quiz Answers
1. You can connect to a MySQL daemon using the mysql_connect() function.

2. The mysql_select_db() function attempts to select a database.

232 Hour 12

16 CH12 11/29/01 3:20 PM Page 232

3. You can send a SQL query to the database server with the mysql_query()
function.

4. mysql_insert_id() returns the value of an automatically incrementing field after a
new row has been added to a table.

5. You can use the mysql_fetch_row(), mysql_fetch_array(), or mysql_fetch_
object() functions to access each row of a found set.

6. You can discover the number of rows altered by a SQL statement with the mysql_
affected_rows() function.

7. The mysql_list_dbs() function returns a result pointer that can be used to list all
the databases available.

8. The mysql_list_tables() function returns a result pointer that can be used to list
all the tables within a database.

Activities
1. Create a database with three fields: email (up to 70 characters), message (up to 250

characters), and date (an integer that will contain a UNIX timestamp). Build a
script to allow users to populate the database.

2. Create a script that displays the information from the database you created in
activity 1.

Database Integration—SQL 233

12

16 CH12 11/29/01 3:20 PM Page 233

16 CH12 11/29/01 3:20 PM Page 234

HOUR 13
Beyond the Box

In this hour, we will look at some of the functions that allow you to gain
information from or interact with the outside world.

In this hour, you will learn:

• More about predefined variables

• The anatomy of an HTTP connection

• How to acquire a document from a remote server

• How to create your own HTTP connection

• How to connect to other network services

• How to send email from your scripts

Server Variables
You have already encountered some of the predefined variables that PHP, in
conjunction with your server, makes available for you. In this section we are
going to take a closer look at server variables. These are made available to
PHP by the server. If you are running Apache it is likely that all the vari-
ables we discuss will be accessible to you. If you are running another server,

17 CH13 11/29/01 3:18 PM Page 235

there is no guarantee that you will be able to use these server variables so it is a good
idea to check before using them in scripts. Table 13.1 lists some of the variables that you
might be able to use to find out more about your visitors.

TABLE 13.1 Some Useful Server Variables

Variable Description

$HTTP_REFERER The URL from which the current script was called (the mis-
spelling is deliberate).

$HTTP_USER_AGENT Information about the browser and platform that the visitor is
using.

$REMOTE_ADDR The visitor’s IP address.

$REMOTE_HOST The visitor’s hostname.

$QUERY_STRING The (encoded) string that may be appended to the URL (in the
format ?akey=avalue&anotherkey=anothervalue). These keys
and values should become available to your scripts in global
variables.

$PATH_INFO Additional information that may be appended to the URL.

Listing 13.1 builds a script that outputs the contents of these variables to the browser.

LISTING 13.1 Listing Some Server Variables

1: <html>
2: <head>
3: <title>Listing 13.1 Listing some server variables</title>
4: </head>
5: <body>
6: <?php
7: $envs = array(“HTTP_REFERER”, “HTTP_USER_AGENT”, “REMOTE_ADDR”,
8: “REMOTE_HOST”, “QUERY_STRING”, “PATH_INFO”);
9: foreach ($envs as $env)
10: print “$env: $GLOBALS[$env]
”;
11: ?>
12: </body>
13: </html>

Figure 13.1 shows the output from Listing 13.1. The data in Figure 13.1 was generated
as a result of calling the script from a link in another page. The link that called the script
looked like this:

go

As you can see, the link uses a relative path to call listing13.1.php.

236 Hour 13

17 CH13 11/29/01 3:18 PM Page 236

Additional path information (my_path_info) is included after the document name, which
becomes available in $PATH_INFO.

We have hard-coded a query string (query_key=query_value) into the link, which
becomes available in $QUERY_STRING. You will most often encounter a query string when
using a form with a GET method argument, but you can also build your own query strings
to pass information from page to page. The query string consists of name value pairs sep-
arated by ampersand (&) symbols. These pairs are URL encoded, which means that any
characters that are illegal or have other meanings in URLs will be converted to their
hexadecimal equivalents. Although you have access to the entire query string in the
$QUERY_STRING environmental variable, you will rarely need to use this fact. Each key
name will be available to you as a global variable ($query_value in our example) that
will hold a corresponding decoded value (“query_value”). You can also use the prede-
fined $HTTP_GET_VARS associative array to access query string keys and values.

The $HTTP_REFERER variable can be useful to you if you want to track which hits on your
script originate from which links. Beware, though, this and other environmental variables
can be easily faked. You will see how later in this hour. Because correcting it would
cause compatibility problems, we are stuck with the incorrect spelling of ‘referrer’.
Not all browsers will supply this header, so you should avoid relying upon it.

You can parse the $HTTP_USER_AGENT variable to work out the platform and browser that
the visitor is using. Once again, this can be faked. This variable can be useful if you need
to present different HTML code or JavaScript according to the browser type and version
the visitor is using. Hour 17, “Working with Strings,” and Hour 18, “Working with
Regular Expressions,” will give you the tools you need to extract any information you
want from this string.

Beyond the Box 237

13

FIGURE 13.1
Printing some Server
Variables to the
Browser.

17 CH13 11/29/01 3:18 PM Page 237

The $REMOTE_ADDR variable contains the user’s IP address and can be used to track
unique visitors to your site. Be aware, though, that many Web users do not have a fixed
IP address. Instead, their Internet service providers dynamically allocate them an address
when they dial up. This means that a single IP address might be used by different visitors
to your site, and that a single visitor might enter using different IP addresses from the
same account.

The $REMOTE_HOST variable might not be available to you, depending on the configura-
tion of your server. If available, it will hold the hostname of the user. The presence of
this variable requires that the server look up the hostname for every request, so it is often
disabled for the sake of efficiency. If you don’t have access to this variable, you can
acquire it yourself using the value of the $REMOTE_ADDR variable. You will see how to do
this later in the hour.

A Brief Summary of an HTTP Client/Server
Negotiation

It is beyond the scope of this book to explore all the information exchanged between server
and client when a request is made, not least because PHP handles most of these details for
you. It is a good idea to gain a basic understanding of this process, however, especially if
you intend to write scripts that fetch Web pages or check the status of Web addresses.

HTTP stands for hypertext transfer protocol. It is essentially a set of rules that define the
process by which a client sends a request and a server returns a response. Both client and
server provide information about themselves and the data to be transferred. Much of this
information becomes available to you in environment variables.

The Request
A client requests data from the server according to a strict set of rules. The request
consists of up to three components:

• A request line

• A header section

• An entity body

The request line is mandatory. It consists of a request method, typically GET, HEAD, or
POST; the address of the document to required; and the HTTP version to be used
(HTTP/1.0 or HTTP/1.1). A typical request for a document called mydoc.html might
look like this:

GET /mydoc.html HTTP/1.0

238 Hour 13

17 CH13 11/29/01 3:18 PM Page 238

The client is making a GET request. In other words, it is requesting an entire document
but sending no data itself (in fact you can send small amounts of data as part of a GET
request by adding a query string to the URL. The HEAD method would be used if you
only wanted information about a document. The POST method is used to transfer data
from a client to the server, usually from an HTML form.

The request line is enough in itself to make a valid GET request. To inform the server that
a request is complete, an empty line must be sent.

Most clients will follow the request line with a header section in which name/value pairs
can be sent to the server. Some of these will become available to you as environmental
variables. Each client header consists of a key and value on one line separated by a
colon. Table 13.2 lists a few of these.

TABLE 13.2 Some Client Headers

Name Description

Accept The media types that the client can work with.

Accept-Encoding The types of data compression that the client can handle.

Accept-Charset The character sets that the client prefers.

Accept-Language The language that the client prefers (‘en’ for English).

Host The host to which a request is being made. Some servers that
maintain multiple virtual hosts rely heavily on this header.

Referer The document from which a request is being made.

User-Agent Information about the client type and version.

For GET and HEAD methods, the header section ends the request, and an empty line is sent
to the server. For requests made using the POST method, an empty line is followed by the
entity body. An entity body consists of any data to be sent to the server. This is usually a
set of URL-encoded name/value pairs similar to those found in a query string.

Listing 13.2 shows a request sent to a server by Netscape 4.6.

LISTING 13.2 Typical Client Headers Sent by a Netscape Browser

1: GET / HTTP/1.0
2: Connection: Keep-Alive
3: User-Agent: Mozilla/4.51 (Macintosh; I; PPC)
4: Host: www.corrosive.co.uk:8080
5: Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
6: Accept-Encoding: gzip
7: Accept-Language: en
8: Accept-Charset: iso-8859-1,*,utf-8

Beyond the Box 239

13

17 CH13 11/29/01 3:18 PM Page 239

The Response
After a server has received a client’s request, it sends a response back to the client. The
response usually consists of three parts:

• A status line

• A header section

• An entity body

As you can see, there’s a lot of symmetry between a request and a response. In fact, cer-
tain headers can be sent by either client or server, especially those that provide informa-
tion about an entity body.

The status line consists of the HTTP version that the server is using (HTTP/1.0 or
HTTP/1.1), a response code, and a text message that clarifies the meaning of the
response code.

There are many response codes that a server can send to a browser. Each code provides
some information about the success or otherwise of the request. Table 13.3 lists some of
the more common response codes.

TABLE 13.3 Some Response Codes

Code Text Description

200 OK The request was successful, and the requested data will
follow.

301 Moved The requested data no longer exists on the server. A
Permanently location header will contain a new address.

302 Moved The requested data has been moved. A location header
Temporarily will contain a new address.

404 Not Found The data could not be found at the supplied address.

500 Internal The server or a CGI script has encountered a severe
Server Error problem in attempting to serve the data.

A typical response line, therefore, might look something like the following:

HTTP/1.1 200 OK

240 Hour 13

17 CH13 11/29/01 3:18 PM Page 240

The header section includes a series of response headers, formatted in the same way as
request headers. Table 13.4 lists some headers commonly sent by servers.

TABLE 13.4 Some Common Server Headers

Name Description

Date The current date

Server The server name and version

Content-Type The MIME type of content in the entity body

Content-Length The size of the entity in bytes

Location The full address of an alternative document

Listing 13.3 shows a typical server response. After the headers have been sent (Lines
2–9), the server sends an empty line to the client (Line 10) followed by the entity body
(the document originally requested).

LISTING 13.3 A Server Response

1: HTTP/1.1 200 OK
2: Date: Tue, 25 Sep 2001 16:10:06 GMT
3: Server: Apache/1.3.12 Cobalt (Unix) PHP/4.0.6 mod_perl/1.24
4: Last-Modified: Tue, 25 Sep 2001 16:08:29 GMT
5: ETag: “147829-62-3bb0abfd”
6: Accept-Ranges: bytes
7: Content-Length: 98
8: Connection: close
9: Content-Type: text/html
10:
11: <html>
12: <head>
13: <title>Listing 13.3 A server response</title>
14: </head>
15: <body>
16: Hello
17: </body>
18: </html>

Getting a Document from a Remote Address
Although PHP is a server-side language, it can act as a client, requesting data from
remote servers and making the output available to your scripts. If you are already com-
fortable reading files from the server, you will have no problem using PHP to acquire

Beyond the Box 241

13

17 CH13 11/29/01 3:18 PM Page 241

information from the Web. In fact, the syntax is exactly the same. You can use fopen()
to connect to a Web address in the same way as you would with a file. Listing 13.4 opens
a connection to a remote server and requests a page, printing the result to the browser.

LISTING 13.4 Getting and Printing a Web Page with fopen()

1: <html>
2: <head>
3: <title>Listing 13.4 Getting and printing a web page with fopen()</title>
4: </head>
5: <body>
6: <?php
7: $webpage = “http://www.corrosive.co.uk/php/hello.html”;
8: $fp = fopen($webpage, “r”) or die(“couldn’t open $webpage”);
9: while (! feof($fp))
10: print fgets($fp, 1024);
11: ?>
12: </body>
13: </html>

In order to take advantage of this feature you will need to ensure that the
allow_url_ fopen directive is set to On. This is the default setting.

It is unlikely that you will want to output an entire page to the browser. More commonly,
you would parse the document you download.

242 Hour 13

Prior to PHP4.0.5 fopen() did not support HTTP redirects. When most mod-
ern browsers are sent a 301 or 302 response header they will make a new
request based upon the contents of the Location header. fopen() now sup-
ports this, which means that urls that reference directories no longer have
to end with a forward slash.

fopen() returns a file resource if the connection is successful and false if the connec-
tion cannot be established or the page doesn’t exist. After you have a file pointer, you
can use it as normal to read the file. PHP introduces itself to the remote server as a
client. On my system, it sends the following request:

GET /php/hello.html HTTP/1.0
Host: www.corrosive.co.uk
User-Agent: PHP/4.0.6

17 CH13 11/29/01 3:18 PM Page 242

This process is simple and is the approach you will use to access a Web page in most
instances. You might want to connect to other network services, however, or learn more
about a Web document by parsing the server headers. You will look at how to do this
later in the hour.

Converting IP Addresses and Hostnames
Even if your server does not provide you with a $REMOTE_HOST variable, you will proba-
bly know the IP address of a visitor from the $REMOTE_ADDR environmental variable. You
can use this in conjunction with the function gethostbyaddr() to get the user’s host-
name. gethostbyaddr() requires a string representing an IP address. It returns the equiv-
alent hostname. If an error occurs, it returns the IP address it was given. Listing 13.5
creates a script that uses gethostbyaddr() to acquire the user’s hostname if the
$REMOTE_HOST variable is not available.

LISTING 13.5 Using gethostbyaddr() to Get a Hostname

1: <html>
2: <head>
3: <title>Listing 13.5 Using gethostbyaddr() to get a host name</title>
4: </head>
5: <body>
6: <?php
7: if (isset($REMOTE_HOST))
8: print “Hello visitor at $REMOTE_HOST
”;
9: elseif (isset ($REMOTE_ADDR))
10: print “Hello visitor at “.gethostbyaddr($REMOTE_ADDR).”
”;
11: else
12: print “Hello you, wherever you are
”;
13: ?>
14: </body>
15: </html>

Beyond the Box 243

13

You can also access remote files using the include() statement. If the allow_
url_fopen directive is set to On and a valid URL is passed to include(), then
the result of a request for the remote file will be incorporated into the
script.

Unless you are very sure what you are doing, however, you should be cau-
tious of this feature. Including source code from third parties in your own
project is a big security risk.

17 CH13 11/29/01 3:18 PM Page 243

If we have access to the $REMOTE_HOST variable, we simply print this to the browser on
line 8. Otherwise, if we have access to the $REMOTE_ADDR variable, we attempt to acquire
the user’s hostname using gethostbyaddr() on line 10. If all else fails, we print a generic
welcome message on line 12.

To attempt to convert a hostname to an IP address, you can use gethostbyname(). This
function requires a hostname as its argument. It returns an IP address or, if an error
occurs, the hostname you provided.

Making a Network Connection
So far we have had it easy. This is because PHP makes working with a Web page on a
remote server as simple as opening a file on your own system. Sometimes, though, you
need to exercise a little more control over a network connection or acquire more informa-
tion about it.

You can make a connection to an Internet server with fsockopen(), which requires a
hostname or IP address, a port number, and two reference variables. The reference vari-
ables you passed to fsockopen() are populated to provide more information about the
connection attempt should it fail. You can also pass fsockopen() an optional timeout
integer, which determines how long fsockopen() will wait (in seconds) before giving up
on a connection. If the connection is successful, a file pointer is returned. Otherwise, it
returns false.

The following fragment initiates a connection to a Web server:

$fp = fsockopen(“www.corrosive.co.uk”, 80, $errno, errdesc, 30);

80 is the usual port number that a Web server listens on.

The first reference variable, $errno, contains an error number if the connection is unsuc-
cessful, and $errdesc might contain more information about the failure.

After you have the file pointer, you can both write to the connection with fputs() and
read from it with fgets() as you might with a file. When you have finished working
with your connection, you should close it with fclose().

We now have enough information to initiate our own connection to a Web server. Listing
13.6 makes an HTTP connection, retrieving a page and storing it in a variable.

LISTING 13.6 Retrieving a Web Page Using fsockopen()

1: <html>
2: <head>
3: <title>Listing 13.6 Retrieving a Web page using fsockopen()</title>

244 Hour 13

17 CH13 11/29/01 3:18 PM Page 244

LISTING 13.6 continued

4: </head>
5: <body>
6: <?php
7: $host = “www.corrosive.co.uk”;
8: $page = “/index.html”;
9: $fp = fsockopen(“$host”, 80, $errno, $errdesc);
10: if (! $fp)
11: die (“Couldn’t connect to $host:\nError: $errno\nDesc: $errdesc\n”);
12:
13: $request = “GET $page HTTP/1.0\r\n”;
14: $request .= “Host: $host\r\n”;
15: $request .= “Referer: http://www.corrosive.co.uk/refpage.html\r\n”;
16: $request .= “User-Agent: PHP test client\r\n\r\n”;
17:
18: $page = array();
19: fputs ($fp, $request);
20: while (! feof($fp))
21: $page[] = fgets($fp, 1024);
22: fclose($fp);
23: print “the server returned “.(count($page)).” lines!”;
24: ?>
25: </body>
26: </html>

Notice the request headers (Lines 13–16) that we send to the server in Line 19. The
Webmaster at the remote host will see the value you sent in the User-Agent header in her
log file. She may also assume that a visitor to our page connected from a link at http://
www.corrosive.co.uk/refpage.html. For this reason, you should be cautious of some
of the environmental variables available to your scripts. Treat them as an valuable guide,
rather than a set of facts.

There are some legitimate reasons why you might want to fake some headers. You might
need to parse some data that will only be sent to Netscape compatible browsers. One
way you can do this is to include the word “Mozilla” in the User-Agent header.
Nevertheless, pity the poor Webmaster. Operational decisions are made as a result of
server statistics, so try not to distort the information you provide.

The example in Listing 13.6 adds little to PHP’s built-in method of acquiring Web pages.
Listing 13.7 uses fsockopen() to check the status codes returned by servers when we
request a series of pages.

Beyond the Box 245

13

17 CH13 11/29/01 3:18 PM Page 245

LISTING 13.7 Outputting the Status Lines Returned by Web Servers

1: <html>
2: <head>
3: <title>Listing 13.7 Outputting the status lines returned by web encountered a

➥servers</title>
4: </head>
5: <body>
6: <?php
7: $to_check = array (
8: “www.corrosive.co.uk” => “/index.html”,
9: “www.virgin.com” => “/notthere.html”,
10: “www.4332blah.com” => “/nohost.html”
11:);
12:
13: foreach ($to_check as $host => $page) {
14: $fp = fsockopen(“$host”, 80, $errno, $errdesc, 10);
15: print “Trying $host
\n”;
16: if (! $fp) {
17: print “Couldn’t connect to $host:\n
Error: $errno\n
Desc:
➥$errdesc\n”;
18: print “
<hr>
\n”;
19: continue;
20: }
21: print “Trying to get $page
\n”;
22: fputs($fp, “HEAD $page HTTP/1.0\r\n\r\n”);
23: print fgets($fp, 1024);
24: print “

\n”;
25: fclose($fp);
26: }
27:
28: ?>
29: </body>
30: </html>

We create an associative array of the server names and page addresses we want to check
starting at line 7. We loop through this using a foreach statement on line 13. For every
element, we initiate a connection using fsockopen() (line 14), setting a timeout of 10
seconds. If the connection fails, we print a message to the browser and use continue on
line 19 to move on to the next pair. If the connection is successful, we send a request to
the server on line 22. We use the HEAD method because we are not interested in parsing
an entity body. We use fgets() on line 23 to get the status line from the server. We are
not going to work with server headers for this example, so we close the connection with
fclose() on line 25 and move on to the next element in the list.

Figure 13.2 shows the output from Listing 13.7.

246 Hour 13

17 CH13 11/29/01 3:18 PM Page 246

Making an NNTP Connection Using fsockopen()
fsockopen() can be used to make a connection to any Internet server. In Listing 13.8,
we connect to an NNTP (Usenet) server, select a newsgroup, and list the headers of the
first message.

LISTING 13.8 A Basic NNTP Connection Using fsockopen()

1: <html>
2: <head>
3: <title>Listing 13.8 A basic NNTP connection using fsockopen()</title>
4: </head>
5: <body>
6: <?php
7: $server = “news”; // change this to your news server
8: $group = “alt.test”;
9: $line = “”;
10: print “<pre>\n”;
11: print “— Trying to connect to $server\n\n”;

Beyond the Box 247

13

FIGURE 13.2
A Script to Print
Server Response
Headers.

If you are interested in writing sophisticated Web client applications you
should look at the CURL package (http://curl.haxx.se/). As of PHP 4.02
support was added for CURL which can handle many of HTTP’s more tricky
aspects including user and password authentication, cookies, and POST form
submissions. It can also handle secure transactions with HTTPS and a range
of other protocols. You can get more details from the PHP manual at
<http://www.php.net/manual/en/ref.curl.php>.

17 CH13 11/29/01 3:18 PM Page 247

LISTING 13.8 continued

12:
13: $fp = fsockopen(“$server”, 119, $error, $description, 10);
14: if (! $fp)
15: die(“Couldn’t connect to $server\n$errno\n$errdesc\n\n”);
16: print “— Connected to $server\n\n”;
17:
18: $line = fgets($fp, 1024);
19: $status = explode(“ “, $line);
20:
21: if ($status[0] != 200) {
22: fputs($fp, “close”);
23: die(“Error: $line\n\n”);
24: }
25:
26: print “$line\n”;
27: print “— Selecting $group\n\n”;
28: fputs($fp, “group alt.test\n”);
29: $line = fgets($fp, 1024);
30: $status = explode(“ “, $line);
31:
32: if ($status[0] != 211) {
33: fputs($fp, “close”);
34: die(“Error: $line\n\n”);
35: }
36:
37: print “$line\n”;
38: print “— Getting headers for first message\n\n”;
39: fputs($fp, “head\n”);
40: $line = fgets($fp, 1024);
41: $status = explode(“ “, $line);
42: print “$line\n”;
43:
44: if ($status[0] != 221) {
45: fputs($fp, “close”);
46: die(“Error: $line\n\n”);
47: }
48:
49: while (! (strpos($line, “.”) === 0)) {
50: $line = fgets($fp, 1024);
51: print $line;
52: }
53:
54: fputs($fp, “close\n”);
55: print “</pre>”;
56: ?>
57: </body>
58: </html>

248 Hour 13

17 CH13 11/29/01 3:18 PM Page 248

The code in Listing 13.8 does little more than demonstrate that an NNTP connection is
possible with fsockopen(). In a real-world example, you would want to handle the line
parsing in a function to save repetition and to extract more information from the server’s
output. Rather than reinvent the wheel in this way, you might want to investigate PHP’s
IMAP functions, which provide POP3 and NNTP connectivity and will automate much
of this work for you.

We store the hostname of our server in a variable, $server on line 7, and the group we
want to select in $group on line 8. If you wish to run this script, you should assign the
hostname of your Internet Service Provider’s news server to the $server variable. We
use fsockopen() on line 13 to connect to the host on port 119, which is the usual port
for NNTP connections. If a valid file resource is not returned, we use die() on line 15
to print the error number and description to the browser and end script execution. On
connection, the server should have sent us a confirmation message, so we attempt to
acquire this with fgets() on line 18. If all is well, this string begins with the status
code 200. To test this, we use explode() (line 19) to split the $line string into an
array using the space character as the delimiter. You can learn more about the
explode() function in Hour 17. If the first element of this array is 200, we can con-
tinue; otherwise, we end the script.

If all is proceeding as expected, we send the news server the “group” command that
should select a newsgroup on line 28. If this is successful, the server should return a
string beginning with the status code 211. We test this once again on line 32, and end
execution if we don’t get what we are expecting.

Now that we have selected our newsgroup, we send the “head” command to the server on
line 39, which requests the headers for the first message in the group. Again, we test the
server response on line 44, looking for the status code 221. Finally, we acquire the
header itself. The server’s listing of a header will end with a single dot (.) on its own
line, so we test for this in a while statement on line 49. As long as the server’s output
line does not begin with a dot, we request and print the next line.

Finally, we close the connection. Figure 13.3 shows a typical output from Listing 13.8.

Beyond the Box 249

13

17 CH13 11/29/01 3:18 PM Page 249

Sending Mail with the mail() Function
PHP can automate the sending of Internet mail for you. The mail() function requires
three strings representing the recipient of the mail, the mail subject, and the message.
mail() returns false if it encounters an error. In the following fragment, we send an
email:

$to = “someone@adomain.com”;
$subject = “hi”;
$message = “just a test message! “;
mail($to, $subject, $message) or print “Could not send mail”;

If you are running PHP on a UNIX system, mail() will use a mail application such as
Sendmail. On other systems, the function will connect to a local or remote SMTP mail
server. You should set this using the SMTP directive in the php.ini file.

You are not limited to the mail headers implied by the mail() function’s required argu-
ments. You can include as many mail headers as you want in an optional fourth string
argument. These should be separated by CRLF characters (‘\r\n’). In the following exam-
ple, we include a From field in our mail message, as well as an X-Priority header that
some clients will recognize:

$to = “someone@adomain.com”;
$from = “book@corrosive.co.uk”;
$subject = “hi”;
$message = “just a test message! “;
mail($to, $subject, $message, “$from\r\nX-Priority: 1 (Highest)”)

or print “Could not send mail”;

250 Hour 13

FIGURE 13.3
Making an NNTP
connection.

17 CH13 11/29/01 3:18 PM Page 250

As of PHP 4.0.5 an additional fifth optional parameter can be used. This allows you to
pass command line style arguments directly to the mailer.

Summary
In this hour, you learned how to use environmental variables to learn more about your
visitors. If you don’t have access to a user’s hostname, you should now be able to use
gethostbyaddr() to acquire it.

You learned some of the basics about the negotiation that takes place between client and
server when an HTTP connection is made.

You learned how to use fopen() to get a document from the Web, and how to use
fsockopen() to make your own HTTP connection. You should also be able to use
fsockopen() to make connections to other network services. Finally, you learned
how to use mail() to send email from your scripts.

So far in this book we have concentrated on text. In the next hour we are going to look at
some functions that will allow us to use PHP to construct and manipulate images.

Q&A
Q HTTP seems a little esoteric. Do I really need to know about it to write good

PHP code?

A No. You can write excellent code with knowing the intricacies of client/server
interaction. On the other hand, a basic understanding of the process is useful if you
want to do more than just download pages from remote servers.

Q If I can send fake headers to a remote server, how suspicious should I be of
environmental variables myself?

A You should not trust environmental variables such as $HTTP_REFERER and
$HTTP_USER_AGENT if their accuracy is essential to the operation of your script.
Remember, though, that the vast majority of clients that you deal with will tell you
the truth. If you are merely ensuring a productive user experience by detecting
browser type or gathering overall statistical information, there is no need to distrust
this data.

Beyond the Box 251

13

17 CH13 11/29/01 3:18 PM Page 251

Workshop
Quiz

1. What server variable might give you the URL of the referring page?

2. Why can you not rely on the $REMOTE_ADDR variable to track an individual user
across multiple visits to your script?

3. What does HTTP stand for?

4. What client header line tells the server about the browser that is making the
request?

5. What does the server response code 404 mean?

6. Without making your own network connection, what function might you use to
access a Web page on a remote server?

7. Given an IP address, what function could you use to get a hostname?

8. What function would you use to make a network connection?

9. What PHP function would you use to send an email?

Quiz Answers
1. You can often find the URL of the referring page in the $HTTP_REFERRER variable.

2. Many service providers allocate a different IP address to their users every time they
log on, so you cannot assume that a user will return with the same address.

3. HTTP stands for hypertext transfer protocol.

4. A client might send a User-Agent header, which tells the server about the client
version and operating system that are running.

5. The server response 404 means that the requested page or resource cannot be
found on the server.

6. The fopen() function can be used for Web pages on remote machines as well as
files on your file system.

7. The gethostbyaddr() function accepts an IP address and returns a resolved host-
name.

8. The fsockopen() function will establish a connection with a remote server.

9. You can send email with the mail() function.

252 Hour 13

17 CH13 11/29/01 3:18 PM Page 252

Activities
1. Create a script that accepts a Web hostname (such as http://www.microsoft.com)

from user input. Send the host a HEAD request using fsockopen() to create the con-
nection. Print the response to the browser. Remember to handle the possibility that
no connection can be established.

2. Create a script that accepts a message from the user and mails it to you. Add server
variables to the user’s message to tell you about his or her browser and IP address.

Beyond the Box 253

13

17 CH13 11/29/01 3:18 PM Page 253

17 CH13 11/29/01 3:18 PM Page 254

HOUR 14
Images On-the-Fly

The functions included in this hour rely on an open source library
called GD.

The GD library is a set of tools that enable programmers to create and work
with images on-the-fly. You can find out more about GD at http://www.
boutell.com/gd/. If you have the GD library installed on your system and
PHP was compiled to use it, you will be able to use PHP’s image functions
to create dynamic images. Many systems will still run the older version of
the library, which allows the creation of images in GIF format. Later ver-
sions of the library do not support GIFs for licensing reasons. If your system
is using a later library, it is possible to compile PHP so that the image func-
tions output images in PNG format, which is supported by the more popular
browsers.

If you have the GD library, you will be able to use PHP’s image functions to
create sophisticated graphics on-the-fly.

In this hour, you will learn:

• How to create and output an image

• How to work with colors

18 CH14 11/29/01 3:22 PM Page 255

• How to draw shapes, including arcs, rectangles, and polygons

• How to fill areas with color

• How to work with TrueType fonts

Creating and Outputting Images
Before you can begin to work with an image, you must acquire an image resource. You
can do this using the imagecreate() function. imagecreate() requires two arguments,
one for the image’s height and another for its width. It returns an image resource, which
you will use with most of the functions that we will cover in this hour. You should be
familiar with resources from your work with files and databases. The image resource
returned by imagecreate() will be a required argument for most of the functions in this
book.

After you have an image resource, you are nearly ready to output your first image to the
browser. To do this, you need the imagegif() function, which requires the image
resource as an argument. Listing 14.1 uses these functions to create and output an image.

LISTING 14.1 A Dynamically Created Image

1: <?php
2: header(“Content-type: image/gif”);
3: $image = imagecreate(200, 200);
4: imagegif($image);
5: ?>

Notice that we sent a Content-type header to the browser (line 2) before doing anything
else. We need to tell the browser to expect image information; otherwise, it treats the
script’s output as HTML. This script can now be called directly by the browser, or as part
of an IMG element.

Figure 14.1 shows the output of Listing 14.1.

We have created a square, but we have no way as yet of controlling its color.

256 Hour 14

18 CH14 11/29/01 3:22 PM Page 256

14

Acquiring Color
To work with color, you need to acquire a color resource. You can do this with the
imagecolorallocate() function, which requires an image resource and three integers
between 0 and 255 representing red, green, and blue. The function returns an image
resource that you can use to define the color of shapes, fills, and text.

$red = imagecolorallocate($image, 255,0,0);

Coincidentally, the first time you call imagecolorallocate(), you also set the default
color for your image; so by adding the previous code fragment to Listing 14.1, we would
create a red square.

Drawing Lines
Before you draw a line on an image, you need to determine the points from and to which
you want to draw.

You can think of an image as a block of pixels indexed from 0 on both the horizontal and
vertical axes. Their origin is the top left-hand corner of the image.

Images On-the-Fly 257

FIGURE 14.1
A dynamically created
image.

18 CH14 11/29/01 3:22 PM Page 257

In other words, the pixel with the coordinates 5, 8 is the sixth pixel along and the ninth
pixel down, looking from left to right, top to bottom.

The imageline() function draws a line between one pixel coordinate and another. It
requires an image resource, four integers representing the start and end coordinates of the
line, and a color resource.

Listing 14.2 adds to the image created in Listing 14.1, drawing a line from corner to cor-
ner.

LISTING 14.2 Drawing a Line with imageline()

1: <?php
2: header(“Content-type: image/gif”);
3: $image = imagecreate(200, 200);
4: $red = imagecolorallocate($image, 255,0,0);
5: $blue = imagecolorallocate($image, 0,0,255);
6: imageline($image, 0, 0, 199, 199, $blue);
7: imagegif($image);
8: ?>

We acquire two color resources, one for red (line 4) and one for blue (line 5). We then
use the resource stored in the variable $blue for the line’s color on line 6. Notice that our
line ends at the coordinates 199, 199 and not 200, 200. Remember that pixels are indexed
from 0. Figure 14.2 shows the output from Listing 14.2.

258 Hour 14

FIGURE 14.2
Drawing a line with
imageline().

18 CH14 11/29/01 3:22 PM Page 258

Applying Color Fills
You can fill an area with color using PHP just as you can with your favorite graphics
application. The function imagefill() requires an image resource, starting coordinates
for the fill it is to perform, and a color resource. It then transforms the starting pixel and
all adjacent pixels of the same color. Listing 14.3 adds a call to imagefill() to our
script, making the image a little more interesting.

LISTING 14.3 Using imagefill()

1: <?php
2: header(“Content-type: image/gif”);
3: $image = imagecreate(200, 200);
4: $red = imagecolorallocate($image, 255,0,0);
5: $blue = imagecolorallocate($image, 0,0,255);
6: imageline($image, 0, 0, 199, 199, $blue);
7: imagefill($image, 0, 199, $blue);
8: imagegif($image);
9: ?>

The only change we have made to our example is the call to imagefill() on line 7.
Figure 14.3 shows the output from Listing 14.3.

Images On-the-Fly 259

14

FIGURE 14.3
Using imagefill().

18 CH14 11/29/01 3:22 PM Page 259

Drawing an Arc
You can add partial or complete arcs to your images with the imagearc() function.
imagearc() requires an image object, coordinates for the center point, an integer for
width, an integer for height, a start point and an end point (in degrees), and a color
resource. Arcs are drawn clockwise starting from 3 o’clock. The following fragment
draws a quarter circle:

imagearc($image, 99, 99, 200, 200, 0, 90, $blue);

This draws a partial arc, with its center at the coordinates 99, 99. The total height and
width will both be 200 pixels. Drawing starts at 3 o’clock and continues for 90 degrees
(to 6 o’clock).

Listing 14.4 draws a complete circle and fills it with blue.

LISTING 14.4 Drawing a Circle with imagearc()

1: <?php
2: header(“Content-type: image/gif”);
3: $image = imagecreate(200, 200);
4: $red = imagecolorallocate($image, 255,0,0);
5: $blue = imagecolorallocate($image, 0,0,255);
6: imagearc($image, 99, 99, 180, 180, 0, 360, $blue);
7: imagefill($image, 99, 99, $blue);
8: imagegif($image);
9: ?>

As before we acquire color resources (lines 5 and 5). On line 6 we call imagearc() to
draw a complete circle. The call to imagefill() on line 7 fills our circle with blue.

Figure 14.4 shows the output from Listing 14.4.

260 Hour 14

18 CH14 11/29/01 3:22 PM Page 260

Drawing a Rectangle
You can draw a rectangle in PHP using the imagerectangle() function. imagerectangle()
requires an image resource, the coordinates for your rectangle’s top-left corner, the coor-
dinates for its bottom-right corner, and a color resource. The following fragment draws
a rectangle whose top-left coordinates are 19, 19 and bottom-right coordinates are
179, 179:

imagerectangle($image, 19, 19, 179, 179, $blue);

You could then fill this with imagefill(). Because this is such a common operation,
however, PHP provides the imagefilledrectangle() function, which expects exactly
the same arguments as imagerectangle() but produces a rectangle filled with the color
you specify. Listing 14.5 creates a filled rectangle (line 6) and outputs the image to the
browser.

Images On-the-Fly 261

14

FIGURE 14.4
Drawing a circle with
imagearc().

18 CH14 11/29/01 3:22 PM Page 261

LISTING 14.5 Drawing a Filled Rectangle with imagefilledrectangle()

1: <?php
2: header(“Content-type: image/gif”);
3: $image = imagecreate(200, 200);
4: $red = imagecolorallocate($image, 255,0,0);
5: $blue = imagecolorallocate($image, 0,0,255);
6: imagefilledrectangle($image, 19, 19, 179, 179, $blue);
7: imagegif($image);
8: ?>

Figure 14.5 shows the output from Listing 14.5.

262 Hour 14

FIGURE 14.5
Drawing a filled
rectangle with image-
filledrectangle().

Drawing a Polygon
You can draw more sophisticated shapes using imagepolygon(). This function requires
an image resource, an array of point coordinates, an integer representing the number of
points in the shape, and a color resource. The array passed to imagepolygon() should be
numerically indexed. The first two elements give the coordinates of the first point, the
second two give the coordinates of the second point, and so on. imagepolygon() fills in
the lines between the points, automatically closing your shape by joining the final point
to the first. You can create a filled polygon with the imagefilledpolygon() function.

Listing 14.6 draws a filled polygon, outputting the result to the browser.

18 CH14 11/29/01 3:22 PM Page 262

LISTING 14.6 Drawing a Polygon with imagefilledpolygon()

1: <?php
2: header(“Content-type: image/gif”);
3: $image = imagecreate(200, 200);
4: $red = imagecolorallocate($image, 255,0,0);
5: $blue = imagecolorallocate($image, 0,0,255);
6: $points = array (10, 10,
7: 190, 190,
8: 190, 10,
9: 10, 190
10:);
11: imagefilledpolygon($image, $points, count($points)/2 , $blue);
12: imagegif($image);
13: ?>

After acquiring image and color resources (lines 2–5) we create an array of coordinates
on line 6. Notice that when we call imagefilledpolygon() on line 11 we tell it the num-
ber of points we want to connect by counting the number of elements in the $points
array and dividing the result by 2. Figure 14.6 shows the output from Listing 14.6.

Images On-the-Fly 263

14

FIGURE 14.6
Drawing a
polygon with
imagefilledpolygon()

.

Making a Color Transparent
PHP allows you to make selected colors within your image transparent with
imagecolortransparent(). This function requires an image resource and a color
resource. When you output your image to the browser, the color you pass to

18 CH14 11/29/01 3:22 PM Page 263

imagecolortransparent() will be transparent. Listing 14.7 changes our polygon code
so that the shape “floats” on the browser instead of sitting against a background color.

LISTING 14.7 Making Colors Transparent with imagecolortransparent()

1: <?php
2: header(“Content-type: image/gif”);
3:
4: $image = imagecreate(200, 200);
5: $red = imagecolorallocate($image, 255,0,0);
6: $blue = imagecolorallocate($image, 0,0,255);
7:
8: $points = array (10, 10,
9: 190, 190,
10: 190, 10,
11: 10, 190
12:);
13:
14: imagefilledpolygon($image, $points, count($points)/2 , $blue);
15: imagecolortransparent($image, $red);
16: imagegif($image);
17: ?>

Listing 14.7 is identical to Listing 14.6 except for the call to imagecolortransparent()
on line 15. Figure 14.7 shows the output from Listing 14.7.

264 Hour 14

FIGURE 14.7
Making colors
transparent with
imagecolor-

transparent().

18 CH14 11/29/01 3:22 PM Page 264

Working with Text
If you have TrueType fonts on your system, you can use these to write text into your
images. In addition to the GD library, you need to have the FreeType library installed on
your system. If you have this combination, you can create image-based charts or naviga-
tion elements. PHP even gives you the tool you need to check that any text that you write
will fit within the space available.

Writing a String with imageTTFtext()
You can write text to your image with the imageTTFtext() function. This requires eight
arguments: an image resource, a size argument representing the height of the characters
to be written, an angle, the starting coordinates (one argument for the x axis and another
for the y axis), a color resource, the path to a TrueType font, and the text you want to
write.

The start point for any text you write determines where the baseline of the first character
in the string will be.

Listing 14.8 writes a string to an image and outputs the result to the browser.

LISTING 14.8 Writing a String with imageTTFtext()

1: <?php
2: header(“Content-type: image/gif”);
3:
4: $image = imagecreate(400, 200);
5: $red = imagecolorallocate($image, 255,0,0);
6: $blue = imagecolorallocate($image, 0,0,255);
7: $font = “/usr/local/jdk121_pre-v1/jre/lib/fonts/LucidaSansRegular.ttf”;
8:
9: imageTTFtext($image, 50, 0, 20, 100, $blue, $font, “Welcome!”);
10:
11: imagegif($image);
12: ?>

We create a canvas with a width of 400 pixels and a height of 200 pixels on line 4. We
define two colors (lines 5 and 6) and store the path to a TrueType font in a variable
called $font (line 7). Note that font files are likely to be stored in a different directory on
your server. If you are not sure where, you could try searching for files with the .ttf
extension. We then write the text “Welcome!” to the image on line 9.

For the call to imageTTFtext(), we define a size of 50, an angle of 0, a starting position
of 20 on the x–axis and 100 on the y–axis. We also pass the function the color resource

Images On-the-Fly 265

14

18 CH14 11/29/01 3:22 PM Page 265

stored in the $blue variable, the font path stored in $font, and, finally, the text we want
to output. You can see the result in Figure 14.8.

266 Hour 14

FIGURE 14.8
Writing text with
imageTTFtext().

Of course, we have to guess where to put the text at the moment. The size argument does
not give us an accurate idea of the text’s height, and the width is a mystery. In fact,
imageTTFtext() will return dimension information, but by then the deed is done.
Luckily, PHP provides a function that allows you to try before you buy.

Testing Text Dimensions with imageTTFbox()
You can get information about the dimensions of text using the imageTTFbox() function,
which is so called because it tells you about the text’s bounding box. imageTTFbox()
requires the font size, the angle, a path to a font file, and the text to be written. It is one
of the few image functions that do not require an image resource. It returns an eight-
element array, which is explained in Table 14.1.

TABLE 14.1 The Array Returned by imageTTFbox()

Index Description

0 bottom left (horizontal axis)

1 bottom left (vertical axis)

2 bottom right (horizontal axis)

3 bottom right (vertical axis)

18 CH14 11/29/01 3:22 PM Page 266

TABLE 14.1 continued

Index Description

4 top right (horizontal axis)

5 top right (vertical axis)

6 top left (horizontal axis)

7 top left (vertical axis)

All figures on the vertical axis are relative to the text’s baseline, which is 0. Figures for
the vertical axis at the top of the text count down from this figure, and so usually are
minus numbers. Figures for the vertical axis at the bottom of the text count up from 0,
giving the number of pixels the text drops from the baseline.

So, if you test a string containing a “y” with imageTTFbbox(), for example, the return
array might have a figure of 3 for element 1 because the tail of the “y” drops 3 pixels
below the baseline. It could have a figure of –10 for element 7 because the text is raised
10 pixels above the baseline.

To complicate matters, there seems to be a 2-pixel difference between the baseline as
returned by imageTTFbbox() and the visible baseline when drawing text. You may need
to adjust for this, by thinking of the height of the baseline as 2 pixels greater than that
returned by the imageTTFbbox().

On the horizontal axis, figures for left-hand side imageTTFbbox() will take account of
text that begins before the given start point by returning the offset as a minus number in
elements 6 and 0. This usually will be a small number so whether you adjust alignment
to take account of this depends on the level of accuracy you require.

You can use the information returned by imageTTFbbox() to align text within an image.
Listing 14.9 creates a script that dynamically outputs text, centering it within our image
on both the vertical and horizontal planes.

LISTING 14.9 Aligning Text Within a Fixed Space Using imageTTFbbox()

1: <?php
2: header(“Content-type: image/gif”);
3: $height = 100;
4: $width = 200;
5: $fontsize = 50;
6: if (! isset ($text))
7: $text = “Change me!”;
8: $image = imagecreate($width, $height);
9: $red = imagecolorallocate($image, 255,0,0);

Images On-the-Fly 267

14

18 CH14 11/29/01 3:22 PM Page 267

LISTING 14.9 continued

10: $blue = imagecolorallocate($image, 0,0,255);
11: $font = “/home/usr/local/jdk1.3.1/jre/lib/fonts/LucidaSansRegular.ttf”;
12: $textwidth = $width;
13: $textheight;
14: while (true) {
15: $box = imageTTFbbox($fontsize, 0, $font, $text);
16: $textwidth = abs($box[2]);
17: $textbodyheight = (abs($box[7]))-2;
18: if ($textwidth < $width - 20)
19: break;
20: $fontsize--;
21: }
22: $gifXcenter = (int) ($width/2);
23: $gifYcenter = (int) ($height/2);
24: imageTTFtext($image, $fontsize, 0,
25: (int) ($gifXcenter-($textwidth/2)),
26: (int) ($gifYcenter+(($textbodyheight)/2)),
27: $blue, $font, $text);
28: imagegif($image);
29: ?>

We store the height and width of the image in the variables $height and $width (lines 3
and 4), and set a default font size of 50 on line 5. On line 6 we test for the presence of a
variable called $text, setting a default on line 7 if it isn’t present. In this way, the image
can accept data from a Web page, either in the query string of an image URL or from
form submission. We use imagecreate() on line 8 to acquire an image resource. We
acquire color resources in the usual way and store the path to a TrueType font file in a
variable called $font (lines 9 to 11).

We want to fit the string stored in $text into the available space, but we have no way of
knowing yet whether it will. Within a while statement starting on line 14, we pass the
font path and string to imageTTFbbox() on line 15, storing the resultant array in a vari-
able called $box. The element $box[2] contains the position of the lower-right corner on
the horizontal axis. We take this to be the width of the string and store it in $textwidth
on line 16.

We want to vertically center the text, but only accounting for the area above the text’s
baseline. We can use the absolute value of $box[7] to find the height of the text above
the baseline, although we need to adjust this by 2 pixels. We store this value in
$textbodyheight on line 17.

Now that we have a working figure for the text’s width, we can test it against the width
of the image (less 10 pixels border). If the text is smaller than the width of the canvas we

268 Hour 14

18 CH14 11/29/01 3:22 PM Page 268

are using, then we end the loop on line 19. Otherwise, we reduce the font size on line 20,
ready to try again.

Dividing the $height and $width values by 2 (lines 22 and 23), we can find the approxi-
mate center point of the image. We write the text to the image on line 24, using the fig-
ures we have calculated for the image’s center point in conjunction with the text’s height
and width to calculate the offset.

Finally, we write the image to the browser on line 28. Figure 14.9 shows the output from
Listing 14.9.

Images On-the-Fly 269

14

FIGURE 14.9
Aligning text within a
fixed space using
imageTTFbbox().

This code can now be called from another page as part of an IMG element. The following
fragment writes some simple code that would allow a user to add her own string to be
included in the image:

1: <?php
2: if (! isset($text))
3: $text = “Dynamic text!”;
4: ?>
5: <form action=”<? print $PHP_SELF ?>” method=”POST”>
6: <input type=”text” name=”text”>
7: </form>
8: <p>
9: <img src=”listing14.9.php?<? print “text=”.urlencode($text) ?>”>

When we call the script in Listing 14.9 on line 9, we append a query string that includes
the text to be added to the image. You can learn more about this technique for passing
information from script to script in Hour 19, “Saving State with Cookies and Queries.”

18 CH14 11/29/01 3:22 PM Page 269

Bringing It Together
Let’s build an example that uses some of the functions that we have looked at in this
hour. Suppose that we have been asked to produce a dynamic bar chart that compares a
range of labeled numbers. The bar chart must include the relevant label below each bar.
Our client must be able to change the number of bars on the chart, the height and width
of the image, and the size of the border around the chart. The bar chart will be used for
consumer votes, and all that is needed is an “at a glance” representation of the data. A
more detailed breakdown will be included in the HTML portion of the containing page.

The easiest way of storing labels and values is in an associative array. After we have this
array, we need to calculate the number of bars we will be dealing with and the greatest
value in the array:

$cells = array (‘liked’=>200, ‘hated’=>400, ‘indifferent’=>900);
$max = max($cells);
$total = count ($cells);

We must set up some variables to allow the client to customize the image:

$totalwidth = 400;
$totalheight = 200;
$xgutter = 20; // left/right margin
$ygutter = 20; // top/bottom margin
$internalgap = 5; // space between cells
$bottomspace = 40; // gap at the bottom (in addition to margin)
$font = “/home/usr/local/jdk1.3.1/jre/lib/fonts/LucidaSansRegular.ttf”;

The client can change the variables to define the image height and width. The $xgutter
and $ygutter variables determine the margin around the chart horizontally and verti-
cally. $internalgap determines the space between the bars. The $bottomspace variable
contains the space available to label the bars at the bottom of the screen.

Now that we have these values, we can do some calculations to arrive at some useful
variables:

$graphCanX = ($totalwidth - $xgutter*2);
$graphCanY = ($totalheight - $ygutter*2 - $bottomspace);
$posX = $xgutter; // starting draw position x - axis
$posY = $totalheight - $ygutter - $bottomspace; // starting draw pos - y - axis
$cellwidth = (int) (($graphCanX - ($internalgap * ($total-1))) / $total) ;
$textsize = (int)($bottomspace);

We calculate the graph canvas (the space in which the bars are to be written). On the x–
axis, this will be the total width minus twice the size of the margin. On the y–axis, we
need also to take account of the $bottomspace variable to leave room for the labels.

270 Hour 14

18 CH14 11/29/01 3:22 PM Page 270

$posX stores the point on the x–axis at which we will start drawing the bars, so we set
this to the same value as $xgutter, which contains the value for the margin on the $x
axis. $posY stores the bottom point of our bars; it is equivalent to the total height of the
image less the margin and the space for the labels stored in $bottomheight.

$cellwidth contains the width of each bar. To arrive at this value, we must calculate the
total amount of space between bars and take this from the chart width, dividing this
result by the total number of bars.

We initially set the size of the text to be the same as the height left free for label text (as
stored in $bottomspace).

Before we can create and work with our image, we need to determine the text size. Our
problem is that we don’t know how long the labels will be, and we want to make sure
that each of the labels will fit within the width of the bar above it. We loop through the
$cells array to calculate the maximum text size we can use:

foreach ($cells as $key=>$val) {
while (true) {

$box = ImageTTFbBox($textsize, 0, $font, $key);
$textWidth = $box[2];
if ($textWidth < $cellwidth)

break;
$textsize--;

}
}

For each of the elements, we begin a loop, acquiring dimension information for the label
using imageTTFbbox(). We take the text width to be $box[2] and test it against the
$cellwidth variable, which contains the width of a single bar in the chart. We break the
loop if the text is smaller than the bar width; otherwise, we decrement $textsize and try
again. $textsize continues to shrink until every label in the array fits within the bar
width.

Now, at last we can create an image resource and begin to work with it:

$image = imagecreate($totalwidth, $totalheight);
$red = ImageColorAllocate($image, 255, 0, 0);
$blue = ImageColorAllocate($image, 0, 0, 255);
$black = ImageColorAllocate($image, 0, 0, 0);
reset ($cells);
foreach ($cells as $key=>$val) {

$cellheight = (int) (($val/$max) * $graphCanY);
$center = (int)($posX+($cellwidth/2));
imagefilledrectangle($image, $posX, ($posY-$cellheight),

($posX+$cellwidth), $posY, $blue);
$box = ImageTTFbBox($textsize, 0, $font, $key);
$tw = $box[2];

Images On-the-Fly 271

14

18 CH14 11/29/01 3:22 PM Page 271

ImageTTFText($image, $textsize, 0, ($center-($tw/2)),
($totalheight-$ygutter), $black, $font, $key);

$posX += ($cellwidth + $internalgap);
}
imagegif($image);

We begin by creating an image resource with imagecreate() and allocate some colors.
Once again, we loop through our $cells array. We calculate the height of the bar, storing
the result in $cellheight. We calculate the center point (on the x–axis) of the bar, which
is $posX plus half the width of the bar.

We draw the bar, using imagefilledrectangle() and the variables $posX, $posY,
$cellheight, and $cellwidth.

To align our text, we need imageTTFbbox() once again, storing its return array in $box.
We use $box[2] as our working width and assign this to a temporary variable, $tw. We
now have enough information to write the label. We derive our x position from the
$center variable minus half the width of the text, and our y position from the image’s
height minus the margin.

We increment $posX ready to start working with the next bar.

Finally, we output the image.

You can see the complete script in Listing 14.10 and sample output in Figure 14.10.

272 Hour 14

FIGURE 14.10
A dynamic bar chart.

18 CH14 11/29/01 3:22 PM Page 272

LISTING 14.10 A Dynamic Bar Chart

1: <?php
2: header(“Content-type: image/gif”);
3: $cells = array (‘liked’=>200, ‘hated’=>400, ‘indifferent’=>900);
4: $max = max($cells);
5: $total = count ($cells);
6: $totalwidth = 300;
7: $totalheight = 200;
8: $xgutter = 20; // left/right margin
9: $ygutter = 20; // top/bottom margin
10: $internalgap = 10; // space between cells
11: $bottomspace = 30; // gap at the bottom (in addition to margin)
12: $font = “/home/usr/local/jdk1.3.1/jre/lib/fonts/LucidaSansRegular.ttf”;
13: $graphCanX = ($totalwidth - $xgutter*2);
14: $graphCanY = ($totalheight - $ygutter*2 - $bottomspace);// starting draw
➥position x - axis
15: $posX = $xgutter; // starting draw pos - y - axis
16: $posY = $totalheight - $ygutter - $bottomspace;
17: $cellwidth = (int) (($graphCanX - ($internalgap * ($total-1
➥))) / $total) ;
18: $textsize = (int)($bottomspace);
19: // adjust font size
20: foreach ($cells as $key=>$val) {
21: while (true) {
22: $box = ImageTTFbBox($textsize, 0, $font, $key);
23: $textWidth = abs($box[2]);
24: if ($textWidth < $cellwidth)
25: break;
26: $textsize--;
27: }
28: }
29: $image = imagecreate($totalwidth, $totalheight);
30: $red = ImageColorAllocate($image, 255, 0, 0);
31: $blue = ImageColorAllocate($image, 0, 0, 255);
32: $black = ImageColorAllocate($image, 0, 0, 0);
33: $grey = ImageColorAllocate($image, 100, 100, 100);
34: foreach ($cells as $key=>$val) {
35: $cellheight = (int) (($val/$max) * $graphCanY);
36: $center = (int)($posX+($cellwidth/2));
37: imagefilledrectangle($image, $posX, ($posY-$cellheight),
➥($posX+$cellwidth), $posY, $blue);
38: $box = ImageTTFbBox($textsize, 0, $font, $key);
39: $tw = $box[2];
40: ImageTTFText($image, $textsize, 0, ($center-($tw/2)),
41: ($totalheight-$ygutter), $black, $font, $key);
42: $posX += ($cellwidth + $internalgap);
43: }
44: imagegif($image);
45: ?>

Images On-the-Fly 273

14

18 CH14 11/29/01 3:22 PM Page 273

Between lines 3 and 18 we declare and assign to the variables that the script will use.
The foreach loop between line 20 and line 28 is used to determine the required text size.
We finally build the image between lines 29 and 44.

Summary
PHP’s support for the GD library enables you to produce dynamic charts and navigation
elements with relative ease.

In this hour, you learned how to use imagecreate() and imagegif() to create and out-
put an image. You learned how to acquire color resources with imagecolorallocate()
and to use color resources with imagefill() to fill areas with color. You learned how to
use line and shape functions to create outline and filled shapes. You learned how to use
PHP’s support for the FreeType library to work with TrueType fonts, and worked through
an example that wrote text to an image. Finally, you worked through a bar chart example
that brought some of these techniques together into a single script.

Our next hour is timely indeed. We will be looking at dates, and the many useful func-
tions that PHP provides to help work with them.

Q&A
Q Are there any performance issues with regard to dynamic images?

A A dynamically created image will be slower to arrive at the browser than an image
that already exists. Depending on the efficiency of your script, the impact is not
likely to be noticeable to the user if you use dynamic images sparingly.

Workshop
Quiz

1. What header should you send to the browser before building and outputting a GIF
image?

2. What function would you use to acquire an image resource that you can use with
other image functions?

3. What function would you use to output your GIF after building it?

4. What function could you use to acquire a color resource?

5. With which function would you draw a line on a dynamic image?

274 Hour 14

18 CH14 11/29/01 3:22 PM Page 274

6. What function would you use to fill an area in a dynamic image?

7. What function might you use to draw an arc?

8. How might you draw a rectangle?

9. How would you draw a polygon?

10. What function would you use to write a string to a dynamic image (utilizing the
FreeType library)?

Quiz Answers
1. What header should you send to the browser before building and outputting a GIF

image?

To output a GIF image, you should use the header() function to send the line
“Content-type: image/gif” to the browser.

2. What function would you use to acquire an image resource that you can use with
other image functions?

The imagecreate() function returns an image resource.

3. What function would you use to output your GIF after building it?

You can output a GIF with the imagegif() function.

4. What function could you use to acquire a color resource?

You can acquire a color resource with the imagecolorallocate() function.

5. With which function would you draw a line on a dynamic image?

The imageline() function will draw a line.

6. What function would you use to fill an area in a dynamic image?

The imagefill() function will fill an area with color.

7. What function might you use to draw an arc?

You can draw an arc with the imagearc() function.

8. How might you draw a rectangle?

You can draw an outline rectangle with the imagerectangle() function. If you
want to draw a filled rectangle, you can use imagefilledrectangle().

9. How would you draw a polygon?

You can draw a polygon with either imagepolygon() or imagefilledpolygon().

10. What function would you use to write a string to a dynamic image (utilizing the
FreeType library)?

You can write a string to a dynamic image with the imageTTFtext() function.

Images On-the-Fly 275

14

18 CH14 11/29/01 3:22 PM Page 275

Activities
1. Write a script that creates a “progress bar” such as might be used on a fund-raising

site to indicate how much money has been raised in relation to the target.

2. Write a script that writes a headline image based on input from a form or query
string. Allow user input to determine the canvas size, background and foreground
colors, and the presence and offset of a drop shadow.

276 Hour 14

18 CH14 11/29/01 3:22 PM Page 276

HOUR 15
Working with Dates and
Times

Dates are so much part of everyday life that it becomes easy to work with
them without thinking. The quirks of our calendar can be difficult to work
with in programs, though. Fortunately, PHP provides powerful tools for date
arithmetic that make manipulating dates easy.

In this chapter, you will learn:

• How to acquire the current date and time

• How to get information about a date

• How to format date information

• How to test dates for validity

• How to set dates

• How to build a simple calendar script

• How to build a class library to generate date pulldowns in HTML
forms.

19 CH15 11/29/01 3:20 PM Page 277

Getting the Date with time()
PHP’s time() function gives you all the information that you need about the current date
and time. It requires no arguments but returns an integer. This number is a little hard on
the eyes, for us humans, but extremely useful nonetheless.

print time();
// sample output: 1127732399

The integer returned by time() represents the number of seconds elapsed since midnight
GMT on January 1, 1970. This moment is known as the UNIX epoch, and the number of
seconds that have elapsed since then is referred to as a timestamp. PHP offers excellent
tools to convert a timestamp into a form that humans are comfortable with. Even so, isn’t
a timestamp a needlessly convoluted way of storing a date? In fact, the opposite is true.
From just one number, you can extract enormous amounts of information. Even better, a
timestamp can make date arithmetic much easier than you might imagine.

Think of a homegrown date system in which you record days of the month, as well as
months and years. Now imagine a script that needs to add one day to a given date. If this
date happened to be 31 December 1999, rather than add 1 to the date, you would have to
write code to set the day of the month to 1, the month to January, and the year to 2000.
Using a timestamp, you need only add a day’s worth of seconds to your current figure,
and you are done. You can convert this new figure into something more friendly at your
leisure.

Converting a Timestamp with getdate()
Now that you have a timestamp to work with, you must convert it before you present it
to the user. getdate() optionally accepts a timestamp and returns an associative array
containing information about the date. If you omit the timestamp, it works with the cur-
rent timestamp as returned by time(). Table 15.1 lists the elements contained in the
array returned by getdate().

TABLE 15.1 The Associative Array Returned by getdate()

Key Description Example

seconds Seconds past the minute (0–59) 28

minutes Minutes past the hour (0–59) 7

hours Hours of the day (0–23) 12

mday Day of the month (1–31) 20

wday Day of the week (0–6) 4

278 Hour 15

19 CH15 11/29/01 3:20 PM Page 278

TABLE 15.1 continued

Key Description Example

mon Month of the year (1–12) 1

year Year (4 digits) 2000

yday Day of year (0–365) 19

weekday Day of the week (name) Thursday

month Month of the year (name) January

0 Timestamp 948370048

Listing 15.1 uses getdate() (line 7) to extract information from a timestamp, using a
foreach statement to print each element (line 8). You can see a typical output in Figure
15.1. getdate() returns the date according to the local time zone.

LISTING 15.1 Acquiring Date Information with getdate()

1: <html>
2: <head>
3: <title>Listing 15.1 Acquiring date information with getdate()</title>
4: </head>
5: <body>
6: <?php
7: $date_array = getdate(); // no argument passed so today’s date will be used
8: foreach ($date_array as $key => $val) {
9: print “$key = $val
”;
10: }
11: ?>
12: <hr>
13: <?
14: print “Today’s date:
➥“.$date_array[‘mday’].”/”.$date_array[‘mon’].”/”.$date_array[‘year’].”<p>”;
15: ?>
16: </body>
17: </html>

Working with Dates and Times 279

15

19 CH15 11/29/01 3:20 PM Page 279

Converting a Timestamp with date()
You can use getdate() when you want to work with the elements that it outputs.
Sometimes, though, you only want to display the date as a string. The date() function
returns a formatted string representing a date. You can exercise an enormous amount of
control over the format that date() returns with a string argument that you must pass to
it. In addition to the format string, date() optionally accepts a timestamp. Table 15.2
lists the codes that a format string can contain. Any other data you include in the format
string passed to date() will be included in the return value.

TABLE 15.2 Format Codes for Use with date()

Format Description Example

a ‘am’ or ‘pm’ lowercase pm

A ‘AM’ or ‘PM’ uppercase PM

d Day of month (number with leading zeroes) 20

D Day of week (three letters) Thu

F Month name January

h Hour (12-hour format—leading zeroes) 12

H Hour (24-hour format—leading zeroes) 12

g Hour (12-hour format—no leading zeroes) 12

280 Hour 15

FIGURE 15.1
Using getdate().

19 CH15 11/29/01 3:20 PM Page 280

TABLE 15.2 continued

Format Description Example

G Hour (24-hour format—no leading zeroes) 12

i Minutes 47

j Day of the month (no leading zeroes) 20

l Day of the week (name) Thursday

L Leap year (‘1’ for yes, ‘0’ for no) 1

m Month of year (number—leading zeroes) 01

M Month of year (three letters) Jan

n Month of year (number—no leading zeroes) 1

s Seconds of hour 24

r Full date standardized to RFC 822 (http:// Wed, 26 Sep 2001
www.faqs.org/rfcs/rfc822.html) 15:15:14 +0100

U Timestamp 948372444

y Year (two digits) 00

Y Year (four digits) 2000

z Day of year (0–365) 19

Z Offset in seconds from GMT 0

Listing 15.2 puts a few format codes to the test.

LISTING 15.2 Formatting a Date with date()

1: <html>
2: <head>
3: <title>Listing 15.2 Formatting a date with date()</title>
4: </head>
5: <body>
6: <?php
7: print date(“m/d/y G.i:s
”, time());
8: // 09/26/01 15.46:30
9: print “
”;
10: print “Today is “;
11: print date(“j of F Y, \a\\t g.i a”, time());
12: // Today is 26 of September 2001, at 3.46 pm
13: ?>
14: </body>
15: </html>

Working with Dates and Times 281

15

19 CH15 11/29/01 3:20 PM Page 281

In Listing 15.2 we call date() twice, the first time on line 7 to output an abbreviated date
format, the second on line 11 for a longer format.

Although the format string looks arcane, it is easy to build. If you want to add a string to
the format that contains letters that are format codes, you can escape them by placing a
backslash (\) in front of them. For characters that become control characters when
escaped, you must escape the backslash that precedes them. “\n” should become “\\n”,
for example, if you want to include an “n” in the format string. date() returns informa-
tion according to your local time zone. If you want to format a date in GMT, you should
use the gmdate() function, which works in exactly the same way.

Creating Timestamps with mktime()
You can already get information about the current time, but you cannot yet work with
arbitrary dates. mktime() returns a timestamp that you can then use with date() or
getdate(). mktime() accepts up to six integer arguments in the following order:

hour

minute

second

month

day of month

year

Listing 15.3 uses mktime() to get a timestamp that we then use with the date() function.

LISTING 15.3 Creating a Timestamp with mktime()

1: <html>
2: <head>
3: <title>Listing 15.3 Creating a timestamp with mktime()</title>
4: </head>
5: <body>
6: <?php
7: // make a timestamp for 1/5/99 at 2.30 am
8: $ts = mktime(2, 30, 0, 5, 1, 1999);
9: print date(“m/d/y G.i:s
”, $ts);
10: // 05/01/99 2.30:00
11: print “
”;
12: print “The date is “;
13: print date(“j of F Y, \a\\t g.i a”, $ts);

282 Hour 15

19 CH15 11/29/01 3:20 PM Page 282

LISTING 15.3 continued

14: // The date is 1 of May 1999, at 2.30 am
15: ?>
16: </body>
17: </html>

We call mktime() on line 8 assigning the returned timestamp to the $ts variable. We can
then use date() on lines 9 and 13 to output formatted versions of the date using $ts. You
can choose to omit some or all of the arguments to mktime(), and the value appropriate
to the current time will be used instead. mktime() will also adjust for values that go
beyond the relevant range, so an hour argument of 25 will translate to 1.00am on the day
after that specified in the month, day, and year arguments.

Testing a Date with checkdate()
You may need to accept date information from user input. Before you work with this
date, or store it in a database, you should check that the date is valid. checkdate()
accepts three integers: month, day, and year. checkdate() returns true if the month is
between 1 and 12, the day is acceptable for the given month and year (accounting for
leap years, and the year is between 0 and 32767. Be careful, though, a date may well
be valid but not acceptable to other date functions. For example, the following line
returns true:

checkdate(4, 4, 1066)

If you were to attempt to build a date with mktime() using these values, you would end
up with a timestamp of –1. As a rule of thumb, do not use mktime() with years below
1902 and be cautious of using date functions with any date before 1970.

An Example
Let’s bring most of these functions together into an example. We are going to build a cal-
endar that can display the dates for any month between 1980 and 2010. The user will be
able to select both month and year with pull-down menus, and the dates for that month
will be organized according to the days of the week. We will use two global variables
$month and $year, which should be filled by data by the user. We will use these to build
a timestamp based on the first day of the month defined. If the input is invalid or absent,
we will default to the first day of the current month.

Working with Dates and Times 283

15

19 CH15 11/29/01 3:20 PM Page 283

Checking User Input
When the user comes to our page for the first time, he or she will not be submitting any
information. We must therefore make sure that our script can handle the fact that the
$month and $year variables may not be defined. We could use the isset() function for
this. isset() returns false if the variable it has been passed has not been defined.
However, we choose instead to use checkdate(). Listing 15.4 shows the fragment of
code that checks the $month and $year variables and builds a timestamp based on them.

LISTING 15.4 Checking User Input for the Calendar Script

1: <?php
2: if (! checkdate($month, 1, $year)) {
3: $nowArray = getdate();
4: $month = $nowArray[‘mon’];
5: $year = $nowArray[‘year’];
6: }
7: $start = mktime (12, 0, 0, $month, 1, $year);
8: $firstDayArray = getdate($start);
9: ?>

Listing 15.4 is a fragment of a larger script so it does not produce any output itself. In
our if statement on line 2, we use checkdate() to test the $month and $year variables.
If they have not been defined, checkdate() returns false because you cannot make a
valid date from undefined month and year arguments. This approach has the added bonus
of ensuring that data that has been submitted by the user will make a valid date.

If the date is not valid, we use getdate() on line 3 to create an associative array based
on the current time. We then set values for $month and $year ourselves, using the array’s
mon and year elements (lines 4 and 5).

Now that we are sure that we have valid data in $month and $year, we can use mktime()
to create a timestamp for the first day of the month (line 7). We will need information
about this timestamp later on, so on line 8 we create a variable called $firstDayArray
that will store an associative array returned by getdate() and based on this timestamp.

Building the HTML Form
We need to create an interface by which users can ask to see data for a month and year.
For this, we will use SELECT elements. Although we could hard-code these in HTML, we
must also ensure that the pull-downs default to the currently chosen month, so we will
dynamically create these pull-downs, adding a SELECT attribute to the OPTION element
where appropriate. The form is generated in Listing 15.5.

284 Hour 15

19 CH15 11/29/01 3:20 PM Page 284

LISTING 15.5 Building the HTML Form for the Calendar Script

1: <?php
2: if (! checkdate($month, 1, $year)) {
3: $nowArray = getdate();
4: $month = $nowArray[‘mon’];
5: $year = $nowArray[‘year’];
6: }
7: $start = mktime (12, 0, 0, $month, 1, $year);
8: $firstDayArray = getdate($start);
9: ?>
10: <html>
11: <head>
12: <title><?php print “Calendar: “.$firstDayArray[‘month’]
13: .” “.$firstDayArray[‘year’] ?></title>
14: <head>
15: <body>
16: <form method=”post”>
17: <select name=”month”>
18: <?php
19: $months = Array(“January”, “February”, “March”, “April”,
20: “May”, “June”, “July”, “August”, “September”,
21: “October”, “November”, “December”);
22: for ($x=1; $x <= count($months); $x++) {
23: print “\t<option value=\”$x\””;
24: print ($x == $month)?” SELECTED”:””;
25: print “>”.$months[$x-1].”\n”;
26: }
27: ?>
28: </select>
29: <select name=”year”>
30: <?php
31: for ($x=1980; $x<2010; $x++) {
32: print “\t<option”;
33: print ($x == $year)?” SELECTED”:””;
34: print “>$x\n”;
35: }
36: ?>
37: </select>
38: <input type=”submit” value=”Go!”>
39: </form>
40: </body>
41: </html>

Having created the $start timestamp and the $firstDayArray date array (lines 2 to 8),
we go on to write the HTML for the page. Notice that we use $firstDayArray to add the
month and year to the TITLE element on lines 12 and 13. On line 16 we begin our form,
taking advantage of the fact that leaving the ACTION argument out of a FORM tag will

Working with Dates and Times 285

15

19 CH15 11/29/01 3:20 PM Page 285

cause the form to submit to its containing page by default. To create the SELECT element
for the month pull-down, we drop back into PHP mode on line 18 to write the individual
OPTION tags. First we create an array called $months on line 19 that contains the 12
month names. We then loop through this, creating an OPTION tag for each one (line 23).
This would probably be an overcomplicated way of writing a simple SELECT element
were it not for the fact that we are testing $x (the counter variable in the for statement)
against the $month variable on line 24. If $x and $month are equivalent, we add the string
SELECTED to the OPTION tag, ensuring that the correct month will be selected automati-
cally when the page loads. We use a similar technique to write the year pull-down on
lines 29 to 37. Finally, back in HTML mode, we create a submit button on line 38.

We should now have a form that can send the month and year parameters to itself, and
will default either to the current month and year, or the month and year previously cho-
sen. You can see this in Figure 15.2.

286 Hour 15

FIGURE 15.2
The calendar form.

Creating the Calendar Table
We now need to create a table and populate it with dates for the chosen month. We do
this in Listing 15.6, which represents the complete calendar script.

LISTING 15.6 The Complete Calendar Script

1: <?php
2: define(“ADAY”, (60*60*24));
3: if (! checkdate($month, 1, $year)) {

19 CH15 11/29/01 3:20 PM Page 286

LISTING 15.6 continued

4: $nowArray = getdate();
5: $month = $nowArray[‘mon’];
6: $year = $nowArray[‘year’];
7: }
8: $start = mktime (12, 0, 0, $month, 1, $year);
9: $firstDayArray = getdate($start);
10: ?>
11: <html>
12: <head>
13: <title><?php print “Calendar: “.$firstDayArray[‘month’]
14: .” “.$firstDayArray[‘year’] ?></title>
15: </head>
16: <body>
17: <form method=”post”>
18: <select name=”month”>
19: <?php
20: $months = Array(“January”, “February”, “March”, “April”,
21: “May”, “June”, “July”, “August”, “September”,
22: “October”, “November”, “December”);
23: for ($x=1; $x <= count($months); $x++) {
24: print “\t<option value=\”$x\””;
25: print ($x == $month)?” SELECTED”:””;
26: print “>”.$months[$x-1].”\n”;
27: }
28: ?>
29: </select>
30: <select name=”year”>
31: <?php
32: for ($x=1980; $x<2010; $x++) {
33: print “\t<option”;
34: print ($x == $year)?” SELECTED”:””;
35: print “>$x\n”;
36: }
37: ?>
38: </select>
39: <input type=”submit” value=”Go!”>
40: </form>
41: <p>
42: <?php
43: $days = Array(“Sunday”, “Monday”, “Tuesday”, “Wednesday”,
44: “Thursday”, “Friday”, “Saturday”);
45: print “<TABLE BORDER = 1 CELLPADDING=5>\n”;
46: foreach ($days as $day)
47: print “\t<td>$day</td>\n”;
48: for ($count=0; $count < (6*7); $count++) {
49: $dayArray = getdate($start);
50: if ((($count) % 7) == 0) {
51: if ($dayArray[‘mon’] != $month)

Working with Dates and Times 287

15

19 CH15 11/29/01 3:20 PM Page 287

LISTING 15.6 continued

52: break;
53: print “</tr><tr>\n”;
54: }
55: if ($count < $firstDayArray[‘wday’] || $dayArray[‘mon’] != $month)
56: print “\t<td>
</td>\n”;
57: else {
58: print “\t<td>”.$dayArray[‘mday’].” “. $dayArray[‘month’].”</td>\n”;
59: $start += ADAY;
60: }
61: }
62: print “</tr></table>”;
63: ?>
64: </body>
65: </html>

Because the table will be indexed by days of the week, we loop through an array of day
names created on line 43, printing each to its own cell on line 47. All the real magic of
the script happens in the final for statement on line 48.

We initialize a variable called $count and ensure that the loop will end after 42 itera-
tions. This is to make sure that we will create enough cells to populate with date infor-
mation. Within the loop, we transform the $start variable into a date array with
getdate(), assigning the result to $dayArray (line 49). Although $start is the first day
of the month during the loop’s initial execution, we will increment this timestamp by 24
hours for every iteration.

On line 50 we test the $count variable against 7 using the modulus operator. The block
of code belonging to this if statement will therefore only be run when $count is either 0
or a multiple of 7. This is our way of knowing whether we should end the loop altogether
or start a new row.

After we have established that we are in the first iteration or at the end of a row, we can
go on to make another test on line 51. If the mon (month number) element of the
$dayArray is no longer equivalent to the $month variable, we must have finished.
Remember that $dayArray contains information about the $start timestamp, which is in
turn our current place in the month that we are displaying. When $start goes beyond the
current month, $dayArray[‘mon’] will hold a different figure than the $month number
provided by user input. Our modulus test demonstrated that we are at the end of a row,
and the fact that we are in a new month means that we can leave the loop altogether.

Assuming, however, that we are still in the month that we are displaying, we end the row
and start a new one on line 53.

288 Hour 15

19 CH15 11/29/01 3:20 PM Page 288

In the next if statement on line 55, we determine whether to write date information to a
cell. Not every month begins on a Sunday, so it’s likely that we will start with an empty
cell or two. Few months will finish at the end of one of our rows, so it’s also likely that
we will need to write a few empty cells before we close the table. We have stored infor-
mation about the first day of the month in $firstDayArray; in particular, we can access
the number of the day of the week in $firstDayArray[‘wday’]. If $count is smaller
than this number, then we know that we haven’t yet reached the correct cell for writing.
By the same token, if the $month variable is no longer equal to $dayArray[‘mon’], we
know that we have reached the end of the month (but not the end of the row, as we deter-
mined in our earlier modulus test). In either case, we write an empty cell to the browser
on line 56.

In the final else clause on line 57, we can do the fun stuff. We have already ascertained
that we are within the month that we want to list and that the current day column
matches the day number stored in $firstDayArray[‘wday’]. Now we must use the
$dayArray associative array that we established early in the loop to write the day of the
month and the month name to a cell.

Finally, on line 59, we need to increment the $start variable, which contains our date
stamp. We simply add the number of seconds in a day to it (we have defined this value at
the top of the script), and we’re ready to begin the loop again with a new value in $start
to be tested. You can see the output from a call to this script in Figure 15.3.

Working with Dates and Times 289

15

FIGURE 15.3
The calendar script.

19 CH15 11/29/01 3:20 PM Page 289

A Calendar Library
Because dates are so ubiquitous in web interfaces and because working with dates is
often comparatively non-trivial, now would seem to be a good time to look at a class
library to automate some of the work that dates can present. Along the way we will
revisit some of the techniques we have already covered.

The simple date_pulldown library was born during the creation of a freelance job listing
site. The project necessarily involved the presentation of multiple date pulldowns allow-
ing employers to select both the start and end of contract periods, and for candidates to
indicate periods of availability. A date pulldown, in this instance, is three separate select
elements, one for day of the month, one for month and another for year.

When a user submits a page, the script will sanity check his input. If there is a problem,
then the page will need to be represented with the user’s input still in place. This is very
easy to accomplish with textboxes but more of a chore with pulldown menus. Pages that
display information pulled from a database present a similar problem. Data can be
entered straight into the value attributes of text type input elements. Dates, though will
need to be split into month, day, and year values, and then the correct option elements
selected.

The date_pulldown class aims to make date pulldowns sticky (to remember settings
from page to page), and easy to set.

In order to create our class we first need to declare it, and to create a constructor. We can
also declare some class properties.

class date_pulldown {
var $name;
var $timestamp = -1;
var $months = array(“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”,

“Jul”, “Aug”, “Sep”, “Oct”, “Nov”, “Dec”);
var $yearstart = -1;
var $yearend = -1;

function date_pulldown($name) {
$this->name = $name;

}
// ...

We declare the $name property. This will be used to the name the HTML select ele-
ments. The $timestamp property will hold a Unix timestamp. The $months array prop-
erty contains the strings we will display in our month pulldown. $yearstart and
$yearend both set to –1 pending initialization. They will eventually hold the first and last
years of the range that will be presented in the year pulldown.

290 Hour 15

19 CH15 11/29/01 3:20 PM Page 290

The constructor is very simple. It accepts a string, which we then use to assign to the
$name property.

Now that we have the basis of our class we need a set of methods by which the client
code can set the date.

// ...
function setDate_global() {

if (! $this->setDate_array($GLOBALS[$this->name]))
return $this->setDate_timestamp(time());

return true;
}

function setDate_timestamp($time) {
$this->timestamp = $time;
return true;

}

function setDate_array($inputdate) {
if (is_array($inputdate) &&

isset($inputdate[‘mon’]) &&
isset($inputdate[‘mday’]) &&
isset($inputdate[‘year’])) {
$this->timestamp = mktime(11, 59, 59,

$inputdate[‘mon’], $inputdate[‘mday’],
➥$inputdate[‘year’]);

return true;
}

return false;
}

// ...

Of these methods setDate_timestamp() is the simplest. It requires a Unix timestamp
and assigns it to the $timestamp property.

setDate_array() expects an associative array with at least three keys ‘mon’, ‘mday’,
and ‘year’. These fields will contain data in the same format as in the array returned by
getdate(). This means that setDate_array() will accept a hand-built array like

array(‘mday’=> 5, ‘mon’=>7, ‘year’ => 1999);

or the result of a call to getdate()

getdate(931172399);

It is no accident that the pulldowns we will be building later will be constructed to pro-
duce an array containing ‘mon’, ‘mday’, and ‘year’ fields. The method uses the mktime()
function to construct a timestamp which is then assigned to the $timestamp variable.

Working with Dates and Times 291

15

19 CH15 11/29/01 3:20 PM Page 291

The setDate_global() method is called by default. It attempts to find a global variable
with the same name as the object’s $name property. This is passed to setDate_array().
If a global variable of the right structure is discovered then it is used to create the
$timestamp variable. Otherwise the current date is used.

The range for days and months is fixed, but years are a different matter. We create a few
methods to allow the client coder to set her own range of years (although we also provide
default behavior).

// ...
function setYearStart($year) {

$this->yearstart = $year;
}

function setYearEnd($year) {
$this->yearend = $year;

}

function getYearStart() {
if ($this->yearstart < 0) {

$nowarray = getdate(time());
$this->yearstart = $nowarray[‘year’]-5;

}
return $this->yearstart;

}

function getYearEnd() {
if ($this->yearend < 0) {

$nowarray = getdate(time());
$this->yearend = $nowarray[‘year’]+5;

}
return $this->yearend;

}
// ...

The setYearStart() and setYearEnd() methods are straightforward. A year is directly
assigned to the appropriate property. getYearStart() tests whether or not the
$yearstart property has been set. If not, it assigns a $yearstart 5 years before the cur-
rent year. getYearEnd() performs a similar operation. We’re now ready to create the
business end of the class:

// ...
function output() {

if ($this->timestamp < 0)
$this->setDate_global();

$datearray = getdate($this->timestamp);
$out = $this->day_select($this->name, $datearray);
$out .= $this->month_select($this->name, $datearray);
$out .= $this->year_select($this->name, $datearray);

292 Hour 15

19 CH15 11/29/01 3:20 PM Page 292

return $out;
}

function day_select($fieldname, $datearray) {
$out = “<select name=\”$fieldname”.”[mday]\”>\n”;
for ($x=1; $x<=31; $x++)

$out .= “<option value=\”$x\””.($datearray[‘mday’]==($x)
?” SELECTED”:””).”>”.sprintf(“%02d”, $x) .”\n”;

$out .= “</select>\n”;
return $out;

}

function month_select($fieldname, $datearray) {
$out = “<select name=\”$fieldname”.”[mon]\”>\n”;
for ($x = 1; $x <= 12; $x++)

$out .= “<option value=\””.($x).”\””.($datearray[‘mon’]==($x)
?” SELECTED”:””).”> “.$this->months[$x-1].”\n”;

$out .= “</select>\n”;
return $out;

}

function year_select($fieldname, $datearray) {
$out = “<select name=\”$fieldname”.”[year]\”>”;
$start = $this->getYearStart();
$end = $this->getYearEnd();
for ($x= $start; $x < $end; $x++)

$out .= “<option value=\”$x\””.($datearray[‘year’]==($x)
?” SELECTED”:””).”>$x\n”;

$out .= “</select>\n”;
return $out;

}
}

The output() method orchestrates most of this code. It first checks the $timestamp
property. Unless the client coder has called one of the setDate methods it will be set to
–1 and setDate_global() will be called by default. The timestamp is passed to the
getdate() function to construct a date array, and a method is called for each pulldown
to be produced.

day_select() simply constructs an HTML select element with an option element for
each of the 31 possible days in a month. The object’s ‘current’ date is stored in the
$datearray argument variable which is used during the construction of the element to
set the selected attribute of the relevant option element. Notice that we use a method
called sprintf(). This formats the day number, adding a leading zero to days 1 to 9.
You can find out more about the sprintf() function in Hour 17 “Working with Strings.”
month_select() and year_select() use similar logic to construct the month and year
pulldowns.

Working with Dates and Times 293

15

19 CH15 11/29/01 3:20 PM Page 293

Why did we break down the output code into four methods, rather than simply create one
block of code? When we build a class we have two kinds of user in mind. The client
coder who would want to instantiate a date_pulldown object, and the client coder who
would want to subclass the date_pulldown class to refine its functionality. For the for-
mer we want to provide a simple and clear interface to the class’s functionality. The
coder can instantiate an object, set its date, and call output(). All complexity is hidden
away. For the subclassing coder we want to make it easy to change discrete elements of
the class’s functionality. By putting all the output code into one method we would force a
child class that needed to tweak output to reproduce a lot of code that is perfectly usable.
By breaking up this code into discrete methods, we allow for subclasses that can change
limited aspects of functionality without disturbing the whole. If a child class needed to
represent the year pulldown as two radio buttons, for example, then only the year_
select() method would need to be overridden.

In Listing 15.7 we create some code that calls the library class.

LISTING 15.7 Using the date_pulldown Class

1: <html>
2: <head>
3: <title>Listing 15.7 Using the date_pulldown Class</title>
4: </head>
5: <?php
6: include(“date_pulldown.class.php”);
7: $date1 = new date_pulldown(“fromdate”);
8: $date2 = new date_pulldown(“todate”);
9: $date3 = new date_pulldown(“foundingdate”);
10: $date3->setYearStart(1972);
11: if (empty($foundingdate))
12: $date3->setDate_array(array(‘mday’=>26, ‘mon’=>4, ‘year’=>1984));
13: ?>
14: <body>
15:
16: <form>
17: From:

18: <?php print $date1->output(); ?><p>
19:
20: To:

21: <?php print $date2->output(); ?><p>
22:
23: Company founded:

24: <?php print $date3->output(); ?><p>
25:
26: <input type=”submit” valu=”do it”>
27: </form>
28:
29: </body>
30: </html>

294 Hour 15

19 CH15 11/29/01 3:20 PM Page 294

Notice that we’ve tucked the class itself away in a library file called date_pulldown.
class.php which we access using the include() statement on line 6. We use the class’s
default behavior for all of the pulldowns apart from ‘foundingdate’. For this object we
override the default year start, setting it to 1972 on line 10. We also define
an arbitrary date on line 12 for this pulldown which will be displayed until the form is
submitted.

Working with Dates and Times 295

15

FIGURE 15.4
The pulldowns
generated by the
date_pulldown class.

Summary
In this hour, you learned how to use time() to get a date stamp for the current date and
time. You learned how to use getdate() to extract date information from a timestamp
and date() to convert a timestamp into a formatted string. You learned how to create a
timestamp using mktime(). You learned how to test a date for validity with checkdate().
You worked through an example script, which applies some of the tools you have looked
at and built a class library that automates some of the more tedious aspects of working
with dates in forms.

In the next hour we will be getting our hands dirty with some of the more advanced
issues surrounding data types and arrays.

19 CH15 11/29/01 3:20 PM Page 295

Q&A
Q Are there any functions for converting between different calendars?

A Yes. PHP provides an entire suite of functions that cover alternative calendars.
You can read about these in the official PHP manual at http://www.php.net/
manual/ref.calendar.php.

Workshop
Quiz

1. How would you acquire a UNIX timestamp representing the current date and time?

2. What function accepts a timestamp and returns an associative array representing
the given date?

3. What function would you use to format date information?

4. How would you acquire a timestamp for an arbitrary date?

5. What function could you use to check the validity of a date?

Quiz Answers
1. How would you acquire a UNIX timestamp representing the current date and time?

The time() function returns the current date in timestamp format.

2. What function accepts a timestamp and returns an associative array representing
the given date?

The getdate() function returns an associative array whose elements contain
aspects of the given date.

3. What function would you use to format date information?

The date() function is used to format a date.

4. How would you acquire a timestamp for an arbitrary date?

Given arguments representing the hour, minute, second, month, day of month, and
year, the mktime() function returns a UNIX timestamp.

5. What function could you use to check the validity of a date?

You can check a date with the checkdate() function.

Activity
1. Create a birthday countdown script. Given form input of month, day, and year, out-

put a message that tells the user how many days, hours, minutes, and seconds until
the big day.

296 Hour 15

19 CH15 11/29/01 3:20 PM Page 296

HOUR 16
Working with Data

In this hour, we are going to delve a little deeper into data testing and
manipulation. We will look again at data types. PHP handles data types for
you automatically, but an understanding of how data is handled in your
scripts is essential if you are to build robust online applications. We will also
return to arrays and discover some of the more advanced features that PHP
provides to manipulate and sort these data types.

In this hour, you will learn:

• How to convert data from one type to another

• How PHP automatically converts data for you in expressions

• More ways of testing data types

• Why an understanding of data types can be useful

• How to test whether a variable has been set

• Another method of traversing an array

• How to check that an element exists in an array

• How to transform and filter array values

• How to custom sort arrays

20 CH16 11/29/01 3:19 PM Page 297

Data Types Revisited
You learned about PHP’s data types in some detail in Hour 4, “The Building Blocks.”
There is a little more ground to cover, however. This section examines a few more func-
tions for checking the data type of a variable and looks at the conditions under which
PHP automatically converts data types for you.

A Recap
You already know that PHP variables can contain values that are integers, doubles,
strings, booleans, objects, or arrays. And that there are two special types: NULL and
resource. You can test the type of any variable with the gettype() function. gettype()
requires a value of any type, and returns a string describing the value’s data type:

$data = 454;
print gettype($data);
// prints “integer”

You can change variables from one type to another, either by casting or with the set-
type() function. To cast a variable, place the name of a data type in brackets before the
variable or value you want to convert. By casting a variable, you do not change the con-
tents of a variable in any way. Instead, a converted copy is returned to you. The follow-
ing code fragment casts a double to an integer:

$data = 4.333;
print (integer) $data;
// prints 4

The $data variable still contains the double that we assigned to it. We have merely
printed the return value of the cast.

To transform the type of a variable, you can use the settype() function. settype()
requires the name of a data type and a variable to convert:

$data = 4.333;
settype($data, integer);
print $data;
// prints 4

The $data variable now contains an integer. settype() is a rare function in PHP in that
it transforms one of the arguments you pass it in your scope as well as its own.

Converting Complex Types
You have already looked in some detail at the process of converting between simple data
types (scalars and strings). What happens when you convert between simple data types
such as doubles or integers and more complex types such as objects and arrays?

298 Hour 16

20 CH16 11/29/01 3:19 PM Page 298

When you cast a simple data type to an array, an array is created, with the original value
in the first element:

$str = “this is my string”;
$arr_str = (array) $str;
print $arr_str[0];
// prints “this is my string”

When you cast a scalar or string variable to an object, an object is created with a single
property called scalar. This contains the original value:

$str = “this is my string”;
$arr_str = (object) $str;
print $arr_str->scalar;
// prints “this is my string”

Things get a little more interesting when you convert between arrays and objects. When
you convert an array to an object, a new object is created with a property for each key in
the array:

$addresses = array (street => “Williams Street”, town => “Stockton”);
$obj_addresses = (object) $addresses;
print $obj_addresses->street;
// prints “Williams Street”

Conversely, converting an object to an array creates an array with an element for each
object property. Methods are discarded.

class Point {
var $x;
var $y;
function Point($x, $y) {

$this->x = $x;
$this->y = $y;

}
}
$point = new Point(5, 7);
$array_point = (array) $point;
print $array_point[‘x’];
// prints 5

Automatic Conversion of Data Types
If you build an expression that has values of two different data types as operands, PHP
automatically converts one to the type of the other to arrive at a result. You have probably
taken advantage of this already without thinking about it. Variables compiled from form
input will always be strings, but you might have used them in a test expression or a cal-
culation as if they were numbers.

Working with Data 299

16

20 CH16 11/29/01 3:19 PM Page 299

Suppose that you have asked a user to tell the number of hours they spend online a week,
storing the input in a variable called $hours. This initially will be stored as a string.

$hours = “15”;
if ($hours == 15)

print “As a frequent user you may qualify for a discount”;

In the test for equivalence, the string “15” is cast to an integer, and the test expression
resolves to true.

The rules for automatic conversion are relatively simple. In the context of integers or
doubles, strings will be converted according to their contents. If a string begins with an
integer, it will be converted to that number. So the following line will give 80:

4 * “20mb”;

If a string does not begin with a number, it will be converted to 0. So this line will give
0:

4 * “about 20mb”;

If a string contains a number followed by a dot, it will be converted into a double. So the
following example will give 4.8:

4 * “1.2”;

The autoincrement and autodecrement operators are a special case when applied to
strings. Incrementing a string adds 1 to the converted value of the string as you would
expect, but only if the string contains nothing but numbers. The new value will itself be a
string:

$str = “4”;
$str++;
print $str; // prints 5
print gettype($str); // prints “string”

If you attempt to autoincrement a string that contains letters, the final character alone
will be incremented:

$str = “hello”;
$str++;
print $str; // prints “hellp”

Compare this with another approach to incrementing a string:

$str = “hello”;
$str += 1;
print $str; // prints 1;
print gettype($str); // prints “integer”

300 Hour 16

20 CH16 11/29/01 3:19 PM Page 300

In the previous example, $str is converted to the integer 0 when we add 1 to it. The
result of this operation, 1, is stored back in $str. $str will now hold an integer.

Automatic conversions between integers and doubles are more straightforward. If either
operand in an expression is a double, then the other operand will be converted to a dou-
ble, and the result will be a double:

$result = (1 + 20.0);
print gettype ($result);
// prints “double”

It is important to note that when automatic conversions occur for the purposes of evaluat-
ing an expression, neither operand in the expression is itself changed. If an operand
needs to be converted, it is a transformed copy that will be used as part of the expression.

Testing Data Types
You’ve already seen that you can test any data type with the gettype() function. This is
useful for debugging because it tells you exactly what type any variable is. Often,
though, you will only want to check whether a variable contains a specific type. PHP
provides a special function corresponding to each data type. These functions accept a
variable or value and return a boolean. Table 16.1 lists these functions.

TABLE 16.1 Functions to Test Data Types

Function Description

is_array() Returns true if the argument is an array

is_bool() Returns true if the argument is boolean

is_double() Returns true if the argument is a double

is_int() Returns true if the argument is an integer

is_object() Returns true if the argument is an object

is_string() Returns true if the argument is a string

is_null() Returns true if the argument is null

is_resource() Returns true if the argument is a resource

These functions make testing data types a little easier.

if (gettype($var) == “array”)
print “it’s an array”;

is equivalent to

if (is_array($var))
print “it’s an array”;

Working with Data 301

16

20 CH16 11/29/01 3:19 PM Page 301

The second way of testing the $var variable is a little more compact and is nicely
intuitive.

More Ways of Changing Type
You have already seen two ways of converting data types. You can either cast a value or
use the settype() function. In addition to these techniques, PHP provides functions to
convert values into integers, doubles, and strings. These functions accept values of any
type apart from array or object and return a converted value. Table 16.2 lists these func-
tions.

TABLE 16.2 Functions to Convert Data Types

Function Description

doubleval() Accepts a value and returns double equivalent

intval() Accepts a value and returns integer equivalent

strval() Accepts a value and returns string equivalent

Why Are Data Types Important?
PHP does not demand that you declare a data type when you create a variable. It implic-
itly converts types for you when you use variables of different data types in expressions.
If PHP makes things so easy, why is it important to be able to keep track of the types of
data you are storing?

It is often a good idea to keep track of the data that your variables store to prevent errors.
Imagine that you are writing a function that prints the keys and values of an array to the
browser. PHP is relaxed about arguments to functions, so you can’t demand that the call-
ing code pass you an array when you declare your function.

function printArray($array) {
foreach ($array as $key => $val)

print “$key: $val<P>”;
}

The preceding function will work nicely if the function is called with an array argument.

printArray(array(4, 4, 55));

If you carelessly pass a scalar, you will get an error, as in the following example:

printArray(4);
// Warning: Non array argument supplied for foreach() in
// /home/matt/htdocs/php-book/data/test2.php on line 5

302 Hour 16

20 CH16 11/29/01 3:19 PM Page 302

By testing the data type of the supplied argument, you can make the function more
accommodating. You could make the function quietly return if it receives a scalar value:

function printArray($array) {
if (! is_array($array))

return false;
foreach ($array as $key => $val)

print “$key: $val<P>”;
return true;

}

The calling code can now test the return value of the function to ascertain whether it was
able to complete its task.

You could even use a cast to convert scalar data into an array:

function printArray($array) {
if (! is_array($array))

$array = (array) $array;
foreach ($array as $key => $val)

print “$key: $val<P>”;
return true;

}

The printArray() function has become vastly more flexible. It will now output any data
type in an array context, even an object.

Checking data types can also be useful when testing the return value of some functions.
Some languages, such as Java, always return a predetermined data type from any
method. PHP has no such restriction. This flexibility can occasionally lead to ambigui-
ties.

You saw an example of this in Hour 10, “Reading and Writing to Files.” The readdir()

function returns false when it has reached the end of the directory that you are reading,
and a string containing the name of an item in the directory at all other times.
Traditionally, you would use a construction similar to

$dh = opendir(“mydir”);
while ($name = readdir($dh))

print “$name
”;
closedir($dh);

to read the items in a directory. If a directory is named 0, however, the while statement’s
test expression will evaluate this string to false, ending the listing. By testing the data
type of the return value of readdir(), you can circumvent this problem:

$dh = opendir(“mydir”);
while (is_string($name = readdir($dh)))

print “$name
”;
closedir($dh);

Working with Data 303

16

20 CH16 11/29/01 3:19 PM Page 303

Variable Variables
PHP provides enormous flexibility when it comes to working with variable names. In
fact you can use a string variable to stand in for the name portion of another variable. So,
when assigning a value to a variable

$user = “bob”;

is equivalent to

$holder=”user”;
$$holder = “bob”;

The $holder variable contains the string “user”, so you can think of $$holder as a dol-
lar sign followed by the value of $holder. PHP interprets this as $user.

When accessing a dynamic variable, the syntax is exactly the same:

$user =”bob”;
print $user;

is equivalent to

$user =”bob”;
$holder=”user”;
print $$holder;

If you want to print a dynamic variable within a string, however, you need to give the
interpreter some help. The following print statement:

$user=”bob”;
$holder=”user”;
print “$$holder”;

does not print “bob” to the browser as you might expect. Instead it prints the strings “$”
and “user” together to make “$user”. When you place a variable within quotation
marks, PHP helpfully inserts its value. In this case, PHP replaces $holder with the string
“user”. The first dollar sign is left in place. To make it clear to PHP that a variable
within a string is part of a dynamic variable, you must wrap it in braces. The print state-
ment in the following fragment:

$user=”bob”;
$holder=”user”;
print “${$holder}”;

now prints “bob”, which is the value contained in $user.

304 Hour 16

20 CH16 11/29/01 3:19 PM Page 304

References to Variables
By default, variables are assigned by value. In other words, if you were to assign
$aVariable to $anotherVariable, a copy of the value held in $aVariable would be
stored in $anotherVariable. Subsequent changes to either one of the variables would
have no effect upon the other.

In PHP 4, you can change this behavior, forcing a reference to $aVariable to be
assigned to $anotherVariable, rather than a copy of its contents. You can do this by
placing an ampersand (&) in front of the $aVariable variable at the point of assignment.

$aVariable = 42;
$anotherVariable = &$aVariable;
$aVariable= 325;
print $anotherVariable; // prints 325

You can now think of $anotherVariable and $aVariable as aliases to one another. You
can disassociate the variables by passing one of them to unset(). Unset will destroy the
variable that is passed to it, but any references will be left untouched.

Testing for Absence and Emptiness
Testing the data type of variables can be useful, but you must first be sure that a variable
exists and, if it does exist, that a value has been assigned to it. You can do this with the
isset() function. isset() requires a variable and returns true if the variable contains a
value:

$notset;
if (isset($notset))

print “\$notset is set”;
else

print “\$notset is not set”;
// prints “$notset is not set”

A variable that is declared but has not yet been assigned a value will not be recognized
as set.

You should be aware of one danger, however. If you assign 0 or an empty string to a
variable, it will be recognized as having been set:

$notset = “”;
if (isset($notset))

print “\$notset is set”;
else

print “\$notset is not set”;
// prints “$notset is set”

Working with Data 305

16

20 CH16 11/29/01 3:19 PM Page 305

Variables that have been initialized as a result of form submissions will always be set,
even if the user did not add any data to a field. To deal with situations like this, you must
test whether a variable is empty. empty() accepts a variable and returns true if the vari-
able is not set, or if it contains data other than 0 or an empty string. It also returns true if
the variable contains an empty array:

$notset = “”;
if (empty($notset))

print “\$notset is empty”;
else

print “\$notset contains data”;
// prints “$notset is empty”

More About Arrays
In Hour 7, “Arrays,” we introduced arrays and some of the functions that you can use to
work with them. This section introduces some more functions and techniques.

An Alternative Approach to Traversing Arrays
PHP 4 introduced the foreach statement, a powerful tool for reading array elements. We
use this in most of the examples in this book. For scripts written in PHP 3, it was neces-
sary to use a different technique to traverse arrays. If you intend to distribute scripts that
should be compatible with PHP 3 or are interested in learning from source code that was
written before the release of PHP 4, it is essential that you know about this.

When you create an array, PHP maintains an internal pointer that initially points at the
first element in the array. You can access this element’s key and value with a function
called each(). each() requires an array variable and returns a four-element array. Two of
these elements will be numerically indexed, and two will be labeled with the names
“key” and “value,” respectively. After each() has been called, the internal pointer moves
on to the next element in the array that you are examining, unless the end of the array
has been reached, in which case the function returns false. Let’s create an array and try
out the each() function:

$details = array(school => “Slickly High”, course => “Selective Indifference”
);
$element = each($details);
print “$element[0]
”; // prints “school”
print “$element[1]<P>”; // prints “Slickly High”
print $element[‘key’].”
”; // prints “school”
print $element[‘value’].”
”; // prints “Slickly High”

We initialize an array called $details with two elements. We then pass $details to the
each() function, storing the return value in a new array called $element. The $element
array holds the key and value of the first element of the $details.

306 Hour 16

20 CH16 11/29/01 3:19 PM Page 306

Assigning the array returned by each() to an array variable is cumbersome. Fortunately,
PHP provides list(), a language construct. list() accepts any number of variables and
populates each of them with the corresponding values from an array value:

$array = array(44, 55, 66, 77);
list($first, $second) = $array;
print “$first”; // prints 44
print “
”;
print “$second”; // prints 55

Notice how we were able to copy the first two elements of the array in the previous
example into named variables using list().

We can use list()to assign values to two variables every time each() is called. We can
then work with these, just as we would in a foreach statement.

$details = array(school => “Slickly High”,
course => “Selective Indifference”);

while (list ($key, $value) = each($details))
print “$key: $value
”;

Although this code will work, a line is still missing. If your array has been traversed
before, the internal pointer will still be set beyond the last element. You can set the inter-
nal pointer back to the beginning of an array with the reset() function. reset()
requires an array variable as its argument.

So, the more familiar construction

foreach($details as $key => $value)
print “$key: $value
”;

is equivalent to

reset($details);
while (list ($key, $value) = each($details))

print “$key: $value
”;

Checking That a Value Exists in an Array
Prior to PHP 4, if you needed to check whether a value existed in an array, you had to
traverse the array until you had either found a match or reached the last element. PHP 4
provides the in_array() function. in_array() requires two arguments, the value for
which you are searching and the array you want to search. The function returns true if
the value is found with the given array and false otherwise.

$details = array(school => “Slickly High”,
course => “Selective Indifference”);

if (in_array(“Selective Indifference”, $details))
print “This course has been suspending pending investigation<P>\n”;

Working with Data 307

16

20 CH16 11/29/01 3:19 PM Page 307

in_array() is useful if you want to reassure yourself that a value is present in an array.
It does not help you, though, if you want to know where to find that value. The array_
search() function is designed to do just that. array_search() requires two arguments,
the value for which you are searching and the array you want to search. If your value is
found the function will return the key associated with the function, otherwise it will
return false.

$searchme = array(33, 44, 77, “22”);
print array_search(22, $searchme);
// prints 3

In the fragment above we searched for ‘22’ in the $searchme array. array_search() will
automatically cast when attempting to locate a value, so although the 22 passed to
array_search() is an integer and the ‘22’ in $search_me is a string, a match was found.
If you want it to be less forgiving than this, you can pass the boolean value true to
array_search() as the third argument. The function will then only return a key if the
matching value is of the same type as the search value. The function call

print array_search(22, $searchme, true);

would now return false. in_array() also accepts an optional third argument that
enforces strict matching.

308 Hour 16

array_search() was introduced in PHP 4.05.

Removing an Element from an Array
You can remove any element from an array with the unset() function. unset() requires
a variable or an array element as an argument and will unceremoniously destroy it.

unset($test[‘address’]);
unset($numbers[1]);

One potential pitfall with unset() is the fact that array indices are not subsequently
changed to reflect the new size of the array. So, having removed $numbers[1] in the
previous example, the $numbers array might now look something like this:

$numbers[0]
$numbers[2]
$numbers[3]

You can still loop through this with a foreach statement without problems, however. You
could also easily construct a new array with the array_values() function.

$numbers = array_values($numbers);

20 CH16 11/29/01 3:19 PM Page 308

Applying a Function to Every Element in an Array
You can change a scalar variable easily in an expression. Applying a change to every ele-
ment of an array is a little more difficult. If you want to add a number to the value of
every array element, for example, one solution would be to loop through the array updat-
ing each element. PHP provides a neater answer, however.

The array_walk() function passes the key and value of every element in an array to a
user-defined function. array_walk() requires an array variable, a string representing the
name of a function, and an optional additional argument that will be passed to the func-
tion you have chosen.

Let’s create an example. We have an array of prices acquired from a database, but before
working with it we need to add sales tax to each price. First, we should create the func-
tion to add the tax:

function add_tax(&$val, $key, $tax_pc) {
$val += (($tax_pc/100) * $val);

}

Any function to be used with array_walk() should expect arguments representing a key,
a value, and, optionally, a further argument.

If you want to change the value that is passed to your function, you need to append an
ampersand to the argument in the function declaration. This ensures that the value will be
passed by reference and any changes you make to the value within the function will be
reflected in the array. That is why our add_tax() function does not return a value.

Now that we have created the function, we can call it via array_walk():

function add_tax(&$val, $key, $tax_pc) {
$val += (($tax_pc/100) * $val);

}
$prices = array(10, 17.25, 14.30);
array_walk($prices, “add_tax”, 10);
foreach ($prices as $val)

print “$val
”;
// Output:
// 11
// 18.975
// 15.73

We pass the $prices array variable to array_walk() along with the name of the add_
tax() function. add_tax() needs to know the current sales tax rate. The optional third
argument to array_walk() will be passed to the nominated function, so this is where we
set the tax rate.

Working with Data 309

16

20 CH16 11/29/01 3:19 PM Page 309

You can also use this technique to call an object method for each element in your array.
Instead of passing a function name to the array_walk() you should pass a two element
array containing the object and a string representing the method you wish to call. In the
fragment below we convert our sales tax code to work with a class.

class TaxAdder {
var $taxrate = 10;
function add_tax(&$val, $key) {

$val += (($this->taxrate/100) * $val);
}

}

$prices = array(10, 17.25, 14.30);
$taxer = new TaxAdder();

array_walk($prices, array($taxer, “add_tax”));
foreach ($prices as $val)

print “$val
”;
// Output:
// 11
// 18.975
// 15.73

As of PHP 4.0.6 a new tool for applying user defined functions to array elements has
become available. array_map() requires the name of a function and at least one array.
After passing each element of the array to the callback function array_map() will return
a transformed array containing the return values generated—it will have ‘mapped’ the
input array to the return array. If you provide more than one array to array_map() it will
traverse all arrays at the same time, passing all values at index 0 to your callback func-
tion, then all values at index 1 and so on. Confused? Let’s put an example together.

Imagine that we have a list of Web pages and we wish to transform the strings so that
they are links.

$urls = array(“about.html”, “index.html”, “contact.html”, “service.html”);
function make_link($a) {

return “a link
\n”;
}
$new_urls = array_map(“make_link”, $urls);
foreach ($new_urls as $val)

print $val;

// prints:
// a link

// a link

// a link

// a link

310 Hour 16

20 CH16 11/29/01 3:19 PM Page 310

array_map() repeatedly invokes make_link(), passing it each value in the $urls array. It
uses the values returned by make_link() to generate a new array.

The great strength of array_map() is its ability to work with multiple arrays at the same
time. Imagine that in addition to our $url array we had an array of page names that we
wished to incorporate into our link strings.

$urls = array(“about.html”, “index.html”, “contact.html”, “service.html”);
$names = array(“about us”, “home”, “contact us”, “our services”);
function make_link($a, $b) {

return “$b
\n”;
}
$new_urls = array_map(“make_link”, $urls, $names);
foreach ($new_urls as $val)

print $val;

// prints:
// about us

// home

// contact us

// our services

We amend our array_map() function call so that it includes the $names array. We also
change the make_link() function so that it accepts two arguments. make_link() is
called with values from both the $urls and $names arrays and uses them to construct a
single return value, an HTML link. array_map() constructs an array of these return val-
ues which is then assigned to $new_urls.

Filtering Arrays with array_filter()
Arrays are very flexible by nature, which is their great strength. There are few restric-
tions as to the types and range of data that they can store. Sometimes, though we need to
extract elements according to an arbitrary constraint. Perhaps we only want the strings in
an array, or integers above a certain number. array_filter() is the perfect tool for this.
array_filter() requires an array and a reference to a callback function (that is, a func-
tion name string or an anonymous function). It will return a filtered array. The callback
function you create will be passed each array element in turn and should return a
boolean. If the callback function returns true, then the value will be included in the
returned array, otherwise it will be discarded. array_filter() will preserve all keys in
an associative array. In the fragment below we use array_filter() to create an array
whose values are less than 120.

function less_than($a) {
return ($a < 120);

}
$my_array = array(“a” => 200, “b” => 80, “c” => 90, “d” => 150, “e” => 130,
“f”=> 110);

Working with Data 311

16

20 CH16 11/29/01 3:19 PM Page 311

$filtered_array = array_filter($my_array, less_than);
foreach($filtered_array as $key=>$val)

print “$key: $val
”;
// prints:
// b: 80
// c: 90
// f: 110

Notice the way that the less_than() function creates the boolean return value. It com-
bines the return statement with the comparison expression. You might find it more read-
able to split this into two statements.

if ($a < 120)
return true;

return false;

Also notice that the array keys are imported into the $filtered_array array as well as
the values.

Custom Sorting Arrays
You have already seen how to sort arrays by key or value. You do not always want to sort
an array in such a straightforward way, however. You may want to sort it according to the
values of an element buried in a multidimensional array, for example, or to use a crite-
rion completely different to the standard alphanumeric comparison.

PHP enables you to define your own comparison functions to sort arrays. To do this for
a numerically indexed array, you would call the usort() function, which requires the
array you want to sort and the name of the function you want to make the necessary
comparisons.

The function you define should accept two arguments, which will hold the array values
to be compared. If they are equivalent according to your criterion, the function should
return 0; if the first argument should come before the second in the subject array, the
function should return –1. If the first argument should come after the second, the func-
tion should return 1.

Listing 16.1 uses usort() to sort a multidimensional array.

LISTING 16.1 Using usort() to Sort a Multidimensional Array by One of Its Fields

1: <?php
2: $products = array(
3: array(name=>”HAL 2000”, price=>4500.5),
4: array(name=>”Tricorder”, price=>55.5),

312 Hour 16

20 CH16 11/29/01 3:19 PM Page 312

LISTING 16.1 continued

5: array(name=>”ORAC AI”, price=>2200.5),
6: array(name=>”Sonic Screwdriver”, price=>22.5)
7:);
8: function priceCmp($a, $b) {
9: if ($a[‘price’] == $b[‘price’])
10: return 0;
11: if ($a[‘price’] < $b[‘price’])
12: return -1;
13: return 1;
14: }
15: usort($products, priceCmp);
16: foreach ($products as $val)
17: print $val[‘name’].”: “.$val[‘price’].”
\n”;
18: ?>

We define an array called $products starting on line 2, which we want to sort by the
price field of each of its values.

We then create the custom sort function, priceCmp() on line 8. This function accepts two
arguments, $a and $b. These arguments will hold two the arrays that make up the second
level of the $products array. We compare their price elements, returning 0 if the prices
are the same (lines 9 and 10), –1 if the first is less than the second (lines 11 and 12), and
1 otherwise (line 13).

Having defined both function and array, we call the usort() function on line 15, passing
it the $products array and the name of our comparison function. usort() calls our func-
tion repeatedly, passing it elements from the $products array and switching the order of
the elements according to the return value it receives.

Finally, we loop through the array on line 16, to demonstrate our new ordering.

Use usort() for sorting numerically indexed arrays. If you want to apply a similar
custom sort to an associative array, use uasort(). uasort() will sort maintaining the
association between keys and values. Listing 16.2 sorts an associative array using
uasort() (line 15).

LISTING 16.2 Using uasort() to Sort a Multdimensional Associative Array by One
of Its Fields

1: <?php
2: $products = array(
3: “HAL 2000” => array(color =>”red”, price=>4500.5),
4: “Tricorder” => array(color =>”blue”, price=>55.5),
5: “ORAC AI” => array(color =>”green”, price=>2200.5),

Working with Data 313

16

20 CH16 11/29/01 3:19 PM Page 313

LISTING 16.2 continued

6: “Sonic Screwdriver” => array(color =>”red”, price=>22.5)
7:);
8: function priceCmp($a, $b) {
9: if ($a[‘price’] == $b[‘price’])
10: return 0;
11: if ($a[‘price’] < $b[‘price’])
12: return -1;
13: return 1;
14: }
15: uasort($products, priceCmp);
16: foreach ($products as $key => $val)
17: print “$key: “.$val[‘price’].”
\n”;
18: ?>

You can custom sort an associative array by its keys using the function uksort().
uksort() is exactly the same in principle as usort() and uasort(), except that
uksort() compares the keys of the array.

Listing 16.3 uses uksort() on line 16 to sort an array by the number of characters in
each key. Looking ahead to the next hour, we use the function strlen() on lines 10 and
12 to ascertain the length in characters of each key. strlen() requires a single string
argument and returns an integer representing the number of characters in the string.

LISTING 16.3 Using uksort() to Sort an Associative Array by the Length of Its
Keys

1: <?php
2: $exes = array(
3: ‘xxxx’ => 4,
4: ‘xxx’ => 5,
5: ‘xx’ => 7,
6: ‘xxxxx’ => 2,
7: ‘x’ => 8
8:);
9: function priceCmp($a, $b) {
10: if (strlen($a) == strlen($b))
11: return 0;
12: if (strlen($a) < strlen($b))
13: return -1;
14: return 1;
15: }
16: uksort($exes, priceCmp);
17: foreach ($exes as $key => $val)
18: print “$key: $val
\n”;
19:

314 Hour 16

20 CH16 11/29/01 3:19 PM Page 314

LISTING 16.3 continued

20: // output:
21: // x: 8
22: // xx: 7
23: // xxx: 5
24: // xxxx: 4
25: // xxxxx: 2
26:
27: ?>

Summary
In this hour, you got your hands dirty with some of the more advanced aspects of work-
ing with arrays and data types. You learned what happens when you cast complex data
types to scalars and vice versa. You learned how PHP deals with different data types in
an expression, automatically casting one of them for you. You learned about functions,
such as is_array(), that test for specific data types, and functions, such as intval(),
that convert data to a specific type. You learned about the traditional way of traversing an
array in PHP using each() and list(). You learned how to check that a value exists in
an array with in_array() and how to remove an element from an array with unset().
You learned how to transform and filter arrays with array_walk(), array_map() and
array_filter(). Finally, you learned about the custom sort functions with usort(),
uasort(), and uksort().

In the next hour we will begin to explore some of PHP’s tools for testing, formatting, and
generally manipulating strings.

Q&A
Q Have we now covered every array function that PHP 4 provides?

A No, there are even more array functions than we have space to cover in this book!
You can see them all listed and described at http://www.php.net/manual/ref.
array.php.

Working with Data 315

16

20 CH16 11/29/01 3:19 PM Page 315

Workshop
Quiz

1. What single function could you use to convert any data type to any other data type?

2. Could you achieve the same thing without a function?

3. What will the following code print?

print “four” * 200;

4. How would you determine whether a variable contains an array?

5. Which function is designed to return the integer value of its argument?

6. How would you test whether a variable has been set?

7. How would you test whether a variable contains an empty value, such as 0 or an
empty string?

8. What function would you use to delete an array element?

9. What function could you use to custom sort a numerically indexed array?

Quiz Answers
1. What single function could you use to convert any data type to any other data type?

You can convert data types with the settype() function.

2. Could you achieve the same thing without a function?

You can also change type using a cast—that is, by placing the name of a data type
in brackets in front of the value to be converted.

3. What will the following code print?

print “four” * 200;

Strings that don’t begin with numbers will resolve to 0 (zero) in expressions, so

print “four” * 200

will output 0.

4. How would you determine whether a variable contains an array?

To test whether a variable is an array, you could use the is_array() function.
Alternatively, you could test the return value of gettype().

5. Which function is designed to return the integer value of its argument?

The intval() function returns the integer value of the argument it has passed.

6. How would you test whether a variable has been set?

The isset() function tells you whether a variable has been set.

316 Hour 16

20 CH16 11/29/01 3:19 PM Page 316

7. How would you test whether a variable contains an empty value, such as 0 or an
empty string?

The empty() function returns true if the variable passed to it is unset, or if it
contains an empty value.

8. What function would you use to delete an array element?

You can delete an array element with the unset() function.

9. What function could you use to custom sort a numerically indexed array?

You can custom sort an array using the usort() function.

Activities
1. Look back through some of the scripts you have created whilst working with this

book. Convert any that use the foreach statement so that they are compatible with
PHP3.

2. Create an array of mixed data types. Custom sort the array by data type.

Working with Data 317

16

20 CH16 11/29/01 3:19 PM Page 317

20 CH16 11/29/01 3:19 PM Page 318

HOUR 17
Working with Strings

The World Wide Web is very much a plain text environment. No matter how
rich Web content becomes, HTML lies behind it all. It is no accident, then,
that PHP 4 provides many functions with which you can format, investigate,
and manipulate strings.

In this hour, you will learn:

• How to format strings

• How to determine the length of a string

• How to find a substring within a string

• How to break a string down into component parts

• How to remove white space from the beginning or end of a string

• How to replace substrings

• How to change the case of a string

21 CH17 11/29/01 3:24 PM Page 319

Formatting Strings
Until now, we have simply printed any strings that we want to display directly to the
browser. PHP provides two functions that allow you first to apply formatting, whether to
round doubles to a given number of decimal places, define alignment within a field, or
display data according to different number systems. In this section, you will look at a
few of the formatting options provided by printf() and sprintf().

Working with printf()
If you have any experience with C, you will be familiar with the printf() function. The
PHP version is similar but not identical. printf() requires a string argument, known as a
format control string. It also accepts additional arguments of different types. The format
control string contains instructions as to how to display these additional arguments. The
following fragment, for example, uses printf() to output an integer as a decimal:

printf(“This is my number: %d”, 55);
// prints “This is my number: 55”

Within the format control string (the first argument), we have included a special code,
known as a conversion specification.

A conversion specification begins with a percent (%) symbol and defines how to
treat the corresponding argument to printf(). You can include as many conver-

sion specifications as you want within the format control string, as long as you send an
equivalent number of arguments to printf().

The following fragment outputs two numbers using printf():

printf(“First number: %d
\nSecond number: %d
\n”, 55, 66);
// Output:
// First number: 55
// Second number: 66

The first conversion specification corresponds to the first of the additional arguments to
printf(), which is 55. The second conversion specification corresponds to 66. The d fol-
lowing the percent symbol requires that the data be treated as a decimal integer. This part
of a conversion specification is a type specifier.

printf() and Type Specifiers
You have already come across one type specifier d, which displays data in decimal for-
mat. Table 17.1 lists the other type specifiers that are available.

320 Hour 17

NEW TERM

21 CH17 11/29/01 3:24 PM Page 320

TABLE 17.1 Type Specifiers

Specifier Description

d Displays argument as a decimal number

b Displays an integer as a binary number

c Displays an integer as ASCII equivalent

f Displays an integer as a floating-point number (double)

o Displays an integer as an octal number (base 8)

s Displays argument as a string

x Displays an integer as a lowercase hexadecimal number (base 16)

X Displays an integer as an uppercase hexadecimal number (base 16)

Listing 17.1 uses printf() to display a single number according to some of the type
specifiers listed in Table 17.1.

Notice that we do not only add conversion specifications to the format control string.
Any additional text we include will be printed.

LISTING 17.1 Demonstrating Some Type Specifiers

1: <html>
2: <head>
3: <title>Demonstrating some type specifiers</title>
4: </head>
5: <body>
6: <?php
7: $number = 543;
8: printf(“Decimal: %d
”, $number);
9: printf(“Binary: %b
”, $number);
10: printf(“Double: %f
”, $number);
11: printf(“Octal: %o
”, $number);
12: printf(“String: %s
”, $number);
13: printf(“Hex (lower): %x
”, $number);
14: printf(“Hex (upper): %X
”, $number);
15: ?>
16: </body>
17: </html>

Figure 17.1 shows the output for Listing 17.1. As you can see, printf() is a quick way
of converting data from one number system to another and outputting the result.

Working with Strings 321

17

21 CH17 11/29/01 3:24 PM Page 321

When you specify a color in HTML, you combine three hexadecimal numbers between
00 and FF, representing the values for red, green, and blue. You can use printf() to con-
vert three decimal numbers between 0 and 255 to their hexadecimal equivalents:

$red = 204;
$green = 204;
$blue = 204;
printf(“#%X%X%X”, $red, $green, $blue);
// prints “#CCCCCC”

Although you can use the type specifier to convert from decimal to hexadecimal num-
bers, you can’t use it to determine how many characters the output for each argument
should occupy. Within an HTML color code, each hexadecimal number should be
padded to two characters, which would become a problem if we changed our $red,
$green, and $blue variables in the previous fragment to contain 1, for example. We
would end up with the output “#111”. You can force the output of leading zeroes by
using a padding specifier.

Padding Output with the Padding Specifier
You can require that output be padded by leading characters. The padding specifier
should directly follow the percent sign that begins a conversion specification. To pad
output with leading zeroes, the padding specifier should consist of a zero followed by
the number of characters you want the output to take up. If the output occupies fewer
characters than this total, the difference will be filled with zeroes:

printf(“%04d”, 36);
// prints “0036”

322 Hour 17

FIGURE 17.1
Demonstrating
conversion specifiers.

21 CH17 11/29/01 3:24 PM Page 322

To pad output with leading spaces, the padding specifier should consist of a space char-
acter followed by the number of characters that the output should occupy:

printf(“% 4d”, 36)
// prints “ 36”

Working with Strings 323

17

A browser will not display multiple spaces in an HTML document. You can
force the display of spaces and newlines by placing <PRE> tags around your
output.

<pre>
<?php
print “The spaces will be visible”;
?>
</pre>

If you wish to format an entire document as text, you can use the header()
function to change the Content-Type header.

header(“Content-Type: Text/Plain”);

Remember that your script must not have sent any output to the browser
for the header() function to work as desired.

You can specify any character other than a space or a zero in your padding specifier with
a single quotation mark followed by the character you want to use:

printf (“%’x4d”, 36);
// prints “xx36”

We now have the tools we need to complete our HTML code example. Until now, we
could convert three numbers, but we could not pad them with leading zeroes:

$red = 1;
$green = 1;
$blue = 1;
printf(“#%02X%02X%02X”, $red, $green, $blue);
// prints “#010101”

Each variable is output as a hexadecimal number. If the output occupies fewer than two
spaces, leading zeroes will be added.

Specifying a Field Width
You can specify the number of spaces within which your output should sit. The field
width specifier is an integer that should be placed after the percent sign that begins a
conversion specification (assuming that no padding specifier is defined). The following

21 CH17 11/29/01 3:24 PM Page 323

fragment outputs a list of four items, all of which sit within a field of 20 spaces. To make
the spaces visible on the browser, we place all our output within a PRE element.

print “<pre>”;
printf(“%20s\n”, “Books”);
printf(“%20s\n”, “CDs”);
printf(“%20s\n”, “Games”);
printf(“%20s\n”, “Magazines”);
print “</pre>”;

Figure 17.2 shows the output of this fragment.

324 Hour 17

FIGURE 17.2
Aligning with field
width specifiers.

By default, output is right-aligned within the field you specify. You can make it left-
aligned by propending a minus (–) symbol to the field width specifier:

printf(“%-20s\n”, “Left aligned”);

Note that alignment applies to the decimal portion of any number that you output. In
other words, only the portion before the decimal point of a double will sit flush to the
end of the field width when right aligned.

Specifying Precision
If you want to output data in floating-point format, you can specify the precision to
which you want to round your data. This is particularly useful when dealing with cur-
rency. The precision identifier should be placed directly before the type specifier. It con-
sists of a dot followed by the number of decimal places to which you want to round.
This specifier only has an effect on data that is output with the f type specifier:

printf(“%.2f”, 5.333333);
// prints “5.33”

21 CH17 11/29/01 3:24 PM Page 324

Conversion Specifications: A Recap
Table 17.2 lists the specifiers that can make up a conversion specification in the order
that they would be included. Note that it is difficult to use both a padding specifier and a
field width specifier. You should choose to use one or the other, but not both.

TABLE 17.2 Components of Conversion Specification

Name Description Example

Padding Determines the number of ‘ 4’

specifier characters that output
should occupy, and the
characters to add otherwise

Field width Determines the space within ‘20’

specifier which output should be
formatted

Precision Determines the number of ‘.4’

specifier decimal places to which a
double should be rounded

Type specifier Determines the data type ‘d’

that should be output

Listing 17.2 uses printf() to output a list of products and prices.

LISTING 17.2 Using printf() to Format a List of Product Prices

1: <html>
2: <head>
3: <title>Using printf() to format a list of product prices</title>
4: </head>
5: <body>
6: <?php
7: $products = Array(“Green armchair”=>”222.4”,
8: “Candlestick”=>”4”,
9: “Coffee table”=>80.6
10:);

Working with Strings 325

17

In the C language, it is possible to use a precision specifier with printf() to
specify padding for decimal output. The precision specifier will have no
effect on decimal output in PHP 4. Use the padding specifier to add leading
zeroes to integers.

21 CH17 11/29/01 3:24 PM Page 325

LISTING 17.2 continued

11: print “<pre>”;
12: printf(“%-20s%23s\n”, “Name”, “Price”);
13: printf(“%’-43s\n”, “”);
14: foreach ($products as $key=>$val)
15: printf(“%-20s%20.2f\n”, $key, $val);
16: print(“</pre>”);
17: ?>
18: </body>
19: </html>

We first define an associative array containing product names and prices on line 7. We
print a PRE element, so that the browser will recognize our spaces and newlines. Our first
printf() call on line 12 defines the following format control string:

“%-20s%23s\n”

The first conversion specification (“%-20s”) uses a field width specifier of 20 characters,
with the output left-justified. We use a string type specifier. The second conversion speci-
fication (“%23s”) sets up a right-aligned field width. This printf() call will output our
field headers.

Our second printf() function call on line 13 draws a line of – characters across a field
of 43 characters. We achieve this with a padding specifier, which adds padding to an
empty string.

The final printf() call on line 15 is part of a foreach statement that loops through our
product array. We use two conversion specifications. The first (“%-20s”) prints the prod-
uct name as a string left-justified within a 20-character field. The second conversion
specification (“%20.2f”) uses a field width specifier to ensure that output will be right-
aligned within a 20-character field, and a precision specifier to ensure that the double we
output is rounded to two decimal places.

Figure 17.3 shows the output of Listing 17.2.

Argument Swapping
As of PHP 4.0.6 it became possible to use the format control string to change the order
in which the provided arguments are incorporated into output.

326 Hour 17

21 CH17 11/29/01 3:24 PM Page 326

Imagine for example that you are printing dates to the browser. You have the dates in a
multidimensional array and you are using printf() to format the output.

<?
$dates = array(

array(‘mon’=> 12, ‘mday’=>25, ‘year’=>2001),
array(‘mon’=> 5, ‘mday’=>23, ‘year’=>2000),
array(‘mon’=> 10, ‘mday’=>29, ‘year’=>2001)
);

$format = include(“local_format.php”);
foreach($dates as $date) {

printf(“$format”, $date[‘mon’], $date[‘mday’], $date[‘year’]);
}
?>

We are getting our format control string from an include file called local_format.php.
Assuming that this file contains only:

<?php
return “%02d/%02d/%d
”;
?>

Our output will be in the format mm/dd/yyyy.

12/25/2001
05/23/2000
10/29/2001

Imagine now that we are installing our script for a British site. In the United Kingdom
dates are commonly presented with days before months (dd/mm/yyyy). The core code

Working with Strings 327

17

FIGURE 17.3
Products and prices
formatted with
printf().

21 CH17 11/29/01 3:24 PM Page 327

cannot be changed, but configuration files such as local_format.php can. Luckily we
can now alter the order in which the arguments are presented from within the format
control code.

return “%2\$02d/%1\$02d/%3\$d
”;

We can insert the argument number we are interested in after the initial percentage char-
acter that marks each conversion specification, followed by an escaped dollar ($) charac-
ter. So in our fragment above we are demanding that the second argument be presented,
followed by the first, followed by the third. The result is a list of dates in British format.

25/12/2001
23/05/2000
29/10/2001

Storing a Formatted String
printf() outputs data to the browser, which means that the results are not available to
your scripts. You can, however, use the function sprintf(), which works in exactly the
same way as printf() except that it returns a string that you can then store in a variable
for later use. The following fragment uses sprintf() to round a double to two decimal
places, storing the result in $dosh:

$dosh = sprintf(“%.2f”, 2.334454);
print “You have $dosh dollars to spend”;

A particular use of sprintf() is to write formatted data to a file. You can call sprintf()
and assign its return value to a variable that can then be printed to a file with fputs().

Investigating Strings
You do not always know everything about the data that you are working with. Strings
can arrive from many sources, including user input, databases, files, and Web pages.
Before you begin to work with data from an external source, you often will need to find
out more about it. PHP 4 provides many functions that enable you to acquire information
about strings.

A Note About Indexing Strings
We will frequently use the word index in relation to strings. You will have come across
the word more frequently in the context of arrays. In fact, strings and arrays are not as
different as you might imagine. You can think of a string as an array of characters. So
you can access individual characters of a string as if they were elements of an array:

328 Hour 17

21 CH17 11/29/01 3:24 PM Page 328

$test = “scallywag”;
print $test[0]; // prints “s”
print $test[2]; // prints “a”

It is important to remember, therefore, that when we talk about the position or index of a
character within a string, characters, like array elements, are indexed from 0.

Finding the Length of a String with strlen()
You can use strlen() to determine the length of a string. strlen() requires a string and
returns an integer representing the number of characters in the variable you have passed
it. strlen() might typically be used to check the length of user input. The following
fragment tests a membership code to ensure that it is four digits long:

if (strlen($membership) == 4)
print “Thank you!”;

else
print “Your membership number must have 4 digits<P>”;

The user is thanked for his input only if the global variable $membership contains four
characters; otherwise, an error message is generated.

Finding a Substring Within a String with strstr()
You can use strstr() to test whether a string exists embedded within another string.
strstr() requires two arguments: a source string and the substring you want to find
within it. The function returns false if the substring is absent. Otherwise, it returns the
portion of the source string beginning with the substring. For the following example,
imagine that we want to treat membership codes that contain the string AB differently
from those that do not:

$membership = “pAB7”;
if (strstr($membership, “AB”))

print “Thank you. Don’t forget that your membership expires soon!”;
else

print “Thank you!”;

Because our test variable $membership does contain the string AB, strstr() returns the
string AB7. This resolves to true when tested, so we print a special message. What hap-
pens if our user enters “pab7”? strstr() is case sensitive, so AB will not be found. The
if statement’s test will fail, and the default message will be printed to the browser. If we
want search for either AB or ab within the string, we must use stristr(), which works in
exactly the same way but is not case sensitive.

Working with Strings 329

17

21 CH17 11/29/01 3:24 PM Page 329

Finding the Position of a Substring with strpos()
strpos() tells you both whether a string exists within a larger string and where it is to be
found. strpos() requires two arguments: the source string and the substring you are
seeking. The function also accepts an optional third argument, an integer representing the
index from which you want to start searching. If the substring does not exist, strpos()
returns false; otherwise, it returns the index at which the substring begins. The follow-
ing fragment uses strpos() to ensure that a string begins with the string mz:

$membership = “mz00xyz”;
if (strpos($membership, “mz”) === 0)

print “hello mz”;

Notice the trick we had to play to get expected results. strpos() finds mz in our string,
but it finds it at the first element of the string. This means that it will return zero, which
will resolve to false in our test. To work around this, we use PHP’s new equivalence
operator ===, which returns true if the left- and right-hand operands are equivalent and
of the same type.

Extracting Part of a String with substr()
substr() returns a portion of a string based on the start index and length of the portion
you are looking for. strstr() demands two arguments, a source string, and the starting
index. It returns all characters from the starting index to the end of the string you are
searching. substr() optionally accepts a third argument, which should be an integer
representing the length of the string you want returned. If this argument is present,
substr() returns only the number of characters specified from the start index onwards.

$test = “scallywag”;
print substr($test,6); // prints “wag”
print substr($test,6,2) // prints “wa”

If you pass substr() a negative number as its second (starting index) argument, it will
count from the end rather than the beginning of the string. The following fragment writes
a specific message to people who have submitted an email address ending in .uk.

$test = “matt@corrosive.co.uk”;
if ($test = substr($test, -3) == “.uk”)

print “Don’t forget our special offers for British customers”;
else

print “Welcome to our shop!”;

Tokenizing a String with strtok()
You can parse a string word by word using strtok(). strtok() initially requires two
arguments, the string to be tokenized and the delimiters by which to split the string. The

330 Hour 17

21 CH17 11/29/01 3:24 PM Page 330

delimiter string can include as many characters as you want. strtok() will return the
first token found. After strtok() has been called for the first time, the source string will
be cached. For subsequent calls, you should only pass strtok() the delimiter string. The
function will return the next found token every time it is called, returning false when
the end of the string is reached. strtok() will usually be called repeatedly within a loop.
Listing 17.3 uses strtok() to tokenize a URL, splitting the host and path from the query
string, and further dividing the name/value pairs of the query string. Figure 17.3 shows
the output from Listing 17.3.

LISTING 17.3 Dividing a String into Tokens with strtok()

1: <html>
2: <head>
3: <title>Listing 17.3 Dividing a string into
4: tokens with strtok()</title>
5: </head>
6: <body>
7: <?php
8: $test = “http://www.deja.com/qs.xp?”;
9: $test .= “OP=dnquery.xp&ST=MS&DBS=2&QRY=developer+php”;
10: $delims = “?&”;
11: $word = strtok($test, $delims);
12: while (is_string($word)) {
13: if ($word)
14: print “$word
”;
15: $word = strtok($delims);
16: }
17: ?>
18: </body>
19: </html>

strtok() is something of a blunt instrument, and a few tricks are required to work with
it. We first store the delimiters that we want to work with in a variable, $delims on line
10. We call strtok() on line 11, passing it the URL we want to tokenize and the
$delims string. We store the first result in $word. Within the conditional expression of
the while loop on line 12, we test that $word is a string. If it isn’t, we know that end of
the string has been reached and no further action is required.

We are testing the return type because a string containing two delimiters in a row would
cause strtok() to return an empty string when it reaches the first of these delimiters. So
a more conventional test such as

while ($word) {
$word = strtok($delims);

}

Working with Strings 331

17

21 CH17 11/29/01 3:24 PM Page 331

would fail if $word is an empty string, even if the end of the source string has not yet
been reached.

Having established that $word contains a string, we can go on to work with it. If $word
does not contain an empty string, we print it to the browser on line 14. We must then call
strtok() again on line 15 to repopulate the $word variable for the next test. Notice that
we don’t pass the source string to strtok() a second time. If we were to do this, the first
word of the source string would be returned once again, and we would find ourselves in
an infinite loop.

Manipulating Strings
PHP 4 provides many functions that will transform a string argument, subtly or radically.

Cleaning Up a String with trim() and ltrim() and
strip_tags()
When you acquire text from the user or a file, you can’t always be sure that you haven’t
also picked up white space at the beginning and end of your data. trim() shaves any
white space characters, including newlines, tabs, and spaces, from both the start and end
of a string. It accepts the string to be modified, returning the cleaned-up version.

$text = “\t\t\tlots of room to breath “;
$text = trim($text);
print $text;
// prints “lots of room to breath”;

Of course this might be more work than you require. You might want to keep white space
at the beginning of a string but remove it from the end. You can use PHP’s rtrim() func-
tion exactly the same as you would trim(). Only white space at the end of the string
argument will be removed, however:

$text = “\t\t\tlots of room to breath “;
$text = rtrim($text);
print $test;
// prints “ lots of room to breath”;

PHP provides the ltrim() function to strip white space only from the beginning of a
string. Once again, this is called with the string you want to transform and returns a new
string, shorn of tabs, newlines, and spaces:

$text = “\t\t\tlots of room to breath “;
$text = ltrim($text);
print $test;
// prints “lots of room to breath “;

332 Hour 17

21 CH17 11/29/01 3:24 PM Page 332

PHP by its nature tends to work with markup text. It is not unusual to have to remove
tags from a block in order to present it without formatting. PHP provides the strip_
tags() function for this purpose. strip_tags() accepts two arguments. The first is the
text to transform. The second argument is optional and should be a list of HTML tags
which strip_tags() can leave in place. Tags in the exception list should not be sepa-
rated by any characters.

$string = “I <i>simply</i> will not have it,
said Mr Dean<p>The end”;
print strip_tags($string, “
<p>”);

In the previous code fragment we create an HTML formatted string. When we call
strip_tags() we pass it the $string variable and a list of exceptions. The result is that
the <p> and
 tags are left in place and all other tags are stripped out.

Replacing a Portion of a String Using
substr_replace()
substr_replace() works similarly to substr() except that it allows you replace the
portion of a string that you extract. The function requires three arguments: the string you
are transforming, the text you want to add to it, and the starting index. It also accepts an
optional length argument. substr_replace() finds the portion of a string specified by
the starting index and length arguments, replacing this portion with the string provided in
the replace string argument and returning the entire transformed string.

In the following code fragment, to renew a user’s membership code, we must change its
second two characters:

<?
$membership = “mz99xyz”;
$membership = substr_replace($membership, “00”, 2, 2);
print “New membership number: $membership<p>”;
// prints “New membership number: mz00xyz”
?>

Replacing Substrings Using str_replace
str_replace() replaces all instances of a string within another string. It requires three
arguments: a search string, the replacement string, and the string on which this transfor-
mation is to be effected. The function returns the transformed string. The following
example uses str_replace() to change all references to 2000 to 2001 within a string:

$string = “Site contents copyright 2000. “;
$string .= “The 2000 Guide to All Things Good in Europe”;
print str_replace(“2000”,”2001”,$string);

Working with Strings 333

17

21 CH17 11/29/01 3:24 PM Page 333

As of PHP 4.05 str_replace() has been enhanced to accept arrays as well as strings for
all of its arguments. This allows us to perform multiple search and replace operations on
a subject string, and even on more than one subject string.

<?php
$source = array(

“The package which is at version 4.2 was released in 2000”,
“The year 2000 was an excellent period for PointyThing4.2”);

$search = array(“4.2”, “2000”);
$replace = array(“5.0”, “2001”);
$source = str_replace($search, $replace, $source);
foreach($source as $str)

print “$str
”;

// prints:
// The package which is at version 5.0 was released in 2001
// The year 2001 was an excellent period for PointyThing5.0
?>

When str_replace() is passed an array of strings for its first and second arguments, it
will attempt to switch each search string with its corresponding replace string in the text
to be transformed. When the third argument is an array, the str_replace() will return an
array of strings. The search and replace operation will have been executed upon each
string in the array.

Converting Case
PHP provides several functions that allow you to convert the case of a string. When you
write user-submitted data to a file or database, you may want to convert it all to upper- or
lowercase text first, to make it easy to compare later on. To get an uppercase version of a
string, use the function strtoupper(). This function requires only the string that you
want to convert and returns the converted string:

$membership = “mz00xyz”;
$membership = strtoupper($membership);
print “$membership<P>”; // prints “MZ00XYZ”

To convert a string to lowercase characters, use the function strtolower(). Once again,
this requires the string you want to convert and returns a converted version:

$home_url = “WWW.CORROSIVE.CO.UK”;
$home_url = strtolower($home_url);
if (! (strpos ($home_url, “http://”) === 0))

$home_url = “http://$home_url”;
print $home_url; // prints “http://www.corrosive.co.uk”

334 Hour 17

21 CH17 11/29/01 3:24 PM Page 334

PHP also provides a case function that has a useful cosmetic purpose. ucwords() makes
the first letter of every word in a string uppercase. In the following fragment, we make
the first letter of every word in a user-submitted string uppercase:

$full_name = “violet elizabeth bott”;
$full_name = ucwords($full_name);
print $full_name; // prints “Violet Elizabeth Bott”

Although this function makes the first letter of each word uppercase, it does not touch
any other letters. So if the user had had problems with her shift key in the previous
example and submitted VIolEt eLIZaBeTH bOTt, our approach would not have done
much to fix the string. We would have ended up with VIolEt ELIZaBeTH BOTt, which
isn’t much of an improvement. We can deal with this by making the submitted string
lowercase with strtolower() before invoking ucwords():

$full_name = “VIolEt eLIZaBeTH bOTt”;
$full_name = ucwords(strtolower($full_name));
print $full_name; // prints “Violet Elizabeth Bott”

Wrapping Text with wordwrap() and nl2br()
When you present plain text within a Web page you are often faced with the problem that
newlines are not displayed, and your text runs together into a featureless blob. nl2br() is
a convenience method that converts every newline into an HTML break. So

$string = “one line\n”;
$string .= “another line\n”;
$string .= “a third for luck\n”;
print nl2br($string);

will print

one line

another line

a third for luck

Notice that the
 tags are output in XHTML compliant form. This was introduced in
PHP 4.0.5.

nl2br() is great for honoring newlines that are already in the text you are converting.
Occasionally though you may wish to add arbitrary linebreaks in order to format a col-
umn of text. The wordwrap() function is perfect for this. wordwrap() requires one argu-
ment, the string to be transformed. By default wordwrap() will wrap lines every 75
characters, and will use ‘\n’ as its linebreak character. So the code fragment

$string = “Given a long line, wordwrap() is useful as a means of “;
$string .= “breaking it into a column and thereby making it easier to read”;
print wordwrap($string);

Working with Strings 335

17

21 CH17 11/29/01 3:24 PM Page 335

would output

Given a long line, wordwrap() is useful as a means of breaking it into a
column and thereby making it easier to read

Because the lines are broken with the character ‘\n’, the formatting will not show up in
HTML mode, of course. wordwrap() has two more optional arguments; a number repre-
senting the maximum number of characters per line, and a string representing the end of
line string you would like to use. So applying the function call

print wordwrap($string, 24, “
\n”);

to our $string variable, our output would be

Given a long line,

wordwrap() is useful as

a means of breaking it

into a column and

thereby making it easier

to read

wordwrap() won’t automatically break at your line limit if a word has more characters
than the limit. You can, however, use an optional fourth argument to enforce this. The
argument should be a positive integer. So using wordwrap() in conjunction with the
fourth argument we can now wrap a string, even where it contains words that extend
beyond the limit we are setting. This fragment

$string = “As usual you will find me at http://www.witteringonaboutit.com/”;
$string .= “chat/eating_green_cheese/forum.php. Hope to see you there!”;
print wordwrap($string, 24, “
\n”, 1);

will output

As usual you will find

me at

http://www.witteringonab

outit.com/chat/eating_gr

een_cheese/forum.php.

Hope to see you there!

Breaking Strings into Arrays with explode()
The delightfully named explode() function is similar in some ways to strtok().
explode(), though, will break up a string into an array, which you can then store, sort, or
examine as you want. explode() requires two arguments: the delimiter string that you
want to use to break up the source string and the source string itself. explode() option-
ally accepts a third argument which will determine the maximum number of pieces the
string can be broken into. The delimiter string can include more than one character, all of

336 Hour 17

21 CH17 11/29/01 3:24 PM Page 336

which will form a single delimiter (unlike multiple delimiter characters passed to
strtok(), each of which will be a delimiter in its own right). The following fragment
breaks up a date and stores the result in an array:

$start_date = “2000-01-12”;
$date_array = explode(“-”, $start_date);
// $date[0] == “2000”
// $date[1] == “01”
// $date[2] == “12”

Summary
Strings are PHP’s principal means of communication with the outside world and of stor-
ing information for later use. In this hour, you have covered some of the functions that
enable you to take control of the strings in your scripts.

You learned how to format strings with printf() and sprint(). You should be able to
use these functions both to create strings that transform data and lay it out. You learned
about functions that investigate strings. You should be able to discover the length of a
string with strlen(), determine the presence of a substring with strpos(), or extract a
substring with substr(). You should be able to tokenize a string with strtok().

Finally, you learned about functions that transform strings. You can now remove white
space from the beginning or end of a string with trim(), ltrim(), or rtrim(). You can
change case with strtoupper(), strtolower(), or ucwords(). You can replace all
instances of a string with str_replace().

Believe it or not, you are not finished with strings yet. PHP supports regular expressions
that are an even more powerful means of working with strings than the functions already
examined. Regular expressions are the subject of the next hour.

Q&A
Q Are there any other string functions that might be useful to me?

A Yes. PHP 4 has about 60 string functions! You can read about them all in the PHP
4 online manual at http://www.php.net/manual/ref.strings.php.

Q In the example that demonstrated printf(), we showed the formatting by
wrapping our output in <PRE> tags. Is this the best way of showing formatted
plain text on a browser?

A <PRE> tags can be useful if you want to preserve plain text formatting in an HTML
context. If you want to output an entire text document to the browser, however, it is

Working with Strings 337

17

21 CH17 11/29/01 3:24 PM Page 337

neater to tell the browser to format the entire output as plain text. You can do this
with the header() function:
Header(“Content-Type: Text/Plain”);

Workshop
Quiz

1. What conversion specifier would you use with printf() to format an integer as a
double? Write down the full syntax required to convert the integer 33.

2. How would you pad the conversion you effected in question 1 with zeroes so that
the part before the decimal point is four characters long?

3. How would you specify a precision of two decimal places for the floating-point
number we have been formatting in the previous questions?

4. What function would you use to determine the length of a string?

5. What function would you use to acquire the starting index of a substring within a
string?

6. What function would you use to extract a substring from a string?

7. How might you remove white space from the beginning of a string?

8. How would you convert a string to uppercase characters?

9. How would you break up a delimited string into an array of substrings?

Quiz Answers
1. The conversion specifier f is used to format an integer as a double:

printf(“%f”, 33);

2. You can pad the output from printf() with the padding specifier—that is, a space
or a zero followed by a number representing the number of characters you want to
pad by.

printf(“%04f”, 33);

3. The precision specifier consists of dot (.) followed by a number representing the
precision you want to apply. It should be placed before the conversion specifier:

printf(“%04.2f”, 33);

4. The strlen() function returns the length of a string.

5. The strstr() function returns the starting index of a substring.

6. The substr() function extracts and returns a substring.

338 Hour 17

21 CH17 11/29/01 3:24 PM Page 338

7. The ltrim() function removes white space from the start of a string.

8. The strtoupper() function converts a string to uppercase characters.

9. The explode() function will split up a string into an array.

Activities
1. Create a feedback form that accepts a user’s full name and an email address. Use

case conversion functions to capitalize the first letter of each name the user submits
and print the result back to the browser. Check that the user’s email address con-
tains the @ symbol and print a warning otherwise.

2. Create an array of doubles and integers. Loop through the array converting each
element to a floating-point number with a precision of 2. Right-align the output
within a field of 20 characters.

Working with Strings 339

17

21 CH17 11/29/01 3:24 PM Page 339

21 CH17 11/29/01 3:24 PM Page 340

HOUR 18
Working with Regular
Expressions

Regular expressions are a powerful way of examining and modifying text.
They enable you to search for patterns within a string, extracting matches
flexibly and precisely. Be warned that because they are more powerful, they
are also slower than the more basic string function examined in Hour 17,
“Working with Strings.” You should use string functions, therefore, if you
don’t need the extra power afforded by the use of a regular expression
function.

PHP supports two flavors of regular expression. It has a set of functions that
emulate regular expressions as employed in Perl, and a set of function that
support the more limited POSIX regular expressions. You will examine both.

In this hour, you will learn:

• How to match patterns in strings using regular expressions

• The basics of regular expression syntax

22 CH18 11/29/01 3:21 PM Page 341

• How to replace text in strings using regular expressions

• How to work with powerful Perl compatible regular expressions to match and
replace patterns in text

POSIX Regular Expression Functions
POSIX regular expression functions make it possible for you to match and replace com-
plex patterns in strings. They are commonly known simply as regular expression func-
tions, but we refer to them as POSIX regular expression functions to distinguish them
from the similar but more powerful Perl compatible regular expressions, and because
they follow the POSIX definition for extended regular expressions.

A regular expression is a combination of symbols that match a pattern in text. Learning
how to use regular expressions, therefore, is much more than learning the arguments and
return types of PHP’s regular expression functions. We will begin with the functions and
use them to introduce regular expression syntax.

Using ereg() to Match Patterns in Strings
ereg() requires a string representing a pattern, a string representing the text to be
searched, and an array variable into which the results of the search will be placed.
ereg()returns an integer representing the number of characters matched if the pattern
was discovered in the source string, or false otherwise. Let’s search the string
“Aardvark advocacy” for the letters “aa.”

print ereg(“aa”,”aardvark advocacy”,$array);
print “
$array[0]
”;
// output:
// 2
// aa

The letters “aa” exist in “aardvark,” so ereg() returns 2, which is the number of letters it
matched. The first element of the $array variable is also filled with the matched string,
which we print to the browser. This might seem strange given that we already know the
pattern we are looking for is “aa”. We are not, however, limited to looking for predefined
characters. We can use a single dot (.) to match any character:

print ereg(“d.”,”aardvark advocacy”,$array);
print “
$array[0]
”;
// output:
// 2
// dv

d. matches “d” followed by any character. We don’t know in advance what the second
character will be, so the value in $array[0] becomes useful.

342 Hour 18

22 CH18 11/29/01 3:21 PM Page 342

Using Quantifiers to Match a Character More Than Once
When you search for a character in a string, you can use a quantifier to determine the
number of times this character should repeat for a match to be made. The pattern a+, for
example, will match at least one “a” followed by “a” zero or more times. Let’s put this to
the test:

if (ereg(“a+”,”aaaa”, $array))
print $array[0];

// prints “aaaa”;

Notice that this regular expression greedily matches as many characters as it can. Table
18.1 lists the quantifiers you can use to test for a recurring character.

TABLE 18.1 Quantifiers for Matching a Recurring Character

Symbol Description Example

* Zero or more a*
instance

+ One or more a+
instances

? Zero or one a?
instance

{n} n instances a{3}

{n,} At least n a{3,}
instances

{,n} Up to n a{,2}
instances

{n1,n2} At least n1 a{1,2}
instances,
no more than
n2 instances

The numbers between braces in Table 18.1 are called bounds. Bounds let you pinpoint
exactly the number of times a character should repeat to be matched.

Bounds define the number of times a character or range of characters should be
matched in a regular expression. You should place your upper and lower bounds

between braces after the character you wish to match. For example,

a{4,5}

will match no fewer than 4 and no more than 5 instances of the character a.

Working with Regular Expressions 343

18

NEW TERM

22 CH18 11/29/01 3:21 PM Page 343

Let’s create an example. A club has allocated membership codes to its members. A valid
code can be between one and four instances of the letter “y” followed by any number of
alphanumeric characters, followed by the number 99. We have been requested by the
club to parse a backlog, pulling out the membership codes where possible.

$test = “the code is yyXGDH99 — have you received my sub?”;
if (ereg(“y{1,4}.*99 “, $test, $array))

print “Found membership: $array[0]”;
// prints “Found membership: yyXGDH99 “

In the previous code fragment, the membership code begins with two y characters, fol-
lowed by four uppercase letters, followed by 99. y{1,4} matches the two y characters,
and the four uppercase letters are matched by .*, which will match any number of char-
acters of any type.

So that would seem to do the job. In fact, we have a long way to go yet. To ensure that
the matched pattern ends at 99, we have required a space as the last character. This is
returned when we match. Worse than this, if the string we were testing was

“my code is yyXGDH99 did you get my 1999 sub?”

the previous regular expression would match

“y code is yyXGDH99 did you get my 1999 “

So what went wrong? The regular expression matched the y in my, and then matched any
number of characters until it reached 99 followed by a space. Regular expressions are
greedy; in other words, they match as many characters as they can. For this reason, we
match all characters until the 99 of 1999 is reached, rather than the final 99 in our mem-
bership code. We might go some way towards fixing this if only we could make sure that
the characters that we match between y and 99 are truly alphanumeric and contain no
spaces. In fact, we can do this easily with a character class.

Matching Ranges of Characters with Character Classes
Until now we have either matched specified characters or used . to match any character.
Character classes enable you to match any one of a group of characters. To define a char-
acter class, you surround the characters you want to match in square brackets. [ab] will
match “a” or “b.” After you have defined a character class, you can treat it as if it were a
character. So [ab]+ will match “aaa,” “bbb,” or “ababab.”

You can also match ranges of characters with a character class: [a-z] will match any
lowercase letter, [A-Z] will match any uppercase letter, and [0-9] will match any num-
ber. You can combine ranges and individual characters into one character class, so
[a-z5] will match any lowercase letter or the number “5”.

344 Hour 18

22 CH18 11/29/01 3:21 PM Page 344

You can also negate a character class by including a caret (^) character after the opening
square bracket: [^A-Z] will match anything apart from an uppercase character.

Let’s return to the example from the previous section. We need to match “y” between one
and four times, any alphanumeric character any number of times, and the characters
“99.”

$test = “my code is yyXGDH99 did you get my 1999 sub?”;
if (ereg(“y{1,4}[a-zA-Z0-9]*99 “, $test, $array))

print “Found membership: $array[0]”;
// prints “Found membership: yyXGDH99 “

We’re getting closer. The character class that we have added will no longer match spaces,
so the membership code is now returned. If we add a comma after the membership code
in our test string, however, the regular expression fails again:

$test = “my code is yyXGDH99, did you get my 1999 sub?”;
if (ereg(“y{1,4}[a-zA-Z0-9]*99 “, $test, $array))

print “Found membership: $array[0]”;
// regular expression fails

This is because we have demanded a space at the end of the pattern to ensure that we are
at the end of the membership code. So if a text includes a membership code in parenthe-
ses, or before a hyphen or comma, the match will fail. We can amend our regular expres-
sion, so that we match anything other than an alphanumeric character, which will get us
some way towards a solution:

$test = “my code is yyXGDH99, did you get my 1999 sub?”;
if (ereg(“y{1,4}[a-zA-Z0-9]*99[^a-zA-Z0-9]”, $test, $array))

print “Found membership: $array[0]”;
// prints “Found membership: yyXGDH99,”

We’re closer still, but there are still two problems. First, we have included the comma in
our returned match, and second, the match will fail if the membership code is at the end
of the string we are testing because it requires a character to exist after the membership
code. We need, in other words, to find a reliable way of testing for a word boundary. We
will return to this problem.

Working with Atoms
An atom is a pattern enclosed in parentheses (often referred to as a subpattern).
After you have defined an atom, you can treat it as if it were itself a character or

character class. In other words, you can match the same pattern as many times as you
want using the syntax described in Table 18.1.

In the next fragment, we define a pattern, enclose it in parentheses, and require that the
atom should match twice for the regular expression to succeed:

Working with Regular Expressions 345

18

NEW TERM

22 CH18 11/29/01 3:21 PM Page 345

$test = “abbaxabbaxabbax”;
if (ereg(“([ab]+x){2}”, $test, $array))

print “$array[0]”;
// prints “abbaxabbax”

[ab]+x will match “abbax”, but ([ab]+x){2} will match “abbaxabbax”.

The first element of the array variable that is passed to ereg() will contain the complete
matched string. Subsequent elements will contain each individual atom matched. This
means that you can access the component parts of a matched pattern (up to a maximum
of 10 subpatterns) as well as the entire match.

In the following code fragment, we match an IP address and access not only the entire
address, but also each of its component parts:

$test = “158.152.55.35”;
if (ereg(“([0-9]+)\.([0-9]+)\.([0-9]+)\.([0-9]+)”, $test, $array)) {

foreach ($array as $val)
print “$val
”;

}
// Output:
// 158.152.1.58
// 158
// 152
// 1
// 58

Notice that we have used a backslash (\) to escape the dots in the regular expression. By
doing this, we signal that we want to strip . of its special meaning and treat it as a spe-
cific character. You must do the same for any character that has a function in a regular
expression if you want to refer to it.

Branches
You can combine patterns with the pipe (|) character to create branches in your regular
expressions. A regular expression with two branches will match either the first pattern or
the second. This adds yet another layer of flexibility to regular expression syntax. In the
next code fragment, we match either .com or .co.uk in a string:

$test = “www.adomain.com”;
if (ereg(“\.com|\.co\.uk”, $test, $array))

print “it is a $array[0] domain
”;
// prints “it is .com domain”

Anchoring a Regular Expression
Not only can you determine the pattern you want to find in a string, you also can decide
where in the string you want to find it. To test whether a pattern is at the beginning of a
string, prepend a caret (^) symbol to your regular expression. ^a will match “apple”, but
not “banana”.

346 Hour 18

22 CH18 11/29/01 3:21 PM Page 346

To test that a pattern is at the end of a string, append a dollar ($) symbol to the end of
your regular expression. a$ will match “flea” but not “dear”.

The Membership Code Example Revisited
We now have the tools to complete our membership code examples. Remember that we
are parsing emails to extract membership codes that consist of between one and four
instances of the letter “y” followed by any number of any alphanumeric characters fol-
lowed by “99.” Our current problem is to determine when a matched pattern is on a word
boundary. We can’t use a space because a word can be bounded by punctuation. We can’t
require that a nonalphanumeric character bound the match because our pattern could
begin or end a string.

Now that we can create branches and anchor patterns, we can require that the member-
ship code be followed either by a nonalphanumeric character or the end of the string. We
can use the same logic to determine a word boundary at the beginning of the code. We
can also use parentheses to recover the membership code shorn of any punctuation or
spaces as follows:

$test = “my code is yyXGDH99, did you get my 1999 sub?”;
if (ereg(“(^|[^a-zA-Z0-9])(y{1,4}[a-zA-Z0-9]*99)([^a-zA-Z0-9]|$)”, $test,
$array))

print “Found membership: $array[2]”;
// prints “Found membership: yyXGDH99”

As you can see, regular expressions are daunting at first glance. After you break them
down into smaller chunks, however, they usually reveal their secrets quite easily. We
have ensured that our matched pattern is on a word boundary (as we define it for these
purposes). This means that it must either be preceded by a nonalphanumeric character or
the beginning of the string. It must be also be followed by a nonalphanumeric character
or the end of the string. We don’t want to record any preceding or following characters,
so we wrap the pattern we want to extract in parentheses. We can then be sure to access
it in the second element of the $array array.

Working with Regular Expressions 347

18

ereg() is case sensitive. If you don’t want to match case, you can use
eregi(), which is not case sensitive but is the same as ereg() in all other
respects.

Using ereg_replace() to Replace Patterns in Strings
Until now we have searched for patterns in a string, leaving the search string untouched.
ereg_replace() enables you to find a pattern in a string and replace it with a new

22 CH18 11/29/01 3:21 PM Page 347

substring. ereg_replace() requires three strings: a regular expression, the text with
which to replace a found pattern, and the text to modify. ereg_replace() returns a
string, including the modification if a match was found or an unchanged copy of the
original source string otherwise. In the following fragment, we search for the name of a
club official, replacing it with name of her successor:

$test = “Our Secretary, Sarah Williams is pleased to welcome you.”;
print ereg_replace(“Sarah Williams”, “Rev. P.W. Goodchild”, $test);
// prints “Our Secretary, Rev. P.W. Goodchild is pleased to welcome you.”

Note that although ereg() will only match the first pattern it finds, ereg_replace() will
find and replace every instance of a pattern.

Using Back References with ereg_replace()
Back references make it possible for you to use part of a matched pattern in the replace-
ment string. To use this feature, you should use parentheses to wrap any elements of your
regular expression that you might want to use. The text matched by these subpatterns
will be available to the replacement string if you refer to them with two backslashes and
the number of the atom (\\1, for example). Atoms are numbered in order, outer to inner,
left to right starting at \\1. \\0 stores the entire match.

The following fragment converts dates in dd/mm/yy format to mm/dd/yy format:

$test = “25/12/2000”;
print ereg_replace(“([0-9]+)/([0-9]+)/([0-9]+)”, “\\2/\\1/\\3”, $test);
// prints “12/25/2000”

348 Hour 18

ereg_replace() is case sensitive. If you don’t want to match case, you can
use eregi_replace(), which is not case sensitive but is identical to ereg_
replace() in all other respects.

Using split() to Break Up Strings
In Hour 17, “Working with Strings,” you saw that you could split a string of tokens into
an array using explode(). This is powerful but limits you to a single set of characters
that can be used as a delimiter. PHP’s split() function enables you to use the power of
regular expressions to define a flexible delimiter. split() requires a string representing
a pattern to use as a delimiter and a source string. It also accepts an optional third argu-
ment representing a limit to the number of elements you want returned. split() returns
an array.

22 CH18 11/29/01 3:21 PM Page 348

The following fragment uses a regular expression with two branches to split a string on
either a comma followed by a space or the word and surrounded by two spaces:

$text = “apples, oranges, peaches and grapefruit”;
$fruitarray = split(“, | and “, $text);
foreach ($fruitarray as $item)

print “$item
”;
// output:
// apples
// oranges
// peaches
// grapefruit

Working with Regular Expressions 349

18

split() is case sensitive. If you would like to match independently of case,
you can use spliti(). spliti() works in exactly the same way as split(),
except that case will be ignored when the regular expression is interpreted.

Perl Compatible Regular Expressions (PCREs)
If you are migrating from Perl to PHP, you are likely to find the POSIX regular expres-
sion functions somewhat cumbersome. The good news is that PHP 4 supports Perl com-
patible regular expressions. PCREs are even more powerful than the syntax that you
have already examined. We will explore the differences in this section.

Matching Patterns with preg_match()
preg_match() accepts three arguments: a regular expression, a source string, and an
array variable, which will store matches. preg_match() returns true if a match is found
and false otherwise. The difference between this function and ereg_match() lies in the
regular expression argument. Perl compatible regular expressions should be enclosed by
delimiters. Conventionally, these delimiters are forward slashes, although you can use
any character that isn’t alphanumeric (apart from the backslash character). The following
fragment uses preg_match() to match the character p followed by any character, fol-
lowed by the character t:

$text = “pepperpot”;
if (preg_match(“/p.t/”, $text, $array))

print $array[0];
// prints “pot”

PCREs and Greediness
By default, regular expressions will attempt to match as many characters as possible. So,

“/p.*t/”

22 CH18 11/29/01 3:21 PM Page 349

will find the first “p” in a string and match as many characters as possible until the last
possible “t” character is reached. So, this regular expression matches the entire test string
in the following fragment:

$text = “pot post pat patent”;
if (preg_match(“/p.*t/”, $text, $array))

print $array[0];
// prints “pot post pat patent”

By placing a question mark (?) after any quantifier, you can force a Perl compatible reg-
ular expression to be more frugal. So, whereas

“p.*t”

means “p followed by as many characters as possible followed by t,”

“p.*?t”

means “p followed by as few characters as possible followed by t.”

The following fragment uses this technique to match the smallest number of characters
starting with “p” and ending with “t”:

$text = “pot post pat patent”;
if (preg_match(“/p.*?t/”, $text, $array))

print $array[0];
// prints “pot”

PCREs and Backslashed Characters
You can escape certain characters with Perl compatible regular expressions, just as you
can within strings. \t, for example represents a tab character, and \n represents a new-
line. PCREs also define some escape characters that will match entire character types.
Table 18.2 lists these backslash characters.

TABLE 18.2 Escape Characters that Match Character Types

Character Matches

\d Any number

\D Anything other than a number

\s Any kind of whitespace

\S Anything other than whitespace

\w Alphanumeric characters (including the underscore character)

\W Anything other than an alphanumeric character or an underscore

350 Hour 18

22 CH18 11/29/01 3:21 PM Page 350

These escape characters can vastly simplify your regular expressions. Without them, you
would be forced to use a character class to match ranges of characters. Compare the
ereg() and preg_match() syntax for matching word characters:

ereg(“p[a-zA-Z0-9_]+t”, $text, $array);
preg_match(“/p\w+t/, $text, $array);

PCREs also support a number of escape characters that act as anchors. Anchors match
positions within a string, without matching any characters. These are listed in Table 18.3.

TABLE 18.3 Escape Characters That Act as Anchors

Character Matches

\A Beginning of string

\b Word boundary

\B Not a word boundary

\Z End of string (matches before final newline or at end of string)

\z End of string (matches only at very end of string)

Remember the problems we had matching word boundaries in our membership code
example? PCREs make this job much easier. Compare the ereg() and preg_match()

syntax for matching word characters and boundaries:

ereg(“(^|[^a-zA-Z0-9_])(p[a-zA-Z0-9_]+t)([^a-zA-Z0-9_]|$)”, $text, $array);
preg_match(“\bp\w+t\b”, $text, $array);

The preg_match() call in the previous fragment will match the character “p” but only if
it is at a word boundary, followed by any number of word characters, followed by “t,”
but only if it is at a word boundary. The word boundary escape character does not actu-
ally match a character; it merely confirms that a boundary exists for a match to take
place. For the ereg_match() call, you must construct a pattern for a nonword character
and match either that or a string boundary.

You can also escape characters to turn off their meanings. To match a “.” character, for
example, you should add a backslash to it.

Finding Matches Globally with preg_match_all()
One of the problems with POSIX regular expressions is that it is difficult to match every
instance of a pattern within a string. So, using ereg() to search for words beginning with
“p” and ending with “s,” we will match only the first found pattern. Let’s try it out:

$text = “I sell pots, plants, pistachios, pianos and parrots”;
if (ereg(“(^|[^a-zA-Z0-9_])(p[a-zA-Z0-9_]+s)([^a-zA-Z0-9_]|$)”,

$text, $array)) {

Working with Regular Expressions 351

18

22 CH18 11/29/01 3:21 PM Page 351

for ($x=0; is_string($array[$x]); $x++)
print “\$array[$x]: $array[$x]
\n”;

}
// output:
// $array[0]: pots,
// $array[1]:
// $array[2]: pots
// $array[3]: ,

As we would expect, the first match, “pots”, is stored in the third element of the $array
array. The first element contains the complete match, the second contains a space, and
the fourth contains a comma. To get at every pattern match in our test string, we would
have to use ereg_replace() in a loop to remove each match from the string before test-
ing again.

We can use preg_match_all() to access every match in the test string in one call.
preg_match_all() accepts a regular expression, a source string, and an array variable,
and will return true if a match is found. The array variable is populated with a multidi-
mensional array, the first element of which will contain every match to the complete pat-
tern defined in the regular expression.

Listing 18.1 tests a string using preg_match_all(), using two for statements to output
the multidimensional array of results.

LISTING 18.1 Using preg_match_all() to Match a Pattern Globally

1: <html>
2: <head>
3: <title>Using preg_match_all() to match a pattern globally</title>
4: </head>
5: <body>
6: <?php
7: $text = “I sell pots, plants, pistachios, pianos and parrots”;
8: if (preg_match_all(“/\bp\w+s\b/”, $text, $array)) {
9: for ($x=0; $x< count($array); $x++) {
10: for ($y=0; $y< count($array[$x]); $y++)
11: print “\$array[$x][$y]: “.$array[$x][$y].”
\n”;
12: }
13: }
14: // Output:
15: // $array[0][0]: pots
16: // $array[0][1]: plants
17: // $array[0][2]: pistachios
18: // $array[0][3]: pianos
19: // $array[0][4]: parrots
20: ?>
21: </body>
22: </html>

352 Hour 18

22 CH18 11/29/01 3:21 PM Page 352

The first and only element of the $array variable that we passed to preg_match_all()
on line 8 has been populated with an array of strings. This array contains every word in
the test string that begins with “p” and ends with “s”.

preg_match_all() populates a multidimensional array to store matches to subpatterns.
The first element of the array argument passed to preg_match_all() will contain every
match of the complete regular expression. Each additional element will contain the
matches that correspond to each atom (subpattern in parentheses). So with the following
call to preg_match_all()

$text = “01-05-99, 01-10-99, 01-03-00”;
preg_match_all(“/(\d+)-(\d+)-(\d+)/”, $text, $array);

$array[0] will store an array of complete matches:

$array[0][0]: 01-05-99
$array[0][1]: 01-10-99
$array[0][2]: 01-03-00

$array[1] will store an array of matches that corresponds to the first subpattern:

$array[1][0]: 01
$array[1][1]: 01
$array[1][2]: 01

$array[2] will store an array of matches that corresponds to the second subpattern:

$array[2][0]: 05
$array[2][1]: 10
$array[2][2]: 03

and so on.

Using preg_replace() to Replace Patterns
preg_replace() behaves in the same way as ereg_replace(), except that you have
access to the additional functionality of Perl compatible regular expressions. preg_
replace() requires a regular expression, a replacement string, and a source string. If a
match is found, it returns a transformed string; otherwise, it returns a copy of the source
string. preg_replace() also optionally accepts a fourth argument; an integer represent-
ing the maximum number of replacement that should be made. The following fragment
transforms dates in a string from dd/mm/yy to mm/dd/yy format:

$t = “25/12/99, 14/5/00”;
$t = preg_replace(“|\b(\d+)/(\d+)/(\d+)\b|”, “$2/$1/$3”, $t);
print “$t
”;
// prints “12/25/99, 5/14/00”

Working with Regular Expressions 353

18

22 CH18 11/29/01 3:21 PM Page 353

Notice that we have used a pipe (|) symbol as a delimiter. This is to save us from having
to escape the forward slashes in the pattern we want to match. preg_replace() supports
back references in the same way as ereg_replace().

Notice also that we have used a different syntax for back references. Although the syntax
you have already encountered will work (two backslashes followed by the back reference
number), the preferred syntax for Perl compatible regular expressions is now a dollar
character followed by the back reference number.

Instead of a source string, you can pass an array of strings to preg_replace(), and it
will transform each string in turn. In this case, the return value will be an array of
transformed strings.

You can also pass arrays of regular expressions and replacement strings to preg_
replace(). Each regular expression will be applied to the source string, and the corre-
sponding replacement string will be applied. The following fragment transforms date
formats as before, but also changes copyright information in the source string:

$text = “25/12/99, 14/5/00. Copyright 1999”;
$regs = array(“|\b(\d+)/(\d+)/(\d+)\b|”, “/([Cc]opyright) 1999/”);
$reps = array(“$2/$1/$3”, “$1 2000”);
$text = preg_replace($regs, $reps, $text);
print “$text
”;
// prints “12/25/99, 5/14/00. Copyright 2000”

We create two arrays. The first, $regs, contains two regular expressions, and the second,
$reps, contains replacement strings. The first element of the $reps array corresponds to
the first element of the $reps array, and so on.

If the array of replacement strings contains fewer elements than the array of regular
expressions, patterns matched by those regular expressions without corresponding
replacement strings will be replaced with an empty string.

If you pass preg_replace() an array of regular expressions but only a string as replace-
ment, the same replacement string will be applied to each pattern in the array of regular
expressions.

Modifiers
Perl compatible regular expressions allow you to modify the way that a pattern is applied
through the use of pattern modifiers.

A pattern modifier is a letter that should be placed after the final delimiter in
your Perl compatible regular expression. It will refine the behavior of your

regular expression.

Table 18.4 lists the PCRE pattern modifiers

354 Hour 18

NEW TERM

22 CH18 11/29/01 3:21 PM Page 354

TABLE 18.4 Perl Compatible Regular Expression Modifiers

Pattern Description

/i Case insensitive.

/e Treats replacement string in preg_replace() as PHP code.

/m $ and ^ anchors match at new lines as well as the beginning and end of the string.

/s Matches new lines (new lines are not normally not matched by .).

/x White space outside character classes is not matched to aid readability. To match
white space, use \s, \t, or \ .

/A Matches pattern only at start of string (this modifier is not found in Perl).

/E Matches pattern only at end of string (this modifier is not found in Perl).

/U Makes the regular expression ungreedy—minimum number of allowable
matches found (this modifier is not found in Perl).

Where they do not contradict one another, you can combine pattern modifiers. You might
want to use the x modifier to make your regular expression easier to read, for example,
and also the i modifier to make it match patterns regardless of case. / b \S* t /ix will
match “bat” and “BAT” but not “B A T”, for example. Unescaped spaces in a regular
expression modified by x are there for aesthetic reasons only and will not match any pat-
terns in the source string.

The m modifier can be useful if you want to match an anchored pattern on multiple lines
of text. The anchor patterns ^ and $ match the beginning and ends of an entire string by
default. The following fragment uses the m modifier to change the behavior of $:

$text = “name: matt\noccupation: coder\neyes: blue\n”;
preg_match_all(“/^\w+:\s+(.*)$/m”, $text, $array);
foreach ($array[1] as $val)

print “$val
”;
// output:
// matt
// coder
// blue

We create a regular expression that will match any word characters followed by a colon
and any number of space characters. We then match any number of characters followed
by the end of string ($) anchor. Because we have used the m pattern modifier, $ matches
the end of every line rather than the end of the string.

The s modifier is useful when you want use . to match characters across multiple lines.
The following fragment attempts to access the first and last words of a string:

$text = “start with this line\nand you will reach\na conclusion in the end\n”;
preg_match(“/^(\w+).*?(\w+)$/”, $text, $array);
print “$array[1] $array[2]
”;

Working with Regular Expressions 355

18

22 CH18 11/29/01 3:21 PM Page 355

This code will print nothing. Although the regular expression will find word characters at
the beginning of the string, the . will not match the newline characters embedded in the
text. The s modifier will change this:

$text = “start with this line\nand you will reach\na conclusion in the end\n”;
preg_match(“/^(\w+).*?(\w+)$/s”, $text, $array);
print “$array[1] $array[2]
”;
// prints “start end”

The e modifier can be particularly powerful. It allows you to treat the replacement string
in preg_replace() as if it were PHP. You can pass back references to functions as argu-
ments, for example, or process lists of numbers. In the following example we use the e
modifier to pass matched numbers in dates to a function that returns the same date in a
new format.

<?php
function convDate($month, $day, $year) {

$year = ($year < 70)?$year+2000:$year;
$time = (mktime(0,0,0,$month,$day,$year));
return date(“l d F Y”, $time);

}

$dates = “3/18/99
\n7/22/00”;
$dates = preg_replace(“/([0-9]+)\/([0-9]+)\/([0-9]+)/e”,

“convDate($1,$2,$3)”, $dates);
print $dates;

// prints:
// Thursday 18 March 1999
// Saturday 22 July 2000
?>

We match any set of three numbers separated by slashes, using parentheses to capture the
matched numbers. Because we are using the e modifier, we can call the user-defined
function convDate() from the replacement string argument, passing the three back refer-
ences to the function. convDate() simply takes the numerical input and produces a more
verbose date which replaces the original. Because in our example we are matching num-
bers, we do not need to enclose the back references in quotes. If we were matching
strings, quotes would be necessary around each string back reference.

Using preg_replace_callback() to Replace Patterns
preg_replace_callback() allows you to assign a callback function which will be called
for every full match your regular expression finds. preg_replace_callback() requires a
regular expression, a reference to a callback function, and the string to be analyzed. Like
preg_replace() it also optionally accepts a limit argument.

356 Hour 18

22 CH18 11/29/01 3:21 PM Page 356

The callback function should be designed to accept a single array argument. This will
contain the full match at index ‘0’ and each submatch in subsequent positions in the
array. Whatever the callback function returns will be incorporated into the string returned
by preg_replace_callback().

We can use preg_replace_callback() to rewrite our date replacement example.

function convDate($matches) {
$year = ($year < 70)?$matches[3]+2000:$matches[3];
$time = (mktime(0,0,0,$matches[1],$matches[2],$matches[3]));
return date(“l d F Y”, $time);

}

$dates = “3/18/99
\n7/22/00”;
$dates = preg_replace_callback(“/([0-9]+)\/([0-9]+)\/([0-9]+)/”,

“convDate”, $dates);
print $dates;

// prints:
// Thursday 18 March 1999
// Saturday 22 July 2000

In this example the convDate() function is called twice, once for each time the regular
expression matches. The day, month and year figures are then easy to extract from the
array that is passed to convDate() and stored in the $matches argument variable.

Summary
Regular expressions are a huge subject, and we’ve really only scraped the surface of their
power in this hour. Nevertheless, you should now be able to use regular expression func-
tions to find and replace complex patterns in text.

You should be able to use the ereg() regular expression function to find patterns in
strings and the ereg_replace() function to replace all instances of a pattern in a string.
You should be able to find ranges of characters using character classes, multiple patterns
using quantifiers, and alternative patterns using branches. You should be able to extract
subpatterns and refer to them with back references. With the aid of Perl compatible regu-
lar expressions, you should be able to use escape characters to anchor patterns or to
match character types. You should be able to use modifiers to change the way in which
PCREs work.

In the next hour we will examine some core techniques for creating environments that
can retain information across multiple requests.

Working with Regular Expressions 357

18

22 CH18 11/29/01 3:21 PM Page 357

Q&A
Q Perl compatible regular expressions seem very powerful. Is there anywhere I

can find out more about them?

A The relevant section in the PHP manual at http://www.php.net will offer some
information about regular expression syntax. You can also find some useful infor-
mation at http://www.perl.com—in particular, an introduction to Perl regular
expressions at http://www.perl.com/pub/doc/manual/html/pod/perlre.html
and an article by Tom Christiansen at http://www.perl.com/pub/doc/manual/
html/pod/perlfaq6.html. For a challenging but comprehensive guide to regular
expressions you should acquire Mastering Regular Expressions by Jeffrey Friedl
(O’Reilly).

Workshop
Quiz

1. Using POSIX regular expression functions, what function would you use to match
a pattern in a string?

2. What regular expression syntax would you use to match the letter “b” at least once
but not more than six times?

3. How would you specify a character range between “d” and “f”?

4. How would you negate the character range you defined in question 3?

5. What syntax would you use to match either any number or the word “tree”?

6. What POSIX regular expression function would you use to replace a matched
pattern?

7. The regular expression
.*bc

will match greedily—that is, it will match “abc000000bc” rather than “abc”. Using
Perl compatible regular expressions, how would you make the preceding regular
expression match only the first instance of a pattern it finds?

8. Using PCREs, what backslash character will match white space?

9. What PCRE function could you use to match every instance of a pattern in a
string?

10. Which modifier would you use in a PCRE function to match a pattern
independently of case?

358 Hour 18

22 CH18 11/29/01 3:21 PM Page 358

Quiz Answers
1. The ereg() function can be used to find a pattern in a string.

2. You can use braces containing the minimum and maximum instances (the bounds)
of a character to match:

b{1,6}

3. You can specify a character range using square brackets:

[d-f]

4. You can negate a character range with the caret symbol:

[^d-f]

5. You can match alternative branches with the pipe (|) character:

[0-9]|tree

6. The ereg_replace() function can be used to replace a matched pattern with a
given alternative.

7. By adding a question mark to a quantifier, you can force the match to be
non-greedy when using PCREs:

/.*?bc/

8. \s will match white space in a PCRE.

9. The preg_match_all() function will match every instance of a pattern in a string.

10. The /i modifier will make a PCRE function match independently of case.

Activity
1. Use regular expressions to extract email addresses from a file. Add them to an

array and output the result to the browser. Refine your regular expression across a
number of files.

Working with Regular Expressions 359

18

22 CH18 11/29/01 3:21 PM Page 359

22 CH18 11/29/01 3:21 PM Page 360

HOUR 19
Saving State with
Cookies and Query
Strings

HTTP is a stateless protocol. This means that every page a user downloads
from your server represents a separate connection. On the other hand, Web
sites are perceived by users and publishers alike as environments, as spaces
within which a single page is part of a wider whole. It’s not surprising,
therefore, that strategies to pass information from page to page are as old as
the Web itself.

In this hour, we will examine two methods of storing information on one
page that can then be accessed on subsequent pages. In this hour, you will
learn:

• What cookies are and how they work

• How to read a cookie

• How to set a cookie

23 CH19 11/29/01 3:19 PM Page 361

• How to use cookies to store site usage information in a database

• About query strings

• How to build a function to turn an associative array into a query string

Cookies
Netscape originated the “magic cookie” back in the days of Netscape 1. The origin of the
name is the subject of some debate, though it seems reasonable to assume that the for-
tune cookie may have played a role in the thinking behind it. Since then, the standard has
been embraced by other browser producers.

A cookie is a small amount of data stored by the user’s browser in compliance
with a request from a server or script. A host can request that up to 20 cookies be

stored by a user’s browser. Each cookie consists of a name, value, and expiry date, as
well as host and path information. An individual cookie is limited to 4KB.

After a cookie is set, only the originating host can read the data, ensuring that the user’s
privacy is respected. Furthermore, the user can configure his browser to notify him of all
cookies set, or even to refuse all cookie requests. For this reason, cookies should be used
in moderation and should not be relied on as an essential element of an environment
design without first warning the user.

Having said that, cookies can be an excellent way of saving small amounts of informa-
tion about a user from page to page or even from visit to visit.

The Anatomy of a Cookie
Cookies are usually set in an HTTP header (although JavaScript can also set a cookie
directly on a browser). A PHP script that sets a cookie might send headers that look
something like this:

HTTP/1.1 200 OK
Date: Tue, 02 Oct 2001 13:39:58 GMT
Server: Apache/1.3.12 Cobalt (Unix) PHP/4.0.6 mod_perl/1.24
X-Powered-By: PHP/4.0.6
Set-Cookie: vegetable=artichoke; expires=Tue,
[ic:ccc]02-Oct-01 14:39:58 GMT; path=/; domain=corrosive.co.uk
Connection: close
Content-Type: text/html

As you can see, the Set-Cookie header contains a name value pair, a GMT date, a path,
and a domain. The name and value will be URL encoded. The expires field is an
instruction to the browser to “forget” the cookie after the given time and date. The path
field defines the position on a Web site below which the cookie should be sent back to

362 Hour 19

NEW TERM

23 CH19 11/29/01 3:19 PM Page 362

the server. The domain field determines the Internet domains to which the cookie should
be sent. The domain cannot be different from the domain from which the cookie was
sent, but it can nonetheless specify a degree of flexibility. In the preceding example,
the browser will send the cookie to the server corrosive.co.uk and the server www.
corrosive.co.uk. You can read more about HTTP headers in Hour 13, “Beyond the
Box.”

If the browser is configured to store cookies, it will then keep this information until the
expiry date. If the user points the browser at any page that matches the path and domain
of the cookie, it will resend the cookie to the server. The browser’s headers might look
something like this:

GET / HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.73 (Macintosh; U; PPC)
Host: www.corrosive.co.uk
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en,pdf
Accept-Charset: iso-8859-1,*,utf-8
Cookie: vegetable=artichoke

A PHP script will then have access to the cookie in the environmental variable HTTP-
COOKIE (which holds all cookie names and values), in the global variable $vegetable, or
in the global array variable HTTP_COOKIE_VARS[“vegetable”]:

print “$HTTP_COOKIE
”; // prints “vegetable=artichoke”
print getenv(“HTTP_COOKIE”).”
”; // prints “vegetable=artichoke”
print “$vegetable
”; // prints “artichoke”
print $HTTP_COOKIE_VARS[‘vegetable’].”
”; // prints “artichoke”

Setting a Cookie with PHP
You can set a cookie in a PHP script in two ways. You can use the header() function to
set the Set-Cookie header. You encountered the header() function in Hour 9, “Working
with Forms.” header() requires a string that will then be included in the header section
of the server response. Because headers are sent automatically for you, header() must
be called before any output at all is sent to the browser.

header (“Set-Cookie: vegetable=artichoke; expires=Tue,
[ic:ccc]02-Oct-01 14:39:58 GMT; path=/; domain=corrosive.co.uk “);

Although not difficult, this method of setting a cookie would require you to build a
function to construct the header string. Formatting the date as in this example and URL
encoding the name/value pair would not be a particularly arduous task. It would, how-
ever, be an exercise in wheel reinvention because PHP provides a function that does
just that.

Saving State with Cookies and Query Strings 363

19

23 CH19 11/29/01 3:19 PM Page 363

setcookie() does what the name suggests—it outputs a Set-Cookie header. For this
reason, it should be called before any other content is sent to the browser. The function
accepts the cookie name, cookie value, expiry date in Unix epoch format, path, domain,
and integer that should be set to 1 if the cookie is only to be sent over a secure connec-
tion. All arguments to this function are optional apart from the first (cookie name)
parameter.

Listing 19.1 uses setcookie() to set a cookie.

LISTING 19.1 Setting and Printing a Cookie Value

1: <?php
2: setcookie(“vegetable”, “artichoke”, time()+3600, “/”,
3: “corrosive.co.uk”, 0);
4: ?>
5: <html>
6: <head>
7: <title>Listing 19.1 Setting and printing a cookie value</title>
8: </head>
9: <body>
10: <?php
11: if (isset($vegetable))
12: print “<p>Hello again, your chosen vegetable is $vegetable</p>”;
13: else
14: print “<p>Hello you. This may be your first visit</p>”;
15: ?>
16: </body>
17: </html>

Even though we set the cookie (line 2) when the script is run for the first time, the
$vegetable variable will not be created at this point. A cookie is only read when the
browser sends it to the server. This will not happen until the user revisits a page in your
domain. We set the cookie name to “vegetable” on line 2 and the cookie value to
“artichoke”. We use the time() function to get the current time stamp and add 3600 to
it (there are 3600 seconds in an hour). This total represents our expiry date. We define a
path of “/”, which means that a cookie should be sent for any page within our server
environment. We set the domain argument to “corrosive.co.uk”, which means that a
cookie will be sent to any server in that group (www.corrosive.co.uk as well as dev.
corrosive.co.uk, for example). If you want the cookie returned only to the server
hosting your script you can use the $SERVER_NAME environmental variable instead of
hard coding the server name. The added advantage of this is that your code will work
as expected even if you move it to a new server. Finally, we pass 0 to setcookie()
signaling that cookies can be sent in an insecure environment.

364 Hour 19

23 CH19 11/29/01 3:19 PM Page 364

Although you can omit all but the first argument, it is a good idea to include all the argu-
ments with the exception of the domain and secure. This is because the path argument is
required by some browsers for cookies to be used as they should be. Also without the
path argument, the cookie will only be sent to documents in the current directory or its
subdirectories.

Passing setcookie() an empty string (“”) for string arguments or 0 for integer fields
will cause these arguments to be skipped.

Deleting a Cookie
Officially, to delete a cookie you should call setcookie() with the name argument only:

setcookie(“vegetable”);

This does not always work well, however, and should not be relied on. It is safest to set
the cookie with a date that has already expired:

setcookie(“vegetable”, “”, time()-60, “/”, “corrosive.co.uk”, 0);

You should also ensure that you pass setcookie() the same path, domain, and secure
parameters as you did when originally setting the cookie.

Creating Session Cookies
To create a cookie that only lasts as long as the user is running his or her browser, pass
setcookie() an expiry argument of 0. While the user’s browser continues to run, cook-
ies will be returned to the server. The browser will not remember the cookie, however,
after it has been quit and restarted.

This can be useful for scripts that validate a user with a cookie, allowing continued
access to personal information on multiple pages after a password has been submitted.
You will not want the browser to have continued access to these pages after it has been
restarted because you can’t be sure that it has not been booted by a new user.

setcookie(“session_id”, “55435”, 0);

An Example—Tracking Site Usage
Imagine that we have been given a brief by a site publisher to use cookies and MySQL to
gather statistics about visitors to the site. The client wants to get figures for the number
of individual visitors to the site, average number of hits per visit for each visitor, and
average time spent on the site for each user.

Saving State with Cookies and Query Strings 365

19

23 CH19 11/29/01 3:19 PM Page 365

Our first duty will be to explain the limitations of cookies to the client. First, not all users
will have cookies enabled on their browsers. If not passed a cookie by a browser, a
cookie script is likely to assume that this is the user’s first visit. The figures are therefore
likely to be skewed by browsers that won’t or can’t support cookies. Furthermore, you
cannot be sure that the same user will use the same browser all the time, or that a single
browser won’t be shared by multiple users.

Having done this, we can move on to fulfilling the brief. In fact, we can produce a work-
ing example in fewer than 90 lines of code!

We need to create a database table with the fields listed in Table 19.1.

TABLE 19.1 Database Fields

Name Type Description

id integer An autoincremented field that produces and
stores a unique ID for each visitor

first_visit integer A time stamp representing the moment of the
first page request made by a visitor

last_visit integer A time stamp representing the moment of the
most recent page request made by a visitor

num_visits integer The number of distinct sessions attributed to the
visitor

total_duration integer The estimated total time spent on the site (in
seconds)

total_clicks integer The total number of requests made by the visitor

To create the MySQL table called track_visit, we need to use a CREATE statement:

create table track_visit (
id INT NOT NULL AUTO_INCREMENT,
PRIMARY KEY(id),
first_visit INT,
last_visit INT,
num_visits INT,
total_duration INT,
total_clicks INT
);

Now that we have a table to work with, we need to write the code that will open a data-
base connection and check for the existence of a cookie. If the cookie does not exist, we
need to create a new row in our table, setting up the initial values for the fields we will
maintain. We create this code in Listing 19.2.

366 Hour 19

23 CH19 11/29/01 3:19 PM Page 366

LISTING 19.2 A Script to Add New User Information to a MySQL Database

1: <?php
2: $link = connect(“localhost”, “”, “”, “test”);
3:
4: if (! isset($visit_id)) {
5: newuser();
6: print “Welcome, first time user!”;
7: } else {
8: print “Welcome back $visit_id<P>”;
9: }
10:
11: function newuser() {
12: $visit_data = array (
13: ‘first_visit’ => time(),
14: ‘last_visit’ => time(),
15: ‘num_visits’ => 1,
16: ‘total_duration’ => 0,
17: ‘total_clicks’ => 1
18:);
19:
20: insert_visit($visit_data);
21: setcookie(“visit_id”, $visit_data[‘id’],
22: time()+(60*60*24*365*10), “/”);
23: return $visit_data;
24: }
25:
26: function connect($host, $user, $pass, $db) {
27: $link = mysql_connect($host, $user, $pass) or
28: die(“Connection error”);
29: mysql_select_db($db, $link) or die (mysql_error());
30: return $link;
31: }
32:
33: function insert_visit(&$visit_data) {
34: global $link;
35: $query = “INSERT INTO track_visit (“;
36: $query .= implode(“, “, array_keys($visit_data));
37: $query .= “) VALUES(“;
38: $query .= implode(“, “, array_values($visit_data));
39: $query .= “);”;
40: $result = mysql_query($query, $link);
41: $visit_data[‘id’] = mysql_insert_id();
42: }
43: ?>

We connect to the MySQL server via a convenience function called connect(), declared
on line 26. This connects to the server on line 27 and selects the database that contains
our table on line 29 (you can read more about working with MySQL in Hour 12,

Saving State with Cookies and Query Strings 367

19

23 CH19 11/29/01 3:19 PM Page 367

“Database Integration—MySQL”). connect() returns a MySQL resource value which is
stored in a global variable called $link. This will be accessed by all functions that work
with the database. On line 4 we test for the presence of the variable $visit_id, which is
the name of the cookie that identifies an individual user. If this variable does not exist,
then we assume that we are dealing with a new user, calling a function that we have
called newuser().

newuser() is declared on line 11. It requires no arguments and will return an array of
the values that we will add to our table. Within the function, we create an array called
$visit_data on line 12. We set the first_visit and last_visit elements to the
current time in seconds. Because this is the first visit, we set the num_visits and
total_clicks elements to 1. No time has elapsed in this visit, so we set total_
duration to 0.

On line 20 we call a function called insert_visit() (declared on line 33) that accepts
the $visit_data array and uses its elements to create a new row in our table, setting
each field to the value of the element of the same name. Notice that we use the built-in
implode() function on line 36 to construct our SQL statement. Because the id field
autoincrements, this does not need to be inserted. We can subsequently access the value
set for id using the mysql_insert_id() function on line 41. Now that we have an ID
for our new visitor, we add this to our $visit_data array, which then accurately reflects
the visitor’s row in the MySQL table. The $visit_data array was passed to insert_
visit() by reference, so the array we manipulate here is also referenced from the
variable of the same name in the calling newuser() function.

Finally in the newuser() function, we use setcookie() on line 21 to set a visit_id
cookie and return the $visit_data array to the calling code on line 23.

The next time our visitor hits this script, the $visit_id variable will have been popu-
lated with the value of the visit_id cookie. Because this variable is set, the user will be
welcomed and no action will be taken.

In fact, we will need to update information in the track_visit table if we detect the
return of a known visitor. We will need to test whether the current request is part of an
ongoing visit or represents the beginning of a new visit. We will do this with a global
variable that will define a time in seconds. If the time of the last request added to this
interval is greater than the current time, then we will assume that the current request is
part of a session in progress. Otherwise, we are welcoming back an old friend.

Listing 19.3 adds new functions to the code created in Listing 19.2.

368 Hour 19

23 CH19 11/29/01 3:19 PM Page 368

LISTING 19.3 A Script to Track Users Using Cookies and a MySQL Database

1: <?php
2: $slength = 300;
3: $link = connect(“localhost”, “”, “”, “test”);
4: $user_stats;
5: if (! isset($visit_id)) {
6: $user_stats = newuser();
7: print “Welcome, first time user!”;
8: } else {
9: print “Welcome back $visit_id<P>”;
10: $user_stats = olduser($visit_id);
11: }
12:
13: function newuser() {
14: $visit_data = array (
15: ‘first_visit’ => time(),
16: ‘last_visit’ => time(),
17: ‘num_visits’ => 1,
18: ‘total_duration’ => 0,
19: ‘total_clicks’ => 1
20:);
21:
22: insert_visit($visit_data);
23: setcookie(“visit_id”, $visit_data[‘id’],
24: time()+(60*60*24*365*10), “/”);
25: return $visit_data;
26: }
27:
28: function olduser($visit_id) {
29: global $slength;
30: $now = time();
31: $visit_data = get_visit($visit_id);
32: if (! $visit_data)
33: return newuser();
34: $visit_data[‘total_clicks’]++;
35: if (($visit_data[‘last_visit’] + $slength) > $now)
36: $visit_data[‘total_duration’] +=
37: ($now - $visit_data[‘last_visit’]);
38: else
39: $visit_data[‘num_visits’]++;
40:
41: $visit_data[‘last_visit’] = $now;
42: update_visit($visit_data);
43: return $visit_data;
44: }
45:
46: function connect($host, $user, $pass, $db) {
47: $link = mysql_connect($host, $user, $pass) or
48: die(“Connection error”);

Saving State with Cookies and Query Strings 369

19

23 CH19 11/29/01 3:19 PM Page 369

LISTING 19.3 continued

49: mysql_select_db($db, $link) or die (mysql_error());
50: return $link;
51: }
52:
53: function get_visit($visit_id) {
54: global $link;
55: $query = “SELECT * FROM track_visit WHERE id=$visit_id”;
56: $result = mysql_query($query, $link);
57:
58: if (! mysql_num_rows($result))
59: return false;
60: return mysql_fetch_assoc($result, $link);
61: }
62:
63: function update_visit(&$visit_data) {
64: global $link;
65: $update_pairs = array();
66: foreach($visit_data as $field=>$val)
67:
68: array_push($update_pairs, “$field=$val”);
69: $query = “UPDATE track_visit SET “;
70: $query .= implode(“, “, $update_pairs);
71: $query .= “ WHERE id=”.$visit_data[‘id’];
72: mysql_query($query, $link);
73: }
74:
75: function insert_visit(&$visit_data) {
76: global $link;
77: $query = “INSERT INTO track_visit (“;
78: $query .= implode(“, “, array_keys($visit_data));
79: $query .= “) VALUES(“;
80: $query .= implode(“, “, array_values($visit_data));
81: $query .= “);”;
82: $result = mysql_query($query, $link);
83: $visit_data[‘id’] = mysql_insert_id();
84: }
85:
86: ?>

We added a new global variable to the script called $slength on line 2. This defines the
interval after which we assume that a new visit is taking place. If the $visit_id variable
is found, then we know that the cookie was in place. We call the olduser() function on
line 10, passing it the $visit_id variable.

Within the olduser() function, we first acquire visit data by calling the get_visit()
function on line 31. get_visit() is declared on line 53. It requires the visit ID which it

370 Hour 19

23 CH19 11/29/01 3:19 PM Page 370

stores in an argument variable called $visit_id. This is used to extract the relevant row
from the track_visit table using mysql_query() on line 56. Assuming that we have
located the row in our table that matches the visit_id cookie, we use mysql_fetch_
assoc() on line 60 to populate an array variable ($visit_data) with the row’s field
names and values. This is returned. The olduser() function should now have a popu-
lated $visit_data array. If not, then we give up, and call newuser() (line 33) which will
add a row to the database.

On line 35 we test to see whether the value of the $visit_data[‘last_visit’] element
added to the interval stored in $slength is greater than the current time. If so, it means
that less than $slength seconds have elapsed since the last hit, and we can assume that
this request is part of a current session. We therefore add the time elapsed since the last
hit to the $visit_data[‘total_duration’] element on line 36.

If the request represents a new visit, we increment $visit_data[‘num_visits’] on
line 39.

Finally, we pass $visit_data to update_visit() on line 42. update_visit() is
declared on line 63 and it constructs an SQL UPDATE statement by looping through
the altered values in the array. The statement is passed to mysql_query() on line 72
to update the user’s row in the track_visit table. olduser() returns the altered
$visit_data array to the calling code.

Now that we’ve created the code, we should create a quick function to demonstrate it in
action. The outputStats() function simply calculates the current user’s averages and
prints the result to the browser. In reality, you would probably want to create some analy-
sis screens for your client, which would collate overall information. Listing 19.4 creates
the outputStats() function. The code from previous examples is incorporated into this
script using an include() statement.

LISTING 19.4 A Script to Output Usage Statistics Gathered in Listing 19.3

1: <?php
2: include(“listing19.3.php”);
3: outputStats();
4: function outputStats() {
5: global $user_stats;
6: $clicks = sprintf(“%.2f”,
7: ($user_stats[‘total_clicks’]/$user_stats[‘num_visits’]));
8: $duration = sprintf(“%.2f”,
9: ($user_stats[‘total_duration’]/$user_stats[‘num_visits’]));
10: print “<p>Hello! Your id is “.$user_stats[‘id’].”</p>\n\n”;
11: print “<p>You have visited
12: “.$user_stats[‘num_visits’].” time(s)</p>\n\n”;

Saving State with Cookies and Query Strings 371

19

23 CH19 11/29/01 3:19 PM Page 371

LISTING 19.4 continued

13: print “<p>Av clicks per visit: $clicks</p>\n\n”;
14: print “<p>Av duration of visit: $duration seconds</p>\n\n”;
15: }
16: ?>

Figure 19.1 shows the output from Listing 19.4. We use an include() statement on line
2 to call the tracking code we have written. We will be including a similar line on every
page of our client’s site. The outputStats() function called on line 3 and declared on
line 4 works with the global $user_stats array variable. This was returned by either
newuser() or olduser() and contains the same information as our user’s row in the
track_visit table.

On line 6, to calculate the user’s average number of clicks, we divide the $user_ stats
[‘total_clicks’] element by the number of visits we have detected. Similarly on line
8, we divide the $user_stats[‘total_duration’] element by the same figure. We use
sprint() to round the results to two decimal places. All that remains is to write a report
to the browser.

372 Hour 19

FIGURE 19.1
Reporting usage
statistics.

We could, of course, extend this example to track user preference on a site, as well as to
log browser types and IP addresses. Imagine a site that analyzes a user’s movements and
emphasizes content according to the links he chooses.

23 CH19 11/29/01 3:19 PM Page 372

Working with the Query String
The great drawback of the cookie is its dependence on the client. Not only are you at
the mercy of the user, who may choose not to allow cookies, you must also rely on the
browser’s implementation of the standard. Some browsers have documented bugs con-
cerning the way that they deal with cookies. If you only want to save state for a single
session, you might decide to use a more traditional approach.

When you submit a form using the GET method, its fields and values are URL encoded
and appended to the URL to which the form is sent. They then become available to the
server and to your scripts. Assuming a form with two fields, user_id and name, the query
string should end up looking something like the following:

http://www.corrosive.co.uk/test5.php?name=344343&user_id=matt+zandstra

Each name and value is separated by an equals (=) sign, and each name/value pair is sep-
arated by an ampersand (&). PHP decodes this string and makes each of the pairs avail-
able in the $HTTP_GET_VARS associative array variable. If the register_globals php.ini
directive is set, PHP also creates a global variable for each name, populating it with the
corresponding value. So, to access the user_id GET variable, you could use either of the
following variables:

$HTTP_GET_VARS[‘user_id’];
$user_id;

You are not limited, however, to using forms to send query strings. You can build your
own relatively easily and in so doing pass substantial amounts of information from page
to page.

Creating a Query String
To create a query string, you need to be able to URL encode the keys and values you
want to include. Assume that we want to pass a URL to another page as part of a query
string. The forward slashes and the colon in a full URL would create ambiguity for a
parser. We must therefore convert the URL into hexadecimal characters. We can do this
using PHP’s urlencode() function. urlencode() accepts a string and returns an encoded
copy:

print urlencode(“http://www.corrosive.co.uk”);
// prints http%3A%2F%2Fwww.corrosive.co.uk

Now that you can URL encode text, you can build your own query string. The following
fragment builds a query string from two variables:

<?php
$interest = “arts”;

Saving State with Cookies and Query Strings 373

19

23 CH19 11/29/01 3:19 PM Page 373

$homepage = “http://www.corrosive.co.uk”;
$query = “homepage=”.urlencode($homepage);
$query .= “&interest=”.urlencode($interest);
?>
<A HREF=”newpage.php?<?print $query ?>”>Go

The URL in the link will reach the browser including an encoded query string:

newpage.php?homepage=http%3A%2F%2Fwww.corrosive.co.uk&interest=arts

The homepage and interest parameters will become available within newpage.php as
global variables.

This approach is clumsy, however. Because we have hard-coded variable names into the
query string, we cannot reuse the code easily. To pass information effectively from page
to page, we need to make it easy to embed names and values into a link and generate a
query string automatically. This is especially important if we are to maintain the benefit
of PHP that it is easy for a non-programmer to work around.

Listing 19.5 creates a function called qlink() that accepts an associative array and
returns a query string.

LISTING 19.5 A Function to Build Query Strings

1: <html>
2: <head>
3: <title>Listing 19.5 A function to build query strings</title>
4: </head>
5: <body>
6: <?php
7: function qlink($q) {
8: if (! $q)
9: return $GLOBALS[‘QUERY_STRING’];
10: $ret = “”;
11: foreach($q as $key => $val) {
12: if (strlen($ret)) $ret .= “&”;
13: $ret .= urlencode($key) . “=” . urlencode($val);
14: }
15: return $ret;
16: }
17: $q = array (
18: ‘name’ => “Arthur Harold Smith”,
19: ‘interest’ => “Cinema (mainly art house)”,
20: ‘homepage’ => “http://www.corrosive.co.uk/harold/”
21:);
22: print qlink($q);
23: // prints name=Arthur+Harold+Smith&interest=Cinema+%28mainly+art+house
24: // %29&homepage=http%3A%2F%2Fwww.corrosive.co.uk%2Fharold%2F
25: ?>

374 Hour 19

23 CH19 11/29/01 3:19 PM Page 374

LISTING 19.5 continued

26: <p>
27: <a href=”anotherpage.php?<? print qlink($q) ?>”>Go!
28: </p>
29: </body>
30: </html>

Defined on line 7, qlink() expects an associative array, which it stores in the parameter
variable $q. If $q is not set, we simply return the current script’s query string as stored
for us in $QUERY_STRING on line 9. In this way, qlink() can be used simply to pass on
unchanged GET request data.

Assuming that $q has been set, we initialize a variable called $ret on line 10, assigning
an empty string to it. This will contain our query string.

A foreach statement is used on line 11 to iterate through the $q array, placing each key
in $key and each value in $val.

Key/value pairs are separated from one another by an ampersand (&) character, so if we
are not on our first journey through the loop, we print this character on line 12. We know
that the length of the string in $ret will be 0 for the first iteration, so we can use this fact
to avoid prepending & to the string.

On line 13 we use urlencode() to encode both the $key and $val variables and append
them, separated by an equals (=) character to our $ret variable.

Finally, we return the encoded $query string.

Using this function, we can pass information between pages with the minimum of PHP
code within HTML elements.

Summary
In this hour, we have looked at the two ways of passing information between requests.
You can use these to create multiscreen applications and sophisticated environments that
respond to user preferences.

You learned how to use the setcookie() function to set cookies on the user’s browser.
Developing this, you saw how a database could be used in conjunction with cookies to
store information about a user between sessions. You learned about query strings and
how to encode them, and developed a function to automate their creation.

PHP 4 is nothing if not versatile, and in the next hour we will be looking at some built-in
functions for automating many of the tasks that we have examined in this chapter.

Saving State with Cookies and Query Strings 375

19

23 CH19 11/29/01 3:19 PM Page 375

Q&A
Q Are there any serious security or privacy issues raised by cookies?

A A server can only access a cookie set from its own domain. Although a cookie can
be stored on the user’s hard drive, there is no other access to the user’s file system.
It is possible, however, to set a cookie in response to a request for an image. So if
many sites include images served from a third-party ad server or counter script, the
third party may be able to track a user across multiple domains.

Q The query string looks ugly in the browser window. Would it be true to say
that cookies are the neatest way of saving state?

A Unfortunately, it isn’t that simple. At best, cookies are a transparent way of saving
state. Some users, however, set their browsers to warn them every time a cookie is
set. These users are likely to find a site that saves state information frequently
somewhat frustrating.

Workshop
Quiz

1. What function is designed to allow you to set a cookie on a visitor’s browser?

2. How would you delete a cookie?

3. What function could you use to escape a string for inclusion in a query string?

4. Which built-in variable contains the raw query string?

5. The name/value pairs submitted as part of a query string will become available as
global variables. They will also be included in a built-in associative array. What is
its name?

Quiz Answers
1. The setcookie() function allows you to set a cookie (although you could also

output a Set-Cookie header using the header() function).

2. You can delete a cookie by calling setcookie() with a date that has already
passed.

3. The urlencode() function translates a string so that it can be included in a query
string.

4. The entire query string is made available to you in the $QUERY_STRING variable.

5. The $HTTP_GET_VARS variable will contain the name/value pairs submitted as part
of a query string.

376 Hour 19

23 CH19 11/29/01 3:19 PM Page 376

Activities
1. Create a user preference form in which a user can choose a page color and enter a

name. Use a cookie to ensure that the user is greeted by name on subsequent pages
and that the page is set to the color of her choice.

2. Amend the scripts you created in Activity 1 so that the information is stored in a
query string rather than a cookie.

Saving State with Cookies and Query Strings 377

19

23 CH19 11/29/01 3:19 PM Page 377

23 CH19 11/29/01 3:19 PM Page 378

HOUR 20
Saving State with
Session Functions

In the previous hour, we looked at saving state from page to page, using a
cookie or a query string. Once again, PHP 4 is one step ahead of us. With
the release of PHP 4, functions for managing user sessions were built into
the language. These use techniques similar to those explored in the previous
hour, but build them into the language, making saving state as easy as call-
ing a function.

In this hour, you will learn:

• What session variables are and how they work

• How to start or resume a session

• How to register variables with a session

• How to destroy a session

• How to unset session variables

24 CH20 11/29/01 3:21 PM Page 379

What Are Session Functions?
Session functions implement a concept that you have already seen. That is the provision
to users of a unique identifier, which can then be used from access to access to acquire
information linked to that ID. The difference is that most of the work is already done for
you. When a user accesses a session-enabled page, she will either be allocated a new
identifier or reassociated with one that has already been established for her in a previous
access. Any variables that have been associated with the session will become available to
your code. If the php.ini register_globals directive is set, session data will become
available in global namespace. Otherwise, you will be able to access them through the
built-in $HTTP_SESSION_VARS associative array.

Both the techniques for transmitting information from access to access that you looked at
in the previous hour are automatically supported by PHP 4’s session functions. Cookies
are used by default, but you can ensure success for all clients by encoding the session ID
into all links in your session-enabled pages.

Session state is usually stored in a temporary file, though you can implement database
storage using a function called session_set_save_handler(). session_set_save_
handler() is beyond the scope of this book but you can get more information at
http://www.php.net/manual/en/function.session-set-save-handler.php.

Starting a Session with session_start()
You need to explicitly start or resume a session unless you have changed your php.ini
configuration file. By default, sessions do not start automatically. In php.ini, you will
find a line containing the following:

session.auto_start = 0

By changing the value of session.auto_start to 1, you ensure that a session is initiated
for every PHP document. If you don’t change this setting, you need to call the session_
start() function.

After a session has been started, you instantly have access to the user’s session ID via the
session_id() function. session_id() allows you to either set or get a session ID.
Listing 20.1 starts a session and prints the session ID to the browser.

LISTING 20.1 Starting or Resuming a Session

1: <?php
2: session_start();
3: ?>

380 Hour 20

24 CH20 11/29/01 3:21 PM Page 380

LISTING 20.1 continued

4: <html>
5: <head>
6: <title>Listing 20.1 Starting or resuming a session</title>
7: </head>
8: <body>
9: <?php
10: print “<p>Welcome, your session ID is “.session_id().”</p>\n\n”;
11: ?>
12: </body>
13: </html>

When this script is run for the first time from a browser, a session ID is generated by the
session_start() function call on line 2. If the page is later reloaded or revisited, then
the same session ID is allocated to the user. This presupposes, of course, that the user has
cookies enabled on his or her browser. If you examine headers output by the script in
Listing 20.1, you can see the cookie being set:

HTTP/1.1 200 OK
Date: Mon, 01 Oct 2001 14:10:40 GMT
Server: Apache/1.3.12 Cobalt (Unix) PHP/4.0.6 mod_perl/1.24
X-Powered-By: PHP/4.0.6
Set-Cookie: PHPSESSID=98aac0bafaa7915f3cbcfe691aca65dc; path=/
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Connection: close
Content-Type: text/html

Because start_session() attempts to set a cookie when initiating a session for the first
time, it is important to call it before you output anything else at all to the browser. Notice
that no expiry date is set in the cookie that PHP sets for the session. This means that the
session only remains current as long as the browser is active. When the user reboots his
or her browser, the cookie will not be stored. You can change this behavior by altering
the session.cookie_lifetime setting in your php.ini file. This defaults to 0, but you
can set an expiry period in seconds. This causes an expiry date to be set for any session
cookies sent to the browser.

Working with Session Variables
Accessing a unique identifier on each of your PHP documents is only the start of PHP’s
session functionality. You can register any number of global variables with the session
and then access them on any session-enabled page.

Saving State with Session Functions 381

20

24 CH20 11/29/01 3:21 PM Page 381

To register a variable with a current session, you must use the session_register()
function. session_register() requires a string representing one or more variable names
and returns true if the registration is successful. The syntax of the argument you must
pass to this function is unusual in that you must pass only the name of the variable and
not the variable itself.

Listing 20.2 registers two variables with a session (lines 10 and 11).

LISTING 20.2 Registering Variables with a Session

1: <?php
2: session_start();
3: ?>
4: <html>
5: <head>
6: <title>Listing 20.2 Registering variables with a session</title>
7: </head>
8: <body>
9: <?php
10: session_register(“product1”);
11: session_register(“product2”);
12: $product1 = “Sonic Screwdriver”;
13: $product2 = “HAL 2000”;
14: print “The products have been registered”;
15: ?>
16: </body>
17: </html>

The magic in Listing 20.2 will not become apparent until the user moves to a new page.
Listing 20.3 creates a separate PHP script that accesses the variables registered in Listing
20.2 (line 11).

LISTING 20.3 Accessing Registered Variables

1: <?php
2: session_start();
3: ?>
4: <html>
5: <head>
6: <title>Listing 20.3 Accessing registered variables</title>
7: </head>
8: <body>
9: <?php
10: print “Your chosen products are:\n\n”;

382 Hour 20

24 CH20 11/29/01 3:21 PM Page 382

LISTING 20.3 continued

11: print “$product1\n$product2\n\n”;
12: ?>
13: </body>
14: </html>

Figure 20.1 shows the output from Listing 20.3. As you can see, we have access to the
$product1 and $product2 variables in an entirely new page.

Saving State with Session Functions 383

20

FIGURE 20.1
Accessing registered
variables.

So how does the magic work? Behind the scenes, PHP 4 is writing to a temporary file.
You can find out where this is being written on your system with the session_save_
path() function. session_save_path() optionally accepts a path to a directory and then
writes all session files to this. If you pass it no arguments, it returns a string representing
the current directory to which session files are saved. On my system,

print session_save_path();

prints /tmp. A glance at my /tmp directory reveals a number of files with names like the
following:

sess_2638864e9216fee10fcb8a61db382909
sess_76cae8ac1231b11afa2c69935c11dd95
sess_bb50771a769c605ab77424d59c784ea0

24 CH20 11/29/01 3:21 PM Page 383

Opening the file that matches the session ID I was allocated when I first ran Listing 20.1,
I can see how the registered variables have been stored:

product1|s:17:”Sonic Screwdriver”;product2|s:8:”HAL 2000”;

When session_register() is called, PHP writes the variable name and value to a file.
This can be read, and the variables resurrected, later.

When you register a variable using session_register(), you can still change its value
at any time during the execution of your script, and the altered value will be reflected in
the session file.

The example in Listing 20.2 demonstrates the process of registering variables with a ses-
sion. It is not very flexible, however. Ideally, you should be able to register a varying
number of values. You might want to let users pick products from a list, for example.
Luckily, you can pass the name of an array variable to session_register(), and it will
store and encode this data for you.

Listing 20.4 creates a form that allows a user to choose multiple products. You should
then be able to use session variables to create a rudimentary shopping cart.

LISTING 20.4 Registering an Array Variable with a Session

1: <?php
2: session_start();
3: ?>
4: <html>
5: <head>
6: <title>Listing 20.4 Registering an array variable with a session</title>
7: </head>
8: <body>
9: <h1>Product Choice Page</h1>
10: <?php
11: if (isset($form_products)) {
12: if (empty($products))
13: $products=$form_products;
14: else
15: $products = array_unique(
16: array_merge($products, $form_products));
17: session_register(“products”);
18: print “<p>Your products have been registered!</p>”;
19: }
20: ?><p>
21: <form method=”POST”>
22: <select name=”form_products[]” multiple size=3>
23: <option> Sonic Screwdriver
24: <option> Hal 2000
25: <option> Tardis

384 Hour 20

24 CH20 11/29/01 3:21 PM Page 384

LISTING 20.4 continued

26: <option> ORAC
27: <option> Transporter bracelet
28: </select>
29: </p><p>
30: <input type=”submit” value=”choose”>
31: </form>
32: </p>
33: A content page
34: </body>
35: </html>

We start or resume a session with session_start() on line 2. This should give us access
to any previously set session variables. We begin an HTML form on line 21 and, on line
22, create a SELECT element named form_products[], which contains OPTION elements
for a number of products. Remember that HTML form elements that allow multiple
selections should have square brackets appended to the value of their NAME arguments.
This makes the user’s choices available in an array.

Within the block of PHP code beginning on line 10, we test for the presence of the
$form_products array (line 11). If the variable is present, we can assume that the form
has been submitted. We test for an array called $products on line 12. If it is non-existent
or empty, then we declare it on line 13 and assign the $form_products array to it. If the
array exists, it will have been populated on a previous visit to this script. We merge it
with the $form_products array, extract the unique elements and assign the result back to
the $products variable (lines 15 and 16). We then register $products using session_

register() on line 17. We do not directly register $form_products because this will
then conflict with the POST variable of the same name if the form is resubmitted. At the
bottom of this page (line 33), there is a link to another, which we will use to demonstrate
our access to the products the user has chosen. We create this new script in Listing 20.5.

LISTING 20.5 Accessing Session Variables

1: <?php
2: session_start();
3: ?>
4: <html>
5: <head>
6: <title>Listing 20.5 Accessing session variables</title>
7: </head>
8: <body>
9: <h1>A Content Page</h1>
10: <?php

Saving State with Session Functions 385

20

24 CH20 11/29/01 3:21 PM Page 385

LISTING 20.5 continued

11: if (isset($products)) {
12: print “Your cart:\n”;
13: foreach ($products as $p)
14: print “$p”;
15: print “”;
16: }
17: ?>
18: Back to product choice page
19: </body>
20: </html>

Once again, we use session_start() to resume the session (line 2). We test for the
presence of the $products variable on line 11. If it exists, we loop through it on line 13,
printing each of the user’s chosen items to the browser.

For a real shopping cart program, of course, you would keep product details in a data-
base and test user input, rather than blindly storing and presenting it, but Listings 20.4
and 20.5 demonstrate the ease with which you can use session functions to access array
variables set in other pages.

Destroying Sessions and Unsetting Variables
You can use session_destroy() to end a session, erasing all session variables.
session_destroy() requires no arguments. You should have an established session
for this function to work as expected. The following code fragment resumes a session
and abruptly destroys it:

session_start();
session_destroy();

When you move on to other pages that work with a session, the session you have
destroyed will not be available to them, forcing them to initiate new sessions of their
own. Any variables that have been registered will have been lost.

However, session_destroy() does not instantly destroy registered variables. These will
remain accessible to the script in which session_destroy() is called (until it is
reloaded). The following code fragment resumes or initiates a session and registers a
variable called $test, which we set to 5. Destroying the session does not destroy the reg-
istered variable.

session_start();
session_register(“test”);
$test = 5;

386 Hour 20

24 CH20 11/29/01 3:21 PM Page 386

session_destroy();
print $test; // prints 5

To remove all registered variables from a session, you need to use the session_unset()
function. This destroys all variables associated with a session, both in the session file and
within your script. session_unset() is a blunt instrument; use it carefully.

session_start();
session_register(“test”);
$test = 5;
session_unset();
session_destroy();
print $test; // prints nothing. The $test variable is no more

Before destroying the session, we call session_unset(), which entirely removes the
$test variable from memory and wipes any other registered session variables.

Passing Session IDs in the Query String
So far you have relied on a cookie to save the session ID between script requests. On its
own, this is not the most reliable way of saving state because you cannot be sure that the
browser will accept cookies. You can build in a failsafe, however, by passing the session
ID from script to script embedded in a query string. PHP makes a name/value pair avail-
able in a constant called SID if a cookie value for a session ID cannot be found. You can
add this string to any HTML links in session-enabled pages:

<a href=”anotherpage.html?<?php print SID; ?>”>Another page

will reach the browser as

Another

page

The session ID passed in this way will automatically be recognized in the target page
when session_start() is called, and you will have access to session variables in the
usual way.

If PHP 4 was compiled with the --enable-trans-sid option set, you will find that this
query string is automatically added to every link in your pages. This option is disabled
by default, however, so explicitly adding the SID constant to links will make your scripts
more portable.

Saving State with Session Functions 387

20

24 CH20 11/29/01 3:21 PM Page 387

Encoding and Decoding Session Variables
You have already seen the way in which PHP encodes and saves (serializes) session vari-
ables when you peeked into a session file. You can in fact gain access to the encoded
string at any time with session_encode(). This can be useful in debugging your session-
enabled environments. You can use session_encode() to reveal the state of all session
variables:

session_start();
print session_encode().”
”;
// sample output: products|a:2:{i:0;s:8:”Hal 2000”;i:1;s:6:”Tardis”;}

From the sample output in the previous fragment, you can see the session variables that
are stored. You can use this information to check that variables are being registered and
updated as you expect. session_encode() is also useful if you need to freeze-dry ses-
sion variables for storage in a database or file.

After having extracted an encoded string, you can decode it and resurrect its values using
session_decode(). The following code fragment demonstrates this process:

session_start();
session_unset(); // there should now be no session variables
session_decode(“products|a:2:{i:0;s:8:\”Hal 2000\”;i:1;s:6:\”Tardis\”;}”);
foreach ($products as $p) {

print “$p
\n”;
}
// Output:
// Hal 2000
// Tardis

We start a session as usual. To ensure that we are working with a blank canvas, we use
session_unset() to clear all session variables. We then pass an encoded string to
session_decode(). Rather than returning values, session_decode() populates our
name space with the unserialized variables. We confirm this by looping through the
newly resurrected $products array.

Checking That a Session Variable Is
Registered

As you have seen, you can test for the presence of a registered variable in a session-
enabled script using isset(). You can, however, explicitly test that a variable has been
registered with a session using the session_is_registered() function. This accepts a
string representing a variable name and returns true if the variable has been registered.

if (session_is_registered (“products”))
print “‘products’ is registered!”;

388 Hour 20

24 CH20 11/29/01 3:21 PM Page 388

This would be useful if you need to be sure of the source of a variable. You might want
to make sure that the variable you are testing is available to you as a session variable as
opposed to data passed to you as part of a GET request.

Working with the $HTTP_SESSION_VARS Array
If your register_globals php.ini directive is set to off or 0 you will not be able to
work directly with session variables. Instead, you will have to set and access session
variables via the $HTTP_SESSION_VARS array. For larger projects, this can be advisable
because it removes the danger of a session variable clashing with a global variable set
within the script. So, to set a session variable called test to 5 you should call
session_register() as normal, but you should assign via $HTTP_SESSION_VARS.

session_start();
session_register(“test”);
$HTTP_SESSION_VARS[‘test’] = 5;

To access the session variable in a subsequent script, you should also use the $HTTP_
SESSION_VARS array.

session_start();
print “test is.. “;
print $HTTP_SESSION_VARS[‘test’];

Summary
In this hour and the previous hour, you looked at different ways of saving state in a state-
less protocol. All methods use some combination of cookies and query strings, some-
times combined with the use of files or databases. These approaches all have their
benefits and problems.

A cookie is not intrinsically reliable and cannot store much information. On the other
hand, it can persist over a long period of time.

Approaches that write information to a file or database involve some cost to speed that
might become a problem on a popular site. Nonetheless, a simple ID can unlock large
amounts of data stored on disk.

A query string is unlikely to persist as a cookie will. It looks ugly in the location win-
dow. Even so, it can pass relatively large amounts of information from request to request.
The choice you make depends on the circumstances of your project.

In this hour, you learned how to initiate or resume a session with session_start().
Once in a session, you can register variables with it using session_register(), check

Saving State with Session Functions 389

20

24 CH20 11/29/01 3:21 PM Page 389

that a variable is registered with session_is_registered(), and unset all registered
variables with session_unset(). You should be able to destroy a session with
session_destroy().

To ensure that as many users as possible get the benefit of your session-enabled environ-
ment, you can now use the SID constant to pass a session ID to the server as part of a
query string.

In the next hour we will look at ways that you can use PHP to access other tools on your
server.

Q&A
Q Are there any pitfalls with session functions I should be aware of?

A The session functions are generally reliable. However, remember that cookies
cannot be read across multiple domains, so if your project uses more than one
domain name on the same server (perhaps as part of an e-commerce environment),
you might need to consider disabling cookies for sessions by setting the

session.use_cookies

directive to 0 in the php.ini file.

Workshop
Quiz

1. Which function would you use to start or resume a session?

2. Which function contains the current session’s ID?

3. How can you associate a variable with a session?

4. How would you end a session and erase all traces of it for future visits?

5. How would you destroy session variables both within the current script and the
session?

6. What does the SID constant return?

7. How would you test whether a variable called $test is registered with a session?

Quiz Answers
1. You can start a session with the session_start() function.

2. You can access the session’s ID with the session_id() function.

390 Hour 20

24 CH20 11/29/01 3:21 PM Page 390

3. The session_register() function associates the given variable with the current
session.

4. The session_destroy() function removes all traces of a session for future
requests.

5. The session_unset() function removes session variables from the current script
as well as the session.

6. If cookies are not available, the SID constant contains a name/value pair that can be
incorporated in a query string. This will pass the session ID from script request to
script request.

7. You can use the session_is_registered() function to check that a variable is
associated with the current session.

is_registered(“test”)

Activities
1. In the previous hour’s “Activities” section, you created a script that uses a cookie

or query string to save user preferences from page to page. Each page in the envi-
ronment should display a user-defined background color and greet the user by
name. Recreate this using PHP 4’s session functions.

2. Create a script that uses session functions to remember which pages in your envi-
ronment the user has visited. Provide the user with a list of links on each page to
make it easy for her to retrace her steps.

Saving State with Session Functions 391

20

24 CH20 11/29/01 3:21 PM Page 391

24 CH20 11/29/01 3:21 PM Page 392

HOUR 21
Working with the Server
Environment

In previous hours, we have looked at techniques for communicating with
remote machines and for gaining input from the user. In this hour, we look
outward again, this time at some techniques for running external programs
on our own machine. The examples in this hour are designed for the Linux
operating system, but most of the principles hold true for Windows.

In this hour, you will learn:

• How to pipe data to and from external applications

• Other ways of sending shell commands and displaying the results on
the browser

• The security implications of interprocess communication from a PHP
script

25 CH21 11/29/01 3:19 PM Page 393

Opening Pipes to and from Processes with
popen()

Just as you open a file for writing or reading with fopen(), you can open a pipe to a
process with popen(). popen() requires the path to a command and a string representing
a mode (read or write). It returns a file pointer that can be used similarly to the file
pointer returned by fopen(). You can pass popen() one of two mode flags: “w” to write
to the process and “r” to read from it. You cannot both read and write to a process in the
same connection.

When you have finished working with the file handle returned by popen(), you must
close the connection by calling pclose(), which requires a valid file handler.

Reading from popen() is useful when you want to parse the output from a process on a
line-by-line basis. Listing 21.1 opens a connection to the GNU version of the who com-
mand and parses its output, adding a mailto link to each username.

LISTING 21.1 Using popen() to Read the Output of the UNIX who Command

1: <html>
2: <head>
3: <title>Listing 21.1 Using popen() to read the
4: output of the Unix who command</title>
5: </head>
6: <body>
7: <h2>Administrators currently logged on to the server</h1>
8: <?php
9: $ph = popen(“who”, “r”)
10: or die(“Couldn’t open connection to ‘who’ command”);
11: $host=”corrosive.co.uk”;
12: while (! feof($ph)) {
13: $line = fgets($ph, 1024);
14: if (strlen($line) <= 1)
15: continue;
16: $line = ereg_replace(“^([a-zA-Z0-9_\-]+).*”,
17: “\\1
\n”,
18: $line);
19: print “$line”;
20: }
21: pclose($ph);
22: ?>
23: </table>
24: </body>
25: </html>

394 Hour 21

25 CH21 11/29/01 3:19 PM Page 394

We acquire a file pointer from popen() on line 9 and then use a while statement on line
12 to read each line of output from the process. If the output is a single character, we
skip the rest of the current iteration (lines 14 and 15). Otherwise, we use ereg_
replace() on line 16 to add an HTML link to the string before printing the line on
line 19. Finally, we close the connection with pclose() on line 21. Figure 21.1 shows
sample output from Listing 21.1.

Working with the Server Environment 395

21

FIGURE 21.1
Reading the output
of the UNIX who
command.

You can also use a connection established with popen() to write to a process. This is
useful for commands that accept data from standard input in addition to command-line
arguments. Listing 21.2 opens a connection to the column application using popen().

LISTING 21.2 Using popen() to Pass Data to the column Application

1: <html>
2: <head>
3: <title>Listing 21.2 Using popen() to pass
4: data to the column command</title>
5: </head>
6: <body>
7: <?php
8: $products = array(
9: array(“HAL 2000”, 2, “red”),
10: array(“Tricorder”, 3, “blue”),
11: array(“ORAC AI”, 1, “pink”),
12: array(“Sonic Screwdriver”, 1, “orange”)
13:);

25 CH21 11/29/01 3:19 PM Page 395

LISTING 21.2 continued

14: $ph = popen(“column -tc 3 -s / > purchases/user3.txt”, “w”)
15: or die(“Couldn’t open connection to ‘column’ command”);
16: foreach ($products as $prod)
17: fputs($ph, join(‘/’, $prod).”\n”);
18: pclose($ph);
19: ?>
20: </table>
21: </body>
22: </html>

The purpose of the script in Listing 21.2 is to take the elements of a multidimensional
array (defined on line 8) and output them to a file as an ASCII table. We open a connec-
tion to the column command on line 14, adding some command-line arguments. –t
requires that the output should be formatted as a table, –c 3 determines the number of
columns we require, and –s / sets the “/” character as the field delimiter. We ensure that
the results will be written to a file called user3.txt. Note that the purchases directory
must exist on your system and that your script must be able to write to it.

Notice that we are doing more than one thing with this command. We are calling the
column command and writing its output to file. In fact, we are issuing commands to a
noninteractive shell. This means that in addition to piping content to a process, we can
initiate other processes as well. We could even have the output of the column command
mailed on to someone:

popen(“column –tc 3 –s / | mail matt@corrosive.co.uk”, “w”)

This level of flexibility can open our system to a grave threat if we ever pass user input
to a PHP function that issues shell commands. We will look at precautions you can take
later in the hour.

Having acquired a pipe resource, we loop through the $product array on line 16. Each
value is itself an array, which we convert to a string using the join() function on line 17.
Rather than joining on a space character, we join on the delimiter we established as part
of our command-line arguments. Using the “/” character to join the array is necessary
because the spaces in the product array would otherwise confuse the column command.
Having joined the array, we pass the resultant string and a newline character to the
fputs() function.

Finally, we close the connection. Taking a peek into the user3.txt file, we should see
the table neatly formatted:

HAL 2000 2 red
Tricorder 3 blue

396 Hour 21

25 CH21 11/29/01 3:19 PM Page 396

ORAC AI 1 pink
Sonic Screwdriver 1 orange

We could have made the code more portable by formatting the text using the sprintf()
function, but the approach you take is a matter of choice.

Running Commands with exec()
exec() is one of many functions that enable you to pass commands to the shell. The
function requires a string representing the path to the command that you want to run. It
also optionally accepts an array variable that will be populated with the command’s out-
put, and a scalar variable that will be populated with the command’s return value.

To get a listing for the current working directory, for example, you might pass exec()
the command “ls -al .”. We do this in Listing 21.3 (line 7), printing the result to the
browser.

LISTING 21.3 Using exec() to Produce a Directory Listing

1: <html>
2: <head>
3: <title>Listing 21.3 Using exec() to produce a directory listing</title>
4: </head>
5: <body>
6: <?php
7: exec(“ls -al .”, $output, $return);
8: print “<p>Returned: $return</p>”;
9: foreach ($output as $file)
10: print “$file
”;
11: ?>
12: </table>
13: </body>
14: </html>

Figure 21.2 shows the output from Listing 21.3.

Notice that the ls command returns 0 on success. If it were unable to find or read the
directory passed to it, it would have returned 1.

Once again, we have reinvented the wheel to a certain extent with this example. We
could have used the opendir() and readdir() functions to acquire a directory listing.
There will be times, however, when a command on your system can achieve an effect
that would take a long time to reproduce using PHP’s functionality. You might have cre-
ated a shell or Perl script that performs a complex task. If speed of development is an
important factor in your project, you might decide that it is worth calling the external

Working with the Server Environment 397

21

25 CH21 11/29/01 3:19 PM Page 397

script instead of porting it to PHP, at least in the short term. Remember, however, that
calling an external process will always add an overhead to your script in terms of both
time and memory usage.

398 Hour 21

FIGURE 21.2
Using exec() to
produce a directory
listing.

Running External Commands with system()
or the Backtick Operator

The system() function is similar to the exec() function in that it launches an external
application. It requires the path to a command and, optionally, a variable, which will be
populated with the command’s return value. system() prints the output of the shell com-
mand directly to the browser. The following code fragment prints the manual page for
the man command itself:

<?php
print “<pre>”;
system(“man man | col -b”, $return);
print “</pre>”;
?>

We print PRE tags to the browser to maintain the formatting of the page. We use
system() to call man, piping the result through another application called col, which
reformats the text for viewing as ASCII. We capture the return value of our shell
command in the $return variable. system() returns its output.

25 CH21 11/29/01 3:19 PM Page 398

You can achieve a similar result by using the backtick operator. This involves surround-
ing a shell command in backtick (`) characters. The enclosed command will be executed,
and any output returned. You can print the output or store it in a variable.

We can re-create the previous example using backticks:

print “<pre>”;
print `man man | col -b`;
print “</pre>”;

Note that we have to explicitly print the return value from the backtick operator.

Plugging Security Holes with
escapeshellcmd()

Before looking at escapeshellcmd(), let’s examine the danger it guards against. We
want to allow users to type in the names of manual pages and view output online. Now
that we can output one manual page, it is a trivial matter to output any available page. Do
not install the code in Listing 21.4; we are deliberately leaving a major security gap
unplugged.

LISTING 21.4 Calling the man Command

1: <html>
2: <head>
3: <title>Listing 21.4 Calling the man command.
4: This script is not secure</title>
5: </head>
6: <body>
7: <form>
8: <input type=”text” value=”<?php print $manpage; ?>” name=”manpage”>
9: </form>
10: <pre>
11: <?php
12: if (isset($manpage))
13: system(“man $manpage | col -b”);
14: ?>
15: </pre>
16: </table>
17: </body>
18: </html>

We extend our previous examples a little by adding a text field on line 8 and including
the value from the form submission to the shell command we pass to the system()

Working with the Server Environment 399

21

25 CH21 11/29/01 3:19 PM Page 399

function on line 13. We are being trusting, however. On a UNIX system, a malicious user
would be able to add his own commands to the manpage field, thus gaining limited
access to the server. Figure 21.3 shows a simple hack that could be applied to this script.

400 Hour 21

FIGURE 21.3
Calling the man
command.

The malicious user has submitted the value xxx; ls -al via the form. We have stored
this value in the $manpage variable. After we combine this text with the shell command
string we pass to system(), we end up with the following string:

“man xxx; ls -al | col -b”

This instructs the shell to fetch the manual page for xxx, which doesn’t exist. It then per-
forms a full directory listing, running the output through the col command. If you think
that this is as bad as it gets, think again. An unfriendly visitor can list any readable direc-
tory on your system. He or she can even read your /etc/passwd file by adding the fol-
lowing line to the form field:

xxx; cat /etc/passwd

Fortunately, our encrypted passwords are stored in a file called /etc/shadow, which can
only be read by the root user, but this still represents a grave breach in security. We
clearly cannot allow this to happen. The safest way of protecting against this is never to
pass user input directly to a shell. You can make yourself a little safer, though, by using
the escapeshellcmd() function to add backslashes to any metacharacters that the user
might submit. escapeshellcmd() requires a string and returns a converted copy. We can
now amend our code, making our script a little safer, as shown in Listing 21.5.

25 CH21 11/29/01 3:19 PM Page 400

LISTING 21.5 Escaping User Input with the escapeshellcmd() Function

1: <html>
2: <head>
3: <title>Listing 21.5 Escaping user input with
4: the escapeshellcmd() function</title>
5: </head>
6: <body>
7: <form>
8: <input type=”text” value=”<?php print $manpage; ?>” name=”manpage”>
9: </form>
10: <pre>
11: <?php
12: if (isset($manpage)) {
13: $manpage = escapeshellcmd($manpage);
14: system(“man $manpage | col -b”);
15: }
16: ?>
17: </pre>
18: </table>
19: </body>
20: </html>

The only addition to this example is the use of escapeshellcmd() on line 13. If the user
attempts to enter “xxx; cat /etc/passwd “ now, it will be amended to “xxx\; cat
/etc/passwd “, preventing a new command from being issued. In fact, she will be
presented with the manual page for the cat command rather than our password file!

Although you can improve security by using escapeshellcmd(), avoid passing user-
submitted content to the shell. We could make our script even safer by compiling a list
of all valid manual pages on our system and testing user input against this before calling
system(). We do something similar in the next section.

Running External Applications with
passthru()

passthru() is similar to system() except that any output from the shell command you
send will not be buffered. This makes it suitable for running commands that produce
binary as opposed to text data. passthru() accepts a shell command and an optional
variable. The variable will be filled with the return value of the command.

Let’s construct an example. We want to create a script that outputs images as thumbnails
and that can be called from HTML or PHP pages. We are going to let external applica-
tions do all the work so that our script will be simple. Listing 21.6 shows the code that
locates the image and outputs the data to the browser.

Working with the Server Environment 401

21

25 CH21 11/29/01 3:19 PM Page 401

LISTING 21.6 Using passthru() to Output Binary Data

1: <?php
2: if (isset($image) && file_exists($image)) {
3: header(“Content-type: image/gif”);
4: passthru(“giftopnm $image | pnmscale -xscale .5 -yscale .5 | ppmtogif”
);
5: } else
6: print “The image $image could not be found”;
7: ?>

Notice that we have not used escapeshellcmd(). Instead, we have tested the user input
against our file system on line 2 using the file_exists() function. We will not pass the
$image variable to the shell if the image requested does not exist. For additional security
we could also limit the extension we will accept and the directory that can be accessed.

In the call to passthru() on line 4, we issue a command that calls three applications.
Note that for this script to work on your system, you must have these applications
installed, and they must be available in your path. First, we call giftopnm, passing it the
$image variable. This reads a GIF image and outputs data in portable anymap format.
This output is piped to pnmscale, which scales the image to 50 percent of its original
size. The output from pnmscale is in turn piped to ppmtogif, which converts the data to
GIF format. This data is finally output to the browser.

We can now call this script from any Web page.

<img src=”listing21.6.php?image=<?php print urlencode(“/path/to/image.gif”) ?>”>

Calling an External CGI Script with the
virtual() Function

If you are converting a site from plain HTML to PHP-enabled pages, you may have
noticed that your server-side includes no longer work. If you are running PHP as an
Apache module, you can use the virtual() function to call CGI scripts, such as Perl or
C Web counters, and include their output in your pages. Any CGI script you write must
output HTTP headers.

Let’s write a simple Perl CGI script. If you don’t know Perl, don’t worry about this. It
simply outputs an HTTP header and all the environmental variables available to it:

#!/usr/bin/perl -w
print “Content-type: text/html\n\n”;
foreach (keys %ENV){

print “$_: $ENV{$_}
\n”;
}

402 Hour 21

25 CH21 11/29/01 3:19 PM Page 402

Assuming that this script is saved in an executable file called test.pl in a cgi-bin
directory, you can now call it with the virtual() function, including its output in your
PHP document:

<?php
virtual(“/cgi-matt/test.pl”);
?>

Summary
In this hour, you learned how to communicate with the shell and through it with external
applications. PHP is a powerful language, but it sometimes will be faster to call on an
application than it will be to create similar functionality yourself.

You learned how to pipe data to and from a command using the popen() function. This
approach is useful for applications that accept data on standard input and when you want
to parse data as it is sent to you by an application.

You learned how to use exec(), system(), and the backtick operator to pass commands
to the shell and to acquire user input. You learned about the dangers of passing user input
to the shell and examined the escapeshellcmd() function, which will afford you some
protection from malicious input. You learned how to use the passthru() function to
accept binary data resulting from a shell command. Finally, you learned how to emulate
server-side includes with the virtual() function.

In the next hour we will examine PHP’s support for XML. In addition to the stable PHP
parser functions we will explore some functions which were so new at the time of
writing that they were still under development!

Q&A
Q You’ve mentioned security a lot in this hour. Where can I go to get more

information about security on the Web?

A Probably the most authoritative introduction to Web security is the Frequently
Asked Questions document by Lincoln Stein (author of the famous Perl module,
CGI.pm). You can find this at http://www.w3.org/Security/Faq/.

Q When should I consider calling an external process rather than re-creating its
functionality in a script?

A The issues you should consider when weighing this are portability, speed of
development, and efficiency.

Working with the Server Environment 403

21

25 CH21 11/29/01 3:19 PM Page 403

If you build functionality into your script instead of relying on an external process,
your script should run easily on different platforms or on systems that don’t
include the third-party application you would be calling. For simple tasks (such as
obtaining a directory listing, for example), it is likely to be more efficient to handle
the problem within your code, saving you the overhead of spawning a second
process every time your script is called.

On the other hand, some tasks may be difficult to achieve in PHP or slow to com-
plete (grepping a large file, for example). In these cases, it may be advisable to
use a tool specifically designed for the job.

Workshop
Quiz

1. Which function would you use to open a pipe to a process?

2. How would you read data from a process after you have opened a connection?

3. How can you write data to a process after you have opened a connection to it?

4. Will the exec() function print the output of a shell command directly to the
browser?

5. What does the system() function do with the output from an external command it
executes?

6. What does the backtick operator return?

7. How can you escape user input to make it a little safer before passing it to a shell
command?

8. How might you execute an external CGI script from within your script?

Quiz Answers
1. You open a connection to a process with the function popen().

2. You can read from a process that you have opened with popen() as you would
from a file. In other words, you can use functions such as feof() and fgets().

3. You can write to a process as you could with a file, usually with the fputs()
function.

4. The exec() function accepts an array variable, which it fills with the output of the
shell command it makes. Output is not sent directly to the browser.

5. The system() function prints the output of the external command directly to the
browser.

404 Hour 21

25 CH21 11/29/01 3:19 PM Page 404

6. The backtick operator returns the output of the external command that it calls. This
can be stored, parsed, or printed.

7. You can escape user input to make it safer using the escapeshellcmd() function.
The safest way to execute shell commands, though, is to refrain from passing user
input at all.

8. The virtual() function will call an external CGI script.

Activities
1. Create a script that uses the UNIX ps command to output the currently running

processes to the browser. Given that knowledge is power, it might not be good idea
to make this script available to your users!

2. Check the ps man page for command-line arguments for the ps command. Add a
form to your script to allow users to choose from a range of command-line argu-
ments to ps so that they can change the information output. Do not send any user
input directly to the command line.

Working with the Server Environment 405

21

25 CH21 11/29/01 3:19 PM Page 405

25 CH21 11/29/01 3:19 PM Page 406

HOUR 22
PHP 4 and XML

It would have been hard to miss the buzz created by XML in recent years.
XML is fast becoming a tremendously important tool for sharing data
between applications and for separating logic from presentation in larger
projects. Since the first release of this book, PHP has continued to improve
its support for XML. With PHP and Zend increasingly at the heart of larger
e-business applications, reliable support for XML is essential. For the Web
programmer, too, an understanding of XML is no longer an optional extra.

In this hour, you will learn:

• Some basics about XML

• How to parse XML documents with the XML Parser functions

• How to create XML documents with the DOM functions

• How traverse an XML data structure

• How to use an XSL document to transform XML

26 CH22 11/29/01 3:23 PM Page 407

What Is XML?
XML stands for Extensible Markup Language, and its very flexibility makes it notori-
ously hard to define. It is beyond the scope of this book to provide a complete introduc-
tion to XML, but we can cover some of the basics. If you would like to read more about
XML, please read Sams Teach Yourself XML in 24 Hours (ISBN 0-672-32213-7). For a
formal definition see http://www.w3.org/XML/.

XML is a markup language that enables you to define your own markup languages. In
fact, it is more a set of rules than a language in itself. These rules determine the ways in
which you can define tags and elements (similar to HTML elements). As long as you
obey the rules you have complete freedom to create languages that fulfill a whole range
of functions. Because the rules are strict, XML interpreters can easily read XML docu-
ments, and make their contents available to scripts that can then act on the instructions
they contain.

An XML document will usually start with an XML declaration:

<?xml version=”1.0”?>

It may also refer to a DTD (Document Type Declaration). DTDs are beyond the scope of
this book, but they define which elements a document can contain, and in what order.

<!DOCTYPE <rootel> SYSTEM “http://www.corrosive.co.uk/sample.dtd”>

The rest of an XML document is made up primarily of tags that combine to form ele-
ments and attributes. XML elements look very like HTML elements. An XML element is
made up of starting and ending tags which can surround text or other elements.

A starting tag consists of a lesser than sign (‘<’) followed by an element name, followed
by a greater than sign (‘>’). Open tags can also contain attributes that consist of an
attribute name and a quoted attribute value separated by an equals sign. The fragment
below illustrates an open tag containing an attribute.

<newsitem type=”world”>

Both attribute and element names must begin with a letter or an underscore followed by
any combination of letters and numbers. No element name can begin with the letters
“xml”.

A closing tag consists of a lesser than sign (‘<’), a forward slash (‘/’) followed by an ele-
ment name, followed by a greater than sign (‘>’).

</newsitem>

408 Hour 22

26 CH22 11/29/01 3:23 PM Page 408

As you can see, XML elements look pretty familiar. One variation you may not be used
to however, is the empty element. These are compressed into a single tag, so,

<nothinghere></nothinghere>

would become

<nothinghere />

Listing 22.1 pulls all this together into a sample XML document. This is a shortened ver-
sion of the XML document that we will be working throughout the chapter.

LISTING 22.1 An XML Document

1: <?xml version=”1.0”?>
2: <banana-news>
3: <newsitem type=”world”>
4: <headline>Banana sales reach all time high</headline>
5: 
6: <byline>William Curvey</byline>
7: <article>Research published today by the World Banana
8: Tribunal suggests that we have never had it so
9: good banana-wise...</article>
10: </newsitem>
11:
12: <newsitem type=”home”>
13: <headline>Domestic banana use beggars belief</headline>
14: 
15: <byline>Charles Split</byline>
16: <article>Bananas are for more than eating it seems. Local
17: Innovation Centers have been showcasing some
18: exciting banana related technologies...</article>
19: </newsitem>
20: </banana-news>

Although Listing 22.1 looks a little like an HTML document, you can see that it contains
entirely made-up element names. That is the point of XML. It hands the control and the
responsibility over to the developer. An XML interpreter will validate syntax, and will
make it easy for us to access the elements, but it is up to us to write code to act on the
information received.

In our example we have illustrated a structure for news items. The entire document is
enclosed by a single element, <banana-news> (from line 2 to line 20). This is called
the root element. A document must have a single root element that encloses all other

PHP 4 and XML 409

22

26 CH22 11/29/01 3:23 PM Page 409

elements in a document. Every subsequent element must completely enclose any children
it might have. Any elements that overlap

<A>

will generate an error in any compliant XML parser.

Am XML document is often represented as a tree of data. Listing 22.1 is drawn out in
this way in Figure 22.1. <banana-news> is at the root, branching out to two sibling
<newsitem> elements. The <newsitem> elements further divide, leading to the deepest
elements.

410 Hour 22

banana-news

newsitem

headline image byline article

newsitem

headline image byline article

FIGURE 22.1
An XML document
represented as a tree.

So what is XML for? Well the short answer is that it is up to us. But in practical terms,
XML documents tend to fulfill a range of purposes.

1. To structure data logically for sharing (as in Listing 22.1).

2. To format data (as in HTML).

3. To send instructions to an interpreter.

In this chapter we will be concentrating on the first use. Our banana news structure is
designed to provide structures that make it easy for ourselves and our partners to work
with news items.

XML Parser Functions
In this section we will examine the most stable of PHP’s XML tools. The parser func-
tions enable us to access XML documents quickly and with minimal programming.

The functions Jim Clarke’s Expat library (XML Parser Toolkit), which is available from
http://www.jclark.com/xml/expat.html. If you are running Apache 1.3.7 or later, you

26 CH22 11/29/01 3:23 PM Page 410

will already have Expat bundled with your server, and you may find that the XML func-
tions are available to you without explicit compile options. Otherwise you should install
Expat and add

—with-xml

to your configure options. See Hour 2 “Installing PHP” for more information about
configuring and installing PHP.

The parser model is ‘event-based’. As components of the XML document are reached,
user-created callback functions will be called.

Acquiring a Parser Resource
In order to begin parsing a document you will need a parser resource. You can acquire
one of these with the xml_parser_create() function. xml_parser_create() does not
require any arguments and will return a parser resource if all goes well, or false other-
wise. The function optionally accepts a string containing one of three character encod-
ings “ISO-8859-1” which is the default, “US-ASCII” and “UTF-8”. We will stick to the
default:

$parser = xml_parser_create();

When you have finished working with the parser resource, you may wish to free up the
memory that it is using to reduce your script’s overhead. xml_parser_free() requires a
valid parser resource and returns a Boolean, true if the operation was successful, and
false otherwise.

xml_parser_free($parser)

Setting XML Handlers
There are seven XML events that can be associated with a handler, of these we will cover
the two that you are most likely to use frequently. That is, the start and end of an ele-
ment, and character data.

To associate a function with element events, you should use the xml_set_element_
handler() function. This requires three arguments; a valid parser resource, the name of
handler for start elements and the name of a handler for end elements.

You should build the functions in question, designing the start element handler to accept
three arguments. The first will be a parser resource, the second a string containing the
element’s name, and the third an associative array of attributes. The end element handler
should be designed to accept two arguments; the parser resource, and the name of the
element. Unless you have specified otherwise, all element and attribute names will have
been converted to uppercase characters.

PHP 4 and XML 411

22

26 CH22 11/29/01 3:23 PM Page 411

// ...
xml_set_element_handler($parser, “start_handler”, “end_handler”);
// ...
function start_handler($parser, $el_name, $attribs) {

print “$el_name:
”;
foreach($attribs as $at_name=>$at_val)

print “$at_name=>\”$at_val\””;
print “”;

}
function set_end_handler($parser, $el_name) {

print “END: $el_name>
”;
}

The previous fragment illustrates two very simple element handlers. The start element
handler prints out the element name and an unordered list of attribute names and values.
This will be called for the beginning of every element encountered in an XML document.
The end handler merely prints out the element name once again.

Now that we know where elements begin and end, it would be nice to access any text
that they might contain. We can do this by setting up a character handler with the
xml_set_character_data_handler() function. xml_set_character_data_handler()
requires a valid parser resource and the name of a handler function. The handler function
should be designed to accept a parser resource and the found string.

xml_set_character_data_handler($parser, “char_data”);
function char_data($parser, $data) {

print “<i>$data</i>
”;
}

You can read about the other XML events that are supported by PHP and Expat at the
appropriate PHP manual page <http://www.php.net/manual/en/ref.xml.php>. You
can also see the complete list in Table 22.1.

TABLE 22.1 The XML Handler Functions

Function Trigger event

xml_set_character_data_handler() Character data

xml_set_default_handler() Events not covered by specific handlers

xml_set_element_handler() Element start and end

xml_set_external_entity_ref_handler() External entities

xml_set_notation_decl_handler() Notation Declaration

xml_set_processing_instruction_handler() Processing instructions

xml_set_unparsed_entity_decl_handler() Unparsed Entity (NDATA)

412 Hour 22

26 CH22 11/29/01 3:23 PM Page 412

xml_parser_set_option()
I mentioned that element names are passed to handlers as upper case strings by default.
This is not advisable since element names should be case sensitive. You can turn off this
feature using the xml_parser_set_option() function. This function requires a parser
resource, an integer which determines which option is to be set, and the value for the
option itself. To turn off the feature that renders element names upper case (‘case
folding’) you can use the built-in constant, XML_OPTION_CASE_FOLDING, passing 0 to
the function.

xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, 0);

You can also change the target character encoding using this function. To do this you
should call xml_parser_set_option() with a $parser resource, the constant XML_
OPTION_TARGET_ENCODING, and a string value set to one of “ISO-8859-1”,
“US-ASCII” or “UTF-8”. This will make the parser convert character encoding before
passing data to your handlers. By default the target encoding is the same as that set for
the source encoding (ISO-8859-1 by default, or whatever you set with the
xml_parser_create() function).

There are two additional constants designed to work with xml_parser_set_option().
They are XML_OPTION_SKIP_WHITE and XML_OPTION_SKIP_TAGSTART.

Parsing the Document
So far we’ve merely been setting the correct conditions for a parse. To actually begin the
parse process we need a function called xml_parse(). xml_parse() requires a valid
parser resource and a string containing the XML to be parsed. You can call xml_parse()
repeatedly, and it will treat additional data as part of the same document. If you wish to
inform the parser that it should treat any subsequent call to xml_parse() as the start of a
new document, you should pass it a positive integer as an optional third argument.

$xml_data=”<?xml version=”1.0”?><banana-news><test /></banana-news>”;
xml_parse($parser, $xml_data, 1);

xml_parse() returns a Boolean; true if the parse was successful, and false if an error
was encountered.

Reporting Errors
When parsing an XML document, you should make allowances for the possibility of
errors in the document. If an error is encountered the parser will stop working with your
document, but it will not output a message to the browser. It is up to you to generate an
informative error message, including the nature of the error and line number at which it
occurred.

PHP 4 and XML 413

22

26 CH22 11/29/01 3:23 PM Page 413

Expat will only report errors in well-formedness. That is errors in XML syntax. It is not
capable of validating an XML document against a DTD.

You can detect whether or not an error has occurred by testing the return value of
xml_parse(). If a failure has occurred the parser will store an error number, which you
can access with the xml_get_error_code() function. xml_get_error_code() requires a
valid parser resource.

$code = xml_get_error_code($parser);

The code will be an integer that should match an error constant provided for you by PHP,
such as XML_ERROR_TAG_MISMATCH. Rather than work your way through all the
relevant constants to produce an error message, you can simply pass the code to another
function, xml_error_string(). xml_error_string() requires only an XML error code,
and produces a clear error report.

$str = xml_error_string($code);

Now all you need is to find the line number at which the error occurred. This you can do
with the xml_get_current_line_number(). xml_get_current_line_number() requires
a parser resource and will return the current line number. Because the parser stops at any
error it finds, the current line number will be the line number at which the error is to be
found.

line = xml_get_current_line_number($parser);

We can now create a function to report on errors:

function format_error($p) {
$code = xml_get_error_code($p);
$str = xml_error_string($code);
$line = xml_get_current_line_number ($p);
return “XML ERROR ($code): $str at line $line”;

}

You can see all the previous fragments brought together in Listing 22.2.

LISTING 22.2 Parsing an XML Document

1: <?php
2:
3: $parser = xml_parser_create();
4: xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, 0);
5:
6: xml_set_element_handler($parser, “start_handler”, “end_handler”);
7: xml_set_character_data_handler($parser, “char_data”);
8: xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, 0);
9: $xml_str = implode(‘’, file(“listing22.1.xml”, 0));

414 Hour 22

26 CH22 11/29/01 3:23 PM Page 414

LISTING 22.2 continued

10:
11: xml_parse($parser, $xml_str)
12: or die(format_error($parser));
13:
14: function start_handler($parser, $el_name, $attribs) {
15: print “START: $el_name:
”;
16: foreach($attribs as $at_name=>$at_val)
17: print “ $at_name=>\”$at_val\”
”;
18: }
19:
20: function end_handler($parser, $el_name) {
21: print “END: $el_name>
”;
22: }
23:
24: function char_data($parser, $data) {
25: print “ char data:<i>$data</i>
”;
26: }
27:
28: function format_error($p) {
29: $code = xml_get_error_code($p);
30: $str = xml_error_string($code);
31: $line = xml_get_current_line_number ($p);
32: return “XML ERROR ($code): $str at line $line”;
33: }
34:
35: ?>

We create a parser on line 3 and establish our handlers (lines 6 to 8). We also declare the
handler functions themselves, start_handler() on line 14, end_handler() on line 20,
and char_data() on line 24. Listing 2.2 simply dumps all the data it encounters to the
browser. This illustrates the parser code in action, but it is not very useful. In the next
section we will discuss a small script that outputs something more sensible.

An Example
We are running a banana related news site. Our partner provides us with a news feed,
consisting of an XML document. We would like to extract only the headlines and article
authors for display on our site.

We already have all the tools we need to achieve this. The only new feature we will be
introducing is a technique. You can see the code in Listing 22.3:

PHP 4 and XML 415

22

26 CH22 11/29/01 3:23 PM Page 415

LISTING 22.3 An Example: Parsing an XML Document

1: <?php
2: $open_stack = array();
3: $parser = xml_parser_create();
4: xml_set_element_handler($parser, “start_handler”, “end_handler”);
5: xml_set_character_data_handler($parser, “character_handler”);
6: xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, 0);
7: xml_parse($parser, implode(‘’, file(“listing22.1.xml”))) or die(

➥format_error($parser));
8: xml_parser_free($parser);
9:
10: function start_handler($p, $name, $atts) {
11: global $open_stack;
12: $open_stack[] = array($name, “”);
13: }
14:
15: function character_handler($p, $txt) {
16: global $open_stack;
17: $cur_index = count($open_stack)-1;
18: $open_stack[$cur_index][1] .= $txt;
19: }
20:
21: function end_handler($p, $name) {
22: global $open_stack;
23: $el = array_pop($open_stack);
24: if ($name == “headline”)
25: print “$el[1]
”;
26: if ($name == “byline”) {
27: print “<i>$el[1]</i><p>”;
28: }
29: }
30:
31: function format_error($p) {
32: $code = xml_get_error_code($p);
33: $str = xml_error_string($code);
34: $line = xml_get_current_line_number ($p);
35: return “XML ERROR ($code): $str at line $line”;
36: }
37:
38: ?>

We begin by establishing a global array variable, $open_stack on line 2. We will be
treating this as a way of determining the current enclosing element at any time. The
parser is initialized and the handlers are set as we have already seen (lines 3 to 6). When
an element is encountered start_handler() (declared on line 10) is called. We create a
two element array consisting of the element name and an empty string and add it to the

416 Hour 22

26 CH22 11/29/01 3:23 PM Page 416

end of the $open_stack()array on line 12. As character data is encountered the
character_handler() function is called. We can access the most recently opened
XML element by looking at the last array element in $open_stack. We add the character
data to the second element of the array representing the currently open XML element
(line 18). When the end of an element is encountered, the end_handler() function
(declared on line 21) is called. We first remove the last element of the $open_stack
array on line 23. The array which is returned to us should contain two elements, firstly
the name of the XML element that has just been closed and secondly any character data
that was contained by that element. If the element in question is one we wish to print,
we can go ahead, adding any formatting we wish.

You can see the output from Listing 22.3 (using a more substantial XML document) in
Figure 22.2.

PHP 4 and XML 417

22

FIGURE 22.2
XML input parsed and
formatted for output.

An Introduction to the DOM XML Functions
The XML Parser functions are event based, that is, the document is read from top to bot-
tom and your handlers are triggered as and when the relevant features are encountered.
The DOM (Document Object Model) approach is tree-based. The entire XML document
is read, and rendered as a tree of objects. This means that you can traverse the tree at
your leisure, manipulating its nodes should you wish to. You can also construct your
own document trees that can then be output to XML text.

26 CH22 11/29/01 3:23 PM Page 417

DOM support for PHP is still under development, so code samples in this section are not
guaranteed to work with future releases of PHP 4. You should check the manual at
<http://www.php.net/manual/en/ref.domxml.php> for any changes.

In order to use the functions you will need to have installed the Gnome XML Library,
libxml. You will need version 2.2.7 or higher. You can find libxml at <http://www.
xmlsoft.org/>. You will also need to compile DOM support into PHP. To do this add

--with-dom=/path/to/libxml/distrib

to your configure script command line options (see hour 2 “Installing PHP 4” for more
information about installation issues). Unless you have libxml installed somewhere
exotic, you will probably strike paydirt with

--with-dom=/usr

The first thing you need if you are going to work with the DOM functions is a
DomDocument object. The DomDocument object is container for all elements, which are
themselves represented by objects.

Acquiring a DomDocument Object
To create a DomDocument object you can use the new_xmldoc() function. This requires a
string containing the XML that will be parsed. You can manipulate this data as you want,
so you should use this function if you want to construct a tree from scratch. You should
at least pass it the XML declaration.

$doc = new_xmldoc(‘<?xml version=”1.0”?>’);

You can then go ahead and begin to add elements. In fact you can get away with passing
new_xmldoc() the version number alone (“1.0”) and it will construct the XML declara-
tion for you.

$doc = new_xmldoc(‘1.0’);

If you would like to parse data from a file you can use the xmldocfile() function. This
accepts the name of a file and will return a DomDocument object.

$doc = xmldocfile(“listing22.1.xml”);

The Root Element
Just as the DOM model provides an analog for an XML document, it provides an object
to represent an element. The DomElement and DomDocument objects derive from a com-
mon parent class (DomNode) and are therefore similar in structure.

418 Hour 22

26 CH22 11/29/01 3:23 PM Page 418

Every XML document must have a singe root element. Similarly, a DomDocument object
has a root DomElement object. You can either create or access this object. To set a root
DomElement you should call the add_root() method. add_root() requires the name of
the element you wish to create. add_root() will construct a root DomElement object, add
it to the data tree and return it to you.

$root = $doc->add_root(“banana-news”);

To access an existing root DomElement object you just need to call the root() method.

Adding New DomElement Objects to the Tree
Once you have access to a DomElement (initially via the DomDocument root() or add_
root() functions) you can add more using the DomElement object’s new_child()
method. new_child() requires a string representing the element’s name, and a string rep-
resenting its textual contents, if any. If an element does not contain text, you should
nonetheless pass an empty string to the new_child() method.

$item = $root->new_child(“newsitem”, “”);
$item->new_child(“headline”, “The Banana Story”);

The new_child() method will return a new DomElement object which can be used to add
further children if necessary.

We now have enough information to be able to use the DOM functions to create the
XML document in Listing 22.1. We use data from an associative array (declared on line
2), but it could just as easily have been pulled from a database. You can see the code in
Listing 22.4.

LISTING 22.4 Constructing an XML Document with the DOM Functions

1: <?php
2: $news = array(
3: array(“headline” => “Banana sales”,
4: “image” => “/res/high.gif”,
5: “byline” => “William Curvey”,
6: “article” => “Research published today by...”,
7: “type” => “world”
8:),
9: array(“headline” => “Domestic banana use beggars belief”,
10: “image” => “/res/use.gif”,
11: “byline” => “Charles Split”,
12: “article” => “Bananas are for more than eating...”,
13: “type” => “world”
14:)
15:);
16:

PHP 4 and XML 419

22

26 CH22 11/29/01 3:23 PM Page 419

LISTING 22.4 continued

17: $doc = new_xmldoc(“1.0”);
18:
19: $root = $doc->add_root(“banana-news”);
20: foreach($news as $newselement) {
21: $item = $root->new_child(“newsitem”, “”);
22: $item->set_attribute(“type”, $newselement[‘type’]);
23: $item->new_child(“headline”, $newselement[‘headline’]) ;
24: $item->new_child(“image”, $newselement[‘image’]) ;
25: $item->new_child(“byline”, $newselement[‘byline’]) ;
26: $item->new_child(“article”, $newselement[‘article’]) ;
27: }
28: print $doc->dumpmem();
29: ?>

The only new feature of Listing 22.4 is a call to method of the DomDocument object.
dumpmem(), called on line 28 will output the entire tree to an XML string. The output of
Listing 22.4, therefore, is exactly the same as the text of Listing 22.1, with only one key
difference. dumpmem() does not prettify its output with linebreaks or indentations.

Getting Information from DomElement Objects
Usually the first thing you will want to know about an DomElement is its name. This will
be stored in the $tagname property.

print “Iam a “.$el->tagname.” element”;

Once you know the name of an element, you will want to know if it has any attributes.
Attributes are stored in DomAttribute objects. You can acquire an array of DomAttribute
objects associated with an element by calling the attributes() method.

$atts = $el->attributes();

In order to access the name and value of each DomElement object you can use the
conveniently named name() and value() methods.

$atts = $el->attributes();
if (! empyt($atts)) {

foreach($atts as $att) {
print $att->name().”: “.$att->value().”
”;

}
}

In order to navigate an XML tree you must take advantage of the methods that DOM
objects provide about their place in the structure.

420 Hour 22

26 CH22 11/29/01 3:23 PM Page 420

Given a DomElement object you can discover whether or not it has child elements with
the has_child_nodes() method. This method returns a Boolean.

if ($el->has_child_nodes())
print “I am blessed with progeny”;

If the element has children you can access the first child with first_child(). If the
element does not have children $el->first_child() will return false.

if ($el->has_child_nodes())
$child = $el->first_child();

We can climb the tree vertically, but what about horizontally? Elements know about their
siblings as well. You can access an element’s next sibling with the next_sibling()
method and its previous sibling with the previous_sibling() method. Both these
methods will return false if there is no sibling to be found.

$child = $el->first_child();
do {

print $child->tagname.”
”;
} while($child = $child->next_sibling());

A parent, of course, can access all of its children. The children() method will return an
array of element objects. If the element is childless it will false.

$kids = $el->children();
foreach($kids as $child) {

print $child->tagname.”
”;
}

Children also know about their parents. The parent() method will return an element’s
parent element.

Examining Text Nodes
Armed with the methods we have covered we can now swing about an XML tree pretty
well. But we haven’t got right down to the most important features of the tree. An ele-
ment is not the only kind of node that we want to deal with. Among its children we will
find text nodes, comment nodes, and others beyond the scope of this book.

Our main concern is the text node. We use these to acquire document content. The first
thing we need to be able to do is to distinguish between DomElement objects and DomText
elements. The DomElement and DomText classes share a common parent class: DomNode.
All DomNode objects have a $type property that contains an identifying integer. These
integers can be tested using built-in constants. For DomElement and DomText objects you
would use XML_ELEMENT_NODE and XML_TEXT_NODE respectively.

PHP 4 and XML 421

22

26 CH22 11/29/01 3:23 PM Page 421

if ($child->type == XML_ELEMENT_NODE) {
// work with the element

} elseif ($child->type == XML_TEXT_NODE) {
// work with the text node

}

Once you have located a text node you still need to access its contents. You can do this
with the node_value() method.

if ($child->type == XML_TEXT_NODE) {
print $child->node_value();

}

Traversing a Tree: Two Approaches
We now have enough information to work our way through a tree, but how do we go
about it? In this section we will lay down two approaches to this task.

The first approach is designed to do the work of acquiring each node in turn, and return
it to the calling code. Listing 22.5 demonstrates:

LISTING 22.5 Traversing a Tree of XML Nodes

1: <?
2:
3: $doc = xmldocfile(“listing22.1.xml”);
4: $root = $doc->root();
5: $pointer = $root;
6:
7: do {
8: print $pointer->tagname().”
”;
9: } while ($pointer = next_element($pointer));
10:
11: function next_element($pointer) {
12: while ($pointer = next_node($pointer)) {
13: if ($pointer->type == XML_ELEMENT_NODE)
14: return $pointer;
15: }
16: return false;
17: }
18:
19: function next_node($pointer) {
20: if ($pointer->has_child_nodes())
21: return($pointer->first_child());
22: if ($next = $pointer->next_sibling())
23: return $next;
24: while($pointer = $pointer->parent()) {
25: if ($next=$pointer->next_sibling()) {
26: return $next;

422 Hour 22

26 CH22 11/29/01 3:23 PM Page 422

LISTING 22.5 continued

27: }
28: }
29: }
30: ?>

As you can see, the real work is done by the next_node() function on line 19. This
accepts a node object and tests it to see if it has any children. If so, it returns the first one
on line 21. If the node has no children, the function then looks for a sibling, returning it
on line 23 if it is found. If the node has no children or siblings we then climb back up the
tree in a while loop starting on line 24, looking for siblings as we go. As soon as we find
a sibling object on our climb, we return it on line 26. By repeatedly calling next_node()
we will eventually traverse the entire tree.

The next approach traverses the tree in the same way. It differs from the previous exam-
ple in that the calling code does not repeatedly request the next node. Instead the travers-
ing function calls itself recursively until the tree has been completely explored. You can
see this in action in Listing 22.6

LISTING 22.6 Traversing a Tree of XML Nodes

1: <?php
2: $doc = xmldocfile(“listing22.1.xml”);
3: $root = $doc->root();
4: traverse($root);
5:
6: function traverse($node, $level=0){
7: handle_node($node, $level);
8: if ($node->has_child_nodes()) {
9: $children = $node->children();
10: foreach($children as $kid) {
11: traverse($kid, $level+1);
12: }
13: }
14: }
15:
16: function handle_node($node, $level) {
17: for ($x=0; $x<$level; $x++)
18: print “ ”;
19: if ($node->type == XML_ELEMENT_NODE) {
20: print $node->tagname().”
”;
21: }
22: }
23: ?>

PHP 4 and XML 423

22

26 CH22 11/29/01 3:23 PM Page 423

The traverse() function on line 6 does all the work. Passed a node object it looks for
children. If children are present it then works through them using a foreach loop on line
10, calling itself recursively with each child node in turn. Every time traverse() is
called it will call handle_node() (declared on line 16) where application specific code
can work with the node.

XSL: A Brief Discussion
XSL stands for Extensible Stylesheet Language. It is a templating system for XML docu-
ments, and with it you can process an XML document for output. With the same XML
source, you might apply different XSL documents to format for the Web, PDAs, interac-
tive television, and mobile phone.

Unfortunately the details of XSL are beyond the scope of this book, but we can briefly
examine PHP’s support for it.

PHP and XSL
As with its support for DOM, PHP’s support for XSL is still in the early stages. The
XSLT (the ‘T’ stands for ‘Transformations’) functions are under development, and both
names and behaviors are subject to change. Before using XSL in projects you should
visit the PHP manual (<http://www.php.net/manual/en/ref.xslt.php>) to check the
current stability of support for the technology.

In order to run the XSLT functions you will need to install the Sablotron XSLT processor
(<http://www.gingerall.com/>), and to compile PHP with XSL support. You should
include the argument

--with-sablot=/path/to/sablotron/libs

when you run the configure script. For an standard install

--with-sablot=/usr

will probably work for you.

An XSL Document
In Listing 22.7 we will apply a very simple XSL document to the XML we created in
listing 22.1. It will output a table for each article, adding formatting and changing the
order of two of the siblings.

424 Hour 22

26 CH22 11/29/01 3:23 PM Page 424

LISTING 22.7 An XSL Document

1: <?xml version=”1.0”?>
2: <xsl:stylesheet
3: version=”1.0”
4: xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
5: <xsl:template match=”banana-news”>
6: <xsl:for-each select=”newsitem”>
7: <p>
8: <table>
9: <tr><td>
10: <i><xsl:value-of select=”byline” /></i>
11: <xsl:text> writes</xsl:text>
12: </td></tr>
13: <tr><td> <xsl:value-of select=”headline” /> </td></tr>
14: </table>
15: </p>
16: </xsl:for-each>
17: </xsl:template>
18: </xsl:stylesheet>

Without getting in too deep with XSL, the purpose of this document should be relatively
clear with a close look. First of all take a look at the first line. An XSL document is also
an XML document! The root element

<xsl:stylesheet
version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

should always take this form. It establishes the XSL namespace, and version number.

The <xsl:template> element on line 5 establishes the zone we wish to transform—in
this case the whole XML document. With <xsl:for-each> on line 6 we can apply the
same formatting to every <newsitem> element. Having established this we can go ahead
and begin formatting. The HTML you see in Listing 22.7 is subject to the same rules as
any XML document, which means we must be careful to close our <P> elements. The
<xsl:value-of> tags (lines 10 and 13) will be substituted by the value of the elements
stipulated in their select attribute (<byline> and <headline>). Notice that we have
switched the positions of byline and headline elements we are matching. XSL gives you
control over the structure of data in output as well as its format.

Applying XSL to XML with PHP
Now that we have an XSL document we can use it to transform our XML. In fact in
order to do this we only need to encounter a very few functions. Listing 22.8 introduces
them.

PHP 4 and XML 425

22

26 CH22 11/29/01 3:23 PM Page 425

LISTING 22.8 Using XSL to Transform an XML Document

1: <?php
2: $xsl_string = join(“”, file(“listing22.7.xsl”));
3: $xml_string = join(“”, file(“listing22.1.xml”));
4:
5: if (xslt_process($xsl_string, $xml_string, $result))
6: print $result;
7: else
8: die(format_xslt_error());
9:
10: function format_xslt_error() {
11: $ret = “XSLT ERROR (“.xslt_errno().”): “.xslt_error();
12: return $ret;
13: }
14: ?>

We acquire both the XML and XSL data from files and store them in variables on lines 2
and 3. We then invoke a function called xslt_process() on line 5. xslt_process()
requires three strings, the XSL, the XML to be transformed, and a variable in which the
results will be stored (third argument is passed by reference). The function returns true
if all goes well and false otherwise.

If the function fails in a way that does not throw a fatal error, you can format an error
message with the xslt_errno() and xslt_error() functions (line 11). These functions
optionally accept an XSLT parser resource. xslt_process() does away with the need to
generate a parser resource, so it is lucky that both xslt_error() and xslt_errno() can
be called with no arguments. Without a resource xslt_error() will return a string
describing the last XSLT error produced during the lifetime of the script. xslt_errno()
will return an integer which is the error’s reference number.

Summary
XML is a large topic, worthy of a book in its own right, as the bookstore shelves testify.
It would be impossible to cover all its intricacies in a single chapter. However, you
should already be able to see some of the possibilities that XML offers the programmer.

In this hour you learned how to how to parse XML documents using the Expat based
XML Parser functions. You explored the developmental DOM Functions, and learned
how to use them to build an XML document. You learned two simple techniques for tra-
versing a DOM structure. Finally, you examined an XSL template and learned how to
use it with the XSLT functions to transform an XML document.

426 Hour 22

26 CH22 11/29/01 3:23 PM Page 426

In the next hour we will examine Smarty, a PHP template engine designed to improve
the organization of large projects.

Q&A
Q Discussion about XML seems to be everywhere at the moment. Is it all hype?

A People do love a bandwagon, but XML remains an excellent way of sharing data
and of making larger projects more durable and extensible. The fact that you can
define standards using DTDs also means that it is possible to build lightweight
interpreters that do not need to waste time on error checking. If you have ever tried
to download a browser from the Web, you will know how enormous they have
become. One of the reasons that XHTML, the XML version of HTML is so impor-
tant is the likely rise of lightweight browsers in cell phones, PDAs, and other
devices that simply will not have the processing power available to handle HTML
unless it conforms to a standard. You can read more about XHTML at http://
www.w3.org/TR/xhtml1/.

Q You warned that DOM and XSLT functions were under development. Should
I bother with them?

A First of all, check the PHP site at http://www.php.net for your version of PHP.
These functions may be fully supported by the time you read this. For now, if you
are intent upon writing code for a production environment, you should stick to the
XML parser functions which are very stable. Nonetheless, for the purposes of
longer term development and learning, now is the time to be working on those
DOM and XSLT skills. Don’t forget, by the way, that if you want to create a tree
of objects similar to the DOM objects, you can handroll your own version rela-
tively easily with the parser functions and user defined objects.

Workshop
Quiz

1. How would you acquire a parser resource?

2. What arguments will the XML parser pass to an element start handler?

3. How would you turn off the feature that converts all element names to uppercase
characters?

4. How would you get current line number while an XML document is being parsed?

5. What function would you use to get a DomDocument object using an existing XML
file?

PHP 4 and XML 427

22

26 CH22 11/29/01 3:23 PM Page 427

6. Given an DomElement object, how would you add a child element to your tree?

7. What function might you use to apply XSL to an XML document?

Quiz Answers
1. You can get a parser resource with the xml_parser_create() function.

$parser = xml_parser_create();

2. The user-defined element start handler function will automatically be passed a
$parser resource, the name of the element which is starting, and an array of
attributes.

3. You can use the xml_parser_set_option() function to disable case folding.

xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, 0);

4. The xml_get_current_line_number() function will return the current line
number.

5. The xmldocfile() function will return a DomDocument object.

$doc = xmldocfile(“my_doc.xml”);

6. The new_child() method will add a new element to a tree:

$child = $el->new_child(“elname”, “element text goes here”);

7. The xslt_process() function will accept an XSL string, an XML string and an
empty string variable. The string variable will hold the transformation.

xslt_process($xsl_string, $xml_string, $result);

Activities
1. Create a script that uses the daily XML newsfeed provided at http:// slashdot.

org/slashdot.xml, and outputs an HTML version. Create another script to output
a neatly formatted text version.

2. Using the XML Parser functions and object-oriented techniques create your own
tree of DOM-like element objects. Write code to traverse the tree.

428 Hour 22

26 CH22 11/29/01 3:23 PM Page 428

Hour
23 Smarty: A Template Engine

24 An Example: Page.inc.php

PART IV
Extending PHP

27 Part 4 11/29/01 3:17 PM Page 429

27 Part 4 11/29/01 3:17 PM Page 430

HOUR 23
Smarty: A Template
Engine

Throughout this book we have covered many core PHP features. In this hour
we are going to look at a library written in PHP. The Smarty template engine
is a powerful way of organizing larger projects, and demonstrates the ways
in which library code can substantially extend the language.

In this hour, you will learn:

• How to install the Smarty engine

• How to pass script variables to Smarty templates

• How to give Smarty templates the power to make decisions about
what to display

• How to loop in Smarty templates

• How to modify variables in Smarty templates

28 CH23 11/29/01 3:18 PM Page 431

What Is Smarty?
Smarty is a template engine. That is, it is a system that helps you to separate the presen-
tation of your output from the logic of your application. This is increasingly important
for large projects, in which the design and build teams are often distinct from the engi-
neering group.

Use of a template system, whether hand-rolled or third party can contribute greatly to a
project’s flexibility. When code logic is deeply embedded in design elements, projects
quickly become hard to manage, and debug. When they are separated, programmers are
free to concentrate on building elegant and extensible code, while HTML builders can
concentrate on building effective user interfaces without choking on lots of embedded
PHP.

Smarty was developed by Monte Ohrt and Andrei Zmievski to solve this problem. It is
very rich in features, so rich in fact, that this chapter can only really start to deal with the
things that it can do. Itself entirely written in PHP, it overcomes the largest drawback to
many template engines.

Template engines replace specially flagged keywords embedded within template files
with the values generated by a script. In order to do this, the template file must be parsed
by the engine. For larger documents the process of parsing the template file and substi-
tuting keywords for the values generated by a script can be slow and resource intensive.
Smarty handles this problem by compiling templates into PHP code.

Acquiring and Installing Smarty
Smarty can be downloaded from http://www.phpinsider.com/php/code/Smarty/
download/. At the time of writing the latest version was 1.4.5.

To install you should first unpack the Smarty distribution.

tar -xvzf Smarty-1.4.5.tar.gz

Looking inside you should see the PHP files that make up Smarty:

Config_File.class.php
Smarty.addons.php
Smarty.class.php
Smarty_Compiler.class.php

You should move these to a library directory available to your scripts. I created one
called smartylib in my Web directory. In order for Smarty to work correctly, you will
need to ensure that PHP can find the directory that contains these files when your pro-
jects are run.

432 Hour 23

28 CH23 11/29/01 3:18 PM Page 432

You can do this by setting the php.ini directive include_path.

include_path = “.:/usr/local/lib/php:/home/corrdev/htdocs/smartylib”

Notice that you can include multiple directories in the directive value. Each path should
be separated by a colon (a semi-colon for windows). If you do not have access to the
php.ini file, remember that you might be able to use an .htaccess file with Apache to
set directives.

php_value include_path “.:/usr/local/lib/php:/home/corrdev/htdocs/smartylib”

Alternatively you can set php.ini directives within your code with the ini_set() func-
tion.

ini_set(“include_path”.:/usr/local/lib/php:/home/corrdev/htdocs/smartylib”);

Smarty also requires PEAR code. PEAR stands for the PHP Extension and Application
Repository, and the required code is used to provide functionality for library code. All
you need to worry about is that the directory containing the PEAR.php class is included in
your include path. On Linux this will be

/usr/local/lib/php

and on Windows it will be

\php\pear

You should now have installed the library side of Smarty. This leaves us with the project
side. We still need to set up directories to hold our templates. Go to the directory that
will hold your projects. You will need to create three directories, configs, templates,
and templates_c. You will be creating your templates in the templates directory.
Compiled templates will be automatically written to templates_c consequently you
should make sure that the server will have the rights to write to the templates_c direc-
tory. On Unix systems you can do this by changing the owner of the directory to the user
that the server runs under (usually nobody).

chown nobody:nobody templates_c

If you are running Apache you can check the user that httpd runs as in the httpd.conf
file. Look for the User and Group directives. If you do not have the privileges to change
the owner of template_c you can make the directory world writeable, which will work
but is not encouraged.

chown 777 templates_c

Although we will not be covering Smarty’s caching facility in this hour, in order to use it
yourself you should also create a directory called cache with the same permissions as
templates_c.

Smarty: A Template Engine 433

23

28 CH23 11/29/01 3:18 PM Page 433

You should have now installed Smarty. If the code fragments in this chapter generate
errors, you may need to work your way back through this section. The Smarty distribu-
tion also contains clear installation instructions.

A First Script
First of all let’s create a template document. By convention we will be saving all tem-
plates with the extension .tpl. We will save all templates into the templates directory.
Listing 23.1 shows our first template file.

LISTING 23.1 Listing22.1.tpl—A First Template

1: <html>
2: <head>
3: <title>{$page_title}</title>
4: </head>
5: <body>
6: <h3>{$page_title}</h3>
7: <p>
8: {$page_subhead}
9: </p>
10: {$page_text}
11: </body>
12: </html>

Listing 23.1 should look oddly familiar, a mix of HTML and variables. On close inspec-
tion, though, some differences should present themselves. There are no PHP start and
end tags, and the variables are all enclosed by braces. The braces are the way that Smarty
signals where substitutions or executable code reside. Smarty can be configured to work
with other delimiting characters, but we will work with the default throughout this hour.

In order to use the template we need to create a PHP script that uses Smarty. Let’s dive
straight in and examine it in detail afterwards. Listing 22.2 shows our script.

LISTING 23.2 Listing22.2.php—A First Smarty Script

1: <?php
2: require_once(“Smarty.class.php”);
3:
4: $page_vals = array(
5: “page_title” => “Listings 23.1 and 23.2”,
6: “page_subhead”=>”Separating script logic from formatting”,
7: “page_text” => “The look and feel of this data is handled by

➥listing23.1.tpl”

434 Hour 23

28 CH23 11/29/01 3:18 PM Page 434

LISTING 23.2 continued

8:);
9:
10: $templ = new Smarty();
11: $templ->assign($page_vals);
12: $templ->display(“listing23.1.tpl”);
13:
14: ?>

The very first thing that we do is to use require_once() on line 2 to include
Smarty.class.php. If this call generates an error you will need to go back and check
your include path, and ensure that the directory that includes Smarty.class.php is cor-
rectly specified in the include_path directive.

We set up an associative array to include all of our page variables on line 4. Notice that
the keys match the variable names in Listing 23.1. We create a Smarty object and store it
in a variable called $templ on line 10. The assign() method (invoked on line 11)
accepts either a single associative array as in our example, or a variable name and a
value. Once we have associated our data with the Smarty object we can go ahead and
output the page on line 12. At its simplest the display() method accepts a path to the
template file you wish to use. Notice that we do not have to refer to the templates direc-
tory. Smarty requires paths that begin from the template directory.

You can see the output from Listing 23.1 and Listing 23.2 in Figure 23.1.

Smarty: A Template Engine 435

23

FIGURE 23.1
The output from
Listing 23.1 and
Listing 23.2.

28 CH23 11/29/01 3:18 PM Page 435

The first time that Listing 23.2 is run, Smarty will read listing23.1.tpl and make any
necessary substitutions. It will not, though, directly insert values. Instead it will generate
a compiled version of the template containing PHP code to request the values. This
means that for subsequent calls to Listing 23.2 there will not be the overhead of parsing
listing23.1.tpl. You do not normally need to worry about what template_c contains,
but let’s have a look at the compiled version of Listing 23.1. You can see it in
Listing 23.3.

LISTING 23.3 The Compiled Version of Listing 23.1

1: <?php /* Smarty version 1.4.5, created on 2001-10-12 16:21:01
2: compiled from listing23.1.tpl */ ?>
3: <html>
4: <head>
5: <title><?php echo $this->_tpl_vars[‘page_title’]; ?>
6: </title>
7: </head>
8: <h3><?php echo $this->_tpl_vars[‘page_title’]; ?>
9: </h3>
10: <p>
11: <?php echo $this->_tpl_vars[‘page_subhead’]; ?>
12:
13: </p>
14: <?php echo $this->_tpl_vars[‘page_text’]; ?>
15:
16: </html>

Template Variables
Because it is such a useful technique, we have jumped straight in and demonstrated the
way in which associative arrays are assigned to Smarty, but we can also assign individual
scalars. In Listing 23.4 we rewrite our PHP script to work with individual variables.

LISTING 23.4 Passing Individual Variables to the assign() Method

1: <?php
2: require_once(“Smarty.class.php”);
3:
4: $templ = new Smarty();
5: $templ->assign(“page_title”, “Listings 23.1 and 23.4”);
6: $templ->assign(“page_subhead”, “Separating script logic from formatting”);

436 Hour 23

28 CH23 11/29/01 3:18 PM Page 436

LISTING 23.4 continued

7: $templ->assign(“page_text”, “The look and feel of this data is handled by
➥listing23.1.tpl”);
8: $templ->display(“listing23.1.tpl”);
9:
10: ?>

The output for Listing 23.4 would be almost exactly the same as that for Listing 23.2.
Instead of passing a single associative array to the assign() method, we have invoked it
three times, each time with two arguments, the name of the template variable, and its
value.

There is another way of passing an associative array to the assign() method.

$templ->assign(“page_vals”, $page_vals);

In the previous code fragment we passed $page_vals to assign() as we did in Listing
22.2, but this time it was passed as the second argument. For the first argument we
passed a template variable name. This means that the template file will now be able to
access individual elements of the $page_vals array using this syntax:

($page_vals.page_title}
($page_vals.page_subhead}
($page_vals.page_text}

We can even pass an object to the assign() method.

class page_vals {
var $page_title = “Passing an object to assign()”;
var $page_subhead = “Separating script logic from formatting”;
var $page_text = “Objects use the ‘->’ notation in templates”;

}
$templ->assign($page_vals, new page_vals());

The template can then refer to the object’s properties using the arrow (‘->’) characters.

($page_vals->page_title}
($page_vals->page_subhead}
($page_vals->page_text}

As well as passing variables from your script to a template, you can access some of
PHP’s built in arrays using the special {$smarty} variable. Table 23.1 lists these vari-
ables, and in Listing 23.5 we write a template to show the feature in action.

Smarty: A Template Engine 437

23

28 CH23 11/29/01 3:18 PM Page 437

TABLE 23.1 Smart Equivalents for Built-In PHP Variables

PHP Array Smarty Name Syntax Example

$ENV env {$smarty.env.LANGUAGE}

$SERVER server {$smarty.server.REMOTE_ADDR}

$HTTP_GET_VARS get {$smarty.get.username}

$HTTP_POST_VARS post {$smarty.post.username}

$HTTP_SESSION_VARS session {$smarty.session.firstname}

$HTTP_COOKIE_VARS cookie {$smarty.cookie.last_visit}

LISTING 23.5 Using the Special {$smarty} Variable

1: <html>
2: <head>
3: <title>Listing 23.5 using the special {$smarty} variable</title>
4: </head>
5: <body>
6: Hello user at {$smarty.server.REMOTE_ADDR}

7: You submitted this value: {$smarty.get.name}

8: I am set up to handle {$smarty.env.LANGUAGE}

9: <body>
10: </html>

The {$smarty} variable is similar to a multidimensional associative array. The only unfa-
miliar aspect to this is that you must access individual elements using a dot rather than
square brackets.

Built-In Template Functions
Even though you will want to keep most of your script logic in the PHP side of your
application, you will occasionally need your templates to make decisions based on your
script’s output. For this reason, Smarty provides functions for a whole range of purposes.
We will deal with some of them in this section.

Functions are separated from static content in the same way as variables. That is, their
names (and arguments) are surrounded by braces (‘{‘ and ‘}’).

{if}, {elseif}, and {else}
Believe it or not, Smarty templates support the kind of control structures you would
expect to see in a fully fledged scripting language.

438 Hour 23

28 CH23 11/29/01 3:18 PM Page 438

The {if} function behaves in a similar way to its PHP cousin. The condition to be tested
is also placed between the braces.

{if $user == “admin” }
<p>Message of the Day: {$motd}</p>

{/if}

The block to be executed if the condition is fulfilled should be enclosed between the {if}
function call and a closing {/if}. This is the logic that Smarty uses to define a block of
output.

In the code fragment above we test the value of the {$user} variable. If it evaluates to
“admin” we then output a message. Smarty is fussy about the syntax of the {if} func-
tion. You should always leave a space between each operand and the operator.

You can also use the {elseif} and {else} functions when using {if}.

{if $user == “admin” }
<p>Message of the Day: {$motd}</p>

{elseif $user == “super” }
<p>System Status: {$sys_status}</p>

{else}
<p>Hope you enjoy our site!</p>

{/if}

Even if the syntax looks a little different, the logic of the previous fragment should look
very familiar indeed.

Looping with the {section} Function
Looping is a common requirement for template engines. Given a variable number of
rows pulled from a database, the template creator needs a flexible way of presenting the
information. In Listing 23.6 we simulate a result array that could have been taken from a
database pass it to assign().

LISTING 23.6 An Array of Names for Passing to a Template

1: <?php
2: require_once(“Smarty.class.php”);
3:
4: $search = array(
5: “Douglas Adams”,
6: “Neal Stephenson”,
7: “Dan Simmons”,
8: “Peter F. Hamilton”
9:);
10:

Smarty: A Template Engine 439

23

28 CH23 11/29/01 3:18 PM Page 439

LISTING 23.6 continued

11: $templ = new Smarty();
12: $templ->assign(“search”, $search);
13: $templ->display(“listing23.7.tpl”);
14: ?>

Given the array defined on line 4 a template can use the {section} function to loop
through it. In Listing 23.7 we show the function in practice.

LISTING 23.7 Looping with the {section} Function

1: <html>
2: <head>
3: <title>Listing 23.7 Looping with the section Function</title>
4: </head>
5: <body>
6:
7: <h3>Author Search Results</h3>
8: {section name=search_row loop=$search}
9: {$search[search_row]}

10: {/section}
11:
12: </body>
13: </html>

Like all loop constructs {section} needs a way of limiting the number of iterations to
perform. This is provided by the loop argument. In Listing 23.6 we made the $search
array available to the template. In the {section} function call on line 8 Smarty is merely
helpfully counting the number of elements in $search. In fact

{section name=search_row loop=$search}

and

{section name=search_row loop=4}

are equivalent. While the loop argument determines the limit to loop iterations, the name
argument provides a way of accessing element indices in an array. So, in the first loop
iteration

$search[search_row]

is equivalent to

$search[0]

440 Hour 23

28 CH23 11/29/01 3:18 PM Page 440

and so on. You can provide any one word string for the name argument. Within the loop
this name can be used as a variable to access the relevant index for any array that the
template has access to. You are not limited, in other words to using it to access the array
counted by the loop argument.

You can also use the {section} function to access associative array fields in a multidi-
mensional array. If we were to extend our authors example in Listing 23.6 to include
book titles

$search = array(
array(‘name’=>”Douglas Adams”,

‘book’=>”So Long and Thanks for all the Fish”),
array(‘name’=>”Neal Stephenson”,

‘book’=>”Cryptonomicon”),
array(‘name’=>”Dan Simmons”,

‘book’=>”Endymion”),
array(‘name’=>”Peter F Hamilton”,

‘book’=>”The Neutronium Alchemist”),
);

we could access each of the associative array elements using the now familiar dot
notation.

{section name=search_row loop=$search}
{$search[search_row].name} .. {$search[search_row].book}

{/section}

But what if $search array were empty? Is there any way that the template writer can
handle a default case? The {sectionelse} function is called into play when the
{section} function’s loop argument evaluates to zero.

{section name=search_row loop=$search}
{$search[search_row].name} .. {$search[search_row].book}

{sectionelse}
No authors found. Try another search

{/section}

{section} functions provide you with a number of special variables which tell you about
the state of the loop. These have a specific format:

{%loopname.variable%}

Among the most useful of the section variables is iteration, which will hold the
number of the iteration indexed from 1. This makes it perfect for counting rows.

{section name=search_row loop=$search}
{%search_row.iteration%}. {$search[search_row].name} ..

{$search[search_row].book}

{sectionelse}

Smarty: A Template Engine 441

23

28 CH23 11/29/01 3:18 PM Page 441

The index variable is similar to the iteration section variable. It returns the current
index number of the loop, and so counts from zero. The difference becomes more pro-
nounced if two additional arguments to {section} are used. start sets the beginning
index for the loop and step sets the increment by which the index number should rise. If
these are set, the index section variable will reflect the start and step numbers while
iteration will count up sequentially from 1 regardless.

Also useful are the first and last section variables. These contain true in the first and
final iterations of the loop respectively. That makes it easy to top and tail an output.

{section name=search_row loop=$search}
{if %search_row.first%}

<hr>
{/if}
{%search_row.iteration%}. {$search[search_row].name} ..

{$search[search_row].book}

{if %search_row.last%}

<hr>
{/if}

{sectionelse}
No authors found. Try another search

{/section}

It would also nice to be able to tell the user how many hits her query accessed. The
total section variable holds the total number of iterations for the loop, no matter at
which iteration it is accessed.

{section name=search_row loop=$search}
{if %search_row.first%}

{%search_row.total%} found
<hr>

{/if}
{%search_row.iteration%}. {$search[search_row].name} ..

{$search[search_row].book}

{if %search_row.last%}

<hr>
{%search_row.total%} found

{/if}
{sectionelse}

No authors found. Try another search
{/section}

So, we have now looked at a number of features that allow you to included quite sophis-
ticated decision making and flow control within your templates. It is a good idea for your
presentation layer to work flexibly with the information available to it—it saves applica-
tion logic from concerning itself with presentation issues. On the other hand, you should
be wary of letting application logic creep into your templates. As a rule of thumb, your

442 Hour 23

28 CH23 11/29/01 3:18 PM Page 442

templates should have little knowledge of any processes outside of the graceful presenta-
tion of data.

Combining Templates with the {include} Function
You will not always want to be limited to a single template when you call the Smarty
object’s display() method. Some page components (primary navigation, for example)
are so ubiquitous that will naturally live in a separate template that can be included in
any template required.

You can choose to include other templates from within a template file using the
{include} function. {include} has a name argument that should be the path to the tem-
plate file to be included (once again paths are relative to the ‘templates’ directory). You
can also include arbitrarily named arguments that will become available to the called
template. Because {include} requires a file argument, you cannot pass a variable
named ‘file’ to the included template. Apart from this the name of any variables you pass
are up to you.

If we were to add the following code to our template example

{include file=”brand_top.tpl” section=”author search”}

then the brand_top.tpl template would be inserted. It would also have access to a
{$section} variable.

<h1>books unlimited</h1>

<h4>{$section}</h4>

Modifying Template Variables
Smarty has taken us a long way towards separating application logic from presentation,
but we are still missing one essential element. Data frequently needs modification before
it is fit to be presented to the public. Tags may need to be stripped out, newlines con-
verted into
 tags, letters may need to be capitalized. Smarty has tools for just this
kind of filtration.

In order to apply a variable modifier to a template variable you must use the pipe (‘|’)
symbol.

{$variable|modifier}

You can chain modifiers together.

{$variable|firstmodifier|secondmodifier}

and they will operate on the $variable from left to right.

Smarty: A Template Engine 443

23

28 CH23 11/29/01 3:18 PM Page 443

If a modifier requires arguments, each one should be provided after a separating colon
character.

{$variable|modifier:”an_arg”:”another_arg”}

Modifier arguments can be strings, numbers, or variables.

capitalize and lower
The capitalize variable modifier makes the first letter of every word in a string variable
uppercase.

{$author|capitalize}

The lower function will render every character in a string variable lowercase.

{$author|lower}

Of course, they can be usefully chained. Making a string lowercase first and then capital-
izing each first letter will deal with strings in all caps.

{$author|lower|capitalize}

regex_replace
Occasionally you will need more power than that afforded by the built-in modifiers.
regex_replace allows you to apply a Perl compatible regular expression to a variable.
regex_replace requires two arguments, the match pattern and the replacement string. In
the fragment below we use a regular expression to switch an author’s last name with his
first name and initials.

{$author|regex_replace:”/^(.*)\s(.*)$/”:’$2, $1’}

string_format
string_format uses sprintf() to format a variable. It requires a single argument, the
format control string. If for example we wanted to display currency we could pass the
following argument to string_format.

That will be
{$price|regex_replace:”%.2f”}
dollars please.

You can brush up your sprintf() skills in Hour 17, “Working with Strings.”

444 Hour 23

28 CH23 11/29/01 3:18 PM Page 444

default
default is an extremely useful variable modifier. It enables you to degrade your page
gracefully if an expected variable is not forthcoming. It requires a single argument, the
variable to output if the expected variable is not available to Smarty.

{$author|default:”anonymous”}

A Recap: Our Example in Full
Although we have not got time or space to cover the whole of Smarty which is an
extremely rich library, we have covered a lot of ground. In this section we will bring the
code fragments of the last few sections together, and add a bit of flesh to our book site
example.

In Listing 23.8 you can see the PHP code once again. Not much has changed.

LISTING 23.8 PHP Code Invoking Smarty Template Code

1: <?php
2: require_once(“Smarty.class.php”);
3:
4: $search = array(
5: array(‘name’=>”Douglas Adams”,
6: ‘book’=>”So Long and Thanks for all the Fish”),
7: array(‘name’=>”NEAL STEPHENSON”,
8: ‘book’=>”CRYPTONOMICON”),
9: array(‘name’=>”dan simmons”,
10: ‘book’=>”endymion”),
11: array(‘name’=>”Peter F Hamilton”,
12: ‘book’=>”The Neutronium Alchemist”),
13: array(‘name’=>””,
14: ‘book’=>”Prime Colors”),
15:);
16: $templ = new Smarty();
17: $templ->assign(“section”, “book search”);
18: $templ->assign(“search”, $search);
19: $templ->display(“listing23.9.tpl”);
20: ?>

The most interesting thing to note is how compact the code remains. The prime purpose
of this code is compile data. It then hands it on to the templates to format. Imagine how
the code would look if the output was included in Listing 23.8. We have made a few

Smarty: A Template Engine 445

23

28 CH23 11/29/01 3:18 PM Page 445

minor changes. First, we have introduced a new book, with no author (line 13), and
messed around with the case of some books and authors. Second, we have added a new
call to assign(), that passes the section name to the template (line 17).

In Listing 23.9 you can see the main template.

LISTING 23.9 The Main Template

1: {include file=”listing23.10.tpl” section=$section}
2:
3: {section name=search_row loop=$search}
4: {if %search_row.first%}
5: {%search_row.total%} found
6: <hr>
7: {/if}
8: {%search_row.iteration%}.
9:

➥{$search[search_row].name|lower|capitalize|regex_replace:”/^(.*)\s(.*)$/”:’$2,
➥$1’|default:”anonymous”}
10: ..
11: {$search[search_row].book|lower|capitalize}

12: {if %search_row.last%}
13: <hr>
14: {%search_row.total%} found
15: {/if}
16: {sectionelse}
17: No authors found. Try another search
18: {/section}
19:
20: </body>
21: </html>

The presentation of the document’s header is handed on to another file using the
{include} function on line 1. The {$section} variable is passed to it as a parameter.

That means that most of the work done by this template is in the {section} function on
line 3. For the first iteration (tested line 4) we write out a string confirming the number
of matches in the loop. We use the total section variable for this on line 5.

We use the iteration section variable on line 8 to count out each row. In outputting the
author (line 9) and book (line 11) we use variable modifiers to format the text. lower and
capitalize are chained to handle the inconsistent use of case that our data displayed.
The authors’ first and last names are swapped using regex_replace, and a default value
of ‘anonymous’ is put in place for those cases where we are not passed an author name.

446 Hour 23

28 CH23 11/29/01 3:18 PM Page 446

For the final iteration (tested on line 12), we restate the number of rows we have dealt
with. If by some chance we had found no data in the $search array the {sectionelse}
block on line 16 would have been executed and a simple string output.

Listing 23.10 shows the included header file. The only points to note here are the fact
that it has access to the {$section} variable, and that it uses the default variable modi-
fier to ensure that something sensible is output should the caller fail to provide a parame-
ter (lines 3 and 9).

LISTING 23.10 The Header Template

1: <html>
2: <head>
3: <title>books unlimited: {$section|default:”The Book Source”}</title>
4: </head>
5: <body>
6: <h1>books unlimited</h1>
7:
8:
9: <h4>{$section|default:”The Book Source”}</h4>
10:

You can see the results of our template work in Figure 23.2. Of course, we haven’t let the
design team lose on the templates yet!

Smarty: A Template Engine 447

23

FIGURE 23.2
The templates in
operation.

28 CH23 11/29/01 3:18 PM Page 447

Summary
If you intend to work on larger projects with PHP, you would be well advised to think
very carefully about using a template engine. Your code will be much easier to maintain
and extend if you can drive a wedge between the application logic and the output layer.
If you do decide to work with a template engine, you should consider Smarty. It is fast
because it compiles the templates you write into PHP, it is feature rich, and it is easy to
extend.

In this hour you learned about Smarty. You saw how to install it and get a basic template
up and running. You learned about template variables and how to pass them from your
PHP code to the template. You learned about template functions and how to use them to
control output. Finally you learned how to modify template variables.

Having experienced the power of a library written in PHP, we will have a go at creating
our own in the next hour.

Q&A
Q Has this chapter covered all I need to know about Smarty?

A No. Smarty is a very flexible package, and we’ve only had time to address some of
its functionality. You should now have enough information to get up and running,
but if you are going to use Smarty intensively you should read the documentation
at http://www.phpinsider.com/php/code/Smarty/docs/. There you will be able
to find out about many more functions. You’ll also be able to learn about writing
your own functions and variable modifiers for Smarty.

Workshop
Quiz

1. What document should we require() in order to run Smarty?

2. What Smarty method would you use to register a variable with Smarty?

3. Which directory does PHP need to be able to write to in order for Smarty to work?

4. How would I access the PHP variable $SERVER[“SERVER_NAME”] from a Smarty
template?

5. What is wrong with the following fragment?
{if $user==”admin” }

<p>Message of the Day: {$motd}</p>
{/if}

448 Hour 23

28 CH23 11/29/01 3:18 PM Page 448

6. How do we discover the number of iterations a {section} named “thisloop” loop
went through?

7. What Smarty variable modifier outputs a string in lowercase letters?

Quiz Answers
1. The Smarty.class.php document contains the core Smarty code.

2. The assign() method is used to pass values to Smarty.

3. The includes_c directory is written to by the Smarty engine.

4. The {$smarty} variable gives you access to the PHP $SERVER array.

{$smarty.server.SERVER_NAME}

5. There should always be a space between operands and operators in the {if}
function.
{if $user == “admin” }

<p>Message of the Day: {$motd}</p>
{/if}

6. The section variable total contains the total number of iterations of a loop

{%thisloop.total%}

7. The lower variable modifier transforms a string, outputting a lowercase version.

{$myvar|lower}

Activities
1. Acquire and install Smarty.

2. Look back through your sample scripts and projects and choose a few to rewrite
using Smarty. Consider the ways in which your program logic can be cleaned up
now it is separated from presentation.

Smarty: A Template Engine 449

23

28 CH23 11/29/01 3:18 PM Page 449

28 CH23 11/29/01 3:18 PM Page 450

HOUR 24
An Example:
Page.inc.php

In this hour we will create a set of reusable code libraries which may come
in handy in the future. Along the way, we will be using language constructs
and techniques that we have covered in previous hours.

In this hour, you will create code to

• Automate session handling

• Make user feedback easy

• Test whether a form has been submitted

• Implement a password protected environment

• Implement access control within a protected environment

The Framework Class
Our project will be initially defined by a framework class called Page. This
will determine the procedure for almost every script request in an environ-
ment. We will also include some convenient functionality. It is important to

29 CH24 11/29/01 3:22 PM Page 451

bear in mind that Page is not really designed to be directly instantiated. It is designed to
be subclassed to provide project specific functionality.

The Framework
Every script that uses a Page object will have three stages: initialization, execution, and
clean up. Initialization will take place inside a method called init(). Everything
required for script start up will live here. The Page object will do a fair amount of work
in this method, but more work will probably be done by any subclass. The execution
phase will take place in the main() method. Typically, this is where the meat of a script
will live; form input will be processed here, feedback prepared and so on. The Page class
defines this method, but leaves it to subclasses to override. Clean up takes place in the
clean_up() method. This is where database connections should be closed and any other
loose ends tied up. Once again Page does not itself do anything with this method.

In Listing 24.1 we lay down the skeleton of the class.

LISTING 24.1 The Skeleton of the Page Class

1: <?
2: class Page {
3:
4: function Page() {
5: session_start();
6: global $page_class_sess;
7: if (! session_is_registered(“page_class_sess”)) {
8: $page_class_sess = array();
9: session_register(“page_class_sess”);
10: }
11: }
12:
13: function init() { }
14:
15: function main() { }
16:
17: function clean_up() { }
18: }
19: ?>

The only thing the our Page class will do at this stage is to start a session (line 5). We
will cover the session code in more detail in another section. Now we have the skeleton,
we can begin to put a bit of flesh on the bones.

452 Hour 24

29 CH24 11/29/01 3:22 PM Page 452

Acquiring POST and GET Parameters
PHP provides a perfectly good interface for working with GET and POST variables in
the $HTTP_POST_VARS and $HTTP_GET_VARS arrays. However, we are going to store
request parameters as an object property. We can add some simple code to the init()
method to make this happen.

$this->rdata = array_merge($GLOBALS[‘HTTP_GET_VARS’],
$GLOBALS[‘HTTP_POST_VARS’]);

In early versions of PHP 4 the $HTTP_*_VARS arrays would not be present if there were
no elements to populate them. Now the arrays are always there, whether populated or
not. That means that we don’t have to provide any clever testing. We simply merge the
two arrays and assign to a property: $rdata. We chose the order so that POST variables
will overwrite GET variables.

Getting the Message Across
One essential element of many scripts is the need to feedback to the user. Messages such
as “Welcome!” and “OOPS! You forgot to fill in the phone field” are ubiquitous. The
Page class provides an interface for generating such messages, and even a mini-template
for message output. Messages can also be passed from script to script, so our class will
extract it from the $rdata property. Time to add some more code to our init() method.

if (! empty($this->rdata[‘page_obj_msg’])) {
$this->message = $this->rdata[‘page_obj_msg’];
unset($this->rdata[‘page_obj_msg’]);

}

We test for a request parameter called “page_obj_msg”. If it is present we assign its
value to a new property called $message. We then tidy up our $rdata array by removing
the “page_obj_msg” element.

We will also want client code to be able to set the $message property, so we will need a
new method.

function setMessage($str) {
$this->message = $str;

}

Client coders will also want to retrieve the message:

function getMessage() {
return stripslashes($this->message);

}

Finally, we want to make it easy for programmers to present a feedback message to their
users. They could of course simply wrap a call to getMessage() in some formatting.

An Example: Page.inc.php 453

24

29 CH24 11/29/01 3:22 PM Page 453

When using this code we found, however, that we often only wanted to present the mes-
sage formatting (tables, bold tags, etc) when there was a message present. If there was no
message we wanted no output at all. Once again the client coder could handle this him-
self by adding an if statement to the HTML. For convenience, however, we provide a
template-like solution. The outputMessage() method accepts a template string. If any
message is present it will be placed in the template, replacing the string “%msg%”.

function outputMessage($template_str = “”) {
if (! empty($template_str))

$out = str_replace(“%msg%”, $this->message, $template_str);
else

$out = $this->message;
print $out;

}

Now that our class actually does a thing or two, we should subclass it to see it in action.

A Subclass for Testing
In Listing 24.2 we create a class called my_page that subclasses Page.

LISTING 24.2 Subclassing the Page Class

1: <?php
2: include_once(“lib/Page.inc.php”);
3:
4: class my_page extends Page {
5: function my_page() {
6: Page::Page();
7: }
8:
9: function main() {
10: $this->setMessage(“Hello, welcome to Page”);
11: }
12: }
13:
14: $p = new my_page();
15: $p->init();
16: $p->main();
17: $p->clean_up();
18: ?>
19: <html>
20: <head>
21: <title>Testing the Page class</title>
22: </head>
23: <body>
24:
25: <?php

454 Hour 24

29 CH24 11/29/01 3:22 PM Page 454

LISTING 24.2 continued

26: $p->outputMessage(‘
27: <table cellpadding=”5”>
28: <tr><td bgcolor=”gray”>%msg%</td></tr>
29: </table>’);
30: ?>
31:
32: </body>
33: </html>

Notice that in subclassing Page, we only bother to override the constructor and the
main() method. Because main() does not do anything in Page there is no need to call the
overridden method, although we would always do this with the init() method as we do
with the constructor. All we do in main() is to call setMessage() with a test string (line
10). Outside of the class we instantiate a new my_page object on line 14. We call init(),
main() and clean_up() on lines 15 to 17. Within the body of the HTML we call
outputMessage() with a template string (line 26). The string will be displayed because a
message is present. Without the message, the template string would never be output.

Session Support
The Page class’s constructor may have given you the clue that we intend to support ses-
sions. We are building a tool to underpin online environments, so session support is
essential.

We started the session in the constructor and associated a global variable called
$page_class_sess with it using session_register(). All session variables that the
object will deal with will be stored in this array. This is to keep object session data neatly
separate from any sessions variables set outside of the class. You can see the code which
sets up the session in Listing 24.1.

We can now create some wrapper methods to make it easy to set and acquire session
data.

function forget_session() {
global $page_class_sess;
$page_class_sess = array();

}

function set_session_var($name, $val) {
global $page_class_sess;
$page_class_sess[$name] = $val;

}

An Example: Page.inc.php 455

24

29 CH24 11/29/01 3:22 PM Page 455

function get_session_var($name) {
global $page_class_sess;
return $page_class_sess[$name];

}

Has the Form Been Submitted?
If you often use the same script to present and process a form, it is essential to test
whether or not the form has been submitted. Because this is such a common procedure
Page provides a couple of convenience functions to help with this.

function fflag($val) {
return “<input type=\”hidden\” name=\”fflag\”

value=\”$val\”>\n”;
}

function checkfflag($val) {
return (isset($this->rdata[‘fflag’]) &&

$this->rdata[‘fflag’] == $val);
}

The fflag() function accepts a string value and returns a hidden field with ‘fflag’ as
the name and the provided string as the value. The checkfflag() method also accepts a
value. It checks to see whether or not the request parameters contain an element called
‘fflag’ with the given value.

In Listing 24.3, we extend our my_page class to use these functions to test whether or not
a form has been submitted.

LISTING 24.3 Testing Form Submission

1: <?php
2: include_once(“lib/Page.inc.php”);
3:
4: class my_page extends Page {
5: function my_page() {
6: Page::Page();
7: }
8:
9: function main() {
10: if ($this->checkfflag(“subbed”))
11: $this->setMessage(“FORM SUBMITTED”);
12: else
13: $this->setMessage(“Hello, welcome to Page”);
14:
15: }
16: }
17:

456 Hour 24

29 CH24 11/29/01 3:22 PM Page 456

LISTING 24.3 continued

18: $p = new my_page();
19: $p->init();
20: $p->main();
21: $p->clean_up();
22: ?>
23: <html>
24: <head>
25: <title>Testing the Page class</title>
26: </head>
27: <body>
28:
29: <?php
30: $p->outputMessage(‘
31: <table cellpadding=”5”>
32: <tr><td bgcolor=”gray”>%msg%</td></tr>
33: </table>’);
34: ?>
35: <form>
36: <?php print $p->fflag(“subbed”) ?>
37: Type into this box and hit return

38: <input type=”text” name=”input”>
39: </body>
40: </html>

We add a call to fflag() to the form in Listing 24.3 (line 36). This outputs a hidden
field. In the main() method we can test for the presence of the fflag parameter with a
call to the checkfflag() method (line 10). If the form has been submitted we alter the
feedback message.

Moving On
Page redirection is such a common procedure in PHP coding that the Page class simply
must support it. The code for this is, of course, very simple. We complicate it a little,
though, by adding support for the $message property.

function redirect($page, $msg=””) {
if (! empty($msg))

$this->message = $msg;
$this->clean_up();
if (! strstr($page, “?”))

header(“Location: $page?page_obj_msg=”.urlencode($this-
➥>message));

else
header(“Location: $page&page_obj_msg=”.urlencode($this-

➥>message));
exit;

}

An Example: Page.inc.php 457

24

29 CH24 11/29/01 3:22 PM Page 457

The redirect method requires a URL which is stored in the $page argument variable. It
optionally accepts a $msg argument variable. If the $msg variable is not empty, we assign
it the $message property. Before redirecting the browser, we first call clean_up() to
ensure that all loose ends have been tied. We are then ready to move on. We check for a
question mark in the $page variable. If one exists we can assume that a query string
already exists in the URL, and so we use an ampersand to add our $message property to
the end. If no question mark is found, we use a question mark ourselves.

That completes our basic framework for a PHP Web environment. Although it has some
functionality, part of the intention is to make it easy to subclass for specific purposes. In
the next section we will explore one such purpose.

You can see the complete Page class in Listing 24.4.

LISTING 24.4 The Page Class

1: <?
2: class Page {
3: var $rdata;
4: var $message;
5:
6: function Page() {
7: session_start();
8: global $page_class_sess;
9: if (! session_is_registered(“page_class_sess”)) {
10: $page_class_sess = array();
11: session_register(“page_class_sess”);
12: }
13: }
14:
15: function init() {
16: $this->set_session_var(“lastclick”, time());
17: $this->rdata = array_merge($GLOBALS[‘HTTP_GET_VARS’],
➥$GLOBALS[‘HTTP_POST_VARS’]);
18: if (! empty($this->rdata[‘page_obj_msg’])) {
19: $this->message = $this->rdata[‘page_obj_msg’];
20: unset($this->rdata[‘page_obj_msg’]);
21: }
22: }
23:
24: function main() { }
25:
26: function clean_up() { }
27:
28: function forget_session() {
29: global $page_class_sess;
30: $page_class_sess = array();

458 Hour 24

29 CH24 11/29/01 3:22 PM Page 458

LISTING 24.4 continued

31: }
32:
33: function set_session_var($name, $val) {
34: global $page_class_sess;
35: $page_class_sess[$name] = $val;
36: }
37:
38: function get_session_var($name) {
39: global $page_class_sess;
40: return $page_class_sess[$name];
41: }
42:
43:
44: function fflag($val) {
45: return “<input type=\”hidden\” name=\”fflag\” value=\”$val\”>\n”;
46: }
47:
48: function checkfflag($val) {
49: return (isset($this->rdata[‘fflag’]) && $this->rdata[‘fflag’] ==
➥$val);
50: }
51:
52: function redirect($page, $msg=””) {
53: if (! empty($msg))
54: $this->message = $msg;
55: $this->clean_up();
56: if (! strstr($page, “?”))
57: header(“Location: $page?page_obj_msg=”.urlencode($this-
➥>message));
58: else
59: header(“Location: $page&page_obj_msg=”.urlencode($this-
➥>message));
60: }
61:
62: function setMessage($str) {
63: $this->message = $str;
64: }
65:
66: function getMessage() {
67: return stripslashes($this->message);
68: }
69:
70: function outputMessage($template_str = “”) {
71: if (! empty($template_str))
72: $out = str_replace(“%msg%”, $this->message, $template_str);
73: else
74: $out = $this->message;
75: print $out;

An Example: Page.inc.php 459

24

29 CH24 11/29/01 3:22 PM Page 459

LISTING 24.4 continued

76: }
77: }
78: ?>

Extending the Page Class
The Page class is designed to be extended. In this section we are going to add some of
the functionality needed to create a password protected environment. In particular, we
will be using the Page class’s session functionality to test a username and password
against values in a DBA database. We are also going to implement a flexible access con-
trol system. The client coder will be able to define page and user types. Only certain user
types will then be allowed to visit certain page types.

This kind of access control is common in multi-user environments, where different users
are given access only to site areas relevant to their job types. On a content management
system, for example, a publication editor is likely to have different access to a freelance
writer.

The system we are going to build will itself be designed for subclassing. We will call the
class Access.

The access class subclasses Page. Its own constructor accepts and stores a path to a DBA
database.

function Access($user_file) {
$this->user_file = $user_file;
Page::Page();

}

The Access class has inherited all of the functionality of the Page object. It’s now time to
extend it.

Defining Flexible Site Areas
Because the Access class is designed to work flexibly with different kinds of site, we are
not going to hardcode information about site areas. Instead, we are going to create a
method that enables a client coder to define a set of site areas. We will store each label
and a number that we generate in an array property called $access_types.

function addAccessType($label) {
if (! empty($this->access_types[$label]))

return false;
$this->access_types[$label] = $this->type_pointer;

460 Hour 24

29 CH24 11/29/01 3:22 PM Page 460

$this->type_pointer <<= 1;
return true;

}

So in adding an access type, the user will provide a label. We store the current number
available for assignment to access types in a property called $type_pointer. After
assignment we left shift $type_pointer. That means, in effect that the number will be
multiplied by two. In binary terms it means that for each consecutive access type the
number will progress like this.

00001
00010
00100
01000
10000

This will result in a flexible system, but it is worth noting that there are only a limited
number of bits in an integer and we will be limited to a maximum of 31 access types.
This should be ample for most purposes, especially when you consider that different
users will have access to different combinations of access type.

Having allowed the client coder define the access types for our environment, we need to
give him or her the ability to access the numbers we have generated.

function getAccessType($label) {
if (empty($this->access_types[$label]))

return false;
return $this->access_types[$label];

}

The getAccessType() method requires a string representing the label of the type in
question. If the key is in the $access_types array property, then the number will be
returned.

The addAccessType() and getAccessType() methods apply across an environment. We
also need a way of telling the library which of the available access types the current
script belongs to. For this we use the setPageType() method.

function setPageType($label) {
if (empty($this->access_types[$label]))

return false;

$this->page_type = $this->access_types[$label];
return true;

}

An Example: Page.inc.php 461

24

29 CH24 11/29/01 3:22 PM Page 461

This method accepts a label, and, if it exists in the $access_types array property, sets
the $page_type property to the relevant number.

So we are now at the stage at which an implementing class could define a set of access
types using addAccessType() in its init() method. Individual scripts could then set
their own access type using the setPageType() method.

Adding and Acquiring User Data
Now we can set access types for a site, we need to get and set information about site
users so that we can match up one with the other.

For this example we have decided to use a simple DBA database. In the database we will
store a username (which must be unique), a password, and a user type. The user type will
be a number that we will be comparing with individual pages’ access types. Methods that
access and set user data could easily be overridden by a subclass to speak with another
database.

The add_user() method is used to create a new user.

function add_user($user, $pass, $type) {
$res = dba_open($this->user_file, “c”, “gdbm”) or die(“no user

db”);
if (dba_fetch($user, $res)) {

dba_close($res);
return false;

}
$add_array = array(‘pass’=>$pass, ‘type’=>$type);
dba_replace($user, serialize($add_array), $res);
dba_close($res);

}

The method requires strings for username, password and user type. It uses the database
path that was provided to the constructor to open the database. If a user of the same
name does not already exist, then the user is added. The username is used as the key for
this database. Other data is serialized and added as the value.

Acquiring user data is just as simple. The get_user_data() method handles this.

function get_user_data($user) {
$res = dba_open($this->user_file, “c”, “gdbm”) or die(“no user

➥db”);
$user_data = dba_fetch($user, $res);
dba_close($res);
if (! $user_data)

return false;
return unserialize($user_data);

}

462 Hour 24

29 CH24 11/29/01 3:22 PM Page 462

get_user_data() connects to the database, uses the provided key to attempt to extract a
row, and, if successful, returns the unserialized data.

Enforcing Access Control
Now that we can define users and access types we need to build the engine that tests
them both.

The access_control() method is the heart of this class:

function access_control() {
if ($this->page_type == 0)

return true;
$user = $this->get_session_var(“user”);
$pass = $this->get_session_var(“pass”);
if (empty($user) || empty($pass))

$this->bump(“Not enough user data”);
$user_array = $this->get_user_data($user);
if (! $user_array)

$this->bump(“Unknown user”);
if ($pass != $user_array[‘pass’])

$this->bump(“Incorrect password”);
if (! $this->codeAllowed($user_array[‘type’]))

$this->bump(“Access to this resource forbidden”);
return true;

}

If the $page_type property has not been given a value, then we assume that the page is
designed to be wide open, and simply return true.

We acquire user and password information from the session data. If either of these are
missing, our user is history. We call a method called bump() which sends the user away
with an error message. If we have information now stored in the $user and $pass vari-
ables we use get_user_data() with the $user variable to try to extract information from
the database. If nothing is returned by get_user_data() we know that the user does not
exist, and once again our visitor is expelled. Next, we test the password returned from
the database against the password stored in $pass. If they do not match, the user is
rejected. Finally we test our zone based access control. We call a method called
codeAllowed() with the now validated user’s type number.

function codeAllowed($num) {
return ($this->page_type & $num);

}

By using the ‘binary and’ (‘&’) we are comparing the bits in $page_type and the pro-
vided $num argument variable. Each bit of each number is compared against its opposite
number. If both bits are set, then the corresponding bit in the return value will be set. So

An Example: Page.inc.php 463

24

29 CH24 11/29/01 3:22 PM Page 463

our codeAllowed() method returns a positive number only if there is overlap between
the $num argument and the $page_type property.

If our user’s type number does not match the page type, then zero will be returned and
once again bump() would be called.

function bump($msg) {
$this->redirect($this->login_page, $msg);
exit;

}

As you can see bump() merely calls the redirect() method in the parent Page class. The
$login_page property is set by default to “login.php” but this can be changed.

The Access Class in Full
We now have the complete library. Listing 24.5 shows the whole of Access.

LISTING 24.5 The Access Class

1: <?php
2: include_once(“Page.inc.php”);
3:
4: class Access extends Page {
5: var $access_types = array();
6: var $type_pointer = 1;
7: var $login_page = “login.php”;
8: var $page_type = 0;
9:
10: function Access($user_file) {
11: $this->user_file = $user_file;
12: Page::Page();
13: }
14:
15: function addAccessType($label) {
16: if (! empty($this->access_types[$label]))
17: return false;
18: $this->access_types[$label] = $this->type_pointer;
19: $this->type_pointer <<= 1;
20: return true;
21: }
22:
23: function setPageType($label) {
24: if (empty($this->access_types[$label]))
25: return false;
26:
27: $this->page_type = $this->access_types[$label];
28: return true;
29: }

464 Hour 24

29 CH24 11/29/01 3:22 PM Page 464

LISTING 24.5 continued

30:
31: function getAccessType($label) {
32: if (empty($this->access_types[$label]))
33: return false;
34: return $this->access_types[$label];
35: }
36:
37: function codeAllowed($num) {
38: return ($this->page_type & $num);
39: }
40:
41: function set_login_page($login) {
42: $this->login_page = $login;
43: }
44:
45: function bump($msg) {
46: $this->redirect($this->login_page, $msg);
47: exit;
48: }
49:
50: function init() {
51: Page::init();
52: }
53:
54: function access_control() {
55: if ($this->page_type == 0)
56: return true;
57: $user = $this->get_session_var(“user”);
58: $pass = $this->get_session_var(“pass”);
59: if (empty($user) || empty($pass))
60: $this->bump(“Not enough user data”);
61: $user_array = $this->get_user_data($user);
62: if (! $user_array)
63: $this->bump(“Unknown user”);
64: if ($pass != $user_array[‘pass’])
65: $this->bump(“Incorrect password”);
66: if (! $this->codeAllowed($user_array[‘type’]))
67: $this->bump(“Access to this resource forbidden”);
68: return true;
69: }
70:
71: function remove_user($user) {
72: $res = dba_open($this->user_file, “c”, “gdbm”) or die(“no user
➥db”);
73: $val = dba_delete($user, $res);
74: db_close($res);
75: }
76:

An Example: Page.inc.php 465

24

29 CH24 11/29/01 3:22 PM Page 465

LISTING 24.5 continued

77: function add_user($user, $pass, $type) {
78: $res = dba_open($this->user_file, “c”, “gdbm”) or die(“no user
➥db”);
79: if (dba_fetch($user, $res)) {
80: dba_close($res);
81: return false;
82: }
83: $add_array = array(‘pass’=>$pass, ‘type’=>$type);
84: dba_replace($user, serialize($add_array), $res);
85: dba_close($res);
86: }
87:
88: function get_user_data($user) {
89: $res = dba_open($this->user_file, “c”, “gdbm”) or die(“no user
➥db”);
90: $user_data = dba_fetch($user, $res);
91: dba_close($res);
92: if (! $user_data)
93: return false;
94: return unserialize($user_data);
95: }
96: }

Now that we have a code library we are still really sitting on potential functionality. We
have to write some more code to implement what we have.

A Project Class
If our user types and page types are to marry up sensibly they should be defined in a cen-
tral location. In Listing 24.6 we are going to create a simple class that will act as the
template for a number of pages in a project. It will be directly instantiated by some
scripts. In others it may itself be subclassed. We will call the class ProjectBase.

LISTING 24.6 The ProjectBase Class

1: <?php
2: include_once(“Access.inc.php”);
3:
4: class ProjectBase extends Access {
5: var $db_file = “users/user_dir”;
6: var $freelance_user;
7: var $admin_user;
8: var $super_super;
9:
10: function ProjectBase() {

466 Hour 24

29 CH24 11/29/01 3:22 PM Page 466

LISTING 24.6 continued

11: Access::Access($this->db_file);
12: }
13:
14: function init() {
15: Access::init();
16: $this->addAccessType(“freelance”);
17: $this->addAccessType(“admin”);
18: $this->addAccessType(“superuser”);
19: $this->freelance_user = ($this-
➥>getAccessType(“freelance”));
20: $this->admin_user = ($this->getAccessType(“freelance”) |
21: $this->getAccessType(“admin”));
22: $this->super_user = ($this->getAccessType(“freelance”) |
23: $this->getAccessType(“admin”) |
24: $this->getAccessType(“superuser”));
25: }
26: }
27: ?>

ProjectBase offers very little original in itself. All it does is to subclass Access and
to define some user types and access types. Our project will have three access types,
‘feelance’, ‘admin’, and ‘superuser’ (lines 16, 17, and 18). It will have three correspond-
ing user types, which will be stored in ProjectBase properties (lines 19 to 22). The
$freelance_user type will only be allowed to visit pages of type ‘freelance’. The
$admin_user type will only be able to access pages of either ‘freelance’ or ‘admin’
types. The $super_user type will have ‘access all areas’ privileges. We set up these
rights by using the ‘binary or’ operator. This combines the bits of its operators, so if
‘freelance’ is binary 1 and ‘admin’ is binary 10 then ‘freelance’ or’ed with ‘admin’
is binary 11.

Creating Some Sample Users
In order to test our system we must create some sample users with different access
rights. In Listing 24.7 we do just that.

LISTING 24.7 Adding Users to the System

1: <?php
2: include(“ProjectBase.inc.php”);
3:
4: $p = new ProjectBase();
5: $p->init();
6: $p->add_user(“matt”, “pass”, $p->super_user);

An Example: Page.inc.php 467

24

29 CH24 11/29/01 3:22 PM Page 467

LISTING 24.7 continued

7: $p->add_user(“bob”, “pass”, $p->admin_user);
8: $p->add_user(“mary”, “pass”, $p->freelance_user);
9: ?>
10: done

As you can see, now we’re at the implementation stage, the really hard work is being
largely done elsewhere. We create three users with very easy to remember passwords and
different access rights. If we were to properly implement our code, of course we would
need to create a full user control center available to allow super users to add and remove
users. For now, though, our sample data will have to do.

A Simple Login Screen
Now that we have our environment established, and some users in our database, we can
provide a login interface. The code in Listing 24.8 presents password form and then
processes the input.

LISTING 24.8 A Login Screen

1: <?php
2: include(“ProjectBase.inc.php”);
3:
4: class MyPage extends ProjectBase {
5: function MyPage() {
6: ProjectBase::ProjectBase();
7: }
8: function main() {
9: if ($this->checkfflag(“subbed”)) {
10: $user = $this->rdata[‘user’];
11: $pass = $this->rdata[‘pass’];
12: $user_array = $this->get_user_data($user, $pass);
13: if (! $user_array)
14: $this->setMessage(“unknown user”);
15: elseif ($pass != $user_array[‘pass’])
16: $this->setMessage(“Incorrect password”);
17: else {
18: $this->set_session_var(“user”, $user);
19: $this->set_session_var(“pass”, $pass);
20: $this->setMessage(“Welcome to the system”);
21: $this->redirect(“welcome.php”);
22: }
23: }
24: }
25: }
26:

468 Hour 24

29 CH24 11/29/01 3:22 PM Page 468

LISTING 24.8 continued

27: $p = new MyPage();
28: $p->init();
29: $p->main();
30: $p->clean_up();
31: ?>
32: <html>
33: <head>
34: <title>login</title>
35: </head>
36: <body>
37:
38: <?php
39: $p->outputMessage(‘
40: <table cellpadding=”5”>
41: <tr><td bgcolor=”gray”>%msg%</td></tr>
42: </table>’);
43: ?>
44:
45: <form>
46:
47: <?php print $p->fflag(“subbed”) ?>
48: user

49: <input type=”text” name=”user”>

50: pass

51: <input type=”password” name=”pass”>

52: <input type=”submit” value=”go”>
53:
54: </form>
55: </body>
56: </html>

Notice that we use fflag() (line 47) and checkfflag() (line 9) to test for form submis-
sion. We also use the outputMessage()method (called on line 39) to format feedback.
The core of the code, though, lives in the main() method. If the form has been submitted
we call get_user_data() on line 12 to find out if the user exists. If not, we use
setMessage() to inform the user (line 14).

Assuming the username exists, we test the password on line 15. If the password matches
then we can prepare the user for the protected environment. This means using set_
session_var() to set the ‘user’ and ‘pass’ session variables (lines 18 and 19).
These will be used throughout the protected area for validation.

An Example: Page.inc.php 469

24

29 CH24 11/29/01 3:22 PM Page 469

Protected Pages
On all protected pages the controlling object will have non-zero $page_type properties
set (using setPageType()). The access_control() method will always be called. The
most minimal protected page would look something like

<?php
include(“ProjectBase.inc.php”);
$p = new ProjectBase();
$p->init();
$p->setPageType(“freelance”);
$p->access_control();
$p->main();
$p->clean_up();
?>
<html>
<head>
<title>freelance</title>
</head>
<body>
<?php
$p->outputMessage(‘

<table cellpadding=”5”>
<tr><td bgcolor=”gray”>%msg%</td></tr>
</table>’);

?>
This is a frelance page<p>

freelance only

admin only

super only
</body>
</html>

In order to determine which user type can access which page you would only need to
change the setPageType() argument.

What Needs Doing?
A coder’s work is never done, and neither these libraries nor the code that uses them are
complete. If you intend to work with the code presented in this chapter, you should give
thought to some issues before deploying it.

Don’t forget that by default the session functions write files to a publicly available direc-
tory. You should consider writing your session data to a more secure place.

We do not implement any system for ending sessions, and apologetically expelling a user
when a long period has elapsed between requests. This is a feature that you should con-
sider.

470 Hour 24

29 CH24 11/29/01 3:22 PM Page 470

We store passwords in plain text. If security is a major consideration, you might want to
consider using the crypt() function to protect passwords in the database.

An additional layer of security could be provided by recording an IP address when the
user first logs on and checking it on every subsequent hit in the session. This should pro-
vide a further safeguard against session hijacking.

Summary
In this hour we have built a reasonably rich code library. In doing so we have revisited
many of the techniques that we have covered throughout the book. In particular we have
worked with classes and objects; sessions; and the DBA functions.

You have also learned some techniques for user authentication, and for access control.

I very much hope that you have enjoyed reading this book as much as I have enjoyed
writing it.

Q&A
Q Well, that’s it. What next?

A Now it’s over to you. This book contains enough information for you to build your
own sophisticated scripts and environments. Armed with this and with the wealth
of information available online, there should be no stopping you! If this book has
been a good starting point for you, you might want to consider some books that
take up where we must leave off. In particular you might like to take a look at The
PHP Developer’s Cookbook by Sterling Hughes and PHP and MySQL Web
Development by Luke Welling and Laura Thomson.

Workshop
Quiz

1. What function do you use to combine two arrays?

2. Which built-in array variable holds GET request parameters?

3. How do we test whether a variable has been set?

4. Which function do you use to register a variable with a session?

5. Which function would we use to acquire an element from a DBA database?

An Example: Page.inc.php 471

24

29 CH24 11/29/01 3:22 PM Page 471

Quiz Answers
1. The array_merge() function will merge two arrays.

2. You can access GET request parameters using the $HTTP_GET_VARS array,

3. The isset() function will tell us whether a variable has been set.

4. The session_register() function will register a variable with a function.

5. The dba_fetch() function is used to acquire a named element from a DBA data-
base.

Activities
1. Review the code presented in this hour. Are there any techniques or issues that

might have relevance for your own projects?

2. Implement a ‘session timed out’ feature in the Access class. Add a layer of security
to the Access class that checks the user’s IP address for each page request in a ses-
sion.

3. Flip back through the book and through your notes if you have been making them.
If you have followed the book as a course, remember that you should revisit your
notes a few times to get the full benefit from the work you have done.

472 Hour 24

29 CH24 11/29/01 3:22 PM Page 472

GLOSSARY

anonymous function Function that is created ‘on the fly’ during script
execution and stored in a variable or passed to other functions.

Argument A value passed to a function. Arguments are included within
the parentheses of a function call. User-defined functions include comma-
separated argument names within the parentheses of the function definition.
These arguments then become available to the function as local variables.

array A list variable. That is, a variable that contains multiple elements
indexed by numbers or strings. It enables you to store, order, and access
many values under one name. An array is a data type.

associative array An array indexed by strings.

Atom With reference to regular expressions an atom is a pattern enclosed
in parentheses (often referred to as a subpattern). After you have defined an
atom, you can treat it as if it were itself a character or character class.

Boolean A data type. Booleans can contain one of the special values true
or false.

Bounds The number of times a character or range of characters should be
matched in a regular expression.

30 Glossary 11/29/01 3:22 PM Page 473

break statement Consists of the keyword break. It forces the immediate end of a for
or while loop iteration. No further iterations of the loop will take place.

Cast The process by which one data type is converted to another.

Class A collection of special functions called methods and special variables called
properties. You can declare a class with the class keyword. Classes are the templates
from which objects are created.

color resource A special value of the data type ‘resource’. It is returned by the
imagecolorallocate() function and is passed to other image manipulation functions
which can then work with the specified color.

Comment Text in a script that is ignored by the interpreter. Comments can be used to
make code more readable, or to annotate a script.

Constant A value that is set with the define() function and does not change through-
out the execution of a script. A constant is global in scope and can only be a number or
string.

continue statement Consists of the keyword continue. It forces the immediate end of
the current for or while loop iteration. Execution begins again from the test expression
(in for loops the modification expression will be executed first) and the next loop itera-
tion is begun if the expression resolves to true.

conversion specification Contained within a format control string, a conversion speci-
fication begins with a percent (%) symbol and defines how to treat the corresponding
argument to printf() or sprintf(). You can include as many conversion specifications
as you want within the format control string, as long as you send an equivalent number
of arguments to printf().

Cookie A small amount of data stored by the user’s browser in compliance with a
request from a server or script.

data type Different types of data take up different amounts of memory and behave in
different ways when operated upon. A data type is the named means by which these dif-
ferent kinds of data are distinguished. PHP has eight data types: integer, double, string,
Boolean, object, array, resource, and NULL.

DBA Database abstraction layer. These functions are designed to provide a common
interface to a range of file-based database systems.

DBA resource A special value of the data type ‘resource’. It is returned by the dba_
open() function and is passed to other DBA functions which can then work with the
opened database.

474 Glossary

30 Glossary 11/29/01 3:22 PM Page 474

DBM Database manager. DBM and DBM-like systems allow you to store and manipu-
late name/value pairs on your system.

DOM (Document Object Model) A means of accessing an XML document that
involves the traversal of a tree of nodes organized as parents, children, and siblings.

Double A data type. Also known as a float, a floating-point number or a real number a
double is defined by The Free On-line Dictionary of Computing as ‘A number represen-
tation consisting of a mantissa [the part after the decimal point], ... an exponent, ... and
an (assumed) radix (or “base”)’. For the purposes of this book you can think of a double
as a number that can contain a fraction of a whole number, that is a number with a deci-
mal point.

DTD (Document Type Definition) A set of rules that lay down which XML elements
may be used in which order for an XML document. A validating XML parser will read a
DTD and enforce the rules it describes.

else statement Can only be used in the context of an if statement. The else statement
consists of the keyword else and a statement (or series of statements). These statements
will only be executed if the test expression of the associated if statement evaluates to
false.

entity body The substance of a document returned by a server to a client. An entity
body may also be sent by a client to a server as part of a POST request.

Escape The practice of removing special significance from characters within strings or
regular expressions by preceding them with a backslash character (\).

Expression Any combination of functions, values, and operators that resolve to a
value. As a rule of thumb, if you can use it as if it were a value, it is an expression.

field width specifier Contained within a conversion specification, a field width speci-
fier determines the space within which output should be formatted.

file resource A special value of the data type ‘resource’. It is returned by the fopen()
function and is passed to other file functions which can then work with the opened file.

Float A data type. It is a synonym for double.

for statement A loop that can initialize a counter variable (initialization expression),
test a counter variable (test expression), and modify a counter variable (modification
expression) on a single line. As long as the test expression evaluates to true the loop
statement will continue to be executed.

Glossary 475

30 Glossary 11/29/01 3:22 PM Page 475

format control string The first argument to printf() or sprintf(). It contains con-
version specifications that determine the way in which additional arguments to these
functions will be formatted.

function A block of code that is not immediately executed but can be called by your
scripts when needed. Functions can be built-in or user-defined. They can require infor-
mation to be passed to them and usually return a value.

GET request A request made to a server by a client in which additional information
can be sent appended to the URL.

global statement Consists of the keyword global followed by a variable or variables.
It causes the associated variables to be accessed in global rather than local scope.

header section Part of an HTTP request or response (it follows the request line or
response line). It consists of name/value pairs on separate lines. Names are separated
from values by colons.

.htaccess file A document read by the Apache server that can contain certain server
directives. The server administrator can control which available directives (if any) are
allowed to be set in an .htaccess file on a directory by directory basis. If allowed, direc-
tives will affect the current directory and those below it. .htaccess files can contain PHP
directives prefixed by php_flag or php_value. The .htaccess file can also be used to set
an AddType directive that can change the extension associated by the server with PHP
documents.

HTTP (hypertext transfer protocol) A set of rules that define the process by which a
client sends a request and a server returns a response.

if statement Consists of a test expression and a statement or series of statements. The
statement will only be executed if the test expression evaluates to true.

image resource A special value of the data type ‘resource’. It is returned by the
imagecreate() function and is passed to other image manipulation functions which can
then work with the dynamic image.

inheritance A term used in the context of object oriented programming. It is used to
describe the process by which one class is set up to include the member variables and
methods of another. This is achieved by using the extends keyword when the child class
is declared.

integer A data type. Integers include all whole negative and positive numbers and 0
(zero).

476 Glossary

30 Glossary 11/29/01 3:22 PM Page 476

iteration A single execution of a statement (or series of statements) associated with a
loop. A loop that executes five times has five iterations.

link resource A special value of the data type ‘resource’. It is returned by the
mysql_connect() function and is passed to other MySQL functions which can then work
with the opened database.

multidimensional array An array that contains another array as one of its elements.

NULL A special data type. It consists of the value NULL. It represents an uninitialized
variable, that is a variable that holds no value.

object Existing in memory rather than as code, an object is an instance of a class. That
is, an object is the working embodiment of the functionality laid down in a class. An
object is instantiated with the new statement in conjunction with the name of the class of
which it is to be a member. When an object is instantiated, you can access all its proper-
ties and all its methods. An object is a data type.

operand A value used in conjunction with an operator. There are usually two operands
to one operator.

Operator A symbol or series of symbols that, when used in conjunction with values,
performs an action and usually produces a new value.

padding specifier Contained within a conversion specification, a padding specifier
determines the number of characters that output should occupy, and the characters to
add otherwise.

pattern modifier A letter placed after the final delimiter in Perl compatible regular
expressions to refine their behavior.

POST request A request made to a server by a client in which additional information
can be sent within the request entity body.

precision specifier Contained within a conversion specification, a precision specifier
determines the number of decimal places to which a double should be rounded.

predefined variables Variables that are automatically given values and made available
to the script by the PHP engine. These are global in scope and include server variables
like $HTTP_REFERER.

query string A set of name/value pairs which are appended to a URL as part of a GET
request. Names are separated from values by equals signs, and pairs are separated from
each other by ampersand (&) characters. The query string is separated from the rest of the
URL by a question mark (?). Both names and values are encoded so that characters with
significance to the server are not present.

Glossary 477

30 Glossary 11/29/01 3:22 PM Page 477

Reference The means by which multiple variables can point to the same value. By
default arguments are passed, and assignments are made by value in PHP. This means
that copies of values are passed around. By assigning or passing by reference, the new
variable created points to the same value as that pointed to by the original variable. A
change made to the new variable will be seen if you access the original variable.

regular expression A powerful way of examining and modifying text.

request headers Key value pairs sent to the server by a client providing information
about the client itself and the nature of the request.

request line The first line of a client request to a server. It consists of a request
method, typically GET, HEAD, or POST; the address of the document to required; and the
HTTP version to be used (HTTP/1.0 or HTTP/1.1).

resource A special data type. Resources represent ‘handles’ used to work with external
entities (databases and files are good examples of this).

response headers Key value pairs sent to the client in response to a request. They pro-
vide information about the server environment and the data that is being served.

result identifier See result resource.

result resource A special value of the data type ‘resource’. It is returned by the
mysql_query() function and is passed to other MySQL functions which can then work
with the results of an SQL query.

server variables Predefined variables that PHP makes available for you in conjunction
with your server. Which variables are made available are server dependent, but they are
likely to include common variables such as $HTTP_USER_AGENT and $REMOTE_ADDR.

SQL (Structured Query Language) A standardized syntax by which different types
of database can be queried.

statement Represents an instruction to the interpreter. Broadly, it is to PHP what a sen-
tence is to written or spoken English. A sentence should end with a period; a statement
should usually end with a semicolon. Exceptions to this include statements that enclose
other statements, and statements that end a block of code. In most cases, however, failure
to end a statement with a semicolon will confuse the interpreter and result in an error.

static statement Consists of the keyword static followed by a variable declaration
and assignment. It is used within the context of a function. Any changes to the associated
variable are remembered between function calls.

478 Glossary

30 Glossary 11/29/01 3:22 PM Page 478

status line The first server response to a client request. The status line consists of the
HTTP version that the server is using (HTTP/1.0 or HTTP/1.1), a response code, and a
text message that clarifies the meaning of the response code.

String A data type. It is a series of characters.

Subclass A class that inherits member variables and methods from another (‘parent’)
class.

ternary operator Returns a value derived from one of two expressions separated by a
colon. Which expression is used to generate the value returned depends on the result of
an initial test expression which precedes the return expressions and is separated from
them by a question mark (?).

timestamp The number of seconds that have elapsed since midnight GMT on January
1, 1970. This number is used in date arithmetic.

type specifier Contained within a conversion specification, a type specifier determines
the data type that should be output.

variable A holder for a type of data. It can hold numbers, strings of characters, objects,
arrays, or booleans. The contents of a variable can be changed at any time.

while statement A loop that consists of a test expression and a statement (or series of
statements). The statements will be repeatedly executed as long as the test expression
evaluates to true.

XML (Extensible Markup Language) A set of rules for defining and parsing markup
languages. Such languages are often constructed to structure data for sharing, to format
data for display, or to send instructions to an interpreter.

XSLT (Extensible Stylesheet Language Transformations) A template system for
XML documents that makes it easy to convert from XML to other formats like HTML or
WML.

Glossary 479

30 Glossary 11/29/01 3:22 PM Page 479

30 Glossary 11/29/01 3:22 PM Page 480

addslashes(), 225

allow_call_time_pass_

reference directive, 93

anchoring a regular

expression, 346–347

AND operator, 51

Apache, 15, 16

configuration of, 20–21

connecting to database

server, using

mysql_pconnect(),

209–210

Dynamic Shared Object

(DSO), 17

installing PHP, 17–18

server variables and,

235–238

applications for PHP, 8–9

external applications on,

using passthru(),

401–402

arc drawing, using

imagearc(), 260–261

arguments, 78, 80–81, 89–93

func_get_arg() for,

115–116

func_num_args() for,

115–116

swapping, 326–328

arithmetic operators, 47–48

array data type, 41

array operator ([]), 100–102

array(), 100–102

array_filter(), 311–312

array_keys(), 142

array_merge(), 110

array_push(), 110–111

array_search(), 308

array_shift(), 111–112

array_slice(), 112

array_values(), 308

A

abs(), 79

abstraction class building,

the DataLayer class,

220–231

Access class, 464–466

access_control(), 463–464

ACTION argument, in

forms, 152

Adabas D, 19

add_root(), 418–419

add_to_database(), 211–214

add_user(), 462–463

addFive(), 92

addition operator, 47–48

addNums(), 82

addRow() method, 126

addRowAssocArray()

method, 126–127

INDEX

31 Index 11/29/01 3:20 PM Page 481

array_walk (), 83, 309–310

arrays, 99–118, 298,

306–315

accessing, 105–109

adding to database, using

serialize(), 195–198

adding to, in associative

arrays, 103

adding variables to, using

array_push(), 110–111

addRowAssocArray()

method in, 126–127

array_keys() for, 142

associative, 9, 102–103

associative sorts, using

asort(), 113

beginning of, using

reset(), 307

benefits of, 100

built in, accessing form

input using, 155–156

checking value existences

in, using in_array(),

307–308

creation of, using array

operator ([]), 100–102

creation of, using array(),

100–102

date, using setDate_

array(), 291

each() and, 306–307

elements of, 100

end of, using end(), 105

filtering, using array_

filter(), 311–312

finding value in, using

array_search(), 308

foreach statement and, 9,

106–109, 116, 150, 165,

306

function applied to every

element in, using

array_walk(), 309–310

functions for, 114–116

HTTP_GET_VARS,

155–156, 237

HTTP_POST_VARS, 156

index for, 100

is_array() test, 301

joining two, using

array_merge(), 110

joining, using implode(),

225

key sort, using ksort(),

114

linking to values, using

make_link(), 311

list() and, 307

looping through, 106–108,

150, 165, 201, 288,

306–307

manipulating, 110–112

multidimensional, 9,

103–104, 108–109

numerically indexed sorts,

using sort(), 112–113

outputting, 108–109

printArray() for, 303

quotation marks and, to

define associative array,

103

removing element from,

using array_values(),

308

removing element from,

using unset(), 308

removing first element of,

using array_shift(),

111–112

removing from database,

using unserialize(),

196–198

resultset containing, using

mysql_fetch_array(),

218–219

resultset containing, using

mysql_fetch_assoc(),

218–219

scalars in, 298–299,

302–303

size of, using count(), 105

slicing or extracting

elements from, using

array_slice(), 112

Smarty template engine,

{section} function,

441–443

sorting, 112–114

sorting, using uasort (),

313–314

sorting, using uksort(),

314–315

sorting, using usort(),

312–313

strings into, using

explode(), 336–337

user-defined functions

applied to, using

array_map(), 310–311

482 array_walk ()

31 Index 11/29/01 3:20 PM Page 482

user-defined, accessing

form input using,

153–155

variables vs., 99–100

asort(), 113

ASP, 11

asp_tags, 30

assign(), 435–438, 446

assignment operator (=),

40–41, 47, 305

combined, 48–49

associative arrays, 9,

102–103, 237

atoms (subpatterns)

matching, 345–346

attributes, in XML, 408

attributes(), 420–421

automatic data type

conversion, 299–301

B

backslash character, for

escape characters, 71, 73,

111, 225, 350–351

backtick operator, 399

Bar Chart example,

270–274

BBEdit, 27

benchmark tests, 11

bighello(), 80–81

block code, 29–31, 72

short_open_tag directive

for, 22

boolean data type, 9, 41,

50–51, 298

is_bool() test, 301

bounds, 343–344

branches, regular

expressions, 346

break statement, 63, 68–71

browser output, 72

browsers

determine type of, using

HTTP_USER_AGENT,

237

header() and, to redirect,

161–163

built in arrays, accessing

form input using, 155–156

C

C languages, 8

caching, 11

Calendar example, 283–295

Calendar Library, 290–295

call_Query(), 223

callback functions, 94

calls, function, 31, 78–79

dynamic, 83

calltime pass by reference,

93

canvas, for images, 270

{capitalize} function,

Smarty template engine,

444, 446

case conversion, using

strtoupper() and

strtolower(), 334–335

case statements, 63

casting, data type change

using, 44–46, 302

character classes, 344–345

character handler, using

xml_set_character_data_

handler(), 412, 417

checkboxes, 200

checkdate(), 283, 284

checkfflag(), 456–457

child class, 120, 131, 134

child node access, using

first_child() or children(),

421

children(), 421

Clarke, Jim, 410

class keyword, 120

class_exists(), 141

classes, 9, 120, 129–130

Access class in, 464–466

child and parent, 120,

131–132, 134

DataLayer class, 220–231

date_pulldown, 290–295

existence checking in,

using class_exists(), 141

extending, 460–470

filter() in, 138–139, 140

finding object in, 138–139

framework, 451–452

get_class() for, 139

inheritance in, 130–138

classes 483

31 Index 11/29/01 3:20 PM Page 483

is_subclass_of() for, 140

overriding methods of,

131

Project class in, 466–467

subclasses and, 454–455

testing, 138–141

classes, 129–130

client/server system (See

HTTP client/server)

code libraries, 451–470

codeblocks, 72

color, using

imagecolorallocate(), 257

columns, 208

combined assignment

operators, 48–49

command execution

external commands in,

using backtick operator

in, 399

external commands in,

using system(), 398–399

using exec(), 397–398

command line invocation,

16

comments, 33–34

hyperlinking, using

PHPDoc, 34

Common Gateway Interface

(CGI), 9, 10, 16

external, using virtual(),

402–403

comparison operator

(= = =), 9, 49–50

compiling, 16

Dynamic Shared Object

(DSO), 17

concatenation operator (.),

48

configuration, 16

configure script, 17–20

connect(), 367–368

constants, 54–55

case sensitivity of, 55

predefined, 55

constructors, 124

creation of, 125–127, 134

continue statement, 70–71

conversion specification,

320, 325–326

cookies, 9, 22, 362–372

accessing, 363

anatomy of, 362–363

connecting to database in,

connect(), 367–368

creating, 365

database fields in, 366

date in, 362–363

deleting, 365

domain in, 362–363

first_visit() for, 368

get_visit() for, 370–371

HTTP header in, 362

insert_visit() for, 368

last_visit() for, 368

limitations of, 366

name/value pair (URL) in,

362–363

newuser() for, 368, 372

olduser() for, 370–371,

372

outputStats() for, 371

path in, 362–363

setting, using header(),

363–364

setting, using setcookie(),

364–365

sprint() for, 372

storing of, on browser, 363

time() for, 364

track_table for, 366

Tracking Site Usage

example of, 365–372

update_visit() for, 371

user_stats for, 372

visit_id() for, 368

count(), 105

CREATE TABLE, 208,

223–224

create_function, 93–94

crypt(), 471

CURL package, Web

applications, 247

D

data handling, 297–317

arrays and, 306–315

automatic type conversion

in, 299–301

changing, using settype(),

298, 302

conversion of complex

types in, 298–299

data types and (See also

data types), 298–303

dynamic variables in, 304

484 classes

31 Index 11/29/01 3:20 PM Page 484

importance of typing in,

302–303

is_array() test, 301

is_bool() test, 301

is_double() test, 301

is_int() test, 301

is_null() test, 301

is_object() test, 301

is_resource() test, 301

is_string() test, 301

printArray() for, 303

referencing variables in,

305

scalars in, 298–299,

302–303

testing variables for

absence in, using isset(),

305–306

testing variables for

emptiness in, using

empty(), 306

testing, using gettype(),

298, 301–302

variables in, 304–305

data types, 41–46, 298–303

automatic type conversion

in, 299–301

boolean, 9

changing, using casting,

44–46, 302

changing, using settype(),

43–44, 298, 302

conversion of complex

types in, 298–299

databases, 208

importance of, 302–303

is_array() test, 301

is_bool() test, 301

is_double() test, 301

is_int() test, 301

is_null() test, 301

is_object() test, 301

is_resource() test, 301

is_string() test, 301

scalars in, 298–299,

302–303

testing, using gettype(),

42–43, 46, 298, 301–302

Database Independent

Interface (DBI), 221

databases

abstraction class building

for, the DataLayer class,

220–231

accessing information in,

215–219

acquiring value of

automatically increment-

ed field in, using

mysql_insert_id(), 215

adding complex data

structures to database,

using serialize(),

195–198

adding data to database,

using dba_insert(),

191–192, 202

adding data to table in,

using add_to_

database(), 211–214

amending elements of

database, using dba_

replace(), 192–193, 197

arrayed resultset access in,

using mysql_fetch_

array(), 218–219

arrayed resultset access in,

using mysql_fetch_

assoc(), 218–219

changing data in, using

mysql_affected_rows(),

219–220

columns in, 208

connecting to database

server, using mysql_

connect(), 209–210,

221–222

CREATE TABLE in, 208,

223–224

data types and, 208

DBA functions for,

189–205

delete() for, 225–231

deleting item from

database, using

dba_delete(), 195, 201

existence-testing for

element in database,

using dba_exists(), 195

finding error information,

using mysql_errno() and

mysql_error(), 210–211,

214

finding number of rows

from query, using

mysql_num_rows(),

215–216

INSERT statement in, 208

insert() for, 225–231

databases 485

31 Index 11/29/01 3:20 PM Page 485

integration of, using SQL

(See also SQL), 207–233

object resultset access in,

using mysql_fetch_

object(), 218–219

opening, using dba_open

(), 190–191, 200

PHP supported, 15–16,

19–20

querying, using

msql_query(), 212–214,

215, 222–223

reading from database,

using dba_fetch(),

193–195, 200

removing complex data

structures from database,

using unserialize(),

196–198

resultset access in, using

mysql_fetch_row(),

216–219

returning first key of

database, using dba_

firstkey(), 193–195,

198, 200

returning subsequent keys

of database, using

dba_nextkey(),

193–195, 198, 200

rows in, 208

sample database building

using DBA functions,

198–203

SELECT statement in,

209, 215, 217, 221, 224

select() for, 225–231

selecting a database, using

mysql_select_db(), 210,

214, 222

tables in, 208

UPDATE statement in,

209, 219–221

update() for, 225–231

updating elements in

database, using dba_

replace(), 201–202

WHERE clause in, 209,

224, 225

DataLayer class, 220–231

date(), 280–282

date_pulldown Calendar

Library, 290–295

dates and times, 277–296

arrays of, using

setDate_array(), 291

Calendar example using,

283–295

calendar table for,

286–289

checking user input of,

using checkdate(), 284

checking user input of,

using isset(), 284

in cookies, 362–363

current, using time(), 278

date formats in, 280–282

date_pulldown Calendar

Library for, 290–295

day_select() for, 293–295

form building for calendar

in, 284–286

global values in, using

setDate_global(), 292,

293

month_select() for,

293–295

testing date, using

checkdate(), 283

timestamp conversion,

using date(), 280–282

timestamp conversion,

using getdate(), 284

timestamp conversion,

using getdate(),

278–280

timestamp creation, using

mktime(), 282–283,

291–292

timestamp setting, using

setDate_timestamp(),

291

year to start and end in,

using setYearStart() and

setYearEnd(), 292

year_select() for, 293–295

day_select(), 293–295

DBA functions, 19, 189–205

adding complex data

structures to database,

using serialize(),

195–198

adding data to database,

using dba_insert(),

191–192, 202

amending elements of

database, using

dba_replace(), 192–193,

197

486 databases

31 Index 11/29/01 3:20 PM Page 486

DBM systems supported

by, 190

deleting item from

database, using

dba_delete(), 195, 201

existence-testing for

element in database,

using dba_exists(), 195

form built from database

content using, 199–200

opening database, using

dba_open(), 190–191,

200

reading from database,

using dba_fetch(),

193–195, 200

removing complex data

structures from database,

using unserialize(),

196–198

returning first key of

database, using dba_

firstkey(), 193–195,

198, 200

returning subsequent keys

of database, using

dba_nextkey(),

193–195, 198, 200

sample database building

using, 198–203

updating elements in

database, using dba_

replace(), 201–202

dba_delete(), 195, 201

dba_exists(), 195

dba_fetch(), 193–195, 200

dba_firstkey(), 193–195,

198, 200

dba_insert(), 191–192, 202

dba_nextkey(), 193–195,

198, 200

dba_replace(), 192–193,

197, 201–202

DBM, 19

debugging

error reporting directives

and, 22

level of error reporting for,

22

decrement automatically,

51–52

default argument values,

89–91

default statement, 63

{default}, Smarty template

engine, 445

define(), constant creation

using, 54–55

delete(), 225–231

development using PHP, 8,

10

die(), 178

directories, 184–186

creating, using mkdir(),

184

opening for reading, using

opendir(), 185, 397

reading contents of, using

readdir(), 185–186, 397

removing, using rmdir(),

184

server listing of, using

exec(), 397–398

display(), 435

display_errors, 22

divide by zero errors, 69

division operator, 47–48

do...while loop, 66–67

Document Object Model

(DOM), 417–424

acquiring a

DomDocument object

for, using new_

xmldoc(), 418

adding new DomElement

to tree of, using

new_child(), 419–420

child node access in, using

children(), 421

child node access in, using

first_child(), 421

examining text nodes in,

using xml_element_node

and xml_text_node in,

421–422

foreach loop in, 424

getting information on

DomElement objects in,

using attributes(),

420–421

Gnome XML Library for,

418

handle_node() in, 424

next_node() in, 423

parent node access in,

using parent(), 421

root element in, using

add_root(), 418–419

Document Object Model (DOM) 487

31 Index 11/29/01 3:20 PM Page 487

sibling node access in,

using next_sibling() or

previous_sibling(), 421

traverse() in, 424

traversing a tree in, two

examples for, 422–424

documentation

hyperlinks in, 34

PHPDoc for, 34

dollar sign in string, 111,

304

domain, in cookies, 362–363

double data type, 41, 298

is_double() test, 301

dynamic function calls, 83

dynamic images, 19

Dynamic Shared Object

(DSO), 17

dynamic variables, 304

E

each(), 306–307

echo(), 161

Edmunds, Keith, 28

elements, in XML, 408

elements, array, 100

elements, form, 9

else clause, if statement and,

61

{else} control statement,

Smarty template engine,

438–439

elseif clause, 62–63

{elseif} control statement,

Smarty template engine,

438–439

Emacs, 27

email, 250

empty element, in XML,

409

empty(), 306

enable_trans_sid option,

387

end(), 105

end_handler(), 415, 417

ereg(), 342

ereg_replace(), 347–348

error handling

database, using

mysql_errno() and

mysql_error(), 210–211,

214

setError(), 222

in XML, xml_get_

current_line_number(),

414

in XML,

xml_get_error_code(),

413–414

error reporting directives,

22

error_reporting, 22

escapeshellcmd(), 399–401

escaping, escape characters,

71, 73, 111, 350–351

exec(), 397–398

Expat library, in XML, 410

explode(), 336–337

expressions, 46–47

extending a class, 460–470

Extensible Stylesheet

Language (XSL), 424–426

extensions, filename, 28–29

external applications, using

passthru(), 401–402

extracting elements (slicing)

from an array,

array_slice(), 112

F

false, 49–51

fclose(), 178, 244, 246

feof(), 179–180

fflag(), 456–457

fgetc(), 181–182

fgets(), 179–180, 244, 246

field width, 323–324

File Upload script, 163–166

FILE_ constant, 55

file_exists(), 174

fileatime(), 175–176

filename extensions, 28–29

FilePro, 19

files, 169–188

appending to, using

fputs(), 182–183

closing, using fclose(),

178

control structures and

include (), 172–173

creating, using touch(),

177

488 Document Object Model (DOM)

31 Index 11/29/01 3:20 PM Page 488

date information from,

using filetime() or

fileatime(), 175–176

deleting, using unlink(),

177

directories and (See also

directories), 184–186

directory vs., using is_

file(), 174

including in document,

using include(),

169–171

limiting inclusions of,

using include_once(),

173

locking, using flock(),

183–184

moving through, using

fseek(), 181, 182

multiple file-test function

for, 176–177

opening, using fopen(),

178

reading arbitrary amounts

of data from, using

fread(), 180–181

reading characters from,

using fgetc(), 181–182

reading from, 179–182

reading lines from, using

fgets() or feof(),

179–180

returning a value from

included, using

include(), 171–172

size of, using filesize(),

175

specifying location of

inclusions of, using

include_path directive,

173

specifying location of

inclusions of, using

require_once(), 174

status checking of, using

is_readable(), is_

writeable(), or is_

executable (), 174–175

testing existence of, using

file_exists(), 174

unopenable files, die()

and, 178

writing to, using fwrite(),

182–183

filesize(), 175

filetime(), 175–176

fill color, using imagefill(),

259

filter(), 138–139, 140

filtering, array_filter(),

311–312

first_child(), 421

first_visit(), 368

flexible site areas, 460–462

floating point numbers,

precision in, 324–325

flock(), 183–184

flow control, 60–75

fonts

FreeType font library, 19

in graphics, using

imageTTFtext(),

265–266

fopen(), 178

getting document from

remote location using,

241–243

for loop, 67–68

foreach statement, 9,

106–109, 116, 150, 165,

306, 424

FORM element, 152, 158

forms, 148–168

access control in, using

access_control(),

463–464

accessing input with built

in arrays in, 155–156

accessing input with

user-defined arrays in,

153–155

acquire user input script

for, 151–153

acquiring user data from,

using get_user_data(),

462–463

ACTION argument in, 152

adding user data to, using

add_user(), 462–463

browser action on, 158

Calendar example for,

284–286

checkboxes in, 200

checking for submission,

using fflag() and

checkfflag(), 456–457

combining HTML and

PHP in, 157–159

database-based, 199–200

forms 489

31 Index 11/29/01 3:20 PM Page 489

elements in, 9

file uploads using,

163–166

FORM element for, 152,

158

form that calls itself in,

158

GET method in, 155,

156–157

hidden fields in, saving

state with, 159–161

HTML and, 149, 152

HTTP_GET_VARS array

in, 155–156

HTTP_POST_VARS array

in, 156

login screen for, 468–469

naming elements in, 9

Number Guessing script

for, 158–159

outputting value of

expression to browser

from, using print() or

echo(), 161

in Page class example,

456–457

PARAMS variable in, 157

POST method in, 155,

156–157

predefined variables for,

150–151

protected pages in, 470

redirecting user of, using

header(), 161–163

saving state in, using

hidden fields, 159–161

SELECT element in,

153–155

text fields in, 152

users, 467–468

variables in, 153

Web applications using,

149

fputs(), 182–183, 244

framework class, in Page

class example, 451–452

fread(), 180–181

FreeType font library, 19

fseek(), 181–182

fsockopen(), 244–250

func_get_arg() for, 115–116

func_num_args() for,

115–116

function statement, 80–81

function_exists (), 94–95

functions, 31, 77–98,

114–116

anonymous, creation of

using create_function,

93–94

arguments in, 78, 80–81,

89–93

array elements, using

array_walk(), 309–310

array, 114–116

callback, 94

calling, 78–79

calls to, 31

create_function and,

93–94

DBA (See DBA functions)

declaring, 80–81

defining, using function

statement, 80–81

dynamic calls to, 83

func_get_arg() for,

115–116

func_num_args() for,

115–116

global statement and,

accessing variables with,

85–87

passing references to

variables to functions in,

91–93

returning values from

user-defined, using

return statement, 81–82

saving state between calls

to, using static statement,

87–89

session, 379–391

testing for existence of,

using function_exists (),

94–95

user-defined, applied to

array using array_

map(), 310–311

uses for, 78

variable scope in, 83–87

variables in, 79

fwrite(), 182–183

G

GD library, 19, 255

GDBM, 19

490 forms

31 Index 11/29/01 3:20 PM Page 490

GET, 22, 155–157, 373, 453

in HTTP client/server

negotiations, 238–239

get_class(), 139

get_object_vars(), 142

get_user_data(), 462–463

get_visit(), 370–371

getdate(), 278–280, 284, 288

gethostbyaddr(), 243–244

getMessage(), 453

getQuery(), 223

gettype (), 42–43, 46, 47,

120, 298, 301–302

getYearStart() and

getYearEnd(), 292

global variables, 22, 85–87,

150–151, 237

Gnome XML Library, 418

GNU Database Manager

(GDBM), 18–19, 190

H

handle_node(), 424

handlers, in XML

starting and ending, using

start_handler() and

end_handler(), 415–417

using xml_set_element_

handler(), 411–412

hash sign comment

delimiter, 33

HEAD method, in HTTP

client/server negotiations,

238–239

header template, Smarty

template engine, 447

header(), 161–163, 323,

363–364

headers, in HTTP client/

server negotiations, 241,

245–246

help, 23–24

hidden fields, saving form

state with, 159–161

hostnames,

REMOTE_HOST for, 238,

243

HREF, 236

htaccess file, 23

HTML, 21, 27

block code statements vs.,

29–31

File Upload script

example of, 163–166

forms and, 149, 152

in XML and, 408–409

PHP and, 32–33, 157–159

property inheritance in, an

example of, 133–138

Smarty template engine

and, 434

HTMLTable class, 135–137

HTTP client/server, 238–241

closing network

connection in, using

fclose(), 244, 246

cookies and, 362–372

CURL package for, 247

GET method in, 238

getting document from

remote location using,

241–243

HEAD method in, 238

headers for responses in,

241

headers in, 245–246

HTTP_SESSION_VARS

array and, 389

IP address retrieval and

conversion, using

gethostbyaddr(),

243–244

mailing, using mail(),

250–251

making network

connection in, using

fsockopen(), 244–247

NNTP connection in,

usnig fsockopen(),

247–250

POST method in, 238

query strings, 373–375

read from network

connection in, using

fgets(), 244, 246

request format in,

238–239

response format in,

240–241

stateless nature of

(See also saving state),

361

status lines in, 245–246

write to network

connection in, using

fputs(), 244

HTTP client/server 491

31 Index 11/29/01 3:20 PM Page 491

HTTP_GET_VARS array,

155–156, 237

HTTP_POST_FILES array,

164–165

HTTP_POST_VARS array,

156

HTTP_REFERER, 236, 237

HTTP_SESSION_VARS

array and, 389

HTTP_USER_AGENT, 236,

237

HyperText Preprocessor

(See PHP basics)

hypertext transfer protocol

(See HTTP client/server)

I

if statement, 49, 60–61, 72

else clause and, 61

elseif clause and, 62–63

question mark or ternary

operator, 64–65

switch statement and,

63–64

{if} control statement,

Smarty template engine,

438–439

imagearc(), 260–261

imagecolorallocate(), 257

imagecolortransparent(),

263–264

imagecreate(), 256, 272

imagefill(), 259

imagegif(), 256

imageline(), 257–258

imagepolygon() or

imagefilledpolygon(),

262–263

imagerectangle()or

imagefilledrectangle(),

261–262, 272

images on the fly, 19,

255–276

acquiring color for, using

imagecolorallocate(),

257

arc drawing in, using

imagearc(), 260–261

Bar Chart example of,

270–274

canvas for, 270

creating, using

imagecreate(), 256, 272

fill color in, using

imagefill(), 259

formats supported for, 255

GD library and, 255

height and width of,

270–271

labels in bar chart using,

270–271

line drawing, using

imageline(), 257–258

outputting, using

imagegif(), 256

polygon drawing in, using

imagepolygon() or

imagefilledpolygon(),

262–263

rectangle drawing in,

using imagerectangle()

or imagefilledrectangle(),

261–262, 272

testing text dimensions in,

using imageTTFbox(),

266–269, 271, 272

text in, using

imageTTFtext(),

265–266

transparent color in, using

imagecolortransparent(),

263–264

imageTTFbox(), 266–269,

271–272

imageTTFtext(), 265–266

implode(), 225

in_array(), 307–308

include(), 169–172

{include}, Smarty template

engine, 443, 446

include_once(), 173

include_path directive, 173

increment automatically,

51–52

incremented field, value of,

using mysql_insert_id(),

215

index, array, 100

indexing strings, 328–329

Informix, 20

inheritance, 130–138

example of, 133–138

finding family of object in,

139–141

is_subclass_of() for, 140

uses for, 137–138

492 HTTP_GET_VARS array

31 Index 11/29/01 3:20 PM Page 492

ini_set(), 23

init(), 453

INSERT statement, 208

insert(), 225–231

insert_visit(), 368

installing PHP, 15–26

Apache configuration in,

20–21

Apache, 17–18

configure script in, 17–20

database support for,

15–16, 19–20

error reporting directives

and, 22

help for, 23–24

htaccess file in, 23

HTML and, 21

linux, 17–18

local changes to PHP.ini

files, 23

PHP.ini file options in, 21

platform support for,

15–16

server support for, 15–16

short_open_tag directive

for, 22

variable directives in, 22

with gd option for GD

library, 19

with gdbm option for Gnu

Database Manager and,

18–19

with mysql option for

MySQL database, 19

with sablot option for

Sablotron engine, 20

with ttf option for

FreeType font library, 19

XML configure options in,

20

integer data type, 41, 51–52,

298

is_int () test, 301

interfaces, 130

Internet Information Server

(IIS), 16

iODBC, 20

IP addresses, 471

retrieving and converting,

using gethostbyaddr(),

243–244

tracing, using

REMOTE_ADDR, 238,

243

iPlanet Web Server, 16

is_array() test, 301

is_bool() test, 301

is_double() test, 301

is_executable(), 174–175

is_file(), 174

is_int() test, 301

is_null() test, 301

is_object() test, 301

is_readable(), 174–175

is_resource() test, 301

is_string() test, 301

is_subclass_of() for, 140

is_uploaded_file(), 166

is_writeable(), 174–175

isset(), 284, 388, 305–306

J

Java, 9, 11

joining arrays,

array_merge(), 110

K

key sort, 114

ksort(), 114

L

labels, in graphics, 270–271

last_visit(), 368

LDAP, 20

libxml library, 20

line breaks, 28

line drawing, using

imageline(), 257–258

LINE_ constant, 55

links

HREF and, 236

qlink(), 374–375

tracking hits and, using

HTTP_REFERER, 237

Linux, 15–16, 190

Dynamic Shared Object

(DSO), 17

installing PHP, 17–18

list(), 307

locking files, 183–184

logical operators, 50–51

logical operators 493

31 Index 11/29/01 3:20 PM Page 493

login screen, 468–469

loops, 65–72

arrays and, looping

through, 106–108, 150,

165, 201, 288, 306–307

break statement for, 68–71

do...while, 66–67

for, 67–68

foreach statement and, 9,

106–109, 116, 150, 165,

306

func_num_args() and,

115–116

include () and, 172–173

nesting, 71–72

skipping iteration in, using

continue, 70–71

Smarty template engine,

using{section} function,

439–443, 446, 447

while, 65–66

{lower} function, Smarty

template engine, 444, 446

ltrim(), 332–333

M

Macintosh, 15, 27

mail(), 250–251

main(), 455

make_link(), 311

makeWhereList(), 225

MAX_FILE_SIZE field, for

File Upload script,

163–164

meaning_of_life(), 85–87

Membership Code example

of POSIX regular

expressions, 347

message processing,

453–455

method_exists(), 141

methods, 122–125

accessing, 122–123

calling, 122–123

constructor (See

constructors)

existence checking in,

using method_exists(),

141

overriding, 9, 131–133

this variable in, 123

mkdir(), 184

mktime(), 282–283,

291–292

modifiers, in PCRE pattern

matching, 354–356

modulus operator, 47–48

month_select(), 293–295

move_uploaded_file(), 166

MSQL, 19

msql_query(), 212–214,

215, 222–223

multidimensional arrays, 9,

103–104, 108–109

multiplication operator,

47–48

my_path_info(), 237

MySQL (See also SQL), 16,

19, 207–233

mysql_affected_rows(),

219–220

mysql_connect(), 209–210,

221–222

mysql_errno() and

mysql_error(), 210–211,

214

mysql_fetch_array(),

218–219

mysql_fetch_assoc(),

218–219

mysql_fetch_object(),

218–219

mysql_fetch_row(),

216–219

mysql_insert_id(), 215

mysql_num_rows(),

215–216

mysql_select_db(), 210,

214, 222

N

n12br(), 335–336

name/value pair (URL), in

cookies, 362–363

naming conventions

uploaded files, 166

variables, 40, 304–305

nested loops, 71–72

NetCraft, 8

network connection in,

using fsockopen(),

244–247

new features of PHP 4, 9–10

new statement, 120–121

new_child(), 419–420

494 login screen

31 Index 11/29/01 3:20 PM Page 494

new_xmldoc(), 418

newuser(), 368, 372

next_node(), 423

next_sibling() or

previous_sibling(), 421

NNTP connection, usnig

fsockopen(), 247–250

NOT operator, 51

Notepad, 27

Null data type, 42, 298

is_null() test, 301

Number Guessing script,

158–159

numberedHeading(), 88–89

O

object data type, 41

object oriented

programming, 9, 119

objects, 119–146, 298

array_keys() for, 142

classes and, 120

constructors for, 124

creating, using new

statement, 120–121

filter() in, 138–140

finding class of, 138–139

finding family of, 139–141

get_class() for, 139

get_object_vars() for, 142

gettype() and, 120

instantiating, 127–129

is_object() test, 301

is_subclass_of() for, 140

methods for, 122–125

naming, 124

new statement for,

120–121

properties for, 121–122

resultset containing,

accessing using

mysql_fetch_object(),

218–219

reusability of, 120

serialize() for, 141–142

sleep() method for, 142

storing and retrieving,

141–143

testing, 138–141

unserialize() for, 142–143

uses for, 120

wakeup() function for,

142

Ohrt, Monte, 432

olduser(), 370–372

Open Database

Connectivity (ODBC), 16

open source PHP, 11, 16

opendir(), 185, 397

OpenLink ODBC, 20

operands, 46, 47

operator precedence, 53–54

operators, 46–54

OR operator, 50

Oracle, 20

output(), 127–129, 134–135,

293–294

outputStats(), 371

overriding methods, 9,

131–133

calling, 132–133

P

padding specifier, 322–323

Page class example, 451–470

Access class in, 464–466

acquiring user data from,

using get_user_data(),

462–463

adding user data to, using

add_user(), 462–463

enforcing access control

in, using access_

control(), 463–464

extending, 460–470

flexible site areas in,

460–462

forms in, 456–457

framework class for,

451–452

GET parameters for, 453

login screen for, 468–469

message processing in,

453–455

page redirection in,

457–458

POST parameters for, 453

Project class in, 466–467

protected pages in, 470

sample users for, 467–468

session support in,

455–456

skeleton of, 452

subclass for testing in,

454–455

page redirection, 457–458

PARAMS variable, 157

PARAMS variable 495

31 Index 11/29/01 3:20 PM Page 495

parent class, 120, 131, 134

parent node access, using

parent(), 421

parent(), 421

parsers, XML

error reporting in, using

xml_get_error_code(),

413–414

finding errors in, using

xml_get_current_line_

number(), 414

options for, using

xml_parser_set_

option(), 413

parsing a document in,

using xml_parse(), 413

in XML, 410–417

xml_parser_create(), 411

passing by reference, 93

passing references to

variables to functions,

91–93

passthru(), 401–402

passwords, 400, 471

path information, 236–237

in cookies, 362–363

PATH_INFO, 237

performance, 9, 11

Perl, 8–9, 11, 16, 119

Perl Compatibile Regular

Expressions (PCREs),

349–357

Personal Web Server, 11, 16

PHP basics, 8–13

PHP.ini file options, 21, 23

PHP_flag, 23

PHP_value, 23

PHP_VERSION, 55

PHPDoc, 34

pipe symbol, Smarty

template engine,

modifying template vari-

ables, 443–445

pipes to and from processes,

using popen(), 394–397

platforms, PHP supported,

15–16

polygon drawing, using

imagepolygon() or

imagefilledpolygon(),

262–263

popen(), 394–397

portability of PHP, 11

POSIX regular expressions,

342–349

POST, 22, 155, 453

post decrement operator, 52

post increment operator, 52

POST method, 156–157

in HTTP client/server

negotiations, 238–239

PostgreSQL, 20

pre-decrement operator, 52

pre-increment operator, 52

precedence of operators,

53–54

precision, 324–325

predefined constants, 55

predefined variables,

150–151

preg_match(), 349–351

preg_match_all(), 351–353

preg_replace(), 353–354

preg_replace_callback(),

356–357

print (), 31–32, 72–73, 78,

161

print_hello(), 139, 140

printArray(), 303

printBR(), 81

printf(), string format

using, 320–328

printing, 72

processing instructions, 30

Project class, 466–467

project management,

Smarty template engine

for, 431–449

properties, 121–122

accessing, 121

changing, 121, 123–124

defining, 125

inheritance in, an example

of, 133–138

protected pages, 470

Q

qlink(), 374–375

quantifiers in Posix, to

repeatedly match string

characters, 343

query strings, 9, 373–375

passing session IDs on,

using enable_trans_sid

option, 387

496 parent class

31 Index 11/29/01 3:20 PM Page 496

QUERY_STRING, 236, 237

querying

call_Query(), 223

finding number of rows

from, using

mysql_num_rows(),

215–216

getQuery(), 223

using msql_query(),

212–215, 222–223

narrowing, using

makeWhereList(), 225

query strings, 373–375

setQuery(), 223

URLs and links, 237

question mark or ternary

operator, 64–65

quotation marks, 225

defining associative array,

103

escape characters and, 71,

73, 111

as string delimiters, 31

quote_val(), 225

R

ranges of string characters,

matching with character

classes in, 344–345

readdir(), 185–186, 303, 397

rectangle drawing, using

imagerectangle() or

imagefilledrectangle(),

261–262, 272

redirection, page, 457–458

referencing variables, 305

passing references to

variables to functions in,

91–93

regex_replace (), Smarty

template engine, 444, 446

register_globals, 22, 380

registering variables,

session_register(),

382–386, 455

regular expressions,

341–359

anchoring, 346–347

branches in, 346

break up strings using

split(), 348–349

Membership Code

example of, 347

Perl Compatible Regular

Expressions (PCRE)

backslashed characters

and, 350–351

matching global string

patterns using

preg_match_all() in,

351–353

matching string

patterns using

preg_match() in,

349–351

modifiers in, 354–356

replacing string

patterns using

preg_replace(),

353–354

replacing string

patterns using

preg_replace_

callback() in,

356–357

POSIX, 342–349

atoms (subpatterns)

matching in, 345–346

back references to

string patterns, using

ereg_replace(), 348

bounds in, 343–344

match patterns in

strings using, ereg()

for, 342

matching ranges of

string characters with

character classes in,

344–345

quantifiers to

repeatedly match

string characters in,

343

replace patterns in

strings using

ereg_replace() for,

347–348

strings and, 342–349

REMOTE_ADDR, 236, 238,

243

REMOTE_HOST, 236, 238,

243

request format, in HTTP

client/server negotiations,

238–239

require_once(), 174, 435

reset(), 307

reset() 497

31 Index 11/29/01 3:20 PM Page 497

resource data type, 42, 298

is_resource () test, 301

response format, in HTTP

client/server negotiations,

240–241

resultset

accessing, using

mysql_fetch_row(),

216–219

arrayed, accessing using

mysql_fetch_array(),

218–219

arrayed, accessing using

mysql_fetch_assoc(),

218–219

objects as, accessing using

mysql_fetch_object(),

218–219

return statement, 81–82

returning values from

user-defined functions,

81–82

reusability of code, 120

rmdir(), 184

root element

in DOM, using add_

root(), 418–419

in XML, 409–410

rows, 208

S

Sablotron engine, 20

saving state between

function calls, using

static statement, 87–89

saving state in forms, using

hidden fields, 159–161

saving state with cookies

and query strings,

361–377

saving state with session

functions, 379–391

sayHello(), 83

scalars, 298–299, 302–303

scope of variables, 83–87

scripting, 10, 16, 27–35

block code statements in,

29–31

clean up, 452

combining HTML and

PHP in, 32–33, 157–159

comments in, 33–34

execution, 452

extensions for filenames

in, 28–29

File Upload script

example, 163–166

initialization, 452

line breaks in, 28

print() function in, 31–32

processing instructions in,

30

text editor for, 27, 28

searches, array_search(),

308

{section} function, Smarty

template engine, 439–443,

446, 447

security, 399–401, 471

SELECT element, in forms,

153–155

SELECT statement, 209,

215, 217, 221, 224, 286

select(), 225–231

semicolon, as statement

delimiter, 31, 40, 70

Sendmail, 250

serialize(), 141–142

adding complex data

structures to database,

using, 195–198

server variables, 235–238

servers, 9, 393–405

commands run in, using

exec(), 397–398

connecting to database

server, using mysql_

connect(), 209–210,

221–222

directory listing in, using

exec(), 397–398

external applications on,

using passthru(),

401–402

external CGI scripts on,

using virtual(), 402–403

external commands in,

using backtick operator

in, 399

external commands in,

using system(), 398–399

passwords and shadow

files, 400

PHP supported, 15–16

pipes to and from

processes, using

popen(), 394–397

498 resource data type

31 Index 11/29/01 3:20 PM Page 498

security for, using

escapeshellcmd(),

399–401

variables for, 235–238

Zend engine for, 10

session functions, 379–391,

455

accessing variables in,

using session_save_

path() in, 383

checking registration of

variable in, using

session_is_registered(),

388–389

destroying, using

session_destroy() in,

386–387

encoding/decoding

variables in, using

session_encode() and

session_decode(), 388

HTTP_SESSION_VARS

array and, 389

passing session IDs on

query string, using

enable_trans_sid option,

387

register_globals directive

and, 380

registering variables in,

using session_register(),

382–386, 455

removing registered

variables in, using

session_unset(), 387

session_set_save_

handler() for, 380

starting, using

session_start(),

380–381, 385–386

temporary file storage of,

380

variables in, 381–386

session_destroy(), 386–387

session_encode() and

session_decode(), 388

session_is_registered(),

388–389

session_register(), 382–386,

455

session_save_path() in, 383

session_set_save_handler(),

380

session_start(), 380–381,

380, 385–386

session_unset(), 387

setCellpadding() method,

134

setcookie(), 364–365

setDate_array(), 291

setDate_global(), 292–293

setDate_timestamp(), 291

setError(), 222

setMessage(), 455

setName(), 124

setQuery(), 223

settype (), 43–44, 298, 302

setYearStart() and

setYearEnd(), 292

shadow files, 400

shell, escapeshellcmd(),

399–401

short_open_tag directive,

22, 30

sibling node access, using

next_sibling() or

previous_sibling(), 421

Simple Text, 27

slash slash comment

delimiter, 33

sleep() method, 142

Smarty template engine,

431–449

acquiring and installing,

432–434

arrays in, using {section}

function, 441–443

built-in PHP variables and,

equivalents for, 437–438

built-in template functions

in, 438–443

{capitalize} function in,

444, 446

combining templates in,

using {include}, 443,

446

compiled version of

template in, 436

{default} in, 445

displaying page in, using

display(), 435

{else} control statement

in, 438–439

{elseif} control statement

in, 438–439

example of, 445–447

header template example

in, 447

HTML in, 434

{if} control statement in,

438–439

Smarty template engine 499

31 Index 11/29/01 3:20 PM Page 499

looping in,using {section}

function, 439–443,

446–447

{lower} function in, 444,

446

modifying template

variables in, using pipe

symbol, 443–445

project management using,

432

regex_replace () in, 444,

446

require_once() in, 435

saving templates to

template directory in,

434

scripting example in,

434–436

string_format() in, 444

variable assignment in,

using assign(), 435–438

variables in, 434, 436–438

Solid, 20

sort(), 112–113

sorting

arrays, 112–114

using uasort(),

313–314

using uksort(),

314–315

using usort(), 312–313

asort(), 113

ksort(), 114

sort(), 112–113

source code for PHP, 16

split(), 348–349

sprint(), 372

sprintf(), 293, 328

string format using,

320–328

SQL, 207–233

abstraction class building

for, the DataLayer class,

220–231

accessing information in,

215–219

acquiring value of

automatically increment-

ed field in, using

mysql_insert_id(), 215

adding data to table in,

using add_to_

database(), 211–214

arrayed resultset access in,

using mysql_fetch_

array(), 218–219

arrayed resultset access in,

using mysql_fetch_

assoc(), 218–219

automating statements in,

224–225

changing data in, using

mysql_affected_rows(),

219–220

columns in, 208

connecting to database

server, using mysql_

connect(), 209–210,

221–222

CREATE TABLE in, 208,

223–224

data types and, 208

delete() for, 225–231

finding error information,

using mysql_errno ()

and mysql_error(),

210–211, 214

finding number of rows

from query, using

mysql_num_rows(),

215–216

INSERT statement in, 208

insert() for, 225–231

introduction to, 208–209

narrowing query, using

makeWhereList(), 225

object resultset access in,

using mysql_fetch_

object(), 218–219

querying, using msql_

query(), 212–215,

222–223

resultset access in, using

mysql_fetch_row(),

216–219

rows in, 208

SELECT statement in,

209, 215, 217, 221, 224

select() for, 225–231

selecting a database, using

mysql_select_db(), 210,

214, 222

tables in, 208

UPDATE statement in,

209, 219–221

update() for, 225–231

500 Smarty template engine

31 Index 11/29/01 3:20 PM Page 500

WHERE clause in, 209,

224–225

wildcard (asterisk) symbol

in, 209

start/end tags in PHP,

29–31, 32

start/end tags, xml, 408

start_handler(), 415–416

stateless transacations (See

also saving state), 361

statements, 31, 40

static statement, 87–89

status lines, 245–246

str_replace (), 333–334

string data type, 41

string_format(), Smarty

template engine, 444

strings, 31, 298, 319–339

argument swapping in,

326–328

atoms (subpatterns)

matching in, 345–346

back references to patterns

in, using ereg_replace(),

348

bounds, when matching

characters, 343–344

break up, using split(),

348–349

breaking into arrays from,

using explode(),

336–337

case conversion in, using

strtoupper() and

strtolower(), 334–335

clean up, using trim(),

ltrim(), and strip_tags(),

332–333

concatenation operator (.)

and, 48

conversion specification

for, 320, 325–326

dollar sign within, 111,

304

dynamic function calls

and, 83

field width in, 323–324

formatting, using printf()

and sprintf(), 320–328

in graphics, using

imageTTFtext(),

265–266

indexing, 328–329

is_string () test, 301

length of, using strlen(),

314, 329

matching ranges of string

characters with character

classes in, 344–345

modifiers, in PCRE

pattern matching,

354–356

padding specifier for,

322–323

pattern matching globally

in, using preg_match_

all(), 351–353

pattern matching in, using

ereg(), 342

pattern matching in, using

preg_match(), 349–351

position of substring,

using strpos(), 330

POSIX regular

expressions for, 342–349

precision in, 324–325

quantifiers in Posix, to

repeatedly match string

characters in, 343

quotation marks in, 225

replace pattern in, using

ereg_replace(), 347–348

replace portion of, using

substr_replace(), 333

replacing patterns in,

using preg_replace(),

353–354

replacing string patterns

in, using preg_replace_

callback(), 356–357

storing formatted, in

sprintf(), 328

substring extraction from,

using strstr(), 329

substring partial

extraction, substr(), 330

substring replacement in,

using str_replace (),

333–334

title case in, using

ucwords(), 335

tokenizing, using strtok(),

330–332

strings 501

31 Index 11/29/01 3:20 PM Page 501

type specifiers for,

320–322

wrapping text in, using

wordwrap() and

n12br(), 335–336

strip_tags(), 332–333

strlen(), 314, 329

strpos(), 330

strstr(), 329

strtok(), 330–332

strtolower(), 334–335

strtoupper(), 334–335

Structured Query Language

(See SQL)

subclasses, 454

is_subclass_of() for, 140

substr(), 330

substr_replace(), 333

substring

extracting, strstr(), 329

partial extraction,

substr(), 330

position, strpos(), 330

replace portion of, using

substr_replace(), 333

replacement in, using

str_replace (), 333–334

subtraction operator, 47–48

switch statement, 63–64, 72

Sybase CT, 20

system(), 398–399

T

Table class, 135–137

tables, 208

adding data to, using

add_to_database(),

211–214

addRow() method in, 126

addRowAssocArray()

method in, 126–127

creating, 223–224

output() method for,

127–129

tags, xml, 408

tagWrap(), 95

telnet, 162

template directory, Smarty

template engine, 434

template engines (See

Smarty)

temporary directories, file

uploads to, 164

temporary file storage,

session function, 380

temporary variables, 79

ternary operator, 64–65

test(), 84

testing classes and objects,

138–141

text editors, 27–28

this variable, 123

time(), 278, 364

timestamp

conversion, using date(),

280–282

conversion, using

getdate(), 278–280, 284,

288

creation, using mktime(),

282–283, 291–292

setting, using

setDate_timestamp(),

291

title case, using ucwords(),

335

tokenizing a string,

strtok(), 330–332

touch(), 177

track_vars, 22

Tracking Site Usage cookie

example, 365–372

transparent color, using

imagecolortransparent(),

263–264

traverse(), 424

tree hierarchy, in XML,

410, 422–424

trim(), 332–333

true, 49–51

TrueType fonts, 265

type specifiers, in strings,

320–322

U

uasort (), 313–314

ucwords(), 335

uksort(), 314–315

Unix, 11, 15, 27

unlink(), 177

unserialize(), 142–143

removing complex data

structures from database

using, 196–198

502 strings

31 Index 11/29/01 3:20 PM Page 502

unset(), 305, 308

UPDATE statement, 209,

219–221

update(), 225–231

update_visit(), 371

upload_tmp_dir direcitive,

164

uploading files

default values for, 89–91

File Upload script

example of, 163–166

HTTP_POST_FILES

array to view, 164–165

MAX_FILE_SIZE field

for, 163–164

moving files in, using

move_uploaded_file(),

166

naming conventions for,

166

passing references to

variables to functions in,

91–93

temporary directories for,

164

upload_tmp_dir direcitive

for, 164

verifying file in, using

is_uploaded_file(), 166

URL, 458

qlink(), 374–375

query strings, 373–375

urlencode(), 373–375

urlencode(), 373–375

user-defined arrays,

accessing form input

using, 153–155

user-defined functions,

arrays and, array_map(),

310–311

user input, acquiring, in

form, 151–153

user session support, 9

users, 467–468

V

values, user-defined

functions returning, 81–92

variables, 40–41, 304–305

accessing registered, using

session_save_path() in,

383

arrays vs., 99–100

arrays, adding to, using

array_push(), 110–111

assignment of, using

assign(), 435, 436–438,

446

assignment operator (=)

for, 40–41, 305

changing, using settype(),

298, 302

checking registration of,

using session_is_

registered(), 388–389

date global values in,

using setDate_global(),

292–293

directives for, 22

disassociation of, using

unset(), 305

dynamic, 304

dynamic function calls

and, 83

encoding/decoding, using

session_encode() and

session_decode(), 388

in forms, 153

functions and, 79

global, 22, 85–87,

150–151, 237

HTTP_SESSION_VARS

array and, 389

naming, 40

naming, 304–305

passing references to

variables to functions in,

91–93

predefined, 150–151

references to, 305

registering, 9

registering, using

session_register(),

382–386, 455

removing registered, using

session_unset(), 387

saving state between

function calls, using

static statement, 87–89

scope of, 83–87

server, 235–238

session function, 381–386

Smarty template engine,

434, 436–438

static, 87–89

temporary, 79

variables 503

31 Index 11/29/01 3:20 PM Page 503

testing for absence in,

using isset(), 305–306

testing for emptiness in,

using empty(), 306

testing, using gettype(),

42–43, 46, 298, 301–302

Velocis, 20

Vi, 27

virtual (), 402–403

visit_id(), 368

W

wakeup() function, 142

Web applications, 8–9, 11,

16

CURL package for, 247

forms as, 149

Web servers, 16

Web site for PHP, 16

WebSite Pro, 16

WHERE clause, 209,

224–225

while, 49, 65–66, 303

wildcard (*) symbol, 209

Windows, 15–16, 27

with gd option, installation

for GD library, 19

with gdbm option,

installation for Gnu

Database Manager, 18–19

with mysql option,

installation for MySQL

database, 19

with sablot option,

installation for Sablotron

engine, 20

with ttf option, installation

for FreeType font library,

19

wordwrap(), 335–336

wrapping text in, using

wordwrap() and n12br(),

335–336

X

XML, 9, 407–428

acquiring a

DomDocument object

for, using new_

xmldoc(), 418

acquiring parser resource

for, using xml_parser_

create(), 411

adding new DomElement

to tree of, using

new_child(), 419–420

attributes in, 408

character handler for,

using xml_set_

character_data_

handler() in, 412, 417

child node access in, using

children(), 421

child node access in, using

first_child(), 421

configure options for, 20

declaration of, 408

Document Object Model

(DOM) functions in,

417–424

document sample in, 409

document type declaration

(DTD) in, 408

elements in, 408

empty element in, 409

error reporting in, using

xml_get_error_code(),

413–414

examining text nodes in,

using xml_element_node

and xml_text_node in,

421–422

Expat library for, 410

Extensible Stylesheet

Language (XSL) and,

424–426

finding errors in, using

xml_get_current_line_

number(), 414

foreach loop in, 424

getting information on

DomElement objects in,

using attributes(),

420–421

Gnome XML Library for,

418

handle_node() in, 424

HTML and, 408–409

libxml library for, 20

markup languages and,

408

next_node() in, 423

504 variables

31 Index 11/29/01 3:20 PM Page 504

options for parsers in,

using xml_parser_set_

option(), 413

parent node access in,

using parent(), 421

parser functions in,

410–417

parsing a document in,

using xml_parse(), 413

processing instructions in,

30

root element in, 409–410

root element in, using

add_root(), 418–419

Sablotron engine for, 20

setting handlers for, using

xml_set_element_

handler(), 411–412

sibling node access in,

using next_sibling() or

previous_sibling(), 421

starting and ending

handlers for, using

start_handler() and

end_handler(), 415– 417

tags in, 408

traverse() in, 424

traversing a tree in, two

examples for, 422–424

tree hierarchy in, 410,

422–424

Web site example using,

415–417

xml_element_node, 421–422

xml_get_current_line_

number(), 414

xml_get_error_code(),

413–414

xml_parse(), 413

xml_parser_create(), 411

xml_parser_set_option(),

413

xml_set_element_handler(),

411–412

xml_text_node, 421–422

XOR operator, 51

XSL, 424–426

xslt_errno, 426

xslt_error, 426

xslt_process(), 426

Y–Z

year_select(), 293–295

Zend Accelerator, 11

Zend engine, 10

Zmievski, Andrei, 432

Zmievski, Andrei 505

31 Index 11/29/01 3:20 PM Page 505

